+S’ER!V RAND

LUNIVAC 1005

EXTENDED SYSTEM

PROGRAMMERS REFERENCE MANUAL

LUNIVAC

FEDERAL SYSTEMS DIVISI

I

1I

II

III

v

v

INTRODUCTION
PROCESSOR ,
A. Program Logic
B. Operational Registers
C. Transient Registers
D. Program Control
E, Core Memory

INTRODUCTION

GENERAL DESCRIPTION

INSTRUCTION FORMAT

A.

CHAPTER 1
1005 SYSTEM

1. Memory Allocation

2. I/O Buffers

3. Addressing

CHAPTER 2
SAAL ASSEMBLY SYSTEM

Symbolic Coding Format

1. Label Field

2. Operation Field

3. Operand Field

4, Comments

PROGRAM ORGANIZATION

.

SPAe-ZOomBOOw Y

.

BEG Directive

CRD Directive

PRT Directive

PCH Directive

BF1 Directive

BF2 Directive

BF3 Directive

BF4 Directive

ORG Directive

Literals

Comments Card

STA Directive

END Directive

INSTRUCTION REPERTOIRE
A.

Instruction Repertoire - Central Processor
Load Ascending

Page

1/1

1/2
1/2
1/2-3
1/3-4
1/4-5
1/5-11
1/9-10
1/11
1/11

2/1
2/1-2

2/2-5
2/2
2/3
2/3
2/4-5
2/5

2/6-14

- 2/6

2/6-7
2/7
2/7-8
2/8
2/9
2/9
2/10
2/10-11
2/11
2/11-12
2/12-13
2/13

2/13-96
2/14-62
2/15-16

V INSTRUCTION REPERTOIRE (continued)

L.oad Descending

Lioad Print

Store Ascending

Store Descending
Store Print

Shift Right

Shift Left

Clear

Compare Alﬁha/Numeric
Compare Numeric

Increment Compare

Jump Unconditional

Jump Greater

Jump Less
Jump Equal

Jump Equal Alpha/Numeric

Jump Unequal Alpha/Numeric

Jump Positive

Jump Negative
Jump Zero .

Jump Return

Jump Exit

Add to Memory

Add to Register

Subtract from Memory

Subtract from Register
Multiply

Divide

Translate

Store With Zero Suppress

Load With Sign
Load Numerics

Store Edited

Punch Test

Instruction Repertoire - Card System External Functions

Read

Print-Space 1/Space 2
Print - Skip 7

Punch

Read-Print-Space 1

Read-Print-Space 2

Read-Punch

Read-Print-Space 1-Punch

Skip 2

Skip 4

Page

2/17-18
2/19
2/20-21

_2/22-23

2/24
2/25-26
2/27-29
2/30
2/31-32
2/33-34
2/35
2/36
2/36
2/ 36
2/36
2/37
2/37
2/38
2/38
2/38
2/39
2/40
2/41-42
2/43-44
2/45-46
2/47
2/48
2/49
2/50-55
2/56
2/57-58
2/59-60
2/61
2/62

2/62-80
2/63
2/64
2/65
2/66
2/67
2/68
2/69
2/70
2/71
2/71

INSTRUCTION REPERTOIRE (continued)

Skip 7

Read Code Image

Punch Code Image

Read Auxiliary Code Image Stacker Select 1

Read Auxiliary Stacker Select 1

Read Auxiliary Stacker Select 2

Read Auxiliary Stacker Select 3

Punch with Stacker Select

Read/Read Punch

Read/Read Punch with Stacker Select

Read/Read Punch Code Image

Halt

Instruction Repertoire - Paper Tape External Functions
and Conditional Tests

1. Paper Tape External Functions
Read Paper Tape 1 Frame

Read Paper Tape 80 Frames
Read Paper Tape Through Sentinel

Punch Paper Tape Without Parity 1 Frame

Punch Paper Tape Without Parity to Sentinel __

Punch Paper Tape With Parity 1 Frame

Punch Paper Tape With Parity to Sentinel

2. Paper Tape Conditional Tests

Jump Parity Error

Jump Channel 8

Instruction Repertoire - Magnetic Tape External

Functions and Conditional Tests_

1. Magnetic Tape External Functions

Read Tape Servo 1 Normal Gain

Read Tape Servo 2 Normal Gain

Read Tape Servo 1 High Gain

Read Tape Servo 2 High Gain

Write Tape Servo 1
Write Tape Servo 2

Erase Before Write Servo 1

Erase Before Write Servo 2

Backspace Servo 1

Backspace Servo 2
Rewind Servo 1
Rewind Servo 2

2. Magnetic Tape Conditional Tests
Jump Parity Error

Jump End of Tape

Page

2/71
2/72
2/73
2/74
2/75
2/75
2/75
2/76
2/77
2/78
2/79
2/80

2/81-86
2/81-84
2/82
2/82
2/82
2/83
2/83
2/84
2/84

2/85-86
2/86
2/86

2/87-96
2/87-92
2/88
2/88
2/88
2/88
2/89
2/89
2/90
2/90

‘,2/91

2/91
2/92
2/92
2/93-96
2/94
2/94

Page

V INSTRUCTION REPERTOIRE (continued)

Example Parity Error Recovery on Read Tape

Function--=----c-ccmcmmccaca-coo-- --2/95
Example Parity Error Recovery on Write Tape
Function - - = = - = = m s e e e e e e e e e e e am - - 2/96
E. Instruction Repertoire - Advanced Programming - - - -2/97-105
Jump Alternate Switch 3 - -------o-c-coo oo 2/97
Jump Arithmetic Overflow - --------c-ccc-on-- 2/98
- Compare Character Alpha/Numeric ------------ 2/99
Store Character - --=====---=-ccccmmoc-oo--- 2/100
LogicalAnd ------------Ff--ccr--coc-oo-- 2/101-103
Logical OF == =---==-mcmmmommeoceaoaeon- 2/103-104
Bit Shift - == = = = = - o - s s e s e e e m e m - - 2/105

F. Instruction Repertoire - External Function Combi-
nations =~ - --~-~-==- == --- 2/106-110

G. Instruction Repertoire - 1005 Data Line Terminal-3

External Functions and Conditional Tests - - - = - - - 2/111-119

1. DLT-3 External Functions - - = = = = = = = = = = = = = = - 2/111

2. General - ----=--cc ettt et e s m e - - 2/111-112

3. Transmitting - - - - - - - =-c--cccc-ooooooo- 2/112-114

4. Receiving - - - === cccccmmmmcmmm e mm oo 2/114

5. Error Conditions = - === - == ccmcmcmmmmanen-na- 2/114-115

6. Instruction Formats External Functions - - - - - - - - 2/115-117
Send DLT 80 Characters -=-==ccc 2 acmmecan-a- 2/116
Send DLT Through Sentinel ----=-+---------- 2/116
Receive DLT To End of Message =--======~--- 2/117

7. Instruction Formats Conditional Tests - - - - - - - - - 2/118-119
Pause TeSt == -~ === e m c e e c e e e e e e m ~-==--2/118
Jump End of Time -------=--cc-cocmanan-on 2/119

Jump Parity Error-----=-«-ccme oo 2/119

I

II

III

v

CHAPTER 3

UNIVAC 1005 SOFTWARE

THE UNIVAC 1005 SINGLE ADDRESS ASSEMBLY SYSTEM

A. SAAL 1 (Illustration 1) Trial Balance Sample Program
P2-4 .

B. SAAL 2 (Illustration 2) Trial Balance Sample Program
P2-4

C. Trial Balance Sample Report (Illustration 3)

THE UNIVAC 1005 SINGLE ADDRESS REPORT GENERATOR

A. SARGE 1 - Trial Balance Sample Program P2-4

B. SARGE 2 (Illustration 4) Trial Balance Sample
Program P2-4

THE UNIVAC 1005 UTILITY ROUTINES

A. CONDENSE

B. MEMORY DUMP (Illustration 5)

C. READ-PRINT-PUNCH

D. NUMBER IT

E. DUPLICATE

F. CLEAR

ILLUSTRATIONS

Page

3/1-6

3/1-3

3/3-5

3/5-6

3/6-8

3/7

3/8

3/8-12
3/8-9
3/10
3/10
3/10
3/11-12

3/12

11

ALTERNATE SWITCHES OPERATING PROCEDURES

SOFTWARE OPERATING PROCEDURES.......

A,

B.

CHAPTER 4

UNIVAC 1005 SOFTWARE OPERATING PROCEDURES

ooooooo

SAAL 1 -- First pass of the assembly program R

SAAL 2 -- Second pass of the assembly program ..,

Condense Program.. ., .

Memory Dump. ...

Read -- Print -- Punch . .

Number It

.

Duplicate ...

Clear

. v

LY

L

Page

4/1

4/1-6
4/1-2
4/2-3
4/3-4
4/4

4/4-5
4/5

4/5-6

I.

1I.

III.

CHAFTER 5

UNIVAC 1005 HARDWARE MACHINE TESTING and
OPERATING PROCEDURES

MANUAL ALTERNATE SWITCHES

A,

Mode of Operation v v v 0 v i vt i i e

Automatic Form Overflow Mode v . ..

Trace Mode . .

..............................

Single Instructions Mode

1. Reading PAK

..............................

TEST SWITCH PANEL 0 oo o i e s o e e e e

A. Program Step Counter Switches

DISPLAY MASKS. .

A.

B.

D.

Display Mask 4
Display Mask 6
Display Mask 8

Display Mask 9

..............................

..............................

..............................

..............................

CHAPTER 1

THE UNIVAC 1005 CARD PROCESSING SYSTEM

I. INTRODUCTION

The UNIVAC 1005 Card Processing system is a powerful, high per-
formance system, which combines into a low-cost consolidated card
processor features usually found only in more complex, higher priced
systems. This small-scale data processing system has been designed
around a single address, internally programmed processor, the UNIVAC
1005 Card Processor, and includes, as secondary units, a hardware
integrated card reader, an optional, free-standing, high-speed card
reader, and a free-standing card punch.

The standard card reader, which is located to the immediate right
of the card processor, and which is an integral part of the hardware of the
card processor, operates by means of photo-electric cells at speeds up to
600 cards per minute., The input hopper has a 1,000 card capacity, while
the output stacker has a 1,500 card capacity.

The optional card reader, like the card punch, is cable connected to
the central processor, and has an input hopper capacity of 1,000 cards,
and an output stacker with a capacity of 1,000 cards. It features an in-
crease in card reading speed to a maximum of 800 cards per minute.

The card processor, the central unit in the system, contains, in a
single hardware unit, a high-speed printer, which prints a maximum of
132 print positions per line, and up to 600 lines of alphanumeric data per
minute, the core memory, and all logic and control circuitry for the entire
system. The standard configuration also includes the card reader.

The card punch is capable of punching up to 250 cards per minute,
and like the free-standing card reader is cable connected to the card
processor. This feature permits maximum flexibility in satisfying in-
dividual installation requirements as well as enabling maximum considera-
tion to be given to operational preferences.

By consolidating all these components into a single, well-designed
unit, the UNIVAC 1005 Card Processing System minimizes installation
operational problems and maximizes supervisory and operator efficiency.

Additional detailed information on the various components available
with the UNIVAC 1005 Card Processor is contained in the General Descrip-
tion Manual for the 1005 Card Processor.

The following section discusses the logic and control circuitries con-
tained in the processor itself, while subsequent chapters of this manual are
concerned with detailed software considerations,

1-1

II. PROCESSOR

, The processor contains the sy'ster‘ns‘ control, arithmetic and logic
circuitry, as well as core memory, and is located to the rear and left of
the card reader, ' ' '

The standard 6.5 microsecond core memory of 1024 characters
(32 x 32 matrix plane) is expandable in increments of 1024 characters.

Complete solid-state components, ribbon cabling and wire-wrap
terminals assure high operational reliability.

Logic Characteristics.

A, Program Logic

"UNIVAC 1005 logic is organized around avsingle address fixed fword
logic. ‘ ’ : '

B. Operational Registers.

PAK Register ' The PAK Register is the Program Address
, ' Counter. This 2-character register holds the

address of the instruction being executed. It
occupies two memory locations. During the
final execution phase of the instruction, the
contents of the PAK Register are normally
incremented by five to give the address of
the next instruction, Certain instructions
will cause the address in the PAK Register
to be replaced with a new address from the
instruction word, e.g,, jump instructions,

1-2

PAK
— . 1 REGISTER WORD COUNTER
UNIVAC 1005
MEMORY } _
- ; - INSTRUCTION REGISTER {IR)
' MEMORY ADDRESS REGISTER (MAR)
1 1 v X REGISTER (XR)
AR { e
AR2}medeee] ADDE R
1 HARDWARE
-t Z
Figure 1. - Diagram of System Logic
IR Register The IR Register is the Instruction Decoder
Register, It is used to contain the operation
. code of the current instruction and is loaded
during the instruction access cycle. The
IR Register occupies one memory Location.
MAR Register ~ The MAR Register is the Memory Address

- Register., This is used to contain the address
portion of the instruction. It defines the
memory locations to or from which data is to
be transferred. It occupies four memory loca-
tions.

C. Transient Registers. -

Lengths and Uses Two programmable transient registers are
available. The registers are designated Register
AR], Register AR,. Register AR is 10 char-
acters in length; Register AR, is 21 characters
in length.

Any register may be used for memory trans-
fers. Registers l and 2 are the arithmetic
registers., All adds, subtracts and compares
are executed from these two registers. Multiply
and divide operations use both arithmetic
registers and the auxiliary Z register. The
quotient or product is stored in registers 1

1-3

Lengths and Uses
(cont'd)

Indicator Unit

D. Program Control

and 2 (See Figure 2). Jump Return and Jump
Exit operations use the auxiliary X Register.

" The Indicator Unit contains the program:

testable indicators described below. When
the indicator tested is found to be reset, the
next instruction in sequence is accessed.
When the indicator tested is found to be set,
control is transferred to the address speci-
fied by the instruction. o " '

Comparison Indicators. There are three
numeric comparison indicators--greater
than, less than and equal to. There are
two alphanumeric comparison indicators--
equal and unequal.

Sign Indicators. There are three sign indica-
tors--positive, negative, zero. The contents
of the arithmetic registers may be tested by
the program for positive, negative or zero.

1/0 Indicators. These additional indicators
are explained in detail under their respec-
tive Input/Output Sections.

The activity of the Program Control Section is divided into a series
of logical machine sequences, All of these sequences are fixed in nature
and occur with every instruction being processed,

Basic Machine Sequences.,

(P)

Program Control--Extract the program in-
struction address. from the Program Address
Counter (PAK). Store this value in the In-
struction Register (IR).

Instruction Access--Extract the instruction
referenced by the previous P sequence. Test
the operation code and generate the function
signal necessary to execute instruction.

Address Access--Extract the operand portion
of the instruction from memory and store in
the Memory Address Register (MAR).

(P+5) Program Control Plus Five--Update the pro-
gram address counter by five unless a jump
~instruction has been detected. In that case,
this sequence will be updated by the address
in the MAR Register.

(E) Execution--Execution phase; perform operation
specified.

E. Core Memory.

The UNIVAC 1005 Card Processor employs magnetic core storage
modules with a capacity of 1024 characters each. The UNIVAC 1005 can be
expanded to meet increased processing requirements in increments of 1024
characters to a maximum of 4096. Internal representation of each character
in storage is by means cf an internal binary code called XS3,

Data Representation. Excess three (XS3) is a method of notation that is used
by the UNIVAC 1005 System. It establishes some measure of compatibility
with the data formats of the other UNIVAC Computing Systems. The zone
position is specified by the two high order bits, the numeric portion by low
order four bits as in binary coded decimal notation. The difference exists
in the numeric portion where each binary specification is a value that is
three greater than its decimal equivalent. For example, the number 8 is
represented in XS3 as:

ZONE NUMERIC
00 1011

Note that the numeric portion, weighted with positional values of 8, 4, 2,
and 1 from left to right, is actually equal to 11. Similarly, the number 6
is represented as:

ZONE NUMERIC
00 1001

Here the numeric portion is specified as 9 or three greater than the
decimal digit it represents.

1-5

There are several reasons for utilizing this method of notation in certain
UNIVAC Systems. Some of these reasons are:

It allows three quantities to test less than O.
It facilitates complementation.
It permits the carry to occur as in decimal notation,
An involved discussion of these and other reasons for the utilization
of XS3 notation is beyond the scope of this manual. It is sufficient that the
programmer is aware of the basic format and that this provides in the

UNIVAC 1005 Computer a factor of data compatibility with other UNIVAC
Systems. Figure 3 gives a listing of the XS3 code configurations.

1-6

MEMORY MEMORY

N /

REGISTERS
AR & AR,

TRANSFERS

MEMORY

MEMORY
(DATA)

(ACCUMUL.ATORS)

N\

REGISTERS
AR (& AR

ARITHMETICS

MEMORY

f

REGISTER
AR 1& AR

COMPARES

1 2 3 4 5 6 7 8 9 10 11121314 1516 17 18 19 20 21

MULTIPLY AR2

et PRODUCT

1 2 3 4 5 6 7 8 9 10

AR <~ QUOTIENT =~

UlV‘DE 1t 2 3 4 5 6 7 8 9 10 111213141516 171819 2021
DECIMAL QUOTIENT
ARZ I+ pEMAINDER | REMAINDER ™

Figure 2. - Operation of Transient Registers

1-7

The alphabetic, numeric, and special characters utilized in the UNIVAC
1005 System.

80-COLUMN CODE

aré-ggu. Printable| X§-3 3%;0,3‘- Printable | X§-3
Code Characters Code Code Characters Code

12-1] A 01 0100 7 7 00 1010
12-2 B 01 0101 8 8 00 1011
12-3 [01 0110 9 9 00 1100
12-4 D 01 01 12 & 01 0000
12-5 E 01 1000 11 |=(minus)| 00 0010
12-6 F 01 1001 | 12-0 ? 01 0011
12-7 G 01 1010 | 11-0 |!(exclam.) 10 0011
12-8 H 01 1011 0-1 / 11 0100
12-9] 01 1100 2-8 + 11 001
1N=1 J 10 0100 3-8 # 01 1101
11-2 K 10 0101 4-8 @ 10 1110
11-3 L 10 0110 5-8 | :(colon)| 01 0001
1N-4 M 10 0111 6-8 > 1110
11-5 N 10 1000 7-8 |* (apos.)| 10 0000
11-6 0 10 1001 | 12-3-8|. (period)| 01 0010
n-7 P 10 1010 [12-4-8] I 11 1101
11-8 Q 10 1011 f12-5-8 [00 1111
-9 R 10 1100 f12-6-8 < 01 1110
0-2 S 11 0100 [12-7-8] = 01 1111
0-3 T 110110 j11-3-8 ¢ 10 0010
0-~4 U 1MONT j11-4-8| = 10 0001
0-5 v 11 1000 |11-5-8] 00 0001
0-6| W 11 1001 | 11-6-8|;(semi-col)) 00 1110
0-7 X 111000 |ni-7-8] A 10 11N
0-8 Y 11011 | 0-2-8 = 11 0000
0-9 b4 11 1100 0-3-8{, (comma)] 11 0010
0 0 00 0011 | 0-4-8] % 11 0001
1 1 00 0100 | 0-5-8/ ¢ 10 1101
2 2 00 0101 | 0-6-8 \ 00 1101
l 3 3 00 0110 | 0-7-8) "mim
4 4 00 0111 '
5 5 00 1000 | Blank |Space N.P.| 00 0000
é 6 00 1001

Figure 3. - 80-Column Codes and UNIVAC XS3
Codes for 63 Printable Characters

1-8

1. Memory Allocation.

As previously stated, core memory is expandable, to meet increased
processing loads, in increments of 1024 characters.

A portion of the 1024 character core memory is allocated to each of
the input/output functions of the system--such as reading, punching and
printing. The remaining portion of core memory is available for use by
working programs. Under certain program conditions, part or all of the
input/output memory areas may be used as expanded working core memory.
For example, if a punch operation is not required for a particular program,
the preassigned portion of core memory allocated to punching could be used
as working storage. The 1005 Card Processor Control logic is such that
'"time-sharing' can be affected, allowing, simultaneous printing and punch-
ing, or punching and processing. (Reference Figure 4).

1-9

1005 INPUT/OUTPUT-STORAGE AREAS
MODULE 1

COLUMN
rowhli2 214 817 9 J10t1111241341ad15016017118119}20] 21]22) 23} 2412 27028129130) 31] 32

1
READ Zlu 33 [3afassefarfanav]aoarfaz[aa]asfasfas;ar]anfas]s0fs)fs2fsa)saldsstss]sr)sa 50 | 61} 62
3

Sfsfoafoesdootordssleotrol nndrajrs]ralssireds7ysal 7o e o182 841851 8687 | 6 5019]92] 93

TRANSLATE
TABLE

350126 127 e 12510t var a2l aa s vas Juse fuarfias fuas huao v iaalvasluaal sasfras oo Lianias i sodsifusad isafusess

56115711581 159 [160J161] 162] 163] 164 [165[1661167 [168] 1697 170]171[1721173]174§175]176]177] 178 [1791 180 181 {182]183F 184]185 [186

207208} 209] 230 2131 2124 213] 214} 21 5§ 6] 217

218 | 219)220] 2212224 223|224 225 | 226 | 227{ 220] 229§ 2307 231 } 232} 233§ 234 | 235} 236 | 237 238239 240 | 241| 242 | 243} 244245] 246] 247} 248

wlojlN]jojufls
g
3
3
3
3
3
3
1
]
3
K
H
H
3
3
z
3
3
3
2
g
3
g

PRINT

2491 250§ 251 a 255 {256 § 2572581 259) 260 | 261} 202§ 26312041 265] 260267 268} 2691270} 2711272273] 274 {2780 2760 2774 278] 279]

o
2
3

2811262} 2831284 285§ 286 | 287 288 | 289] 200§ 29 | 29202531 29¢ 29 309

11gen 3TA1I1S] 3061317 | 318131913201 321 [3221 323] 3244325 324 (327 328|329 {330 331} 252{ 333 334 {335 | 336} 337 } 338] 339] 340 ml

PUNCH 12[342] 343§344] 345 | 348} 247§ 348] 349] 350]351] 3524 3534354] 3¢5 | 556357 358f 359 300]a61] 3624362 364] 365] 3661 5673681369 § 3704 371} 372

131373] 37¢ 3761377 3 1]384 [385 [286 | 387 | 388 3307 °91]392] 393] 394] 295 123¢ [297 | 2981399 [400 | 40

402{403

14] 404] 205 406 § 607 {408 | 409 | a10 f a1 | a12 far3] aralars Rare| ar7fare {419 a20| a2 }a22 {22 | a2s | 425} 426 | 427] 428 429} 430} 421 632 433] a8

15 tassfass|aarasalaso]as0] sat|sa2fas3)aaafads] ass faar|asfeas]ssofasr {asaiass]asafass|ase|as7{ass]asofasc]|asrjas2fasrjesajass

16 paos | a7 Ja08 Fase [970f 571} 472 | 471) 470 475476 Ja77 {470) 479|480 § 481 | 482 | ag3|484 | 48] 486 Jan] 480 | 489 Jao0] 491 {492}493 {494 favs]a0s

17 baoz]498 feo9] s | 501 |502] 503 | 504 sos | s0e] 507|508 fsoe] siaf str]sizfsizfsia]sessief si7)sre] s19)s20 | s21| s22|s23] 524525526} 527

18 £52815290530] $31§532}=33 f s2af35f 636 §537) 538557 I 500§ sar] a2 san] saa 5as | sae) sar) 548 Fsqotsso | ss1d552] 593 Jssalsss|sss]ssr|sse

19 1559] 560 | 561 562 |63 | 564 | s65 Fsee | s67{568] s69] 570 571 72| 573|573} 575 | 576 {577 | 578] 579 [s80] $81 | 582 583] 584 {55 |s86 | 587|588 st

20 | 590591 {s92f 593§ s0a|595] 596 §s97 | 598 {s90f 600 {501 {60z [603{04]60s] 606 f607{608{609] cr0{s11{612f 6131816 615 [616f617]618f410] 620

21]en]e2z{o23| 620 625 626|527 {628] 629 | 630) 6311632 o33 634 635626 | €27 | 038 | 63960} 641|642 643 6aa [645) 648 647048 | 649850 651

22 fos52) 653658 1055656 | 657 [6581059 | s60|cor) so2f 663 Jooafossioee {eor| 668 | s69] 670f67t} 672073} 6748751676 677 J678b679] 680 | 081 { cB2]

23 Jea3fonafoas foae Jenr|ensfsa9|690] 491 [692{692{e0a |695 606 1697 (69816991700 [701} 702] 702 J704] 705 | 706 | 707 F 208 Y209 | ob 7|72 113

24ns| nsinslnrinel nolrae |72 r22]20) r2e¥n2s {726} 727 [728 | 729} 130 { 73 {732 733] 734]735) 736 { 737 738] 739 f7a0| 741] 742]743] 744

25} 2es) rask7a7 | 2e8f740) 750 261] 752) 753 750|755 1756 {757 N 758] 759 | 760 | 261 { 762| 763] 764] 765 | 766) 767 | 708 769] 770 71|77 2} 7737 778|775

26 §77¢[7771778] 779 80| 781 | 782 783 784} 785 786 | 67| 788 789} 790 791|792 | 793 | 794} 795| 796 | 797} 798795 | 800 | 801 |B02 {803 804 {805 | 806,

27 f507{808 (809) 810{811[812 912f81a ot I8 rs]ar7iera 819|820 €21 822] 823|824 825|826 [827 |828| 829830831 | 832]833)834] 835636 | 6837

28 {338 839 | 840] 841 842] 843844 Va5 faaet8e7| wanfeaoieso)asy|asa|asa]|esa|ess]ase}asriasaiasofsso|ns1|8621863 [8e4tses]8ss|0s87]068

29 |8691820{871{872| 8731874] 875876 {877 878|879 [980(861 {982 {883 [884 {865 (86n {887 8as | 889 [890] 891 { 892893 894 [895{89¢] 897 J806 | 899

30 J900 901 1902 903 | sa4§905] 506 907 | 08 o0o | era]sr 1 [or2[o1z} eralersfersforz|oraaefo20|9a1] 9221923 924|925 | 926{927] 928} 929 930

31 (931193219331 93419351936 9371938 | 939 | 940 943 | 9421943 | 9aa | 9as|9ac | 947|948 {949 950|951 [952f 9537954 955 [956 | 957]958]959 {960 | 961

32 STATIC REGISTERS

ARITHMETIC REGISTER ARITHMETIC REGISTER 2

if2fs]alsTelraloTiofaTaTsTaTs e 7] 8T [o[uifne[asTialisTuelir 18 no]20] 21

Figure 4. - 1005 Input/Output-Storage Areas - Module 1

2. Input/Output Buffer Areas

The three preassigned Input/Qutput buffers in the first module of
the UNIVAC 1005 Card Processor are as follows,

Read Buffer Area. The read area is assigned the first 80 positions in
core memory. Hence, the numeric addresses of the read area is ¢¢¢1 to
¢¢8¢. When ever the programmer gives an instruction to read a card,
the card is read into this area. Column one of the input card is stored in
the first position of the read buffer (¢§¢@1), column two being stored in the
second position (¢@@2) and so on.

Print Buffer Area. There are 132 positions of core memory corres-
ponding to the 132 print positions of the UNIVAC 1005 printer, When the
programmer gives a print command, all 132 positions of the print buffer
area are printed, the buffer is cleared to spaces, and the printer form is
advanced. The core memory positions assigned to the print buffer are
@161 to §292. The first character of the print buffer area (§161) cor-
responds to print position one, the second character (¢162) corresponds
~ to print position two, and so on.

Punch Buffer Area. There are 80 positions of core memory corres-
ponding to the 80 columns of a punched card. The numeric addresses
assigned to the punch buffer area are $293 to 372, When a punch command
is executed, the first character of the punch buffer area is punched in card
column one, the second character is punched in card column two, and so on.

The punch buffer area is not cleared during the punch cycle and the
data remains the same in core memory,

Optional Buffer Areas. These additional buffer areas are explained
in detail under their respective Input/Output Sections,

3. Memory Addressing.

Each character in the UNIVAC 1005 core memory is directly address-
able by its numeric address. For example, the first character of the punch

buffer area can be referenced by its numerical address $293, the second by
294 and so on.

II.

CHAPTER 2

THE UNIVAC 1005 SINGLE ADDRESS ASSEMBLY SYSTEM

INTRODUCTION

To solve a problem, a computer must have a series of instructions
which determine how the computer is to operate. In addition, the com-
puter must be giveia one or more sets of data upon which to operate. This
combination of instructions and data is called a program. A program
must define, in complete detail, exactly what the computer is to do, under
every conceivable combination of circumstances, with the data which is
read into or processed by the computer. The number of instructions
required for the complete solution of a problem may be a few hundred or
many thousands, depending on the problem. The computer may refer to
these instructions one after another, or it may repeat, skip, or modify
over certain instructions, depending upon immediate results or circum-
stances.

These instructions are understood by the computer in a form known
as Machine Language, a form which is difficult for the programmer to
encode. In order to facilitate coding, considerable time and effort has
been expended in developing programming systems that allow the pro-
grammer to write in a symbolic language more easily comprehensive to
him than machine language.

Associated with a programming system is a machine lénguage pro-
gram called an Assembler. The assembler accepts a program written in
symbolic language (source program) and converts it into machine language

(object program).

GENERAL DESCRIPTION

The symbolic language used by the UNIVAC 1005 Card Processing
System is single address in design and is intended to provide an easy to
learn, easy to use tool whereby data processing requirements can be
translated into machine coded instructions.

The machine language program or assembly system associated with
the UNIVAC 1005 symbolic language is called SAAL (Single Address As-
sembly Language). This assembly system consists of two passes, SAAL 1
and SAAL 2,

The first pass, SAAL 1 relates each symbolic reference (label) in
the symbolic program (source program) with its appropriate position in
core memory. This relationship between syrnbolic labels in the source
program and core memory position is retained in memory and utilized in
SAAL 2. This noted relationship is commonly referred to as the "TAG"
or ""Label" Table.

2-1

idd.

The second pass, SAAL 2, interprets each operand field in the source
program, determines its length and core position using the "LABEL' Table
generated by SAAL 1, and produces a UNIVAC 1005 machine code object
program deck. In addition, a one for one listing is prepared equating each
symbolic line of coding in the source program with the generated machine
code.

INSTRUCTION FORMAT

The UNIVAC 1005 Machine Code instruction consists of five char -
acters. The format of the instruction characters on this basis is illustrated
below.

1 2 3 4 5
oP M L
oP - Indicates the operation to be performed.
M - Indicates most significant location.
L - Indicates least significant location.

A. SYMBOLIC CODING FORMAT

In writing a program in SAAL symbolic language, the programmer
is primarily concerned with three fields: Label field, Operation field,
and Operand field. In addition, it is possible to annotate the symbolic
language at the time it is written through the use of comments which will
provide clarity for the programmer and relate coding to its associated
flow chart. :

2-2

1. Label Field. A label is a method of identifying either a symbolic line

of coding or a word of data. In writing a label in the assembly language
SAAL, the programmer may use any meaningful combination of one to

three characters. Of these three characters, the first may be any alpha
character, including special characters, except the dollar sign, asterisk,
plus, minus, or comma. The second and third position of the label field, if
present, may be either alphabetic or numeric or special characters, includ-
ing the dollar sign but excluding the asterisk, plus, minus, and comma. In
writing a label in the label field of a symbolic line, the first character of the
label must appear in the leftmost position of the label field. The following are
examples of acceptable labels.

UNIVAC | UNIVAG® 1008 |sAAL ASSEMBLER CODING FORM
PROGRAM o PROGRAMMER DATE
FOR BEG CARD ONLY :
UL L*°“~£ o 1] ORERANDS | coMMENTS
1 3la sgel7 ohoft1 13kakis 20 303132 40 /
! /
i i - Tl1l +151 i 1 1 il LLJ A A L L Il A A i] IlJ d AL 1 1 II_L 1 .
R P B CYCALE AR P P WU T SR B
bl L TLAJX f.éx NS WU NSNS VT SO S S R L %_LA ododododo Aoy
i) i Tkgi:r +lio 1 i 1). 1. ‘ J. 1. 1 1 Jd ! L.L 1 ‘l 1 1 11 1 1 1 l i Il
e I 7
J ' L 4 L I‘ & 1 A A A l & L Lo, 1 1 ! JEEN R j l;l 4) AU OO N S | LJ /
' i P bk PR VU VAR U AU SO T S U0 NUN NN S T NN AT SN VNN SN WY VY S Y N
.)
- L R I S
S —— b

2. Operation Field. In the operation field, the programmer places a
symbolic code indicating the machine function that is to be performed.

These function codes are explained subsequently. An example of acceptable
operatlon codes is shown below.

UNIVAC . | UNIVAEG® 1008 |sAAL ASSEMBLER CODING FORM
éROGRAM . - PROGRAMMER DATE

e FOR HEG CARD ORLY /
0 [|)
OFPERANDS COMMENTS

lLN
’ g
|
S ll‘ . i - ‘l
i A AML] TOT'J1 0)' T U ST S WA W N | |=xnn||. 144/
ok ol L1D|2 $1+|! ox bk) PRV VR ST VT ST S S U WS S WY
T
L L bl Lot fed lilltllLlllltgt SR AN WY S
ek L e i i - Mot e >|"=| —tetog o L
L) —d it lAglLJlLJALiIlll‘llllllLll
| . J P ol l\Jl”'JllLJILJJ 1lLJl Ll 1 d. 1 IL
A ————

2-3

3. Operand Field. The operand field of a symbolic program follows the
operation field, and it is used to inform the assembler which location is to
be addressed in conjunction with the operation to be performed. For ex-
ample, if the programmer called for data to be added in the Arithmetic
Register 1, the operand field would tell the processor where to go for the
data to be added. Also, the operand field would tell the assembler how
many positions of memory to accumulate in Arithmetic Register 1.

The following example depicts the instructions required to add a
five digit numeric field to Arithmetic Register one, and store the result
back into core memory.

UNIVAG [UNIVAC® 1008 |saaL ASSENBLER CODING FORM
PROGRAM . PRbGRAMMER . L . —DATE

. FOR BEG CARD ONLY
e | ‘ " OPERANDS. . lcommenTs
1 3]4 54617 Shoh 1 ',‘ 5 20 , . 303ng a0
F " FE A:Rl‘ . T‘ . '151‘ N ST R SR R M. P W VR S M S
, | /

ISATLIAGY 5L

e rarboredeeembrrere e ederend

4
T
ll|lAl>lv
) |
J—" Il St FE . J,l‘.'li‘l'».‘,‘..Al',“,l,}

P R S S S W T A

In addition the M position of the operand may be incremented or
decremented in order to provide increased flexibility in addressing.

» In the following example the two least significant characters of a ten
character field called FDI are to be loaded into Arithmetic Register 1. In
order to address these characters an increment of eight is added to the
base address of the field thereby obtaining the desired result.

UNIVAC | UNIVAC® 1008 [sAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER i ‘DATE

fOR BEG CARD ONLY R /

‘ OPERANDS | commENTS
5 20 . 303132 0
FD1+8 .2 /
1 1 A1 i i i i i i 1 1. L 1 ‘ 1. L l/

N U T SRRSO R

1 T I 1 L 1 l!
AR2H419.2
$ 10

i|‘||v1'L41|1]

- - e -

' I - |~

If field F¥D) were decremented by eight, the sevyen‘th and eighth char-
acters immediately to the left of the most significant character of FD}

would be loaded into Arithmetic Register one. When incrementing or
decrementing an address, the programmer may use one, two or three
characters, The programmer can increment or decrement from 1 to 999
positions in memory; however, an operand may not be split between
memory modules, ’

NOTES: 1) In the above example the second instruction references
Arithmetic Register two in the operand field. Arithmetic
Register 1 and Arithmetic Register 2 are predefined
labels (AR1 and AR2) and can be referenced as operands
in the same manner as labels.

2) In the above illustration the third instruction references $
in the operand field. $ represents the current value of the
location counter which may be modified (+ or -) in incre-
ments of five (5). Thus, in the illustration, if an equal
condition is met, control will bypass the next sequential
instruction.

3) When modifying an instruction within the program with
another instruction, both the instruction being modified
and the modifier should be labeled.

4) If the length is not specified, the assembler assumes an
operand of 5 characters.

4. Comments. Comments are coded starting in column 32 of the code
sheet. The comments written here by the programmer are not looked at
by the assembler. However, they do appear on the printout from SAAL 2;
they are put into the code sheet for reference only. Any character may be
used in the Comments section of the sheet.

IV. PROGRAM ORGANIZATION

Certain required parameter cards must be supplied to the assembler
in order to properly position constants, headers, or any data the program-
mer wishes to store in memory. These parameter cards are called di-
rectives, They direct the assembly in the allocation of core memory for
the various divisions of a symbolic program, They are described below.

A. BEG DIRECTIVE

The first card of every symbolic program written in the assembly
language SAAL must have BEG card or directive. This card initiates the
assembly process. '

For example:

UNIVAC [UNIVAC® 1008 |saaL AsSEMBLER CODING FORM
PROGRAM 1 PROGRAMMER _____ B DATE
FOR. BEG CARD ONLY
SRR] [CReeL l ee) f OPERANDS IcommenTs :
L_2]a slslz_oholi1 1ahiahs 20 303132 2 \
' |
N A] BIEIG U N VS 'Y l § U G W W W W S S l : 1 i LA A 1 l | N WS WD W S | /
N N AR IS Ly . e
/—A J 4'-]

B. CRD DIRECTIVE

CRD Card is used to call the assembler's attention to the Read Area
in core memory. CRD is punched in the operation field of the card format.
Labels are then used to define areas within the Read Area. The label for
each field is placed in the label field on the card, In the operation field,
punch a minus (-) in column 11. In column 15 punch the position in the
read area the program wishes to designate.

2-6

For example:

T v T
e ety e
UNIVAC [UNIVAC® 1008 |saaL ASSEMBLER CODING FORM
T ™
PROGRAM e peerper—emr- PROGRAMME R : DATE
e FOR BEG CARD ONLY : 7
SEQUENCE LABEL op' ' ' o - —
-SEaUENCE Py OPERANDS I coMMENTS
1314 slelz ohoht1 13hiahis 20 303132 49
BEG o T , [
Ly L ST et ST S S SN S bt | TS N S SRS N N W Y o
! 1 P CJRLD L\ T NS | } I U | ')
i1 n FJSAN -1 !]n PRSI S T ST S T T N O 1'#1[P S S SR ST S B Jj
4 1 1 h‘JPJM _.X 1 I16A 1 i 4 l 1 i - A 1 1 L 1 I { 1. 1 Lt 1 1 i 1 ' 1 l)
c -
T i \‘AAIT — SEA " Lt 11 T | { —dedod b .%l I /
1 L AAMVIT T 5.6‘ PR U T O S S U S S ljl P S ST T W B | 17
P I S LS N T I L S B SR
A T ———— . - 5 - 7

C. PRT DIRECTIVE

This card is used to direct the assembler's attention to the print
area in core memory. Like the Read Area, the Print Area may be labeled.
The format for doing this is the game as for the Read Area,

For example:

UNIVAC [UNIIVAC® 1005 |saaL ASSEMBLER CODING FORM
- T
PROGRAM ‘ PROGRAMMER ., . —DATE :
~FOR BEG CARD ONLY
EIE::EM?:S [LABEL { [' i AN O'PERAND'S | coMMENTS |
1 314 51617 oftolt1 13h4k5 ¢ 20 303132 40
I----
1 L 1 e PJBIT . J;‘ 3 (‘V ‘: ALFL N - : J. 5 PR - A| 1 l : I 1L' P Y . l I I3 l il 1 1 I7
i PI‘T:] ° i ! g by . PR S WA UTU U N U SR S U ST A ST
- . brerrdrrerbsebere 4 } } S .
Y 1 P{T‘2 T 4A9| T N TN S ST T SRR | % P TS W S T T | | - J/
1 L i F:l1-.l>3 -4 A 8171'1 Lot l 1], J. l‘ 1 1 1 1. L l I 5. 'l i l‘l I L1 I“l I/
I L ZTLA T 110191 I bk n_;‘ | = ol 1/
\—-_“_."‘"1

D. PCH DIRECTIVE

As in the Read and Print Areas, subdivision of the Punch Area is pos-
sible. The format is the same as described for the CRD directive.

For example:

UNIVAC [UNIVAC*® 10085 |saaL ASSEMBLER CODING FORM
PROGRAM i PROGRAMMER : DATE
FOR BEG CARD ONLY . /
SEUECE] [LASEL l{ op l " OPERANDS ’ ICOMMENTS-————7/
| N A 333i3C 4
1 314 58617 C Y L 20 I:>_=
Il 1 1 A ! PKCIH i 1 4, Jl . l 1 1 i 1 1 1 I il A I : ! J 1 L 1 i 1 1 l 1 1 (
i 1 Pnunl -‘. I ‘J T L TR TR U U SV VN UU S T WY ST S U
¥
1 i P‘Unz _A I]Iél e b by e
T
1 i 1 PIUK3 —I 1. 3l81 1 1 I l i i | S S U T § L. L l = 1 1 1 L | P | 1 -
el 5 P.U.4 o 5|61 PO WO T S SN SN N TN VIS SO U MUY [N T SO SHN WA SO WS S S N Y
— . l
ke i Puns T 71 PSR SRR AN N VR W WY RS S N SN | { PN TR S S N
1 1. 1 A A 1 L 1 i A 1 A L 1 1 1 i A 1 d s 1 [! A i L 1 1. i A i l l/
s

E. BF1 DIRECTIVE (Buffer 1)

BF1 card is used to call the assembler's attention to the lst core
position of Bank 1. In this regard, it is similar to the CRD directive. Its
primary use is to define areas for peripheral devices, i.e. paper tape. BF1
is punched in the operation field of the card format. Labels are then used
to define areas. The label for each field is placed in the label field on the
card., In the operation field, punch a minus (-) in Column 11. In Column 15,
punch the position in the buffer area the program wishes to designate.

For example:

_ ‘ [UNIVAC® 1008 | sAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
SERLNSE] [LABEL l op OPERANDS COMMENTS
1 3f4 5{6)7 oftiojt 1 13h4j15 20. 303132 40
1
Fa i BEG AllIllllLllll:llllllLAlIlIIlI
B.F.1 N R l=. L .l...;/
il 1 EMPL |- | "Illlllllllllllli;llllllllllll
FITO DY NIAAM —llVéllllllllllllllllillllIIIIIIII
W AG I- 2 i i I T Do

L}

A, H Hans bl T 3|6| [-1 l WSS WS WY (NS [N WO SO W | I [T T SO S o 1'1 1 l L)

| mmr———] o™ .

EMP would be assigned the location starting at 0001, NAM at 0006 and
so forth.

F. BF2 DIRECTIVE (Buffer 2)

BF2 card is used to call the assembler's attention to the lst core posi-
tion of Bank 2. Its primary use is to define areas for peripheral devices,
i.e. magnetic tape. As in BF1, buffer 2 may be labeled. The format for do-
ing this is the same as described for BF1.

For example:

------------------------ [UNIVAC® 1008 SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER i DATE
FOR BEG CARD ONLY
AL LABELl op OPERANDS COMMENTS
1 3{4 5|67 9piopt 1 131415 20 303132 40
[}
I .t Lol BIF|2 PRI O S ST U ST S TSR RETEN U ST T S S S S S U A R S S S T
|
FSN] -, | 1.11411.,.1....,li...,,A_L.IL)..
L " NOM - |]lélllelllllvlljlvllillllllllll]lj
L " C AT el 3141||Al|1111LJlllilllllIIllJLI(
T VALY - 5‘.2‘....l.gl......llr‘LL.‘..LllJ.
L 1 QTYY I- | 6L7IIJ_1;llllll‘lJllljlllllI‘IllL‘Ll
I

FSN would be assigned the location starting at 0962, NOM at 0977 and
so forth.

G. BF3 DIRECTIVE (Buffer 3)

BF3 card is used to call the assembler's attention to the lst core
position of Bank 3. Its primary use is to define areas for peripheral de-
vices. As in BF1, buffer 3 may be labeled. The format for doing this is the
same as described for BF1.

For examplé:

------------------------------- [UNIVAC® 1008 | sAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE .
FOR BEG CARD ONLY
e o LABE'-l op OPERANDS COMMENTS
1 3{4 5|6y7 oloji1 13f4a1 S 20 303132 40
) []
L4 I il §.F3 4:1:.1144;~1141A1=|1111AlulLJnnnl
FJP!"A ‘4:11L].1;t444..ll1;4:|An.lnn.n
LB
[It i F¢D12 1 6<l7llllllll'llllll_i_LLL'llI_Lllll!l/
FD3} |~ . L5,0, o o b v e b e e L/
T) g ¥ /
T i F;D.4 T 45,5 v o Vo v v o a by s v v g
A
b s

FD1 would be assigned the location starting at 1923, FD2 at 1989 and
so forth.

2-9

H. BF4 DIRECTIVE (Buffer 4)

BF4 is used to call the assembler's attention to the lst core position
of Bank 4. Its primary use is to define areas for peripheral devices. As in
BF1, buffer 4 may be labeled. The format for doing this is the same as
described for BF1,

For example:

UNIVAC® 1095] SAAL ASSEMBLER CODING FORM
PROGRAM » i PROGRAMMER DATE
FOR BEG CARD ONLY
e I . oF OPERANDS COMMENTS
1 344 5§647 ofojt 1 13papi 5 20 303132 40
- 1 -
s PR B,F 4 |A|||l|(||lx‘ll|= PR S W W U U N0 S SR ST ST S
TAXE |- | | T SN | ST T R
- ! T
I 3. A TlDlT‘ '} 1 2‘61 1 - l - S 1 Il 1 .l ‘ i i I A | I R T | L J.L 1
" Q:TIY L 5A8l PSSR RPN S T T S T | i b doddedobo i
Ab =, 227 b e by e b
{ A
FEY 1 G, | llélzlllljlllllllj]lllllllllllll
e P

TAX would be assigned the location starting at 2884, TDT at 2909 and
so forth.

I. ORG DIRECTIVE

The ORG Directive informs the assembler that the programmer wished
to adjust the assembly address counter to the numeric value contained in the
operand field. For example, if the programmer wishes to start storing at
one particular place in memory, he specifies this by placing the numeric
address in the operand field, This numericaddress mustbe four characters,

The following example would origin the next instruction, constant, or
work area in position $373 of core memory.

UNIVAC
e | UNIVAC® 1005 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER . DATE

-~ FOR BEG CARD ONLY

I ‘-ABE'-l oP OPERANDS COMMENTS
1 314 5l6)7 ofofi1 13hiafis 20 303132 40
1
dmd 1 A O&RIGI 0l3‘|7LL3'IAlALl;lli\lliilllll1Illllll|I
. s - NN ST SN B S SP T SrT SR B S
) 1
- 1 1 Il - F I WY W N | L I TN U I S SN SN W NS | I | W T W S . | Lol 1 [i1 1
| ——— o~

The programmer may use an ORG statement anywhere in a program,
provided he complies with the following rules.

1. The operand value must be a four digit decimal number.

2-10

2. If the ORG directive is employed within the procedure division (after
the STA directive) the new assembly address must be a multiple of thirtyrane
(31) plus one (1), beginning with 1, 32, 63, and so on.

3. The ORG directive must be employed before the lst literal instruction.

J. LITERALS

The use of literal instructions enables the assembler to move the
number of characters specified by the operation code from the operand
field to an equal number sequential core locations, beginning at the address
specified by the preceding ORG directive.

With literal instructions, the programmer is able to store headers,
constants, or set aside storage for work areas.

The literal instruction consists of a label in the label field of the
symbolic deck, a plus sign (+) in column 11 of the operation field followed
. by the number of positions to be set aside, The operand portion of the card
contains the constant or literal to be stored. The maximum for one line
is 34 positions, however this line may not be split between memory modules.
For example:

PROGRAM PROGRAMMER W
FOR BEG CARD ONLY
S——— . - -
SROUENCE [[LAeEr ; op ORERANDS TN ——
1 314 54617 glicjt1 134t s _20 303132 40
' |
A 4 QIRAG 0A3l7l3L+l 1 A de 1 1 1 % 1 1 ‘L 1 TI 1 L l 1 ’L
) s H,lD‘I] +J] ‘0 ElNle LOJF[LJAQLBl PR | 1l T WO T T S S
1 Ql +21 LPI PRV UN IS TR WO T SN SO J‘L'+I TS S S| IS T N |/
JLEY i wj§l LEJO 14] 1 4 I i b L 11 L i l E “[Il 1 11 1 [t ‘ b1
A o

In the first example, HD1, the constant "END OF JOB'" is stored in 10
positions of memory, which can be referred to by HDI.

In the second example, K2, the constant '""10" is stored in 2 positicns
of memory. To refer to this constant, the label K2 need only be called.

The third example, WS, a work area of 20 blank positions is set aside,
that is labeled WS for programming reference.

K. * COMMENTS CARD

An asterisk punched in the operation field (Col. 11) indicates a comments
~ card, and is listed 80/80 on the assembly printout. This card is used by the

2-11

programmer to facilitate reference to the assembly printout, and/or to
explain certain portions of his program.

A Comments Card may be used anywhere within a program. The
programmer is not limited by the number of the cards he may use.

For example:

UNIVAC [UNIVAC® 1006 |saaL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE /
FOR BEG CARD ONLY
”—_:J—t%% HABEL ‘ or OPERANDS I coMmenTs .
1_3la siel7 oholi1 13halis 20 303132 40
JE | [mas !

PR N SO S S S S A S ST | b L4y

N L *A. ..Al.l....LA...l;..l.lx.I.;.,
. , bt foume TO MASTER ROUTINE
111, « ||1F accounTt, _NLUI!MJBIEIR; s
R « |JequaL 7O PREVIOUSLY ., . /]
1 {1 TIrREAD lclAlRlDM“”y,;rlll*ludli,
L L A N I SN B

In this example, the programmer has used five comments cards to
break into the printout format. The assembler would only interpret the jump
instruction, and the Comments Cards would be listed as they appear on the
coding form. ‘

L. STA DIRECTIVE

This directive terminates the DATA DIVISION and marks the beginning
of the PROCEDURE DIVISION of the program. The assembler, upon decod -
ing this card, advances the assembly address counter to the next row of
core memory, and assigns the addresses to the instructions of the program
from that point. The PROCEDURE DIVISION of every program must be
indicated by this directive.

Note: All labels used in the 1005 program, with the exception of instruction
labels, must be defined before the STA card either in the I/O sections
or as a literal.

2-12

V.

For example:

UNIVAC [UNIVAC® 1008 |saaL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
[mdUECE [LABEL ; op OPERANDS lcoMmENTS
1_3}a slely oholi 13hiahs 20 303132 0 \
|
. N I T I N S U N U U SR
P e A = L] L i }
/-——-’\ S

M. END DIRECTIVE

The END directive is the last card of the source deck. This card
must always be present. The purpose of this card is to inform the as-
sembler that all card instructions used in the program have been inserted
and to terminate the assembly. The operand field must have the tag
of the first instruction.

For example:

UNIVAC [UNIIVAC® 1006 |saAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER - DATE
FOR BEG CARD ONLY
SEQUENCE L [Laeee ‘ OPERANDS I commENTS
1 314 516]7 9

5 20 303132)

et
A " P N I S N U G S S |

INSTRUCTION REPERTOIRE

Each instruction in the UNIVAC 1005 consists of five character posi-
tions, and are sequentially numbered in increments of five, beginning with the
first character of a row. The last character of a row is utilized by the
U 1005 logic to designate at which row. the next sequential instruction is
located.

There are four general classes of instructions varying slightly in
format. '

Class I: Class I instructions contain an "M' address and an "L' modifier.
The "M'" portion defines the most significant position of a field,
where the "L portion defines the length of the field, All Arith-
metic and Transfer instructions are Class I.

Class II: Class II instructions contain only an '""M' address indicating the
most significant character of an instruction, This format is
employed exclusively by Jump or Branching instructions.

Class III: Class III instructions are Input/Qutput or External Function
Commands, and contain a mnemonic code in the ""M'" portion of
an instruction indicating the I/O device or devices to be initiated.

Class IV: Class IV instructions are Input/Output or External Function
Commands, and contain a mnemonic code, Buffer (BFy,), and
length in the '""M'" portion of an instruction indicating the I/O de-
vice, memory bank, and length of operand to be initiated.

A.. INSTRUCTION REPERTOIRE -- CENTRAL PROCESSOR

The Central Processor instructions pertain to Class I and Class II
and are explained in detail on the following pages.

2-14

LOAD ASCENDING: LAr M,L

Function: Load ascending L most significant characters from the field
specified by M, into the L least significant character positions
of AR1 or 2.

Notes: a.) L must be decimal number.

b.) L most significant characters of the field specified by M, are
transferred in ascending order to the L least significant positions
of the specified register. .

c.) When L is less than the capacity of the register the remaining
positions of the register will be space filled.

d.) When L is greater than the capacity of the register truncation
will occur and the most significant characters of the field will

be deleted.

Example: Load Arithmetic Register 1 with a nine character constant.
UNIVAC [UNIVAC® 10085 |saaL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
I op OPERANDS | coMMENTS
o :

..',' p—

*AR1 (before) = 7 9 2 4 6 51 3 6 4

K3 = SUBATOTA AL
ASUBATOTAL

AR1 (after) =

2-15

Load Register 1 with a five character constant.

PROGRAM - PROGRAMMER DATE
- FOR BEG CARD ONLY'
SEouENCE [e ; op OPERANDS TcommenTs
1 3]a sle]l7 oholi1 i3hiahs 20 303132 0 \
AL 4 (s LLAl] KA3L+144,A5J A4 A 1 l l 1 i A 1 1 1 l i 1 1 A A i /
i A A Lt d ‘I dmrs ekt k i ddddd b L
N
*AR1 (before) = 7 9 2 4 6 5 1 3 6 4
K3 SUBATOTAL
AR1 (after) = AAMNAN AN ATOTAL
TL.oad Register 1 with a three character constant,
—
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
E.‘,?E”‘ﬁ‘s— L“ELL‘ oF OPERANDS I commeNTS \
1 3a slel7 sholit 13haks 20 30313 a0
il A LA;] KLA'IB | IILAAIEIAAIAIAIILIIAAA/
— L Ak sl et % N S ST
A
/-_A . y
*AR1 (before) = 7 9 2 4 6 5 1 3 6 4
K3 = S8 UBATOTAL
AR1 (after) = A A ANA A AN A SUB

*The functions indicated are identical for AR2 with the exception that
larger fields can be manipulated.

2-16

LOAD DESCENDING: LDr M,L

Function: Load Descending L consecutive characters whose most significant
character is at M, into the L most significant positions of AR1 or
2.

Notes: a.) L must be a decimal number,

b.) L characters of the field specified by M are transferred to the
register.

c.) When L is less than the capacity of the register the remaining
positions of the register will be space filled.

d.) When L is greater than the capacity of the register truncation will
occur and the least significant characters of the field will be
deleted.

Example: Load Arithmetic Register 1 with a nine character constant called
K3.
UNIVAC | UNIVAC?® 1008 |sAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
[SESTERCE] " OPERANDS TcoMMENTS
Lt 3 s e '
i L it l ; i A P /

*AR1 (before) = 7 9 2 4 6 51 3 6 4

K3 = SUBATOTAL

AR1 (after) = SUBATOTALA

2-17

Load Arithmetic Register 1 with a five character constant called K3.

UNIVAC [UNIVAC® 1005 |saaL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
OR BEG CARD ONLY :
SOENcE] el { op OPERANDS | coMMENTS
1 3]a slel7 ohofii 13hahs 20 303132 0
i i PR LIDL‘ KJ3L+A44’45‘ILIlAlAIJIIEXALAIAIILLIIAIIJ/
N RS B ST 11:1/
/——-"\ 3 . i _,_J
*AR1 (before) = 7 9 2 4 6 5 1 3 6 4
K3 = SUBATOTAL
AR1 = TOTALANANAAA

Load Arithmetic Register 1 with a three character constant called K3.

UNIVAC [UNIVAC® 1008 |sasL ASSEMBLER CODING FoRM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
e | ‘ o OPERANDS | commeNTS
b _3la slels oholii 13shs 20 203132 L \
FEY i R LDn] Klsxtl3llllllAlA\llll)llll 14111 111/
" PO N U B SEVURTEN U SN IS S) PR 1 | = I 1 1 L4 /
@
*AR1 (before) = 7 9 2 4 6 51 3 6 4
K3 = SUBATOTAL
AR?2 = SUBAANANANANAA

*The functions indicated are identical for AR2 with the exception that larger
fields can be manipulated.

LOAD PRINT: LPR M,L

Function:

Note:

Example:

Load descending L. consecutive characters whose most significant
character is a M, into the L most significant positions of the print
buffer.

L must be a decimal number, and should range from 1 to 132.

L characters of the field specified by M are transferred to the
most signilicant positions of the print buffer.

When L is less than the capacity of the print buffer the remaining
positions of the buffer are space filled.

When L is greater than the capacity of the print buffer the least
significant characters of the sending field will be truncated.

Load the Print Buffer with the first header line labeled HDI1.

UNIVAC [UNIVAC® 1008 |saaL ASSEMBLER CODING FORM

PROGRAM RPROGRAMMER . DATE

. FOR BEG CARD ONLY
SEQUENGE CABEL " "
TRE i * ‘ | OPERANDS I coMmMENTS

1 3j4 51617 SHO1 13414815 20 303132 40 \
LAPAR H‘DA.IL'A.‘.2L04LJl T VR T AlllllLAAAA/

OO T S S Ty

-3 3 -

....14,L4L../

1
P " L N B | T S ST ST |

JR——————

STORE ASCENDING: SAr M,L

Function: Store ascending L least significant characters from ARl or 2,
into the L most significant positions of the field specified by M.

Notes: a.) L must be a decimal number,
b.) L characters are transferred in ascending order (least to most)
from AR1 or 2 to the most significant positions of the field speci-
fied by M.
c.) When L is greater than the capacity of the register the receiving
field will be space filled.

Example: . Store the nine least significant characters of ARI into the
field labeled RMK.

UNIVAC [UNIVAC® 1005 |saaL asseMBLER CODING FORM
PROGRAM PROGRAMMER DATE

- FOR BEG CARD OMLY)
; op OPERANDS :

M * " '. ‘ .
RMK (before) = A A A $ 1 0 . 15
*AR1 = ASUBATOTAL
RMK (after) = SUB ATOTAL

. Store the six least significant characters of AR1 into the
six least significant character positions of the field labeled

RMK.
UNIVAC [UNIVAC® 10085 |saaL assemsLER CoDING FORM
PROGRAM . PROGRAMMER DATE
FOR BEG CARD ONLY
e |1 ‘ o | OPERANDS commenTs
1 314 sis6}l7 4
/—A

RMK (before) = A A A $ 1 0 15
*AR1 = ASUBATOTAL
RMK (after) AN A ATOTAL

#

2-20

Store the five least significant characters of AR1 into the
five most significant character positions of the field labeled

RMK.
UNIVAC [UNIVAC® 10085 |saaL AsSEMBLER CODING FoRM
PROGRAM PRQGRAMMER DATE
FOR BEG CARD ONLY
SAUENEE] [Laset ; op OPERANDS "~ TcommenTs \
L_3ia slels _oholii 13hahs 20 soazz 0
bl " A SLAL] _R1M~K1‘-51 T S | : UV ST N U R S N /
P PR TN S T]lA1|||l|ll}lllllAl'AlJAlA/
‘_——————-—-___,_/—-"‘,
’-—A
RMK (before) = A A AN A & AT 15
*AR1 = ASUBATOTAL
RMK (after) = TOTALOAI11 15

#*The functions indicated are identical for AR2 with the exception that larger
fields can be manipulated.

2-21

STORE DESCENDING: SDr M,L

Function: Store descending L most significant characters from AR1 or 2
into the L most significant positions of the field specified by M.

Notes: a.) L must be a decimal number.
b.) L characters are transferred from AR1 or 2 to the most sig-
' nificant positions of the field specified by M.
c.) When L is greater than the capacity of the register the re-
ceiving field will be space filled,

Example: . Store the nine most significant characters of AR1 into the field
labeled RMK.

UNIVAC [UNIVAC® 1008 |saaL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER . DATE

i FOR BEG CARD ONLY
S
s i 1 OPERANDS f comMENTS
1 3fa sfely sholii 13hahs 20 303132 0 : \
| /

m|

I L Lt SJDA‘I RMLKA’-Q[‘] T S ST SR S S S A G ST SIS SO ST S
" 1 dde T llAALl_AA_LAJLJVA]L%JAlYAIALJiJLLAL/
_/ N
g RMK (before) = A A A $ 1 0 . 15
*AR1 = SUBATOTALA

H

RMK (after) SUB ATOTAL

Store the four most significant characters of AR1 into the
four most significant positions of the field labeled RMK.

UNIVAC | UNIVAC® 1008 |saAL ASSENBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
b—,f-f;—r-—- SURCET] [Theer ‘ op OPERANDS commenTs
1 _3la slely _oholis tahahs 20 303132 © \
L d i Al SDl] RM~K|14411’.A PR TS G WD S ;l{ |||||| 11[11A: 11/
PR ST bl Ut P | A 1}]]JlllllllLlA/
N
’A g
RMK (before) = A A A $ 1 0 . 15
AR1 = SUBATOTALA
RMK (after) = SUBA 10 .15

2-22

Store the five most significant characters qf AR into the
five least significant pgsitions pf the field labeled RMK.

UNIVAC [UNIVAC® 1005 |saaL ASSEMBLER CODING FORM
PROGRAM PRQGRAMMER DATE
FOR BEG CARD ONLY
SeOuENCE] [rase ‘ op OPERANDS I coMmENTS
1 314 s5l6})7 ONofi1 1MANS 20 303132 40 \
SDIL |RMK+ 4.5 ' 7 | /
LA L Pl 4&,?,‘4'1;4*4!Aljll‘%lJ_LLLlll{AIIALJ
" e . IVLJAAllAAILJ;I‘ALI%;]LAALLAIL¢JLA
/—"'\ _‘,‘L——-—v T —W‘"’
RMK (before) = 1 1 656 A A A A A D
*AR1 = 8UBATQTALA
RMK = 115 ASUBAT

*The functions indicated are identical for AR2 with the exception that larger
fields can be manipulated.

2-23

STORE PRINT: SPR M,L

Function: Store descending L most significant characters from the Print

Buffer into the L most significant positions of the field specified
by M.

Notes: a.) L must be a decimal number.
b.) L characters are transferred from the Print Buffer to the most
significant positions of the field specified by M.
c.) When L is greater than the capacity of Print Buffer (L >132) the
receiving field will be space filled.

Example: . Store the eighty most significant characters of the Print Buffer
into the punch buffer. ' '

NIVAC [UNIVAE® 1005 |sAAL ASSEMBLER CODING FORM

PROGRAM . PROGRAMMER — . DATE
FOR BEG CARD OMLY

SEQUENCE LAssL',[oF e ! v
TinE | NS ;I OPERANDS | coMMENTS

7 Snoji1 13314515
0 20 303132 L

w
D
u
[

e —a—

N

. i A S‘PAR PC1H41_v;>8;OJ W G SO S W G S

L
.

N S ST T U S S

N B I I P

— e —

NIV SR R S

/-———"\

PCH is the tag assigned to the most significant position of the punch buffer.

2-24

SHIFT RIGHT: SHR M,LAS

Function: Shift the area in memory specified by M and L,S character posi-

tions Right.

Notes: a.) L must be a decimal number less than 961 and wholly con-

tained in one memory bank.

b.) The S least significant characters of the area are lost dur-
ing the shift operation,

c.) The shift count S must be preceded by a space and must be
a three digit decimal value, equal to or less than 30.

d.) Spaces will be stored in the S most significant character
positions of the shift area.

e.) The memory location assigned to the least significant char-
acter of the area to be shifted must be a multiple of 31. In
other words, it must terminate at the end of a row, i.e. 31,
62, 93 and so forth.

Example 1: Shift right an area of 200 characters labeled TAB five (5) char -

acters or positions.

UNIVAC [UNIVAC® 1008 |saAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE

. FOR BEG CARD ONLY
— —
SEQUENCE 1 |LAeEL { op OPERANDS I commenTs
1 3}4 5]617 apoji1 13h4nsS 20 303132 40 \
SHLR T AABL'A2|0104AAOAOISL i PR W SO S S VN U VA U T LAALI./A/

NSO SN

bk, i .

P - R B S SR S S |

/-A .
Example 2: Shift right an area of 63 characters labeled TAB three
(3) characters or positions. The table contains 21
three character fields terminating in core location
0713.
MEMORY LAYOUT OF TABLE
0620 Alz21
0651 AIB|BIB|C|CIC|DID|DIEJE|E|F|FIFIG|GIGIHIHIH|T|I|JI]JJJ]IIK]|K|22
0682 LILILIMIMIMININ{N|OJO|O|PIP|PIQ|Q|QIRIR|R|S}|SIS|T|T utuizas
0713 24

2-25

2-26

A three character field in the card labeled FDI is compared successively
to each field in the table.
FOR BEG CARD ONLY ——
SRIUENCE [| LABEL £ op OPERANDS commenTs
3|4 slel7 gthoh1 13f4akis 20 303132 40 50
IN DATA DIVISION \-LITERAL
11 1 [Li T S U B R SR Y TR N N N T 1' F N T T T N N G | § I R TR S N S .
CTR] {+ 5 21001 | COUNTER | /
41 1 i 1 1 1 I U S S | 1 " Aol U | i1 %) W T SN WO SN S S 1 1)) W Sl 1 s
11 1 1 1 1 A A1 | - 1 1 l ! i1 1 1 4 L 1 1 I % J B T 11 | 1 | l) 1 1 1 L i i L\
1 1 1 . 11 Ilﬁl jLRlaCElDlUIRLEL IDl IJY] L‘le ' IOIN] 1 i i 1 I L 1 1 1 i i 1 e]
L A 1 4 A Lt A 1 1 A d l) S | L ¥ IS R W S l l Lnd L L. 'l A d l | 1 I ! | 1‘
rRou| [cLr| lcTrR+2, 2 lcLEAR CTR (
1 1 1 - ! 1 1 A L i | S J k! \ iy 1 -y 1 o4 l % 1 i A 1 1 i 1 i l i A 1 i 1 1 1
LA1 TAB+601,3 | TAB FKEL_D] TO AR \
U 1 1 o et L1 TSI WS WNS SN VR NN S % PR T S S U TS T T S S R i
CA1 FD1, 3 | | COMP TO IlNF’UT }
[1 L - IO S T TS NN SRS U NSRS SUNS W S | { T T R T SO Bl T [N B L 1
JEA FIN FIND IN TABLE }
i1 1 i 1 ! 1 1 1 1 1 L i B R WS W SN S | i 1 1 l_% L1 1 i 1 1.1 [1 L i 1 1 | 1
I C CTR L. | (/NCR CTR | |
1. i L i\ 4 1 . L s 4 L d, 1 L J . 1 A 1 1) 1 A A ! L 1 J L 1] 1 A A
‘ |
1 L 1 1 JAEL ELRLRA 1 A 1 L 1 A i] | I A%NIPI LFJJJNIDI 1|JNI ITIAIBJLJEI i
SHR}] [TAB, 63 003 SHIFT TAB 3 POS
PR 1 Lo JRY SRR B i] lI PRI TR O b B S Dt et SO 1
SAI1 TAB, 3 STORE AT ,BEG
11 1 L1 T N S | 1 RS S G G U W WO U l } /N U SRS TS WA SRS TR DA SO S T U S Sy B | 1
J ROU+ 5 REPEAT \
J 1 1 A H | S 1 1 l 1 i i i 1 1 1 1 1 ll 1 1 1 1 1 1 11 1 1 1 i 1) . | 1
[] —— o 3
SEQ. NO: 001 - The table counter is cleared
002 - Last field of table is loaded into AR1
003 - Compare AR1 to field in the card
004 - Jump equal to FIN
005 - Increment the table counter (21011)
006 - Jump equal to ERR
007 - Shift the table 3 positions clearing last field
008 - Restore last field at the beginning of table
009 - Jump to repeat routine (seq. No. 002)

SHIFT LEFT: SHL M,LAS

Function: Shift the area in memory specified by M and L,S character posi-
tions left

Notes: a.) L must be a decimal number less than 961 and wholly contained
in one memory bank.

b.) The S most significant characters of the area are lost during the
shift operatior. '

c.) The shift count S must be preceded by a space and must be a three
digit decimal value, equal to or less than 30.

d.) Spaces will be stored in the S least significant character posi-
tions of the shift area. "

e.) The memory location assigned to the most significant character
cf the area to be shifted must be a multiple of 31, plus 1. In other
words, it must start at the beginning of a row, i.e. 32, 63, 94
and so forth.

Example 1: Shift right an area of 200 characters labeled TAB five (5) char-
acters or positions.

UNIVAC [UNIVAC® 1008 |saaL ASSEMBLER CODING FORK
PROGRAM PROGRAMMER DATE
. FOR BEG CARD ONLY
SEQUENCE
SRguees L‘“Ll op OPERANDS | COMMENTS \
1 314 51617 9nojl 1 13314015 20 303132 40
il i A i SHAL T A‘BI'A2IOIOAAA0A0L5A W S T S l { | |) W | A l 111 3 i J /
T
R I I — lAlgll/
S —
/_.—-"\
Example 2: Shift left an area of 63 characters labeled TAB three

(3) characters or positions. The table contains 21
three character fields starting in core position 0621.

MEMORY LAYOUT OF TABLE

0589 - 20
0620 |[A|AJA|B|B|B|C{C|C|D|DIDIE|JEJE|F|F|{FIGIG|G|IHIHIH|IT}|1]1]Jd]1J]J]|K]|21
0651 |K[KJL|LIL|MIMIM|N|NIN|O|O|O|P|PIPIQ|QIQ|RIRIRIS|S|S|T U (22
0682 |U 23
0713 1 24

A three character field in the card labeled FDI is compared successively

to each field in the table.

; SEQUENCE LABEL
LINE INS

FOR BEG CARD ONLY
{ oP OPERANDS

| coMMENTS
4 oholt1 13j1ahs 20 303132 40 50
1 3)4 slej7
IN DATA DIVISION '“LITERAL |
1 1 ' e [N L L A 4 1 [I 1 L 1 A d 1 e | L _% 1 A) N 1 H 1 l 1 1 1 i 1 1 1 1.
CTR] |+ 5 21001 | | COUNTER {
| 1 A1 4 L 1 I I | 1 A i VS W NS NN W N § % 1 i i 1 1 i 5. 1 4 " 1 1 1 Rt i
! 1 1 1 1 1 1 1 1 1 1 4 l A1) W i 1 1 A A1 I : L 1 1 1 L 1 1 1 l 11 A 1 11 IJ
I N PROlCEDURE D|V||SION
[1 11 Ll T T G G T T T T T R T =JJJv41[lllllleLl I
A 1 L . 1 L 1 J) 1 1 A L 1 1 i 1 1 1 L l 1 I l 1 " 1 1 i y 1 1 I L 1 L 1 ' 1 | 1 l
001 rRou| |cLR] [cTrR+2 .2 lcLEAR CTR
i ! L L PRSIt Rl U S S Y U T ST L; I R R T S T l TR T N 1 l
002 LA TAB , 3 TAB FIELD TO AR1
Lo ! T P AR R T T | % PR e T R S Saartendtt IO RS Dat S S SN s
01013 1 I C;Ax1 FJDX ! I 1341 Ao D TS N N S N | | %¢IQIMIPI JTIOI 1 ! lNleUJ:rJ JE 1
01014 1 11 JxEIA Fx llNl -) IS VAR U S N N N | l {FI Ill\le] 1 !lNL !TlAlalLJEJ 1 | |
ggxs 1 el Ixcl CJTxRJ Il l e) S B | 1 VI l lllNlclRl lclTlRl] | 4 J S | N 1
|
01016 1 1! JlEl EJRLRI ol i L d L Lol A dod 4 L %ylol JFI llN1D1 lllNl lTlAJBlLsEI 1 l
Oxol7 " S SxHLL T\Alsz’IGIBJ 101013! VIS SO W S S l %sle _ll>F1Tl JIAIBI 131 lP,LOJSL L 1 J
01018 L o SLAI1 TIALBI+16101 ’13L T S N W S N N | =31T101R1E1 JAITI IE1N1D4 4L ! |
009 J ROU+5 REPEAT
11 £ Lo [Lllill_il 111J11|=|>1441JLIIJLJJL1I JJ
Ll A e [§ S NS S W | l | WY S VU UUR R B S A | l = N TN A S N B G} I F U A VN G W U | i l
Lo 1 Y L4 JleIlllLlJ]lJi»L;}_llllllrllllljllll Il
1. 1 1 AL 1 1 1 1 1 1 l I 1 1 1 1 ! d i 1 1 I ! 1 i 1 | N 1 1 ‘ 1 1 1 i 11 1 1 l
SEQ NO: 001 - The table counter is cleared
002 - 1st field of table is loaded into AR]1
003 - Compare AR1 to the field in the card
004 - Jump equal to FIN
005 - Increment the table counter (21011)
006 - Jump equal to ERR
007 =~ Shift the table 3 positions, clearing 1lst field
008 -~ Restore 1st field at end of table
009 - Jump to repeat routine (Seq. No. 002)

2-28

Example 3:

FOR BEG CARD ONLY

Shift left an area of 63 characters labeled TAB twenty-
one (21) characters or positions. The table contains 21
three character fields starting in core position 0621.

A third of the table will be transferred to AR2 and the
register will be shifted 7 times before the table is
shifted in memory. The execution time will be reduced,
but the number of instructions will increase from ex-

arnple 2.

]

SEQUENCE] [TAREL ” o] OPERANDS | coMmENTS -
1 314 5i6}7 9pojt1 13j14§15 20 303132 40 50
I N DATQA DIVISION I-L_l'l"ERALS
Lol L i | PO SO U S T DA S E S S S S I - 1. IS l_-Ll S TR S O W
cT1} {+5 04001 | COUNTER 1,
. 1 - PR Ao 4 PR S S W WS { A TR SR WA (AR T SN U S YOV SO ST NS S SO S SO
. i CJT,LZ TLSI 0)71010LLL1 B IR S S | | U S S § L %CIOIUINITlElRl 121 11 L1 1 1 e 1_1
Lt L i [Illll‘lllllllll[%l[l;lLJLJ;lJlilLL o1
Lo o ok J ILNL 1PLR101C1ELD1UIR1EI 1D1| 1Vl |L5Ll IOINA L l S S | Jod L A L
|

11 i Lt 1} T N T ST U N S S S T S ST SO | } O SN T SRS SRS ST S B SR S U G |
OJ Olll] FiOnU L1A|1 FjDL‘I - x34 B R S W T R | = I;NIPLUITl 1F1 I nE[Lle 1TJol J_/}‘LELL,, }
002 CLR{ iCT1+2,.2 CLEAR CTI1

JRt 1 S L) TR Bat UL Bl T i A S T RS N SO N SN
003 LAZ2 TAB,Z‘IL | TAB FI1ELDS TO ARZ2

i L U - R TS TS NN O B S % T S TS T U TN VY NG SR S S S S W S I Y
004 SHiL TAB,631 021 ilSH!FT TABl 21 POS |
J o N G | § I S S S | 1l Al il I RS WU N W |] J N S W G S |

005 sA2| [TAB+42,, 21 lsTorRE AT END (
1L 1 . ! 11 SR | t i f 1 L A 1 " i ! 1 l % 1 | 1 L1 1 1 { 1 b1 1 i L i
01016 1 —t] Ilcl CITJ1A s 141) NS VS S | L1 1 1 l+llN1CLR1 ICJTI1L i B NN PN S | | S l]
00 7 JE ERR N O FIND I'N TAB

Pl B 1 P’y ST T R N S S N S S SRS N A ll P T S T S T TR Sl A S S M Sy SO AT U ST §

. 2

01018 L 1 _E‘L-R ClT42x+1_t ’121 S T T 1“L;__L_L_L.‘}.(EJ.L'_LE_L&EL,JEJ_BLALgi,,L,A_l_L;L_,LA,,_l
009, SuBj ICA1 AR2 ,3 COMP TO T/AB

Lol 1 — A | 1 1 " 1 Ao . l ! 4 A 1 Al L Li L L, L 1 J 1 1 4 l L 1 L 1 i l)1 1
010 JEA| {FIN . (JFiND N TiAB |
[1 L 1 F NS VRN RS SN SRR SEDUNY U UUIO W BUNU U0 RO St % N NS S N TS S U S S N | [L
01111. J. L ILC' ClTnzn IJ R T S i 4 Lk l %IINICLRA 1C1T124 } i U S W | L4 Y J
o012 JE ROU+ 10 REPEAT ROUTINE |
L1 i FR" L O S I N U Lo b 'l SR R LAV W N Dl R S UL SN Vot SO SRR I B
o013 LD2 AR2+ 3 18 SHIFT ARZ2 3 POS

S 1 - L PR S ST N Sl Tt S W SO Y S W RO | { PR ST U 0 Tl D St VLU R D N S ST
C14 J suB REPEAT sSuUB

Al L S U bl ol dond j I Lol d i i Ld L l e 1 i L S S S TS B | Jd ol [
IS B A E— N ! 1]

CLEAR: CLR M,L
Function: Clear L most significant positions of the field whose most sig-
nificant character is at M.

Note: L must be a decimal number.

Example: Clear the first nine character positions of the accumulator
called TOT.

UNIVAC | UNIVAC® 1008 |sAAL ASSEMBLER CODING FORM
PROGRAM - .PROGRAMMER DATE
X FOR BEG CARD ONLY
e N ‘ or OPERANDS IcommeENTS
1 314 81617 SHuOol 1 1S 20 303132 40
_ . :
dd, FEEE SN TR CA-L"R TAOITLquleXAAI AJIA‘%ILAIIILLIAIAAAL
e v N B B i S
, , | .

TOT (before)
TOT (after)

#
> 7

2-30

COMPARE ALPHA/NUMERIC: CAp, ML

Function: Compare for eguality L least significant character positions of
AR1 or 2, to the L most significant characters of the field spe-
cified by M. ‘

Notes: a.) This is a binary comparison and all data bits are considered.

b.) L specifies the number af six (6) hit characters that will be
compared, ‘ _

c.) A maximum of 10 or 2] ¢haracters can be compared in AR1 and
ARZ respectfylly,

d.) The result of the comparison is recorded in testable indicators
as follows:
Result of Comparison:

JUA TEA

(UNEQUAL) (EQUAL)
(ARr) = (MEM) SET
(ARr) # (MEM) SET

Example: :
Compare the two least significant characters of AR against
the two mast significant characters of the field called TR.

MMMW ‘ , . . . : —
. | — YPRQGRAMMER ‘ T/Wﬁ

T
~FOR BEG CARD ONLY .
T | o ey e e
[SETeicE] [CRBeT]y[™o : - RRERANDS GOMMENTS e
1 34 51617 EX o] LN] 20
Jea TR L

*AR1 (before)
TR =
AR1 (after)

11
o
[
-~
y—
o
[S,]

"
(]
=

D
—

O
8]

Result: JEA (equal) indicator set.

2~31

Compare the two ‘least Sighifica;nt' charaéters' of AR against
the two least significant characters of the field labeled TR.

UNIVAC [UNIVAC® 1008 |saaL AsseMBLER CODING FoRM
PROGRAM ‘ ' - - PROGRAMMEF; _DATE
~—eFOR BEG CARD ONLY)
[SEeuEce] [Tamec { oF ‘ OPERANDS | COMMENTS ~
1_3ls slels »sLoln 141$5 20 - 303132 © |
oo b PICATITRY202) L T,
e (.',7,;11.,‘1'..,‘@,1;,.';"...‘.1...‘/
| e -

*AR1 (before) = 0 A ? 1 6 5B CAB

TR = ABCD

ARl (after) = 0 A ? 1 €6 5 BC A B

Result: JUA (unequal) indicator set.

Compare the two least significant characters of AR against
the 2nd and 3rd character of the field labeled TR.

PROGRAM N PROGRAMMER - ~DATE
r—-——*—‘-son BEG ‘CARD ONLY" .
SEQUENC LABEL oP A y
T ORERANDS lcoMvENTS
a p
13 s5l6]7 __sho
-
el 4. e A,

*AR1 (before) = A A 0 B 7 1 65
AR1 ({(after) ANANO AP 1 6B
Result: JEA (equal) indicator set,

*The functions indicated are identical for AR2 with the exception that larger
fields can be compared.

Ei]

2-32

COMPARE NUMERIC:

Function:

Notes: a.)
b.)
c.)

d.)

e.)

CNr M,L

Compare algebraically L least significant characters of a signed
number in AR1 or 2, to the L. most significant characters of a
signed numeric field specified by M.

If the two fields have unlike signs, the comparison is terminated
immediately and the proper indicator set,

If L. is greater than the capacity of the register spaces are as-
sumed in the implied high order positions of the register.

The comparison terminates when all 1. characters at M have
been compared.

Only the numeric bits are compared.

The results of the algebraic comparison is stored in testable in-
dicators as follows:

Results of Comparison:

JE JG JL
(Equal) (Greater) (Less)
(ARr) > (MEM) SET
(ARr) < (MEM) SET
(ARr) = (MEM) SET
Example: Compare the two least significant characters of AR1 against
the two most significant characters of the field called LMT.
UNIVAC [UNIVAC® 1006 |saaL ASSEMBLER CODING FORM
PROGRAM ‘ PROGRAMMER i DATE :
FOR BEG GARD ONLY
—_—-L-{%'-E-"{"-,fg- "‘“"" or OPERANDS | COMMENTS ————r
1 314 516l7 SHojt1 13314p5 20 30312_2r 40 \
L4 CANA] LAMITI'IZA | S T S S T Y 1 ! 11 MRS ¥ S ' n/
i " FEY U NSV N S U T | PR S | N P /
! —
ﬂ’-—’\ pm——————" o

*AR1 (before)
LMT =
AR1 (after) 00 00O0O0O00
Result: JL (less than) indicator set

1
(=)
o
o
o
[
O

2-33

Compare the two least significant characters of AR1 against
the two least significant characters of the field called LMT.

UNIVAC [UNIVAC® 1006 |saaL ASSEMBLER CODING FORM
PROGRAM i PROGRAMMER _. _ DATE
FOR BEG CARD ONLY
SSUERSE] [haeee ‘ op OPERANDS I commeNTS
1 3la slsl7 oholis 13lishs 20 303132 %0 \
‘ , . = ;
o e emrrze L T,
i 1 Ut P LAJ”IIA)]LI' ;;;;;; j{n;l.\n..;l;;’.—:]/
/——A- — - - - o gm— .
*AR1 (before) = 0 0 0 0 0 0 0 0 1 O
LMT = 0010
AR1 =000 0O0O0OO0O010

Result: JE (equal) indicator set

#The functions indicated are identical for AR2 with the exception that larger
fields can be compared.

2-34

INCREMENT AND COMPARE: IC M

Function:

Notes: a.)
b.)

c.)

Example:

Increment a two digit (2) counter whose most significant
character is at M+2 by a decimal value store at M+4,
Compare the result to a two digit limit whose most
significant character is at M.

The field specified by M must be five characters in length.

The two most significant positions of the field specified by

M contain the limit, the next two positions contain the count

and the last position contains the increment.

The sub-functions of the instruction are as follows:

1. The increment stored at M+4 is added to the count
stored at M+2 and M+3.

2. The result is compared numerically against the pre-
determined limit stored at M and M+1.

3. The results of the comparison are recorded in the
testable indicators. "

Determine by means of the IC instruction if the page line
counter labeled CTR has been incremented fifty four times.,
If the condition is present branch to a sub-routine labeled
OFL for page compensation.

I A V) OIFIL CI‘-(R CATIRJiLzlllz

it Ay

PROGRAM PROGRAMMER' DATE
FOR BEG CARD ONLY
SEQUENCE LABEL oP
e T £ OPERANDS I commenTs
1 3]4 5]6]7 ahol11 13114115 20 23132 40
| .
) 1 Ll |JCJ CLTIRAJllIL|lLIA|LJ%LIIIALl.__i,__J!
P JE O.F.L,,.a........Ligl.u.n.,l.
(MAIN PROGRAM)
1 L A il lIL;ILllAlJlllllillllLLlL]
TR S ! L N L;LIJIII{IIIIILLJI!
|
1

——

o

The first increment of the counter:

CTR (before)
CTR (after)

54 00
54 01
The fifty-fourth increment of the counter:

CTR (before)
CTR (after)

3 1
4 1

1

5 4 5
5 4 5
Control is then transferred to the routine labeled 'OF L
where the increment counter is cleared and page compensa-
tion is performed by the programmer.

2-35

JUMP: J M

Function: Transfer program control to the instruction stored at M.

Example: . Transfer program control to the routine labeled END.

UNIVAC | UNIVAC® 1005 |saAL ASSEWBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
ML “"“; op OPERANDS I coMmENTS
1 3]a slels _sholi 13shs 20 303132 0 \
|
J, e i i — Jl 4 EANADA " . (1 A N | F——t A i] 4_ 1 Al 1 A 1 il L 1 L I\ i 1 1
FENN . W " i NP T S S S FURTTRTI B ST VN W SR ST ST
! e
/—-A

JUMP IF GREATER: JG M .

JGMP IF LESS: JL. M

JUMP IF EQUAL: JE M

Function: Transfer program control to the instruction stored at M if the

numeric comparison indicator specified by the operation is set.

Notes: a.) These instructions are used to test the result of a numeric com-
parison, (CNr).
b.) If the condition tested is not present, control will not be transferred
and the next instruction in the testing sequence will be executed.

Example: A numeric comparison instruction has been executed. If the equal
indicator is set transfer control to the routine labeled CMP.

UNIVAC [UNIVAC® 1008 |saaL ASSEMBLER CODING FORM
PROGRAM : PROGRAMMER DATE
) FOR BEG CARD ONLY
UEN LABEL OoP
——E,::%E% ‘{ OPERANDS l coMmENTS \
1 3la slel7 oholis 13haks 20 303132 40
X /
PP SR N U I E SO I (LN PO U B S I
a3 FEY — AAJIAIJALJIIlAAA]{llllllAllllll/
,-—-A i s e

JUMP EQUAL (ALPHA/NUMERIC): JEA M
JUMP UNEQUAL (ALPHA/NUMERIC): JUA M

Function: Transfer program control to the instruction stored at M if the
comparison indicator specified by the operation code is set.

Notes: a.) These instructions are used to test the results of an alpha/
numeric comparison. (CAr)
b.) If the condition tested is not present control will not be trans-
ferred and the next instruction in the testing sequence will be
executed,

Example: Test the alpha/numeric indicators in order to determine the re-
sults of a previous alpha/numeric compare, If the arguments
were equal transfer control to the routine labeled PRO.

UNIVAC [UNIVAG® 1008 |5aaL ASSEMBLER CODING FORM
PROGRAM : , e PROGRAMMER ., ‘ , DATE

FOR BEG CARD ONLY ‘
, ‘ ° OPERANDS TCOMMENTS

2-37

JUMP POSITIVE: JP M
JUMP NEGATIVE: JN M

JUMP ZERO: Jz M

Function: Transfer program control to the instruction stored at M if the
arithmetic indicator specified by the operation code is set.

Notes: a.) These instructions are used to test the resultant sign of an arith-
metic operation (AMr, ARr, SMr, SRr).
b.) If the condition tested is not present control will not be transferred
and the next instruction in the testing sequence will be executed. .

Example: . Testarithmetic indicators in order to determine if the result
of a previous arithmetic operation was negative. If the condi-
tion is true, transfer control to the routine labeled NEG.

LI NEEV,
UNIVAC [UNIVAC® 10085 |saaL ASSEMBLER CODING FORM
PROGRAM, PROGRAMMER _ DATE
FOR BEG CARD ONLY

£
ST '-“"L‘ op OPERANDS lcommenTs \
1 3j4 5;7 QNOf 1 138140 S 20 3031% 40
ety | ‘

1 i A A i JINI NIEJGI A A LLAJ dmd W n i l : i 3 1 1 A 1 IJJ I N U S N 1 /
ol - L 1I%L4/

V._,.ﬂ—\ — e

JUMP RETURN: JR M

Function: This instruction stores the addr

ess of the next sequential instruc-

“tion in the X register and transfers program control tg the instruc-

tion stored at M.,

Notes: a.) This instruction provides the pr

breaking program sequence and

ogrammer with the facility of
executing a subroutinej and then

returning program control to the instruction immediately iollowing

the JR instruction,

b.) The subroutine at M must contain a JX instruction so that the re-
turn line to the main program can be established.

Example: Transfer program control to an initialized sub-routine called INT,
perform those functions required and return control to the main
program,

PROGRAM § PROGRAMMER DATE
g FOR BEG CARD ONLY
SEQUENCE LABEL [op
TINE [NS ‘ QPERANDS VcommenTs \
1 314 51617 o) o] (RIERE. L) 20 303132 40
, == /
. y - i TﬁlG ’JDRA lINI-"A i 1 I A e dod I\ A L i A l ‘I 1 A i, i i 4 1 I ‘ lI } I3 A I’
I — I . CLLJR TAOJTJ'|3ISI i Ak), 1 i A d ‘ i 1 i’y 1 " L A i L L A i i A
PROGRAM R PROGRAMMER DATE
wemyeesFOR BEG CARD ONLY
SEQUENC taseL |§[oF i
i R ‘ | OPERANDS I coMMENTS
1 3 45;7 ‘opojty 1 5 20 303132 40 X
S = j
k. 1 'IrNLT Jnxx . Elxl PREVEITENS NSRS S S N SIS SO SU |]l' U U N S U S U RS
- L L b, S S | R | ‘LJ TSRO W | IJAL/
N
i W
PROGRAM N PROGRAMMER DATE /
- FOR BEG CARD ONLY
T ‘ o OPERANDS lcommENTS \
{ = 314 5% .) 20 3031r?=2r 40
1 i ELXL J}_L :TIA‘GK*ASK Ly PRI W ST | e | N /
e " i ek IlLIAIAJKKLJIlll{"llllllll[lllA/

Note: Reference function of JX instruction.

2-39

JUMP RETURN EXIT: JX M

Function: This instruction creates a jump instruction to the address speci~
fied by the X Register and stores it at M.

Notes: a.) This instruction is used in conjunction with the Jump Return (JR)
instruction in order to establish the return link to the main pro-
gram from a given sub-routine.

b.) This instruction is normally executed as the first instruction in
a called sub-routine.

Example: . Establish the exit line back to the main program for an ini-
tialize sub-routine called INT.

PROGRAM - PROGRAMMER DATE

) FOR BEG CARD ONLY
CINE] INS CABEL ‘ oF ORERANDS | coMMENTS
1 3ja slel7 oholis 13hahs 20 303132 40 \
Tacl fur [iNT ! | /
b e ek rrh llAlllAllA‘lllll;Illlll,‘llIlllll
PR . P C.L‘.R TLQ.T:'A 45L oo desdreed % bbby d 411 /
,——A——-‘"
PROGRAM - PROGRAMMER DATE
FOR BEG CARD ONLY
EQUEN: LABEL oR .)
[; OPERANDS lcommenTs
1__3]a slely 20 132
INT E X ! 1
1 A i 1 1. A A 4 A A A A 4 4 A A A 3 1 : . oo £‘ A, 1. 1 1 4 i " il
N o ‘V“..1..“.i.‘..l;A‘.A..,UlA.../w
PROGRAM :] PROGRAMMER DATE
FOR BEG CARD ONLY
zlENEUENi‘s LABEL ; OoP OPERANDS | COMMENTS . . \
s 0
t 3]a slel7 oholit 13h 2 303132 40
Ex | |u TAG+5 | /
1 i 1 . 1 i ! i 1 4 A l . 4 i doed, i A i l : 1. A i i 1 S T l i L i A 1 A
Ao A 4 Y R G U S | PRI SN SR NS U WAT SRR SIS SV SErR S ;
‘ ‘p-l

2-40

ADD TO MEMORY: AM, M,L

Function: - Adds algebraically L least significant characters of AR1 or 2, to
the L most significant characters of the field specified by M.

Notes: a.) If the length of the Register is equal to or greater than L, the
instruction is terminated when L characters have been added to

memory.

b.) If the length of Register is less than L, decimal zeroes are added
to memory.

c.) Except for the sign bit, zone bits are ignored in the Register.

d.) The results of an Arithmetic instruction are recorded in testable

indicators as follows:
If the sum is plus (+), the positive indicator is set.
If the sum is negative (-), the negative indicator is set.

Examples: . Add the 5 least significant characters of Arithmetic Register
one (AR1) to the field labeled FDI.

UNIVA
UNIVAC [UNIVAC® 10085 |snaL AssEMBLER G006 FORM
PROGRAM _ FPROGRAMMER DATE

FOR BEG CARD ONLY

SE UENCE LA’B’EL oP
ONE TS ‘ OPERANDS I commenTs
1 3)a slelz aholi1 13%ishs 20 303132 2

\
I B O B LA B A I S B L J
— . A 1 e L4 i a4 A4 l 1. R S Y Lo i i i 1 ; 1 i 't L 1 b
/—A R _____.”
ARI (before & after) = 1 2 3 0 0 0 4 7 1 6
FDI (before) = 5 2 3 01
FDI (after) = 5 7 01 7

Add the 5 least significant characters of arithmetic register 2 to the
field labeled FD2.

UNIVAC [UNIIVAC® 1008 |snaL ASSENBLER CODING FORM
PROGRAM . PROGRAMMER - DATE

FOR BEG CARD ONLY

SeoECE ‘-“’“{ of OPERANDS lcoMmeNTS
I 1 14145

1 345=6=7 9h0 20 303% 4=9 \
AJsz FP2,5 !lxllA[lAllllAle/

bbbt
. /
PO TEN RS S FUNURETR K NNV S N T TR N S S
¥

il

AR2 (before & after) = 00— 0320
FD2 (before) = AL4T2
FD2 (after) = 00792

Special consideration should be given on all arithmetic processes (AR,
AM, SR, SM) to the fact that when a negative result is developed the
sign indications (X bits) will be generated in both the most and least
significant locations of the resultant field, When a zero result is
developed the zero balance indicator (Y bit) wilil be generated in the
most significant location of the resultant field. A zero balance cannot
be tested for sign (+ or -) through the use of testable indicators., All
testable indicators remain set until another compare, add, subtract or
print (if alt switch two is on/illuminated).

2-42

ADD TO REGISTER: ARy, M,L

Function: Adds algebraically L, most significant characters of the {icld
specified by M, to the L least significant characters of ARl or 2.

Notes: a.) If the length of the Register is greater than L, decimal zeroes
are added to the Register,

b.) If the length of the Register is equal to or less than L, the in-
struction is terminated when L. characters have been added to
the Register. :

c.) Except for the sign bit, zone bits are ignared in mcemary.

d.) The results of an Arithmetic¢c instruction are recqorded in test-
able indicators as follows:

If the sum is plus (+), the positive indicator is set,

If the sum is negative (-), the negative indicator is set,

Examples: . Add the five digit field labeled FDI1 to Arithmetic R@giﬁtu]” Ono

(AR1).
UNIvVAC [UNIVAC® 1005 |saaL AssenBLER CODING FORM
PROGRAM) PROGIRAMMER UATE

FOR BEG CARD ONLY
‘ if::‘rf:ij LABEL ‘ oF OPERANDS } COMME NS memeeemermem ey
1. 314 slel7 oholi1 13hafis 20 303132 A0
1. R ":‘D"VII,SA | “‘ “ ,,,,,, a‘ ! Y 7
) L - - ,AA;AIAALAJL‘»‘IEPv»L
/_-A
FD1 (before & after) = 00 2 5 3
AR (before) = AN AA AN D OB 62 3

il

AR1 (after) 0 000000587 4

Add the five digit negative field labeled FD2 to arithmetic register 2.

UNIVAC | UNIVAC*® 1008 |sAnl. ASSEMBLER CODING FORM
PROGRAM : — PROGRAMMER i} - PATE
FOR BEG CARD ONLY
TNE T ’ ‘ *11 QPERANDS " TcommenTs -
1 3]4 5l6{7 40 \
L. AIR 2 F‘LD 2 ! 5 ’ e 1 $nl. 1 1 I [1 1 1 1 A /
A A . N B S] { i | R /
» . - o
FD2 (before & after) = 00127
AR?2 (before) = N/ 7 6 9 5 4 6

1
(=]
C])
-~J
o
O
N
fo—

AR?2 (after)

2-44

SUBTRACT FROM MEMORY: SMr M,L

Function: ‘Subtracts algebraically L least significant characters of AR1 or
2, from the L most significant characters of the field specified
by M.

Note: This instruction operates identically to the AM inétruction, except
that the operation is subtraction. Otherwise the notes under the AM
instruction apply.

Examples: . Subtract the 5 least significant characters of AR1 from the
field labeled PNI1.

UNIVAC [UNIVAC® 1008 |saaL assemsLER coning FoRM
PROGRAM - . —PROGRAMMER DATE
FOR BEG CARD ONLY
e i ; op " OPERANDS | COMMENTS ~
1 314 5)6]17 k=1 e LR 1451 5 20 303132 40
—_— ——— e

S

PR W T NN T WS R T ST S SR T

|
$
;llllllllllllL/
N

ol A menls n

SMILIPNY S |
|

AR1 (before & after)

1
>

AAANANALT 9T 6
PN1 (before) = : 39 87 8

PN1 (after)

n

379 02

2-45

. Subtract the 5 least significant characters of AR 2 from the field
- labeled PN2.

UNIVAC [UNIVAE® 1008 |SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER - DATE “

==FOR BEG CARD ONLY
{ 1 OPERANDS

AR2 (before & after) = A)\ 6 9 3 7
PN2 (before) = 06 000
PN2 (after) = 0 0 9 3 7

2-46

SUBTRACT FROM REGISTER: SRy M,L

Function: Subtracts algebraically L most significant characters of the field
specified by M, from the L least significant characters of AR1 or
2.

Note: This instruction operates identically to the AR instruction, with the
sole exception that the operation is a subtraction. Otherwise the notes
under the AR instruction apply.

Examples: . Subtract the 5 digit field labeled PN1 from Arithmetic Register
one (AR1). .
UNIVAC [UNIVAC® 1006 |saaL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
’——_-n—:-f,?ﬁ"s"—f:s- LABEL { op OPERANDS | coMMENTS
1 3|4 51647 Shoftt 1¥14n5 20 3‘031?___2r 40 \

SARA‘ PLNl‘AIISIII L - li

/—A-—/
PN1 (before & after)

H

0 06 5 3

AR1 (before)

"

A A AN AN NN ST

AR1 (after)

000O0O0OOS304

Subtract the 5 digit field labeled PN2 from arithmetic register

2.
UNIVAC [UNIIVAC® 1008 |saaL ASSEMBLER CODING FORM
PROGRAM . PROGRAMMER hd DATE
- FOR BEG CARD ONLY

e { op OPERANDS I coMmENTS

1 3,2;7 X o \ R E | 5‘> 20 303132 4_2

PR i PR SLR‘2 PA‘AN12I’A5\ Lyogg] ! i Ll T I /

. A1 1 P Al SN P S T T A AT e N | i i | S /
12 } —

PN2 (before & after) = 7 6 56 0

AR2 (before) = f#———A 7 6 0 6 0

AR?2 (after)

i

o

4
o
Ut
o
o

MULTIPLICATION: MUL M,L

Function:

Notes: a.)
b.)

c.)

d.)

Multiply L most significant characters of the field specified by M
by the value previously stored in AR1 and place the product in
AR2,.

L must be a decimal number ranging from one to eight.

The multiplier must be previously stored in AR 1 and must be
less than ten digits in length and have sign deleted.

ARZ must be cleared to spaces before the Multiplication instruc-
tion is executed.

Both the Multiplier (AR1) and the Multiplicand (MEM) muyst be
positive values.

A maximum product of 17 decimal digits can be developed.

The result is formed in AR2 and is right justified with zero fill.

Testable indicators are not set or affected by this instruction.

Multiply two four digit numbers labeled WS1 and WS2.

UNIVAC [UNIVAC® 1005 |saaL ASSEMBLER CODING FORM
PROGRAM _ PROGRAMMER ___ ‘ ‘ DATE
FOR BEG CARD ONLY
- b [LABEL " oP "OPERANDS I coMmENTS
1 ala slslz ololn 13iafs 20 303132)

LNI1| Wws 1, 4

PRI SRV N R Lol el ll[llllltll)l

CLR| |AR2, 21I o

4;11|1|x1111n1/
.-xLJAI.;./

heddda]

3 - o —

1 i MIUAL ws2 i 1 ! l : : 1 1 'l i 1 1 I ‘| i /
WS1 = ‘ 01 6 5
AR1 (before) = A=— A 0 1 6 5
AR2 (before) = A= - > A
WS2 ' = 1 0 2 5
AR2 (after) = 0~ 01 6 9125

2-48

DIVISION: DIV M,L

Function: Divide AR2 by the L. most significant characters of the field spe-
cified by M and place the results in AR1 and 2.

Notes: a.) L must be a decimal number ranging from one to seven,

b.) The dividend must be previously stored in AR2 and must be less
than thirteen digits in length. If signed, sign must be deleted.

c.) AR1 must be cleared to spaces before the Division instruction is
executed.

d.) Both the divisor (MEM) and the dividend (AR2) must be positive
values, subsequently testable indicators are not set or affected by this
instruction.

e.) Seven whole numbers are developed as the quotient and will ap-
pear in AR1 right justified. That is if the length of the dividend
is greater than 7,there must be less than 9,999,999 difference in
the absolute values of the dividend and the divisor.

f.) Eight decimal and nine remainder of the quotient are developed
and will appear in ARZ2 left justified.

g.) If the divisor is zero, the result will be blank.

Example: Divide WS1 3 digits into WS2 (5 digits).

UNIVAC [UNIVAC® 1005 |snaL AssenBLER CODING FORM
PROGRAM : PROGRAMMER [DATE .,
FOR BEG CARD ONLY
] ‘ op] OPERANDS I coMmENTS
1 3la slslz_ oholi1 13liahs 20 303132 N

i1 1 .

LN2f WS 2,5 |
CLR| ARY .10 |

1||.1111|11|‘x|/
oS

I A4 N

S ey wsa s “.L”..x..,/

— e . J—
WSl = 126
WSs2 = 55316
AR1 (before) = - A
AR?2 (before) = (- 055316
AR1 (after) = 00000004309
AR2 (after) = 0 J- 5 87 301000000074 Q 000

Decimal Quotient |
Remainder Remainder

2-49

TRANSLATE INTRODUCTION

The Trahslat_e Process for the UNIVAC 1005 permits the translation of
an entire record to be accomplished by a single instruction. :

The Translate Instruction functions, quite simply:

All of the characters of the translated code are entered into Core
Storage in the form of a reference table (Translate Table) at or be~
fore the start of a run.

The bits of each character of the code to be translated, acting as
address codes, call the translated character code out of the Trans-
late Table during the Translate Instruction,

The translated codes substitute themselves for the codes to be trans-
lated in the M (Operand) Address of the Translate Operation. This
leaves a fully translated record in the M Address locations at the end
of the operation.

The UNIVAC 1005 uses a code when addressing its Core Storage. The
Address Control recognizes the code for the original character and re-
lates this with a specific storage location containing the translate
character.

With practically all of the codes used in data processing, be they 5-, 6-,
7-, or 8-Track, a maximum of six tracks are valid or significant as far
as character code formation is concerned. The other tracks serve for
parity or functional control purposes.

By using six significant tracks (or levels) of the code to be translated for
address control, one level for Row Address control and the other levels
for Column Address control, the UNIVAC 1005 Translate Process is
practically universal in its application to code translation.

To change from one translation to another can require nothing more than
changing the translation table in the storage.

The Translate Process combines simplicity of programming with effi-
ciency of operation to obtain a wide scope of translating abilities.

GENERAL DESCRIPTION OF THE TRANSLATION TABLE

Figure 1 illustrates the required format of the Translation Table insofar
as it is determined by the 1005 circuitry, and is intended to give a cor-
rect approach to the planning of the table. Figure 1-A is a sample chart,

2-50

NEW

CHAR,.

——
-
-
——
—
-
——-
-
—_
——
g
-
—
—
-
—
-
-
-
—
-
—
—
—p—
-
-
-
——
-
-
-

MOD 1
MEM.
LoC

—— e = P o e e e P = = — — = — o o~ — — — — — o~ — — —

BIT CONFIGURATION
OF ORIG. CHARACTER

X1Y1814,2,1,

OO0~~~ 00 ~0O00 0 ~O0O O —~—0r—®0 -~ —0 0o
C OO0~ —0 0~ 0000 ~—0O0 0 0O 0 ~0 0 ~.~-0O0
0CC 00~~~ 00 ~00O0~—O —O —r—r—— O —r O 0O ~r—©
C0OOO0 0~ Q0000 —~0 O m~me——m~0m~mrO —~00 — ~

— o e o e e~ — =~ e . e e r— — = e e e = = = e~ — e~

S SRR E RN

S%
xr
(o}]
s
<
z3
R RN
.IMC. —_— NN ONOOO~NMTIINONOOO —m NN ON OO — M
Sliol®3g3333gcecececeeeo- oo oozl aaa
WML [~ NNl NaolleolelNeNeNelNelleNe ol oleNelloNolNolNelNelelNelNelloNolNole RNl

BIT CONFIGURATION
OF ORIG. CHARACTER

X1Y 18441211,

_— 0 00 —~— —m 00 ~0QCO0O~0 O ;mrrrr—~rO 0 ~m0O0F——0O0
—_——_0 OO0 Q0 ™~ —~00 ~000 ~mO~O rmrrerrmeOmeO0r—00~r~O0O
—_—_— 0O C COO OO0~ OO0~ O — O Frr,,—ErO —,—_—O —O0C — —

O~ 000 OCO0OCO0O0DO0O0DO0DO0DO0DO0O0DO0ODOCOLOUOODODO0OOO0OO0OO0OO0O0OO O

Prrtbtbbttrbbbttebbtbtt bbbttt

ORIG.

CHAR.

FIGURE 1.

NEW
CHAR.

+

-
—pp-
L

-l

L
-
——

= e e — <t 10

8568232
\

R ——

OF =

A ——

RR4.|..|00

3F T

R ——

HWO X|o —oo

05

ORIG.
CHAR.

FIGURE 1-A

2-51

filled in, to illustrate a possible input translation to the 1005.

Fig. 1 represents the sixty-four (64) characters that are recognized by
the 1005. These characters are shown in the table by bit configurations.
Zero represents a bit absent and 1 represents a bit present. Therefore,
the programmer must have a six level code showing the bit configuration
for each letter, number or special character:

X Y 8 4 2 1
Bit Bit Bit Bit Bit Bit
Abs Pres Abs Pres Abs Abs

A (in XS-3, 80 col.)

In the context of the translation instruction, this pattern has two mean-
ings:

Meaning 1: It is the pattern of a character in the original code as it
appears in 1005 storage before translation.

Meaning 2: This is the code that Address Control recognizes to re-
late to a specific storage location containing the translate
character.

Since the bit patterns are arranged by the sequence as addresses, they
are in no meaningful sequence as original code characters.

The Original Character box will contain the character that is equal to the
bit configuration shown directly to the right on the same line:

Orig.
Char.

(BCD) _.1 0 0 0 0 1 lmae]... (XS3)

The Mod. 1 Mem, Loc. box refers to the location in memory that will
contain the new character. Note that the translate table is a fixed area in
Module 1 with two characters at location 0081 and 0082 and sixty-two (62)
more characters starting at location 0094 and continuing to 0155. This
corresponds with the layout of the translation tables in that entry 126 of
the table, ([0126]-~[J]) @ J will be entered in position 0126 of memory.

PLANNING THE TRANSLATION TABLE (Ref. Figure 1-A)

To construct the translation table, the first step is to examine the bit
patterns of the character to be translated. Having found the bit configu-
ration in the table (under Bit Configuration of Orig. Character) write the
character to be translated in the small box at the left. Next, fill in the
corresponding small box on the right (under New Char.) with the resul-
tant UNIVAC 1005 character desired.

2-52

Loading the translate table into memory is easily accomplished in the
‘data division of the program. Recommended procedure is to define the
areas in CRD, PRT, PCH. Immediately follow this with ORG 0081 to set
the Address Control to the beginning of the translate table. Next, code a
literal instruction with +2 in the operation field and two characters in the
operand field. These two characters will be the first two entries under
NEW CHAR. corresponding to 0081 and 0082. Note: The use of the
literal instruction directs the assembler to move the number of charac-
ters specified in the Op field from the operand field to sequential core
locations starting at 0081. It is now necessary to reposition Address
Control to the next position of the translate table. This is accomplished
with an ORG 0094. Next, code a literal instruction with +31 in the oper-
ation field and 31 characters in the operand field. These characters are
found under NEW CHAR. corresponding to 0094 thru 0124. Next, code
another literal instruction with +31 in the operation field and 31 char-
acters in the operand field. These characters are found under NEW
CHAR. corresponding to 0125 thru 0155. This completes the coding
necessary and upon execution of loading the program the translate table
will be properly positioned in memory. Following is the data division of
a sample program showing the necessary coding for a translation from
BCD to XS-3.

Beg
CRD
FD1 - 1
FD2 -
PRT
PR1 - 1
PR2 - 7
PCH
PC1 - 1
PC2 - 7
ORG 0081
+2 i (
ORG 0094
+31 1370%2S48/254VH#X:C< ,W\#U9T 6@Y
+31 -JLP!' XIBMQAKNAE$G=>+? . F=) DRCO*H&
ORG 0373
STA

This chart and its explanation cover the needs of translation into BCD.
It is simple to punch the translation characters into a card and load it
into the 1005 table area. For translating into foreign codes, it is neces~-
sary to load the bit patterns of the foreign code into the table. Further
planning is needed to determine the proper card punching to obtain these
bit patterns.

2-53

TRANSLATE: TRL M,L

Function:

Notes: a.)

b.)
c.)

d.)

e.)

f.)

Example:

Replace L most significant characters of the field specified by M
with their positional equivalent as dictated by the translate table.

L must be a decimal number less than 961. The entire operand
must be located in the lst bank.

Any combination of 64 possible Ul005 6 bit characters can appear
in the translation table.

Prior to executing the translate instruction the translate table is
stored in memory locations 0081, 0082, 0094 - 0155.

The M expression specifies the most significant location of the
field to be translated. The conversion proceeds from the most
significant character to the least for L characters.

The TRL instruction replaces each character in the field to be
translated with a character selected from the translate table.
The basis for selecting the replacement character is the Boolean
value of the character to be replaced.

The contents of the translate table are not altered by the instruc-
tion, unless the translate table itself is translated.

A three character field containing three 6 bits configurations
110001 110010 110011 is labeled FD1. Those 6 bit configura-
tions are the BCD (Binary Coded Decimal) codes for the charac-
ters ABC. FDI is to be printed on the U1005 and must be trans-
lated from BCD to UNIVAC 1005 XS-3 code. The first four
instructions load the new translate table.

P L —— e

UNIVAC [UNIVAEC® 1005 |saaL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY]
SEQUENCE LABEL P
TINE] INe ¢ ‘ © I ‘ OPERANDS | commenTs

1. 34 slely oloji1 13fiabs 20 303132 o

lLSlIIllLLIJl/

U TN ST S W S WA S N S S S

4

PR S R T R T T B

LPR} K1

I) L 1 ST | S

S PR TR1,62|

L - TSI LA SN TSR SAN Rat SR SRS YA TN WU T N S

LA K2, 2

]
]
FENTO E.Y dnd o f b e
|

SAI] |TR2

[Lol Al l'll!lllilllll

s e s

|

2-54

The translate function is now executed.

UNIVAC [UNIVAEC® 1008 |saaL AsSENBLER CODING FORN
PROGRAM PROGRAMMER DATE

r——'OR BEG CARD ONLY
or OPERANDS | coMMENTS

3031 2

it/
/

PUN W S VT ST S R Y

AJ

|
'
L]
i
T

w——’\

The resultant characters stored in FD1 are the XS-3 equivalent for the alpha
character ABC.

2-55

STORE ZERO SUPPRESSED: 8§ZS M,L

Function: Store ascending L. least significant characters from AR2 into the
L most significant characters of the field specified by M sup-
pressing all leading zeroes. '

Notes: a.) L must be a decimal number.

b.) L characters are transferred in ascending order (least to most)
from AR2 to the most significant positions of the field specified
by M. o R

c.) Zero suppressing will continue until some character other than a
zero or space is decoded.

d.) When L is greater than the capacity of AR2 the receiving field
will be space filled.

Example: Store the five least significant positions of AR2, suppressing all
: leading zeros, into the field labeled TOT.

UNIVAC [UNIVAC® 1008 |saaL assemsLER CoDING FoRM
PROGRAM , PROGRAMMER DATE
FOR BEG CARD ONLY)
ok '"““‘ pP OPERANDS 1 coMmMENTS
1 3)a slelz oli1 13hahs 20 303132 20
L s.zns TIOATl'jsl | IV I S TS T | ! Y U S U AT B A A
A T 1 ?
i s - TS B BT | I S S S | I R S T S | T ./
) v LI— J—
M "

1]
T
o

AR2 (before)
TOT (after)
AR2 (after)

"

f
>
> >

2-56

LOAD WITH SIGN: LWS M,L

Function:

Notes: a.)
b.)

c.)

d.)

e.)

f.)

Example:

Load ascending L most significant numeric characters from the
field specified by M, into the L least significant character posi-
tions of AR2.

Insert a sign in the LSL position of AR2 on the basis of the low-
order "X'".

L must be a decimal number.

L most significant characters of the field specified by M are
transferred in ascending order to the L least significant positions
of AR2.

The LSL position of AR2 is examined and a sign is inserted. If
the value in AR2 is positive it is left shifted one position and a
space (plus sign) is inserted in the least significant character of
AR2. If the value in AR2 is negative it is left shifted one position
and a minus (negative sign) is inserted in the least significant
character of AR2.

When L is less than the capacity of AR2 the remaining positions
of the register are space filled.

When L is greater than the capacity of the register truncation
will occur and the most significant characters of the field will be
deleted.

All non-numeric bits are deleted by this instruction.

Load a five digit negative field called SUM into AR2 inserting a_
sign in the LSL character of AR2 based on the presence or
absence of the low - order "X'" bit.

UNIVAC [UNIVAEC® 1005 |saaL AsSEMBLER CODING FoRM

PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
[{
£ : LABEL oP OPERANDS | COMMENTS

t. 314 sl637 _ ghohit 1 S 20 303132 L)
LWSH [SUM, 5
- A - IS S e

i MRS SRT B T J JAAA/
T /
i PN T N N U S 'Y i SN PTG B U ST ST S U e

& &
2
non
>

!

o
oo
oo
- o

2-57

Load a five digit positive field call ACC into AR2 inserting a
sign in the LSL character of AR2 based on the presence or
absence of the Low - order "X' bit.

UNIVAC I UNIVAC® 1008 |SAAL ASSEMBLER CODING FORM
PROGRAM - PROGRAMMER DATE
FOR BEG CARD OMLY

e [‘ op ' OPERANDS | I coMMENTS

12la slels oholir 13hahs 20 303132 2

ok 1 s Lﬁyis Alc‘cl’lsl L') A ¥ T F— i 4 l ! s A F O - [i T l‘ ' ll/

il i SOt SO ‘1441rlAll‘AlllJ‘4ijlgljlllAJIlAAAJ_/
ACC = 05015

AR2Z = A<+—A 05 015 A

2-58

LOAD NUMERICS: LN, M,L

Function:

Notes: a.)
b.)

c.)

Examples:

Load ascending L most significant characters from the field spe-
cified by M, into the L least significant characters of AR or 2.
During the transfer all zone bits are changed to binary zeroes.

L can be a decimal number ranging from 1 to 21 depending upon
which AR has been specified by the operation code.

If a field contains less characters than the register capacity the
remaining positions of the register will be space filled.

If a field contains more characters than register capacity the
surplus positions will be truncated.

Transfer a four character constant K1 into the four least signifi-
cant positions of AR1.

UNIVAC [UNIVAC® 1008 |saaL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
S LABEL P
% { ° OPERANDS | coMMENTS

1 3la slelz sholit 1 5 \
1 0 20 303132 0

LINI‘ l\lllLLLl IJLLLJ/
J/

i
T
%ALLIJAA:L144L

K
A

I Ty

I
el L A i P NSO S S R |

!
>
>
o
o
—
w

*AR1 (before) 4 5 6 7
K1 ABCD
AR1 (after) 1 2 3 4

"
>
>
>
=g
g
[

Transfer a two character constant from K1 into the two least sig-
nificant positions of AR1.

UNIVAC [UNIVAC® 1008 |saaL AssEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
SESPERCE '-‘“L; op OPERANDS TcommENTS
g 4 51617 sjopt1 4 5 20 303132 40
R I R K B G R e S B
— L 1;L o
M . -
*AR1 (before) = A A 0 01 3 4 5 6 7
K1 = ABCD
= A AADNAAANANT 2

AR1 (after)

Since the most significant position of the field is the character spe-
cified by the address M, the two most significant characters of K1l
were transferred.

Transfer a two character constant from K1 beginning with LSL char-
acter into the two least significant positions of AR1.

UNIVAC [UNIVAC® 1008 |[saaL ASSENBLER CODING FORM
PROGRAM PROGRAMMER — : DATE
w=fOR BEG CARD ONLY
\s.mtu Mms LaBeL ‘ oF T dPE*’?ANPSV o T COMMENTS wmemmme
1. 314 sjelr opoli1 13haps 20 303132 40
0 =
s . A 4. 4 LANL‘ K“J+121’ 121 A W U S | A I 1 1 ; L1 1 L4 1 1 A 1 Y i 1 A 1 1 /
T . i Aol 11 P T TR Lok Ao | - SR T W W Y l PR S SN
/__—-——\) aaa— _—4’

"

*AR1 (before)
K1 =
AR1 (after)

AAOO1 34567
ABCD
A A3 4

A A AN DA A A
Since the most significant position of the field is the character spe-

cified by the address M + 2, the two least significant characters of Kl
were transferred.

*The functions indicated are identical for AR2 with the exception that larger
fields can be manipulated.

2-60

STORE EDITED: SED M,L

Function:

Notes: a.)

b.)

c.)
d.)

e.)

£.)

Example:

Store ascending L least significant characters from AR2 into the
L most significant positions of the field specified by M. Suppress
all leading zeroes and edit the field according to a fixed pattern.

L must be a decimal number.

L characters are transferred in ascending order (least to most)
from AR2 to the L. most significant positions of the field speci-
fied by M.

The field will be zero suppressed until some character other
than a zero or space is decoded.

A period is inserted in the fourth least significant position of
ARZ2. :

Commas are inserted for separating significant values when they
exist. If the integer value of the field is less than 1,000 commas
will not be inserted.

The rules for truncation and space fill are the same as for store
ascending.

Store AR2 edited into the print-buffer.

UNIVAC [UNIVAC® 1006 |saaL AssEMBLER CODING FORM

PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
SEQUEN! LAB| ‘ P
LIN INS et ° OPERANDS | commenTs

1314 slel7 _oholi1 13aps 20 303132 40
SED| |PRT , 10,
Ao U S TR Tt D S T S

Lol

|
|

- Y il PN B

—) “l._—;—-—‘;.l__;-:—‘—’

AR2 (before)
PRT (before)
AR?2 (after)
PRT (after)

Ae——p O 1
AN A A
Ae—AN 1 , 4
4

]
O O >
S O > O
oo > 0

!
>
=

2-61

PUNCH TEST: PTE

Function: This instruction tests the ready status of the Punch Unit. Con-
‘ trol will not be transferred to the next instruction in sequence if -
the Punch Unit is still active.

Notes: a.) This instruction is normally given following a Punch command
(XF PUN) and prior to the first transfer of new data into the
Punch-buffer.

b.) This instruction insures that information will not be transferred
into the Punch-buffer while it is in the process of unloading.

c.) Optimum utilization of the Punch-Test instruction will provide
the maximum overlap of processing with punching.

Example: Test the Punch before storing AR2 in the Punch-buffer.

UNIVAC [UNIVAC® 10085 [saaL assemsLER coDiNG For
PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
OPERANDS | coMMENTS

P"\
B, INSTRUCTION REPERTOIRE -- CARD SYSTEM EXTERNAL FUNCTIONS

The UNIVAC 1005 Card Processing system has been designed around
a single address, internal programmed processor and includes as second-
ary units the following:

- Integrated High Speed Printer

- Integrated or free standing Card Reader

- Free standing Punch Unit or Read/Punch Unit
- Optional free standing Auxiliary Reader

The Card System External Function instructions pertain to Class III

and are explained in detail on the following pages.

Class III: Class III instructions are Input/Output or External Function
Commands, and contain a mnemonic code in the '"M'" portion of
an instruction indicating the I/O device or devices to be initiated.

2-62

READ CARD: XF AREA

Function: This instruction reads a full 80 column card into the U1005 input
Card-buffer.

Notes: a.) The input Card-buffer area is 80 locations in length, beginning
with memory location 1 through memory location 80.

b.) Input Card-buffer locations correspond to card columns, thus a
character punched in column 1 will be stored in location 1, a
character punched in column 2 will be stored in location 2 and
so on.

c.) As each column is read it is automatically translated from
Hollerith card code to XS - 3.

d.) The mnemonic operand field must be preceded by a space.

(For illustration purposes this space will be indicated by a A for all XF
instructions)

Example: Read a card from the Main Reader.

UNIVAC [UNIVAC® 1008 |saaL AssEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
SEQUENCE LABEL | oP
% '{ OPERANDS I commenTS \
1 3la slels oholi1 13hiahs 20 3031I32 20
A ' A 1 XIFA AlRlE lAl . l e A J. A W N T l {' 1 i " 1 4 s 1 1 l i 1 1 1 1 I
b A 1 L1 FENTEES SN S S S I PO VI S WS S W U SN WA S VAT VT VA S S VT ST S

2-63

PRINT-SPACE ONE XF APRI1

Function:

Notes: a.)

TWO XF APR2

This instruction prints the contents at the Print-buffer and
spaces the paper one or two lines depending on the numeric
modifier specified.

The Print-buffer area is 132 locations in length, beginning with
memory location 161 through memory location 292.

b.) Print-buffer locations correspond to printing positions, thus, a
character stored in memory location 161 will be printed at print
position one, a character stored in memory location 162 will be
printed at printed position two; and so forth.

c.) The Print-buffer area is automatically cleared to spaces follow-
ing the execution of each Print command.

d.) All Printer spacing occurs subsequent to printing, or in other
words the contents of the Print-buffer is printed, the Print-buffer
is cleared and then the printer form is advanced.

e.) The mnemonic operand field must be preceded by a space.

Example: Print the contents at the Print-buffer and advance the form two
" lines.
UNIVAC [UNIVAC® 10085 |saaL AsSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

e T N D ; op OPERANDS IcommenTs

1 314 51617 onoj1 13314015 20 3031% 4_2 \
A I I T B X D ¢
s - - 1x;ll;JL

,—A

With Alt Switch 2 on/illuminated on all print commands an automatic
ejection (skip 7) occurs when a one (1) punch is detected in the forms
control tape. This condition is testable. A JG condition is set if the one
(1) punch has not been detected. A JL condition is set when the one (1)
punch has been detected. These settings remain testable until another
card, print or paper tape I/O command, compare, add or subtract in-
struction is executed.

2-64

PRINT - ADVANCE 7 XF APR7

" Function:

Notes: a.)

b.)

c.)

d.)

This instruction prints the contents at the Print-buffer and ad-
vances the paper until a one, two, four, punch is detected in the
control loop.

The Print-buffer area is 132 locations in length, beginning with
memory location 161 through memory location 292.

Print-buffer locations correspond to printing positions, thus a
character stored in memory location 161 will be printed at print
position one, a character stored in memory location 162 will be
printed at print position two, and so forth. ’

The Print-buffer area is automatically cleared to spaces follow-
ing the execution of the print command.

Once the forms advance function of the PR7 instruction is initi-
ated, control is returned to the next instruction in sequence and
further processing is overlapped during the actual form advancing.
The first line of a form is normally indicated by a control punch
in all channels of the printer control loop. Hence, an advance 7
would mean advance the form to the lst line of the next page.
The mnemonic operand field must be preceded by a space.

UNIVAC [UNIVAC® 1008 |sar assenBLER coDiNG FORM

PROGRAM PROGRAMMER . DATE

FOR BEG CARD ONLY
S| N LAB!
T eL { oP OPERANDS | coMMENTS

1 314 51617 9ol 13}4nS .20 30 40
XF | JAPR7

W LAY Y

. Al F U U WO D W S S T

1
T

P A P el PRI TSR T B RPN O TV O IR W
T

2-65

PUNCH:

Function:

Notes: a.)

b.)

c.)

d.)

e.)

£)

Example:

XF APUN

This iﬁstruction punches the 80 column card image in the Punch-

buffer.

The Punch-buffer area is 80 locations in length, beginning with
memory location 293 through memory location 372.
Punch-buffer locations correspond to card columns, thus a char-
acter stored in location 293 will be punched‘in card column 1, a
character stored in 294 will be punched in card column 2 and so
on.

The Punch-buffer is not cleared following the execution of the
punch instruction.

Once the punch cycle has been initiated, control is returned to
the next instruction in sequence and further processing is over-
lapped during the punch-cycle.

As each column is punched it is automatically translated from
XS-3 code to Hollerith card code.

The mnemonic operand field must be preceded by a space.

I

Punch the card image stored in the Punch-buffer.

UNIVAC [UNIVAC® 1008 |saa assemwsLer conin Foru
PROGRAM PROGRAMMER DATE
r———oen BEG CARD ONLY
LABEL owemnns tcomuents
s sle : s ©
g ‘ : [‘ B
. i - xiFJL PIUKNA 1"!1 j Ao o 1 L L l" :: L L bk i l - s s § .
. - 1 N T " 4
t p—

2-66

" READ - PRINT - SPACE ONE: XF ARPR

Function: This instruction reads a full 80 column card into the U1005 input
Card-buffer, prints the contents of the Print-buffer and advances
the printer form one line.

Notes: a.) The Read-Print instruction is a combination of the Read Card (XF
REA) and the Print (XF PR1) instructions. All notes pertaining to
these instructions are applicable to the Read-Print instructions.

b.) During the Read-Print execution cycle both I/O devices will func-
tion concurrently, with the execution time of the faster periph-
erial being overlapped by the slower one.

For example, in the case of a 400 CPM reader and a 600 LPM
printer, the execution time required to read a card is sufficient
so that the print cycle can be completed concurrently.

c.) The mnemonic operand field must be preceded by a space.

Example: Read the next card into the Card-buffer, print the contents of the
Print-buffer and advance the printer form one line.

UNIVAC [UNIVAC® 1008 |saaL AssEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
T '-“““I op OPERANDS TcommenTs
1314 slej7 ohohi1 13hehs 20 303132 20

X F AR PR

dd. i bl b AT ST S G SN W

|

1 4 P VS T s Loaa
T
ln.;.l...l;);n/
: et

I
U - P B S | IR .|

2-67

READ - PRINT - SPACE TWO: XF ARP2

Function: This instruction reads a full 80 column card into the U 1005 in-
put Card-buffer, prints the contents of the Print-buffer and
advances the printer form two lines.

Notes: a.) All notes pertaining to the READ-PRINT-SPACE ONE (XF
RPR) instruction are applicable to the READ-PRINT-SPACE

TWO instruction.
b.) The mnemonic operand field must be preceded by a space.

Example: Read the next card into the Card-buffer, print the contents of
the Print-buffer and advance the priater form two lines.

L

UNIVAC | UNIVAC® 10085 | SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER, DATE
FOR BEG CARD ONLY

1 oF OPERANDS COMMENTS

303132

1
=|lljlllllll]lll

........ |

L o

L.l A bd L. IlllllAALlllJIlllllllJlllllll

2-68

READ - PUNCH: XF ARPH

Function:

Notes: a.)

b.)

c.)

Example:

This instruction reads a full 80 column card into the U1005 input
Card-buffer and punches the 80 column card image in the Punch-
buffer.

The READ-PUNCH is a combination of the Read Card (XF REA)
and the Punch (XF PUN) instructions. All notes pertaining to
these instructions are applicable to the READ-PUNCH in-
struction.

During the READ-PUNCH execution cycle, I/O devices will
function concurrently with the execution time of the faster
peripheral being overlapped by the slower one.

The mnemonic operand field must be preceded by a space.

Read the next card into the Card-buffer and punch the contents
of the Punch-buffer.

UNIVAC
--------------------- | UNIVAC® 1005 | SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
l op OPERANDS COMMENTS

15 20- 303132
]

i AIRLPAHLJLIAIJIJ;JJLilllglllLALJLALIJA

— N NS S B SRR PRI TR

Il Y T ll;lLlLl,Ll_LlALlLlllllll_lLlLlLJJ

2-69

READ-PRINT-PUNCH: XF ARPP

Function: .

Notes: a.)

This instruction reads a full 80 column card into the U1005 input
Card-buffer, prints the contents of the Print-buffer, advances
the printer form one line, and punches the contents of the Punch-
pbuffer. :

The Read-Print-Punch instruction is a combination of the Read
Card (XF REA), the Print (XF PR1), and the Punch Card (XF
PUN) instructions. All notes pertaining to these instructions are
applicable to the Read-Print-Punch instruction.

During the Read-Print-Punch execution cycle, all three I/0O de-
vices will function concurrently, with the execution time of the
faster peripherial being overlapped by the slower one. Ref.
Read-Print Inst.

c.) The mnemonic operand field must be preceded by a space.
Example: Read the next card into the input Card-buffer, Print the contents
‘ of the Print-buffer, space the printer form one line, and punch
the contents of the Punch-buffer.
U | =]
UNIVAC | UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
e ‘-"‘BELl op OPERANDS COMMENTS
i 304 slef7 ohofit 13habis 20. 303132 40
i
- - XXFI A‘RLIP!IPI e KAI I S W W | i A i A I } L i 1 i I ' 1 ' I 1 i i i -
I - PR T NP | TS O B S
LI
-t Il Jod A ‘lLJllllJll‘LllllllllllllILJLLLI
e o o’

2-70

FORMS ADVANCE: XF ASK2

Functions:

Notes: a.)

b.)

c.)

Example:

XF ASK4
XF ASK7

These instructions will advance the printed form as 1nd1cated by
the forms control-loop.

The Print-buffer area is not cleared‘following the execution of a
skip command.

Once the forms advance command has been initiated control is
returned to the next instyuction in sequence and further prpcess-
ing is overlapped during the actual form advancing.

The mnemonic operand field must be preceded by a space.

Advance the printer form until a channel twa punch is detected
in the control loop.

SR T v 7T

UNIVAC [UNIIVAC® 1008 |saaL ASSENBLER CODING FORM
PROGRAM - PROGRAMMER ____ —————DATE
FOR BEG CARD ONLY i
SeouricEy [LaeE ‘ ‘or ' OPERANDS } coMmENTS -

! 3]4 Sl6 303132

2-71

READ CODE IMAGE: XF ARCI

Function:

Notes: a.)

b.).

c.)

d.)

Example:

This instruction reads a full 80 column card into the U1005 Card-
buffer. The capacity of an 80 column card is expanded by allow-
ing two columns of data to be obtained from what would ordinarily
be one card column. At the same time, automatic code transla-
tion is suspended. Subsequently, the U1005 Card-buffer is in-
cremented by 80 positions.

The input Card-buffer area is 160 locations in length, beginning
with memory location 1 through memory location 160.

Input Card-buffer locations correspond sequentially to card
columns. Thus, a configuration punched in card column 1 will
be stored in memory locations 1 and 2, a configuration punched
in card column 2 will be stored in memory locations 3 and 4 and
so on.

This instruction increases the data handling capacity of the
U1005 in that the primary design is to combine in one card form
the compact 6-position UNIVAC XS-3 code with the 12-position 80
column punched card code.

The mnemonic operand field must be preceded by a space.

Read a card from the Main Reader in Code Image mode.

UNIVAG

[UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM

PROGRAM . PROGRAMMER, DATE

- FOR BEG CARD ONLY - - .
l OPERANDS COMMENTS

303132

SEQUENCE

PRSPV VN SR T S TN U DU TN VOO T S N

PR R

"
lllllllllllll/
NN 4

SR .

Ll i i) A llllllllLllllllI

2-72

PUNCH CODE IMAGE: XF APCI

Function:

Notes: a.)
b 0)
c.)

d.)

e.)
£.)

Example:

This instruction punches the card image located in the Code
Image Punch-buffer into an 80 column card.

The Code Image Punch-buffer is 160 locations in length begin-
ning with memory location 293 through memory location 452.
Code Image Punch-buffer locations chronologically correspond
to card columns. Thus, the data stored in locations 293 and 294
will be punched in card column 1, data stored in locations 295
and 296 will be punched in column 2 and so on.

The Code Image Punch-buffer is not cleared following the exe-
cution of the PUNCH CODE IMAGE instruction.

Once the punch cycle has been initiated, control is returned to
the next instruction in sequence and further processing is over-
lapped during the punch cycle.

The automatic XS-3 to 80 column code is suspended.

The mnemonic operand field must be preceded by a space.

Punch the card image stored in the Code Image Punch-buffer.

UNIVAC

PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
l or OPERANDS COMMENTS

| UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM

303132
]

X,F, AIPLQLIALILILALLAI_lLfl_LIJIlA]lllAlAl

P PRSP B E P S PR R

" 1 L (- NN USRS PO T S ST S T S S NS TN W S U S S SO S B A B
i P

2-73

~ READ AUXILIARY CODE IMAGE: XF ARXC
Function: Read a card from the Auxiliary Reader lin Code Image mode.

Notes: a.) The READ AUXILIARY code image ‘insytruction places the prior
card read in output stacker No. 1. ’
b.) All notes pertaining to the Read Code Image instruction (XF RCI)
are applicable to the Read Auxiliary Code Image function.
c.) The mnemonic operand field must be preceded by a space.

Example: Read a card from the Auxiliary Reader in Code Image Code.

UNIVAC
: [UNIVAC® 10085 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
1 SLIUERCE LABE‘-{ opP OPERANDS COMMENTS
1 3{4 5|6})7 ofioft1 1314115 20 '~ 303132 40

ol IGE JIARXC

]
A]A‘:lllllllllllllll

o oo b |

de L PR W i
LN /
[Al Lk IlllllllllllllllllllllllllJlI
w

| —r] ” ——

2-74

READ AUXILIARY WITH STACKER SELECT: ONE XF ARX1
TWO XF - ARX2

THREE XF IARX3

Function: This instruction reads a full 80 column card from the Auxiliary
Reader into the U1005 input Card-buffer and places the prior
card read in output stacker 1, 2 or 3 as designated by the nu-
meric digit in the third position of the mnemonic operand field.

Notes: a.) All notes pertaining to the Read Card instruction (XF REA) are
applicable to the READ AUXILIARY instruction.
b.) The mnemonic operand field must be preceded by a space.

Example: Read a card from the Auxiliary Reader and place the prior
card read in Stacker 2. -

UNIVAC

| UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

SEQUEN Lag ‘-‘ oP OPERANDS COMMENTS

INE } 1

1 314 5]6}7 oNof1 1 13141 S 20- 303132 40
A []
XIFJ |R4x12L4lln.xAA;l.J}t..x:||A|L411|1
..... l.........J{l...'l...[...
Ao, el Aol l4L1|l|AlA|||l||lll|lJllllLlJl/
__—N | —

2-75

PUNCH WITH STACKER SELECT: XF APSS

Function: This instruction punches the 80 column card image in the
Punch-buffer and places the card being punched in the select
stacker. , : '

Notes: a.) All notes pertaining to the PUNCH instruction (XF PUN) are
applicable to the PUNCH SELECT STACKER command.
b.) The mnemonic operand field must be preceded by a space.

Example: Punch the card image stored in the Punch-buffer and place
that card in the select stacker.

UNIVAC

| UNIVAC® 1005 | SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

SEQUENCE LABEL l oP OPERANDS COMMENTS

LINE INS
1 3{4 5§617 ofiop 1 13[4l 5 20 303132 40
.]
PR Y gl X.F A£LSLS4A|;-LAL|AIA|} P WORE SHNT W P S SO S S T W
e Lo, dnd, llllLl_LJ_LAAAALl_Ll% AAAAAAAA |
a4 L L LALLLJ1AAA|Ilvllllv'lllJLlilL‘LLlJ/
ot | | A——]

2-76

READ/READ PUNCH:

Function:

Notes: a.)

b.)

c.)

d.)

e,)

Example:

XF ARRP

This instruction reads a full 80 column card from the punch unit
into the 1005 input Read/Punch Card-buffer and punches a full
80 columns from the output Read/Punch Card-buffer into the
second prior card read. '

The input Read/Punch Card-buffer area is 80 locations in
length, beginning with memory location 293 through memory
location 372.

Read/Punch Input Card-buffer locations correspond to card col-
umns, thus a character punched in column 1 will be stored in
location 293, a character punched in column 2 will be stored in
location 294 and so on.

Since the Read/Punch Input Card-buffer locations constitute the
area normally reserved for the Punch-buffer, memory locations
373 through 452 are used for punching. Subsequently, any data
in these locations during execution of the RRP instruction will
be punched into the second previous card read.

As each column is read, it is automatically translated from
Hollerith card code to XS-3.

The mnemonic operand field must be preceded by a space,

Read A card from the Read/Punch Unit Station 1 and punch the
card in Station 3.

CHECK INPUT

READ PUNCH READ MAGA-

ZINE

OUTPUT % % ——

STACKERS —

PSR cecec UMMNNNNNS ovccc DENMENNED > oo EMMNENE oo SN o o s o o RSN

NORMAL |SELECT

STATION STATION STATION STATION

<

CARD PATH THROUGH READ/PUNCH

------------------------------ | UNIVAC® 1005 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
L LABELl op OPERANDS COMMENTS
1 3§4 51647 Shopt 1 13)1441 5 20- 303132 40
1
X.E. AuRanpunl.n:nlnulnl%xnx::|| Lo a gy
Y S W) S ST | : nnnnnn Lo dod..
W W '} Lk L} Illlllllllll‘lllljlllllllllllll/
e ———— _J - T

2-77

READ/READ PUNCH WITH STACKER SELECT: XF ARRS

Function: This instruction reads a full 80 column card from the Read/
Punch into the U1005 Read/Punch Card-buffer and punches a
full 80 columns from the output Read/Punch Card-buffer into
the second prior card read, placing that card in the selected
output stacker.

Notes: a.) The READ/PUNCH READ STACKER SELECT instruction is an
offset of the READ/PUNCH READ instruction (XF RRP). All
- notes pertaining to the Read/Read Punch instruction (RRP) are
-applicable to the READ/PUNCH READ STACKER SELECT in-
struction. \
b.) The mnemonic operand field must be preceded by a space.

Example: Read a card from the Read/Punch Unit Station 1 and punch and
stacker select the card in Station 3.

CHECK INPUT

READ PUNCH READ , MAGA-

. ‘ ZINE

QUTPUT % ’ % S—

STACKERS —

e v e+ SN e+ NSNS > PR ¢ s e e L IO I

NORMAL |SELECT .

STATION STATION STATION STATION

¢

CARD PATH THROUGH READ/PUNCH

------------------------------ [UNIVAE® 1005 | sAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER: DATE
FOR BE G CARD ONLY
SILACE] AR ; oP OPERANDS COMMENTS
17 314 slef7 sliofi1 13halis 20. . 303132 40

X.F | IARRS |

[}
l‘LlllJlllliJJIAIILIlIIIllI

..... | PSP B NSNS WP S VA ST SO PR Y

L 1 PR it
1 II/
F Sy A Li Y - l]'l}llrll-lirlrllllllllllllIIlll

2-178

READ/R.EAD PUNCH CODE IMAGE: XF ARRC

Function:

Notes: a.)

b.)

d.)

Example:

This instruction reads a full 80 column card from the Read/
Punch unit into the U1005 Read/Punch Card-buffer in Code
Image mode and punches a full 80 columns from the output
Read/Punch Card-buffer into the second prior card read in
Code Image mode.

All notes pertaining to the READ CODE IMAGE instruction
(XF RCI) are applicable to the READ/READ PUNCH CODE
IMAGE instruction.

The input buffer is 160 locations in length beginning with mem-
ory location 293 through memory location 452.

Since the input buffer locations constitute the area normally
reserved for the Punch-buffer, memory locations 453 through
612 are used for punching. Subsequently, any data in these
locations during execution of the RRC instruction will be
punched into the previous card read.

The mnemonic operand field must be preceded by a space.

Read a card from the Read/Punch Unit Station 1 in code image
mode and punch the card in Station 3 in code image mode.

CHECK INPUT
READ PUNCH READ MAGA-
ZINE
OUTPUT % Q —
STACKERS . —
,r____ nnnnn SRS e s 000 MeNENNNNEE ¢ s o0 LB NN e o e s o N
NORMAL (SELECT
STATION STATION STATION STATION

<

CARD PATH THROUGH READ/PUNCH

o [UNIVAC® 1005] SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
SLE,SLEJE“,C,?E' "ABE"i of OPERANDS COMMENTS
1 34 5]6})7 ONON 1 13J14)1 5 20 303132 40
1
- A XIFJ ALRIRJCL lAA A ;- d e AL A J } A A L T N 1 J . A 1 1.
" A N | A B R B I
1
Y A - o lllll‘llLlJJLlLJlLlllllllJLl(
’

2-79

HALT: XF AHLT

Function: = This instruction brings the 'cor'hputer to an orderly halt.

‘Notes: a.) All I/O functions in processes will be conipleted before the halt
will be effective.

b.) If the U1005 is restarted following a HALT the next instruction
in sequence will be executed.

c.) The mnemonic operand field must be preceded by a space.

Example: Halt the computer

UNIVAC
AL g [UNIVACS® ‘IOQBJSAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER) DATE
FOR BEG CARD ONLY
: tAseL ‘ or OPERANDS | coMmENTS
1 3]s slel7 oholt1 13hiahs " 20 303132 40
1 4. i 4 1 xlFl AIHILITA e l 1 e i i F— i 3. s i 'L L . Al 5 2 i L -1 L A d)
N ‘. e . RO RSP S S SO ST U N ST S Y AT e T S
1 - 7
/-—ﬁn g

2-80

C. INSTRUCTION REPERTOIRE - PAPER TAPE EXTERNAL FUNCTIONS
AND CONDITIONAL TESTS ‘

l. PAPER TAPE EXTERNAL FUNCTIONS

The Paper Tape Reader and Paper Tape Punch prowvide the UNIVAC
1005 with the ability to use paper tape as a direct input media and
paper tape punch as a direct output media. The reader will accept
any form of 5-, 6-, 7- or 8- track tape providing odd-parity checking
when desired. The punch will perforate the aforementioned track
tape codes providing odd-parity perforating if desired.

Paper tape reading and punching operations are controlled by the
program. The input area starts with the first position of memory
module one and will extend for the Tape Block length. Output area is
designated to start at 0293 and extend for the Tape Block length. So
that a wide variety of tape codes can be handled, the Paper Tape
Reader and Punch functions to transmit or perforate an exact image
of all or part of each tape frame. This selection is through program
control which specifies 80 column read mode for 6 data track read-
ing and punching, Code Image mode for 8 tape track reading and
punching. In the above two modes, the 7th track is available for
parity checking and the 8th track for special control. For data proc-
essing, the information recorded in paper tape can be entered one
character at a time, 80 characters at a time, or a variable length
block ended by a configuration of all bits present. For further as-
sistance in data processing, the Paper Tape Reader permits printing
and punching of end results directly from paper tape without inter -
mediate tape-to-card conversion.

- The format of the Paper Tape External Functions requires only the
mode of punching or reading (80 Column or Code Image).

The Paper Tape External Function instructions pertain to Class IIIL
and are explained in detail on the following pages.

Class III: Class III instructions are Input/Output or External
Function Commands and contain a mnemonic code in
the "M' portion of an instruction indicating the I/O
device or devices to be initiated.

2-81

READ PAPER TAPE: XF ARPl Read 1 Frame
XF ARP8 Read 80 Frames
XF ARPS Read through Sentinel

- Function: This instruction reads a block of tape into the U1005 Card Read-
‘ buffer. The variable length of the block is determined by the 3rd
character of the mnemonic field. Specifically, RP1 designates a
1 character block, RP8 designates an 80 character block, RPS
designates a variable length block ended by a configuration of

all bits present. ' '

Notes: a.) Substituting a frame in paper tape for a column in the card, all
- notes pertaining to the Read instruction (XF AREA) are appli~-
‘cable to the Read Paper Tape instruction.
b.) On a RPS instruction, the all bit present cha.racter' is read.
c.) The mnemonic operand field must be preceded by a space.

Example: 'Read a block of paper tape 80 characters in length.

UNIVAC

| UNIVAC® 10086 | SAAL ASSEMBLER CODING FORM

PROGRAM ___ ‘ PROGRAMMER DATE
) . FOR BEG CARD-ONLY

[SEQUENCE | - opr | y
Forere i OPERANDS COMMENTS

hais . -20. L. -303132 40

1
.-.x\n;li-l;:lxxlxlillJ‘
: 1 /
..... W IR T TP B SRS T T RS S
L) i Semasche doiad: llilLlLll)!nJl_lll

M e N Jo L.

bdeddodde i bt

i

- 2-82

PUNCH PAPER TAPE WITHOUT PARITY: XF APPl Punch 1 Frame

Function:

Notes: a.)

XF APPS Punch to Sentinel

This .instruction punches a block of tape from the U1005 Card -
Punch-buffer. The variable length of the block is determined by
the 3rd character of the mnemonic operand field. Specifically,
PPl designates a 1 character block, PPS designates a variable -
length block ended by a configuration of all bits present.

Substituting a frame in paper tape for a column in the card, all
notes pertaining to the PUNCH instruction (XF PUN) instruction
are applicable to the PUNCH PAPER TAPE instruction.

. 1. ‘b.) On . a PPS instruction, the all bit present character.is not

punched. .

c.) The mnemonic operand fleld must be preceded by a space.

E’ﬁ:ample:: ~.Punch.a block of pa.per tape up to but not including the sentmel
" (all bits).
'VAc . | UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM
- PROGRAM_ SRS : PROGRAMMER _ ; DATE
o L ~——FOR BEG GARD ONLY
l oF T . . OPERANDS COMMENTS
S 3132

TR U S SUTE BN USRS SN S SO SR SR H SN S T

APPS, . 1, .,

" TS B EE T S S A S G SV ST

i b, bl llllllnlllllllllllllllIlllllll/
~ S

e’ m——

2-83

PUNCH PAPER TAPE WITH PARITY: XF APIP Punch 1 Frame
XF APRSP Punch to Semrlnﬁl

Function: This instruction punches a block of tape with oddrparity from
the U1005 Card Punch-buffer, The variable length of the blogk
is defined by the second character of the mnemonic operand
field. When punching to (but not including) .°a¢!11£ia¢>.<31Y all bits
constitute the sentinel configuration.

Note: a.) All notes pertaining to the PUNCH PARPER TAPE instruction
are applicable to the abhove instructions. ‘
b.) The mnemonic operand field must be preceded by a space,

Example: Punch a block of paper tape with odd-parity up ta but not in-
cluding the sentinel (all b1t$)

T T ——TT Y " T

UNIVAC

| UNIVAC® 1005 | SAAL ASSEMBLER CODING FORM
— ‘ 4

PROGRAM —m PROGRAMMER,.. . e DATE,
FOR BE(G CARD ONLY i

l

SEQUENCE LABEL} 4] ©OP o) K N LA T
AT B l OPERANDS COMMENTS _____ e
h 1 3§14 51647 Spojt 1 13141 5 20 08132 40 :
e A el XIFA AIPASIPA P PR U S T O R | i TV S S N O ‘1 L v a s/
T T T T T L L y !
e i n Aok ST (R SN PUT SPEPURPUE N T S A U LJ SR ST §
y e T N T T T T T
ke, I bt il F U S | 1 T VO U R VO T S B § i (T TR TN I O B S J . J‘
- u T T T BRI SHMAAI NN S T
SO il s e

;~84

PAPER TAPE CONDITIONAL TESTS

~ Associated with the UNIVAC 1005 Paper Tape System are two (2) Con-

ditional instructions which allow the programmer to test for parity
error and channel 8 conditions.

The Paper Tape Conditional Test instructions pertain to Class II and

are explained in detail on the following pages.

Class II: Class II instructions contain only an '""M'" address indicating
the most significant character of an instruction. This format
is employed exclusively by Jump or Branching instructions.

2-85

PAPER TAPE CONDITIONAL TESTS: Jump Parity Error: JPE M
Jump Channel 8: JC8 M

Function: Transfer program control to the instruqtion stored at M if the
condition specified by the operation code is present.

Notes: a.) These instructions are used to test the status of paper tape in-_
structions after execution. ,
b.) If the condition tested is not present, control will not be trans-
ferred and the next instruction in the testing sequence will
be executed.

Example: Test results of a previous paper tape read instruction. If the
condition is true, transfer control to the routine labeled ERR.

UNIVAC

| UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

e LABEL{ op OPERANDS COMMENTS
1 314 5{6})7 SOt 1 13paji 5 20 303132 40
i
e i i JIPAE EJRnRu:Aln;LlanlAlinltnl||1111L111
NI S SRS B | NSRS B
T
L\ 1 L ' 1 L j i1 l A i 11 1 L 1 1 lllJl L 1 1 1 11 l | I S
b L~

2-86

D. INSTRUCTION REPERTOIRE - MAGNETIC TAPE EXTERNAL
FUNCTIONS AND CONDITIONAL TESTS

l. MAGNETIC TAPE EXTERNAL FUNCTIONS

The UNISERVO VI C Magnetic Tape Units provide the UNIVAC 1005

with the capability of reading and writing IBM compatible tapes at

densities of 200, 556 and 800 Characters Per Inch (CPI). When us-

ing more than one unit, it is possible to read or write any six level

code at a given density on one or more units, and another code at a

different density on one or more other units. Seven tape tracks are
~ read and written; one parity and six data tracks.

Magnetic tape reading and writing operations are controlled by the
program. Input/Output areas may be the lst core position of any
memory bank designated by the programmer. Data checking in-
cludes character parity, automatically performed by all tape units.
In addition to Read and Write instructions, the 1005 features the
Backspace one block, Erase before write, Read at high gain and Re-
wind functions. The programmer has an option of using odd or even
parity. The UNIVAC 1005 is capable of handling up to 2 Magnetic
Tape Units.

The format of the Magnetic Tape External Functions is slightly dif-
ferent in that a Buffer Directive (See Assembler Directives) and a
length (of block) must be employed. The length, which designates
the number of characters to be read or written, can be any number
from 1 to 961. However, on a write instruction the length must be 5
characters greater than the number of characters to be written.
When reading variable length records, the length must be the largest
number of characters to be read. Reading terminates when an inter-
block gap is encountered or when the designated length is read,
whichever occurs last. When the block length is shorter than the
maximum length, the remainder will be space filled.

The Magnetic Tape External Function instructions perté,in to Class
IV and are explained in detail on the following pages.

Class IV: Class IV instructions are Input/Output or External
Function Commands, and contain a mnemonic code,
Buffer (BFp), and length in the '"M" portion of an
instruction indicating the I/O device, memory bank, and
length of operand to be initiated.

2-87

READ TAPE: Servo One Normal Gain XF ARTI1, BFnh, L
Servo Two Normal Gain X¥ ART2, BFn, L

Servo One High Gain XF ART5, BFn, L
Servo Two High Gain XF ART6, BFp, L

Function: This instruction reads a block of magnetic tape into the U1005
memory.

Notes: a.) The number of the Servo from which the data is to be read is
~ designated by the 3rd character of the mnemonic operand field.
b.) The BFp mnemonic designates the bank of memory in which the
data is to be read. (See Assembler Directives.) Reading starts
in the first memory location of the designated bank.
c.) The L mnemonic is a number from 1 to 961 and is used to de-
termine the length of the block being read.
d.) Normal tape operations are in odd parity. An asterisk (*) is
placed in card column 15 to designate an even parity operation.
e.) To indicate a High Gain Read function, the third character of the
mnemonic operand field (Servo number) is incremented by 4.
f.) The mnemonic operand field must be preceded by a space (except
for even parity).

Example: Read a block of tape from Servo 2, odd parity, normal gain and
store data into core positions 0962 - 1461,

UNIVAC
[UNIVAC® 10@5] SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
SLEIS‘E’E“&ES LABEL l oF | OPERANDS COMMENTS
1 3la slel7 oholt1 13ha)is 20. 303132 40

XIF‘L AK&TI217LB‘FA2J’LSIGJGL T | TV W W T VT W S S WY T T Y

1
P i [
T /
bd. " Al il A;nJllnx.;.....l}..-.:.-nl.;.;:
lllllllljlllll/

[ST L Li R ST AR ST U S A |

2-88

WRITE TAPE: Servo One

XF AWT1, BFp, L

Servo Two XF AWT2, BFph, L

Function: This instruction writes a block of data from the U1l005 memory
onto magnetic tape.

Notes: a.) The L. mnemonic is the number used to determine the length of
the block to be written. This number must be 5 greater than the
© actual number of characters to be written,
b.) All other notes pertaining to the READ TAPE instruction are
applicable to the WRITE TAPE function.

Example: Write a block of tape on Servo 2, even parity, from core posi-
tions 1923 - 2122,

2-89

SN ssamanyasus Sessanarion LUNIVAC’ 1008 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
. FOR BEG CARD ONLY
SLElggE‘fNES L“ELJ ~oP OPERANDS COMMENTS
1 314 5}6}17 gpop 1 13p4n s 20 303132 40
]
i X.F, *WT2,8BF2-,205, ,, 1 % S WU ST WO NN U S N WO VT S N T
N B P O | PP S S P I R T T |
T
A i A Ao Ll Al i 4 1 l i1 - | 11 Ll] i . 1 Ll L i I - - |
e ——he—] | A—— .

ERASE BEFORE WRITE: Servo One XF AERI, BFn,
' Servo Two XF AERZ BFn,

Function: This instruction is used to delay the writing of a block on
tape, to insure that a portion of tape is erased before Wr1t1ng on
" This instruction can be used to continue an old file or by-pass
a bad spot by backspacing and then writing again vvlth the ERASE
_BEFORE WRITE 1nstruct10n (See conditional test - parity error
' recovery example)

Note: a.) All notes perta.lnlng to the _WRITE TAPE instruction are appli-
cable to the ERASE BEFORE WRITE function.

Example: Erase before write a block of tape on Servo 2, odd parity,
from core positions 1923-2002.

| UNIVAC?® 1005 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
i FOR BEG CARD ONLY)
LI '-ABELl op OPERANDS ~ COMMENTS
3§4 5637 Shogi1 13p4ps 20.) 303132 40
]
P XnFn A4E1Rx21’l§LF124L18L5L P | % NI RS S U I U ST S T SV
i d FENENET R B e B S -41L.J||A-J
" 1 /
Fay 1 Lo L FURT AN SR 0 W IR0 SN TN T U0 W U A W O N RSN ST Y AN TAY B U N
e o S o .

2-90

BACKSPACE: Servo One XF ABS1
Servo Two XF ABS2

Function: This instruction generates the backspace of one magnetic tape
block (See conditional test-parity error recovery example).

Notes: a.) The third character of the mnemonic operand field designates
the Magnetic Tape Servo on which the backspace is to occur.
b.) BFj, L is not to be used with this instruction.
c.) The mnemonic operand field must be preceded by a space.

Example: Backspace a block of tape on Servo 1,

-------------------------- [UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY
ssmmqﬁg LJBELI 3 OPERANDS COMMENTS

LINE
1 3§4 51647 9nOjt1 13114115 20- 303132 40
]

.IJJn-llgLLJ:nAL4J;1¢;lJ‘|1|A1

xF | JABS,

Ll dd. P E TET I PR S SR PP S B

)y
T
F W W] L.l i lLJllllll[ll]lllllllllIlljlll
S S asm—

2-91

REWIND: Servo.One XF ARWI
‘ Servo Two XF ARW2

~Function: This instruction causes the tape to rewind to a point past the
load point. Depression of the LOAD POINT switch, following
the REWIND instruction, causes the tape to advance to the load
point. S P A :

Notes: a.) The third character of the mnemonic operand field designates
which Magnetic Tape Servo is to be rewound.
b.) BF,, L is not to be used with this instruction.
c.) The mnemonic operand field must be preceded by a space,

Example: Rewind Servos 1 and 2.~

: : | UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER : DATE
} FOR BEG CARD ONLY o
553‘5’5 S5 '—“BEL£ op ' OPERANDS . COMMENTS __
4 ala slejr ohkofis 13pahis. 20 . 303132 - 40
; =
Ak s P X,F, AIR&ILJIi!'lill:‘lllllill‘iLJLIAIJASl
bbb IR VRN b e e b
P i bk Lk lllrllll‘lllIillv[ll'l'l’l]'ltlf'l‘lkl
o 3 .

MAGNETIC TAPE CONDITIONAL TESTS

Associated with the UNIVAC 1005 Magnetic Tape System are two (2)
Conditional Tape instructions which allow the programmer to test for
parity error and end of tape conditions.

The Magnetic Tape Conditiénal Test instructions pertain to Class II and
are explained in detail on the following pages.

Class II: Class II instructions contain only an '""M' address indicating
the most significant character of an instruction. This for-
mat is employed exclusively by Jump or Branching
instructions.

2-93

B MAGNETIC TAPE CONDITIONAL TESTS: Jump Parity Error: JPE M

Function:

Notes: a.)

b.)

Example:

Jump End of Tape: JET M

Transfer program control to the instruction stored at M if the

~ condition specified by the operation code is present.

These instructions are used to test the status of magnetic tape
instructions after execution.

If the condition tested is not present control will not be trans-
ferred and the next instruction in the testing sequence will be

executed.

Test results of a previous magnetic tape read or write instruc-
tion. If the condition is true, transfer control to the routine
labeled PAR. ‘

UNIVAC

PROGRAM . PROGRAMMER DATE

[SEQUENCE

| UNIIVAC® 10085 | SAAL ASSEMBLER CODING FORM

FOR BEG CARD ONLY

l op OPERANDS COMMENTS

3 15 20. 303132 40
F Ll JJP‘E PiAiRl - l L 1 bt f L y . l JIUI L LLP AR “TIYI i 1 i 1
ek Ll ll‘lllllIALlllLlJL‘LJ[LJIIIIJJI/
¥
A ' i S i 1 1 1 l d 'y i1 (| Ll . [N | | S -1 J N N G ! i i 1
» B S
R e - e

MAGNETIC TAPE CONDITIONAL TESTS

Example: Parity on Read Function

One method of handling parity errors is as follows:

UNIVAC®1005

SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY ;
SEQUENCE '-ABELJ op OPERANDS | coMmMENTS \
LINE INS)
1 304 sle]lz ohofr 13 141}5 20 30 31)32 40
|
11 L] —_t [fNy (D A TIA) 4D VS OGN :‘1L1_'1T|E|R|ALL1 | IR B B
L ! CyTy2] |+,5 0,400, | 4 vy =C|0|U|N|T|E|R| b d o L1
' 1 11 lllllllllllllll'l}lllllIlllIlllllll
. 1 [| ’||||Lln|1|||||1|=n||1|l|||||||!|l|
L 1 | L N, PyRIOJC EDIURE, (DL VIS 140, Ny ¢ o ¢ ¢ | 1 0 1 g
T
0,01) |] CiLbyR Sy T2y 402002 4 v 3 g % PRTYOE N TN A ST I N N S N S R N N
0I0I2 1 TIR.]D xlFl lR|T|]|’|B|F|2|’|3|51°| Lo =R1E|A Dl lSIElRlvlol |‘l INIOIRIMI
0,03} ;| PT,E J4PE RIPE v v vy g | !T,E,S T, (FIOR [PIARLTIY 4
0,04] ! JIE.LT'R'ITIEIII|ll|llll‘|ll=lllllIlllllllllll
s | 1(1 llllllll'llllllll}lllll'llllIlllllll
L 1] 1y1 1||||I1|1111111|~=1114||||I|||||‘|||k
0,0,50 R) 1, C) TN AT B S O A B B | =||N|C|R|E|MIE|N|TI 1SR L
0,0,6} |] Ji by LIRS RN TN U 0 0 S U B O B o | !R.EanElAlTn S Ty EMES
0,0,71] X F) LS BT B U N N O B O A 'lHIAlLlTl 1L E AN, HEAD
0,08 , ! CiL S H2 02 oy ol !RIEIPIEIAI,TI W AGGLA NG Ly g |l
0,0,9¢ L X Fy ByS v v e e d !B|A|C|K| L S1PyACIE, (S ER V05T,
0,1,0f8 | I X F (RyTi 5, 4ByF2,53335,00 4 ¢ 1 !R|E|A|D| 1 SIE Ry VIO, 41y JH) LG H)
oL,] 4, P E $ 400 vy e e %RIEIPIEIAITI NJO|R/M AL, RIEAD,
0,1,2]) J PTE S Ly v o v v i =C|°|R|R|E|C|Tn ' A T A B A B A
0,1,3F | ! XIFL (BySi vy oy s gy fBACKSPACE L SERVO T
1
0,1,4]) 1 ROy v v v vy g PAMO OAPGE (RIEAD) l/
SEQNO 001 - Clear Read Parity Error Counter
002 - Read One Block of Tape from Servo 1, Normal Gain, Odd Parity
003 - Test for Parity Error
004 - Test for End of Tape
005 - Increment the Read Parity Error Counter
006 - Jump Less to 009
007 - Counter Equals 4, Halt and Clean Servo Head
008 - Clear Counter and Repeat
009 - Backspace Servo 1
010 - Read One Block from Servo 1, H1gh Gain, Odd Parity
011 - Test for Par1ty Error
012 - Correct, Jump to Seq. No. 004
013 - Error, Backspace Servo 1
014 - To Seq. No. 002

MAGNETIC TAPE CONDITIONAL TESTS.

Example: Parity on Write Function -

UNIVAC®1I005

SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
o ey B I ‘ °F OPERANDS - | commeENTS
17 3)4 slelz ohofr 13fha)is 20 30 31}32 40
. | ‘

1] 1l .l LNy (DA TIA, D1V 1S 10N } by Ly ThE RyAJ Ly Loy 0 0y 0y

L ! CyTy1 +151 0,700, 1 g v vyt oy gl {C104U|NnT|E|R| Tl T B R |

L) el i lJlllllllIllllJI:JLlJLlJLllJlllll

it f il it |:x||||n:||11||l]llllxnIJ||1¢|1|LJJ

TEE B A 1 IJ{Illllllllllllzl(llllllllllllll‘l

T L L N, JPyRIOICEDURE, |D|ile‘=51':°1N4 PR DI A O T N N W T N
0,0,%) bl CLRL G, T V320002 4 4 3oy 10 | %CILIEIAlRl ST RE v b
0,0,2} 4 T W RE X P, Wy Ty 2,381 Fy2,54140,0, 4 4 g | ! W Ry TIE) |5|51R|V;01 £2) 1oy
0,0,31 4 v, PEY YIS PEY IWPIE o Lo s] !LElsuTl (FIORy [P JARILTIY,
0,04y - JETL WO T, o byl :T.O: (E4NyDy O F| (TIAPIEY 4

el i L L lJlJJLllllllLlll%lllllllliIlllILL

11 1 (W |): lllllllllllllll‘{lllillllellllllIL
0,0,51 W, PLE iner C‘|T1]| I A W Ll i !‘lNlcl&l (SR Lo gy
0,0,6¢ 4 L1 e ETES REN-THN T N B A B A B | ‘lRlElPlElAlTl 160 [Ty UM ESS ¢ 4
00,70 | bt X F LTS I S TN B B B A O A :H:A1L|T| L CiLEZAIN) JH)EAD) |
0,0,8§ 4 L1 SIS I (PR R R XIEN T N N0 W S N A B 0 JREPIEAT) WAIGIAGEING 4 g g
19,0,91 4 11 XgFy 1 Bisi2y oy Loy vopo vl lEIAlclKl (S PACIE; 1S ERIVIO G2
0, 1,08 4 Il X Fy 1By Ry 2y 0B8R2, 150,00 4 4 | IEIRIAIlel 1BIEFIORIE, (WyR ITE,
0,41 1 J1 LIPS = TN UV O ST W S S N WY S W W | IRE Py EJAT) (AGIATLING b 3 1 1

SEQ NO 001 - Clear Write Parity Error Counter

002 - Write One Block of Tape on Servo 2, Odd Parity
003 - Test for Parity Error

004

Test for End of Tape

005 - Increment the Write Parity Error Counter (07001)
006 - Jump Less to SEQ NO 009

0607
008
009
010
011

Counter Equals 7, Halt and Clean Servo Head
Clear Counter and Repeat

Backspace Servo 2

Erase Before Write, Odd Parity

Jump to SEQ NO 003

E. INSTRUCTION REPERTOIRE - ADVANCED PROGRAMMING

The advanced programming instructions are applicable only to an Ex-
tended 1005 System and a program which utilizes these instructions can not
be executed on a 2K 1005 System. o

NOTE: CCA, SC, LAN, LOR instructions require a symbolic tag in
the operand field.

JUMP ALTERNATE SWITCH 3: JS3 M

Function: Transfer program control to the instruction stored at M if
Alternate switch 3 is on/illuminated.

Note: If the condition tested is not present, control will not be trans-
ferred and the next instruction in sequence will be executed.

Example: Transfer control to the routine labeled FIN if alternate switch 3
is illuminated.

- HMIVAG | UNIIVAC® 1008 | SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

S ‘-“BELl oP OPERANDS COMMENTS
1 3]s slel7 ohoji1 13hajis 20 303132 40
1
e 4 Lo JLSJ3 FxlnNtnll;‘A|L141.llLAL|A|AnAllnAllA
P It PR el TR D ST B R T VTSR ST S Y T Y
' /
L 1 i i il 4 1Ll 1) l 1 A Al 1) L L 1 L1 i 1 1 1 1 I l 1.l L
s r——h— | L~ ﬁw

2-97

JUMP ARITHMETIC OVERFLOW: JOF M

Function: Transfer program control to the instruction stored at M if the
Arithmetic overflow indicator is set.

a.) This instruction is used to test the results of an arithmetic
operation.

b.) If the condition tested is not present, control will not be
transferred and the next instruction in sequence will be
executed.

Example: Add the 5 least significant characters of Arithmetic Register one
(AR1) to the field FDI and test the result for Arithmetic overflow.

UNIVAC
s o | UNIVAC® 1005 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE

FOR BEG CARD ONLY

SEQUENCE LABELl oP OPERANDS COMMENTS

LINE_[INS

1 3f4 3|647 ojiop 1 13h4j15 20 303132 40 j
!

— A P A,LM‘J F|D111’|54|L1Ant;.l;l%.;|J_11_L1_Ll4JJ.A|A1n

. JOFLIERTY, , % 0 v 0wy ow 1 gt F OFLOW.GO ,TO ER]I

T

—td A JE Ll IR N I S ST Y ST A SR ST U A N G Y S A S WY SV A SO BT A o

e L~

AR1 (before and after) = 0000056982
FDI1 (before) = 55692
FDI1 (after) = 12674

In the above example, the Arithmetic overflow indicator is set and control is
transferred to the routine labeled ERI.

2-98

COMPARE CHARACTER ALPHA/NUMERIC: CCA M, LAC
Function: Compare for equality the least significant location of the field

specified by M and L, to the character specified by C.

Notes: a.) L specifies the length and should equal 1. If LL is unequal to
1, the least significant location of M will be compared to the
character specified by C.

b.) C specifies the character M will be compared to and may be
any one of the 63 valid UNIVAC 1005 characters. If no char-
acter is specified, M will be compared to a space.

c.) The C character must be preceded by a space.

d.) This is a binary comparison and all data bits are considered.

e.) The results of the comparison is recorded in testable indi-
cators as follows:

JUA (Unequal) JEA (Equal)

(MEM) = C ' Set
(MEM) # C Set

Examplé:v Compare the one character field CD1 against the character B.

------------------------------- | UNIIVAC® 1005 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
. FOR BEG CARD ONLY
sSSgeulchs L"BELi o OPERANDS COMMENTS
1 3{4 5le}7 oliofi1 13hafis 20- 303132 40
— 1 1. 1
P " b CJLCILAI C‘ID“llyll‘llxlByll|1111||]l1|1lllll[LJllLl
..ng._LA,LLJLJI‘l......I
Al i I Ll iliLl#ullll]lllll;Llllll[llll/
NN

In the above example, if the contents of CD1 contained a B, the JEA (equal)
indicator will be set. If it did not contain a B, the JUA (unequal) indicator
will be set.

2-99

STORE CHARACTER: SC M, LAC

Function: Store the character specified by C into the least significant loca-
tion of the field specified by M and L. ‘

Notes: a.) L specifies the length and should equal 1. If L is unequal to
1, the character will be stored in the least significant loca-
tion of M.

b.) C specifies the character to be stored in M and may be any
one of the 63 valid UNIVAC 1005 characters. If no charac-
ter is specified, a space will be stored in M,

c.) The character must be preceded by a space.

Example: Store the character P into the one characte~ field PT8.

UNIVAC

[UNIVAC® ‘lOOBJ SAAL ASSEMBLER CODING FORM

PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY

SELSENCE '-“BE'-I op OPERANDS COMMENTS

1 3§4 5|67 gfiop1 13415 20 303132 40
1

s,C PlTlsl'l]llP1AljlllllliLillJllllllllll
] i deodood 1ILL11JAJAILIAAI

|

bl " . A i 1 il 1 H I . 1L i l 1 1 1 H 1 1 1 i1 I 1 Lt

e | b~ bl

2-100

LOGICAL AND:

Function:

Notes:

LAN M, LAC

Compute the logical product of the character specified by C and
the least significant location of the field specified by M and L.
The result replaces the least significant location of the field
specified by M and L.

a.)

c.)

d.)

L specifies the length and should equal 1. If L. is unequal
to 1, the least significant location of M will be used to com-
pute the logical product. o

C specifies the character used to compute the logical prod-
uct and may be any one of the 63 valid UNIVAC 1005 charac-
ters. If no character is specified, a space will be used to
compute the logical product.

The C character must be preceded by a space.
For each zero bit in the C character the corresponding bit

position in M is cleared to zero. For each one bit in the
C character the corresponding bit in M is retained.

The logical product is formed based on the following truth table:

AND | 0 1
0 0 o©
1 0 1
i.e.,
C 0% (M)— (M)
0 © 0 = 0
0 © 1 = 0
1 0o 0 0
1 ® 1 = 1

* 0 represents the logical product

2-101

Example: Compute and store the logical product of the character = and the
one character field labeled FD4.

UNIVAG | UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM

PROGRAM : PROGRAMMER _ _ DATE
FOR BEG CARD ONLY ;

Lanatot '-ABE'-I oF OPERANDS * COMMENTS

LINE T INS
1 3{4 5}6})7 opop 1 13j14j1 5 20+ 303132 40
: , 1
L.A.N FLDJ4I’lll | AT R T RE RN | = PN S VU W SN GO S U A SN0 W VO S N
becdiod, .‘1 T T S T S O ST | S | - A
T i T i [T 0 N N N N WU U W ST RN N l PR O S AT A N U S R B I O

e o —

C (before and after) 011111 equals =
FD4 (before) -+ 100100 equals -1
FD4 (after) 000100 equals +1

In the above example, the C character is used to remove the '"X'" bit of FD4.

2-102

LOGICAL OR: LOR M, LAC

Function: Compute the logical sum of the character specified by C and the
least significant location of the field specified by M and L. The
result replaces the least significant location of the field specified
by M and L.

Notes: a.) L specifies the length and should equal 1. If L is unequal to
1, the least significant location of M will be used to compute
the logical sum.

b.) C specifies the character used to compute the logical sum
and may be any one of the 63 valid UNIVAC 1005 characters.
If no character is specified, a space will be used to compute
the logical sum.

c.) The C character must be preceded by a space.
d.) For each one bit in the C character the corresponding bit
position in M is set to one. For each zero bit in the C char-

acter the corresponding bit in M is retained.

The logical sum is formed based on the following truth table:

OR | 0 1
0
1 1 1
i.e.,
Ceéx (M—(M)
0@ 0 = 0
0 @& 1 =1
10 0 1
16 1 =1

* & represents the logical sum

2-103

Example: Compute and store the logical sum of the character ' (apostrophe)
and the one character field labeled FD5.
UNIVAC — :
l UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM
PROGRAM) PROGRAMMER : . . DATE
: . FOR BEG CARD ONLY B
EEETE '-‘BELl op OPERANDS COMMENTS
1 314 5|67 SfIop 1 131415 20 303132 40
i LLO.'R 'Fxox'sn'llx l'. I Y W NS W T | AJ : PR YT S R0 ST YOOT T S (TSN N W S B
- .
i e o I_}i‘IILLLJIIlllA
Ll I - AL Lol L L. L l A b L4 L} 1 Ll Ll 4 1 1 1 'l 41 I L1 1 I/
P |~

C (before and after) 100000 equals ' (apostrophe)

FD5 (before) 000110 equals +3
FD5 (after) 100110 equals~—3

In the above example, the C character is used to add the '"X' bit to FD5.

2-104

BIT SHIFT: BSH M, L
Function: Shift circularly one bit, the least significant location of the field
specified by M and L.

Notes: a.) L specifies the length and should equal 1. If L is unequal to
1, the least significant character of M will be shifted.

b.) This is a binary circular shift and all data bits are con-

sidered. The "X'" bit is shifted to the '"1" bit, the "Y' bit is
shifted to the "X'" bit and so forth.

Original Bit Shifted to Bit

N 0 M

Example: Shift circular one bit, the one character field FDI,

[UNIVAC® 1008 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
stggENfNES '-““'-I op OPERANDS COMMENTS
1 3}a slel7 opoi1 13halis 20. 303132 40
1
il i P BLSXH FIDI]|'|]llAllLLlIIlI'AJIAIlljlllllll
L
s L - .. TR UE T SN S | % L 1o
L A L L 1 L 1 L L L L i l Lol Al i 1 ' L 1 l [l i I 1 1 1 L 1 1 l 1 I | Il

FD 1 (before) 011110 equals <
FD 1 (after) 111100 equals Z

2-105

F, INSTRUCTION REPERTOIRE - EXTERNAL FUNCTION COMBINATIONS

To provide a greater degree of flexibility, the External Function Combi-
nation instruction (XFC) augments the individual External Function (XF) in-
structions. In using this instruction, the programmer assigns the necessary
machine codes for desired Input/Output combina.t'ioyn‘s. This provides for
Concurrent execution on the Reader or Auxiliary Reader, Printer, Punch or
Read/Punch, Paper Movement and Program Halt.

The Card System External Function Combination instructions are ex-
plained in detail on the following pages. The instruction format depicts the
bits absent necessary to perform Read, Print and Punch operations.

2-106

INSTRUCTION FORMAT XFC

COL. 16 COL. 17 COL. 18 COL. 19
XY 842 1|XY 842 1]|XY8421|XY 8421
B B BBBB|BBBBBB|B BBBBB | B BBDBBB
1 2 3456 |1 2 3456 |1 2 3456|132 3456
COLUMN 16 'X' B1 Always Present Not Used
'Y' B2 Absent Print Space 1
'8' B3 Absent Print Space 2
'4' B4 Absent Skip 1
12" B5 Absent Skip 2
'1' B6 Absent Skip 4
COLUMN 17 'X' Bl Always Present Not Used
'Y' B2 Absent Read
'8' B3 Absent Read/Auxiliary
'4' B4 Absent Read/Read Punch
2! B5 Absent Punch
'l1' B6 Absent : Halt
COLUMN 18 X' Bl Absent Stacker Select 2 - Aux. Reader

'Y' B2 Absent Stacker Select 3 - Aux. Reader
'8' B3 Absent 1. Stacker Select - Punch
2. Paper Tape Parity Punch
'4' B4 Absent Paper Tape Read 1 Frame
'2' B5 Absent Paper Tape Read Through Sentinel
'l1' B6 Absent Paper Tape Read 80 Frames

COLUMN 19 'X!' B1 Absent Paper Tape Punch 1 Frame
'Y' B2 Always Present Not Used
'8' B3 Absent Read Code Image
'4' B4 Absent Punch Code Image
'2' B5 Absent Paper Tape Punch To Sentinel
'l' B6 Absent Paper Tape Punch Channel 8

2-107

A table to determine the codes necessary for many combinations follows:

Group 1

Group 2

Function

Print and Space 1
Print and Space 2
Skip 1

Skip 2

Skip 3

Skip 4

Skip 5

Skip 6

Skip 7

Print and Skip 1
Print and Skip 2
Print and Skip 3
Print and Skip 4
Print and Skip 5
Print and Skip 6
Print and Skip 7

Read

Read Code Image

Read Auxiliary Stacker
Select 1

Read Auxiliary Stacker

Select 2

Read Auxiliary Stacker
Select 3

Read Auxiliary Code
Image Stacker
Select 1

Read/Read Punch

Read/Read Punch Stacker
Select

Read/Read Punch Code
Image

Punch

Punch and Stacker
Select

Punch Code Image

Halt

Read and Punch

Read and Halt

CARD CARD
COL. COL.

16 17
A)
U)
Y)
pu)
w)
>)
X)
Z)
V')
Q)
()
©)
@)
P)
R)
N)

) A
) A
) U
) U
) U
) U
) w
) w
) w
) g
) ¢
) P
) >
) |
) @

2-108

CARD
COL.

18

Nt e N e e o e it N o e’ it i ar?

— —

~— —

vvvvc

CARD
COL.
19

N e e i e e e e e’ o i e

N '_<v

Group 2
(cont'd.)

Group 3

Group 4

Function

Read, Punch and Halt
Punch and Halt

Read Paper Tape
1 Frame
Read Paper Tape
1 Frame Code
Image
Read Paper Tape
80 Frames
Read Paper Tape
80 Frames
Code Image
Read Paper Tape
through Sentinel
Read Paper Tape
through Sentinel
Code Image

Punch Paper Tape
1 Frame

Punch Paper Tape
1 Frame with
Parity

Punch Paper Tape
to Sentinel

Punch Paper Tape to
Sentinel with
Parity

CARD CARD CARD

CARD
COL. COL. COL. COL.
16 17 18 19
) R))
) Z))
)) Y)
)) Y U
)) >)
)) > U
)) e)
)) PH U
) i {) =
) = U =
) Pu{) i
) ¢ U x|

2-109

EXTERNAL FUNCTION COMBINATIONS: XFC nnnn

Function: This instruction augments the individual External Function In-
~ structions. In using this instruction, the programmer assigns
the necessary machine codes for desired Input/Output combi-

nations.
Notes: a.) XFC is the mnemonic operation entered in card columns
11-13,

b.) The machine code operand field must be preceded by a space
in card column 15.

c.) The applicable I/O function codes are entered in card columns

16-19.

To use the table, select all applicable I/O functions to be performed upon
execution of the XFC instruction. '

Example:
UNIVAC
| UNIVAC® 10086 | SAAL ASSEMBLER CODING FORM
PROGRAM PROGRAMMER DATE
FOR BEG CARD ONLY
LR LABELl op OPERANDS COMMENTS _
3ja_sl6)7__ojofi1 13haps 20 303132 - 40
¢] .
i1 n FEY X-F-C IUI(I)I)A | R T R O I | Ll IR(EIAIDI'IPLRlTA"lSAP|2l .PAUiNl T N B |
el N G S R S ll nnnnn llll!llxljllll
} ;
11 1 Lo i XIFIC IAIUIAJ)I l I UHUD GRS WS U NS S B | l :RJEIAIDI IALUL‘xl JSIEILJ ‘.S|T|K131 I/
- NPT S } JPRT.SPV L\,
} .
Ll L i i L 1 I T W 1 ! L1) . - | L1 ‘LALI LT 1.1 1.1 L 1 11 l 111
B e N T

2-110

G.

INSTRUCTION REPERTOIRE - 1005 DATA LINE TERMINAL-3

EXTERNAL FUNCTIONS and CONDITIONAL TESTS

1.

2.

DLT-3 External Functions

The Data Line Terminal-3 is an optional feature to the 1005 that
enables the 1005 to communicate via telephone circuits while
processing. This ability is provided by utilizing independent con-

trol and buffering circuitry. Data is transmitted at the rate gov-

erned by the modem employed. DLT-3 used by the 1005 may com-
municate with a 1004 having either a DLT-1 or a DLT-3, another
1005 with DLT-3 and any other compatible device.

The 1005, with this feature, will process data and transmit or receive
data simultaneously.

Note: Input/Output operations are specifically excluded from
overlap, i.e., do not execute any XF functions between
the Send or Receive instruction and the Pause Test in-
struction.

The same principle of simultaneous execution and time-sharing of
storage applies to DLT operations as it does to reading, printing and
punching, except that DLT-3 is not instruction dependent. Whereas
reading and printing are preformed entirely during a single instruc-
tion execution, DLT operation can occur throughout many instructions,
as does the punching operation. A PTE instruction (Pause Test)
serves to interlock the processor if the DLT is transmitting or re-
ceiving.

General

Both equipments, to communicate, must have the DLT option. Assum-
ing they are both 1005's, and have DLT-3, they must both be using the
same type of data set. The data sets are used in the half-duplex
mode, i.e., communication can be in one direction only, at one time.
Both the transmitting and receiving functions may take place inde-
pendently of, and concurrently with data processing functions. The
maximum rates of data transmission are: the 201A Data Set - 2000
bits per second; the 201B Data Set - 2400 bits per second. The DLT
circuits use a 7-bit character - 6 data bits and 1 parity bit.

The DLT-3 storage area is simi-fixed, and of variable length. The
beginning location is Module 1 position 0435. The ending location may
be Module 1 position 0434 with automatic wrap around from 0961 to
0001, i.e., transmission is fixed to 961 characters. The transfer from
DLT storage to the Data Set will be descending in a continuous se-
quence. The message length is controlled by the program when trans-
mitting. When receiving, the End of Message character received will

2-111

halt the descending locations. The send/receive buffers, may be
used for internal processing. Precaution should be observed to pre-
vent internal processing from prematurely changing the data to be
transmitted (or the Data received). :

A prescr1bed transmission format must be used in all communica-
tions. The message (useable data) must be preceded by a least four
synchronization characters (the letter S in UNIVAC XS-3 code); and
one character of no bits. The Send 80 message must be followed by
an End of Message character (the letter B in UNIVAC XS-3 code); and
one character of no bits.

The Send through Sentmel message must be followed by a sentinel
character, (the character)1n UNIVAC XS-3 code), an EOM character
and one character of no bits.

The storing of these characters is the responsibility of the program-
mer. All of this information must be in the storage area beginning at
Module 1 position 0435 during each transmission. When receiving an
80 character transmission from another 1005, only the message
(useable data), the EOM character, and the Longitudinal Parity
character will be stored in the sequentially allocated DLT storage
area beginning with Module 1 position 0435. When receiving more
than 80 characters from another 1005, the message, the sentinel
character, the EOM character and the LP character will be stored
sequentially. The LPC is automatically placed in the no bits position
following the EOM character by the transmitting 1005 and will vary
depending upon the total bit content of the message. Receiving will
terminate automatically when the EOM and the LPC characters are
stored.

Error detection is provided in the form of transverse parity, longi-
tudinal parity, and incomplete-message checking. In the event of
abnormalities, an error signal is provided for the program to test or
ignore. The error instructions should be used to alter the program
sequence to effect corrective action.

. Transmitting

Before each transmission, the message data is assembled in DLT
storage:

1) The program must place four synchronization characters (letter
S UNIVAC XS-3 code) initiated in the data division in Module 1
positions 0435 through 0438.

2) The program must place a no-bits chara‘cter (Space, UNIVAC
XS5-3 code) in Module 1 position 0439.

2-112

3)

4)

5)

6)

To send 80 characters, the program must place the message
(useable data) from Module 1 positions 0440 to 0519. No Sentinel
is required and the character '")" is permissible within the mes-
sage.

To send other than exactly 80 characters, the program must place
the message from Module 1 position 0440 to any length less than
955 positions with a Sentinel immediately following the last
character of useable data. The character '")"' is not permissible
within the useable data.

The program must place an End of Message character, (letter B
UNIVAC XS-3 code) initiated in the data division, immediately fol-
lowing the last character of useable data in an 80 character mes-
sage and immediately following the Sentinal character in all other
messages.

The program must place a no-bits character (Space, UNIVAC
XS-3 code) immediately following the End of Message character.

The 80 character message area per transmission is therefore at least
six locations greater than the message length and all other are seven
greater.

Illustrated in Figure 1 is the format of a DLT-3 message and the al-
location of DL'T-3 storage.

ROW 15| ssssa,)B]

FIGURE 1

123456789 - - - = — - e mm e e e e e oo - 31

)BA

17 The message could
" occupy this single
location

or could extend|to 0519 for an 80
character message

" or to any other location

2-113

After assembly of all information based on the above recommenda-
tions, utilization of the transmit instruction may be effected.

. Receiving

No receiving format is required and any information in the receive
area will be overlaid by the incoming message. The first character
to enter storage in the receiving 1005 will be the first message
character. The synchronization characters and the Start of Message
space, initially transmitted by the other machine, will not enter
storage. The first message character will enter Module 1 position
0435; all remaining message characters will be stored in a con-
tinuous descending sequence. The Sentinel or End of Message
character will enter the location following the last message charac-
ter. The Longitudinal Parity Character will follow the EOM charac-
ter in storage.

A Receive operation is accomplished by the Receive DLT to EOM
instruction. Once the receive operation is initiated in this manner,
the 1005 may proceed to succeeding instructions. The DLT circuits
will wait for the first character and then store the message as it is
received. When the LPC is received, this character is automatically
compared with an LPC that is generated by the receiving 1005. Re-
gardless of the results of this comparison, the LPC enters receive
storage in the location following the EOM character. Upon entry of
this character, the receive operation terminates.

. Error Conditions

An error signal is available for testing should any of the following
occur during a Receive operation:

1) One of the message characters is of even parity, and is not the
EOM character.

2) The Receiving DLT does not synchronize on any of the synchroni-
zation characters.

3) The Receiving DLT does not complete the Receive order within 15
seconds.

4) The received LPC does not agree with the generated LPC.

5) The EOM character is not detected, or is incorrect.

Of the above five error conditions, the first one will result in less than
expected storage used, with the properly received message characters

in their respective locations, followed by the improper character. The

2-il14

second error type will result in nothing being entered into Receive
storage; after 15 seconds the Receive operation will terminate. The
third condition can be caused by no transmission, and will result in
nothing being entered into Receive storage. The fourth condition will
result in all expected Receive storage being filled, and an improper
LPC. The {fifth error type might result in more than the allocated
storage being used. If the EOM character is received as an odd
parity B, due to loss of the parity bit, it will be transferred to
memory and the DLT will continue to look for more data. If the

LPC also happens to be of an odd bit configuration, this too will enter
Receive storage. There should be no further data reception, but
noise in the transmission system might result in the reception of
another erroneous character, which will be entered into storage.
Thus, one location more than expected may be used.

. Instruction Formats External Functions

SEND DLT 80 CHARACTERS: XF ASNS8

This instruction sends 80 characters from the DLT buffer
via telephone circuits to any other compatible device.

Function:

Notes: a.) The message format must be completed prior to this
instruction.

No operand is specified.

c.) The mnenomic operand field must be preceded by a space.

2-115

Example: Format the message and transmit 80 characters.

el | I OPERANDS | COMMENTS A

1 314 5])617 poqn 13J14115 20 30 31'32 40 50
L | Ll L Ny (DA TIA, oDy LV 1S 1 ON] T B T | R S S B N AT
L A S Y NI |+,4, S SuSySi a1 o4y L1 i =5|Y|N|C|H|R|0|N|||ZxA|T|’101N1¢C4H1R|5|
L1 | (1 L R S NN T B W N L1t { PN S VOOR WU TNN N NUU T SO S TN WG N M A
11 1 1] Il 1 1 1 L , 11 L1 Ll 1 L = | I | Ll [1 1 l L1 I I | S S | l
L I - L Ny (PIRIOJC,EDIURIE) IDIIIV“!SllLojNI T BN A S AR A
i I L1 LAl SIYN4 by L =SISLSJSI 17,0, | S|IE/ND (AR EA)]
L 1 - PyT\E IS N N N O SN RN U L1 :PJALULSIEI JOESYTy o e
L j L1 S)A,l BUUyF a4 1y 1 1 1IB|U1F1 P SITIARR TS, ATy 190,4,3,5) |
L j T $:C) BUFiHv4 il 0 | 55, PACE ,T/Of |ISEND (AREA |
Ll ; L LRl JIC,RD,+,8 0] Ll =M|OAVIEJ yME, S SIAGIE 3 T10) 3 g g |
1 | L s;P,R} IBUF +)5,.18,0, , 4 b ITsnELNlDl ARVEA o sl
L | L 5,S BjUF +:8,51+31, 4B Lot =51°|M| (CyHjARAJCyT ER A DDED
Ll 1 1 $,S BjU)Fi#, 861013 1 | R !51P|A|C|E| APTIENR GEIOM lj
' - X, Fy 1 SINGB] e b 1o | JTRANSMELT, |18,0, (CiHIAR, .

SEND DLT THROUGH SENTINEL: XF ASNS

Function: This instruction sends from 1 to 953 characters from the
DLT buffer via telephone circuits to any other compatible
device.

Notes: a.) The message format must be completed prior to this in-
struction. '

b.) The XS-3 character ")" must immediately follow the
message and is not a permissible character within the
useable data.

c.) No operand is specified.

d.) The mnemonic operand field must be preceded by a space.

Example: Format the message and transmit 132 characters.

i.ESéJENlcNEs '—ABEL+ opP OPERANDS | COMMENTS
1 314 51617 9o 13§14}15 20 30 3]'32 40 50
L] L L Ny (DATIA 4D LV S T ONG YT Y B AT N W N N N MR N A
Lt 1 SlYIN |44L Sls|slsi 1 I 11 [1 1 i L L l }SLYJNLCIHLRIOLNIIIZIAJTIILOINI lclH[Rjil
L | L o1 IIlIlIIlIIllLlLl%LJJlllllllllLlI;Illl
Lo L - 11 lllilllllllLilngLllJl!llIALllllllllll‘
L] L L N, PROICEDURE lDi,lVllgslllOlNl NN N S N S B B A I
| 1 1 LlAL] SIY1N1’|4| | | Y T WU S I WU NN l !Slslslsl ITLOI ISIEINIDJ lAIRlE[AL IJ 1
L1 L L PTE T W TN NN NN TN T NN N MO S N T | =P1A|U151E| O E ST
- 1 L S A B P v !BLUIFI ST ARTIS AT (043501
Ll i 1 5,5 B U P+ 4y v | !s]PlAICJEI 4730, §S;END AREA T
L] i L PR MES > V312 & !Mtollel (MESSIANGE TO 1l
[1 Ll SI'iLR B|U|F|+|51’IL312L R RN | lSLElNIDL |A1R1E|AI R B SR U A
L ! L 5%, ByUF+ V37 ey g | =SLE|N|T1'1NIE1L| [AVF T ER O ME S SIAC
Ll ! L1 $,C, By U P+ 38 b hB !E101M| S HARAMCTER
L I |1 $,C B U R 3 vl JIS|P:A|C1E| AP TIER B oM Ly
1
L \ Ll XF NS P RANSMET T 32 1C|H1A1R|'Afl

2-116

RECEIVE DLT TO EOM: XF ARCD

Function: This instruction receives data from the Data Line
Terminal.

Notes: a.) The first message character will enter Module 1 posi-
tion 0435.
b.) Message characters will be stored in a continuous de-
scending sequence.
c.) No operand is specified.
d.) The mnemonic operand field must be proceded by a space.

Exzimple: Receive to end of message.

SEQUENCE | JLABEL ’ opP ~ OPERANDS | comMENTS
INE INS

"N NS elr ohobi 1shabs 20 30 31§32 40 \
L1 ' L1 X, F LTI TS =R|EnC|E|';V|E| 370, JELOM 4
L L L1 L1 ll!llllJllllllll%-lllllI!I[ILLLLII
- L L1 L |||||l||||||||||%||||.|111111LL||J?
L L L3 L ST U U T U SR ST A N WO S SAT N NN S WU TNY HAT ST AN A ST A A AN Y

™ -\M—N —

In the example above, the 1005 could receive from 1 to
953 characters.

2-117 ~

7. Instruction Formats Conditional Tests

Associated with the DLT-3 system are three (3) conditional instruc-
tions which allow the programmer to test for ready, interlocked and
error conditions.

The 1005 DLT-3 Conditional Test instructions pertain to Class Il and
are explained in detail.

a) Pause Test:

b) Function:

PTE
This instruction tests the ready status of the DLT-3.
Control will not be transferred to the next instruction

in sequence if the DLT-3 is still active.

This instruction is given following a transmit or

Notes: a.)
receive command and prior to the first transfer of
new data into the DLT buffer.

b.) This instruction insures that information will not be
transferred into the DLT buffer while 1t is in the
process of transmitting or receiving.

c.) Optimum utilization of the Pause Test instruction will
provide the maximum overlap of processing with DLT
operations.

Example: Test the DLT buffer before moving the incoming mes-
sage to print area.
SEQUENCE AB
e | EL* o OPERANDS | commENTS
1 3la slelz ohopn ishalis 20 30 31)32 40
[1 1| PlllE IIIllLllllllllil;PlAllJJSIEl|LJSlTlgll'lll‘
L1 ; Ll LPRLIBYUF 080 v] 'LMleuslsuAJGIEl (7o JPRINT J
1.1 i - - llllllllllllllil%LLJl#llllllllllll‘
N L L1 llllllllllllIlll=||llj;llllllllllll
L] L L YRS T T N YD [N U M Y WYY O NN Y [N N T YOO Y VU YOO T NN N T TSN Y PO
e — | s B 1 ——)

2-118

JUMP END OF TIME: JET M

JUMP PARITY ERROR: JPE M

Function: Transfer program control to the instruction stored at M
if the condition specified by the operation code is pres-
ent.

Notes: a.) These instructions are used to test the status of the
DLT-3 after execution of send or receive.

b.) If the condition tested is not present, control will not
be transferred and the next instruction in sequence will
be executed.

c.) Do not issue any Input/Output instructions between the
receive instruction and the JPE instruction.

Example: Test the status of a previously executed Send or Receive
instruction. If there was an error in the message or no
message received in 15 seconds, transfer control to the
routine labeled ERR.

SLTSSEN::NES LABEL + op OPERANDS | commeNTS
1 314 5]161}7 9nom 1314}15 20 30 3]'32 40

L } i JETL IERR) vy by v g gl ;J T N B x{
L I v o) fPEL HERR))] N S B L
L1 1 1) L i AR T T T W I U TN T N N W B A : RN NS T T T W
- L L 1 PR SN S T S SO T SO SO N N N B T T |

}

-
=
-
L

|
|

I.

CHAPTER 3
1005 SOFT WARE

THE UNIVAC 1005 SINGLE ADDRESS ASSEMBLY SYSTEM

Associated with a programming system is a machine language program
called an Assembler. The Assembler accepts a program written in
symbolic language (source program) and converts it into machine lan-
guage (object program).

The symbolic language used by the UNIVAC 1005 Card Processing Sys-
tem is single address in design and is intended to provide an easy to
learn, easy to use tool whereby data processing requirements can be
translated into machine coded instructions.

The machine language program or assembly system associated with the
UNIVAC 1005 symbolic language is called SAAL (Single Address As-
sembly Language). This assembly system consists of two passes,
SAAL 1 and SAAL 2.

A. SAAL 1 (Illustrationl) Trial Balance Sample Program P2-4

The first pass, SAAL 1, relates each symbolic reference (label) in
the symbolic program (source program) with its appropriate posi-
tion in core memory. This relationship between symbolic labels in
the source program and core memory position is retained in mem-
ory and utilized in SAAL 2. This relationship is commonly referred
to as the "TAG" or "LABEL'" Table.

1. Card Input - Original Symbolic Program

The Symbolic Input Card format is as follows:

Card Columns Description
1- 3 Sequence number
4- 5 Sequence number (insert)
**7-9 Label
11-13 Operation
*%]15-31 Operand
*%32-48 Comments
62-65 Program I. D.

* Two labels are prestored, ARl and AR2. The programmer can
reference these labels without prior definition.
*% Literal instructions use columns 15-48 to generate constants.

2. Output

a. Punched Card - None

b. Printer - Listing of the label table relating each symbolic ref-
erence (label) in the symbolic program (source program) with
its appropriate position in core memory.

3-1

The Label Table AListing format is as follows:

Description of Fields

SEQ # - From source program

LBL
LOC
ERR

- From source program -
Assigned location of the label in memory .
Assigned error codes

NOTES - Possible errors are as follows:

1)

3)

4)

ERR NO BEG CRD is printed, paper is advanced to the next
page and the program halts - Indicates the BEG card does
not precede the source program. o ' '

ERR OP IN DATA DIV is printed, paper is advanced to the
next page and the program halts - Indicates an illegal di-
rective, data description, literal or comment punched in the
operation field.

DUP printed under ERROR heading - Indicates a duplicate
label and is not stored in the label table.

>148 printed under ERROR heading - Indicates the maximum
number of labels has been exceeded (148 labels).

OVM printed under ERROR heading - Andicates the maximum
memory has been exceeded (3844 positions).

3-2

3. LABEL RESERVATIONS - The following labels are used by the
SAAI Assembly System to define specific I/O functions. The
programmer should exercise care that labels referenced as an
external function (referenced in an XF instruction) are not dupli-
cated as a line reference point or operand.

SK2 RPH RPS WT1 SN8
SK4 RCI RP8 WT2 SNS
SK7 PCI PP1 ER 1 RCD
REA RX1 PPS ER2

RPR RXC RW1

RP2 RX2 P1P RW2

RPP RX3 PSP BS1

PR1 PSS BS2

PR2 RRP RT1 SI1

PR7 RRC RT2 sI2

PUN RRS RT5 RI1

HLT RP1 RT6 RI2

Example: The following coding will cause a duplicate label.

XF REA

REA LAl FDI

SAAL 2 (ILLUSTRATION 2) TRIAL BALANCE SAMPLE PROGRAM
P2-4 '

The second pass, SAAL 2, interprets each operand field in the source
program, determines its length and core position using the "LABEL"
Table generated by SAAL 1, and produces a UNIVAC 1005 machine
code object program deck. In addition, a one for one listing is pre-
pared equating each symbolic line of coding in the source program
with the generated machine code.

1. Card Input - Original symbolic cards.

2. Output.
3-3

a. Punched card - A one for one object deck which contains the
original symbolic coding with generated pseudo-machine code
and the UNIVAC 1005 machine code. Preceding this deck one

load card is punched.

Card Columns

1-48
49-51

52-57

58-61

62-65

Description

Duplicated from input card

Card Code - Machine coded card
column relating to the storage of
data from the card. '

Instruction - Machine coded in-
struction. The first position is
the operation code and the next
four are the operand. After
every six instructions an addi-
tional character is assigned to
indicate the next row. A

Instruction address - Machine
coded instruction address for
each literal and instruction.

Duplicated from input card.

b. Printer - A one for one listing of each instruction written, in
three different formats, the symbolic (original instruction),
mnemonic (actual instruction), and machine (coded instruction)

language.

The Machine Coded Listing format is as follows:

Description of Fields

SEQ# - From
LBL - From
OP - From

OPERAND - From
COMMENTS - From

source program
source program
source program
source program
source program

'IDENT - From source program
LOC - Assigned pseudo address for each literal anc
instruction.

OPERAND - Assigned pseudo address for the beginning and
I ending locations of each operand.
ERROR - Assigned error codes

c/c - . - Machine coded card column relating to the stor-
L age of data from the card.
INSTR - Machine coded instruction. The first position

is the operation code and the next four are the
operand. After every six instructions, an ad-
ditional character is assigned to indicate the
next row.

3-4

Description of Fields

LOoC - Assigned machine coded instruction address for
each literal and instruction.

NOTES - Possible errors are as follows:

1) Program Halts after first card is read - Indicates BEG

card does not precede source program.,
~2) 'O ! printed under lst position of ERROR heading - Indi-
cates an illegal operation code.

3) ' E ' printed under 2nd position of ERROR heading - Indi-
~ cates an expression error, i.e. operand which is less than
0001 or greater than 3875. The most frequent cause of
error is an undefined label. This type of error will print

6530 under the OPERAND heading.

4) ' P ! printed under 3rd position of ERROR heading - Indi-
cates a precautionary warning, i.e. an instruction greater
than 10 or 21 characters utilizing AR1 or AR2 respectively.

5) 'S ! printed under the 4th position of ERROR heading -
Indicates a sequence number error.

C. Trial Balance Sample Report P2-4 (Illustration 4)

This program prepares a Trial Balance Tabulation and punches
Trial Balance cards utilizing sorted General Ledger Account cards.

1. Card Input - Sorted General Ledger Account cards.

The Input Card format is as follows:

Card Columns Description Remarks
1 Type Determine card columns of

amount field. 1/1 indicates
amount in Cols. 59-68; 2/1
indicates amount.in Cols.

70-79.
6- 7 Program Major control for this report.
Number Each control break prints

the amount accumulated

and is reset prior to the
next total being accumulated.
Card Col. 7 is not printed.

55-58 Account Minor control for this report.
o Number A Trial Balance Summary
(Note 1) card is punched for each

“Account Number.

.59-68 ‘ Account This amount is accumulated if
" the card contains a '"'1'" in
(Note 2) Col. 1.

2 C

II.

Card Columns Description Remarks

70-79 Amount This amount is accumulated if
nan the card contains a ''2" in
(Note 2) Column 1.

NOTE 1 - An "X" overpunch in Col. 55 indicates a credit ac-
count and the amount is accumulated in the credit
field.

NOTE 2 - An "X" overpunch in Col. 55 or 70 indicates a credit
amount and is accumulated as such in either the
debit or credit account field.

2. Output

a. Punched card - A Trial Balance Summary Card is punched for
each Account Number within Program Number.

Card Column Description
2- 5 , Julian date
6- 7 Program Number
55-58 Account Number
59-68 Amount

b. Printer - Trial Balance Tabulation
The Trial Balance Tabulation format is as follows:

Description of Fields

P # From input
ACCT # - From input
Debit Accurnulated and printed on control break
Credit Accumulated and printed on control break
Cumulative Balance - Accumulated and printed on control break

The UNIVAC 1005 Single Address Report Generator

SARGE, a problem oriented programming system and report program
generator, is designed to reduce substantially the time and effort neces-
sary to translate general data processing and reporting requirements into
detailed computer instructions. It demands little knowledge of computer
coding or instructions other than the basic rules for writing in the sim-
plest form of the SAAL assembly language. Essentially, the SARGE re-
port program generator is a program which, on the basis of a series of

statements provided to it, produces another program which will produce

a report or other output of the desired kind. These statements, written
on the standard SAAL coding form and then keypunched into cards,

3-6

provide the formats of the input card files (these contain the information
from which the report is to be prepared), the format of the output to be
produced (this may be a printed document, a series of summary cards, or
both), and the operations to be performed (arithmetic operations, data
movement and editing, control, input/output operations). The input and
output format descriptions and processing statements will, in conjunction
with SAAL, produce an efficient ready to run object program. Also pro-
vided is a listing of source input and the object coding generated. Sec-
tions of programmer's own code may be included as necessary.

A. SARGE 1
On the first pass SARGE 1 reproduces the symbolic program (source
program) as comments cards. For each reproduced comments card,
one or more SAAL statements are generated. Any card not recog-
nized as a SARGE statement is reproduced without change.

1. Card Input - Original symbolic program

The symbolic input card format is as follows:

Card Columns Description
1-3 Sequence number
4-5 Sequence number (insert)
*7-9 Label
11-13 Operation
15-48 Operand
32-48 Comments
62-65 Program identification

*The following labels are reserved for the generator and may not be
used by the programmer:

AR1 REA
AR2 _ - RPP
HLT RPR
PRI1 SK2
PR2 SK4
PR7 ; SK7
PUN XXX

X@1 thru X99
2. Output

a. Punched Card - SARGE input reproduced as comments cards
with associated SAAL statements.

b. Printer - None

B. SARGE 2 (Illustration 4) Trial Balance Sample Program P2-4

The second pass, SARGE 2, produces the pseudo-machine code for
all labels describing the input/output buffer areas. The length is
added to all labels describing constants and working storage.

1. Card Input - Output cards from SARGE 1

2. Output

a. Punched card - A complete program deck ready for the SAAL

assembly.
Card Columns Description
1-5 Sequence number beginning with 50000
7-9 Label
11-13 Operation
15-48 Operand
32-48 Comments
62-65 Program identification

b. Printer - A listing of the source input preceded by an asterisk
and the object coding generated.

Print Positions Description
1-5 Sequence number beginning with 50009
7-9 Label
11-13 Operation
15-48 Operand
32-48 Comments
62-65 Program identification

NOTES - Possible errors are as follows:

1) An E (print position 85) printed to the right of an input/
output label definition indicates that the maximum of 68
input/output labels has been exceeded.

2) An E (print position 85) printed to the right of a constant

or working storage definition indicates that the maximum
of 50 labels has been exceeded.

III. UTILITY ROUTINES

A. CONDENSE

Condenses object programs produced by SAAL 3, consolidating 6 in-
structions to a card. All literal instructions are punched one for one.

3-8

1. Card Input - Object program produced by SAAL 2 in the same
sequence. :

2, Output

a. Punch Card - Consolidated object program

Card Columns Description
1- 3 Sequence number
15 - 48 Consolidated instructions or literal
49 - 61 Machine Code
62 - 65 Program I. D.

b. Printer

1)

2)

Successful termination - END OF PROGRAM is printed,
paper is advanced to next page and the program halts.

Possible errors are as follows:

ERROR NO BEG CARD is printed, paper is advanced to next
page and the program halts. This error indicates the BEG
card does not precede all object cards or does not immedi-
ately follow the load card producedrsfrom SAAL 2 (2nd object
card).

ERROR INCORRECT INSTR CODE is printed, paper is ad-
vanced to next page and the program halts. This error in-
dicates an instruction stored in an invalid location. All
instructions must be stored beginning in Columns 1, 6, 11
16, 21 or 26. The most frequent cause of this type of error
is incorrectly repunching an object program card.

Notes:

1. The Program I. D. from the BEG card is gang punched
in all succeeding cards.

2. All condensed cards are numbered successively be-
ginning with 001.

3. The cards to be condensed must be in the correct
sequence.

3-9

MEMORY DUMP (Illustration 5)

Each row of core memory is printed in sequence with a row and bank
identification annotated.

1. Card Input - Memory dump object program
2. Output

a. Punched card - None
b. Printer - Memory listing

NOTE - Data in the print buffer will be printed as the first line
across the page and data in the read buffer will be lost.
The only memory that will be printed is the memory
addressable by the programmer.

READ-PRINT-PUNCH

Produces and prints each card, column for column, in the first 80
positions of the printer. ‘

1. Card Input -~ Any data cards
2. Output

a. Punched card - Reproduced data cards.
b. Printer - 80/80 listing of data cards.

NOTE - Punching will be suppressed when alternate switch 4
is on. : :

NUMBER IT

Re-numbers program cards with option of gang punching new pro-
gram identification.

1. Card Input - Source or object program cards.
2. Output

a. Punched card - Duplicate input cards re-numbering them
starting with 001 (Cols. 1-3)
b. Printer - None

NOTE - To reidentify a program, precede the program cards
with a header card punched as follows:

Card Columns 11-13 skesleske
Card Columns 62-65 New Program I. D.

3-10

DUPLICATE

Reformates and prints any 80 columns of information in any other
80 columns with or without gang punching.

1. Card Input - Any data cards preceded by four header cards (see

notes).

2. Output

a. Punched card - Reformatted data cards
b. Printer - 80/80 listing of reformatted data cards

NOTES:

1.

The first header card contains information that is
desired in all the following cards. If gang punching
is not desired, this card must be blank.

The second and third header cards are divided into
eighty sequentially numbered fields of two columns
each. These cards describe the output card by indi-
cating the column from which the input will be
transferred.

For example:

Card Column Punch With
1- 2 01
3- 4 Blank
5- 6 05
7- 8 04
9-10 03
11-12 016
159l160 80

Will reproduce the card identically to the original ex-
cept that Cols 3 and 5 will be punched into Cols. 5 and
3 and card column 2 will be blank.

The fourth header card is literally a duplicate of the
card that will be recognized as a sentinel. For ex-

ample if a blank card were introduced as the fourth

header the program would terminate when a second

blank card was read.

3-11

4. Printing may be eliminated by changing the Duplicate
object program. Column 16 of card number 43 (Cols.
4-5) may be changed from A to) and Column 31 of card
number 45 may be changed from E to).

F. CLEAR
Clears Bank 1 thru 4 core to spaces
1, Card Input - Clear object program

2. Output - None

SAAL 1 ILLUSTRATION 1-1
1st PASS OF ASSEMBLY SYSTEM REFER TO CHAPTER 3~1-A

SEw A LBL LOC ERR SAALL
"1 1 FD1 ovo1
['I'1} FDs 0U0e
V0o kD& 0uS»
Vo7 FDb 0059
(1) FDe QU7
uiv PNU 0161
vl ACYT 0164
Ul2 LEB 0172
uid CRE 0188
(T3 BAL 0230
ule PUN 0293
0L7 LTe 0294
uls PNU 0290
uly ACN 0347
veu AMT 0351
uRe LAT 0v8L
v2s CNT Ouss
ua4 VLR 0U9u
uz2bH ASK 0092
V20 HLu 0092
var PV 0v9o
u2e iDL 009
u2Y 1DuU 0099y
u3u IND 010V
031 CRT 010%
(RT3 HDL 0873
039 1HDe 0380
u4o HDS 0390
045 AC1 0477
V44 AC2 0u87
‘L) ACS 0497
['T7-) AC4 0507
us7 ACo 0b17
Uko sTu 0%27
uSu ST1 0528
103 FST 054y
use KTe 0559
o4 UN 0600

Pa=4

véo MOl Ooblv
[4] NX1 0657
u78 MO2 0672
ugy ALT 0698
u8ds MmOy 0708
u89 Con 0729
104 2 0807
110 ww 0838
lle mO4 0869
13¢ KRTN 0951
13 MO5 0956
1348 BK1 0982
153 1Y Lluey
159 KT4 1091
170 BKe 1ll4s
176 OFe 1179
185 TAb 1z1b
184 OFL 122v
193 LST 1260

SAAL 2

2nd PASS OF ASSEMBLY SYSTEM

SEU # LBL
0oL

voe

Vo3 FOL
(L) DS
uos FDu
ulb FOb
uov FDo
Uls

voY PNu
ulu ACi
uli VEb
ule CRE
uls BAL
uls

uls PUN
ule LTe
ul? PNU
ulg ACN
o1y AMY
uauv

u21 VAT
v2e (9]
vas LLK
u2u4 ASK
u2s HLb
V2o PV
V2o iDL
u2y i0v
v3y INL
u3l LR
L3e

u3el

u3s

u3sl

u3do2

U34

35 HD1
U3o HD«
037 nDo
U3y

039

U4y ACL
U4l ACe
e KCo
a3 ACu
vss ACo
u4n STu
u4o

ue7 STT
Vbs

U4y

uSu

S FST
uSe

u5s RTe
US4

ush

['1-15)

143

59

ueu

[1-3}

ue2 UN
ued

['T-23 MO1
[-1)

ubo

V67

[\[-T°}

veY

vy

u71

+34
+30
URG

+7
+1U
+34
+34
+19
+10
+1u
+1lu
+1u
+10
+1
STA
xF
CLR
JR
XxF
[Ms3%
s01
LDl
sD1
LAL
tNL
Jl
LA2
LDl
J
LA2
Lo1
sD1
LAY
(N1
JL
CN1
J6
AMz
AM2
v

OPERAND

o5
9
70

CR
Ulel

COMMENTS

ACCT NO
CuLs o & 7

PRINTED ACCT BAL INU

TRIAL BALANCE

U373

P ACCT
CUMULATIVE
] L]
CKRELTT

PK2
PUN? 80
UF2

REA
FD3r2
PVe2
FD4r
HLD» &
1D4r1
FD1el
ON
FD5r 10
FDbr 1
MO1
FDobr10
FDorl
5Turl
1DUed
HLO»1
MO2
STOed
NXT
AC3+10
AC4r» 10
MOS

VEBIT

BALANCE

SAAL
TITLE

TO COLUMN HEADINGS. SUBRTN
REAY FIRST CARD

STORE COLS o & 7

STORE ACCT NO

COMPARE COL 1 TO ONE
IF ¢

PICK UP AMT COLS 59-68
PICK UP AMT COLS 70-79
STORE MSL OF AMT

CHECK CR=DEB ACCT

IF DEBIT

CHECK CR~DEB AMT

DEBIT AMT» CREDIT ACCUM

1DEN
P2-4
P24
P2-4
P2-u
P2=4
P24
P2-4
P24
P2=4
P24
P2-u
P2-4
P2~y
p2-u
P2-4
P2-4
P2=4
P2-4
P2-4
P2=4
P2=y
P2-u
p2-4
P2-4
P2-u
Pa-4
P2-4
p2-u
p2-4
P2-u
Pa=t
P2-4
P2-y
P2-4
P2~u
P2-4

P2-4
p2=4
P2=4
pP2=4
P2=4
P-4
P2-4
P2=4
P2~4
P2-u
P2-4
P2-4
P2-4
P2-4
P2-4
P2=4
P2-4
P2-4
P2-u
p2-4
P2=4
P2-4
P2-u
P-4
P24
p2~4
P2-u4
P-4
P2=4
P2-4
P2-4
P2-4
P2-4
P2-4
P2-4
P2-4
P2=4

LOC OPERAND

152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
152HA
00814
0085A
0090A
0091A
00924
uNIkA
ONGARA
00994
0100A
0101A
oro1aA
0lela
019%A
U229
0263A
0?63A

0373a
0380A
0390A
ou2u4A
QU584
0u77A
0487A
0U97A
05074
0517A
uS27A
0527A
052BA PR2
0533A0293
053841179
0543A REA
054BA0006
055340096
0559A0055
0564A0092
056940098
0574A0001
0579A0600
0584A0059
059040059
0595A0610
0600A0070
0605A0070
0610A0527
061540099
0621A0092
062640672
063180527
0636A0657
064140497
0646ANS0T
0652A0708

0372
1183

0007
0097
(LY
0095
0098
0001
0604
0068
0059
0614
0n79
0070
0527
0099
0092
0676
0827
0661
0506
0516
0712

ILLUSTRATION 2-1

REFER TO CHAPTER 3-I-B

ERR (¥4 INSTR Loc

® ® > M P B DD DD E DD DD ®RPE D DD DD P DD D DD DD

8 0<oc
B n\n?
B n3n3
B ng09
8 0Eu4]
B upuy
B 4143
B 4141
B 4FuF
B 4,41
B 11F,
2] Fl.:
B =17
B 1852
8 B ? oF
& B 2.2D
&8 2L
& B THA\
& B RGA:
&8 A=AH
& B ACR&
& B n ns
& B niny
8B NHOE
& B nans
8
&H &)y [
&8IH 157=8 fIcs
&4 Ds ¢} r:rs
&IH 8)a)) £arn
&8 JI1F (HCA
&IH iaouug refs
8IH 13¥61? < <3
&JH $10E4] <I<%
8JH L3234 <:<B
8JH H <8<y
&H THINB <HCA
8JH *3301% <6<&
&M 31313 # #3
&M 28HHA #I4S
&8I *0.0D #3148
&IH 10.0, #84H
8H Hal ol] HHIA
&H BIGIH H6HE
& {0E0E H Hi
& TCHCA HIHS
&M :D&ns HIHB
-] BCICS H8HH
&M >0 D5 HHHA
& >NindC HE6HE
&M 2\6\E c Ci

ILLUSTRATION 2-2

u79 NXT SM2 AC510 CREDIT AMTes CREDIT ACCUM P2=4 0657A0497 050A &3H YD 05 C1cs
u7s SM2 AC4e10 P2=4 (662AN0507 0516 8JH Yninde | CICB
U7 J MO3 P2=4 0A6ETANTO8 0712 8IH 2\6\E [8:14]
uTo MO2 CN1 STurl CHECK CR=nEp AMT P2=-4 0A72AN527 0527 8K 1hansg CHCA
(44 U6 AL(P2-4 0n7TANEIB 0702 834 B\s\#\ c'ece.
V74 AM2 ACir10 DEBIT AMTs DEBIT ACCUM P2=4 0683A0477 0486 8IH PR=8H ANAN
u7Y AMZ ACze)0 P24 0ABRADYBT 0496 &M >acné \IN\S
vy g MO3 P2~4 0693AN708 0712 83JH 2\6\E \:\8
usl ALT SMz ACL»10 CREUIT aMTes DEBIT ACCUM P2=4 0R9BRABUTT 048A 814 Y8=-AH \B\#
w8e M2 ACzs10 P2~4 0T03A0487 0496 &3+ YBCRS \H\A
uB8s MOS XF ReA READ NEXT CARD P2=u 0708A REA a3 8)ANIG \6\&
vae LAL FD4r4 P2-4 (T714A0055 0058 8 1612 6 G
uay CN} HLL» 4 COMPARE NEW CARD ACCT NO P2-4 0719A0092 0095 8K INE4] 6165
V8o JE KT2 P2~4 U724A0559 05673 81K 8¢ <3 GiGB
UB7 LON LD2 PVe2 IF BREAK: INFO TO PRINT & PUN P2-4 0729A0096 0097 &I xbouu 6864
us7L (313 P2-4 0734A &M E GHGA
PLEY 502 PNUCL P2=4 (739AN161 0161 81K RIETIA G668
usy 502 PNUr2 P2=4 0745A0298 0299 &8H RS<SH A AS
U8yl LD1 LAT+4 P2=4 0750A0081 0084 811 Jn<oc AIAS
v8Y2 SD1 UTesw P2=-4 0755A0294 0297 &JH I5BSC AtAB
v9y LNL HLU+% P2~4 YT60A0092 0095 &1 30E4] ABAN
w91 SAL ACTr4 P2=~4 (765A0164 0167 &IH 4111~ AHAA
09e SAL ACNr4 P2=4 (770AD347 0350 414 4-I-16 AGAS
0921 CLR ARZ2e21 P2=-4 0776A1933 1953 &M 1084 6 61
093 LN1 AC1¢10 P2=4 UTB1A0477 0484 8§1H 3R=-RH 6165
0931 CN2 ARL¢10 . P2=4 078641923 1932 & %))s A16B
94 JE Z2 P2=4 0791A0807 081t 81H 82 ?3 ABAH
u9s LWS ACLr}0 P2=4 0796A0477 048A 831 PA=AH 6HAA
U% SEL uEb+lr14 P2=4 0R01AN173 O18A &M RIC18&? A668
u97 4Z CLR ARze21 P2-4 QROTA1933 1953 81H nne ? 21
v9a LNL AC3010 P2=4 (BL12AN497 0504 &IH 3D DS 21?5
u9ul CNZ ARLeLO P2-4 0R17A1923 1932 8 %) 15 ?:?8
u99 JE wW P2~4 0QR22A0838 DA42 &84 83 3 28274
100 LWS AC3¢10 " P24 0R27A0497 0506 8 20 DS PH?A
101 SEU CRE LS P2=4 UR32A0188 0202 &IH RFIFR3 7628
102 wW LAl AClrl0 DEB~CREL = AL OF ACCT NO P2=4 UR3BANGTT 0486 8 H Re8H 3 3
103 SR1 AC3910 P2r4 0RK3ADLIT 0506 & €D NS 3135
104 5A1 ACori0 P2~4 (R48A0517 0526 81K 4DHDE 33138
100 SAL AMTe10 . P2=4 0R53A0351 036N &8I 4=5=< 3831
i0o JR - MOM P2~y QRSBANEBEY OAT3 814 D9 9; IH3A
i07 v MOb P2=4 (R63ANYSL 0960 &M 2RBRE9 3638
108 MO uX KTW ELIT %¢ Ck P2-4 0REIANIS1 0955 AJH [RHRA a a;
10y LAL ULkel P2=4 QATLAD090 009N 83H 0303 a1as
11y SAL UEBel P2-4 UYR79A0172 U172 814 4IDID asag
111 5Al LRErd P2~4 URBUANLIAS 018R &4 4FIF] apaH
ile SAL BALYL P2-4 URBOAN236 023A 81IH 4.<.< GHIA
113 CLR ARZ2s21 P2=4 GRI4A1933 1953 &JH 1):)8F 9698
1lu LNl ACorlD P2=4 090NA0S1T 0526 8IH 3DHNE F Fi
11a CNe ARL»10 P2-u4 YAOSAL1923 1932 &IH %))5 FIFS
116 JE RTN P2=4 (910ANYS1 0955 8IH BRHRA FIFB
137 LWS ACbr 0 P2=4 U915A05t7 0526 &I+ PNHNE FRFg
1ia SEU bAL+lelY P2=4 0Q20AN237 025N &IH Re#11 FHFA
i1y LNZ ACbe)0 P2=4 0925AN517 0526 &M LDHNER FeF8
1191 CAz ACobel0 P2-4 0931A0517 0526 &IH NDHNE R RI
r192 VEA RTiv P2=4 0936ANY51 0955 &M B8RHRA RIRS
12v LAL CRIs2 P2-4 0941A0101 0102 &3H 4ou1 A48
121 SAl BAL+1492 P2=4 U96A0250 0251 &3I4 uillo K8RY
12¢ RTN U > : P2=~4 (951A0951 0955 &I 2RHRA AHBA
125 MOS &F Pkl PRINT ACCT TOTALS ’ P2=4 0956A PR1 &I RA)I)I)IY RERE
124 XF PUN PUNCH P2=4 U9B2A PUN & R)1u) v
i2s ¢ CNT P2~4 U96TANUAS 0NBA &M -0\0? 1S
i2e CLR UNUP L . P2~4 (972A0100 0106 &JH 14FUF AR AL:]
127 i OFL . P2=4 0977A1220 1224 &JH aJiJs '8y
128 K1l (LK ACL#10 CLR ACCT ACCUMS . P2=4 09B2A04T7 048A) &8IH 1R=AH THYA
12y CLK AC3r 10 . P2=4 (98TAN497 0504 &M 1D N5* 6rs
134 LAL PVe2 COMPARE - COLS 6 & 7 P2-4 0293A0096 0097) &M 4ouy * *}
131 (N1 FDSre P2=4 0998A0u0b 0007 8JH TIF *1+5
13¢ JE kT2 P2~4 1003AN559 0563 &8I0 8< < LEL:)
13 LAZ AC2s10 IF uREAK» INFO TO PRINT P2~y muauouai 049h &M 18CA8 8%t
134 SRz ACH010 DEB~CREU = SECTION BAL P2-4 101340507 0S14 &I TPy *HEA
135 . SA2 ACS»LO P2~4 1N1RANS517 0526 2L MDHDE ! *6%8
130 JR 0% . P2=-4 1024A0869 0A73 & 0o a9; LA
137 CLK ARZr2l) P2=4 1029A1933 1953 ° &IH 1)iIR s

130 LNL ACZr 10 ‘ P2-4 1034A0487 0496 &8I 3Aacag 118

ILLUSTRATION 2-3

139 CN2 AR1¢10 . P2=4 103941923 1932 a1 %) S

1wy JE YY P2~y L044AL060 1064 " 8 BMIMS

14 LWS AC2:10 P2=-4 1N049A0487 0496 &I PACRaM '6'A
142 SEU VEH+1014 P2-4 1055A0173 0186 &M RICI& M M3
188 YY CLR AR2e21 P2-4 1060A1933 1953 &H 18 MIMS
144 LN1 AC4¢10 P2=4 1065A0507 0516 &) 3D:DM [HY:)
145 CN2 AR1r10 P2-4 107041923 1932 &M %) 5 mamy
146 JE KTa4 P2=4 1075A1091 1095 8JH 8RINS MHMA
147 LWS AC4»10 P2=4 1080A0507 0516 &I 2DINHA MEMS
148 SED CRE+1r14 P2=4 1086A0189 0202 8JH RFOFB -
149 RT4 LAL ASKel EDIT * P2=4 1N91A0091 0091 8 ngn9 RIS
150 SAL UEB+15:1 P2-4 1N96A0187 0187 &M 4F F LHY
151 SA1l CRE+15s1 P2-4 1101A0203 0203 8)H 4FDFD RanH
152 SAL BAL+16¢1 P2=4 1106A0252 0252 8H uislnu PHRA
153 XF PR2 PRINT SECTION TOTALS P2-4 1111A PR2 &M &D)N)Z ReRa
154 LAL 1D1r1 P2-4 111TA0098 009A &M 3y 22
155 AM1 INUPL P2~4 1122A0100 0100 &8I KUFUF 2125
150 1€ CNT P2=4 1127A0085 0089 &IH ~0\D? z2:78
1561 JE OFL P2=4 1132A1220 1224 8 BJIJR 2824
157 IC CNT P2-4 113740085 008° & =0\0? ZHZA
158 JE UFL P2~4 1142A1220 1224 &4 BJIUBW 2678
159 BK2 CLR AC2+10 CLEAR ACCUMS P2=4 114BA04B7 0496 8)H - 1ACA8 w Wi
16U CLR AC4¢10 P2=4 1153A0507 0516 &8I 1n:ny wIWS
161 CLR AR1,10 COMPARE FOR LAST CARD P2-4 1158A1923 1932 &M 1))S wiwg
162 CN1 FDu4el4 P2=4 1163A0055 0058 &M 33672 wawy
163 JE LST P2-4 1168A1266 1270 a4 8NGNE WHWA
164 J FST P2=4 1173A0548 0552 8IH 2CKLA, WeWs
165 OF2 JuX TAG PRINT COL HEADINGS P2-4 117941215 1219 &M {JIJUS Y
160 LPR HD1¢7 P2=4 1184A0373 0379 &4 02 2F 105
167 LD3 HDZ¢10 P2~4 1189A0380 0389 & J2.2D rieB
168 SD1 HAL+4¢10 P2=4 1194AN240 0249 &I d.\1 '8
169 XF PRY P2-4 1199A PR1 B 8aN)) oHrA
i LPR HD3+87 P2-4 1204A0390 0476 8 02(83J 608
172 XF PR2 P2=4 1210A PR2 &3H &D))) J
174 A6y % P2-y 1215A1215 1219 &) 2J1J5 J1Js
175 OFL XF SK7 START NEXT PAGE P2-4 1220A SK7 aM &) Jius
176 LAl 1D1r1 P2=4 1225A0098 009A (37 uin Jauy
177 SAL CNT+#203 P2~4 1230A0087 0089 8I4 4oOAO? JHIA
178 JR UF2 P2~4 1235A1179 1183 8JH Dr 1IN J6JA
179 LAL iDOr1 P2-4 1241A0099 0099 &M uIuy N N3
180 CN1 ENDe1 P2~4 1246A0100 0100 8IH iUFUF NINS
181 JE BK1 P2=4 1251A0982 0986 &IH - B'H'A NINB
182 SAL INUed P2~4 1256A0100 0100 &JH GUFYF NBN#
183 v HKe P2~4 1261A1148 1152 84 2w Wi NHNA
184 LST XFC EX)) SKIP 7v HALT P2=4 1266A E<)) 8JH AEC))% N6N&

185 ENU STI P2~4 1272A0528 0532 &H 2t 3 =7=C

TRIAL BALANCE SAMPLE REPORT ILLUSTRATION 3-1
REFER TO CHAPTER 3-I-C

TRIAL BALANCE

P ALCEH CUMULATIVE,
L] # VEBIT CREDLIT BALANCE
4 1ubu S $ 121645407 $ 1291645,07CR
i 2i0u s 120445.07 S 31.88 $ 120413.19
4 2e2) $ 200.00 $ 800~ $ 208,00
i 3uie s s 120645407 $ 12+645,07CR
1 4501 £ 23.85 $ $ 23,88
4 4803 S 121645.07 S 2388 $ 121621.19
L 7499 % 3.12~ $ $ 3.12CR
1 7953 s 27.00 S s 27.00
s 250337.90 *$ 295¢337.90 * $ *
L 210u $ s 989,98 $ 989.98CR
L 2z21 s s 251430 s 251430CR
1 450 s 395.45 s 395,45
i 400l s 859.18 § 144415 s 715.03
1 480c s 498409 $ 367.29 $ 130.R0
1 4o0o s s 1124128 $ 11241,28CR
1 7199 s 845,85 S $ 845,83
L 795z s 31.94 $ $ 31.94
L7989 s 303.51 % H 363,51
$ 21994.0u *$ 2199440y * $ *
2 1uov s s 21450.94 5 2,450.94CR
¢ 3ule s s 21450494 s 29450, 94CR
¢ 480l E) 20450494 S $ 20450,94
¢ 7199 s 20450.94 % s 2+450.94
s 499Ul.88 *$ 419U1.88 * $ *
2 4501 s 8¢3U0.00 S H 81300.00
¢ 4s0l s s 80300400 5 8¢300,00CR
. 8¢300.00 *$ 81300400 * $ *
3 1uou s s 724.025= $ 724,25
s 1u2u s 497,83~ S 58439 s 556,18CR
s 1152 s 11.35- % $ 11433CR
o 1401 s 160,00~ $ $ 160.00CR
3 240u H) 18437~ $ 1.03 $ 19.40CR
s 2%2v $ 19.40 S $ 19,40
3 3uls s s 467,53~ s 467.53
3 3uls s s 10430~ $ 10,30
3 4dUl s 467,53~ $ H 467.53CR
3 4702 s s 407,53~ s 467,53
a2 6usl s s 18437 $ 18.37CR
3 6799 Y 456.20= S H 456.20CR
$ 11591.80-*$ 11591 480=% $ *
5 1uou s s 12+511.77 $ 12511, 77CR
o 1u2u s 120499417 S 12.60- $ 12¢511.77
3 3ule 1 $ 570444 $ 570.44CR
2 719y $ 570.44 S $ 570.44
s 13+069.61 *$ 130069461 * $ *
2 1luv2u $ 67¢286.6U0 $ €71286.60 s
¢ ALCT CUMULATIVE
" # VEBIT CREVIT BALANCE
s 671256460 *$ 671286.60 * s *
3 1102 s 3,418.00 S s 3+418,00
3 152 % 95.00 $] 95.00
3 2vau $ 18.37- $ H 18.37CR
3 473 s s 3o444400 $ 39444 ,00CR
3 473e s 3r444.00 S 30444.00 H
3 4733 s 3)444.00 S H 30444,00
5 6USL $ $ 31425463 $ 3+1425.,63CR
3 679y 5 s 69.0u $ 69,00CR
s 10138263 *$ 100382463 * 3 =
5 2221 H s 104430 $ 104.30CR
5 4501 $ 16430 $ $ 104.30
9 4009 s $ 104430 s 104,30CR
5 7953 s 104.30 % $ 104.30
$ 208.6U *$ 2UB.60 * s *
8 1uou s s 174.84 $ 174, 84CR
8 2e21 s 174.84 S 12484 s 162.00
8 3ule s s 174484 $ 174.84CR
8 4501 $ 12.84 % $ 12.84
8 4805 $ 174,84 S 12.84 s 162.00
8 79535 $ 12.84 % $ 12.84
H) 375430 %S 375436 * s *

SARGE 2 . LLUSTRATION 4-1
2nd PASS OF REPORT GENERATOR . REFER TO CHAPTER 3-11-B

S0u0u 1% P2=4
S0U10 CRU p2=4
2002y - 1n P2-i
S0u3u - bre P2=4
50040 - 55:4 Pk .
045U - 591y P2=y4
9006V - 70010 P2-y
2007V PRT . P2=4
S0u8Y - 10132 P2~y
50090 - i ' Pa=i
50100 - 45 P2-4
w011V - 1201 P2=u4
0120 - 13014 Pa2=-4
2013v - 2701 P2=4
D014y - ¢80 P2~y
5015V - 2914 P2~y
0016v - 4301 P2=4
D017V - 42012 P2~4
5018V - 1601 P2=4
20190 - 77014 P2-4
20200 - 90,2 P2=4
TIP3 - 92+1 P2=y
50220 PCH P2~y
D023V - 180 P2~y
2024y - 214 P2=4
20250 - ol P2~y
026U - ore P-4
20e7u - 95+5 P2=4
028U - 59110 P2-4
* 029 EiO0 P2-4
50290 URG 0373 P2-4
50350V HOU +13 TR1AL bALANCE : Pa-4
5031u KDL +7 P ACCT P2=-4
50352V HDe +11 CUMULATIVE P2~4
5003V HDY +25 & L VEBIT P2~4
V034U HD4 +7 CReDIT P2~y
5035V hD5 +10 BALANCE P2=4
006U ACL +1¢ P2-4
50070 ACe +10 P2~y
S5U3BU ACs +1u P2=4
D059V ACy +1u P2=4
5040V ACo +1U P2=4
50410 PV +2 coLs 6 & 7 P2=4
5042V rlu +4 ACCT WO P2=uy
0430 IDU +1 U P2~4
50440 1Di +1 1 P2=4
5045V iDz +1 2 P2=4
S046U SPA +10 P2-4
90470 SP +1u U0UOUOUOU!
5048U STO +1 P2=4
50490 5T1 +1 P2~y
D050V DLA] +4 0865 P2=4
50510 LLK +1 % P2=y
5052u CRT +2 CR P2~4
5053V INU +1 PRIU ACCT BAL IND Pa~4
50540 ASK +1 = P2=4
5055u N1 +2 Pa=4
SPO6U KON +2 bl P2=4
5057y STA P2=4
* 0% STT ReS PRT P2=4
50580 ST1 CLR Ulol 029z P2=4
* 057 MUV HDO»PRO TITLE P2-4
50590 LA2 HDO/13 ' P2-4
5000U SA2 v2u2 0214 P2=4
* 058 PKN SP2 . P2-u4 -
2061y XF PR2 " P2-u
* 059 ReS PCH P2=y
50020 CLR U293 0372) P2-4
000 DKT OF2 TO CoL HUGS SUBRT P2=4
20030 JR OFg P2=4
* 0ol RcA READ FIRST CARD P2-4
S04y XF ReA P2=4
* Ov2 FST MOV Fu3.PV STORE COLS 6 & 7 P2-4

2005V FSI1 LAZ2 udus 0uUD7 P2y

ILLUSTRATION 4-2

5006U

007y
508y
5009u

5070u
L0710
5072v

50730
S074v

DU /50

80760
5077v

S5078v
20/9v
5060u

S061v
90520
20830

50840
EUEET
5086V

2087v
50880
50890

20900

0910

b0y2v
©0Y3u

5094u

20950
v096u
20970

5098y
S099u
5100v

5101u

blu2u
51u3u
51040

51y5u

bliu6v
S1u7u
21uBY

blo90
51100
L1110

sli12v
51130
bli4u

5115v

slley
91170

rTe

NX |

SA2

LPR
SPR
SPR

LAZ

LAz
CNe
J6

LAZ
(N2

uL

LA

LAz

AMZ
AM2

LA2
SM2
sM2

PVe2

0o3 Ri2
V055 0us8
HLD 4
STied

Oo4 *
1D1ed
uoul ouol
UN

005

U059 sues
STUrL

0b6

MOL

0e7 ON
vo70 0u79
STUeL

0b8 MO1
5Tirl
iDur1
MO¢

009
iDuUs1
STosl

nxXT

070
iDLr1
00Ul ovol
ON1

071

U059 DURY
ACSr 10
ACH4r10

072

MOS

073 ON1
uo70 0U79

AC3010
AC4+ 40

074
M0

075 NXT
JLITS
00Ul 00l
ONA

076
V059 0U6Y
AC3010
AC4 10

077
MOS

077 ONA
V70 DUTY
AC3¢10
ACH110

079

MO

080 MO2
10001
STurl

ALl

081

DL+l

uoul 0001
ONN

082

U059 0U6Y
ACl0i0
AC2110

063
03

084 ONN
u070 DUTY
ACLs10

ScN

I+D

SN

JmP

SeN

I+D

1r0

IrD

ALD

JMP

ALD

JmP

@

Sul

JmP

Sul

3

JuP

AUD

JMP

AUD

FL4 HLD»ST1

ID1/LoFUIION

Fus:STO

MO1

FLESTO

ST1¢GeIDOIMO2

IV016rSTOINXT

ID1+L2FO120NL

FUSeAC3PACY

MO3

FuhrAC3rACY

MO3

ILL/LPFLLPONA

FD5rAC3sACH

MO3

FD6+AC3rPACYH

MO3

I00¢GeSTOVALT

TULsLeFD1sONN

FUS»ACLIAC2

MO3

FUGIACLPAC2

P2-is
STORE ACCT NO
P2=4
P2=4
P2-u
COMP COL 1 TO ONE
- P2-4
P2-4
Pa=4
STORE MSL OF AMY
Pa-4
P2-4

P2-4
STORE MSL OF AMT
P2-4
P2-t
CHECK CR=NEB ACCT
P2-4
P2-y
P2=4
CHECK CR=DEB AMT
P2-4
P2=y4
P2=4

P2-4
P2=4
P2=4
DEB AMT» CR ACCUM
P-4
P2-4
Pa=u

P2~y

P24

p2-4
p2=

p2-u4

P2-4
P2-4
P2-4
CR AMT» CR ACCUM
Pa~4
P2-4
p2-4

P2-4

P2-u
P2«u
P2~y

Pa-u
DEBrCK CR~DEB AMT
P2=4
P2-4
P2~y

P2=4
P2=4
P2=~4
DEB AMT+DEB ACCUM
P2-4
P24
P2~y

P2-4

P24
P2-4

p2=u

P2=h

p2=y

po=y

po-u

P2t

P2=u

P2-t

P2=t

P2-4

P2-4

P2~y

p2-u

P2=t

P-4

p2-u

p2eu

P2=y

P2~

pa-u

P24

5118u

5119y

510
Slelv
vlz2v

5123v
Slzuu
51e50

51ebu

91270
5128
5129V

bl30u

ol3lv
bls2v
5133v

9134y
51350

21960
51470

5138y
51359u

S140u
Siulu
51420

5143
2144u
5145u

bl460
51470

5148y
S149u
51200

ololu
bivav

2153u
9154V
9155u

516U
5157V
bib80

5159u

Sle0u

Sloiv

Slo2u

5le3u

2lo4u

S5le5u

blebu

blo7v
Slosy

COiv

AM2

LA2

ACgr 10

o8sS
MOS

Oué ALT
ID1le}

uooi 0UOL
UNV

087

U0b9 0ou6s
AC1e10
AC2+10

os8

MOS

089 ONV
U070 0U79
ACL+10
AC2010

090 MO3
REA

091

u0b5 0USH
HLL &
KTe2

ng2 CON
PV»2

U298 0299
09250
U298 0298
vlol 0164
093
VAT 14

U294 0297
094
HLL &

VUlok 0168
U347 0351
095

ACLs 10
SPA 10
2
096
AC1+10
0173 0180
097 ze
AC3+10
SPAr10
ww
098
AC3¢10
uls9 0202
099 ww
ACLe 10
ACobr 40
U351 0360
1u0
AC3¢ 10
ACori0
U3b1 0360
101
MOW
102
MOS
103 MOu
RTN
pUTTY
DLRe1
U172 0172
Ulu8 0188
U236 0236
1uS
ACor 10
SPAr10
KTN
10550

JwP

IFD

JuP

suB

RLA

1FO

StN

StN

MOV

1¢0D

MoV

D

MoV

MoV

SUB

DRT

JMP

ExT

MOV

IFD

1D

MO3

P2=4

P2-4

I01eLeFULYONV CR AMT» DEB ACCUM

FOSrAC1»AC2

MO3

FD6¢AC1rAC2

READ NEXT CARO

P2=4
P2-4
P2-4

P2-4
P2~y
P2-4
P2~-4
P2~y
Pa-u

P2-u

P2=4

FOurEsHLDIRT2 COMP NEW ACCT NO

P2-4
Pa~u
P2~y

PVePNU 1F BK¢INFO TO PPR

PN1¢PNO

DAT+DTE

HLD»ZSrACT + ACN

AC11ErSPAIZZ

AC1L+EUPURZ

AC3rErSPArWW

AC3+EDrCR2

AC1rACEP AMT

DR=CR=BAL ACCT

AC3rACEHr AMT

MOY

MOS

RTN ENIT $» CR

DLR»DB1rCRI/BLL

ACHPE+SPAIRTN

ACHIErSPNIRTN

Pa=u
P24

P2-4
P2-4

p2=4
P2-4

Pa=4
P2-4
Pa=4

P2=4
P2=4
P2~y

P2=y
P24

P2=4
Pa=4
P2-4

p2-4
P2~4
NO

P2-y4
P2~y
P2=i

P24
P2-4
P2-4

P2=4

p2=4

P2=u

Pa=y

P2-4

P24

p2-u

P24

P2~4
Pa=4

22

p2-t

p2-t

pa-t

P2-u

p2-i

P2t

p2=u

p2-t

P2=y

p2-u

P2-4

p2-4

P2-4

p2=u

P2y

pa~u

p2-t

P2-u

P2=u

P2-u

P2-4

ILLUSTRATION 4-3

ILLUSTRATION 4-4

EITL
D170V
21/1v

sl72v
5173u

Si74u
5175V
5176V
5177V

L1780
51790

51600
181y

Sle2v
bla3v

blo4v

51labu
51s6U

uloTu
2lo8uy

viedu

2190y
nivlu

H1924
21v3v
Dlv4u

5195U
D1vy6u

51970
2198V

D199

52u8u
S2ulv
D2u2v

S2u3u
204y

22050
52u6U
207V

S208Y
2209y

S240u
2211v
5212V
5213V

D214y

52150
b2léuv

b2i7V
5218y

2219

=199

LAg ACorll
(&3 :fuvlﬁ

vE KTN

* 1u6

LWS ACbeLO
SEU 237 0250
» 17

LAZ ACorlO
CN2 SPAe10
JL KT

) RTN

* 108 RT
LAz CRive
SA2 0250 0251
* 1u9 RTN
J o Mo4

* 10 MUS
AF PHL

* 111

XF PUN

rTE

* 112

CLR UNLsl

* 113

LA2 101»1

AMz CNTre

* 114

LAZ (Nirg

CN2 AOiNre

wb UFL

* 7 11b HK1
Llr 4Cisi0
CLr wC2210

* 116

LAg RVe2

CH2 U0ue 0u07
vt kTe

+ onr

LAZ ACer10
HAZ ACorll

* 118

LAZ2 AC4e 10
SM2 aCoril

- 119

wR MO4

* 120

LA2 ACZr10
N2 SPrel0

SE (Y

* 121

LWS AC2010
SEU U173 0186
* 122 Yy
LAZ ACkel0
CNZ SPArLO

JE RT&

* 123

LWS ACHr1O
SEU ui89 0z02
* lz4 RT4
LAZ ASKel

SA2 ulw7 0187
SA2 u2u3 0203
SA2 U202 0g5¢
* 125

XF Pr2

* 126

LAZ2 1Dird

SA2 INUrl

* 127

LAZ2 D21

AMZ LNTe2

* 128

LAZ CNTere

<

My

IrD

MU

<

xxT

PKN

PUN

ReS

I+

3

ReS

1D

My

<

k)

Sul

Ik

=}

MoV

1r

=

L2

Muv

MoV

AuD

IrD

ACEBrEUIBL2

ACHILISPAIRT o RTN

CKTBLY

MOy

D

Tu1eCnT

CHT+GrKUNP OFL

AL1#AC3

PVrEtFDSPRT

AC2rALE
ACUrACEH

MuL
AC2PESPARYY
AC2rEDLILB2

ACUrErSPAIRTY

ACUrEUPCRe

ASK D32 CR31BLY

SP2

101 IND
Tu2+CinT

CinuTeGrKUNIOFL

Pa=«
P2~4

P2-4
P2-4
p2=4
P2=4

P2-u
P24

P2=u
PRINT ACCT TOTALS

Pe-4
PHNCH

P2=4

Pa=4

Pa=u

P2=4
P2-4

P2-u
fe=4
22y
CLEAR ACCT ACCUMS
P2~y
P2-u
COMPARE COL b & 7
Pamy
P2=u
P2=u

IF RK+ INFO TO PRN
P2=4
Pa=u4

P2=y
P2y

P2-4

Pa-u
Pz-u
P2-u

P2-4
p2=u

Pa-u
P2=4
P2-u

p2=u
P2-4

EDIT *
P2-4
pa=u
p2-4
P2=u

PRINT SECTION TOT
P2=4

P2-u
P2-4

P2~y
P2-4

P2-4

Po-4

P2-t

pPa2-u

P-4

[

Po=y

p2-u

P2-u

P24

P

[N

Po-u

PP=n

P2=u

P2=y

P2=4

P2-4

P2~

P2~4

P?-u

P2-4

v2elv
b2ely

222V
22¢3u

D224V

225V

b2260

22270

D2e8U

2229V
b2a0u

231U
w232V

5203V

bRoku
92350

52000
2237y

5258V
52590

ba2u4gu

L241lv

D242y
2243V

D244V

2245V

S246U

D247V

2248V

Sz49u

EESIVE

2¢oly
EEEY-AY

22b4Y
2255V

2zuey
ErEay

w2obu

UKe

1AL

UFL

LA
N2
vE

XF

R

LAz

clr
CLr

AF

XF
rle

KON 2
UFL

1¢9 HK2 RES

ACer 10
AC4e 40
1350

UEL B IL T
SPAe L0
St

151
FST

132 or2
(A

133
HD1s?
vlel 0292
1394
rHD2ril
0237 0g5u
125

PR1

136
HD3» 25
vlol 02%¢
107
HN4» 7
Ule9 020¢
138
rbbe 10
V237 025V
139

Pr2

140 TAG
OFe

141 oFL
ulbl 0292
CNTr2

142

PrR7

143
vFe

144

NUe L
2PAP LD
BK1

145

INUeyL

146
oK

147 LsT
Ulol 0g9c -
U293 Ny7z
148

PKR7

149

PUN

150 STP

STH
7

IrD

JmP

EnT

SEN

MUV

PrN

SLN

MUV

PKN

XrT

PrM

IrD

RLS

JMP

Re

wn

PrN

PUN

HLT S

AC2 ALY
FUUPEPSPAILST
FST

TAG

HUL¢PRT
HL2BL2

SP1

HU3 e PHT
Hu4»CR2
HOS»BL2

Sr2
Or2

PRTICNT

SK?
oF2

INDPErSPAIBKL

IND
Br2

PRT+RCH

SK7

P2~4
u P2=4
CLEAR ACCUMS
P2=i
. P2~4
COMP FOR LAST CRD
Pa=4
peeu
P2~4

P2=4
PRN COL HEARINGS
P2=4

Pafl.
P2~4

Pa=y
Pawy

P2ry

P2ey
P24

P2~
Pamu

P2=u
P2=u

P2~

P2~y
START NEXT PAGE
’ Pa=i
R2=4

P2~y
P2=4
P2=4
P24
P2~y
P2=y
P2-u

Pa=y
P2=t

P2~y

pa-u

P2~u -

P2=4
P2-4
P2~y

P2=4
[2-Ld)
P2~b

PA=4

R2my

P2-u

p2-u

‘pa=s

PO

P2~

p2-u

‘ba-b

p2-b

" pa-i

pany

p2-4

ILLUSTRATION 4-5

MEMORY DUMP ILLUSTRATION 5-1
REFER TO CHAPTER 3-111-B

TRIAL BALANCE
UBpS5h2 1%x G3-1

10UCK 041
T+09BIN2\1 § %id RiH= 05=-1

7=L35 06=1
U7-1

08=1

09-1

051 20 L 10-1

& 11-1

b =T7={re-4 12-1
P ACCTCUMULATIVEH H 13-1
UEBLI CREDI 14-1

15-1

BALANCE 16~1
17-1

&) YILO7=8Ur*rw&)IA))) L Fig044< 18=1
JICIZI0ELD 4ibit THitdb* J3018 19-1
4120 1328HUATY0.0U VUi D&D& 4I4TH 20-1
$0cOE7CHCAID&D&RLILE>D Db uioae 21-1
2\oMeYU LUSYDIDH2\GAE I DED&B\B\HN ¢2-1
28=8tDBCu&2\o\LYE=BHYBLAXS)A))6 23~1
163121 UE4 I8< < %404l B1ILIA zu=1
WHCHH JUCUCi SbL 3UEL I 11 T=4-1-1p0 25-1
LIa)#3u=nHe) 1 InB2 2i28=-ARRLIE1&2 2b=1
11x) 330 LSH) *)1WBS 3i?D DLHRr IFBy 271
. B=8HCU US4DMDE4=5~<D9 9i2&hsEY 28=1
LBrR&A UBU34ILIVYE IF J4.<eC1}1%) 2L 29=1
SURDES) T INB&HEAPUHVER AL JLUHUF & 30-1
WOHDEHGHSA 4,414131028H8ARL)))Y 311

CHAPTER 4

UNIVAC 1005 SOFTWARE OPERATING PROCEDURES

ALTERNATE SWITCHES OPERATING PROCEDURES
1. Loading program into Core Memory.

Alt. Switch 1 on/illuminated.
Alt, Switch 2 off /extinguished.

2. Normal running

Alt. Switch 1 off /extinguished.
Alt. Switch 2 on/illuminated (if automatlc forms overflow
desired).

3. Testing programs (debugging}.

Alt. Switch 1 on/illuminated.
Alt. Switch 2 on/illuminated.

During testing the programmer is able to step instruction by instruc-
tion through a program.

4. Note: ALT Switch 4 on/illuminated suppresses punching
SOFTWARE OPERATING PROCEDURES

Single Address Assembly Language (SAAL)

A. SAAL 1 - this is the first pass of the assembly program (S41).
(1) Operating Instructions:

(2a) Reader - load cards into input hopper (SAAL 1 object
program, followed by source program, followed by one
blank card).

(b} Console

1. Depress START and CLEAR BUTTON.

2. Alternate Switch 1 on/illuminated, all others off /extin-
guished. ‘

3. Depress FEED BUTTON.

4. Depress RUN BUTTON.

When processor HALTS, SAAL 1 is loaded.

. Depress Alternate Switch 1 off/extinguished.

6. Depress Alternate Switch 2 on/illuminated (if automatic
forms overflow is desired).

7. Depress START and CLEAR BUTTONS

wm

4-1

(2)

(3)

8. Depress FEED BUTTON.
9. Depress RUN BUTTON.

Output

(a)
(b)

PUNCH - no punched output in SAAL 1.

PRINTOUT - listing of the label table relating each sym-
bolic reference (label) in the symbolic program (source
program) with its approprxate position in.Core Memory.

Errors

(a)

(c)

(d)

(e)

ERR NO BEG CRD is printed, paper is advanced to the
next page and the program halts - Indicates the BEG card
does not precede the source program.

ERR OP IN DATA DIV is printed to the right of the card in
error, paper is advanced to the next page and the program
halts. This type of error indicates an illegal code in the
operation field (Cols. 11-13), No recovery is possible

The last card in the output stacker is the card in error.
Correct card and restart. :

DUP printed under ERROR headlng - Indicates a dupllcate '
label. . :

>148 printed under ERROR heading - Indicates the maxi-
mum number of labels has been exceeded (148 labels).

OVM printed under ERROR heading - Indicates the maxi-
mum memory has been exceeded (3844 positions).

B. SAAL 2 - second pass of the Assembler - (S42) .

(1)

Operating Instructions:

(a)

(b)
(c)

Reader - load cards into input hopper (SAAL 2 object pro-
gram followed by source program, iollowed by one blank
card).

Punch - clear punch and fill hopper with blank cards.
Console

1. Depress Alternate Switch 1 on/illuminated --all other
switches off.

2. Depress START and CLEAR BUTTONS.

» Depress FEED BUTTON.:

4. Depress RUN BUTTON.

w

4-2

When processor HALTS, SAAL 2 is loaded.

5. Depress Alternate Switch 1 off/extinguished.

6. Depress Alternate Switch 2 on/illuminated (if automatic
forms overflow is desired).

7. Depress START and CLEAR BUTTONS.

8. Depress FEED BUTTON.

9. Depress RUN BUTTON.

(2) Output

(2) Punch - a card for card output with the pseudo-machine

(b)

code punched in the cards.

Printout - a listing of each card equating each symbolic
line of coding in the source program with the generated
machine code.

(3) Errors

(a)

(b)

(d)

(e)

Program halts after first card is read - Indicates BEG
card does not precede source program.

' O ! printed under lst position of ERROR heading - Indi-
cates an illegal operation code.

' E ! printed under 2nd position of ERROR heading - Indi-
cates an expression error, i.e. operand which is less than
0001 or greater than 3875. The most frequent cause of
error is an undefined label. This type of error will print
6530 under the OPERAND heading.

' P ! printed under 3rd position of ERROR heading - Indi-
cates a precautionary warning, i.e. an instruction greater
than 10 or 21 characters utilizing AR1 or AR2 respectively.

' S ! printed under the 4th position of ERROR heading -
Indicates a sequence number error.

C. Condense Program (CD4)

(1) Operating Instructions

(a)

(b)
(c)

Reader - load cards into input hopper (condense object
program followed by output of SAAL 2, followed by one
blank card).

Punch - clear punch unit and fill hopper with blank cards.

Console

vb#LNNr—'

Depress Alternate Switch 1 on/illuminated.
Depress START and CLEAR BUTTONS. -
.-Depress FEED BUTTON. :
Depress RUN BUTTON.

When processor HALTS, condense is loaded.

Depress Alternate Switch 1 off/extinguished.
Depress START and CLEAR BUTTONS.
Depress FEED BUTTON.

Depress RUN BUTTON.

[0 <IEN B AN)|

D. Memory Dump (DMP)

(1) Operating Instructions:

(a)

(b)
(c)

Reader - load input hopper with memory dump object
program.

Punch - no punch output.
Console

1. Depress Alternate Switch 1 on/illuminated.
2. Depress START and CLEAR BUTTONS.

3. Depress FEED BUTTON.

4. Depress RUN BUTTON.

When processor HALTS

5. Depress Alternate Switch 1 off/extinguished.
6. Depress START and CLEAR BUTTONS.

7. Depress FEED BUTTON.

8. Depress RUN BUTTON.

E. READ - PRINT - PUNCH (RPX)

(1) Operating Instructions:

(a)

(b)
(c)

Reader - load input hopper with RPX object program, fol-
lowed by data cards, followed by one blank card.

Punch - clear punch unit and fill hopper with blank cards.
Console

. Depress Alternate Switch 1 on/illuminated.

. Depress START and CLEAR BUTTONS.

. Depress FEED BUTTON.
. Depress RUN BUTTON.

B W N

4-4

When processor HALTS

5. Depress Alternate Switch 1 off/extinguished.

6. Depress Alternate Switch 2 on/illuminated (if automatic
forms overflow is desired).

7. Depress START and CLEAR BUTTONS.

8, Depress FEED BUTTON.

9. Depress RUN BUTTON.

F. NUMBER IT (NIT)
(1) Operating Instructions:

(a) Reader - load cards into input hopper (NITA followed by
data cards, followed by one blank card).

(b) Punch - clear punch unit and f{ill input hopper with blank
cards.,

(c) Console
1. Depress Alternate Switch 1 on/illuminated.
2. Depress START and CLEAR BUTTONS.
3. Depress FEED BUTTON.
4, Depress RUN BUTTON.
When processor HALTS, Number it is loaded.
5. Depress Alternate Switch 1 off/extinguished.
6. Depress START and CLEAR BUTTONS.
7. Depress FEED BUTTON.
8. Depress RUN BUTTON.
(2) Output
(a) Punch - a card for card punched deck with all cards se-
quence punched in columns 1-3 starting with ¢¢1, and new
program ID inserted in columns 62-65 if header was used.
(b) Printer - an 80/80 listing of each card punched.
G. DUPLICATE (DUP)
(1) Operating Instructions:
(a) -Reader - load cards into input hopper (DUPA followed by

four header cards, followed by data cards, followed by a
sentinal and a blank card.

(b) Punch - clear punch unit and fill input hopper with blank
cards.

4-5

(c) Processor

1. Depress Alternate Switch 1 on/illuminated.
2 Depress START and CLEAR BUTTONS.
3. Depress FEED BUTTON
4. Depress RUN BUTTON.

When processor HALTS

. Depress Alternate Switch 1 off/extinguished.
. Depress START and CLEAR BUTTONS

. Depress FEED BUTTON.

. Depress RUN BUTTON.

X g0 v

H. CLEAR (CLR)

(1) Operating Instructions:

Clear cards are normally placed before object cards for the purpose
of clearing memory prior to loading a new program.

4-6

UNIVAC 1005 HARDWARE MACHINE TESTING and

CHAPTER 5

OPERATING PROCEDURES

I. MANUAL ALTERNATE SWITCHES.

A. Mode of Operation Table.

The following table shows the mode for the sixteen possible switch

combinations:
Punch JS3 SWITCH SWITCH SWITCH SWITCH
MODE Inhibited]Instruction, ONE TWO THREE FOUR
Normal Operation No NI3 OFF OFF OFF OFF
" Yes NI OFF OFF OFF ON
" No JUMP OFF OFF ON OFF
" Yes JUMP OFF OFF ON ON
Normal Auto Form Overflow No NI OFF ON OFF OFF
" Yes NI OFF ON OFF ON
" No JUMP OFF ON ON OFF
" Yes JUMP OFF ON ON ON
LOAD No NI ON OFF OFF OFF
TRACE Yes NI ON OFF OFF ON
RESERVED No JUMP ON OFF ON OFF
TRACE Yes JUMP ON OFF ON ON
Single Instruction No NI ON ON OFF OFF
" " W TRACE Yes NI ON ON OFF ON
" " No JUMP ON ON ON OFF
" " W TRACE Yes JUMP ON ON ON ON

Notes: 1. When switch four is ''on', punch and PTE orders will be ignored.

2. Switch three sets an indicator that is program testable by the JS3 instruction.

If alternate switch 3 is "on'', control will be transferred '""M''; if ""off', the
next instruction in sequence will be executed '

3. NI means Next Instruction.

B. Automatic Form Overflow Mode. Normal auto form overflow does the

following during XF print orders:

1. If a "1" punch only on the printer form loop is detected during a prior
print, the form will be advanced to the next line of the form loop on

which there are 1, 2 and 4 punches on the next print instruction.

5-1

2, If a form overflow occurs the compare indicator is set to a less
than condition.

3. If no form overflow occurs the compare indicator is set to a
greater than condition. '

4, All card or paper tape XF's affect the comparator. If there is no
print on the XF the comparator will be set to greater. ’

Trace Mode. This prints the static registers between the update of
the program address counter and the execution of an instruction. It
destroys print storage. o

The following table shows the registers traced and their print
positions:

Bescription : Print Position
% Register 81-90
Instructions Register 91-95
Blank 96-96
Program Address Counter PAK 97-98
(address of next instruction in
memory)
Machine Constants 99-107
X Register 108-109
Machine Constants " 110-111

Single Instructions Mode. This permits the programmer to cycle

through his program. During this mode, the processor Halts at the
end of the first internal cycle of each instruction executed. In single
instruction mode trace may or may not be used depending on the
setting of Manual Alternate Switch 4 (on for trace).

FEach 1005 instruction consists of 5 '"6 bit'' characters. During sin-
gle instruction mode, the entire instruction is readable from masks.

5-2

Mask 6 - Operation code (instruction Character 1)
Mask 8 - Operand (instruction Character 2-5)
Mask 9 - Operation register and operand bank designation.

When executing a conditional jump, the indication of the condition
may be seen on Mask 9. If indicator light 1 is lit, the condition is
not met and the next instruction in sequence will be executed. If in-
dicator light 2 is lit, the condition is met and control will be trans-
ferred to the '"M'" address.

In single instruction mode, the following instructions show on Mask
6 as multiple instructions.

a) Conditional Jump Instructions - When the condition is met, an
unconditional jump instruction cycle is generated.

b) Store Zero Suppress (SZS) and Store Edit (SED) - These in-
structions generate a SA2 (Store Ascending Register 2)
instruction cycle.

1. Reading PAK

a) Set processor to single instruction mode to stop after the exe-
cution of the previous instruction.

b) Set the processor MODE switch to STEP.

c) Depress run button until Step 1 lights on Mask 5.
d) PAK is displayed:
1) Mask 8 indicators 11-15 (Row) 16-20 (Column).

2) Mask 9 indicators 20-21 (Bank Designation).

Reference description of masks for details,

located

just to the left of the Card Stacker.

tch Panel for the UNIVAC 1005 Card Processor is

i

1l area.

is pane

the lower half of th

ies

tch Panel occup

i

d at the bottom

.

is hinge

ich

itches are beneath a cover wh

There
th one

down.

is cover

th

ing
6 rows of 8 sw

d by swing

ine
the area

bta

1s O

i

itches each w

H

in

itches

ition.

Program Step Counter Switches

The following 5 switches, located near the center of the panel are

used to stop the program on a given type of instruction.

5-4

TEST SWITCH PANEL.

II.

S
S
o

- %J%W
e o

on the upper front of the Processor

The Test Sw

The Test Sw

The Test Sw

Access to the switches
are 47 toggle sw
blank pos

A

SWITCHES 1 - 5 - These five switches are used to set up the instruction
number desired according to the binary code printed on Display Panel
6. Each of these five switches is set in one of two positions accord-
ing to whether the related code position calls for a 1 or 0:

Off (Up) for a 1
On (Down) for a 0

By keying instructions to switches and running the processor in a con-
tinuous mode, the machine will come to a halt after executing the first
cycle of the keyed instruction. Using this procedure, the programmer
may let his program run until it gets to a particular instruction and
then step through that particular routine in single instruction mode.

The remaining switches are primarily used for engineering mainte-
nance.

5-5

III. DISPLAY MASKS.

A. Display Mask 4.

1 2 3 4 5 6 7 8
@HOPPER] FEED | RD JAM TSP JAM[STACKR | FORM | ADV v | PUN‘CH_D
¢0000 00001 00011 00111 01110 11100 11001 10010

9 10 11 12 13 14 15 16
CCHALT] nD1] IND2 [IND3 [IND4 [RDI/O] PR I/O | PCH |/@
00100 01000 10001 00010 00101 01010 10101 01011

17 18 19 20 21 22 23 24
== @SPI | sp2 | sk1 [sk2 [sKka4 [ENDRD]ENDPRIR/PEXQ
10111 01111 11110 11101 11011 10110 01101 11010

25 26 27 28 29 30 31 32
= (CHOPPER] FEED [RD JAM[TSP JAM]WAIT JAMIFORM O'F[PCH HLD]PCH CL@

10100 01001 10011 00110 01100 11000 10000 11111

Indicators 1 - 13 are of interest during continuous operation to signify

a reason for Processor stopping. Indicators 14-21, 24, & 30 - 31 are for
program analysis with regard to Input/Output. Indicators 25 - 29 apply
when an Auxiliary Card Reader is used.

5-6

Operation

Display Mask 4 should be displayed when the Processor is in Continuous oper -
ation.

IMPORTANT: -- If the Processor stops during a run, the operator must always
consult Display Mask 4 to determine the reason for stopping before press-
ing any of the operating controls.

By noting the indication on this Display Mask, the proper action can be taken.
The Processor operation can then be resumed properly.

Card Feeding (1 - 5)

All areas of the card feeding mechanism from the Magazine to the Stacker
are covered by controls to stop the Processor in the event of mis-feeding.

HOPPER (1) - Input Magazine

This indicator will be lit whenever the Input Magazine is empty and
the Feed indicator is lit. The Hopper indicator cannot be on alone.

During operation, this indicator will light after the last card is read.

The Processor will stop after the read order is executed with
the last card in the Card Stacker.

Processor operation is resumed by:
Pressing the Stop switch.
Placing cards in the Magazine.

Pressing the Feed switch once to feed a card from the Magazine
into the Wait Station; the Hopper and Feed indicators will turn off.

Pressing the Run switch once to resume the Processor operation.
FEED (2) - Wait Station

This indicator will be lit by pressing the Clear switch or by a card
cycle if there is no card fed to the Wait Station.

Should this indicator light‘during operation, a card has failed to feed
from the Magazine. If there are cards in the Magazine, the Proc-
essor will stop on the next read order with the Feed indicator lit and
the Read not executed.

5-7

Processor operation is resumed by:
Pressing the Stop switch.
Removing the cards from the Magazine.

Examining the cards on the bottom of the stack to determme the
reason for the failure to feed. :

Correcting these cards and returning all cards to the Magazine.

Pressing the Feed switch once to feed a card from the Magazine to
the Wait Station; the Feed indicator will turn off.

Pressing the Run switch once to resume the Processor operation.

The Hopper and Feed indicators will be lit when the last card has been
fed from the Wait Station to the Card Stacker. The Processor will
stop at the completion of the current Read. If additional cards are to
be processed; press the Stop switch, place the cards in the Magazine,
press the Feed and Run switches.

RD JAM (3) - Read Jam

Should the Processor stop during operation with this indicator lit,
either one of the following has occurred:

1. A card from the Wait Station may have failed to feed to the Read
Photoelectric Diodes.

2. The Read Photoelectric Diodes may have failed the 'light-dark"
test.

Before reading the first card and between the reading of each
following card, the photo-diodes are in a ''light' condition.
When the leading end of a card enters the photo-diode area, a
""dark'' condition occurs.

This light-dark change must be executed properly to assure
correct reading; if it is not, the Processor will stop.

If the stoppage is due to a card jam before the photo-diodes, the Read-
Execute signal is retained in the Processor; the jammed card was

not read. The following procedure will return the Processor to opera-
tion without loss of data:"

1. Press the Stop switch.

5-8

2. Remove all cards from the Magazine and Wait Station.

3. Press the Feed switch once while the Magazine is empty. The
Feed indicator will light.

4. Remake the. damaged cards, if necessary, and replace them in
their proper sequence at the bottom of the stack in the Magazine.

5. Press the Feed switch once to feed a card from the Magazine to
the Wait Station.

6. Press the Run switch once to resume the Processor operation.

If there is no card jam when the Processor stops with the RD JAM in-
dicator lit, a light-dark test failure is signified. In this case:

The Read-Execute signal is retained in the Processor; card read-
ing did not take place, only card feeding.

The last card in the Stacker has not been read.
The following procedure should be followed to restore the Processor
to operation in the event the light-dark test failure was only

momentary:

1. Remove all cards from the Magazine. Remove the last card
from the Stacker and the card from the Wait Station.

2. Follow steps 3 through 6 above. The card from the Stacker
should be first in sequence when replacing the cards in the
Magazine.

Should the RD JAM indicator light, try the procedure again. If the
same indication persists, remake the card and try again. If failure
continues, have the field engineer check the photodiode operation.

TSP JAM (4) - Transport Jam (Photo—Diodes to Stacker)

This indicator will light in the event of a jam as the card is delivered
to the Stacker.

The Processor will stop.
To resume the Processor operation without loss of data:

Press the Stop switch.

5-9

Remove the mis-fed card or cards.
Press the 'Run switch.

STACKR (5) - Stacker

This indicator will light to indicate a full Card Stacker. The Proc-
essor operation will stop after a Read Order.

To resume the Processor operation without loss of data:
Press the Stop switch.
Remove the cards from the Stacker.
Press the Run switch.

Form Feeding (6 & 7)

FORM (6)

This indicator will light to signify that the supply of forms to be fed
is exhausted or that there is a break in the perforation between forms.

The Processor operation will stop when form feeding occurs to or
through the next Home position so that the operator can replenish the
form supply.

When a new form is installed in the proper position, the operation is
resumed by pressing the Run switch.

ADV V/ (7) - Form Advance Check

Should the form be fed in one skip beyond the permissible maximum
(22'"), this indicator will light to signify a form ''run-away''. This
would be an uncontrolled skip.

The Processor operation stops automatically within a very short
interval.

This stoppage is due to an error in the punching of the Form Control
Tape. :

After the proper correction has been made to the control and to the
form alignment, the operation is resumed by pressing the Run switch.

Card Punching

PUNCH (8)

This indicator will light and the Processor operation will stop in the
event of an abnormal condition in the Punch when a Punch function is given.

The Punch Control Panel will indicate the reason for the Processor
stoppage at this time.

The lighting of this PUNCH indicator can designate any of the follow -
ing Punch conditions:

The power cord of the Punch is not connected. The AC and DC in-
dicators will not turn on.

The Punch power switch is not turned on. The AC and DC indica-
tors will not be lit.

A fuse is blown in the Punch. The AC and DC indicators or the DC
indicator only will not light.

The Punch covers are not in place. The Interlock (INTL) indicator
will be lit.

The punching mechanism in the head of the Punch has been raised
and has not been lowered and locked in its proper position. The
Interlock (INTL) indicator will be lit.

The Punch reading brushes have been unlocked or removed and
have not been reseated and locked in their proper position. The
Interlock (INTL) indicator will be lit,

The Input Magazine of the Punch is empty. The HOPPER indicator
will be lit.

A Card Stacker of the Punch is full. The STACKER FULL indi-
cator will be lit.

There is a card jam in the Punch. The FEED A JAM or B JAM or
the STACKER JAM indicator will be lit.

The Chip Drawer of the Punch is full or is not in place. The
CHIPS indicator will be lit and/or the READY Light will be ex-
tinguished.

The Punch Check is set to stop the Processor operation when the
hole count does not agree.

5-11

The Processor operation is resumed, after correcting the Punch
condition, by pressing the Run switch.

HALT (9)
There are three conditions under which HALT nﬁay light.
1) When last card of Object Deck has been loaded.
2) When machine is running in Single Instruction mode.
3) When an XF HLT instruction is executed.

Auxiliary Card Reader (25 - 29)

These five indicators function when an Auxiliary Card Reader is being
used. All areas of the card feeding mechanism of the Auxiliary Card
Reader from the Magazine to the Stackers are covered by controls to
stop the Processor in the event of mis-feeding. These indicators ap-
ply only to the Auxiliary Card Reader, they are not related to the simi-
lar indicators 1 - 4 above., The STACKR (5) applies ta both Card
Readers.

HOPPER (25) - Input Magazine
This indicator will be lit whenever the Input Magazine is empty and
the Feed indicator (26) is lit. The Hopper indicator cannot be on
alone.
During operation, this indicator will light after the last card is read.
The Processor will stop with the last card in Wait Station 2 after
the auxiliary read order is executed.
Processor operation is resumed by:
Pressing the Stop switch.
Placing cards in the Magazine.
Pressing the Feed switch of the Auxiliary Card Reader once to feed
a card from the Magazine into Wait Station 1; the Hopper and Feed

indicators will turn off.

Pressing the Processor Run switch once to resume the operation.

' FEED (26) - Wait Station 1

This indicator will be lit by pressing the Clear switch on the Proc-
essor Central Control Panel or by a card cycle if there is no card
fed to Wait Station 1.

Should this indicator light during operation, a card has failed to feed
from the Magazine. If there are cards in the Magazine, the Processor
will stop on the next Auxiliary Read order with the Feed indicator lit
and the Read not executed.

Processor operation is resumed by:
Pressing the Stop switch.,
Removing the cards from the Magazine.

Examining the cards on the bottom of the stack to determine the
reason for the failure to feed,

Correcting these cards and returning all cards to the Magazine.

Pressing the Feed switch of the Auxiliary Card Reader once to
feed a card from the Magazine to Wait Station 1; the Feed indica-
tor will turn off.

Pressing the Processor Run switch once to resume the operation.

The Hopper and Feed indicators will be lit when the last card has been
fed from Wait Station 1l to the Card Stackers. The Processor will stop
at the completion of the current Read. If additional cards are to be
processed; press the Stop switch, place the cards in the Magazine,
press the Auxiliary Card Reader Feed switch and the Processor Run
switch.

RD JAM (27) - Read Jam

Should the Processor stop during operation with this indicator lit,
either one of the following has occurred:

1. A card from Wait Station 1 may have failed to feed to the Read
Photoelectric Diodes.

2. The Read Photoelectric Diodes may have failed the ''light-dark"
test.

Beifore reading the first card and between the reading of each
following card, the photo-diodes are in a "light'" condition.

5-13

When the leading end of a card enters the photo-diode area, a
""dark' condition occurs.

This light-dark change must be executed properly to assure
correct reading; if it is not, the Processor will StQP,_-

If the stoppage is due to a card jam before the photo-diodes, the Read
2-Execute signal is retained by the Processor; the jammed card was
not read. The following procedure will return the Processor to opera-
tion without loss of data:

1. Press the Stop switch.
2. Remove all cards from the Magazine and Wait Station 1.

3. Press the Feed switch of the Auxiliary Card Reader once while
the Magazine is empty. The Feed indicator will light.

4. Remake the damaged cards, if necessary, and replace them in
their proper sequence at the bottom of the stack in the Magazine.

5. Press the Feed switch of the Auxiliary Card Reader once to feed
a card from the Magazine to Wait Station 1.

6. Press the Processor Run switch once to resume the operation.

If there is no card jam when the Processor stops with the RD JAM
indicator lit, a light-dark test failure is signified. In this case:

The Read 2-Execute signal is retained in the Processor; card
reading did not take place, only card feeding.

The card in Wait Station 2 has not been read.

The following procedure should be followed to restore the Processor
to operation in the event the light-dark test failure was only
momentary:

I. Remove all cards from the Maga‘zine. Remove the card from
Wait Station 1. Press the Run Out switch of the Auxiliary Card
Reader to feed the card in Wait Station 2 to the Stackers.

2. Follow steps 3 through 6 above. The card from Wait Station 2
should be first in sequence when replacing the cards in the Mag-
azine. '

Should the RD JAM indicator light, try the procedure again. If the
same indication persists, remake card and try again. If failure

5-14

continues have the field engineer check the photodiode operaticn,
WAIT JAM (29) - Wait Station 2 Jam (Photo-Diodes to Wait Station 2)

This indicator will light to indicate the failure of a card to feed to or
from Wait Station 2.

To resume the Processor operation without loss of data:
Press the Stop switch.
Remove the mis-fed card or cards.

Press the Clear switch on the Control Panel of the Auxiliary Card .
Reader.

Press the Processor Run switch.
TSP JAM (28) - Transport Jam (Wait Station 2 to Stackers)

This indicator will light in the event of a jam as the card is delivered
to the Stackers.

The Processor will stop.
To resume the Processor operation without loss of data:
Press the Stop switch.
Remove the mis-fed card or cards,
Press the Processér Run switch.
STACKR (5) - Stacker
This indicator will light to indicate a full Card Stacker in the Auxiliary
Card Reader as well as in the Card Reader. The Processor operation
will stop after an auxiliary read order.
To resume the Processor operation without loss of data:
Press the Stop switch.

Remove the cards from the full Stacker.

Press the Processor Run switch.

B. Display Mask 6.

1 > 3 4 5 6 7 8
@LAI32] LDr33[LPR 34] SAr35 | SDr 36 | SPR37[SHR 38| SHL 3@
00000 00001 00011 00111 01110 11100 11001 10010

9 10 11 12 13 14 15 16
@cuuo] CAr 41|CNr 421 IC 43 | J 44\ JL 45| JG 46 | JE 47))
00100 01000 10001 00010 00101 01010 10101 01011

17 18 19 20 21 22 23 24
@JR 48 | JX 49 | AMr 50| ARr 51| SMr 52 [SRr 53 [MUL 54| DIV 55)
—

10111 01111 11110 11101 11011 10110 01101 11010

m—— 25 26 27 28 29 30 31 32
= @'RL 56525 57 [LWS 58 [LNr59 [SED 60[PTE 61] xF €2 | 9

10100 01001 10011 00110 01100 11000 10000 11111

Note: JS3, JET, JPE, JC8, JOF, JAL, JI1, and XF functions SIl, RI1,
RCD, SNS, SN8, Light the Indicator marked PTE., SC, LOR, LAN, BSH,
CCA, XFC Light the indicator marked XF.

Mask 6 is used to determine the operation being executed during single in-
struction mode. For register designation, refer to Mask 9.

Indicator 1 = LA Load Ascending AR1 or 2

r

2 = LD, Load Descending AR1 or 2

3 = LPR Load Print Descending

4 = SA, Store Ascending AR1 or 2

5 = SD,. Store Descending ARl or 2
6 = SPR Store Print Descending

7 = SHR Shift Right

8 = SHL Shift Left
9 = CLR Clear Area to Spaces

10 = CA, Compart Alpha ARl or 2

11 = CN,. Compare Numeric ARl or 2
12 = IC Increment and Compare
13 =17 Jump Unconditional

14 =JL Jump Less (Numeric)

15 =JG Jump Greater (Numeric)

16 = JE Jump Equal (Numeric)

17 = JR Jump Return (Store PAK in X Register)
18 =JX Store X Register in M

19 = AM,. Add Algebraic ARl or 2to M

20 = AR Add Algebraic M to AR1 or 2

21 = SM Subtract Algebraic AR or 2 from M

22 = SR Subtract M from ARl or 2

23

24

25

26

27

28

29

30

31

]

"

1

1l

1

i)

IE]

n

MUL Multiply

DIV ~ Divide

TRIL ~ Translate

SZS @ Suppress AR2 and Store Ascending
LWS. Load AR2 with Sign and Zone Delete
LN Zone Delete AR1l and ARZ

SED - Edit ,,. AR2 and Store Ascending

PTE Punch Text (See Note 1)

XF - External Functions (See Note 2)

NOTE 1: JS3,JET, JPE, JC8, JOF, JAL, JIl and XF
Functions SI1, RIl, RCD, SNS, SN8 light the
indicator marked PTE,.

NOTE 2: SC, LOR, LAN, BSH, CCA, XFC light the indi-
cator marked XF.

5-18

C. Display Mask 8.

MSR
MSC
LSR
LSC

1 2 3 4 5 6 7 8
@ASRS | 2MsR4 | 3MsR3 [aMsr2 | sMSR1 | 6mscs | 7Msc4 | 8MSC3®

00000 00001 00011 00111 01110 11100 11001 10010

9 10 11 12 13 14 15 16
@scz J1oMSC1]11LSRS5 [12LSR4[13LSR3]14LSR2]1 5L5R1[15Lscs))

00100 01000 10001 00010 00101 01010 10101 01011

17 18 19 20 21 22 23 24
@LSC4-]18LSC3]19LSC2|20LSC1] ccB | cca | ceB | CBAQ
10111 01111 11110 11101 11011 10110 01101 11010

25 26 27 28 29 30 31 32
@cm] caa | ica | 1ICB | wcc | wco | oca [ocs))
10100 01001 10011 00110 01100 11000 10000 11111

Most Significant Row
Most Significant Column
Least Significant Row
Least Significant Column

5-19

Mask 8 displays the operand of the instruction being executed during single
instruction mode. For operand bank designation, refer to Mask 9.

INDICATORS 1-5 represents all but the ""X'" bit of instruction character 2.
(Most significant row)

1

IND. Y bit
8 bit
4 bit
2 bit
1 bit

G WV =
]

H

INDICATORS 6-10 represents all but the "X" bit of instruction character 3.
(Most significant column)

IND. 6 =Y bit

7 = 8 bit
8 = 4 bit
9 = 2 bit
10 = 1 bit

INDICATORS 11-15 represents all but the "X'" bit of instruction character 4.
(Least significant row)

IND. 11 =Y bit
12 = 8 bit
13 = 4 bit
14 = 2 bit
15 = 1 bit

INDICATORS 16-20 represents all but the ""X'" bit of instruction character 5.
(Least significant column)

IND, 16 = Y bit
17 = 8 bit
18 = 4 bit
19 = 2 bit
20 =1 bit

INDICATORS 21-32 reference internal maching cycles and is primarily used
for engineering maintenance.

5-20

D. Display Mask 9

1 2 3 4 5 6 7 8
@c1>-T01¢<+J Cl=@ [c2>-[caz<+]| Co=0] C3>-Tcs¢<Q)

00000 00001 00011 00111 01110 11100 11001 10010
FALL JMP

9 10 11 12 13 14 15 16
@03=¢] Ca>- fcaz<+]Cca=0] C5>- [C5#<+] C5=0 | cs>-))

00100 01000 10001 00010 00101 01010 10101 O1011
ch8

17 18 19 20 21 22 23 24
% C@¢<+] c6=@ [C7>-[c7#<+]c7=0 [cC8>- |cs¢<+[cs:aD

10111 01111 11110 11101 11011 10110 01101 11010
ICIX 1C2X IC3X IC4AX IC5X PE EOT

25 26 27 28 - 29 30 31 32
((09>- [Co#<+] C9=8 [C10> - |C10 #<+] C10 = @ [MAINT B]MAINT Q)
10100 01001 10011 00110 01100 11000 10000 11111

5-21

Mask 9 displays various indicators and registers in the 1005. Of interest to
the programmer are the following:

INDICATOR

1.

16.

17.

18.

19.

20.

21.

If this indicator is lit on a conditional jump, the condition is

not met.

If this indicator is lit on a conditional jump, the condition is

- met.

A paper tape channel eight punch has been sensed.

Instruction character One "X" bit present.

Instruction character Two "X'" bit present.

Instruction character Three "X' bit present.

4

Instruction character Four "X' bit present.

Instruction character Five 'X' bit present.

NOTE 1:

Instruction character one "X'" bit determines the
register (when applicable) the instruction will
useO

"X bit absent = Register 1

""X" bit present = Register 2

NOTE 2: Instruction characters four and five determine the
bank designation. The following table of bits il-
lustrate bank addressing:

IIXII Bit “XII Blt Bank
Char. 4 Char. 5 Designation
Absent Absent 1
Present Absent 2
Absent Present 3
Present Present 4

22. Paper tape parity error, magnetic tape parity error, DLT
Mod Error, or invalid card code has been detected.

23. End of magnetic tape has been sensed.

5-22

LINIVAC

FEDERAL SYSTEMS DIVISION
FSD 1089.1 APRIL 1968

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	xBack

