
EXTENDED SYSTEM
,

PROGRAMMERS REFERENCE MANUAL

UNIVAC
FEDERAL SYSTEMS DIVISION

I

II

I

II

III

IV

V

CHAPTER 1
1005 SYSTEM

INTRODUCTION

PROCESSOR
A. Program Logic
B. Operational Register s
C. Transient Register s
D. Program Control
E. Core Memory

1. Memory Allocation
2. I/O Buffer s
3. Addressing

CHAPTER 2
SAAL ASSEMBLY SYSTEM

INTRODUCTION

GENERAL DESCRIPTION

INSTRUCTION FORMAT
A. Symbolic Coding Format

1. Label Field
2. Oper ation Field
3. Ope r and Field
4. Comments

PROGRAM ORGANIZATION
A. BEG Directive
B. CRD Directive
C. PR T Dir ecti ve
D. PCH Directive _._
E. BF 1 Directive
F. BF2 Directive
G. BF3 Directive
H. BF4 Directive
1. ORG Directive
J. Literals
K. Comments Card
L. STA Directive
M. END Directive

INSTRUCTION REPERTOIRE
A. Instruction Repertoire - Central Processor

Load Ascending

Page

1/1

1/2
1/2
1/2-3
1/3-4
1/4-5
1/5-11
1/9-10
1/11
1/11

2/1

2/1-2

2/2-5
2/2
2/3
2/3
2/4-5
2/5

2/6-14
2/6
2/6-7
2/7
2/7-8
2/8
2/9
2/9
2/10
2/10-11
2/11 ".

2/11 ... 12
2/12-13
2/13

2/13-96
2/14-62
2/15-16

-------.,.-.-------,--~--, ,'"'-,.-.--.- .. --- .~--- ------_ .. __ ._---

V INSTRUCTION- REPER TOIRE (continued)

Load Descending _____________ ~~--.,...._ 2/17-18
Load Print 2/19
Store Ascending 2/20-21
Store Descending 2/22-23
Store Print 2/24
ShUt Right 2/25-26
ShUt Left 2/27 -29
Clear 2/30
Compare Alpha/Numeric 2/31-32
Compare Numeric 2/33-34
IncreITlent Compare 2/35
Jump Unconditional 2/36
Jump Greater 2/36
Jump Less 2/36
Jump Equal 2/36
Jump Equal Alpha/Numeric 2/37
Jump Unequal Alpha/Numeric 2/37
Jump Positive 2/38
Jump Negative 2/38
Jump Zero 2/38
Jump Return 2/39
Jump Exit 2/40
Add to Memory 2/41-42
Add to Register 2/43-44
Subtract from Memory 2/45-46
Subtract from Register 2/47
Multiply 2/48
Divide 2/49
Translate 2/50-55
Store With Zero Suppress 2/56
Load With Sign 2/57 -58
Load Numerics 2/59-60
Store Edited 2/61
Punch Test 2/62

B. Instruction Repertoire - Card System External Functions 2/62-80
Read __________________________ ~----__ ~ __ --__ ~ 2/63
Print-Space l/Space 2 ______ , ___________ 2/64
Print - Skip 7 . __________ 2/65

Punch ___ ~--__ ----------------------------- 2/66
Read-Print-Space 1 2/67
Read-Print-Space 2 2/68
Read-Punch 2/69
Read-Print-Space I-Punch 2/70
Skip 2 2/71
Skip 4 2/71

Page

V INSTRUCTION REPER TOIRE (continued)

Skip 7 2/71
Read Code Image 2/72
Punch Code Image 2/73
Read Auxiliary Code Image Stacker Select 1 2/74
Read Auxiliary Stacker Select I 2/75
Read Auxiliary Stacker Select 2 2/75
Read Auxiliary Stacker Select 3 2/75
Punch with Stacker Select 2/76
Read/Read Punch 2/77
Read/Read Punch with Stacker Select __ ~ ___________ 2/78
Read/Read Punch Code Image _________________ 2/79
Halt 2/80

C. Instruction Repertoir e - Paper Tape External Functions
and Conditional Tests 2/81-86

1 . Paper Tape External Functions _ 2/81-84
Read Paper Tape 1 Frame 2/82
Read Paper Tape 80 Frames 2/82
Read Paper Tape Through Sentinel _______ 2/82
Punch Paper Tape Without Parity 1 Frame 2/83
Punch Paper Tape Without Parity to Sentinel 2/83
Punch Paper Tape With Parity 1 Frame 2/84
Punch Paper Tape With Parity to Sentinel 2/84

2. Paper Tape Conditional Tests 2/85-86
Jump Parity Error 2/86
Jump Channel 8 2/86

D. Instruction Repertoire - Magnetic Tape External
Functions and Conditional Tests_ 2/87 -96

1. Magnetic Tape External Functions 2/87 -92
Read Tape Servo I Normal Gain 2/88
Read Tape Servo 2 Normal Gain _____ 2/8R
Read Tape Servo I High Gain _ 2/88
Read Tape Servo 2 High Gain ____ 2/88
Write Tape Servo 1 ___________ 2/89
Write Tape Servo 2 _______ . ____ 2/89
Erase Before Write Servo 1 __________ 2/90
Erase Before Write Servo 2 ___ 2/90
Backspace Servo 1 _._______ 2/91
Backspace Servo 2 ___ _________ 2/91
Rewind Servo 1 __ _____ ___ _ ________ 2/92
Rewind Servo 2 _____ 2/92

2. Magnetic Tape Conditional Tests _____________ _ 2/93-96
Jump Parity Error ______ 2/94
Jump End of Tape __ ____ 2/94

Page

V INSTRUCTION REPERTOIRE (continued)

Example Parity Error Recovery on Read Tape
Function - .. - - - - - - - ... - - - ,.. ... - - - - - - 2/95

Example Parity Error Recovery on Write Tape
Function - - - - - ... - ... - ... - - -,. - 2/96

E. Instruction Repertoire - Advanced Programming - ... - ... 2/97 -1 05
Jump Alternate Switch 3 ... - - ... - - - - - .. - - - - - ... 2/97
Jump Arithmetic Overflow - - - - - - ... 2/98
Compare Character Alpha/Numeric _ ... - - - - - ... - - - ... 2/99
S to r e C ha r a cte r - - - - - - - - - - - - - ... - ... - - - - - 2/ 1 00
Logical And - - - - - - - - .. - - - ,.. - ... - ... - - - - - - - - - .. - 2/101-103
Logical Or - - - - - - - ... - - - - - -,. - - ... - 2/103- 104
Bi t Shift - - ... - - - - - ... - - - ... - ... - - ... - - - - - - - 2/ 1 05

F. Instruction Repertoire - External Function Combi-
nations .. - - - - - 2/106-110

G. Instruction Repertoire - 1005 Data Line Terminal-3
External Functions and Conditional Tests - .. - 2/111-119

1. DLT-3 External Functions - - -- - ... - ... - ... - - - 2/111
2. General - - - - - - - - - - - - - ... - - - 2/111-112
3. Transmitting - - - - ... - ... - ... - - - - - 2/112-114
4 . Re c e i ving - - ... - - - - ... - - - ... - ... - - - - - - - - - - 2 / 114
5. Error Conditions - - - - - - - - - - - ... _ ... _ ... - - - - - - - 2/114-115
6. Instruction Formats External Functions - - ... - - - - - 2/115-117

Send DLT 80 Characters - ... - ... - - - 2/116
Send DLT Through Sentinel _ ... - - - - - - - 2/116
Receive DLT To End of Message ... - - .. - - - - - 2/117

7. Instruction Formats Conditional Tests - - - - 2/118-119
Pause Test - - - - - - - - - - - - - - ... - - - - ... 2/118
Jump End of Time - - - ... - - - - - - 2/119
Jump Parity Error ... - ... - ... - - - - - ... - ... - - 2/119

CHAPTER 3

UN~VAC 1005 SOFTWARE

Page

I THE UNIVAC 1005 SINGLE ADDRESS ASSEMBLY SYSTEM __ 3/1-6

A. SAAL 1 (Illustration 1) Trial Ea.lanc~ Sam:rle Program
P2-4 _____________________ ~_ 3/1-3

B. SAAL 2 (Illustration 2) Trial Balance Sample Progrq.m
P2 -4 ______ ~~~_-------~---- 3/3 ... 5

C. Trial Balance Sample Report (Illustration 3) _-_____ 3/5-6

II THE UNIVAC 1005 SINGLE ADDRESS REPORT GENERATOR_ 3/6-8

A. SARGE 1 - Trial Balance Sample Program P2-4 _____ 3/7

B. SARGE 2 (Illustration 4) Trial B~lance Sample
Program P2-4 -----r__----_----___ 3/8

III THE UNIVAC 1005 UTILITY ROUTIN;ES ____________ ~-- 3/8-12

A. CONDENSE ______________________ --____________ 3/8-9

B. MEMORY DUMP (Illustration 5) ~ ___ ~~ _____________ 3/10

C. READ-PRINT -PUNCH ~ ______ ~-------~--~-------- 3/10

D. NUMBER IT ----_.- 3/10

E. DUPLICATE 3/11 ... 12

F. CLEAR 3/12

IV ILLUSTRATIONS

CHAPTER 4

UNIVAC 1005 SOFTWARE OPERATING PRQCEDURE:S

Page

I ALTERNATE SWITCHES OPERATING PROCEDURES 4/1

II SOFTWARE OPERATING PROCEDURES ..•....... · , . . 4/1-6

A. SAAL 1 -- First pass of the assembly program .•. · . . . 4/1-2

B. SAAL 2 -- Second pass of the assembly program. 4/2-3

C. Condense Program •. 4/3-4

D. Memory Dump ••..• . . , .. 4/4

E. Read -- Print -- J:')unch It .. • , • tit It ••• 4/4 .. 5

F. Number It . · . " , 4/5

G. Duplicate · . " . 4/5-6

H. Clear 4/6

CHAPTER 5

UNIVAC 1005 HARDWARE MACHINE TESTING and
OPERATING PROCEDURES

1. MANUAL ALTERNATE SWITCHES

A. lvlode of Operation

B. Automatic Form Overflow Mode.

C. Trace 110de

D. Single Instructions Mode

1. Reading PAK

II. TEST SWITCH PANEL

A. Program Step Counter Switches

III. DISPLAY MASKS ..

A. Display Mask 4

B. Display Mask 6

C. Display Mask 8

D. Display Mask 9

Page

5-1

5-l

5-1

5-2

5-2

5-3

5-4

5-4

5-6

5-6

5 -16

5 -19

5-21

CHAPTER 1

THE UNIVAC 1005 CARD PROCESSING SYSTEM

1. INTRODUCTION

The UNIVAC 1005 Card Processing system is a powerful, high per­
formance system, which combines into a low -cost consolidated card
processor features usually found only in more complex, higher priced
systems ~ This small-s cale data proces sing system 1.1aS been d.esigned
around a single address, internally programmed processor, the UNIVAC
1005 Card Processor, and includes, as secondary units, a hardware
integrated card reader, an optional, free-standing, high-speed card
reader, and a free-standing card punch.

The standard card reader, which is located to the immediate right
of the card proces s or, and which is an integral part of the hardware of the
card proces sor, operates by means of photo-electric cells at speeds up to
600 cards per minute. The input hopper has a 1,000 card capacity, while
the output stacker has a 1,500 card capacity. '

The optional card reader, like the card punch, is cable connected to
the central processor, and has an input hopper capacity of 1,000 ca.rds,
and an output stacker with a capacity of 1,000 cards. It features an in­
crease in card reading speed to a maximum of 800 cards per minute.

The card processor, the central unit in the system, contains, in a
single hardware unit, a high-speed printer, which prints a maximum of
132 print positions per line, and up to 600 lines of alphanumeric data per
minute, the core memory, and all logic and control circuitry for the entire
system. The standard configuration also includes the card reader.

The card punch is capable of punching up to 250 cards per minute,
and like the free -standing card reader is cable connected to the card
proces sor. This feature permits maximum flexibility in satisfying in­
dividual installation requirements as well as enabling maximum considera­
tion to be given to operational preferences.

By consolidating all these components into a single, well-designed
unit, the UNIVAC 1005 Card Proces sing System minimizes installation
operational problems and maximizes supervisory and operator efficiency.

Additional detailed information on the various components available
with the UNIVAC 1005 Card Processor is contained in the General Descrip­
tion Manual for the 1005 Card Processor.

The following section discusses the logic and control circuitries con­
tained in the processor itself, while subsequent chapters of this manual are
concerned with detailed software considerations.

1-1

II. PROCESSOR

The processor contains the systems control, arithmetic and logic
circuitry, as well as core memory, and is located to the rear and left of
the card :read,cr,

'rhe standard 6.5 microsecond core memory of 1024 characters
(32 x 32 rnatri~ 1?lane) is expandc;tble in increments of 1024 <;:haracters.

Complete solid ... state components, ribbon cabling and wire ... wrap
term~nalsassure high operational reliability.

Logic Characteristics.

A. Program Logic

UNIVAC 1005 logic is organized around a single address fixed word
logic.

B. Operational Registers.

PAK Register The PAK Register is the Program Addres s
Counter. This Z .. character register holds the
address of the instruction being executed. It
occupies two memory locations. During the
final execution phase of the instruction, the
contents of the PAl< Register are normally
incremented by five to give the address of
the next instruction. Certain instructions
will cause the address in the PAKRegister
to b.e replaced with a new addres s from the
instruction word, e.g" jump instructions.

1-2

UNIVAC 1005
MEMORY

WORD COUNTER

INSTRUCTION REGISTER I
MEMORY ADDRESS REGISTER (MAR)

X REGISTER (XR)

Figure 1 ... Diagram of System Logic

IR Register

MAR Register

C. Transient Registers.

Lengths and Uses

The IR Register is the Instruction Decoder
Register. It is used to contain the operation
code of the current instruction and is loaded
during the instruction acces s cycle. The
IR Register occupies one memory Location.

The MAR Register is the Memory Address
Register, This is us ed to contain the addres s
portion of the instruction. It defines the
memory locations to or from which data is to
be transferred. It occupies fou.r memory loca­
tions.

Two programmable transient registers are
available. The registers are de~ignated Register
AR 1, Register ARZ' Register AR 1 is 10 char­
acters in length; Register ARZ is 21 characters
in length.

Any register may be us ed for memory trans­
fers. Registers 1 and 2 are the arithmetic
registers. All adds, subtracts and compares
are executed from these two registers. Multiply
and divide operations use both arithmetic
registers and the auxiliary Z register. The
qUQtient or product is stored in registers 1

Lengths and Uses
(cont'd)

Indicator Unit

D. Program Control

and 2 (See Figure 2). Jump Return and Jump
Exit operations use the auxiliary X Register.

The Indicator Unit contains the program
testable indicators described below. When
the indicator tested is found to be reset, the
next instruction in sequence is accessed.
When the indicator tested is found to be set,
control is transferred to the add,res s speci­
fied by the instruction.

1. Comparison Indicator s. There are thr ee
numeric comparison indicators--greater
than, less than and equal to. There are
two alphanumeric comparison indicator s-­
equal and unequal.

L.. Sign Indicator s. There are thr ee sign indica­
tors--positive, negative, zero. The contents
of the arithmetic register s may be tested by
the program for positive, negative or zero.

3. I/O Indicators. These additional indicators
ar e explained in detail under their r e spe c­
tive Input/ Output Sections.

The activity of the Program Control Section is divided into a series
of logical machine sequences. All of these sequences are fixed in nature
and occur with every instruction being proces sed.

Basic Machine Sequences.

(P)

(I)

(A)

Program Cont!ol--Extract the program in­
struction address. from the Program Addres s
Counter (PAK). Store this value in the In­
struction Register (IR).

Instruction Acces s - -Extract the instruction
referenced by the previous P sequence. Test
the operation code and generate the function
signal necessary to execute instruction.

Addres s Access - -Extract the operand portion
of the instruction from memory and store in
the Memory Address Register (MAR).

1-4

(P+5)

(E)

E. Core Memory.

Program Control Plus Five--Update the pro­
gram address counter by five unless a jump
instruction has been detected. In that case,
this sequence will be updated by the address
in the MAR Register.

Execution--Execution phase; perform operation
specified.

The UNIVAC 1005 Card Processor employs magnetic core storage
modules with a capacity of 1024 characters each. The UNIVAC 1005 can be
expanded to meet increased processing requirements in increments of 1024
characters to a maximum of 4096. Internal representation of each character
in storage is by means of an internal binary code called XS3.

Data Representation. Excess three (XS3) is a method of notation that is us ed
by the UNIVAC 1005 System. It establishes some measure of compatibility
with the data formats of the other UNIVAC Computing Systems. The zone
position is specified by the two high order bits, the numeric portion by low
order four bits as in binary coded decimal notation. The difference exists
in the numeric portion where each binary specification is a value that is
three greater than its decimal equivalent. For example, the number 8 is
represented in XS3 as:

ZONE NUMERIC

00 1011

Note that the numeric portion, weighted with positional values of 8, 4, 2,
and 1 from ieft to right, is actually equal to 11. Similarly, the number 6
is represented as:

ZONE NUMERIC

00 1001

Here the numeric portion is specified as 9 or three greater than the
decimal digit it represents.

1-5

There are several reasons for utilizing this method of notation in certain
UNIVAC Systems. Some of these reasons are:

It allows three quantities to test les s than O.

It facilitates complementation.

It permits the carry to occur as in decimal notation.

An involved discussion of these and other reasons for the utilization
of XS3 notation is beyond the scope of this manual. It is sufficient that the
programmer is aware of the basic format and that this provides in the
UNIVAC 1005 Computer a factor of data compatibility with other UNIVAC
Systems. Figure 3 gives a listing of the XS3 code configurations.

1-6

MEMORY I I~ ____ M_E_M_O_R_Y __ __

MEMORY
(DATA)

MULTIPLY

DIVIDE

\,----------,/
REGISTERS

AR 1& AR2

TRANSFERS

REGISTERS

AR t& AR2

ARITHMETICS

MEMORY

. ~ .

REGISTER

AR 1& AR2

COMPARES

MEMORY

(ACCUMU LA TORS)

1 2 3 4 5 6 7 8 9 10 11 1213 14 1516 17 18 19 20 21

AR2L ... 1 ~.----- PRODUCT ~ I
1 2 3 4 5 6 7 8 9 10

AR1L ____ I~~ __ Q_U_O_T __ IE_N_T __ ~_
I 2 3 4 5 6 7 8 9 10 1 I 12 13 14 15 16 17 18 19 20 21

DECIMAL QUOTIENT
AR2 ~REMAINDER""~REMAINDER--+-

Figure 2. - Operation of Transient Registers

1-7

The alphabetic, numeric, and special charact~rs utilized in the UNIVAC
1005 System.

80-COLUMN CODE

SD-Col. Printable XS-3 80-Col. Printable XS-3 Card Characters Code Card Characters Code Code Code
12-1 A 01 0100 7 7 00 1010
12-2 B 01 0101 8 8 00 1011
12-3 C 01 0110 9 9 00 1100
12-4 0 01 0111 12 & 010000
12-5 E 01 1000 11 - (minu.) 00 0010
12-6 F 01 1001 12-0 ? 01 0011
12 ... 7 G 01 1010 11-0 I (exf:lom. 10 0011
12-8 H 01 1011 0-1 I 11 0100
12-9 I 01 1100 2-8 + 11 0011

11-1 J 10 0100 3-8 II 01 1101
11-2 K 10 0101 4-8 ~ 10 1110
11-3 L 10 0110 5-8 : (f:olon) 01 0001
11-4 M 10 0111 6-8 > 11 1110
11-5 N 10 1000 7-8 • (OpOI.) 10 0000
11-6 0 10 1001 12-3-8 • (p.riod) 01 0010
11-7 P 10 1010 12-4-8 If 11 1101
11-8 Q 10 1011 12-5-8 00 1111
11-9 R 10 1100 12-6-8 < 01 1110
0-2 S 11 0101 12-7-8 -= 01 1111
0-3 T 11 0110 11-3-8 $ 10 0010
0-4 U 11 0111 11-4-8 • 10 0001

0-5 V 11 1000 11-5-8] 00 0001
0-6 W 11 1001 11-6-8 ; (.emi-f:ol) 00 1110
0-7 X 11 1010 11-7-8 11 10 1111
0-8 Y 11 1011 0-2-8 ~ 11 0000
0-9 Z 11 1100 0-3-8 , (f:ommo) 11 0010

0 0 00 0011 0-4-8 % 11 0001
1 1 00 0100 0-5-8 (10 1101
2 2 00 0101 0-6-8 \ 00 1101
3 3 00 0110 0-7-8) 11 1111
4 4 00 0111
5 5 00 1000 Blank Spoce N.P. 00 0000
6 6 00 1001

Figure 3 80 -Column Codes and UNIVAC XS3
Codes for 63 Printable Characters

1-8

1. Memory Allocation.

As previously stated, core memory is expandable, to meet increased
processing loads, in increments of 1024 characters.

A portion of the 1024 character core memory is allocated to each of
the input/output functions of the system--such as reading, punching and
printing. The remaining portion of core memory is available for use by
working programs. Under certain progr~m conditions, part or all of the
input/ output memory areas may be used as expanded working core memory.
For example, if a punch operation is not required for a particular program,
the preassigned portion of core memory allocated to punching could be used
as working storage. The 1005 Card Processor Control logic is such that
"time-sharing" can be affected, allowing, simultaneous printing and punch­
ing, or punching and proces sing. '(Reference Figure 4).

1-9

1005 INPUT/OUTPUT -STORAGE AREAS
MODULE 1

COl.UMN

ROW 1 2 3 4 5 6 7 6 9 10 11 12 13 ',4 15 16 17 16 19 20 21 22123 24 25 26 27 28 29 30 31 32
J., •• '0 '."'0 n""'''.l''~'''.''

READ { ~2IiJ2~Jl~3'~3~5~~~3i7t3i8~39~40~41~42~4~'~4~'~4i5ti~~48~"~'~0~'~II'12t'13~'4~'5~56~5;7~5~8~~~';0;'~';.,21=~ t 63 64 6S 66 67 68 69 10 71 19 80 81 81 83 84 85 86 8 8 89 QQ_ ·Pf 92 93

TRANSLATE f 4 • 95 9. '8' 100 luI 10210310. 10, 10' 10, 108 10' 110 111 112 111114 1511, 117 118 n9 120 121 122 123 12'

TABLE \ 5 125 126 121 1'28 1~9 130 131 132 133 134 135 136 137 138 \39 lAO 1., 142 UJ 144 ,.5 146 141 148 149 150 lSI 152 IS3 154 155

PRINT

PUNCH

6 56 57 sa 159 16 161 16 163164 16S 6616 16816 17011 172 173 176 "5 176 177 "8 17918018 82183 184185 186

7 8'Ilse 189 190 191 U2 19) 19.195 196 197 198 199 200 ~Ol 202 203 204 205 206 207 208209 2"'0 "I 2122132'" 215 216217

IN '" I'·' ,9",

12 3A2 343 344 345 346 347)48 349 350 351 352 353 35~ 3SS :;S~ 357 358)sq Joa Jol 362 36~]64 365 3M)67 368 369 370 371 372

13 3n 3 4 jl, 3 6 377 3 3 380 381 382 381 384 385 386 387 388 38' 3~ ~91 39 393 J9~ 39~ :!~t 3~7 }';le 399 400 401 402 403

1 4 404 405 406 407 408 409 410 411 4 \ 2 4 \ 3 414 415 4\6 417 418 419 420 421 422 4 ~~ 41 ~ 415 "16 "17 428 419 430 4J I 432 413 434

15 A35 436 431 438 4j9 440 .s.s1 .s42 .s43 444 445 446 447 448 449 .ssO 451 452453 4sA "55 4;0 457 458 459460 .t61 462 463 464 465

16 466 467 468 469 470 471 .s72 473 .s14 "75476 477 478 479 480 .s81 4S,} 483 4B4 4B5 486 487 488 489 490 .s'll 492 49) 494 495496

17 497 498 499 50(\ 501 50<' 503 504 50~ 500 50 7 508 50Q 510 5\1 512 513 514 515 SI6 517 518 519 510 521 5n 523 524 525 526 527

18 528 529 530 531 532 ~3:: 5]4 ~]S 536 537 ~38 5j"/ S.lO 54' ~42 54) ~44 545 546 5017 548 5ol9 550 55' 552 553 554 5z5 556 557 558

19 559 560 561 562 563 56.s 565 S6t 567 568 569 570 57\ 512 573 57~ 575 576 S7? 57B 579 ~80 581 582 583 584 585 586 587 588 589

20 590 59} 592 593 594 595 596 597 598 &,99 600 001 002 603 604 605 606 007 608609 610 611 612 613 614 615 6'6617 618 619 620

21 621 622 623 624625626 627 628629630 631 on 633 63.4 6)5 63e 6)7 638 639 640 641642 643644 645 646 647 &48 649 650 651

22 652 "653 654 655 656 657 658 059 660 661 662 663 664 665666 667 668 669 670671 672 673 674 675 676 677 679679 680 681 682

23 683 6~4 685 68f. 687 688 6a9 690 691 692 693 f.94 695 696 697 698 699 700 701 702 703 704 iDS 706 707 708 709 710 7'1 712 713

24 714 71S 716 717 718 719 720 7]1 722 :'1) 72' 25 726 727 728 129 730 73\ 732 733 734 ns 736 731 738 139 740741 742743744

25 745 746 747 748 749 750 7S1 75'2 753 754 755 75e 757 758 759 760 761 762 763 764 765 766 767 768 769 710 771 772 773 774 775

26 776 777 778 779 780 781 78i 783 784 785 786 ~87 788 789 790 791 792 793 794 795 796 797 798 7H 800 801 &02 803 804 805 806

27 807 808 809 aiD all 812 81) 814 81~ 816817 818 819 820 e21 822 8'23 824 825826 827 828 829 830 831 832 833 834 835 836 83?

26 J38 83~ 840 841 842 843844 845 846 847 !!48 849 8S0 e;51 aS2 853 854 855 856 857 8~ 859 860 861 86'2 863 864865866 867 868

29 869 810 871 872 873 874 875876 a77 878 879 880 881 882 883 884 885 88f! 887 SSI!! 889 890 891 892 893 894 895896897 898 899

30 900 901 902 903 904 905 906 907 90S 909 910 91 I 912 9,:, 1114 9)S 916 9\7 918 :)19 920 9~1 922 923 924 925 926 927 928 929 930

31 931 932 933 934 935 936 937 q)8 939 940 ~41 942 943 944 945 946 947 948 949 950 951 952 953 9~4 955 956 957958 959 960 961

32 STATIC REGISTERS

Figure 4. - 1005 Input/Output-Storage Areas - Module 1

1-10

2. Input/Output Buffer Areas

The three preassigned Input/Output buffers in th.e first module of
the UNIVAC 1005 Card Processor are as [oHows.

Read Buffer Area. The read area is a!3signed th.~ iirst80 positions in
core memory. Hence, the numeric addresses of the :t;'ead area js rJ~(j 1 to
0C/J8C/J. When ever the programmer gives an instruct~on to read a card~
the card is read into this area. Column one of the input c~;rd is stored in
the first position of the read buffer (rJCJCJ 1), column two l;>~ing stoli~d in the
second position (C/JC/JrJ2) and so on.

Print Buffer Area. There are 132 positions of ~ore memory eOl"+es",
ponding to the 132 prip.t positions of the UNIVAC lOO~ printer, When the
programmer gives a print command, all 132 positions of the print buffer
area are printed, the buffer is cleared to space s, ancl. the printer form is
advanced. The core memory positions assigned to the print Quffer are
C/J 161 to C/J292. The first character of the print buffer area (rJ 161)G9r­
responds to print position one, the second character (rJ 1Q2) c9rrespc:>nds
to print position two, and so on.

Punch Buffer Area. There are 80 positions of core memory corre9'"
ponding to the 80 columns of a punched card. The numeric add:re~ses
assigned to the punch buffer a:rea are C/J293 to (j37?, When a punch command
is executed, the first characte:r of the punch buffer area i~ punched iJ;l card
column one, the second character is punched in card cO!\lrnn tWQ, and so on.

The punch buffer area is not cleared during the punch Gycl~ and. the
data remains the same in core memory,

Optional Buffer Areas. These additional o\lf£er areas are explained
in detail under their respective Input/Olltput Sections.

3. Memory Addressing.

Each character in the UNIVAC 1005 core rnemqry is ~ireQtly address ...
able by its numeric addres s. For example, the first character of th~ punch
buffer area can be referenced by its numerical address 0293, the se<'::onq by
~294 and so on.

1-11

/

CHAPTER 2

THE UNIVAC 1005 SINGLE ADDRESS ASSEMBLY SYSTEM

I. INTRODUCTION

To solve a problem, a computer must have a series of instructions
which determine how the computer is to operate. In addition, the com­
puter must be giVe.i.'... OUb ur more. sets of data upon which to operate. This
combination of instructions and data is called a program. A program
n1ust define, in complete detail, exactly what the computer is to do, under
every conceivable combination of circumstances, with the data which is
read into or processed by the computer. The number of instructions
required for the complete solution of a problem may be a few hundred or
many thousands, depending on the problem. The computer may refer to
these instructions one after another, or it may repeat, skip, or modify
over certain instructions, depending upon immediate results or circum­
stances.

These instructions are under stood by the computer in a form known
as Machine Language, a form which is difficult for the progranlmer to
encode. In order to facilitate coding, considerable time and effort has
been expended in developing programming systems that allow the pro­
grammer to write in a symbolic language more easily comprehensive to
him than machine language.

Associated with a programming system is a machine language pro,..
gram called an Assembler. The assembler ac.cepts a program written in
symbolic language (source program) and converts it into machine language
(object program).

II. GENERAL DESCRIPTION

The symbolic language used by the UNIVAC 1005 Card Processing
System is single address in design and is intended to provide an easy to
learn, easy to use tool whereby data processing requirements can be
translated into machine coded instructions.

The machine language program or assembly system associated wlth
the UNIVAC 1005 symbolic language is called SAAL (Single Address As­
sembly Language). This assembly system consists of two passes, SAAL 1
and SAAL 2.

The fir st pas s, SAAL 1 relates each symbolic reference (label) in
the symbolic program (source program) with its appropriate position in
core memory. This relationship between symbolic labels in the source
program and core memory position is retained in memory and utilized in
SAAL 2. This noted relationship is commonly referred to as the "TAG"
or "Labell' Table.

2-1

The second pass, SAAL 2, interpret~ ~ac;h operand field in the source
program, determines its length and core position. using the "LABEL" Table
generated by SAAL 1, and produces a UNIVAC ~oa5 machine cpde object
prograrn deck. In addition, a one for one listing is prepared equating each
symbolic line of coding in the source program with the generated machine
code .

.i.~.i.. INSTRUCTION FORMAT

The UNIVAC 1005 Machine Code instruction consists of five char­
acters. The format of the instruction characters on this basis is illustrated
below.

1 2 3 4 5

[OP M

OF Indicates the operation to be performed.

M Indicates most $ignificant location.

L Indicates least significant location.

A. SYMBOLIC CODING FORMAT

In writing a program in SAAL symbolic language, the programmer
is primarily concerned with three fields: Label field, Operation field,
and Operand field. In addit~on, it is pas sible to q;nnotate the symbolic
language at the time it is written through the use of corpments which will
provide clarity for the programmer and relate coding to its as sociated
flow chart.

2-2

1. Label Field. A label is a method of identifying either a symbolic line
of coding or a word of data. In writing a label ip the assembly language
SAAL, the programmer may use any meaningful combination of one to
three characters. Of these three characters, the first may be any alpha
charact'er, including special character s, except the dollar sign, asterisk,
plus, minus, or comma. The second and third position of the label field, if
pre sent, may be either alphabetic or numeric or special characters, includ­
ing the dollar sign but excluding the asterisk, plus, minus J and comma. In
writing a label in the label field of a symbolic line, the first character of the
label must appear in the leftmost position of the lel,bel field. The following are
example s of acceptabl~ labels.

I UNIVAC"1CCI!5ISAAL ASSEMBLER CODING FOR) UNIVAC ---.. -..

PROGRAM PROGRAMMER DATE _____

LmLJO'P" FOR BE;G CARD ONL y

SEQU N ~! ORERANDS I COMMENTS LINE INS
1 3 4 5 6 7 9 01 I 1311415 20 303132 40 I

T 1 + 5 I i I i /
A 91 1 + 5 I , I I I

~ ,
TAX + 6 I 1 1 1 1 I I I I I 1 1 I I I I

,
TOT + 1 0 I J--I-.,-L.,.J-l~ , I , J

I

,
) , I I

I

i I -J......I-,j-L.. i 1 1 1 1 I I 1 I I i I I I I

I 1 1 1 I 1 1 I I I I ,)
- -

2. Operation Field. In the operation field, the programmer places a
symbolic code indicating the machine function .that is to be performed.
These function codes are explained subsequently. An example of acceptable
operation codes is shown below.

-

UNIVAC - ~ I UNIVAC~ 1QCl15 ISAAL ASSEMBLER CODIN'G FORM

PROGRAM_. __________________ PROGRAMMER __________________ _

! UQU £ Nt: E "'CA'ii'r ~' "O'P"'"'
FOR BEG CARD OHL Y

'1
LINf

3 ~NS56,7 90'11 1314
1
'5

OPERANDS
20

lCOMMENTS
303132 .

I
i

, ,

DATE

I

40 f
i J
I /

I I
L D 2 .. ~.:S .. ~,-l-~,i.. __ \,,_L...".j..-'-.l...,l...,.;~..J..--l.~+-'---'-........ ...&._,.......,..I......L,._.1

~~~~~~~~~~-L-~!~~!~i~I~I~I~i_~!~I~1~I~I~L+~~~~~~.~ 

, I I 
I 

1 
, I 1 I I I I I I I J 

1 I I I 

1 , 
1 I I 1 I 

I 

I 1/ , I I 
I , J i I 

2-3 



3. Operand Field. The operand field of a symbolic program follows the 
operation field, and it is used to inform the assembler which location is to 
be addressed in conjunction with t.he operation to be perfol;'med. For ex­
ample, if the programmer.called for data to be added in the Arithmetic 
Register 1, the operand field would tell the proces s or wher e to go for the 
data to be added. Also, the operand field would tell the assembler how 
many positions of memory to accun;l\llate in Arithnletic Register 1. 

The following example clepicts the instructions required to add a 
five digit numeric field to Arithmetic Register one, and store the result 
back into core memory . 

( 
~~.!~~c:; 1 UNIVAC*1aOIi I SAAL ASSEMBLER CODIN'G FORM 

PROGRAM PROGRAMMER . OATE..--.--

~~-oP 
FQR 81::G CARD ON 1.-'1' 

SI:QL N :t: OPERANDS . I COMMeNTS LINE 'N$ 
I S 4 5 6, 7 9 011 13114h5 ~Q 303132 40 

A R 1 T',l , 5 I I I. I / 
S'A 1 A 0 1 , 5 I i " 1 I , 

I I 1 I 1 , J 
~ 

~ 

In addition the M position of the operand may be incremented or 
decremented in order to provide increased flexibility in addre.~sing. 

) 

In the following example the two least significant characters of a ten 
character field called FD I are to be loaded into ArithIl?-etic Register 1. In 
order to address these characters an increment of eightis added to the 
base address of th~ field thereby obtaining the desired result. 

L 

( 
U~I.VA-= [UNIVAC* 10015 ISAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

L'A'BEL'"~~ 
FOR BEG CA.RD Ot.lL Y J 

SEQUENCE OPERANDS I COMMENTS I 

1 
LINES ~NS5' 6 7 

9 ho 11. 13 114 5 20 303132 40 / 
LAl FO 1 + 8 , 12 I 

I I I I I I I I I I I I I I I I I I 

CAll :A R 2.+1 91. 2 I , 1 I 
,J .!;,'A :$+'10 

I 

J 1 I I . ;. I . 1 - I ~ 

If field FD 1 were decremented by eight, the seventh and eighth char ... 
acters immediately to the left of the most significant character of FD 1 

2-4 



would be loaded into Arithmetic Register one. When incrementing or 
decrementing an address, the programmer may use one, two or three 
characters. The programmer can increment or decrement from 1 to 999 
positions in memory; however, an operand may not be split between 
memory modules. 

NOTES: 1) In the above example the second instruction references 
Arithmetic Register two in the operand field. Arithmetic 
Register 1 and Arithmetic Register 2 are predefined 
labels (ARl and AR2) and can be referenced as operands 
in the same manner as labels. 

2) In the above illustration the third instruction references $ 
in the operand field. $ represents the current value of the 
location counter which may be modified (+ or -) in incre­
ments of five (5). Thus, in the illustration, if an equal 
condition is met, control will bypass the next sequential 
instruction. 

3) When modifying an instruction within the program with 
another instruction, both the instruction being modified 
and the modifier should be labeled. 

4) If the length is not specified, the assembler assumes an 
operand of 5 characters. 

4. Comments. Comments are coded starting in column 32 of the code 
sheet. The comments written here by the programmer are not looked at 
by the assembler. However, they do appear on the printout from SAAL 2; 
they are put into the code sheet for reference only. Any character may be 
used in the Comments section of the sheet. 

2-5 



IV. PROGRAM ORGANIZATION 

Certain required param~ter cards must be supplied to the assembler 
in order to properly position constants, headers, or any data the program­
mer wishes to store in memory. These parameter cards are called di­
rectives. They direct the assembly in the allocation of core memory for 
the various divisions of a symbolic program. They are described below. 

A. BEG DIRECTIVE 

The first card of every symbolic program written in the as sembly 
language SAAL must have BEG card or directive. This card initiates the 
assembly process. 

For example: 

UNIVAC ( U~IVAce ~oal5 \SAAL ASSEMBLER CODING FORM / ----.. .......,....,..~ .... 
PROGRAM PROGRAMMER DATE 

FOR. BEG CARD ONI. y 
I 

rnen-~"OP StQLENCt: OPERANDS I COMMENTS LINt: INS 
Ill~ 5 20 

, 
1 3 4 5 6 7 9 011 303132 40 

BEG I Jl I .I 
I 

./ J Ii I 

- - I ---t ,,-- - -, 

B. CRD DIREC TIVE 

CRD Card is us ed to call the as s embler I s attention to the Read Area 
in core memory. CRn is punched in the operation field of the card format. 
Labels are then used to define areas within the Read Area. The label for 
each field is placed in the label field on the card. In the operation field, 
punch a minus (-) in column 11. In column 15 punch the position in the 
read area the program wishes to designate. 

2-6 



For example: 

I 

UNIVAC [ U~IIVAq~ 10DB I SAAL ASSEMBLER COPING FORM ..... ___ 111111". ___ "'...-

i \ 

PROGRAM 
i i i PROG~AMMt::R qATE"-7 i 

rr--,..-..-FpR BEG CUI;) ONI..Y 

SEQUENCE r-u:B'E'l -or . OPERANDS I COMMENTS / 
LINE INS f 1 3 4 51 6. 7 91011 1314·115 20 90313Z 4Q 

BEG I 
I I 

.l.- i i --I +--L-

CRD 
i I I I I i I I I I '"-L~ ...l.,.-\--,I...,..J.. i I I I I I I I 

FSN - 1 I .L..-'---+-~ II I I I I I I I I I I I I 

NOM - 1 6 ) 
-L- I I I I I I I -L-.i--4- I I I I I I I I I I I , I 

CAT - 3 8 I I 1 I J 
AMT - 5 6 I 

I / I I I 

QTY - 7 1 
I ,) I I I -

C. PR T DIRECTIVE 

This card is used to direct the as sembler' s attention to the print 
area in core memory. Like th.e Read Area, the Print Area may b~ lab~led. 
The format for doing this is th~ ~ame as £pr the Rea~ Area. 

For example: 

UNIVAC I UNIVAC~ 10D8 ISAA~ ASSEMBLER COpING FORM .. ., .. ,----" .... _._ ...... ,.-
i 

PROGRAM FRGGRAMMliR i,1 OATE:...........,... 

" LA'B'E"'L ~ ~ 
110R E'lI=1:Gi CARl;! ONL'I' 

SEQUENCE 
OPe:~AND$ I c;:.;qMMENTS LINE INS 

1 3 4 51 6" 7 91011 131415 / 20 309132 40 

PRT I I I I 
PTl ., 1 1 I 1 I I 
p T 2 4 9 

I J - I I I I 

l i 
PT3 ~ 8 7 I l~ I I 

l P"T",4 - 1 P 9 
i I i 1 I I 1 I ------ - -J 

D. PCH DIRECTIVE 

As in the Read and Print Areas, subdivision of the Punch Area is pos ... 
sible. The format is the same as descri'b~d for the CRD directiv~. 

2-7 



For example: 

I 
UNIVAC I UNIVAC® 10015 I SAAL ASSEMBLER COOING-=! ------
PROGRAM .PROGRAMMER. DATE 

FOR BEG CARD ONLY 

SEQUENCE ~"~r:J J OPERANDS 'COMMENTS ! 
LINE INS / 134567 C""':' ::,-,_ 20 ':;:3; 3~ 40 

PCH 
, 

! ! ! , ! ! ! , ! I ! ! ! ! 1 I I I ! , , , , I 1 , ! 

PUl - 1 1 1 I ! 

PU2 - 1 6 
~ ! : ! 

PU3 - 3 8 
I 

! ! , ! , 1 I ! , ! I , , , , 'I ! I I ! I I , 
PU4 - 5 6 

1 ! I I 

PU 5 - 7 1 
1 

1 I ......!-J.. ! ! I 
I ) ! I I 1 

-

E. BFl DIRECTIVE (Buffer 1) 

BFl card is used to call the assembler's attention to the 1st core 
position of Bank 1. In this regard, it is 'similar to the CRD directive. Its 
primary use is to define areas for peripheral devices, i.e. paper tape. BFI 
is punched in the operation field of the card format. Labels are then used 
to define areas. The label for each field is placed in the label field on the 
card. In the operation field, p1lnch a minus (-) in Column 11. In Column 15, 
punch the position in the buffer area the program wishes to designate. 

For example: 

UNIVAC I UNIVAC® 100B I SAAL ASSEMBLER CODING FORM ( O ......... ON ItI' ••• ,,,.,, ..... ND CO'''''O.'''''ON 

PROGRAM PROGRAMMER DATE 

rrrm!~ 
FOR BEG CARD ONLY 

SEQUENCE OPERANDS COMMENTS liNE INS 
1 34 5 67 91011 1314 15 20, 303132 40 

SEG I 
.-

I I I ) 
's F 1 I I : I / 

E M.P I 
I 

1111/ --t~ - ,1 I I 

NAill - 6 I , : I 
, 

WAG 2 7 
I 

1 t - I I 

H R S - 3 6 I I : I I I \ 
.... --- ..... -- - - -

EMP would be assigned the location starting at 0001, NAM at 0006 and 
so forth. 

2-8 



F. BF2 DIRECTIVE (Buffer 2) 

BF2 card is used to call the assembler's attention to the 1st core posi­
tion of Bank 2. Its primary use is to define areas for peripheral devices, 
i.e. magnetic tape. As in BF 1, buffer 2 may be labeled. The format for do­
ing this is the same as described for BFl. 

For example: 

~o~.!.y.~.~ I UNIVAC~ 100111 f SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD ONL y 

rnEL!~ SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 3 4 5 67 91011 1314 15 20· 303132 40 

B F 2 I I ~ I } 
F,S N - 1 I I : I / 
NOM 1 6, I 

, 
1111/ - I II II -1. 

CIA, T - 3 4 I 
I I 

I ( 
VAL - 5,2, I I : I 

" 

I I 
, 

Q T Y - 6 7 I I II I I I ) - ,,1--.. ..L -../ - - - - - -
FSN would be assigned the location starting at 0962, NOM at 0977 and 

so forth. 

G. BF3 DIRECTIVE (Buffer 3) 

BF3 card is used to call the assembler I s attention to the 1st core 
position of Bank 3. Its primary use is to define areas for peripheral de­
vices. As in BF1, buffer 3 may be labeled. The format for doing this is the 
same as described for BF1. 

For example: 

UNIVAC I UNIVAC~ 100151 SAAL ASSEMBLER CODING FORM f GOV'.'ON 0<1' ••••• " ....... 0 c ......... " ...... 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD UNL Y 

'LA'BE'L!C5P SEQUENCE OPERANDS COMMENTS 
LIN E INS 

1 34 5 67 91011 1314 15 20 303132 40 

I } B F 3 I I I I 

F.D I - 1 I I : I / 
FeD 2 - 6.7. I I I 

I ./ 
F D 3 - 1. 5.0 I I ! I { 
F 0 4 - 4 5, 5 I I I I 

It -.L I ( - - J 
.- - -~ - -

FDI would be assigned the location starting at 1923, FD2 at 1989 and 
so forth. 

2-9 



H. BF4 DIRECTIVE (Buffer 4) 

BF4 is used to call the assembler I s attention to the 1 st core position 
of Bank 4. Its primary use is to define areas for peripheral devices. As in 
BF 1 J buffer 4 may be labeled. The format for doing this is the same as 
described for BF 1. 

For example: 

UNIVAC I UNIVACGI> 100151 SAAL ASSEMBLER CODINGfORM ( 0.101 ••• 0 .... 0 ....... " •• fIIID .; ...... "" •• '" 

PROGRAM PROGRAMMER GATE 
FOR BEG CARD ONL Y 

U'B"E'C~OP" SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 3 4 5 6 7 9 10 11 13 1415 20· 303132 40 

B F 4 I I : 1 ) 
T A X .... 1 I I : I / 
T.D.TI - 2 6 I I : ~ _I 1 1 I I / 

.1... 
Q T Y - 5 8 I I ! I 

A L - 1 2 7 I I : I 

0. - 162 I I : I I L I 

- --- ..L 
-~ - - - - -, -

TAX would be assigned the location starting at 2884, TDT at 2909 and 
so forth. 

1. ORG DIRECTIVE 

The ORG Directive informs the assembler that the programmer wished 
to adjust the assembly address counter to the numeric value contained in the 
operand field. For example, if the programmer wishes to start storing at 
one particular place in memory, he specifies this by placing the numeric 
addre s s in the oper and field. This numeric addr e s s must be four character s • 

The following example would origin the next instruction, constant, or 
work area in position C/J373 of core memory . 

UNIVAC I UNIVACGI> ~ao51 SAAL ASSEMBLER CODING FORM ( ~''.f·'"1''''' n~ """,,, •• ,,".""I!'I r:o_ •••• ",o,", 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD ONL Y 

L'A'B'E'LJOP SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 1314 15 20· 303132 40 

O.R 01 
I J o 3, 7, 3 I I I I I I I I I I I I I I I I, 

0' I I • I / 
I I I : I ,I 

- - ... - ..L -~ - - - _ ... - -
The programmer may use an ORG statement anywhere in a program, 

provided he complies with the following rules. 

1. The oper and value mu st be a four digit decimal number. 

2-10 



2. If the ORG directive is emplQy~d within the proc~du.re divi$;i.on (after 
the STA directive) the new assemb~y address must b~ a multiple of th~~~Yl"o",e 
(31) plus one (1), beginning with 1, 32,63, and so on. 

3. The ORG directive must b@ employed before the 1 st literal instruction . 

.J. LITERALS 

The us e of literal instructions enables the as sembler to move the 
number of characters specified by the operation code f;rom thy op~:r~nd 
field to an equal number sequenhal core locations, beginning at the address 
specified by the preceding ORG directive. 

W"ith literal instructions, the programmer is able to store he~qel! j3 ~ 

constants, or set aside storag~ for wo;rl< areas. 

The literal instruction consists of a label in the label field of the 
symbolic deck, a plus sign (+) in column 11 of the operation fie14 followed 

. by the number of pos itions to be s ~t aside ~ The operand portion of the c;ard 
contains the constant or ~iteral to be stored. The malXlmum fOJ; ope hne 
is 34 positions, however this line mGl-Y not be split between. mem.ory modlfles. 
For example: 

...... 
PROGRAM PROGRAMMER 

I DATE~ 

~~r-op-
FOR BEG CA~D ONL Y 

SEQUENCE OPERANDS I COMMENTS I 
LINE INS 

1 3 4 51 6. 7 91011 13141!;) ZO 303132 40 

ORG o 3 7 3 I I I I 

H D 1 + 1 0 ENO o FI JOB I I J 

K 2 +~ 1 0 
I 

" -1...-' I I I I I I I I I I I~ I 

w.s +20 I I I I { 
_J 

-
In the first example, HDl, the con$tant "END OF JOBll is stored in lO 

positions of memory, which can be referred to by HD 1. 

In the second example, K2, the co:q.stant "10" is stored in 2 positivns 
I 

of memory. To refer to this constant, the label K2 need only be called. 

The third example, WS, a work area of 20 blank positions is set aside, 
that is labeled WS for programming reference. 

K. ~:( COMMENTS CARD 

An asterisk punched in the ope:r;ation field (Col. 11) indicp.te s a corp.:rnen.ts 
card, and is listed 80/80 on the assembly printout. This card is used by the 



programmer to facilitate reference to the as semQly pri;ntout, and lor to 
explain certain portions of his program. 

A Comments Card may be used anywhere within a program. The 
programmer is not limited by the number of the cards he may use. 

For examp"ie: 

UNIVAC 
~"'r.~. _____ "'" ( UNIVAC~ 1DCEi ISAAL ASSEMBLER COOING FORM 

PROGRAM_.--__ ..-.... ____ PROGRAMMER _________ _ 

FOR BEG CARD ONLY 

SEQUENCE r"L'AiEL I ~ 
LINE INS , . 

1 3 4 5 6,7 9ho 11 . 131415 

OPERANDS 

20 

I COMMENTS ------i 
303132 

J E MAS I I I 

* I I I --
* .--L~l.. 

* 
* 
* 

I 
I I I 

I 

In this example, the programmer has used five comments cards to 
break into the printout format. The assembler would only interpret the jump 
instruction, and the Comments Cards would be listed as they appear on the 
coding form. 

L. STA DIRECTIVE 

This directive terminates the DATA DIVISION and marks the beginning 
of the PROCEDURE DIVISION of the program. The assembler, upon decod"'! 
ing this card, advances the assembly address counter to the next row of 
core rnem.ory, and assigns the addresses to the instructions of the program 
from that point. The PROCEDURE DIVISION of every program must be 
indicated by this directive. 

Note: All labels used in the 1005 program, with the exception of instruction 
labels, must be defined before the STA card either in the I/O sections 
or as a literal. 

2-12 



For example: 

( UNIVACe 4IJ008 ISAAL ASSEMBLER COOING FORM ! UNIVAC ------
PROGRAM PROGRAMMER DATE , 

~~--o;-
FOR BEG (: ... RO ONLY 

SEQUENCE OPERANDS I COMMENTS 
LINE INS \ 1 345 6 7 9 011 1314~5 20 303132 40 

S T A I 
I 

: ~~--'-"-.L-+·"-+7 
~ I I I I I I I I I I I I I I I I ! -l __ ~_.J __ -\- J .. J.. ...J. _ 

-~ -- --
M .. END DIRECTIVE 

The END directive is the last card of the source deck. This card 
must always be present. The purpose of this card is to inforn1 the as­
sembler that all card instructions used in the program have been inserted 

and to terminate the assembly. The operand field must have the tag 
of the first instruction. 
For example: 

UNIVAC ! ( UNIVACe 4IJ00& I SAAL ASSEMBLER CODING FORM ------
PROGRAM PROGRAMMER DATE 

~'roP 
FOR BEG C ... RO ONL Y \ 

SEQUENCE OPERANDS I COMMENTS LINE INS \ 1 345 6 7 9 011 1314~5 20 303132 40 

---'--'--
END S T T I I I J _.J- I I I 

j I I I I I I I I I I I I~_~:;.-/ - I 

~ -- -

V. INSTRUCTION REPERTOIRE 

Each instruction in the UNIVAC 1005 consists of five character posi­
tions, and are sequentially numbered in increments of five, beginning with the 
first character of a row. The last character of a row is utilized by the 
U 1005 logic to designate at which row. the next sequential instruction is 
located. 

Ther e are four general clas ses of instructions varying slightly In 

format. 

2 -13 



Class I: Class I instructions contain an I'M" address and an "L" modifier. 
The "M" portion defines the most significan.t position of a field, 
where the "L" portion defines the length of the field, . All Arith­
metic and Transfer instructions are Clas s 1. 

Class II: Class II instructions contain only an "M" address indicating the 
most significant character of an instruction. This format is 
employed exclusively by Jump or Branching .i.J.J.structions. 

Clas sIll: Clas s III instructions are Input / Output or External Function 
Commands, and contain a mnemonic code in the "M" portion of 
an instruction indicating the I/O device or devices to be initiated. 

Class IV: Class IV instructions are Input/Output or External Function 
Comma.nds, and contain a mnemonic code, Buffer (BFn ), and 
length in the "M" portion of an instruction indicating the I/O de ... 
vice, memory bank, and length of operand to be initi~ted. 

A. INSTRUCTION REPER TOmE -- CENTRAL PROCESSOR 

The Central Processor instructions pertain to Class I and Class II 
and ar e explained in detail on the following page s, 



LOAD ASCENDING: LAr M,L 

Function: 

Notes: a.) 
b.) 

c. ) 

d. ) 

Example: 

-,r-

Load ascending L most significant characters frorn the field 
specified by M, into the L least significant character positions 
of ARI or 2. 

L must be decimal number. 
L most significant characters of the field specified by M, are 
transferred in ascending order to the L least significant positions 
of the specified register. 
When L is less than the capacity of the register the remaining 
positions of the register will be space filled. 
When L is greater than the capacity of the register truncation 
will occur and the mo'st significant character s of the field will 
be deleted. 

Load Arithmetic Register 1 with a nine character constant. 

UNIVAC [ UN IV Ace 1aa 15 I SAAL ASSEMBLER CODING FORM ! ------
PROGRAM PROGRAMMER DATE 

FOR BEG CARl) ONLY 
I 

rrmL~~ SEQUENCE OPERANDS I COMMENTS LINE INS \ 1 345 6 7 9 011 1314"5 20 303132 40 

LA! K. 3 , 9 I 1 I 1 j 
1 I I I / 

- , --' --
~:~AR 1 

K3 
ARI 

(befor e) = 7 9 2 4 6 5 1 3 6 4 
= SUB6TOTAL 

(after) = 6 SUB 6 TOT A L 

2-15 



Load Register 1 with a five character constant. 

~ -. ----"'" '1 -PROGRAM PROGRAMMER DATE 

r"LmL~roP 
F'OR BEG CAlW ONL Y 

SEQUENCE 
OPERANDS 'I COMMENTS LINE INS , 

I 3 4 5 6 7 9 011 1."l114 hs 20 303132 40 

LAl K 3 + 4 , 51 I 1 I j 
J J J ./ 

- - _10- I --' 
~ --

~:~AR 1 (befor e) :;:: 7 9 2 4 6 5 1 3 6 4 
K3 :;:: S U B 6 T a T A L 
ARI (after) :;:: 6 !1 6. 6 tl T a T A L 

Load Register 1 with a three character constant. 

~- - -
~ PROGRAM PROGRAMMER DATE 

r"LmL ~ r"'"Q'P 
FOR BEG CUD ONLY J 

SEQUENCE 
OPERANDS ICOMMENl'S LINE INS \ 1 3 4 5 6 7 9 011 1::3 14 5 20 303132 40 

LAl K 3 , 3 I 
1 

I ,/ J 

I J I ./ -. _10- I .-J 
~ 

~:~AR 1 (before) = 7 9 2 4 6 5 1 3 6 4 
K3 = S U B 6 T 0 T A L 
ARI (after) :;:: 6. 6 6 6 6 6. 6 S U B 

':~The functions indicated are identical for AR,.2 with the exception that 
larger fields can be manipulated. 

2-16 



LOAD DESCENDING: LDr M,L 

Function: Load Descending L consecutive characters whose most significant 
character is at M, into the L most significant positions of AR 1 or 
2. 

Notes: a.) 
b.) 

L must be a decimal number. 
L characters of the field specified by M are transferred to the 
register. 

c. ) 

d.) 

When L is less than the capacity of the register the remaining 
positions of the register will be space filled. 
When L is greater than the capacity of the register truncation will 
occur and the least significant characters of the field will be 
deleted. 

ExalTIple: Load Arithmetic Register 1 with a nine character constant called 
K3. 

-",.-

u~v~~ ( UNIVACe 10015 ISAAL ASSE,.,BLER CODING FORM j 
F>ROGRAM F>ROGRAMMER 

rmer''OP 
FOR BEG CARD ONLY 

SEQU NCE OF>ERANDS I COMMENTS LINE INS , 3 4 5 6 7 9 ho 11 13,01 5 20 303132 

~:~AR 1 
K3 
ARl 

-

L 01 K3 , 9 I I I 

I I 
l- I 

(before) = 7 9 2 4 6 5 1 3 6 4 
= SUB[}TOTAL 

(aft e r ) = SUB [} TOT A L [} 

2-17 

OATE 

40 \ 
I ,J 
I ./ 

.--r 



Load Arithmetic Register 1 with a five character constant called K3. 

UNIVAC ......... -...... - ......... ~ I UNIVAC· ~aal5 ISAAL ASSEMBLER CODING FORM ! 
PROGRAM PROGRAMMER DATE 

r'lAiELJ~ 
FOR BEG CARO ONL y I 

S~QlJENC_E 
OPERANDS 'COMMENTS LINE INS 

1 3 4 5 6 7 9 011 131104 5 20 303132 40 \ 

I 
LDl K 3 + 4 , 5, , ' I 

, j 1 1 ./ - - I --' , -- - -, 
~:~ AR 1 (b e for e ) = 7 9 2 4 6 5 1 3 6 4 

K3 = SUB £1 TOT A L 
AR 1 = T' 0 TAL 6 6 6 6 £1 

Load Arithmetic Register 1 with a three character constant called K3. 

U~IVA'2 I UNIVAC· ~aol5 ISAAL ASSEMBLER COOING FORM ! 
PROGRAM PROGRAMMER DATE 

"LAiE'LJ"O'P 
FOR BEG CARD ONLY 

S,EQUENt;E OPERANDS 'COMMENTS LINE INS \ 1 3 4 5 6 7 9 011 1314 5 20 303132 40 

LDl K 3 I 3 1 I I I j 
I I I I ./ 

- ~ I -' 
~ - --

~:~ARI (b~fore) = 7 9 2 4 6 5 1 3 6 4 
K3 = S U B 6 T 0 T AL 
AR2 = S U B £1 6 £1 6 £1 £1 £1 

~:~The functions indicated are identical for AR2 with the exception that larger 
fields can be manipulated. 

2-18 



LOAD PRINT: LPR M,L 

Function: Load descending L consecutive characters whose most significant 
character is a M, il1to the L most significant positions of the print 
buffer. 

Note: a.) L must be a decimal number, and shpuld rangefrolTl ~ to 132. 
b.} L characters of the field specified by M are transferred to the 

rna st s igniL~callt po s itions of the print buffer. 
c.} When L is less than the capacity of the print buffer the remaining 

positions of the buffer are space filled. 
d.} When L is greater than the capacity of the print buffer the least 

significant character s of the sending field will be tr1.,lncated. 

Example: Load the Prip.t Buffer with the first header l;i.ne labeled HDI. 

UNIVAC ! ( UNIVACe 10015 ISAAL ASSEMBLER COOING FORM ------
PROGHAM PROGIiAMMf;:R DATE 

r-rAiEL~r--or 
FOR BEG CARD ONl'l' 

SEQUENCE OPERANDS ICOM~ENT~ LINE INS 
I 345 6 7 9 ho 11 13104 5 20 303132 40 \ 

L PR H D 1 I 1 210 I I I J 
I I I I / 

- I ::-r 
~ -- --

2-19 



STORE ASCENDING: SAr M,L 

Function: 

Notes: a.} 
b.} 

c. ) 

Example: 

-~ 

-10""'-

Store ascending L least significant characters from ARl or2, 
into the Lmost significant positions of the field specified by M. 

L must bea decimal number. 
L characters are transferred in ascending order (least to most) 
from ARI or 2 to the most significant positions of the field speci­
fied by M. 
When L is greater than the capacity of the register the receiving 
field will be space filled. 

. Store the nine least significant character s of AR 1 into the 
field labeled RMK. 

UNIVAC I UNIVACe 10015 ISAAL ASSEMBLER CODING FORM l -....-........ -~ .... 

PROGRAM ~ROG~AMMER 

SEQu NC:I!~ ~ ~ ~ 
FO" SEG e~IIICl ONL. Y 

1 
liN! lin OPERANCS I COMMENTS 

3 4 5 6 7 91011 1'314h5 20 30113,t 

SAl RMK,9 I I I 

L-.. -
RMK (before) = 

*ARI ;; 
RMK (after) ;; 

I I I 
I 

666 $ 1 0 1 5 
6SUB6TOTAL 
StTB6TOTAL 

DATE 

«> 

I j 

I / 
---r 

Store the six least significant character s of AR 1 into the 

\ 

six least significant character po sitions of the field labeled 
RMK. 

UNIVAC ( 1J~I~Ace1aal5 \SAAL ASSEMBLER CODING FORM ! ~W'-...... .... ~,.. 

PROGRAM PROGRAMMER 

rtAiEl'~ 
FOR BEG (:ARO ONLY 

SEQU NeE 
OPERANDS LINE INS 

1 :3 4 5 6 7 9 011 13,14 I) I!O 

--
SA 1 

L-.. --
RMK (before) 

~:~ARl 

RMK (after) 

RMK+3,1(! 

I 

:.:; (), (), 

:;:: (), S 
:;;: (), 6 

(), $ 
U B 
(), 6. 

2-20 

DATE 
1 

I COMMENTS 
\ 303132 «> 

I I I ,J 
I 1 I :7 , .-J 

1 0 1 5 
6 T 0 T A L 
T 0 T A L 



-,. 

· Store the five least significant characters of AR 1 into the 
five most significant character positions of the field labeled 
RMK. 

u~v~~ ( UNIVACe 1Q015 ISAAL ASSEMBLER CODING FORM 

PROGRAM-.-, PROGRAMMER DATE_ 

LrnT'--or 
FOR eEG CARO ONLY 

SEQU N :E OPERANDS I COMMENTS LINE IN~ 

1 345 6 7 9 011 13114i~5 20 303132 40 

SAl R M,K .5 i I I L 

! 
\ 

j 
I I I I ./ -

RMK 
~:~AR 1 

RJ\1K 

--
(before) :;: 

:;: 

(after) :;: 

I --' 

666.666115 
6 SUB 6 TOT A L 
TOT A L 6 1 5 

~:~The functions indicated are identical for AR2 with the exception that larger 
fields can be manipulated. 

2-21 



STORE DESCENDING: SDr M,L 

Function: 

Notes: a.} 

b.} 

c.} 

Example: 

-,..-

-

Store descending Lrnost significant characters from AR 1 or 2 
into the L most significant positions of the fi'eld specified by M. 

L must be a decimal number. 

L characters are transferred from ARI or 2 to the most sig­
nificant positions of the field specified by M. 
When L is greater than the capacity of the register the re­
ceiving field will be space filled. 

. Store the nine most significant characters of AR 1 into the field 
labeled RMK. 

UNIVAC I UNIVACe 10015 I SAAL ASSEMBLER CODING FORM ! ------
PROGRAM ___ PROGRAMMER DA TE --'---1 

~'r""'()p 
FOR I3EG CARD ONLY 

SEQUENCE OPERANDS I COMMENTS LINE INS \ 1 3 4 5 6 7 9 011 13 loll 5 20 303132 40 

S D1 RM1K,' 19, i 
, 

'~~ I 1 , I I , I I , I I I I I I I I I 

\ I I - r 

----"":' RMK {before) ;;; 6 6 6 $ 1 0 1 5 
~:'ARI ;;; SUB 6 TOT A L (':, 
RMK {after} ;:; SUB 6. TOT A L 

. Store the four most significant characters of AR 1 into the 
four most significant positions of the field labeled RMK. 

UNIVAC @NIVACe 1001!!S ISAAl ASSE,.,SlER COOING FORM ! .-.---. ..-.. ................ ,-

PROGRAM PROGRAMMER DATE 

~'r-oP 
FOR BEG CARD ONL Y 

, 
SEQUENCE 

OPERANDS I COMMENTS LINE INS \ I 3 4 5 6 7 9 011 1314 5 20 303132 40 

SDl R.M.K , 4 i 1 I 1 -J-_~ 
\ \ I \ 

I --' 
~ -- --

RMK (before) ;:; 6 6 6. $ 1 0 1 5 
ARI ==SUB6TOTAL6 
RMK (after) == SUB6 10 15 

2-22 



-",,--

· Store the five l'l1pst sign~fic~nt chaTacters qf ARI iptq the 
five least s:ig:pifi~ant Pe)stti,.ons pf the field lab~led RMK. 

UNIVAC I 4NIVAt:;e 1COS \SAAL ASSE~BLER COOING fORM ------
I i i 

PROGRAM PRqGRAMMEF;1 
I D~TE 

rmeL'~ 
FOR I3EG CARD ONL y 

SEQUENCE 
OP~~ANPS I COMMENTS LINE INS 

1 345 6 7 9 011 1314"5 20 303132 «> 

S D 1 RM K + 4 .,5 I I I 

! 
I 

\ 
J 

I 
I I I I I I I I I I I I I I I I I I I I I~ - --

RMK (befor~) ~ l 1 5 ~ /:4 l4 (;, 6. 6 
~:~AR 1 = SUB t:, T Q TAL 6. 

RMK = 1 1 5 6. SUB ~ T 

~:~The functions indicated are identical for AR2 with the exception that larger 
fields can be manipulated. 



STORE PRINT: SPR M,L 

Function: 

Notes: a.} 
b.} 

c. } 

Example: 

-
~ 

Store descending L.m.ost significant characters from. the Print 
Buffer into the L m.ost significant positions of the field specified 
by M. 

L must be a decimal number. 
L characters are transferred from the Print Buffer to the most 
significant positions of the field specified' by M. 
When L is greater than the capacity of Print Buffer (L > 132) the 
receiving field will be space filled. 

. Store the eighty most significant character s of the Print Buffer 
into the punch buffer. 

UNIVAC [ UNIVAC~1aaI5ISAAL ASSEMBLER CODING FORM j _ .. _---
PROGRAM PROGRAMMf.;:R PATE: 

ruBEL+r--oP" 
FOR BEG CARD ONL Y 

SEQUENCE 
OPERANDS I COMMENTS LINE INS 

I 3 4 5 6 7 9 0" 131<'1 5 20 303132 «> \ 

SPR PCH, 8 0 I I ~ I 
I ,/ I I I I 

"- I .---J --
PCH is the tag assigned to the lTIost significant position of the punch buffer. 

2-24 



SHIFT RIGHT: SHR M,L~S 

Function: Shift the area in memory specified by M and L,S character posi­
tions Right. 

Notes: a.) L must be a decimal number less than 961 and wholly con­
tained in one memory bank. 

b.) The S least significant character s of the area are lost dur­
ing the shift oper ation. 

c.) The shift count S must be preceded by a space and must be 
a three digit decimal value, equal to or les s than 30. 

d.) Spaces will be stored in the S most significant character 
positions of the shift area. 

e.) The memory location assigned to the least significant char­
acter of the area to be shifted must be a multiple of 31. In 
other words, it must terminate at the end of a row, i.e. 31, 
62, 93 and so forth. 

Example 1: Shift right an area of 200 character s labeled TAB five (5) char­
acter s or positions. 

I -

j U~VAr;; J UNIVACe ~OOEi ISAAL ASSEMBLER COOING FORM 

0620 

0651 A 

0682 K 

0713 

PROGRAM PROGRAMMER DATE 

r"LA8fi'"'r--oP 
FOR BEG CARD ONL Y 

, 
SEQUENCE OPERANDS I COMMENTS LINE INS 

1 3 4 5 6 7 

--",-- -

Example 2: 

A B B B C C C 0 

L L L M M M N N 

9 ho 11 1314h5 20 303132 40 } 

SHR T A,B",2,OIOJ\O,O,S I I I 

1 1 1 ~ /' 
I ---r --

Shift right an area of 63 character s labeled TAB three 
(3) characters or positions. The table contains 21 
three character fields terminating in core location 
0713. 

MEMORY LAYOUT OF TABLE 

A 21 

0 0 E E E F F F G G G H H H I I I J J J K K 22 

N 0 0 0 p p p Q Q Q R R R S S S T T T U U U 23 

24 

2-25 



} 

j 

L 

A three character field in the card labeled FDI is compared successively 
to each field in the table. 

LABEL + OPERANDS ICOMMENTS----------------------~ SEQUENCE 
LINE INS 

OP I 
FOR BEG CARD ONL.Y -

1 3 4 5 6 7 911011 131415 20 303132 40 

, 
CTR +5 

, , , J 

, , , 

, , 1 

R O,U CLR 

, , , LA,' 

CA1 , , 

, J,E,A 

, I C, 

, J E, 

, , S H,R 

SA1 , 
J , , , , LJ 

---
SEQ. NO: 001 

002 
003 
004 
005 
006 
007 
008 
009 

T 
, , j 1 I 

1 'I ""'" j 

I 

, 1 I , .~J 11 ~J ~ J I , I 

C T R + 2 , ,2 

F 0 1 ,3 I -YC 0 M P T 0 I N PUT 
J , , , I I ' , , , , , I I I I I I I L..L.---.J.--+-......l..-.l 

I , j IF, ',N,D, ,liN, ,TIA,B,LJ.~' " , 
I ~~~~ 

F , N , , I 

CTR I , " , I , I I I N C,R C T,R, I , 

j IN 0 FIN 0 I N TAB L E 
, I , , , , ! , I ' , , I , , , , I I .L......L_.L_.l..---L-......l--+--.-J-\ 

ERR , 
T,A,B ,,63, ,00,3, , ! I .S,H ',FT TAB, 3 POS 

I -L-L_---L-.....L--I---'-I 

TAB,3 STORE AT ,BEG 
, , I I I I I , I , , I I , , It, , I I , I I L_L_.l.._..l_L . .L---'-.....l.-...l...-+-Y 

R 0 U + 5 I .1 I J 1 I .R,E,P,E,A,T, , ,I , ,,, I , 
, _ --.L~--L....--l........-L----..~..J---\ 

The table counter is cleared 
Last field of table is loaded into AR 1 
Compare AR 1 to field in the card 
Jump equal to FIN 
Increment the table counter (21 011) 
Jump equal to ERR 
Shift the table 3 positions clearing last field 
Restore last field at the beginning of table 
Jump to repeat routine (seq, No. 002) 

2-26 



SHIFT LEFT: SHL M,L~S 

Function: Shift the area in memory specified by M and L,S character posi­
tions left 

Notes: a.) L must be a decimal number less than 961 and wholly contained 
in one memory bank. 

b.} The S most significant characters of the area are lost during the 
shift oper atior. 

c.} The shift count S must be preceded by a space and must be a three 
digit decimal value, equal to or less than 30. 

d.) Spaces will be stored in the S least significant character posi­
tions of the shift area. 

e.) The memory location as signed to the most significant character 
of the area to be shifted must be a lTIultiple of 31, plus 1. In other 
words, it must start at the beginning of a row, i.e. 32, 63, 94 
and so forth. 

Example 1: Shift right an ar ea of 200 character s labeled TAB five (5) char­
acter s or positions. 

-~ -

ExaITlple 2: 

0589· 

0620 A A A B B 

0651 K K L L L 

0682 U 

OTI3 

~ -

7 UNIVAC I UNIVAC~ ~DDEi ISAAL ASSEMBLER CODING FORM ------
PROGRAM PROGRAMMER DATE 

FOR BEG CARD ONL Y 1 
~~~ SEQUENCE OPERANDS I COMMENTS 

LINE IllS \ 1 3 4 5 6 7 9 011 13i14hs 20 303132 40

SHL TA.B, 20 1°,60 OS I J I I

1 I I I /
-

B

M

..... l-
I -:::::::;:T

C

M

--

Shift left an area of 63 characters labeled TAB three
(3) characters or positions. The table contains 21
three character fields starting in core position 0621.

MEMORY LAYOUT OF TABLE

C C 0 0 0 E E E F F F G G G H H H I I I J J J

M N N N 0 0 0 p p p Q Q Q R R R S S S T T T U

2-27

20

K 21

U 22

23

24

A three character field in the card labeled FDI is compared succe ssively
to each field in the table.

TC.SEQUENCE l LABEL OP
LINE INS

1 3 4 5! 6, 7 9:10 11 13

, ,
CTR +5 , ,

1-, 1
,

, , , , , ,

, , , ,

0, ° 1 R,O,U C,LIR

002 , LA,1

003 CA,1

0,0,4
I

J E,A

005 IC

0,0,6 JE ,

00',7 SHL

008 S A,1

0,09
I , I

J I

,

, I

I

SEQ NO: 001
002
003
004
005
006
007
008
009

I
14

FOR BEG CARD ONLY

OPERANDS I COMMENTS
15 20 303132 40

IN o AT,A o I V I S I ON,
I - L I T E,R A L ,
I

2 1 ° ° 1 I I I C ° U NT E R I ,
I 1 I 1 1 I I I. 1 I. I .. 1 I I I 1 I I I I I I I I I I I I

'iN ,P,R,O,C,E,D,U,R,E: , ,D,' ,V,IIS, ',OI N , , I , I 1 I , , I ,
, 1 , I I , , , , ,

CTR+2 , 12 I
1 C,L,E,AjRI ,C,T,R, I , ,

I

TAB , 3 1 .1 1 ,T,A B, F, IE L 0 1 TO A R 1
I

F,D I
'1

3
1 I I .l.1 I J 1 1 I Ie O,M,P, ,T,O, ,IIN,P U,T

.. '.' FIN ',N, ,T,A,B,L,E, I , I , ,
I I ,I I

, IF I N,D
I .

CiT R , , I t II I Ii 1
I ,I N C,R C,T,R I , ,

ERR, I I,N , ,T,A B LIE I I IN,O, ,F, I, N,D,
I

TAB ,,6/3, ° 0,3 .J.
I ,S,H I,F,T, TA 81 3 PO,S

. I

TAB + 6 01 ' 3 ..i.l I .S T,O,R,E, ,A,T, IE,N,D, I I , I

R a U +,5 I I I I
'REPEAT

, I I I I 'I I I" , , , 1 , 1 ,
I

, , 11 1 1 I 1-.1 I I , , , , , I I , I

I

I 1 I I I I I , I I I I I I I I I I I I

I

I I I I I I I I , ,

The table counter is cleared
1 st field of table is loaded into AR 1
Compare ARI to the field in the card
Jump equal to FIN
Incr ement the table counte r (21011)
Jump equal to ERR

1 I

Shift the table 3 positiona, clearing 1 st field
Restore 1 st field at end of table
Jump to repeat routine (Seq. No. 002)

2-28

50

, I

I

I

I

I

I

I

II

, I

,

I I

I

I

I

I

I I

I I

.......

\

I

,.

I

I
'--"

Example 3: Shift left an area of 63 characters labeled TAB twenty­
one (21) characters or positions. The table contains 21
three character fields starting in core position 0621.
A third of the table will be transferred to AR2 and the
register will be shifted 7 times before the table is
shifted in memory. The execution time will be reduced,
but the number of instructions will increase from ex­
arnple 2.

~------FOR BEG CARDONcv-------------------- -----------------------------------1
LABEL ~~-o-p~I~------------O-P-E-R-A--N-O-S------------I-c-O-M--M-E-N-T-S--T------~~ SEQUENCE

LINE INS
1 3 4 5i 6. 7 9'1011 131415 20 303132 40 50

j IN p,A,TIA, ,D,I,v,! ,S,I,O,N1 :-,L,I,T,E,~h~.L~.--,---+-~yl
0,4,0,0,1, I , , , , , , , , 1.4o,U,N,T'~~L-1..-L.--L_.-1.._...L~,._-+---,---,I-1

._L---''__�r---'----I--+-C T-----2--+-+,-' .~~5_1"'__1t--1r-0.~~~....L, , , , , , L.....L_L-L-FL~~l N ,T, E , R Jl_.LL_..L_..L_L-'---'--+--J.. __ L

I 1

1 1

C T 1 + 5

--L--L .L

'1

° 0.', ROU

002

° 0/3 1

004 S HIL

0,° 15 S AI2 T Ai B 1+,4,2 1 • 1
2

1
1 , 1 , 1 , 1 1 I :SIT,OIRIEI 1~~~L~...L.uL~..L 1

006
1

IC CTl INCR CT1
~~'--I~'__I~~---'---+--+~~~~~~~~~~'---'-I~I~'~'~I--'I~I~I~'~I~I.+I 1 1'1' , 1 1 , I~~~~~~

010 7:
1

008' ,

t--'---'~--'--+-+---'---L _-+-. ~l~L_ i-~-'.~ __ ~J_-'---L-L..L.-L.-!---L-L I I N I ° I IF, liN 1 D II! I N L.L~~~.L __ 1.1- nL.1

~+-",--~+_+C_ .'-~.LR C I T...L 2 I + 12 , ' 12. I , '.L--'--.l_.L_.L..L-L-FLL~~.L~Za_L~L_L_LJ._L_L---1j
° 1° 9. I C I A I 1 A R 2 '1 3 1 1 ..l1 1 11. 11. _1 1 1 C1. ° M P T , ° T I A , B I SUB

010

° 1 1.

° 1 2

°
1
1

1
3' 1

o 1 4

2-29

CLEAR: CLR M,L

Function: Clear L most significant positiona of the field whos~ mQst sig ...
nificant character is at M.

Note: L must be a decimal number.

Example: Clear the first nine 'character positions of the accumulator
called TOT.

!!.~~~~ " (U NIV ~ce "",ooa I SAAL ASSEMBLER COOING fORM

PROGRAM PROGRAMMER OATE

~'rpp
FOil BEG CARD QNI.Y

SEC U N ~E
Ol'lERANDS I COMMENTS LINE IN$

1 345 6 7 9 011 131104 hs 20 303132 ~

7
1
\

CLR TOT, 9 I I ! I ,]

-~ -
TOT
TOT

_

(before) ::
(after) ::

I I I I 7
" :.:.:.;,..r

$!J 1 0 0 0 0
!J !J !J !J ~ 6 !J !J 6

2-30

COMPARE ALPHA/NUMERIC:

Function:

Notes: a.}
b.)

c. }

d. }

Example:

~

-"..--

Compare for equality L l~a~t ~i~p'l.i£iGant ch.arac;:ter positions of
ARI or 2, to the L mO$t ~igni!icant pharacters of the field spe.,
cified by M.

This is a binary comparison iltnd all dfl,ta bit:;;;; are considered.
L specifies the number of ?if< (6) l?it charact(;,!rs that will be
compa1;'ed.
A maxj.mum of 10 OJ;! al qhl;'u:a~tel"s cap be compared in ARI and
AR2 :re spectfully.
The result ~f the comBal,"i.~on il$ ref;ordecl in t~stable indicators
as foHows:
Re suIt of CClmparison:

(ARr) == (MEM)

JUA
nJNEOUAL)

JEA
(;EQUAL)

SET

. Compare the two lea$t s~gnj.£i~~nt character s of AR 1 against
the two most si~n~ficq.nt chara.~t~r5:i qt the field called TR.

.- ----- 'J
PROGRAM PRQGfllAt.1MER I i \ i

DATE --:1

rrmr~~
. FOR ~~c:> CAIiIP C!lIIjL'I'

SEQu Nce 'I
- pl1le:PI~NO~ I GQMt,4I;I'ffS l,.INE ' IHS \ 1 3 4 5 6 7 9 all 1314 s 20 30~13Z 40

C A 1 11 R ~ ~ I
. . ~

1 , ! I I ~ I , I '~7 ..\,--<-.-.L I i I ! ! , I , I I I ! I I I I I I !

I
! I i I _;. n - ""-...-- 'II

~:~AR 1 (b~fo:re) !;:: 0 ;] ? 1 6 5 ;S C .A- S
TR ::;: A B C P
ARI (after) == 0 h ? 1 ~ 5 B C A B

Result: JEA (equal) inCj.icE\.tpr set.

-~

-~

-

. Compare the two 'lea st significa:pt cha;r<ilcter $' of Al\ 1 q.gainst
the two least significant character s of the field labeled TR.

. .

UNIVAC ,(UNIVAC· 10015 ISAAL ASSEMBLER CODING FORM ! -..,-..~--.....

F'ROGRAM FlROGRAMMER DATE;;
j ,

~'OP"
FOR BEG CARD ON~ Y

SEQUENCE
OPERANDS ICOMMEI"TS LINE INS

I ,3 .4 5 6 7 9 011 1314 5 " 20, 303132 .r1O \
CAl T.,I,..R.+ 2 , 21 1,1 1 j

.j

,
/ ' . ' 1 I 1

I ---' --
~:~AR 1 (before) ::;: 0 6 ? 6 5 B C A B
TR - A B C D
ARI (after) ;:: 0 6. ? 6 5 B C A B

Result: JUA (unequal) indicator set .

. Compare the two least significant characters of ARl against
the 2nd and 3rd character of the field labeled TR.

- ---- ---.,.,...
F'ROGRAM F'ROGRAMMER DATI'!:

rrmL'---O;-
'FOR BF,;G CAR!) ONI-Y

SEQUENCE OPERANDS ICOMI'11~NTS LINE INS
I 3 4 5 6 7 9 011 1311~ 5 20 303132 .r1O }

CAl T R +' 2, 1
I

I j ,

I I I I / - I --' -.,

~:~ARI (befor~) - "6 6. 0 ~ ? 1 '6 5 B ·'c
I· ;

TR = A B C D
ARI {after) ;; 6 6 a ~ ? 1 6 5 B C

Result: JEA (equal) indicator set,

~:~The functions indicated are identical for AR2 with the exception that larger
fields can be compared.

COMPARE NUMERIC: CNr M,L

Function: Compare algebraicaUy L l~ast signif~cant characters of a ~igned
number in ARI or 2, to the L most sigpificant characters of a
signed numeric field specified by M.

Notes: a.) If the two fields have unlike signs, the comparison is terminated
immediately and the proper indicator set~

b.) If L is greater than the capacity of the register spaces are as­
sUlned in the implied high order positions of the register.

c.) The comparison terITlinates whE:n all L characters at M have
been compared.

d.) Only the nUITleric bits are compared.
e.) The results of the algebraic comparison is stored in testable in­

dicators as follows:

Results of Compar-ison:

JE JG JL
(Equal) (Greater) (Le s s)

(ARr) :> (MEM) SET

(ARr) < (MEM) SET

(ARr) = (MEM) SET

Example: Compare the two least significant character s of A!t 1 against
the two most significant characters of the field called LMT.

UNIVAC 1 (UNIVAC· 1DCJB ISAAL ASSEMBLER CODING FORM ._-----
PROGRAM PROG~AMMER

i
DATE

'LAs!L'~
I FOR EiEG <;:ARO ONLY

SEQUENCE
OPfiRAND$ I COMMENTS LINE 'NS \ 1 3 4 5 6 7 9 011 1314 hs 20 303132 40

CNl LM T , ~ I I I I ,j
I I I I ./

l..- T .-I -
~--

-
~:~AR 1 (befor e) = 0 0 0 0 0 v 0 0 1 0

LMT = 0 0. 1 0

AR 1 (after) = 0 0 a 0 0 0 {) 0 1 0

Result: JL (~ess tha~) indicator set

2-33

-1.00""-

· Compare the two least significant character s of AR 1 against
the two least significant character ~ of th,e fi~ld Galle~ LMT.

U~VA~ I UNIVAC· 1aaE5I~AAL ASSEMBLER COOING FORM

PROGRAM PRQGRAMMER DATE

UBeL+r-or
FOR BEG CARD 0 .. 1,. Y

SEQUENCf-
OF'ERANDS I COMMENTS LINE INS

1 345 6 7 9 ho " 13104 5 20 3O~t 32 40

~Nl L M T + 2 112 I I I

/
I
\

,/
I I I I ~ - L....

" I -
~:~ AR 1 (b ef 0 r e) ;:: 0 0 0 0 0 0 0 0 1 0
LMT;:: 0 0 1 0

ARI ;:: 0 0 0 0 0 0 0 0 1 0

Result: JE (eq-qal) indicator set

':~The functions indicated are identical for AR2 with the exception that larger
fields can be compared.

2-34

INCREMENT AND COMPARE: IC M

Function:

Notes: a.)
b.)

c.)

Example:

-

Increment a two digit (2) counter whose most significant
character is at M+2 by a decimal value store at M+4.
Compare the re sult to a two digit limit whose most
significant character is at M.

The field specified by M must be five character s in length.
The two most significant positions of the field specified by
M contaln the limit, the next two positions contain the count
and the last position contains the increment.
The sub-functions of the instruction are as follows:
1. The increment stored at M+4 is added to the count

stored at M+2 and M+3.
2. The result is compared numerically against the pre­

determined limit stored at M and M+ 1.
3. The results of the comparison are recorded in the

te s ta ble indica to r s .

Determine by means of the Ie instruction if the page line
counter labeled CTR has been incremented fifty four times.
If the condition is present branch to a sub -routine labeled
OFL for page compensation.

--PROGRAH PROGRAMMER DATEj

ru:BEL+r-o;;-
FOR BEG CARD ONLY

SEQUENCE
OPERANDS I COMMENTS I

LINE INS I 1 345 6. 7 91011 131415 20 3~31 ~z 40

IC CTR l I ~ i~.-4 I

J E OF L I I I I

(M A I N IPR'OGRAM)
I

I I I

I I : L I
OFL CLR CTR+2'1 2

I

\ I I I
I .;

The first increment of the counter:

CTR (before) = 5 4 0 0 1
CTR (after) = 5 4 0 1 1

The fifty -fourth incr ement of the counter:

CTR (before) = 5 4 5 3 1
CTR (after) = 5 4 5 4 1

Control is then transferred to the routine labeled 'OFL'
where the incrernent counter is cleared and page compensa­
tion is performed by the programmer.

2-35

JUMP: J M

Function: Transfer program control to th~ instruction stored at M.

Example: Transfer program coptro~ to the routine labeled END.

U~IVA~ I UNIVAC~ 10D& \SAAL ASSEMBLER COOING FORM !
PROGRAM PROGRAMMER DATE

I

"L'Aii'LJ--c;p- FOR I3EG CARD ONLY

SEQUENCE
OPERANDS 'COMMENTS LINE INS

I 345 6 7 9 011 1311:4 5 20 303132 40 \
J END I I ' 1 J ,

./ I I I I - I .-I -,.-- -- -,.-

JUMP IF GREATER: JG M

JUMP IF LESS: JL M

JUMP IF EQUAL: JE M

Function: Transfer program control to the instruction stored at M if the
numeric comparison indicator specified by the operation is set.

Notes: a.) These instructions are used to test the result of a numeric com­
parison, (CNr).

b.) If the condition tested is not present, control will not be transferred
and,the next instruction in the testing sequence will be executed.

Example: A numeric com.parison instruction has been executed. If the equal
indicator is set transfer control to the routine labeled eMP.

UNIVAC [UNIVAC· ~DO& ISAAL ASSEMBLER CODING FORM ! -------...........

PROGRAM PROGRAMMER DATE

LAiEl'--C;p-
FOR BEG CARD ONL Y

,
SEQUENCE OPEI:lANDS 'COMMENTS LINE INS

1 345 6 7 91011 1314hs 20 303132 40 \
J E CMP I l I I l

I I I I ./ - - I .-J
~ --

2-36

JUMP EQUAL (ALPHA/NUMERIC): JEA 11

JUMP UNEQUAL (ALPHA/NUMERIC): JUA M

Function: Transfer program control to th~ instruc;:tion stored at M if the
comparison indicator specified by the operation code is set.

Notes: a.) These instructions are used to test the results Qf an alpha/
numeric comparison. (CAr)

b.) If the condition te sted is not pre $ ent control will not be tran s­
ferred and the next instruction in the te sting sequence will be
executed.

Example: Test the alpha/numel."ic indicators in order to determine the re­
sults of a previous alpha/numer~c;: compare. If the arguments
were equal transfer control to the rQutine labeled PRO.

UNIVAC (UI\IIVAC4I! 1Ca'l5 \SAAI.. ASSEMBLER CODING FORM 7 __ .-t-

PROGRAM PROC)RAMMe:R
i i i i DATE

1 ~,~
"(lit SEG CAitO ONLY

UQU N~E
OPI;;FlANOS I COMMENTS LIN~ TNS \ 1 3 4 567 9 no 11 1:31'01 hs ZO 903132 «>

)EA PRO I I I 7
I I I ..l- I 7

- - I .J
~

2 ... 37

JUMP POSITIVE: JP M

JUMP NEGATIVE: JN M

JUMP ZERO: JZ M

Function: Transfer program control to the instruction stored at M if the
arithmetic indicator specified by the operation code is set.

Notes: a.) These instructions are used to test the resultant sign of an arith­
metic operation (AMr, ARr, SMr, SRr).

b.} If the condition tested is not present control will not be tra,nsferred
and the next instruction in the testing sequence will be executed. '

Example: Test arithmetic indicators in order to determine if the result
of a previous arithmetic operation was negative. If the condi­
tion is true, transfer control to the routine labeled NEG.

UNIVAC j ------ (UNIVACe 4JDDEi ISAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
I

'i:'ABELtrc;p FOR BEG CARD ONL Y
SEQUENCE

'COMMENTS LINE INS OPERANDS
1 3 4 S 6 7 9 011 13104 hs 20 303132 40 \

ii J N NEG I I I I

I I I I ./
- "'"""'-- , ----1

iooI""" --

2-38

JUMP RETURN: JR M

Function: This instruction stores the address of the ne){t $equent}fll in~truc-
, tion in the X register and transfers program control tG tl1~ -instrp.c~

tion stored at M,

Notes: a.} This instruction provides the programmer with the faqihty p£
breaking program sequence and executing a subroutine; and then
returning program control to the instruction immediately iollowlng
the JR instruction.

b.) The subroutine at M must contain a JX instruction so that the re­
turn line to the main program can be established.

Example: Tl'ansfer program control to an initialized sub-routine called TNT,
perform those functions required, and return control to the main
prog:-:-arrl.

-r- - -PROGRAM PROGRAMMER DATE

FOIi BEG CARD ONL Y
I

'lAiEL""~~ SECIlE liIU OPERANDS 'COMMENTS
L1~~ INS \ 1 3 , S 6 7 9 no II 131<1 hs 20 303132 40

TAG ,) ~. INT I I ~ I .I
"

/ <::;I.R TOT, 3 51 I I I ,- 1 ~ -,-- ' """""""'-,

-- .,..

PRQGRAM PROGRAMMER DATE -.
I

~,~
,FOR BEG CARD ONLY

SECUENCE
OPERANDS 'COMMENTS I-IN(; INS

I :\ 4 S 6 7 9 011 '3'4~5 20 303132 40 \ _. ,
~N T) X IE x I I I j

.. ,

/ I J _L I - ~.- --- I .-J
~ -~ --

~ CO"
.- . .-.." . ---PROGRAM PROGRAMMER DATE -,

""LA8eL+~
F(!)R BE G CARD DNL Y

SEClUI:.NCE OPERANDS 'COMMENTS 'L!NE INS \ I 3 4 5 6 7 9 OIl 131141 S 20 303132 40

E X J TAG+5 I I
,

I J
.. - " - I

/ I I I I --- I --'
~

.,."".,. , -,-

Note: Refer ence function of JX instruction.

2-39

JUMP RETURN EXIT: JX M

Function: This instruction creates a jump instruction to the address speci.­
fied by the X Register and stores it at M.

Notes: a.} This instruction j s used in conjunction with the Jump Return (JR)
instruction in order to establish the return link to the main pro­
gram from a given sub-routine.

b.} This instruction is normally executed as the first instr}lction in
a called sub-routine.

Example: Establish the exit line back to the main program for an ini­
tialize sub .. routine called INT.

-- --PROGRAM PROGRAMMER DATE

rrrnt'l-or- FOR !:JEG CARD ON~Y
,

Sj:QU N E OF:>Er,ANOS 'COMMENTS ~INE INS \ 1 3 4 5 6 7 9 0" 13 104 ~5 20 303132 40

TAG J R IN T
I ' , J

CLR TOT, 3 5, I I I / - I --t
.,r- .--

---PROGRAM PROGRAMMER DATE

FOR IiIEG CARP QNI,.Y

rrrnt"r-c;p ~JQ1JENCE OPERANOS 'COMMENTS LINE INS

1 3 4 5 6 7 9 [to 1 1 ,~~ 5 20 303132 40 \
tNT J X E X I I ' I J

I I I I ./ - , .;.....-!
~ -- --

,--
PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY I
ru:8eLlr-c;p-SEQUENCE OPERANDS I COMMENTS LINE INS \ 1 3 4 5 6 7 9 no 11 131.4 5 20 303132 40

EX J TAG + 5 I I I , J
I I I I ./

- "- I -.J
~ --

2-40

ADD TO MEMORY: AMr M,L

Function:· Adds algebraically L least significant characters of ARI or 2, to
the L most significant characters of the field specified by M.

Notes: a.) If the length of the Register is equal to or greater than L, the
instruction is terminated when L characters have been added to

memory.
b.) If the length of Register is less than L, decimal zeroes are added

to memory.
c.) Except for the sign bit, zone bits are ignored in the Register.
d.) The results of an Arithmetic instruction are recorded in testable

indicators as follows:

If the sum is plus (+), the positive indicator is set.

If the sum is negative (-), the negative indicator is set.

Examples: . Add the 5 least significant characters of Arithmetic Register
one (AR 1) to the field labeled FDI.

U~IVA~ (UNIVACe ~DDE5 / I SAAL ASSEMBLER COO!NG FORM

PROGRAM PROGRAMMER OATE

FOR BEG CARD ONLY
I

~~~ SEQUENCE I COMMENTS L1NE INS OPERANDS 

1 3 4 S 6 7 9 ho 11 1314 hs 20 303132 40 \ 

AMl F D 1 I 5 I I I 
--LJ- 1 j 

I I I I ./ 
i.-.. - T :.;..I 

II" -- -
AR I (bef 0 r e & aft e r ) = 1 2 3 0 0 0 4 7 1 6 

FDI (befor e) = 5 230 1 

FDI (after) = 57017 

2-41 



-,,--- -

i\dd the 5 least significant characters of arithmetic register 2 to the 
field labeled FD2. 

UNIVAC I UNIVACe ~aal5 ISAAL ASSEMBLER COOING FORM ! _ .............. .-......-

PROGRAM PROGRAMMER DATE 
I 

i:AiiL!O;- FOR BEG C;"RO ONL. y 

S~QU NeE OPERANDS I COMMENTS L.INf INS \ I 345 6 7 9 0 II 1314 5 20 303192 40 

AM2 FD2, 5 1 I. I I J 
1 1 I 1 ./ 

i.- t ;....., -
AR2 (before &: after) = 0 ... ·-------0320 

FD2 (before) = (j 647 2 

FD2 (after) = 00792 

Special consideration should be given on all arithmetiG processes (AR, 
AM, SR, SM) to the fact that when a negative result is developed the 
sign indications (X bits) will be generated in both the most and least 
significant locations of the resultant field. When a zero result is 
developed the zero balance indicator (Y bit) will be generated in the 
most significant location of the resultant field. A zero balance cannot 
be tested for sign (+ or -) through the use of testable indicators. All 
testable indicators remain set until another compare, add, subtract or 
print (if alt switch two is on/illuminated). 

2-42 



ADD TO REGISTER: AR r . M,L 

Function: Adds algebraically L most significant characters of th(' nold 
specified by M, to the L least sign;ificant charactcr~ of ARI or ?. 

Notes: a.) If the length of the Register is greater than L, decilual ~eroes 
are added to the Register. 

b .. ) If the length of the Register is equal to or less than L, the in ... 
struction is terminated when L characters have been addc(l to 
the Registe r. 

c.} Except for the sign bit, zone bits are ignored in mcnlQl'Y. 
d.) The results of an Arithmetic instruction are recqrdecl in tei:1it .... 

able indicators as follows: 

If the sum is plus (+), the positive indicator is set, 

If the sum is negative (-), the negative indicator is set. 

Examples: . Add the five digit field labeled FOI to Arithrn~tic Regir.;t.l.!p Ol1C 

(AR 1). 

~ 

UNIVAC [U~IVAce .,005 I SAAL ASSEMBL~R CODING FORM ------
PROGRAM PROC;Ht>.MMER~ ____ ~ ________ ~. _UA T C----...---:.-.-'l 

7rnL'r--or.-
FOR BEG CARD ON!,. Y 

SEQUENCE 
OP~:RANDS ICOMMEN'rS LINE INS \ l' 3 4 5 6 7 9 011 1314 5 20 303132 «> 

ARI FDI,5 ,I ~ .. L..,.._ L I I! J ! I I~-.J.... \ ! ! ! , I J..,.L.l..,........l..--.l. __ J. . ....1...-L_ 

-L....l..-.j..-.l. ...... -L.--'--'--'-.l--"-.. ..J.-.i--'-L+-"--~....L.-I-..-' __ . .J,._ .. L_.J-.. f __ •. _.L 

-~ - -
FDI (before & aft~r) - o 0 2 5 3 

AR 1 (before) -/\ /~L\ t~/~ 05623 

AR 1 (after) -. 0 0 O' 0 0 0 5 8 7 6 



Add the five digit negative fie~d ~abel~p. FD2 to C;trithmetic register 2. 

" 

! U~..!.VA~ I UNilVACe 100., ISAA~ ASSEMBLER CODING FORM 
, i 

PROGRAM 
i i PROGRAMM~R PATE 

1 
um-'~ 

FOil eEa CARC ON~'I' 
SEQU CE OPERANDS ICOMMIj;:NT$ 1 
~INE INS \ 1 34 5 6 7 9 ho" 1314 ~5 20 303132 40 

AR2 FD2,5 I I I i j 
I I I I / - - I --J ,,-- - -

FD2 (before & after) ::: o ~ 1 2 7 

AR2 (before) 

AR2 (after) ;:: 0 .... --- 0 7 6 9 4 1 9 

2-44 



SUBTRACT FROM MEMORY: SMr M,L 

Function~ 'Subtracts algebraically L least significant characters of AR I or 
2, from. the L m.ost significant characters of the field specifi~d 
by M. 

Note: This instruction operates identi~ally to the AM instruction, except 
that the operation is subtraction. Otherwise the notes under the AM 
instruction apply. 

Exam.ples: . Subtract the 5 least significant characters of AR I from. the 
field labeled PN 1. 

UNIVAC ( UNIVAC· 10015 ISAAL ASSEMBLER COOING FORM - ............. ---. .... 

PROGRAM 
I I 

PROGRAMMER DATE 

ruerr'~ 
FOIt S"EG CARD ONL Y 

SEOu Nelf OPERANDS I COMMENTS LINE INS 
1 345 6 7 9 ~O111 13 1011 ~5 20 303132 40 

5 M 1 P N 1 I 5 I I I I 

/ 
I 

\ 
j 

I I I I ./ 
- , ---' 

",. -- -
AR 1 (be£or e &: after) :;: t::, t::, t::, t::, t::, t::, 1 9 7 6 

PNI (before) ;:: 3 9 878 

PNI (after) 3 7 902 

,; 
. '~ 

2-45 



-
~ 

· Subtract the 5 lec;l.st significant characters of AR 2 frpm the field 
labeled PNZ. 

UNIVAC (iJN IVAC· 10011 I SAAL ASSEMBLER CQDING FQ~ ! --........ -~ 
PROGRAM .,. PROGRANMER OAT~ 

WiLt"OP I'OR BEG CARD ONLY 
, 

ICOMM~NTS OPERANDS 
L'"~ IN5 ' ' \ 1 3 4 5 6 7 9 011 13M 5 20 303132 '40 

S M 2 P N 2 I 5 I ";1 I J 
1 1 1 I :/ - , 

~ 
-""'" 

AR2 (before & after) ::: 6 ..... --~-6 6 9 3 7 

PN2 (before) ::: o 6 000 

PN2 (after) 00937 

2-46 



SUBTRACT FROM REGISTER: SRr M,L 

Function: Subtracts algebraically L most significant characters of the field 
specified by M, from the L least significant character s of AR 1 or 

2. 

Note: This instruction operates identically to the AR instruction, with the 
sole exception that the operation is a subtraction. Otherwise the note s 
under the AR instruction apply. 

Examples: . Subtract the 5 digit field labeled PNl from Arithmetic Register 
one (ARl). 

UNIVAC ! I UNIVACe 1DDB ISAAL ASSEMBLER CODING FORM ------
PROGRAM PROGRAMMER DATE 

'LAiEL'ro;-
FQR BEG CARD ONL Y I 

SEQUENCE OPERANDS I COMMENTS 
LINE INS 

1 3 4 5 6 7 9 ho 11 13114 hs 20 303132 40 \ 
S R 1 P N 1 I 5 I I I I 

I I I I / 
i.- ~ 

I ..-r - -- -" --
PNl (before & after) = 0 0 6 5 3 

ARl (before) = 6. 6. 6. 6. 6. 6. 6. 9 5 7 

ARl (after) = 0 0 0 0 0 0 0 3 0 4 

Subtract the 5 digit field labeled PN2 from arithm.etic register 
2. 

U~..!VA~ ( UNIVACe 1DDB ]SAAL ASSEMBLER CODING FORM ! 
PROGRAM PROGRAMMER DATE 

~'r-'(iP 
FOR BEG CARD ONLY 

, 
SEQUENCE OPERANDS I COMMENTS LINE INS 

1 3 4 S 6 7 9ho 11 1:3 14 hs 20 303132 40 \ 
s R 2 P N 2 I 5 I I I I .J 

I 1 I I ./ 
- l.- I -:;:;r 

-' - .,. 

PN2 (befope & after) = 76560 

AR2 (before) = 6.~~~--6. 7 6 0 6 0 

A.R2 (after) == 0 ...... ·1-------0 5 0 0 

2-47 



MULTIPLICATION: MUL M,L 

Function: 

Notes: a.) 
b.) 

c.) 

d.} 

e.) 
f.) 
g.) 

Example: 

-

Multiply L most signi!ic~nt characte:t" s of the field sp~cifiecl. by M 
by the value previously stored in AR 1 and pla,ce the produ~t in 
AR2. 

L must be a decimal number ranging from one to eight. 
The multiplier must be previously stored in AR 1 and must b~ 
Ie s s than ten digit s Ln length and have sign deleted. 
AR2 must be clear ed to space s before the Multiplication instruc­
tion is executed. 
Both the Multiplier (A:R I) an,d the Multiplicand (MEM) m\lst be 
po siUve value s . 
A ma..~.irnum product of 1 7 decirnaJ digits can be developed. 
The: result is formed in ARZ and is right justified with zero fill. 

Testable indicators are not set or affected by this instruction. 

Multiply two four digit numbers labeled WSI and WS2. 

u~!.~~s ! /IJNIV ~C® ~OD5ISAAl- ASSEMBLER COOINP FORM 

PROGRAM P~OC:;RAM"I15:R Dh-TE 

UBeL+~ 
FOil BEG CARP QI'IL Y 

SEC .CE 
OPERANDS 'COMMENTS 

I,.I~fi IN~ 

1 3 4 51 6 7 91011 1~ 141l!i 20 3031 ~~ 40 

L N, 1 W s 1 , 4 1 
I / i i 

CLR A R 2 , :2 11 1 I I / 
MUL W S ~ , 4 1 

I / 1 I 1 - - '7 
""",. - --

WSI ;: 0 1 6 5 
ARI (before) :: !::,~!::, 0 1 6 5 
AR2 (before) ::: 6. .. • !::, 

WS2 = 1 0 2 5 

AR2 (after) = o. 0 1 6 9 1 2 5 

2-48 



DIVISION: 

Function: 

Notes: a.} 
b.} 

c.} 

d.} 

e.) 

f.) 

g.) 

Example: 

....--

DIV M,L 

Divide AR2 by the L m.ost significant characters of th~ field spe­
cified by M and place the results in ARI and 2. 

L must be a decimal number ranging from one to seven~ 
The dividend must be previously stored in AR2 and must be less 
than thirteen digits in length. If signed, sign must be d~leted. 
AR 1 must be cleared to spaces before the Division instruction is 

executed. 
Both the divisor (MEM) and the dividend (AR2) must be positive 
values, subsequently testable indicators are not set or affecteq by this 
instruction. 
Seven whole number s ar e developed as the quotient and will ap­
pear in AR 1 right justified. That is if the length of the dividend 
is greater than 7,there must be less than 9,999,999 difference in 
the absolute values of the dividend and the divisor. 
Eight decimal and nine remainder of the quotient are developed 
and will appear in AR2 left justified. 
If the divisor is zero, the result will be blank. 

Divide WS 1 3 digits into WS2 (5 digits). 

UNIVAC / ! UNIVAC~ 1DD5 \SAAL ASSEMBLER CODING FORM _ ... _.,-..-.---...... 

PROGRAM PROGRAMMER PATE i 

~~"O'P 
FOR BEG CARO ONL Y 

SEQUENCE OPERANDS I COMMENTS LINE INS 
1 3 4 51 6, 7 91011 1314'15 20 303132 40 

L.N~ WS 2 ,5 I j i i i 
CLR A R 1 ,10'1 I I I 7 
D I V W S 1 , 3 1 

I 7 I I \ - --:J 

WSI = 1 2 6 
WS2 ::::: 5 5 3 1 6 
ARI (before) = ~ 6 
AR2 (before) = o • 0 5 5 3 1 6 
ARI (after) = 000 0 0 0 0 4 3 9 
AR2 (after) = 0 I 587 3 0 1 0 o 0 000 0 7 1 q 0 0 0 

DeciInal Quotient 
Remainder Remainder 

2-49 



TRANSLATE INTRODUCTION 

The Translate Process for the UNIVAC 1005 permits the translation of 
an entire record to be accomplished by a single instruction. 

The Translate Instruction functions, quite simply: 

All of the character s of the translated code are entered into Core 
Storage in the form of a reference table (Translate Table) at or be., 
fore the start of a run. 

The bits of each character of the code to be translated, acting as 
address codes, call the translated character code out of the Trans ... 
late Table during the Translate Instruction. 

The translated codes substitute themselves for the codes to be trans­
lated in the M (Operand) Address of the Translate Operation. This 
leaves a fully translated record in the M Address locations at the end 
of the operation. 

The UNIVAC 1005 uses a code when addressing its Core Storage. The 
Address Control recognizes the code for the original character and re­
lates this with a specific storage location containing the translate 
character. 

With practically all of the code s used in data proce s sing, be they 5 -, 6 -, 
7 -, or a-Track, a maximum of six tracks are valid or significant as far 
as character code formation is concerned. The other tracks serve for 
parity or functional control purposes. 

By using six significant tracks (or levels) of the code to be translated for 
address control, one level for Row Address control and the other levels 
for Column Address control, the UNIVAC 1005 Translate Process is 
practically univer sal in its application to code translation. 

To change from one translation to another can require nothing more than 
changing the translation table in the storage. 

The Translate Process combines simplicity of programming with effi ... 
ciency of operation to obtain a wide scope of translating abilities. 

GENERAL DESCRIPTION OF THE TRANSLATION TABLE 

Figure 1 illustrates the required format of the Translation Table insofar 
as it is determined by the 1005 circuitry, and is intended to give a cor ... 
rect approach to the planning of the table. Figure I-A is a sample chart, 

2-50 



ORIG. 
CHAR. 

BIT CONFIGURATION 
OF OR IG. CHARACTE R 

---------
-----------------------

I X IYl81 4 12 11 1 
o 

1 1 
o 0 0 000 
o 0 0 0 0 
o 0 0 0 1 
000 
o 0 
o 1 
o 1 

1 1 0 
100 
o 0 1 

o 1 001 0 
000 1 0 0 
o 0 1 0 0 0 
o 0 0 0 1 
o 0 0 0 1 0 
000 1 0 1 
o 0 1 0 1 0 

o 1 010 
o 0 1 0 
o 1 0 1 
001 
o 1 1 1 0 
o 1 0 1 
o 0 1 1 

01010 
o a 0 1 

o 1 1 0 1 0 
o 1 0 1 0 0 
00100 
o 1 0 0 1 

o 0 0 1 1 0 
o 0 1 1 0 0 
o 1 0 0 0 
o 0 0 0 0 

MOD 1 
MEM. 
LOC. 

0081 
0082 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 

--------------------------
----------------------
------

NEW 
CHAR. 

ORIG. 
CHAR. 

FIGURE 1. 

BIT CON FIGURA TION 
ORIG. OF OR IG. CHARACTE R 
CHAR. 

IXIYI8141211 I 
- ..... 0 1 1 1 1 1 -
) ~ 1 1 1 1 1 1 ..... 0 0 0 0 0 0 

I J_ ..... 0 0 0 0 0 1 -...... -

FIGURE I-A 

- 2 -

2-51 

BIT CONFIGURATION 
OF ORIG. CHARACTER 

IXIY18141211, 
__ 0 0 0 0 0 
__ 0 0 0 0 
__ 0 0 0 
__ 0 0 

-- 0 1 0 
-- 1 0 0 
-- 1 0 0 1 

-- 0 0 1 0 
-- 0 0 0 0 
-- 0 1 0 0 0 
__ 1 0 0 0 1 
__ 0 0 0 1 0 

-- 0 0 1 0 1 

-- 0 1 0 1 0 
-- 0 1 0 1 
-- 0 1 0 
-- 1 0 1 

-- 0 1 __ 1 0 

__ 1 0 1 
__ 0 1 

-- 0 1 1 0 

-- 0 1 1 0 1 
__ 1 0 1 0 
__ 0 1 0 0 

-- 0 1 0 0 
-- 1 0 0 1 

-- 0 0 0 
--101 00 
-- 1 0 0 0 

o 0 0 0 

MOD 1 
MEM. 
LOC. 

0081 ~ 

0082 ~ 

0094 ..... 
0095 ... _ .... 

MOD 1 
MEM. 
LOC. 

0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 

------

NEW 
CHAR. 

NEW 
CHAR. 

" 
t 

1 -



filled in, to illustrate a po s sible input translation to the 1005. 

Fig. 1 represents the sixty-four (64) characters that are recognized by 
the 1005. These characters are shown in the table by bit configurations. 
Zero represents a bit absent and 1 represents a bit present. Therefore, 
the programmer must have a six level code showing the bit configuration 
for each letter, number or special character: 

x Y 8 4 2 1 
=B-i-t----B-i-t-----B~it----=B-i-t--~B~it--~Bit 

Abs Pres Abs Pres Abs Abs = A (in XS-3, 80 col.) 

In the context of the translation instruction, this pattern has two mean­
ings: 

Meaning 1: It is the pattern of a character in the original code as it 
appears in 1005 storage before translation. 

Meaning 2: This is the code that Address Control recognizes to re ... 
late to a specific storage location containing the translate 
character. 

Since the bit patterns are arranged by the sequence as addresses, they 
are in no meaningful sequence as original code characters. 

The Original Character box will contain the character that is equal to the 
bit configuration shown directly to the right on the same line: 

Orig. 
Char. 

(BCD) 0- _1 __ 0 __ 0_0 ___ 0 __ 1 [01261- 0 (XS3) 

The Mod. 1 Mem. Loc'l box refers to the location in memory that will 
contain the new character. Note that the translate table is a fixed area in 
Module 1 with two characters at location 0081 an.d 0082 and sixty-two (62) 
more character s starting at location 0094 and continuing to 0155. This 
corresponds with the layout of the translation tables in that entry 126 of 
the table, <I 01261-[[1> a J will be entered in position 0126 of m.emory. 

PLANNING THE TRANSLATION TABLE (Ref. Figure I-A) 

To construct the translation table, the first step is to exam.ine the bit 
patterns of the character to be translated. Having found the bit configu­
ration in the table (under Bit Configuration of Orig. Character) write the 
character to be translated in the small box at the left. Next, fill in the 
corresponding small box on the right (under New Char.) with the resul­
tant UNIVAC 1005 character desired. 

2-52 



Loading the translate table into memory is easily accomplished in the 
data division of the program. Recommended procedure is to define the 
areas in CRD, PR T, PCH. Immediately follow this with ORG 0081 to set 
the Address Control to the beginning of the translate table. Next, code a 
literal instruction with +2 in the operation field and two characters in the 
operand field. These two characters will be the first two entries under 
NE·W CHAR. corresponding to 0081 and 0082. Note: The use of the 
literal instruction directs the assembler to move the number of charac­
ters specified in the Op field from the operand field to sequential core 
locations starting at 0081. It is now necessary to reposition Address 
Control to the next position of the translate table. This is accomplished 
with an ORG 0094. Next, code a literal instruction with +31 in the oper­
ation field and 31 characters in the operand field. These characters are 
found under NEW CHAR. corresponding to 0094 thru 0124. Next, code 
another literal instruction with + 31 in the operation field and 31 char­
acters in the operand field. These character s are found under NEW 
CHAR. corresponding to 0125 thru 0155. This completes the coding 
necessary and upon execution of loading the program the translate table 
will be properly positioned in memory. Following is the data division of 
a sample program showing the necessary coding for a translation from 
BCD to XS-3. 

Beg 
CRD 

FD1 
FD2 

PRT 
PR1 
PR2 

PCH 
PC1 
PC2 

ORG 
+2 

ORG 
+31 
+31 

ORG 
STA 

1 
7 

1 
7 

1 
7 
0081 
; ( 

0094 
137~%ZS48/250V#X:C<,W\~U9T6@Y 

- JLP! ):(IBMQAKN6E$G~+? .F=)DRCO~:~H&: 
0373 

This chart and its explanation cover the needs of translation into BCD. 
It is simple to punch the translation characters into a ca=d and load it 
into the 1005 table area. For translating into foreign code s, it is neces­
sary to load the bit patterns of the foreign code into the table. Further 
planning is needed to determine the proper card punching to obtain these 
bit patterns. 

2-53 



TRANSLATE: TRL M,L 

Function: Replace L most significant character s of the field specified by M 
with their positional equivalent as dictated by the translate table. 

Notes: a.} L must be a decimal number less than 961. The entire operand 
must be located in the 1st bank. 

b.) Any combination of 64 possible Ul005 6 bit characters can appear 

in the translation table~ 

c.) Prior to executing the translate instruction the translate table is 
stored in memory locations 0081, 0082, 0094 - 0155. 

d.} The M expression specifies the most f3ignificant location of the 
field to be translated. The conver sion proceeds from the mo st 
significant character to the least for L characters. 

e.) The TRL instruction replaces each character in the field to be 
translated with a character selected from the translate table. 
The basis for selecting the replacement character is the Boolean 
value of the character to be replaced. 

£.) The contents of the transl:=tte table are not altered by the instruc­
tion' unless the translate table it'3elf is translated. 

Example: A three character field containing three 6 bits configurations 
110001 110010 110011 is labeled FDI. Those 6 bit configura­
tions are the BCD (Binary Coded Decimal) codes for the charac­
ters ABC. FDI is to be printed on the UlOOS and must be trans­
lated from BCD to UNIVAC 1005 XS-3 code. The first four 
instructions load the new translate table. 

UNIVAC 7 ( UN IV AC® ~DD5 I SAAL ASSEMBLER CODING FORM -----_ .. ----

PROGRAM PROGRAMMER DATE 

um~r-oP 
FOR BEG CARD ONLY 

SEQUENCE OPERANDS 'COMMENTS LINE INS 

1 3 4 5i 6.7 91011 131415 20 303132 40 

L P,R K 1 I 6 2 1 I I I 7 
S P R T R 1 , 6 21 

I ,7 1 I I 

L A 1 K 2 , 2 I 
I ,/ I I I 

SAl T R 2 ,2 1 I : 1 I --- ~ 

2-54 



The translate function is now executed. 

UNIVAC I UNIVAC· 1aall ISAAL ASSEMBLER CODING FORM ! - -
PROGRAM PROGRAMMER DATE 

UiiL'-o;-
'OR BEG CARD ONLY 

, 
S~QUE .c:. 

OPERANDS I COMMENTS liNe INS , 3 4 5 6 1 910 l' 13~" 5 20 303132 40 \ 
TRL FD 1 , 3 I I I I j 

I I I I / - I ---' 
~ -- - --

The resultant characters stored in FDI are the XS-3 equivalent for the alpha 
character ABC. 

2-55 



STORE ZERO SUPPRE$SEP: SZS M,L 

Function: 

Notes: a.} 
b.} 

c. } 

d.} 

Example: 

Store ascending ;L lea~t significant characters from AR2 into the 
L most sig~ificant character s of the field specified by M sup­
pressing aU leading zeroes. 

L must be a decimal number. 
L characters are transferred in ascending order (least to most) 
from AR2 to the roo~t sigpificant positions of the field specified 
by M. 
Zero suppressin~ will continue unti~ some character other than a 
zero or spaoe is decoded. 
When L is greater t~an the capacity of AR2 the receiving field 
will be space filled. 

Store the five least significant positions of AR2, suppressing all 
leading zeros, int<;> the field labeled TOT. 

UNIVAC I UNIVAC· 1001!5 ISAAL ASSEMBLER CODING FORM ! --.--.-~ 

PROGRAM PROGRAMMER DATE 

"i:m"Ltp;- FOil BEG (:AR~ QM~Y I 
UUUI: N;I: OPERANDS 'COMMENTS ~INI! INS 

I 3 4 5 6 7 9.0 I 13.104 5 20 303132 40 \ 
szs TOT,S I I ' I j 

I JI 1 ./ 
I - .--I 

ioo""""" -- -

AR2 (before) :: 0 .... -"1"""-0 0 0 1 5 
TOT (after):: fj 6 fj 1 5 
AR 2 (afte:r) :;: fj • 6 fj fj 1 5 

2-56 



LOAD WITH SIGN: LWS M,L 

Function: Load ascending L mo st significant numeric character s from the 
field specified by M, into the L least significant character posi­
tions of AR Z . 

Notes: a.) 
b.) 

c. ) 

d.) 

e. ) 

f.) 

Example: 

". 

Insert a sign in the LSL position of ARZ on the basis of the low-

order "X". 

L must be a decimal num.ber. 
L most significant characters of the field specified by Mare 
transferred in ascending order to the L least significant positions 
of ARZ. 
The LSL position of AR2 is exam.ined and a sign is inserted. 1£ 
the value in ARZ is positive it is left shifted one position and a 
space (plus sign) is inserted in the least significant character of 
ARl. If the value in AR2 is negative it is left shifted one position 
and a minus (negative sign) is inserted in the least significant 
character of ARl. 
When L is less than the capacity of AR2 the remaining positions 
of the register are space filled. 
When L is greater than the capacity of the register truncation 
will occur and the most significant characters of the field will be 
deleted. 
All non-numeric bits are deleted by this instruction. 

. Load a five digit negative field called SUM into AR2 inserting a 
sign in the LSL character of AR2 based on the presence or 
absence of the low - order "X" bit. 

-

U~IVAC I UNIVAC· 10D1!5 ISAAL ASSEMBLER COOING FORM ! 
PROGRAM 

1 

Sl!gUE .CI 

LIN! .HI 
3 4 5 

SUM 
ARl 

PROGRAMMER 

'iTeELJ~ 
FOR BEG CARD ONLY 

OPERANDS 
6 7 9 ~o 11 13,4 5 20 

LWS SUM,S I 

I 

~-

= a 6 015 
= 6,...--6 a 6 a 1 5 

2-57 

DATE 
I 

'COMMENTS 
\ 303132 40 

I ~ I J 
I 7 1 1 I 
I ~ 



-~ 

Load a five digit positive field call AGe into AR2 inserting q. 

sign in the LS~ ch~racter of AR2 based on the presence or 
absence of the Low ... order "X'I l;>it. 

UNIVAC I UNIVACe 10a15 ISAAL ASSEMBLER CODING FORM 7 --... ---......--
PROGRAM 

SEOUENCI= 
LINt' INS 

1 3 4 5 

ACC 
AR2 

I I PROGRAt-1MER 

rniEL~ror 
FOR !;lEG f:M~O OIllL Y 

OPERANC>S 
6 7 9 0" 13114 5 ~o 

LW $ AC.C , .s I 

I 

-
~-

= 0 5 0 1 5 
= 6~6 0 5 0 1 5 6 

2-58 

DATE 

I 
I COMMENTS 

' , 
303132 40 \ 

I I I j 
I I I 7 

~ --' 



LOAD NUMERICS: LN r M,L 

Function: Load ascending L most significant characters from the field spe­
cified by M, into the L least significant characters of AR1 or 2. 
During the transfer all zone bits are changed to binary zeroe s. 

Notes: a.) L can be a decimal number ranging from 1 to 21 depending upon 
which AR has been specified by the operation code. 

b.) If a field contains less characters than the register capacity the 
remaining positions of the register will be space filled. 

c.) If a field contains more characters than register capacity the 
surplus positions will be truncated. 

Examples: Transfer a four character constant K1 into the four least signifi­
cant positions of AR 1. 

",---

UNIVAC I UNIVAC· 10015 ISAAl ASSEMBLER COOING FORM ! - .. ---~ 
PROGRAM PROGRAMMER DATE 

I 
ru:arr~r-;;p 

FOR 8'EG CARD ONLY 

SEQUENCE OPERANDS 'COMMENTS LINE INS \ 1 3 4 5 6 7 

i-. -

,:cAR 1 (before) 

Kl 
AR1 (after) 

9 no 11 13.14hs 20 303132 

LNl K 1 , 4 I I ' 

I I I 
I 

=6600134567 
ABCD 

= 666 6 6 6 1 234 

2-59 

40 

I J 
I / 
~ 



~ 

~ 

Transfer a two character constant from Kl into the two least sig­
nificant positions of ARI. 

-

UNIVAC ( UNIVAC::=- 10015 ISAAL ASSEMBLER CODING FORM / ---
PROGRAM PROGRAMMER i DATE 

I 
~,~ 

F9R 8~G CARD ONLY 

5EQU NCE OPERANDS 'I COMMENTS 
LINE INS 

1 3 4 5 6 7 9 ho 11 1314 5 20 303132 40 \ 

--

LN 1 

- ..... 

*ARI (before) 
KI 
ARI (after) 

K 1 , 2 I I 1 

I I I 
I 

= ~ ~ 0 0 I 345 6 7 
- ABC D 
= 6 ~ 6 6 ~ 6 6 ~ 1 2 

I J 
I ./ 

--t 

Since the most significant position of the field is the character spe­
cified by the address M, the two most significant characters of KI 
were transferred. 

Transfer a two character constant fromKl beginning with LSL char­
acter into the two least significant positions of AR.I. 

-

UNIVAC ( UNIVAC- 10015 \SAAL ASSEMBLER CODING FORM / ----. .. --. .... -.-.-

PROGRAM PROGRAMMER DATE 

LABlLt-o;-
FOR eEG CARO ONL Y 

SJ:~U N E OPERANPS !' ICOMME~ns LINE INS 
1 345 6 7 9 011 1~ 104~5 20 303132 40 \ 

--

L N 1 

- --
~:~AR 1 (before) 
Kl 
ARl (after) 

Kl+2,2 J I I I J . 
/' I I I I 

I ---s 

= ~ ~ 0 0 1 345 6 7 
= ABC D 
= 6 ~ 6 ~ 6 6 ~ ~ 3 4 

Since the most significant position of the field is the character spe­
cified by the address M + 2, the two least significant characters of Kl 
were transferred. 

~:~The functions indicated are id~ntical for AR?- with the exception that larger 
fields can be manipulated. 

2-60 



STORE EDITED: SED M,L 

Function: 

Notes: a.} 
b.) 

c.) 

d.} 

e.) 

f.} 

Example: 

~ 

Store ascending L least significant characters from AR2 into the 
L most significant positions of the field specified by M. Suppress 
all leading zeroes and edit the field according to a fixed pattern. 

L must be a decimal number. 
L characters are transferred in ascending order (least to most) 
from AR2 to the L most significant positions of the field speci­
fied by M. 

-

The field will be zero suppre s sed until some character other 
than a zero or space is decoded. 
A period is inserted in the fourth least significant position of 
AR2. 
Commas are inserted for separating significant value s when they 
exist. If the integer value of the field is Ie s s than 1,000 commas 
will not be inserted. 
The rules for truncation and space fill are the same as for store 
ascending. 

Store AR2 edited into the print-buffer. 

UNIVAC ( UNIVACe ~OOS ISAAL ASSEMBLER CODING FORM 7 ------
PROGRAM PROGRAMMER DATE 

rnrur~ 
FOR BEG CARD Otoll Y 

SEQUENCE OPERANDS I COMMENTS LINE INS 
I 3 4 5 6 7 9 011 1314hs 20 303132 40 \ 

SED PR T , 1 01 I I I .J 
I I I I ./ - I .--I -- --

AR2 (before) 
PR T (befor e) 
AR2 (after) 
PRT (after) 

= 
= 
= 
= 

6, • 
(j 

(j (j 

(j.....-6, 1 
(j 1 

0 1 4 001 5 
(j (j (j 6, (j (j (j (j 

4 0 015 
4 0 o 1 5 

2-61 



PUNCH TEST: PTE 

Function: This instruction tests the ready status of the Punch Unit. Con­
trol will not be transferred to the next instruction in sequence if 
the Punch Unit is still active. 

Notes: a.) This instruction is normally given following a Punch command 
(XF PUN) and prior to the first transfer of new data into the 
Punch - buff e r . 

b.} This instruction insures that information will not be transferred 
into the Punch-buffer while it is in the process of unloading. 

c.) Optimum utilization of the Punch-Test instruction will provide 
the maximum overlap of processing with punching. 

Example: Test the Punch before storing AR2 in the Punch-buffer. 

~~IVA~ ( UNIVAC· ~aal!5 ISAAL ASSEMBLER COOING FORM 

PROGRAM PROGRAMMER DATE 

"W'iLJr-o;;- FOR BEG CARD ONL Y 
S_EQU N!;£ OPERANDS I COMMENTS LINE INS 

1 3 4 5 6 7 9 011 l~to4, 5 20 3031 :tt 40 

) 
\ 

prE 1 1 I I j 
5 A 2 PCH, 2 11 

I 

./ J ~ I 

- - I ---' 
". 

B. INSTRUCTION REPERTOIRE -- CARD SYSTEM EXTERNAL FUNCTIONS 

The UNIVAC 1005 Card Processing system has been designed around 
a single address, internal programmed processor and includes as second­
ary units the following: 

- Integrated High Speed Printer 
- Integrated or free standing Card Reader 
- Free standing Punch Unit or Read/Punch Unit 
- Optional free standing Auxiliary Reader 

The Card System External Function instructions pertain to Class III 
and are explained in detail on the following pages. 

Class Ill: Class III instructions are Input/Output or External Function 
Commands, and contain a mnemonic code in the "M" portion of 
an instruction indicating the I/O device or devices to be initiated. 

2-62 



READ CARD: XF 6REA 

Function: This instruction reads a full 80 column card into the U 1 005 input 
Card-buffer. 

Notes: a.) The input Card-buffer area is 80 locations in length, beginning 
with memory location 1 through memory location 80. 

b.) Input Card-buffer locations correspond to card columns, thus a 
character punched in column 1 will be stored in location 1, a 
character punched in column 2 will be stored in location 2 and 
so on. 

c.) As each column is read it is automatically translated from 
Hollerith card code to XS - 3. 

d.) The mnemonic operand field must be preceded by a space. 

(For illustration purposes this space will be indicated by a !!t. for all XF 
instructions) 

Example: Read a card from the Main Reader. 

UNIVAC ( UNIVACe ~aaB ISAAL ASSEMBLER COOING FORM / ------
PROGRAM PROGRAMMER DATE 

~'OP 
FOR BEG CARD ONL Y 

, 
SEQUENCE 

OPERANDS 'COMMENTS LINE INS \ 1 3 4 S 6 7 9 0" 11104 hs 20 303132 40 

X F 6REA I I ' 1 J 
1 I I I ./ 

- 0- I .-J 
:,-- -

2-63 



PRINT-SPACE ONE XF !1PR1 

TWO XF !1PR2 

Function: This instruction prints the contents at the Print-buffer a;ld 
spaces the paper one or two lines depending on the numeric 
modifier specified. 

Notes: a.) The Print-buffer area is 132 locations in length, beginning with 
memory location 161 through memory location 292. 

b.) Print-buffer locations correspond to printing positions, thus, a 
character stored in memory location 161 will be printed at print 
position one, a character stored in memory location 162 will be 
printed at printed position two; and so forth. 

c.) The Print-buffer area is automatically cleared to spaces follow­
ing the execution of each Print command. 

d.) All Printer spacing occur s subsequent to printing, or in other 
words the contents of the Print-buffer is printed, the Print-buffer 
is cleared and then the printer form is advanced. 

e.) The mnemonic operand field must be preceded by a space. 

Example: Print the contents at the Print-buffer and advance the form two 
lines. 

UNIVAC I UNIVACe 1DD1!5 ISAAL ASSEMBLER CODING FORM / ------
PROGRAM PROGRAMMER DATE 

~,~ 
FOA BEG CARD ONLY 

SEQUENCE OPERANDS iCOMMENTS LINE INS , 
1 3 4 5 6 7 9 011 1314 5 20 303132 40 

X F {:, P,R 2 I I I 1 J 
I I I I ./ 

- I -' -.,. -- --

With Alt Switch 2 on/illuminated on all print commands an automatic 
ejection (skip 7) occurs when a one (1) punch is detected in the forms 
control tape. This condition is testable. A JG condition is set if the one 
(1) punch has not been detected. A J L condition is set when the one (1) 
punch has been detected. These settings remain testable until another 
card, print or paper tape I/O command, compare, add or subtract in­
struction is executed. 

2-64 



PRINT" -ADVANCE 7 XF ~PR7 

" Functi'on: This instruction prints the contents at the Print-buffer and ad­
vances the paper until a one, two, four, punc.h is detected in the 
control loop. 

Notes: a.) The Print-buffer area is 132 locations in length, beginning with 
memory location 161 through memory location 292. 

..... 

b.) Print-buffer locations correspond to printing positions, thus a 
character stored in memory location 161 will be printed at print 
position one, a character stored in memory location 162 will be 
printed at print position two, and so forth. 

c.) The Print-buffer area is automatically cleared to spaces follow­
ing the execution of the print command. 

d.) Once the fo rms advance function of the PR 7 instruction is initi­
ated' control is returned to the next instruction in sequence and 
further processing is overlapped during the actual form advancing. 

e.) The fir st line of a form is normally indicated by a control punch 
in all channels of the printer control loop. Hence, an advance 7 
would mean advance the form to the 1 st line of the next page. 

f.) The mnemonic operand field must be preceded by a space. 

U~IV~ I UNIVAC· 10011 ISAAL ASSEMBLER CODING FORM 7 
PROGRAM PROGRAMMER DATE 

~'OP 
FOR BEG CARO ONLY 

SI!I U H:I! 
'COMMENTS LIN! INS OPERANDS 

t 3 4 5 6 7 9 0 t 1 t::lt4 5 20 30::11::12 40 \ 

x F ~PR7 I I I I .I 
I I I I ./ 

"- I ..--r - - --

2-65 



PUNCH: XF APUN 

Function: This instruction punchee the 80 column call;d iInage in the Punch .. , 
buffer., 

Notes: a.} The Punch-buffer area is 80 lo~,ations in length, beginning with 
memory location 293 through :memory location 37Z. 

b.) Punch-buffer locations correspond to card columns, thus a char­
acter stored in location 293 will be punched in card colwnn I, a 
character stored in 294 will be punched in card column 2 and so 
on. 

c.) The Punch-buffer is not cleared following the execution of the 
punch instruction. 

d.} Once the punch cycle has been in~tiated, control is returned to 
the next instruction in sequence and further processing is over­
lapped during the ·punch-cycle. 

e.} As each column is punched it is automatically translated from 
XS-3 cod.e to Hollerith card code. 

f.) The nmemonic operand field must be preceded by a space. 

Example: Punch the card image stored in the Punch-buffer. 

!:!.NIVAC I UNIVAC-' 10aB JSAAl ASSEMBLER COOtNG fORI / 
PROGRAM PROGRAMMER DA,TE 

__ KI! 1 Uiirl:-or" ,Oft £lEG URo. (1M!.. Y I 
OPERANDS l CI.ltieENTS 

l11iJft3~MS5 '. 7: !I ko .' t t31.ti .:. 20 303tH 40; 1 
! X.F !i\p U N t 

I 
I [ .~. / . . . t • . . 

£ 

,/ . L I. ,: I 
L~. " I - "- t ..-I 

.".. --

Z-66, 



READ - PRINT - SPACE ONE: XF .6RPR 

Function: This instruction reads a full 80 column card into the U 1005 input 
Card-buffer, prints th~ contents of the Print-buffer and advances 
the printer form one line. 

Notes: a.) The Read-Print instruction is a combination of the Read Card (XF 
REA) and the Print (XF PR 1) instructions. All notes pertaining to 
these instructions are applicable to the Read-Print instructions. 

b.) During the Read-Print execution cycle both I/O devices will func­
tion concurrently, with the execution time of the faster periph­
erial being overlapped by the slower one. 

For example, in the case of a 400 CPM reader and a 600 LPM 
printer, the execution time required to read a card is sufficient 
so that the print cycle can be completed concurrently. 

c.) The mnemonic operand field must be preceded by a space. 

Example: Read the next card into the Card-buffer, print the contents of the 
Print-buffer and advance the printer form. one line. 

U~IV~ ( UNIVAC· 1001!1 ISAAL ASSEMBLER CODING FORM ! 
F>ROGRAM F>ROGRAMMER DATE 

niiL'r-or 
FOR BEG CARD ONL Y I 

$J:QUE N~ OF>ERANDS I COMMENTS LIN! INS 
1 345 6 7 9 011 1314 5 20 303132 40 \ 

XF 6RPR I I I I j 
I I 1 1 ./ - - .... I --' ,,--- --

2-67 



READ - PRINT ... SPACE TWO: XF i1RP2 

Function: This instruction reads a ful~ ao column card into the U ~Oc)5 in ... 
put Card-buffer, prints the contents of the Print-buffer an~ 
advances the printer form two lines. 

Notes: a.) All notes pertaining to the READ-PRINT-SPACE ONE (XF 
RPR) instruction are applicable to the READ-PRINT-SPACE 
TWO instruction. 

b.) The mnemonic operand field must be preceded by a space. 

Example: Read the ne~t card into the Card-buffer, print the contents of 
the Print -<buffer and advance the prhlter form two lines 0 

UNIVAC I UNIVAC~ 100151 SAA,- ASSEMBLER CODING FORM ( .,V ................ " .ANO c •• "' ••• ,. ..... 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD ON~ Y umlr'"()'Fr SEQUENCE OPERANDS COMMENTS 

LINE INS 
1 34 5 6 7 91011 1314 15 20, 303132 40 

I I 

) X F (j.R P 2 I I I I 

I 
I 

I ,/ 1 I 

I 
I ,/ , . I I. I .... ...L --/ - - - -

2-68 



READ - PUNCH: XF 6RPH 

Function: This instruction reads a full 80 column card into the U 1005 input 
Card-buffer and punches the 80 column card image in the Punch­
buffer. 

Notes: a.) The READ-PUNCH is a combination of the Read Card (XF REA) 
and the Punch (XF PUN) instructions. All notes pertaining to 
these instructions are applicable to the READ-PUNCH in­
struction. 

b.) During the READ-PUNCH execution cycle, I/O devices will 
function concur rently with the execution time of the faster 
peripheral being overlapped by the slower one. 

c.) The mnemonic operand field must be preceded by a space. 

Example: Read the next card into the Card-buffer and punch the contents 
of the Punch-buffer. 

UNIVAC I UNIVAC~ 100B I T D'VI •• .-.. o ••••• " ........ co ••••• ",.'" SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

rurnl'OP 
FOR BEG CARD ONL Y 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 1314 15 20· 303132 40 

6RP.-t 
I J x F I I I I 
I ,7 I I I I 

I I : I I !III/ 
- - L.... - ...J. ----./ - - """'"-""" - -

2-69 



READ-PRINT~PUNCH: XF 6RPP 

Function:. This instruction reads a full 80 column card into the U 1 005 input 
Card-buffer, prints the contents of 'the Print-buffer, advances 
the printer form one line, and punches the contents of the Punch­
buffer. 

Notes: a.) The Read~Print-Punch instructlon is' a combination of the Read 
Card (XF REA), the Print (XF PRl), and the Punch Card (XF 
PUN) instructions. All notes pertaining to these instructions are 
applicable to the Re2.-d-Print-Punch instruction. 

b.) During the Read-Print-Punch execution cycle, all three 1/0 de­
vices will function concurrently, with the execution time of the 
faster peripherial being overlapped by the slower one. Ref. 
Read-Print lnst. 

co) The m.nelTIonic operand field must be preceded by a space. 

Ex.ample: Read the next card into the input Card-buffer, Print the contents 
of the Print-buffer, space the printer form one line, and punch 
the contents of the Punch-buffer. 

UNIVAC I UNIVACe 1DDI!II SAAL ASSEMBLER CODING FORM ( DIVILION.," ." .... ., •• HO c .... "." •• fIt 

PROGRAM PROGRAMMER DATE 

~!~ 
FOR BEG CARD ON L Y 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 3 4 5 67 91011 1314 15 20, 303132 40 

ILlR, PI P 
I J x F I I • I 

I I : I / 
I 't --1 I 

I I 
I ,/ 

i- - -L - --./ - - i- ""-- -

2-70 



FORMS AnV ANCE: XF ,6SI<:~ 

XF 6SK4 

XF 6SK7 

Functions: These instructions will advance the printed form as ind.iGated by 
the forms control;'loop. 

Notes: a.} The Print-buff~r area is not cleared followip.g the executiOll of a 
skip command. 

b.} Once the forms advance qommand ha~ b~en initiated control is 
returned to the l1e:x;t in~tJ;!u~tiRn. in sequence and fu.:rtheJ{ pr~ce s s­
ing is overlapped dVtring the ~ctual form a~vancing. 

c.} The mnemonic operal1d field must be preceded by a space. 

Example: Advance the printer fqrm until a channel two :punch is dete<;:ted 
in the control loop. 

U~IV~r; [ U~IVAC· 10a15 ISAAl ASSEMPL,ER COOING FOR'" 
Ii i 

PROGRAM 
I 

PROGRAMMER 
I i I OATE 

UiiL'~ 
rroYf IP'EG ~~ltt) OIfL't 

SEQUENCE 
OPe:R~ND~ , epMMENTS LINE INS 

1 345 6 7 9 011 131'4hs 20 303' 32 40 

x F ,6SK2 I I I I 

I 
\ 

j 

I I I I ./ 
- 'II 

" ~ 
~ I 

2-71 



READ CODE IMAGE: XF 6RCI 

Function: This instruction reads a full 80 column card into the U 1005 Card­
buffer. The capacity of an 80 column card is expanded by allow­
ing two columns of data to be obtained from what would ordinarily 
be one card column. At the same time, automatic code transla­
ti~n is sus'pe·~ded. Subsequently, theUI005 Card-buffer is in­
cremented by 80 positions. 

Notes: a .• ) The input Card-buffer area is 160 locations in length, beginning 
with memory location 1 through memory location 160. 

1:>.). Input C,ard-:-buffer locations correspond sequentially to card 
.columns •.. Thus ,a cc;:>n£iguration punched in card column 1 will 
be store~ in m,emp;ry lo~ations 1 and 2, a configuration punched 
in card column 2 will he stored in memory locations 3 and 4 and 
so on. 

c.) This instruction increases the data handling capacity of the 
U 1005 in that the primary design is to combine in one card form 
the compact 6 -position UNIVAC XS-3 code with the 12 -position 80 
column punched card code. 

d.)' The mnemonic operand field must be preceded by a space. 

Example: Read a card from the Main Reader in Code Image mode. 

UNIVAC I UNIVAC411 10DI5I SAAL ASSEMBLER CODING FORM 1 DIV'.,."'." ••••••• " .... c ....... ., •• 'JIif 

PROGRAM PROGRAMMER DATE 

" 

~rO'P 
FOR BEG CARD ONL y 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 6 7 91011 1314 15 20· 303132 40 

6.RC I 
I J x F I I I I 

I I : I ,7 
I I : I ,/ 

- --.. - --/ - - - -



PUNCH CODE IMAGE: XF ~PCI 

Function: This instruction punches the card image located in the Code 
Image Punch-buffer into an 80 column card. 

Notes: a.) The Code Image Punch-buffer is 160 locations in length begin­
ning with memory location 293 through memory location 452. 

b.) Code Image Punch-buffer locations chronologically correspond 
to car<;l columns. Thus, the data stored in locations 293 and 294 
will be punched in card column 1, data stored in locations 295 
and 296 will be punched in column 2 and so on. 

c.) The Code Image Punch-buffer is not cleared following the exe­
cution of the PUNCH CODE IMAGE instruction. 

d.) Once the punch cycle has been initiated, control is returned to 
the next instruction in sequence and further processing is over­
lapped during the punch cycle. 

e.) The automatic XS-3 to 80 column code is suspended. 
f.) The mnemonic operand field must be preceded by a space. 

Example: Punch the card image stored in the Code Image Punch-buffer. 

UNIVAC I UNIVAC· 1DDai ( .'Vl ............................. ", ... SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

SEQ U ENe E rr:Ae'EL l r-c;p-
FOR BEG CARD ONLY 

OPERANDS COMMENTS 
1 L1NE3 ~N~ 6 7 91011 1314 15 20, 303132 40 

~PC' 
I ) X F I I I I 
I 

I / I I I 

I I I : I ,/ 
~ -.I. -../ - - - - -

2-73 



READ AUXILIARY CODE IMAGE: XF 6RXC 

Function: Read a card from the Auxiliary Reader in Code Image mode. 

Notes: a.) The READ AUXILIARY code image instruction ,places the prior 
card read in output stacker No.1. ' 

b.) All notes pertaining to the Read Code Image instruction (XF RCI) 
are applicable to the Read Auxiliary Code Image function. 

c.) The mnemonic operand field must be preceded by a space. 

Example: Read a card from the Auxiliary Reader in Code Image Code. 

UNIVAC I UNIVACe ~DDI5I SAAL ASSEMBLER CODING FORM ( •. y, ........ _ ...... AN. c ...... .,., ... 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD ONLY 

LrnLlO'P SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 13 1415 20, 303132 40 

6.R X C. 
I J x F I I I I 

I I : I ,/ 
, I I : 1 I 11/ 

"- --- ---
---..,/ - - - - -

2-74 



READ AUXILIARY WITH STACKER SELECT: ONE XF !6RXI 

TWO XF :6RX2 

THREE XF 16RX3 

Function: This instruction reads a full 80 column card from the Auxiliary 
Reader into the U1005 input Card-buffer and places the prior 
card read in output stacker 1, 2 or 3 as designated by the nu­
meric digit in the third position of the mnemonic operand field. 

Notes: a.) All notes pertaining to the Read Card instruction (XF REA) are 
applicable to the READ AUXILIARY instruction. 

b.) The mnemonic operand field must be preceded by a space. 

Example: Read a card from the Auxiliary Reader and place the prior 
card read in Stacker 2. 

UNIVAC I UNIVAC· 100111 .,y, ............. " .......... _ •• ,. ..... SAALASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

SEQUENCE "l'Ai'E'L l ~ FOR BEG CARD ONLY 

OPERANDS COMMENTS 
1 L1NE3 4N~ 6 7 91011 13 4 15 20, 303132 40 

6RX2 
I x F I I I I J 

I I : 
, 

I ,/ 
. . . I . I : , I ,/ 

- - .......... -'. -./ - - --

2-75 

( 



PUNCH WITH STACKER SELECT: XF 6PSS 

Function: This instruction punches the 80 column card image in the 
Punch-buffer and places the card being punched in the select 
stacker. 

Notes: a.} All notes pertaining to the PUNCH instruction (XF PUN) are 
applicable to the PUNCH SELECT STACKER command. 

b.} The mnemonic operand field must be preceded by a space. 

Example: Punch the card image stored in the Punch;,;.buffer and place 
that card in the select stacker. 

yo~.!.~~.!;! I UNIVACfJ 1DD51 SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

"LA'B"ErlO'P 
FOR BEG CARD ONL Y 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 1314 15 20· 303132 40 

6pss 
I x F I I I I J 
I ./ I I I 1 

I 
T 

l_t ~I / I I., 
~ 

"- .... "'-'-" ~ 
I -J - - - - -

2-76 

( 



ltE;AD/READ PUNCH: XF tJRRP 

Function: This instruction reads a full 80 column card from the punch unit 
into the 1005 input Read/Punch Card-buffer and punches a f1+11 
80 columns from the output Read/Punch Card-buffer into the 
second prior card read. 

Notes: a.} The input Read/Punch Card-buffer area is 80 locations in 
length, beginning with memory location 293 through, memory 
location 372. 

b.) Read/Punch Input Card-buffer locations correspond to card col ... 
umns, thus a character punched in column 1 will be stored in 
location 293, a character punched in column 2 will be stored in 
location 294 and so on. 

c.) Since the Read/Punch Input Card-buffer locations constitute the 
area normally reserved for the Punch-buffer, memory locq.tion.~ 
373 through 452 are used for punching. Subsequently, any data 
in the s e locations during execution of the RRP instructiQn will 
be punched into the second previous card read. 

d.) As each column is read, it is automatically translated from 
Hollerith card code to XS- 3. 

e.) The m.nemonic operand field must be preceded by a space, 

Example: Read A card from the Read/Punch Unit Station 1 and punch the 
card in Station 3. 

CHECK INPUT 
READ PUNCH READ MAGA-

Q 9 Q ZINE 

OUTPUT -STACKERS -••• 41!. _____ ••••• ~ ••••• -- ••••• _._ ••••• ...... 
4 3 2 1 

NORMAL SELECT 
STATION STATION STATION STATION 

CARD PATH THROUGH READ/PUNCH 

UNIVAC I UNIVACe ~DD!51 SAAL ASSEMBLER CODING FORM 1 DIV'.'ON." .... """ ..... ""'0 CO ... OIll ... .,' .... 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD ONl. Y 

'L'A'BELl~ SEQUENCE OPERANDS COMMENTS 
UNE INS 

1 34 5 67 91011 1314 15 20, 303132 40 

6RRP 
I J x F I I I I 

I I : I ,/ 
I 

, 
II I I I 

- ~ -'- - . ...../ - . - - ---,..... - .... 

2-77 



READ/READ PUNCH WITH STACKER SELECT: XF bRRS 

Function:' This instruction reads a full 80 column card from the Read.! 
Punch into the U 1005 Read/Punch Card-buffer and punches a 
full 80 columns from the output Read/Punch Card-buffer into 
the second prior card read, placing that card in the selected 
output stacker. 

Notes: a.) The READ/PUNCH READ ST ACKER SELECT instruction is an 
offset of the READ/PUNCH READ instruction (XF RRP). All 
notes pertaining to the Read/Read Punch instruction (RRP) , are 

. applicable to the READ/PUNCH READ STACKER SELECT in­
struction. 

b.) The mnemonic operand field must be preceded by a space. 

Example: Read a card from the Read/Punch Unit Station 1 and punch and 
stacker select the card in Station 3. 

CHECK INPUT 
READ PUNCH READ MAGA-

g 9 Q ZINE 

OUTPUT -STACKERS -..... --- ..... --- ..... -- ..... ---- ..... -4 3 2 1 
NORMAL SELECT 

STATION STATION STATION STATION 

~ 
CARD PATH THROUGH READ/PUNCH 

UNIVAC I UNIVAC$ "'laos] ( D'V'.'DIII CII" ••••• " •• 1110 cO ......... 'ON SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE_ 
FOR BEG CARD ONLY 

~lOP SEQUENCE OPERANDS COMMENTS f 

LINE INS 
1 3 4 5 6 7 91011 1314 15 20, 303132 40 

bRRS 
I J x F I I I I 

f I : I ./ 
'" I I : I 1/ .... ---- ..... - -'- - --./ - - -

.' 

2-78 



READ/READ PUNCH CODE IMAGE: XF 6RRC 

Function: This instruction reads a full 80 column card from the Read/ 
Punch unit into the U 1005 Read/Punch Card-buffer in Code 
hnage mode and punches a full 80 columns from the output 
Read/Punch Card-buffer into the second prior card read in 
Code Image mode. 

Notes: a.) All notes pertaining to the READ CODE IMAGE instruction 
(XF RCI) are applicable to the READ/READ PUNCH CODE 
IMAGE instruction. 

b.) The input buffer is 160 locations in length beginning with mem­
ory location 293 through memory location 452. 

c.) Si,nce the input buffer locations constitute the ar ea normally 
reserved for the Punch-buffer, memory locations 453 through 
612 are used for punching. Subsequently, any data in these 
locations during execution of the RRC instruction will be 
punched into the previous card read. 

d.) The mnemonic operand field must be preceded by a space. 

Examp~e: Read a card from the Read/Punch Unit Station 1 in code image 
mode and punch the card in Station 3 in code image mode. 

CHECK INPUT 
READ PUNCH READ MAGA-

Q 9 Q ZINE 
OUTPUT -STACKERS -..... ..-- .....•. ~ ..... --- ..... -- ..... -4 3 2 1 

NORMAL SELECT 
STATION STATION STATION STATION 

~ 
CARD PATH THROUGH READ/PUNCH 

UNIVAC I UNIVAC~ ~DCE51 •• Vl.' ..... O •••••• " ...... c ••••• ~,., ... SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

~!r"'QP 
FOR BEG CARD ONLY 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 1314 15 20· 303132 40 

6RRC 
I ) X F 1 I I I 
I 

I / , I J I 
I ,/ I I / I I ..... .... -'. --J - - - --.... -

2-79 

( 



HALT: XF 6HLT 

Function: This instruction brings the computer to an orderly halt. 

, , 

-Notes: a.) All I/O functions in processes will be completed before the halt 
will be effective. 

b.) If the Ul005 is restarted following a HALT the next instruction 
in sequence will be executed. 

c.) The mnemonic operand field must be preceded by a space. 

Example: Halt the computer 

!!.NIVAC I UNIVAC· ~aal!l ISAAL ASSEMBLER CODING FORM 7 
PROGRAM PROGRAMMER DATE 

mEL'~ 
FOR BEG CARD ONLY 

$~JlUI .CE OPERANDS 'COMMENTS LlNf INS 

t 345 6 7 9 Ot1 1314 5 20 303132 40 \ 

x F L1HLT I 
I 

• I .1 I I 

I 7 I I I I 

- :, I -.:::::;;;;T 
"". -- --

2-80 



C. INSTRUCTION REPERTOIRE - PAPER TAPE EXTERNAL FUNCTIONS 
AND CONDITIONAL TESTS 

1. PAPER TAPE EXTERNAL FUNCTIONS 

The Paper Tape Reader and Paper Tape Punch profV'ide the UNIVAC 
1005 with the ability to use paper tape as a direct input media and 
paper tape punch as a direct output media. The reader will accept 
any form of 5 -, 6 -, 7 - or 8- track tape providing odd-parity checking 
when desired. The punch will perforate the aforementioned track 
tape codes providing odd-parity perforating if desired. 

Paper tape reading and punching operations are controlled by the 
program. The input area starts with the fir st position of memory 
module one and will extend for the Tape Block length. Output area is 
designated to start at 0293 and extend for' the Tape Block length. So 
that a wide variety of tape code s can be handled, the Paper Tape 
Reader and Punch functions to transmit or perforate a11. exact image 
of all or part of each tape frame. This selection is through program 
control which specifies 80 column read mod~ for 6 data track read­
ing and punching, Code Image mode for 8 tape track r~aping and 
punching. In the above two modes, the 7th track is available for 
parity checking and the 8th track for special control. For data proc­
essing' the information recorded in paper tape can ,be entered one 
char acter at a time, 80 char acter s at a time, or a v~riable length 
block ended by a configuration of <illl bits present. For further a,s­
sistance in data processing, the Paper Tape Reader permits printing 
and punching of end results directly from pClrper tape without inter­
mediate tape -to - car d conver sion. 

The format of the Paper Tape External Functions requires only the 
mode of punching or reading (80 Column or Code Image). 

The Paper Tape External Function instructions pertain to Clas sIll 
and are explained in detail on the following pages. 

Clas s III: Class III instructions are Input/Output or External 
Function Commands and contain a mnemonic code in 
the "M" portion of ,an instruction indicating the I/O 
device or device s to be initiated. 

2-81 



READ PAPER TAPE: XF ~RPl Read 1 Fra.me 
XF' ,L\RP'8. Read·':S'O Frames 
XF f\RPS Read through Sentinel 

Function: This instruction reads a block of tap~ into the U 1005 Card Read­
buffer. The variable length o~ the block is determined by the 3rd 
character of the rhIiemonicfield. Specifically, RP 1 designates a 
I cha:racter block, RP8 qesignates an 80 character block, RPS 
designates a variable length block ended by a configuratioI+ of 
all bits presento 

Notes: a.)' Substituting a frame in paper tape for a column in the card, all 
notes pertaining to the Read instruction <XF ~REA) are appli­
cable to the Read Paper Tape instruction. 

b.) On a RPS instruction, the all bit present character is read. 
e.) The mnemonic operand field must be preceded by a space. 

Example: Read a block of paper tape 80 char acter s in length. 

~cN.!.~~_~ [ UNIVACaJ> 1CDB I SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER Ofl.TE 

urnl~· 
FOR BEG CARD ONLY 

SEQUENCE OPERANOS COMfV1ENTS 
LINE INS 

1 34 5 67 91011 1314 15 '2O, 303132 40 

~RP8 
I 

--L xF I I 1 I I 

1 
I 

I 
• 

I ./ . I I 
, -~ .. 
, .l.-L...L.,\.......!-1::: 1 I I ::::.~I I t ~ ..... -- - --"'" --

2-8Z 



PU~CH-PAPER. TAPE WIT.HOUT PARITY: XF ~PPI Punch 1 Frame 
XF ~PPS Punch to Sentinel 

Function: This ·instruction punches a block of tape from the U 1005 C.a:rd 
Punch ... buffer. The variable length of the block is determined by 
the3rd character of the mnemonic operand field. Specifically, 
PP 1 de~ign~tes a I character block, PPS designates a variable -
length block ended by a configuration of all bits present. 

Notes: a.) Substituting a frame in.paper tape for a column in the card, all 
note$ pert.ainingto the P.UNCH instruction (XF PUN) instruction 
are applicable to the PUNCH PAPER TAPE instruction. 

-:,; .. 
~\ 

/. ·b.) On a,PPS instruction, the all bit present character, is not 
punched. 

c.) The mnemonic operand field must be preceded by a space. 

~ 
Example: ,Punch. a l.;>lock of paper tape up to but not including the sentinel 

(all bits)." ,. ' 

-

',p~~~~._Y __ .~_ .. __ .C_A"._-:_' __ '_" _.1_' U_". _N::::::~_.a_II_'_I._SA_A_L_A_SS_E_M_BL_E_R ~~::_G_ .FO_R_M--f[ 
. FOR BEGC;ARD ONLY 

SEQU~CE -'~j'~ ~~~~O-P-E-R-A-N-D-S~~~-C-O-M-M-E-NT-S~~~~~~~~~~~~~~ 
" 1~IN'~3 ~~~6 7 "9 10 ~; 13141·5 20. 303132 40 i 

X F 6 P PSI 

1 

.1 I 

I: I J 
L: I ~ 

. .1: 1 1111./ 
----~~------~--------------~------~----'---~----~~~ 

2-83 



;8U!'4'CfI PAPER TAPE WITH PARIl'Y: ~l.,lnGh. l rvann~ 
Pun.~h. ~q S~q~Ii.n~~ 

Function: This instruction punches a bloGk o£ ta:pe witp. p4dr-pit:r;'ity from 
the U 1005 Card Punch-buffer ~ ThfF variable l~ngth of the blo~k 
is defined by the seGond charactel;" pi ~h~ mpemonic qp~ralld 
field. When punching to ,(but :rot iTlclud~ng) sE1!ntinelr all bfts 
constitute the ~ en.tillel ~o:n£ig\l~atiop. 

Note: a.) All note s pe rtaining to the PUN eli PAPER TAPE inst:r;'Q.ctipn 
are applicable to the fl.bove;nstr\lcti~;n/3. 

b.) The mnemonic Qpe;t:~nd field mus~ be pl;"~~eded. by a. ~p~c~, 

Example: Punch a block of pap~r ~ape wftl? o~d""pal'i~y up to b\l.t not ln~ 
eluding the sentinel (aU bite). 

I If UNIVAC I UNIVAQ~ 1ItJdi
• J SAAL ASS~MBL~R COPING FQRM OlY'.'IiiI"" Q" ........ "1' .. ...,0 co ... o •• ".o.,. 

iii ' 

PROGRAM PROG~AMMER i .. DAlfE I 11 I , 
! Ij 

i 

urnJ~ 
FOR BEG CARD ON~ y 

SEQUE ~-CE OPE;RANPS COMMENTSl 
'T 

LINE INS 
1 3 4 5 67 91011 1314 1~ 20, ~O~1~2 40 

X F 6psp • I. I'~ . I •• J 
i I i 

~/ I I • J •• 

, 1 
'I f . 

1"",1 , I I I • , , , 
-.;............101'" ~ 1':1 '7 ..... - - """"'I" "!"I"'" ~' 



2. PAPER TAPE CONDITIONAL TESTS 

Associated with the UNIVAC 1005 Paper Tape System are two (2) Con­
ditional instructions which allow the programmer to test for parity 
error and channel 8 conditions. 

The Paper Tape Conditional Test instructions pertain to Class II anc;l 
are explained in detail on the following page s. 

Class II: Class II instructions contain only an "M" address indicating 
the most significant c;:haracter of an instruction. This format 
is employed exclusively by Jump or Branching instructions. 

2-85 



PAPER TAPE CONDITIONAL TESTS: Jump Parity Error: JPE M 
.;rump Channel 8: Je8 M 

Function: Transfer program control to the instructi()n stored at M if the 
condition specified by the",operation code is present. 

Notes: a.)T,hese instructions are used to test the status of paper tape in­
structions after execution. 

b.)I£ thecop.dition tested is not present, control will not be trans­
ferred and the next instruction in the testing sequence will 
be executed. 

Example: Test results of a previous paper tape read instruction. If the 
condition is true, transfer control to the routlne labeled ERR. 

UNIVAC 
[ UNIVAC~ ~aal5 J f CltVI.tON';'''' ............ ",EII cO_""O.""'ClfIoI SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

rrAB"EL!~ 
FOR BEG CARD ONL Y 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 3 4 5 67 91011 1314 15 20· 303132 40 

I J J P E ERR I I I I I I I I I 
I ,/ I I I I 

I 
I ./ I I I 

L-..... --'. - -./ - - - - -

2-86 



D. INSTRUCTION REPERTOIRE - MAGNETIC TAPE EXTERNAL 
FUNCTIONS AND CONDITIONAL TESTS 

1. MAGNETIC TAPE EXTERNAL FUNCTIONS 

The UNISERVO VI C Magnetic Tape Units provide the UNIVAC 1005 
with the capability of reading and writing IBM compatible tapes at 
densities of 200,556 and 800 Characters Per Inch (CPI). When us­
ing more than one unit, it is possible to read or write any six level 
code at a given density on one or more units, and another code at a 
different density on one or more other units. Seven tape tracks are 
read and written; one parity and six data tr acks. 

Magnetic tape reading and writing operations are controlled by the 
program. Input/Output areas may be the 1st core position of any 
memory bank designated by the programmer. Data checking in­
cludes character parity, automatically performed by all tape units. 
In addition to Read and Write instructions, the 1005 .features the 
Backspace one block, Erase before write, Read at high gain and Re­
wind functions. The programmer has an option of using odd or even 
parity. The UNIVAC 1005 is capable of handling up to 2 Magnetic 
Tape Units. 

The format of the Magnetic Tape External Functions is slightly dif­
ferent in that a Buffer Directive (See Assembler Directives) and a 
length (of block) must be employed. The length, which designates 
the number of characters to be read or written, can be any number 
from 1 to 961. However, on a write instruction the length must be 5 
characters greater than the number of characters to be written. 
When reading variable length records,. the length must be the largest 
number of characters to be read. Reading terminates when an inter-
block gap is encounteredor when the designated length is read, 
whichever occurs last. When the block length is shorter than the 
maximum length, the remainder will be space filled. 

The Magnetic Tape External Function instructions pertain to Class 
IV and are explained in detail on the following pages. 

Class IV: Class IV instructions are Input/Output or External 
Function Commands, and contain a mnemonic code, 
Buffer (BF n), and length in the "M" portion of an 
instruction indicating the I/O device, memory bank, and 
length of operand to be initiated. 

2-87 



READ TAPE: Servo One Normal Gain XF ~RT 1, BFn , L 
Servo Two Normal Gain XF ~RT2, BFn , L 

Servo One High Gain 
Servo Two High Gain 

XF ~RT5, BFn , L 
XF ~RT6,BFn,L 

Function: This instruction reads a block of magnetic tape into the U 1005 
memory. 

Notes: a.) The number of the Servo from which the data is to be read is 
designated by the 3rd character of the mnemonic operand field. 

b.) The BFn mnemonic designates the bank of memory in which the 
data is to be read. (See Assembler Directives.) Reading starts 
in the fir st memory location of the designated bank. 

c.) The L mnemonic is a number from 1 to 961 and is used to de­
termine the length of the block being read. 

d.) Normal tape operations are in odd parity. An asterisk (*) is 
placed in card column 15 to designate an even parity operation. 

e.) To indicate a High Gain Read function, the third character of the 
mnemonic operand field (Servo number) is incremented by 4. 

f.) The mnemonic operand field must be preceded by a space (except 
for even parity). 

Example: Read a block of tape from Servo 2, odd parity, normal gain and 
store data into core positions 0962 - 1461. 

UNIVAC I UNIVAC* 1DD!S I SAAL ASSEMBLER CODING FORM ( .,y •• ,DN •••••• " .......... c ...... .,. .... 

PROGRAM PROGRAMMER DATE 

urn!-oP FOR BEG CARD ONLY 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 1314 15 20, 303132 40 

Ll.R T 2 • ) X F , BJF 2 •• 5.00 1 I I 
I 

1 ,/ I I I 

I I : ~i I 11 I / - - 0-. .-'. --/ - -- - -

2-88 



WRITE TAPE: Servo One XF b.WT 1, BFn, L 
Servo Two XF b.WT2,BFn , L 

Function: This instruction writes a block of data from the U 1005 memory 
onto magnetic tape. 

Notes: a.) The L mnemonic is the number used to determine the length of 
the block to be written. This number must be 5 greater than the 
actual number of character s to be written. 

b.) All other notes pertaining to the READ TAPE instruction are 
applicable to the WRITE TAPE function. 

Example: Write a block of tape on Servo 2, even parity, from core posi­
tions 1923 - 2122. 

UNIVAC I UNIVAC* ~aal!ll SAAL ASSEMBLER CODING FORM ( .,V,.'ON .............. c ........ , ... 

PROGRAM PROGRAMMER DATE 

urnJor FOR BEG CARD ONLY 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 910 11 1314 15 20, 303132 40 

I J x F--, • W T 2 , Bl F 2 , 2 OJ 5 J 1 I 
I 

I / I 1 ~ 

t I 1 J J : 1 IIIJ/ - ~ ...L --...-/ - - - - - -

2-89 



ERASE BEFORE WRITE: Servo One XF ~ERl, BFn , L. 
Servo Two XF ·~ER2, BFn,L 

Function: This instruction i~ used to delay the writing of a block on. 
tape, to insure that a portion of tape is erased before writing on 
it. This instruction can be used to contin:ue an old file or by-pass 
a bad spot by backspacing and then writing again with the ERASE 
BEFORE WRITE instruction (See conditional test - parity error 
recovery example). 

Note: a.) All notes pertaining to the WRITE TAPE instruction are appli­
cable to the ERASE BEFORE WRITE function. 

Example: Erase before write a block of tape on Servo 2, odd parity, 
from core positions 1923 -2002. 

UNIVAC I UNIVAC~ ~DDS I SAAL ASSEMBLER CODING FORM OIVI •• e"" 0" ••••• ., •• ""'0 c ........ " ..... 

PROGRAM PROGRAMMER DATE 

'L'AB'ELI~ 
FOR BEG CARDONLY 

SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 1314 15 20, 303132 40 

~ E R 2 , BIF :2 
I 

X F , 8 5 ,. I. I j 
\ I 7 I I • I 

I ., I I I I : 11111/ 
- ..... ..L .--..,7 - - """'-- .... - -

2-90 

( 



BACKSPACE: Servo One XF 6BSl 
Servo Two XF 6BS2 

Function: This instruction generates the backspace of one magnetic tape 
block (See conditional test-parity error recovery example). 

Notes: a.) The third character of the mnemonic operand field designates 
the Magnetic Tape Servo on which the backspace is to occur. 

b.) BF nJ L is not to be used with this instructio,n. 
c.) The mnemonic operand field must be preceded by a space. 

Example: Backspace a block of tape on Servo 1. 

UNIVAC I UNIVACe 1DD151 SAAL ASSEMBLER CODING FORM ( 01\1,.'0l'1li." ••••• ., ....... c ................ 

PROGRAM PROGRAMMER DATE 

urn lor FOR BEG CARD ONL. Y 

SEQUENCE OPERANDS COMMENTS 
L.INE INS 

1 34 5 67 91011 13 1415 20, 303132 40 

6 B S 1 
I J x F I 1 L j 

I J : I ,/ 
, , I , I : I ,/ 

- - -L - ./ - - - . -

2-91 



REWIND: Servo. One XF l:,R WI 
Servo Two XF .6R W2 

Function: This instruction causes the" tape to rewind to a point past the 
load point. Depression of the LOAD POINT switch~ following 
the'REWlND'instl,"uction, causes the tape to advance to the -load 
point. 

Notes: a. e ) The third character o£ the 'mnemonic operanclfield designates 
which Magnetic Tape ServQ is tope rewound. 

b.) BF n' L is not to be used 'with this instruction. 
c.) The mnemonic operand field must be preceded by a space 8 

Example: Rewind Servos 1 and 2. 

UNIVAC 
IUl\ilVACe 100151 SAAL ASSEMBLER CODING FORM f ..... --............ --........ ~ 

PROGRAM PROGRAMMER DATE 

FOR BEG CARO ONLY 

TA'Be'Lt"OP SEQUE CE QPERANDS COMMENTS 
LINE INS 

1 3 4 5 67 9011 13 415. 20- 303132 ' 40 

X F 6 R.W l. I l ~. . , . I , J 
X.F /1,R,W 2, & .. I : l .• .7 

, r ,/ . , I " I I I • • . .. I - ' L --/ - - _ .... -

2-92 



z. MAGNETIC TAPE CONDITIONAL TESTS 

Associated with the UNIVAC 1005 Magnetic Tape System are two (2) 
Conditional Tape instructions which allow the programmer to test for 
parity error and end of tape conditions. 

The Magnetic Tape Conditional Test instructions pertain to Class II and 
are explained in detail on the following pages. 

Class n: Class n instructions contain only an "M" address indicating 
the most significant character of an instruction. This for­
mat is employed exclusively by Jump or Branching 
instructions. 

2-93 



MAGNETIC TAPE CONDITIONAL TESTS: Jump Parity Error: JPE 1\1 
Jump End of Tape:. JET M 

Function: Transfer program control to the instruction stored at M if the 
condition specified by the operation code is present. 

Notes: ·a.) These instructions are used to test the status of magnetic tape 
instructions after execution. 

b.) H the condition tested is not present control will not be trans­
ferred and the next instruction in the testing sequence will be 
executed. 

Exam.ple: Test results of a previous magnetic tape read or write instruc­
tion. If the condition is true, transfer control to the routine 
labeled PAR. 

UNIVAC f DIV'.'ON." ...... ., •• ND c ....... TION I UNIVAC 4D 100151 SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD ONLY 

rnEL~OP SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 34 5 67 91011 1314 15 20, 303132 40 

I ) J P E P A,R, I _1 1 jJ U M P PAR lIT Y 

I 
I 

I ,/ l~ 

I 
I ,/ , l -' I I I 

- i-. --. ...L ----.,/ - - _ .... - -

2-94 



MAGNETIC TAPE CONDITIONAL TESTS 

One method of handling parity error s is as follows: 

Example: Parity on Read Function 

IUNIVAC~I0051 SAAL ASSEMBLER CODING FORM 
PROGRAM __________ _ PROGRAMMER _________ _ DATE ____ _ 

SEQUENCE LABEL I OP OPERANDS ' I COMMENTS \ 
LINE INS 

30 31132 1 1 3 4 5 6 7 9 10 11 13 14 15 20 40 

t-----FOR BEG CARD ONLY 

I , , , , , , , I,N, ,D,A,TIA, ,D,',V,I,S,I,O.NI .-,L,',T,E,RIA,L, I , , . , , , , , 
I 

· , , C,T,2 +,5, 0,4,0.0,1, I , , , , , , , I • I .C.O.U,N,T, E,R, , I , , , , , , I , , 
· , , , , , , , , , , I , , , 1 , , , , , I I , I I , , , , I I " , , , , , , , -. 

, , , , , " , , , , I , , , , , , , I , I I . , , , , , , I , , , , I , , I , 
, , , , , , , 'iN, , P , R , ° 1 C , E i ,0, U" R, E I ,D,I,VIIIS,I,O,N, , I , , 1 , , , I , , , , 

I 

0,0,1 , , C,L,R C1T,2,+,2,,(2, , , , , , , J , I I , , , , , , , , I , , , , , , I , 
" 

0,0,2 , T,R,D XI F, ,R,T t l",BIF , 2, ,,3,5,0, , , , I IR,E,A~D, ,S,E,R,Vlo, ,1 1 ,N,O,R,M, 
-:J 

0,0,3 , P,T,E JIP,E R,P, E, , I J1 " .L I , I 
" 

, I IT,E.S,T, ,F,O,R, IP,A,R,I,T,Y , , , , I 
0.0,4 , , I J,E,T R, T, E, , , I , , , , , , 

" , , I I I • , , • , , , 1 , , , , , , , , 
,(. 

~.-

, , , , , , , ,) · . , , , , , , , , I , , , , I , , , , I I , I , , , , I 

I). f 
, , , , , I , " , , , , , , , , , , I , , , , , , , , , II , , , , , I , , I 

T , I 0,0,5 , R, PIE I,C, C, T, 2, , I I , , , I I' I , , I II,NIC,R,E,M1E,N,TI ',C, T, RI , , , 
I 

0,0,6 , , , J, L, $, +,1,,5, , I , , , , , , , " I I R, E , P, E, A IT, ,,3, IT, I , M , ' E, S, , , , , 
0,0,7 , I , X,F 1 ,HIL,T I , I , 1 , 1 I , I I , I I H , A, L ,T, ,C , L , E , A IN, ,H, E I A , 0 , , , 

T 

0,0,8 , , , C,L.R C,T,2,+,2, ,12, I , , , , , , , I IR, E , p,' E , A "T, , A , G I A, I , N , , I , , ,\ 

0,0 1 9 , , , X, F, ,B, S, 1, , I , , 
, , 1 

I , , " I I 1 I B, A, C, K, ,S, P, A, CI E, ,S, E, R, V, ° I 1, 
• 

0,1,0 , , , X, FI I R, T, 5, "B IF, 2, ' , 3 , 5, 0, , , , I I R, E, A I 0, ,S , E I R, v I 0, ,1, ,H, I , G, H, , 
• 

0, 1, 1 I , , J, P, E $, +,1,0, , I , , , , , I", , I, IR, E,P, E,A , T, ,N,ol R,M,A,L, ,R I E"A, 0, -. 
0,1,2 , , I J, , P , T,E I +,5, I , , , , , , , , , I IC,O,R,R,E.C,T I , I , , I , , , , , I 

I 

0,1, 3 , , , X, F. ,B, S, 1.. , I , , , I I ,t , I I I B, A , C , K, S, P , A I C , E I , S , E, , R J V • ° . ,1, , 
I , ,f 0,1,4 , , , J, , T, R,D, , I I , , , , I , , , , I IT, ° , ,T, A, P , E, I R 1 E ,A, 0 , , • I 

-" .~.-

SEQNO 001 - Clear Read Parity Error Counter 
002 - Read One Block of Tape from Servo 1, Normal Gain, Odd Parity 
003 - Test for Parity Error 
004 - Test for End of Tape 
005 - Increment the Read Parity Error Counter 
006 - Jump Less to 009 
007 - Counter Equals 4, Halt- and Clean Servo Head 
008 - Clear Counter and Repeat ' 
009 - Backspace Servo 1 
010 - Read One Block from Servo 1, High Gain,Odd Parity 
011 - Test for Parity Error 
012 - Correct, Jump to Seq. No. 004 
013 - Error, Backspace Servo 1 
014 - To Seq. No. 002 



MAGNETIC TAPE CONDITIONAL TESTS 

Example: Parity on Write Function 

IUNIVAC@1005J SAAL ASSEMBLER CODING FORM 
PROGRAM ___ -..-______ _ PROGRAMMER __..--_--____ _ DATE ___ _ 

SEQUENCE LABEL I op OPERANDS . I COMMENTS J 
LINE INS 

30 31132 40 1 3 4 5 6 7 9 10 11 13 14 15 20 I 

t----FOR BEG CARD ONLY 

.I,N, ,D,A,TIA, ,D,I,V, II SII,OINI 
I . I , , , , 1 I , I ,L.t,T,E,R,A.,L, I , , , , , , I 
T 

, , CiT ,1 +,5, 0,7,0,0,1, I I , , , , , , , , I .C,O,U,N,T ElRI , I , , , , , -.l -.l 
I 

I I I L ~ -.l , , 'I , , 1 , I I , _I J , '1 1 I , I , , , I I I I , , 1 , , L ~ 
J 

, I 1 .1 ~ I , I I I , I I , , I , -' ~ ~ .~ , I I , I 1 1 , I J , I , 1 1 _I 111 ..l 
I 

I , , 11 1 , I , , , , I , , 1 I J , , , 1 I I , I • , I , , , I , , , , , I I , 

• , , 1 1 ..1 1 , ',N , IP,R,OIC,EIDIUIR_IE~ ~ D_I '..1 V I I IS, , ,0, N 1 , I I , I I , , I , , .1 ~ 
I 

o ,0,1 , , I C1L"R CiT, 1,+,~, ~12, , , " I I , , I .CjL,E A,R, ,C ,T ,R I I I , , I I , , 
T , , I 0,Q.2 1 T,W R XI F, , W J T, 2, ' I B IF ,2 j '1 1 L 0.i 0 i i .1 , I IW,RII,T,EI ,S,E,RIV,O, ,2, , 
I 

0,0,3 , T,P,E J,PIE WI P, EI I I I I , , II I I, , I IT,E,S,T, ,F,O,R, IP,A,R,',T,y, , 
I 

0,0,4 , , J JLE, T W,O,T, , , I , , , , J J I , , I IT 0. ,E,NID, ,olFI ,TIA,P, EI , , 
1( , 

I ,\ , I , '1 
, , , , , 1 I , , , i ~11 , I I , , , , I , , , I , , , , I , 

J, I I , , , , , , , , , I I , , , I I , , , I I I , , I , , , , , I " , , , , I , 1 
·1 

0,0,5 , WI PjE '_LC I C, T, 1, , , I , J 1 I ..1 ..1 ~..l , I II,N,C,R, ,C,T,R, I , " -, 1 I .i i 
f 

0,0,6 , , , J ,L, $, +11,51 , I 'J 1 I ~ ..1..1.J I I IR,E,PIEIA,T, ,6, IT,I,M,E,S, I i i , 
0,0,7 I L ~ X, F, ,HI L, T, I I , I I , _11 Ii I IH,A,L,T, ,CIL,E,AIN, ,H,E,A,DI ., i 

I , 
0,0,8 I I .1 C-.lL, R C,T.l,+,2,,121' I , _11 .1.1 , I IR,E,P,E,A,T, ,AIGIA,I,N" 1 I -.l ..l J • 
0,0,9 , , 1 Xi F, ,B, S, 21 , I I I , , J .1 1.' , I I B, A I C, K, ,S, P, A, C I E I ,S, E, R 1 V ,OJ ..l 2J 

• 
0, 1,0 I I I X1F, , E I R. 2, ' , B IF, 2" ,1,0.1 OJ. i .. 1 , I IE,R,A,s ,E, ,B.IE.,Flo,R1Ei JWiR,I,T,E 1 

I 

0, 1, 1 , , I J i , T, P, E I , I I , , , , .1 i J ., , I I R , E , P, E, A , T, ,A 1 G I A., , L N L '1i J. i I 

SEQ NO 001 - Clear Write Parity Err or Counter 
002 - Write One Block of Tape on Servo 2, Odd Parity 
003 - Test for Parity Error 
004 - Test for End of Tape 
005 - Increment the Write Parity Error Counter (07001) 
006 - Jump Less to SEQ NO 009 
007 - Counter Equals 7, Halt and Clean Servo Head 
008 - Clear Counter an<l Repeat 
009 - Backspace Servo 2 
010 - Erase Before Write, Odd Parity 
011 - Jump to SEQ NO 003 



E. INSTRUCTION REPER TOIRE - ADVANCED PROGRAMMING 

The advanced programming instructions are applicable only to an Ex­
tended 1005 System and a program which utilizes these instructions can not 
be executed on a 2K 1005 System. 

NOTE: CCA, SC, LAN, LOR instructions require a symbolic tag in 
the operand field. 

JUMP ALTERNATE SWITCH 3: JS3 M 

Function: Transfer program control to the instruction stored at M if 
Alternate switch 3 is on/illuminated. 

Note: If the condition te sted is not pre sent, control will not be trans­
ferred and the next instruction in sequence will be executed. 

Example: Transfer control to the routine labeled FIN if alternate switch 3 
is illuminated. 

UNIVAC I UNIVAC~ 1DDIS I f O'VI.,ON 0" ••••• " ...... 0 ca ...... ,..DI'IoI SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 
FOR BEG CARD ONLY 

'L'ABrri--oP SEQUENCE OPERANDS COMMENTS 
LINE INS 

1 3 4 5 67 91011 1314 15 20· 303132 40 

I J J S 3 FIN I I I I 

I I : I ,/ 
I 

I I I ,/ 
- _ ..... ---- .... --./ - - -

2-97 



JUMP ARITHMETIC OVERFLOW: JOF M 

Function: Transfer program control to the instruction stored at M if the 
Arithmetic overflow indicator is set. 

a.) This instruction is used to test the results of an arithmetic 
operation. 

b.} If the condition tested is not present, control will not be 
transferred and the next instruction in sequence will be 
executed. 

Example: Add the 5 least significant characters of Arithmetic Register one 
(AR1) to the field FDl and test the result for Arithmetic overflow. 

UNIVAC I UNIVAC@ 1DD51 ( D,V'.,,,,,," 0" ......... "' .... 0 cO .. "'O.""'D"" SAAL ASSEMBLER CODING FORM 

PROGRAM PROGRAMMER DATE 

~~~ 
FOR BEG CARD ONL Y

SEQUENCE OPERANDS COMMENTS
LIN E INS

1 3 4 5 6 7 910 11 1314 15 20 303132 40

I
AMl F D 1 • 5 I I I I

J 0 F E R 1
I

ER 1/ I l~1 F o F L~O W .,IG 0 TO

I I I : ~ .. I ~ 1 I I I I I I 11/ - - i- - ...1 - -----./ - - - _ - -

ARl (before and after) = 0000056982
FD 1 (before) = 55692
FDl (after) = 12674

In the above example, the Arithmetic overflow indicator is set and control is
transferred to the routine labeled ER 1.

2-98

COMPARE CHARACTER ALPHA/NUMERIC: eCA M, L~ C

Function: Compare for equality the least significant location of the field
specified by M and L, to the character specified bye.

Notes: a.) L specifies the length and should equal 1. If L is unequal to
l, the least significant location of M will be compared to the
character specified by C.

b.) C specifie s the character M will be compared to and may be
anyone of the 63 valid UNIVAC 1005 character s. If no char­
acter is specified, M will be compared to a space.

c.) The C character must be preceded by a space.

d.) This is a binary comparison and all data bits are considered.

e.) The results of the comparison is recorded in testable indi­
cator s as follows:

(MEM) = C
(MEM) :/: e

JUA (Unequal)

Set

JEA (Equal)

Set

Example: Compare the one character field CD 1 against the character B.

UNIVAC I UNIVAC$ 1DD51 (D,y'.'.'" o • • ~ cO ,..OI'll SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE

tABEi:!~
FOR BEG CARD ONL Y

SEQUENCE OPERANDS COMMENTS
LINE INS

1 34 5 67 91011 1314 15 20, 303132 40

c1qAI CiDi 1;
I j " 1 IB I I I
I

I ,/ I I I

I
I I

I ./ ... - --- - -../ - - -

In the above example, if the contents of CDl contained a B, the JEA (equal)
indicator will be set. If it did not contain a B, the JUA (unequal) indicator
will be set.

2-99

STORE CHARACTER: SC M, LAC

Function: Store the character specified by C into the least significant loca­
tion of the field specified by M and L.

Notes ~ a.} L specifies the length and should equal 1. If L is unequal to
1, the character will be stored in the least significant loca­
tion of M.

b.} C specifies the character to be stored in M and may be any
one of the 63 valid UNIVAC 1005 characters. If no charac­
ter is specified, a space will be stored in M.

c.} The character must be preceded by a space.

Example: Store the character P into the one characte'" field PT8.

UNIVAC I UNIVAC~ 1DD151 SAAL ASSEMBLER CODING FORM (•• ", ••• ONO v ... lltoc ""

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

~~OP SEQUENCE OPERANDS COMMENTS
LINE INS

1 3 4 5 67 91011 1314 15 20, 303132 40

s c P T 8 , 1 ,P
I J I I

,
I

I ./ I I I

1
I ,/

I I I •
i.- --- -- - --../ - - - --

2-100

LOGICAL AND: LAN M, Lac

Function: Compute the logical product of the character specified by C and
the least significant location of the field specified by M and L.
The result replaces the least significant location of the field
specified by M and L.

Notes: a.) L specifies the length and should equal 1. If L is unequal
to 1, the least significant location of M will be used to com­
pute the logical product.

b.} C specifies the character used to compute the logical prod­
uct and may be anyone of the 63 valid UNIVAC 1005 charac­
ter s. If no character is specified, a space will be used to
compute the logical product.

c.) The C character must be preceded by a space.

d.) For each zero bit in the C character the corresponding bit
position in M is cleared to zero. For each one bit in the
C character the corresponding bit in M is retained.

The logical product is formed based on the following truth table:

AND 0 1

0 0 0
1 0 1

i.e. ,

C 9* (M)- (M)
0 Q 0 = 0
0 Q 1 = 0
1 9 0 = 0
1 9 1 = 1

* 0 represents the logical product

2-101

Example: Compute and store the logical product of the character = and the
one character field labeled FD4.

UNIVAC (O'Y'.'."" •• ~" IIt 8,. ,,' • .., ;1 UNIVAC* ~Dal!ll SAALASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
"

SEQU~NCE 'L'A'B"E"L ~ -c;p-
FOR BEG CARD ONL Y

OPERANDS COMMENTS
1 L.

1NE
3 4N~ 6 7 91011 1314 15 20, 303132 40

LA N F04 ,1 1="
I J I • I
.r ,/ I I I f

I I I
':, T

J l I I I 1/
- '-- "L -...-/ - - - - -

C (before and after) a 11111 equals =
FD4 (before) 100JOOequals -I
FD4 (after) 000100 equals + I

In th~ above example, the C character is usedto remove the "X" bit of FD4.

2-102

LOGICAL OR: LOR M, L~C

Function: Compute the logical sum of the character specified by C and the
least significant location of the field specified by M and L. The
result replaces the least significant location of the field specified
by M and L.

Notes: a.) L specifies the length and should equal 1. If L is unequal to
I, the least significant location of M will be used to compute
the logical sum.

b.) C specifie,s the character used to compute the logical sum
and may be anyone of the 63 valid UNIVAC 1005 characters.
If no character is specified, a space will be used to compute
the logical sum.

c.) The C character must be preceded by a space.

d.) For each one bit in the C character the corresponding bit
position in M is set to one. For each zero bit in the C char­
acter the corresponding bit in M is retained.

The logical sum is formed based on the following truth table:

OR 0 1

0 0 1
1 1 1

i.e. ,

C $* (M)_(M)
o $ 0 = 0
0 $ 1 = 1
1 $ 0 = 1
1 $ 1 = 1

* $ represents the logical sum

2-103

Example: Compute and store the logical sum of the character I (apostrophe)
and the one character field labeled FD5.

-

UNIVAC I UNIVAC· 1DDI!II SAAL ASSEMBLER CODING FORM .'\1,, "

PROGRAM PROGRAMMER

1

rrnrr~~
FOR BEG CARD ONLY

SEQUENCE OPERANDS
LINE INS

34 5 67 91011 1314 15 20

. L,Q,R IF 0 S , 1 I'

I

I -- ""'-""'

C (befor e and after)
FD5 (before)

100000
000110
100 110 FD5 (after)

DATE

COMMENTS
303132 40

I j I I I I

I : I ,/
I : I 1/

1 ...-/ - -

equals I (apostr ophe)
equals +3
equals-3

(

In.the above example, the C character is used to add the "X" bit to FD5.

2-104

BIT SHIFT: BSH M, L

Function: Shift circularly one bit, the least significant location of the field
specified by M and L.

Notes: a.) L specifies the length and should equal 1. If L is unequal to
1, the least significant character of M will be shifted.

b.) This is a binary circular shift and all data bits are con­
sidered. The "X" bit is shifted to the "1" bit, the "Y" bit is
shifted to the "X" bit and so forth.

Original Bit

x
y

8
4
2
1

Shifted to Bit

1
X
Y
8
4
2

Example: Shift circular one bit, the one character field FDI.

--

UNIVAC
DtV'._." Y,.

PROGRAM

SEQUENCE ~ l op
1

l1NE
3 4N~ 6 7

1.1.

-

91011 1314

B S,H

-- _
FD 1 (befor e)
FD 1 (after)

I UNIVAC· 100151 SAAL ASSEMBLER CODING FORM

PROGRAMMER
FOR BEG CARD ONLY

OPERANDS COMMENTS
15 20, 303132

F 0 1 , 1 . I

I

I

I I

011110
111100

-
equals <
equals Z

2~l05

I
I •
. I

I I

I :
..L -

DATE

40

I J
I 7
I ,/
- -;:::::;7

(

F. INSTRUCTION REPERTOIRE - EXTERNAL FUNCTION COMBINATIONS

To provide a greater degree of flexibility, the External Function Combi­
nation instruction (XFC) augments the individual External Function (XF) in­
structions. In using this instruction, the programmer as signs the "neces sary
machine codes for desired Input/Output combinations. This provides for
Concurrent execution on the Reader or Auxiliary Reader, Printer, Punch or
Read/Punch, Paper Movement and Program Halt.

The Card System External Function Combination instructions are ex­
plained in detail on the following page"s.". The instruction format depicts the
bits absent necessary to perform Read, Print and Punch operations.

2-106

INSTRUCTION FORMAT XFC

COL. 16 COL. 17 COL. 18 COL. 19

X Y 8 4 2 1 X Y 8 4 2 1 X Y 8 4 2 1 X Y 8 4 2 1
B B B BB
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

COLUMN 16 'X' B1 Always Present Not Used
'Y' B2 Absent Print Space 1
'8' B3 Absent Print Space 2
'4' B4 Absent Skip 1
'2' B5 Absent Skip 2
, I' B6 Absent Skip 4

COLUMN 17 'X' B1 Always Present Not Used
'Y' B2 Absent Read
'8' B3 Absent Read/ Auxiliary
'4' B4 Absent Read/Read Punch
'2' B5 Absent Punch
, l' B6 Absent Halt

COLUMN 18 'X' B1 Absent Stacker Select 2 - Aux. Reader
'Y' B2 Absent Stacker Select 3 - Aux. Reader
'8' B3 Absent 1. Stacker Select - Punch

2. Paper Tape Parity Punch
'4' B4 Absent Paper Tape Read 1 Frame
'2' B5 Absent Paper Tape Read Through Sentinel
, l' B6 Absent Paper Tape Read 80 Frames

COLUMN 19 'X' B1 Absent Paper Tape Punch 1 Frame
'Y' B2 Always Present Not Used
'8' B3 Absent Read Code Image
'4' B4 Absent Punch Code Image
'2' B5 Absent Paper Tape Punch To Sentinel
, l' B6 Absent Paper T ape Punch Channel 8

2-107

A table to determine the codes necessary for many combinations follows:

CARD CARD CARD CARD
COL. COL. COL. COL.

Function 16 17 18 19

Group 1 Print and Space 1 ~))
Print and Space 2 U))
Skip 1 Y))
Skip 2):())
Skip 3 W))
Skip 4 >))
Skip 5 X))
Skip 6 Z))
Skip 7 V))
Print and Skip 1 Q))
Print and Skip 2 ())
Print and Skip 3 0))
Print and Skip 4 @))
Print and Skip 5 P))
Print and Skip 6 R))
Print and Skip 7 N })

Group 2 Read ~)
Read Code Image ~ U
Read Auxiliary Stacker

Select 1 U
Read Auxiliary Stacker

Select 2 U =
Read Auxiliary Stacker

Select 3 U ~

Read Auxiliary Code
Image Stacker
Select 1 U U

Read/Read Punch W }
Read/Read Punch Stacker

Select W U
Read/Read Punch Code

Image W Y
Punch n)
Punch and Stacker

Select }:(U }
Punch Code Image l:1) y

Halt > })
Read and Punch ())
Read and Halt @ })

2-108

Group 2
(contld.)

Group 3

Group 4

Function

Read, Punch and Halt
Punch and Halt

Read Paper Tape
1 Frame

Read Paper Tape
1 Frame Code
Image

Read Paper Tape
80 Frames

Read Paper Tape
80 Frames
Code Image

Read Paper Tape
thr ough Sentinel

Read Paper Tape
thr ough Sentinel
Code Image

Punch Paper Tape
1 Frame

Punch Paper Tape
1 Frame with
Parity

Punch Paper Tape
to Sentinel

Punch Paper Tape to
Sentinel with
Parity

CARD
COL.

16

2-109

CARD
COL.

17

R
Z

11

II

II

CARD
COL.

18

Y

y

>

>

!1

U

U

U

CARD
COL.

19

U

U

U

=

=

):1

11

EXTERNAL FUNCTION COMBINATIONS: XFC nnnn

Function: This instruction augments the individual External Function In­
structions. In using this instruction, the programmer as signs
the necessary machine codes for desired Input/Output combi­
nations.

Notes: a.} XFC is the mnemonic operation entered in card columns
11-13.

b.} The machine code operand field must be preceded by a space
in card column 15.

c.} The applicable I/O function codes are entered in card columns
16-19.

To use the table, select all applicable I/O functions to be performed upon
execution of the XFC instruction.

ExalTIple:

UNIVAC I UNIVAC~ ~DD!51 SAAL ASSEMBLER CODING FORM O' D ... O .. ••••• " .""'0 co •• o."",o ...

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

um!~ SEQUENCE OPERANDS COMMENTS
LINE INS

1 3 4 567 91011 1314 15 20 303132 40

XFC U ()) I I'
I

I IRE AD, P RT "1 S P 2 P U,N J
I

I ,/ I I I I

XFC !:Ju!:J) I
I

lSE L ,/ I I R. E AD. • A1U.,x ,SIT K ,3

* I I : PR T , S P 1 I ~
. I I : I ,/

i.- --- --/ - -" -

2-110

1

G. INSTRUCTION REPERTOIRE - 1005 DATA LINE TERMINA'L-3
EXTERNAL FUNCTIONS and CONDITIONAL TESTS

1. DLT-3 External Functions

The Data Line Terminal-3 is an optional feature to the 1005 that
enables the 1005 to communicate via telephone circuits while
proces sing. This ability is provided by utilizing independent con­
trol and buffering circuitry. Data is transmitted at the rate gov­
erned by the modem employed. DLT-3 used by the 1005 may com­
municate with a 1004 having either a DLT-l or a DLT-3, another
1005 with DLT-3 and any other compatible device.

The 1005, with this feature, will process data and transmit or receive
data simultaneously.

Note: Input/Output operations are specifically excluded from
overlap, i.e., do not execute any XF functions between
the Send or Receive instruction and the Pause Test in­
struction.

The same principle of simultaneous execution and time - sharing of
storage applies to DLT operations as it does to reading, printing and
punching, except that DLT-3 is not instruction dependent. Whereas
reading and printing are preformed entirely during a single instruc­
tion execution, DLT operation can occur throughout many instructions,
as does the punching operation. A PTE instruc,tion (Pause Test)
~erves to interlock the processor if the DLT is transmitting or re­
ceiving.

2. General

Both equipments, to communicate, must have the DLT option. Assutn­
ing they are both 1005' s, and have DLT-3, they must both be using the
same type of data set. The data sets are used in the half-duplex
mode, i.e., communication can be in one direction only, at one time.
Both the transmitting and receiving functions "may take place inde­
pendently of, and concurrently with data proces sing functions. The
maximum rates of data transmission are: the 201A Data Set - 2000
bits per second; the 201B Data Set": 2400 bits per second. The DLT
circuits' use a 7 - bit character - 6 data bits and 1 parity bit.

The DLT-3 storage area is simi-fixed, and of variable length. The
beginning location is Module 1 po sition 0435. The ending location may
be Module 1 position 0434 with automatic wrap around from 0961 to
0001, i.e., transmission is fixed to 961 characters. The transfer from.
DLT storage to the Data Set will be descending in a continuous se­
quence. The message length is controlled by the program when trans­
mitting. When receiving, the End of Message character received will

2-111

halt the descending locations. The send/receive buffers, maybe
used for internal processing. Precaution should be observed to pre­
vent internal processing from prematurely changing the data to be
transmitted (or the Data received).

A prescribed transmission format must be used in all communica­
tions. The message (useable data) must be preceded by a least four
synchronization characters (the letter S in UNIVAC XS-3 code); and
one character of no bits. The Send 80 message must be followed by
an End of Message character (the letter B in UNIVAC XS-3 code); and
one character of no bits.

The Send through Sentinel message must be followed by a sentinel
'\\ ". .

character, (the character) in UNIVAC XS- 3 code), an EOM character
and one character of no bits.

The storing of these characters is the responsibility of the program­
mer. All of this information must be in the storage area beginning at
Module 1 position 0435 during each transmis sion. When receiving an
80 character transmission from another 1005, only the message
(useable data), the EOM character, and the Longitudinal. Parity
character will be stored in the sequentially allocated DLT storage
area beginning with Module 1 position 0435. When receiving more
than 80 characters from another 1005, the message, the sentinel
character, the EOM character and the LP character will be stored
sequentially. The LPC is automatically placed in the no bits position
following the EOM character by the transmitting 1005 and will vary
depending upon the total bit content of the message. Receiving will
terminate automatically when the EOM and the LPC characters are
stored.

Error detection is provided in the form of transverse parity, longi­
tudinal parity, and incomplete-message checking. In the event of
abnormalities, an error signal is provided for the program to test or
ignore. The error instructions should be used to alter the program
sequence to effect corrective action.

3. Transmitting

Before each transmission, the message data is assembled in DLT
storage:

1) The program must place four synchronization characters (letter
S UNIVAC XS-3 code) initiated in the data division in Module I
positions 0435 through 0438.

2) The program must place a no-bits character (Space, UNIVAC
XS-3 code) in Module 1 position 0439.

2-112

3) To send 80 characters, the program must place the message
(useable data) froIn Module 1 positions 0440 to 0519. No Sentinel
is required and the char"acter If)" is permissible within the mes­
sage.

4) To send other than exactly 80 characters, the program must place
the message from Modu.le 1 position 0440 to any length less than
955 positions with a Sentinel immediately following the last
character of useable data. The character ")" is not permissible
within the useable data.

5) The program must place an End of Message character, (letter B
UNIVAC XS- 3 code) initiated in the data division) immediately fol­
lowing the last character of useable data in an 80 character mes­
sage and immediately following the Sentinal character in all other
messages.

6) The program must place a no-bits character (Space, UNIVAC
XS-3 code) immediately following the End of Message character.

The 80 character message area per transmission is therefore at least
six locations greater than the message length and all other are seven
greater.

Illustrated in Figure 1 is the format of a DLT-3 message and the al-'
location of DLT- 3 storage.

ROW 15
16
17
II

II

"
II

"
II

31

FIGURE 1

COLUMN
123456789 - - - - - - - - - - - - - - - - - - - 31

.l)BA

SSSSAt)B r
,B..6. The message could

occupy this single
location

\ or could extend Ito 0519 f or an 80
character message~

or to any other location J

2-113

After assembly of all information based on the above recommenda­
tions, utilization of the transmit instruction may be effected.

4. Receiving

No receiving format is required and any information in the receive
area will be overlaid by the incoming message. The first character
to enter storage in the re ceiving 1005 will be the first mes sage
character. The synchronization character s and the Start of Me s sage
space, initially transmitted by the other machine, will not enter
storage. The first message character will enter Module 1 position
0435; all remaining message characters will be stored in a con­
tinuous descending sequence. The Sentinel or End of Message
character will enter the location following the last message charac­
ter. The Longitudinal Parity Character will follow the EOM charac~
ter in storage.

A Receive operation is accomplished by the Receive DLT to EOM
instruction. Once the receive operation is initiated in this manner,
the 1005 may proceed to succeeding instructions. The DLT circuits
will wait for the first character and then store the message as it is
received. When the LPC is received, this character is automatically
compared with an LPC that is generated by the receiving 1005. Re­
gardless of the results of this comparison, the LPC enters receive
storage in the location following the EOM character. Upon entry of
this character, the receive operation terminates.

5. Error Conditions

An error signal is available for testing should any of the following
occur during a Receive operation:

1) One of the mes sage cha.racters is of even parity, and is not the
EOM character.

2) The Receiving DLT does not synchronize on any of the synchroni­
zation characters.

3) The Receiving DLT does not complete the Receive order within 15
seconds.

4) The received LPC does no't agree with the generated LPC.

5) The EOM character is not detected, or is incorrect.

Of the above five error conditions, the first one will result in less than
expected storage used, with the properly received message characters
in their respective locations, followed by the improper character. The

2-114

1

second error type will result in nothing being entered into Receive
storage; after 15 seconds the Receive operation will terrninate. The
third condition can be caused by no transrnission, and will result in
nothing being entered into Receive storage. The fourth condition will
result in all expected Receive storage being filled, and an irnproper
LPC. The fifth error type rnight result in rnore than the allocated
storage being used. If the EOM character is received as an odd
parity B, due to los s of the parity bit, it will be transferred to
rnernory and the DLT will continue to look for rnore data. If the
LPC also happens to be of an odd bit configuration, this too will enter
Receive storage. There should be no further data reception, but
noise in the transrnission systern rnight result in the reception of
another erroneous character, which wil~ be entered into storage.
Thus, one location rnore than expected rnay be used.

6. Instruction For~ats External Functions

SEQUENCE
LINE INS

3 4 5

L I 1

, , I

, , ,

, I ,
I , ,
t .1 I

I , ,

I , I

, I ,
I , I

, , ,
, I ,
, , ,
, , ,

SENDDLT 80 CHARACTERS: XF ~SN8

Function: This instruction sends 80 characters frorn the DLT buffer
via telephone circuits to any other cornpatible device.

Notes: a.) The rnessage forrnat must be cornpleted prior to this
instruction.

b.) No operand is specified.
c.) The mnenornic operand field rnust be preceded by a space.

Example: Forrnat the message and transmit 80 characters.

LABEL op OPERANDS I COMMENTS

6 7 9 1011 13 14 15 20 30 31132 40

I , , I I liN I IDIA,TIA, ,'D, I ,V, I • S, I, 0, N 1 I , , , I , I I I I I I 1 , , I
I

\ ,
50

I I I 1\

" SIYI N +1 4 , SI SIS, S, , I I , I I , , I , , I IS, Y, N I C I H, R, 0, N, II Z I A I T ,I ,0, N, I C, H IRLS~
I

, , , , I I I I 1 l 1 , , , , , , J , I I I , . L I , , , I , I , , , , , , I I ,
I

, , , , I , , , I I , I , , I , , , , I , I , , , , , I , , , , I , , i I 11
I

I , I , 1 IN, I PI R, 0 I C IE, Dl Ut RL E I ,D,I,VIIIS,IIOiNI I , , , I I I , , , , , I , I I
I 11 , , L,A,l S. Y ,N, ' 14 I I , I , , , I , I I IS,S,S,s, ,T,O. ,SIE,N,D, ,ALRiEIA.l ~
I

, I P,T,E I I , I , I , '1 , , , , I I IPJA.lU.lS,E, ,T,E,SIT, , , , I , I I I I
I

, , SJA,l B, U, F, ,,4, , I , I , , , , , , 1 IB,U,F, ,S,T,A,R,TIS, JA1 T1 1°,4,3,5, 1
I

, , S ,C, B, U, F, + 14, ,,' 1, , , , , , , , I IS P,A,C,E , ,T,O, IS,E,N,D, ,A,RIEi A, I
I

, , L,P,R C,R I D,+1 8 101 , , , I I , , , , I 1M ° VIE, ,M,E,S,SIA,G,E, ,T,O, , 1 , I
I , , S,P,R B,U IF,+,5, '18,0, I I I , , , , 1 IS,EIN,D, ,A,R,EJAI , , , , I , , , , ,

I
, I S ,C, B, U, F , + , 8,5 , ' , 1 , ,B, , I , , , I IE, 0, M, , C, H I A, R , A I C', T , E , R I ,A I DID I E 1 D ~

I

I t , , SIC, B, U I F 1+,8,61 ' I 1 , , , , , I , , I IS,P,A,C,E, ,A,F,TIE,R, ,E, 0, M, , , ,
,/ , f X,F, .i S 1 N J 8, , , I I , , , I , , , I JT J R 1 A t N,S,M 1 1 ,T, 18 I ° I IC,H,A,~,. , - 7' -- --

2-115

SEQUENCE
LINE INS

1 3 4 5

, , ,
, , ,
, , ,

I ,

, , ,
, , ,

, , ,

, , I

, , ,
I , ,
, , ,
, , ,
, , ,
, , ,
, I I

~-"

SEND DLT THROUGH SENTINEL: XF .1SNS

Function: This instruction sends from 1 to 953 characters from the
DLT buffer via telephone circuits to any other compatible
device.

Notes: a.} The message format must be completed prior to this in­
struction.

b.} The XS-3 character "}" must immediately follow the
message and is not a permissible character within the
useable data.

c.} No operand is specified.
d.} The mnemonic operand field must be preceded by a space.

Example: Format the message and transmit 132 characters.

LABEL t OP OPERANDS I COMMENTS

6 7 9 10 11 13 14 15 20 30 31b2 40 50

I
, I i ..1 I ,N I ,D, A, T I A, ,D, IJ VI I t S..1 1..1 01. N I I , I , 1 , I , , I , , , , , ..l ..1 ..1 J 1 i

I

S, Y ,N ,4 I S, S, s, S, , I , , I I I I I I I I ISIYINICIHIRIOINIIIZIAITIIIOINI I CI HI RI S I

, , , , , I , I , I , , , I , , , , , I I , , , , , , I , I , , , , , , , 1 I I ,
I

, , , , I , , I , I I , , , , , , , , I I , , I , , , I I , , , , , , 1 , , I ,
I

, , , I,N, ,P,RIOICtE,DtUl.RJEL _lD,I,VII.S,I,O,N, , , , , I , , , , , i ...L i i 1 i
I

, , L, A, 1 S, Y ,N, ' ,4, I , , , , , , , , I IS,S,S,S, ,T,O, ,SIE,N,D, ,A,R,E,A , I ,
I

, , Pi T...l E , , , , , I , , , , I , , , I ,P,A,U,S,E, ,T,E,SITi I II i1. ...l _1 I 1 ...l
I

, I S ,A, 1 B, U, F I ' ,4, I , I , , I I , , I I IB,U,F, ,SITIA,RITISI IA,T 1 1
0

1
4

1
3

1
5

1 I I
I

, I S...l C, B,U,F,+,4,'1 1 , , , , , , , I .S,P,A,C,EI1T10 1 I S I EI NI DI I AI R I E I AI I I
I

, , L, P...lR M,E,S,',1,31 2 , , , , I , , , I IM/O,VIE, ,M,E,S,SI A I G,E'IT ..l°1..1 ..1 J 1 i
I

, , S,P,R B I U,F,+,5,'11,3,2, , , , , , I I IS,E,N,D, ,A,R,E,AI , , , , , I I , , I I
I

I i sJc..l B,U,F,+,1,31 7 "1 1ti)' I 1,1 I .S,E,NITII,N1E1L, I~~~~~ iM..l E..1 Sl slAi G
I

, , S ,c, B,U,F,+,1,31 8 ",1, ,B, I , , 1 I IE,o,M, ,C,H,A,R,Alc,T,E,R, I , t t , 1 _1 ,
I , SICI B I U,F'+1 1 ,31 9 "1 1 , I , 1 I 1 L 1 JS,P,A,C,E, ,A,F,TIE,K, ,EIO,M I J , 11 i

, , X/I ,s, N, S, , I , I I I , I , , ., I ;T,R A,N,S,M, I IT, 11 ,3,2, ,C,HIA,R,.~
!. - -- - -

2-116

1

RECEIVE DLT TO EOM: XF ARCD

Function: This instruction receives data from. the Data Line
Term.inal.

Notes: a.} The first lllessage character will enter Module 1 posi­
tion 0435.

b.} Message characters will be stored in a cQntinuous de­
s cending sequence.

c.} No operand is specified.
d.} The m.nemonic operand field must be proceded by a space.

Example: Receive to end of message.

SEQUENCE LABE~ t OP OPERANDS I COMMENTS
LINE INS

20 30 31132 40 3 4 5 6 7 9 1011 13 14 15

I

I

_\

1 1 1 ~ 1 XI F, LR.C,O, I I ..l--1..l.l.1 -' -.t..l..11 --.R..lE-.tCJE11, V,E~ -.lTl0.1 ~EIOIM..l ..l ..l

•
I I ~ ..l I lL ..l I I I I I I I ~. ~ I I 1 I t I I .IL .L I I I I I I lL I 1 I I l

•
I I I ~ I I 1 I _1.1 1 ..l 1 ..l .1 ..l J Jj .1_L--'.11~--'. I I I I .1 -.l 1 J..l I 1.1 ..l ..l ,

I I I I ,f L 1 ~ --'. I l ~ ..l I I I I I ~ .1 --'. --'. I I I I I II _1 _I I I I I I I I i

----- ~ -' ~- -
~--~ -

In the example above, the 1005 could receive from 1 to
953 characters.

2-117 .,

1

~

7. Instruction Formats Conditional Tests

Associated with the DLT-3 system are three (3) conditional instruc­
tions which allow the programmer to test for ready, interlocked and

error conditions.

The 1005 DLT-3 Conditional Test instructions pertain to Class II and

are explained in detail.

a) Pause Test: PTE

b) Function: This instruction tests the ready status of the DLT-3.
Control will not be transferred to the next instruction
in sequence if the DLT-3 is still active.

Notes: a.) This instruction is given following a transmit or
receive command and prior to the first transfer of
new data into the DLT buffer.

b.) This instruction insures that information will not be
transferred into the DLT buffer while it is in the
proce s s of transmitting 0 r receiving.

c.)

Example:

Optimum utilization of the Pause Test instruction will
provide the maximum overlap of processing with DLT
operations.

Test the DLT buffer before Inoving the incoming mes­
sage to print area.

SEQUENCE LABEL t OP OPERANDS I COMMENTS
LINE INS

3 4 567 9 10 11 13 14 15 20 30 31132 40

• I •
I • P.TIE • I I • I I •• I I I I •• • I

I
,P.AIU I s.E. ,TIE,Sp •• • I , •• ,1
I

,
• • I L.P.R B,U1F. ,,8,° 1 I , • I , , , , ~ J .M.E S,S.A,G,E, ,TIO, ,P,R,I,N,T. ,

I

1 I • I I I I I' I I I I I I I I I • , J I , , I I I , I I I I I I I L I , , I
I

, , . , , I , , • I , , , , , , , , I I , , I I , I , I , . I , I I I ,

I

~ _L I I • I , , J I •• I , , I I I • I , • I I I • I , I I • I I I I I , I , • I --- - - ; ~ - --

2-118

1

JUMP END OF TIME: JET M

JUMP PARITY ERROR: JPE M

Function:

Notes: a.}

b.}

c.)

Exam.ple:

Transfer program. control to the instruction stored at M
if the condition specified by the operation code is pres­
ent.

These instructions are used to test the status of the
DLT-3 after execution of send or receive.
If the condition tested is not present, control will not
be transferred and the next instruction in sequence will
be executed.
Do not issue any Input/Output instructions between the
receive instruction and the JPE instruction.

Test the status of a previously executed Send or Receive
instruction. If there was an error in the m.essage or no
m.essage received in 15 seconds, transfer control to the
routine labeled ERR.

SEQUENCE LABEL OP OPERANDS I COMMENTS
LINE INS

3 4 5 6 7 9 10 11 13 14 15 20 30 31132 40

J

\
I

I
I I I I I{ 1 I I _l _I JIE1T E 1 R I R, I I I I I I I I I I I I • 1 I 1 I I

I

I I I I I J I PIE E I R I R I I I I I 1 1 it I 1 1 1 1 I I I I 1 I 1 I I I I

•
I I I 11 I 1 I

I

I L J J/ I I I I I I 1 I I I I L 11 I I I I I I I I 1 I I
I

I I I 1\ I I I I 1 I I I I I I I I I I I I I I I I I I I 1 I I I

- - I J --

CHAPTER 3
1005· SOFTWARE

I. THE UNIVAC 1005 SINGLE ADDRESS ASSEMBLY SYSTEM

Associated with a programming system is a machine language program
called an Assembler. The Assembler accepts a program written in
symbolic language (source program) and converts it into machine lan­
guage (obj ect program).

The symbolic language used by the UNIVAC 1005 Card Proces sing Sys­
tern is single addres s in design and is intended to provide an easy to
learn, easy to use tool whereby data processing requirements can be
translated into machine coded instructions.

The machine language program or assembly system associated with the
UNIVAC 1005 symbolic language is called SAAL (Single Address As­
sembly Language). This assembly system consists of two passes,
SAAL 1 and SAAL 2.

A. SAAL 1 (Illustration l) Trial Balance Sample Program P2-4
-----.- .. ~ .. --.----.. ---------------------------

The first pass, SAAL 1, relates each symbolic reference (label) in
the symbolic program (source program) with its appropriate posi­
tion in co·re memory. This relationship between symbolic labels in
the source program and core memory position is retained in mem­
ory and utilized in SAAL 2. This relationship is commonly referred
to as the "TAG" or "LABEL" Table.

1. Card Input - Original Symbolic Program

The Symbolic Input Card format is as follows:

Card Columns

1- 3
4- 5

~, 7 - 9
11-13

~:o:'l5 - 31
':0:'32 -48

62-65

Description

Sequence number
Sequence number (insert)
Label
Operation
Operand
Comments
Program 1. D.

* Two labels are prestored, ARI and AR2. The programmer can
reference these labels without prior definition.

** Literal instructions use columns 15 -48 to generate constants.

2. Output

a. Punched Card - None
b. Printer - Listing of the label table relating each symbolic ref­

erence (label) in the symbolic program (source program) with
its appropriate position in core memory.

3-1

The Label Table Listing format is as follows:

SEQ #
LBL
LOe
ERR

De scription of Fields

- From source program
- From source program
- As signed location of the label in memory>
- Assigned error codes

NOTES - Pos sible errors are as follows:

1) ERR NO BEG eRD is printed, paper is advanced to the next
page and the program halts - Indicates the BEG card does
not precede the source program.

2) ERR OP IN DATA DIV is printed, paper is advanced to the
next page and the program halts - Indicates' an illegal di­
rective, data description, literal or comment punched in the
oper ation field.

3) DUP printed under ERROR heading - Indicates a duplicate
label and is not stored in the label table.

4) >148 printed under ERROR heading - Indicates the maximum
number of labels has been exceeded (148 labels).

5) OVM printed under ERROR heading - .. Indicates the maximum
memory has been exceeded (3844 positions).

3-2

3. LABEL RESERVATIONS - The following labels are used by the
SAAL Assembly System to define specific I/O functions. The
programmer should exercise care that labels referenced as an
external function {referenced in an XF instruction} are not dupli-
cated as a line reference point or operand.

SK2 RPH RPS WTl SN8

SK4 RCI RP8 WT2 SNS

SK7 PCI PPl ERl RCD

REA RXI PPS ER2

RPR RXC RWI

RP2 RX2 PIP RW2

RPP RX3 PSP BSI

PRI PSS BS2

PR2 RRP RTI SII

PR7 RRC RT2 SI2

PUN RRS RT5 RII

HLT RPl RT6 RI2

Example: The following coding will cause a duplicate label.

XF REA

REA LAI FDI

B. SAAL 2 (ILLUSTRATION 2) TRIAL BALANCE SAMPLE PROGRAM
P2-4

The second pass, SAAL 2, interprets ~ach operand field in the source
program, determines its length and core position using the "LABEL"
Table generated by SAAL 1, and produces a UNIVAC 1005 machine
code object program deck. In addition, a one for one listing is pre­
pared equating each symbolic line of coding in the source program
with the gener ated machine code.

1. Card Input - Original symbolic cards.

2. Output.
3-3

a. Punched card - A one for one object deck which contains the
original symbolic coding with generated pseudo -m.achine code
and the UNIVAC 1005 machine code. Preceding this deck one
load card is punched.

Card Columns Description

1-48
49-51

52-57

58-61

62-65

Duplicated from input card
Card Code - Machine coded card

column relating to the storage of
data from the card.

Instruction - Machine coded in­
struction. The first position is
the operation code and the next
four are the operand. After
every six instructions an addi
tional character is assigned to
indicate the next row.

Instruction address - Machine
coded instruction address for
each literal and instruction ..

Duplicated from input card.

b. Printer - A one for one listing of each instruction written, in
three different formats, the symbolic (original instructionL
mnemonic (actual instruction), and machine (coded instruction)
language.

The Machine Coded Listing format is as follows:

SEQ#
LBL
OP
OPERAND

Description of Fields

- From source program
- From. source program.
- From source program
- From source program

COMMENTS - From. source program
IDENT
LOC

OPERAND

ERROR
clc

INSTR

- From. source program
- Assigned pseudo address for each literal anQ

in s truc tion.
- Assigned pseudo address for the beginning and

ending locations of each operand.
- A$signed .error codes
- Machine coded cardcolum.n relating to the stor-

age of data from. the card.
- Machine coded instru.ction. The first position

is the operation code and the next four are the
operand. After every six instructions, an ad­
ditional character is assigned to indicate the
next row.

3-4

LOC

Description of Fields

- Assigned machine coded instruction address for
each literal and instruction.

NOTES ;.. Possible errors are as follows:

1) Program Halts after first card is read - Indicates BEG
card does not precede source program.

2) I 0 ' printed under 1st position of ERROR heading - Indi­
cates an illegal operation code.

3) IE' printed under 2nd position of ERROR heading - Indi­
cates an expression error, i.e. operand which is less than
0001 or greater than 3875. The most frequent cause of
error is an undefined label. This type of error will print
6530 under the OPERAND heading.

4) ~ printed under 3rd position of ERROR heading - Indi­
cates a precautionary warning, i.e. an instruction greater
than 10 or 21 characters utilizing ARl or AR2 respectively.

5) I S I printed under the 4th position of ERROR heading -
Indicates a sequence number error.

C. Trial Balance Sample Report P2-4 (Illustration 4)

This program prepares a Trial Balance Tabulation and punches
Trial Balance cards utilizing sorted General Ledger Account cards.

1. Card Input - Sorted General Ledger Account cards.

The Input Card format is as follows:

Card Columns

1

6- 7

55-58

59-68

Description

Type

Program
Number

Account
Number
(Note 1)

Account
"I"

(Note 2)

.., c:

Determine card columns of
amount field. 1/1 indicates
amount in Cols. 59-68; 2/1
indicates amount· in Cols.
70-79.

Major control for this report.
Each control break prints
the amount accumulated
and is reset prior to the
next total being accumulated.
Card Col. 7 is not printed.

Minor control for this report.
A Trial Balance Summary
card is punched for each
Account Number.

This amount is accumulated if
the card contains a "1" in
Col. 1.

Card Columns

70-79

Description

Amount
" 2"

(Note 2)

Remarks

This amount is accumulated if
the card contains a "2" in
Column 1.

NOTE I - An "X" overpunch in Col. 55 indicates a credit ac­
count and the amount is accumulated in the credit
field.

NOTE 2 - An "X" ove:~'punch in Col. 55 or 70 indicates a credit
amount and is accumulated as such in either the
debit or credit account field.

2. Output

a. Punched card - A Trial Balance Summary Card is punched for
each Account Num.ber within Program. Num.ber.

Card Column Description

2- 5
6 - 7

55-58
59-68

Julian date
Program Number
Account Number
Am.ount

b. Printer - Trial Balance Tabulatioll

The Trial Balance Tabulation form.at is as follows:

P#
ACCT #
Debit
Credit
Cumulative Balance

Description of Fields

- From input
- From input
- Accumulated and printed on control break
- Accumulated and printed on control break
- Accumulated and printed on control break

II. The UNIVAC 1005 Single Address Report Generator

SARGE, a problem oriented programming system and report program
generator, is designed to reduce substantially the tim.e and effort neces­
sary to translate general data processing and reporting requirements into
detailed computer instructions. It demands little knowledge of computer
coding or instructions other than the basic rules for writing in the sim­
plest form of the SAAL assembly language. Essentially, the SARGE re­
port program generator is a program which, on the basis of a series of
statements provided to it, produces another program which will produce
a report or other output of the desired kind. These statements, written
on the standard SAAL coding form and then keypunched into cards,

3-6

provide the formats of the input card files (these contain the information
from which the repqrt is to be prepared), the format of the output to be
produced (this may be a printed document, a series of summary cards, or
both), and the operations to be performed (arithmetic operations, data
movement and editing, control, input/output operations). The input and
output format descriptions and processing statements will, in conjunction
with SAAL, produce an efficient ready to run object program .. Also pro­
vided is a listing of source input and the object coding generated. Sec­
tions of programmer1s own code may be included as necessary.

A. SARGE 1

On the first pass SARGE 1 reproduces the symbolic program (source
program) as comments cards. For each reproduced comments card,
one or more SAAL statements are generated. Any card not recog­
nized as a SARGE statement is reproduced without change.

1. Card Input - Original symbolic program

The symbolic input card format is as follows:

Card Columns

1-3
4-5

~:c7 -9
11-13
15-48
32-48
62-65

Description

Sequence number
Sequence number (insert)
Label
Operation
Operand
Comments
Program identification

~:~The following labels are reserved for the generator and may not be
used by the programmer:

2.

AR1 REA
AR2 RPP
HLT RPR
PR1 SK2
PR2 SK4
PR7 SK7
PUN XXX

X01 thru X99

Output

a. Punched Card - SARGE input reproduced as comments cards
with associated SAAL statements.

b. Printer - None

3-7

B. SARGE 2 (Illustration 4) Trial Balance Sample Program P2-4

The second pass, SARGE 2, produces the pseudo-machine code for
all labels describing the input/output buffer areas. The length is
added to all labels describing constants and working ~torage.

1. Card Input - Output cards from SARGE 1

2. Output

a. Punched card - A complete program deck ready for the SAAL
assembly.

Card Columns

1-5
7-9

11-13
15-48
32-48
62-65

Description

Sequence number beginning with StJtJtJfJ
Label
Operation
Operand
Comments
Program identification

b. Printer - A listing of the source input preceded by an asterisk
and the obj ect coding generated.

Print Positions

1-5
7-9

11-13
15-48
32-48
62-65

Description

Sequence number beginning with 5 tJtJtJtJ
Label
Operation
Operand
Comments
Program identification

NOTES - Possible errors are as follows:

1) An E (print position 85) printed to the right of an inpv.t/
output label definition indicates that the maximum of 68
input/ output labels has been exceeded.

2) An E (print position 85) printed to the right of a constant
or working storage definition indicates that the maximum
of 5tJ labels has been exceeded.

III. UTILITY ROUTINES

A. CONDENSE

Condenses obj ect programs produced by SAAL 3, consolidating 6 in­
structions to a card. All literal instructions are punched one for one.

3-8

1. Card Input - Object program produced by SAAL Z in the same
sequence.

2. Output

a. Punch Card - Consolidated object program

Card Columns

1 - 3
15 - 48
49 - 61
62 - 65

b. Printer

Description

Sequence number
Consolidated instructions or literal
Machine Code
Program 1. D.

1) Successful termination - END OF PROGRAM is printed,
paper is advanced to next page and the program halts.

2) Pos sible error s are as follows:

ERROR NO BEG CARD is printed, paper is advanced to next
page and the program halts. This error indicates the BEG
card does not precede all object cards or does not immedi­
ately follow the load card produced,from SAAL 2 (2nd object
card) •

ERROR INCORRECT INSTR CODE is printed, paper is ad­
vanced to next page and the program halts. This error in­
dicates an instruction stored in an invalid location. All
instructions must be stored beginning in Columns 1, 6, 11,
16, 21 or 26. The most frequent cause of this type of error
is incorrectly repunching an object program card.

Notes:

1. The Program 1. D. from the BEG card is gang punched
in all succeeding cards.

2. All condensed cards are numbered successively be­
ginning with 001.

3. The cards to be condensed must be in the correct
sequence.

3-9

B. MEMORY DUMP (nlustration 5)

Each row of core memory is printed in sequence with a row and bank
identification annotated.

1. Card Input - Memory dump object program

2. Output

a. Punched card - None
b. Printer - Memory listing

NOTE - Data in the print buffer will be printed as the first line
across the page and data in the read buffer will be lost.
The only memory that will be printed is the memory
addressable by the programmer.

C. READ-PRINT-PUNCH

Produces and prints each card, column for column, in the first 80
positions of the printer.

1. Card Input - Any data cards

2. Output

a. Punched card - Reproduced data cards.
b. Printer - 80/80 listing of data cards.

NOTE - Punching will be suppressed when alternate switch 4
is on.

D. NUMBER IT

Re-numbers program cards with option of gang punching new pro­
gram identification.

1. Card Input - Source or object program cards.

2. Output

a. Punched card - Duplicate input cards re-numbering them
starting with 001 (Cols. 1-3)

b. Printer - None

NOTE -To reidentify a program, precede the program cards
with a header card punched as follows:

Card Columns 11-13 ~:~**

Card Columns 62-65 New Program 1. D.

3-10

E. DUPLICA'rE

Reformates and prints any 80 columns of information in any other
80 columns with or without gang punching.

1. Card Input - Any data cards preceded by four header cards (see
notes).

2. Output

a. ::punched card - Reformatted data cards
b. Printer - 80/80 listing of reformatted data cards

NOTES:

1. The fir st header card contains information that is
desired in all the following cards. If gang punching
is not desired, this card must be blank.

2. The second and third header cards are divided into
eighty sequentially numbered fields of two columns
each. These cards describe the output card by indi­
cating the column from which the input will be
transferred.

For example:

Card Column

1- 2
3- 4
5- 6
7- 8
9-10

11-12

15J160

Punch With

01
Blank

05
04
03
06

!
80

Will reproduce the card identically to the original ex­
cept that Cols 3 and 5 will be punched into Cols. 5 and
3 and card column 2 will be blank.

3. The fourth header card is literally a duplicate of the
card that will be recognized as a sentinel. For ex­
ample if a blank card were introduced as the fourth
header the program would terminate when a second
blank card was read.

3-11

4. Printing may be eliminated by changing the Duplicate
obj ect program. Column 16 of card number 43 (Cols.
4-5) may be changed from A to } and Column 31 of card
number 45 may be changed from E to }.

F. CLEAR

Clears Bank 1 thru 4 core to spaces

1. Card Input - Clear object program

2. Output - None

3-12

SAAL 1 ILLUSTRATION 1-1
1st PASS OF ASSEMBLY SYSTEM REFER TO CHAPTER 3-I-A

~t.w " L.BL. L.O(; EHR ~AALl

!J04+ FOl OUOl
P2

UOt) 1'03 0001;)

\JOb 1'04+ Ou5t)

!JOI FOt) 005'i

001t FOb 0070

010 "'No 0161

01.1. ACl 016,+

01<: UE~ 017~

013 CRt. 0188

Ul4+ ~AL. 00!3b

Olb '"'UN 0,'i3

01"1 UTt. 0294+

Olb PNU 0~9b

Ul~ AeN 034+1

02u AMI 0351

02ic: UAT 0081

U2') (;Nl 0080

U24+ uL.H 009u

U25 AS~ 0091

U2b HLu 009~

U21 PV OU9b

020 lU1 009b

02~ lOo 009~

u3u lNU 0100

u31 ~RT 010l

U3b HDl 0373

03~ 110, 0380

u .. O HD3 0390

0 .. 3 ACl 04+17

U Ae, 0,+81

U'+:l Ae,:, 0 .. 91

U .. b Ae4+ Oll01

u .. , Aeo 0t)17

U'+b ~Tu 0527

u5u ~Tl 052b

U5,+ FSI Ot)4+b

U5b KTo: 055'1

Ub'+ uN ObOU

UOb MOl Oblu

u70 NXl Ob51

U1H MOO: 007~

UB.) AL.I Ob9t1

U85 i'10.) 0101:1

UB~ (;ON 074!~

10'+ t.Z 0807

110 1111 Otl3t1

11b 1'10" 080'1

130: KTN O~5J.

.1.33 M05 095b

131:1 tiKl 0980:

15.) yY lUbU

15';1 IH .. lu91

.I.1u bKc: 11'+1:1

.I.1b OF.: 11N

18,) TAb 1<:15

18,+ OFL 122u

19.) L.ST 120b

SAAL 2
2nd PASS 0 F ASSEMBLY SYSTEM

~E\,j R L..BL.. oP UPt:.RANLJ

00J.

UO~

OOj HlJ.-

uo<+ I-Oj - b

uO:> 1-0 .. - ~5

UOb I-U~ - ~9

001 fOb - 70

UOb PRT

UO':l I-'Nu-

u1u ACI-

UU uEb - 12

u1~ loRt. - 2E1

u1j tlAL.. - 16

u1.. peH

u1:> t'UN-

U1b uTI:.-

u11 t'Nu-

U1d /leN - ~5

01':1 AM) - :>9

ORb UOtll

u21 uAT +4 UAb5

u2~ I.N) +5 :>2

U2j uLk +1

u2<+ IISI\ +1

u2:> t1Lu +4
U20 t'V +2

U2d 101 +1

U2<; .LOu +1

eOMMF.NTS

AeCT 1,0

CUL~ b & 7

IDEN Loe OPERAND

P2-" 152HA

P2-4 1'i2HA

P2-4 1"i2HA

P2-4 1"i2HA

P2-4 1"i2HA

P2-4 1'52HA

P2-4 1"i2HA

P2-" 152HA

P2-4 1<;2HA

P2-4 152HA

P2-4 l'i2HA

P2-4 1'i2HA

P2-4 1<;2HA

P2-4 l'i2HA

P2-4 1"i2HA

P2-4 1 'i2HA

P2-4 1<;2HA

P2-4 1'i2HA

P2-4 1 'i2HA

P2-4 1'i2HA

P2-4 ooelA

P2-4 one5A

P2-4 OOynA

P2-4 0091A

P2-4 OnQ2A

P2-" UOQhA

P2-4 on9RA

P2-4 OOQ9A

u3u INl.; +l PKINTt::O IILcr BilL.. INU P<!-" UlonA

u31 loR I +2 LR

ORb U1b1

+3<+

+34

+3<+

+3U

uR!> u373

u3:' HOl +7 P ACC]

TR 1 AI.. tlALANCt.

U3b HD~ + 1 U CU",ULAI I vF.

u37 HU,:, +3 .. R uEt;! T

u3/j +34 CkEuIl

u3':1 .. 19 tlALANCE.

1J4U IICJ. +lu

U41 AC~ +lu

U4~ IIC,:, +lu

U .. j IIC .. +lU

u.... ACb +lU

U":> ~Tv +1

U"b ~TA

U .. 7 ~TT xF PK2

U"o eLK PUN' /j0

U'+':I ..JR IlFf?,

USu xl' Rt:.A

05.1. FST L..Ol FD3,~

U5~ ~Dl PV,2

U5j KTc: L..D1 FO .. ,,+

us.. ~Ol HUh ..

u~~ L..Al 10L,1

u50 tNl FD1, 1

U~o .JL ON

O~':I L..A2 FO~' 10

U6U L..Dl FO~, 1

U61 .J MOL

Ob~ UN LA2 FDb,10

Ubj L..Ol rOb,l

U6.. MOl SOl :.Tu,1

U6~ IoAl 100 rJ.

U6b loNl HLU,1

U67 .;L MO~

U6d eNl ~TII'l

U6':1 .;6 NXT

u7u AMI:: ACj,lO

u71

u7,

AM, IIC4, 10

..J 10103

SAAL

TITLE

TO (.OL..UMN H£ADINGS SUHRTN

RE.Au FIRST CARD

STORE COLS /) a 7

STOKE AeCT NO

COMPAKE COL 1 To ONE

IF ~

PI CI<. UP AMT eOLS 59-68

P lCI<. UP AMT eOLS 70-79

STORE M~L OF AMT

CHECK CK-OEH ACCT

IF UEHI T

CHECK Ct<-OEH AMT

DEBIT AMT, CREoIT AeeUM

P2-<+ OIOlA

P2-4 u101A

P2-4 u1blA

P2-" 019"iA

P2-4 u22 Q A

P2-4 O?b3A

P2-4 U?63A

P2-4 O'l73A

P2-4 U'IAOA

P2-4 0'l90A

P2-4 0424A

P2-4 04~AA

P2-4 0477A

P2-4 0487A

P2-4 0497A

P2-4 O<;07A

P2-4 u'i17A

P2-4 0'527A

P2-4 0'i27A

P2-4 0"i2AA PR2

P2-4 0533A0293 0372

P2-4 0538A1179 1183

P2-4 0543A REA

P2-4 0<;4AA0006 0007

P2-4 o553A0096 0097

P2-" 0559A005~ 005A

P2-4 O'i64A0092 009"

P2-'+ 0'i69A0091l 009A

P2-'+ O"i74A0001 0001

P2-4 O"i79AObOO 0"04

P2-4 0584A0059 006A

P2-4 0"90A0059 0059

P2-4 0595A0610 0"14

P2-4 Of\OOA0070 0079

P2-4 Oh05A0070 0070

P2-4 0f>10A0527 00;27

P2-4 0615A0099 0099

P2-4 Oh21A0092 onw'

P2-4 Of>2f>An672 0"7'"

P2-4 Oh31A0527 0527

P2-'+ 0636AOb57 0661

P2-'+ 0641AO,+'H Oo;Oft

P2-'+ Oft'+6AnS07 051',

P2-4 0652A0708 071:>

ILLUSTRATION 2-1
REFER TO CHAPTER 3-I-B
ERR etc INSTR

B

II B

8 B

8 B

8 B

8 B

/I B

8 A

8 B

8 A

8 A

8 A

II B

8 B

8 A

8 B

8 B

8 B

8 B

8 A

8 A

8 A

8 B

/I B

8 B

8

8)H /lD)))

/I)H 157-11

&)H 0" I

&)H alt.l)

&)H] I F

Loe

O<OC

n\n?

'13n3

n9n9

OEII)

11044

41 III

111111

41'41'

TIl' •

1'1. :

.-17

18"i2

:> ~F

:>.?O

?[711

7HR\

RGA:

A-AH

IICAI!

n n5

o:nll

nHOE

080/1

[r I
r1[5

r :rB

[8rll

rHrA

&)H 111011'+< r6f&

II)H]JG]?

&]H lOE4]

&lH 4141

&lH

1I1H 711:118

& lH 'J301"

&]H Jl313

&]H 2I1H#A

&JH '0.00

&]H]0.0.

IIJH 1080&

&]H '+141H

&]H :OEOE

IIJH 7CHeA

&JH :0&08

&]H SCle5

8]H >[l 05

< <I

<1<5

<:<B

<8<11

<H<A

<6<8

II III

111115

II:IIB

1181111

IIHIIA

116118

H HI

HIH5

H:HB

H8H#

HHHA

&]H >0: 011<: H6H8

81H 2\6\E C CI

SAAL :'I

ILLUSTRATION 2-2

u7.:. NXl !>M2 IIC.:..10

u7,+ :;'M~ AC"dO

u7:> MO,:,

u70 MO~ I:Nl ~TU.1

U71 .JG AU

U7cj AM2 AC,it 10

u7y AM~ IIC~'lO

ullU MOj

UIlI AL'I ~M~ AC1.10

..,8.: "M~ AC2qO

us.:. MO.:. xF Rt..A

»8" LAI FD"."
U8!> eNl HLU."

U80 \IE kT2

U87 c.;ON l02 f'V.2

1.1811 f'TI:,

U8d ~D2 PNO. 1

U8':1 ~02 PNU. 2

lI8Yl LDI UAl."

lI8Y2 !>D 1 UTI:.. '+

IlYU lNl HLu."

U91 !>Al ACT ...

U9.: :.Al ACN."

U9d CLk AR2.21

U9j lNI ACh 10

U9,:,1 CN2 ARlo 10

09" .IE L.l.

U9:> LWS AC1'10

U90 SEU UEb+l.14

UYI a CLk AR~.21

U90 LNl I\C':'.lO

U91>1 CN.:! ARlol0

U9':1 .IE II/W

100 LW!> IIC':>olO

101 ~Eu I:Rt:..l5

iO" wW LAl AC1.10

100l

10,+

10:>

100

l.Ol

!>R1 ACj.l0

"Al ACo.l0

:,Al AMlolO

\II< ",0"

,~O!>

10d MO"..;X ><T"

lU':I LAI ULK'l

11u "AI UEtHI

111 "Ai \.Rt:.d

il" :.Al tlALol

J.1':' LLI< ARb.!1

,1.. LNI ACo.10

11" I:N" ARi .10

110 ..JE KTI,

111 LW" AC"'.I.0

110 "Eu bAL+lrl4

11") LN.< IICo.10

11':11 (.A" ACbtlO

U':I2 ..JEA «T ..

120 LAI \.RI.2

121 ~Al bAL+14.2

12" kT",.J

12.> I'IO!> J.F Pkl

12.. xF PuN

'IC CNi

('lK lNu.l

..JE UFI-

12d ..,Kl \.lk ACldO

LlK "C':'010

LAI f'V,2

\.Nl fDj,<:

..JE ><T2

LA.:! ACb 10

,,1<2 AC'+dO

"A2 ACo.10

..JR r~O'+

ClK AR<:,~I

Lf>l1 "C2.10

CREon AMT. CREon ACCUM

CHECK CH-nEIi AMT

DEBlT AMT. OF.:lilT ACeUM

CHEOIT ,,"T. nEB IT ACCUM

Rt:AU NEXT CARD

COMPARE NEW CARO AceT NO

P2-" 0657A049"' 05q"

P2-" U662A0507 0';11\

P2-" 0l'>67A0708 07V

P2-" 0f.72AO!)27 0<;;,!7

P2-4 Oh77A0691l 070~

P2-4 01'>8:3A0477 0481\

P2·· .. 0F,8AA041l7 0491\

P2-" OF,93M708 071'

P2-" Ul'>911A0477 0481\

P2-" 0703A0487 04Y"

P2-4 0708A ~EA

P2-4 0714A005~ 00511

P2-4 0719A0092 OOY<;

P2-4 u724AO!>59 00;6'1

IF t;Rt:A~. INFO TO PHINT & PUN P2-4 072'M0096 0097

DEH-CHElJ = vAL OF ACCT NO

EUI r l>. CI<

Pi<I"T AeCl TOTAl5

PUNCH

eLf! ~CC r ACCUI~S

COMf'AHE COLS 6 /I 7

IF uRt..A~. INFO TO Pt<TNT

Ot:H-CHELI = ~ECT10N tillL

P2-4 0734A

P2-4 0739A0161 0101

P2-" 0745A0298 0299

P2-4 0750A0081 0084

P2-" 075'iA0294 0297

P2-4 u760A0092 0090;

P<:-" 0765AOIM 0167

P2-4 u770A0347 0:>1511

P2-4 0776A1933 lq5~

P2-4 U781A0477 0481'1

P2-4 0766A1923 lq3'

P2-" 0791A0807 0111 t

P2-" 0796A0477 0481'>

P2-" 0l'01A0173 018"

P2-11 01l07A1933 l'l:>'

P2-4 OlH2A04'n 00;0<,

P2-4 01l17A192~ lq3'

P2-4 OA22A0838 01142

P2-4 01l27A0497 00;01'1

P2-" UII32AOlllll O?O,

P2-4 OA31lA0477 0481'>

P2~ .. UAI>3A0497 00;01'>

P2-4 OA48AO~1 7 0521'>

P2-4 OA53A0351 03M

P2-4 OA5RAOll69 OA7'I

P2-" OAbMOY56 Oqbt)

P2-4 UA69A0951 OQ5C;

P2-4 UA74A0090 0090

P2-4 ul'79A0172 ul n

P2-4 UA1\4A01118 ottlR

P2-4 OA!l9AO~3b O?jF.

P2-4 0l'94A 1933 19!>'

P2-4 OQOOA0517 00;2"

P2-4 U"O~Al,)23 lq3:>

P2-4 U'll OAll')";1 O'l~o;

P2-" (j'l15A0517 0521',

P2-4 0020A0237 0?5n

P2-4 U"25A1l517 00;21',

P2-4 Q'l31A0517 U521'>

P2-4 O'ljf,A1l951 oQSC;

1'2-4 0041AOIOl 010:>

P2-4 U"~6A0250 02~1

P2-" 0951A0951 O'l55

P2-4 Uqt;6A PR1

1'2-4 U'l62A PUN

P2-4 u'l67AOOA~ U08Q

P2-" U'l72AOI00 010n

P2-4 O'l77A1220 122~

P2-4 O'l1l2A0477 048F,

P2-4 0<11\7110,,97 050<'

P2-4 U0 93A0096 0097

P2-4 O'l911AOOOb 00U7

P2-4 1003A0559 00;6'1

P2-4 100AA04R7 0496

P2-" 101~A0507 051~

P2-4 10lAA0517 052F,

P2-4 1024A0869 OR7'1

P2-4 102'lA1933 1Q5'

P2-4 1034.110487 0491'>

&lH YO 05

"lH yo:nll

"lH 2\6\E

"lH :o&n&

"JH 8\8\11\

&JH >1I-!lH

81H >!lCIIII

/I lH 2\6\E

/llH Y!I-IIH

& JH YACII&

& JH /I) A) 1(;

&]H 1G1?

&]H : nE4 1

ClC5

C:CB

CSCII

CHCA

C6C&

\ \I

\1\5

\:\B

\8\11

\H\A

\6\&

GI65

SlH 8< <I 6:6B

/I lH *4044 G8,,"

& lH "HGA

&lH r.llIlIA (;6G8

" lH r.l'i<511 II II I

&lH JO(OC AIA5

"lH I <;A5(A:AB

&JH 30E4] MAli

&lH 4111- AHAA

/llH 4-I-IF. A6Ali

& lH 1) :) & F, 6 I

II]H 311-IIH f>I65

II)H l!;))5 F,:68

&lH 8??I MI\II

& JH ?II-AH f,HI'>A

/I]H RY(III? F,61'>1I

II]H 1):)11 ??I

II]H 30 05 ?I?5

II)H %)) 5 ? : ?8

/I)H 83:0,1 ?8'1t

II)H ?O 05 ?H?A

II)H RF]FII'I ?6?8

8 JH

8)H CO 05 3135

II,1H 4rJHnE ,: 3B

II lH 4-5-< ~831l

S]H DQ 'l; :'IH~A

S lH 211MEQ :'I6~&

/I]H [&HIIA

Ii)H 0303

S]H 4IOID O;'lB

II]H 4F)F] 'lBolI

IiJH 4.(.< ClH9A

S lH 1) :) IIF 96Q8

")H 30HOE F F'l

II]H \\'0))5 FIF'5

8]H 811HII A F : FB

II)H ?OHnE FFlFII

/I]H R.III] FHFA

&JH LOHnEIl F6FS

8 JH NOHOE II III

SJH 811HRA HII5

8JH 4.41 A:IIB

II)H 41)10 1181111

II JH 2~HIIA IIH4,A

8 JH &~))) , 11648

IIJH 11)11)) ";

II~H -O\O?

& JH 14F4F

&lH 8J:J8

"JH lA-IIH

'J' 5

'8'11

'H'A

IIJH 10 D5. '6'8

/j)H 4044 * .,
8)H : I f

IIJH II((I

8 JH 'ACII/I

/I]H Tn:nll

,1H MOHOE' *6*&

& lH Q'l Q, ";
8)H 11:)/1 !I!5

1I1H :3I1CAII !:!8

139 (;Ni! ARlolO

111U oJE YY

1111 L.IfjS ACO!,10

1 II oil !>Eu UEb+lIlll

111~ yY CLH AR;l,21

111.. LNl AC .. ,10

III!) (;N2 AR1, 10

111b oJE HT ..

1111 L.WS I\C",10

111b SED CRE+lIlll

1119 HTII L.Al AS~ol

15u SAl UEb+15,1

151 SAl CR~+lS, 1

152 SAl bAL.+16,1

lS.) XF Pk2

lS ..

15!:i

150

lSb1

lSI

lSb

L.A1 101,1

AMI lNU,l

1C CNT

oJE OFL.

lC (;NT

oJE UFL

15'i bKi! (;LR ACO!,10

16U (;LH AC .. , 10

161 CLH AR1,10

16C! CNI FO .. ,II

16~ oJE LST

16.. oJ FST

16!> OFi! oJX TAG

160 L.PH H01,7

167

16b

169

171

17<'

L.Ol HOC!, 10

SOl bAL.+'!, 10

XF PHI

L.P!! H03,S7

XF Pk2

17.. lA<> oJ

17b OF!. XF 51\ 7

17b L.A1 101,1

177

17H

17'i

18U

lS1

lS~

SAl CNT+2,3

oJR UF2

L.Al 100,1

~N1 INOol

oJE tlKl

SAl INU,l

!S') oJ tlK~

lS'I L.ST XFC E<)l

lSb ENU ST.

EDIT *

PHINT Se::CTION TOTALS

CL.EAR ACCUMS

COMPARE FOR LAST CARD

PRINT COL. HEADINGS

START NEXT PAGE

SKIP 7, HALT

P2-11 1039At923 1932

P2-11 101lllAI060 10611

P2-11 10119AOll87 049"

P2-4 InSSA0173 01B"

P2-11 1060A1933 195~

P2-4 ln6SAOS07 051"

P2-11 1070A1923 1932

P2-11 1n7SAl091 109'>

P2-4 1n80AOS07 051"

P2-4 10S6AOlll9 020'

P2-" In91A0091 0091

P2-" 1n96An187 0187

P2-" 110lAn203 020:'1

P2-11 1l0"An2S2 02S~

P2-4 lll1A PR2

P2-" 1117A0098 009A

P2-11 1122AOI00 0100

P2-" 1127A008S on8Q

P2-" 1132A1220 12211

P2-" 1137A008S 008Q

P2-" 11112A1220 1224

P2-" 11 .. AAOIIA7 049"

P2-" 1153AOS07 0516

P2-" l1SAA1923 lQ32

P2-4 1163AOOSS OOSA

P2-'I 1168A1266 1270

P2-" 1173AnS"8 0552

P2-" 1l79A1215 1219

P2-" 11S'IA0373 0379

P2-" 1189A03AO 0389

P2-'I 11911An2110 02119

P2-" 1199A PR1

P2-" 120llAn390 0117"

P2-'I 1210A PR2

P2-" 121SA121S 1219

P2-" 1220A SK7

P2-4 1:?2SAn098 009A

P2-'I 123nA0087 0089

P2-'I 123SA"1179 1183

P2-'I 12111An099 0099

P2-'I 12116AOI00 010n

P2-4 12SlA0982 098"

P2-'I 1?S6AOlOO 0100

P2-'I 1261All'18 1152

P2-'I 1266A E(»

P2-'I 1?72An528 OS3'

ILLUSTRATION 2-3

11H ",)S !8!1I

11H 8MIMS !H!A

11H ?ACAIM '6!1

11H RYCII 101 loll

11H llPI MIMS

11H 3n:nll M:MB

I lH ") I 5 M8MII

11H 8r.ltQS

11H ?O:Ollr.l

11H RFOF8

11H n9n9

11H .. F F

11H 4FOFO

I]H '11'11'1

11H 10»)7

11H '11'11

11H ('IF4F

11H -n\n?

11H 8.J:.JR

I)H -n\n?

11H 8.J:.JBW

MHMA

M6MI

iii QI

QIQS

r.l:r.lB

,;lAQII

QHQA

Q6QI

7 71

2I2S

7:2'B

78111

ZH2A

2671

11H" lACAI 101 WI

11H 10:011 WIWS

11H 11)5 W:WB

11H : 161? 101810111

11H 8N6NE WHWA

11H 2[H[A, 10161011

11H (.JI.JS •• 1

I lH 02 2F , 10 5

11H 12.20 ':,B

11H 1.\1 ,8,11

11H 16») .H,A

11H 02[A;J ,6,1

11H 1011) ..I ..II

11H 2JIJS

I]H IE II)

11H '1141

JIJS

J:JB

..18..111

I]H 4nAO? .JH.JA

&]H O. ,IN ..16..11

&]H '11'11 N NI

&]H : 'IF4F NIN5

l]H 8'H' A N:NB

llH 4'1F4F N8NII

& lH 2101 WI NHNA

& lH lEO)'; N6N&

&)H 2[[.1 =7=£

TRIAL BALANCE SAMPLE REPORT ILLUSTRATION 3-1
REFER TO CHAPTER 3-I-C

TR 1 AL tsA\.ANCt:

t' AI.Cl CUMULATIVE;
1/ uEtSIr CKWH ijAI.ANCE

lUOu I $ 12,6"5.07 I 12,6 .. 5.07CR
2.1.01.1 I 12' 5.01 I ~1.8jj I 12,"13.19

.I. 2.:21 I 2uO.OU $ 8.0U- I 208.00
3ul.: $ $ 12,6"5.07 I 12,6 .. 5.07CR
.. 1:101 $;t3.811 $ I 23.88
"1I0J I .1.2,6 .. 5.07 I ~3.8jj $ 12,621.19
719'1 I 3.1;t- $ I 3.12CR
7~5j $ ~7.0u $ I 27.00

$;t5,3J7.9u *1 :.!!),3.n.90 • I

210u $ I 9119.911 989.qaCR
2;,:2.1. I $ 21:11.30 251.30CR
.. 1:10.1. I 3~5."b $ 395."5
"tlOl I 8b9.111 $ 1 10 715.03
.. 110.: I "':18.0':1 $ 3t17.29 130.110
"IIU,) I $ 102'+1.211 1,2 .. 1.28CR
7.1.9'1 $ 8 .. 5.8J $ 8 .. 5.83
7':15i:: $ Jl.9 .. $ 31.'14
7':15') $ 3t13.51 I 3b3.<;1

$ 2,9':1".Ou *$ 2,9':14.00 •

.: lUOU s I 2,4bO.9 .. 2.450.94CR
31.11': I I 2,4bO.94 2, .. 50.Q .. CR
41101 $ 2,400.9 .. I 2, .. 50.CJ4

.: 719'.1 s 2'''bO.9 .. I 2, .. 50.Q4
4,901.811 .$.. ,9ul.811 •

.. bOI 8,3uO.OO 8,300.00
4111.11 8,300.01.1 A,300.00CR

8,300.0u .1 8,31.10.00 • •
lUOU I $ n ... 25- I 72".?5
lu2u $ 4':17.8j- S 58.30 $ 556.18CR

,) 1l5~ I 1l.3J- S S U.33CR
1"0.1. S It10.0U- $ S IbO.OOCR
2 .. 0u I 18.37- S 1.03 $ 19."OCR
2b2u I 19."U I I 19.40
3ul~ S S 467.5j- S 467.<;3
3Ul11 $ S 10.31.1- $ 10.30
41:1U1 $ "07.53- $ $ "67. <;3CR
470i:: $ $,,07.5j- S .. 67.53
6U51 s $ 18.37 I 18.37CR
679'.1 S 4b6.20· $ $ 456.?OCR

S 1,5':11.80-·$ 1,591.80-. S

,) lUOU , 12,511.77 I 12,511 .77CR
lU2U 12,499.17 S 12.6U- $ 12,511.77
3u12 S 570 ... 4 S 570 CR

,) 719':1 510 S $ 570.4 ..
13,01:>9.61 .$ 13,Ob9.61 • ,

,) lu20 b7,2t16.6U S 1:>7,2116.6U

I' AI.Cl CUMULATIVE
1/ uEllIl CKEVIl BALANCE

, &7,2116.61.1 ., 1:>7,286.60 •

,) HOi:: S 3,418.00 S $ 3, .. 18.00
1.1.52 , ':15.01.1 S $ 95.00
2020 $ 18.37- , $ la.37CR
.. 731 S S 3' 00 $ 3, flOCR
.. '13.: $ 3, 00 $ 3'4 0U $
""13j $ 3' 01.1 $ $ 3, 4.00
6051 $ $ 3,"25.63 $ 3,425.63CR
679'1 $ S 09.0U $ 6CJ.OOCR

$ 10,3H2.6j ., 10,382.6J •

0 2.:2"1 $ lU ... 30 $ 10 ... 30CR
'+1:101 $ 104.31.1 $ $ 10".30
"tiD,) s $ 10 ... 30 104.30CR
7'.15') , 10".3u , 10 ... 30

$ 2ua.6u *' 2U8.6U •

II luOu $ S 11 ... 8 .. $ 174.8,+CR
:.!;,:21 $ 1"' ... 8 .. $.1.2.8,+ $ 162.00
3ulio:: s S 11 ... 8'+ $ 174.a"CR
.. 1:101 , 12.8" , $ 12.A4
4HO') $ 17 ... a .. $ 12.8 .. $ 162.00

H 7':15,) s 12.a .. $ $ 12.84
$ 375.3t1 *$ 375.36 • $

SARGE 2
2nd PASS OF REPORT GENERATOR
~OUOU

~Ou1u

:'002U

~OU3lJ

~OO,+O

:>005U

:>OU6u

~Ou711

:'00811

:'OU9U

:'010U

:.Ol1u

:'012u

:>013u

:'014U

~015u

~016U

~017u

~016u

:>OL9U

~O<!OU

~O,lu

00,2U

tiEl>

LRU

I>RT

101

o.~

~5.4

59.1u

70,lU

1.13it

1o!

4,b

12,1

13.14

it70l

,Rol

itqol ..

.. 301

42,1.)

l6.1

77014

~0.2

':1201

~O~3U 1,bO

~O,4U it, ..

~02!)U b,l

~O,6U D.,

~O,7U :.5.5

~O,6U :'9.1U

0,,9 EtO

bO~9U uRIi U373

bO.)OU HOU +1.) IRIAL. bAL.ANCt.

~O.Hu HDl +7 I> Al:Cl

bO.)2U HO" +11 LUtJiUL.AlIVE

~O~3U HO.) +2b II II

:.0.)4U 110 .. +7 CRt.Dl T

b 0.55u HO::. + 1 U tlAL,ANCt::

:>0.)6u ACl +lU

:>0.)7U AC, +lU

:'O')8U AC.) +lu

:>0.)9U AC .. +lu

:'040U ACb +10

bO'+ll1 f'1I +2

bO,+2U HL.U +4

:'0,+3l1 lOu +1 U

:>0'+4U lOL +1 1

bO'+bU 10, +1 it

bO~bll ~PA +lU

!:>D .. 7U bPI. +lu UOUOllOUOU!

!:>D~8U bTu +1

::'0,+9U ~Tl +1

!:>O:'OU UAI +4 U805

bO~lU ULk +1 ~

!:>0:>2U CRT +2 CR

UEtHT

COL~ 0 /I 7

ACCl I~O

!:>U:>3U LNu +1 PkIu ACCT AAL

!:>U:>4U AS", +1 .
b():>bu LNl +2

bU:>oU ",ON +2 ::>1

1:>007u ~TA

Ob6 SlT Rt.S PRT

1:>0::>8u bTl CLR Ulb1 029t!

0:.7 MIJII HUO,PRO

bOb9U L.A2 HDU.13

bOoOU ::.A2 u2u2 0214

0:'8 PKN 51>2

::'061U xF Pk2

0:>9 R<.5 PCH

:.Ob2u CL.K U2':13 o.ni!

ODO okT OF2

:,Ub3u -.lR UF,

Obl RcA

:'004U AF Rt.A

Ob2 F~T Mull Fu3,PV

:.005U ~51 L.A2 UOuo OU07

P2-'+

P2-4

P2 .. 4

P2-4

P2-4

P2-4

P2-4

P2-4

P<!-,+

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-'+

P2-4

P2-4

P2-'1

P2-'I

P2-'+

P2-4

P2-4

IND P2-4

P2-'1

P2-'+

P2-4

P2-4

P2-'I

TI TLE

P2-'1

P2-4

P2-4

P2-4

TO COL HUr,S bUBRT

P2-4

READ FIRST CARD

P2-4

STORI:: COL.S (, Il 7

P2-4

ILLUSTRATION 4-1
REFER TO CHAPTER.3-II-B

P2-4

P2-4

P?-4

P2-4

P2-4

P2-4

P2-4

P2-4

ILLUSTRATION 4-2

~006U :,Ai! ... V,2

003 R12 St.N FU4,HI-0,STI

~0071) I<T e! LPH uO~5 OUSd

~Oo8U SPH HLU,,+

~Oo9u :'PH 5 T 1 01

~070U

~O'lu

~O {2U

~U130

~O I'+U

:>U 150

004 •

LAi! !al,l

LN2 uOUl OUOI

..JL UN

005

LPH UO~9 OU61l

5PH STU,l

Ob6

MOL

11-0 WI,L,FUI,ON

St.N Fu5,STO

JMP MOl

Ob7 ON St.N FU6,STO

~o 16U ON LPH U010 OU79

~017u SPH STUd

Ob8 Mvl 11-0 Sl1,GoIUO,M02

~o 18U MOl LA~ "T 1 01

:>0/9U CNC! 10001

~OolO

~Od2U

~Od3U

.;G MOe!

009

LA2 10U,1

eNe! STU, 1

..JG "Xl

010

LA2 10101

('N2 UOUI OU01

.;L ONI

11"0 IuO,G,STO,NXT

11-0 WI,L,FDl,ONI

011 AuD FlJ5, AC3, AC4

~O':lOU

LAi! 00:'9 OOhtl

AM2 I\CjdO

AM2 AC .. 010

0/2

MOj

..JMP MD3

073 ONI AuO FUh,AC3,AC4

",0':11 U UNI LA2 UO"IO Ou79

:'0 ':12 U

~0930

~O':l'+U

AM~ AC~olO

AM2 AC .. dO

014

~IO.)

';~IP 10103

015 NxT If'O WI,L,Flil,ONA

:>0':l5U NX I LA2 10101

:;'O':lbU ('N2 UOul OUOI

:>097U .;L UNA

076 SuR F05,AC3'AC4

~O':il\U

50':l9U

:'luOU

:>101u

LA2 UO~9 OU6d

:'1012 AC3dO

5M2 AC .. dO

077

1010.)

077 ONA SUA FD6, A(.3, AC4

~lU2U UN ... LA2 U070 Ou79

:'11.l3u

~lU4U

:'1012 ACjdO

:,1012 AC,+, 10

019

1010.)

OtiO 10102 11-0 IDO,G.STO,ALT

SlOhU MOC! LAC! IOU, 1

:>lu7U

~IU8U

:'109U

~1l0U

:'111U

CN~ :'TO,l

';,G ALI

Olll

LAi< 10101

CN2 uOul OUOI

.;L ONN

If'O IlJl,L,FOl.0NN

Oll2 AlJO FlJ5, ACl, AC2

:'112U

~1130

~1l4U

:'115U

L..A2 0009 0061l

AM2 AClolO

1\1012 ACC!olO

01>3 JMP 10103

Od4 ONN AuD FUh, ACI, AC2

:>l1bl) VNN LAC! 1)010 OU79

~1l7U AM2 ACldO

SlORI:. ACCT NO

P2-"

P2-4

P2-'+

COMP COL 1 To ONE

P2-4

P2-'+

P2-'!

STORE MSL OF AMT

P2-4

P2-1.1

PZ-'+

5 TORI:. MSL OF AMT

P2-4

P2-'!

CHECK CR-OEB ACCf

PZ-4

PZ-4

PZ-"

CH£CK CR-OER AMT

P2-"

PZ-4

PZ-4

PZ-"

PZ-"

PZ-'!

DEB AMT, CR ACCUM

PZ-4

PZ-4

P"!-,,

PZ-'+

PZ-4

PZ-4

PZ-4

CR AMT, CR ACCUM

P2-4

PZ-"

PZ-"

PZ-"

Oftl,CK CR-OEB AMT

P2-4

PZ-'+

PZ-4

PZ-4

P2-4

P2-4

OEd AMT, DE"1i ACClJM

PZ-4

PZ-4

PZ-'+

P2-4

P2-4

P?-4

P2-4

ti118U AM2 AC;':dO

0~5 JI'IP M03

..J MO')

Od6 liLT It'D 1U1.L.Fu1.0NV

:;)1.:0U AI. T LA;.: 101.1

~ldU I.N2 uOOl OUOl

:;)1,2U ..JL ONV

ti1,,3U

ti1;.:"u

ti1.:5U

0~7

LA, UOti9 OU68

~M2 AC1.10

~Mi! AC,," 10

OdS

..J MO~

SuB FU5.AC1.AC?

J"'P 1103

Od9 ONV SuB FD6. AC 1. AC2

::'1,,7u UNV I.Ai! UO 70 Ou79

::.M2 AC!.!O

:;)1.:9U ~M, AC2.10

O~O M03 Rt.A

::'ljOU MOj.<F RI:.A

0~1 I~O F04.E.HLD.RT2

LA, UOti5 OU5d

::.lj2U CN2 HLu ...

..JE .n"
01,12 CON St.N PI/.PNU

::.l.)"u COl< loPK "V.2

!:oPR U2'i8 0299

01,12::.0

LPK U2 .. 8 0298

~PK u101 01M

St.N PN1.PNO

0<'/3 MOV DAT.DTE

ti1 .. 6U

::'1 .. 7U

loA, UA T ...

!:oA" U2<,/4 0~97

0

loW::' HLU ...

~Z~ U104 0168

::.Z~ U3 .. 7 0351

0<,/5

loA2 AC.LdO

eN2 :,PAtlO

.JE l.Z

096

loWS AC1.10

::.EU U173 01Ao

MOV HloO.ZS.ACT.AC",

HO AC1.E.SPA.Zl

097 U. ItO AC3.E.SPA.WW

::'l .. SU LZ loA2 AC3.10

:'1<+9u CN2 ~PA.I0

::.l"OU ..,E IIIW

0 .. 8

LW5 AC3tlO

SEU U1~9 0202

MOil AC3.EU.CR2

0~9 Will MOV AI; 1. ACt'>. AMT

::.1::.3u wW loA2 AC1. 10

:;)lti .. U ::'A2 ACo.!O

ti1::.5u. SA2 u3ti1 036U

::'1::.9U

lUO

LAl AC').10

5Ml ACbdO

~M2 U3ti1 036U

lUI

..JR 1'10'+

102

MO::'

SUA AC3.ACb.AIIT

DKT M04

..JMP MOS

103 M04 EKT RTN

:;)1010 MO,+..JX KTN

::'102U

::'103U

::'lo"U

til05U

::'106U

til07u

:;)108U

1U4

LA2 ULR.1

!:oA.: U172 0172

~A2 Ul~8 OlAtl

~A2 U2.)6 0;.:3b

MOV DLR.081,CK1.BLl

lu5 IFO ACh.E.S"A.RTN

loAi! I\Cb.l0

eN2 !:oPA.10

-.IE kTN

1U5::'0 l~O AC6.E.S"N.RTN

P2-4

P2-"

CR AMT. Ul'"tl ACCUM

P2-4

P2-"

Pi!-..

READ NEXT CARD

P2-"

P2-"

P2-4

P2-4

P2-"

P2-"

P2-4

COMP NEW ACCT NO

P2-4

P2-"

P2-"

IF RK.INFO TO PPR

P2-"

P2-4

P2-"

P2-4

P2-"

P2-"

P2-"

P2-"

P2-4

DR-CR=tlAL ACCT NO

P2-"

P2-"

P2-4

EnlT $. CR

P2-"

P2-4

P2-4

ILLUSTRATION 4-3

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

P2-4

ILLUSTRATION 4-4

:.1b9u

:.17(]U

:>1 flU

:.172u

:.11:3U

;,174U

:'11!>u

;,l/bU

:.lnu

"'~~ ACodO

<-flIl ~Pi .. l0

oJE KTI.

lub

~W~ ACb.10

::.Eu ~'2,)7 O~C;U

lu7

~Ac lIeb,10

<-N~ ~PA.lO

.JL KT

..J IHN

no AC.h,L.SPA,Rl,KTN

lOA RT MuV CKT.AL.:3

:Ol18u;.(1 L.A~ CR I,.e

!>179u ~,~2 U2;,0 025i

lU9 R1N Xr<T MUll

:'ldOU r<TI~.J ,~o'+

,UO Mu5 PkN 510'1

:.ltllu MQ:;, F PH1

:'1",2u

:.ld:3u

;'lo5u

:'ln6U

:;It,7u

::11080

~1,,4u

III

.... F PUN

I"TE.

U2

<-L.fl ~Nu. 1

U:3

L.A2 Wi' 1

AM2 CN1,~

U4

L.A.< ~N I,;::

~N~ ",Ol~' c::

oJ'" UFL.

PUN

AuD IUl,C,.T

IrD CrH.G,KuN,OfL

Il~ HKl Rt.S A\.I ,AC:3

!>1'12J

")'0'30

::>1o;4U

:.1o;7u

:.l'1AU

,,2uOU

:'2u1U

:.2U2U

:'2u:3u

;,2uIIU

lLI"' "C':',10

Uh

L.A~ f'V,2

lIJ;>' uOuh Ou07

oJf: "r.::

117

L.A.e AC~, 10

."At'. Aeb,10

118

L.A.e AC4.10

;'Mt'. "CodO

119

120

LA2 AC2olO

<,.N;:: "P"rl(]

,JE ty

121

L.W::' ACb 10

."Eu Ul/:3 OlAb

MUV A(.2,A\;6

IrD A(.;>,E,SPA,YY

MVV AC.?,EU,UB;>

It'.2 YY IrD AC4,E,SPA,RT4

,,2U5U i Y LA.e AC4rlO

;,2ubu <-Nt'. ::'PArlO

:.2u7U ..JE "r4

:.2ueu

:'2u9U

lc!:3

L.W::' AC4rlO

::.Eu ultl9 0,,02

MvV ACII,Eu,CR.<

P2-4

PRIm ACCT TOTALS

P2-4

PIII~CH

P2-4

·.l2

CLtoAH AeCT /lCCUMS

P2-4

P2-4

CI)""PARE COl. b ~ 7

P'!-4

P?-,+

P2-4

IF AK, I ~IFO TO PRN

P~-II

P2-4

P2-4

P2-4

1",4 RTII MuV A~~,Dtj:'\'Ck3,HL.II I:.I)IT *
:'2,lOU I<T4 L.A'" ~SK'l

:>211u

:.212U

;,2dU

;,2i7u

;'2 lilY

:.219u

~A.e Uld7 0187

::.A" u2u3 0203

~A" u2:.2 0t'.5t'.

125

xF PH2

1,6

L.A.< Wi rl

::'Ac lNud

1<:7

L.A2 102d

/1M, ~Nl,t'.

1.<8

L.A" CNT,,,

Pr<N SP2

MVV Iu1, INO

P2-11

P2-4

P2-4

P2-4

f'RINI SF:CT!OI~ TOT

P2-4

P2-4

P?-II

P?-II

P?-4

P?-4

P?··I,

P?-"

P2-4

P2-4

P2-4

ILLUSTRATION 4-5

:>2~OU I..N" I\ON'.,! P2-11

:>2.:1u ... G uFI.. Pl-II

1.:9 H"I\21!t:S Al.2,'A(.1I CLt::At{ ACCIIMS P2-4

:>l.:2u uK" I.Lt("C~'lO P2-4

:>2.:.3u I.Lt(.. e",lO P2~11

loS0 I~[) Fij4,!::,5PA,Ll>T COMP FOFl LAST CRt) Pll-II

:>2.:IIU I.. A.: 1.10:>5 Ou~<l P,,-4

:>2.:5u I..NC: ~P"'lO pa·4

:>2~bU -.IE L.51 P2-11

loSl JMP F~T P?, .. 4

:>2.:7u 1'51 pa-II

loSl 01-2 E"T TAG f'RN COL. /"fEAIlING5 P:>-II

:>a~!:Iu uF" ... x r AI> Pl-II

loSJ 5t:.N HUl,PI<T P2 .. 4

:>2,,91.1 LPt(HD1, I Pl':'l1

:>2..>Uu ~f'" Ulbl 0~9" Pl~1I

I oS II ,.,\.IV Hu2,BI,.2 P2~1I

!.l2,)1U LA" HO.: ,11 P2-11

:J2.:.2U !>A2 02.:.7 O.:!iu pa-4

1.:.5 Pt,N SPI P2-11

;,2..>3u xF Pt(1 P2 .. 4

IJb SI..N HU3,Pto<T P2 .. 4

!.l2':'IIU L.PI< rlD,:".:5 ' PZ-4

:>2':'~U ~P" Ulbl 0.:9.: P2-11

1..>7 MUV HUII,CH2 P1'-4

::>2..>bU L.A~ Hn",7 PZ-II

;,2.:.11.1 ~A" 1.1109 0.:0.: 1'2-11

1':'/\ MUV HI.)5"8L2 P?-II

;,2';8U L.A2 "O:>'lO Pl-4

:>2.:.9u ~A2 u2':'7 0,,5u 1'2-4

Ij9 P"N SP? P?-4

:>2,,01.1 IIF Pl<2 Pl-'"

1,,0 TAr, X"T 01-2 P2-11

!.l2"lu I AI> -.I uF.: 1'2-4

1'+1 Ol-L Ht:.S PKT,CI~T START NtXT PA(,(P?,-II

:>2,,2'J UFL ('L.K Ulbl 0,,92 P;.!-4

o2".3U 1.L.1< tNT,,, P2-11

1'+2 PKN SK7 P?-II

;,2 "II U xF p,a P2-11

1'+3 OKT 01'2 P?-II

::>2,,~u -.Ill uF.: P2-11

I 'til IrO INn, Eo SPA ,AK I P2-11

:>2 .. 6U L.A2 INuol P2-11

:>2,+ 7U (.N" "f'A ,10 1'2.,.11

::>c,+BU -.IE. uKl P2-11

1'+5 Rt.S INO P;>-II

o2,,9U (.LI< 'NU,! P2-4

1,+6 .).,P B,,? 1':1-11

:>2:,OU uK" P2-11

1 .. 7 L~T Rt:.S PKT,PCH P2-11

:J~=:Jlv ,-SI ... Lr< 1.1101 0'=:'1.: P2-"

~202u (;LI< 1,)2 .. .3 0.:.7.: P2-11

l'+8 P~N St<.7 P?-4

:>2"jl,) I\F PH7 Pl-II

149 f'uN P2-11

o2:.>'+u IIF PuN P2-11

:>2:>~lJ ",Tt. Pl

l~O STP H~ T srI' P2-11

:>;::'6V ~Tf' IIF H~T Pl-"

:>2!.l7u :oTP 1'2-11

:>2oBU t.NLJ ::.T I P2-11

MEMORY DUMP

lUUCh

Ot.1

=7=(1"'2-4

I"' Al.C TCuMULAT! Vt.1I

uEt.>ll

URb502 1<[,* (/.3-1

04-1

%.$ RJH= 05-1

U6-1

U7-1

U8-1

09-1

ChEuII

2l L 10-1

.. 11-1

12-1

13-1

14-1

15-1

16-1

17-1

<1UI)11t.7-I!LJ""oIAIAilJ J. 1-14044<. 18-1

J]l>):'.OE4] 4.4.:

J].:1J~2IlHuA·U.UuJU.U.;OClO", '+14IH .:0-1

;Ot.Ot.7\.H('A.U6U<1HI..H.S>O Ot.>U:UII(. 21-1

':\o\t.YU uoYlJ:LJu2\h\E:D<1(\ClH\8\1I\ 22-1

~8-8t1>tlCtll!':\,,\t.Yb..,IlHYRl.R",&IA))b 23-1

loI~<'~U Ju<uC; 5tj~l 3uE4 lit 11l-4-1-10 .:5-1

,1) "') ~ JO-I>H",) •) 1'11\:' :'. ?H-RHR 1[lII:' 26-1

11 ",) .ju u5:1>)O)/I8~ .3.:'0 Ot.R. JFIl.:. 27-1

8-81/eu U5'+0I1Ut.4-5-<[;9 9.21>661'-'01 2R-l

LSH~" u.3u.3,+IUIU4r]1"],+.<,.<'1)':I'.).t. 2'1-1

~UHUt.'j) I') f'.jtll!rl/;A?UHUEh. II 1 JLuHUF <1 .30-1

hlU'1l)t.H<1HClA 4.4,141HO.:&rlIlAII,,»)t .31-1

ILLUSTRATION 5 .. 1
REFER TO CHAPTER 3-111-8

PHAL t:\ALANCt:.

CHAPTER 4

UNIVAC 1005 SOFTWARE OPERATING PROCEDURES

1- ALTERNATE SWITCHES OPERATING PROCEDURES

1. Loading program into Core Memory.

Alt. Switch lon/illuminated.
Alt, Switch 2 off/ extinguished.

2. Normal running.

i\lt. Switch 1 off / extinguished.
A1t. Switch 2 on/illuminated (if automatic forms overflow

desired) .

3. Testing programs (debugging).

A1t. Switch lon/illuminated.
Alt. Switch 2 on/illuminated.

During te sting the progr ammer is able to step instruction by instruc­
tion through a program.

4. Note: ALT Switch 4 on/illuminated suppresses punching

II. SOFTWARE OPERATING PROCEDURES

Single Address Assembly Language (SAAL)

A. SAAL 1 - this is the first pass of the assembly program (S41).

(1) Operating Instructions:

(a) Reader - load cards into input hopper (SAAL 1 object
program, followed by source program, followed by one
blank card).

(b) Console

1. Depress START and CLEAR BUTTON.
2. Alternate Switch 1 on/illuminated, all other s off/ extin­

guished.
3. Depress FEED BUTTON.
4. Depress RUN BUTTON.

When processor HALTS, SAAL 1 is loaded.

5. Depress Alternate Switch 1 off/extinguished.
6. Depres s Alternate Switch 2 on/illuminated (if automatic

forms overflow is desired).
7. Depress START and CLEAR BUTTONS.

4-1

8. Depress FEED BUTTON.
9. Dep:ress RUN BUTTON.

(2) Output

(a) PUNCH - no punched output in SAAL 1.

(b) PRINTOUT - listing of the label table relating each sym­
bo1ic reference (label) in the symbolic program (source
program) with its appropriate position in .Core Memory.

(3) Errors

(a) ERR NO BEG CRD is printed, paper is advanced to the
next page and the program halts - Indicates the, BEG card
does not precede the source program.

(b) ERR _9P IN DAT A DIV is printed to the right of the card in
error, paper is advanced to the next page and the program
halts. This type of error indicates an illegal code in the
operation field (Cols. 11-13). No recovery is possible.
The last card in the output stacker is the card in error.
Correct card and restart.

(c) DUP printed under ERROR heading - Indicates a duplicate
label.

(d) >148 printed under ERROR heading - Indicates the maxi­
~;;; number of labels has been exceeded (148 labels).

(e) OVM printed under ERROR heading - Indicates the maxi­
~ memory has been exceeded (3844 positions).

B. SAAL 2 - second pass of the Assembler - (S42) ,

(1) Operating Instructions:

(a) Reader - load cards into input hopper (SAAL 2 object pro­
gram followed by source progl'am) followed by one blank
card) .

(b) Punch - clear punch and fill hopper with blank cards.

(c) Console

1. Depress Alternate Switch lon/illuminated - 'all other
switches off.

2. Depress' START and CLEAR BUTTONS.
3. Depress FEED BUTTON.
4. Depress RUN BUTTON.

4-2

When processor HALTS, SAAL 2 is loaded.

5. Depress Alternate Switch 1 off/extinguished.
6. Depress Alternate Switch 2 on/illuminated (if automatic

form s overflow is de sired).
7. Depress START and CLEAR BUTTONS.
8. Depress FEED BUTTON.
9. Depress RUN BUTTON.

(2) Output

(a) Punch - a card for card output with the pseudo -machine
code punched in the cards.

(b) Printout - a listing of each card equating each symbolic
line of coding in the source program with the generated
machine code.

(3) Errors

(a) Program halts after first card is read - Indicates BEG
card does not precede source program.

(b) I 0 I printed under 1 st position of ERROR heading - Indi­
cates an illegal operation code.

(c) I E I printed under 2nd position of ERROR heading - Indi­
cates an expression error, i.e. operand which is less than
000 1 or greater than 3875. The most frequent cause of
error is an undefined label. This type of error will print
6530 under the OPERAND heading.

(d) I P 1 printed under 3rd position of ERROR heading - Indi­
cates a precautionary warning, i.e. an instruction greater
than 10 or 21 characters utilizing ARI or AR2 respectively.

(e) I S I printed under the 4th position of ERROR heading -
Indicates a sequence number error.

C. Condense Program (CD4)

(1) Operating Instructions

(a) Reader - load cards into input hopper (condense object
program followed by output of SAAL 2, followed by one
blank card).

(b) Punch - clear punch unit and fill hopper with blank cards.

(c) Console

4-3

1. Depress Alternate Switch lon/illuminated.
2. Depress START and CLEAR BUTTONS.
3. Depress FEED BUTTON.
4. Depress RUN BUT·TON.

When processor HALTS, condense is loaded.

5. Depress Alternate Switch 1 off/extinguished.
6. Depress START and CLEAR BUTTONS.
7. Depress FEED BUTTON.
8. Depress RUN BUTTON.

D. Memory Dump (DMP)

(1) Oper ating Instructions:

(a) Reader - load input hopper with memory dump obj ect
program.

(b) Punch - no punch output.

(c) Console

1. Depress Alternate Switch lon/illuminated.
2. Depress START and CLEAR BUTTONS.
3. Depress FEED BUTTON.
4. Depress RUN BUTTON.

When processor HALTS

5. Depress Alternate Switch 1 off/extinguished.
6. Depress START and CLEAR BUTTONS.
7. Depress FEED BUTTON.
8. Depress RUN BUTTON.

E. READ - PRINT - PUNCf! (RPX)

(1) Operating Instructions:

(a) Reader - load input hopper with RPX object program, fol­
lowed by data cards, followed by one blank card.

(b) Punch - clear punch unit and fill hopper with blank cards.

(c) Console

1. Depress Alternate Switch lon/illuminated.
2. Depress ST ART and CLEAR BUTTONS.
3. Depress FEED BUTTON.
4. Depress RUN BUTTON.

4-4

When processor HALTS

5. Depress Alternate Switch 1 off/extinguished.
6. Depress Alternate Switch 2 on/illuminated (if automatic

forms overflow is desired).
7. Depress START and CLEAR BUTTONS.
8. Depress FEED BUTTON.
9. Depress RUN BUTTON.

F. NUMBER IT (NIT)

(1) Operating Instructions:

(a) Reader - load cards into input hopper (NIT A followed by
data cards, followed by one blank card).

(b) Punch - clear punch unit and fill input hopper with blank
cards.

(c) Console

1. Depress Alternate Switch lon/illuminated.
2. Depress START and CLEAR BUTTONS.
3. Depress FEED BUTTON.
4. Depress RUN BUTTON.

When processor HALTS, Number it is loaded.

5. Depr~ss Alternate Switch 1 off/extinguished.
6. Depress START and CLEAR BUTTONS.
7. Depress FEED BUTTON.
8. Depress RUN BUTTON.

(2) Output

(a) Punch - a card for card punched deck with all cards se­
q~ence punched in columns 1 ... 3 starting with C/JC/J 1, and nl.~w
program ID inserted in columns 62-65 if header was used.

(b) Printer - an 80/80 listing of each card punched.

G. DUPLICATE (DUP)

(1) Operating Instructions:

(a) -Reader - load cards into input hopper {DUPA followed by
four header cards, followed by data cards, followed by a
sentinal and a blank card.

(b) Punch - clear punch unit and fill input hopper with blank
cards.

4-5

(c) Processor

1. Depress Alternate Switch lon/illuminated.
2. Depress START and CLEAR BUTTONS.
3. Depress FEED BUTTON.
4. Depress RUN BUTTON.

\Vhen proces sor HALTS

5. Depress Alternate Switch 1 off/extinguished.
6. Depress START and CLEAR BUTTONS.
7. Depress FEED BUTTON.
8. Depress RUN BUTTON.

H. CLEAR (CLR)

(1) Operating Instructions:

Clear cards are normally placed before object cards for the purpose
of clearing memory prior to loading a new program.

4-6

CHAPTER 5

UNIVAC 1005 HARDWARE MACHINE TESTING and
OPERATING PROCEDURES

I. MANUAL ALTERNATE SWITCHES.

A. Mode of Operation Table.

The following table shows the mode for the sixteen possible switch
combinations:

Punch JS3 SWITCH SWITCH SWITCH SWITCH
MODE Inhibited 1 Instructionz ONE TWO THREE FOUR

Normal Operation No NI 3 OFF OFF OFF OFF

" Yes NI 0FF OFF OFF ON

" No JUMP OFF OFF ON OFF

" Yes JUMP OFF OFF ON ON
Normal Auto Form Overflow No NI OFF ON OFF OFF

" Yes NI OFF ON OFF ON

" No JUMP OFF ON ON OFF

" Yes JUMP OFF ON ON ON
LOAD No NI ON OFF OFF OFF

TRACE Yes NI ON OFF OFF ON
RESERVED No JUMP ON OFF ON OFF

TRACE Yes JUMP ON OFF ON ON
Single Instruction No NI ON ON OFF OFF

" " W TRACE Yes NI ON ON OFF ON

" " No JUMP ON ON ON OFF

" " W TRACE Yes JUMP ON ON ON ON

Notes: 1. When switch four is "on", punch and PTE orders will be ignored.

2. Switch thr ee sets an indicator that is program testable by the JS3 instruction.
If alternate switch 3 is "on", control will be transferred "M"; if "off", the
next instruction in sequenc e will be executed

3. NI means Next Instruction.

B. Automatic Form Overflow Mode. N.ormal auto form overflow doe s the
following during XF print order s:

1. If a "1" punch only on the printer form loop is detected during a prior
print, the form will be advanced to the next line of the form loop on
which there are 1, 2 and 4 punches on the next print instruction.

5-1

2. If a form overflow occurs the compare indicator is set to a less
than condition.

3. If no form overflow occur s the compare indicator is set to a
greater than condition.

4. All card or paper tape XF's affect the comparator. If there is no
print on the XF the comparator will be set to greater.

C. Trace Mode. This prints the static registers between the update of
the program address counter and the execution of an instruction. It
destroys print storage.

The following table shows the registers traced and their print
positions:

Description

6 Register

Instructions Register

Blank

Program Address Counter PAK
(address of next instruction in
memory)

Machine Constants

X Register

Machine Constants

Print Position

81-90

91-95

96-96

97-98

99-107

108-109

110-111

D. Single Instructions Mode. This permits the programmer to cycle
through his program. During this mode, the processor Halts at the
end of the first internal cycle of each instruction executed. In single
instruction mode trace mayor may not be used depending on the
setting of Manual Alternate Switch 4 (on for trace).

Each 1005 instruction consists of 5 "6 bit" characters. During sin­
gle instruction mode, the entire instruction is readable from masks.

5-2

Mask 6 - Operation code (instruction Character 1)

Mask 8 - Operand (instruction Character 2 -5)

Mask 9 - Operation register and operand bank designation.

When executing a conditional jump, the indication of the condition
may be seen on Mask 9. If indicator light 1 is lit, the condition is
not met and the next instruction in sequence will be executed. If in­
dicator light 2 is lit, the condition is met and control will be trans­
ferred to the "M" address.

In single instruction mode, the following instructions show on Mask
6 as multiple instructions.

a) Conditional Jump Instructions - When the condition is met, an
unconditional jump instruction cycle is generated.

b) Store Zero Suppress (SZS) and Store Edit (SED) - These in­
structions generate a SA2 (Store Ascending Register 2)
instruction cycle.

1. Reading PAK

a) Set processor to single instruction mode to stop after the exe­
cution of the pr evious instruction.

b) Set the processor MODE switch to STEP.

c) Depre s s run button until Step 1 lights on Mask 5.

d) PAK is displayed:

1) Mask 8 indicators 11-15 (Row) 16-20 (Column).

2) Mask 9 indicator s 20 -21 (Bank Designation).

Reference description of masks for details.

5-3

II. TEST SWITCH PANEL.

The Test Switch Panel for the UNIVAC 1005 Card Processor is located
on the upper fr ont of the Proces sor just to the left of the Card Stacker.
The Test Switch Panel occupies the lower half of this panel area.

The Test Switches are beneath a cover which is hinged at the bottom.
Access to the switches is obtained by swinging this cover down. There
are 47 toggle switches in the area; 6 rows of 8 switches each with one
blank position.

A. Progr am Step Counter Switche s

The following 5 switches, located near the center of the panel are
used to stop the program on a given type of instruction.

5-4

SWITCHES 1 - 5 ... These five switches are used to set up the instruction
number desired according to the binary code printed on Display Panel
6. Each of these five switches is set in one of two positions accord­
ing to whether the related code position calls for a 1 or 0:

Off (Up) for a 1
On (Down) for a 0

By keying instructions to switches and running the processor in a con­
tinuou s mode, the machine will come to a halt after executing the fir st
cycle of the keyed instruction. Using this procedure, the programmer
may let his program run until it gets to a particular instruction and
then step through that particular routine in single instruction mode.

The remaining switches are primarily used for engineering mainte­
nance.

5-5

III. DISPLAY MASKS.

A. Display Mask 4.

1 2 3 4 5 6 7 8

(HOPPER I FEED' I RO JAM I TSp· JAMJ STACKR I FORM I AOV vi PUNCH)

00000 00001 00011 00111 01110 11100 11001 10010

9 10 11 12 13 14 15 16

(HALT INO liND 2 INO 3 INO 4 I RO I/O I PR I/O I PCH I/O)

00100 01000 10001 00010 00101 01010 10101 01011

17 18 19 20 21 22 23 24

~ SP 1 SP 2 SK 1 SK 2 SK 4 I END RD I END PR I RIP EX ~
10111 01111 11110 11101 t1011 10110 01101 11010

25 26 27 28 29 30 31 32

(HOPPERt FEED I RO JAM ITSP JAMIWAIT JAMIFORM o'FlpCH HLOlpCH cuD
10100 01001 10011 00110 01100 11000 10000 11111

Indicators 1 - 13 are of interest during continuous operation to signify
a reason for Processor stopping. Indicators 14-21,24, & 30 - 31 are for
program analysis with regard to Input/Output. Indicators 25 - 29 apply
when an Auxiliary Card Reader is used.

5-6

Operation

Display Mask 4 should be displayed when the Processor is in Continuous oper­
ation.

IMPORT ANT: -- If the Proces sor stops during a run, the operator must always
consult Display Mask 4 to determine the reason for stopping before pr es s­
ing any of the operating controls.

By noting the indication on this Display Mask, the proper action can be taken.
The Processor operation can then be resumed properly.

Card Feeding (l - 5)

All areas of the card feeding mechanism from the Magazine to the Stacker
are covered by controls to stop the Processor in the event of mis -feeding.

HOPPER (1) - Input Magazine

This indicator will be lit whenever the Input Magazine is empty and
the Feed indicator is lit. The Hopper indicator cannot be on alone.

During operation, this indicator will light after the last card is read.

The Processor will stop after the read order is executed with
the last card in the Card Stacker.

Processor operation is resumed by:

Pressing the Stop switch.

Placing cards in the Magazine.

Pres sing the Feed switch once to feed a card fr om the Magazine
into the Wait Station; the Hopper and Feed indicator s will turn off.

Pressing the Run switch once to resume the Processor operation.

FEED (2) - Wait Station

This indicator will be lit by pressing the Clear switch or by a card
cycle if ther e is no card fed to the Wait Station.

Should this indicator light ·during operation, a card has failed to feed
from the Magazine. If there are cards in the Magazine, the Proc­
essor will stop on the next read order with the Feed indicator lit and
the Read not executed.

5-7

Processor operation is resumed by:

Pressing the Stop switch.

Removing the cards from the Magazine.

Examining the cards on the bottom of the stack to determine the
reason for the failure to feed.

Correcting these cards and returning all cards to the Magazine.

Pressing the Feed switch once to feed a card from the Magazine to
the Wait Station; the Feed indicator will turn off.

Pressing the Run switch once to resume the Processor operation.

The Hopper and Feed indicator s will be lit when the last card has been
fed from the Wait Station to the Card Stacker. The Proces sor will
stop at the completion of the current Read. If additional cards are to
be proces sed; pres s the Stop switch, place the cards in the Magazine,
pres s the Feed and Run switches.

RD JAM (3) - Read Jam

Should the Processor stop during operation with this indicator lit,
either one of the following has occurred:

1. A card from the Wait Station may have failed to feed to the Read
Photoelectric Diodes.

2. The Read Photoelectric Diodes may have failed the "light-dark"
test.

Before reading the first card and between the reading of each
following card, the photo-diodes are in a "light" condition.
When the leading end of a card enter s the photo -diode ar ea, a
"dark" condition occur s .

This light-dark change must be executed properly to as sure
correct reading; if it is not, the Processor will stop.

If the stoppage is due to a card jam befor e the photo -diodes, the Read­
Execute Aignal is retained in the Processor; the jammed card was
not read. The following procedure will return the Processor to opera­
tion without los s of data:

1. Press the Stop switch.

5-8

2. Remove all cards from the Magazine and Wait Station.

3. Pres s the Feed switch once while the Magazine is empty. The
Feed indicator will light.

4. Rem~kethedamaged cards, if necessary, and replace them in
thei~ proper sequence at the bottom of the stack in the Magazine.

5. Pres s the Feed switch once to feed a card from the Magazine to
the Wait Station.

6. Press the Run switch once to resume the Processor operation.

If there is no card jam when the Proces sor stops with the RD JAM in­
dicator lit, a light-dark test failure is signified. In this case:

The Read-Execute signal is retained in the Processor; card read­
ing did not take place, only card feeding.

The last card in the Stacker has not been read.

The following procedure should be followed to restore the Processor
to operation in the event the light-dark test failure was only
momentary:

1. Remove all cards from the Magazine. Remove the last card
from the Stacker and the card from the Wait Station.

2. Follow steps 3 through 6 above. The card from the Stacker
should be first in sequence when replacing the cards in the
Magazine.

Should the RD JAM indicator light, try the procedure again. If the
same indication per sists, remake the card and try again. If failure
continues, have the field engineer check the photodiode operation.

TSP JAM (4) - Transport Jam (Photo-Diodes to Stacker)

This indicator will light in the event of a jam as the card is delivered
to the Stacker.

The Processor will stop.

Tores~me the Proc.essor operation without loss of data:

Pres s the Stop switch.

5-9

Remove the mis -fed card or cards.

Press the Run switch.

ST ACKR (5) - Stacker

This indicator will light to indicate a full Card Stacker. The Proe­
es sor operation will stop after a Read Order.

To resume the Processor operation without loss of data:

Pres s the Stop switch.

Remove the cards from the Stacker.

Pres s the Run switch.

Form Feeding (6 & 7)

FORM (6)

This indicator will light to signify that the supply of forms to be fed
is exhausted or that there is a break in the perforation between forms.

The Processor operation will stop when form feeding occurs to or
through the next Home position so that the operator can replenish the
form supply.

When a new form is installed in the proper position~ the operation is
resumed by pre s sing the Run switch.

ADV V (7) - Form Advance Check

Should the form be fed in one skip beyond the permis sible maximum
(22 "), this indicator will light to signify a form "run -away". This
would be an uncontrolled skip.

The Proces sor operation stops automatically within a very short
interval.

This stoppage is due to an error in the punching of the Form Control
Tape.

After the proper correction has been made to the control and to the
form alignment, the operation is resumed by pressing the Run switch.

5 -10

Card Punching

PUNCH (8)

This indicator will light and the Processor operation will stop in the
event of an abnormal condition in the Punch when a Punch function is given.

The Punch Control Panel will indicate the reason for the Processor
stoppage at thi s time.

The lighting of this PUNCH indicator can designate any of the follow­
ing Punch conditions:

The power cord of the Punch is not connected. The AC and DC in­
dicators will not turn on.

The Punch power switch is not turned on. The AC and DC indica­
tor s will not be lit.

A fuse is blown in the Punch. The AC and DC indicators or the DC
indicator only will not light.

The Punch cover s are not in place. The Interlock (INT L) indicator
will be lit.

The punching mechanism in the head of the Punch has been raised
and has not been lowered and locked in its proper position. The
Interlock (INT L) indicator will be lit.

The Punch reading brushes have been unlocked or removed and
have not been reseated and locked in their proper position. The
Interlock (INT L) indicator will be lit.

The Input M~gazine of the Punch is empty. The HOPPER indicator
will be lit.

A Card Stacker of the Punch is full. The STACKER FULL indi­
cator will be lit.

There is a card jam in the Punch. The FEED A JAM or B JAM or
the STACKER JAM indicator will be lit.

The Chip Drawer of the Punch is full or is not in place. The
CHIPS indicator will be lit and/or the READY Light will be ex­
tinguished.

The Punch Check is set to stop the Processor operation when the
hole count -does not agree.

5-11

The ,Processor operation is resumed, after correcting the Punch
condition, by pressing the Run switch.

HALT (9)

There are three conditions under which HALT may light.

1) When last card of Object Deck has been loaded.

2) When machine is running in Single Instruction nlode.

3) When an XF HLT instruction is executed.

Auxiliary Card Reader (25 - 29)

These five indicator s function when an Auxiliary Card Reader is being
used. All areas of the card feeding mechanism of the Auxiliary Card
Reader froll1 the Magazine to the Stackers are covered by controls to
stop the Processor in the event of ll1is-feeding. These indicators ap­
ply only to the Auxiliary Card Reader, they are not r elated to the sill1i­
lar indicators 1 - 4 above. The STACKR (5) applies to both Card
Readers.

HOPPER (25) - Input Magazine

This indicator will be lit whenever the Input Magazine is empty and
the Feed indicator (26) is lit. The Hopper indicator cannot be on
alone.

During operation, this indicator will light after the last card is read.
The Processor will stop with the last card in Wait Station 2 after
the auxiliary read order is executed.

Proces sor operation is resumed by:

Pres sing the Stop switch.

Placing cards in the Magazine.

Pres sing the Feed switch of the Auxiliary Card Reader once to feed
a card from the Magazine into Wait Station 1; the Hopper and Feed
indicator s will turn off.

Pressing the Processor Run switch once to resume the operation.

5-12

FEED (26) - Wait Station 1

This indicator will be lit by pre ssing the Clear switch on the Proc­
essor Central Control Panel or by a card cycle if there is no card
fed to Wait Station 1.

Should this indicator light during operation, a card has failed to feed
from the Magazine. If there are cards in the Magazine, the Processor
will stop on the next Auxiliary Read order with the Feed indicator lit
and the Read not executed.

Processor operation is resumed by:

Pres sing the Stop switch.

Removing the cards from the Magazine.

Examining the cards on the bottom of the stack to determine the
reason for the failure to feed.

Correcting these cards and returning all cards to the Magazine.

Pres sing the Feed switch of the Auxiliary Card Reader once to
feed a card from the Magazine to Wait Station 1; the Feed indica­
tor will turn off.

Pressing the Processor Run switch once to resume the operation.

The Hopper and Feed indicators will be lit when the last card has been
fed from Wait Station 1 to the Card Stackers. The Processor will stop
at the completion of the current Read. If additional cards are to be
processed; press the Stop switch, place the cards in the Magazine,
pres s the Auxiliary Card Reader Feed switch and the Proces sor Run
switch.

RD JAM (27) - Read Jam

Should the Processor stop during operation with this indicator lit,
either one of the following has occurred:

1. A card from Wait Station 1 may have failed to feed to the Read
Photoelectric Diodes.

2. The Read Photoelectric Diodes may have failed the "light-dark"
test.

Before reading the first card and between the reading of each
following card, the photo-diodes are in a "light" condition.

5-13

When the leading end of a card enters the photo-diode area, a
"dark" condition occur s.

This light-dark change must be executed properly to as~ure
correct reading; if it is not, the Processor will stop~

If the stoppage is due to a card jam before the photo-diodes, the Read
2-Execute signal is retained by the Processor; the jammed card was
not read. The following procedure will return the Processor to opera­
tion without loss of data:

1. Press the Stop switch.

2. Remove all cards from the Magazine and Wait Station 1.

3. Press the Feed switch of the Auxiliary Card Reader once while
the Magazine is empty. The Feed indicator will light.

4. Remake the damaged cards, if necessary, and replace them in
their proper sequence at the bottom of the stack in the Magazine.

5. Press the Feed switch of the Auxiliary Card Reader once to feed
a card from the Magazine to Wait Station 1.

6. Press the Processor Run switch once to resume the operation.

If there is no card jam when the Processor stops with the RD JAM
indicator lit, a light-dark test failure is signified. In this case:

The Read 2-Execute signal is retained in the Processor; card
reading did not take place, only card feeding.

The card in Wait Station 2 has not been read.

The following procedure should be followed to restore the Processor
to operation in the event the light-dark test failure was only
momentary:

1. Remove all cards from the Magazine. Remove the card from
Wait Station 1. Press the Run Out switch of the Auxiliary Card
Reader to feed the card in Wait Station 2 to the Stacker s.

2. Follow steps 3 thr ough 6 above. The card from Wait Station 2
should be fir st in sequence when replacing the cards in the Mag­
azine.

Should the RD JAM indicator light, try the procedure again. If the
same indication persists, remake card and try again. If failure

5-14

continues have the field engineer check the photod.iode operatiQn,

WAIT JAM (29) - Wait Station 2 Jam (Photo-DiQde$ to Wait Station 2)

This indicator will light to indicate the failure of a card. to feed. to or
from Wait Station 2.

To resume the Processor operation without loss of da~a:

Pres s the Stop switch.

Remove the mis -fed card or cards.

Pres s the Clear switch on the Control Panel of the AuxHiary Card
Reader.

Press the Processor Run switch.

TSP JAM (28) - Transport Jam (Wait Station '2 to Stackers)

This indicator will light in the event of a jam as the card is delivered
to the Stacker s .

The Processor will stop.

To resume the Processor operation without loss of data:

Press the Stop switch.

Remove the mis -fed card or cards,

Press the Processor Run switch.

ST ACKR (5) - Stacker

This indicator will light to indicate a full Card Stacker in th~ Auxiliary
Card Reader as well as in the Card Reader. The Processor oPfi:!ration
will stop after an auxiliary read order.

To resume the Processor operat~on without loss of data:

Press the Stop switch.

Remove the cards from the full Stacker.

Press the Processor Run switch.

5-15

B. Display Mask 6.

1 2 3 4 5 6 7 8

(LAr321 LOr 331 LPR 341 SAr;35 ISOr 36 I SPR 371 SHR 381 SHL 39)

00000 00001 00011 00111 01110 11100· 11001 10010

9 10 11 12 13 14 15 16

(C L R 40 I CA r 41 I C N r 421 Ie 43 I J 44 (I J L 45 I J G 46 1 J E 47)

00100 01000 10001 00010 00101 01010 10101 01011

17 18 19 20 21 22 23 24

(JR 48 I JX 49 I AMr 501 ARr 51 I SMr 52 I SRr 53 I MUL 54! DIV 55)

10111 01111 11110 11101 11011 10110 01101 11010

25 26 27 28 29 30 31 32

(TRL 561 SZS 571 LWS 58! LNr 59! SED 60lpTE 611 XF €2 ! 32)
10100 01001 10011 00110 01100 11000 10000 11111

Note: JS3, JET, JPE, JC8, JOF, JAL, J1l, and XF functions S11, RIl,
RCD, SNS, SN8, Light the Indicator marked PTE. SC, LOR, LAN, BSH,
CCA, XFC Light the indicator marked XF.

5-16

Mask 6 is used to determine the operation being executed during single in­
struction mode. For register designation, refer to Mask 9.

Indicator 1 = LAr Load Ascending AR 1 or 2

2 = LDr Load Descending AR 1 or 2

3 = LPR Load Print Descending

4 = SAr Store Ascending AR 1 or 2

5 = SDr Store Descending AR 1 or 2

6 = SPR Store Print Descending

7 = SHR Shift Right

8 = SHL Shift Left

9 = CLR Clear Area to Spaces

10 = CAr Compart Alpha AR 1 or 2

11 = CNr Compare Numeric AR 1 or 2

12 = IC Increment and Compare

13 = J Jump Unconditional

14 = JL Jump Less (Numeric)

15 = JG Jump Greater (Numeric)

16 = JE; Jump Equal (Numeric)

17 = JR Jump Return (Store PAK in X Register)

18 = JX Store X Register in M

19 = AM r Add Algebraic AR 1 or 2 to M

20 = AR r Add Algebraic M to AR 1 or 2

21 = SM r Subtract Algebraic AR 1 or 2 from M

22 = SR Subtract M from ARl or 2
r

5 -17

23 ::: MUL Multiply

24 ::: DIV Oi vide

25 ;:;; TRL Translate

26 ::: SZS (/J SuppressAR2 and Store Ascending

27 ::: L WS Load AR2 with Sign and Zone Delete

28 ::: LNr Zone Delete ARl and AR2

29 :::; SED Edit, , • AR2 and Store Ascending

30 ::: PTE Punch Text (See Note 1)

31 ::: XF External Functions (See Note 2)

NOTE 1: JS3, JET, JPE, JG8, JOF, JAL, J11 and XF
Functions S1l,R11, RGD, SNS, SN8 light the
indicator marked PTE.

NOTE 2: SC, LOR, LAN, BSH, GGA, XFG light the indi­
cator mar ked XF.

5 -18

C. Di splay Mask 8.

1 2 3 4 5 6 7 8

(lMSRS I 2MSR41 3MSR3 I 4MSR2 I SMSR1 16MScsI7MSC4 f 8MSC3)

00000 00001 00011 00111 01110 11100 11001 10010

9 10 11 12 13 14 15 16

(9MSC2110MSCl III LSRSI12LSR4113LSR3114LSR211SLSR1 J16LSCS)

00100 01000 10001 00010 00101 01010 10101 01011

17 18 19 20 21 22 23 24

(17LSC4} 18 LSC3119LSC2120 LSC 11 CCB CCA CBB CBA)

10111 01111 11110 11101 11011 10110 01101 11010

25 26 27 28 29 30 31 '32

<S CAB CAA ICA ICC ICD OCA OCB ~
10100 01001 10011 00110 01100 11000 10000 11111

MSR = Most Significant Row
MSC = Most Significant ColuITln
LSR = Least Significant Row
LSC = Least Significant Column

5 -19

Mask 8 displays the operand of the instruction being executed during single
instruction mode. For operand bank designation, refer to Mask 9.

INDICATORS 1-5 repre sents all but the "X" bit of instruction character 2.
(Most significant row)

IND. 1 = Y bit
2 = 8 bit
3 = 4 bit
4 = 2 bit
5 = 1 bit

INDICATORS 6 -10 represents all but the "X" bit of instruction character 3.
(Most significant column)

IND. 6 = Y bit
7 = 8 bit
8 = 4 bit
9 = 2 bit

10 = 1 bit

INDICATORS 11-15 represents all but the "X" bit of instruction character 4.
(Least significant row)

IND. 11 = Y bit
12 = 8 bit
13 = 4 bit
14 = 2 bit
15 = 1 bit

INDICATORS 16-20 represents all but the "X" bit of instruction character 5.
(Least significant column)

IND. 16 = Y bit
17 = 8 bit
18 = 4 bit
19 = 2 bit
20 = 1 bit

INDICATORS 21-32 reference internal maching cycles and is primarily used
for engineering maintenance.

5-20

D. Display Mask 9

1 234 5 678

~ cl>-I Cl;t<+1 Cl=0 I c2>-IC2;t<+1 C2=0 I c3>-IC3;t<+?)

00000 00001 00011 00111 01110 11100 11001 10010
FALL JMP

9 10 11 12 13 14 15 16

~ C3 = 0 I C4 > - I C4 ;1'<+ I C4 ='0 I C5 > - I C5 ;t<+ I C5 = 0 I C6 > - ~
00100 01000 10001 00010 0010101010 10101 01011

ch8

17 18 19 20 21 22 23 24

(SC6 ;1'<+ I C6 = 0 I C7 > - I C];l'<+ I C7 = QJ I C8 > - I C8 ;t<+ I C8 = 0 ~
10111 01111 11110 11101 11011 10110 01101 11010
ICIX IC2X IC3X IC4X IC5X PE EDT

25 26 27 28 29 30 31 32

(C9>- I C9t<+1 C9=0 ICIO>-IClOt<+1 clo=0IMAINT BIMAINT c)

10100 01001 10011 00110 01100 11000 10000 11111

5 -21

Mask 9 displays various indicators and registers in the 1005. Of interest to
the programmer are the following:

INDICATOR 1. If this indicator is lit on a conditional jump, the condition is
not met.

2. If this indicator is lit on a conditional jump, the condition is
met.

16. A paper tape channel eight punch has been sensed.

17. Instruction character One "X" bit present.

18. Instruction character Two "X" bit present.

19. Instruction character Three "X" bit present.

20. Instruction character Four "X" bit pre sent.

21. Instruction character Five "X" bit present.

NOTE 1: Instruction character one "X" bit determines the
register (when applicable) the instruction will
use.

"X" bit absent = Register 1

"X" bit pr esent = Register 2

NOTE 2: Instruction char acter s four and five determine the
bank designation. The following table of bits il­
lustrate bank addressing:

"X" Bit "X" Bit Bank
Char. 4 Char. 5 Designation

Absent Absent 1

Present Absent 2
Absent Present 3
Present Present 4

22. Paper tape parity error, magnetic tape parity error, DLT
Mod Error, or invalid card code has been detected.

23. End of magnetic tape has been sensed.

5-22

UNIVAC
FEDERAL SYSTEMS DIVISION

FSD 1089.1 APRil 1968

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	xBack

