#

' N\PUTER

(ENTER

USERS

‘MANUAL

1401

OPERATING

SYSTEM
VERSION 2

1401 0. S.
Forward

FORWARD

This manual is intended as a guide for programmers and
users of the 1401 Operating System, Version II.

All the 47 routines documented here are available to
the user as of July 1, 1968. The documents are self-
sufficient as far as possible. Where several routines
are derived from the same source and are identical in
pattern, they have been combined in one writeup, as in
the case of the Disk Input/Output macros (DSKI@/IFGET/
IZPUT/IZSK). 1In the interests of clarity, the basic
format is identical for all writeups.

This manual is divided into two parts, for users'
convenience. The first section consists of mainline
programs. The second 1s entirely AUT@C@DER macro-
instructions. Standards halts and messages appear in
Appendix A.

Please direct any queries concerning the details of pro-

gram operation to the

Systems Division
UWM Computer Center
Room 28

Mitchell Hall

II

1401 0. S. II
Contents - p.l

1401 OPERATING SYSTEM

VERSION

2

Table of Contents

Part 1: Mainline Programs
KEO1A M@NITR
KEO2A/KEO3A DUMP/HELP
KEOLA LSN@
KCOT7A LBAD
KCO8A PLIST
KCOSGA DUP
KC10A SYSCL
KC11A TL@AD
ZAOQLA LIST
ZAO2A MLIST
ZBO1A REPR@
ZB0O2A MREPR@
ZBO3A CALLAT
ZBOLA REC@DE
ZCO1A TLIST
ZC02A TDUMP
ZDO1A DCZPY
ZD024 RESTR
ZDO3A CLRDSK
ZDo4a PRDSK
ZDObKA DALTR

Part 2: AUT@CPDER Macros

KFO1A
Xro2a
KFO3A/KFOLA
K¥05A
KFO6A
KFOTA/KF10A
/KF11A/KF12A
KF08A
KFO9A/KF1UA
KF13A
KF15A/KF16A
KF17A
KI"18A
KF19A/KF20A
KF22A
KF23A/KF21A
Kr2hp

ALINK
CDSN

CMADD/CMPAD

C@RE
DLZAD

DSKI@/IPGET

IZPUT/IPSK
EXIT
FETCH/LINK
LE
LPADR/L@ADER
@SINF
AsL@C
RDTPM/TPERR
VLCHK
WRTPM/TPERW
W3

Inter-Job Supervisor

Log-Dump Routines

Log System Usage Lister
Card-Deck Load-and-Go

Program Table Lister

Disk Utility Program
Operating System Call Routine
Tape Load-and-Go

Card Lister

Multiple Copy Card Lister
Card Reproducer

Multiple Copy Card Reproducer
Card Collator

Card Character-Set Exchange
Tape-to-Printer Routine
Tape-~to-Printer Routine
Disk-to-Tape Routine
Tape-to-Disk Routine

Clear Disk Routine

Print Disk Routine

Alter Disk Routine

Load and Transfer Control
Check Digit-Student Number
Compare Address

Core Dump

Catalog Program or Data Set on Disk

Disk Input/Output

End-0f-Job Return

Fetch Program or Data Set From
Table Look-Up

Load From Disk

Job Information

Program Search

Read Tape

Variable Leneth Record Checl
Write Tape

Space Suppression

Appendix A - Standard System Halts and Messapes

Disk

TITLE:
MACHINE:

LANGUAGE :
SUPERVISOR PROGRAM: none

1401 0. S. II
I. D. #KEOlA

MZNITR
IBM 1401
AUT@C@DER

PROGRAMMER: Systems Division
DATE COMPLETED: July 1, 1968
PURPOSE :

M@NITR, the 1401 Operating System inter-job super-
visor, provides the following services and facilities:

a)

b)

c)

d)

e)

f)

g)

h)

1)

Logging of time and other parameters at the begin-
ning and end-of-jobs.

Maintenance of the system file containing job num-
bers, man numbers, and function codes. These ser-
vices include addition of new numbers and codes,
and deletion of inactive numbers and codes.

THe facility to enter an operator's man number at
the beginning of his shift of duty, and to remove
the "operator number" at any time.

The facility to command the reading of a log-start
card, either to begin a new job or to "flush
through" an input deck from an abnormally-ended
Job. Information on the card may be overridden
from the console.

Printing of beginning-of-job and end-of-job pages
containing all the information logged for a Jjob.

Inquiry into the recent history of the system,
including last time entered, last job performed,
and activity for the day.

The facility to originate a job, without need for
a log-start card, from the 1407 console.

The facility to easily call various "system support"
programs, such as log-dump, copy-disk, etc.

Maintenance of a "master line" file containing
messages to be communicated to users from the oper-
ations staff, either typed or printed at the begin-
ning of a job. Lines may be added or removed.

1401 0. S. II
M@NITR - p.2

j) Logging of operator comments, and of the use of
facilities b), and 1).
k) Punching of log-start cards.

RESTRICTIONS:

Time, Core Requirements:

No timing estimates can be given for a particular use
of the inter-job supervisor, since this depends upon
the operator and on the options which are used. In
general, the time spent in the inter-job supervisor
should not add more than .0l computer clock hours per
average Jjob.

MZNITR is effectively a mainline program, using all
of core storage during its operation.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

No specialized set-up or previous processing is nec-
essary for use of the inter-job supervisor except:

1) the Operating System pack must be resident on one
of the 1311 disk drives whenever the inter-job super-
visor is called or is in operation. 2) The job num-
ber, man number, and function code associated with a
job to be run must either have been entered into the
system previously, or must be added before the job
can be run. Output from M@NITR on the 1403 printer
is such that any type of form can be used.

The details of originally bullding a system are given
in a separate document.

Processing/Method:

The inter-job supervisor is an extremely modular pro-
gram, with various routines being utilized as needed
due to operator entry or historical situation (e.g. a
past information request or some past entry). The
various routines are described separately in the par-
agraph on Processing Method -- Technical Description.

1401 0. S. II
M@NITR - p.3

USAGE:

Source of Input:

Input to the inter-job supervisor consists of the log-
start card, typewriter input commands, and system-
requested typewriter input. Each of these sources is
separately detailed below.

Calling Sequence:

The inter-job supervisor should be called on an end-of-
job condition by all 1401 programs written at UwM, by
means of the EXIT macro (KFO8A). The operator has two
equivalent alternatives if an abnormal end-of-job
occurs, preventing the EXIT in the program from belng
executed:

a) if the job was run under the L@AD program, the
operator can set 15870 as the I-address and press
START.

b) the operator can load a log-start card with the
user information columns blank.

These possibilities are both equivalent to the execu-
tion of an EXIT macro. The log-start card for the next
job can be loaded, put this does not allow entry of

the ending time of day and computer clock time.

Control Cards:

Log-start Card:

The version 1 log-start card operates correctly with
the version 2 Operating System, in that a new-style
card is punched and also executed in the machine.

The format of the basic Version 2 log-start card 1is
as follows:

Columns 157 ,047008
" N
" 38-46 019798001
" 47-53 ,054062
" 54-61 LZF0037R
" 62-68 ,069076
" 69-75 DO4U605ST
" 76-T79 BOS4

1401 0. S. II
M@NITR =~ p.d4

User-provided information is in the following format:

Columns 12-16 Job number
" - 17-19 Man number
" 20-21 Function code

" 22-27 Program name
" 28-36 Program common
" 37 Drive code on which the Operating

System Pack resides (0 or 2)
All of the user-provided fields aré'optional except the
program name and drive code. The Job number is usually
present.

Typewriter Input:

Typewriter Entry Codes:

A typewriter entry code consists of a 2-character code
which may or may not be followed by one or more oper-
ands. Some codes have different meanings depending

on what has been entered previously and some others
have prerequisites without which they wlll not be
honored, but most may be entered at any time and in
any order. . '

Some entry codes are commands in nature, others pro-
vide information to the system. A few entries must be
in a fixed format, but most can have spaces imbedded
in the entry at the discretion of the operator.

A complete list of entry codes follows:

AF _command (add function code)

This command must be entered in a fixed format consis-
ting of the letters AF, followed by a 2-digit function
code, followed by a l3-character name corresponding to
the code. The function code 1is added to the system
file if 1t is not already present.

Prerequisites: The time of day and a man number must
be entered (by means of the TM and MN entries) before
this command can be used. ' '

1401 0. S. II
M@NITR - p.5

AJ command (add job number)

This command must be entered in a fixed format consist-
ing of the letters AJ, followed by a 5-digit job number,
followed by a 1l3-character name corresponding to the
number. The job number is added to the system file 1f
it is not already present. '

Prerequisites: The time of day and a man number must
be entered (by means of the TM and MN entries) before
somrand can be used.

e e f

L4

AM command (add man number)

This command must be entered in one of two fixed for-
mats consisting of the letters AM, followed by a man
number, followed by a l3-character name corresponding
to the number. The man number may be either 2 or 3
digits in length. The man number 1is added to the
system file if it is not already present.

Prerequisites: The time of day and a man number must
be entered (by means of the TM and MN entries) before
this command can be used.

CC Entry (enter computer clock time)

This entry provides the current machine clock reading
to the system. The letters CC should be followed by:

a) the four least-significant digits of the clock
reading, or

b) all six digits of the clock reading, or

¢) all six digits of the clock reading followed by a
record mark.

Format a) should suffice in most cases. Format b) must
be used when a turnover occurs every 100 machine hours.
Format c¢) must be used when a sequence error occurs.

A sequence error occurs when an error was made in the
previous machine clock reading entry, causing the pre-
sent reading to be lower than the last, or when more
than two hours of clock time have elapsed since the
previous entry.

The CC entry and the TM entry should be made immediately
after an end-of-job so as to provide ending times for the
job. If the entry is made after a job number or man num-
ber is entered, as in loading a log-start card, the entry
counts only as a beginning reading for the next Jjob.

1401 0. S. II
M@NITR - p.b6

If this entry is not made before the initiation of a
Job with LS, D@, or loading of a job's log-start card,
the computer clock time may be requested by the system.

CM_entry (enter operator comment)

This entry causes an operator comment to be entered
into the system log. Any string of characters can
follow the letters CM. If the entry is made before

a job number or man number is entered for the next
Job, the line is considered a comment for the previous
Job; if not, the comment references the next Jjob.

e et e i e e s g

This command causes the disk-to-tape utility DC@PY
(ZDO1A) to be executed for the disk pack on the opposite
drive from the Operating System pack (usually the IBM
system pack). The difference between this command and

a D@ DCPPY is that the operator need not enter the Job
number, function, and program common when using DC.

The letters DF are to be followed by a 2-digit function
code. If the function code designated is in the system
file, it is deleted from the file. '

Prerequisites: The time of day and a man number must
be entered (by means of the TM and MN entries) before
this command can be used.

The letters DJ are to be followed by a 5-digit job
number. If the job number designated is in the system
file, it is deleted from the file.

Prerequisites: The time of day and a man number must
be entered (by means of the TM and MN ent ies) before
this command can be used.

DM _command (delete man number)

The letters DM are to be followed by a 2- or 3-digit
man number. If the man number designated is in the
system file, it is deleted from the file.

Prerequisites: The time of day and a man number must
be entered (by means of the TM and MN entries) before
this command can be used.

1401 0. S. II
M@NITR - p.7

DO_command (initiate)

The letters D@ are to be followed by a 1 to 6-character
program name. This command enables the operator to
initiate a job completely from the console, without use
of a log-start card. When all information required for
the running of the job is entered into the system, the
program designated is called.

The letters FC should be followed by a 2-digit function
code. If the entry is made before a Jjob number or man
number is entered for the next job, the function code
ijs considered as a revised function for the previous
job; otherwise the function code references the next
Job.

If this entry is not made before the initiation of a

job with LS, D@, or loading a log-start card, the func-
tion code may be requested by the system (see the para-
graph on System-Requested Typewriter Input). A function
code entered from the typewriter overrides a function
code read from a log-start card.

The letters JB should be followed by a 5-digit job
number for the next job. Ordinarily the job number 1is
taken from a log-start card, but a job number entered
from the typewriter overrides a job number read from a
log-start card. This entry should not be made before
the TM and CC entries for the last job are entered.

KL command (clear master lines)
This command causes all "master lines" to be deleted
from the system. (See ML command.)

Prerequisites: The time of day and a man number must
be entered (by means of the TM and MN entries) before
this command can be used.

LG _command (execute log-dump)

This command causes the log-dump program DUMP (KEOZ2A)
to be executed. The log is then dumped onto cards,
printed, and set to an empty condition. The differ-
ence between this command and a D@ DUMP is that the
operator need not enter the job number, functilon, and
program common when using LG.

1401 0. S. II
M@NITR - p.8

LL command (list log)

This command is similar to LG above, but the log is
only printed; it is neither dumped onto cards nor set
to an empty condition.

LS command (log-start search)

This command causes cards to pe read until a log-start
card is encountered. The user-provided information on
the card is then entered into the log. Information on
the card is overridden by information already entered
from the typewriter. When all information required
for the running of the job 1s entered into the system,
the designated program is called.

This command should not be used until the TM and CC
for the previous job have been entered.

e o e omeim s

This command causes a 'master line" to be established
in the system. The ML is to be followed by a string
of characters which will be printed and/or typed at the
beginning of each job. If the letters ML are followed
directly by the characters >>or WV, the master line is
both typed and printed; otherwise, the line is only
printed.

The purpose of "master lines" is to communicate infor-
mation from the operations staff to users and/or per-
sons operating the system during off-hours. A maximum
of 12 master lines may be entered. These remain in
the system until all are deleted by a KL command.

Prerequisites: The time of day and a man number must
ve entered (by means of the TM and MN entries) before
this command can be used.

MN entry (enter man number)

The letters MN should be followed by a 2- or 3-digit
man number. A man number entered from the typewriter
overrides a man number read from a log-start card. If
an operator is logged in, a man number is not required
to run a job, but may be entered. This entry should
not be made before the TM and CC entries for the last
job are entered.

1401 0. 5. II
M@ZNITR - p.9

This command causes the disk-to-tape utility DC@PY
(ZD0O1lA) to be executed for the Operating System disk
pack. The difference between this command and a
DFCPPY is that the operator need not enter the job
number, function, and program common when using @C.

@I command (log in operator)

The letters @I should be followed by a 2- or 3-digit
man number. The purpose of the entry 1s to log an
operator in, by number, until the end of his shift of
duty. Thereafter during that shift, man numbers are
not required. The operator is not logged in until he
responds to a subseguent message as described below
in the paragraph on System-Requested Typewriter Input.

@@ command (log out operator)

This command causes the logged-in operator, if any, to
be logged out immediately.

PC_entry (enter program common)
The letters PC are to be followed by a 1- to 9g-character
program common field. If the field after PC is less
than 9 characters 1in length, the right-end of the field
is filled out with blanks. Blanks are not ignored in
this entry. The program common field is generally

taken from a log-start card, but a program common field
entered from the typewriter overrides a program common
field read from a log-start card. This entry is often
used in conjunction with the D@ command.

PL command (execute program lister)

This command causes the program 1ister PLIST (KCOBA)
to be executed to produce a 1ist of programs in the
Operating System Library. The difference between this
command and a D@ PLIST is that the operator need not
enter the job number and function when using PL.

PN command (execute file lister)
This command causes the file lister LSN@ (KEO4A) to be
executed to produce lists of job numbers, man numbers,
and functions in the system file. The difference be-
tween this command and D@ LSN@ is that the operator need
not enter the Job number and function when using PN.

1401 0. s. II
M@NITR - p.10

PU command (punch log-start card)

This command causes a Version 2 log-start card to be
punched. If the job number, man number, program common,
and/or function have been entered, they are punched in
the corresponding columns of the card. The letters PU
may be the complete entry or may be followed by a

1- to 6-character program name. If a program name is
part of the command, it 1s punched in the program name
field; otherwise, the program name previously entered

by a D@, an LS, or a loaded log-start card (if any) is
punched in the card.

gm_gntrg-(enter time of day)

This entry provides the current time of day to the
system. The letters TM should be followed by:

a) - the hour and minute on a 24-hour clock basis
(4 digits), or _

" b) the hour and minute, followed by the month and
date (8 digits), or _

¢) the hour, minute, month, and date, followed by a
record mark (9 characters), or ;

d) the hour, minute, month, and date followed by the
two -digit year (10 digits), or :

e) the hour, minute, month, date, and year, followed
by a record mark (11 characters).

Format a) should suffice in most cases. Format b) must
be used when a 2U4-hour clock turnover (i.e. midnight)
has occurred since the last entry. Format c¢) must be
used when a sequence error occurs. A sequence error
occurs when an error was made in the previous time of
day entry, causing the present reading to be lower

than the last, or when more than 24 hours have elapsed
since the previous entry. Formats d) and e) should
only be necessary when a year change occurs.

The TM entry and the CC entry should be made immediately
after an end-of-job so as to provide ending times for
the job. If the entry is made after a job number or
man number is entered, the entry counts only as a
beginning reading for the next job.

1401 0. S. II
MZNITR - p.1l1

If this entry is not made before the initiation of a
job with LS, D@, or loading of a job's log-start card,
the time of day may be requested by the system.

WA command (1ist jobs)
This command causes a 1list of jobs run thus far on the
date of entry to be printed on the 1403.

WwJ command (list last job details)
This command causes all known information about the
last job to be printed.

' This command causes the last time entered into the
system to be typed. It can be useful when a sequence
error occurs.

System-requested typewriter input:

In certain conditions the Operating System will request,
from the operator, various parameters necessary for some
activity he has initiated (typically, running a job).
Only information which has not been entered previously
will be requested,

The requests which may be made by the system are:

a) >> TYPE J@B NUMBER

b) S> TYPE MAN NUMBER

c) >> TYPE TIME OF DAY

d) >> TYPE C@MPUTER CL@CK TIME
e) >> TYPE FUNCTION

£) >> TYPE TIME @UT .

a) through e) may be typed after an LS or D@ command,
or after a log-start card is loaded. b) through d) may
be typed after any of the commands DC, LG, LL, #C, PL,
and PN have been entered. f) can only occur after use
of the @I command.

When any of these requests are typed, the operator still
has all the freedom of action as before: that 1s, he
can still enter any monitor entry code or command. How-
ever, he has the further option of entering the infor-
mation requested without any preceding 2-character code.
If some other piece of information is entered by means
of a monitor entry code following such a request, the

OUTPUT :

1401 0. S. II
MZNITR - p.12

operator still has the option thereafter of entering

the requested information without a preceding 2-character
code. Certaln commands, those mentioned above in this
paragraph, can cause information to be discarded by

the system and the request to be nullified. This 1is

also caused by allowing the system to enter the "WAITING"
state. However, in normal operation this is not expected
to occur.

The form of response to any of the above requests is
similar to that of a monitor entry code in each case,
except that the two-character code need not begin the
response, as follows:

The response to a) is similar in format and meaning to
the JB entry.

The response to b) is similar in format and meaning to

the MN entry.

The response to c) 1is similar in format and meaning to
the TM entry.

The response to d) is similar in format and meaning to
the CC entry.

The response to e) is similar in format and meaning to
the FC entry.

The response to f) is similar in format to the TM entry,
but the time entered should be
that of the end of the operator's
shift of duty.

The main output produced by the inter-job supervisor
is the entries in the system log. The format and con-
tent of these entries are described in a separate
document.

Other types of output produced by the inter-job super-
visor are:

a) information requests, covered in -the previous
paragraph.

b) normal and error messages, covered below in the
paragraph on Error Messages and Halts.

¢) punched log-start cards, the format of which is
described above in the paragraph on the Log-Start
card.

d) the B@J and E@J pages, and similar output produced
by the WA and WJ commands.

1401 0. S. IT
MPNITR - p.13

Output of type d) contains all the information known
about a job at the time the output is printed. Such
output is printed at every job initiation, and is
printed at every job termination for which the operator
enters the ending times.

ERROR MESSAGES AND HALTS:

Aside from:

a)

b)
c)

the-

1.

the system standard halts and messages (note that
the "WAITING..." message has an expanded meaning),

special messages defined as 'master lines',

system information requests (see System Requested
Typewriter Input),

following halts and messages can occur:

>> END-@F-J@B. ‘ .
This message indicates that a running program has
executed an EXIT macro, or that a log-start card

with the user information columns blank has been
L@ADED.

5. N D@ES N@T C@MPUTE.

This message indicates that the operator has enter-
ed either a line beginning with alphabetic char-
acters which are not a legal entry code, a line
beginning with numerics when no system information
request was in effect, an entry code with an operand
for which one is not required, or an entry code with-
out an operand for which an operand is required.

>> CARD JB xXXXXX

>> CARD JB xxxxx @VERRIDDEN

>> CARD MN xxx

>> CARD MN xxx @VERRIDDEN

>> CARD FC xx

>> CARD FC xx @VERRIDDEN

>> CARD PC XXXXXXXXX

>> CARD PC xxxxxxxxx @VERRIDDEN

Any of these messages can occur following the load-
ing or reading of a log-start card. They indicate
the information punched on the log-start card and
its handling in comparison with previously entered
information.

1401 0. S. II
M@NITR - p.1l4

4. W L@G-START CARD HAS N@ PREGRAM NAME.

10.

11.

This message indicates that a log-start card read
by means of an LS command did not contain a program
name. :

NN NGNEXISTANT JAB NUMBER.

NN N@GNEXISTANT MAN NUMBER.

N N@NEXISTANT FUNCTION.
These messages indicate that a number or code enter-
ed into the system by means of a JB, DJ, MN, DM, FC,
or DF entry code, from a log-start card, or as a
response to a system information request, does not
exist in the system file.

NN WRZNG LENGTH.

This message indicates that an entry code or a
response to a system information request is of a
length which does not correspond to the correct
format for that type of entry or response.

NN IMPRZPER F@RMAT. |

This message indicates that an entry code or a
response to a system information request is of a
format (other than its length) which is not correct
for that type of entry. (Example: alphabetic
information when numeric is required.)

NN IMP@SSIBLE TIME

This message indlcates that a time of day in an
entry code or a response to a system information
request 1s either in an incorrect format or con-
tains a subfield having an impossible value.
(Examples: month field over 12, minute field
over 59.) ' :

NN SEQUENCE ERR@R.
This message indicates that an entered time is
elther lower than the previous time entered, or
too far ahead of the previous time.

NN N@T ALL@WED.
This message indicates that the prerequisites for
the previously entered command (typically man num-

- ber and time of day) have not been entered.

NN ALREADY @N.
This message indicates that the number or code in
an AJ, AM, or AF command 1s already present in the
system file.

12.

1401 0. S. II
MZNITR - p.15

WW TABLE FULL.

This message should not occur, but if 1t does occur
it will be in response to an AJ, AM, or AF command
when the system file is full.

OPERATING PROCEDURES:

Various operating procedural notes have been given 1in
previous paragraphs. Considerable flexibility and
operator preference capability are inherent in the de-
sign of the inter-job supervisor. Thus only scattered
recommendations can be made in the area of operating
procedures:

a)

b)

c)

d)

e)

f)

if a job comes to an abnormal end-of-job, or halts,
the operator can return to the Operating System by
using the core-dump deck, by setting 15870 into

the I-register and pressing START (if the program
had been run from an object deck by means of the
L@AD program), or by loading a log-start card with
the user information columns blank.

when the end-of-job message is typed, the operator
should enter a TM entry and a CC entry within the
timeout period, so as to produce the E#J page and
provide finishing times for the job. ‘

if there are no jobs to be run after the completion
of step b), the system should be allowed to assume
the 'WAITING...' state. This insures the correct
starting time of day for the eventual next job.

operators should be aware that fields on a log-start
card can be overridden from the console either be-
fore or after the LS command.

post-job function changes and comments should be
entered before the CC and TM of step a), and nust
be entered before an MN or JB entry, a response
to a system information request, or an LS command
is done.

operators should be aware that the "operator in"
facility removes the necessity either for theilr
man numbers to be punched on a log-start card, or
for that card field to be blank. It is perfectly
acceptable, and probably desirable, for a Jjob to
be run under both a man number (that of a program-
mer or user) and an operator number.

g)

h)

1)

1401 0. s. II
MZNITR - p.1l6

in the casé of a sequence error in the time of day,
the WT inquiry can be helpful.

operators should be aware that there is no need

for them to make up a log-start card the first time
a job is run, and that by entering a JB entry and
possibly other information entries, and using the
PU command, they can produce a log-start card for
subsequent runs of the Job.

job numbers and man numbers should always be added
with as complete and correct a name as can be con-
tained in 13 characters.

The operator should respond as follows to the halts and
messages described in the paragraph on Error Messages

and Halts.
1) Type in the TM and CC entries as previously described.
2) Re-enter the line correctly.
3) Examine the message(s) for correctness. A system
information request will be forthcoming.
4) Type LS again and/or examine the card which was read.
5) FEither add the number to the system file, or enter
a different, correct number by means of an entry
code or a response to a system information request.
6) Re-enter the line correctly.
7) Re-enter the line correctly.
8) Re-enter the line correctly.
9) Reconsider the correctness of the entry and/or use
an expanded format as described above in the para-
graphs on Typewriter Entry Codes and System-Requested
Typewriter Input.
10) Enter the prerequisite information, and then re-issue
the command.
11) Reconsider the correctness of the entry and/or
abandon the attempt.
12) Abandon the attempt, or delete one or more entries

from the system file.

1401 0. S. II
M@NITR - p.17

End-0f-Job, Post-Processing:

From the point of view of the inter-job supervisor,
its "end-of-job" is usually the beginning of an actual
job. The operator should refer to the set-up and
operating instructions for the progranm in guestion.

PROCESSING METHOD -- TECHNICAL DESCRIPTION

Entry to Inter-Job Supervisor

If entry was due to a loaded log-start card, the card
is moved into an input area within the program. The
drive code of the Operating System is saved, and the
"monitor communications sector" is read (ref: @SINF
macro, KF17A). The communications sector 1is initiali-
zed so that the following items of information are "
marked "unknown" in the communications sector:

a) the time of day

b) the computer clock time

¢) the job number

d) the man number

e) the function code

f) the program name field

g) the program common field (set to blanks)

If the entry was due to a loaded log-start card on which
the program name field is not blank, control is trans-
ferred to the log-start processing routine. Otherwise,
the end-of-job message is typed, and control is trans-
ferred to the wait/timeout routine. '

Wait/Timeout routine

This routine waits for the REQUEST/ENTER button to be
depressed by the operator. If the routine waits for
the number of seconds dictated by operating procedure
as the "timeout factor'", the communications sector is
initialized, and fields marked as "unknown" as in the
previous paragraph (Entry to Inter-Job Supervisor),
with the exception that the computer clock time is not

. marked as unknown. The last information request (see
System-Requested Typewriter Input), if any, is also
cancelled. The systems standard message and halt for
this situation then occurs, and should be started in
the standard fashion.

1401 0. S. II
M@NITR - p.18

If the operator does depress the R/E key within the
time-out period, he can enter information at his own
rate. However, operators should bear in mind that the
computer clock runs when in this situation. When the
operator depresses the RESPPND/TYPEQUT key after typing,
control is transferred to the entry/scan routine.

Fntry/Scan Routine

This routine first transforms the operator input by
eliminating blanks from the message in all except AF,
AJ, AM, CM, ML, and PC entries. A length count for
the operator input line is also constructed at this
time. The first two non-blank characters of the line
are then examined. If the first two characters are
numeric, control is transferred to an appropriate
routine if a previous information request (see System-
Requested Typewriter Input) had occurred; if the first
two characters are alphabetic, control is transferred
to an appropriate routine if they represent a valid
monitor entry code (see Typewriter Entry Codes); other-
wise, a diagnostic 1s produced.

Log-Start Card Processing Routines

On an LS command, cards are read until a log-start
card is found. An old log-start card 1s executed
when read, causing performance of the compatible log-
start program (XKCO03A), and eventual return to M@NITR
as a loaded log-start card. No check for last-card
indicator is done on an LS command.

When a new log-start card has been read, if the LS com-
mand occurred after an information request (see System-
Requested Typewriter Input), items c) through g) as
described above in the paragraph on Entry to Inter-Job
Supervisor are marked as "unknown" in the communications
sector. If a log-start card with a blank program name
field is read by means of an LS, a diagnostic 1s pro-
duced and further cards are read.

On either a loaded log-start card or a card read by
means of an LS, master lines (if any) are typed. The
following then occurs for the job number, man number,
function, and program common fields:

a) 1if the field 1s blank on the card, no processing
is done for that item.

1401 0. S. II
MONTTR - p.19

b) if the field on the card is not blank and the field
in the communications sector is marked "unknown",
a message is typed and the information from the
card moved to the sector.

¢) if the field on the card is not blank and the

: corresponding field in the communications sector
contains information from a previous typewriter
entry, the information on the card is overridden
and a message to that effect is typed.

The job number, man number, and function code fields
are then checked for validity. A diagnostic is typed,
and the field in the communications sector marked
"unknown", for any item found invalid. If the program
name is valid, control is then transferred to the -
request-information routine.

Request-Information Routine

This routine examines the communications sector and
various switches for the presence of each of the fol-
lowing, in turn:

a) the job number

b) the man number

¢) the time of day

‘d) the computer clock time
e) the function code

The first one of these it finds to be "unknown" causes
the appropriate information request to be typed, and

a switch to be set signifying that item to be "pending".
Control is then returned to the wait/timeout routine.

If all the above have been entered, control is trans-
ferred to the perform-job routine. If the man number

is "unknown™" but an operator is on duty, the information
request for the man number is not issued.

Perform-Job Routine

This routine performs the following functions in sequence:

a) makes a job entry in the system log,

b) enters previously-made comments for this job into
the system log,

¢) prints master lines (if any) on the 1403,

d) prints the B@J page on the 1403,

e) and performs the program indicated by means of a
LINK macro (KF14A).

1401 0. S. II
M@ENITR - p.20

Information Entry Routlnes

Time of Day and Computer Clock Routines

Routines in this class are used on a numeric entry after
an information request, or on a TM or CC entry code.

The operation of the time and clock routines are simi-
lar, both being of the following pattern:

a) the length of the entry 1is checked, and a diagnostic
: produced if the length does not correspond to any
of the proper formats. From the length the system
determines what parts of the complete field are to
pe assumed as continuing from the previous entry.

p) the field is checked to see if it is completely
numeric. If it is not, a diagnostic 1is produced.

¢) in the case of the time of day, subfields (month,
date, etc.) are examined for plausibility, and a
diagnostic may be produced at this point. ‘

d) if acceptance was not forced with a record mark,
the entered information 1s compared with the pre-
vious entry. A diagnostic may result if the value

is lower or ijs much higher.

e) the value is moved to thé communications sector
~ and the quantity is set as "known" .

£) if the time was not known before, and the system
has never been in the nyAITING" state, and
neither a man number nor a Job number has been
entered for the next job, the entry is taken as
an ending time for the previous job.

g) if all the conditions of f) are met, and the com-
puter clock time has been entered, the end-of-job
page is printed.

n) in the case of the computer clock time, the "total-cc"
fields of the job number, man number, function code,
operatcr number, and progranm name of the last job

are incremented by the elapsed clock time.

i) in the case of the time of day, if there 1is an
operator nin" and the time entered is after the
ending time for his shift of duty, the operator-in
designation 1s removed with no notice given.

1401 0. S. II
M@NITR - p.21

~J) if the time entered had been '"pending" from a
previous information request, control is transfer-
red to the request-information routine. Otherwise,
control is returned to the wait/timeout routine.

Man Number, Job Number Routines

Routines in this class are used on a numeric entry

- after an information request, or on a MN or JB entry
code. The operation of the job and man routines are
similar, both being of the following pattern:

a) the length of the entry is checked, and a diagnos-
tic produced if the entry is not in the proper format.

b) the entered number is moved to the communications
sector.

¢) the system file is searched for the entered number.
If the search does not produce a match, a diagmos-
tic is produced and the field is marked as "unknown"
in the communications sector,

d) 1if the number entered had been "pending" from a pre-
vious information request, control is transferred
to the request-information routine. Otherwise,
control is returned to the wait/timeout routine.

Function Routines

These routines are used on a numeric entry after an
~information request or on a FC entry code. The oper-
ation is of the following pattern:

a) the length of the entry is checked. If it is not
of the correct format, a diagnostic is produced.

b) the system file is searched for the entered function
code. If the search does not produce a match, a
diagnostic is produced and the field marked as
"unknown" in the communications sector.

c) 1if either a man number or a job number for the next
Jjob has been entered, the entered function code is
moved to the communications sector and the field
marked as "known". Otherwise, the entered function
code is moved into the log entry for the last job
as a correction.

1401 0. S. II
MZNITR - p.22

d) if the function code entered had been "pending"
from a previous 1information request, control is
transferred to the request-information routine.
Otherwise, control is returned to the wait/timeout
routine.

Comment Routine

This routine is used on a CM entry code. If a job num-
ber or man number for the next job has been entered,
the line is transferred to a buffer file for later
recording in the system log by the perform-job routine.
Otherwise, the 1line is recorded directly 1in the systen
log as a comment for the last job.

Program Common Routine

This routine is used on a PC entry code. A diagnostic
is produced if the length of the field after the letters
PC exceeds 9. Otherwise, the entered information is
moved to the program common field in the communications
sector, left justified, with right-end blanks supplied
if necessary.

Command Routines

Program Name Routine

This routine is used on a D@ command. The length of
the entry is checked: a diagnostic is produced if
more than 6 characters follow the letters D@; if not,
the program name is checked for validity (presence in
the Operating System Library), and a diagnostic is
produced if a match is not found. Master lines (if
any) are typed at this point. If the D@ command
occurred after an information request (see System-
Requested Typewriter Input), items ¢) through g), as
described in the paragraph on Entry to the Inter-Job
Supervisor, are marked as "unknown" in the communica-
tions sector. The program name entered is moved to
the communications sector, and control is transferred
to the request-information routine.

"System Support Program" Call Routines

Routines 1n this class are used on a PN, LL, @C, DC,
LG, PL, or PS command. These commands are similar in
intent to the D@ command, but are easier for the oper-
ator to use. On any of these, a "system job number"

1401 0. 8. 1II
M@NITR - p.23

and a "system function code" are moved to the communi-
cations sector, and the fields marked as "known'", unless
a job number and/or function code was already entered.
The program name and program common fields are then

set up in the communications sector, as follows:

COMMAND PROGRAM NAME PROGRAM COMMON

PN LSN@ None

LL DUMP Blank

LG DUMP D

@c DC@APY Operating system drive code

DC DC@PY Opposite drive code from
Operating System

PL PLIST Blank

Control is then transferred to the request-information
routine.

Operator In/Out Routines

This class of routines is used on a @I or 2@ command.

On an @I, the length of the entry is checked, and a
diagnostic is produced if the information entered

is not in the proper format. The 2- or 3-digit man
number is then moved to a temporary location and check-
ed for validity. A diagnostic may occur at this point.
If not, a system information request is issued, a
switch 1s set indicating the "time out" to be "pending",
and control 1is returned to .the wait/timeout routine.

When the "time out" is entered, control is transferred
to the time-of-day routine, which checks the time enter-
ed as previously described. That routine then transfers
control to the second part of the operator-in routine,
if the time is accepted. The "operator-in" indication
for the system is then set.

On an @@, the "operator out" indication for the system
is simply set, with no other investigation or processing.

Add Man-Job-Function Routines

Routines of this class are used on an AF, AJ, or AM
command. Operation of any of these commands proceeds
as follows:

a) if the man number or the time of day 1s marked
"unknown" in the communications sector, a diagnos-
tic 1s 1issued.

1401 0. S. 1T
MZNITR - p.ok

b) the length of the entry is checked, and g3 diagnos-
tiec is produced if the entry is shorter than the
minimum length of the proper format.

¢) the system file is Searched for the number or code
entered, and a diagnostic is produced if a match
(duplicate) is found.

d) the number or code entered is checked for being

‘ completely numeric. If it is not, a diagnostic
is produced.

e) the number and associated name are inserted in the
system file.

f) a log entry for the file addition is made.

g) control is returned to the wait/timeout routine.

Delete_Man-Job—Function Routines

Routines of this class are used on a DF, DJ, or DM

command. Operation of any of these commands proceeds

as follows:

a) if the man number or the time of day is marked
"unknown" in the communications sector, a diagnos-
tic is issued.

b) the length of the entry>is checked, and g diagnostic

¢) the System file is searched for the number or code
entered. -

d) a dlagnostic is produced if the number or code
entered is not completely numeric.

e) the number and i1ts associated name are replaced by
the last entry in the file.

f) the end-of-file indicator is moved up one record.

g) control is returned to the wait/timeout routine.

1401 0. S. II
M@NITR - p.25

Punch Log-Start Card Routine

This routine is used on a PU command. A basic log-start
card is augmented by the fields in the communications
sector which have been previously entered and are
"known". If a program name follows the letters PU, it
is moved to the program-name field in the card; other-
wise, the program-name field in the communications
sector (possibly blank) is moved to the card. The
log-start card is then punched into stacker 4. An
extra blank card 1s punched, to clear the punch, into
stacker N/P. Control is returned to the wait/timeout
routine.

Master-Line Routines

These routines are used on ML and KL commands. On an
ML, the length of the entry is checked for being 4 or
greater, and a diagnostic can be produced at this
point. If the man number or the time of day is marked
"unknown" in the communications sector, a diagnostic
is issued. Otherwise, the line entered is added at
the end of the master line file, and the "number of
master lines" count is incremented by one. A log
entry for the file addition is made, and control is
returned to the wait/timeout routine.

On a KL, if the man number or the time of day is mark-
ed "unknown" in the communications sector, a diagnostic
is issued. If the "number of master lines" count is
not zero, it is set to zero and a log entry is made. '
Control is then returned to the wait/timeout routine.

Inquiry Routines

What-Time Routine

This routine is used on a WT inquiry. The last time
entered is edited and typed out.

What-Job Routine
This routine is used on a WJ inquiry. A page similar

to the B@J and E@J pages 1s printed on the 1403, con-
taining all known information on the last job.

1401 0. S. II
M@NITR - p.26

What-Activity Routine

This routine is used on a WA inquiry. An entry simi-
lar to the B@J and E@J pages is printed on the 1403
for each job run previously on the day the inquiry is
“entered, containing all known information about each
Job. '

1401 0. S. II
I. D. # KEO2A
I. D. # KEO3A

PROGRAM: DUMP/HELP

MACHINE: IBM 1401

LANGUAGE: AUT@C@BDER

SUPERVISOR PROGRAM: 1401 Operatii/; System II
PROGRAMMER: Systems Divifion

DATE COMPLETED: July 1, 1968

PURPOSE:

The programs DUMP (KE02A) ai{l HELP (KEO3A) are log-
dump routines. They produc¢ a narrative log listing
and punch the 1401 log intojfcards. DUMP is the normal
log-dump routine. HELP is |he emergency log-dump
routine, performing this fulction without the aid of
the Operating System.

RESTRICTIONS:

Time, Core Requirements:

Execution time for DUMP/HEI{? will normally be less than
5 minutes, but may vary cor/siderably depending on the
number of entries in the ldiz.

/
DUMP/HELP is a mainline prjgram, effectively using all
of core during execution. '

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

There should be 14 x 11 inch paper mounted on the 1403
printer. The Operating System pack must be mounted
on one of the 1311 disk drives.

Processing/Method:

The log entries are checked to determine what type of
information they contain. When the ending time (real)
1s missing from the type 1 entry (see below, Punched
Output), a scan is made to determine the next time of
day. The management and operator performance logs are
then created and punched when the next time has been
determined.

1401 0. S. II
DUMP/HELP - p.2

When the end-of-file condition occurs, the communications

sectors are updatgd, the end-of-file is reset, and con-
trol is transferred to the inter-job supervisor.
!

USAGE:

Calling Sequence:

General Usage (DUMP):
DUMP is normally called by means of the inter-job entry
codes LD and LL, but may be called by a log-start card
or by execution of a LINK macro from an AUT@C@DER or
C@ZBPL program.

Emergency Log-Dump (HELP):

HELP is executed by clearing the reader, placing the
HELP object deck in the reader, and pressing Load.

Program Common Field:

The contents of the program common field used to call
DUMP determine whether the machine log is to be punched
and listed, or just listed. When the letter "D" is
present, left justified, in the program common field,
the log is punched into cards.

Control Cards:

DUMP/HELP requires no control cards.

Input:

The ohly input consists of the log information stored
on the Operating System disk pack.

OUTPUT:

Printed Output:

A narrative log 1s printed containing the following
information:

a) all the infarmation contained on the E.0.J.
page.

b) program library operations controlled by DUP

: or DL@AD.

1401 0. S. II
DUMP/HELP - p.3

{

c) system sujport functions caused by use of the
inter-job lentry codes LG, ML, or KL.

d) file changes such as addition or deletion of

job numbeis, man numbers, and function codes.

Punched Output: %
Three types of log}are punched by DUMP/HELP. They are
the complete log, ‘he operator's performance log, and
the computer managément log.

The complete log ié subdivided into five different
types of intormation:

‘a) The job initlalization and ending times, both
real and computer. The job number, the
function code, program name, man number, oper-
ator number, program common, and the run count
are included in the type 1 log card.

b) The information created by use of the CM code,
comment entry, man name, and man number are
included in the type 2 log.

c) The system support log, type 3, contains the
program name, starting time, man number, and
man name.

d) The log entry file change log, type 4, contains
the name of the file changed, if it was an
addition or deletion, and the man number and
man name of the person responsible.

e) The program update log entry, type 9, contains
the operation name, program name 1, program
name 2, or tape name, sector address, number
of sectors, starting time (real), man name,
and man number.

The operator performance log contains statistics that
pertain to the function of the machine operation and
utilization of the machine.

The management log contains information that pertains
to the job initiation and ending times.

NOTE: Type n refers to the number appearing in column 1
of the punched card.

ERROR MESSAGES AND HALTS:

Aside from the standard system halts and messages which
may occur during execution of DUMP, no halts or messages.
should occur.

1401 0. S. II
DUMP/HELP - p.h4

OPERATING PROCEDURES:

No special operating procedures need be specified.

vEnd—Of—Job, Post-Processing:

DUMP returns to the inter-job supervisor. When the
punch option 1is specified, the operator will find 3
stackers containing the log. The operator performance
log should be forwarded to the 1401 operations manager;
the complete log should be forwarded to the computer
systems group; the management log should be forwarded
to the business manager. '

1401 0. S. II
I. D. # KEO4A

PROGRAM: LSN@

MACHINE: IBM 1401

LANGUAGE: AUT@CHDER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

LSN@, when executed, sorts and lists the man-job-
function number file in usage order. The man-job-
function numbers are then subdivided and listed in
numerical order.

RESTRICTIONS:

Time, Core Requirements:

Processing time varies as the square of the number of
entries in the man-job-~function file. The average run
is about 5 minutes.

LSN@ is a mainline program effectively using all of core
during its execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

Paper at least 14 inches wide must be used in the 1403
printer. The Operating System pack must be mounted on
one of the disk drives.

Processing/Method:

The man-job-function number file is sorted in place,
and then listed in order of the number of runs. During
the listing process, a sort of binary tags is performed.
The file is then listed using the tags correspondence
to the new sorted file.

1401 0. S. II
LSN@ - p.2

USAGE:

Calling Sequence:

LSN@ is normally called by use of the inter-job entry
code PN, but may be called by a log-start card, or by
executlion of a LINK macro from an AUT@C@DER or C@RIL
program,

Control Cards:

LSN@ requires no control cards.

Input:

Input consists of the man-job-function file, read from
disk.

OUTPUT :

LSN@ lists the man-job-function numbers in numerical
order, subdivided into the three classes. The follow-
ing statistics are printed with each entry:

a) date entered.
b) last date used.
¢c) number of runs.

d) total number of computer clock hours used.
e) name.

ERROR MESSAGES AND HALTS:

Aside from the standard system halts and message, no
halts or messages should occur during execution of
LSN@.

CPERATING PROCEDURES:

No special operating orocedures are required.

End-0f-Job, Post-Processing:

LSN@ returns control to the inter-job supervisor on
completion of the listing.

1401 0. 8. II
I. D. # KCOT7A

TITLE L@AD

MACHINE: IBM 1401

LANGUAGE: Autocoder

SUPERVISOR PROGRAM: none

PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:
L@AD simulates the function of the 1402 L@AD button,
transferring control to a card object program. Further-
more, L@AD provides the object program with the I@CS
date, a program common field, and an EXIT macro in
high-core.

RESTRICTIONS:

Time/Core Requirements:

PROGRAM

Execution time for L@AD itself is less than one second.
L@ZAD is a mainline program, effectively using all of
core during its brief execution. As noted below, L@AD
leaves locations 82-86 and 15861-15998 occupied when
it transfers control to the object program.

PROCEDURE:

Set-Up, Previous Processing:

Set-up 1s as required by the object program to be loaded.

Processing/Method:

Cards are read in succession until one with a comma in
column 1 is found. If that first card is a "C1" card,
it and the following card are passed. Core is then
cleared except for the following:

a) 1locations 82-86 contain the I@CS date, with a word—
mark at 82.

b) locations 15861-15869 contain the program common
field, with a wordmark in 15861.

1401 0. S. II
LPAD - p.2

¢) locations 15870-15998 contain an EXIT macro.

The card is then branched to at location 1. (A
wordmark has been set in 1 previously.)

USAGE:

Calling Sequence:

L@AD is generally called by a log-start card. It may
also be called by a LINK macro from an AUT@C@DER or

CZBIL program, or by means of the inter-job entry
code D@.

Control Cards:

LAAD requires no control cards.

Input:
The only input consists of the object program to be
loaded.

OUTPUT:

L@AD produces no output.

ERROR MESSAGES and HALTS:

Except for the system standard disk halts and messages,
no halts or messages should occur.

OPERATING PROCEDURES:

Operating procedures are as required by the program to
be loaded.

End-of-Job, Post-Processing:

End-of-job and post-processing requirements are as
needed by the obJect program to be loaded.

1401 0. S. II
I. D. # KC08aA

PROGRAM: PLIST

MACHINE: IBM 1401

LANGUAGE: Autocoder _

SUPERVISOR PROGRAM: 1401 Operating System II

PROGRAMMER: , Systems Division

DATE COMPLETED: . July 1, 1968

PURPOSE:
PLIST produces a list, on the 1403 printer, of all pro-
grams and files resident under the Operating System.
This list includes all known information about each
program.

RESTRICTIONS:

Time, Core Requirements:

Execution time for PLIST varies according to the number
‘of programs loaded under the Operating System. PLIST
is a mainline program, effectively using all of core
during its execution.

PROGRAM

PROCEDURE :

Set-Up, Previous Processing:

No previous processing is necessary for use of PLIST.
The listing produced 1s 132 positions 1in width, and
thus 14 inch wide paper should be used in the 1403
printer.

Processing/Methodﬁ

The program table is read, and lines are printed in the
order in which program-names are encountered in the
table (descending order of sector address). For pro-
gram entries, the header and traller sectors are read,
and checked for validity, providing the information

for the printed line.

1401 0. s. II
PLIST - p.2

USAGE:

Calling Sequence:

PLIST 1s usually called by a log-start card, but may
be called by a LINK macro from an AUT@C@DER or C@BJL
program, by use of the inter-job entry codes PL or D@,
or by a failure to locate the specified program name
in a FETCH or LINK macro. If a program name is in-
cluded (right-justified) in the program common field,
PLIST will 1link to that program after its execution.

Control Cards:

PLIST requires no control card.

Input:
- PLIST uses no input.

OUTPUT:

A list 1s produced of all programs on the Operating
System file, with all information known about each pro-
gram. This information includes the program parameters
created at DL@AD time, and the usage parameters accumu-
lated since. Notations are included in the right edge
of the listing, giving characteristics or error messages
for certain programs. ‘ :

ERROR MESSAGES and HALTS:

Notations in Output:

The following messages may appear at the right end of
a printed line:

NO GMWM indicates that group-mark word-marks are not
restored when the program is loaded.

FIXED LOC indicates that the program is stored at a
‘ fixed "system disk" address and will not
be moved.

TTFD XXXXXX indicates that the block is a Tabtran file
description, with Tabtran file-name XXXXXX.

1401 0. S. II
PLIST - p.3

HEADERLESS indicates that the block is in load mode
but has no program header, loader, or
trailer. (viz. compatible DL@AD, EXIT
and log-start programs).

MOVE MODE indicates that the block is a move mode
file (viz, the system log).

BAD FORMAT indicates that the program's header, loader,
and/or trailer have been damaged. This is
a serious error condition and should be
reported to a member of the Computer Systems
Group.

BAD ENTRY indicates that the program table itself 1s
damaged. This is a serious error condition
and should be reported to a member of the
Computer Systems Group. ‘

Other Halts and Messages:

Aside from the system standard disk halts and messages,
no other halts or messages should occur.

OPERATING PROCEDURES:

'No further operating procedures need be given: PLIST
uses no sense switches, tapes, or other speclal
~configuration.

End-of-Job, Post-Processing:

PLIST either performs a link to the program named in
the program common field (right justified), or performs
an EXIT at end-of-job.

PROGRAM: DUP

MACHINE: IBM 1401
LANGUAGE : Autocoder
SUPERVISOR PROGRAM: none

PROGRAMMER: Systems Division
DATE COMPLETED: July 1, 1968

PURPOSE:

DUP, the 1401 Operating System disk utility program,
provides various services associated with maintenance
of the Operating System program library. These include:

Deletion of programs

Renaming of programs

Copying of programs to magnetic tape

Loading of programs from magnetic tape

Printing of programs

Modification of object programs via "patch
cards™"

Punching of object decks of programs

Other facilities iInvolving the program library are:
Original loading of programs by means of "psuedo-
execution”, provided by the DL@DR program (KCO6A);
listing of names and specifications of programs pro-
vided by the PLIST program (KCOBA).

The details of the operation of particular services
are described 1in separate following sections. This
section deals with the control cards and structure of
DUP.

RESTRICTIONS:

Time,

Core Reguirements:

Timing estimates for performance of various services
are detailed In the following sections. ''he time re-
aguired for DUP itself to read and analyze the control
cards is negligible, except in the case of typewriter
input. DUP itself occupies the area from location 335
to approximately location 7000. The subprograms DUPA,
DUPB, DUPC, DUPD, and DUPE utilize the area from 7000

1401 0. 5. II
DUP - p.2

to approximately 11300. Locations 11300 to 15900 are
used as work areas. DUP is thus largely a mainline
program, occupying most of core during its execution.
Tlowever, locations 15901 to 15999 are never disturbed
by execution of DUP or the subprograms. Thus they may
be used, by programs calling DUP with disk input and
re-calling, as a communications area.

PROGRAM PROCEDURE:

Set-up, Previous Processing:

In the case of ¥C@PY and ¥L@AD processing, magnetic
tapes must be mounted. Paper at least 8 1/2 inches
wide is required on the 1403 printer for all process-
ing, and, in the case of ¥DUMP and ¥PATCH processing,
14 inch wide paper is required.

For all except ¥L@AD processing, the program(s) to be
manipulated must have been loaded onto the program
library previously. In the case of ¥L@AD processing,
the program(s) must have been copied to tape previously.

Processing/Method:

The method used to read and accumulate a control record
is largely defined in the following section (USAGE).
Once a complete control record is accessed, its first
non-blank characters are examined to determine the

type of service request being made. When this 1is deter-
mined, one of the subprograms DUP4&, DUP2, DUPC, DUPD, or
DUPE is FETCHed into upper core, and a branch to the
appropriate entry point made. The subprogram examines
the remainder of the control record, l1lssues diagnostics
and/or performs the services indicated, and returns to
DUP at the completion of its processing. The sub-
program may use data areas and subroutines in DUP.

A table of the subprograms used to perform various
services follows:

Service Subprogram

¥COPY DUPA

¥L@AD. DUPB, possibly DUPC
¥DELETE DUPC

*RENAME DUPC

¥DUMP DUPD

®PUNCIH DUPD

¥PATCH DUPE, DUPD

1401 0. S. 1T
DUP - p.3
(General)

"USAGE:

Calling Seguence:

DUP is usually called by a log-start card, but may be
called by a LINK macro from an AUT@CPHDER or C@BAL pro-
gram, or by use of the inter-job entry code DZ. The
subprograms DUPA, DUPB, DUPC, DUPD, and DUPE should not
be called directly under any circumstances.

Program Common:

The content of the program common field used to call

DUP to a large extent determines its operation. Con-
sider the positions in the field to be numbered 1-9,

from left to right:

a) If position 1 contains a "-", the operation of DUP
consists of deleting the program whose name 1s to
be found in positions 2-7. No input 1is required;
control is returned to the inter-job supervisor
following the deletion.

b) If position 1 contains a "T", control record input
is taken from the console typewriter.

¢) If position 1 contains a "D", control record input
is taken from the "auxiliary Operating System
communications sectors", on the 1311 disk drive.

d) If position 1 contains a blank or any other code,
control record input is taken from the card reader.

e) In cases b), ¢), and d), if there 1s a program name

to be found in positions 4-9, DUP links to that
program at the conclusion of its operation.

Control Cards:

Source of Input:

Input to DUP, except in the case of ¥PATCH processing,
consists entirely of control records. Programs on disk
or tape are read and handled in various ways as described
in following sections, but for the purpose of this sectic~
the term "input" will refer to information found in the
file determined by position 1 of the program common field.

1401 0. S. II
DUP - p.h
(General)

Control Card Structure:
Card/Disk Input:

With card input, all 80 columns of a card are used.

Wwith disk input, sectors 399622 through 399639 can
contain control cards. The sectors are in the move

mode; only the first 80 positions of each sector are
used. With either card or disk input, except in the

case of ¥PATCH processing, a "eontrol record" may con-
sist of one to six cards or card images. The end of

one control record is determined by any of the following:

a) End-of-file indication (last card indicator for
card input, advancing to sector 399640 for disk
input).

b) A card whose first character is a comma, indicat-
ing that an object deck or log-start card follows
(the previously read card completes the control
record).

¢) A card whose first non-blank character is an.
asterisk (the previously read card completes the
control record).

d) A card containing a period followed by a blank,
anywhere (that card completes the control record).

With card or disk input, an entire control record is
accumulated and is terminated, according to the above
rules, before any consideration is given to the syntax
or meaning of the card, and before performance of the
indicated services 1s initiated.

Typewriter Input:

With typewriter input, an entered line may pbe up to 80
characters in length. A single entered line always
constitutes a complete control record. The system stand-
ard entry conventions are followed. The performance

of the services indicated on each line is initiated
immediately after the line 1s entered. On completion
of these services, DUP again waits for the next control
record to be entered, unless the line which initiated
the services contained (ended with) a period followed
by a space. End-of-job is indicated by a typewriter
end-of-file: that is, use of the RESP@ND/TYPEPUT key
immediately following use of the REQUEST/ENTER key.

1401 0. s. IT
DUP - p.5
(General)

Content and Format of Control Records:

One rule about DUP control records has been implied in
previous paragraphs: any control record which ends in
a period followed by a space forces DUP to go to end-
of-job immediately following performance of the ser-
vices indicated on the contrecl record. Other than this,
the meaning of a DUP control record is exactly the same
whether it ends with a period or not.

A program name in the 1401 Operating System‘may
consist of 1 to 6 of the legal 1401 characters, with
the exceptions:

a) a name may not contain a record mark
b) a name may not contain a comma

¢) a name may not contain a blank

d) a name may not end with a period

e) a name may not begin with an asterisk.

The format of DUP control records is free: a control
record may begin in any column; as many blanks as de-
sired (or none) may be inserted between any two entities
on a control record; a control record may occupy more
than one card or card image., However,

a) spaces are required in the syntax in several cases.

b) the start of a control record must be the first
character on a card or card image (the asterisk
beginning it must be on the first non-blank
character).

¢) if "continuation cards" are used to form a complete
control record, column 1 of each succeeding card
is considered to directly follow column 80 of the
preceding card.,

Control Record Syntax:

The syntax for < DUP control record> 1is as follows:

< DUP control record> ::= < basic control card> /
< basic control card > . < space>

< basic control card> ::= < delete card> / < rename card>
/ < copy card > / < load carc >
/ < dump card > / < punch coard -
/ ¢ pateh card >

1401 0.S. II
DUP - p.0
(General)

<delete card> ti= ¥DELETE <space> <program list>
. / ¥DELET <program list>

X3
L]

1}

<rename card> *RENAME <rename 1ist>

Lcopy card> 1:= *CEPY <program list> T@ <tape name>
: / *C@rY <program list> T@ <{tape name>
WITH <tape name>
<load card> 1= ¥LYAD <program list> FREM <tape name>
<dump card> ::= *DUMP <program list>
<punch card> ::= *PUNCH <program list>
<patch card> 1:= ¥PATCH <program name>
<program list> ::= <program name>
/ <program list>, <program name>
<tape name> ' = <{program name>
<rename list> ::= <rename part>
/ <rename list)>, <rename part>
<rename part> ::= <program name> <space>

T@ <space> <program name>
/ <program name> space <program name>
Control Card Examples:

*DELETE. PR@GA, PREGB

*DELETGRADIT -

*RENAME B@Y T¢ MAN, PR@G14 T¢ PREG15, GRADIT T@ GRADE
¥RENAME B@Y MAN, PR@G1l4 PREGLS

*C@PY M@NITR, DL@DR, PLIST, SYSCL T¢ SYSTAP
*C@PY LIBSER, LSUPDT T@ JUN15 WITH JUNO1
*L@AD PLIST FR@M SYSTAP

*DUMP M@NITR, DL@ODR, $FILE, TTF.05

*¥*PUNCH MYPR@G ’

*PUNCH PLIST, SYSCL

*PATCH M@NITR

¥PATCH SYSCL

¥PATCH LIBSER

- OUTPUT:
The regorts produced by DUP vary according to the ser-

vice(s) requested on the control record. Output assoc-
iated with each service is detailed in the following

1401 0. S. II
DUP - p.7T
(General)

sections. lowever, it is important to note at this
point that:

a)

b)

c)

a)

each complete control record is printed beginning
at the top of a page.

the report associated with the first requested
service beglns smmediately below the last line

of the complete control record.

reports associated with subsequent services
requested by the same control record each begin
at the top of a page, except in the case of

*C@PY or *L@AD processing.

each complete control record is also typed unless.
input is from the typewriter.

"ERROR MESSAGES AND HALTS:

Aside from the standard system halts and messages,
the following halts and messages can occur in any
usage of DUP:

0.

W xxxxxx N@T N DISK.

No halt accompanies this message. Reference has
peen made to a program not in the Operating System
library.

NN UNKN@WN C@NTRPL CARD.

No halt accompanies this message. It indicates
that a control record did not start with one of
the key words defined in the syntax. The message
is both typed and printed.

- J& SYNTAX ERR@R IN C@NTRAL CARD.

No halt accompanies thils message. It indicates
that a control record did not conform to the form
defined in. the syntax. The message is both typed
and printed.

YV PREGRAM xxxxxx IS DAMAGED.
Hard nalt No. 405 accompanies this message. It
indicates that the header, loader, and/or trailer

"do not contain the proper identifying information.

The message is both typed and printed.

W M@RE THAN 6 CARDS 1IN A DUP C@NTR@L REC@RD.

No halt accompanies this message. It indicates
that 7 consecutive cards were read which appear
to be part of the same control record (see the
previous section on the structure of control
records). The message is both typed and printed.

1401 0. s. II
DUP - p.8
(General)

Halts and messages peculiar to particular services are
documented in the following sections.

OPERATING PROCEDURES:

DUP is designed to operate as automatically as possible,
with a minimum of operator intervention and no operator
decisions. Aside from job set-up as specified in a
previous paragraph, and action on errors which indicate
a failure in the operating system, no special operating
procedures need be specified.

Should message 3 occur in any operation of DUP, core
and disk dumps should be taken, and a member of the
Computer Systems group notified, as in the case of
standard system halts and messages.

Méessages 0, 1, 2 and U4 are the concern of the user.

End-0f-Job, Post-Processing:

DUP may either perform an EXIT, returning-to the
inter-job supervisor, or LINK to some other program
at the completion of its processing. The manner in
which this choice is made 1s described in the Usage
paragraph under Program Common.

1401 0. S
DUP - p.9
(¥DELETE)

. II

*DELETE

PURPOSE:

The program deletion service of DUP provides a means
of removing program blocks from the 1401 Operating
System Library. This may be preparatory to reloading,
or because the programs are in error, Or no longer
useful.

RESTRICTIONS:

As noted below (see Processing/Method), certain types
of program blocks cannot be deleted.

If any part or phase of DUP, namely program blocks DUP,
' DUPA, DUPB, DUPC, DUPD, or DUPE, is to be deleted, all
phases must be deleted. DUPC should be the last pro-
gram block named, and the control record should end 1n
a period followed by a space.

Time/Core Reguirements:

The time required to delete one programn varies from
two to ten seconds, depending on its length and its
neighboring programs.

Core requirement is as described for DUP (General).

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

Set-up is as required for DUP (General).

Processing/Method:

The following describes the deletion of one program:

The program table s scarched for the program name.
1f the program is not present, a diagnostic 1s produced.
If the program ls present, but 1s

a) a move-mode file,
b) a headerless load-mode block,
or ¢) a fixed-location (system disk) program,

a diagnostic 1s produced. If the program block is not

E P Y T ISR

USACE:

1401 0. S. II
DUP - p.10
(¥DELETE)

The header and trailer of the program are checked. If
either 1s in error, a diagnostic 1is produced and the
system comes to a hard halt. Otherwise,

a) the program table entry is removed.

b) if there are floating-location program blocks
above the deleted block on the cylinder, they
are moved down.

¢) an amount of disk equal to the size of the
program 1s cleared.

d) a log entry is made.

e) the verification message is typed and printed.

f) the parameter and usage reports are printed.

g) the service 1s completed.

Calling Seguence:

The program deletion service of DUP may be called by

a control record beginning with ¥DELETE cor ¥DELET, by

a call to DUP with pesition 1 of the program common
fie1ld containing a minus sign, or by the ¥*L@AD option.
It can be called implicitly by the DL@DR program (KCO6A)
with disk input.

Control Cards:

lgnpug:

OUTPUT:

The *DELETE or ¥DELET control record, which initlates
this service, is described in the Control Record Syntax
section of DUP (General). No other control cards are
required.

#DELETE reauires no input.

The output which normally results from the deletion of
one program consists of:

a) a message, both typed and printed, verifying
the deletion.

b) a report on the progran parameters from the
LPAD process for the program.

¢) a report on the usage statistics of the progranr.

1401 0. S. II
DUP - p.l1
(*¥DELETE)

ERROR MESSAGES and HALTS:

In addition to the standard system halts and messages, and
those messages described in the section on DUP (General),

the following messages may occur on the typewriter and
printer:

5. >> DK DELETED XXXXXX SSSSS nnn
This 1s the normal verification message, where xxxxxx
is the program name, sssss is the sector address
its header had occupied, and nnn is the number of
sectors it had occupied.

6. “W xxxxxx CANNGT BE DELETED
This indicates that the program block is either a

file, or at a fixed location, and therefore cannot
be deleted.

OPERATING PROCEDURES:

Operation during a program deletion should be completely
automatic. Both the messages in the above paragraph

are the concern of the user. Attention should also be
given the operating procedures described in DUP (General).

End-0f-Job, Post-Processing:

After each requested deletion has been attempted, con-
trol is returned to mainline DUP. See the End-Of-Job,
Post-Processing paragraph of DUP (General).

1401 0. S. TII
DUP - p.12
(¥*RENAME)

¥*RENAME

PURPOSE:
The program renaming service of DUP provides a means of
changing the names of program blocks stored in the 1401
Operating System Library. This may be done to avoid
name conflicts in the system.

RESTRICTIONS:

As noted below (Processing/Method), certain types of
programs cannot be renamed.

Time/Core Requirements:

The time required to rename a program is less than two
seconds. Core requirements are as described for DUP
(General).

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

Set-up is as required for DUP (General).

Processing/Method:

The program table 1is searched for the new name. If a
program by that name is already present, a dlagnostic
is produced. If not, the program table is searched
for the old name. If the program is not present, a
diagnostic is produced. If the program 1s present,
but is either

a) a move mode file,
b) a headerless load mode block,
or ¢) a fixed-location (system disk) program,

a diagnostic is produced. If the program block is
not of the above types, it is a candidate for renaming.

The header and traller of the program are checked. If
it is in error, a diagnostic is produced and the system
comes to a hard halt. Otherwilse,

a) the program table is updated with the new name.

1401 0. S. II
DUP - p.13
(¥*RENAME)

b) the header and trailler are updated with the

new name.
¢) a log entry is made.
d) the verification message 1S typed and printed..
e) the parameter and usage reports are printed. U
f) the service is complete. : A

USAGE:

Calling, Seqguence:

The program renaming service of DUP is called by a con-
trol record beginning with *RENAME. It can be called
implicitly by the DL@DR program (KCO6A) with disk input.

Control Cards:

The ¥RENAME control record initiating the renaming ser-
vice is described in the paragraph on Control Record
Syntax of DUP (General). No other control cards are

required.
Input:
*¥RENAME requires no input.
QUTPUT:

The output which normally results from renaming one
program consists of:

a) a message, both typed and printed, verifying
the renaming.

b) a report on the program parameters from the
DL@AD process for the program.

¢) a report on the usage statistics of the program.

1401 0. S. II
DUP - p.1lh
(*RENAME)

ERROR MESSAGES AND HALTS:

In addition to the standard system halts and messages,
and those messages described in the section on DUP
(General), the following messages may occur on the
typewriter and printer:

7. N xxxxxx CANN@T BE RENAMED |
This indicates that the program block is either
a file, or at a fixed location, and therefore
cannot be renamed.

8. ~V THERE ALREADY IS A XXXXXX
This indicates that the "new name" is already
used for another program on the library.

9. >> DK RENAMED xxxxxx T@ yyyyyy sSssss nnn
This is the normal verification message, where
xxxxxx is the "old name", yyyyyy is the "new name",
sssss 1s the sector address its header occupies,
and nnn is the number of sectors in the program
block.

OPERATING PROCEDURES:

Operation during a program renaming should be com-
pletely automatic. All the messages in the above
paragraph are the concern of the user.: See the Oper-
ating Procedures for DUP (General).

End-0f-Job, Post-Processing:

After each requested renaming has been attempted,
control is returned to mainline DUP. See the End-Of-
Job, Post-Processing paragraph of DUP (General).

1401 0. S. II
DUP - p.15
(*C@PY)

¥C@PY

PURPOSE:

The program copying service of DUP provides a means
of copying programs stored in the 1401 Operating
System library to magnetic tape, in a format suitable
for input to the ¥*L@AD service of DUP. This may be
done to "back up" a program against possible removal,
modification, or replacement, either by other users
or by setbacks of the system due to use of the mass
restoration program RESTR (zD02A). It may also be
used to provide an "auxiliary library" capabillity,
wherein programs which have been 1little used and/or
will not be used for some time in the future can be
copied to tape, and then deleted to free disk space
for more constructive uses. '

RESTRICTIONS:

The following program blocks may not be copied to tape:

$PRGTB DUPB
$LAG DUPC
DUP DUPD
DUPA DUPE

Time/Core Requirements:

The time required for the program copying service
varies according to the number of programs to be
copied, and the number of programs on the input tape
(if the 'WITH tape name' option is used). In any
case, use of the program copying service should be
less than ten minutes. Copying proceeds at nearly
full tape speed.

Core requirement is as described for DUP (General).

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

An output tape should be mounted on tape drive 2.
A mini-reel will often suffice for this purpose. If

1401 0. S. 1T
DUP - p.l1f
(*C@PrY)

the "WITH tape-name" option is to be used (tape update),
the proper previously #C@PYed tape should be mounted -

on tape drive 1 as input. Also see the Set-Up, Pre-
vious Processing paragraph of DUP (General).

Processing/Method:

USAGE:

A full description of the *C@PY operation appears below,
in the paragraph titled Processing Method -- Technical
Description.

Calling Sequence:

The program copylng service of DUP is called by a con-
trol record beginning with *C@PY.

Control Cards:

The two forms of the ¥C@PY control record which initiate
this service are described in the Control Record Syntax
section of DUP (CGeneral). No other control cards are
reguired.

Input:

OuUTPUT:

Tape input is required 1f the "WITH tape name" form of
the control record 1s used. The tape, on drive 1,
should have been previously produced by the ¥C@PY ser-
vice of DUP. Its format should be identical to that
described in the following paragraph on output.

Tape Output:

The main output from use of the program copyinpg service
of DUP consists of a tape containing:

a) header information consisting of an I@CS header
and a DUP tape-name header.

b) a program table identifying the programs on the
tape. These may be program blocks that were spec-—
ified for copying, or carryover prograit nlocks 1f
the "WITH tape name" form of control record was used.

1401 0. S. II
DUP - p.17
(*C@PY)

¢c) a set of records for each program block which was
carried over from a previous tape due to use of
the "WITH tape name" form of control card.

d) a set of records for each program block which was
specified for copying.

e) a DUP trailer and I@CS trailer.

The format of the IPCS header is type "B" (80-positions),
with identification DUP¥*C@PY and a negative retention
cycle. The format of the DUP tape-name header 1is a
110-position BCD load-mode record with the tape name

in the first 6 positions.

The format of the program table is one or more
110-position BCD load-mode records, each containing
zero to seven lb-character entries. The last entry is
followed by a record mark. The 15-character entry
consists of the name, beginning sector address at time
of copying, and number of sectors, as in the disk pro-
gram table.

The set of records corresponding to a program block
consists of a "program block header" having the char-
acters $% in the first two positions, followed by an

M or L denoting move- or load-mode, followed by a
15-character entry as described above. The program
block header is a 1l0-character binary move-mode
record. Following the program block header are records
containing the sequential disk images of the program,
one sector to a record. Records containing the header,
loader, and trailer are included for programs.

For a load-mode file or program, there are two records
per sector:

a) a 1l0-position BCD load-mode record
pos. 1-3) sequence number
pos. 4-10) blank
pos. 11-100) word mark skeleton of the sector,
over blanks
pos. 101-110 blank

b) a 1l0-position binary move-mode record
pos. 1-3) sequence number
pos. h-10) blank
pos. 11-100) data of the sector, without
word marks
pos. 101-110) Dblank

At the end of a load-mode program block, one 110-position
BCD load-mode record is written having $* in positlons
1-2. _

1401 0. S. IT
DUP - p.18
(*CcgPrY)

For a move-mode file, there is one record for each sector:
a) a 110-position binary move-mode record
pos. 1-3) sequence number
poOS. 4-10) blank '
pos. 11-110) data of the sector

The DUP trailer record contains ¢$*¥ in positions 1-3.
It is a 1l0-position binary move-mode record.

The I@CS trailer is standard "B" format, with a record-
count kept, and with tape-marks before and after.

Printed Output:

In addition to the output tape, a message is typed and
printed for each program written on the output tape,
whether it be passed along from an input tape or copied
from disk. The typed output is in the form of a "tape
packing 1ist"™ which should be inserted in the tape case
when the output tape is dismounted.

ERROR MESSAGES AND HALTS:

Four types of halts and messages may occur during use
of the program copying service: '

a) the system standard halts and messages.

b) I@CS halts, described in IBM publication c24-3298
(Input/Output Control System - Disk, Operating
Procedures. IBM File Number 1401/1460-30).

¢) the halts and messages described in DUP (General).

d) halts and messages specific to the program copying
service.

Only halts and messages of type d) will be discussed
here:

10. ~W BAD RECZRD @R MISSING RECPRD, N@. nnn IN XXXXXX
This message indicates that the input tape mounted
is probably unusable. ‘

11. &N T@@ MANY PRPGRAMS
This message shoculd not occur, but if it does it
indicates that the number of program names in the
control record, plus those already on the tape if
the "WITH tape-name'" option is used, is too greatl
for the capacity of the system.

1401 0. s8. II
DUP - p. 19
(¥CgPY)

12. W xxxxxx IS N@T @N DRIVE 1
This message indicates that the input tape mounted
was produced by the program copying service, but
is not the one specified in the control record after
the word 'WITH'.

13. ¥ ERR@R IN TAPE STRUCTURE
This message indicates that the input tape mounted
is probably unusable. Hard halt 222 accompanies
this message.

14, S>> xxxxxx CPPIED FR@M yyyyyy
This message can occur only if the 'WITH tape-nzme'
option is used, and is the normal verification of
the copying of a program block from the old tape
to the new tape.

15. >> DK C@PIED xXxxXXXX S$5SSs nnn
This is the normal verification message for the
successful copying of one program block from disk
to tape.

16. >> TAPE PACKING LIST
>> nn-nn PM, day, month/date, year
>> DUP TAPE NAME IS yyyyyy
This is the normal header of the list of orograms
on the output tape.

OPERATING PROCEDURES:

Set-up is as noted above. In normal operation the pro-
cedure would merely be to dismount the tape when it
rewinds, and insert the tape packing list in the case
with the tape. Also consult the Operating Procedures
in DUP (General).

'If message 10 or 13 occurs, the copying attempt should
be abandoned. Message 11 is the concern of the user.
Message 12 requires the mounting of the correct tape:
the operator should consult the tape packing lists of
the tapes available to him. Messages 14 through 16
are normal.

End-0f-Job, Post-Processing:

After copying all requested program blocks, control 1is
returned to mainline DUP. The operator should dismount
the tape and insert the tape packing list 1n the case
with the tape. Also consult the End-0f-Job, Post-Proc-
essing paragraph of DUP (General).

1401 0. 5. II
DUP - p.20
(*C@PY)

PROCESSING/METHOD —-- TECHNICAL DESCRIPTION

The complete control record 1s scanned and a table of
program blocks to be copied i1s built. At this time,
duplicate names on the control record, if any, and cer-
tain uncopyable program names, are eliminated from the
table.. Tor a list of these, see Restrictions. Program
blocks specified for copying which are not on disk re-
sult in a diagnostic at this time.

If the 'WITH tape-name' option is used on the control
record, the tape on drive 1 1s opened and checked for
identification. Either an I¢CS halt or a typed diagnos-
tic can result at this point if the identification check
fails.

With the 'WITH tape-name' option, the following sequence
then occurs:

a) the output tape is opened and the DUP header is
written.

b) a comparison of the program names to be copied and
the program table of the old tape yields a table of
program blocks to be carried over. If a program
name is already represented on the old tape, and is
specifiled for copying, the old version is ignored
and the present version on disk is copied onto the
output tape.

c) the program table from the old tape is copied to
the output tape, and augmented with program names
to be newly copiled.

d) program blocks on the old tape are read, and either
passed or copied to the ocutput tape as determined
in step b) above, messages being produced for blocks
which are copied.

e) when the DUP trailer record is encountered, one
more record 1s read to accomplish the I@CS end-of-
file processing, including record-count checking,
and the old tape is closed.

f) operation proceeds as in step c¢) of the following
description.

1401 0. S. II
DUP - p.21
(*C@PY)

Without the 'WITH tape name' option,

d)
e)
f)

the output tape 1s opened and the DUP header written.
the program table is constructed and written.
program blocks specified for copying are read from
disk and written, messages and log entries being
produced for each.

the 'DUP trailer is written and the output file is
closed.

the typewriter sheet is spaced up to isolate the
tape packing list.

the service is completed, and control is returned
to mainline DUP.

1401 0. S. II
DUP - p.22
(¥L@AD)
*LGAD
PURPOSE:
The program loading service of DUP provides a means of
loading programs, previously copied to magnetic tape
by the program copying service, back onto the 1401
Operating System library. This service is not to be
confused with the original loading service afforded by
the DL@AD macro or deck and the DL@DR program (XKCO6A).
RESTRICTIONS:

Time, Core Requirements:

The time required for the program loading service
varies according to the number of programs to be load-
ed -and the number of programs on the input tape. 1In
any case, use of the program loading service should be
less than ten minutes. Loading proceeds at nearly
full tape speed.

Core requirement is as described for DUP (General).

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The tape named on the control record must exist, and
must be a tape previously created by the program copy-
‘ing service of DUP. This tape should be mounted on
drive 1. Also see the paragraph on Set-Up, Previous
Processing for DUP (General).

Processing/Methbd:

A detailed description of the processing method will
be found below in the paragraph on Processing Method -
Technical Description.

US

AGE:

1401 0. 8. II
DUP - p.23
(*L@AD)

Calling Seguence:

The program copying service of DUP is called by a con-
trol card beginning with *L@AD.

Control Cards:

The format of the *L@AD contrcl record initiating the
program loading service is described in the paragraph

-on Control Record Syntax of DUP (General). No other

Tnput:

control cards are required.

The format of the input tape required on drive 1 is

desceribed in the paragraph on Tape Output of the DUP
#C@PY) section of this document. No other input is

required.

On completion of the loading service, the format of
the program is identical with the format at the time
it was copied to tape. However, its location in the
library may be different.

Messages are typed and printed for each program loaded
from the tape. Diagnostics concerning absence of a
requested program from the tape and output from the
program deletion service may precede this normal ¥L@AD
output. ’

ERROR MESSAGES AND HALTS:

Five types of halts and messages may occur during per-
formance of the program loading service:

a) the system standard halts and messages,

b) I@PCS halts, as described in IBM publication c24-3298

(Input-Output Control System - Disk, Operating Pro-
cedures. IBM File No. 1401/1460-30),

c); the halts and messages described in the DUP (General’

section,

d) messages 10-13 described in the DUP (*C@ry) section,

e) halts and messages specific to the program loading
service.

1401 0. S. II
DUP - p.24
(¥*L@AD)

Action for messages 10-13 described in the DUP (¥C@PY) *
section should be as described in that section.

Only halts and messages of type e) will be discussed
here:

17. WV xxxxxx N@T @N TAPE _
This message indicates that program block XxXXXXX
was specified for copying but is not on the input
tape.

18. >> DK L@ADED XXXXXX SSSSS nnn
This message is the verification message for the
successful loading of one program block. It can
be distinguished from the similar message put
out by the DL@DR program (KCO06A) in that the
latter is followed by a period.

19. W& xxxxxx C@NFLICTS WITH PERMANENT DISK BL@CK
This message indicates that conflict with an
already-existant program block on disk has been
discovered, either in name or disk location. See
the paragraph on Processing Method -- Technical
Description.

20. /N INSUFFICIENT DISK F@R XxXxXXXX
This message indicates that a serious disk crowd-
ing problem has developed, and available space
large enough for program block xxxxxx cannot be
found.

OPERATING PROCEDURES:

Set-up is as noted in a previous paragraph. In normal
operation the procedure would merely be to dismount

the tape when it rewinds, and make sure that the tape
packing list remains in the tape case. Notice should
also be pald to the operating procedures in the sectlon
on DUP (General).

Action on messages 10 through 13 are as described in the
section on DUP (*¥C@PY). Messages 17 and 19 are the
problem of the user. Message 20 indicates a serious
disk crowding problem, and action should be taken
according to current UWMCC policy. Message 18 is normal.

1401 0. 8. II
DUP - p.25
(¥L@AD)

End-0f-Job, Post-Processing:

When all requested program blocks have been loaded,
control is returned to mainline DUP. The operator
should dismount the tape, making sure that the tape
packing list remains in the tape case. Also see the
End-0f-Job, Post-Processing paragraph of DUP {General).

PROCESSING METHOD - TECHNICAL DESCRIPTION:

The complete control record 1s scanned and a table of
program names to be loaded is constructed. At this
time duplicate names on the control record, if any, are-
eliminated.

The input tape on drive 1 1s opened and checked for
identification. Either an I@CS halt or a typed dia-
gnostic may result at this point if the identification
check fails. ’

A table of the names to be deleted is constructed. This
table contains all names which are:

a) specified for loading, and
b) on the tape, and
¢) in the 1401 Operating System library.

If a program block is already on disk it will be replac-
ed by the version on the tape.

In order to determine the above, the program table on
the tape is scanned. When this 1is completed, diagnos-
tics may be produced indicating program(s) specified
for loading which are not on the input tape.

At this point, if there are programs to be deleted, the
program deletion service of DUP is called. After delet-
ing the one or more programs necessary and producing

its normal output, the deletion phase returns control

to the program loading service. On such a return, the
input tape must be re-opened (hence rewound), and re-
positioned to its former status.

Each program block on the tape is then handled in the
following fashion:

a) If the block has not been specified for loading,
it 1s passed and the next block considered.

b)

c)

a)

e)

T
g)
h)

i)

1401 0. S. II
DUP - p.26
(*L@AD)

If a move-mode file or neaderless load-mode file is
duplicated, a diagnostic is produced and the block
passed unless the duplicates start at the same disk
location and are of the same length.

If a fixed location program is duplicated, a diagnos-
tic is produced and the block passed unless the
duplicates start at the same disk location and there -
is sufficient space for the tape version.

If there is no duplication, and the program is not

at a fixed location, an unused disk area which is

the smallest that will accomodate the programn

block is chosen. If there is no such area, a
diagnostic 1is produced.

If there is no duplication, and the program block is
at a fixed location, a diagnostic is produced unless
sufficient unused area starting at that location 1is
found.

In the cases with no duplication, an entry 1s in-
serted in the Operating System program table.

The block is copied to disk at the appropriate
location, sector by sector.

The loading verificatlon message is typed and printed,
and a log entry is made. ’
The service of loading one program is complete.

1401 0. S. II
DUP - p.27
(*DUMP)

¥DUMP

PURPOSE:

The program printing service of DUP provides a means

of obtaining a "core dump" of a disk-stored program
block as it will appear when loaded into core but not
yet executed (i.e. in "disk image"). The service
prints all types of program blocks that can exist under
the 1401 Operating System -- blocks with or without
headers, in either mode, etc.

RESTRICTIONS:

Time, Core Requirements:

Printing proceeds at approximately 150 one-hundred
character segments per minute. The time to print one
program varies according to its length.

Core requirement is as described for DUP (General).

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

Paper at least 12 inches wide must be on the 1403 printer
in order to use the program printing service. Also see
the Set-Up, Previous Processing paragraph of DUP (General).

Processing/Method:

Each one hundred characters is read from disk by a
"virtual core" routine. The annotation line for each 1is
then constructed, and substitution characters inserted,
by scanning the block read from disk. On the first line
of the program block, the left end of annotation and
data lines is cleared; on the last line the right end

is cleared. The annotation line is printed, the data

is loaded into the print area, the data and wordmark
lines are printed, and the printer is spaced one line.
This recurs until the last line is printed.

USAGE:

1401 0. 8. II
DUP - p.28
(*DUMP)

Calling Seguence:

The program printing service of DUP is called by a
control record beginning with ¥DUMP. It is also called
at completion of service by the program modification
service.

Control Cards:

Input:

OUTPUT:

The ¥*DUMP control record, which initiates this service,
is described in the paragraph on Control Record Syntax
of DUP (General). No other control cards are required.

¥DUMP requires no input.

The output from the printing of one program consists of:

a) the program parameter information produced at DL@AD
time.
b) the usage information accumulated since.

e¢) a number of annotated lines, each representing

100 characters of object program, sufficient to
print the entire program.

For a non-program block, only lines of type ¢) are
printed, preceded by an indication of name, location,
length, and mode.

The first and last lines of type c¢) may be only partial
lines so that the character corresponding to the load-to
address is the first position represented in the print-
out, and the character just before the group-mark
word-mark address is the last character represented.
Each such line begins at the XXX01l position and ends
with the succeeding ¥XX00 position, and 1is accompanied
by an annotation line giving the relative positions

1401 0. S II
DUP - p.29
(¥DUMP)

in the line. In the annotation line may appear sub-
stitution characters giving notice of unprintable or
ambiguous characters in the line below, as follows:

1402

Card 1401 1401 Substitution
Code Internal Name Character P
none A Cent sign A

0-6-8 CABU2 Backward slash B

5-8 841 Colon C
11-7-8 B8u21 Delta D

11-0 B82 Exclamation point E
12-7-8 CBA8421 Group mark G
12-5-8 BA84l Left bracket L

0-7-8 AB421 Tape segment mark M

12-0 CBA82 Question mark Q
11-5-8 CB841 Right bracket R
11-6-8 CB842 Semicolon S

7-8 c8u21 Tape mark T

0-5-8 CABL1 Word separator W
12-6-8 BA842 Less than Y

6-8 842 Greater than Z

ERROR MESSAGES AND HALTS:

Aside from normal output, no halts or messages besides
the system standard halts and messages and the halts and
messages described in the DUP (General) section can occur.

OPERATING PROCEDURES:

Set up is as noted in a previous paragraph. Operation
of the program printing service should be completely
gutomatic. See the paragraph on Operating Procedures
for DUP (General).

End-Of-Job, Post-Processing:

When all requested program blocks have been printed,
control is returned to mainline DUP. See the End-0f-Jot,
Post-Processing paragraph of DUP (General).

1401 0. S. II

DUP - p.30
(¥PUNCH)
*PUNCH
PURPOSE:
The pfogram punching service of DUP provides a means of
obtaining card object decks of programs stored in the
1401 Operating System Library.
RESTRICTIONS:

Move-mode files and headerless load-mode blocks cannot
be punched.

Time, Core Requirements:

The time required to punch one program varies according
to the length of the program. Punching proceeds at
approximately 200 cards per minute unless large numbers
of blank output cards are being bypassed.

Core requirement is as described for DUP (General).
PROGRAM PROCEDURE:

Set-Up, Previous Processing:

A sufficient number of cards must be readied in the
1402 punch hopper. See the Set-Up, Previous Processing
paragraph of DUP (General).

Processing/Method:

A "virtual core routine" is used to read the area of
disk containing the data to be punched on a given card.
Data is then moved to the card, character by character,
and loading instructions are created, until one of the
following occurs:

a) 39 characters have been moved to the card.

b) a word-marked character is encountered and no more
set-word-mark loading instructions are available..

¢) the last character before the group-mark word-mark
address has been moved.

The card is then punched, unless the characters to be
loaded are all blanks and the lecading instructions set
no word-marks. '

USAGE:

1401 0. s. II
DUP - p.31
(¥PUNCH)

After an entire deck is punched, a log entry is nade
and a verification message is typed and printed.

Calling Sequence:
I.J 3

The program punching service of DUP is called by a
control card beginning with ¥PUNCH.

Control Cards:

Input:

OUTPUT:

The *PUNCH control record initiating the service is
described in the paragraph on Control Record Syntax of
DUP (General). No other control cards are required.

¥PUNCH requires no input.

Decks are punched in self-loading format, with object
characters in columns 1-39 and loading instructions in
columns 40-71. Columns 72-75 are used for a seqguence
number, increasing by one for each card. Columns 76-80
contain as identification the first 5 characters of the
name of the program.

The deck begins with 16X core-clear cards followed by

a "bootstrap” card and the object cards. The deck ends
with an execute card which transfers control to the
execution address of the program block.

The deck produced is virtually a "disk image" of the
program as 1t is stored in the Operating System library,
except that cards which would load 39 blank characters
without word-marks are suppressed, since the core-clear
cards will perform this function. Because of this, the
following differences may exist between the deck punch-
ed and a deck used to DL@AD the program:

1401 0. S. II
DUP - p.32
(¥PUNCH)

a) only data between the load-to address and the group-
mark word-mark address will be represented in the
deck punched.

b) any "execute" sequences in the original deck will
not be reflected in the deck punched.

¢) cards produced by the ",C" option of a DA will not

- be reflected in the deck punched.
d) other DA options will be handled differently.

ERROR MESSAGES AND HALTS:

In addition to the standard system halts and messages,
and those messages described in the section on DUP
(General), the following messages may occur on the
typewriter and printer during use of the program punch-
ing service:

21. >> DK PUNCHED XXXXXX sSSsSss nnn
This is the normal verification message for the
successful punching of a program. xxxxxx is the
program name, sssss is its starting sector, and
nnn is the number of sectors in the program.

22. WW xxxxxx CANN@T BE PUNCHED
This message indicates that the name of a non-
program block was found in a ¥PUNCH control record.

23. >> nnn CARDS WERE PUNCHED v
This message follows message 21 on the printer.

OPERATING PROCEDURES:

Operation during the punching of one or more programs
should be completely automatic. The operator should
keep track of where each deck ends if more than one 1s
punched. An extra blank card is punched after each
program, so that the last card need not be run out.

A1l the above messages are the concern of the user. See
the paragraph on Operating Procedures for DUP (General).

End-0f-Job, Post-Processing:

On completion of the processing of all programs for
which the service was requested, control is returned
to mainline DUP. See the End-0f-Job, Post-Processing
paragraph of DUP (General).

¥PATCH

PURPOSE:

1401 0. S. II
DUP - p.33
(*PATCH)

The program modification service of DUP provides a means
by which programs stored on the 1401 Operating System
Library may be updated, changed, and corrected by means
of standard-format "patch cards", without recourse to
the original deck from which the program was DL@ADed.
Patch cards may either be in Autocoder self-loading or
condensed format.

RESTRICTIONS:

Move-mode files and headerless lode-mode blocks cannot
be patched. The program modification service 1is not
designed for the complete replacement of programs by
meahs of decks produced by the AUT@CPDER assembler.
For example, cards produced by DA statements using the
", C" option cause format diagnostics. As a result, the
area may not be cleared. In addition, the size of the
program may be different than that of the disk-stored
version. Use the program deletion service and the
DL@AD macro or deck with the DL@DR program (KCO06A) to
perform complete replacement.

Core Requirements:

Time,

The program modification service reads patch cards from
the 1402 reader at approximately 100 cards per minute.
The time required for use of the service varies accord-
ing to the number of patch cards. See the Time, Core
Requirements paragraph of the ¥DUMP section of this
document.

Core requirements are as described for DUP (General).

1401 0. S. II
DUP - p.34
(*PATCH)

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The patch cards must be prepared by the user in the
correct format. See the Set-Up, Previous Processing
paragraphs in the DUP (General) and DUP (¥DUMP) sec-
tions of this document.

Processing/Method:

A full description of ¥*PATCH operation is found below,
in the paragraph titled Processing Method -- Technical
Description.

USAGE:

Calling Sequence:

 Use of the program modification service of DUP is
initiated by a control record beginning with *PATCH.

Control Cards:

The ¥*PATCH control record initiating the program mod-
ification service is described in the Control Record
Syntax section of DUP (General). Note that, unlike
other DUP control records, only one program name may
appear in a ¥PATCH control record. As with other DUP
control records, if the record ends with a period
followed by a space, the DUP end-of-job occurs after
the §ervice is performed (i.e., all patch cards are
read).

Input:
Patch Cards:

" Patch cards may be in either self-loading or condensed
format, in any mixture, A card is Judged self-loading
if:

a) columns 68-71 contain 1040

b) columns 40, 47, 54, and 61 each contain one of
these characters: M, L, O, N, or ',' (comma)..

¢) 1if all of the address fields of the instructlons
having op codes as in b) are valid 1401 addresses.

1401 0. S. II
DUP - p.35
(*¥PATCH)

A card is judged to be in condensed format if:

a) columns 1-3 contain a valid 1401 address

b) columns 4-5 contain numeric digits less than 67 in
value ' ‘

¢) the columns beyond the number of characters indi-
cated in 4-5 are blank.

Diagnostics are produced if neither set of conditions
above is satisfied, and also if the card is "out of
bounds", as described below in the paragraph on Pro-
cessing Method -- Technical Description.

Trailer Card:

Following all patch cards must be a card which is com-
pletely blank in at least its first 41 columns. Other
DUP control cards may follow this card directly.

OUTPUT:

Normal output from use of the program modification ser-
vice includes an 80-80 listing of the patch cards
(diagnostics may appear interspersed in this listing),
- followed by the normal output of the program printing
service for the same program, namely the program para-
meters, usage statistics, and "core dump" of the pro-
gram. L ¢ : -

ERROR MESSAGES AND HALTS:

In addition to the standard system halts and messages
and the halts and messages noted in the DUP (General)
and DUP (¥DUMP) sections, the following messages may
occur: :

24. NV xxxxxx CANN@T BE PATCHED
- This message indicates that an attempt has been
made to patch a non-program entry.

25. W N@T IN PATCH F@RMAT
This message indicates that the patch card above
it 1s not recognizable as in self-loading or
condensed-loading format, as defined above in
the paragraph on Patch Cards.

26. NN @guUT @F B@PUNDS
This message indicates that the patch card above
it does not satisfy the bounds criteria described
below in the paragraph on Processing Method --
Technical Description.

27. >> DK PATCHED XxXXXXX SS58sS nnn
This is the normal verification measape at the
completion of the program modification service,
where xxxxxX 1is the program name, sssss is 1its
first sector, and nnn is the number of sectors
in the program.

OPERATING PROCEDURES:

No special operating procedures are necessary for use
of the program modification service. All of the above
messages are the concern of the user. If message 24

or DUP (General) messages 0 or 2 occur, the patch cards
are automatically run through the reader. If DUP
(General) message 1 occurs on what appears to be a
¥PATCH control record, the operator must remove the
patch cards from the reader manually. See the Operating
Procedures paragraph for DUP (General).

End-0f-Job, Post-Processing:

When the trailer card is read: a log entry is made;

a verification message is typed and printed; and the
program printing service is called. When that service
is completed, control is returned to mainline DUP.

See the End-0f-Job, Post-Processing paragraph for DUP
(General).

PROCESSING METHOD -- TECHNICAL DESCRIPTION:

- Input is read through the same I/0 routine as control
records: thus "patch cards" may be entered from the
typewriter, the card reader, or disk: 1in any case, Lhe
same input device as control cards. Tt . is permissible
to terminate the entry of patch cards with an end-of-
file on the device in question rather than a blank
card as cited above. The card is first printed, then
checked for self-loading valldity according to the
standards above. If this check falls, the card 1s
checked for condensed-loading valldlity. [this check
also fails, a diagnostic is produced.

1401 0. S. II
(*PATCH)

For both formats a check is performed to ensure that
the patch represented on the card is within the bounds
of the program. A diagnostic is produced for a self-
loading card if any of the following conditions fail:

a) the lowest reference in the loading instructions
(excluding references below 81) must be at or
above the load-to address of the program.

b) the highest reference in the loading 1nstructions
must be below the group-mark word-mark address.

¢) the difference between the lowest reference
(excluding references below 81) and the highest
reference must be less than 90.

A diagnostic is produced for a condensed-loading card
if either of the following conditions fail:

a) the address in positions 1-3 must be at or above
" the load-to address of the program.

b) the address formed by adding positions 4-5 to
positions 1-3 (the highest reference) must be
below the group-mark word-mark address of the
program.

The actual patching operation is done through a "virtual
core" routine which reads the appropriate part of the

program from disk. The patch is made, and the segment
is rewritten to disk. The next card is then read and

processed in the same manner, unless it 1s the trailer
card.

1401 0. S. II
I. D. # KC1l0A

PROGRAM: SYSCL

MACHINE: IBM 1401
LANGUAGE: AUT@CHDER
SUPERVISOR PROGRAM: none

PROGRAMMER: Systems Division
DATE COMPLETED: July 1, 1968
PURPOSE:

SYSCL calls the IBM system and starts the operation
of that system, leading to a Fortran or C@B@L compila-
tion, AUT@C@DER assembly, or RPG generation. It
duplicates the operation of the lU-card IBM system
boot, with certain added capabilities.

RESTRICTIONS:

Time, Core Requirements:

Execution of SYSCL itself takes less than 3 seconds,
which is followed by the processing time of the relevant
IBM system.

SYSCL is a mainline program, effectively using all of
core during its brief execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

No previous processing i1s necessary for use of SYSCL.
The IBM system pack should be on the opposite drive
from the Operating System pack, except in the case when
one drive is inoperative. 14 inch wide paper is
normally used in the 1403 printer for assemblies and
compilations.

Processing/Method:

A detalled description of the method of operation will
be found below, in the paragraph titled Processing
Method -- Technical Description.

USAGE :

1401 0. S. II
SYSCL - p.2

Calling Sequence:

Source of Call:

SYSCL is usually called by a log-start card, but may
be called by means of the inter-job entry code D@, or
by a LINK macro from an AUT@C@DER or C@B@PL program.

Program Common:

The program common field used to call SYSCL determines
the "assumed assignments" of various files used by

the IBM system. To get file assignments suitable for
Fortran (or C@B@L) compilation, the word F@ZRTRAN or
C@BPL should be contained in the program common field,
left justified. If the program common field contains

any other letters or is blank, the assumed file assign-
ments will be those most suitable for Autocoder assembly.

Control Cards:

Input:

CUTPUT:

A SYSTEM ASGN card is not needed when SYSCL is used.
Other than that, control cards are.as described in the
relevant IBM publications. The need for special ASGN
cards for Fortran or C@B@L compilation is largely
obviated by the program common conventions described

above.

Input is as described in the relevant IBM publications.

OQutput is as described in the relevant IBM publications.

ERROR MESSAGES AND HALTS:

Aside from the standard system disk halts and messages,
the following may be produced during use of SYSCL, all
on the console typewriter:

1401 0. S. II
SYSCL - p.3

1. TYPE WHETHER DRIVE n IS AVATLABLE
followed by a wait-for-console loop.
In this message, n = '0' references module O,
n = '2' references module 1.

2. TURN @GN DRIVE n
' followed by a halt with A-register blank.
n as in message 1.

3. MPUNT IBM PACK ¥N DRIVE n
- followed by a halt with A-register blank.
"n as in message 1.

b, IN THAT CASE @NLY SMALL AUT@C@DER J@BS MAY BE RUN.

The halts and messages documented in the IRM system
publications should also be noted.’

APERATING - PROCEDURES:

If message 2 occurs, the operator should turn on the
“indicated drive, and press START when the drive has
come to ready status. If the indicated drive is 1noper-
ative, the operator ghould simply press START, whereupon
message 1 is typed. .’ The operator should ;nter 'NO' at
this ﬁoint. Any other response causes the progran to .
evert to mascagﬂ'E. If 'NO' is entered, message 1 is
ivntu and the duﬂ is aborted if the program uomwﬁq
field contains ndication of Fortvah C@B@L, or Tabtran
?tC'TW*JiTV, - . .

'__When the drive is Qelected, message may < ““dl, in
which case the operator should nuuvt-yhe.fhw uygsmn
pack, and press STAKT when the ur wve has come Lo ready
ULALUS. »

Vﬁu operating urugeduruu documented in the 1BM system
cuhllcaiiun should also be noted, ' '

tnd-0f-Job, Post-Processing:
¥ the last card -indicator is o wren the IBM system

completes an assembly or c0m011dt10n, ‘contreol ig trans-
ferred back L6 the Operating System with an EXIT.

1401 0. 5. II
SYSCL - p.h

The IBM system recognizes the Version 2 log-start card
(but does not recognize the Version 1 card), and per-
forms a simulated L@AD upon it if encountered. No
post-processing 1s required after use of SYSCL and the
IBM system, but it is common for an object deck to be
loaded immediately for testing or loading to disk.

PROCESSTING METHOD —-- TECHNICAL DESCRIPTION:

Choice of Drive:

The log-start card is selected to reader pocket one.

The Operating System communication sector is read, and

the job number and man number are saved. The IBM system
drive is at first assumed to be the opposite drive

from the Operating System. If that drive is not on or

does not contain the IBM system, the operator is instruct-
ed to mount the proper pack. If a not-on condition per-
sists a second time, the operator is given an option to
select a one-drive configuration (other drive not operable).

Transfer to the IBM System:

N
Whichever drive is selected, processing continues as
follows:

1. The IBM permanent file-hardware table is read, the
WPRK1, 2, and 3 files and the LIBRARY, L@ADER,
CARELPAD and INPUT files are given their assumed
assignments, as controlled by the program common
field. The temporary file-hardware table is written.

2. The IBM phase index table is searched for an entry
for phase 8gP. If an entry for 8¢P is found, and
8P is patched to punch a log-start card, a log-
start card image with the appropriate job number,
man number, and program-name L@AD (all other fields
blank) is written into 8gP.

3. The IBM I/0 package 1s read.
k. Various parameters are moved into the first 4K to
simulate the results of executing the card boot

and the system boot.

H. The TBM Determiner phase is read.

6. Core is cleared in the upper 12K.

1401 0.
SYSCL - p«5

S.

II

7. If the program common field Indicates that SyscrL
was called by the TABTRAN processor, an appropriate

AUT@C@DER RUN card is passed to the Determiner.

8. Control is transferred to the Determiner.

Assumed File Assignments:

The following file as
interested user shoul

SYSTEM CHANGES.

a. If both drives are operative
field contains the word F@RT

W@RK1 ASGN
- W@PRK2 ASGN
W@RK 3 ASGN

LIBRARY ASGN
LZADER ASGN
CZRELPAD ASGN
INPUT ASGN

b. If both drives are operative
field contains the word C@

W@ARK1 ASGN
W@RK?2 ASGN
W@RK 3 ASGN

LIBRARY ASGN
L@ADER ASGN
CZRELPAD ASGN
INPUT ASGN

¢c. If both drives are operativ
field indicates SY

processor:
W@RK1 ASGN
W@RK?2 ASGN
WPRK3 ASGN

LIBRARY ASGN
LAADER ASGN
COREL@AD ASGN
INPUT ASGN

1311
1311
1311
1311
1311
gMIT

UNIT
UNIT
UNIT
UNIT
UNIT

READER 1

1311
1311
1311
1311
gMIT
gMIT

UNIT
UNIT
UNIT
UNIT

READER 1

1311
1311
1311
1311
gMIT
1311
1311

UNIT
UNIT
UNIT
UNIT

UNIT
UNIT

Y
Y
Y
Xy
X

signments are set up by SYSCL. The
d also refer to the section I1BM

> and the program common

RAN:

START
START
START
START
START

000800,
003800,
006800,
012000,
010000,

END
END
END
END
END

003800
006800
008800
013900
012000

> and the program common
B@L:

y, START 000800, END 006000
X, START 010000, END 012000
¥, START 006000, END 008800
X, START 013900, END 019980

Y
Yo
Y
x’

Y
X,

START
START
START
START

START
START

000800,
006000,
007800,
0139900,

008800,
010000,

END
END
END
END

END
END

e, and the program common
SCL was called by the TARTRAN

006000
007800
008800
019980

010000
012000

Assumed File Assignments:

(con't)

1401 o.

SYSCL - p.6

Q
Doe

II

d. If both drives are operative, and the program common
field is of any other form or is blank:

WORK1 ASGN
W@RK?2 ASGN
W@PRK3 ASGN

LIBRARY ASGN
LZADER ASGN
CPREL@PAD ASGN
INPUT ASGN

1311
1311
1311
1311
gMIT
@MIT

UNIT y,
UNIT x,
UNIT y,
UNIT x,

READER 1

e. If only one drive is

WZRK1 ASGN
W@RK 2 ASGN
WPRK3 ASGN

LIBRARY ASGN
L@ADER ASGN
COREL@PAD ASGN
INPUT ASGN

where:

x 1s the IBM system drive

1311
1311
1311
1311
gMIT
@MIT

START
START
START
START

available:

UNIT x,
UNIT x,
UNIT x,
UNIT x,

READER 1

START
START
START
START

000800,
010000,
008000,
013900,

010000,
011300,
011800,
013900,

y 1is the Operating System drive.

END
END
END
END

END
END
END
END

008000
012000
008800
0199890

011300
011800
012000
019980

1401 0. S. II
I. D. # KC1lla

PROGRAM: TL@AD

MACHINE: IBM 1401

LANGUAGE: AUT@C@ADER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

TLYAD initiates loading of a tape-stored object program
into 1401 core storage, simulating the function of the
tape-load button on the 1401 C.P.U.

RESTRICTIONS:
The first record on the input tape must be a tape

boot-strap.

Time, Core Requirements:

TL@AD execution time is less than one second. It is a
mainline program, effectively using all of core during
execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The input tape should be mounted on tape unit 1. The
first record must be a tape boot-strap.

Processing/Method:

TL@AD clears high core, reads the first record from the
input tape, and branches to core position 1.

USAGE:

Calling Sequence:

TL@AD is normally called by a log-start card, but may
be called by use of the inter-job entry code D@, or by
execution of a LINK macro from an AUT@C@DER or C@BAL
program.

1401 0. S. II
TLBAD - p.2

Control Cards:

TLHAD requires no control cards.
Input:

The only input consists of the input tape on tape unit 1.

OUTPUT:

TLP#AD produces no output.

ERROR MESSAGES AND HALTS:

Aside from the standard system halts and messages, no
halts or messages should occur during execution of TL@AD.

OPERATING PROCEDURES:

Set-up is as described in a previous paragraph. Opera-
ting procedures are as required by the object program
to be loaded.

End-0f-Job, Post-Processing:

Control is transferred to the user's routine, which is
read into core by the tape boot-strap.

1401 0. S. II
I. D. # ZAOlA

PROGRAM: LIST

MACHINE: IBM 1401

LANGUAGE: - Autocoder

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

LIST provides 80-80 card-to-printer listing, with the
following options:

double spacing

page numbering

card numbering

header line

column annotation

unprintable character annotation
horizontal displacement of card image
listing of log-start cards encountered
new page on speclal character in column 1

RESTRICTIONS:

Time, Core Requirements:

LIST will read and print at 600 cards/lines per minute,
unless the A or S option is used, in which case the
rate is 300 cards per minute or slightly 1less.

LIST is a mainline program, effectively using all of
core during its execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

Paper at least 8 1/2 inches wide must be used in the
1403 printer, with 10 1/2 inch wide paper required ir
the T, P, or N option is used (see below, Program
Common) .

A standard 1-12 carrlage tape of the correct length
should be used.

No previous processing is required for use of LIST.

1401 0. S. II
LIST - p.2

Processing/Method:

A detailed description of the method~0f operation will
be found below in the paragraph titled Processing
Method -- Technical Description.

USAGE:

Calling Sequence:
Source of Call:

LIST is normally called by a log-start card, but may
also be called by use of the inter-job entry code D@
or by a LINK macro from an AUT@CPDER or C@B@L program.

Program Common:

The content of the program common field used to call
LIST determines its operation to a large extent. One
or more non-blank characters may be entered anywhere
within the field, each character indicating an option
as described below. If no such characters are used
(program common fileld plank), LIST produces an 80-80
listing, single spaced, and executes any log-start
card it encounters in the 1nput deck.

Characters indicating options are:

A causes annotation. of card positions in an extra
line above each card image, consisting of a line of
periods with positions 10, 20, ..., 80 noted expli-
citly. If this option is used together with the S
option, special character annotation overlays the
position annotation. Due to the extra line, this
option causes the card-per-minute rate to drop to
300.

B causes cards to be read "pinary" -- any card code
is legal. No responsibility 1is taken for the char-
acter printed in a non-BCD position, since binary
columns are treated as the 6-bit "hash" of the holes
punched.

D causes the line images to be double-spaced. This
skipped line is 1in addition to the extra line caused
by use of the A or S option.

1401 0. S. II
LIST -~ p.3

causes the first card in the input deck (after any
log-start card) to be read and stored. Thereafter,
it 1s used as a "header" line at the top of each
page, including the first.

causes any log-start cards in the input deck to be
listed rather than "trapped" and executed.

causes a card number to be printed to the right of
each card image.

causes a page number to be printed at the top of
each page. This is on the same line as, and to the
right of, the header line (if the H option is used).

causes annotation of ambiguous and unprintable char-
acters, in an extra line above each card image.
Characters appear above the position occupied by the
unprintable or ambiguous character, as follows:

Annotation
Card code 1401 Name Character
0-6-8 Backward slash B
5-8 Colon C
11-7-8 Delta D
11-0 Exclamation point E
12-7-8 Group mark G
12-5-8 Left bracket L
0-7-8 Tape segment mark M
12-0 Question mark Q
11-5-8 Right bracket R
11-6-8 Semicolon S
7-8 Tape mark T
0-5-8 Word separator W
12-6-8 : Less than Y
6~8 - Greater than %

If the S option is used together with the A option,
special character annotation overlays the position
annotation. Due to the extra line, and the consider-
able internal processing involved, this option

causes the card-per-minute rate to drop to 300 or
slightly below 300.

causes the card images to be centered on a l4-inch-
wide page, occupying printer positions 21-100 rather
than 1-80. This distributes wear on the printer
ribbon.

1401 0. S. IT
LIST - p.A4

Any special character entered in the program common
field causes LIST to start a new page on the listing
for any card having that character in column 1.

Control Cards:

LIST requires no control cards.

Input:
Input consists of any deck which is to be listed. -
LIST will always return to the Inter-Job Supervisor

(KEO1A) on a last-card condition, or when a log-start
card is read without the L option.

OUTPUT:

Output consists of 80-column card images prihted on
the 1403 printer, with output options as described in
the paragraphs on Purpose, and Program Common.

ERROR MESSAGES AND HALTS:

Aside from the system standard halts and messages, no
halts or messages should occur during use of LIST.

OPERATING PROCEDURES :

No special operating procedures are required.

End-0f-Job, Post-Processing:

LIST returns to the Inter-Job Supervisor on a last-card
condition, or when a log-start card is read without the
L option (see the paragraph on Program Common). No
post-processing is required after use of LIST.

PROCESSING METHOD -- TECHNICAL DESCRIPTION:

The program common field is first scanned to determine
the optlons, 1if any, to be used. Then, if the H option
is used, the first card is read and stored. An initial

1401 0. S. II
LIST - p.5

"carriage-restore sequence" is done, with header line
and/or page number if these options are used. Then,
for each card,

a) If the special-character option is used and the
first column contains this character, a carriage-
restore sequence is done.

b) If the A option is used, the position-annotation
line is set up.

c) If the S option is used, the unprintable character
annotation is set up.

d) If either the S or A option is used, the line set
up previously is printed.

e) If the D option is used, a "double space after
print" instruction is executed.

f) 1If the N option is used, the card count field is
moved into the print line and incremented.

g) The card image is moved to the print line and the
line is printed.

h) 1If a page overflow condition was encountered any-
where in the above operations, a carriage-restore
sequence is done.

The above operations occur for each card until:
a) a log-start card is read and the L option is not

belng used, or
b) a last-card condition 1s encountered.

1401 0. S. II
I. D. # ZA02A

PROGRAM: MLIST

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPFRVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

MLIST is a card-to-printer program, producirs multiple
listings of card decks.

RESTRICTIONS:
The maximum number of copies is 99.

The maximum deck size is 187 cards.

Time, Core Requirements:

MLIST prints at the rate of 600 lines per minute. It
is a mainline program, effectively using all of core
during execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

Paper at least 8 1/2 inches wide must be mounted on
the 1403 printer.

Processing/Method:

The program common field is examined. If the number

of copies is not present, the message "H@W MANY C@PIES"
is typed. After the operator has entered the number of
copies, the input file is read into core, until either
a last-card or end-of-file condition is sensed (see
below, End-Of-File Card). The printer carriage is
restored, and the card file is listed the required num-
ber of times. A carriage-restore 1s performed before
each new copy is printed.

1401 0. S. II
MLIST - p.2

USAGE:

Calling Seguence:

Source of Call:

MLIST is normally called by a log-start card, but may
be called by use of the inter-job entry code D@, or by
execution of a LINK macro from an AUT@C@ZDER or C@BZL
program.

Program Common:
The program common field should contain, right-justified,
the number of coplies to be generated. The maximum
number of copies is 99.

Control Cards:

MLIST requires no control cards, unless other programs
are in the job stream (batch mode). In that case, the
End-of-File card 1is used.

End-Of-File Card:
This card 1s required when the call to MLIST is followed
by a stack of decks. One End-of-File card must termi-
nate the deck to be listed. The format is:

Col. Content

1-4 | 4 record marks
(0-2-8 multiple-punch)

Input:

Input consists of the deck to be listed, terminated by
an End-of-File card.

OUTPUT:

" Output consists of the 80-80 listing(s), and possibly
the message "H@W MANY C@PIES".

1401 0. S. II
MLIST - p.3

ERROR MESSAGES AND HALTS:

Aside from the standard system halts and messages, only
the following message may occur:

H@W MANY C@PIES

This message only appears if the number of copiles 1is
not present in the program common field.

OPERATING PROCEDURES:

Set-up 1is as described in a previous paragraph. If

the message "H@W MANY C@PPIES" occurs, the operator
should enter this information from the console type-
writer. The operator should be aware that MLIST always
returns to the inter-job supervisor on a last-card
indicator, after printing the previously-read deck.

End-0f-Job, Post-Processing:

MLIST returns control to the inter-job supervisor on
a last-card indicator (or after reading a deck termi-
nated by an end-of-file card), after printing the
requested number of copies.

1401 0. s. II
I. D. # ZBOlA

PROGRAM: REPR@

MACHINE: IBM 1401

LANGUAGE: Autocoder

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

REPR@Z provides general purpose 80-80 reproduction of
card decks on the 1403 card punch. Any combination

of punches may be reproduced. There 1is no restriction
on deck size.

RESTRICTIONS :

Time, Core Reguirements:

REPRZ operates at a rate of 250 cards per minute; it
is a mainline program, effectively using all of core
during execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

There must be sufficient cards in the 1403 punch hopper.

Processing/Method:

Cards are read and punched in column binary mode.

This removes any restrictions on the nature of the
deck to be reproduced. Processing is terminated when
a log-start card is read, or on a last-card condition.
REPRZ punches one additional blank card at end-of-job
to clear the punch.

USAGE:

Caliing Sequence:

REPR@ is normally called by a log-start card, but may
be called by use of the inter-job entry code D@, or by
performance of a LINK macro from an AUT@C@DER or C@B@L
program.

1401 0. S. II
REPR@ - p.2

Control Cards:

REPR@ requires no control cards.

Input:
The only input consists of a card deck to be reproduced.

OUTPUT:

Output consists of 80-column card images punched into
a blank deck.

'ERROR MESSAGES AND HALTS:

Aside from the standard system halts and messages,
no halts or messages should occur.

OPERATING PROCEDURES:

REPRZ requires no special operating procedures.

End-0f-Job, Post-Processing:

REPRZ returns to the inter-job supervisor on an end-of-
job condition (i.e., when a log-start card 1is read,

or when the last-card indicator is sensed). One add—
itional blank card is punched, eliminating the need

for a non-process runout.

2

[
o e

1401 0. ¢
I. D. #

1T
024

PROGRAM: MREPR®?

MACHINE: IBM 1401

LANGUAGE : AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSIE:

MREPRZ is a card-to-card program, producing multiple
copies of card decks on the 1403 card punch.

RESTRICTIONS:
The maximum number of coples is 99.

The maximum deck size is 187 cards.

Time, Core Reguirements:

MREPR@ punches cards aft the rate of 250 cards per minute.
It is a mainline program, effectively using all of core
during execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

There must be a supply of blank cards in the 1403 punch
hopper.

Processing/Method:

The program common field is examined. If the number of
copies is not present, the message "H@W MANY C@PPIES" is
typed. After the operator has entered the number of
copies, the input file is read into core, until ecither
a last-card or end-of-file condition is sensed. MRIEPR@
punches the first copy into the N/P pocket, and the
second copy into stacker pocket 8, alternating pockets
in this fashion until the required number of copies has
been punched.

1401 0. S. II
MREPRZ - p.2

USAGE:

Calling Sequence:

Source of Call:

MREPRZ is normally called by a log-start card, but may
be called by means of the inter-job entry code D@, or
by execution of a LINK macro from an AUT@CZDER or C@B@L
program.

Program Common:
The program common field should contain, right-justified,
the number of copies to be generated. The maximum
number of copies is 99.

Control Cards:

MREPR# requires no control cards, unless other programs
are in the job stream (batch mode). In that case, the
End-of-File card is used.
End-of-File Card:
This card is required when the call to MREPR# is followed
by a stack of decks. One End-of-File card must terminate
the deck to be reproduced. The format of this card is:
Col. Content

1-4 4 record marks
(0-2-8 multiple-punch)

Input:

Input consists of the deck to be reproduced, terminated
by an End-of-File card.

OUTPUT:

Output consists of the duplicate decks, and possibly
the message "H@W MANY C@PIES".

1401 0. S. II
MREPR@ - p.3

ERROR MESSAGES AND HALTS:

Aside from the standard system halts and messages, only
the following message may occur:

H@W MANY C@PIES

This message only appears if the number of copies 1is
not present in the program common field.

OPERATING PROCEDURES:

Set-up is as described in a previous paragraph. If the
message "H@W MANY C@PIES" occurs, the operator should
enter this information from the console typewriter.

The operator should be aware that MREPRZ always returns
to the inter-job supervisor, after reproducing a deck
the requested number of times, on a last-card indicator.

End-0f-Job, Post-Processing:

MREPR@ returns control to the inter-job supervisor on
a last-card indicator (or after reading a deck termi-
nated by an end-of-file card), on completion of the
requested number of coples.

1401 0. 8. II
I. D. # ZB0O3A

PROGRAM: CALLAT

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE :

CALLAT performs most of the functions of a collator,
with the additional capability of collating on large
alphabetic fields. Collating is performed on the 1402
Card Read/Punch at rates of 250 or 800 cards per
minute.

RESTRICTIONS:

All restrictions are fully described below in the para-
graphs on Usage and Program Procedure.

Time, Core Requirements:
C@LLAT reads cards at a rate of up to 800 cards per
minute. When cards are being merged from the punch
side, read speed drops to 250 cards per minute.
CALLAT is a mainline program, effectively using all of
core during execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The 1402 card reader and punch must be cleared. The
log-start card (if any), read-side control card, and
primary file are placed in the card reader hopper; the
punch side control card and the secondary file are
placed in the card punch hopper. Then the console
sense switches are set.

Processing/Method:

A detalled description of C@PLLAT processing will be
found below in the paragraph on Processing Method--
Technical Description.

USAGE:

1401 0. S. II
CZLLAT - p.2

Calling Sequence:

CALLAT is normally called by a log-start card, but may
be called by use of the inter-job entry code D@, or by
execution of a LINK macro from an AUT@C@DER or C@B@L
program.

Control Cards:

CALLAT requires two control cards: one for the punch
side and one for the read side. They designate the
control field to be used for their respective files.
The control field may consist of a group of subfields,
which need not be sequentially located in the format
of the input files. Subfields are listed on the con-
trol cards in descending order of significance (i.e.,
high-order subfield to low-order subfield). Four
characters are required to define each subfield: the
first two digits indicate the starting column, and the
last two digits indicate the ending column. The read-
side control field need not be identical to the punch-
side control field, but must be the same length. The
format of these cards is:

Read-Side Control Card:

Col. Content
1-72 The subfields of the control field,

in 4-character blocks.

(1-4) (the first and last columns of the
high~order subfield)

(5-8) (the first and last columns of the
next-highest-order subfield)

(xx=-xx) (the first and last columns of the
low-order subfield)

(73-74) The number of blank cards to be
merged (if the Merge Blanks option
1s used).

(76-80) MERGR

Input:

Sense-

1401 0. S. II
COLLAT - p.3

Punch-Side Control Card:

Col. Content

1-72 The subfields of the control field,
in 4-digit blocks (see above, Read-
Side Control Card, columns 1-72; the
same format is used).

73-75 Blank
76-80 MERGP

Input to C@LLAT consists of the log-start card and the
Read-Side Control Card followed by the primary input
file in the reader hopper, and the Punch-Side Control
Card followed by the secondary input file in the punch
hopper. The operation to be performed is determined
by the sense-switch settings. A full explanation of
the sense-switch settings and their results is found
below in the paragraph on Sense-Switches.

Switches:

The operation to be performed by CPLLAT is determined
by the sense switch settings, as follows:

Sense

Switch Operation Result

B on Straight Merge All cards - pocket 8/2

B on Merge Select Equals Equals(Read) - pocket 1

C on (Both Feeds) Unequals(Read) - pocket 8/2
Equals(Punch) - pocket 4
Unequals(Punch) - pocket 8,7

B on Merge Select Equals Equals(Read) - pocket 1

C on (Read Feed) Unequals(Read) - pocket 8/2

E on Equals (Punch) - pocket 8/2
Unequals(Punch) - pocket 8/2

B on Merge Select Equals Equals(Read) - pocket 8/2

C on (Punch Feed) Unequals(Read) - pocket 8/2

F on Equals(Punch) - pocket 4
Unequals(Punch) - pocket 8/2

B on 2-Pocket Merge Equals(Read) - pocket 8/

D on Unequals(Read) - pocket 8/
Equals(Punch) - pocket 8/2
Unequals{(Punch) - pocket 4

OUTPUT:

Sense

Switch Operation

B
D
E

" oW "o

on
on
on

on
on

on

on

on

on
on

on
on

on
on
on

Merge Replace Equal:
Merge Equals Only
4-Pocket Match

3-Pocket Match, S&Lect
(Read) !

Sequence Check
(step-down)

Sequence Check

(step-down and e{ual)
Merge Blanks 3
(after each card)
Merge Blanks :
(after Control Group)

CZLLAT produces no output.

1401 0. S. II

COLLAT - p.k4

Result

Equals(Read) - pocket
Unequals(Read) - pocket
Equals(Punch) - pocket
Unequals(Punch) - pocket
Equals(Read) - pocket
Unequals(Read) - pocket
Equals (Punch) - pocket
Unequals(Punch) - pocket
Equals(Read) - pocket
Unequals(Read) - pocket
Equals (Punch) - pocket
Unequals(Punch) -~ pocket
Equals(Read) - pocket
Unequals(Read) - pocket
Equals(Punch) - pocket
Unequals(Punch) - pocket
Error - pocket
Others - pocket
Error - pocket
Others - pocket
All cards - pocket
All cards - pocket

1
2
8/2
4

8/2
1
8/2
4

1
NR
L
NP
8/2
1

b

4

1
N/P
NR

8/2

8/2

ERROR MESSAGES AND HALTS:

1401 0. S. II
COLLAT - p.b5

Aside from the standard system halts and messages, the
following halts may occur during execution of C@LLAT:

A - Address
1. 111
2. 222
3. 333
by, 888
5. 177
6. 969
7. 8U42
8. 124
9. 999

OPERATING PROCEDURES:

Result

No Read-Side Control Card.
Insert control card, press start.

No Punch-Side Control Card.
Insert control card, press start.

Read-side control field is not the
same size as the punch-side control
field. Insert corrected control
cards, and press start.

No sense-swltches are set. Set con-
sole sense switches and press start
to begin the program again.

Number of blank cards not specified
on control card, for merge-blanks
options. Press start to begin the
program again.

Sequence error in the merge-blanks-
after-control-group routine.

Sequence error in the read-side file.
Press start to read the next card.

Sequence error in the punch-side file.
Press start to read the next card.

End of job. Press start for a new
Jjob. -

Set-up 1s as described in a previous paragraph. Operat-
ing procedures consist of the following steps:

Set console sense-switches.

1401 0. S. II
COLLAT - p.6

Place the following cards in the read hopper:

a) 1log-start card
b) read-side control card
¢) primary card fille

Place the following cards in the punch hopper (if
applicable):

a) punch-side control card
b) secondary card file

The switch settings and their results will be printed
on the 1403 printer. Set the appropriate switches and
press START. If no switches are set the machine will
halt. Pressing start will return the program to the
sense-switch testing routine.

Errors in sequence will cause halts. Pressing start
will read another card and drop the error card in the
normal read or normal punch pocket.

If the read side control field is not the same size as
the punch control field, the program will halt. Push-
ing start will start the program over again.

Errors 1n sequence using the sequence check option will
be selected into pocket 1.

All options, except merging blanks option, require four
blank cards at the end of each file. The merge blanks
option must have exactly one blank card at the end of
the read-side file. At the end-of-job the program will
halt. The program can then be restarted by pushing
start.

End-0f-Job, Post-Processing:

CALLAT returns to the inter-job supervisor.
PROCESSING METHOD -- TECHNICAL DESCRIPTION:

CALLAT sets up a control field based on the size of each
subfield. It compares punch-side and read-side and

then stacker selects the filles into appropriate pockets
based on sense-switch settings. All address adjustment
i1s done by brute force, using no indexing or store
registers.

1401 0. 8. II
COLLAT - p.7

Additional options (of the match-merge type) should
easily be added. It is necessary only to understand
the logic of testing each feed, and to follow the
instructions used for a particular option.

The program compares a card from the read-side to a
card from the punch-side. If the read-side 1s low, the
read-side card is stacker selected and another card 1s
"read. This card is then compared to the previous read-
side card. If the comparison is equal, the read-side
card is selected, another card is read, and the compar-
ison repeated. If the new card is high, a new compar-
ison is made between the punch-side and the read-side.
If the new card is low, there 1is an error 1in sequence
and the program halts, and reads another card when
restarted. :

If the punch-side is low, the punch-side card is select-
ed, and a new card 1s read. If equal, the selection 1is
performed again. If high, a new comparison 1s made
between the punch-side and the read-side. If low,

there is an error in sequence.

If the two sides are equal, first the read-side card 1s
selected, and a new card is read and properly handled
as above. Once the new read-side card is high, the
punch-side card is selected, and a new read-side card
is read and properly handled. Once the new punch-side
card is high, a new comparison is made between the
punch-side and the read-side.

Thus, there are four unique stacker selections in the
routine: a selection for the read-side if it is low;
a selection for the read-side and a selection for the
punch-side if the sides are equal; and a selection for
the punch-side if it is low.

The punch-feed does not feed cards at the same rate as
the read-feed. There must be a time delay before a
card from the read-side may be allowed to fall, after
a card from the punch-side has fallen. This allows
the card from the punch-side to stack before the card
on the read-side. This applles only if the card from
the punch-side and the card from the read-side are
selected into the same pocket.

1401 0. S. II
CALLAT - p.8

If no delay is provided, the read-side card will
arrive before the punch-side card. The delay routine
is performed immediately prior to a read instruction,
if a switch is set. The switch is set after a punch
command if the sequence of cards on the punch-side 1is
high.

The instruction to set the switch is either deleted
or made active in the routine defining the option.

1401 0. S. II
I. D. # ZB04A

PROGRAM: REC@DE

MACHINE: IBM 1401

LANGUAGE: AUT@CPDER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

REC@DE is a general character-set-exchange program for
card files. As many distinct characters as desired can
be transformed into other characters during one use of
REC@DE. Any combination of punches whatsoever can be
used as an "input" or "output" character in any of the
transformations: REC@ZDE operates on a column-binary
basis. The transformations to be done are specified

on control cards, with the input deck being reproduced
with the indicated modifications.

RESTRICTIONS:

Time,

Care should be taken in normal REC@DE usage to avoid
loss of distinction between characters distinct in the
input deck. In a true character-set conversion, any
character that appears as an output character in one
transformation should appear as an input character in
another.

Core Requlrements:

PROGRAM

Processing rate decreases rapidly as the number of
transformations increases. For a single transforma-
tion, the rate is approximately 200 cards/minute.

REC@DE 1s a mainline program, effectively using all of
core during its execution.

PROCEDURE :

Set-Up, Previous Processing:

A sufficient number of cards to reproduce the input
deck should be present in the punch hopper.

1401 0. S. II
REC#DE - p.2

Processing/Method:

USAGE:

The two control cards are read, and the specified trans-
formations are stored, until a card column is found in
which both control cards contain blanks.

A data card is read, and scanned for a match with the
input characters. If a match is found, that character
is replaced with the corresponding output character.
The card is then punched. This process continues until
a log-start card is read or a last-card condition is
sensed.

Calling Sequence:

REC@DE is normally called by a log-start card, but may
be called by means of the inter-job entry code D@, or
by a LINK macro from an AUT@C@DER or C@B@L program.
The program common field is not used. ’

Control Cards:

Two control cards are required. The first specifies
the one or more characters which are to be scanned for
and replaced (the "input" characters). The second spec-

- ifies the characters with which the "input" characters

Input:

are to be replaced in the reproduced deck (the "output”
characters). The input and output characters must
appear in corresponding columns of their respective
control cards. The end of the transformations to be
performed is identified by a column in which both cards
contain blanks.

Thus the N columns encountered on the pair of control
cards, before a blank-blank correspondence, define N
transformations to be performed: any occurrence of any
of the input characters in the input deck will be re-
placed by the corresponding output character.

The input deck should immediately follow the pair of
control cards.

1401 0. S. II
RECZDE - p.3

OUTPUT:

deck which is identical to the input

REC@DE produces a
e transformations indicated on the

deck except for th
control cards.

ERROR MESSAGES AND HALTS:

Only the system standard halts and messages may occur
during execution of REC@DE.

OPERATING PROCEDURES:

No special operating procedures need be specified.

End-0f-Job, Post-Processing:

RECZDE returns control to the Inter-Job Supervisor via
an EXIT macro on a last-card condition, and executes
any log-start card encountered in the input deck.

1401 0. 8. II
I. D. # ZCOlA

PROGRAM: TLIST

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

TLIST is a tape-dump program for records of 132 char-
acters or less. Records in either binary (odd-parity)
or BCD (even-parity) format may be listed, in any
mixture.

RESTRICTIONS:

Time, Core Requirements:

Execution time for TLIST varies according to the num-
ber of records listed. TLIST 1s a mainline program,
effectively using all of core during its executilon.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

No previous processing is necessary for use of TLIST. -
The input tape is assumed to be on drive 2. 14 inch
wide paper should be used in the 1403 printer, as the
listing produced is 132 characters wide.

Processing/Method:

The tape on unit 2 1s rewound, and the following ensues
for each record:

1. The annotation line is printed.
2. The record is read in BCD mode with word marks.
If there is no error, the data and word mark
lines are printed, and the fourth line is
spaced.
If there 1s a tape error,
3. The record 1s backspaced over.

USAGE:

1401 0. S. II
TLIST - p.2

4, The record is read in binary mode without word
marks.
If there is no error, the data line and the
"BIN" line are printed, and the fourth line
is spaced.
If there is a tape error,
5. A line that is blank except for "ERR" in positions
130-132 is printed, and the third and fourth lines
are spaced.

Neither halts nor retries are performed on an actual

-tape error. On an EOF indication, either a tape mark

or a reflective spot sensed, "EOF" is printed in
130-132, the carriage is restored to a new page, and
the program halts. Printing of any records beyond
the EOF can be accomplished by pressing START at this

point.

Calling Sequence:

TLIST may be called by a log-start card, by a LINK
macro from an AUT@C@DER or C@B@L program, or by means
of the inter-job entry code D@. The program common
field is not used.

Control Cards:

Input:

TLIST requires no control cards.

The only input to TLIST consists of the tape on unit 2.

OUTPUT:

Each tape record produces output comprising four lines:

1. Guideline -- provides positioning annotation
2. Data
3. a. for BCD records -- word marks if any
b. for binary records -- blank except for "BIN"

in positions 130-132
4. Blank line

1401 0. s. II
TLIST - p.3

No indication is provided in the output of the length
of the tape record, nor are group marks or other :
unprintable characters indicated in any fashion.

ERROR MESSAGES AND HALTS:

Aside from the standard system disk halts and messages,
the "BIN, "ERR, and "EOF" lines described previously

are the only halts and messages. :

OPERATING PROCEDURES :

No further operating procedures need be given:
TLIST uses no sense switches or peripherals other
than the 1403 printer and tape unit 2.

End-Of-Job, Post-Processing:

End-of-job indication consists of the "EOF" 1line at
a point where printing is not to be continued. TLIST

does not EXIT or LINK.

1401 0. 8. II
I. D. # Z€C02A

PROGRAM: TDUMP

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

TDUMP is a tape-to-printer routine, listing the
contents of a BCD tape on the 1403 printer, with
positional annotation.

RESTRICTIONS:

Time, Core Requirements:

TDUMP prints at the rate of 600 lines per minute;
it is a mainline program, effectively using all of
core during execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The BCD tape to be dumped may be mounted on any of
the tape drives. The drive 1s selected by means of
sense switch settings (see below, Sense Switches).

‘Processing/Method:

TDUMP displays the sense switch settings and their
results on the 1403 printer, and then halts. After
the switches have been set and the program restarted,
the contents of the requested tape are printed on the
1403 printer.

1401 0. S. II
TDUMP- p.2

USAGE:

Calling Sequence:

TDUMP is normally called by a log-start card, but may
be called by means of the inter-job entry code D@, or
by execution of a LINK macro from an AUT@C@DER or
CZBZL program.

Control Cards:

TDUMP requires no control cards.

Ingut{

The only input to TDUMP consists of the BCD tape,
mounted on the tape unit specified by the sense switch
settings, as described below.

Sense Switches:

Sense switches B, C, and D are used to determine the
tape input unit. Switch B =1, C = 2, and D = 4, the
tape unit being determined by addition of these values.
Switch E is off to allow special format for 80-character
records; switch F is on to force this special format.

OUTPUT:

Printed output for both normal format and 80-character
special format consists of:

a) the sense switch settings and their results.
b) the tape unit providing input.

Then, for 80-character records,

c) two annotation lines, followed by a blank line,
specifying the 80 positions of the printed record,
in the form:

0000 ... 77778
1234 ... 67890

d) the 80-character records. At the extreme right
end of each printed line the file/record count
appears (see below, Record Count).

1401 0. S. II
TDUMP - p.3

For other than B80-character records,

c)

d)

an annotation line, numbering the positions of
the 100-character printed line, and giving the .
record count for that record (see below, Record
Count).

the contents of the record, 100 characters to the
line. Each line is tagged with a value 1indicating
the location of the right most character of that
1ine within the record. (100, 200, 300, etc.).

Record Count:

This is a value appearing at the extreme right end of
the page. It 1s on the record print line for
80-character records, and on the annotation line for
other records. It is of the form:

N-XXXXX

where N is the file number (number of tape-mark halts
plus one), and XXXXX is the record number within that
file. _

ERROR MESSAGES AND HALTS:

All messages are self-explanatory. A halt occurs
whenever a tape-mark is read (see below, Operating
Procedures).

OPERATING PROCEDURES:

At the tape-mark halt, the operator has three options:

a)

b)

e)

reading beyond the tape-mark, by pressing Start.

changing the input drive by changing the logical
drive numbers on the tape units and pressing Start.

returning to the inter-job supervisor, by pressing
Start/Reset and Start.

If option a) above 1s selected, a log-start card must
be loaded to return to the inter-job supervisor.

1401 0. sS. II
TDUMP- p.4

End-0f-Job, Post-Processing:

If option ¢) in the preceding paragraph is selected,
TDUMP returns control to the inter-job supervisor and
rewinds the tape. Otherwise control must be returned
by means of a loaded log-start card, and the tape
rewound manually. '

1401 0. S. II
I. D. # ZDO1A

PROGRAM: DC@PY

MACHINE: IBM 1401

LANGUAGE: Autocoder

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

DC@PPY, when executed, will copy the disk pack on a 1311
disk drive onto a tape on tape unit 2.

RESTRICTIONS:

Time,

Core Requirements:

PROGRAM

Time requirement varies with the number of mode changes
and the mode, in general, of the disk. Execution is
less than 15 minutes on the average.

DC@PY is a mainline program and effectively uses all
of core during execution.

PROCEDURE:

Set-Up, Previous Processing:

No previous processing is necessary for use of DC@PY.
The disk pack to be copied should be on the opposite
drive from the Operating System pack.

Processing/Method:

DC@PY first determines which disk is to be copied to
tape, by use of the program common field. A disk track
is read. If a mode error occurs, the track is reread
in the other mode. If the mode of the track was move,
only the control header and move-mode record are writ-
ten. Otherwise, the area is cleared to a blank word
mark skeleton and a load-mode record 1s generated. The
track is then reread and the move-mode record 1is
generated.

1401 0. S. II
DC@PY - p.2

USAGE:

Calling Sequence:

Source of Call:

DCOPY is normally called by a log-start card, but may

be called by means of the inter-job entry codes @C, DC,
or DO, or by execution of a LINK macro from an AUTYC@DER
or C¢B@L program.

Program Common:
The drive code of the disk drive to be copied to tape
must appear, left justified, in the program common
field. (i.e. 0 or 2)

Control Cards:

DCZPY requires no control cards.

Input:

The only input consists of the disk pack to be copied.
QUTPUT:

The output from DCAPY consists of a tape containing:

a) header information consisting of an I@CS header.
b) copy control records.

c) move or load mode records of complete disk tracks.
d) move or load mode records of disk sectors.

e) an I@CS trailer.

The format of the I@CS header is type "B" (80-positions),
with the identification "DISK COPY."

The copy control record is a move-mode BCD 30-character
record containing the following information:

a) T--the next record is a complete track.
S-~-the next record is a sector.

b) L--the next record is in the load-mode.
M--the next record is in the move-mode.

¢) The actual sector address.

d) The natural sector address.

For each load-mode track copied, there are three tape
records generated:

When a
binary

When a

the copy control record.
the BCD load-mode work mark skeleton.
the move-mode binary disk data.

track is in move-mode, only the BCD move-mode
record is generated.

track consists of mixed mode sectors, the same

type of records are written as were read. However,
the length of each sector record as written is 110
positions.

ERROR MESSAGES

AND HALTS:

Three types of halts and messages may occur during
execution of the disk copying program:

S a)
b)

c)

the systems standard halts and messages,

IGCS halts, described in the IBM publication
C2U—3298(Input/0utput Control System -- Disk,
Operating Procedures. IBM File No. 1401/1460-30),
halts and messages specific to the disk copying
program.

Only halts and messages of type ¢) will be discussed

here:

0.

TURN C@MPARE DISABLE SWITCH @N

TURN WRITE ADDRESS KEY ON

M@UNT DISK T@ BE C@PIED @UN DRIVE n

M@UNT TAPE T@ BE C@PIED @¢NT@ @N DRIVE 2

This message is for the information of the
1401 operators.

DRIVE C@DE N@T SPECIFIED IN C@MM@N
This message states the cause for the return
to the operating systen.

TRACK BEGINNING AT xxxxxx UNC@PYABLE
This message indicates that a parity error
existed when the track was read in both modes.

TURN C@MPARE DISABLE SWITCH @FF

TURN WRITE ADDRESS KEY @FF

This messare 1s for the information of the 140
operator.

1401 0. S. II
DCPPY - p.h

4, PARITY ERR@ZR @R @THER BAD NEWS AT SECT@R XXXXXX
N@T C@PIED
This message indicates that, at the sector level,
the sector was found to be damaged.

OPERATING PROCEDURES:

Set-up is as noted in a previous paragraph. Special
operating procedures are fully specified in the messages
to the operator (see Error Messages and llalts, messages

0 and 3). Messages 1, 2, and 4 are the concern of the
user.

End-0f-Job, Post-Processing:

Normally, the rewound tape on unit 2 would be dismounted
and returned to the user. Control is returned to the
inter-job supervisor on completion.

1401 0. 5. II
I. D. # ZDO2A

PROGRAM: RESTR

MACHINE: IBM 1401

LANGUAGE: AUTPCADER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRANMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

RESTR is a generél tape~-to-disk program, designed to
restore the content of a disk pack from a tape copy
previously produced by the program DCZPY (ZDO1A).

RESTRICTIONS:

Time, Core Reguirements:

~~~~~

and the mode, in general, of the tape. Fxecution re-
auires less than 5 minutes, on the average. RE3TR is

a2 mainline program and effectively uses all of core dur-
ing execution.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

General Usage:

The tape to be copied to disk should be mounted on tape
drive 2. The disk pack to be restored should be mount-
ed on the drive opposite the Operating System Pack.

Operating System Restoration:

When the Operating System has been damaged, a special
set-up is recuired. Set-up and procedure details
will be found below in the paragravh titled Overating
System Restoration Procedures.



1401 ©. S. II
RESTR - p.2

Processing/Method:

USAGE:

The program common field is examined to determine which
drive contains the pack to be restored. Then the tape
is opmened, and the copy control record is read. Xrom
this record the type (track or sector) and mode of the
succeeding record(s) is (are) determined. From this
point on, the process is a step-by-step inversion of
that used by DC@PY (ZD01A).

Calling Sequence:

Source of Call:

RESTR is normally called by a log-start card, but may
be called by use of the inter-job entry code D@, or by
execution of a LINK macro from an AUT@C@DER or C@BJZL
progran.

Program Common:

The drive code of the disk drive containing the pack to
be restored, either 0 or 2, must be placed in the pro-
gram common field, left-justified.

Control Cards:

Input:

OUTPUT:

RESTR requires no control cards.

The only input consists of the tape to be copied.

The tape records written to disk are controlled by
the copy control records. They may be in load-mode,
mnove-mode, or mixed.



1401 0. 5. II
RESTR - p.3

ERROR MESSAGES AND HALTS:

Three types of halts and messages may occur:

a)
b)

c)

the system standard halts and messages,

I1ACS halts, as described in IBM publication C24-3298
(Input/Output Control System -- Disk, Operating
Procedures. IBM File No. 1401/1460-30),

halts and messages specific to the disk restoratiocon
service,

Only halts and messages of type ¢) will be discussed
here:

0.

M@UNT PACK T@ BE REST@RED @N n

{PUNT PREVI@USLY C@PIED TAPE @N 2

TURN C@MPARE DISABLE SWITCH @N

TURN WRITE ADDRESS KEY @N

This message is for the information of the 1401
operator.

DRIVE C@DE N@T SPECIFIED IN C@MM@N
This message states the cause for the return to
the operating system.

THE P@SSIBILITY EXISTS THAT THE
TRACK (s) STARTING AT XXXXXX
SECTOR) '
HAS(HAVE) BEEN BYPASSED
Due to tape read errors or other reasons the disk
track/sector may not have been restored.

TURN C@MPARE DISABLE SWITCH @FF

TURN WRITE ADDRESS KEY @FF

This message is for the information of the 1401
operator.

OPERATING PROCEDURES:

ieneral Usage:

Set-up 1s as noted in a previous paragraph.
Normally, the rewound tape will be dismounted and
returned to the user. Messages 0 and 3 provide
information to the operator; 1 and 2 are the con-

cern of the user.



1401 0. S. II
RESTR - p.4

Operating System Restoration Procedures:

If thé Operating System has been destroyed, the
following procedure should be followed:

a)

b)

d)
e)

run HELP (XEO3A), the emergency log-dump

routine.

mount the
tape unit
mount the

Operating System backup tape on
2.
Operating System disk pack on disk

drive 2 (the left-hand module).

clear the
place the
and press
sure that
deck.

card reader. .

card function RESTR in the reader
L@AD, with sense switch A on. Be

no decks or cards follow this object

End-0Of-Job, Post-Processing:

RESTR returns control to the inter-job supervisor
on an end-of-job condition.



1401 0. S. II
I. D. # ZDO3A

PROGRAM: CLRDSK

MACHINE: IBM 1401

LANGUAGE: AUT@CPDER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: IBM

DATF, COMPLETED: = ——---
PURPOSE:

CLRDSK clears disk areas as defined in area-definition
control cards. The user must provide the CTL and area-
definition control cards. .

RESTRICTIONS:
No header operations may be performed.
USAGE:

Calling Sequence:

CLRDSK is normally called by a log-start card, but may
be called by use of the inter-job entry code D@, or by
execution of a LINK macro from an' AUT@C@DER or C@BZL
program.

NOTE:

For further information, see the following IBM publi-
cations, where this program is described as CLEAR DISK:

Disk Utility Programs, 1401/40/60 c24-1484
Disk Utility Programs, Operating Procedures C24-3105



1401 0. S. 1II
I. D. # ZDO4A

PROGRAM: PRDSK

MACUINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: IBM

DATE COMPLETED: -
PURPOSE:

PRDSK 1lists disk areas as defined in area-definition
control cards. The user must provide the CTL and
area-definition control cards.

RESTRICTIONS:

No header operations may be performed.

USAGE:

Calling Sequence:

PRDSK is normally called by a log-start card, but may
be called by use of the inter-job entry code D@, or by
execution of a LINK macro from an AUT@CPDER or C@BIL
program.

NOTE:

For further information, see the following IBM publi-
cations, where this program is described as PRINT
DISK:

Disk Utility Programs, IBM 1401/40/60 col-1484
Disk Utility Programs, Operating Procedures C24-3105



1401 0. S. II
I. D. # ZD0O5A

PROGRAM: DALTR

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

DALTR provides the user with the ability to view and/or
correct a disk sector.

RESTRICTIONS:

Time,

Core Requirements:

 PROGRAM

Execution time depends directly on the number of sectors
viewed and changes made. DALTR is a mainline program,
effectively using all of core during execution.

PROCEDURE:

Set-Up, Previous Processing:

No previous processing is necessary for use of DALTR,
except that the Operation System Pack must be mounted.

Processing/Method:

USAGE:

The DALTR program requests the drive code, sector add-
ress, and mode from the user. With this information
DALTR constructs a disk control field and reads the
specified sector into storage. If the mode is wrong or
an address check ocrurs, messages to that effect are
typed. If the read is successful, the sector is typed
and the user may correct it. In the case of a correct-
lon the sector is written back to disk.

Calling Sequence:

DALTR 1s normally called by a log-start card, but may
be called by means of the inter-job entry code D@, or
by a LINK macro from an AUT@C@DER or C@BJL program.



1401 0. S. II
DALTR - p.2

Control Cards:

DALTR requires no control cards.

gggut:

Input consists of responses to requests by the program,
via the console typewriter. Details appear below in
the paragraph on Operating Procedures.

OUTPUT:

DALTR produces no output except the viewed and/or cor-
rect disk sector.

ERROR MESSAGES AND HALTS:

Two types of halts and messages may occur during the
execution of DALTR.

a)
b)

the system standard halts and messages.
requests and the disk sector.

See the following paragraph on Operating Procedures.

OPERATING PROCEDURES:

The operating procedures consist of responding tc the
following typed requests:

a)

b)

The system types
TYPE DRIVE C@DE, ADDRESS

The user responds with R/E (pressing the request/
enter key), then typing the one digit drive code
followed by the six digit sector address. The res-
ponse is completed with R/T (pressing the respond/
typeout key).

The system then types
TYPE M@DE, M @R L

The user responds with R/E, then types an M or an
I, and finishes with R/T.



1401 0. S. II
DALTR - p.3

¢) The system then types 9 or 10 rows of 10 characters
each. These rows contain the contents of the disk
sector under investigation. Ten rows are typed if
the sector was in the move-mode. Nine rows are
typed if the sector was in the load-mode.

d) The system then types

TYPE SECTION 01-10
01-09

The user looks at the typeout and decides which
section he wants to change. He then responds with
R/E, types the two-digit section number, and fin-
ishes with R/T.

e) The system types
TYPE CHANGE

The user responds by R/E, typing his change, and
finishing with R/T.

f) The prdcedure reverts to step c.

When the user has completed alteration of a sector, he
presses R/E and R/T consecutively without entering a
section number (see step e), in which case the operation
reverts to step a. When all desired sectors have been
reviewed, the user merely hits R/E and R/T and control
returns to the Operating System.

Corrections may exceed the selected section. If the
sector to correct is in the load-mode and the user
wishes that a word mark be entered, he must depress
the W@RD MARK key for each word marked character. The
user may type an A-bit character when he desires to
retain characters.

As in all 1401 operations, if the user makes a typing
error he may correct it by depressing the CLEAR key,
in which case the system returns to the beginning
type-in operation.

End-Of-Job, Post-Processing:

After pressing R/E and R/T, DALTR returns control to
the inter-job supervisor.



PROGRAM:
MACHINE:

1401 0. S. II
I. D. # KF0lA

ALINK
IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER : Systems Division

DATE COMPLETED: July 1, 1968

PRUPOSE:

The ALINK macro, when executed, causes a program to be
loaded from the 1401 Operating System library, and
control to be transferred to that routine. The purpose
is similar to that of the LINK macro (KF1lUA), except
that the disk location of the program block to be call-

ed must be known In order to use ALINK. The advantage
of ALINK is that it requires far less core than the

. LINK fixed routines L@DER and L@ADR.

RESTRICTIONS:

Time,

No check is performed to Verify that the disk sector
addressed by the operand actually contains the header
record of a program block.

The following restrictions exist in comparison to a
LINK macro:

a) the usage statistics of the called program are not
updated.

b) the program common facility 1is not available.

¢) no variability of the execution address after locad-
ing is available. :

d) the point at which execution is begun after loading
is the same point at which execution was begun last
time the program was loaded. Thus a program to be
called by an ALINK macro should not be FETCHed or
otherwise loaded with any execution address other
‘than the normal execution address of the program.

Core Requirements:

If group-mark word-marks are to be restored in the call-
ed program, execution time for the ALINK macro will be
between 3 and 25 seconds. If group-mark word-marks are
not to be restored, execution time 1is less than 2 sec-
onds. ALINK is slightly faster than the corresponding
LINK.

Core requirement is 129 positions.



1401 0. s. II
ALINK - p.2

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The Operating System Pack should be on one of the 1311
disk drives at execution time. If it is not, the system
halts, and may be started when the pack is mounted.

The programmer may write an ALINK macro at any point
during his processing.

Processing/Method:

USAGE:

ALINK attempts to read the first sector of the loader

of the specified program into the card read area, from
disk module 1. If this fails, the attempt is made on
module 0. If both attempts fail, the system halts.

When either attempt succeeds, control is transferred

to the instructions read from the disk. The definition
of "failure", in this context, is simply an incompat-
ible sector format (i.e. either move-mode or non-address-
protected). Thus if the operand specifies a sector which
is not the start of a program, the macro itself cannot
detect this and the results are unpredictable: a pro-
cess check will probably result.

Operands:

The ALINK macro uses only one operand: the 5-digit

sector address of the header sector of the program to
be called. This should be written as an actual oper-
and (not enclosed in quotes as a literal, or given in
a DCW elsewhere) and can lie in the range of 10000 to
19790. This should be the same value that was used as
operand 11 of the DL@AD macro (KFO06A) which loaded the
program in question to the Operating System library.

Control Cards:

Input:

The ALINK macro uses no control cards.

The ALINK macro uses no input.-



1401 0. s. II
ALINK - p.3

OUTPUT:
The ALINK macro produces no output.

ERROR MESSAGES AND HALTS:
Only the standard system halts and messages may occur
during, execution of the ALINK macro.

OPERATING PROCEDURES:

Aside from the fact that the correct Operating System
pack must bte mounted if a halt occurs, and the halt
then started, no speclal operating procedures need be
followed.

End-0f-Job, Post-Processing:

The macro transfers control to the loader of the speci-
fied program when it has successfully read the loader
from disk.



1401 0. s. II
I. D. # XF02A

PROGRAM: CDSN

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System IT
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE :

The CDSN macro, when executed, will compute the check
digit of a given nine digit student number, and then
test the given check digit against the computed check
digit.

RESTRICTIONS:

Time,

Core Requirements:

PROGRAM

Execution time for the CDSN macro is about 50 milli-
seconds. Fach time a CDSN macro is used, 259 posi-
tions of core are generated.

PROCEDURE:

Set-Up, Previous Processing:

No special set-up or previous processing is required.

Processing/Method:

Digits U4-9 of the student number are added triangular-
ly to a sum box, this process being repeated for
digits 1-3. This sum, modulus 11, gives the computed
check digit. The computed and given check digits are
compared. If they are found to be unequal, control is
transferred to a user routine. Otherwise control
returns to the next instruction following the macro.



1401 0. S. II
CDSN - p.2

USAGE:

Operands 1 and 2 of CDSN are required; no other oper-
ands are used.

1. Ten Digit Student Number
This operand gives the location of the student
number and check digit. It may be a 10 digit
literal or an indexed/adjusted tag.

2. Fallure Exit
This operand contains the address of the user
routine which will process the student record in-
formation if the given student number is found to
be incorrect.

Control Cards:
The CDSN macro uses no control cards.

Input:

The CDSN macro uses no input.
OUTPUT:
The CDSN macro produces no output.

ERROR MESSAGES AND HALTS:

Only the system standard halts and messages may occur
during execution of the CDSN macro.

OPERATING PROCEDURES:

No special procedures need be specified.

End-0f-Job, Post-Processing:

Control is transferred either to the next sequential
instruction, or to the given user routine in the case
of an incorrect student number (fallure exit).



PROGRAM:
MACHINE:

1401 0. S. II
I. D. # KF034A
I. D. # KFO4A

CMADD/CMPAD
IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The CMPAD macro, when executed, causes two 1401 machine
language addresses to be compared according to address
sequence. The appropriate indicators (low, equal, high,
unequal) are set, depending on the result of the compar-
ison. Appropriate conditional branch instructions
should be provided by the programmer following the CMPAD
macro, according to the logic of his program. The CMPAD
macro sets up linkage to the inflexible routine CMADD,
which does the actual comparison and returns control to
the next sequential instruction following the CMPAD
macro.

RESTRICTIONS:

Time,

If an address compared by means of a CMPAD macro contains
an index tag, the contents of the index register are not
taken into account in the comparison. This obstacle may
be avoided by use of a 2-address SBR instruction immed-
iately preceding the CMPAD macro.

No responsibility is taken as to the results if one or
both of the address fields compared is not a valid 1401
address: 1i.e., contains a numeric part which is blank
or greater than 9 in binary value.

Core Requirements:

Execution time for the CMPAD sequence, including the
processing done in CMADD, is 1.69 milliseconds plus
.04 milliseconds for each operand which 1s indexed.

The CMPAD generated code occupies 34 positions. The
CMADD routine occupies 61 positions; it is generated
only once, regardless of the number of CMPAD's written
or of literal origins in the program.



1401 0. S. II
CMADD/CMPAD - p.?2

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

No special set-up or previous processing 1s required
to use the CMPAD macro, except that the two addresses
to be compared must exist at execution time. The pro-
grammer may write a CMPAD macro at any point during
his processing.

Processing/Method:

A detailed description of CMPAD processing is found
below in the paragraph on Processing Method --
Technical Description.

USAGE:

Ogerands:

The CMPAD macro requires operand 1 and operand 2.

These operands are of the same form as the operands of
a normal compare instruction, giving the locations of
the two addresses to be compared. The way in which
indicators are set, based on the address flelds at the
A and B addresses, 1s also identical to that of a nor-
mal compare instruction. The referenced address fields
need not contain word-marks in the hundreds position,
and should not contain word-marks in the tens or units
position.

Control Cards:

The CMPAD macro requires no control cards.

‘Input:

The CMPAD macro uses no input.

OUTPUT:

The CMPAD macro produces no output.



ERROR MESSAGES AND HALTS:

1401 0. S. II
CMADD/CMPAD - p.3

No halts or messages may occur during execution of

either CMPAD or CMADD.

OPERATING PROCEDURES:

No speclal operating procedures need be specified.

End-0f-Job, Post-Processing:

Control is transferred to the next sequential instruct-
ion following the CMPAD macro, where the programmer

may code conditional branch instructions appropriate

to the logic of his program.

PROCESSING METHOD -- TECHNICAL DESCRIPTION

The CMPAD linkage to the fixed routine CMADD consists
of moving the addresses to be compared into the CMADD
routine and then branching into the routine. CMADD
saves the return point and then transforms the
addresses into two five-character flelds, referred to
as A1A2A3AuA5 and B1B2B3BQB5, in the following fashion:

a)
b)
c)
d)

e)

£)

The numeric parts
under blank zones
right order as in
The numeric parts
under blank zones
right order as in

of the A-fleld address are moved
at ALA A5, in the same left-to-
the gdgress.

of the B-field address are moved
at B3ByBg, in the same left-to-
the address.

The hundreds-position zone of the A-field address
is moved over a zero numeric at Bp.
The hundreds-position zone of the B-field address
is moved over a zero numeric at A,.

The ones-position
moved over a zero
The ones-position
moved over a Zero

zone of the A-field address 1s
numeric at Bj.
zone of the B-field address 1s
numeric at A;.

The two flelds thus created are compared using a normal
compare instruction,with B;B,B BuB5 as the B-field, and
control is returned to the next sequential instruction
‘following the CMPAD macro. :



1401 0. S. II
I. D. # KF05A

PROGRAM: - CARE

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER ,

SUPERVISOR PROGRAM: 1401 Operating System IT

PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE ;
The C@RE macro, when executed, produces an annotated
printout of the contents of 1401 storage: a "core
dump". This may be useful if a program has detected
an "impossible" or otherwise troublesome condition
outside the framework of its logic, as in certain
types of abnormal end-of-job conditions. Execution
of CPRE disturbs/alters only positions 201-332, and
execution of the program proper will be resumed on
completion of the printout.

RESTRICTIONS:
Non-printable characters other than group-marks are
not annotated.

Time, Core Requirements:

Execution time is approximately two minutes. Core
requirement is 575 positions.

PROGRAM PROCEDURE :

Set-Up, Previous Processing:

The only set-up required for CORE is 14 inch wide paper
on the 1403 printer.

No special previous processing is required for use of
CARE. The programmer may write a CZRE macro at any
point in his program. ‘



1401 0. 8. IT
CZRE - p.2

Processing/Method:

USAGE:

For each 100 characters:

a) the word-mark status of the XXX0l position is
saved.
b) a "guardian" word-mark is set at the XXX01
- position. _
c) the data from XXX01 through XXY00 is loaded
into the print area.
d) the word-mark status of the XXX01 position is
restored in both the actual position and in
the print line.
the character line is printed.
the word-mark line is printed.
the annotation line is set up.
positions XXX01 through XXY00 are scanned for
group-marks, and 'G's are inserted in the anno-
tation line as appropriate.
1) the annotation line is printed.
J) a line is spaced on the printer.

R -0
e e

Operands:

C@RE requires no operands. All of core is always dump-

ed, regardless of blank areas.

Control Cards:

Ingut:

OUTPUT:

CARE requires no control cards.

CARE uses no 1hput.

The contents of the print area and word-marks in the
print area are printed first with annotation. Positions
1-100, 101-200, 333-400, 401—500,..., 15900-15999 are
then printed in Succeeding sets of lines. The output
for each 100 positlons consists of

a) a line representing the characters
b) a line representing the word-m:rks



1401 0. S. II
CQRE - pc3

¢) a line containing annotation, both horizontal
position and the hundreds-address (in both
3-character and 5-digit form). Wherever a
position contains a group-mark, a 'G' overlays
the horizontal-position annotation.

d) a blank (spaced) line.

ERROR MESSAGES AND HALTS:

‘No halts or messages may occur during use of C@RE.
OPERATING PROCEDURES:

Set-up is as noted in a previous paragraph. Operation

of CZRE should be completely automatic.

End-0f-Job, Post-Processing:

CARE is an "in-line" macro -- control enters it in
sequential fashion and 1s passed from it in sequential
fashion. Thus the programmer should provide instruc-
tions following the C@RE macro to accomplish whatever
purpose he desires following completion of the core dump.



1401 0. S. II
I. D. # KFO6A

PROGRAM: DL@AD

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The DL@AD macro, when executed, causes a program block
to be loaded onto the Operating System library. Various
operands of the macro control the fashion in which the
program is subsequently loaded into core. Only the
program name need be known to call the program once 1t
is loaded onto the library. This document is complemen-
ted by the description of the DL@DR program (KCO064A),
which 1s called by the macro.

RESTRICTIONS:

Time,

Core Requirements:

PROGRAM

The DL@AD macro executes in less than 3 seconds. The
overall DL@AD process, including operation of the DL@DR
program (KCO6A), may take between 10 and 30 seconds.
Core requirement is 1n the range of 363-375 core
positions.

PROCEDURE:

Set-Up, Previous Processing:

Proces

The Operating System pack should be on one of the 1311
disk drives at execution time. Paper at least 8§ 1/2
inches in both width and height should be mounted on

the 1403 printer. The DL@AD macro is often executed as
the result of running an object deck under the L@AD pro-
gram (KCO7A), or as a result of an AUT@CPDER or C@B@L
"RUN THRU EXECUTI@ZN" under the SYSCL program (KC10A).

sing/Method:

A detailed description of DL@AD processing is found
below in the paragraph on Processing Method -- Technical
Description.



USAGE:

Ogerands:

1401 0. S. IT
DL@AD - p.2

Only operand 1, the Program Name operand, 1s required.
Operands 2 through 11 are optional.

1)

2)

3)

)

Program Name (required)

This operand must be present, and should be 1 to 6
characters, digits or special characters in length.
The name of a program under the Operating System
may not contain record marks or commas, and should
not end in a period. Care must be taken to avoid
name conflicts with previously loaded programs,

or with programs to be loaded in the future. A
name like PR@CSS would be undesirable in the latter
context.

The name in the DL@AD macro is simply written as an
operand, and is neither surrounded by "at" signs as
a literal nor given in a DCW elsewhere.

Execution Address (optional)

This operand gives the location at which execution
is to be begun after a LINK or ALINK macro is per-
formed. If the operand is omitted, the program
block may be accessed only by means of a FETCH macro.
The operand may be symbolic or actual, indexed
and/or adjusted.

Load-Into-Core Address (optional)

This operand gives the location at which the program
block is to be read into core. If the operand is
omitted, the load-into-core address is synthesized
as the first word-marked or non-blank character
above position 86. The operand may be symbolic or
actual, adjusted but not indexed, and if given,
should be in the range 81 to 15908 inclusive. Ten
positions below this address must be available for
use when the program block is loaded.

Suggested Group-Mark Word-Mark Address (optional)
This operand gives the location one above the last

core position which must be loaded into core with
the program block. If the operand is omitted, the



5)

6)

7)

8)

1401 0. S. II
DL@AD - p.3

suggested group-mark word-mark address is synthesized
as one above the last word-marked or non-blank
character in core (not considering the EXIT macro
and common field left in core by the L@AD program).
The operand may be symbolic or actual, adjusted but
not indexed, and if given should be greater than the
load-into~core address and less than or equal to
15998. The "actual group-mark word-mark address"

is constructed by the DL@DR program (KCO6A), and may
be equal to, or up to 89 positions higher than, the
suggested GMWM address.

Clear-Storage-From Address (optional)

This operand gives the highest core position to be
cleared to blanks prior to loading the program. If
the operand is omitted, the clear-storage-from
address is 15999. The operand may be symbolic or
actual, adjusted but not indexed, and if given
should be greater than or equal to the suggested
group-mark word-mark address.

Clear-Storage-To Address (optional)

This operand gives the lowest core position to be
cleared to blanks prior to loading the program. If
the operand is omitted, the clear-storage-to address
is 81. If this address is less than the load-into-
core address minus 10, a word mark is assoclated
with the position after loading. The operand may

be symbolic or actual, adjusted but not indexed,

and 1f given should be less than or equal to the
load-into-core address.

1@CS Date Decision (optional)

If it is desired that the I@CS date be loaded into
positions 82-86 as part of the loading process for
the program block, include "Y" or "YES™ as operand
7. If this operand is other than these or is omit-
ted, the I@PCS date is not loaded.

Program Common Location (optional)

If it is desired that the 9-character program common
field from the log-start card or the LINK or FETCH
macro be placed in a specified location during the
loading process, include that location (right-end)
as operand 8. If this operand is omitted, the
program common field will not be passed to the
program block. The operand may be symbolic or
actual, indexed and/or adjusted.



9)

10)

11)

1401 0. S. II
DL@AD - p.l

Origin Address (optional)

If operand 9 is included, it is used as an origin
address for the DL@AD macro. A branch instruction
to DL@AD is included at the in-line location if
operand 9 is used. The operand may be symbolic or
actual, adjusted but not indexed.

Immediate Execution Address (optional)

If operand 10 is included, the program block 1is
immediately LINKed to after it is loaded to disk,
with execution beginning at the address specified
by operand 10. This operand need not be the same
as the execution address (operand 2); indeed,
there need be no execution address specified at
all. In all other respects (core-clearing, etc.)
the "immediate execution" LINK process is exactly
like that of a normal LINK to the program block.
Additional information can be found in the write-up
of the DL@DR program (KCO6A). Segmentation of a
single source (object) deck into two or more disk
stored program blocks can be done through use of
operand 10 in intermediate DL@AD macros, with
immediate execution to a branch to the condensed
loader or self-loading deck.

The operand may be symbolic or actual, adjusted
but not indexed.

System Disk Address/"No Group-Mark Word-Mark
Restoration" Specification (optional)

If this operand is included, it should be a five-
digit number. If the operand is in the range 10000
to 19790, the operand specifies that the program
block should be loaded to disk starting at that
sector address, and should never be moved in the
future. The five-digit number can then be used
as the operand of an ALINK macro (KF0lA) in other
programs. The user considering use of such a
"system disk address" should consult a recent pro-
gram list produced by PLIST (KCO8A) to determine a
suitable address.

Whether or not the operand 1s in the above-mentioned
range, group-mark word-marks are not restored (left
as word-marked colons) during the loading process
for the program block, simply because the operand

is present. This non-restoration greatly increases



1401 0. S. II
DL@AD - p.5

the speed of LINKs or FETCHes done on the program
block (as much as 20 times), but has the disadvan-
tage that the programmer must create his own group-
mark word-marks. If only this latter purpose is
intended, use of 00000 as operand 11 1s recommended.

Control Cards:

The DL@AD macro uses no control cards.

Input:

The DL@AD macro uses no input.
QUTPUT:

The DL@AD macro itself produces no output. However,
the DL@DR program (KCO06A), which is called by the DL@AD
macro, produces output as described in the write-up of
that program.

ERROR MESSAGES AND HALTS:

If the program name (operand 1) is not included in the
DL@AD macro, the message

¥ DLZAD ERR@R - NAME MUST BE PRESENT

is generated in the source program, followed by a hard
halt.

Aside from this, the only halts or messages possible in
the DL@AD macro itself are the standard system disk ,
halts and messages. The user should consult the write-
up for the DL@DR program (KCO6A) concerning the several
halts and messages possible in that phase of the DL@AD
process.

OPERATING PROCEDURES:

Set-up is as described in a previous paragraph. No
special operating procedures need be given for the macro
itself. Consult the Operating Procedures for the DL@DR
program (KCO06A).



1401 0. S. II
DL@AD - p.6

End-0f-Job, Post-Processing:

See the Post-Processing paragraph for DL@DR (KCOG6A).
PROCESSING METHOD - TECHNICAL DESCRIPTION:

The drive on which the Operating System Pack resides is
determined by reading the first sector of the loader of
the DL@DR program (KCO06A). Module 1 is tried first,
then module 0 if the first attempt fails. A halt
results if both attempts fail.

A loop is used to clear all group-mark word-marks out
of core, except for one in position 15998, replacing
them with word-marked colons ( a colon is a 5-8 card
code). All of core is then written to sectors 000000
through 00176 of the Operating System Pack.

The operands of the macro are set up in locations
15965 to 15997. The first sector of the DL@DR program
(KCO6A) is again read, and control is transferred to
it.



1401 0. S. II
I. D. # KFO7A
I. D. # KF10A
I. D. # KF1l1A
I. D. # KF12A

PROGRAM: DSKI@/IGGET/IFPUT/IBSK
MACHINE: IBM 1401

LANGUAGE: AUT@C@ZDER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The I@GET macro, when executed, causes a disk record
to be read into core storage from a specified disk
address.

The I@PUT macro may be utilized to write data from
core storage to disk storage.

The I@SK macro, when executed, initiates a disk seek.
Since direct seeks are done by I@GET and I@PUT if
necessary, the I@SK macro is not required unless the
programmer wishes to overlap processing time with
access-movement time.

All three macros generate linkage to the DSKI@ inflex-
ible library routine, which performs the actual read/
write/seek operation and error checking.

DSKI@ offers the facility of disk error checking with
10 retries.

RESTRICTIONS:

DSKIZ@ requires about 548 core positions, while I@CS
can take anywhere from the same number to several
times that number (based on the number of DTF's) for
random disk processing. Both I@CS and DSKI@ use the
direct seek special feature; however, DSKIZ uses it
automatically. DSKI@ will allow processing of records
in either the move or load-mode, while I@CS can only
handle records in the move-mode. Cylinder overflow

is not handled by DSKI@; I@CS will process a record
block that overflows from one cylinder to the next.



1401 0. S. II
DSKI@/IPGET/
IgPUT/IPSK - p.2

DSKIZ® provides less facilitles than I@CS and thereby
greater flexibility for the programmer. The program-
mer must provide for the following:

a) header and trailer label creation and/or
checking, if necessary.

b) blocking/deblocking and padding, if necessary.

¢) address calculation if the disk control field
is to be changed.

Time, Core Requirements:

Execution time for DSKI@ varies from 10 to 175 milli-
seconds, depending on the distance to be seeked, rota-
tional location, and the size of the data records.

Execution time for I@SK varies from 50 to 250 milli-
seconds, depending on the number of tracks to be seeked,
but allows for processing overlap of up to 200
milliseconds.

Core requirement is between 20 and 44 core positions
for each I@GET, I@PPUT, or I@SK macro. The DSKI@

routine requires 548 core positions. DSKIP is included
only once in the object program.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The referenced disk drive(s) should be operable.

Processing/Method:

A detailed description of I/@ macro processing method
and linkage appears below in the paragraph on Process-
ing Method -- Technical Description.

USAGE:
Operands:

The I@GET and I@PUT macros require Operand 1; --
Operands 2 through 8 are optional.



1401 0. S. II
DSKI@/IGGET/
IGPUT/IBSK - p.3

The I@SK macro uses only Operands 2, 3, 6, and 8.
Mode

This operand should be elther an M, which wlll cause
100-character sectors to read/written without word-marks,
or an L, which will cause 90-character sectors to read/
written with word-marks.

Drive Code

This operand should be either 0 or 2, depending upon
which disk drive is to be referenced. If this operand
is omitted, the value of 0 will be assumed.

Sector Address

This operand gives the initial (or only) sector address
for the first sector to be read, written, or seeked,
00000 through 99999. This sector address may, in turn,
be modified by the program. See operands 6 and 8, and
Processing Method -- Technical Description.

Sector Count

This operand gives the initial (or only) value of the
number of sectors to be read/written/seeked; it may be
modified by the program.

Input/Output Area

This operand specifies the left most end of the area
which the disk record will be read into or written from.
This area should be long enough to hold the largest
record expected to be read/written in the file. If

not included, the program must fill in the address. See
Processing/Method.

Qut-0f-Line Disk Control Fleld Address

This operand specifies the location of the ten-digit

field where the out-of-line disk control field is located.
It should be the label of a 10-character DCW or area-
defining literal, or X1, X2, or X3 adjust tag. The

IGGET, IGPUT, or I@SK macro will move this disk-control
field into the generated linkage, if the out-of-line
disk-control field address 1s specified.



1401 0. S. II
DSKI@/IPGET
I@PUT/IPSK - p.b

7. Group-Mark Word-Mark Load

The DSKI@ routine checks the wrong length record indica-
tor and thus the input or output area must have a group-
mark-word-mark in the proper location following the data
area. Include the GMWM as operand 7 if it is desired
that I@PUT or I@GET generate the instructions to load a
group-mark-word-mark to the proper location. If this
feature is used, operands 1, 4 and 5 must all be present.
If this feature is not desired, omit operand 7 entirely.

8. Generated Disk-Control Field Label
This operand, when used, will cause the included label
(distinct from any other labels in the user's program),
to reference the right end of the 10-digit generated
disk control field.

Control Cards:

I@GET, I@PUT, I@SK, and DSKI@ require no control cards.

The only input to these macros 1s the record on disk.

OUTPUT:

Aside from the core storage record, and the error message
(see below), these macros produce no output.

ERROR MESSAGES AND HALTS:

When a disk error is detected, the message:

*¥ERRPR* *
DISK INDIC.n

is typed, where n is:
a) N - access inoperable.
b) W - wrong length record check.
¢) X - unequal address compare.
d) V - validity check.

and a halt occurs.



1401 0. S. II
DSKI@/IZGET
I@PUT/IBSK - p.5

OPERATING PROCEDURES:

When a disk error halt occurs, the operator should
make certain that the disk drive is operable, and that
the referenced file 1s on the correct drive, or else
abort the run.

End-0f-Job, Post-Processing:

Control is transferred to the next sequential instruc-
tion after the appearance of the I@GET, IgPUT, or
I@SK macro, unless an error condition occurs.

PROCESSING METHOD -~ TECHNICAL DESCRIPTION:

The linkage generated by I@GET/IGPUT/I@PSK consists of:

a) a load of GMWM (if operand 7 is included) to
the proper position determined by the number of
sectors to be used and the mode.

b) a move of the out-of-line disk control field,
if operand 6 is included.

¢c) a branch to the start of the DSKI@ routine.
Processing in DSKI@ normally consists of:

a) storing the return address.

b) zeroing of the attempt counter.

¢c) storing the disk control field.

d) execution of the read-write operation.

e) testing for an error condition.

f) exit to location following the IZGET or I@PUT
generated code.

If a disk error is encountered, DSKI@

a) adds to the attempt counter.

b) retries the operation.

¢c) 1if the attempt counter 1s up to 10 tries, an
error zeros the attempt counter and halts.



Sample linkage:

GET

GET

DCF

1401 0. S. II
DSKI@/I@GET
I@PUT/IPSK - p.b

I@GET L,2,400,10,AREA,ZUTDCF,GMWM,DCF

EQU
SW
LCA
B
DCW
MCW
B
DCW
DSA
EQU
DCW

¥4]

¥+13

%46 ,AREA+900
*4.3

@ e
@UTDCF , ¥+20
DSKI@

@L1RE@

AREA

¥+10
@200004000108@

Generated if load
GMWM operand is used.

Generated if operand 6 1is used.

load mode read operation.

input area.
generated if operand
disk control fileld.

8 is used.



1401 0. S. II
I. D. #KF08A

PROGRAM: EXIT

MACHINE: IBM 1401

LANGUAGE: AUT@CPDER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The EXIT macro, when executed, returns control from a
user program to the 1401 Operating System inter-job
supervisor (XE0lA). A message is typed by that pro-
gram, and the operator can enter the ending time of
day and computer clock time for the job, as well as
other information. WMCC programming standards indi-
cate that the EXIT macro must be included as the end-
of-job action for every AUT@C@DER or C@B@L program
written at UWM, unless the operational details of the
program preclude it, as when the end-of-job time is
uncertain.

RESTRICTIONS:

Time, Core Requirements:

Execution of an EXIT macro takes less than 2 seconds.

Tf a FETCH or LINK macro has preceded the EXIT macro
in the source program, core requirement is 25 positions.
Otherwise core requirement is 129 positions.

PROGRAM PROCEDURE:

Set-Up, Previous Processing

The Operating System Pack should be on one of the 1311
disk drives at execution time. If it is not, the
system halts and should be started when the pack is
mounted. No special previous processing is required.



1401 0. S. II
EXIT - p.2

Processing/Method:

There are two alternate forms of the generated code
constituting the EXIT macro. The form generated when
a LINK (KF1LA) or FETCH (KFO9A). macro has preceded the
EXIT in the source program is simply a LINK to the
inter-job supervisor, M@NITR (KEO1lA). The form gener-
ated if neither a FETCH nor a LINK has previously
appeared in the source program is substantially an
ALINK macro to address 19640. An attempt is made to
read the first sector of the loader into the card read
area, from module 1. If this fails, an attempt is
made on module 0. If both attempts have failed the
system halts. When elther attempt succeeds, control
is transferred to the instructions read from disk.

USAGE:

Cperands:

The EXIT macro uses no operands. The macro itself
investigates each drive in turn for presence of the
Operating System Pack. "Log-out" protection is
afforded by the operator's abllity to supply ending
times to the inter-job supervisor, and must be sup-
ported by policy which makes such entries mandatory.

Control Cards:

The EXIT macro requires no control cards.
Input :

The EXIT macro requires no input.

OUTPUT:

EXIT itself produces nc output, However the inter-job
supervisor, M@ZNITR (KEO1A), which is called by the EXIT
macro, produces the console message '

>> END-@F-J@B

and, possibly, the printed end-of-job page as well as
other output as described in the write-up of that program.



1401 0. S. II
EXIT - p.3

ERROR MESSAGES AND HALTS:

Only the standard system halts and messages may occur
during execution of an EXIT macro.

OPERATING PROCEDURES:

Aside from the fact that the correct Operating System
Pack must be mounted if a halt occurs, and the halt
then started, no special operating procedures need be
followed as far as the macro 1tself 1s concerned.
Entry of the 'TM' and 'CC' codes should be made as
soon as the end-of-job message is typed.

End-0f-Job, Post-Processing:

A11 of the previous paragraphs deal with end-of-job
processing, since that is the purpose of the macro.
Further information on the subject is given in the
write-up on the inter-job supervisor, M@NITR (KEO1A).



PROGRAM:
MACHINE:

0. S. II
# KFO9A
#

KF14A

FETCH/LINK
' IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The FETCH macro, when executed, causes a program to be
loaded into core from the 1401 Operating System Library.
Control is then returned to the calling program, at the
next sequential instruction after the appearance of the
FETCH macro.

The LINK macro, when executed, causes a program to be
loaded in the same fashion as the FETCH macro. Control
is then transferred to the called program block at the
"execution address" specified when the program block
was DL@ADed.

Loading procedures for both macros are controlled by
the program parameters established for the program block
at DL@ZAD time.

This document is complemented by the descriptions of
LPADR (KF15A) and L@DER (KF16A), the closed routines
which are called by the LINK and FETCH macros.

RESTRICTIONS:

Time,

Core Requirements:

The generated code constituting the LINK and FETCH macros
requires less than one millesecond of execution time,
and occupies between 11 and 26 core positions.

The routines execute in between .1 and 2.0 seconds. The
loader of the called program may require between .3 and
30.0 seconds of execution time, depending on the length
of the program and whether group-mark word-marks are
restored. L@ADR requires 865 core positions. L@DER
requires 940 positions.



1401 0. S. II
FETCH/LINK - p.2

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The Operating System pack must be on one of the 1311
disk drives at execution time. The program to be called
into core should have been previously loaded onto the
Operating System Library by either the DL@DR program
(KCO6A) or the program loading service of DUP (KCO9A).

The programmer may write a LINK or FETCH macro at any
point in his processing.

Processing/Method:

A detailed description of LINK and FETCH operation 1s
found below in the paragraph on Processing Method --
Technical Description.

USAGE:

Operands:

The FETCH and LINK macros use two operands -- Operand 1
and Operand 3. Both are optional. Operand 2 is not
used, for reasons of compatibility with previous versions.

1. Program Name (optional)

This operand, if present, gives the location of the
name of the program to be called into core. It may
be either a 6-character literal enclosed in quotes,
containing the name left-justified, or the label of
a b-character DCW containing the name left-justified.

If the operand is omitted, the programmer must pro-
vide code, before the macro, to:

a) move the program name to L@PADRA or L@DERA

b) move either a dollar sign (indicating a LINK),
or an address at which execution is to be
begun after loading, into L@ADRX or L@DERX.

This capability provides for multiple-entry-point
subroutines.

2. Not used.



1401 0. 8. II
FETCH/LINK - p.3

3. Program Common (optional)

This operand, if present, gives the location of the
program common field to be passed to the called
program. It may be a 9-character literal enclosed
in quotes or the right-end label of a 9-character
DCW. The contents of the field are determined by
the program common conventions of the called program.
One would not use this operand in calling a program
which does not use program common.

If the operand is omitted, the program common field
used is blank.

Control Cards:

Neither LINK nor FETCH require control cards.

Input:
Neither LINK nor FETCH use input.

OUTPUT:
Neither LINK nor FETCH produce output.
ERROR MESSAGES AND HALTS:

Only the standard system halts and messages may occur
during execution of LINK and FETCH.

OPERATING PROCEDURES:

No special operation procedures need be specified for
LINK and FETCH. See the Operating Procedures for the
closed routines L@ADR (KF15A) and L@DER (KF16A).

End-Of-Job, Post-Processing:

On completion of loading:

a) FETCH returns control to the calling program.
b) LINK transfers control to the loaded program
block.

See the paragraphs on Purpose and Processing Method --
Technical Description.



1401 0. S. II
FETCH/LINK - p.l4

PROCESSING METHOD -- TECHNICAL DESCRIPTION:

- Permanent macro switches are used to determine which
of the two closed routines L@ADR or L@DER are included
in the program, that only one of these is included, and
that this one occurs only once in the program regard-
less of literal origins. If an I@GET, I@PUT or I@SK
macro has occurred in the program previous to the LINK
~or FETCH the L@ADR routine is included and the generated

- code references that routine. If none of the disk I/@
macros has occurred, the L@DER routine 1s included and
the generated code references that routine. Thus, if
the programmer is planning to use the disk I/@ macros
anyway, it is to his advantage to arrange his program
with at least one I@GET, IGPUT or I@SK previous to the
first appearance of a LINK or FETCH, since the L@ADR
routine uses less core than L@DER.

- The following paragraph describes the LINK and FETCH
transfer to the closed routines. Further explanation
will be found in the document on LﬂADR (KF15A) and
LADER (KF16A).

If operand 1 is present in either macro, the program
name 1s moved to L@ADRA or L@DERA. 1If operand 1 is
present in a LINK, a dollar sign is moved to L@ADRX or
LZDERX. If operand 3 is present in either macro, the
program common field is moved to L@ADRZ or L@DERZ;
otherwise, blanks are moved. A FETCH macro branches
to L@ADR or L@DER, a LINK macro branches to L@ADR+Y

or L@DER+Y4.



1401 0. S. II
I. D. # KF13A

PROGRAM: LE

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The LE (look-up-equal) macro provides a means of search-
ing a table arranged in a standard fashion for a table
entry having a key equal in value to a specified argu-
ment. Table entries must be contiguous. They may vary
in length, provided the key is at the right end and is
of the same length as the argument in all entries.

This macro simulates the operation of the IBM 1410
hardware instruction having the same AUT@C@PDER mnemonic.

RESTRICTIONS:

The rightmost position of a key must not contain a
record mark in any entry of a table scanned by an LE
macro.

Time, Core Requirements:

Execution time varies accordling to the number of entries
that must be scanned before either a match or the end of
the table is encountered, and according to the length

of the entries and the length of the argument.

Core requirement is 50 positions.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

A table to be searched by an LE macro must be arranged
in the following fashion:

a) the order of the table is "right to left": that is,
the first entry occupies the rightmost (highest
addressed) positions of the table, and the end of
the table is marked to the left of the last entry.



1401 0. 8. II
LE - p.2

b) each complete table entry, including key and
functional (return) value, must have a word-mark
at its leftmost position and no other word-marks
within it.

¢) the rightmost (highest addressed) n positions of
each table entry must contain the key (the charact-
ers to be compared to the argument of the macro),
where n is the number of characters in the argument.

d) the functional (return) value of each table entry
should be immediately to the left of the key for
that entry. The functional (return) value may be
as long as desired, but must be present in each
entry (at least one character in length).

e) the end of the table must be defined by a record
mark (0-2-8 card code) immediately to the left of
the last entry. Thus, the rightmost position of a
key may not contain a record mark in any table
entry. The macro operates correctly for a null
table (one consisting of only a record mark).

No special computer set-up 1s needed when using the LE
macro. '

Processing/Method:

The first operations in the generated code of the LE
macro store the address of the table in the succeeding
instructions. Then, for each table entry:

a) a branch to the failure exit is performed if a
record mark is detected in the rightmost position
of the apparent "entry".

b) the comparison of the argument to the key is made.

¢) the address of the functional (return) value 1is
put into the match address location.

d) addresses are adjusted inside the macro for the
possible next comparison. '

e) 1if the comparison was unequal, control is transfer-
red back to step a) for the next entry.

USAGE:

Operands:

The LE macro uses four operands, all of which are requirec,
as follows:

1. Table Location
This operand gives the locatlon of the right end of

the first entry in the table. 1t may be symbolic
or actual, indexed and/or adjusted.



1401 oO. S.
LE - p.3

I1

This operand gives the location of the right end
of the argument for which the table is to be searched.
It may be symbolic or actual, indexed and/or ’

This operand gives the location of the right end
of a 3-character field into which the right end
address of the functional (return) value is to be
stored if a match occurs (if a key equal to the

2. Argument Location
adjusted.

3. Match Address Location
argument is found).

4, Failure Branch Address

This operand gives the address to which control is
to be transferred if the entire table is scanned

without a match.

Control Cards:

The LE macro requires no
Input:

The LE macro requires no

OUTPUT:

The LE macro produces no

ERROR MESSAGES AND HALTS:

No halts or messages may

OPERATING PROCEDURES:

control cards.

input.

output.

occur during execution of LE.

No special operating procedures need be specified.



1401 0. S. II
LE - p.4

Fnd-0f-Job, Post-Processing:

On completion of the execution of LE, if the argument
matched the key of an entry in the table, control is
transferred to the instruction following the LE, and
the address of the functional (return) value in that
entry is in the location specified by operand 3. It
is common for operand 3 to specify an index register,
to facilitate examination of the value by following
instructions.

If no match occurred, control is transferred to the
instruction specified by operand 4, and the location
specified by operand 3 contains the address of the
functional value of the last entry in the table.



1401 0. s. 1II
I. D. # KF15A
I. D. # KF16A

PROGRAM: L@ADR/L@DER

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The closed library routines L@ADR and L@DER, when
included in a program and executed, cause a program to
be loaded into core from the 1401 Operating System
library. One of these routines is automatically in-
cluded in a program by use of a LINK (KF14A) or FETCH
(KFO9A) macro. The loading itself is accomplished
through the disk-stored loader of the called program,
and is controlled by the program parameters established
for that program at DL@AD time.

The only difference between the two routines 1s the
fashion in which they perform disk input/output. LZADR
utilizes the DSKI@ routine, while L@DER contains its
own disk I/@ instructions. Thus L@ADR is shorter 1if
DSKIZ@ is used by the program in its normal processing,
but longer if DSKIf¥ must be specilally included for this
one purpose. L@ADR uses the direct seek capability of
DSKI@, L@DER seeks on a return-to-home basils. Here-
after, references will be given in terms of the L@ADR
routine, since the processing done by the two routines
Is identical. The user should note that labels used

by each are identical in their sixth character (e.g.,
L@DERX has the same role as L@ADRX).

RESTRICTIONS:

Time,

Core Requirements:

The closed routine requires between .1 and 2.0 seconds
of execution time. The loader of the called program

may take between .3 and 30.0 seconds to execute, depend-
ing on the length of the program and whether group-mark
word-marks are restored. L®@ADR requires 865 positions;
L@DER requires 940 positions.



1401 0. S. II
L@ADR/L@PDER - p.?2

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The Operating System pack should be on one of the 1311
disk drives at execution time. The program to be called
into core should have been previously loaded onto the
Operating System library by means of the DL@DR program
(KCO6A) or the program loading service of DUP (KCO9A).

Processing/Method:
A detalled description of L@ADR processing is found
below in the paragraph on Processing Method -- Technical
Description.

USAGE:

Calling Sequence:

A program common field should be moved into L@ARDZ.

The name of the program to be called should be moved
into L@ADRA. If the program block is to be executed

at the "execution address" specified at its DL@AD time,
a dollar sign should be moved to L@ADRX and a branch to
L@#ADR+4 performed. If execution is to continue at the
next sequential instruction following the linkage to
LPADR, a branch to L@ADR should be performed. If
execution is to be taken up at any other location, this
location should be moved into L@ADRX and a branch to
L@ADR+L performed. If L@DER is to be used, substitute
"L@ZDER" for "L@PADR" in the aforementioned labels.

Control Cards:

Neither L@ADR nor L@DER require control cards.
Input:

Neither L@ADR nor L@DER require input.
QUTPUT:

The closed routine itself produces no output. However,
if the program name requested is not on disk, output
from the PLIST program (KCO8A) results.



1401 0. S. II
L@ADR/L@DER - D.

ERROR MESSAGES AND HALTS:

Only the standard system halts and messages may occur
during execution of L@ADR or L@DER.

OPERATING PROCEDURES:

Aside from the fact that the correct Operating System
pack should be mounted 1if a halt occurs, and the halt
then started, no special operating procedures need be
specified.

End-0f-Job, Post-Processing:

Control is transferred to the address described in the
paragraphs on Calling Sequence and Processing Method --
Technical Description.

PROCESSING METHOD -- TECHNICAL DESCRIPTION:

The drive on which the Operating System pack resides

is determined by reading the first three sectors of the
program table. Module 1 is tried first; then module O,
if the first attempt fails. A halt results if both
attempts fail.

The program table 1is searched for the specified name, -
three sectors (20 entries) being read from disk at a
time. If the name is not found, or if it references a
non-program entry, a diagnostic results and the PLIST
program (KCO8A) is called instead.

The Operating System communications sector 1is read and
the I@CS date and normal date are saved. The program
header of the specifled program is read and its identi-
fication checked. If the check fails, a diagnostic is
produced (the same as described in the preceding para-
graph), and the PLIST program (KC08A) is called. If
the check succeeds, the usage count and last use date
are updated and the header 1is written back to disk. If
L@ADRX contains a dollar sign, the execution address 1in
the header sector is moved into L@ADRX. The last 2
sectors of the 5-sector loader are then read, updated
with the program common fleld, I@CS date, and execution
address, and written back to disk.



1401 0. S. II
L@ADR/LODER - p.4

The first sector of the loader of the specified program
is then read into the card read area, and control 1s

transferred to it.



1401 0. S. II
I. D. # KF17A

PROGRAM: @SINF

MACHINE: IBM 1401

LANGUAGE: AUT@CPDER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The @SINF macro, when executed, causes the Operating
System communications sector to be read from disk,
providing the user's program with the following infor-
mation as established at the beginning of the job:

job number and name
man number and name
date

time of day

day name

I@CS date

machine clock reading
function code and name

RESTRICTIONS:

The @SINF macro may only be executed once.

Time, Core Requirements:

Time required for execution of the @SINF macro is negli-
gible: less than 50 milliseconds. Core requirement 1is
207 positions.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The Operating System pack must be present on one of the
1311 disk drives at execution time. No special set-up
or previous processing is required. The programmer may
write an @SINF macro at any point in hls processing.



1401 0. S. IT
@SINF- p,2

Processing/Method:

When the @SINF macro is executed, sector 399620 of the

o Operating System pack is read, in the move-mode.

USAGE:

DNMSC

Module 1 is tried first; then module 0, if the first
attempt fails. A halt results if both attempts fail.
The 100-position area into which the "communications
sector" 1s read contains the following labeled, word-
marked fields, which the instructions following the

@SINF macro may reference:

Label Length Content

JOBSC 7 job number

JNMSC 13 Job name

MANSC 3 man number

MNMSC 13 man name

DATSC 10 date, time of day, in the format:
| yymmddhhtt |

(1.e. year-month-date-hour-minute,
wlth the hour field in 24-hour time).

9 day name
I@DSC 5- IASC date
CCTSC 6 machine clock reading
FCTSC 2 function code
FCNSC 13 function name

-Elaboration 6n the meaning and possible contents of the

more obscure of these fields can be found in the docu-
ment on the Inter-Job Supervisor, MgNITR (KEO1lA).

Operands:

The @SINF macro uses no operands.

Control Cards:

Input:

- The @SINF macro uses no input.

The @SINF requires no control cards.



1401 0. S. II
@SINF - p.3

OUTPUT:
The @PSINF macro produces no output.
ERROR MESSAGES AND HALTS:

Only the standard system halts and messages may occur
during execution of the @SINF macro.

OPERATING PROCEDURES:

No special operating procedures need be specified.

End-0f-Job, Post-Processing:

The instructions following the @SINF macro can refer-
ence the labels described above in the paragraph on
Processing/Method.



1401 0. S. II
I. D. # KF18a

PROGRAM: v @SL@c

MACHINE: IBM 1401

LANGUAGE : AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The @SLPC macro, when executed, causes the Operating
System program table to be scanned for the presence

of a particular program name. If the program block is
present, the disk address of its first sector is return-
ed as a result; if it is not, the result field is fill-
ed with nines.

RESTRICTIONS:
No indication is returned to a program using the @SL@C
macro of
a) whether the name (operand 1) referenced a
non-program block, or

b) the mode of that block.

Time, Core Requirements:

Execution time required for the @SL@C macro varies
according to the length of the program table, and the
position of the name within the table. In any case,
execution should require less than .5 seconds.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The Operating System pack should be on one of the 1311
disk drives at execution time. The programmer may use
an @SLPC macro at any point during his processing.



1401 0. S. II
@SLEC - p.2

Processing/Method:

USAGE:

When the @SL@C routine is first executed, the drive on
which the Operating System pack resides is determined
by reading the first three sectors of the program table.
Module 1 is tried first; then module 0, if the first
attempt fails. A halt results if both attempts fail.

The program table is searched for the specified name,
three sectors (20 entries) being read from disk at a
time. If the name is found, the drive code and address
of the first sector of the program block are moved to
the result field; if not, the field 1is filled with nines.

#SL@C is an in-line macro: control should enter at its
first position, and is transferred to the next sequen-
tial instruction following its appearance in the
mainline.

OEerands:

The @SLZC macro uses operands 1 and 2; both are required.
1) Program Name

This operand gives the location of the name for which
the program table is to be scanned. It may be a
6—character literal enclosed in quotes containing

the name, left-justified, or the label of a
6-character DCW containing the name, left-justified.

2) Result Field

This operand gives the location of the result field:
it should be the label of a 7-character DCW or area-
defining literal. If the program specifled by
operand 1 is in the Operating System library, the
Operating System drive code 1s inserted in the field,
followed by the actual (380,000 file-protected)
address of the first sector of the program block.

If it is not present the field is filled with nines.

Control Cards:

Input:

The @SL@PC macro requires no control cards.

THE @SL@C macro uses no input.



1401 0. S. II
gsLgc - p.3

OUTPUT:

The @SL@C macro produces no output.

ERROR MESSAGES AND HALTS:

Only the standard system halts and messages may occur
during execution of the @SL@C macro.

OPERATING PROCEDURES:

Aside from the fact that the correct Operating System
pack should be mounted if a halt occurs, and the halt
then started, no special operating procedures need be
specified.

End-0f-Job, Post-Processing:

Control is transferred to the next sequential instruction
following the @SL@C generated code. There, the program-
mer can write code which tests for the presence of nines
in the result field, and may wish to write code to read
the header sector of a program, the actual sectors of

a program, or the data sectors of a non-program block.

In a program, the disk address returned is that of the
header sector, and the first sector of the program it-
self is located at that address plus 6. In a non-program
block, the disk address returned is that of the first
data sector.



1401 0. S. II
I. D. # KF19A
I. D. # KF20A

PROGRAM: RDTPM/TPERR

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II

PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE:

The RDTPM macro, when executed, causes a tape record
‘to be read into a specified area of core storage, from
a specified tape unit. It accomplishes this by setting
up linkage to the TPERR inflexible library routine,
which performs the actual tape operation and error
checking. RDTPM and TPERR offer the following
facilities:

a) tape error checking with 50 retries. Control is
transferred to the user's error routine if the
error persists.

b) storage of the address of the last position
brought into core (the group-mark).

c) transfer to a user routine on an end-of-reel/file
condition (tape mark or reflective spot sensed).

RESTRICTIONS:

RDTPM and TPERR require less core than I@CS, but pro-
vide less facilities and thereby greater flexibility
for the programmer. The programmer must provide
facilities for:

a) tape control (RWD, RWU, etc.), except for error-
backspacing.

b) wrong-length record checking, if desired.

¢) header and trailer checking and block counts, if
desired.

d) deblocking and padding if necessary.

e) variable-length record group-mark.

f) distinction between end-of-reel and end-of-file
conditions.

Load-mode operation can be accomplished with RDTPM and.
TPERR by moving an "L" into NEXT-8, and binary operation
can be accomplished by moving a "B" into NEXT-6, where
NEXT 1s the location following the RDTPM generated code.



1401 0. S. II
RDTPM/TPERR - p.2

Time, Core Requirements:

Processing rate is dependent on the speed of the tape
units and the density and record-length of the file.
RDTPM and TPERR have less "executlon overhead" than
I@CS tape routines, but this time is not significant
in either case.

RDTPM generated code requires 40 positions; the TPERR
routine requires 86 positions plus a 3-character liter-
al. TPERR 1s included only once in the object program.

PROGRAM PROCEDURE:

Set-Up, Previous Processing:

There must be an input tape on the drive referenced by
RDTPM. '

Processing/Method:

A detailed description of RDTPM processing and linkage
appears below in the paragraph on Processing/Method --
Technical Description.

USAGE:

Operands :

Operands 1 through 5 are required for the RDTPM macro:
no other operands are used.

1) Tape Unit

This operand should be a single-digit number;
1 through 6 inclusive.

2) Input Area

This operand specifies the left end of the input
area into which the next record on the drive speci-
fied by operand 1 1s to be read. The area should

be followed by a group-mark with a word-mark, and

be long enough to hold the largest record expected
on the file, plus one extra position for the end-of-
record group-mark.



1401 0. S. II
RDTPM/TPERR - p.3

3) Location for Group-Mark Address

This operand specifies the location of a three-
digit field into which the address of the group-
mark following the record will be placed. It
should be the label of a 3-character DCW, an
area-defining literal, or X1, X2, or X3. This
field may be checked for correct record length
by instructions following the RDTPM macro.

4) End-Of-Reel/File Address

This operand specifies the label of the first

" instruction in the user's end-of-reel/file routine.
This address 1s branched to when a tape-mark or a
reflective spot is sensed.

5) Error Address

This operand specifies the label of the first
instruction in the user's error recovery routine.
This address is branched to if 50 retries to read
the record all encounter tape errors. When the
error routine is entered, the tape is positioned
just past the error record.

Control Cards:

The RDTPM macro requires no control cards.
Input:
The only input consists of the move-mode BCD record to-
be read from tape.
QUTPUT:
RDTPM and TPERR produce no output.

ERROR MESSAGES AND HALTS:

No halts or messages occur during executlion of RDTPM
and TPERR. The user may wish to provide halts or
messages in the error or end-of-file routines.



1401 0. S. II
RDTPM/TPERR - p.l

OPERATING PROCEDURES:

No special operating procedures need be specified.

End-0f-Job, Post-Processing:

With variable-length records, the programmer should
insure against subsequent-record cutoff by moving a
blank, a record mark, etc., into the group-mark
location.

In the end-of-file routine, the‘programmer should
rewind the tape unless it is to be read further,

PROCESSING METHOD -- TECHNICAL DESCRIPTION:

The linkage generated by RDTPM consists of:

a) movement of an appropriate read-tape instruction
into TPERR.

b) storage of the address of the "group-mark address
location"into TPERR. _

c) storage of the tape-error and end-of-reel/file
addresses into TPERR.

d) a branch to the start of the TPERR routine.

Processing in TPERR normally consilists of:

a) storage of the return address.

b) =zeroing of an error counter.

¢c) execution of the actual tape read instruction.

d) storage of the group-mark address into the speci-
fied location.

e) testing for an end-of-file condition.

f) testing for an error condition.

g) exit to the location following the RDTPM generated
code.

If a tape error is encountered, TPERR:

a) adds to an error counter.

b) exits to the error address provided if the error
counter has reached 50.

¢) backspaces the tape.

d) proceeds to normal-processing step c¢) above.



1401 0. S. II
I. D. # KF22A

PROGRAM: VLCHK

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

‘PURPOSE:

The VLCHK macro is an error checkling routine for vari-
able length tape records. VLCHK computes the proper
~last character address of the given variable length
tape input record, and compares this address with the
IBCS last character address for that record, transfer-
ring control to the user's error routine on an unequal
compare.

RESTRICTIONS:

The maximum record length which can be checked by
VLCHK is 1999 characters.

Time, Core Requirements:

Execution time is less than 50 milliseconds.

Core requirement varies from 25 to 68 core positions.

. PROGRAM PROCEDURE:

Set-Up, Previous Processing:

The VLCHK macro may only be used after a variable
length tape record has been read.

Processing/Method:

‘Two forms of the generated code constituting the VLCHK
macro may be produced, depending on the length of the
record length field. The address of the left end of
the input area is moved to a sum box. This sum box is
modified by use of the MA instruction which references
the right most 3 digits of the length field. If the
length of the record length field is 4 digits, code is
generated to modify the sum box by an additional
thousand.



1401 0. S. II
VLCHK - p.2

USAGE:

_Q__ands

The VLCHK macro uses operands 1 through 4; no other
operands are required.

1. Input Area

This operand specifies the left end of the input
area, into which the tape record was read.

2. Record Length

This operand specifies the core location of the
tape record length field. It may be symbolic or
actual, indexed and/or adjusted.

3. Length of the Record Length

This operand specifies the number of digits con~
tained in the record length field. It may be
either 3 or 4.

4, Error Address
This operand specifies the label of the first
instruction in the user's error recovery routine.
If a wrong length record is read, VLCHK branches
to this instruction.

Control Cards:

The VLCHK macro requires no control cards.

Input:
A variable length tape record must have been read before
the VLCHK macro may be used.
"OUTPUT:

The VLCHK macro‘produces no output.



1401 0. S. II
VLCHK - p.3

ERROR MESSAGES AND HALTS:

No halts or messages may occur during execution of the
VLCHK macro.

OPERATING PROCEDURES:

No operating procedures need be specified.

End-0f-Job, Post-Processing:

Control is returned to the next sequential instruction
following the VLCHK macro unless the error condition
“has been detected in which case control is transferred
to the user's error routine (see Operands).



1401 0. S. II
I. D. # KF23A
I. D. # KF21A

PROGRAM: WRTPM/TPERW

MACHINE: IBM 1401

LANGUAGE: AUT@C@DER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER: Systems Division

DATE COMPLETED: July 1, 1968

PURPOSE;

The WRTPM macro, when executed, causes a tape record

to be written onto a specified tape unit, from a speci-
fied area of core storage. It accomplishes this by
setting up linkage to the TPERW inflexible library
routine, which performs the actual tape operation and
error checking. WRTPM and TPERW offer the following
facilities:

a) tape error checking, with 3 retries per tape loca-
tion and 20 skip-and-blank sequences before transfer
to the user's error routine.

b) transfer to a user routine on an end-of-reel condi-
tion (reflective spot sensed).

RESTRICTIONS:

WRTPM and TPERW require less core than I@CS, but provide
less facilities and thereby greater flexibility (with
greater effort) for the programmer. The programmer must
provide facilities for: :

a) tapé control (RWD, RWU, etc.) except for error-

backspacing.

b) writing of tape marks (WTM) or other end-of-file
indication.

¢) header and trailer checking and block counts, if
desired.

d) blocking and padding, if necessary.
e) variable-length record group-mark erasure, 1f
appropriate.

Load-mode operation can be accomplished with WRTPM and
TPERW by moving an "L" into NEXT-8, and binary operation
can be accomplished by moving a "B" into NEXT-6, where
NEXT 1s the location following the WRTPM generated code.



1401 0. S. II
WRTPM/TPERW - p.2

Time, Core Requirements:

Processing rate is dependent on the speed of the tape
units and the density and (average) record length of
the file. WRTPM and TPERW have less "execution over-
head" than I@CS tape routines, but this time 1s not
significant in either case.

WRTPM generated code requires 33 positions; the inflex-
ible TPERW routine requires 107 positions plus a

3-character literal. TPERW is included only once in
the object program. '

PROGRAM PROCEDURES:

- Set-Up, Previous Processing:

At execution time there must be an output tape (with
ring) mounted on the tape drive referenced by the macro.

Processing/Method:

A detailed description of WRTPM and TPERW processing
and linkage appears below in the paragraph on Processing
Method -- Technical Description.

USAGE:

~ Operands:

Operands 1 through 4 are required for the WRTPM macro;
no other operands are used.

1) Tape Unit

This operand should be a single-digit number,
1 through 6 inclusive.

2) Output Area

This operand specifies the left end of the output
~ area from which the record is to be written to the
drive specified by operand 1. The last position
of the physical record to be written should be

followed by a group-mark with word-mark.



1401 0. 8. II
WRTPM/TPERW - p.3

3) End-Of-Reel Address

This operand specifies the label of the first
instruction in the user's end-of-reel routine. This
address 1is branched to if a reflective spct is
sensed.

4y Error Address

This operand specifies the label of the first
instruction in the user's error recovery routine.
This address is branched to after 20 skip-and-
blank-tape sequences have been attempted, with 3
write attempts at each position, if all 60 write
attempts produced error indications. This gener-
ally indicates either a malfunction of the tape
unit or controller, or a reel of tape in extremely
bad condition.

Control Cards:

Neither WRTPM nor TPERW require control cards.
Input:

Neither WRTPM nor TPERW use input.
OUTPUT:

The only output consists of the move-mode BCD record
to be written to tape.

ERROR MESSAGES AND HALTS:

No halts or messages should occur in either WRTPM or
TPERW. The programmer may wish to provide halts or
messages in the error or end-of-file routines.

OPERATING PROCEDURES:

No special operating procedures need be specified.



1401 0. S. II
WRTPM/TPERW - p.4

End-0f-Job, Post-Processing:

With variable-length records, the programmer should
insure against subsequent-record cutoff by moving a
blank, record mark, or data field 'over the group-mark
with word-mark used to terminate the tape-write.

In the end-of-reel routine, the programmer should rewind
the tape unless records are to be written following the
reflective spot.

After all records have been written, the user's program
should execute one or two write- tape-mark (WTM)
instructions.

PROCESSING METHOD -~ TECHNICAL DESCRIPTION:

The linkage generated by WRTPM consists of:

a) movement of an appropriate write-tape instruction
into TPERW. j

b) storage of the tape-error and end-of-reel addresses
into TPERW.

¢) a branch to the start of the TPERW routine.

Processing in TPERW normally consists of:

a) storage of the return address.

b) =zeroing of the skip counter.

c) zeroing of the attempt counter.

d) execution of the actual tape~write instruction.

e) testing for an error condition.

f) testing for an end-of-reel condition.

g) exit to the location following the WRTPM generated
code,

If a tape error is encountered, TPERW:

a) adds to the attempt counter.

b) Dbackspaces the tape.

c) 1if the attempt counter is not up to 3, proceeds to
‘normal-processing step d) above.

d) adds to the skip counter.

e) exits to the error address provided if the skip
" counter is up to 20.

f) skips and blanks six inches of tape.

g) proceeds to normal-processing step c) above.



1401 0. S. TT
I. D. # KF2ha

PREOGRAM: WS

MACHTINE: IBM 1401

LANGUAGE: AUT@CPDER

SUPERVISOR PROGRAM: 1401 Operating System II
PROGRAMMER : Systems Division

DATE COMPLETED: July 1, 1968

URPOS:

The I8 macro provides a means of coding write-with-
space-suppression instructions. The macro may be
written with or without a branch address, and is in
this and all other respects, identical to the write(li)
instruction, except that an S is added as the D-
character.

For further information on this macro, see:
IBM - publication A24-3071,

Special Features TInstructions
IBI 1 1401 Data Proce551ng System
IBM 1460 Data Processing System
File No. 1401/1450-13.

Page I-49.



1401 0. S. IT
Appendix A

Appendix A

Standard System

Halts and Messages

The halts and messages listed below are standard for the 1401
Operating System, Version II. Details pertaining to operating
procedures will be found in the document on the program during
which the halt or message occurs.

Messages:

1. WAITING

This message is produced by the Inter-Job Supervisor,
M@ZNITR (KEO1A).

2. ¥¥ERROR¥#
DISK INDIC. n

This message 1s produced by the DSKI@ macro, KFO7A.

n=N, access inoperable.
n=%, wrong length record check.
n=X, unequal address compare.
n=V, validity check.
Halts:
A-Address Source of Halt
804 MZNITR (KEO1lA)
111 EXIT macro {KF08A)
Note:

If the system comes to a hard halt during operation
of DUP (KC09A), the Operating System Pack has been
damaged.



	001
	002
	01-01
	02-01_MONITR
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	03-01_DUMP
	03-02
	03-03
	03-04
	04-01_LSNO
	04-02
	05-01_LOAD
	05-02
	06-01_PLIST
	06-02
	06-03
	07-01_DUP
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	08-01_SYSCL
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01_TLOAD
	09-02
	10-01_LIST
	10-02
	10-03
	10-04
	10-05
	11-01_MLIST
	11-02
	11-03
	12-01_REPRO
	12-02
	13-01_MREPRO
	13-02
	13-03
	14-01_COLLAT
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	15-01_RECODE
	15-02
	15-03
	16-01_TLIST
	16-02
	16-03
	17-01_TDUMP
	17-02
	17-03
	17-04
	18-01_DCOPY
	18-02
	18-03
	18-04
	19-01_RESTR
	19-02
	19-03
	19-04
	20-01_CLRDSK
	21-01_PRDSK
	22-01_DALTR
	22-02
	22-03
	23-01_ALINK
	23-02
	23-03
	24-01_CDSN
	24-02
	25-01_CMADD
	25-02
	25-03
	26-01_CORE
	26-02
	26-03
	27-01_DLOAD
	27-02
	27-03
	27-04
	27-05
	27-06
	28-01_DSKIO
	28-02
	28-03
	28-04
	28-05
	28-06
	29-01_EXIT
	29-02
	29-03
	30-01_FETCH
	30-02
	30-03
	30-04
	31-01_LE
	31-02
	31-03
	31-04
	32-01_LOADR
	32-02
	32-03
	32-04
	33-01_OSINF
	33-02
	33-03
	34-01_OSLOC
	34-02
	34-03
	35-01_RDTPM
	35-02
	35-03
	35-04
	36-01_VLCHK
	36-02
	36-03
	37-01_WRTPM
	37-02
	37-03
	37-04
	38-01_WS
	A-01

