UIWIIY

G TSS/8

USER’S GUIDE
I
S
D

THE UNIVERSITY OF WISCONSIN—MILWAUKEE

COMPUTER AND MANAGEMENT SERVICES DIVISION

THE UNIVERSITY OF WISCONSIN-MILWAUKEE
COMPUTER AND MANAGEMENT SERVICES DIVISION

DOCUMENTATION REGISTRATION FORM

(Completion of this form will place the purchaser's name on a mailing list
to receive updates of the purchased document)

NAME (please print) DATE

I HAVE PURCHASED A COPY OF

(Title of Documentation)
PLEASE SEND UPDATES AND REVISIONS OF THIS DOCUMENT TO:
Campus Address*

Off—bampus Address

* To save on mailing expenses, purchasers with a campus address
are asked to specify this as their preferred address to which
new material will be sent. Purchasers with no campus address
will have material sent to the off-campus address listed.

CAMPUS ADDRESS: Dept.

Room & Bldg.

Telephone

OFF-CAMPUS ADDRESS: Street

City, State, Zip

Telephone

-please, fold, staple, and mail this form to address shown. Thank you.-

TO: The University of Wisconsin-Milwaukee
Computer & Management Services Division,
Retail Sales
EMS EB68
Milwaukee, Wisconsin 53201

TSS/8 USERS GUIDE

Prepared by the TSS/8
Programming Group at

the University of Wisconsin-Milwaukee

Editor:

o2

L. P. Levine May, 1973

Please return,filled in, the card enclosed with
this manual. Updates and revision to this manual will
be sent automatically to any purchaser whose card is
on record.

This handbook contains material taken with per-
mission from the TSS/8 Timesharing System Users Guide,
copyright 1972, by the Digital Equipment Corporation,
Maynard, Massachusetts.

First printing May, 1973.

TABLE OF CONTENTS

Contents

INTRODUCTION

1.1 General Description
1.2 User Programs

1.3 User Files

1.4 TSS/8 User Console

ELEMENTARY MONITOR COMMANDS

2.1
2.2

Calling Monitor

Logging in on TSS/8

Logging out of TSS/8

Rubout

System Library Program Control
Communication with Other Users
System Status Report

Resource Sharing

Error Messages

SYSTEM PROGRAM GROUPS

FOCARL

BASIC

FORTRAN

ALGOL

PALD

CHAPTER 1

CHAFPTER 2

CHAPTER 3

Page

3-1
3-2

3-3

3-4

Contents

FUNDAMENTAL UTILITY PROGRAMS CHAPTER 4

4,1 EDIT
4.1.1 Summary of Symbolic Editor Operations
4.1.2 EDIT Command Summary

4.2 CAT
4.2.1 Example of CAT Usage
4.2.2 S Option of CAT
4.3 SYSTAT
4.3.1 Example of SYSTAT Usage
4.4 PIP
4.4.1 PIP Conventions
4.4.2 Using PIP to Load Paper Tape
4.4.3 Using PIP to Punch Out a Disk File
4.4.4 Using PIP With High Speed Reader and Punch
4.4.5 Using PIP to Transfer BIN Format Files
4.4.6 Moving Disk Files
4.4.7 Deleting Disk Files
4.4.8 Transferring BASIC Files
4,4.9 Transferring SAVE Format Files
4.4.10 Summary of PIP Options
4,5 COPY
4.5.1 Using and Calling COPY
4.5.2 Loading Files From DECtape
4.5.3 Saving Disk Files on DECtape
4.5.4 Listing Directories
4.5.5 Deleting Files
4.5.6 Moving Files
4.5.7 Renaming a File
4.5.8 Control C
4.5.9 Exit From COPY
4.5.10 Summary of COPY Cptions
4.5.11 UWM TSS/8 COPY Conventions
4.5.12 Example of COPY Usage
4.6 DUMP

4.7 LABLDP
4.8 LINK

4.9 LOGOUT
4.10 LOGIN

4.11 CPASS

-ii-

Page

E o SN
I
W N

Lo S
i
Ul >

For
I
ur U

D B DR D DD
1 |
H WO O0O0WOoW-=J~1on OOy

o

IS SN S
L1 1
e
Hoo

CHAPTER 1

INTRODUCTION

1.1 GENERAL DESCRIPTION

TSS/8 (Time-Sharing System for the PDP-8/I, -8/e and -8 Computers) is
a general-purpose, time-sharing system offering up to 16 users (24 in
certain applications) a comprehensive library of System Programs.
These programs provide facilities for editing, assembling, compiling,
debugging, loading, saving, calling, and executing user programs
on-line. They include FORTRAN, ALGOL and LISP. Two conversational,
interactive systems, FOCARL and BASIC versions are also included.
Also available to the user is an Assembler in which all of the
features of the hardware are accessible. All of these program
packages are briefly described in Chapter 3.

By separating the central processing operations from time-consuming
interactions with human users, the computer can, in effect, work on
a number of programs simultaneously. Cycling between programs and
giving only a fraction of a second at a time to each program or task,
the computer can deal with many users seemingly at once. The ap-
pearance is created that each user has the computer to himself. The
execution of various programs is done without their interfering with
each other and without lengthy delays in the response to individual
users.

The heart of TSS/8 is a complex of subprograms called the Monitor.
Monitor coordinates the operations of the various programs and user
consoles, ensuring that the user is in contact at all times with his
program. Monitor allocates the time and services of the computer to
the various users; it grants a slice of processing (computing) time

to each job, and schedules jobs in sequential order to make most
efficient use of the system device (disk). Monitor handles user
requests for hardware operations (reader, punch, etc.), swaps (moves)
programs between memory and disk, and manages the user's private files.
The Elementary Monitor Commands are described in Chapter 2.

1.2 USER PROGRAMS

When the user is working on a program with TS5/8, his work exists in the computer as though he had his own

4K (4096 word) PDP-8. Several users can run programs at virtually the same time, because TSS/8 Monitor con-
trols the scheduling of execution times. Monitor brings a program into core from the disk, allows it to execute
for a short time, and takes note of the state at which execution is stopped. Monitor then brings the next user

program info core, and repeats the process. The user is allotted a 4K block of storage that contains his particular

program; this 4K block will be swapped from core onto a 4K area of disk
storage when it is necessary for Monitor to bring in another program to
run.

After the user's program has been executed, for a period of time it is
placed at the end of the queue (line) of user programs waiting to run.
If only one program is ready to run, it is allowed to do so without
interruption until another program is ready.

If a user wishes to maintain a permanent copy of his program, it is
necessary to save a copy within the file area of the disk (an area
separate from the swapping area). Later sections of this manual de-
scribe the procedures to create and update such files.

1.3 USER FILES

A TSS/8 user is any person logged in on TSS/8. Each user has an ac-
count number and password assigned to him by the installation manager
or the person responsible for his particular TSS/8; the account num-
ber and password allows the user access to the computer. His account
number is also used to identify whatever files the user may own within
the TSS/8 file system.

The disk (a large external memory device used for storage of programs
and data) is divided into logical areas called files. A user can
create files and store them in the file storage area of disk. The
user can also specify which groups of users may access his files and
for what purpose (read, or read and write).

Parts of the disk are used to store System Files; those programs which
are accessible to anyone using the computer. A major portion of this
manual, Chapter 4, deals with how to use System Files, generally re-
ferred to as System Library Programs.

With the appropriate Monitor commands, the user can create new files
and manipulate old files (extend, reduce or delete them). These com-
mands are explained in the Advanced User Guide. Most individual System
Library Programs are able to handle user files as input or output with
commmands issued at the user's console.

1.4 TSS/8 USER CONSOLE

The user console is a model 33 teletype or equivalent. Any device
capable of generating asynchronous ASCII (American Standard for
Computer Information Interchange) code at either 10 or 20 char-
acters per second full duplex may be interfaced with TSS/8. Un-
less the console is directly wired to the Tss/8, it must be con-
nected to the computer via a dial-up connection utilizing a MODEM
(Modulator-Demodulator) similar to a Bell 103 type device operated
in the originate mode. 1If there is question as to whether a given
console can communicate with TSS/8, the TSS/8 System Manager can
help you. A copy of the ASCII Code is shown in Appendix A.

CHAPTER 2
ELEMENTARY MONITOR COMMANDS

TSS/8 offers the user a variety of hardware and software resources. The TSS/8 Monitor controls the allocation
and use of these resources. Many of the functions of the Monitor are invisible, and of no concern to the user,
for example, the way it allows many users to run programs on a single computer. In other instances the user

explicitly tells Monitor what he would like to do and the resources he wishes to utilize. He does so by typing

one or more of the commands described in this chapter,

The Monitor commands described in the first half of this chapter are those the user needs to log into the system,
to utilize the TSS/8 System Library Programs, and to log out of the system. All TSS/8 users must be familiar with
these commands. The commands described in sections 2.5, 2.6, and 2.7 are not needed to run TS5/8 System
Library Programs such as BASIC and FOCAL, but are frequently useful. The Monitor commands described in

Chapter 8 are primarily useful for creating assembly language programs and files.

NOTE

All Monitor commands must be terminated by typing the
RETURN key. All words within a Monitor command
line are separated by one or more spaces.

2.1 CALLING MONITOR

The user enters commands to System Programs, such as BASIC and FOCAL, in exactly the same way that he
enters commands to Monitor (i.e., by typing them in at the keyboard); therefore, the system must have some
way of distinguishing between the two cases. It does so by defining two modes of console operation: Monitor
mode and program mode. When a user's console is in Monitor mode, all input is interpreted as being commands

to Monitor. Otherwise, all input is assumed to be to the user program.

A special character, CTRL/B, (obtained by striking B with the CTRL key held down; and echoed on the Teletype
as 1B) is used to unconditionally place the user's console in Monitor mode. Typing CTRL/B tells the system that
the command to follow is to be interpreted as a command to Monitor, regardless of the mode that the Teletype is

in. Generally, the command which follows the CTRL/B will be the S command.

Return to Monitor mode.

tB1BS Return to Monitor mode from a program which is typing
out. (The two CTRL/B's stop the typeout, allowing the
S command to be typed.)

It is not necessary to precede each Monitor command with CTRL/B. Once in Monitor mode, a console stays in
that mode until a command is typed which starts a user program. To signify that it is in Monitor mode, the
system types a dot (.) on the left margin of the console printer paper. This dot indicates that the characters
typed in next will be treated as a Monitor command. Thus, the CTRL/B capability is important when a user is
running a program and wishes to type a Monitor command. He may, for example, be using one language

(or System Program) and want to change to another, as shown below.

«R FOCARL

FOCARL, UFRSION 1
FUNCTIONS? NONEF

%k

b 3

*

¥ tFS

B PASIC

NEW DR OLT=-

Monitor always responds to 1BS by typing a dot at the left-hand margin.

2.2 LOGGING IN ON T55/8

To prevent unauthorized usage and to allow Monitor to maintain a record of system usage, TSS/8 requires that
each user identify himself to the system before using it. Before attempting to log in, the user should ensure that
the. console LINE/OFF/LOCAL knob is turned to the LINE position (see section 1.4.1) before striking the
RETURN key. If the console is connected to TSS/8 and is not already in use, Monitor rolls the console paper

up two lines and prints a dot at the left margin of the paper.
The dot indicates that TSS/8 is in Monitor mode and that Monitor is waiting for the user to issue a command.

fLCCIY Request access to TSS/8.

2-2

The LOGIN command allows the user to access the TSS/8 system.

Be sure your console is in full duplex mode. The user types LOGIN
followed by a valid account number and password. Providing the con-
sole is free (not already logged in), the command, account number,
and password will not be printed on the console paper as the keys
are typed. If the command name letters are being printed, stop
typing the command; instead, strike the RETURN key, log out using
the LOGOUT command (see section 2.3), at this point a successful
LOGIN can be accomplished. The LOGIN command is formatted as shown

below:

«LOCIN 1234 ARCD (only the dot is printed)

where . is printed by Monitor, LOGIN is the command name, 1234 represents the account number, and ABCD
represents the password.

NOTE

A command name and each parameter (except the last)
is always followed by a space, and the command line
is always terminated with the RETURN key.

When a user types something other than a valid LOGIN command on a console, Monitor responds in one of the

following ways.

Response Explanation
HELLO? (user typed HELLO)

LCCIN PLEASE? (user typed ASSIGN D 3)

. (user typed LOGIN ABCD ABCD)
ILLECAL REQUEST

+LOCIN 4771 DENMC (user typed valid LOGIN on an already logged in
ALREADY LCCCED IN console)

(user typed an incorrect account number or password)

UNAUTHORIZED ACCOUNT

In the first example, HELLO is not a command, so it is repeated with a question mark by Monitor. In the
second example, ASSIGN D 3 is a valid command but it is not appropriate until cfter the user logs in; therefore,
Monitor asks the user to log in. In the third example, Monitor finds that the LOGIN command is improperly
formatted (the first parameter must be from one to four numbers). The console printout tells the user that he has
made an ILLEGAL REQUEST. When the console is already logged in and the user types the LOGIN command,
the characters typed echo at the console, and Monitor informs the user that the console is occupied with the

message ALREADY LOGGED IN? If the user attempts to use an incorrect account number or password, Monitor

[3]
]
(98]

replies UNAUTHORIZED ACCOUNT. Thus, Monitor can distinguish an invalid command from a valid command;
it can also distinguish whether the valid command is appropriate when issued, whether the command is properly

formatted, and whether the account number and password are acceptable. In all the examples above, Monitor

ignores the command and prints another dot.

When Monitor finds the LOGIN command properly formatted and the account number and passwords acceptable,
it responds by identifying the version of the system being used, the job number it has assigned to the user, the

number of the console being used, and the time-of-day in hours, minutes, and seconds. For example:

TSS/&.19 JCB 03 K@l 0&:45:21
AND USUALLY THE SYSTEM MANACER WILL ENTER

HERE A COMMENT OR NOTE TO THE USER CONCERNING
THE SYSTEM

Monitor then prints another dot and waits for the user to issue the next command. The job number assigned is an

internal number by which the system identifies each on-line user.

2.3 LOGGING OUT OF T55/8

The LOGIN command tells Monitor that the user is ready to begin an on-line session. The LOGOUT command

indicates that the user is finished and ready to leave his Teletype.

Disconnect the user from the system and record the

LOCCUT
amount of time he has used.

Monitor responds to LOGOUT by typing the amount of computer time used in the session and the total real time

of the session. For example:

.LOCCUT
RUN TIME 0#:00:34 ELAPSED TIME B0:35:41

PLEASE TURN OFF YCUR TTY

Computer time used in this example was thirty four seconds, while the elapsed time between LOGIN and

LOGOUT was thirty five minutes and forty one seconds.

2.4 RUBOUT

Tbe RUBOUT key (marked DELETE on some keyboards) may be used t

single chargcters from a monitor command. Thus, if a user wisgeerise
logout and inadvertently types LOGI before noticing his error h: °
may type the RUBOUT key to rubout the letter "I", Monitor wiil echo
the rubbed.out character. 1If a user types LOGI (RUBOUT) OUT, the
fsyboard w1ll.show: LOGIIOUT where the first I is the error’and

“he second I is the echo of the rubbed out character.

2-4

2.5 SYSTEM LIBRARY PROGRAM CONTROL

Once logged in, the user can call any of the TSS/8 Library Programs described in Chapters 3 through 7. To

call such a program, the user types the command R (meaning run) followed by one or more spaces and the pro-
gram name.

For eicomp|e: » ' . ; o - ’ . h » ’ ST

R BASIC
NEW OR OLD --

Monitor fetches the BASIC language processor from the System Library and starts it. BASIC begins its dialogue
by asking if the user wishes to work on a new program or retrieve an old one from disk storage. Notice that
once BASIC begins, the console is no longer in Monitor mode. Dots are no longer printed at the margin. All

input is considered to be commands to BASIC.

If the user types a program name which cannot be found in the System Library, Monitor responds with an error

message and returns the console to Monitor mode.

«R BASICK
FILE NOT FOUND?

L]

The exact contents of a TSS/8 System Library may vary from installation to installation.

2.6 COMMUNICATION WITH OTHER USERS

Although TSS/8 gives each system user the impression that he is the only user of the system, it is actually
supporting many users at a time. Often, it is useful to communicate with another user, or with the system

operator; this is done through use of the TALK command.
.TALK Type out c message on another TSS/8 Teletype.

For example, to tell the system operator (Teletype 0) to turn on the high=speed punch, a user types the following
(where the initial dot was typed by Monitor):

«TALK @ PLEASE TURN ON THE HICKE SPEED PUNCH

This command causes the following to be typed on console 0:

where K02 is the number of the physical console which sent the mes-
sage and 2403 is the account number logged in at that console. 1If

the destination teletype is printing at the time of receipt of mes-
sage, the message will be interspersed with the useful output, per-
haps spoiling it. The TALK command should be used with discretion

except when addressing keyboard 0 (zero).

2-5

2.7 SYSTEM STATUS REPORTS

The command SYSTAT initiates a typeout of the full status of TSS/8; how many users are on-line, what they are
doing, etc.

oSYSTAT Report system status.

The command SYSTAT is equivalent to typing R SYSTAT. The format of the status report is described in the
section on SYSTAT in Chapter 4.

To learn the amount of computer time used since logging in, the user issues the TIME command:

-TIME The elapsed processor time of the user since he logged in
is printed.

-TIME 0 The time of day is printed.

.TIME CI The amount of processor time used by job C1 since login
is printed.

For example:

« TIME

A0:00:39

«.TIME O

39:20:32

«TIME 02
N3:00:10

2.8 RESOURCE SHARING

All TSS/8 users, when logged in, have free access to the System Library, the disk storage capability, and the
TSS/8 computer. Monitor automatically handles resource requests on a rotating basis. Monitor also maintains

a pool of available devices which must be assigned to be used. These are devices, such as the high-speed
paper-tape reader, which by their very nature cannot be assigned to several programs simultaneously . Therefore,
Monitor grants individual users exclusive access to these devices when needed. Thus, users still share the

device, although not simultaneously. Once a user has ASSIGNED a de- .
vice, his "device time" bill runs at a rate twice as fast as the
real-time clock, and continues to do so until he RELEASEs the de-
vice or does a LOGOUT. If he has two devices assigned, the bill

runs at triple rate, and so on. Users should use discretion when
assigning devices.

All TSS/8 systems include a high-speed, paper~tape reader in the pool of available devices. Many systems also
include a high-speed, paper-tape punch, and one or more DECtapes. These assignable devices are normally

used with System Library Programs PIP and COPY to store programs or data on paper tape or DECtape.

When a device is assignable (present on the system) and available (not being used), the ASSIGN command may

be used to assign the desired unit or units to the console issuing the command. The valid ASSIGN commands are

formatted as shown below:

. ASSIGN R Assign the high-speed paper-tape reader.
. ASSIGN P Assign the high-speed paper-tape punch.

. ASSIGN D Assign a DECtape unit.

where R, P, and D are device designators for reader, punch, and DECtape, respectively. If other devices are

assignable, the system manager will inform the user of the appropriate device designators. The following is an

example of using an invalid device designator.

«ASSIGN X
ILLEGAL REQUEST

.

Monitor ignores the request, responds with the appropriate message, and prints another dot.

When a valid ASSIGN command is issued, Monitor checks for the availability of the device and responds

accordingly. For example:

+ASSIGN R
R ASSIGNED (reader is assignable, available, and assigned)

«ASSIGN P

(punch is unavailable because job numbemis using
JCB 92 HAS P

it, and thus not assigned)

When the system contains multiple units of a device, the user simply specifies the device; Monitor assigns an

available unit and responds with the unit number. For example:

«ASSIGN D
D 2 ASSIGNED

If atl DECtape units are busy, Monitor prints the message shown below:

+ASSIGN D
DEVICE NOT AVAILABLE

A specific unit can be requested, leaving a space between the device designator and the device number.

«ASSIGN D 4

4 ASSIGNED (assignment was accomplished)
D £ NE

NOTE

If the user assigns a device with a nonexistent device
number, that device will not be assigned; an error
message does not result because that device is not busy.
An error message only results when the device is already
assigned.

The ASSIGN command can assign only one device at a time. Therefore, when multiple devices are to be

assigned, each must be assigned separately. The following will not accomplish the desired assignments, either

with or without the illegal commas.

«ASSIGN R, D 25 D 1
R ASSTCNED

Monitor accepted the first device designator (and unit number if any) and ignored the rest of the command. If

device R is unavailable, Monitor prints the appropriate message. The following completes the desired assign-

ments (assuming available devices).

«ASSICN D 2
D 2 ASSICNED

AS3IGN D 1
1 ASSIGNED

D
When the user has finished working with an assigned device, the RELEASE command must be used to terminate

the assignment and allow other users access to the device. (When a user logs out of TSS/8 any devices he still

has assigned to him are automatically released.)

« RELEASE Terminate a previous device assignment and make the
device availabie to other users.

An assigned device is released when the user types the RELEASE command, a space, the device designator (and

unit number if required), and the RETURN key as shown below.

«RELEASE R
«RELFASE D 3

2-8

In the previous example, the reader and DECtape unit number 3 are released. Monitor prints a dot on the next
line if the release is accomplished; otherwise, it prints a message. If, for example, a request is made to release

a device which has not been assigned to the issuing console, the following happens:

«RELEASE P
ILLECAL REQUEST

Monitor printed ILLEGAL REQUEST after it checked and found that the specified device was not assigned to the

console issuing the command.
NOTE

All commands must be formatted properly; ILLEGAL
REQUEST is printed if the user fails to separate the
device designator and unit number with a space.

When multiple device units exist on the system, each must be individually released. For example:

«RELEASE D 1
+.RELEASE D 2
«RELEASE R

Monitor does not check when releasing a device as it does when checking to assign an available device. The
user could have two device units (for example, two DECtape units) assigned and Monitor would not know which
to release; therefore, device numbers are necessary with a RELEASE command. However, where only one unit
of a specific device (one reader, one punch, etc.) is on the system, the device designator alone is sufficient.

Examples follow.

.RELEASE D (due to multiple DECtape units)
ILLEGAL REQUEST

+RELEASE R {accomplished)

«RELEASE D 1 (D 1is relecsed)

2.9 ERROR MESSAGES

An appropriate error message is printed whenever: a Monitor command cannot be performed at the time it was
requested, a typing error was made, or the command is illegal (nonexistent). Following each error message,

Monitor ignores the request and prints another dot, after which the user can issue another command.

Table 2-1

Monitor Error Messages

Command

Explanation

S1?

LOGIN PLEASE?

UNAUTHORIZED ACCOUNT

ALREADY LOGGED IN?

FULL

TYPE 1BS FIRST

ILLEGAL REQUEST

The System Interpreter does not understand the command.
S1 = command

The user attempted to use a console which is not logged
in.

The user attempted to log into the system with an invalid
account number or name.

The user tried to log in on a console which is already in
use.

The TSS/8 system is full. Another user cannot log in
until one of the present on-line users logs out .

The user attempted to use a system command which
cannot presently be honored due to the status of the
user's program. The message may appear even after the
user has typed BS, since his program may continue until
the I/O in progress at the time of the halt is completed.
The user should wait a few seconds and then type his
command a second time.

The user requested an illegal command. This error
usually results when some parameter has been given an
incorrect value or the request refers to a facility not
owned by the user.

CHAPTER 3

SYSTEM PROGRAM GROUPS

3.1 FOCARL (Formula Calculator of Carleton College)

FOCARL is an easy to use, easy to learn interpretive language per-
mitting not only "immediate" mode but also programs of as large as
100 lines in length and with data pools as large as 150 variables to
be written and executed. Calculations are done with 6 significant
figure accuracy over a range from 10600 to 10-600. programs may be
stored and recalled from disk, chained together when required, and
altered at will. Data may be written and read either sequentially

or randomly. Because of its command structure, FOCARL is the easiest
language to learn of those on TSS/8, even extending to grammar school
children. Error messages are numeric. FOCARL is a rewrite and exten-
sion of the DEC supported language FOCAL and has many of its excel-
lent features. It is generally available only on Digital Equipment
Company's machines. Further information is available in the FOCARL
manual available in the C&MSD main office.

All FOCARL commands may be of the form of a single letter followed by

a space. FOCARL variable names are two characters with the first char-
acter being any letter except F and the second character being any
letter or number. FOCARL permits FORTRAN-like arrays. The commands,
their meaning, and examples are shown in figure 3-1. An example of a
dialogue between FOCARL and a user is shown in figure 3- . All user
input is underlined.

FIGURE 3-1
Command Abbrev. Example Explanation
ASK A ASK X, Y, 2 Type a : and wait for input.
COMMENT C CONTINUE WITH .. Dummy line. No execution.
DO D DO 4.1 Do line 4.1 and return.
DO 5 Do all numbers 5.01 and up until
: RETURN.
FOR F FOR I=X,Y; Execute what follows ";" as I

goes from X to Y by step of 1.

GO G GO Execute program from first num-
bered line.

GOTO G GOTO 5.6 Execute line 5.6 next.

FIGURE 3-1 continued. . .

Command Abbrev. Example Explanation
iF I IFr (B-4) 2.4, Transfer to line 2.4 if B-4<0,
2.5, 2.3 to line 2.5 if B-4=0, and to

line 2.6 if B-4>0.

QUIT Q QuUIT A stop execution command. Re-
turn to edit phase.

RETURN R RETURN Return from DO.

SET S SET A = 3 An arithmetic statement.

TYPE T TYPE "A=",A The output statement.

WRITE W W 3 List out all lines of code be-

ginning with 3.

3.2 BASIC (Dartmouth College's Basic Language)

BASIC is a universal language now available on nearly all major compu-
ting machines. Its language structure is between FORTRAN and COBOL in
some senses. TSS/8 BASIC is an easy to use compiler language although
its command structure is more cumbersome than FOCARL. No "immediate"
mode is possible although editing may be done with BASIC. Programs as
large as 300 lines in length and with data pools of hundreds of vari-
ables in core and thousands on disk or on tape are possible. Storing
of programs on disk, recalling them, changing, and on-line editing are
possible. 1In spite of its more complex command structure, its univer-
sally makes it the language of choice for many applications. Accuracy
is 6 significant figures with numbers as large as 10200. All of the
Dartmouth BASIC capabilities except the MAT command are available in
BASIC version 5. Further information is available in the BASIC manual
available in the C&MSD main office.

All BASIC commands are of the form of a word. BASIC variables are
either a single letter or a letter followed by a number. Dimensioned
arrays are permitted. The commands, their meaning, and examples are
shown in figure 3-2. An-example dialogue between BASIC and a user is
shown in figure 3-4 with user input underlined.

3-2

FIGURE 3-2

Command Example Explanation

DATA DATA 3,4 Numbers are used by READ statement.

DEF DEF FNA (X)= A user defined function with X as a

X+45 dummy variable.

DIM DIM A(34) Dimension an array for the elements A(0)
through A (34).

END END Each BASIC program must have one END
statement.

FOR FOR A=1 TO Used for looping. If Step is omitted

9 STEP 2 STEP=1. Loop ends with NEXT A statement.

GOSUB GOSUB 100 Subroutine call. Must end with RETURN
statement.

IF IF A=3 GOTO 45 If test. Comparitors are £,>,=,{=>=,{.

INPUT INPUT A Input from keyboard.

LET LET A=34 An arithmetic statement.

LEXT NEXT A End of FOR loop.

PRINT PRINT A,B The output statement.

READ READ X,Z Read from DATA statement elsewhere in
program.

REM REM IS THIS OK A comment.

RESTORE RESTORE Reset the pointer so that the next READ

gets the first DATA Statement.

STOP STOP Stop execution. Back to edit phase.

3.3 FORTRAN (Formula Translator)

TSS/8 FORTRAN is a version of this well known language FORTRAN. FORTRAN
programs are written and edited using EDIT and are compiled and executed
via the FORT processor. Error messages are numeric. One input file and
one output file are permitted a TSS/8 FORTRAN program. No subroutines
are permitted. File I/O is via ASCII files, making TSS/8 FORTRAN the
language of choice for certain applications. Input and output FORMATS

are E, I or A with no variation of field width possible. Integer var-
iables range from -2047 to +2047 while real variables range from 10600
to 10-600, " purther information is available in the 4K FORTRAN manual
available in the Computing Services office.

3.4 ALGOL (Algorythmic Processor)

TSS/8 ALGOL is SUBSET ALGOL 60 (IFIP) with other restrictions. For
example, there are no user procedures, Boolean arrays or two dimen-
sional arrays. There are certain size and format limitations. For-
mat control is equivalent to TSS/8 FORTRAN. ALGOL-8 manuals are avail-
able in the Computing Services office.

3.5 PALD (PDP-8 Program Assembler Language - Disk)

PALD is a language in which all of the features of TSS/8 are readily
available. All of the machine language instructions are accessible
via PALD as well as all of the Executive requests in the system
(called IOPs in TSS/8). Complete access to tapes, disk files, real
time clock, and bit manipulation are possible with this language
package. The system consists of PALD itself, EDIT for creation and
editing of source code, LOADER and LINK for creation of executible
code from the Binary output of PALD and ODTHI for on-line debugging
of the created code. Since TSS/8 itself is gquite well protected from
user errors, any code the user may wish to write is runnable in TSS/8.
PALD may be used to write code for stand-alone PDP/8 series machines,
using the disk features of TSS/8 to advantage during the compile and
error checking procedures, and loading only the Binary code into the
stand alone machinery when successful compilation is achieved and
test execution in TSS/8 has been accomplished. A PALD manual is
available in the Computing Services office.

FIGURE 3-3

«R _FOCARL

FOCARL, UFRSION 1€
FUNCTIONS? NO
*
*TYPF 2 + D
L. QUCOR*
* TYPF 920%34.5
*
% 1.1 TYPF "FNTFR A NUMPFR"
*1.2 TYPF !
*1.2 ASK X
x1e4 TYPF X12,!
* ledi TYPF AZ2¢0. ¢ v o -
I E 0 T0 e —— _CNTRE . Tqped.
*¥1e8 GNTH 123
*WEITF ALL
C FOCARL- 1@

1. 10 TYPF "ENTFR £ NUMRER"
¢1.2¢ TYPF !
¢1.30 ASK X
P1lesi TYPF X12,1
1.5 GNTO 143
* G0
FNTFR A NUMFFR
T12

113140 VF‘V
e -1

T-00000
:P220.0F @ ('1.30 “rTRA " «wasb‘
FAUF -
S

+*
-

)

FIGURE 3-4
« PR FASIC

NFW OR OLD--\
NFW PROGRAM NAMF--TEST

RFADY

1¢ _REMARK THIS 1S A TEST FROCRAM
ERNTo -1 %12 (ROBOWT) STROCK 3 TIMES.
4¢ GO_TO_1¢
S¢_FND
LIST

I¢ REMARK THIS IS A TFST PROCRAM

2¢ INPUT X

a¢ PRINT X12

4p €O TO 10

S0 FNT

REATY

? ¢ cwTRL " Ty ped
tC

RFADY

3¢ PRINT Xt3
LIST
1¢ RFMARK THIS IS A TFST FROCRAM
2¢ INPUT X
3¢ FRINT X1t3
4¢ GO TO 1@
5¢ FND

RFADY
RUN
?

-
] —

& 5
xX

RFADY

s)
<
-

-
)
n

CHAPTER 4
FUNDAMENTAL UTILITY PROGRAMS

4.1 epir

TSS/8 Editor provides the user with a powerful tool for creating and modifying source files on-line. Iis precise
capabilities and commands are detailed in the PDP-8 Symbolic Editor Programming Manual (Order No.
DEC-08-ESAB-D). EDIT allows the user to delete, insert, change, and append lines of text; and then obtain

a clean listing of the updated file. EDIT also contains commands for searching the file for a given character.

EDIT considers a file to be divided into logical units, called pages. A page of text is generally 50-60 lines
long, and hence corresponds to a physical page of program listing. A FORTRAN-D program is generally 1-3
pages in length; a program prepared for PAL-D may be several pages in length. EDIT operates on one page of
text at a time, allowing the user to relate his editing to the physical pages of his listing. EDIT reads a page
of text from the input file into its internal buffer where the page becomes available for editing. When a

page has been completely updated, it is written onto the output file and the next page of the input file is made
available. EDIT provides several powerful commands for "paging" through the source file quickly and con-

veniently.

NOTE

The end of a page of text is marked by a form feed (CTRL/L)
character. Form feed is ignored by all TSS/8 language
processors.. :

To call the Editor, type:

«R EDIT

EDIT responds by requesting iNPUT: Type and enter the name of the source file to be edited. If a new file

is to be created using EDIT, there is no input file. In this case, strike the RETURN key. EDIT then requests
OUTPUT: Type in the name of the new, edited, file to be created. The name of the output file must be different
from the name of the input file. If EDIT is being called to list the input file, there is no need to create an
output file; strike the RETURN key. When EDIT sets up its internal files and is ready for a command, it rings
the bell on the Teletype.

For example:

+R EDIT
INPUT:¥XZOLD
OUTPUT : XYZNEW

(Bell rings at this point.)

4.1.1 Summary of Symbolic Editor Operations

Table 4 . l

Summary of Symbolic Editor Operations

Special Characters

Function

Carriage Return
(RETURN Key)

Back Arrow (+)

Rubout (\)

Form Feed
(CTRL/FORM Combination)

Period (.)

Slash (/)

Line Feed ({)

Right Angle Bracket (>)
Left Angle Bracket (<) -

Equal Sign (=)
or Colon (:)

Tabulation

(CTRL/TAB Key Combination)

Text Mode - Enter the line in the text buffer.

Command Mode - Execute the command.

Text Mode - Cancel the entire line of text, continue typing on
same line.

Command Mode - Cancel command. Editor issues a ? and

carriage return/line feed.

Text Mode - Delete from right to left one character for each rubout
typed. Does not delete past the beginning of the line. Is not in
effect during a READ command.

Command Mode - Same as back arrow.

Text Mode - End of inputs return to command mode.

Command Mode - Current line counter used as argument alone or in
combination with + or - and a number (., .+5L).

Command Mode - Value equal to number of last line in buffer. Used
as argument (/-5,/L).

Text Mode - Used in SEARCH command to insert a CR/LF combination
into the line being searched.

Command Mode - List the next line (equivalent to .+1L).
Command Mode - List the previous line (equivalent to .-1L).

Command Mode - Used in conjunction with . and / to obtain their
value (.=27).

Text Mode - Produces a tabulation which, on output, is interpreted as
spaces if bit 1 of the switch register is set to 0, or as a tab character/
rubout combination if bit 1 is set to 1.

4.1.2 EDIT Command Summary

Table 4-2
EDIT Command Summary
Command Format(s) Meaning
READ R Read text from the input file and append to buffer until a form
feed is encountered.
APPEND A Append incoming text from keyboard to any already in buffer until
a form feed is encountered.
LIST L List the entire buffer.
nL List line n.
m,nL List lines m through n inclusive.
PROCEED P Output the contents of the buffer to the output file, followed by
a form feed.
nP Qutput line n, followed by a form feed.
m,nP Output lines m through n inclusive followed by a form feed.
TERMINATE T Close out the output file and return to TSS/8 Monitor.
NEXT N Output the entire buffer and a form feed, kill the buffer and
read the next page.
nN Repeat the above sequence n times.
KILL K Kill the buffer (i.e., delete all text lines).
DELETE nD Delete line n of the text.
m,nD Delete lines m through n inclusive.
INSERT I Insert before line 1 all the text from the keyboard until a form
feed is entered. ’
nl Insert before line n until a form feed is entered.
CHANGE nC Delete line n, replace it with any number of lines from the key-

board until a form feed is entered.

m,nC Delete lines m through n, replace from keyboard as above until
form feed is entered.

MOVE m ,n$kM Move lines m through n inclusive to before line k.
GET G Get and list the next line beginning with a tag.
SEARCH S Search the entire buffer for the character specified (but not echoed)

after the carriage return. Allow modification when found. TSS/8
Editor outputs a slash (/) before beginning a SEARCH.

Table 4-2(Cont)
EDIT Command Summary

Command Format(s) ‘Meaning
SEARCH nS Search line n, as above, allow modification.
(Cont) m,nS Search lines m through n inclusive, allow modification.
END E Qutput the contents of the buffer. Read in any pages remaining in

the input file, outputting them to the output file. When everything
in the input file has been moved to the output file, close it out and
return to the TSS/8 Monitor. E is equivalent to a sufficient number
of N's followed by a T command.

tC CTRL/C Stop listing and return to Command Mode.

4.2 CAT

TSS/8 Monitor maintains a library of disk files for each user. The
System Library Program CAT is used to obtain a catalog of the contents
of this library. For each file, CAT types the size of the file in
units of disk segments. At UWM, the disk segment is 256 (decimal)

words of disk storage. The protection code and extension for the file
are also given. If the program was created by any of the System Library
Programs, it has a protection code of 12, meaning that other users can
read the file, but only the owner can change it. To call CAT, type:

«R CAT

4,2.1 Example of CA1.' Usage

DISC FILES FOR USER (0,57 ON 25-APR-73

NAME SIZE PROT DATE

INPUT .BAS 1 12 25-APR-73
TWOTWO.BAC 1 12 25-APR-73
DATA12.DAT 1 12 25-APR-73
LINKER.ASC 1 12 25-APR-73
RUNNER. 54V 2 12 25-APR-73

In the example above, the first file has as its name INPUT and has an
extension of .BAS. 1Its size is one disk segment (256 words) and it has
a protection code of 12. Protection codes are explained in the Ad-
vanced User Guide. It was created on April 25, 1973. The extension

of .BAS means that the file is a BASIC program file in source format.
The second file TWOTWO.BAC is in BASIC compiled form and can be executed
by a RUN command but not listed or changed. The third file DATA12.DAT
is a BASIC data file. The fourth file LINKER.ASC is an ASCII file for
use by FORTRAN or PALD. The last file RUNNER.SAV is in save format.
Other extensions are discussed in the Advanced TSS/8 User's Guide.

4,2.2 S option of CAT
If the user calls the program CAT with an S option:
.R CAT:S

a short form of a system status report is printed showing which job
slots are occupied, by which users, and where they are. The terms
used in CAT:S are defined in SYSTAT (section 4.3).

I3 SYSTAT (System Status)

It is frequently useful to know the status of the system as a whole; how many users are on-line, where they are,
what they are doing, etc. The SYSTAT program provides this capability. To call SYSTAT, type:

.SYSTAT ‘

KR OSYSTAT ‘
SYSTAT responds by printing on the first line: the version of the TSS/8 Monitor being run, the time, and the
date. SYSTAT reports the uptime which is the length of time in hours, minutes, and seconds since the system

was last put on-line.

SYSTAT lists all on-line users. Each user (WHO) is identified by

his account number. The job number (JOB) assigned to him by the
monitor and the number of the console he has dialed into (WHERE)

are indicated, as is the particular program he is running (WHAT).

The exact running state (STATE) of each user, whether he is actually
executing a job (RUN), typing in (XEY), or our (TTY), doing input or
output to another system device (DISC), in suspension (WAIT) or in con-
trol mode(CTRL)is indicated. The amount of computer time used by each
user (RUNTIME) since he logged in is given.

If. more users ére- on;line than the sy;fem has éore fields ,ro.Hold them, the fact that the system is swapping is
reported. The number of free core blocks used internally by TSS/8 Monitor for Teletype buffering and various
other purposes is typed out. Then SYSTAT reports any unavailable devices, i.e., devices which are assigned
to individual users. The job to which they are attached and their status (AS if they are assigned but not active,

AS+INIT if they are assigned and active) is also indicated. Finally, the number of available segments of disk

storage is reported.

1.3.1 Example of SYSTAT Usage

+R SYSTAT
STATUS OF UWM®S TSS/8.22 AT 15:¢17133 ON 25 APR 73

UPTIME 26:32333

JOB WHO WHERE WVHAT STATE RUNTIME
! 20,60 Koz FOCARL KEY 00:00:29

2 10, © KG4 SYSTAT RUN 00:00:01

AVAILABLE CORE 0K FREE CORE=238

BUSY DEVICES: NONE
135 FREE DISC SEGMENTS
1BS

4.4 PIP (Peripheral Interchange Program)
All TSS/8 System Library programs operate only on files which are on the disk.
Disk is a convenient storage medium for many files; however, it may be more useful to keep some programs on
paper tape. PIP provides a convenient means of transferring files between disk and paper tape, for those users

who wish to preserve copies of their files off-line.

4.4.1 PIP Conventions

PIP may be considered a link between disk file storage and paper-tape devices. To punch out a desired file,
PIP obtains that file from the disk and punches it on paper tape. Similarly, to load a paper tape, PIP inputs
the tape from the reader, then outputs it to a disk file.

The way files are named is important to PIP. Files on disk are always named. Paper tapes, on the other hand,
have no names as far as the system is concemed (although the user can label the physical tape in any manner
he chooses). Paper tapes never have file names; therefore, PIP uses the absence of a file name to indicate a

paper tape (absence of a file name is indicated by striking the RETURN key).

The way in which INPUT: and OUTPUT: is indicated provides the means for determining the direction of file
transfer. If PIP is to get its input from the disk, the input is a file name; if the input is from a paper tape no
file name is given. Similarly, if PIP is to output to the disk, the file name is indicated; if output is to paper

tape, no name is given. To call PIP, type:

R PIP

4.4.2 Using PIP to Load a Paper Tape to a Disk File

To move a paper tape to disk, strike the RETURN key when PIP requests INPUT: Since PIP must output to the
disk, respond to OUTPUT: by typing a file name. When PIP requests OPTION: type T to indicate that the

4-6

paper tape is being loaded from the Teletype reader. For example:

.R PIP
INPUT:

QUTPUT: FILEL!
OPTION:T

The paper tape, in the low-speed reader, is read in and stored in the system as FILET.

That tape must have no 1C or fB character in it.
4.4.3 Using PIP to Punch Out a Disk File

To move a disk file onto paper tape, the use of file names is reversed since PIP must input a disk file and output

it to paper tape. The option remains the same. For example:

+R PIP

INPUT:FILE!
OUTPUT:
OPTION:T

The contents of FILE] are then punched out at the Teletype.

4.4.4 Using PIP with the High-Speed Reader and Punch

PIP can also be used with high-speed paper-tape devices. The format of the INPUT: and OUTPUT: responses

is the same. However, for the high-speed reader, the option is R and for the punch it is P.

Since the reader and punch are assignable devices, they are not always available (other users may have one or
both assigned). Therefore, whenever PIP is given a command which utilizes one of these devices, it checks to
make sure that the device is available. If it is, PIP automatically assigns it (thus, it is not necessary to assign

the device before running PIP). If the device is unavailable, PIP so informs the user. For example:

INPUT?:
OUTPUT: ABCD
OPTION:R

PIP reads the paper tape in the high-speed reader and stores it in the system as ABCD.
INPUT:ABCD

QUTPUT:
OPTION:P

4-7

PIP punches out file ABCD on the high-speed punch.

INPUT:ABCD

QUTPUT:

OPTION:P

DEVICE NOT AVAILARLE

The punch is assigned to another user, or there is no punch on the TSS/8 system, or there is one but it is turned

off.

4.4.5 Using PIP to Transfer BIN Format Files

The examples above work for all ASCII file transfers (except BASIC programs, explained below.) They are also
valid for punching out BIN format files with either high- or low-speed devices. Loading BIN format tapes,

however, is a special case.

BIN format tapes must end with trailer codes. The easiest way to ensure that they do is to cut off the tape near
the end of the trailer code. Failure to do this (or cutting it off very unevenly) does not prevent PIP from loading

tape into the disk file. However, later attempts to load the file with LOADER will result in load errors.

NOTE

UWM's TSS/8 will not allow any BIN format tapes
to be loaded from the low-speed reader.

4.4.6 Moving Disk Files

PIP can be used to move the contents of one file into another. This is often useful in copying a file from another
user's library (providing the file is not protected) into your own library. To copy from disk file to disk file,

specify a file name for both input and output. Reply to OPTION: by striking the RETURN key. For example:

INPUT:FOCAL 2
OUTPUT:FOCALX
OPTICN:

PIP gets FOCAL from account number 2's library and moves it into the file FOCALX.

4.4.7 Deleting Disk Files

One of the principal reasons for punching out files on paper tape is to free disk space. Once punched out, the

disk file is no longer needed. PIP offers a convenient means of deleting files, the Delete option:

4-8

INPUT:ABCD
OUTPUT:
CPTION:D

PIP deletes file ABCD, provided that the file is not protected against being changed.

4.4.8 Transferring BASIC-8 Files

BASIC-8 stores its programs in a unique file format. Therefore, it is not possible to load or punch BASIC-8
files in the usual way. To provide a convenient means of handling BASIC-8 programs, the B option is available

in PIP.

The B option is used for both reading and punching BASIC-8 programs. The responses to INPUT: and OUTPUT:
indicate the direction of the transfer; the high-speed reader or punch is always assumed for the B option. (To

read or punch tapes at low-speed, use BASIC-8 itself.)

PIP assumes that any BASIC-8 tapes it loads are clean and error-free. Only tapes actually created by BASIC
should be loaded with PIP. Tapes created off-line, and thus liable to contain errors, should be loaded low-

speed by BASIC-8 itself with the TAPE command.

4.4.9 {ransferring SAVE Format Files

Another special TSS/8 file format is that of the SAVE files, those programs directly executed by TSS/8. (The
System Library Programs are examples of SAVE format files.) PIP provides the S option, to allow these files
to be punched on paper tape. SAVE format tapes make sense only to TSS/8 PIP. They cannot be input to any

other System Program.

The responses to INPUT: and OUTPUT: indicate the direction of the transfer; the high-speed reader or punch is

always assumed for the S option.

NOTE

SAVE format tapes include a checksum. If PIP detects an incorrect
read, it prints LOAD ERROR, and terminates the load, repeating
the request for input.

4.4.10 Summary of PIP Options

Option Explanation

T Transfer a file between the disk and the Teletype reader or punch. The response to
INPUT: and OUTPUT: indicates the direction of the transfer.

R Read a tape from the high-speed reader and store it as a disk file.
P Punch out the contents of a disk file on the high-speed punch.

D Delete the file specified for input.
B

Transfer a BASIC-8 program file between the disk and the high-speed reader or punch.
The response to input and output indicates the direction of the transfer.

S Transfer a SAVE format file between the disk and the high-speed reader or punch.
The response to INPUT: and OUTPUT: indicates the direction of the transfer.

4.5 COPY

Many TSS/8 installations include one or more DECtapes. For these in-
stallations, DECtape provides a convenient and inexpensive means of .
file storage. The COPY program is used to transfer files between
disk and DECtape.

Any tape which is to be used by COPY must be initialized by an opera-
tor or by the system manager by his running program KLEER. The pro-
gram is reserved to operators and the system manager to prevent acci-
dental erasure of user tape information. COPY format tapes should not
be used for other programs (such as direct output of a BASIC program) .
If they are, they must be reKLEERed by an operator. Tapes purchased
from C&MSD are delivered KLEERed and ready for COPY use.

4.5.1 Using and Calling COPY

COPY is the intermediary between disk and DECtape. To write a disk file out to DECtape, COPY inputs the
file from the disk, then outputs it to the DECtape. To bring a DECtape file onto the disk, COPY inputs from
the DECtape, then outputs to the disk. '

Files kept on DECtape have file names just as they do on the disk. To avoid confusion, the user must tell COPY
where the file is to be found. If it’is on DECtape, the DECtape designation and the number of the DECtape
unit must preface the file name. The DECtape number is always separated from the file name by a colon. Thus
D1:FILE1 means the file name FILE1 on the DECtape which is currently mounted on DECtape unit number one.
The number of available tape units varies among installations. The maximum is eight, (numbered 0 - 7). 1If

a file name is not prefaced by a DECtape number, then this file is assumed to be on the system disk.

Files stored on DECtape do not have protection codes in the sense that disk files do. They are, however, pro-

tected against unauthorized access. When a DECtape is not mounted, it is not available to any user. When it

is mounted, it is available only to the user who has assigned the DECtape unit on which it is mounted. Even

" then it can not be altered unless the DECtape unit is set to WRITE ENABLE.

Users should be sure to assign a DECtape unit before mounting their tape, and dismount the tape before releasing

the device. Normally, the DECtape unit to be used should be assigned before calling COPY.

To call COPY, type:

e B COFY

COPY responds by asking which option the user wishes to employ. The COPY options are discussed below.

4.5.2 Loading Files from DECtape

To load a file onto the disk from DECtape, use the COPY option. When COPY requests OPTION- respond with
COPY, or C, or strike the RETURN key (the COPY option is assumed). When COPY requests INPUT- type the
number of the DECtape unit on which the file can be found (DO, DI , D2, D3, D4, D5, D6, or D7) followed by
a colon and the name of the file on the DECtape. When COPY requests OUTPUT- type and enter the name to
be given to the output file on the disk. COPY then moves the DECtape file onto the disk. (When using COPY,

it is not mandatory to insert a space between the device designator and the device number.) For example:

OPTION- COPY
INPUT - D4:PQR
OUTPUT - PQR

If COPY cannot find the DECtape specified, (the selected drive does
not have a tape mounted on it) it will respond with DECTAPE SELECT
ERROR and return to the OPTION request. If the requested file name
does not exist on the dectape on the requested drive, COPY prints a
new request for INPUT preceded by a ?. If the disk file specified
for output already exists, COPY prints a new request for OUTPUT pre-
ceded by ?. For example: L
OPTION~- COPY

INPUT- D4a: FORK

DECTAPF SFLFCT FEROR

OPTION=- COFY
INPUT- D1:FORX
?INPUT=- D1:FOCAL
OUTPUT- FILF

4.5.3 Saving Disk Files on DECtape

Saving o disk file on DECtape is very similar to loading one. The option is still COPY. For input, respond with
the name of the file on the disk. For output, type the DECtape unit number, colon, and the name to be given

to this file. For example:

OPTION - C
INPUT - ARCD
OUTPUT - D4:ABCD

If COPY cannot find the file on the disk, or if it is protected, COPY
prints a ? and repeats the request for input. If COPY cannot set up
the desired DECtape file (a file by that name already exists on the
tape) COPY types a ? and repeats the request for output. If there is
no tape on the specified drive, or if the tape is not WRITE ENABLED,
the error message DECTAPE SELECT ERROR is printed and COPY returns to
the request for the OPTION.

4.5.4 Listing Directories

COPY can be used to list the directory of a device. To list a directory, respond to OPTION-by typing LIST, or
just L. COPY then asks which device it is to list. To list @ DECtape's directory, respond with the device name
(DO, ...,D7). Do not follow it by a colon. For example:

ORTION=- L
DEFVICF=- DA

1636« FRFF TLOCKS
N AME SIAF NATE
A112 «ASC 32 13-FFP-73

The unit of DECtape storage is the block, which is 128 (decimal) words. Because the unit of disk storage, the seg-

ment , is generally 256 words, a file occupies twice as many blocks of DECtape storage as it did segments on the disk.

COPY can also be used to list the user's disk directory. Use the LIST option, but respond to DEVICE~ by
simply striking the RETURN key. The directory listing is similar to the listing obtained by running the CAT

program.

4.5.5 Deleting Files

COPY can be used to delete files, either on the disk or on a selected DECtape. To delete a file, respond to
OPTION- by typing DELETE, or just D. Respond to INPUT- by typing the name of the file to be deleted.

4-12

If the file is on a DECtape, preface the file name with the DECtape unit number and a colon. For example:

OPTION - DELETE
" INPUT - D«4:ABCD

If COPY cannot find the file to be deleted, or having found it, cannot delete it (it is a protected disk file or
a DECtape file on a unit which is not WRITE ENABLED), COPY prints a ? and repeats the request for INPUT-.

4.5.6 Moving Files From One Place to Another

COPY can be used just like PIP to copy a file from another user's
space to yours. To do so, respond to OPTION- by typing C or COPY
to the INPUT-request by typing the file name and user number, sepa-
rated by a space, and to the OUTPUT-request by typing the name
desired:

OPTION-C
INPUT -CAT 2
OUTPUT-CATALG

Will copy the file CAT from user 2's file space to the user's space
in the location CATALG. :

4.5.7 Renaming a File

Copy can be used to rename a file or change its extension. To do so,
respond to the OPTION- request by typing R or RENAME and the name and
location (if on tape) of the file after INPUT-. The new name may be
typed after OUTPUT-. If no extension is typed after OQUTPUT-, the ex-
tension is unchanged. 1If one is, it becomes the new extension.

OPTION-R
INPUT-LOOP
OUTPUT-LOOP.BAS

(LOOP used to have an extension of .ASC)

4.5.8 Control C
At any time in COPY the user may type a letter C while holding down the

CNTRL key. Copy will abort its current operation, respond with the
symbol $#C, and return to the OPTION- mode.

4-13

4.5.9 EXIT from COPY

To leave COPY respond to OPTION- by typing E.
in COPY.

drives used

This will release all

4.5.10 Summary of COPY Options
Option Explanation
COPY Transfer a file between disk and DECtape
LIST List a directory
DELETE Delete a file
RENAME Change name or extensionor protection

EXIT Leave copy and release drives

4.5.11 UWM TSS/8 COPY Conventions

If an operator is on duty (as indicated in the LOGIN message or by
someone logged in on KOO) he may be asked to mount a particular tape
on a drive by a TALK O command. The user should assign a drive be-
fore issuing that command:

NS I

' 2 ASCICGNED

« T [PLFASEF MIINT S2¢¢1 NN D?
% KOEQG/E0aRY (A

K COFY '

OPTINN= tFTA ¢ DOVF WITH PPe THAVKS.
k% KEO/CQH3: GA

OETION- F

tPS

In the above, the user assigned drive 2, asked the operator to mount
a tape (#2001) on drive 2 with write enabled ($) and then used the
tape with COPY. Before ending with the E option, he talked to the
operator again (using a CTRL/B to return to MONITOR) asking to have
the tape removed. After the operator indicated that he had complied,
the user exited with the E option. Note that if the user had exited
COPY before insuring that the tape had been removed he would have
left an assignable tape free in a mode in which it could have been
written on. This is bad practice.

When no operator is on duty, the system is left with an auxiliary

libary tape on drive 1 with the WRITE ENABLE switch off. Any user
may copy any of the files from this tape for his own use. On drive
O is left a scratch tape with the WRITE ENABLE switch on. Any user

may write files on this tape. Users are requested to not delete
files not belonging to them, and no to add useless files to this
tape.

4-14

4.5.12 ‘Example of COPY Usage

« R COPY

QFTION= C
INPUT=- D110
NUTFUT=- @112

OFPTION=- 1,
DEVICE-

PISC FILES FOR USFR 24,3 OV 18=FFP- 73,

NeME SIZFE pedT DATE

QUFUFZ «RAS 3 12 7=FFR=173
ALLOC «FRAS 2 12 H-FFF=173
CRFATF.FAS 1 12 13-FER=-173
INPIIT .Pog 3 12 13=FFF=-72
AUC s BAS 3 12 13~FEF=-73
CAND «BAS 3 12 13~F3ER=-73
7112 «05C 15 12 15=FFF=-73

TOTAL DISC SFOMFENTS: 32
OFTION=- In
INPUT=- G112

NPTION~- R
INPUT=- CUERUNZ
OUTPUT= CUFUE <1@>

OPTION- L
DEVICF=-

DISC FILFS FOR USER 2453 ON 15=-FFP=72.

N AMF SIZF PHEOT DaTE

CUFUF «R2S 3 1@ T=FFP= 173
ALLOC «.FAs 3 12 B=FFEP=173
CRFEATFPAS i 12 13-FFB=-173
INPUT «RAS 3 12 13-FFF=-173
AYUR «FAS 3 12 13~FFF=-173.
CAND +RAS a i2 13-FFP=-173

TOTAL DISC SFCMFVTS: 16
OPTION=- F

tPS

4-15

4.6 DUMP

DUMP is a program which will dump a disc file in octal. DUMP may be
executed by typing:

.R DUMP
The program will begin by typing:
FILE:
You should then enter the ﬁame of the file you want to dump. The file

name may have several forms. The following list illustrates some of
the valid forms:

FILE: PROG

FILE: "PROG"

FILE: PROG N ('N' is the account number of the owner)
FILE: "PROG" N

FILE: PROG* ('*' indicates the system library)

FILE: "PROG"*

If an imbedded space, slash, or asterisk, or a leading quote (") is
desired in the file name, the name must be enclosed in quotes ("). If
the name is enclosed in quotes, a quote character in the file name must
be given as 2 consecutive quotes. Thus, the file name AB"BA can be
specified in either way:

FILE: AB"BA
FILE: "AB""BA"

The program will then proceed to dump the file in octal; the dump may
be terminated at any time by typing #C (ctrl/c). E

A second method of specifying the file name is as follows:
.R DUMP: PROG
Here again, the file name may have any one of the above forms.

If the dump is desired to start at an address other than zero, you
may specify the starting address by typing a slash after the filename-
account specification followed by the desired starting address. The
following examples illustrate this for a dump of file "prog" beginning
at address g49g9:

.R DUMP:PROG / Q@400
.R DUMP: PROG 426@/498 (Here "PROG" belongs to user 426f)

.R DUMP
FILE: "PROG"/40g2
FILE: PROG*/40fF (Here "PROG" is from the system library)

4.7 LABLDP

LABLDP is a program which allows the user to label a tape punched on
the high-speed punch; after the tape is labeled, the program loads and
starts PID, which may then be used to punch out a disc file immediately
following the label.

To execute LABLDP, make sure the punch is available, then type:
.R LABLDP

When LABLDP is running, each character typed will be punched as a
large readable label on the high-speed punch. When you have punched
the label, type tC (ctrl/c); this will cause PIP to be loaded and
started. Your disc file may then be punched out normally using PIp.

4,8 LINK

LINK is a program which will input up to 2§ binary-format files and
output a save-format Iile. LINK may be executed by typing

.R LINK
The program will begin by typing
INPUT:

You should then enter the name(s) of the input files. The filenames
may be in any of the following forms:

INPUT: FILE

INPUT: FILEl, FILE2

INPUT: PROG 123 ('PROG' belongs to user 123)
INPUT: PROG* ('PROG' is in the system library)
INPUT: "PROG",PROG, FILE 123, "TEST 1"

If the filename contains an imbedded space, comma, or asterisk, or
a leading quote ("), the name must be enclosed in quotes ("). If

the name is enclosed in quotes, a quote character in the file name
must be given as two consecutive quotes. Thus the name AB"BA may

be given in 2 ways:)

INPUT: AB"BA
INPUT: "AB""BA"

In addition, the following control characters are recognized:
Rubout - Deletes one character at a time

Ctrl/U - Deletes the entire line
Ctrl/C - Restarts the program; INPUT: is again requested

After all, input files are checked for availability, link types
OUTPUT :

You may enter one file name in any of the above forms or you may just
type <return> . If you enter a file name, the file is opened or, if
it does not exist, it is created. If no output file is specified,
link scans the input file(s) as if they were being converted but the
output is merely thrown away. If you specify an output file, link
will type

OPTION:

Here you may type an "0O" (oh) or {RETURN>. If you type <RETURND,

link will reduce the output file to ‘one segment and zero that segment.
If you type "O", link will overlay the output file with the new data;
thus providing a simple way to apply large patches to programs. Link
will always zero each new segment as it is added to the output file.

If link finds no errors during the conversion, it will finish by
typing the message "DONE”.

4-18

4. 9 LOGOUT (A program to log the user out of TSS/8)
LOGOUT may be called by typing:

.R LOGOUT
or

. LOGOUT
or

.K

It logs the user out of the system, releases the teletype port for
another user, releases all assigned devices (DECtapes, paper tape

reader, etc.) and deletes all files with a .TEM extension. LOGOUT
permits various options which delete ALL unprotected user files (K),

list all files before logging out (L), or permit the user to individually
save or delete files (I).

To use one of these features, the user types
.LOGOUT : L

which will log the user out and delete all of his unprotected files.
.LOGOUT: I

will produce a line by line listing of all files. The user may re-
spond at the end of each line with the letter P and a carriage return
to protect the file from erasure (use P only if you know how to change
the protection mask, as later deletion will not be possible without
this knowledge); with the letter S and a carriage return to save the
file without protection; or only a carriage return to delete the file.
Files with .TEM extension are deleted without any response by the
user. A typical episode with LOGOUT:I is shown below.

4.10 LOGIN (a program to print the message of the day)

The program LOGIN is automatically run when a user logs into the
TSS/8 system. It permits a message to be typed indicating whether
or not an operator is on duty, and printing his operator number if
one is present. LOGIN then prints the "message of the day" for

each user as he logs into the system. LOGIN's output can be aborted
at any time by the user typing [CTRL] C (the letter C with the shift
button marked [CTRL] depressed) if seeing a repetition of the LOGIN
message is not desired. Users are reminded that crucial information
is sometimes stored in the message and it should not be bypassed
until enough of it has been seen to insure that there is nothing
new in it for you. A repetition of the LOGIN message will result

if the user types:

.R LOGIN

when in monitor mode. Typical LOGIN output is of the form:

R LOGIN

OPERATOR 57 ION DUTYe. TSS/8 WILL BE HALTED AT 10:30 THIS EVENING

FOR INSTALLATION AND TESTING J)F NEW MJINITOR COMMANDS. USERS WH) WILL
BE ADVERSELY AFFECTED SH)JLD CALL THE NUMBERS BELJWe.

PROBLEMS? CALL 963-5440)R =4010.

tBS

LOGIN is a UWM written program and will run only on TSS/8 systems
which have been modified for UWM changes.

4.11 CPASS (a program to change passwords)

CPASS is a program which permits certain account holders to change
their passwords at will. In UWM TSS/8 only those accounts whose
third digit is 0, 1, 4 or 5 can change their password using CPASS.
Accounts whose third digit is 2, 3, 6 or 7 cannot. Thus account 2403
can use CPASS while account 2423 cannot. Normal practice is to give
non-CPASS accounts to classes where no individual student should be
permitted to "lock out" the class by changing the password for the
class account. (Instructors of such classes are able to change the
password by requesting this service from the system manager.)

To use CPASS, type:
.R CPASS
The program will respond:

OLD PASSWORD: The user must type in his present password followed

by a [return]. (Any error at this time will result in the user being
logged out without warning with the password left unchanged.) The old
password will not echo to insure its security.

When the old password has been accepted by the program, it will respond:
NEW PASSWORD

: The user may enter a new password (4 characters) followed by a
[return]. The new password will echo so that the user may read it
and copy it down but it will be overstruck after the [return] key is
pressed to maintain its security. The system will then respond as to
whether the password has been changed or not depending on the account
number (see above).

[CTRL] C may be struck at any time to halt CPASS without changing the
password. CPASS is a UWM written program and will work only on TSS/8
systems which have been modified for UWM changes.

TSS/8 LABLDP

| A PROGRAM WHICH PUNCHES BLOCK |

COMPUTING SERNICES PUBLICATION

THE UNINERSITY OF WISCONSIN-MILWAUKEE

OCTOBER, 1973 PUBLICATION NUMBER 102

TSS/8
LABLDP

CHARACTERS INTO PAPERTAPE

da7ay1 8/ss.

Description

LABLDP is a program which runs in a TSS/8 environment
which punches large block characters into a papertape in
easily readable format. The user enters characters into a
"punch buffer". When either control C or "Bell" is struck,
LABLDP will punch the contents of that buffer and then auto-
matically cause PIP to be swapped into user space and started.
LABLDP thus can be easily used to label a papertape which may

then have a file dumped onto it by PIP.

Use

To use LABLDP type:

R LABLDP
while in Monitor mode. 1If the papertape punch is already in
use, LABLDP will respond, "PUNCH BUSY," and halt. Otherwise,
LABLDP will assign the punch and permit the user to enter text.
An examination of the text already entered can be obtained at
any point by striking the LINE FEED key. If the text to be
entered extends for more than one line, the CARRIAGE RETURN
key may be used. (CARRIAGE RETURN inserts one space into the
punch buffer.) If a typing error is made, the RUBOUT key will
echo and delete one character from the output string each time
it is struck.

Preceding the text entered by the user, LABLDP puts in the
punch buffer the account number of the user enclosed by brackets,
and the current date. If this information is not desired as part
of the label, the RUBOUT key may be struck several times in order

to erase any desired portion.

The characters are punched into the papertape in a format
6 bits high by 5 bits wide. Bits 1 through 6 are used with
bit 1 at the top of the letter. Bit 8 is always punched as
an underscore. This underscore may be removed by depositing
0000 in location 0010. Any of the ASR 33 printable characters

(ASCII 240-337) may be used. All other characters are ignored.

Special Characters

LINE FEED: Typing a line feed causes the current punch
buffer to be output on the user teletype. If the punch buffer
is more than 80 characters long, a CR-LF sequence is inserted
into it for the sake of appearance. The line feed may be used
at any time.

RUBOUT: The rubout causes the last character input to be
echoed and then deleted from the punch buffer. As many char-
acters may be erased as desired. If too many rubouts are used,
the BELL will be rung.

CARRIAGE RETURN: This character causes a CR-LF seguence
to be sent to the user console and a space to be sent to the
punch buffer.

Bell (CTRL G) or

CTRL C

Send punch buffer to the punch, load PIP, jump to loca-
tion O. The punch is not released. (Because of the nature of
the timing loops in TSS/8, Bell is a safer method of exiting

LABLDP than CTRL C.)

System Information

LABLDP occupies two segments (512 words) of disc space
and requires that PIP be available on the system library
(user 2). LABLDP will run properly in its present form

through January 4, 1975.

UIWILT

G TSS/8

& FOGARL

L
S
D

THE UNIVERSITY OF WISCONSIN—MILWAUKEE

COMPUTER AND MANAGEMENT SERVICES DIVISION

INTRODUCTION

This manual describes FOCARL (Decus No. 8-329), a superset
of FOCAL, 1969 developed at Carlton College for the TSS/8 time-
sharing system. This manual is not intended as a FOCARL primer;
rather, it is a brief description of the FOCARL language with
emphasis placed on the differences between FOCARL and FOCAL,
1969. The only obvious difference to the casual FOCAL user is
the absence of the equal signs when typing the results of cal-
culations.

To use FOCARL, type:

.R FOCARL
FOCARL will identify itself and ask
FUNCTIONS?
The possible responses to this are described under FOCARL

Functions (page 3).

TABLE OF CONTENTS

General Notes

Special Characters
FOCARL Abbreviations
FOCARL Functions
FOCARL Variables
Basic Command Summary

ASK
TYPE
SET

DO
RETURN
FOR
QUIT
IF
GOTO
WRITE
ERASE
MODIFY
COMMENT
LoGouT

High-Speed Papertape Use

Disc Storage of Programs

FOCARL LIBRARY Commands
LIBRARY SAVE
LIBRARY CALL
LIBRARY DELETE
LIBRARY EXTEND

Line Printer Output

Low~-Speed Papertape Use

Disc Data Files (3L)
Output Files
Input Files
Using the Same File for Input and Output
Notes on Using Data Files
ASCII Format I/0 (%A)
Evaluation of Alphabetic Responses to INPUT
Execution Notes

Appendix A - FOCARL Command Summary

Appendix B Table of Character Codes

FOCARL Error Codes

Appendix C

Appendix D - Sample Program with Tracing

24
26
29
31

GENERAL NOTES ON THIS MANUAL

1. (CR) denotes a carriage return.

2. The only spaces necessary in a line are the
spaces separating the command (and sub-command
in LIBRARY commands) from its argument. The
other spaces shown in the command lines in this
manual are included for ease of reading.

3. The arrow (}) is used in this manual to denote

control characters. For example, $C indicates
the C pressed while holding the CTRL key.

KEYS WITH A SPECIAL FUNCTION IN FOCARL

CARRIAGE RETURN (CR)

Typing a carriage return directs FOCARL to analyze and exe-
cute the line just typed in. Until a carriage return is typed,
FOCARL merely reads in the characters one-by-one and stores them.
FOCARL also generates a line feed in response to every user-typed
carriage return. In a MODIFY command, a carriage return termi-
nates the line at the last character typed, deleting the untyped
portion of the line.

LINE FEED (LF)

Recognized by FOCARL as equivalent to a CR, except in a
MODIFY command; in a MODIFY command, it retains the remainder
of the searched line.

ALTMODE

When used in response to an ASK statement, it directs FOCARL
to retain the former value of the variable.

RUBOUT

Except when inputting data, RUBOUT will delete one previous
character for each time it is struck, up to the * at the left
margin, or up to the line number when used in a MODIFY command.

<« (SHIFT O)

In response to an ASK command, deletes the value just typed
in, allowing the user to type in another value. '

In a MODIFY command, deletes that portion of the line al-
ready typed (doesn't delete the line number).

When typing in a program line or a command string, <-deletes
that part of the line to the left of it.

HERE IS

Used for punching leader/trailer tape when punching a low-
speed paper tape on the TTY punch.

CONTROL CHARACTERS (f denotes control key depressed)

tC--used to stop execution of a program running in

. FOCARL
$G~-used in a MODIFY command to change the search
character
tG-~used to sound the TTY bell when in an I/0
statement

tL--used in MODIFY command to continue listing
line up to the next occurrence of the search
character

tR--unduplexes TTY to read in paper tapes on TTY
tape reader

§T--duplexes TTY; used following $R to restore
printing

ABBREVIATIONS ALLOWED IN FOCARL

All commands in FOCARL may be abbreviated to their initial
letters. Thus, any word with the same initial letter as a
FOCARL command will be interpreted as that command. Examples:

COMMAND EFFECT

TRY A Types the value of A

GOSH Executes program starting at beginning
DARNIT ALL Executes program starting at beginning

There are two pairs of commands with the same initial let-
ters: :

GO/GOTO LOGOUT/LIBRARY

G without an argument is GO--begin execution at lowest
line number .

G with an argument (e.g., G 1.fg7) is GOTO--begin execution
at line number specified.

L without an argument: LOGOUT--return to monitor.

L with arguments: LIBRARY command.

First argument should be sub-command (¢,D,S,X,I,0)
Second argument is file name.
Third argument is line number (in LIBRARY XTEND only).

Multiple commands may be specified on one line, sO long as

they are separated by semi-colons. There are certain restric-
tions:

1. Any command string following a FOR command on
the same line will be executed once for each
iteration of the FOR command.

2. Any command following a COMMENT statement on
the same line is assumed by FOCARL to be part
of the comment and won't be executed.

3. Any command following an ERASE or LIBRARY DELETE
command on the same line will not be executed.

4. In input/output statements, commas separating
direct quotes, !'s, and #'s from the arguments
following them may be omitted.

5. Execution of a MODIFY, WRITE, QUIT, ERASE (with

an argument), LIBRARY CALL, or LOGOUT command
in a program will terminate program execution.

FOCARL FUNCTIONS

In the list of function forms and comments which follows,
(a) denotes a number, a variable, or an arithmetic expression
e.g., FABS(BC), FSQT(7), FITR (SR*¥443/ (L*2.1)), FABS (FCOS
(1.57)) . '

PERMANENT FUNCTIONS

Square root FSQT(A) A=>@; otherwise error
Absolute value FABS (A) absolute value of A
Sign of the number FSGN(A) yields +1 if (A)=>@:;
-1 if (A)< g
Integer part FITR(A) yields integer portion
of number, not greatest
integer<{=
FITR(7.4)=7, FITR(-3.5)=-3
Random number FRAN(A) here the value of A does

not influence the value of
the function call; generates
a number between ¢ and 1

Close input file FCLS(A) wuninitializes data file as
input file

Line printer output FLPT(A) if A=f, output on line
printer; if A>@ or A<,
TTY output

OPTIONAL FUNCTIONS

Exponential FEXP (A) raises E (2.71828) to the
(A) power -616<4=(A)=<616
Natural logarithm FLOG(A) FLOG(2)=.69315, FLOG(2.71828)

=1.08
Arctangent FATN(A) (A) is an angle in radians
Cosine FCOS(A) (A) is an angle in radians
Sine FSIN(A) (A) is an angle in radians

RETAINING OPTIONAL FUNCTIONS
Legitimate responses to the question FUNCTIONS? are:

AL(CR) or ALL(CR) Retains all optional functions

N(CR) NONE(CR) or (CR) Retains no optional functions

FEXP (CR) EXP(CR) or E(CR) Retains exponential function

FLOG(CR) LOG(CR) or L(CR) Retains natural logarithim

FATN (CR) ATN(CR) or A(CR) Retains arctangent

FCOS (CR) COS(CR) or C(CR) Retains both sine and cosine
functions

FSIN(CR) SIN(CR) or S(CR) Retains both sine and cosine
functions

To retain several of the functions, separate the names with
commas. (E.g., FUNCTIONS? E,FLOG,ATN(CR))

All responses must be followed by a carriage return. If

the response was not understood, FOCARL will ask FUNCTIONS?
again; when a correct response is given, FOCARL types an *.

VARIABLES IN FOCARL

VARIABLE NAMES

A variable name in FOCARL must begin with a letter other
than F. F is used to denote a function call and cannot be
used as the first letter of a variable name. After the initial
letter, any alphanumeric character (a letter [A=Z] or a digit
[(#—9]1) may follow. FOCARL only remembers the first two char-
acters of a variable name, so any two variables whose names be-

gin with the same two first characters are considered to be the
same.

*SET VIAL=12(CR) “ *xgRT S123=7.¢2(CR)

*SET VILE=35 (CR) *SET S124=14/3 (CR)
*TYPE VIAL,VILE (CR) *TYPE S123,S124 (CR)
35 35%* 4,667 4.667*

SUBSCRIPTED VARIABLES

You may differentiate between two variables with the same
first two (or more) characters by using subscripts. The sub-
script must be a non-negative integer, enclosed in parentheses.
Any non-subscripted variable is assumed to have a subscript of
zero.

*SET C=3.§2(CR)

*SET C(f)=5.8(CR)

*TYPE C,C(#) (CR)
5.8 5.8%

LISTING THE DEFINED VARIABLES

To get a list of the variables that have been defined and
their current values (stored in the symbol table) , type
TYPE $ (CR).

ARITHMETIC OPERATIONS AND PRIORITIES

+ Addition
- Subtraction

* Multiplication
/ Division

4 Exponentiation

The form is A4B, where A is an arithmetic expression and
B is a non-negative integer.

The priority of arithmetic operations is:

1. Exponentiatidn
2. Multiplication and division (equal priority)
3. Addition and subtraction (equal priority)

Evaluation proceeds from left to right according to the
above priorities, respecting the associations of parentheses.
Thus the expression, 5.2%(3.7/2.244-8.89/(FSQT(4.8)*7}) is eval-~-
uated as follows:

5.2 * (3.7 / 2.24 4 -8.99 / (FSQT(4.8) * 7))
5.2 * (3.7 / 23.4256 - 8.49 / (FSQT(4.8) * 7))
5.2 * (g.15795 - 8.09 / 2.19989 * 7)

5.2 * (#.15795 - 8.09 / (15.3362))

5.2 * (@#.15795 - @#.52751)

5.2 * (-@.36956)

-1.92.72

COMMAND SUMMARY

INPUT/OUTPUT COMMANDS: ASK, TYPE

ASK

The ASK command is the input statement of the FOCARL lang-
uage. It allows the user to enter numerical values which the
computer stores and references as named variables. FOCARL
types a ":" to indicate that it is waiting for a numerical
value to be entered. The user must type a delimiter (see next
paragraph for allowable delimiters) following the number, be-
fore FOCARL will recognize the value. This is necessary because
FOCARL does not use formatted input. If a mistake is made in
typing in an input value and a delimiter has not been typed,
the error can be corrected by typing < (shift 0) and then typing
the correct value followed by a delimiter. Hitting the ALTMODE
key in response to the ASK statement's ":" instructs FOCARL to
retain the former value of the variable, instead of accepting
an input value.

The following characters may be used as delimiters following
a value input in response to an ASK command: comma, colon, semi-
colon, carriage return, or a space.

Any of the delimiters, except a space, may be used without
typing in a value to specify a value of zero for the variable.
A space must be preceded by a value, a minus sign or a decimal
point before it will serve as delimiter.

TYPE

The TYPE command is FOCARL's output command. It is used
to print out the results of the computer's calculation so they
can be seen and interpreted by the user.

OPTIONS IN BOTH ASK AND TYPE COMMANDS

QUOTE

A character string enclosed in quotation marks will be
reproduced verbatim when that statement is executed. 4G
(bell) is the only special character which will be reproduced
correctly.

EXCLAMATION POINT (!)

An exclamation point as an argument of a TYPE or ASK state-
ment will cause FOCARL to generate a carriage return/line feed
combination.

NUMBER SIGN (#)

as an argument of an I/O command will generate a car-
riage return without a line feed.

DOLLAR SIGN ($)

The $ option will generate a print-out of the symbel table,
a list of all of the defined variables and their current values.

QUESTION MARK (?)

A variable name enclosed in ?'s in an I/O statement will
be typed out. The ASK statement will type a colon after the
variable name, and then wait for the user to type in the value;
the TYPE statement will follow the variable name with its cur-
rent value. Multiple variables can be included in the same set
of ?'s, as long as they are separated by spaces or commas. In
this instance, FOCARL will type both the variable name and the
delimiter before typing the value (TYPE]} or : (ASK).

NUMERIC FORMATTING IN THE TYPE STATEMENT

There are three types of numeric formatting available in
FOCARL: integer, floating-point or decimal, and exponential
or E format. The format is specified by using the % option.

b Yields b-place integer output;

ga.bc Yields a-place output with up to bc
digits to the right of the decimal point;

% Yields exponential format: a six place
decimal followed by the letter E, fol-
lowed by the power of ten to which the
decimal is to be multiplied by to yield
the correct value.

If a number has more significant digits to the left of the
decimal point than is allowed for by the integer or floating-
point format that number will be output under a modified E-format:
only the number of significant digits (up to 6) given in the
specified format are retained in the decimal part of the E-for-
matted number.

If a number contains more significant digits to the right
of the decimal than is allowed under the output format, the num-
ber will be rounded to fit the specified format.

Once a format is specified, output will continue to be
typed under this format until another format is requested or
a default condition causes output to be typed in E-notation as
explained above.

ASSTIGNMENT STATEMENT

SET

The SET statement associates a numeric value with a vari-
able name. The syntax of the set statement is: SET va=ae, where
va is a variable and ae is an arithmetic expression, i.e., a con-
stant, variable function, or formula.

CONTROL COMMANDS: DO, RETURN, FOR, QUIT

DO

The DO command is used to suspend sequential execution of
commands, execute intervening commands, and then return to se-
quential execution. The intervening commands can be a single
line or an entire group as specified by the argument of the DO
command. The DO command without an argument, used as a direct
command, will be interpreted as a DO ALL command by FOCARL. This
begins execution at the smallest line number.

RETURN

The RETURN command is used in conjunction with a DO stace-
ment. A RETURN command signals the end of execution of a DO
command. Execution continues with the next sequential command,
or, if the DO was nested internal toc another DO command or FOR
iteration, execution continues as they direct.

FOR

The FOR command is used to perform iterations, the syntax
of a FOR statement is:

FOR VA=VI,VF,IN; command string

When the FOR command is executed, the variable, denoted
by VA, is set equal to the initial value, VI. With VA=VI, the
command string following the ";" is executed, then the incre-
ment, IN, is added to VA and this value is checked against the
final value, VF. If VA<=VF, the command string is executed again,
VA is incremented by IN, and its value again compared with VF.
This cycle continues until VA>VF. Then execution is directed
to the next sequential line, unless the FOR loop was nested with-
in another FOR loop. With nested FOR loops, the completion of
the iterations of the inner FOR loop is the completion of only
one execution of the command string of the outer FOR loop. Thus,
the inner FOR statement will be directed through all of its
iterations for each iteration of the outer lcocop. Thus, the
statement:

FOR I=1,4,1;FOR J=1,3,1;TYPE "*"

Will cause the 7TyYypr command to be executed 12 times. If
no increment is specified in the FOR statement, FOCARL assumes
an increment of 1. Thus, the statement could have been written:

FOR I=1,4;FOR J=1,3;TYPE "*"

QUIT

The QUIT command terminates the program execution.

BRANCH COMMANDS: IF, GOTO

IF

The IF statement is called a conditional branch statement,
that is, certain conditions (values of variables, usually) must
exist before it will transfer control (branch) to ancther part
of the program. The format of the statement is:

IF (AR) AB.CD, EF.GH, IJ.KL

Where AR is an arithmetic expression, and AB.CD, EF.GH,
and IJ.KL are line numbers, the IF statement checks for three
conditions: <@, =@, >@. If the value of the arithmetic expres-
sion is negative, it branches to line AB.CD; if zero, to line
EF.GH; if positive, to line IJ.KL.

GOTO

GOTO is an unconditional branch statement. Whenever a
GOTO AB.CD command is encountered, the program continues execu-
tion beginning at line AB.CD until the end of the program or un-
til a QUIT statement terminates the program run.

EDITING COMMANDS: WRITE, ERASE, MODIFY

WRITE

The WRITE command is used for listing out the user's pro-
gram. There are three options to the WRITE command:

WRITE AB.CD Prints out line AB.CD (if it
exists)
WRITE B Prints out all of group B (if

it exists)
WRITE or WRITE ALL Lists out the entire program

The WRITE command can be used either as a direct or an in-
direct command, but there is little reason to use it as an in-
direct command.

ERASE

The ERASE command is used to delete information stored in
core. There are four options to the ERASE command:

ERASE AB.CD Deletes line AB.CD from your pro-
gram (if it existed)

ERASE B Deletes all of group B (if it existed)

ERASE Erases the symbol table (i.e., sets
all variables = #)

ERASE ALL Erases entire program and symbol table

The option ERASE is the only one which should be programmed
indirectly. It is often included at the beginning of the pro-
gram before any variables have been defined, to set all vari-
ables equal to zero, eliminating any "“carry-over" from the pre-
vious program.

MODIFY

The MODIFY command is used for correction of a program iine
without making the user retype the entire line. The MODIFY com-
mand cannot be programmed indirectly, since it necessitates su-
pervisory interaction by the user. The format of the MODIFY
statement is:

MODIFY AB.CD

Where AB.CD is the number of the line to be modified, FOCARL
waits for the user to type in the character he wants to search
the line for. It will type out the line until it finds the
search character, it will then wait for the user to perform
one of the following options:

1. To type in the new text following the search
character.

2. Hit the RUBOUT key to delete the last char-
acter typed.

3. Type left arrow («; shift 0) to delete that
part of the line that has been typed out.

4. Hit the return key to terminate the line at
the search character, deleting the remainder
of the line.

5. Type form-feed ({L; CTRL/L) to continue typing
out the line until another occurrence of the
search character.

-

6. Type bell (#G) to change search character,
and then typing the new search character.

7. Type line feed to save the rest of the line.
If it doesn't find the search character, it will type out the

entire line and not alter it in any way.

EXECUTION COMMANDS: GO, GOTO, DO

GO(CR), DO(CR), or DO ALL(CR) causes execution of the pro-
gram starting with the smallest line number.

GOTO AB.CD(CR), used as a direct command, starts program
execution at line AB.CD.

DO B(CR) as a direct command, executes only group B.

MISCELLANEQUS COMMANDS

COMMENT The COMMENT command is used to include com-
ments in a program listing. Anything fol-
lowing the COMMENT is stored as text and
not executed.

LOGOUT The LOGOUT command is used to exit from the
FOCARL language and to return to TSS/8
monitor. The user must then logout of
monitor by typing LOGOUT or K in response
to monitor's "." before he is off the
system, i.e., no longer logged in.

USAGE OF PERIPHERAL DEVICE IN FOCARL

HIGH-SPEED PAPER TAPE READER

Mount the tape in the reader so that the following con-
ditions are satisfied:

1. The holes in the tape match up with the
gears in the reader. :

2. The leader tape, not your program,is over
the read head. Type the command (assuming
that you are in FOCARL) H R. The tape should
begin reading. When it has been read in com-
pletely, FOCARL will respond with an *. Re-
move the tape from the reader.

NOTE
You must not read oiled paper tape in the high-speed reader!

HIGH-SPEED PAPERTAPE PUNCH

To punch your program on the high-speed punch, make sure
the punch is available, then type: H P

FOCARL will punch your program and then release the punch
and type *.

DISK STORAGE OF USER PROGRAMS

For most purposes, disk storage is to be treated as only
temporary storage. This is a result of two factors: the large
number of systems which are stored permanently on disk; and the
unpredictability of the computer. The first factor means that
there are fewer available disk segments for user programs, which
necessitates a priority ranking of user programs stored on the
system, and periodic purging of old and low priority files.

-12-

The second factor must be considered as one of the hazards
of using a computer. The disk, the fastest medium of external
storage, is also the most wvulnerable. Information on it can be
lost if the system crashes. Therefore, if you want to save a
program for later use, make a paper-tape copy of it.

FOCARL LIBRARY COMMANDS

The LIBRARY commands in FOCARL are used to reference disk
files. Each disk file has a name and an extension. The file
name is from one to six alphanumeric characters, the first of
which must be alphabetic. FOCARL appends an extension of .FRL
to files it creates. These are also the only files that it
can reference.

The syntax of a LIBRARY command is:

L sub-command file-name

The six available sub-commands are:

CALL To load a program stored on disk into

the users core
DELETE To delete a program stored on disk

SAVE To store a copy of a user's program
on the disk
XTEND To chain from a program in core to a

program stored on disk

OUTPUT To create a data file on disk

INPUT To reference a data file to read the
information back into core

LIBRARY OUTPUT and INPUT will be explained more fully in
the section data file in FOCARL.

LIBRARY SAVE: L S NAME

This command stores a copy of the program presently in the
user's core in a disk file with the given name. This file is
stored in the library of the account that the user is logged
in under.

LIBRARY CALL: L C NAME

The CALL command is used to copy a program stored on disk
into the user's core. FOCARL looks for a file of the given name,
and checks that it is a FOCARL program file and not a data file.
It then erases the program that is in core and reads in the pro-
gram from disk.

-13-

LIBRARY CALL can also be used to call a program from the
systems library. An asterisk following the name is used to in-
dicate a call for a file from the system library, instead of
the user's library.

LIBRARY DELETE: L D NAME

This command deletes the disk file with the given name
from the library of the account the user is logged in under.

LIBRARY EXTEND: L X NAME LINE-NUMBER

The LIBRARY XTEND command is used in "chaining" from one
FOCARL program to another. Because of the limited core avail-
able for program and variable storage, the user may be unable
to execute his entire program as one if it uses a large number
of variables. The LIBRARY XTEND command, included as a line
in the program, preforms three operations when it is executed:

1. It retains the symbol table, but erases
the program core.

2. It loads the program specified from disk
into the user's core.

3. It begins execution of the program at the
line number specified. If no number is
specified, execution starts at the lowest
line number of the program.

The XTEND command can also be used to reference system li-
brary programs by following the program name with an *. A space
must separate the program name (or * if system library program}
and the line number if specified.

The following examples illustrate the use of the LIBRARY
commands:

*

* L C PART1
* WRITE
C FOCARL- 1§

gl1.1f TYPE "WE WILL BEGIN HERE!",!

gl.2¢ ASK ?A B C2,!

g1.3¢ TYPE "NOW WE WILL TRY TO XTEND!®,!,!,!

@1.4¢ L X PART2

g1.5¢ TYPE "HERE WE COME BACK TQ THE FIRST PART TO QUIT!",!
gl.68 QUIT

* L C PART2

* WRITE

C FOCARL- 1§

-14-

#3.2¢ TYPE'THIS IS THE PROGRAM WE XTEND TO.",!
#3.3¢ TYPE "SECOND LINE OF XTEND PROGRAM!",!
#3.49 TYPE "A IS ",A," B IS ",B," C IS8 ",C,!
#3.50 L X PART 1 1.5

* L C PART1

* GO

WE WILL BEGIN HERE!

A :-2.5B :13.74 C :.089

NOW WE WILL TRY TO XTEND!

THIS IS THE PROGRAM WE XTEND TO.

SECOND LINE OF XTEND PROGRAM!

A IS -2.50¢@89 B IS 13.74¢¢ C IS @.9899¢9
HERE WE COME BACK TO THE FIRST PART TO QUIT!

LINE PRINTER OUTPUT

The function FLPT is used to direct output to the line
printer and then to resume TTY printing. Any call for the
function FLPT(A) with A=@ will direct subsequent output to
the line printer. Any call for the function FLPT(A), A dif-
ferent from zero results in TTY output. Any character typed
on the TTY keyboard, even if line printer output is specified,
will be echoed on the TTY.

An innocuous way of changing output device is by using one
of the following commands: (X is a dummy variable)

SET X=FLPT (X) Sets X=X
IF (FLPT(X)) If no arguments follow, execution
continues with the next command

TTY output is assumed when the user enters FOCARL.

USING THE LOW-SPEED TAPE READER AND PUNCH ON THE TTY
‘To punch a tape on the TTY punch:
l. Type W or WRITE.
2. Turn the tape punch on.

3. Hit the here is key once or twice to punch out
some leader.

4. Hit the return key.

5. When the program is done punching, hit here is
once or twice to punch trailer tape.

6. Turn the punch off and label the tape.

-15-

To read a tape on the TTY reader:

1. Type 4R to unduplex the TTY.

2. Put the tape in the tape reader.
3. Move the reader switch to start.

4, When the tape is done reading, move the reader
switch to free and remove the tape.

5. Type ?T to resume normal printing (duplex).

DISK DATA FILES IN FOCARL

In addition to storing FOCARL programs on the disk, it is
also possible, using FOCARL, to create and access data files on
disk. The files are set up as one-dimensional arrays of numbers,
with the numbers referenced via their location in the file.

INITIALIZING A DATA FILE--OUTPUT

The LIBRARY OUTPUT command is used to create and initialize
a data file. The format of the command is simply: L O file-
name . This command will be executed correctly if two conditions
exist:

1. There are disk segments available for a new
file.

2. There is not a file by that name already stored
in the library of the account the user is logged
in under.

If either of these conditions fails, an error occurs and
an error message will be typed.

WRITING ON AN OUTPUT FILE

Once an output file has been initialized, it can be used
for storing data. Data is output to the disk by using the %L
format option of the TYPE command. The format of the commands
are:

TYPE %L alpha , beta , theta

Where alpha specifies the starting location (on disk) for stor-
age of the output values beta , theta , and so on

TYPE %L, beta , gamma

Where beta is written in the location following the last num-

ber output to disk, gamma is stored in the location following
beta , and so on.

INITIALIZING A DATA FILE--INPUT

Before you may recall information from a data file, it must
be initialized as an input file. The LIBRARY INPUT command (L I
name) is used to initialize an existing data file as an input

file. If the file does not exist, FOCARL will return an error
message.

READING FROM AN INPUT FILE

Once data has been initialized, information may be read

from it by specifying the %I. format in an ASK statement. Ana-
logous to the TYPE commands:

ASK %L, alpha , beta , theta ;o eee

Will read values starting from location alpha of the disk file
and store them as the variables beta ; theta , and so on.

ASK %L, gamma , delta

Will read in the next two sequential locations and store their
values as the variables gamma and delta , respectively.

USING THE SAME DATA FILE FOR INPUT AND OUTPUT SIMULTANEOUSLY

Certain problems may occur when the user has the same file
initialized as both an input and an output file. Problems re-
sult if the output file must be increased in length while it is
initialized as an input file. Disk segments have a fixed length.
Each segment used as a data file in FOCARL will store 84 numbers.
When the 85th number is output to disk, FOCARL must append another
segment to the data file. This cannot be done if the file is also
initialized (open) as an input file. There are two ways of cir-
cumventing this problem:

1. Never output any data to disk after the file
has been initialized as an input file.

2. Always "close" the input file before you do a
disk output command. Any call for the func-
tion FCLS will "uninitialize™ the input file.
A reasonably innocuous method of calling FCLS
is by using one of the following commands:

(X is a dummy variable)

-17-

COMMAND EFFECT ‘

T %A,FCLS (X) Types a non-printing character

S X=FCLS (X) Sets X=X

IF (FCLS(X)) If no argument follows, continues
with next line

NOTES ON USING DATA FILES AND %L FORMAT

Specifying %L in either a TYPE or an ASK statement sets
up both disk input and output.

Once %L is specified, all I/0 is assumed to be disk until
another format is used.

When specifying a location in a disk I/0 statement, no
comma separates %L and its first argument.

ERROR 31.: 6

This error is generated if FOCARL cannot extend the output
file another segment. This results if the file is also initialized
(open) as an input file, or if there are no free disk segments.

When inputting from and outputting to the same data file,
each command keeps its own pointer as to the location it will
next reference on disk.

The next part should help clarify some of the ambiguities
that have arisen in the preceding explanation.

*
*

*WRITE
C FOCARL-10

g1.g#5 TYPE "THIS IS A DEMONSTRATION PROGRAM, ILLUSTRATING THE",!
g1.87 TYPE "USE OF DISK DATA FILES.",!,! 1

g1.¢9 TYPE "THE PROGRAM STORES THE SQUARES OF THE FIRST 1g@",!
#1.11 TYPE "POSITIVE INTEGERS ON DISK AND RETRIEVES THEM AsS"

g1.12 TYPE "REQUESTED BY THE USER,",!,!

¢1.15 L O T1;C THIS CREATES DATA FILE AND INITIALIZES IT FOR OUTPUT

g1.2¢ FOR I=1,1¢@; TYPE %L, L#2;C WRITES FIRST 1§@ SQUARES ON DATA FILE

@g1.3¢ ASK %,"NUMBER YOU WANT THE SQUARE OF",QU,!

#1.32 IF (QU) 1.97,1.97,1.33

g1.33 IF (QU-FITR(QU)) 1.95,1.35,1.95

#1.35 IF (QU-1g1) 1.37;TYPE "VALUE TOO LARGE",!;GOTO 1.3
$1.37 L I T1;C THIS INITIALIZES FILE FOR INPUT

g1.38 ASK %L QU,AN;C THIS GETS THE VALUE FROM DISK
g1.49 TYPE %5,"THE SQUARE OF",Qu,"IS ",AN,!

@1.43 ASK "AGAIN? NO=.5 ",AG,!;IF (aG~.5) 1.3,1.9,1.3

-18-

$1.9¢ L D T1;C DELETES DATA FILE, SINCE IT IS TRIVIAL

#1.92 QUIT;C END OF PROGRAM RUN

#1.95 TYPE "VALUE IS NOT AN INTEGER. TRY AGAIN",!;GOTO 1.3

#1.97 TYPE “PROGRAM WORKS FOR POSITIVE INTEGERS <{=1§g",1;GOTO 1.3
*

*GO

THIS IS A DEMONSTRATION PROGRAM, ILLUSTRATING THE

USE OF DISK DATA FILES. |

THE PROGRAM STORES THE SQUARES OF THE FIRST 1gf¢
POSITIVE INTEGERS ON DISK AND RETRIEVES THEM AS REQUESTED BY THE USER.

NUMBER YOU WANT THE SQUARE OF:33
THE SQUARE OF 33 IS 1489
AGAIN? NO=.5 :0

NUMBER YOU WANT THE SQUARE OF:99
THE SQUARE OF 99 IS 98401
AGAIN? NO=.5 :

NUMBER YOU WANT THE SQUARE OF:¢

PROGRAM WORKS FOR POSITIVE INTEGERS <=1g¢
NUMBER YOU WANT THE SQUARE OF:33.4

VALUE IS NOT AN INTEGER. TRY AGAIN!
NUMBER YOU WANT THE SQUARE OF:2§1

VALUE TOO LARGE

NUMBER YOU WANT THE SQUARE OF:97

THE SQUARE OF 97 IS 9489

AGAIN? NO=.5 :.5

*

ASCII FORMAT INPUT/OUTPUT

Each character on the TTY keyboard is interpreted and stored
by the computer as a number. The code which the computer uses is
called ASCII, the United States of America Standard Code for In-
formation Interchange. This code, or a more compact form of it,
is used in all inter-machine communications. The %A formatting
option in FOCARL allows the user to work with both the numeric
and character representations of each character. For a list of
the character set and the numeric codes corresponding to each
character, see appendix A.

%A INPUT

Specifying ASCII format in an ASK statement results in two
immediately noticeable changes: the ":" is not typed, as it is
under a numeric format, and only one character is accepted for
each variable asked. When a character, for example, A, is typed
in response to an ASK statement, the numeric value of A, 193, is
stored as the variable.

-19-

%A OUTPUT

When %A is specified in a TYPE statement, the computer will

type out all values as their character counterparts, if they are
defined.

Note

Just as with any numeric format, all input and out-
put will be handled under this format until another
format is specified.

EVALUATION OF ALPHABETIC RESPONSES TO INPUT

FOCARL will accept and evaluate alphabetic character strings

typed in response to a numerically formatted ASK statement, The
values ascribed to the letters (except E) correspond to their
position in the alphabet, i.e., A=1, B=2, Z=26, M=13, etc. E
denotes exponent, or power of 1g. When E is the first character
of a string typed in response to an input request, the value of
the string is zero. If E is the last character of the string,
a delimiter other than a space must be used and the power of
1§ is assumed to be zero. If the number corresponding to a
letter is greater than 9, the ten's digit will be carried if
that character is part of a string.

The following example should help to clarify the above ex-
planations. A complete list of the numeric values of the char-
acters is given in appendix A.

#1.1¢ ASK A;TYPE A,!;GOTO 1.1
*

*GO

:A 1.400

:B 2.900

:E , g.009
:H 8.94¢9

:J 14.99

:L 12.0¢9

:M 13.049
:HJ 9g.0¢
:ABC 123.40
:X 24.9¢0

:Y 25.90¢9

:Z2 26.49
:XY 265.9
:XYZ 2676
:ABEA 120.¢
:ABEO 12.04
:CEC 3499
:ZEA 260.0
200.99 @ g1.19 (4C typed to stop program execution)

-20-

EXECUTION NOTLS

FOR J=A,B,C; command string

The FOR command will perform one execution of the command
string before checking the range of values for J. The FOR com-
mand can only be used with a positive increment. If no incre-
ment is specified, it is assumed to be 1. FOR commands may be
nested within one another.

IF (arithmetic expression) N,Z,P (N, Z, and P are line numbers)

IF command branches to N if the value of the arithmetic
expression is negative; to Z if the value is zero; and to P if
the value is positive.

Less than three arguments can be given following any IF
command .

2.31 IF (A-6) 2.39; TYPE "A=D>6", 1

If A<6 [(A-6)<P], branches to line 2.39; otherwise, the
TYPE command will be executed.

4.3¢0 IF (A-62);TYPE "HOWDY"

TYPE command will always be executed, since no branch is
indicated. The # alphabetic string option of evaluating alpha-
betic responses to an input request may be used in an IF state-
ment. See line 4.1 of the program in appendix C.

DO
DO N (N is a group number)

This command will begin execution of group N at the lowest
line number and will proceed through the group sequentially, with
the following exceptions:

l. A branch statement to a non-sequential state-
ment within the group will be executed normally,
altering sequential execution.

2. A DO N.AB to a line within a group N will be
executed correctly.

3. A branch command to a line outside the group
will result in FOCARL executing only that line,
before returning to the next line in group N
and continuing execution there. However, if
the line branched to contains a DO or a GOTO
command, that command will be executed before
FOCARL return to group N. This “"chaining"

-21-

effect can continue to multiple levels. The
DO will execute only one line when a branch
command directs it outside the group specified.
But that line will be executed completely be-
fore returning to the DO group, group N.

DO L.AB (L.AB is a line number)

This command causes the line L.AB to be executed. If line
L.AB contains a DO statement, this will be executed completely
before returning to line L.AB.

If line L.AB contains a branch statement, only the line
specified by the branch command will be executed. If this line
contains a DO or branch command, it also will be executed be-
fore control begins to line L.AB.

The DO command can also be used to do recursion by including
a DO N command internal to group N. For example, the program
line 2.21 IF (BC*4-AL) 3.1,2.27;DO 2

MODIFY AB.CD

A MODIFY command may be programmed indirectly, but program
execution halts after this command is executed. Executing a
MODIFY command erases the symbol table.

RETURN

A RETURN command, if encountered while not executing a DO
command, will function as a QUIT command, terminating program
execution.

COMMENT

Once a COMMENT command is encountered, the remainder of
the line is assumed part of the comment. Thus, COMMENT should
be the last command to appear in a line, since commands fol-
lowing it on the same line won't be executed.

LIBRARY EXTEND

When a LIBRARY XTEND command is executed, it loads the
program extended to over the program previously stored in core.
If this program is longer than the first, it will overlay vari-
ables before it finishes loading the entire program and the
symbol table will be overwritten and destroyed.

-22-

LOGoUYT

If the user accidentally executes a LOGOUT command, he can
reenter FOCARL by simply typing ST to monitor's ".". His pro-
gram and symbol table will still be intact.

ERROR MESSAGES

When FOCARL detects a syntax error in programming or is un-
able to execute a command, it will generate an error message.
The error message has the form:

? error number @ line number

If the error was detected in a direct command or while typing-
in a program line, no line number is given, just "? error
number ". A list of error diagnostics is given in appendix B.

TRACING

FOCARL provides an option to allow the user to trace the
execution of his program. When a ? is encountered, except in
a comment line or within a quote in an input/output statement,
FOCARL enables the trace feature. Trace remains enabled until
another ? is encountered. Each "odd-numbered"” ? enables trace,
while each "even-numbered"” occurrence disables trace.

When enabled, trace starts typing every character that
FOCARL encounters as it executes the program.

The ? will be recognized wherever it appears in a command
statement. It can be imbedded in a line number or a variable
name, or before, following, or even within a command, etc.

An example of a trace program is given in appendix C.

-23-

COMMAND SUMMARY

COMMAND OPTION SYNTAX EFFECT
TYPE % TYPE %,A Numeric output in exponential format
$B TYPE -%4,A Numeric output in integer format
%A.BC T %6.04,A Output in decimal format
%A T %A,L ASCII character output
$L T $L,A Output to a disk data file
! T ! Generates carriage return/line feed
T # Generates a carriage return
$ T $ Generates a printout of the symbol
table under the existing format
" T "HI" Verbatim printing of the character
string
? T ?A? Types out variable name then value
ASK %A A %A,B Accepts only one character for B
: stores ASCII value of character
%L A ’L,C Reads value from disk data file
! Al Generates CR/LF combination
¥ A # Generates a carriage return (CR)
v A "A IS" ,A Verbatim printing of character strings
? A ?S? Types out variable name, asks for value
$ A S Generates listing of symbol table
SET S A=3.4/7.1 Assigns value of right side to variable
GO GO Starts execution at lowest line number
GOTO GOTO 1.03 Begins (continues) execution at line 1.03
DO DO Begins execution at lowest line number
DO 3 Executes group three, beginning at
lowest line number of group three
DO 1.23 Executes line 1.23
WRITE WRITE ALL Types out list of the entire program
WRITE 3 Lists group three
WRITE 2.72 Lists line 2.72
ERASE ERASE Erases the symbol table
ERASE 3 Erases group three

ERASE 2.51 Erases line 2.51
ERASE ALL Erases entire program and symbol table

QUIT QuUIT Stops program execution
RETURN RETURN Denotes end of a DO subroutine
COMMENT C THIS IS... Denotes a non-executed line of text

-24-

COMMAND

FOR

IF

MODIFY

LIBRARY

LIBRARY
LIBRARY

LIBRARY

LIBRARY
LIBRARY

LOGOoUT

CALL

SAVE
DELETE

EXTEND

OUTPUT

INPUT

SYNTAX

FOR I=1,5,1;T "*"I
FOR J=1,6;T %2,J

IF (A_G) 113'105’1-3

IF (B-13)4.2,5.1;S B=A

N.,.Z.

MODIFY 1.37

2 v v o B e o

C TEMP

C DEMO*
S TEST

TEST
TEMP
TEMP 1.7

TRIAL2* 2,25
TRY1

OXX X U

H

TRY1

OR LOGOUT

rP.

-25-

ACTION

Performs iteration of command
String following ";"

Conditional branch statement:
(A-6)<@ branches to 1.3
(A-6)=8 branches to 1.5
(A-6)>@ branches to 1.3

Used to modify a program line

Loads a program from disk into
core

Stores the program in core on
disk

Deletes the program TEST from
disk

Chains from program in core to
the program called TEMP on disk

Creates a data file on disk
and initializes it for output
Initializes data file for input

Exits from FOCARL, returns
user to TSS/8 monitor

g1.1¢ T “THIS PROGRAM GENERATES A TABLE OF THE NUMERIC CODES OF" ,!
#1.2¢ T “ALPHABETIC CHARACTERS UNDER THE POSSIBLE FORMATS" ,!
#1.39 T "CHARACTER %A ASCII CODE NUMERIC" ,!

gr.4g T " "DECIMAL" (OCTAL) (DECIMAL)",!

#1.50 F I=161,175;D 2;D 3.85;T !

#1.52 F I=176,185;S CO=-176;D 2;D 3.85:D 3.86

g1.54 F I=186,192;D 2;D 3.05;T !

#1.56 F I=193,218;S CO=-192;D 2;D 3.95;D 3.046

#1.58 F I=219,223;D 2;D 3.85;T !

g1.60 G 2.25

g2.1¢9 C THIS DECODES DECIMAL TO OCTAL BASE 14 TO BASE 8
$2.11 1 (I-197) 2.15,2.13,2.15

g2.13 S CO=-197;C THIS SETS A VALUE OF @ FOR E UNDER NUMERIC
g2.15 S HI=FITR (I/64) ;S H=HI+176

#2.17 S MD-FITR ((I-(HI*64))/8); S M=MD+176

#2.19 S LO=I-(HI*644+MD*8) ;S L=LD+176

#2.21 RETURN '

g2.25 T "SPACE ".S I=16¢:D 2;D 3.09

g2.27 T "LINE FEED ".Ss I=138;D 2;D 3.9

#2.29 T "RETURN ".5 I=141;D 2;D 3.89

#2.31 T “BELL ".S I=135;D 2;D 3.49

#2.33 T "RUBOUT ";S I=255;D 2;D 3.09

g2.34 T "LEADER",!,"TRAILER";S I=128;D 2;D 3.69

#2.999 QUIT

p3.g5 T " ",%A,I," ", %3,I," ",%A,H,M,L

gi.ge T " ",%2,I+CO,!

#3.49 T " ",%3,I, A,%A,H,M,L,

*

*GO

THIS PROGRAM GENERATES A PROGRAM OF THE NUMERIC CODES OF
ALPHABETIC CHARACTERS UNDER THE POSSIBLE FORMATS

-26-

CHARACTER 3A ASCII CODE NUMERIC

(DECIMAL) (OCTAL) (DECIMAL)

! 161 241

" 162 242

163 243

$ 164 244

% 165 245

& 166 246

! 167 247

(168 250

) 169 251

* 170 252

+ 171 253

’ 172 254

- 173 255

. 174 256

/ 175 257

0 176 260 0
1 177 271 1
2 178 262 2
3 179 263 3
4 180 264 4
5 181 265 5
6 182 266 6
7 183 267 7
8 184 270 8
9 185 271 9
: 186 272

; 187 273

< 188 274

= 189 275

> 190 276

? 191 277

@ 192 300

A 193 301 1
B 194 302 2
C 195 303 3
D 196 304 4
E 197 305 0
F 198 306 6
G 199 307 7
H 200 310 8
I 201 311 9
J 202 312 10
K 203 313 11
L 204 314 12
M 205 315 13
N 206 316 14
0 207 317 15
p 208 320 16
Q 209 321 17

-2 7-

SPACE
LINE FEED
RETURN
BELL
RUBOUT
LEADER
TRAILER

=KX ESCHNT

210
211
212
213
214
215
216
217
218
219
220
221
222
223
160
138
141
135
255

128

322
323
324
325
326
327
330
331
332
333
334
335
336
337
240
212
215
207
377

200

-28=

18
19
20
21
22
23
24
25
26

ERROR DIAGONISTICS FOR FOCARL - VERSION 10
CODE MEANING
200.00 Interrupt via control-C

201.40 Illegal step or line number used
201.78 Group number too large

201.96 Double periods found in a line number
?201.:5 Line number is too large

?201.:4 Group zero is an illegal line number

202.32 Nonexistent group referenced by DO
202.52 Nonexistent line referenced by DO
202.79 Storage was filled by push-down list

?203.05 Nonexistent line used after GOTO or IF

203.28 Illegal command used
?204.39 Left of "=" in error in FOR or SET
204.52 Excess right terminators encountered in SET

204.60 Illegal terminator in FOR or SET

205.48 Bad argument to MODIFY
206.54 Storage is filled by variables

206.06 Illegal use of function or number

207.22 Operator is missing in expression, or double 'E'

207.38 No operator used before parenthesis

207.:9 No argument given after function call

207.;6 Illegal function name, double operations, or excess
parenthesis

208.47 Parentheses do not match

209.11 Bad argument in ERASE
?210.:5 Storage is filled by text, or line too long

?211.39 Illegal LIBRARY command
?11.73 Disc error
217.35 Initial dialogue error

220.42 Logarithm of zero requested
220.44 Logarithm of negative number requested
223.36 Literal number is too large

224.04 Library program is too large
224.30 LIBRARY EXTEND error-too many variables
?24.,:1 Cannot save program,disc full

224, 4 Cannot delete disc file

?225.15 Device busy

225.64 Illegal library name

225.97 File not found for CALL or DELETE, file already in
existence for SAVE, or disc full

-29-

?225. 3
226.99
228.73
229.17

230.72
230.05
?231.10
?231.12
231.:6
?231. 7
?231.55
231.76

Not FOCARL file (.FRL)

Exponent is too large or negative
Division by zero requested
Cannot assign the line printer

Illegal high speed command
Imaginary square root requested
High speed reader or punch is hung
Disc error--cannot recover
Attempt to extend data file failed
Unavailable function used

Input file not initialized

Output file not initialized

-30-

g1.18 THIS PROGRAM WILL FIND THE ROOTS OF A QUADRATIC EQUATION

C
@1.15 T "TYPE IN THE VALUES OF A,B,AND C, WHERE A IS THE",!
#1.16 T "COEFFICIENT OF X4#2, B THE COEFFICIENT OF X, AND C",!
@L.17 T "IS A CONSTANT.",!,!
31.20 A ?2A B C ?2,!,!
31.23 S RD=B#2-4*A*C
@1.25 IF (RD) 3.#¢5,1.3,2.05
§1.3¢ T "EQUATION HAS ONLY ONE ROOT: ",%6.04,-(B/2),!,!
#1.32 G 4.1
#2.95 T "EQUATION HAS TWO REAL ROOTS: "
$2.10 S SR=FSQT (RD)
$2.20 T -(B~SR)/2," ",-(B+SR)/2,!,!
32.30 G 4.1
§3.05 T "EQUATION HAS TWO IMAGINARY ROOTS:",!
@3.87 S RA=FSQT (-RD)
¢3.14 T -B/2," + ",RA," * I "
#3.20 S RA=-RA; T " ",!;D 3.1;T !,!
$3.30 G 4.1
@4.10 A "AGAIN Y OR N "L,!,!;IF (L-@N) 1.2,4.2,1.2
04.2¢0 QUIT
*

*

*GO

TYPE IN THE VALUES OF A,B, AND C, WHERE A IS
COEFFICIENT OF X42, B THE COEFFICIENT OF X, AND C
IS A CONSTANT.

A: B:2 C:3

EQUATION HAS TWO IMAGINARY ROOTS:

~-1.00000 + 2.82843 * I

-1.00000 + -2.82843 * T

AGAIN Y OR N :Y

A :1 B :2 C ¢l

EQUATION HAS ONLY ONE ROOT: -1.0000

AGAIN Y OR N :Y

A :37 B :75.9 C :-236

EQUATION HAS TWO REAL ROOTS: 62.9¢73 -138.8@7

AGAIN Y OR N

*
*GO?

-31-

C C T "TYPE IN THE VALUES OF A,B, AND C, WHERE A IS THE !
T "COEFFICIENT OF X¢2, B THE COEFFICIENT OF X, AND C!

T "IS A CONSTANT.!

,!

A :1 :2
2 !

S RD=B$#2-4*A*C

IF (RD) 3.¢5,1.3,T "EQUATION HAS ONLY ONE ROOT: %6.84,-(B/2),-1.0p0¢!
]

,!

G 4.1
A "AGAIN Y ORN ,:Y !

[
-

!
IF (L—ﬁN) 102,4-2’]-.2
:1 22 :3 .}

- wi-ﬁ

!

S RD=B#42-4*A*C
IF (RD) 3.45,T "EQUATION HAS TWO IMAGINARY ROOTS:!

S RA= FSQT (-RD)

T _B/Z’— loﬁﬂﬁﬁ“ + RA, 2.8284" * I S RA=- H
D 3.1;T -B/2,- 1.060d06" + RA,~2.8284" * I T
i

Tll
!

LT

G 4.1

A "AGAIN YORN ,:N !

!

*

-32-

TIME SHARE 8 DOCUMENTATION.

Please keep in the same room as the
Time - Share System,

Product Code: DEC-T8-AJZA-D

Product Name: TSS/8 Extended
BASIC (EDUSYSTEM 50)

Date created: October i, 1971

Maintainer: Development

October, 1971

Copyright (::) 1971 by Digital Equipment Corporation

The material in this manual is
for information purposes only
and is subject to change without
notice.

The following are trademarks of
Digital Equipment Corporation,
Maynard, Massachusetts

DEC
DECtape
Digital
PDP
PsS/8

\

i

\

For additional copies, order DEC-T8-AJZA-D from Program Library,
Digital Equipment Corporation, Maynard, Massachusetts 01754 |
Price $5.00

CONTENTS

INTRODUCTION

1. Editing BASIC Statements

2. Saving Compiled Programs

3. File Protection

4, Project-Programmer Numbers

5. Restricted Accounts

6. Catalog Format

7. Strings in BASIC

7.1 Reading String Data

7.2 Printing Strings

7.3 Inputting Strings

7.4 Line Input

7.5 Working with Strings

7.6 The CHANGE Statement

7.7 A Note About CHANGE

7.8 The CHR$ Function

8. Modification to Legal Array Names
9. Modification to DATA Statement
10. Program Chaining
11. Disk Data Files
11.1 File Records
11.2 Opening a Disk File
11.3 Reading/Writing Disk Files
11.4 Closing and Deleting Disk Files
12. DECtape Files
12,1 DECtape File Records
12.2 Opening a DECtape File

12.3 Reading and Writing DECtape Files
12.4 Closing DECtape Filas
12.5 Using Data Tapes with PS/8 FORTRAN
13. Line Printer Output
14, Papertape Output
15. Truncation Function, FIX(X)

iii

HO\OGJ\]O\G\U!-&&(»Q)NNN

1
1

12
12
12

13
14
15
15
17

18
18
19
20
21
21

22
22
23

16.

ON GOTO
17. Implied LET
18. SLEEP
19. Comments
20. Blank Lines
21. More than One Statement on a Line
Appendix A Error Messages
Appendix B Internal Dala Codes

Notes to System Users About BASIC Version 4

iv

23
24
24
25
25

25

27

30

33

INTRODUCTION

This document is an update to the TSS/8 BASIC-8 manual (Chapter 12
of Programming Languages). It includes all changes to BASIC since its
original release. It therefore supersedes all previous update notices.

The following commands are described in the origiral documenta-
tion and hence are not included here.

LET DEF
DATA EDIT
READ COMPILE
PRINT . BYE
GOTO : CATALOG
IF...THEN DELETE
FOR KEY
NEXT LIST
DIM NEW

END OLD
RANDOMIZE . REPLACE
GOSUB RUN
RETURN SAVE
INPUT SCRATCH
STOP TAPE
REM UNSAVE
RESTORE

1. Editing BASIC Statements

If an entered line is grossly erroneous, it may be corrected by
retyping it. Minor errors in already-entered statements may be cor=-
rected by using the EDIT command. Type EDIT followed by the line num-
bBer of the statement to be edited. BASIC responds by typing a left
bracket ([). Type a "search character". BASIC types|a close bracket,
then types out the statement up to the first occurrence of the specified

search character. The user may then: \
\v
1. Type new characters which are inserted at that\p01nt
in the statement.

2. Type one or more back arrows (<) to delete chargcters
to the left. !

3. Type the ALT MODE key to delete the entire line up to
that point (but not the line number). {

4. Type LINE FEED to finish the edit, keeping the remain-
der of the line unchanged. i
: g

5. Type RETURN to finish the edit, deleting the remaﬁnder
of the line.

1

6. Type CTRL/L to continue to the next occurrence of ﬁhe

search character.

i

7. Type CTRL/G +to specify a new search character.

2. Saving Compiled Programs 1

BASIC compiles the current program each time it is run.{ If, how-
ever, it is a program which will be used frequently, but not changed
it may be stored in its compiled form. To save a compiled program,

type:
COMPILE name

The program will be saved on the disk under the specified name. If a
file by that name exists, BASIC will type DUPLICATE FILE NAME and will
not compile that program.

Once a program has been compiled, it may be called out and run
just like an ordinary BASIC source program. It may not, however, be
listed, saved, or changed. If an attempt is made to do any of these
things, the message EXECUTE ONLY is typed. The compile capability
may therefore be used to protect programs from unauthorized access.

Compiled files are distinguished from regular BASIC programs by
their file extensions. BASIC source programs have an extension of .BAS.
Compiled files have an extension of .BAC. These extensions are typed

out along with the file name when a catalog is requested.

3. File Protection

TSS/8 permits a user to specify a protection code for each file.
(See TSS/8 TIME SHARING SYSTEM in INTRODUCTION TO PROGRAMMING for a
full description of protection codes). The commands which write disk
files (SAVE, REPLACE, COMPILE) also permit the user to specify what
protection is to be given to a file. This is done by following the
file name with the protection code in angle brackets. For example,

SAVE FOO <1g>
will create and save a file named "FO0O.BAS" having a protection code
of 1f. When no protection is specified, a protection of 12 is auto-

matically assumed.

4. Project-Programmer Numbers

In specifying the Account Numbeﬁ for an OLD file, the user may
optionally type a Project-Programmer number (giving the Account Number
as two 2-digit numbers instead of a single 4-digit number). 1In this
way, the user may RUN files from another user's disk area.

For example, both of the following are acceptable:

OLD PROGRAM NAME ~-- FOO 13,3
(where 13 is the Project Number and 3 is the Programmer Number), or
OLD PROGRAM NAME -~ FOO 1303

(where 13643 is the cquivalent account number).

5. Restricted Accounts

As an added system protection, BASIC checks to see if an attempt
is being made to run BASIC under Accounts 1l or 2. If so, BASIC prints
the error message:

IMPROPER ACCOUNT #
ABORT
+BS

thus preventing BASIC from interfering with the System Directories or

the System Library.

6. Catalog Format

The CATALOG. command types file extensions, file size, and file

protection, in addition to the file name. For example:

CATALOG
NAME SIZE PROT
DUMP .SAV 8 16

XYZMPT.ASC 32 1f
BACKUP.BIN 38 12

FACTRL. BAS 4 12
FACTOR.BAC 2 12
DATALl .DAT 7 12
BAS§17.TMP 1 17
BAS117.TMP 117

7. Strings in BASIC

TSS/8 BASIC has the ability to manipulate alphabetic information
(or "strings"). A string is a sequence of characters, each of which
is one of the printing ASCII characters (given in the table in Appen-
dix B). 1In TSS/8 BASIC, strings consist of six or fewer characters;
strings of more than six characters are truncated on input to exactly

six characters.

Variables can be introduced for simple strings, string vectors,
and string matrices. A string variable is denoted by following the
variable name with the dollar sign character ($). For example:

AlS A simple string of up to 6 characters
Vs (7) The seventh string in the vector V$(n)

M$(1,1) An element of a string matrix M$(n,m)

As usual, when string arrays or matrices are used a DIM statement

is required. For example:

1¢ DIM V$(18) M$(5,5)

reserves eleven strings for the vector V$§ and 36 strings for the matrix
MS.

7.1 Reading String Data

Strings of characters may be read into string variables from DATA
statements. Each string data element is a string of one to six charac-
ters enclosed in quotation marks. The quotation marks are, of course,
not part of the actual string. For example:

18 READ AS$, BS, C$
2¢2 DATA "JONES", "SMITH", "HOWE"

The string “JONES" is read into AS$, "SMITH" into B$, and "HOWE" into
C$. If the string contains more than six characters, the excess char-
acters are ignored.

18 READ AS

28 PRINT AS

3¢ DATA "TIME~-SHARING"
49 END

causes only
TIME=-S,

to be printed.

String and numeric elements may be intermixed in DATA statements.
A READ operation always fetches the next element of the appropriate
type. 1In the following example:

1 READ A, AS$, B
24 DATA "YES", 2.5, "NO", 1

2.5 is read into A, "YES" into AS$, and 1 into B.

The standard RESTORE statement resets the data pointers for both
string and numeric elements. Two special forms of the RESTORE command,
RESTORE* and RESTORE, may be used to reset just the numeric and string
data list pointers, respectively.

RESTORE* Resets the numeric DATA list
RESTORES$ “Resets the string DATA list
RESTORE Resets both numeric and string data lists

14 READ A, AS$, B

2¢ DATA “"YES", 2.5, "NO", 1
3¢ PRINT A, AS$, B

4f RESTORE*

50 READ A, A$, B

684 PRINT A, AS, B

78 END

would print:

YES 1
NO 1

[NV]
«
urun

If line 4@ were changed to RESTORE, this program would print:

2.5 YES 1
2.5 YES 1

since the numeric as well as string data lists were reset.
7.2 Printing Strings

The regular BASIC PRINT statement may be used to print out string
Information. If the semi-colon character is used to separate string
variables in a PRINT command, the strings are printed with no inter-
vening spaces. For example, the program:

14 READ A$, B$, CS$

2§ PRINT C$; B$; A$

3¢ DATA "ING", "SHAR", "TIME-"
4¢ END

causes the following to be typed:
TIME-SHARING
7.3 Inputting Strings
String information may be entered into a BASIC program by means of
the INPUT command. Strings typed at the keyboard may contain any of

the standard Teletype'characters except back-arrow (<) and quotation
mark. Back-arrow, as always, is used to delete the last character typed.

'Teletype is a trademark of the Teletype Corporation.
6 v

Commas are used as terminators just as with numeric input. If a string
contains a comma the whole string must be enclosed in quotation marks.
The following program demonstrates string input:

184 INPUT AS$, BS, Cs
2@ PRINT Cs$, B$, AS

38 END

RUN

? JONES, SMITH, HOWE

HOWE SMITH JONES
READY

Strings and numeric information may be combined in the same INPUT state~
ment as in the following example. Note that if an input string con-
tains more than six characters, only the first six are retained.

14 INPUT A, AS$, BS
2§ PRINT - A$, BS, A

3¢ END

RUN ,

? §1754, MAYNARD, MASS.

MAYNAR MASS. 1754

The numeric variable A is set to 1754, the string "MAYNAR" is put in
‘the string variable A$, and the string "MASS." is put into the string
variable BS.

7.4 Line Input

Strings of more than six daracters may be entered by means of the
LINPUT (line input) command. A LINPUT statement is followed by one or
more string variables. For example:

1¢¢ LINPUT A$(1), A$(2), A$(3), AS$(4), AS(5)

The first six characters to be typed are stored in the first string
variable, the next six in the second, and so on until the line of input
is terminated by a carriage return. Commas and quotes are treated as
ordinary characters and hence are stored in the string variables. For
example, if the following line were typed in response to the above
LINPUT command:

? MAYNARD, MASS. g1754

then the values of the string variables would be:

AS$ (1) "MAYNAR"

AS$(2) = "D, MAS"
A$(3) = "s. g17"
A$(4) = "54"
As(S) = nnl

In this example, the maximum number of characters which could be typed
would be 3@. Any additional characters would be ignored. 1In ~'"
cases, the maximum number of characters which may be type® .o TSS/8
BASIC is 5@. If a longer line is typed, the message LINE TOO LONG is

typed. The line must be re-entered.

It is possible to mix numeric and string variables in a LINPUT
statement, but it is not recommended. As an illustration of how this
might be done, consider the example given earlier:

14 LINPUT A, AS$, BS

where the user might type:
? #1754 ,MAYNARD, MA

This still sets the numeric variable A to 1754 (when used in LINPUT
statements, numeric input remains unchanged). However, the string vari-
able AS$ would now be "MAYNAR", and the string variable B$ would be
"D, mll .

NOTE
When inputting strings with LINPUT, the error

messages: "MORE?" and "TOO MUCH INPUT, EXCESS
IGNORED" cannot occur.

7.5 Working with Strings
Strings may be used in both LET and IF statements. For example:

14 LET ¥Y$= "YES"
1@ IF 2Z$= "NO" THEN 1gg

’Strings may also consist of zero characters. Such a string is empty,
or "null". If printed, it causes nothing to be output. The null
string is usually represented by a pair of quotes with nothing in
between (""). The null string should not be confused with a string of
one Or more spaces.

The first statement stores the string "YES" in the string variable Y§$.
The second branches to statement 1@@ if 2$ contains the string "NO".

For two strings to be equal, they must contain the same characters in

the same order and be the same length. In particular, trailing blanks
are significant since they change the length of the string. "YES" is

not equal to "YES ".

The relation operators < and > may also be used with string vari-~-
ables. When used with strings, these relations mean "earlier in alpha-
betic order" or "later in alphabetic order", and they may be used to
alphabetize a list of strings. The relationals >=, <=, <> may also
be used in a similar manner. The arithmetic operations (+, -, *, /, +)
are not defined for strings. Thus, statements such as LET A$ = 3*5 and
LET C$ = AS$+B$ have no meaning, and should never be used in a BASIC
program. They will not, however, cause a diagnostic to be printed,
and the results of such operations are undefined.

7.6 The CHANGE Statement

The BASIC command CHANGE may be used to access and alter individual
characters within a string. Every string character has a numeric code
(see Appendix B), a number which is used to stand for that particular
character. The CHANGE statement converts a string into an array of
numbers, or vice versa. The CHANGE statement has the form:

18 CHANGE A TO AS
or
1¢g CHANGE A$ TO A

where A$ is any string variable (or an element of a éubscripted string
variakle)l and A is an array variable with at least six elements. Any
array variables used in CHANGE statements must have appeared in a

DIM statement with a dimension of at least six.

The following program illustrates the use of the CHANGE statement.
In this example, CHANGE is used to change a string variable into an
array of numbers.

14 DIM A(6)

28 READ AS

3¢ CHANGE AS$ TO A

4f PRINT A(@); A(l); A(2); A(3); A(4); A(5): A(6)
5§ DATA "ABCD"

68 END

RUN

4 65 66 67 68 g g

The CHANGE statement takes each character of the string and stores
fts corresponding numeric code in elements one to six of the array. Re-~
maining array elements are set to zero. The length of the string (g-6
characters) is then stored in the zero element of the array. In the
example above, the character codes for A, B, C, and D are stored in
A(l) to A(4). A(5) and A(6) are set to zero. The number 4 is stored
in A(f) since the string A$ is of length 4.

CHANGE may also be used to change an array of numeric codes into a
character string. The following program illustrates this use of the
CHANGE statement.

1 DIM A(6)

2f FOR I=@ TO 5

3¢ REBRD A(I)

4¢ NEXT I

5¢. CHANGE A TO AS$

6@ PRINT AS :

7% DATA 5, 65, 66, 67, 68, 69
84 END

ABCDE

The length of the resulting string is detemmined by the zero element

of the array. In the above example, the string is of length five. The
elements of the array, starting at subscript are assumed to be numeric
character codes (32 to 94). These are converted to characters and are
stored in the stfing. If any codes are encountered which are not valid
character codes, or if an invalid string length is given, the message
BAD VALUE IN CHANGE STATEMENT AT LINE n is typed out, and execution is
stopped.

7.7 A Note About CHANGE

A BASIC string of less than six characters always has the remain-
ing character positions filled with zeros. For this reason, when such
a string is changed to an array, the first six array elements are set
to zero. The CHANGE statement always fills six array elements, even
though the strings may not be six characters long. The user should be
very careful to always dimension the array used in a CHANGE statement
to at least six. If a string of characters is transformed into an ar-
ray of less than six elements, an undetected error will occur.

The CHANGE statement is usable with strings not created by BASIC.
It can, for example, be used to access files other than BASIC data files.

10 '

Each string variable corresponds to three computer words. The CHANGE
statement treats these three words as six bytes, converts each byte to
Its numeric character code equivalent and stores it in the corres»ond-
ing arfay element. The zero element of the array, the string length,
Is set equal to the number of bytes (character) before the first zero
byte. When reading unspecified data, there may be non-zero bytes fol-
lowing this zero byte. If so, they will be transferred to the array
well.

7.8 The CHRS$ Function

Occasionally it is desirable to type a character other than the
printing ASCII set, or to compute the value of a character to print.
For this purpose, the CHR$ function is used in a PRINT statement. The
argument of the CHR$ function (Modulo 256) is sent as a character to
the Teletype. For example:

14 FOR I=g TO 9

2§ PRINT CHRS (I+48);
3 NEXT T

4f END

prints "ﬁ123456789", since 48 to 57 are the ASCII values for the charac-
ters "@g" to "9". The following special characters can also be printed
using the CHR$ function:

Bell CHR$ (7)
Line Feed CHRS (18)
Carriage Return CHRS$ (13)
Quote (") CHRS (34)
Back-Arrow (+) CHRS (95)
Form Feed CHRS (12)
NOTE

The Teletype will accept characters from g to 255
(decimal), many of which do nothing on most kinds
of terminals. ~ Some of the. special (non-printing)
characters should not be used. For example, CHRS (4)
causes a Dataphone to disconnect.

For ecach ASCII code there is a second acceptable
form permitted in CHANGE and CHR$. The second
code is obtained by adding 128 to the code given
in the table in Appendix B. For example, CHRS

would type "A" ip response to either 65 or 193 as
an argument.

11

8. Modification to Legal Array Names

Arrays and matrices may have two-character names. Thus, A7 (1)
and X1(5,5) are legal names and may be used.

9. Modification to DATA Statement

A DATA statement may now be legally terminated by a comma. For

axample:

1 DATA 1,2,3,
28 DATA 4,5,6

Is now treated the same as
g bpam™a 1,2,3,4,5,6

19. Program Chaining

Most BASIC programs are easily accommodated by TSS/8 BASIC. If a
program becomes very long, however, it may be necessary to break it down
into several segments. Typically, programs of more than two to three
aundred statements must be split up. A program that has been broken
down into more than one piece is commonly referred to as a "chained"

program.

Each part of a chained program is saved on the disk as a separate
file. The last statement of each part to be executed is a CHAIN state-
ment specifying the name of the next program section. This file is
then loaded and executed. It may in turn chain to still another section
of the program. The general form of the CHAIN command is: '

414 CHAIN "NAME"
or
414 CHAIN AS

where "NAME" is the name of the next segment to be executed (one to
six characters) enclosed in quotation marks. The name of the next seg-
ment may also be contained in a string variable. In either case the

file of that name is loaded and run. Thus, the statement:

999 CHAIN "SEG2"

12

is equivalent to:

OLD
OLD PROGRAM NAME-SEG2

RUN

except that it happens dutomatically. Each separate part of the program
l1inks to the next part of the program chain.

The individual sections of a chained program may be either reqular
source files (.BAS) or compiled files (.BAC). 1If the sections are source
files, however, they must be compiled before they are run. A chained
program runs more efficiently if all its sections have been compiled.

If an error occurs while compiling or running a chained program,
the name of the section being run, the one having the error, is typed
out as part of the error message. In all cases, whether a program
terminates by an error or a STOP or END, BASIC returns to the first
program in the chain. This is the one which is available for editing
and rerunning when BASIC types READY.

Most chained programs require information from one section to be
passed on to the next. The first section may, for example, accept in-
put values and perform some preliminary calculations. The intermediate
results must then be passed to the next section of the programs. This
pPassing of values is done by means of BASIC's file capability, which
Is explained in the next section. Whenever a CHAIN operation is per-
formed, program data which has not been saved in a file is lost. Vari-
able and array values are not automatically passed to the next program.

11. Disk Data Files

The standard BASIC language provides two ways of handling program
data items. They may be stored within the program (in DATA statements)
or they may be tYped in from the terminal. DATA statements, however,
allow for only a limited amount of data. Also, the data is accessible
only to the program in which it is embedded. Typing data from the termi-
nal allows it to be entered into any program, but it is a time-consuming
process. 1In either case the data, or the results of calculations, can-
not be conveniently stored for future use. All these limitations may
be overcome by the use of external data files.

13

\

A\data file is separate from the program or prbgrams which use it.
It is a file on the disk just like a saved program, but it contains
numbers or strings rather than program statements. This information
may be read or written by a BASIC program. (Information is stored in
a data file in a coded format. Therefore, it cannot be listed by
the BASIC Editor or TSS/8 EDIT.) A file may be as long as necessary,
subject only to the file limitations of TSS/8. (Maximum file size is
about 350,000 characters). String and numeric information may be com-
bined in a single file. The number @f data files a user may have is
again limited by TSS/8 (about 100, space allowing). When first created,
the contents of a file are unspecified, until it is entered.

11.1 File Records

A file is made up of logical units called "records". A record
may be as small as a single numeric or string variable. More typically,
it is a group of variables or arrays. The design of the program it-
self usually dictates the most efficient size of the record. If, for
example, the program manipulates a series of 5 x 5 matrices, each
record could contain one such matrix. If the program operates on 8§
character alphanumeric records, 14 string variables might make up a

record.

The size and composition of a record is defined with a RECORD
statement. Like the DIM statement, RECORD is followed by a series
of variables. They may, however, be unsubscripted as well as sub-

scripted. For example:

1§ RECORD A(S5,5)
1§ RECORD BS$(14)
1§ RECORD A, B, C$(8), D, E(5)

The set of variables mentioned in a RECORD statement, taken altogether,
constitute a record. Each element within the record is in essence a
field. Numeric and string information may be mixed in order to make

up the most convenient record.

Variables mentioned in a RECORD statememt should not appear in a
DIM statement. The RECORD statement reserves variable space exactly
as a DIM statement does. The difference is that the variables are
also identified as being used far file input and output. Non-subscripted
variables appearing in RECORD statements must not have been used pre-
viously in a program. RECORD statements should always be the first
in a program. ‘

14

Records may be any length. A long record is typically more effi-
‘ient since more information is transferred in a single operation.
:Ecords should, however, be only as long as necessary since exces:
v%riables will make the file longer. 1In particular, it is important
td\remember that all arrays and matrices have zero elements. A(5,5)

Rhas 36 elements, not 25. If A appears as part of a record, all 36
eléments should be used. It is also useful to try to make record
sizés 43 variables long, or a multiple of 43. Each RECORD statement
resérves program variable space in units of 43 whether or not the rec=
ord is that big. Unless the record fills out this area, some program
varigble space is wasted. It is not worth it, however, to make an in-
herently small record 43 variables long just to conform to this conven-

tion.| To do so would be to make the file unnecessarily large.

11.2 %pening a Disk File
\

Disk data files are completely separate from the programs which
use them. Therefore, the program must specify which file or files it
will use. The OPEN command is used for this purpose. OPENing a file
associates it with an internal file number, either 8 or 9. (A program
may have two disk files open at a time.) For example:

1¢¢ OPEN 9, "DATAlg"
1¢% OPEN 8,A$

The name of the file to be opened may be explicitly stated in the OPEN
command. If it is, it must be contained in quotation marks. The file
name may also be contained in a string variable, allowing the program
to decide which file to open, perhaps on the basis of input from the
program's user. In either case, the name of the file is preceded by
the internal file number, either 8 or 9. This argument may also be an
expression whose value is either 8 or 9. If a file is opened on an
internal file number where a file is already open, the previously
opened file is closed first.

If no file of that name exists, the file is created. In either
case, once the file is open, it is available for both reading and writ-
ing. BASIC disk data files have an extension of .DAT.

11.3 Reading/Writing Disk Files

Once open, files may be read and written one record at a time,
using the GET and PUT statements. GET statements read one record's

15

worth of information directly into the variables in the specified RECORD.
PUT statements write out the present values of the vafiables in the
specified RECORD. Both GET and PUT statements are followed by the in-
ternal file number (8 or 9 or an expression), the line number of the
RECORD statement containing the variables to be transferred, then the
name of a "“control" variable. For example:

109 RECORD A, B, C$(38), D(8)
114 OPEN 8, "FILE1l"

H 120 LET I=§0

\ 13§ GET 8, 198, I

|
i .

\The control variable specifies the file record to be transferred. 1In
‘the example above, FILEl is open as internal file 8. The value of I is
zero. Therefore, the GET statement in line 13§ reads the first record
Qrecord #) of FILEl into A, B, and the arrays C$ and D. Single numeric
values are read into A and B, 31 strings are read in C$, and 9 numeric
vélues are read into D. After each transfer, whether it is a GET or
a\EUT, the value of the control variable is automatically incremented.
Su%cessive GET's or PUT's automatically proceed to the next record of
thq file.

i

|
i The PUT command has a similar format. For example, if line 13§

of ﬂhe above program had been:

4
| .
\ 13g PUT 8, 1§8, I
the pﬁssent values of A, B, C$, and D would have been written out to
the first record of FILEL.
|

\
\

File records may be accessed randomly by simply setting the con-
trol variable to the desired record number before doing the GET or PUT.
Single records may be read, changed, and then written back without the
need to process the entire file. When reading a file, the record refer-
enced in the GET statement must, of course, be the same as the record
referenced in the PUT statement which wrote the data into the file. The
total length of the record and the relationship of string and numeric
fields within the records used for the GET's and PUT's must be the same.
If they are not, improper information will be read and written.

New files may be created by opening a file which does not already
exist. ' As successive records are written out to the file its length

16

is extended as necessary. When a new file is created, it is useful to
immediately write an "end-of-file" code in the last record. Writing

the last record first forces the entire file to be allocated, making sure
that enough disk space is available. It also provides an end-of-file
marker. Programs which read this file may then check for this end-of-
file to avoid reading past the end, which is an error. Existing files
may be enlarged by writing a new record farther out. If the program
does not know how big the file will be, it may simply write records out

. serially. The file will be automatically extended as needed. When all

. the records have been written, one final end-of-file mark may be added.

In general all records read or written in a specific file should
be the same length, that is, contain the same number of variables. How-
ever, if the user is careful he may intermix records of different
iengths in a file. Suppose the following statement is executed:

\ 4¢ PUT 8,108,N

{

\
1

aﬁ@ the value of N is n and the record specified by statement 100 is of
le%gth m. The PUT statement will write m variables in the file start-
iné at the m*n wvariable.

\

|
i
| The simple rule for computing the first variable in the file to
be a‘\ccessed is the record length times the record number. (Remember,
the %irst record is record number zero.)
\

11.4 \Closing and Deleting Disk Files

ahce all work has been completed on a file, it should be "closed"
by a CAOSE statement. Once it is closed, it may not be read or written
unless [t is reopened. The file does, however, remain on disk and is
availablz for future use. The CLOSE command is followed by the internal
file number to be closed (8 or 9). For example:

950 CLOSE 8

If the disk file was just created for temporary scratch use (to pass
parameters during a CHAIN, for example) it should be deleted at the

end of the program instead of closed. The UNSAVE command is used to
delete files. For example:

194@ UNSAVE 9

17

The file open on internal file number 9 is deleted from the disk.
Both CLOSE and UNSAVE may be followed by an expression instead of a
constant.

Open disk files are automatically closed at the end of the program,
unless the program CHAINs to another program. In this case, all open
files remain open and the new program may access them without executing
an OPEN statement. ‘

12. DECtape Files

Large permanent files are best stored on DECtape instead of disk.
Each DECtape holds up to 38f,880 characters of information. DECtape
files may be dismounted for safekeeping, thereby insuring their privacy.
Files on DECtape are very similar to files on disk except that they do
not have file names. Each reel of DECtape is a discrete file. When

mounted on a DECtape drive, records may be read and written directly
on the tape.

A DECtape unit, and hence the file mounted on it, may be used by
only one user at a time. If no one is using the unit, a user may as-
sign it. Once assigned, that user has exclusive access to it until he

. releases it. Each DECtape drive has a "write-lock" switch which physi-
}cally locks out any writes to that unit. If the write-lock switch is

1set, programs may not write on the tape even though the unit is as-

. signed.
|

H DECtape files may be used in a variety of ways. Programs which
nheed very big files should use DECtape to avoid swamping the disk. Ad-
ministrative files, such as student or employee records, are best stored
én DECtape. Since they are removable, and can be write-locked when
mounted, their usage can be tightly controlled. DECtapes are also use-
f@l for information retrieval. A data tape may be kept permanently
m@unted, but write-locked. Individual users may run programs which as-

sibn and query that file, then mlease it for others to use.

\

121; DECtape File Records

i Records for DECtape files are specified the same way as for disk
file%, with a RECORD statement. All rules for disk records also apply
to DEFtape records. In fact, the same RECORD statement may be used for
both a DECtape and disk file. (This is useful when reading a tape file

to a %}sk file for processing. Disk files are considerably faster than
tape files.)

18

It is possible to specify any record length for a DECtape file,
But a size of 43 variables is suggested, even more strongly than for
disk files. DECtapes are physically structured into blocks, each of
which will hold exactly 43 variables. If the record specified by the
progrém is, for example, 44 variables, it will require two full blocks
of the tape.

Records which are multiples of 43 variables are efficient in utili-
zing DECtape space, but are not efficient in speed. Such records are
written in consecutive DECtape blocks. The tape unit cannot read or

write consecutive blocks without stopping the tape and rewinding it
slightly.

This tape “rocking" also occurs when single block records (43 vari-
ables or less) are read or written as consecutive DECFape records.
(In this case, each DECtape file record corresponds to a physical tape
block.) The most efficient way to utilize DECtape is to make each
record 43 variables in length, and write them onto every tenth record
In the file (records g, 12, 28, etc.). When the entire length of the
tape has been traversed (the last block of the tape is number 1473)
write next into records 1, 11, 21, etc. 1In this way, every record will
eventually be filled. Programs which will be used repeatedly should
utilize the tape in this manner.

112.2 Opening a DECtape File

a DECtape files, like disk files, are completely separate from the
pPrograms which use them. Therefore, the program may specify which tape,
or tapes it will use. The OPEN command is used for this purpose. Since
D@Ctape files do not have names!, the OPEN command specifies the DECtape
uhit number to be used. It is assumed that the proper tape reel has been
m&unted. If-the file is to be updated, the unit should be write-enabled.
Iﬂ not, it should be write-locked. The OPEN command is thus followed

by\the unit number to be used (g-7):

194 OPBEN 2
14¢ OPEN 7

4
\

~ 1

tt s important to note *hat BASIC DECtape files are not the same as
the file-oriented DECtapes used by TSS/8 COPY. There is no directory

on a BASIC DECtape file. Each tape is considered to be one file of
pure ?ata.

19

The unit number could be an expression. Making the unit number a vari-

able is very useful since it is hard to predict which units will be ~ - --—

available at the time the program is run. When it is a variable, the
‘user may mount the file on any free unit, then type the number into the
program via an INPUT statement.)

When the OPEN command is executed, the indicated DECtape unit is
assigned. It cannot subsequently be opened or assigned by any other
user. Thus, it is possible to try to open a unit which is alr_auy
assigned. If, in the above examples, units 2 or 7 were assigned, the
program would be terminated and an error message typed out. An alter-
native form of the OPEN command allows the program itself to handle
this situation. OPEN commands mav include an ELSE clause which speci-
fies a line number. If the OPEN command fails, BASIC automatically
performs a GOTO to this line number. For example:

14§ OPEN 2 ELSE 9gg

If unit 2 is available, it is assigned and BASIC goes on to execute
the next statement. If unit 2 is not available, statement 98¢ is exe-~

cuted next. It could print a message and perhaps ask for an alternate
unit number.

12.3 Reading and Writing DECtape Files

DECtape files are read and written using the same GET and PUT com-
mands as are used for disk data files. The internal file number is a
number between @ and 7, or an expression. Unlike disk files, DECtape
files are of a constant length equal to the capacity of the tape. The
exact number of records per reel depends on the record size as follows:

T

Record Size Tape Capacity
1-43 variables 1474 records
44-86 variables 737 records -
87-129 variables 491 records
etc.

As indicated in the section on DECtape records, a record size of 43
:variables or less is recommended since it conforms to the physical
lblocking of the tapes themselves. It is also desirable to space the
Erecords out along the tape so that the tape does not rock. The fol-

‘ owing subroutine could be used to write 1474 records on the tape in
ihis fashion. It assumes that R is set to zero before it is called the
#irst time and that the unit number is in U.

20

588 REM SUBROUTINE TO WRITE RECORDS ALONG TAPE
51 REM WRITES ONE RECORD EACH TIME CALLED
515 PUT U,1¢, R "REMEMBER THIS INCREMENTS R
517 LET R=R+9 'SPACE ouT 1¢ BLOCKS

524 IF R<1474 THEN 55f 'OK TO RETURN

538 IF R=1479 THEN 560 ‘TAPE IS FULL

548 LET R=R-1479

545 IF R>@ THEN 559

547 LET R=R+18

55§ RETURN

568 sTop 'TAPE IS FULL

The following function may also be used to convert a logical record
humber (f to 1469) to a physical record block Spaced along the tape. -
This function will not use blocks g-3. They are therefore available
for headers or labels.

FNC(X)=(X—INT(X/147)*147)*1ﬂ+INT(X/l47)+4

ables or less.

Once opened, any record on the tape may be read. The tape unit
must, however, be write-enabled if it is to be written. Trying to PUT
to a write-locked tape is an error.

12.4 Closing DECtape Files
Once all work on a DECtape file has been completed it may be closed.

users. Thus, if the tape contains important information (and especially
f it is write-enabled) the CLOSE should not be done until the tape

reel has been removed. 1If no CLOSE statement is encountered in the pro-
gram, the unit remains assigned even after the program finished. It
will remain assigned until a TSS/8 RELEASE command is executed or the
user logs out. An example of a CLOSE command is:

118 CLOSE 6
12.5 Using Data Tapes with Ps/g FORTRAN

Numeric DECtape data files written by TSS/8 BASIC may be read by
PS/8 FORTRAN by use of FORTRAN's RTAPE and WTAPE subroutines, and vice
versa. (String and Hollerith variables use different character codes;)
Thus it is possible to use BASIC to prepare an input or update tape for
a stand-alone FORTRAN pProgram. This provides a convenient way to do

21

large jobs in off-hours, without having to leave the time-sharing mode
for very long. '

13. Line Printer Output

If a line printer is available, it may be used both to list BASIC
programs and as an output device for the programs themselves. The line
printer may only be used by one user at a time.

The commands associated with line printer output are LLIST and
LPRINT.

LLIST is similar to the LIST command except that the program list-
ing is output to the line printer rather than to the Teletype. The
LLTST command assumes that no other user has the line printer assigned
and responds by typing WHAT? if the line printer is not available.
After the listing is complete, the line printer is released and is

available to any user.

BASIC programs may use the line printer as an output device during
execution by means of the LPRINT command. LPRINT is exactly like PRINT
except that, again, the information goes to the line printer rather than
to the Teletype. All formatting conventions of the PRINT command are
available with LPRINT. In particular, CHR$(12) may be used to skip to
the top of the next form.

The command LPRINT also assumes that no other user has the line
printer assigned. However, using this command when the line printer
s not available causes the program to terminate. Once LPRINT success-
fully assigns the line printer, it remains assigned until the program
terminates.

The OPEN and CLOSE commands may be used to assign and release the
line printer, An OPEN command with a device number of 11 will assign
the line printer, or if it is not available and an ELSE clause_is
specified, transfer control to the line number specified in the ELSE
clause. CLOSE 1l will release the line printer.

1l4. Papertape Output

The high speed paper tape punch may also be used as an output de-
vice. Like the line printer, the paper tape punch can only be used by
one user at a time. The OPEN and CLOSE commands with an internal file

22

number of 1f will respectively assign and release the paper tape punch
as shown in the following example:

1§ OPEN 1§ ELSE 18¢ ‘'GOTO 144 IF PUNCH UNAVAILABLE
2f CLOSE 18

Here too, a GOTO statement in combination with an ELSE clause can be
used to transfer program control should the paper tape punch not be

available.

The command LPRINT causes output to go to the paper tape punch
wiien this device has been assigned. For example:

12 OPEN 18
2¢ LPRINT "THIS GOES TO PTP."

causes the statement "THIS GOES TO PTP." to be punched onto papertape.

If the device is not released via a CLOSE command, it remains as-
signed even after the program terminates.

15. Truncation Function, FIX (X)

The truncation function returns the integer part of X. For
example:

FIX (19.2)=1g
FIX (-11.6§1)=-11

FIX is like INT for positive arguments, and can be defined as:
FIX(X) = SGN(X) * INT(ABS (X))
16. ON_GOTO

The ON.,.GOTO statement may be used to provide a many=-way branch.
The gensral form of the ON...GOTO is:

ON expression GOTO line number, line number....
If the value of the integer part of the expression is 1, a GOTO is per-

formed to the first statement. If the value of the integer part of the
expression is 2, a GOTO to the second statement number is performed, etc.

23 :

If the value is less than one, or greater than the number of statement
numbers, the program terminates and an error message is typed out.
Examples of ON...GOTO are:

999 ON N GOTO 1p8,408,200,688,499
872 ON A+SQR(B*C) GOTO 1§f,28p

17. Implied LET

The word "LET" may be left out of LET statements. Thus these two
statements are dompletely equivalent:

1#8 LET Xx=2
188 x=2

18. SLEEP

The SLEEP statement causes a BASIC program to pause for a speci-
fied interval, then continue running. SLEEP is followed by the number
of seconds the program is to pause. For example:

222 SLEEP 38
or

22f LET N=15
222 SLEEP 2*N

causes a 30-second delay in the program.

The SLEEP statement is a useful way for a program to wait for a
device (DECtape or line printer) which is busy. The ELSE clause in the
OPEN statement can go to a routine which pauses for awhile, then re-
tries the OPEN. When the current user finishes with the device and re-
leases it, the program may then proceed to OPEN and use it. This capa-
bility is especially useful when many users may be looking up informa-
tfon on a single DECtape file. It may also be used to allow two programs
to communicate with each other. Each writes information on a tape file
for the other, or others, to read.

SLEEP should always be used when waiting for a device. While the
program is sleeping it is not using any processor time. A SLEEP time
of 30 to 60 seconds is recommended. It is particularly important that
the program not wait by repetitively retrying the OPEN. To do so wastes
computer time and slows down the other users. The integer part of the

24

argument is used to determine the number of seconds to delay. This
value must be between @ and 4095,

19. Comments

An entire statement of comments may be included in the BASIC pro-
gram by means of the REM statement. Often comments are easier to read
f they are placed on the Same line with an executable statement rather
than in a separate REMARK statement. This can be accomplished by end-
Ing an executable statement with an apostrophe. Everything to the
right of the apostrophe up to the statement terminator (carriage return
or backslash as described in section 21) is ignored (unless the apos-~
-rophe occurs within a print literal or string constant). For example:

1§ LET X=Y 'THIS IS A COMMENT*
2¢ PRINT "BUT 'THIS IS NOT A COMMENT"
3¢ LET X$="aA'B"

Thus, a comment is added to line 18 with an apostrophe, but in lines
20 and 30 the apostrophe is treated as a valid character.

20. Blank Lines

To make BASIC programs easier to read, blank lines can be inserted

anywhere in a BASIC program. These can be used to break a program into

logical sections, or (as is often done) to insert remarks with the apos-
trophe feature. For example:

12 ‘“PROGRAM WRITTEN BY SAM JONES
18 e

Note that to insert a blank line, you must type one or more spaces
after the line number; typing the line number alone will just delete

that line from the program.

21. More than One Statement on a Line

As many statements as will fit may be typed on a single program
line. Each statement must be separated by the backslash character "\".

(SHIFT/L). The only statement requiring a line number is the initial
one. For example:

1g FOR I=1 TO 1¢ \ PRINT I \NEXT I

25

Note that the backslash character acts as a statement terminator and
thus cannot be included in a comment statement.

26

®

APPENDIX A

ERROR MESSAGES

The following error messages have been added to those already con-

tained in PROGRAMMING LANGUAGES.

IMPROPER ACCOUNT #
ABORT
{tBS

BAD FILE FORMAT

MISUSE OF CHR$ IN LINE n
BAD VALUE IN CHANGE STATEMENT AT LINE n

TIME LIMIT EXCEEDED AT LINE n

The error message:
ILLEGAL FORMULA IN LINE n
has been changed to:

ILLEGAL SYNTAX IN LINE n

PROGRAM IS “progname"

A user logged in under account
numbers 1 (system account) or

2 (system library) and tried to
run BASIC. This is prohibited.

The program specified in re-
sponse to OLD PROGRAM NAME was
not acceptable to BASIC. This
is generally caused by: (1)
trying to load an obsolete com-
piled (.BAC) filel!, or (2) try-
ing to load a non-BASIC (FORTRAN
or PAL-D) file.

The CHR$ function was used in

an invalid manner. CHR$, like
TAB, can appear only in PRINT

statements.

While performing CHANGE A TO AS,
one of the elements of the ar-
ray A was found to contain a
illegal value. '

The number of statements exe-
cuted by a job has exceeded

the maximum permitted?. Gener-
ally, some error was made and
the program is caught in a
loop.

This message may immediately
follow an error message, to
identify the current program

in a series of CHAINed programs.
If there is no CHAINing, this
message will not occur.

'Version 4 will not accept compiled files created by earlier versions

of BASIC.

This limit is established by the System Manager, and may be set to

infinity" if desired.

27

PROGRAM NOT FOUND AT LINE n

BAD SLEEP ARGUMENT IN LINE n

ARRAY OR RECORD USED BEFORE DEFINITION’

IN LINE n

IMPROPER DIM OR RECORD STATEMENT
IN LINE n

CAN'T CREATE FILE IN LINE n

CAN'T DELETE FILE IN LINE n

UNOPEN DISK UNIT IN LINE n

DEVICE BUSY IN LINE n

INVALID RECORD NUMBER IN LINE n

pN INDEX OUT OF RANGE IN LINE n

28

The file which the user tried
to access with a CHAIN state-
ment does not exist in his disk’
area. The PROGRAM IS message
will also occur.

The argument of the SLEEP com-
mand must have a number greater
than or equal to f, and less
than or equal to 4g95.

The RECORD statement m- . _ occur
before any reference to it is
made. A DIM statement must oc-
cur before an array is used.
(RECORD and DIM are placed at
the beginning of a program.)

Syntax error in DIM or RECORD
statement, or an array name
that was previously dimensioned
is used again. (Replaces
IMPROPER DIM STATEMENT IN LINE
n.)

An OPEN statement tried to cre-
ate a file, but there is: (a)
no disk space available, (b)

no file name specified, or (c)
a null string has been given

as the file name.

UNSAVE cannot delete a file.
This is usually due to the
fact that another user has the
file open, or the file is pro-
tected with a code >2f.

The user tried to do a GET,

PUT or UNSAVE to device 8 or 9,
without a file being previously
opened on the device.

The user tried to OPEN DECtape,
#-7, line printer, or paper tape
punch, but the device was un-
available, and there was no

ELSE clause in the OPEN state-
ment.

The record number must be a
number whic¢h is greater than 6r
equal to @ and less than or
equal to 4g95.

For DECtape I/0 the maximum
record number is further limited
by the DECtape size.

The value of the index is less
than one, or greater than the
number of statement numbers.

INVALID DEVICE NO. IN LINE n

GET BEYOND END OF FILE IN LINE n

GET/PUT ERROR IN LINE n

CHAIN TO BAD FILE AT LINE n

29

The device number in the file
I/0 statement is not between g
and 11 inclusive (or X and 11
inclusive, where X is a number
set by the system manager).

Disk file is too small to have
a record with the number speci-
fied in the GET statement at
Line n.

A hardware error occurred in
GET or PUT. (This is usually
due to a DECtape unit being
write-locked.)

The file specified by the CHAIN
has an invalid format; it is
not a BASIC format file. The
"PROGRAM IS..." message will

follow this error message. The -

program name will be the name of
the bad file.

 APPENDIX B
INTERNAL DATA CODES
Using the file I/O capabilities and the CHANGE statement, it is
possible to examine data which was written on a DECtape or disk file
by a program other than BASIC. There are two data formats, Numeric

Data and String Data.

1. Numeric Data

Each numeric value in TSS/8 BASIC is three PDP-8 words long. The
format is as follows:

g 1 8 9 11

Word 1
Sign Binary Exponent High Order
Mantissa

g » 11

Word 2 '
Mantissa

'} 11

Word 3

Low Order Mantissa

A one in the sign bit means that the number is negétive. The exponent
Is kept in "“excess 2p8" form where

208, is 2°
201, is 2%
1774 is 271

The assumed decimal point is Preceding bit 9. Also, the number is al-

ways normalized, meaning that bit 9 is always 1 unless the number is

zero. (Zero is represented by three zero words.)

Note that this format is the same as the format used by FORTRAN
and described in Programming Languages,

30

2. String Data

Each string variable is three PDP-8 words long. Each word con-
tains two 6-bit bytes or characters. If a string variable is filled
by a GET from a source which was not written by a BASIC program, a
BASIC program may examine the data in the variable by performing a
CHANGE on that variable. The six bytes will be translated as if they
were internal character codes for BASIC string characters. The fol-
lowing table shows how this translation interprets the 64 possikl_
bytes. Note that after such a CHANGE, the ﬂth element of the array
contains a count of the number.ofcharactersoccurring before the first
null. :

31

(Numeric
Code)
String Byte ASCII String Byte
Char. ASCII
Octal Decimal Code Char. ||Octal Decimal
28 g g NULL 4p 32
g1 1 32 SPACE || 41 33
g2 2 33 ! 42 34
a3 3 34 * 43 35
g4 4 35 # 44 36
25 5' 36 $ 45 37
26 6 37 % 46 38
a7 7. 38 & 47 39
14 8. 39 t 58 4
11 9 ag C 51 41
12 18 41) 52 42
13 11 42 * 53 43
14 12 43 + 54 44
15 13 44 . 55 45
16 14 45 - 56 46
17 15 46 . 57 47
20 16 47 / 68 48
21 17 48 a 61 49
22 18 49 1 62 5g
23 19 59 r2 63 51
24 2¢ 51 3 64 52
25 21 52 ‘4 65 53
26 22 53 5 66 54
27 23 54 6 67 55
3g 24 55 7 78 56
31 25 56 '8 71 57
32 26 57 19 72 58
33 27 58 H 73 59
34 28 59 ; 74 64
35 29 64 < 75 61
36 30 61 = 76 62
37 31 62 > 77 63

32

(Numeric
Code)
ASCII
Char.
Code

ASCII
Char o

63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
8g
81
82
83
84
85
86
87
88
89
o8
91
92
93
94

> =77 A NK X E<CSHE WO N O Z B A" UHIGO®YMUAAWM» @

NOTES TO SYSTEM USERS ABOUT

BASIC VERSION 4

1. Program Size

The features of Version 4 were implemented at almost no cost in
terms of program performance. In fact, most BASIC programs will prob-
ably run faster under version 4 than under version 3. It is still
possible that some programs which ran under version 3 will no longer
run. This is due to the decrease in symbol table space in the com-
piler. However, additional space is now available at runtime so there
should be many programs which are able to run under version 4 which
would be too large for version 3. The following are the current re-
strictions imposed by the amount of available space:

a. During compilation, version 4 has (roughly) 12gg
words for symbol tables (version 3 had l35ﬂlﬂ
words). This space is used as follows:

1p

1. 2 words for each line in the program.

2. 3 words for each simple variable and every
one-variable array.

3. 4 words for each two-dimensional matrix,
each DEF statement and each RECORD state-
ment., :

4. 5 words for every constant used in the pro-
dgram.

b. At runtime there are at least 943 words available
in version 4 (version 3 had 909 words). If the
file I/0 capabilities are not utilized by the pro-
gram being run (i.e., no RECORD, GET, PUT, OPEN,
CLOSE, or UNSAVE statements) then 1215 words are
available. Three words are used by every vari-
able, array element, constant,; and every DATA item
(both string and numeric).

Each RECORD statement may cause additional space

to be used. The space used for variables in RECORD
statements is allocated in blocks of 129 words. Thus,
the statement:

RECORD A,BS$ (9),C(4,4)

causes 105 words to be allocated for the variable
A, the string array B$, and the array C, and also
causes 24 more words to be allocated although un-
used by the program. NOTE: This space is used as

buffer space if the record is read or written on DEC-
tape.

33

The space left over after deducting for the above
is used for the program itself. The program is
"paged" off the disk; so with less core space
available, more disk activity will take place.
Since more space is available, programs will prob-
ably run faster under BASIC Version 4.

The considerable gain in space available at runtime is due to the
fact that version 4 uses the same core area for the INPUT statement
processing routines and seven of the arithmetic functions. When the
Interpreter is called, the input routines are initially loaded. The
first occurrence of a call to one of the overlayed functions (SIN, COS,
TAN, ATN, LOG, EXP, and SQR) causes the code for these functions to be
loaded over INPUT. These functions then remain resident until an INPUT
statement is executed. At that time, the input routines are again
loaded. Thanks to the new TSS/8 Monitor (Version 8.22A) which keeps
BASIC's file segment window permanently resident, the overlay time is
normally insignificant. Since the question mark is typed by the input
processor before it loads the main input routines, the user generally
will not notice that any delay has occurred.

2. Using the "TIME LIMIT" Feature

When the following PATCH is made, BASIC increments a counter
every time the program executes a statement. When the counter over-
flows, the "TIME LIMIT EXCEEDED AT LINE n" error message occurs, SoO
this feature actually counts executed statements, ndt real time. None-
theless, it is an excellent way to prevent inexperienced programmers
from tying up the system in a compute-bound loop.

If this PATCH is not made, the counter is never incremented and
so the "TIME LIMIT EXCEEDED" error can never OCCUr.

The PATCH is:

«LOAD BASIC 14157 488 6226

At Location Deposit Comments
22p1 | val (1) high 12-bits of COUNT
2202 val(2) low 12-bits of COUNT

2293 5225 : JMP to ENABLE PATCH
then '
«SAVE BASIC 14157 488 6226

34

The contents of 2281 and 2202 contain a negative 24-bit number (COUNT) ,
which is the number of statements to execute before giving the "TIME
LIMIT EXCEEDED" error.

We have found that the following setting is good:

2201=7778
22f2=p

which sets COUNT to -32,768.
This will time out a program like:
1¢ GOTO 14

in about 15 seconds of CPU time, while permitting "real" jobs a minute
or more of CPU time, which is enough in nearly all cases.

In some cases, more complex decisions must be made before setting
this time-out feature. For example, suppose we wanted to permit users
with Project Numbers of @ unllmlted time, whlle timing out everyone
else,

.LOAD BASIC 14157 40§ 6226

Deposit the following PATCH in core:

Location + Value Comments
22081 7778 high 12-bits of COUNT
2202 .] low 12-bits of COUNT
2293 : 5235 JMP to special PATCH
2234 7788 (7788
2235 6617 ACT
2236 7234 AND (7799
2237 7658 SNA CLA
2249 5284 JMP to ignore PATCH
2241 5225 JMP to enable PATCH

Then:
.SAVE BASIC 14157 49 6226

Locations 2234 through 2382 and 2334 through 2377 are available
for such patches.

35

3. .Prohibiting Use of. DECtape Units

It is possible to deny BASIC programs the use of certain device
numbers in file I/O statements. In particular, this means certain DEC-
tape units can be protected from use by BASIC programs. This is done
by the following PATCH:

.LOAD BASIC 14157 442 6226
.DEP 5653 =-n
.SAVE BASIC 14157 4@@ 6226

where:
n = octal equivalent of lowest valid device number.

For example, depositing a -4 in the location would make #, 1, 2, and
3 invalid when used as the device numbers in a file I/0 statement.
This means DECtape units @# through 3 are not available to BASIC
programs while units 4 through 7 are available.

All DECtape usage may be prevented by depositing a -1f (octal
value 777@). All DECtape and disk usage may be denied by depositing
a -12 (octal value 7766).

4. Random Comments

a. The file BASIC occupies 38 segments of disk, rather
than the 35 segments needed by Version 3.

b. Some users have wanted to be able to run BASIC under
account #2 (System Library) which is currently a
restricted account. To "unrestrict" account #2, make
the following PATCH:

.LOAD BASIC
. DEP 4212 7418
.SAVE BASIC

5. Patches to other CUSPs
Since BASIC Version 4 introduces a new file extension, .DAT
(bits -4 of protection word = @18@1), it is necessary to update

COPY, CAT and LOGOUT to recognize this extension, using the follow-
ing patches: '

36

COMPUTING S€RUICES DINISION

Publication Number 101

TSS/8 BASIC

Second Printing July, 1974

o

THE UNINERSITYIOR MSCONSIN-IMLW!

Please complete and return the Documentation Registration
Form enclosed with this manual. Updates and revisions will be
sent automatically to any purchaser whose form is on record.

This handbook contains extensive amounts of information
taken from the 1970 editions of "Programming Languages" and
"rSS/8 Timesharing Systems Users Guide", both published by the
Digital Equipment Corporation, Maynard, Massachusetts. These
excerpts were taken with permission of the publisher.

Permission is hereby granted to reproduce this material in

any form desired. Please inform the Editor when this has been
done.

First Printing June, 1973.

Second Printing July, 1974.

-ii-

THE UNIVERSITY OF WISCONSIN-MILWAUKEE
COMPUTING SERVICES DIVISION

DOCUMENTATION REGISTRATION FORM

(Completion of this form will place the purchaser's name on a mailing list
to receive updates of the purchased document) ‘

NAME (please print) DATE

I HAVE PURCHASED A COPY OF

(Title of Documentation)
PLEASE_SEND UPDATES'AND REVISIONS OF THIS DOCUMENT TO:
Campus Address*

Off-campus Address
*To save on mailing expenses, purchasers with a campus address
are asked to specify this as their preferred address to which
new material will be sent. Purchasers with no campus address
will have material sent to the off-campus address listed.

CAMPUS ADDRESS: Dept.

Room & Bldg.

Telephone

OFF-CAMPUS ADDRESS: Street

City, State, Zip

Telephone

--Please fold, staple, and mail this form to address shown. Thank you.--

—————————————————— — A n T ——————— — " W - —— ——— O W03 W8 MOE A M S S M ——— A T W= —— ——

TO: The University of Wisconsin-Milwaukee
Computing Services Division,
Retail Sales
EMS EB75
Milwaukee, Wisconsin 53201

This manual is intended as a complete
textbook for the teaching of the BASIC
language as well as a description of
the implementation of BASIC ASCII ver-

sion V as it occurs in TSS/8.

Publication Number 101

TSS/8 BASIC

Second Printing July, 1974

Prepared by the TSS/8 Programming Group
of the Computing Services Division at

The University of Wisconsin-Milwaukee.

Editor

454

L. P. Levine Second Printing July, 1974

—i-

Please complete and return the Documentation Registration
Form enclosed with this manual. Updates and revisions will be
sent automatically to any purchaser whose form is on record.

This handbook contains extensive amounts of information
taken from the 1970 editions of "Programming Languages" and
"TSS/8 Timesharing Systems Users Guide", both published by the
Digital Equipment Corporation, Maynard, Massachusetts. These
excerpts were taken with permission of the publisher.

Permission is hereby granted to reproduce this material in

any form desired. Please inform the Editor when this has been
done.

First Printing June, 1973.

Second Printing July, 1974.

-ii-

TABLE OF CONTENTS

Contents

HOW TO USE THIS MANUAL » CHAPTER 1
MACHINE INDEPENDENT BASIC CHAPTER 2
2.1 Introduction to BASIC programming

2.1.1 About computing
2.1.2 LOGIN procedure
2.1.3 How to use this manual

Fundamentals of Programming in BASIC

'_l

An example program and output
REM statement
Numbers
Variables
LET statement
Arithmetic operations
Parentheses and spaces
Functions
More complex functions
Sign function SGN (X)
Integer function INT (X)
Random number function RND (X)
RANDOMIZE statement
Time function TIM(X)
User defined functions
Input/output statements
READ statement
DATA statement
RESTORE statement
INPUT statement
PRINT statement
TAB function

. . . . e e
. s

NN NN NNDND DN
DNVNDODNNNRNNNNNMNNONODONNND DN NN
NMNONHRERREFERFEHRFRFEWOOSNO U WN

MNHOWLWO~NOULTEdWNREFO

Subscripts and Loops

2.3.1 Subscripted variables
2.3.2 DIM statement

2.3.3 Loops

2.3.4 FOR statement

2.3.5 NEXT statement

2.3.6 Nesting loops

-iii-

2.37

2.37
2.39
2.41
2.41
2.42
2.43

Contents

2.4

2.6

Transfer of Control

Conditional transfer

Lo S S A N)

Subroutines

GOSUB statement

RETURN statement
Location of subroutine

. ¢ e
. o e

WA UT W

MNONMNNDNDNDNDDNDND

Nesting subroutines

Errors and How to Make Corrections

5.1
.5.2 BErase a line
5.3
5.4

Running a BASIC Program

LOGIN procedure
Initial dialog
RUN command
Editing phase
SAVE command
REPLACE command
UNSAVE command
LIST command
DELETE command
NEW and OLD commands
CATALOG command
BYE command
ALTMODE key

. L] .
(o)1= er o) W W) W o A B A NN) W e 2 W 0 2«)WY 3
. . L) . [] . . . L[] .

HHERFERFWOYWONO UL WN

whoHo

NN NDNDNDNDND

v

TSS/8 ADVANCED BASIC

3.1
3.2
3.3

Implementation Notes

Punching a Paper Tape

Reading and Listing a Paper Tape

STOP and END statements

Single letter corrections

Erasing a program in core
Stopping a RUN in TSS/8 BASIC

Unconditional transfer (GOTO)

IF-THEN and IF-GOTO statement

CHAPTER 3

3.3.1 Transferring a file to DECtape

EDIT command

COMPILE command

-iv-

Contents
3.5.1 File extensions
3.5.2 File protection
3.6 Strings in BASIC
3.6.1 Reading string data
3.6.2 Printing strings
3.6.3 Inputting strings
3.6.4 Line input (LINPUT)
3.6.5 Working with strings
3.6.6 The CHANGE statement
3.6.7 A note about CHANGE
3.6.8 The CHR$ function
3.6.9 Modification of the DATA statement
3.7 Program CHAINing
3.8 Disk Data Files
3.8.1 File records
3.8.2 OPENing a disk file
3.8.3 Reading/writing disk files
3.8.4 CLOSing and deleting disk files
3.9 DECtape Files
3.9.1 DECtape file records
3.9.2 OPENing a DECtape file
3.9.3 Reading and writing DECtape files
3.9.4 CLOSing DECtape files
3.9.5 Using DECtapes with PS/8 FORTRAN
3.10 Line Printer Output
3.11 Papertape Output
3.12 ON-GOTO Command
3.13 SLEEP Command
3.14 Comments
3.15 Blank Lines
3.16 More Than One Statement on a Line

—v—

Contents

3.17 Internal Data Codes
3.17.1 Numeric data
3.17.2 String data

SUMMARY

4.1 Summary of BASIC Statements

4.1.1 Functions

CHAPTER 4

4.2 Summary of BASIC Edit and Control Commands

4.3 Summary of BASIC Error Messages

L A S N
. . .
WwWwwww

Other messages

ASCII CONSTANTS

INDEX

1 Edit phase messages
.2 Input phase messages
.3 RUN phase messages
4
5

-vi-

Non-fatal execution phase messages

APPENDIX A

APPENDIX B

N =

CHAPTER 1

HOW TO USE THIS MANUAL

This manual describes the BASIC language as implemented on
the Digital Equipment Corporation TSS/8 Time-Sharing Computing
System. As such, it is a compromise, attempting to describe
BASIC in its original Dartmouth College form, and to include
those changes, both of a limitation and enhancement nature,
which have been made in BASIC as it was implemented on TSS/S8.

We have therefore chosen to discuss the BASIC language in
two sections, reserving for chapter 2 those portions of BASIC
which are machine independent, and placing in Chapter 3 those
portions which are specific to the TSS/8. Even this cannot be
done successfully, as some of the features and restrictions of
TSS/8 BASIC are so ingrained in the language implementation that
a sensible discussion is not possible without reference to them
in chapter 2. When We have done so we will indicate that the
text is referring to TSS/8 BASIC by a marginal "8" just as we
have done here.

Chapter 3 is devoted almost exclusively to TSS/8 implemen-
tation notes.

Chapter 4 contains a list of all TSS/8 BASIC Statements,

commands and error messages.

1.1~

CHAPTER 2

MACHINE INDEPENDENT BASIC

2.1 INTRODUCTION TO BASIC PROGRAMMING

BASIC is an easy to learn, conversational, computer lang-
uage for scientific, business, and educational applications.

It is used to solve both simple and complex mathematical prob-
lems and is directed from the user's Teletype.

In writing a computer program, it is necessary to use a
language or vocabulary that the computer will recognize. There
are many computer languages and BASIC is one of the simplest be-
cause of the small number of readily learned commands needed,
its easy application in solving problems, and its practicality
in an educational environment.

BASIC is similar to other programming languages in many
respects and is aimed at facilitating communication betwéen the
user and the computer. The novice computer'user will benefit
from reading the entire manual from the beginning. The user
who is already familiar with a language such as FOCAL or FORTRAN
should first turn to the language summary in chapter 4.

As a BASIC user, you type in your computational procedure
as a series of numbered statements, making use of common English
words and familiar mathematical notation. You can solve almost
any problem by spending an hour or so learning the necessary
elementary commands. After becoming more experienced, you can

add the more advanced techniques needed to perform more intri-

=L el=

cate manipulations and to express your problem more efficiently
and concisely. Once you have entered your statements, you give
a RUN command. This command initiates the execution of your

program and causes the return of your results almost instantly.

2.1.1 About Computing

As we approach a computer terminal, there is a certain way
wé attack a probiem. It is not enough to understand the tech-
nical commands of a computer language, we must also be able to
correctly and adequately express the problem to be solved. For
thié reason it will be helpful to outline the process of setting
up i problem for computer solution.

jThe first step is to define the problem to be solved in de-
tail. Understand each fact and possibility within the problem
before attempting to go any further. Problems to be solved with
BASIC are generally of a level which admit to fairly straight-
forward analysis.

In computing there is always more than one correct way of
approaching a given problem. Generally a standard mathematical
method for solution can be found, or a method developed. Pro-
grams using the same method can still be written in more than
one correct way.

For some complicated programs a flowchart is useful. A

flowchart is a diagram which outlines the procedures for solving

the problem, step by step.

L.l

Having a diagram of the logical flow of a problem is a
tremendous advantage to you when determining the mathematical
techniques to be used in solving the problem, as well as when
you write the BASIC program. In addition, the flowchart is
often a valuable aid when checking the written program for errors.

A flowchart is a collection of boxes and directed lines.
The boxes indicate, in a general fashion, what is to be done;
the directed lines indicate the sequence of the boxes. The
boxes have various shapes representing the type of operation to
be performed in the program (input, computation, etc.). Texts
on flowcharting are available at academic bookstores. A stu-
dent interested inlthis subject is advised to obtain one.

Following satisfactory completion of a flowchart, you pro-
ceed to write the program. To do this you need to understand
the various instructions and capabilities of the BASIC language.
The rest of this chapter is designed to teach you how to write
programs in the BASIC language in a minimal amount of time.

Once the correct procedure has been coded, it is time to
try it on the computer. At this point it is possible the pro-
gram will not work perfectly as originally written. BASIC will
locate any mistakes the programmer has made in typing his program
and print appropriate error messages to help him correct them.
It is important to understand that even if the program does run,
the results will only be correct if the problem has been cor-

rectly analyzed and proper code written to achieve the correct

..2.3-

solution. A computer can only do what you tell it to do. If

you have unknowingly told a computer to do something other than
what you wanted it to do, the results will be accurate according
to the information the computer processed. The computer cannot

know what you really want, only what you have told it.

2.1.,2 LOGIN Procedures ¥
It is assumed in this manual that the user has access to a
TSS/8 system and has an account number available to him on that
system. Although it is not required for an understanding of
BASIC, a copy of the TSS/8 USER'S GUIDE will aid him in commu-

nicating with the computer.

2.1.3 How to Use This Manual
The most straightforward treatment of the BASIC programming
language will be obtained by reading this manual from the begin-
ning. Examples are taken directly from Teletype output so that
the reader will become familiar with the computer output and
formats. Once you have mastered the principles of BASIC lang-
uage, you will most likely only need to refer to the summaries
found in chapter 4.
Detailed examples appear and may be run on the computer as
a first exercise before attempting an original program.
The early sections of this manual contain directions on
how to write a BASIC program. The section on Implementation
Notes is recommended for every reader. Once you have written

¥The marginal "8" is used to call attention to TSS/8 BASIC
special features in chapter 2,

-2, 4=

several BASIC programs you will find chapter 3 helpful; reading
that chapter too early in your programming experience may be
confusing. As soon as you are ready to try running a BASIC

program on the computer turn to the section on Running a BASIC

program.

~2,5=

2.2 FUNDAMENTALS OF PROGRAMMING IN BASIC
2,2.,1 An Example Program and Output

At this point the program in Figure 2-1 may mean little to
you, although the output (following the word RUN) should be
fairly clear. One of the first things you notice about the
program is that each line begins with a number. TSS/8 BASIC
requires that each line be numbered with an integer from 1 to
2046. When the program is ready to be run, BASIC executes the
statements in the order of their line numbers, regardléss of
the order in which you typed the statements. This allows the
later insertion of a forgotten or new line. The programmer is,
therefore, advised to leave gaps in his numbering on the first
typing of a program. Numbering by fives or tens is a common
practice.

The next thing we notice about the program is that each
line begins with a word, a command to the computer to tell it
what to do with the information on that line. BASIC does not
understand the statement V=0 unless we write LET V=0. Once we
understand the usage of these commands we are able to describe

our problem to the computer.

2.,2,2 REM Statement
' The REM or REMARK statement allows the programmer to in-
sert notes to himself or anyone who will read the program later,
The form is:

(line number) REM (message)

-2, b6=

FIGURE 2-1
LIST
13 REMARL - PROGRaAM TJ TnkL AVERAGE OF
15 REMARK - STUDENT GRADES AND CLASS GRAJES
2@ PRINT "HOW »MaNY STUDENTS, QW saNY GRAVES PER STUDENT';
38 INPUT A,B
42 LT I = ¢
58 FOR J = I TO A-1l
55 LET /=08
5@ PRINT "STUDZNT NUMSBER ="3dJ
75 PRINT "ENTER GRADLS™
75 LET D=J

823 FOR K = D TO D+(us-1)
&l INPUT G

&2 LET 7 =7 + @

85 NEXT K

93 L&ET 7 = J/3B

95 PRINT "AJERAGZ (RaDE ="3V
95 PRINT

99 LET Q@ = Q@ + V

122 NEXT J

141 PRINT

132 PRINT

133 PRINT "CLASS AVERAGE =";Q/A
124 STOP

l4p END

READY
RUN

HOW MANY. STUDENTS, HJW MANY GRADES PER STUDZANT? 3,4
STUDENT NUMBER = 2 '

ENTER GRADZS

89

g5

93

? 38

AVERAGE GRADE = 86

RS IEEES RRUEN BTN |

STUDZNT NUMBER = |
ENTER GRrADES

? 93

? 91

? 95

? 132

ATERAGE GRaADZ = 94.25

STUDENT NUMBER = 2
EITER GRADES
? 78
? 77
? 73
? 55
ATZRAGE GRADE

L[}

73 .75

CLASS AVERAGE = 83.56667
-2 . 7—
RE AD~

Everything following REM is ignored by the computer. 1In Fig-
ure 2-1, line 10 is a remark describing what the program does.
It is often useful to put the name of the program and informa-
tion on what the program does at the beginning for future ref-
erence. Remarks throughout the body of a long program will help
later debugging by explaining the function of each section of

code within the whole program.

24243 Numbers

In BASIC, as in all languages, there are conventions to be
learhed. The most important initial concepts are (1) how do we
expréss a number to the computer and (2) how do we create alge-
braié symbols.

BASIC treats all numbers as decimal numbers, which is to say
that it assumes a decimal point after an integer, or accepts any
number containing a decimal point. The advantage of treating all
numbers as decimal numbers is that the programmer can use any
number or symbol in any mathematical expression, knowing that
the computer can combine the numbers given. (In some languages
integers must be used separately from decimal numbers.)

A third form (other than integers and real numbers) we use
in expressing numbers to the computer is called exponential form.
In this form a number is expressed as a decimal number times some
power of 10. For example:

23.4E2 = 2340

=2.8~

The E can be read as "times 10 to the--power" depending upon

the positive or negative integer following E. A number can be
expressed in exponential form by the programmer anywhere in his
program. You may input data in any form. Results of computa-
tions are printed out as decimal numbers if they are in the range
.01£N<1,000,000. Outside this range numbers are automatically
printed out in E format. The computer handles seven significant

digits in normal operation and input/output, as seen below:

Value Typed In Value Typed Out by BASIC
.01 .01
.0099 9.900000E-3 -
999999 999999
1000000 1.000000E+6

The computer automatically omits printing leading and trailing
zeros in integer and decimal numbers and formats all exponential
numbers in the following form:

(sign) digit . six digits E X exponent value
Fér example:

-3.470218E+8 is equal to -347,021,800

7.260000E-4 is equal to .000726

All letters are printed as capitals at the Teletype console.
Therefore, a convention used by programmers, and which occurs on
most Teletype output, is that to distinguish zeros from the letter
"oh" we slash zeros (@g). This enables accurate input td the com-
puter (when you are typing a program previously written down) and

ease of understanding in reading computer output (in which zeros

-2.9-

are all slashed). All examples in this manual show the zero as
an "@" and the letter "oh" as an "0". Not all teletypewriters
follow this convention; some slash the letter "oh" and not the
zero, and some print both with no slash. In all cases however,
the computer will recognize the key next to the letter P as an
"oh" and the key next to the number 9 as a zero. Notice that
unlike a typewriter, the letter "el" does not produce the number
one (l) on the console keyboard. All numbers are on the top row
of the keyboard. Notice also that BASIC will not insert commas
into.large numbers, as we are accustomed to doing (i.e.,

1,742,300 is printed as 1742300).

2.2.4variables
A variable in BASIC is an algebraic symbol for a number,
and is formed by a single letter or a letter followed by a digit.

For example:

Acceptable Variables Unacceptable Variables
I 2C--a digit cannot begin
a variable
B3
AB--two or more letters
X cannot form a variable

We assign values to variables by either inputting these

values or indicating them in a LET statement.

2.2,5LET Statement
Before examining the LET statement we should first clarify
the meaning of the equal sign (=). For example, the command:

1 LET A = B + C

-2.1". -

tells the computer to add the values of B and C and store the
result in a variable called A (The number 10 is the line number
mentioned earlier).

20 LET D = 7.2

means to store the value 7.2 in the variable D.

39 LET D = 486

causes the value of D which was 7.2 (above) to be changed to 406.

The equal sign means replacement rather than equality. 1In

algebra the formula:
| X=X+1
is meaningless, but when we say:
1 LET X = X + 1
we mean "add one to the current value of X and store the result
back in the variable X."

Values of variables can be reassigned throughout the program
as the programmer wishes. The equal sign, then shows a replace-
ment relationship where the expression after the equal sign is
evaluated and replaces the old value (if any) of the variable
indicated.

The LET statement is of the form:

(line number) LET (variable) = (formula)
where a formula is either a number, another variable, or an
arithmetic expression. The LET statement is the most elementary
BASIC statement, used when computation is to be performed or, to
put it more generally, whenever a new value is assigned to a

variable.

-2 . ll"

All of the above is true for standard BASIC. TSS/8 BASIC
permits the expression:
1Igx=xXx+1
to be interpreted as the same expression as:
1§ LET X = X + 1
This simpler form is allowed to permit students familiar with

the FORTRAN language to make the conversion to BASIC more easily.

2+2.6 Arithmetic Operations
Looking at the console keyboard we can find some of the
usual arithmetic symbols (+, -, and =). BASIC can perform ad-
ditiqn, subtraction, multiplication, division and exponentiation
as wéil as other more complicated operations explained later.
Each mathematical formula fed to the computer must be on a single

line, with a line number and an appropriate command. The five

operators used in writing most formulas are:

Symbol
Operator Meaning Example
+ Addition A+ B
- Subtraction A - B
* Multiplication A * B
/ Division A/ B
¢ Exponentiation ATB
(Raise A to the
Bth power)

-2.12-

In BASIC, the mathematical formula:

A =1 Bz+4
X

1 LET A =7 * ((BT2 + 4) /X)

would be written:

How does the computer know what operation to perform first?
There are conventions built into computer languages; BASIC per-
forms arithmetic operations with the order of evaluation indi-
cated below:
‘l. Parentheses receive the top priority. Any
expression within parentheses is evaluated
before an unparenthesized expression.
2. 1In absence of parentheses the order of pri-
ority is:
a. Exponentiation
b. Multiplication and Division
c. Addition and Subtraction
3. If 1 or 2 does not clear ambiguity, the order
of evaluation is from left to right as we would
read the formula.
So in the example above, Bf2 is evaluated first, then
(BT2+4) and then ((B?12+4)/X), finally 7* ((B12+4)/X). Keeping
the conventions above in mind, ATB?TC will be evaluated as

(AtB)TC, likewise A/B*C is evaluated as (A/B) *C.

-2.13-

2.2,7 Parentheses and Spaces
Use of parentheses allows us to change the order of pri-
ority of evaluation in rule 2 above. They also prevent any
confusion or doubt on our part as to how the expression is
evaluated. To make a formula easier to write as well as read,
it is frequently a good idea to provide more parentheses than
strictly required. For example, which is easier to read:
A*B12/7 + B/C*D12
(A*B$2) /7 + (B/C)*D*12
((A*B12) /7) + ((B/C)*D?12)
- (((A*(B12))/7) + ((B/C)*(DM2)))
:Each of the above formulas will be executed the same way,
but which makes the most sense to the programmer reading it, or
perhaps trying to make corrections later? On the other hand,

which has superflous parentheses not required for clarity?

Spaces may also be used freely to make formulas easier to

read.
1g LET B = D42 +1
instead of:

m}ﬁLE?B=DTZ+l

-2.14

2.2.8 Functions
BASIC performs several mathematical calculations for the
programmer, eliminating the need for tables of trig functions,
square roots and logarithms. These functions have a three letter
call name, ({(the argument X can be a number, variable, formula,

or another function) and are written as follows:

Functions Meaning

SIN (X) Sine of X (where X is expressed in
radians) is returned.

COos (X) Cosine of X (where X is expressed
in radians) is returned.

TAN (X) Tangent of X (where X is expressed
in radians) is returned.

ATN (X) Arctangent of X is returned as an
angle in radians.

EXP (X) eX (where e=2.712818) is returned.

LOG (X) Natural logarithm of X, log X, is
returned.

ABS (X) Absolute value of X, |X}, is returned.

SQR (X) Square root of X, /X, is returned.

These functions are built into BASIC and can be used in any
statement as»part of a formula. For example:
1¢ LET A = SIN(ABS(X))/2
will cause A to be set equal to one half the value of the sine

of the absolute value of X.

2.2.9 More complex functions
Other functions are available, and although they are not
as readily useful to the beginning programmer, they will become

so as skill in designing program logic increases.

2.2.,10 sign Function, SGN (X)
The sign function returns the value +1 if X is a positive
value, 0 if X is 0, and -1 if X is negative. For example:

SGN (3.42)=1, SGN(-42) = -1, and SGN(23-23) = 0.
-2.15-

LIST
12 REvi- SGN FUNCTION =ZXaMPLkw
20 RoAD ALl
25 PRINT "a="aA,"s5="s
34 PRINT "SGNC(A)=""SGN(A),"SGN(3)="5GN(B)
4@ PRINT "SGNCINTCAX)I="S5GNCINT(A))
54 DATA =7.32, 44

58 END
RIADv
oUN
A=-T.32 B= 44
SGN(A)=-1 SGN(s8)= |

SGNCINT(A))==1]

READY

2.2.11LInteger Function, INT (X)

The integer function returns the value of the greatest
integer not greater than X. For example INT(34.67) = 34. INT
can be used to round numbers to the nearest integer by asking
for INT(X+.5). For example: INT(34.67+.5) = 35. INT can also
be used to round to any given decimal place, by asking for

INT (X*10fD+.5) /101D
where D is the number of decimal places desired, as in the fol-
lowing program:

13 REM- INT FUNCTION EXAMNPLE

2@ PRINT "NUWBER TO BE ROUNDEDL™;

3d INPUT A '

43 PRINT "N0. OF DECIMaAL PLACLES'™:

54 INPUT D

53 LaT 3=INT(AaXl@dtD+.5)/181D

73 PRINT A"ROUNDED I35

83 END

RUN
NUMSER TO s RIUJNDZD? 45.55

NOe« OF DEZCIMaL PLATES? |
45455 RD'TNDED IS 45.5

READY -2.16-~

For negative numbers the largest integer contained in the

number is a negative number with the same or a larger absolute

value.

For example:

2.2.12 Random Number Function, RND(X)

INT (-23)= -23, but INT(-14.39)=-15.

The random number function produces a random number be-

tween 0 and 1.

for later checking of a program.

The numbers are reproducible in the same order

The argument X in the RND(X)

function call can befany number, as that value is ignored and

serves no function.

17 REM-RANDI# NUMSER EXaMPLE

2% PRINT "RaNDOM NUMBERS."

34 FOR'I = 1 TOD 34
42" PRINT RHND(Z),
584 NEXT 1
59 ZND

RUN

RiaNDO I

NUVMBARS .

«2431584
«B4493979
«2373254
« 9382344
«3339981
«7861534

REadY

29838412
« 4334217
« 35458387
« 25837987
« 3056748
« 6521784

e 7295417
4961424
«1923453
43323139
4531268
« 7637476

W3leses7
VIV I EE)
2121199
CB8T1119
4677783
. 1238533

»

« 38353865
84183271
.24l2l2

«9248194
2285317
«3916282

In order to obtain random digits from 0 to 9, change line 40

to read:

4f PRINT INT (1f*RND(f));

and tell BASIC to run the program again.

will look as follows:

-2.17-

This time the results

RUN

RANDOM NUMSZIRS.

v 4 4 5 4

2 3 1 9 2

9 2 3 3 9

8 3 4 4 2

7 5] 7 l 3
RbADY

It is possible to generate random numbers over any range. For
example, if the range (A,B) is desired, use:
- (B-A) *RND (@) +A

to produce a random number "n" in the range A{n¢B.

2.2.13 RANDOMIZE statement

If you want the random number generator to calculate dif-
ferent random numbers every time the program is run, BASIC pro-
vides the RANDOMIZE statement. RANDOMIZE is normally placed at
the beginning of a program which uses random numbers (the RND
function). When executed, RANDOMIZE causes the RND function to
choose a random starting value, so that the same program run
twice will give different results.

For example:
19 RANDOMIZE
2¢ PRINT RND (4)
3¢ END
will print a different number each time it is run. For this
reason, it is a good practice to debug a program completely be-

for inserting the RANDOMIZE statement. (RANDOMIZE uses the low

-2.18-

order 12 bits of the time of day as a starting value, thus there
are 4096 distinct starting points.)
The form of the statement is as follows:
(line number) RANDOMIZE
or (line number) RANDOM (abbreviated form)
To demonstrate the effect of the RANDOMIZE statement on two runs

of the same program, we insert the RANDOMIZE statement as state-

ment 15 below:

15 RADMDII

22 FOR I = 1 TO 5

3% PRINT “VALUE" I "IS5" nND(2)
49 NEXT I

5¢ END
RUN
7aLUZ 1 IS 9543481
yaLUZ 2 1S .4538842
JALUE 3 IS .224518
JALUE 4 IS +7978773
JALUE 5 IS .76554l1
READY

 RUN
JALUE 1 IS +9922387
JaLUE 2 IS .5423521
JALUZ 3 IS .2831336
JALYE 4 I3 .7334242
JALUE 5 IS .5722818
READY

Clearly, the output from each run is different.

-2.19-

8 2.2.14 The Time Function TIM(X) (TSS/8 BASIC only)

8
8

A function called the TIM function is available to provide
several housekeeping functions dealing with the time of execu-
tion of a TSS/8 BASIC program as well as the account number,
the keyboard number and the JOB number of a user.

The function is called like this:

19 LET R = TIM (N)

The following list gives the result (R) for each valid parameter
to TIM (N):

‘N R (information returned)

- The CPU time used by this job since LOGIN (seconds)
- The current month (1-12)

- The day of the month (1-31)

The last two digits of the year (e.g. 72)

- The number of the keyboard currently in use

- The current user's account number

- The current time (in minutes past midnight)

- The current job number

Nouies w RS
i

Although the keyboard number, account number, and job number are
kept and printed in octal by the system, the TIM function returns
them as decimal numbers such that, when printed, they will print
as if they were octal. For example, account number 726¢ (octal)
will be returned by TIM (5) as a decimal 726f, so that it may
be printed with no further conversion. If the parameter in TIM is
negative or greater than 7, the error message

RB IN 19
appears, indicating the function was referenced badly; the func-
tion returns a zero and execution continues normally.

What follows is a demonstration of this function:

-2.20-

1y Rk - DEMONSTRATION OF TIMC2)

2@ LET V = TILu(D
3% LET TI INT(U/65)

43 LET T2 INT((U=-T1%58)%183%+.85)/1288

5% PRINT "“CPU TIs#& USzy SO FaR IS "TIMMINUTZS AND"TZ" SECINDe”
64 END

RUN

CPU TIME USED SO0 Fal IS ¥ MINUTLS AND 1.35 SECONDS

READY

Note that to implement the "TIM" function, the function
"pIX" had to be removed. This function may be used (with a
different name) by including this "DEF" statement in your pro-
gram:

10 DEF FNT (X)=SGN (X)*INT (ABS (X))

2.2.15 User defined functions

In some programs it may be necessary to execute the same
mathematical formula in several different places. BASIC allows
the programmer to define his own functions and call these func-
tions in the same way he would call the square root or trig
functions.

These user defined functions consist of a three-letter
function name, the first two letters of which should be FN.

We define the function once at the begiﬁning of the program
pefore its first use. The defining or DEF statement is formed
as follows:

(line number) DEF FNA (X) = formula (X)

-2.21-

where A may be any letter. The argument (X) must be the same
on each side of the equal sign and may consist of one or more
variables. For example:
19 DEF FNA(S) = SfT2
will cause a later statement:
2¢ LET R = FNA(4)+1
to be evaluated as R=17.
The two following programs

Program #1:

19 DoF FNS(a)X=A1tA
22 FOR I =1 TO 5
32 PRINT I,FNSCI)
49 NEXT I

54 END

READY
Program #2:

10 DEF FNS(X)=XtX
28 FORI =1 T0 5
34 PRINT I,FNS(I)
43 NoXT 1

58 ENJ

READY

both cause the same output:

RUN
1 1
2 4
3 27
4 255
5 3125
RoADY

~2.22-

The argument in the DEF statement can be seen to have no
significance; it is strictly a dummy variable. The function
itself can be defined in the DEF statement in terms of numbers,
variables, other functions or mathematical expressions. For

example:

14 DEF FNA (X) XPM2+3*X+4

15 DEF FNB(X) FNA(X)/2 + FNA(X)

2g DEF FNC(X)

SQR(X+4) + 1

The statement in which the user defined function appears
may have that function combined with numbers, variables, other
functions or mathematical expressions. For example:
40 LET R = FNA(X+Y+2Z)

The user defined function can be a function of more than
one variable, as shown below:
25 DEF FNL(X,Y,Z) = SQR(XT2 + YT2 + Z212)
A later statement in a program containing the above user defined
function might look like the following:
55 LET B = FNL(D,L,R)
where D, L, and R have some values in the program.

The program in Figure 2-2 contains examples of a multi-

variable DEF statement in lines 11, 21, and 31.

-2.23-

LIST

1 REM MODULUS ARITAMETIC

12 REM FIND X MOD M

11 DEF FNM(X,M) = X - MxINT(X/i)

2@ REM FIND A+3 0D M

21 DEF FNACALB,M) = FNMCA+S3,M)

30 REM FIND AxB MOD M

31 DEF FNBCA,B,M) = FNHC(A*B,M)
120 PRINT "ADDITION AND #ULTIPLICATION TABLEe MOD M
118 PRINT “ENTER VALUE QF M";
128 INPUT M

130 PRINT

143 PRINT "ADDITION TABLE M0OD"H
150 GOSUB 834

20% FOR I = @ TO p-1

205 PRINT I3 '3

21% FOR J = 6 TO M-1

22@ PRINT FNA (I1,Jd,M);

232 NEXT J ‘

24@ PRINT

258 NEXT I

263 PRINT

273 PRINT

283 PRINT "MULTIPLICATION TABLES MOD'"i
299 GOSUB 82d

308 FOR I = @ TO M-1

365 PRINT I3 *;

316 FOR J = @4 TO M-1

329 PRINT FNBCI,J,M);

330 NEXT J

34¥ PRINT

358 NEXT I

352 STOP

820 PRINT

812 PRINT TAB(S)>;03;

20 FOR I = 1 TO M-I

838 PRINT I3

8490 NEXT 1

853 PRINT

83 FOR I = 1 TO 3%M+5

878 PRINT '-';

882 NEXT I

892 PRINT

933 RETURN
1880 END
READY

Figure 2-2A

-2024—

RUN

ADDITION AND HMULTIPLICATION TaBLES 0D
ZNTER ValUZ OF o7 5

#DDITION TASLE MOD 5

- - - . A v e h D W we G - -

2 2 1 2 3 4

! i 2 3 4 B

P 2 3 4 © 1

3 3 4 3 1 2

4 4 3 1 2 3
MULTIPLICATION TABLES MOD 5

P e e e I I I AN

] 2 8 8 @ I
1 g 1 2 3 4
2 2 2 a4 1 3
3 g 3 1 4 2
4 b 4 3 2 1
READY

Figure 2-2B

-2.25-

2.2.,16 INPUT/OUTPUT statements
One of the most important groups of statements is the group
of I/0 (Input/Output) statements. These I/0 statements allow us
to bring data into our programs during execution when and from
where we choose. Similarly, we can choose the output format
which best suits our needs. 1In the case of the example programs
in Figure 2-1 (at the beginning of the chapter), data was typed

in at the console keyboard as the computer requested it.

2.2417 READ Statement
;A simple way to put data into a program is with READ and
DATA statements. One statement is never used without the other.
The READ statement is of the form:
(line number) READ (variables separated by commas)
For example:
19 READ A,B,C
where A, B, and C are the variables we wish to assign values.
In order to assure that all variables are assigned values before
computation begins, READ statements are usually placed at the
beginning of a program, or at least before the point where the

value is required for some computation.

2.2.18 DATA Statement
Now that we have told the computer to read the values for
three variables, we must supply those values in a DATA state-

ment of the form:

-2.26-

(line number) DATA (numeric values separated by commas)
For example: |
7¢ DATA 1,2,3
The DATA statement provides the values for the variables in the
READ statement(s). The values must be separated by commas, in
the same order as the variables are listed in the READ statement.
Thus at execution time A=1, B=2, and C=3 according to the two
lines above.

The DATA statement is usually placed at the end of a program
before the END statement, so as to be easily accessible to the
programmer should he wish to change his values.

’A given READ statement may have more or fewer variables
than there are values in any one DATA statement. READ causes
BASIC to search all available DATA statements, in the order of
their line numbers until values are found for each variable.
A second READ statement will begin reading values where the first
stopped. If at some point in your program you attempt to read
data which is not present or if your data is not separated by
commas, BASIC will stop and print an OUT OF DATA IN LINE XXXX
message at the console, indicating the line which caused the

error.

2.2.,19 RESTORE Statement

If it should become necessary to use the same data more
than once in a program, the RESTORE statement will make it pos-

sible to recycle through the DATA statements beginning with the

-2.27-

lowest numbered DATA statement. The RESTORE statement is of the
form:

(line number) RESTORE
For example:
85 RESTORE
will cause the next READ statement following line 85 to begin
reading data from the first DATA statement in the program, re-
gardless of where the last data value was found.

- You may use the same variable names the second time through
the data or not as you choose, since the values are being read
as though for the first time. In order to skip unwanted values
dummy variables must be read. 1In the following example, BASIC
prints:

4 1 2 3
on the last line because it did not skip the value for the orig-

inal N when it executed the loop beginning at line 210.

12 REM-PROGRAM TO ILLUSTRATZ USE OF RZgTORE

2
2
3
4
5

4 RZAD .

5 PRINT "77ALUEZS OF X aRss"
@ FOR I = 1 TO W

4 Ronod X

d PRINT X,

53 NeXT I
74 RoSTORE

18

5 PRINT

198 PRINT "LIST OF X JALUZS FOLLOWING REGTORE STATEMZNT:"

21
22
23
24
25
25
27
RUN

JAL
1
LIS
4

RZA

J FOR I =1 T3 N
@4 READ X

4 PRINT X,

4 NEXT I

d DATA 4.,1.,2

& DATa 3,4

2 END

UES OF X ARE:
4

T OF X JalUZS FOLLOWING RESTORE STATLZMzMT:

— o
N w

-2.28-
oY

2.2.20 INPUT Statement

The second way to input data to a program is with an INPUT
statement. This statement is used when writing a program to pro-
cess data to be supplied while the program is running. The pro-~
grammer types in the values as the computer asks for them. De-
pending upon how many values are to be brought in by the INPUT
command, the programmer may wish to write himself a note re-
minding himself what data is to be typed in at what time. 1In
the example program in Figure 2-3, the question is asked at execu-
tion time "INTEREST IN PERCENT?", "AMOUNT OF LOAN?", and "NUMBER
OF YEARS?" The programmer knows which value is requested and
proceeds to type and enter the appropriate number.

The INPUT statement is of the form:

(line number) INPUT (variables separated by commas)
For example:
14 INPUT A,B,C
will cause the computer to pause during execution, print a ques-
tion mark and wait for the user to type in three numerical values
separated by commas and entered to the computer by hitting the
RETURN key at the end of the list.

As you will notice in Figure 2-3, the question mark is
grammatically useful if you care to formulate a verbal gquestion
which the input value will answer. This will be further explained

in the section on the PRINT Statement.

-2.29-

12
20
25
26
3@
35
41
45
52
55
3%
55
7%
75
73
82
85
88
1%
95
103
119
120
134
146
152
16%
240

RUN

REM PROGRA{ TO COMPUTE INTEREST PAYMENTS

PRINT " INTEREST
J

INPUT
LET J
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
LET N
LET I
LET B
LET R
PRINT
PRINT
PRINT
PRINT
LET B
PRINT
LET L
LET P
LET 4
PRINT

= J/ 160
“"AMOUNT
A
“NUMBER
N
"NUMBER

X

M o
J/M
I + 1
AxI/<(

N

wonouou

"AMOUNT
"TOTAL

P,is

OF LOAN";

OF YEARS"™;

OF PAYMIENTS

=173t

PER PAYMENT
INTEREST

IF B>=R GO TO 1vo

PRINT

PRINT "LAST PaYMINT ="

£1D

LxI, 1~

okl

INTEREST IN PERCENT? 9
YMOUNT OF LOAN? 2584
NUM3ER OF YEZARS? 2
NUMBSZR OF PAYMENTS

AMOUNT PER PAYMENT

R

ER YEAR? 4

344.9617

APP TO PRIN

TOTAL INTEREST

259.5932

IN PERCENT";

PER YLAR';

Bkl+

BALANCZ"

INTEREST
5.25
49.7 399
43.11182
3bH.32419
29.37575
22.275088
15.81453
7594824

LAST PAYMENT =

RZADY

APP TO PRIN
288.7117
295.2877
321.8498
328.6415
315.5859
322.685%6
329.947
337.3788
344.9538

BALANCE
2211.288
1915 .281
1614.231
1345.589
993.6835
657.317
3373599

Figure 2-3

-2.30-

The output for the program begins after the word RUN and
includes a verbal description of the numbers. This verbal de-
scription on the output is optional with the programmer, al-
though it has a definite advantage in ease of use and under-
standing.

Only one qﬁestion mark is printed per INPUT statement, so
the programmer must be careful to insert the correct number of
variables at that point, separating them by commas if more than
one are to be typed. When the correct number of variables have
been tYped, hit the RETURN key to enter them to the computer.

" If too few values are listed, the message:

MORE?
will appear. If too many values are typed, the message:
TOO MUCH INPUT, EXCESS IGNORED

will be given.

2.2.21 PRINT Statement
The PRINT statement is the output statement for BASIC. De-
pending upon what follows the PRINT command, We can create nu-
merous different output formats and even plot points on a graph.
In order to skip a line on the oﬁtput sheet, type only a
line number and the command PRINT:
19 PRINT
When the computer comes to line 10 during the run, the paper on
the console will be advanced by one line. In the example program
in Figure 2-3, line.78 causes a blank line on the output sheet

between the section where the user enters data to the computer

-2.31-

and the section where the computer supplies the results of the
program.

In order to have the computer print out the results of a
computation, or the value of any variable at any point in the
program, the user types the line number, the command PRINT, and
the variable names separated by commas:

14 PRINT A,C+B,SQR (A)

This will cause the values of A, C + B, and the square root of
A to be printed in the first three of the five fixed format
colu@ns (of 14 spaces each) which BASIC uses for most output.
For example the statement:

19 PﬁINT A,B,C,D,E

will cause the values of the variables to be printed like this:
12.3 12.3 12.3 12.3 12.3

where A, B, C, D, E equal 12.3. When more than five variables
are listed in the PRINT statement and separated by commas, the
sixth value begins a new line of output.

The third possibility for the PRINT statement is to print
out a message, or some text. The user may ask that any message
be printed by placing the message in quotation marks. For ex-
ample:

1§ PRINT "THIS IS A TEST"

when line 10 above is encountered during execution the following
will be printed:

THIS IS A TEST

(Going back to the example program in Figure 2-3, notice the

function of lines 80, 85, and 160.)

-2.32-

Looking at Figure 2-3 shows that the PRINT statement can
combine the second and third options. One PRINT command tells
the computer to print:

AMOUNT PER PAYMENT = 344.9617

The command which did this was line 80:

84 PRINT "AMOUNT PER PAYMENT =";R

It is not necessary to use the standard five column format for
output. A semi-colon (;) will cause the following text or data
to be printed following the last characﬁer of text or data printed.
A comma (,) will cause a jump to the next of the five output for-
mat columns. BASIC allows the user to omit format control char-
acters (,) or (;) between text and data, and assumes a semi-
colon. For example:

8¢ PRINT "AMOUNT PER PAYMENT =" R

will result in the same output as line 80 above.

In addition to the capabilities already mentioned, the
PRINT statement can also cause a constant to be printed at the
console. For example:

14 PRINT 1.234, SQR(1@@g/4)

will cause the following to be printed at execution time:

1.234 5

Any number present in a PRINT statement will be printed exactly
as shown. Any algebraic expression in a PRINT statement will be
evaluated with the current value of the variables and the result

printed.

-2.33-

In Figure 12-3, line 160 reads:
164 PRINT "LAST PAYMENT =" B*I+B
and caused the following to be printed upon execution:
LAST PAYMENT = 344.96f8
This demonstrates the omission of the format control character
as well as the ability of the PRINT statement to print text and
do calculations.
The following example program illustrates the use of the
control characters in PRINT statements:
18 READ A,5,C
280 PRINT A,B8,C,Atz,uz12,012
38 PRINT 1 ,

43 PRINT A335C5At253125012
54 DATA 4,5.,6

5@ END
RUN
4 5 6 15 23
35
4 5 5 15 25 35
READY

If a number should happen to be too long to be printed on
the end of a single line, BASIC automatically moves the number

entirely to the beginning of the next line.

2.2.22 TAB Function
8 When using the PRINT statement thus far, we have had to

8 print a blank character wherever we wanted blank space; there

8 was no real control over printing. The TAB function is a more

-2.34-

@@ o O @ & ™ ® W W ™ ®@® W W PO O ™ ™ ow

sophisticated technique allowing the user to position the print-
ing of characters anywhere on the Teletype paper line. This line
is 72 characters long, and the print positions can be thought of
as being numbered from 0 to 71, going from left to right. The
TAB function argument cah be positive or negative: TAB(-1)
causes a tab over to position 71, TAB(3) causes a tab to posi-
tion 3. (The TAB function can be thought of as operating mod-
ulo 72.) |

. After performiné TAB(n) , the next character to be printed
will.be placed in position n. If n is a position to the left
of the current position, a carriage return (without a line feed)
is used to correctly position the printing head.
For example:
1 PRINT "X =" ;TAB(Z) ;"/":3.14159
will print the slash on top of the equal sign, as shown below:
X # 3.14159

Figure 2-4 is an example of the sort of graph that can be

drawn with BASIC using the TAB function:

-2.35-

38 FOR X = 4 TO 15 ST&EP .5
43 PRINT TAs(34+15%SINCRI*EAP(=alxK))5 " %"
54 NEXT X

50 END
RUN
"
‘ ¥
*
B
*
*
*
*
*
*
*
*
*
b3
*
»
&
*
*
X
*
*®
*
*
*
*
K
*
K
*
READY

Figure 2-4

-2.36-

2.3 SUBSCRIPTS AND LOOPS
2.3.1 Subscripted Variables

In addition to simple variable names, there is a second
class of variables which BASIC accepts called subscripted var-
iables. Subscripted variables provide the programmer with ad-
ditional computing capabilities for dealing with lists, tables,
matrices, or any set of related variables. In BASIC, variables
are allowed one or two subscripts. A single letter (or letter
follpwed by a numbefﬁforms the name of the variable followed by
one or two integers in parentheses, separated by commas, indi-
cating the place of that variable in the list. You can have
several arrays in a program subject only to the amount of core
space available for data storage. For example, a list might be
described as A(I) where I goes from 1 to 5 as shown below:

A(1),A(2),A(3) ,A(4) ,A(5)

This allows the programmer to reference each of the five ele-
ments in the list A. A two dimensional matrix J (I,J) can be
defined in a similar manner, but the subscripted variable J
can be used only once. A(I) and A(I,J) cannot be ﬁsed in the
same program.

It is possible, however, to use the same variable name as
both a subscripted and as an unsubscripted variable. Both B
and B (J) are valid variable names and can be used in the same
program.

Input can be done easily using subscripted variables, as

shown in Figure 2-5.

#ISS/8 BASIC

-2.37-

134 REM - PRIGRAN DL DIUSTRATING ReadING
1l REM - SYUuSCRIPTED JaRIAsLES

15 DIM A(5),5(02,3)

138 PRINT "a(Il) WidilL a =1 TJ 5:"

24 FOR I =1 TO 5

25 READ adl)

33 PRINT AC(L);

35 NIXT I

38 PRINT

39 PRINT

43 PRINT "8(Il,Jd) WdoRa
41 PRINT ANI J
42 FOQR I =1 TO 2

43 PRINT

44 FOR J =1 TO 3

48 ReaAbD 3(¢1,d)

58 PRINT 8B(l,Jd);

55 NIXT dJ

56 NEXT I

63 DATA 1,2,3.,4,5,6,7.3

51 DATA 8:7;3)5)4)3)2;1

55 END

1 1O 2"
1 T3 3:"

—
i

RUN

]
—
-3
C
Ui

ACD) WIHERS A
1 2 3 4 5

B3CLl,d) WideEre I = TO 2
AND J = 1 T3 3:
5 7 8
3 7 3
READY

Figure 2-5

-2 . 38-

J

2.3.2 DIM Statement
As in the preceding examples, we see that the use of sub-
scripts requires a dimension (DIM) statement to define the max-
imum number of elements in the array. The DIM statement is of
the form:
(line number) DIM vl(nl),vz(nz,mz)
where Vi1 indicates an array variable name and n and m are in-
teger numbers indicating the largest subscript value required
during the program. For example: |
19 DIM A(6,10)
The first element of every array is automatically assumed
to have a subscript of zero. Dimensioning A(6,10) sets up room
for an array with 7 rows and 11 columns. This matrix can be

thought of as existing in the following form:

AO’O AO’l - . - A0,10
A1, g Al,1 - - - By
By 0 Ba,1 - - - By 10
Ag,0 Ag 1 A6, 10

as shown in the Figure 2-6.

-2.39-

13 REM - MATRIX CHECAKING PR0JGRAM.
15 DIM A(5,18)

20 FOR I = 8 TO 6
22 LET A (lI.,0)=I
25 FOR J = 8 TO 12
28 LET A(@,Jd) = J
38 PRINT A(l,d);
35 NiXT J

4% PRINT

45 NEXT I

54 =ND

RUN

NI G IR SRR OV SN
ST e sin
SEEC I VIR NI SN S
S oecasu
[N I S SV O NS IR
[N RS I SIS |
T & & E®
& &L

R wne—s

reADY

Figure 2-6

(Notice that a BASIC variable has a value of zero until
it is assigned a value.)

If the user wishes to conserve core space, and not make
use of the extra variables set up within the array, he should,
for example, say DIM A(5, 9) which would result in a 6 by 10
array which would be referenced beginning with the A(0, 0)
element.

You can define more than one array in a single DIM state-
ment:

19 DIM A(26), B(4,7)

will dimension both the list A and the matrix B.

~2.40-

A number must be used to define the maximum size of the
array. A variable inside the parenthesés is not acceptable
and would result in an error message by BASIC at RUN time. The
amount of user core not filled by the program will determine the
amount of data the computer can accept as input to the program
at any one time. In some programs a PROGRAM TOO LARGE message
may occur, indicating that core will not hold an array of the
size requested. In that event, the user should change his pro-

gram to process part'of the data in one run and the rest later.

2.3.3 Loops

So far in this manual we have seen FOR and NEXT statements
used several times in examples. These two statements define the
beginning and end of a loop, where a loop ié a set of instructions
which modifies itself and repeats until some terminal condition

is reached.

2.3.47FOR STATEMENT
The FOR statement is of the form:
(line number) FOR (variable)=(formula)TO (formula)
STEP (formula)
For example:
19 FOR K=2 TO 2g STEP 2
which will iterate (cycle) through the designated loop using K
as 2, 4, 6, 8, . . . ,20 in calculations involving K. When the
value 20 is reached, the loop is left behind and the program goes

to the line following the NEXT statement (described below).

-2.41-

The variable mentioned in the definition must be unsub-
scripted, although a common use of such loops is to deal with
subscripted variables using the FOR variable as the subscript
of a previously defined variable. The formulas mentioned in
the definition can be real or integer numbers, variables, or

expressions.

2.3.5 NEXT STATEMENT

The NEXT statement signals the end of the loop and at that
point the computer adds the STEP value to the variable and checks
to see if the variable is still less than the terminal value.
When' the variable exceeds the terminal value control falls
through the loop to the following statement.

When control falls through the loop the variable value is
one step greater than it was when the loop was last executed.

For some programs this information may be useful.

If the STEP value is omitted, +1 is assumed. Since +1 is
the usual STEP value, that portion of the statement is freguently
omitted.

In the following example we see a demonstration of the last
two paragraphs. The loop is executed 10 times, the value of I
is 11 when control leaves the loop and +1 is the assumed STEP

value.

-2.42-

12 FOR I = 1 TO 1@
20 NEXT I

33 PRINT I

43 END

RUN

11

READY

If line 10 had been:
19 FOR I=1g4 TO 1 STEP -1
the value printed byfthe computer would be ﬂ;

_The numbers used in the FOR statement can be "formulas” as
indiéated earlier. A formula in this case can be a variable, a
mathematical expression, or a numerical value.

The value of each formula is evaluated upon first encountering
the loop. While the values of the variables, if any, used in
evaluating these formulas can be changed within the loop, the
values assigned in the FOR statement remain as they were initially
defined.

In the last example program,the value of I (in line 10) can
be successfully changed in the program. The loop:

19 FOR I=1 TO 148 |
15 LET I=18

2@ NEXT I

will only be executed once since the value 10 has been reached

by the variable I and the termination condition is satisfied.

2.3.6 NESTING LOOPS
It is often useful to have one or more loops within a loop.

This technique is called nesting. Nesting is allowed as long as

-2.43~

the field of one loop (the numbered lines from the FOR statement
to the corresponding NEXT statement, inclusive) does not cross
the field of another loop. A diagram is the best way to illus-
trate acceptable nesting procedures:

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

—FOR ~FOR
rFOR FOR
-NEXT NEXT
-FOR —~NEXT
“NEXT
—NEXT

Three Level Nesting

—FOR
— FOR
~FOR
—“NEXT

~FOR

~NEXT

—NEXT

~ NEXT

8 A maximum of eight (8) levels of nesting is permitted.
8 Exceeding that limit will result in a STACK OVERFLOW error

8 message.

=2.44~

If the value of the counter variable is originally set
equal to the terminal value, the loop will execute once, re-
gardless of the STEP value. If the starting value is beyond
the terminal value, the loop will not execute.

It is also possible to exit from a FOR-NEXT loop without
the counter variable reaching the termination value. A condi-
tional transfer may be used to leave a loop. Control may only
transfer into a loop which had been left earlier without being
completed, ensufing that the termination and STEP values are as-

signed.

§

2.4 TRANSFER OF CONTROL

Certain statements can cause the execution of a program to
jump to a different line either unconditionally or depending
upon some condition within the program. Looping is one method
of jumping to a’deéignated point until a condition is met. The
following commands give the programmer additional capabilities

in this area.

2.4.1 Unconditional Transfer
The GOTO statement is an unconditional command telling the

computer to either jump ahead or back in the program. For ex-

ample:

148 GOTO 58
or

24 GOTO 78

-2.45-

The GOTO statement is of the form:
(line number) GOTO (line number)

When the logic of the program reaches the GOTO statement, the
statement(é) immediately following it will not be executed, but
the statements beginning with the line number indicated are
performed.

The program in Figure 2-7 never ends; it does a READ, prints
something and attempts to do this over and over until it runs out
of data, which is sometimes an acceptable, though not advisable,

way to end a program:

1@ REM - PROGRAIM EZNDS WITH ERROR MESSAGE
11 REM - WHEZN QUT OF DATAH.

2@ READ X

25 PRINT "X ="X,"XK12 ="Ktz

30 G(TO 2¢

35 OnTa 1,5,14,15,20,25

A% LEND
REAUY
RUN
X =1 Xt2 = |
X =5 Xt2 = 25
X =14 Xt2 = 122
X =15 Xt2 = 225
X = 249 Xt2 = 437
X = 25 Xt2 = 53253

OUT 97 DaTA IN LINE 273

Figure 2-7

-2.46-

2.4.2 Conditional Transfer
If a program requires that two values be compared at some
point, logic may direct us to different procedures depending
on the comparison. In computing, we logically test values to
see whether they are equal, greater, or less than another value,
or a possible combination of the three.
In order to compare values we use a group of mathematical
symbols not discussed earlier. These symbols are as follows:

BASIC Math BASIC
¢ SYMBOL Symbol Example Meaning

= = A =B A is equal to B

< < A< B A is less than B
<= < A<= B A is less than or equal to B

> > A>B A is greater than B
>= > A>=B A is greater than or equal to B
<> # A <> B A is not equal to B

2.4.3 IP-THEN AND IF-GOTO
The IF-THEN and IF-GOTO statements both allow the programmer
to test the relationship between»two formulas (variables, numbers,
or expressions). Pioviding the relationship we have described in
the IF statement is true at that point, control will transfer to
the line number indicated. The statements are of the form:
(line number) IF (formula) relation (formula)

THE
Gng (line number)

The use of the word THEN or GOTO is the programmer's choice.
For example:

19 IF A=5 GOTO 78

-2.47-

causes transfer from line 10 to line 70 if A is equal to 5. If
A is not equal to 5, control passes to the next line of the pro-

gram following line 10.

.4.4 SUBROUTINES
When particular mathematical expressions are evaluated, sev-

eral times throughout a program, the DEF statement enables the
user to write that expression only once. The technique of looping
allows the program to do a sequence of instructions a specified
number of times. If the program should require that a sequence
of instructions be executed several times in the course of the
program, this too is possible. A subroutine is a section of

code performing some operation that is required at more than

one point in the program. Sometimes a complicated I/0 operation
for a volume of data, a mathematical evaluation which is too com-
plex for a user defined function, or any number of other pro-

Cesses may be best performed in a subroutine.

2.4.5 GOSUB Statement

Subroutines may be placed physically anywhere in a program,
and always before the END statement. The program begins execu-
tion and continues until it encounters a GOSUB statement of the
form:

(line number) GOSUB (line number)

where the number after GOSUB is the first line number of the
subroutine. Control then transfers to that line in the subrou-
tine. For example:

58 GOSUB 2¢g

-2.48-

REM - THIS PROGRAM ILLUSTRATES GOSU3 AND RETURN

13 DEF FNA(X) = ABSCINT(X))
2@ INPUT A,B,C
38 GOSUB 100
49 LET A= FNA(A)
5@ LET B = FNA (B)
58 LET C = FNa(C)
79 PRINT
8@ GOSU3 189
9% STOP
1% REM - T:HIS SUBROUTINZ PRINTS TdE SOLUTION
113 REM - OF THE EQUATION A*X12+B*X+(C=9
126 PRINT "THE EQUATION IS ' a "% Xt2 +" B "x X +" C
138 LET D=Bt2 - 4%4%C
148 IF. D <> @ THEN 173
153 PRINT “THAERE IS ONLY ONE SOLUTION «e¢ X ="-3/2%A
163 RETURN
172 IF. D<@ THEN 280
182 PRINT "THERE ARE TWQ SOLUTIONS «.."
185 PRINT "X =" (=3+5GR(D))/(2%A) "AND"(-5-SQAR(DII/ (2*A)
194 RETURN
2¢% PRINT “THERE ARE 2 IMAGINARY SOLUTIONSY
225 PRINT "X = ("=8B/(2%A)","SQAR(=-D)I/(2*xa)™")";
237 PRINT " AND ("-3/7(24A)","=Sulk(=-D)/(2%n1)")"
21% RETURN
9¥¥ END
QUN
? 1,4,4.56

THE EZQUATION IS 1 % X112 + 4 *x X + 4.5
THERE ARE 2 IMAGINARY SOLUTIONg

X =

THE EQUATION IS 1 x Xt2 + 4 *
THEmE IS ONL< ONE SOLUTION eee

READ

(=2 5 7745956) AND (=2 ,=.7745955).

+

[\ =)

X
X

Figure 2-8

-2.49-

2.4.6 RETURN Statement

Having reached line 50, as shown above, control transfers
to line 200; the subroutine is processed until the computer
eéncounters a RETURN statement of the form:

(line number) RETURN

which causes control to return to the line following the GOSUB
statement. (Before transferring to the subroutine, BASIC in-
ternally records the next line number to be processed after the
GOSUB statement; the RETURN statement is a signal to transfer
control to this line.) 1In this way, no matter how many subrou-
tines or how many times they are called, BASIC always knows
where to go next. The program in Figure 2-8 demonstrates a

simple subroutine:

-2.50-

Lines 100 through 210 constitute the subroutine. The
subroutine is execﬁted from line 30 and again from line 80.
When control returns to line 90, the program encounters the
STOP statement and terminates execution. Note that even though
the program logically ends with a STOP, the END command must
still be present.

For another detailed example of a subroutine, see Figure

2-2.

2.4.7‘LOCATION OF THE SUBROUTINE

fNormal practice in BASIC is to place the subroutines at
the end of the code before the DATA and END cards. Although
this is logically correct and good programming practice in BASIC,
the overlaying of TSS/8 BASIC is such as to make for slow execu-
tion of large programs when the subroutines called are located
far from the calling locations in the program. The problem is
not severe unless (1) the program iS<iarge, (2) there are sizeable
arrays, and (3) the subroutine in question is called repeatedly

from a location far from where it appears in the program.

2.4.8 STOP and END Statements
Either the STOP statement or the END statement may be used
to terminate execution, but the END statement must be the last
statement of the entire program. STOP may occur several times
throughout the program. No BASIC program will run without an

END statement of the_form:

-2.51-

8

(line number) END
The format of the STOP statement is simply:
(l1ine number) STOP
STOP is logically equivalent to a GOTO nn, where nn is the

line number of the END statement.

2.4.9 Nesting Subroutines

More than one subroutine can be used in a single program
in which case they can be placed one after another at the end
of the program (in line number sequence). A useful practice is
to agsign distinctive line numbers to subroutines, for example
if ybu have numbered the main program with line numbers up to
199,:you could use 200 and 300 as the first numbers of two sub-
routines.

Subroutines can also be nested, in terms of one subroutine
calling another subroutine. If the execution of a subroutine en-
counters a RETURN statement, it will return control to the line
following the GOSUB which called that subroutine; therefore, a
subroutine can call another subroutine, even itself. Subroutines
can be entered at any point and have more than one RETURN state-
ment where certain conditions will cause control to reach any one
RETURN statement. It is possible to transfer to the beginning
or any part of a subroutine; multiple entry points and RETURNs
make a subroutine more versatile.

The maximum level of GOSUB nesting is about forty (40)

8 levels, which should prove more than adequate for all normal

8 uses. Exceeding this limit will result in the message:

-2.52-

GOSUB--RETURN ERROR

2.5 ERRORS AND HOW TO MAKE CORRECTIONS
2.5.1 Single Letter Corrections

Nobody being perfect, we all make typing errors if not
logical errors. The first is by far the easier to correct.
If you notice an error immediately as you type it, for example:
18 LEB
instead of LET as you meant to begin the line, hit the RUBOUT
key or SHIFT/O (left bointing or back arrow) once for every char-
acter you wish to remove, including spaces. This will result in
the printing (by BASIC) of a back arrow to show that the rubout
has been accomplished. Make the correction and continue typing
as shown below.
19 LEB¢T A=1g*B
if that was the intended line. BASIC does not even see the mig-—
take; it is erased, except on the console as you typed it. The
typed line enters BASIC only when you hit the RETURN key. Be-
fore that time you can correct errors with the RUBOUT key or
SHIFT/O. If you desire a neat, corrected listing at the end of
your work, that is possible too. More on that later.
2@ DEN Pe€€€F FNA(X,Y)=X 2+3*Y
is the same as:
2§ DEF FNA (X,Y)=X 2+3*Y
to BASIC. Notice you must erase spaces, as well as printing

characters.

-2.53-

2.5.2 Erasing a Line
If at any time you have typed a line and not yet hit the
RETURN key, the line can be erased by striking the ALTMODE
(ESCAPE on some machines) key. TSS/8 BASIC will echo back:
$ DELETED
at the end of the line to indicate that the entire line has
been removed.

-Once you have hit the RETURN key and have entered a line
into the computer it can still be corrected by simply typing
the line number and proceeding to retype the line correctly.
The old line is automatically deleted as you type the line
agaiﬁ, even if it was longer than the new line.

You can delete an entire line by typing the line number
and hitting the RETURN key. This removes the entire line and

line number from your program.

NOTE

Typing a line number followed by back arrows does
not erase the line identified with that number,
If you accidentally type the line number of a pre-
vious line you do not want erased, the RUBOUT key
will remove the unwanted line number, leaving the
original line intact. For example:

12 LET A=4

lge< 2¢g LET B=A+7
will leave line 10 as it is and allow you to type

line 20.

=-2.54-

Following an attempt to run a program you may receive an
error message. Most errors can be corrected by typinglthe line
number, typing the line over again with the correction, and
hitting RETURN. The program is then ready to be run again. You
can make as many changes or corrections between runs as you wish.

(For a more advanced technique in program editing, see Chapter 3.)

2.5.3 Erasing a Program in Core
Assuming you have written a program on-line in BASIC, have
completed it and now wish to run another program in BASIC, but
do not wish to save the o0ld program, when BASIC types READY,
answer:
SCRATCH
or SCR

(The 3 letter abbreviation SCR above is valid only for TSS/8
BASIC. All keyboard commands such as SCRATCH, LIST, REPLACE,
RENAME, may be abbreviated to 3 letters in TSS/8 BASIC.) The
SCRATCH command will erase the old program and leave a fresh,
blank area in which you can work. When erasure of the space
is complete, BASIC will respond with the word READY, You go on
from this point. The previous program name is maintained for
the cleared area. You can, alternatively, reply to READY with
NEW, if you wish to create a new program, or OLD, if you wish
to recall a saved program for further work. SCRATCH is much

faster than NEW or OLD in clearing core.

-2.55-

8

If, after BASIC types READY, you merely begin typing a new
program without clearing core, BASIC will retain the name of the
previous program and in effect you will write over that program
as though you were changing each single line. However, if you do
not remove or type over all of the previous liné numbers you will
discover the unchanged lines appearing in the new program as well.
To avoid this, telling BASIC to SCRATCH the old program and create

a new program gives you a blank area on which to write.

2.5.4 Stopping a Run in TSS/8 BASIC

If your program begins to print what you know will be a long
list of unwanted output for one reason or another, you can stop a
running program by depressing the CTRL (control) key and hitting
the C key. CTRL/C will cause 9C to be printed on the console
paper, and will stop execution, returning you to edit mode (BASIC
prints READY). You can make changes, save the program, or what-

ever you wish.

NOTE
The up arrow (1) in the command 4BS or 1C is not
to be confused with the up arrow used to express
exponentiation. The % indicated on the console key-
board is for raising a number to a power. The %C,
for example, is a short way of writing CTRL/C where

the CTRL key is depressed while the C is struck.

-2.56~

8 2.6 RUNNING A BASIC PROGRAM

8 2.6.1 LOGIN Procedure

8 Before you attempt to use TSS/8, someone in charge of the
8 computer will issue you an account number and a password. When
8 you sit down at a teletype console, insure that your console is
8 connected to the TSS/8 system and type a RETURN. The computer
8 should then respond with a printed dot or period. Connection

8 to the computer may be done by merely turning the teletype

8 switch to LINE, or it may require dialing up the computer over
8 the phone system. If difficulty is experienced when you strike
8 the kETURN key, speak to your TSS/8 consultant.

8 %In answer to the dot type:

8 LOGIN account number password

8 Enter the three terms with a single space between them and strike
8 the RETURN key. For example:

8 .LOGIN 175 DEMO

8 None of the characters in the line you typed will be printed at
8 the console, in order to preserve the secrecy of these codes.

8 When you successfully log onto the system, some opening message
8 will be printed ending with another dot. In reply type:

8 R BASIC

2.6.2 Initial Dialogue
This puts you in communication with BASIC which will then
type out:

NEW OR OLD--

-2.57-

If you are entering a new program you reply NEW, if calling in
an old program you have saved in a file, reply OLD. To enter
the command to BASIC, you must strike the RETURN key. BASIC
will then reply:

NEW PROGRAM NAME--

or OLD PROGRAM NAME--

as the case may be. You will type in any six-or-less character
identifier as your program name. An old program's name must be
typed correctly, so it is a good idea to choose an appropriate,
easily remembered name. An example of how to call a program
whiqh you had previously saved would look as follows:
OLD PROGRAM NAME--PRIME
where PRIME is the name of the program.

Programs (called files when they have been saved) may be
loaded from another user's account, file protect permitting.I
When BASIC asks for the old program name, you may réply:

OLD PROGRAM NAME--PRIME 128
where PRIME is the name of a program and 120 is the file account
number under which PRIME is stored.

If a file exists for use of a large number of programmers
it will likely be placed in the System Program Library and may
be called by typing the name of the program immediately followed
by an asterisk:

OLD PROGRAM NAME--PRIME*

will call PRIME from the System Program Library.

EWhen you SAVE a file on disk the protection code of that pro-
gram allows anyone knowing the account number to access the pro-
gram. For additional information on file protection codes, see

chapter 3,
-2.58=-

Following the program name supplied by the user, BASIC then
types READY if the program can be found or else it types some

error message if it cannot. For example: (user input underscored)

NEW OR OLD--0LD
QLD PROGRA NAME--PRINTE

CAN'T FIND "PRINTZE"
NZW OR OLD-- ;

indicates that the old program‘PRINTE cannot be foﬁnd.' Per-
haps it has not been stored, has been erased, or is stored under
some other name.

When BASIC has printed READY, you may begin to type
in a new program hitting RETURN after each line, or change or
run an old program in accordance with the conventions already

established.

2.6.3 RUN Command
When your program is ready to be run (be sure there is an

END statement), type RUN, press the RETURN key, and the program

will attempt to execute. If there is some error in the way you
wrote your BASIC code, an error message will be printed, following
which you may correct the errors one line at a time. Then type
the RUN command again. If the program executes correctly you

will obtain whatever printed output you requested. When the END

-2.59-

-

statement is reached, BASIC stops execution and again types

READY.

2.6.4 Editing Phase

To simplify matters, we can think of BASIC as having two
phases, a run phase and an editing phase. The run phase is the
time between when you type RUN and when BASIC types READY; this
is the time during which BASIC is compiling and executing your
program. Once BASIC has printed READY, it is able to accept
commands directly from your Teletype; during this editing phase
you can prepare your program and can direct BASIC to perform a
variety of services such as the SCRATCH command. (You can force
an entry to the editing phase with a CTRL/C.) The commands used
in the editing phase can all be abbreviated to three letters,

some have arguments, others do not, as explained below.

2.6.5 SAVE Command
When you have completed working on a program, you may save
it on disk to call again in the future. To do this type:
SAVE
or SAV
This would save your program in a file with the same name you
typed in response to the question NEW PROGRAM NAME--(If you
think you might forget it, write the name in a REMARK statement

at the beginning of the program.)

~2.60-

It is also possible to say:
SAVE name
or SAV name
where name is not the original name you gave as a reply to NEW
PROGRAM NAME--, however, the name you tell BASIC to save the
program under is the name you must give to retrieve the program

in response to a later query of OLD PROGRAM NAME--

NOTE
Spaces do have significance in program names
(i.e., SAVE TIP TOP will be saved as TIP). In
general, then, spaces are delimiters for all

editing phase commands.

2.6.6 REPLACE Command
If you have called an old program and made some changes in
it, you can then return the corrected program to the disk under
its old name using the REPLACE command. This command deletes
the old program of that name as it enters the new one.
In response to READY, type:
REPLACE
or REP
or, alternatively:
REPLACE name
or REP name
which causes the program presently being worked on to replace
the old copy of the same program on the disk. If a program name

is indicated, that name is used as the file name.

-2.61-

2.6.7 UNSAVE Command

If you wish to delete a program from your disk storage area,
type:

UNSAVE name
or UNS name

The program with the name specified will be deleted from your
permanent file. This is done when YyOou no longer plan to use
that program. 1In general, programs which are not going to be
run frequently are bést stored on paper tape, reserving disk
storége for more active programs. It is possible to delete sev-
eral files with a single UNSAVE command separating the program

names with commas.

2.6.8 LIST Command

Once your program works you may discover you have several
feet of Teletype paper filled with corrections and other gibberish.
To obtain a clean listing of your program, type LIST followed by
the RETURN key. The whole program will be printed. You can
then tell the computer to RUN and your output will follow.

For debugging purposes it is sometimes useful to list part
of your program. LIST followed by one line number or two line
numbers separated by a comma or space will result in BASIC
printing either that single line or the lines between and in-

cluding the two numbers given.

-2.62-

2.6.9 DELETE Command

DELETE followed by two line numbers separated by a comma
or space will cause all lines between and including the two
given to be deleted from the program. If only one line number
is given, that line will be deleted. For example:
DEL 19 2¢

causes all lines between 10 and 20 inclusive to be deleted.

2.6.10 NEW and QLD Commands
- If you have completed working with one program and have
saved that program for future use, you may wish to work on an-
other BASIC program or leave the terminal. If you wish to call
an old program, type OLD. To indicate that you wish to begin a
new program, type NEW. In either case BASIC will request a pro-
gram name and, following your reply, type READY. These commands
may be used at any time, not only in direct response to the gques-

tion BASIC asks of NEW or OLD PROGRAM NAME--.

2.6.11 CATALOG Command
If you type CATALOG followed by the RETURN key, a listing
of all program names in your disk file will be printed by BASIC.

For example:

CATALOG

NAMZ SIZE PROT
SCORE .BAS 1 12
DAJE «3BAS 1 12
BASB32.TMP 1 17
BAS182.TMP 1 17
READY

-2.63-

@

2
8
8
8
8
8
8

8

o

The program names have appended to them the terms .BAC and .BAS
which are explained in Chapter 3.

All of the above commands, SAVE,REPLACE,UNSAVE,LIST,DELETE,
and CATALOG may be abbreviated to their first three letters in

TSS/8 BASIC.

.6.12 BYE Command

When you are ready to leave the Teletype, type BYE ahd hit
RETURN, this will return control to TSS/B Monitor which prints
a dot at the left margin. Then type LOGOUT and hit RETURN.
Wait until thé computer has finished its concluding message be-
fore turning the LINE-OFF-LOCAL knob to OFF or hanging up the

phone.

2.6.13 ALTMODE key (ESC on some terminals)

Striking the ALTMODE key (which is non-printing and non-
spacing) will cause any of the preceding commands (DELETE, LIST,
SAVE, etc.) to be erased. ALTMODE must be struck before the RE-
TURN key which enters the command into the computer. If you do
change your mind about a command, you can alter it as shown

below:

< ALTMODE struck here
SAVE FOO$ DELETED

TSS/8 BASIC replies $ DELETED to show that the command has been

erased, you may then retype the line.

-2.64-

CHAPTER 3

TSS/8 ADVANCED BASIC

This chapter deals with additional features of BASIC which,
once you have learned the BASIC language, will make programming

somewhat easier. They are specifically for TSS/8 BASIC.

3.1 .Implementation Notes
The TSS/8 BASIC language is compatible with Dartmouth BASIC
except as noted below:
1. There are no matrix operations.
2. All array (subscripted) variables must appear
in a DIM statement.
3. User defined functions are restricted to one
line.
4. Maximum size of a BASIC program can be said to
be roughly 350 lines. The exact size of a program
that a user can run depends upon several factors:
the number and size of arrays, number of nested
loops and subroutines, number of variables, and
user defined functions. A program using an unusually
large number of any of these factors will, of course,

have less room in which to run.

3.2 Punching a Paper Tape
It may be useful in many cases to have a copy of a program

you have written in BASIC stored on paper tape. You can create

-3.1-

such a copy easily if the teletype you are using is tape equipped.
Once you have completed your program to the point that you wish
to copy it, punch a listing of it through BASIC. The steps in-
volved are:

1. Type TAPE followed by hitting RETURN. Any

characters you type now will not echo on the con-

sole or on your tape.

2. Punch the ON button on the tape punch.

3. Type LIST followed by the RETURN key. This

causes the program to be listed on paper tape and

- on the console.

4. Punch the OFF button on the tape punch.
Using LIST when in TAPE mode will result in the following:

1. The word LIST will not echo. No leading spaces

are printed before line numbers as in a normal LIST.

2. Blank tape is "printed" before and after the pro-

gram.

You will notice that when you tear off the tape from the
punch there will be an arrow head on the tape. This shows the
direction in which the tape is later to be inserted into the tape
reader. If your teletype does not make such an arrowhead, mark

the beginning of the tape "head".

o~
Paper Tape Diagram

-3.2-

Once you have finished punching your program you will wish
to return to regular operating mode on the computer. During TAPE
mode no characters you type will be echoed. RUBOUTs are ignored,
as is blank tape. Typing KEY followed by the RETURN key will
bring you back to normal operating mode. You may then continue
working on that program, call another program, or log out.

A paper tape can be duplicated or copies made by positioning
the tape in the reader depress the ON button, turn the LINE-OFF-
LOCAL knob to LOCAL, and turn the reader control switch to

START. Tape will be reproduced as it is.

3.3 Reading and Listing a Paper Tape
To read in a paper tape from the low speed reader on the
Teletype, first create a new program name in BASIC and proceed
as follows:
1. Position paper tape in the reader head:
a. Raise retainer cover,
b. Set reader control to FREE,
c. Position paper tape with feed holes over
the sprocket wheel and the arrow (cut) pointing
outward from the console.
2. Type TAPE, hit the RETURN key.
3. Set reader control switch to START until reading
has been completed. Reader will not stop at blank tape.

You must turn the reader control switch to FREE.

-3.3-

4. In order to get back into regular operating mode
where the characters you type will be echoed at the
console, type KEY and hit the RETURN key.

5. BASIC will type READY, you can then ask BASIC to

LIST or RUN your program.

3.3.1 Transferring a File to Paper Tape or DECtape from Disk
It is not in the scope of this manual to describe the trans-
fer of BASIC programs from disk to paper tape or DECtape. If you
wish to use these facilities, refer to writeups on PIP (Peripheral

Interchange Processor) and COPY (both found in the TSS/8 User's

Guide) .

3.4 EDIT Command
Frequently it is only necessary to correct several char-
acters in a line. Rather than retype the entire line, which
may be a complex formula or output format, there is a command
which allows you to access a single line and search for the char-
acter you wish to change. The form of the EDIT command is as
follows:
EDI line number
[character]
(Notice that the EDIT command just as all other commands in
TSS/8 BASIC may be abbreviated to three letters.) It is then
followed by the line number of the statement to be changed.

Enter the command by striking the RETURN key. At this point

BASIC types [and waits for you to type a search character after
which BASIC types]. The character you give will be some char-
acter which already exists on the line (one of the legal BASIC
characters, ASCII 240 through 335 inclusive on the ASCII table
in Appendix A). After the search character is typed, BASIC
prints out the contents of that line until the search character
is printed. At this point printing stops, and the user has the
following options:

l. Type in new characters which are inserted fol-

lowing the ones already printed.

2. Type a Form Feed (CTRL/L); this will cause the

search to proceed to the next occurrence, if any,

of the search character.

3. Type a BELL (CTRL/G); this allows the user to

change the search character. BASIC types back another

[and the user can specify a new search character.

4. Use the RUBOUT (or SHIFT/QO) key to delete one

character to the left each time RUBOUT is depressed.

RUBOUT echoes as €.

5. Type the RETURN key to terminate editing of the

line at that point, removing any text to the right.

6. Type the ALTMODE key to delete all the characters

to the left except the line number.

7. Type the LINE FEED key to terminate editing of

the line, saving the remaining characters.

-3.5-

On completion of the EDIT operation, BASIC types READY. Note
that line numbers cannot be changed using EDIT, i.e., you can-
not search for a line number digit. Any illegal characters will
be ignored.

The following example demonstrates the EDIT command where
the incorrect line reads as follows:
60 PRINT "FI=3.14146 AFOUK1" -

RFADY

To edit the line would result in the following output on the

Teletype:
FDI 67 . .
6@ 61 PRINT "PI=3.14146«+59(%] AFOU*«T

RFALY.

LIST 60
AQ PRINT "PI=3. 14159 APONITI"
REALY e e e

The operationé involved in editing the liﬁémwer; as follows:
First the number 6 was indicated as the search character. BAéIC
ignores the line number, but will print it. When the 6 was é
printed, RUBOUT was struck twiée to remove the two incorrect
digits and 59 inserted in their place. CTRL/BELL isvstruck
resulting in BASIC accepting another search character. BASIC
then prints to the seérch character * which is removed with a

RUBOUT and replaced with T. A LINE FEED is struck to terminate

the edit and save the remaining characters.

_3.6—

3.5 COMPILE Command
When a program is debugged and working to your satisfaction,
it is faster to be able to directly RUN a program without waiting
for BASIC to recompile it each time. To enable you to store a
compiled program the COMPILE command has been added to BASIC.
The form of the command is as follows:
COMPILE name
or COM name
The program in core will be compiled and saﬁed in the specified
file. COMPILE will not overwrite an existing file (it is 1like
SAVE in this respect); if the name is in use the error message:
DUPLICATE FILE NAME
will be printed, and the program will not be compiled.
The compiled program may then be loaded and run in the
‘ vasugl_mapner. For example:
NFL OR OLD=-0LI ,
NLL PROGRAM NAME--FTRALL*
REFALY
COMEILF FOOTEL
READY
oLy
NI PROGRAM \VAMF--FOOTPL
FFADY | |
FUN
In the example above, the programmer told BASIC to load a
System Library Program file named FTBALL into core (the * after

FTBALL indicates the System Library files). The programmer told

-3.7-

BASIC to compile the program now in core and store the compiled
program in his personal file with the name FOOTBL. Once BASIC

has done this it replies READY. The programmer indicates that

he wishes to call an old program into core, this old program is
the already compiled version of the original program which can

be made to execute by giving BASIC the RUN command.

Compiled BASIC files may not be listed or changed in any
way; therefore a program should not be saved as a compiled file
until it has been‘completely debugged. If you attempt to list
or change a compiled file the error message:

EXECUTE ONLY

will be printed.

3,5,1 File Extensions

In order for the user to easily tell the difference between
compiled, uncompiled, and temporary files within your storage
area on disk, the following conventions are followed and will
help you tell the difference when you run the CATALOG command.

1. SAVE and REPLACE commands will always write

out a file with the extension .BAS appended to the

file name given by the user.

2. COMPILE will always write out a file with the

extension .BAC to the file name.

3. BASIC data files will have the extension ,DAT

L. Certain files will have the extension .TMP indicat-

ing a temporary file,

3.5.2 File Protection

TSS/8 permits a user to specify a protection code for each
file in his library. The code is made up of five "switches"
each of which permits or forbids a class of user from writing
or reading a file. The protection code is made up of the sum
of the "switch" settings. The switches are:
1 forbids any user from reading the file
2 forbids any user from writing on the file
4 forbids a user ih my programming group from reading the

file |

10 forbids a user in my programming group from writing on

the file
20 forbids me from writing on the file.

In the material above, "my programming group" is that
class of users with account numbers whose first two digits
are the same as mine; thus accounts 2355 and 2365 are in the
same programming group. A protection code of @ would permit
any user to read on the file or to write on it. A protection
code of 12 (the sum of 10 and 2) would permit any user to read
the file but only permit the file owner to write on it. A pro-
tection code of 37 (20+10+4+2+1) permits the file owner to read
it but forbids other users from reading or writing. (A protec-
tion code of 37 will freeze the file from deletion except through
other programs such as COPY. See instructions on using COPY in

the TSS/8 USER'S GUIDE.)

-3.9-

Using TSS/8 BASIC, the commands which write disk files
(SAVE, REPLACE, COMPILE) also permit the user to specify what
protection is to be given to a file. This is done by following
the file name with the protection code in angle brackets. For
example,

SAVE FOO <K1¢>
will create and save a file named "FOO.BAS" having a protection
code of 1f. When no protection is specified, a protection of 12

is automatically assumed.

- USING BASIC TO SAVE A FILE WITH A PROTECTION CODE >17 WILL
RESULT IN A FILE WHICH CANNOT BE DELETED BY BASIC. ONLY THE
RENAME FEATURE OF THE PROGRAM "COPY" WILL PERMIT DELETION OF
THE FILE. Take care with this option.,

3.10-

3.6 Strings in BASIC

TSS/8 BASIC has the ability to manipulate alphabetic in-

formation (or "strings"). A string is a sequence of characters,
each of which is one of the printing ASCII characters (given in
the table in Appendix A) . 1In TSS/8 BASIC, strings consist of

six or fewer characters; strings of more than six characters
are broken into 6 character groups,

Variables can be introduced for simple strings, string
vectors, and string matrices. A string variable is denoted by
following the variable name with the dollar sign character (§).

For example:

AlS A simple string of up to 6 characters
Vs (7) The seventh string in the vector V$§(n).
M$(1,1) An element of a string matrix M$(n,m).

As usual, when string arrays or matrices are used a DIM

statement is required. For example:
1 DIM V$(18) ,M$(5,5)

reserves eleven strings for the vector V§ and 36 strings for

the matrix MS.
3.6,1 Reading String Data
Strings of characters may be read into string variables from
DATA statements. Each string data element is a string of one to

six characters enclosed in quotation marks. The quotation

marks are, of course, not part of the actual string. For example:

18 READ A$, BS, Cs$
2@@ DATA "JONES", “"SMITH", "HOWE"

-3.11-

The string "JONES" is read into A$, "SMITH" into B$, and "HOWE"
into C$, If the string contains more than six characters, the

excess characters are ignored.

19 READ AS

2f PRINT AS

3¢ DATA "TIME-SHARING"
49 END

causes only
TIME-S
to be printed.
String and numeric elements may be intermixed in DATA state-
ments. A READ operation always fetches the next element of the

appropriate type. In the following example:

1¢ READ A, AS, B
20 DATA "YES", 2.5, "NO", 1

2.5 is read into A, "YES" into AS$, and 1 into B.

The standard RESTORE statement resets the data pointers for
both string and numeric elements. Two special forms of the
RESTORE command, RESTORE*and RESTORES, may be used to reset just

the numeric and string data list pointers respectively.

RESTORE* Resets the numeric DATA list
RESTORES Resets the string DATA list
RESTORE Resets both numeric and string

DATA lists.

14 READ A,AS$,B

2¢ DATA "YES",2.5,"NO",1
3¢ PRINT A,AS,B

49 RESTORE¥

5¢ READ A,AS$,B

64 PRINT A,AS$,B

78 END

-3.12~-

would print:

If line 40 were changed to RESTORE, this program would print:

2.5 YES 1
2.5 YES 1

since the string as well as the numeric data lists were reset,

3.642 Printing Strings

The regular BASIC PRINT statement may be used to print out
string information. If the semi-colon character is used to separate
string variables in a PRINT command, the strings are printed with

no intervening spaces. For example, the program:

1§ READ AS, BS, C$

24 PRINT CS; BS; AS

3¢9 DATA “ING", "SHAR", "TIME-"
44 END

causes the following to be typed:
TIME-SHARING
3¢6e3 " Inputting Strings

String information may be entered into a BASIC program by
means of the INPUT command. Strings typed at the keyboard may
contain any of the standard teletype characters except back arrow
{#) and quotation mark. Back arrow, as always, is used to delete
the last character typed. Commas are used as terminators just as
with numeric input. If a string contains a comma the whole string
must be enclosed in quotation marks. The following program dem-—

onstrates string input.

-3.13-

1 INPUT AS, BS, C$
2¢ PRINT C$, BS, AS

3¢ END

RUN

? JONES, SMITH, HOWE

HOWE SMITH JONES
READY

Strings and numeric information may be combined in the same INPUT
statement as in the following example. Note that if an input
string contains more than six characters, only the first six are

retained.

1¢ INPUT A, AS, BS
2¢ PRINT AS$, BS, A

3¢ END

RUN

? $1754, MAYNARD, MASS.

MAYNAR MASS. 1754

The numeric variable A is set to 1754, the string "MAYNAR" is put
in the string variable A$, and the string "MASS." is put into

the string variable BS.
3e6e.t Line Input LINPUT

Strings of more than six characters may be entered by means
of the LINPUT (line input) command. A LINPUT statement is fol-

lowed by one or more string variables. For example:
19¢ LINPUT AS(1l), AS(2), AS(3), As(4), AsS(5)

The first six characters to be typed are stored in the first
string variable, the next six in the second, and so on until
the line of input is terminated by a carriage return. Commas
and quotes are treated as ordinary characters and hence are
stored in the string variables. For example, if the following

line were typed in response to the above LINPUT command:

? MAYNARD, MASS. f@1754

-3.14-

then the values of the string variables would be as follows:

A$(1l) = "MAYNAR"
A$(2) = "D, MAg"
AS$(3) = "s. g17"
AS(4) = "54"
A$ (5) = unl

In this example, the maximum number of characters which could
be typed would be 3@. Any additional characters would be ignored.
In all cases, the maximum number of characters which may be
typed to TSS/8 BASIC is 5¢. If a longer line is typed, the mes-
sage LINE TOO LONG is typed. The line must be re-entered.

It is possible to mix numeric and string variables in a
LINPUT statement, but it is not recommended. As an illustration

of how this might be done, consider the example given earlier:
1§ LINPUT A,AS$,BS$

where the user might type:
? @1754,MAYNARD, MASS,

This still sets the numeric variable A to 1754 (when used
in LINPUT statements, numeric input remains unchanged). However,
the string variable A$ would now be "MAYNAR", and the string
variable B$ would be "D, MAS".

NOTE

When inputting strings with LINPUT, the error
messages: "MORE?" and "TOO MUCH INPUT, EXCESS
IGNORED" cannot occur. LINE TOO LONG will occur
if more than 50 characters are input.,

1Strings may also consist of zero characters. Such a string

is empty, or "null". If printed, it causes nothing to be
output. The null string is usually represented by a pair
of quotes with nothing in between (""). The null string

should not be confused with a string of one or more spaces.

3¢645 Working with Strings

Strings may be used in both LET and IF statements. For

example:

1¢ LET Y$= "YES"
1g IF Z$¥ "NO" THEN 1f¢

The first statement stores the string "YES" in the string variable
Y$. The second branches to statement 1¢@ if z$ contains the string
"NO". For two strings to be equal, they must contain the same
characters in the same order and be the same length. In parti-
cular, trailing blanks are significant since they change the
length of the string. "YES" is not equal to "YES ",

The relation operators < and > may also be used with string
variables. When used with strings, these relations mean "earlier
in alphabetic order" or "later in alphabetic order", and they may
be used to alphabetize a list of strings. The relationals >=,
<=, <> may also be used in a similar manner. The arithmetic
operations (+, -, *, /, 4) are not defined for strings. Thus,
statements such as LET A$ = 3*5 and LET C$ = AS$+BS$S have no mean-
ing, and should never be used in a BASIC program. They will not,
however, cause a diagnostic to be printed, and the results of such

operations are undefined.
3,6,6 The CHANGE Statement

The BASIC command CHANGE may be used to access and alter
individual characters within a string. Every string character
has a numeric code (see Appendix A), a number which is used to
stand for that particular character. The CHANGE statement con-—
verts a string into an array of numbers, or vice versa. The
CHANGE statement has the form:

1@ CHANGE A TO AS$
or

1¢9 CHANGE AS$ TO A

-3.16-

where A$ is any string variable (or an element of a subscripted
string variable) and A is an array variable with at least seven
elements. Any array variables used in CHANGE statements must

have appeared in a DIM statement with a dimension of at least six.

The following program illustrates the use of the CHANGE
statement. 1In this example, CHANGE is used to chance a string

variable into an array of numbers.

1 DIM A(6)

2§ READ AS$

38 CHANGE AS$ TO A

4¢ PRINT A(g); A(1); A(2); A(3); A(4); A(5); A(e)
5¢ DATA "ABCD"

6§ END :

RUN

4 65 66 67 68 g £

The CHANGE statement takes each character of the string and
stores its corresponding numeric code in elements one to six of
the array. Remaining array elements are set to zero. The length
of the string (f-6 characters) is then stored in the zero element
of the array. In the example above, the character codes for A, B,
C, and D are stored in A(l) to A(4). A(5) and A(6) are set to zero.
The number 4 is stored in A(@) since the strina AS$ is of length 4.

CHANGE may also be used to change an array of numeric codes
into a character string. The following program illustrates this
use of the CHANGE statement.

1 DIM A(6)

2 FOR I=@ TO 5

3¢ READ A()

49 NEXT I

5 CHANGE A TO AS

6@ PRINT AS$

76 DATA 5, 65, 66, 67, 68, 69
8% END

RUN

ABCDE

-3.17-

The length of the resulting string is determined by the zero
element of the array. In the above example, the string is of
length five. The elements of the array, starting at subscript 1,
are assumed to be numeric character codes (32 to 94). These are
converted to characters and are stored in the string. If any
codes are encountered which are not valid character codes, or

if an invalid string length is given, the message BAD VALUE IN
CHANGE STATEMENT AT LINE n is typed out, and execution is
stopped.

3.6.7 A Note About CHANGE

A BASIC string of less than six characters always has the
remaining character positions filled with zeros. For this reason,
when such a string is changed to an array, the first six array
elements are set to zero. The CHANGE statement always fills
six array elements, even though the strings may not be six charac-
ters long. The user should be very careful to always dimension
the array used in a CHANGE statement to at least 6. If a string
of characters is transformed into an array of less than 6 elements,

an undetected error will occur.

The CHANGE statement is usable with strings not created by
BASIC. It may, for example, be used to access files other than
BASIC data files. Each string variable corresponds to three
computer words. The CHANGE statement treats these three words
as six bytes, converts each byte to its numeric character code
equivalent and stores it in the corresponding array element. The
zero element of the array, the string length, is set equal to
the number of bytes (character) before the first zero byte. When
reading unspecified data, there may be non-zero bytes following
this zero byte. If so, they will be transferred to the array as

well.

-3.18-

(U]

(en)

e ¥yl

bt

o T T an =
LS Uad Q F e THAV)

(e
™

Occasionally it is desirable tc Uype a character other whsn
the normal ASCII set, or to compute the value of a character to
print, For example one might wish to transmit to the prinver
cersain control characters or even the lower case letters, For
this sor:t of purpose the CHR$ function is used in & FRINT state-
men%. The argument of the CHR$ function (modulus 256) is sent as
s character to the teleitype, For ezampie:

T I
- E LA

PO SRl
S

=i

;};{} LRy
L TN
SJ_Q HND
t

o

prints "@12345678¢Y since L8 to 57 are the ASCII values for the
%

oL

characters "#" te "9%, The following special characters may be
<

printed using the CHRS funciion:
Bell CERS(7)
Line Faed CER$(10)
Carriage Return CHR${13)
uote (M) CER$ (3
Back Arrow ()} GHRS{95)
Form Feead CHR${12)
NCTE

The teletype will accept characters from @ to 255 (decimal),
meny of which do nothing on most kinds of teletypes. Some of the
special (non-printing) characters should not be used. For ex-
ampie, CHR$(l) causes a Dataphone to discomnnect.

For each AS shere is a second form accepted by CHRS

end CHANGE. ooteinsd by adding 125 vo ths

o Yy

Lower caSe chalPacters colsespond o the arguments 97 througn
; Tn e am v Lo e U ’ H t -
Tezusm CERE{ 77 would print an "a" onm a

122 when uged Wl
teletvype capabls ol nandllng [hat chalacter {(an ASH 38, for exampis)
thms permitting T83/8 BASIC te heradie ail printable ASCIL charac-

ters in output mode.

-3.19-

3.6.9 Modification to DATA Statement

A DATA statement may now be legally terminated by a comma.
For example:

14

lg pata 1,2,
2¢ DATA 4,5,

3
6
is now treated the same as

1§ DATA 1,2,3,4,5,6

367 Program Chaining

Most BASIC programs are easily accommodated by TSS/8 BASIC.
If a program becomes very long, however, it may be necessary to
break it down into several gegments. Typically, programs nfrm‘
than two to three hundred statements must bo split up. A program
that has been broken down into more than one piece is commonly rc-

ferred to as a "chained" program.

Each part of a chained program is saved on the disk as a
separate file. The last statement of each part to be executed
is a CHAIN statement specifying the name of the next section of
the program. This file is then loaded and executed. It may in
turn chain to still another section of the program. The general

form of the chain command is:

414 CHAIN "NAME"

or
414 CHAIN AS$

-3.20-

where "NAME" is the name of the next segment to be executed

(one to six characters) enclosed in quotation marks. The name
of the next segment may also be ontained in a string variable.
In either case the file of that name is loaded and run. Thus,

the statement:
999 CHAIN "SEG2"
is equivalent to:

OLD
OLD PROGRAM NAME-SEG2

RUN

except that it happens automatically. Each separate part of the
program links to the next part of the program chain.

The individual sections of a chained program may be
either regular source files (.BAS) or compiled files (.BAC).
If the sections are source files, however, they must be compiled
before they are run. A chained program runs more efficiently if

all its sections have been compiled.

If an error occurs while compiling or running a chained
program, the name of the section being run, the one having the
error, is typed out as part of the error message. In all cases,
whether a program terminates by an error or a STOP or END, BASIC
returns to the first program in the chain. This is the one which

is available for editing and rerunning when BASIC types READY.

Most chained programs require information from one section
to be passed on to the next. The first section may, for example,
accept input values and perform some preliminary calculations.
The intermediate results must then be passed to the next section
of the programs. This passing of values is done by means of

BASIC's file capability, which is explained in the next section.

-3.21-

Whenever a CHAIN operation is performed, program data which has
not been saved in a file is lost. Variable and array values are

not automatically passed to the next program.

3.8 Disk Data Files

The standard BASIC language provides two ways of handling
program data items. They may be stored within the program (in
DATA statements) or they may be typed in from the terminal. DATA
statements, however, allow for only a limited amount of data.

Also% the data is accessible only to the progam in which it is
embedded. Typing data in from the terminal allows it to be entered
into any program, but it is a time-consuming process. In either
case the data, or the results of calculations, cannot be conveni-
ently stored for future use. All these limitations may be over-

come by the use of external data files.

A data file is separate from the program or pro-
grams which use it. It is a file on the disk just like a saved
program, but it contains numbers or strings rather than program
statements. This information may be read or written by a BASIC
program. (Information is stored in a data file in a coded format.
Therefore, it cannot be listed by the BASIC Editor or TSS/8 EDIT.)
A file may be as long as necessary, subject only to the file limita-
tions of TSS/8 (maximum file size is about 350,0@F charac-
ters). String and numeric information may be combined in a single
file. The number of data files a user may have is again limited
only by TSS/8 (about 1@@, space allowing). When first
created, the contents of a file are unspecified until it is writ-

ten in.

3.8.1 File Records

A file is made up of logical units called "records". A

record may be as small as a single numeric or string variable.

-3.22-

More typically, it is a group of variables or arrays. The
design of the program itself usually dictates the most effi-
cient size of the record. 1If, for example, the program mani-
pulates a series of 5 x 5 matrixes, each record could contain
one such matrix. If the program operates on 8¢ character alpha-
numeric records, 14 string variables might make up a record.

The size and composition of a record is defined with a
RECORD statement. Like the DIM statement, RECORD is followed
by a series of variables. They may, however, be unsubscripted
as well as subscripted. For example:

14 RECORD A(5,5)
1§ RECORD Bs$(14)
1# RECORD A, B, C$(8), D, E(5)

The set of variables mentioned in a RECORD statement, taken
altogether, constitute a record. Each element within the
record is in essence a field. Numeric and string information

may be mixed in order to make yp the most convenient record.

Variables mentioned in a RECORD statement
should not appear in a DIM statement. The RECORD state-
ment reserves variable space exactly as a DIM statement does.
The difference is that the variables are also identified as
being used for file input and output. Non-subscripted variables
appearing in RECORD statements must not have been used previously
in a program. RECORD statements should always be

the first statements in a program.

Records may be any length. A long record is typically more
efficient since more information is transferred in a single
operation. Records should, however, be only as long as necessary

since excess variables will make the file longer. In particular,

it is important to remember that all arrays and matrices have
zero elements. A(5,5) has 36 elements, not 25. If A appears
as part of a record, all 36 elements should be used. It is also
useful to try to make record sizes 43 variables long, or a mul-
tiple of 43. Each RECORD statement reserves program variable
space in units of 43 whether or not the record is that big.
Unless the record fills out this area, some program variable
space is wasted. It is not worth it, however, to make an in-
herently small record 43 variables long just to conform to this
convention. To do so would be to make the file unnecessarily
large.

3.8.2 - Opening a Disk File

- Disk data files are completely separate from the programs
which use them. Therefore, the program must specify which file
or files it will use. The OPEN command is used for this purpose.
OPENing a file associates it with an internal file number, either
8 or 9. (A program may have two disk files open at a time.) For
example:

1@ OPEN 9, "DATAlQ"
1f8 OPEN 8,A$

The name of the file to be opened may be explicitly stated in
the OPEN command. If it is, it must be contained in quotation
marks. The file name may also be contained in a string variable,
allowing the program to decide which file to open, perhaps on
the basis of input from the program's user. In either case, the
name of the file is preceded by the internal file number, either
8 or 9. This argument may also be an expression whose value is
either 8 or 9. 1If, when a file is opened on an internal file
number, a file was already open there, it is closed first.

-3.24-

If no file of that name exists, the file is created. 1In
either case, once the file is open, it is available for both
reading and writing. BASIC disk data files have an extension

of .DAT.

3.8.3 Reading/Writing Disk Files

Once open, files may be read and written one record at a
time, using the GET and PUT statements. GET statements read
one record's worth of information directly into the variables
in the specified RECORD. PUT statements write out the present
values of the variables in the specified RECORD. Both GET and
PUT statements are followed by the internal file number (8 or 9
or an expression), the line number of the RECORD statement con-
taining the variables to be transferred, then the name of a

"control®™ variable. Por example:

1¢@ RECORD A, B, C$(38), D(8)
112 OPEN 8, "FILEL"

12§ LET I=f

136 GET 8, 189, I

The control variable specifies the file record to be transferred.
In the example above, FILEl is open as internal file 8. The

value of I is zero. Therefore, the GET statement in line 13@ reads
the first record (record @) of FILEl into A, B, and the arrays

C$ and D. Single numeric values are read into A and B, 31 strings
are read in C$, and 9 numeric values are read into D. After each
transfer, whether it is a GET or a PUT, the value of the control
variable is automatically incremented. Successive GET's or PUT's

automatically proceed to the next record of the file.

The PUT command has a similar format. For example, if

line 130 of the above program had been:

13g purT 8, 1§99, I

-3.25-

the present values of A, B, Cc$, and D would have been written
out to the first record of FILEL.

File records may be accessed randomly by simply setting the
control variable to the desired record number before doing the
GET or PUT. Single records may be read, changed, and then writ-
ten back without the need to process the entire file. When
reading a file, the record referenced in the GET statement must,
of course, be the same as the record referenced in the PUT
Statement which wrote the data into the file. The total length
of the record and the relationship of string and numeric fields
within the records used for the GET's and PUT's must be the same.

If they are not, improper information will be read and written.

New files may be created by opening a file which does not
already exist. As successive records are written out to the file
its length is extended as necessary. When a new file is created,
it is useful to immediately write an "end-of-file" code in the
last record. Writing the last record first forces the entire
file to be allocated, making sure that enough disk space is
available. It also provides an end-of-file marker. Programs
which read this file may then check for this end-of-file to
avoid reading past the.end, which is an error. Existing files
may be enlarged by writing a new record farther out. If the
program does not know how big the file will be, it may simply
write records out serially. The file will be automatically
extended as needed. When all the records have been written, one
final end-of-file mark may be added.

-3.26-

In general all records read or written in a specific
file should be the same length, that is contain the same number
of variables. However, if the user is careful he may
intermix records of different lengths in a file. Suppose

the following statement is executed:
40 PUT 8,100,N

and the value of N is n and the record specified by
statement 100 is of length m. The PUT statement
will write m variables in the file starting at

the m*n variable.

The simple rule for computing the first variable in the
file to be accessed is the record length times the record

number. (Remember the first record is record number zero.)
3,8.L Closing and Deleting Disk Files

Once all work has been completed on a file, it should
be "closed" by a CLOSE statement. Once it is closed, it
may not be read or written unless it is reopened. The file
does, however, remain on the disk and is available for
future use. The CLOSE command is followed by the internal
file number to be closed (8 or 9). For example:

95¢ CLOSE 8

-3.27-

If the disk file was just created for temporary scratch use

(to pass parameters during a CHAIN, for example) it should be
deleted at the end of the program instead of closed. The UNSAVE
command is used to delete files. For example:

14@@ UNSAVE 9

The file open on internal file number 9 is deleted from the disk.
Both CLOSE and UNSAVE may be followed by an expression instead
of a constant.

Open disk files are automatically closed at the end of the
program, unless the program CHAINsS to another program. 1In this
case, all open files remain open and the new program may access
them without executing an OPEN statement.

349 DECtape Files

Large permanent files are best stored on DECtape instead
of disk. Each DECtape holds up to 380,080 characters of informa-
tion. DECtape files may be dismounted for safekeeping, thereby
insuring their privacy. Files on DECtape are very similar to files
on disk except that they do not have file names. Each reel of
DECtape is a discrete file. When mounted on a DECtape drive,

records may be read and written directly on the tape.

A DECtape unit, and hence the file mounted on it, may be
used by only one user at a time. If no one is using the unit, a
user may assign it. Once assigned, that user has exclusive ac-
cess to it until he releases it. Each DECtape drive has a
"write-lock" switch which physically locks out any writes to
that unit. If the write-lock switch is set, programs may not

write on the tape even though the unit is assigned.
DECtape files may be used in a variety of ways. Programs

which need very big files should use DECtape to avoid swamping

the disk. Administrative files, such as student or employee

-3.28~

records, are best stored on DECtape. Since they are removable,
and can be write-locked when mounted, their usage can be tightly
controlled. DECtapes are also useful for information retrieval.
A data tape may be kept permanently mounted, but write-locked.
Individual users may run programs which assign and query that
file, then release it for others to use.

3¢9.1 DECtape File Records

Records for DECtape files are specified the same way as
for disk files, with a RECORD statement. All rules for disk
records also apply to DECtape records. In fact, the same RECORD
statement may be used for both a DECtape and disk file. (This
is useful when reading a tape file to a disk file for processing.

Disk files are considerably faster than tape files.)

It is possible to specify any record length for a DECtape
file, but a size of 43 variables is suggested, even more strongly than
for disk files. DECtapes are physically structured into blocks,
each of which will hold exactly 43 variables. If the record
specified by the program is, for example, 44 variables, it will
require two full blocks of the tape.

Records which are multiples of 43 variables are efficient
in utilizing DECtape space, but are not efficient in speed.
Such records are written in consecutive DECtape blocks. The
tape unit cannot read or write consecutive blocks without

stopping the tape and rewinding it slightly.

This tape "rocking" also occurs when single block records
(43 variables or less) are read or written as consecutive DEC-
tape records. (In this case, each DECtape file record corre-
sponds to a physical tape block.) The most efficient way to
utilize DECtape is to make each record 43 variables in length,
and write them onto every tenth record in the file (records @,
1§, 2@, etc.). When the entire length of the tape has been
traversed (the last block of the tape is number 1473) write next

=3.29~-

into records 1, 11, 21, etc. In this way, every record will
eventually be filled. Programs which will be used repeatedly

should utilize the tape in this manner.

3.9.2 Opening a DECtape File

DECtape files, like disk files, are completely separate
from the programs which use them. Therefore, the program may
specify which tape, or tapes it will use. The OPEN command
is used for this purpose. Since DECtape files do not have
names', the OPEN command specifies the DECtape unit number to
be used. It is assumed that the proper tape reel has been
mounted. If the file is to be updated, the unit should be
write-enabled. 1If not, it should be write-locked. The OPEN
command is thus followed by the unit number to be used (@-7).
Only units 2-7 may be used at UWM,

109 OPEN 2
155 OPEN 7

The unit number could be an expression, Making the unit number
a Vapiable is very useful since it is hard to predict which units
will be available at the time the program is run. When it is a
variable, the user may mount the file on any free unit, then type

the number into the program via an INPUT statement.

When the OPEN cormmand is executed, the indicated DECtape

unit is assigned. It cannot subsequently be opened or assigned

by any other user. Thus, it is possible to try to open a unit
which is already assigned. If, in the above examples, units 2 or 7
were assigned, the program would be terminated and an error message
typed out. An alternative form of the OPEN command allows the
program itself to handle this situation. OPEN commands may in-
clude an ELSE clause which specifies a line number. If the OPEN
command fails, BASIC automatically performs a GOTO to this line

number. For example:

198 OPEN 2 ELSE 9g¢

1It is important to note that BASIC DECtape files are not the same

as the file-oriented DECtapes used by TSS/8 COPY. There is no di-

rectory on a BASIC DECtape file. Each tape is considered to be one
file of pure data.

-3.30-

If unit 2 is available, it is assigned and BASIC goes on to
execute the next statement. If unit 2 is not available, state-
ment 9¢f is executed next. It could print a message and perhaps
ask for an alternate unit number.

3.,9.3 Reading and Writing DECtape Files

DECtape files are read and written using the same GET and
PUT commands as are used for disk data files. The internal file
number is a number between 2 and 7, or an expression. Unlike disk
files, DECtape files are of a constant length equal to the capa~
city of the tape. The exact number of records per reel depends
on the record size as follows:

Record Size Tape Capacity
1-43 variables 1474 records
44~86 variables 737 records
87-129 variables 491 records
etc.

As indicated in the section on DECtape records, a record size

of 43 variables or less is recommended since it conforms to the
physical blocking of the tapes themselves. It is also desirable
to space the records out along the tape so that the tape does not
rock. The following subroutine could be used to write 1474 rec-
ords on the tape in this fashion. It assumes that R is set to
zero before it is called the first time and that the unit number
is in U.

-3.31-

5¢% REM SUBROUTINE TO WRITE RECORDS ALONG TAPE
51 REM WRITES ONE RECORD EACH TIME CALLED

515 PUT U,184, R 'REMEMBER THIS INCREMENTS R
517 LET R=R+9 'SPACE OUT 1@ BLOCKS

524 IF R<1474 THEN 550 'OK TO RETURN

53¢ IF R=1479 THEN 568 'TAPE IS FULL

54 LET R=R-1479

545 1IF R >@ THEN 55§

547 LET R=R+1§

550 RETURN

569 STOP 'TAPE IS FULL

The following function may also be used to convert a logical

record number (@ to 1469) to a physical record block spaced along
the tape. This function will not use blocks f§-3. They are there-

fore available for headers or labels.
FNC(X) = (XfINT(X/l47)*l47)*lﬂ + INT (X/147)+4

Both the subroutine and the function assume a record length of 43
variables or less.

Once opened, any record on the tape may be read. The tape
unit must, however, be write-enabled if it is to be written. Try-
ing to PUT to a writew-locked tape is an error.

3.9+l Closing DECtape Files

Once all work on a DECtape file has been completed it may be
closed. Closing a file releases the tape unit and makes it avail-
able to other users. Thus, if the tape contains important informa-
tion (and especially if it is write-enabled) the CLOSE should not
be done until the tape reel has been removed. If no CLOSE state-
ment is encountered in the program, the unit remains assigned even
after the program finished. It will remain assigned until a TSS/8
RELEASE command is executed or the user logs out. An example
of a CLOSE command:

1148 CLOSE 6

-3.32-

3,9.5 Using Data Tapes with PS/8 FORTRAN

Numeric DECtape data files written by TSS/8 BASIC may be
read by PS/8 FORTRAN by use of FORTRAN's RTAPE and WTAPE sub-
routines, and vice versa. (String and Hollerith variables use
different character codes). Thus it is possible to use BASIC to
prepare an input or update tape for a stand-alone FORTRAN program.
This provides a convenient way to do big jobs in off-hours, with-
out having to leave the time-sharing mode for very long.

3,10 Line Printer Output

If a line printer is available, it may be used both to list
BASIC programs and as an output device for the programs themselves.

The line printer may only be used by one user at a time.

The commands associated with line printer output are LLIST
and LPRINT.

ILIST is similar to the LIST command except that the program
listing is output to the line printer rather than to the Teletype
The LLIST command assumes that no other user has the line printer
assigned and responds by typing WHAT? if the line printer is not
available. After the listing is complete, the line printer is

released and is available to any user.

BASIC programs may use the line printer as an output device
during execution by means of the LPRINT command. LPRINT is
exactly like PRINT except that, again, the information goes to
the line printer rather than to the Teletype. All formatting
conventions of the PRINT command are available with LPRINT. 1In
particular, CHR$ (12) may be used to skip to the top of the next

form.

The command LPRINT also assumes that no other user has the
line printer assigned. However, using this command when the line
printer is not available causes the program to terminate. Once

LPRINT successfully assigns the line printer, it remains assigned

until the program terminates.

-30 33_

The OPEN and CLOSE commands may be used to assign and re-
lease the line printer. An OPEN command with a device number
of 11 will assign the line printer, or if it is not available
and an ELSE clause is specified, transfer control to the line
number specified in the ELSE clause. CLOSE 11 will release the

line printer.

3.11 papertape Output

The high speed paper tape punch may also be used as an output
device. Like the line printer, the paper tape punch may only be
used by one user at a time. The OPEN and CLOSE commands with an
internal file number of 1§ will respectively assign and release

the paper tape punch as shown in the following example:

1¢ OPEN 1§ ELSE 1¢¢ ‘GOTO 1¢@ IF PUNCH UNAVAILABLE
20 CLOSE 10

Here too, a GOTO statement in combination with an ELSE clause can
be used to transfer program control should the paper tape punch not
be available.

The command LPRINT causes output to go to the paper tape
punch when this device has been assigned. For example:

1§ OPEN 18
2¢ LPRINT "THIS GOES TO PTP."

causes the statement "THIS GOES TO PTP." to be punched onto paper-
tape. .

If the device is not released via a CLOSE command, it remains

assigned even after the program terminates.

-3.34-

3,12 ON GOTO
The ON...GOTO statement may be used to provide a many-
way branch. The general form of the ON...GOTO is:
ON expression GOTO line number, line number
If the value of the integer part of the expression is 1, a
GOTO is performed to the first statement. If the value of
the integer part of the expression is 2, a GOTO to the second
statement number is performed, etc. If the value is less than
one, or greater than the number of statement numbers, control will

"fall through" to the next line. Examples of ON...GOTO:

o0 NN N1 D TO 10020, 306
3¢ BFYM - 1F N1 <1 OR N1 >3 FXFCUTF 1415 LINE
&g ON (P12 = £k0) 0 1) 2¢€s,400, 12

FEARY

3.13 SLEEP
The SLEEP statement causes a BASIC program to pause for a
specified interval, then continue running. SLEEP is followed

by the number of seconds the program is to pause. For example:

222 SLEEP 3§ or 229 LET N=15
222 SLEEP 2*N

causes a 30 second delay in the program.

-3.35-

The SLEEP statement is a useful way for a program to wait
for a device (DECtape or line printer) which is busy. The ELSE
clause in the OPEN statement can go to a routine which pauses for
a while, then retries the OPEN. When the current user finishes
with the device and releases it, the program may then proceed to
OPEN and use it. This capability is especially useful when many
users may be looking up information on a single DECtape file. It
may also be used to allow two programs to communicate with each
other. Each writes information on a tape file for the other, or

others, to read.

SLEEP should always be used when waiting for a device. While
the program is sleeping it is not using any processor time. A
SLEEP time of 30 to 60 seconds is recommended. It is particularly
important that the program not wait by repetitively retrying the
OPEN. To do so wastes computer time and slows down other users.
The integer part of the argument is used to determine the number
of seconds to delay. This value must be between @ and 4095

3.1l Comments

An entire statement of comments may be
included in the BASIC program by means of the REM
statement. Often comments are easier to read if
they are placed on the same line with an executable statement
rather than in a separate REMARK statement. This can be accomplished
by ending an executable statement with an apostrophe. Everything
to the right of the épostrOphe up to the statement terminator
(carriage return or backslash as described in section 21) is
ignored (unless the apostrophe occurs within a print literal or
string constant.) For example:

1¢ LET X=Y 'THIS IS A COMMENT'
2 PRINT "BUT 'THIS IS NOT A COMMENT"
3 LET X$="A'B"

-3.36-

Thus, a comment is added to line 1@ with an apostrophe, but in
lines 20 and 30 the apostrophe is treated as a valid character.

3,15 Blank Lines

To make BASIC programs easier to read, blank lines can be
inserted anywhere in a BASIC program. These can be used to break
a program into logical sections, or (as is often done) to insert

remarks with the apostrophe feature. For example:

lﬂ '"PROGRAM WRITTEN BY SAM JONES
100w o,

Note that to insert a blank line, you must type one or more spaces
after the line number; typing the line number alone will just de-
lete that line from the program.

3¢l6 . More than One Statement on a Line

As many statements as will fit may be typed on a single pro-
gram line. Each statement must be separated by the backslash
character "N\" (SHIFT/L). The only statement requiring a line
number is the initial one. For example:

1§ FOR I=1 TO 1@\ PRINT I\ NEXT I

. Note that the backslash character acts as a statement terminator

and thus cannot be included in a comment statement.

-3.37-

3417 Internal Data Codes

Using the file I/O capabilities and the CHANGE statement
it is possible to examine data which was written on a DECtape
or disk file by a program other than BASIC. There are two data
formats, Numeric Data and String Data.

3e17.1 Numeric Data

Each numeric value in TSS/8 BASIC is three PDP-8 words long.

The format is as follows:

g 1 8 9 1
Word 1 I l
Sign Binery Exponent High
Order
Mentisssa
g 11
Word 2
Mentissa
] 11
Word 3

Low Order Mantissa

A one in the sign bit means that the number is negative. The
exponent is kept in "excess 2@0@" form where

200, is 27
.1

201, is 2
-1

1778 is 2

The assumed decimal point is preceding bit 9. Also, the number

-3.38-

is always normalized, meaning that bit 9 is always 1 unless the
number is zerc. (Zero is represented by three zero words.)

Note that this format is the same as the format used by
FORTRAN and described in Programming Languages. '

3.17¢2 String Data

Each string variable is three PDP-8 words long. Each word

contains two 6-bit bytes or characters. If a string variable is

. filled by a GET from a source which was not written by a BASIC
program, a BASIC program may examine the data in the variable by
performing a CHANGE on that variable. The six bytes will be
translated as if they were'internal character codes for BASIC
string characters. Appendix A shows how this translation
interprets the 64 possible bytes. Note that after such a CHANGE,
the ﬂth element of the array contains a count of the number of
characters occurring before the first null.

-3.39-

el SUMMARY OF BASIC STATEMENTS

Command

LET

READ

DATA

PRINT

GOTO

IF-THEN

IF-GOTO

FOR-TO

Exanmpls of Form
LET v=f

READ v1, v2,
. . VI

DATA ni, n2,
. . . 7 nn

PRINT al, a2,
-« .4 an

GOTO n

IF £f1 r £2
THEN n

IF £1 r f2
GOTO n

FOR v=f1 TO
£2 STEP £3

CHAPTER 4

SUMMARY

Explanation

Assign the value of the for-
mula £ to the variable v.

Variables v1 through vn are
assigned the value of the
corresponding numbers in the
DATA string.

Numbers nl through nn are to
be associated with correspond-
ing variables in a READ state-
ment.

Print out the values of the
specified arguments, which may
be variables, text, or format
control characters (, or ;).

Transfer control to line n;
continue execution from there.

If the relationship r between
the formulas f1 and f£2 is true,
then transfer control to line n;
if not, continue in regular se-
qguence.

Same as IF-THEN

Used to implement loops: The
variable v is set equal to the
formula f1. From this point the
loop cycle is completed following
which v is incremented after each
cycle by £3 until its value is
greater than or equal to f2. 1If
STEP f3 is omitted, £3 is assumed
to be +1.

Command

NEXT

DIM

GOSUB

i

RETURN

RANDOMIZE

RESTORE

DEF

Example of Form

NEXT v

DIM v (s)
DIM v(sl, s2)

GOSUB n
RETURN

RANDOMIZE
RANDOM

INPUT vl1; v2,
.« « ., VN

RESTORE

DEF FNB (x)=
f (%)

DEF FNB(x, y)=

f(x, y)

-4,2-

Explanation

Used to tell the computer to
return to the FOR statement
and execute the loop again un-
til v is greater than or equal
to f£2.

Enables the user to create a
table or array with the spe-
cified number of elements where

v is the variable name and s is
the maximum subscript value. Any
number of arrays can be dimen-
sioned in a single DIM statement.

Allows the user to enter a sub-
routine at several points in the
program. Control transfers to
line n.

Must be at the end of each sub-
routine to enable control to be
transferred to the statement fol-
lowing the last GOSUB.

Enables the user to obtain an
unreproducible random number se-
quence in a program using the
RND function.

Causes typeout of a ? to the user
waits for the user to supply the
values of the variables vl through
vn.

When typed as the first three
letters of a line allows typing
of remarks within the program.

Sets pointer back to the begin-
ning of the string of DATA
values.

The user may define his own
functions to be called within
his program by putting a DEF
statement at the beginning of

a program. The function name
begins with FN and must have
three letters. The function

is then equated to a formula
f(x) which must be only one line
long. Multiple variable function
definitions are allowed.

Command

RECORD

GET

PUT

OPEN

OPEN

CLOSE

UNSAVE

OPEN

LPRINT

ON-GOTO

Example of Form

RECORD A(5),B

GET n,m,d

PUT n,m,Jd

OPEN 8,

OPEN 3

CLOSE n

UNSAVE 9

OPEN 10

"name"

LPRINT "HI",X

ON n GOTO m,K, jess

-4.3-

Explanation

The format in which data is
written on a file. A combina-
tion DIM statement for arrays
and a "Target" for GET and PUT
statements.

Transfer data from the file
open as file "n" according to
the RECORD in line "m". Ac-
quire the "J"th record. (After
execution increment J by one.)

Transfer data to the file open
as file "n" according to the
RECORD at line "m". Write in
the "J"th location. (After
execution increment J by one.)

Open a file named "name" as
file #8. Data may be subse-
quently PUT or GET to that
file where 8 is used in place
of "n". Only the number 8 or
9 may be used.

Prepare DECtape unit 3 for data
transfer in either direction.
Data may be PUT or GET to or
from that tape where "n" =3.
Only the numbers 2 through 7
may be used (UWM convention) .

Close a file from use. 'n" may
take the value 0-11., The file
or device is freed for others.

Erase the file from the library.
Only 8 or 9 may be unsaved.

Prepare the Lineprinter (11) or
the Paper tape punch (10) for
output. When through with de-
vice it should be closed.

Ssame as PRINT, except output
goes to Printer or Paper tape
punch, whichever has been opened.

Branch on different integer values
of "n" to different line numbers
llm" "k"

s g0

Command Example of Form Explanation

CHAIN CHAIN "JOE" Stop execution of the present
program and begin execution of
program JOE. All data in the
present program that were not
saved in a file are lost,

STOP STOP Equivalent to transferring
control to the END statement.

END END Last statement in every prograo,
signals completion of the pro-
gram.

4.1.1 Functions
In addition to the usual arithmetic operations of addition
(+), subtraction (=), multiplication (*), division (/), and ex-

ponentiation (1); BASIC provides the following function capabil-

ities:

SIN (X) Sine of X

COS (X) Cosine of X

TAN (X) Tangent of X

ATN (X) Arctangent of X

EXP (X) eX (e=2.712818)

LOG (X) Log of X (natural logarithm)

ABS (X) Absolute value of X (1X])

SQR (X) Square root of X (-/X)

INT (X) Greatest integer in X

RND (X) Random number between 0 and 1 is a repeatable
Sequence, value of X ignored.

SGN (X) Assign value of +1 if X is positive, 0 if 0,
or -1 if negative.

TAB (X) Controls the position of the printing head on
the Teletype.

TIM(X) TIME + housekeeping function (TsSs/8)

NOTE: Trig functions use radians.

4.2 SUMMARY OF BASIC EDIT AND CONTROL COMMANDS
Several commands for editing BASIC programs and for con-
trolling their execution enable you to: delete lines, list your

program, save programs on disk, delete Oor replace old programs on

disk with new programs, call in programs from disk, etc. The

commands may be given at any time during the editing phase, and

are not preceded by a line number.

Command

BYE

CATALOG

COMPILE

DELETE

EDIT

LIST

LLIST

NEW

OLD

TSS/8 Abbreviation Action

BYE

CAT

COM name

DEL n

DEL n, m

EDI n
[c]

KEY

LIS

LIS n
LIS n, m

LLIST

LLIST n,m

NEW

OLD

Causes an exit to TSS/S8
Monitor, user has left BASIC.

Returns a list of programs
which are on file under your
account number.

BASIC compiles the program in
core and stores it on disk with
the given name.

Delete the line with line number
n, an alternate form is to type
the line number and the RETURN
key.

Delete the lines with line num-
bers n through m inclusive.

Allows the user to search line
n for the character c.

Return to KEY (normal) mode.
(See TAPE)

List the entire program in core.
List line n.
List lines n through m inclusive.

Same as LIST command except out-
put to the line printer, if one
is available.

BASIC will clear core and ask
for the new program name.

BASIC will clear core, ask for
the o0ld program name, and re-
trieve the program from disk
leaving it in core.

Command TSS/8 Abbreviation Action

REPLACE REP
REP name
RUN RUN
SAVE SAV
SAV name
SCRATCH SCR
TAPE | TAP
UNSAVE UNS name
UNS name,
CTRL/C CTRL/C
ALTMODE ALTMODE

Replace the o0ld file on disk
with the updated version of
the same name currently in
core. If a name is not in-
dicated under which BASIC is
to store the new version, the
0ld name is retained.

Compile and run the program
currently in core.

Save the contents of user core
as the file whose name is in-
dicated.

Erase the current program from
core.

Enter TAPE mode, characters
typed will not echo on the con-
sole paper.

Delete the named program(s)
from the disk.

Stops a running program, types
'C and returns to the editing
phase. BASIC replies READY.

Pressing the ALTMODE or ESCAPE
key erases all input on the
line.

L3 SUMMARY OF BASIC ERROR MESSAGES

4e3e1 The following error messages may be printed by BASIC during

the editing phase:
Message

WHAT?

BAD FILE NAME

CAN'T UNSAVE: name

Explanation

The editor cannot understand the
command just given.

An illegal character was put in
the file name

UNSAVE cannot delete the file with
the name given.

~-4.6~

Message Explanation

DUPLICATE FILE NAME BASIC cannot SAVE over an existing
file, use a different name, or use
the REPLACE command.

ILLEGAL LINE NUMBER Line number was outside range of
1 to 2046.

CAN'T FIND "name" The file name given following OLD

CAN'T FIND "name" PROGRAM NAME--cannot be opened.
FOR USER n Either it does not exist or it is

CAN'T FIND "name"” read protected against this user,
IN SYSTEM LIBRARY as indicated.

EXECUTE ONLY FILE Attempt to LIST or change a BASIC

compiled file.

BAD FILE FORMAT The program specified in response
to OLD PROGRAM NAME was not accept-
able to BASIC. This is generally
caused by trying to load a non-BASIC
(FORTRAN or PALD) program.

L.3.2 During input to the editor or when executing an INPUT com-

mand, the following messages may be printed in response to input:

Message Explanation

LINE TOO LONG The line just typed exceeded the
available core buffer, retype the
line.

$ DELETED In response to an ALTMODE character
the line has been deleted. Retype
the line.

(bell-bell) Two bells mean that the previous

character was illegal, it is auto-
matically deleted.

« Back arrow is printed any time a
RUBOUT or SHIFT/O is used, the pre-
vious character is deleted.

L.3,3 The following error messages may be typed out by BASIC fol-

lowing a RUN command :

-4.7-

Message

DEF STATEMENT MISSING

DIMENSION TOO LARGE IN
LINE n

FOR WITHOUT NEXT

GOSUB--RETURN ERROR IN
LINE n

ILLEGAL CHARACTER IN

LINE n

ILLEGAL CONSTANT IN
LINE n

ILLEGAL FOR NESTING IN
LINE n

ILLEGAL FORMAT IN LINE n

ILLEGAL SYNTAX IN LINE n

ILLEGAL INSTRUCTION IN
LINE n

ILLEGAL LINE NUMBER IN
LINE n

ILLEGAL VARIABLE IN LINE n

MISUSED TAB IN LINE n

NEXT WITHOUGH FOR IN
LINE n
NO END STATEMENT

OUT OF DATA IN LINE n

Explanation

A function was called which was
not defined in a DEF statement.

Self explanatory.

Unmatched FOR statement in program.
Either subroutines are nested too
deeply, or a RETURN was encountered
without a previous GOSUB

Self explanatory.

Format of a constant in line n is
not valid.

FOR-NEXT loops have been nested too
deeply, or NEXT statements were en-
countered before the FOR was executed.
Illegal syntax for BASIC statement.

Error in expression syntax.

Statement in line n was not a legal
BASIC command.

Line number n is outside the range
1 to 2046.

An array variable was used in line
n, where it was not permissible.

The TAB function may appear only
in PRINT statements.

Self explanatory.

Self explanatory.

Attempt to do a READ past the

~available data.

-4.8-

Message

PROGRAM TOO LARGE

STACK OVERFLOW IN LINE n

SUBSCRIPT ERROR IN LINE n
UNDEFINED LINE NUMBER,
LINE n

MISUSE OF CHRS$ IN LINE n

BAD VALUE IN CHANGE STATE-
MENT AT LINE n

PROGRAM IS "progname"

PROGRAM NOT FOUND AT LINE n

BAD SLEEP ARGUMENT IN
LINE n

ARRAY OR RECORD USED
BEFORE DEFINITION IN
LINE n

Explanation

Self explanatory. Try reducing
arrays or use fewer variables.

Expression too complicated. Try
typing it as two separate state-
ments.

Negative subscript was calculated
for an array.

Tried to'reference a line which
does not exist.

The CHR$ function was used in an
invalid manner. CHRS$, like TAB,
can appear only in PRINT statements.

While performing, CHANGE A TO AS,
one of the elements of the array
A was found to contain an illegal
value.

This message may immediately follow
an error message, to identify the
current program in a series of
CHAINed programs. If there is

no CHAINing, this message will

not occur.

The file which the user tried to
access with a CHAIN statement does
not exist in his disk area. The
PROGRAM IS message will also occur
naming the missing program.

The argument of the SLEEP command
must have a number greater than
or equal to g, and less than or
equal to 4095.

The RECORD statement must occur
before any reference to it is made.
A DIM statement must occur before
an array is used. (RECORD and DIM
are placed at the beginning of a
program.)

—409-

Message

IMPROPER DIM OR RECORD
STATEMENT IN LINE n

CAN'T CREATE FILE IN LINE n

CAN'T DELETE FILE IN LINE n

UNOPEN DISK UNIT IN LINE n

DEVICE BUSY IN LINE n

INVALID RECORD NUMBER IN
LINE n

INVALID DEVICE NO. IN
LINE n

GET BEYOND END OF FILE IN
LINE n

Explanation

Syntax error in DIM or RECORD state-
ment, or an array name that was pre-
viously dimensioned is reused.

An OPEN statement tried to create

a file, but there is: (a) no disk
space available, (b) no file name
specified, or (c) a null string has
been given as the file name.

UNSAVE cannot delete a file. This
is usually due to the fact that
another user has the file open,

or the file is protected with a
code > 24.

The user tried to do a GET, PUT,
or UNSAVE to device 8 or 9, with-
out a file being previously opened
on the device.

The user tried to OPEN DECtapes
#-7, line printer, or paper tape
punch, but the device was unavail-
able, and there was not ELSE clause
in the OPEN statement.

The record number must be a number
which is greater than or equal to
g and less than or equal to 4095.

For DECtape I/0 the maximum record
number is limited further by the
DECtape size.

The device number in the file I/0O
statement is not between @ and 11
inclusive, (or X and 11 inclusive
where X is a number set by the system
manager) .

Disk file is too small to have a

record with the number specified
in the GET statement at Line n.

-4.10-

Message

GET/PUT ERROR IN LINE n

CHAIN TO BAD FILE AT LINE n

Explanation

A hardware error occurred in GET
or PUT. (This is usually due to
a DECtape unit being write-locked.)

The file specified by the CHAIN
has an invalid format; it is not

a BASIC format file. The "PROGRAM
IS . . ." message will follow this
error message. The program name
will be the name of the bad file.

Le3.4 The following messages are typed out at execution and are

non-fatal (i.e., the program continues to execute) :

Message

IC IN n

LN IN n

MORE?

OV IN n

PW IN n

RB IN n

SQ IN n

Explanation

Illegal constant in INPUT, retype
the value.

An attempt to compute the logarithm
of a number less than or equal to
zero. The maximum negative number
will be used as the result.

Response to INPUT did not contain
the number of values requested.
Respond by supplying the additional
values.

overflow--value is too large for
BASIC to use, the largest possible
number will be used instead.

Attempt to raise a negative number
to a non-integer power. The abso-
lute value raised to the indicated
power will be used instead.

Error in use of TIM function.
Attempt to compute the square root
of a negative number. The square

root of the absolute value will be
used instead.

-4.11-

Message Explanation

TOO MUCH INPUT, EXCESS Response to INPUT contained more
IGNORED values than requested. This message
has no effect on the program.
UN IN n Underflow--value is too small for
: BASIC to use, zero will be used
instead.
/9 IN n Attempt to divide by zero. The

largest possible number will be
given as a result.

Le3.5 The following errors may occur during any BASIC operation:

Message ExXplanation

ABORT A non-recoverable disk error has
TBS occurred. BASIC halts.

DISK FULL There is no room left on the disk;

‘ delete some files and try again.
ILLEGAL OPERATION IN LINE n These are failures of BASIC. When
SYSTEM ERROR they occur they should be reported

via a SOFTWARE TROUBLE REPORT.

SYSTEM I-O0 ERROR TSS/8 disk I/0 failure, try again.

-4.12-

Various Numerical Equivalents of ASCII Constents

APPENDIX A

00 0 0 000 null Lo 32 63 277 *
01 1 32 24,0 space Jj1 33 64 300 @
02 2 33 a3 ! b2 34 65 301 A
03 3 3 22 " } 43 35 66 302 B
oL L 35 243 # by 36 67 303 C
o5 5 36 24 $ | L5 37 €8 304 D
06 6 371 245 % u6 38 69 305 E
o7 7 38 246 & 47 39 70 306 F
10 8 39 247 ! 50 Lo 71 307 G
11 9 Lo 25 51 41 72 310 H
12 10 1 251) g2 42 73 311 I
13 11 k2 252 * 53 43 74 312 J
12 43 253 ¢ sh L4y 75 313 K
15 13 Ly 254 55 45 76 314 L
16 14y 45 255 - 56 L6 77 315 M
17 15 46 256 . 57 47 78 316 N
20 16 47 257 / 60 48 79 317 O
21 17 48 260 @ 61 L9 80 320 P
22 18 49 261 1 62 50 81 321 Q
23 19 50 262 2 63 51 82 322 R
2, 20 51 263 3 6y 52 83 323 8
25 21 52 264 L4 65 53 8, 324 T
26 22 53 265 5 66 54 85 325 U
27 23 54 266 6 67 55 86 326 V
30 24 55 267 7 70 56 87 327 W
31 25 5 270 8 71 57 88 330 X
32 26 57 2711 9 72 58 89 331 X
33 271 58 2712 ¢ 73 59 90 332 Z
3, 28 59 273 7 60 91 333 |
35 29 60 274 < 75 61 92 334 \
36 30 61 275 = 76 62 93 335]
37 %i ﬁi sz :; 77 63 94 336 1
(¢} 7] 77] > g
023 otg Q - ~ g O:g aQ - i
o o "; 8 g‘ o) o § g S-
e 8 § & & S 8 § & &
2 0 P g g ¢
= = -A-1- o f—’-

PAGE

lel

Z.15
ZeD4
2204

TERM

& IN THE MARCID

ABS(¥X)
ALTMULE
ALTMODE

APPENDIX B

- N

-

1}

CLOSE

CLOUSING
CLOSING
COMMALIL

NN W W
.
5 =) WO

COMMAND B

Fa

FATIONS

“.12 ARITHMETIC UPE

2.37 BARRAYS 2,53 COMMAND “CATALJCS
5.19 ASCII CHARACTEERS 3.18 CWMMPRJ " CHANGE
4P A ASCII CONSTANTS .20 - TCHAIN
Ze15 ATNOXD 3.2 MANT T CLOSE
AP A 3ASIC INTERNAL S CQVVﬁ“D ‘COMTILE”
3,537 BLANKX LINES 2.2ze COMMAND “DATAS
2.54 BYE c.21 COuMaND “DEF”
ceH% CATALDC 2.6 COMMANLT “DELETES
3.20 CHAIN 2,25 COMMAND “DIM’
3.1 CHANGE 3.4 CUMMAND “EDITS
2.53 CHAR. "¢ £.51 COMMAND “EWDT
3.36 CEAR. 777 2.41 CUMMAML “FUR

Z.12 CHAR. "% 3.25 CUMMAND “C=T7
2,12 CHAR. “+° ©.45 COMMANLD “GOTO”
2.12 CHAR. "=~ ©.48 COMMAND ~GCSUBT

v. 1% CHAR. "/7 9,47 COMMAND “IF-THEN®
2o CHaR. "07 2.4 COMMarL "1y -GUTO”
2.16 CHAR. 17 Z.29 CUMMANT ~INPUTS
“.47 CHAR. "<7 543 CDMMAKﬁ "KEY”

2. 47 CHAR. "<= 2.16 COMMB TLET

s.47 CHAR., "< .14 COMMAND “LIWNPUT

2.47 CHAR, "=" 2.62 COUMMAND "LIST’

2.47 CHAR. ">7 3.35 CuMMAaND “LLISTS

£.47 CHAR. "»>=" 5.33 GCUMMAKND “LPRINT®

2.54 CHAR. “ALTMODE” 2,53 CUMMAND "uELC

.56 CHAR., "CTRL/C™ o,42 COMMAND "NEXT

3.5 CHAR. “CTRL/L” 2.63 COUMMAND “OLD7

345 CHAR. “CTRL/G” 3.35 COMMAND ~QOn-.lTLU
.54 CHAR. "ESCCAPE)’ 3.24 COMMAND “OPENT

2«10 CHaR. "L” 3.30 CIMMAKD “OPEN ELST

Zol10 CHEap. "07 .51 COMMANLD “PERINTS

.32 CHAR. “QUOTE™ 3.25 COMMAND “FUTS

2.5% CHAR. "RUBJUT” 2.18 COMMAND “RHANDUNMIZE

2.5% CHAR. "SHIFT/D" c.256 COMMAND “REALDS

3.37 CEHEAR. "\~ 3.22 CuMMAND "BECURDS

z. 12 CHAR. "T7 2.0 COMMANT ~“RIMARK
Z.56 CHAR. "TB5" 2.61 CUMMANLC “REFLACES
2.5 CHAR. “1C”7 2,27 CUMMAND TRESTORES
3.19 CHARACTER GENEERAT FUNC G.lg CUOMMAND TREZTO
3419 CHR: OO 3.1 CUWY&ND “RESTUT

1
o
!
=
1

.

PAGE

Cedy
ZeDF
2.00
2.55
335

S AN
-
—

G GO G
L]
=~ GO - (R

.

[P

(PRI PSS I AR 1
« »

— N W

=~ O O

L]

R L

[E 1IN » N Y SV
-

(AR N VRN \W I\
[5 VI ¥

*

&

T

CUMMAND
CUMMAND
COMMANLD
COMMAND
COMMAND

COMMAND
CiUMMAND
COMMAND
COMMENT
COMPILE

CONDITI
COs¢x»
DARTMOU
DATA
DATA

ERM

"RETURN”
“RUN"
“SAVE”
"SCRATCH”’
"SLEEP’

“STOP”
"TAPE~
"UNSAVE~

S

ONAL TRANSFER

TH

DATA CUDES
DATA FILES
DECIMAL NUMBERS

DECTAPE
CECTAPE

DECTAPE

FILES
RECORD

USE

FANTINS

DEF

DELETE
DELETING FILES
DEPTH OF LOOPS

DEPTH OF NESTING

DI

DIMENSIONING

U1SK DATA FILES
COLLAR SIGN VARIARLES

E FURMAT

EDIT

EDIT COMMANDS SUMMARY
EDITING PHASE

END

ERASING A LINE
ERASING A PROGRAM
ERRCR CORRECTION
ERROR MESSAGES
ESCCAPE)

ESC(AFE)
EXP(X)
FIGURE 2-1
FIGURE c-za&
FIGURE 2-2B

~Be2-

PAGE

2.3¢
2.36
2.34%
2.40
2.49

i
.
(41}
[t

G B0
. .

N U0 e

n o

.

GO oo
v .

e S e)

s B e

¢ s @

3
;

{7

FIGURE
FIGURE
FICURE
FIGURE
FIGURE

NG DR
t
& B

o
')
~ oo

FIGURE 2-g

FILE EXTZENSIONS
FILE FROTZCTION
FILES

e e e e s
FILES OF DaTte

¥

FLOWCHART

Fil (BASIC FUNCTIONS
FN ABS

FN ATN

FIN CHR:

Fi CGg
FN DEF
Fil EXP
FN FNX
FN FNX

INT

FN LOG

FN RND

FN SGN

FN SIN . -

FN

N
FN

SCR

TAB

FIN TAN

FN TIM

FNY (XD
FNX(X,Y,2)
FOR

FUNC SUMMARY
FUNCTIUNS
FUNDAMENTALS

GET

GU TO

GOSURB
HIEPARCHY
HOUSEKEEPING FUNCTION -
IF GC TG

IF THEN
IMPLEMENTATION
INITIAL CI1ALOG
INPUT

2.43
2.52

[\ I AR)
*e » &
ow O

N W

e o
WeE ULr

W WL N W
-
WP wo W

W W
.« o
W W
[=3 W]

3.24
3.30
2.13

TERM

INPUT/CQUTPUT
INPUTTING STRINGS
INTCXD

INTEGER FUNCTION
INTEGER SWITCH

INTEGERS
INTERNAL CODES
INTRODUCTI0N
KEY ,
KEY30ARD FORMAT

LAST LINE IN PROGRAM
LEAVING BASIC

LET

LIMITATIONS OF TSS/8

'LINE ERASURE

LINE PRINTER
"LINKING PROGRAMS
"LINPUT

LIST

LISTS

LLIST
LOGXO
LOGIN PROCEDURE
LOGIN PROCEDURE
LOOPS

LOOPS
LPRINT
MARGINAL "8
MATRICES
MESSAGE OUTPUT

.

NESTING LOOPS
NESTING SUBROUTINES
NEW

NEXT

NUMBERS

NUMERIC DATA CODES
OLD

ON GOTO

OPEN

OPEN

OPEN

OPEN ELSE

OPENING DISK FILES
OPENING DECTAPE FILES
ORDER OF OPERATION

FACE

2‘58

2.31

3.338

w o
- .
[R
w

- - .

(A FR TN S B8 A \ V)
I e G D e
W — =

.
[a]

.

W W N W
.

O O U U
o G

.

NN N G
* e o o«

G DD e - D
- Gy oo =3 U

.
—

W N LW
L]
N Do e N

. 9 *
— e) O O
O o

W WO N
0NN = e

e o @

n w
*
B o
O

-

OTHER USER’S FILES
QUTPUT COMMAND
PAPERTAPE UOUTFUT
PAPERTAPE FPROGRANS
PAPERTAPE USE

PARENTHESES
PRINT

PRINTER USE
PRINTING STRINGS
TROGRAM ~CUPY’

PROGRAM CHAINING
PRUOGRANM ZRASURE
PROGRAM FILES
PROTECTION "SWITCHES®
PROTECTION OF FILES

PUT

RANDOM NUMBER FUNCTION
RANDOMIZE

READ

READING DECTAPE FILES

READING DISK FILES
READING STRINGS
REAL NUMBEERS
RECJRD

RECORL

REMARK
REPLACE
RESTORL
RESTORE
RESTORE®

RESTORE*
RETURN
RND(X)
RUN

SAVE

SCRATCH
SGNCX)

SIGN FUNCTION
SINCXD

SLEEP

SPACES
SPACES
SQR(X)
STEP
STOP

PAGE

Ze 506
3+ 39
AP A
3013
e 32

3613
Jell
2.51
248
2437

o)
[]

.
(€20 W g

NN
.
a6 8]

.
Gl

Z2e.12
Sel
Ze
Ze 3¢
el

Ce2l
cadil
2645
e b
Je 28

3628
2.4
2.21
2e58
2. 10

3.10
3.31
3e24

TERM FPACE

STOPFPING A RIN

STRING DATA CUOLES

STRING DECIMAL CUNSTANTS
STRING INPUT

STRING QJUTFUT

STRING QUTPUT
STRINCGS

SUBROUTINE LUCATIUN
SUBROUTINES
SUBSCRIPTS

SUMMARY JF EBASIC

SUMMARY JF EDIT COMMANLS
SYSTEM FILES

TAB(X)

TABULATION

TAN (X))

TAPE

TELETYPE CONSULE
TEXT PRINTING
TIMOXD

CTIME FUNCTION

TU

TRAKNSFER OF CUNMTRJL
UNSAVE

UNSAVE

UNSAVING FILES

USE JF THE wANUSL

USER DEFINEZED FUNCTIINS
{JSER FILES

VARIABLES

WOFKING WITH STRINCS

WRITING DzZCTAPE FILES
WRITING DISW FILES

~B-4~-

	0001
	0002
	0003
	0004
	1_001
	1_002
	1_1-01
	1_1-02
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	1_4-08
	1_4-09
	1_4-10
	1_4-11
	1_4-12
	1_4-13
	1_4-14
	1_4-15
	1_4-16
	1_4-17
	1_4-18
	1_4-19
	1_4-20
	1_4-21
	2_001_LABLDP
	2_01
	2_02
	2_03
	3_001_FOCARL
	3_002
	3_003
	3_004
	3_01
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_19
	3_20
	3_21
	3_22
	3_23
	3_24
	3_25
	3_26
	3_27
	3_28
	3_29
	3_30
	3_31
	3_32
	4_001_BASIC
	4_002
	4_003
	4_004
	4_01
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	4_17
	4_18
	4_19
	4_20
	4_21
	4_22
	4_23
	4_24
	4_25
	4_26
	4_27
	4_28
	4_29
	4_30
	4_31
	4_32
	4_33
	4_34
	4_35
	4_36
	5_0001_TSS8_BASIC
	5_0002
	5_0003
	5_001
	5_002
	5_003
	5_004
	5_005
	5_006
	5_1-01
	5_2-01
	5_2-02
	5_2-03
	5_2-04
	5_2-05
	5_2-06
	5_2-07
	5_2-08
	5_2-09
	5_2-10
	5_2-11
	5_2-12
	5_2-13
	5_2-14
	5_2-15
	5_2-16
	5_2-17
	5_2-18
	5_2-19
	5_2-20
	5_2-21
	5_2-22
	5_2-23
	5_2-24
	5_2-25
	5_2-26
	5_2-27
	5_2-28
	5_2-29
	5_2-30
	5_2-31
	5_2-32
	5_2-33
	5_2-34
	5_2-35
	5_2-36
	5_2-37
	5_2-38
	5_2-39
	5_2-40
	5_2-41
	5_2-42
	5_2-43
	5_2-44
	5_2-45
	5_2-46
	5_2-47
	5_2-48
	5_2-49
	5_2-50
	5_2-51
	5_2-52
	5_2-53
	5_2-54
	5_2-55
	5_2-56
	5_2-57
	5_2-58
	5_2-59
	5_2-60
	5_2-61
	5_2-62
	5_2-63
	5_2-64
	5_3-01
	5_3-02
	5_3-03
	5_3-04
	5_3-05
	5_3-06
	5_3-07
	5_3-08
	5_3-09
	5_3-10
	5_3-11
	5_3-12
	5_3-13
	5_3-14
	5_3-15
	5_3-16
	5_3-17
	5_3-18
	5_3-19
	5_3-20
	5_3-21
	5_3-22
	5_3-23
	5_3-24
	5_3-25
	5_3-26
	5_3-27
	5_3-28
	5_3-29
	5_3-30
	5_3-31
	5_3-32
	5_3-33
	5_3-34
	5_3-35
	5_3-36
	5_3-37
	5_3-38
	5_3-39
	5_4-01
	5_4-02
	5_4-03
	5_4-04
	5_4-05
	5_4-06
	5_4-07
	5_4-08
	5_4-09
	5_4-10
	5_4-11
	5_4-12
	5_A-01
	5_B-01
	5_B-02
	5_B-03
	5_B-04

