R80-4

B6700/7700 PASCAL

Gompiler Version 111-0-00I

1980 April

: Department of Information Science

The University of Tasmania

G.PO.Box 252C Hobart
_”'f'asmania 7001

o

c Copyright 1977, by A.H.J. Sale

All rights reserved.

No part of this document may be reproduced by any means, nor
transmitted, nor translated into a machine-readable form without the
written permission of the author.

Professor A.H.J. Sale

Department of Information Science
University of Tasmania

Box 252C, G.P.O.,

Hobart, Tasmania 7001

CONTENTS

CONTENTS

1. INTRODUCTION
COMPLIANCE STATEMENT
INTRODUCTION TO THE MANUAL

2. LEXICAL TOKENS
LEXICAL TOKENS
CHAR CONSTANT
COMMENT
DOUBLET SYMBOLS
INTEGER CONSTANT
ONE-CHARACTER SYMBOLS
REAL CONSTANT
RESERVED WORDS
STRING CONSTANT
NAMES

3. SUBCOMPONENTS
SUBCOMPONENTS
ASSIGNMENT COMPATIBILITY
EXPRESSION
LABELS
NAME LIST
OPERATORS (ARITHMETIC)
OPERATORS (BOOLEAN)
OPERATORS (SET AND RELATIONAL)
PARAMETER LIST
SCALAR RANGE
SCOPE
SET CONSTRUCTOR
SIGNED INTEGER
SUBRANGE
TYPE COMPATIBILITY
TYPE IDENTITY
VARIABLE

4, DECLARATIONS
ARRAY TYPE
ATTRIBUTES
BOOLEAN TYPE
CHAR TYPE
CONST DECLARATION
FIELD LIST
FILE TYPE
FORMAT DECLARATION
INTEGER TYPE
LABEL DECLARATION
PACKED :
POINTER TYPE
REAL TYPE
RECORD TYPE

Y

CONTENTS

SCALAR TYPE

SET TYPE
SUBRANGE TYPE
TEXT TYPE

TYPE DECLARATION

5. STATEMENTS
STATEMENTS
ASSIGNMENT
BODY
CASE STATEMENT
COMPOUND STATEMENT
EMPTY STATEMENT
FOR STATEMENT
GOTO STATEMENT
IF STATEMENT
PROCEDURE INVOCATION.
REPEAT STATEMENT
WHILE STATEMENT
WITH STATEMENT

6. PROGRAM UNIT
PROGRAM UNIT
EXTERNAL DECLARATIONS
FORWARD DECLARATIONS
FUNCTION
PROCEDURE
PROGRAM

7. PRE~-DEFINED PROCEDURES
ARITHMETIC FUNCTIONS
MARK AND RELEASE
MIN. AND MAX
MIXED-TYPE FUNCTIONS
NEW
OPERATING SYSTEM PROCEDURES
PACK AND UNPACK
PASCAL GENERIC FUNCTIONS
RANDOM
TIME PROCEDURES

8. INPUT AND OUTPUT
INPUT AND OUTPUT
CLOSE :

EOLN, EOF AND ENDOFFILE
GET AND PUT

PAGE

PRE-DEFINED FILES
READREC

READ

RESET AND REWRITE

SEEK

CONTENTS

SPACE
WRITEREC
WRITE

9. COMPILER OPTIONS
COMPILER OPTIONS
$
ASCII
AUTOBIND
BIND
BINDER
BINDINFO
BOUNDSCHECK
CHECK
CODE
ERRLIST
ERRORLIMIT
HEAP
HEXCODE
INCLNEW
INCLUDE
LINEINFO
LIST
LISTINCL
MERGE
NAMES
NEW
OMIT
PAGE
SEQ
SETSIZE
STANDARD
STATISTICS
STRIPBLANKS
TRUSTWORTHY
WARNINGS
USER-OPTIONS

10. COMPILER FILES
COMPILER FILES
FILE DEFINITIONS
FILE EQUATION

11. ERRORS
ERRORS
COMPILE-TIME ERRORS
INV-OPERATOR
PASCAL READ ERROKS
PASCAL WRITE ERRORS
RUN-TIME PASCAL ERRORS
RUN-TIME SYSTEM ERRORS
STACK HISTORY

L1}

12. SAMPLE PROGRAMS

13. GENERAL

CHARACTER SETS
"WRAP UP INFO
"COMPILER ‘NOTES

'CONTENTS

INTRODUCTION

1. INTRODUCTION

The B6700/B7700 Pascal language is a dialect of the programming
language Pascal, designed by Niklaus Wirth (see References) and first
implemented for CDC 6000 computer systems. The implementation for
the B6700 and B7700 computer #systems was undertaken by the Department
of Information Science at the University of Tasmania, and has a
number of extensions from standard Pascal to adapt it to the new
environment. Nevertheless, it is capable of handling programs
written in Pascal and compiled on other machines, though its
searching tests for 'undefined features' may cause the rejection of
programs that compile successfully elsewhere,

The Pascal language 1is primarily intended for teaching programming,
and in this aim it is unexcelled. An Algol-like language, it has a
few clean executable statement kinds built on the Algol model and
incorporating the improvements of knowledge of the 1970s. Its major
advantage is its good facilities for data-typing and
data-structuring, which are far superior to any other language on the
B6700 or B7700 systems.

Pascal has also been touted as the long-awaited replacement for
FORTRAN, as it has very similar capabilities and would permit
FORTRAN-like constructs to be embedded in a Pascal program by
binding. There are however two major problems with this suggestion
which must be solved if the prediction is to come true. The first
relates to the deviance of the Pascal i/o0 system from the
record-oriented system most programmers are used to; to minimize the
relearning process B6700/B7700 Pascal incorporates the
record-oriented i/o0 system with formats from B6700/B7700 Algol
(derived from FORTRAN itself with tidying). The second relates to
the lack of adjustable arrays in Pascal: this problem is not tackled
in this compiler as it requires some fundamental changes 1in the
language.

The other major function envisaged for Pascal is that of a suitable
vehicle for writing system software, for example compilers. With a
minor addition of a routine it could be so used at its present level,
and could certainly be used for all purposes short of generating code
without change. Pascal is relatively suceessful in this area (though
not perfect) mainly due to its good data structuring facilities.

The compiler was written with three major targets: that of providing
a standard-compatible Pascal compiler for these Burroughs machines:
that of providing an efficient implementation of Pascal; and that of
making the compiler as compatible as possible with the rest of
Burroughs' standard software. Very few additions or changes were
necessary for this last purpose.

INTRODUCTION 1=-1

INTRODUCTION (COMPLIANCE STATEMENT)

COMPLIANCE STATEMENT

This Statement is made in conformance with the requirements of
Section 5.1 of the draft IS0 Standard for Pascal 1979 (N462). The
compiler described in this manual purports to support Standard Pascal
as described in Section 6 of the Standard with the following
differences, extensions, observations, and implementation-dependent
features.

The following sections are declarations made in accordance with the
requirements of the Standard. All section numbers following refer to
the Standard, not to this manual.

1-2 INTRODUCTION

o)

INTRODUCTION (COMPLIANCE STATEMENT)

Implementation-defined features
(See 3 and 5.1.1(b))

The handling of these features may differ from processor to
processor. Use of the features is permitted to Standard-conforming
programs, but they must not rely on these specific interpretations
nor any others. : '

Value of maxint (6.4.2.2 and 6.7.2.2)
549755813887 = 2%%¥39 - 1

Real values (6.1.5)
See manual for details of precision, range, etc.

Char values (6.1.5 and 6.6.6.4)
The char values are represented according to the EBCDIC code or
the ASCII code, depending on the setting of the compiler option
ASCII.

Component type of a set (6.4.3.4, 6.7.1 and 6.7.2.5)
The number of elements in a set must be less than 65536.

Div operator (6.7.2.2)
The following axiom is obeyed:

abs(a div b) = abs(a) div abs(b)

INTRODUCTION | 1-3

INTRODUCTION (COMPLIANCE STATEMENT)

Implementation-dependent features
(See 3, 5.1 and 5.2)

These features are similar to implementation-defined but need not
have an interpretation at all (in other words, be prohibited) on a
particular processor. Standard-conforming programs should not use
them according to 5.2.

Directives (6.6.1 and 6.6.2)
Only the directives forward and external are permitted. (Note:
it is thought that forward should be standard, and only other
directives are implementation dependent.)
Put procedure (6.6.5.2)
The put procedure will fail in execution if applied to a file in
readstate. An error will be reported.
Standard procedures (6.6.5 and 6.6.6) :
Some standard procedures and functions are permitted as
procedural or functional parameters. See the manual for details.
Evaluation order of operands (6.7.2)
The operands of binary operators are always evaluated in
left-to-right order.
Boolean expressions (6.7.2.3)
All components of a boolean expression are always evaluated.
Binding of parameters (6.7.3 and 6.8.2.3)
Binding (the identification of the object involved) takes place
in striet left-to-right order. Scalar, real, pointer, and set
expressions corresponding to value parameters are copied
immediately after they are bound. Array and record parameter
copying corresponding to value parameters are deferred, and the
copying takes place after the call is initiated in left-to-right
order of the deferred values.
Assignment statements (6.8.2.2)
Binding of the variable on the left-hand-side of an assignment
always precedes evaluation of the right-hand-side expression.
Reset and rewrite (6.10)
Reset and rewrite are permitted on the standard files input and
output.

1-4 INTRODUCTION

INTRODUCTION (COMPLIANCE STATEMENT)

Error handling
(See 5.1.1(e))

Access to variant with wrong real or virtual tagfield (6. 4 3.3)
Not detected.

Subrange errors in assignment compatibility (6.4.6)
Detected during compilation if a constant, otherwise detected
during execution.

Dereferencing nil pointer (6.5.4)
Detected in execution by INVALID INDEX interrupt.

Dereferencing undefined pointer (6.5.4)

Detected in .execution if pointer has tagsix Qaiue by INVALID
OPERAND interrupt.

Using put while eof false (6.6.5.2)
Detected in execution.

Using get while eof true (6.6.5.2)
Detected in execution.

Aliasing with file and file-buffer (6.6.5.2)
Aliasing errors arising from binding of the file buffer are not
detected.

Dispose with nil parameter (6.6.5.3)
Dispose implemented but always returns a nil pointer.

Dispose with bound pointer (6.6.5.3)
Dispose implemented but always returns a nil pointer.

Assignment of dynamic variable created with tags (6.6.5.3)
Not detected except in unusual eircumstances.

Error in 1n(x) (6.6.6.2)
Detected in execution by Burroughs intrinsic procedure.

Error in sqrt(x) (6.6.6.2)
Detected in execution by Burroughs intrinsic procedure.

Trunc and round with non-integer result (6.6.6.3)
Detected in execution by INTEGER OVERFLOW interrupt.

Error in chr (6.6.6.4)
Detected in execution.

INTRODUCTION 1-5

INTRODUCTION (COMPLIANCE STATEMENT)

Error in succ and pred (6.6.6.4)
Detected in execution.

Undefined values (6.7.1)
The attempted use of any undefined value which has acquired the
tagsix value is detected by the INVALID OPERAND interrupt. See
later for an analysis of undefinition.

Set value outside limits (6.7.1)
Detected during compilation if a constant, otherwise detected
during execution.

Divide by zero (6.7.2.2)
Detected in execution by the DIVIDE BY ZERO interrupt.

Integer range trespass (6.7.2.2)
If the result of an integer operation exceeds the integer range,
the value automatically becomes real. However, at assignment
compatibility points, a check is applied which gives rise to the
INTEGER OVERFLOW interrupt if the value is non-integer.

Goto into structured statement (6.8.2.4)
Not detected.

Case expression without label (6.8.3.5)
Detected in execution.

Altering for-index (6.8.3.9)
Blatant attempts detected in compilation and treated as errors.
Possible attempts (use as actual variable parameter) cause
compile-time warnings. Sneaky attempts will be detected in
execution if the loop is optimized.

Syntax of real and integer on input file (6.9.2)
Detected in execution.

1-6 R INTRODUCTION

]

L]

W

INTRODUCTION (COMPLIANCE STATEMENT)

Undefinition

Many errors. are traceable to undefined values: this section
explains. the treatment of undefinition by this compiler.

Local variables (6.2) :
Scalar, real, pointer, and set variables are set to a special
undefined value (tagsix) at the beginning of the statement part.
Records and arrays acquire all-zero binary values. Files acquire
a value or not depending on their attributes (extension).

Change of variant (6.4.3.3)
No changes are made when variants are selected. The fields
retain their original binary values.

Function values (6.6.2)
The function value is initialized to a special undefined value
(tagsix) at the beginning of the statement part. If the value is
not overwritten by a function assignment, an interrupt occurs at
exit.

File buffer (6.6.5.2)
The file buffer is not altered from its current value under
these conditions of undefinition.

Dispose (6.6.5.3)
Dispose implemented but always returns a nil pointer.

For index (6.8.3.9)
Always acquires a special undefined value (tagsix) at exit.

INTRODUCTION . 1-7

INTRODUCTION (COMPLIANCE STATEMENT)

Extensions to Standard Pascal

(See 5.1)

These are more fully described in the manual. The compiler option
STANDARD enables a checking which flags use of these extensions in

general,

1. The provision of file attribute declarations.

2. The provision of type transfers from integer to scalar type
(inverse of ord).

3. The provision of a format declaration and record-oriented read
and write statements.

4. The provision of random-access (relative-indexed) reading and
writing.

5. The provision of extra pre-defined procedures and functions.

6. Allowing external files to be attached to inner procedures or
functions without attachment to the main program.

7. Allowing strings to use the double quote as an alternative to the
single quote for Algol compatibility.

8. The lexical alternatives @, (*, *) gre permitted for use on
devices which do not support °* *

9. Allowing a % to end-of-line comment form.

10. The permitting of an otherwise clause in case statements.

11. Allowing external procedures or functions to be declared within a
program.

1-8 INTRODUCTION

ax

INTRODUCTION (COMPLIANCE STATEMENT)

Deviations from Standard Pascal

These are more 'fully described in the manual, and ‘represent
places where the processor does not conform to the requlrements
of section 6 of the Standard.

1. Files may not be components of any structured type.
2. Program parameters are permitted, but have no effect.

INTRODUCTION 1-9

INTRODUCTION

INTRODUCTION TO THE MANUAL

Burroughs Algol programmers should find little difficulty in writing
Pascal programs which are almost isomorphic to the Algol ones they
presently write; experience will allow transition to Dbetter
structured code as the concepts of data-structures become more
understood. FORTRAN programmers will find more difficulty as the
control structures are also less familiar; PL/I programmers will be
amazed at the simplicity and power of the Pascal language compared to
PL/I.

The rest of this document discusses the components and structures of
the B6700/B7700 Pascal 1language, categorized into categories that
seem appropriate. These categories, by section, are:

Lexical tokens
(the words of Pascal)

Subcomponents
(bits and pieces otherwise unclassifiable)
Declarations
(the objects and concepts of Pascal and stating them)
~ Statements

(the executable commands of Pascal)
Program units

(constructing wholly executable programs)
Pre-defined procedures

(procedures available without declaration)
I/0

(the input/output system of B6700/B7700 Pascal)
Options

(how to manipulate the compiler options and their effects)
Compiler files .

(the definitions of the compiler's file attachments)
Errors

(the interpretation of error situations)
Sample programs

(to illustrate the language and the listings produced)
General

(which cannot be classified elsewhere)

This manual was produced using the RUNOFF text editing system and
printed on a Diablo 1620 terminal.

1-10 "~ INTRODUCTION

a

»

INTRODUCTION

References

Addyman, A: The BSI/ISO Working Draft of Standard Pascal by
the BSI DPS/13/4 Working Group, Pascal News, Number 14,
pp 9-54; see also Draft Proposal TSO/TC97/SC5 DP7185

Jensen, K and Wirth, N (1974): "PASCAL User Manual :and Report",
Notes in Computer Science Series, No.18, Springer-Verlag.

Wirth, N (1973): "Systematic Programming", Prentice-Hall.

Welsh, J. (1978): "Economic Range Checks in Pascal™,
Software - Practice and Experience, vol. 8, p 85-97.

INTRODUCTION | 1-11

'LEXICAL TOKENS

LEXICAL TOKENS
Syntax

lexical token

> reserved word g

X

————> name

——> integer constant

»real constant

———— char constant

——> string constant

————> comment

L———> doublet symbols

L———> one-character symbols

Semantics

The formation of the lexical tokens is explained in the succeeding
pages. Lexical tokens in B6T700/B7700 Pascal are formed from
characters in the EBCDIC character set. All lexical tokens must be
contained wholly on a single 1line of the source text and may not
contain any embedded space characters., Except within string and char
constants, and within comments, the space character serves to delimit
adjacent tokens but has no other meaning.

LEXICAL TOKENS 2-1

CHAR CONSTANT

CHAR CONSTANT

Syntax

char constant

Semantics v

A char constant defines a constant of the pre-defined Pascal type
char. In each case above, the enclosed character may be any legal
character except the quote symbol used to delimit the token.

The internal representation of the graphic used in a char constant is
normally an 8-bit EBCDIC value. However, if the ASCII compiler
option is set when a char constant is compiled, the value is
represented internally in the ASCII code. This will affect the
internal collating sequence and the result returned by the ORD and
CHR functions.” If a string delimiter is to appear as a char constant
then that character is written twice. Thus '''' contains the
character '.

2-2 LEXICAL TOKENS

> ' — character — ' }ll

®

L]

Q)

(1]

COMMENT

COMMENT
Syntax
comment
—— charactere—
»>{— >}
— .
.J:——-charactere——
;(*' —l %)
Semantics

A comment has no effect on the compilation or execution of a Pascal
program except for a role in delimiting other tokens. The two forms
of comment are equivalent to a space character. Comments may
therefore be used wherever a space may be used, except within string
constants or format lists.

The purpose of a comment is to introduce information for human
readers of the program; therefore any character may be used in the
body of the comment except for the symbol that terminates it.

If a closing marker is omitted by mistake, following text will not be
compiled and is treated as commentary until another comment is
reached. To detect this situation in a large number of cases, a
warning message is 1issued if a semicolon is encoéuntered in these
comment forms. The message may be suppressed by resetting the
WARNINGS compiler option.

LEXICAL TOKENS 2-3

DOUBLET SYMBOLS

DOUBLET SYMBOLS

Syntax
doublet symbol token-name

HE becomes~token

.o subrange-token

O not-equal-to

<= less-or-equal

>= greater-or-equal
Semantics

Tokens composed of two adjacent characters are used in Pascal to
augment the basic character set and to construct extra tokens. The
use of these tokens in the language will be described in later
sections. Note that the pair of characters must be immediately
adjacent to be recognized as a doublet symbol; if a space separates
them the characters are recognized as separate tokens.

2-1 - LEXICAL TOKENS

L7

<)

INTEGER CONSTANT

INTEGER CONSTANT

Syntax

integer constant

mantic

An integer constant is represented internally in a B6700/B7700 Pascal
program by a value of type integer. The external form is written as
a sequence of decimal digits (0123456789) and converted according to
the usual rules, A valid integer must have no more than 12 digits
(including any 1leading zeros), and must be less than 549755813887
since this is the largest representable integer in the B6700/B7700
computers. The predefined constant, MAXINT, represents the largest
representable integer in the B6700/B7700 computers.

LEXICAL TOKENS 2=5

ONE-CHARACTER SYMBOLS

ONF-CHARACTER SYMBOLS
Syntax
symbol token-name equivalent
+ plus
- minus
* times
/ divide
= equalto
< less-than
> greater-than
(left-parenthesis
) right-parenthesis
[left-bracket
] right-bracket
. point
, comma
: colon
3 semicolon
1 -at (see note) @ or °

LEXICAL TOKENS

o)

ONE-CHARACTER SYMBOLS

nti :
The use of these tokens will be explained in later sections. If the
B6700/B7700 Pascal compiler encounters. a character outside the
context of the other tokens which is not one of these characters (for
example the &-character), a lexical error is reported.

Note:
The T-character may not be awvailable on all devices on a
B6700/BT7700 system (as it is not a common graphic) and the use of
the @-character is provided as an alternative. On some devices
the T-character masquerades as the — -character, or prints as
a .

LEXICAL TOKENS 2-7

REAL CONSTANT

REAL CONSTANT

Syntax

real constant

———>integer constant ——l—>fraction —T—r exponent J 3|
fraction
> . > digit)
exponent
l:; |
>E . digit 3|

L _se j +

Semantics
A real constant is represented internally in a B6700/B7700 Pascal
program as a read-only value of type real. The value of the real

constant must lie in the representable range of the B6700/B7700
computers:

between 8.75811540203E-47 (8%#%_.51)
and 4.313591466TUE+68 (8#%76 ~ B¥##H3)

or may be exactly zero. The fraction part may have any number of
digits, up to the limit imposed by the 1line length, but only the
first 23 are used in the conversion. A fraction written with a large
number of fractional leading zeros may therefore be inaccurately
converted. The exponent part is a scale factor expressed as a power
of 10, and may have one or two digits.

Note: :
An integer constant is a valid real constant. If a real constant is

in fact an integer, it may lead to more efficient code if it is
written as such without a fraction or exponent.

2-8 o LEXICAL TOKENS

»

a)

RESERVED WORDS-

Syntax

SYMBOL

IF CASE DOWNTO

IN ELSE FORMAT

DO GOTO PACKED

OF FILE RECORD
OR THEN REPEAT

TO TYPE PROGRAM
AND WITH FORWARD
DIV ARRAY EXTERNAL
END BEGIN FUNCTION
FOR CONST OTHERWISE
MOD LABEL PROCEDURE
NEQ UNTIL

NIL WHILE

NOT

SET

VAR

LEXICAL TOKENS

RESERVED WORDS

2-9

RESERVED WORDS

Semantics

The wuse of reserved words is described in later sections. The
reserved words are absolutely reserved: they may not be wused as
names elsewhere in a B6700/B7700 program since they will always be
recognized as reserved words. The reserved words are recognized
according to the rules for names: they may appear in the source text
in upper-case letters, or lower-case letters, or a mixture of both.
BEGIN, Begin and begin are all recognized as the reserved word BEGIN.

The reserved word FORMAT has no counterpart in standard Pascal; the
word NEQ is provided as an Algol-compatible equivalent for <>
(not-equal-to). The word PROGRAM is treated as fully synonymous with
the word PROCEDURE.

Standards

In B6700/B7700 Pascal, FORWARD and EXTERNAL are a reserved words, and
may not be redefined by a programmer. This, however, is not standard
Pascal, although forward declarations are permitted.

NIL is included here as a reserved word as specified by the Pascal
Standard. However, in B6700/B7700 Pascal, NIL is not a reserved word,
but a predefined name (as are TRUE and FALSE). Programmers may
redefine these names if they wish, however, this is not recommended.

2-10 ' LEXICAL TOKENS

9

STRING CONSTANT

STRING CONSTANT

Syntax

string constant

' l > character > ! N

v

Semantics
A string constant defines an object which can be used in Pascal as a
read-only packed array of char. Any legal characters may appear in

the internal part of the string constant except the character used to
delimit the token.

The maximum length of a string constant is 70 characters, and is
possible only if the string constant occupies the whole of a source
line. The minimum length is 2 characters, as a 1-character string is
regarded as a char constant.

The internal representation of the graphics used in a string constant
is normally in 8-bit EBCDIC values. However, if the ASCII compiler
option is set when a string constant is compiled, the graphics are
represented internally in the ASCII code. This will affect the
internal collating sequence and the result returned by the ORD and
CHR functions. If ‘a string delimiter is to appear within a string
with that delimiter then the character is written twice. Thus the
string constant 'DON''T' contains the characters DON'T.

LEXICAL TOKENS 2-11

NAMES

NAMES

Syntax

name —— letter <«

—— digit <

——underline-character «—

— > letter

XY

Semantics

Names are used. to identify Pascal objects, apart from labels, In the
above syntax, a letter means any alphabetical character in either
uppercase (A to Z) or lower-case (a to z); a digit means a decimal
digit (0 to 9); and the underline-character means an underlined
space, Any length name is permitted up to the limit imposed by the
line 1length and all characters of names are significant in
distinguishing names. However, for the purposes of naming, a
lower-case letter and an upper-case 1letter are regarded as
equivalent. Thus the name FRED is the same as the name Fred. Names
are held internally in the compiler in upper-case form and any
compiler-produced name-tables, etc.,, use this canonical form for
printing. For compatibility with other Pascal compilers, programmers
should consistently use either upper-case or lower-case.

A programmer-defined name may not be the same as any reserved word.

2=-12 : LEXICAL TOKENS

)

"

a)

NAMES
Examples

J
THING
temperatureofkiln

PAINT_MIXTURE_FOR_PAINTING_THE_KITCHEN_WITH_ON_SUNDAY

disaster_point

WITH2PARAMETERS

PartNod536Z

CourseSIS102H
Note

Some other compilers for Pascal only treat the first 8 characters of
a name as ‘significant. This should be Dborne in mind if
compatibility with other compilers is important. The use of two
cases of letters, and of the underline .character, should also be

avoided in these circumstances. ‘See the use of ‘the -compiler option
'STANDARD'.

LEXICAL TOKENS 2-13

SUBCOMPONENTS

SUBCOMPONENTS

Explanation :
Some constructs appear in the B6TD0/B7700 Pascal language in several
contexts, Rather than define the constructs in the main part of the
manual, they are defined here as subcomponents of the language:
comprised of lexical tokens but not major components of the language
such as statements or declarations.
The subcomponents described are:

signed integer

expression

name list

parameter list

subrange

scalar range

set constructor

labels

variables

Also discussed are:
operators
type identity
type compatibility
assignment compatibility

scope

SUBCOMPONENTS ' 3-1

ASSIGNMENT COMPATIBILITY

ASST NT T
Semantics

Compatibility is not expressed in the B6700/B7700 Pascal language,
but is a notion used to test whether an assignment or type
association is semantically meaningful.

An expression E of type T2 is assignment-compatible with a type T1 if
any of the four statements which follow is true.

1,

2.

3.

h,

T1 and T2 are identical and neither is a file-type nor a
structured-type with a file component,

T1 is a real-type and T2 is integer.

T1 and T2 are compatible ordinal-types and the value of E is
in the closed interval specified by the type T1.

T1 and T2 are string types with the same number of
components.

SUBCOMPONENTS

<)

b

EXPRESSION

Syntax

expression

simple e _
expression he

relational simple
operator expression

simple expression

: term ¢ adding e——
I operator

X

term

factor e multiplying «——
| operator
—> factor R — - : >l

SUBCOMPONENTS ' | 3-3

EXPRESSION

factor

——> integer constant
I——> real constant
————> char constant

> > string constant —M——

———> scalar constant —

——— constant name

> NIL

———> set constructor

> variable v

Y.

—————> function call

——> type —> (—> expression —) —

> NOT » factor

> (> expression : >)

Semantics

An expression is a construct denoting a computation for deriving a
value from variables and constants by the application of operators.
Expressions consist of operands (objects having value such as
variables and constants), operators (rules for computation), and some
structuring tokens (parentheses). An error occurs if ‘any variable,

or function used as an operand in an expression has an undefined
value at the time of its use.

The operators are applied according to rules of precedence, according
to four classes of operators. The operator NOT has the highest
precedence, followed by the 'multiplying' operators, then the
'adding' operators and signs, and finally the relational operators.

3-4 SUBCOMPONENTS

*

EXPRESSION

PRECEDENCE ORDER OF OPERATORS

NOT

% / DIV MOD AND (multiplying operators)
+ - OR : (adding operators)

> = < >z &= O (relational operators)

The higher precedence operators are applied before any of lower
precedence. These notions are implicit in the syntax charts given.
Sequences of operators of the same precedence are executed from
left-to-right. In all expressions, including boolean expressions,
all terms and factors are evaluated. '

Expressions which are members of a set are of identical type. (1
denotes the empty set which belongs to every set type. The set [x..y]
denotes the set of all values of the base type in the closed interval
x to y. If x is greater than y then [x..y] denotes the empty set.

The type of an expression may be altered by specifying the type name
followed by the expression enclosed ir parentheses. The bounds of
the type are checked and an error results if the bounds are exceeded.
The types INTEGER and REAL may not be used in this manner.

A legal expression in B6700/B7700 Pascal must comply with the type
and compatibility rules as well as the syntax given. The operators
are defired only over certain types and return values of particular
types; these are detailed in the sheets on operators. The

requirements for further compatibility are given in the sheets under
that title. :

SUBCOMPONENTS ' 3-5

EXPRESSION

Examples
FACTORS: X
15
X +Y+2)
SIN(X + Y)
[RED,C,GREEN]
(1,5,10..19,23]
NOT P
TERMS: X*y
I *J+2
(X <= Y) AND (Y < Z)
SIMPLE EXPRESSION: X+Y
=X
P OR Q
HUE1 + HUE2
I *J4+1
EXPRESSIONS: X =1.5
P <=Q
P = Q AND R
(I<J)=(J<K)
CR IN [RED,GREEN]
Standards
Some other Pascal compilers implement boolean expressions by
selective evaluation (sequential conjunction or disjunction); this
may pose some problems for programs imported into-a B6700/B7700

environment but will not be 1likely to affect the portability of

exported programs except for rare cases. All programs affected are
non-standard.

3-6 ' SUBCOMPONENTS

i)

EXPRESSION

The precedence rules for boolean expressions give the effect that:
‘a> 0and b < 10

is illegal since it is parsed:

a> (0 and b) < 10
the correct expression is of course:

(a > 0) and (b < 10)
Since a few compilers do not conform to the standard Pascal
precedence rules, it is recommended that expressions involving
boolean operands be fully parenthesized, #eéspecially if relational
operators are used between booleans; for example:

azband ¢

Changing type by using the type-name in a function-<like usage is not

standard Pascal. Only the ORD, TRUNC and ROUND funetiéns (see
functions) are allowed in standard Pascal.

SUBCOMPONENTS 3-7

LABELS

Syntax

label

—> integer constant

X

Semantics '

Labels are used to mark places in the executable body of a program,
procedure or function, so that the goto statement can wutilize them.
Further references will be found under goto statement, label
declaration, and statement.

A valid B6700/B7700 Pascal label has a corresponding numeric value

from 0 to 9999 inclusive. The numeric value is not important, except
for establishing correspondence between usages of labels.

Examples

1

7876

3-8 ' SUBCOMPONENTS

NAME LIST

NAME LIST

Syntax

name list

> name

k3

Semantics

A name list consists of one or more names, separated by commas. It
occurs in several forms -of declaration.

Examples
REDCOLOUR

RED, BLUE, YELLOW ,GREEN, PURPLE
X,Y,Z

SUBCOMPONENTS

OPERATORS (ARITHMETIC)

ARITH P 0

Binary

operator operation type of operands | type of result
+ addition integer or real integer or real
- subtraction integer or real integer or real
b multiplication integer or real integer or real
/ division integer or real | real
DIV division with integer integer

truncation

MOD modulo integer integer

Unary

operator operation type of operands | type of result
+ identity integer or real integer or real
- ‘ sign-inversion integer or real integer or real

Semantics

If both the operands of the addition, subtraction or multiplication
operators are of the type

integer, then the
integer otherwise the result is of the type real.

the identity or sign-inversion operators is of the type
the result is of the type integer otherwise the result is of the type

real.

3-10

result is of the type
If the

operand of
integer then

SUBCOMPONENTS

aty

a

OPERATORS (ARITHMETIC)

The value of i div j is such that:

abs(i div j) = (abs(i)) div (abs(j))

Clearly, if j = 0 then an error occurs.

The value of i mod j is such that:

iz (j ® quotient) + remainder

where 0 <= abs(remainder) < abs(j)

and sign(i) = sign(re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>