
c

0--\

UNIVAC
DATA PROCESSING DIVISION

•
ASSEMBLER-BD

c
U'P·4084

This manual is published by the UNIVAC Division of Sperry Rand Corpo­
ration in loose leaf format as a rapid and complete means of keeping re­
cipients apprised of UNIVAC ® Systems developments. The UNIVAC

. Division will issue updating packages, utilizing primarily a page-for-page
or unit replacement technique. Such issuance will provide notification of
hardware and/or software changes and refinements. The UNIVAC Division
reserves the right to make such additions, corrections, and/or deletions
as in the judgment of the UNIVAC Division, are required by the devel­
opment of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A.

c·

c

c

........... -~ ---.. -.•. - .. -•. ~-~.--. --.-.-.-.-~---.- .. -.-.-.. '

UNIVAC 100S

UP-4084 ASSEMBLER.SO Contents 1

.(~:
./

c

SECTION: PAGE:

CONTENTS

CONTENTS 1 t04

1. INTRODUCTION TO THE UNIVAC 1005 AND INTERNALLY STORED PROGRAMMING 1-1 to 1-9

1-1 1.1. ADDRESSING TECHNIQUE

1.2. BASIC LOGIC AND FORMAT

1.3. CONTROL SECTION OPERATION

1.4. OTHER INSTRUCTION FORMATS

1.5. STORAGE ALLOCATION AND USE

1.6. INDIRECT ADDRESSING

1.7. OTHER SPECIAL REGISTERS

1.8. SPECIAL REGISTER LOCATIONS

1.9. ADDRESSING AND USE OF COLUMN 32

2. INTRODUCTION TO ASSEMBLY SYSTEMS

2.1. PURPOSE OF ASSEMBLY SYSTEMS

2.2. MNEMONIC CODING

2.3. SYMBOLIC CODING

2.4. RELATIVE CODING

2.5. MEMORY MAPPING

2.6. DECLARATIVE INSTRUCTIONS

2.7. ASSEMBLER PROCESSING

1-2

1-3

1-4

1..,4

1-5

1-8

1-8

1-9

2-1 to 2-4

2-1

2-1

2-2

2-2

2-2

2-3

2-4

---------------~-~~==~~-~~~~~~~-~ , ... -... "",~-=-

--_ .. _-_._--_ .. - --~~-~-----~--~~.~-----.... ~ __ . ___ ~ _______ . ____ ··n.

UNIVAC 1005

____ U_P_-_4_0_84 __ ~ _______________ A_S_S_E_M_B_L_E_R_-_8_0 ______________ ~ __________ ~S_E_C;_I_~:_~_e_nt_s __ ~p_A_GE_: __ 2 __ ~.~

3. INTRODUCTION TO THE UNIVAC 1005 ASSEMBLY SYSTEM 3-1 to 3-15 C~
3.1. TERMINOLOGY DEFINITIONS 3-1

3.2. CODING FORM 3-1
3.2.1. LABEL 3-1
3.2.2. OPERATION 3-2
3.2.3. OPERAND 1 3-3
3.2.3.1. IA 3-3
3.2.3.2. FIELD A 3-3
3.3.3.3. ± INC 3-3
3.2.4. OPERAND 2 3-4
3.2.4.1. lA, FIELD B, ± INC 3-4
3.2.4.2. FIELD C, ± INC 3-4
3.2.5. COMMENTS 3-5
3.2.6. CARD NUMBER 3-5
3.2.7. REMAINDER 3-5

3.3. OPERAND 1 ADDRESS SPECIFICATION 3-6
3.3.1. Symbolic Address (Label) Specification 3-6
3.3.2. Increments to Symbolic Addresses 3-7
3.3.3. Decimal Addressing 3-8
3.3.4. Rowand Column Addressing 3-8
3.3.5. Instruction Location Counter (ILC) Addressing 3-9

3.4. OPERAND 2 ADDRESS SPECIFICATION 3-10
3.4.1. Operand 2, Field C, Blank Addressing 3-10 C) 3.4.2. Operand 2 Indirect Addressing 3-12

3.5. SUMMARY OF FIELD A, FIELD B, AND FIELD C SPECIFICATIONS 3-13
3.5.1. FIELD A 3-13
3.5.2. FIELD B 3-13
3.5.3. FIELD C 3-14

3.6. STANDARD SYSTEMS LABELS 3-14

4. UNIVAC 1005 ASSEMBL Y SYSTEM INSTRUCTIONS 4-1 to 4-98

4.1. LEGEND 4-1

4.2. LENGTH OF OPERANDS 4-1

4.3. TRANSFER INSTRUCTIONS 4-4
4.3.1. TRANSFER DESCENDING 4-4
4.3.2. TRANSFER ASCENDING 4-7
4.3.3. TRANSFER CLEAR 4-9
4.3.4. TRANSFER NUMERIC 4-10
4.3.5. TRANSFER CONSTANT 4-10
4.3.5.1. Symbol i c Address Substitution 4-14
4.3.5.2. Row/Column and Decimal Addressing 4-15
4.3.5.3. Binary Coded Constants 4-16
4.3.6. TRANSFER TO REGISTER X 4-18
4.3.7. TRANSLATE 4-19

C

· UP-4084

c;
.,.;/

C

UNIVAC 1005

ASSEMBLER·SO

4.4. ADDITION AND SUBTRACTION
4.4.1. ADD ALGEBRAIC
4.4.2. SUBTRACT ALGEBRAIC
4.4.3. ABSOLUTE ADD (ADD MAGNITUDE)
4.4.4. ABSOLUTE SUBTRACT (SUBTRACT MAGNITUDE)
4.4.5. ADD CONSTANT

4.5. COMPARE INSTRUCTIONS
4.5.1. COMPARE NUMERIC SIGNED COMPARISON
4.5.2. COMPARE ABSOLUTE (MAGNITUDE) UNSIGNED COMPARISON
4.5.3. COMPARE ALPHANUMERIC UNSIGNED COMPARISON
4.5.4. COMPARE CONSTANT UNSIGNED COMPARISON

4.6. CON DITION IN D ICA TORS
4.6.1. SET CONDITION
4.6.2. STOP (HA L T)

4.7. SEQUENCE CONTROL INSTRUCTIONS
4.7.1. JUMP CONDITION
4.7.2. JUMP TEST
4.7.3. UNCONDITIONAL JUMP
4.7.4. JUMP RETURN
4.7.5. JUMP COMPARE
4.7.6. JUMP LOOP
4.7.7. JUMP INDIRECT

4.8. COUNT

4.9. EDIT INSTRUCTIONS
4.9.1. EDIT LOGICAL
4.9.2. EDIT ERASE
4.9.3. EDIT SUPERIMPOSE
4.9.4. ED IT

4.10 DECLARATIVE INSTRUCTIONS
4.10.1. DEFINE INSTRUCTION LOCATION COUNTER
4.10.2. DEFINE AREA
4.10.2.1. DEFINE SUB-FIELD
4.10.2.2. Subfields of Specific Fixed Address Areas
4.10.3. DEFINE CONSTANT
4.10.3.1. In-line Constants
4.10.3.2. In-line Comments
4.10.4. DEFINE INDIRECT ADDRESS CONSTANT
4.10.5. DEFINE END

4.11. MULTIPLICATION INSTRUCTIONS
4.11.1. MULTIPLY
4.11.2. MULTIPLY (LONG)

4.12. DIVIDE INSTRUCTION
4.12.1. DIVIDE

Contents 3
SECTION: PAGE:

4-23
4-24
4-25
4-26
4-26
4-27

4-28
4-29
4-30
4-32
4-34

4-36
4-36
4-39

4-39
4-39
4-44
4-46
4-46
4-49
4-51
4-54

4-55

4-57
4-58
4-60
4-60
4-61

4-65
4-65
4-68
4-69
4-71
4-72
4-74
4-75
4-76
4-79

4-79
4-80
4-82

4-83
4-84

UP-4084
UNIVAC 1005

ASSEMBLER-SO

4.13. INPUT/OUTPUT INSTRUCTIONS
4.13.1. SHORTENED GENERAL COMMAN DS
4.13.2. GENERAL COMMANDS
4.13.3. READ MAGNETIC TAPE
4.13.4. WRITE MAGNETIC TAPE
4.13.5. RECEIVE DATA LINE
4.13.6. SEND DATA LINE
4.13.7. RECEIVE INTERFACE
4.13.8. SEND INTERFACE

5. OPERATING PROCEDURES FOR 1005 ASSEMBLY

5.1. LOADING SOURCE PROGRAM
5.2. LOADING OBJECT PROGRAM
5.3. FINAL LISTING
5.3.1. Original Source Code
5.3.2. Unfound Indicators
5.3.3. Sequence Number
5.3.4. Object Code Instruction
5.3.5. Load Instruction
5.3.6. Diagnostic Message

6. PROGRAM TESTING AIDS

APPENDIX A.
UNIVAC 1005 ASSEMBLER CODING FORM

APPENDIX B.
UNIVAC 1005 INSTRUCTION TIMING (80)

Contents 4
SECTION, PAGE,

4-85 C" 4-86
4-87
4-92
4-93
4-94
4-95
4-96
4-97

5-1 to 5-3

5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3

6-1 to 6-3

A-I to A-I

B-1 to B-1. C

c

UNIVAC 1005 System
ASSEMBLER-80 Programmer's Reference
UP-4084

UPDATING PACKAGE "A"

August 23, 1966

UNIVAC 1005 System P.I.E. Bulletin 4, UP-4072.4, releases and announces
the availability of Updating Package "A" for the "UNIVAC 1005 SYSTEM
ASSEMBLER-80 Programmer's Reference," UP-4084, 59 pages plus 1 Updating
Summary Sheet. This material should be utilized in the following manner:

SECTION

1

3

4

6

DESTROY FORMER
PAGES NUMBERED

1 & 2
3 & 4
9 & 10
13 & 14
1 & 2
5 & 6
7 & 8
11 & 12
15 & 16
19 & 20
21 & 22
29 & 30
35 & 36
37 & 38
39 & 40
41 & 42
51 & 52
53 & 54
55 & 56
61 & 62
63 & 64
65 & 66
67 & 68
73 & 74
81 & 82
83 & 84
85 & 86
97 & 98
1 & 2
3

FILE NEW PAGE
NUMBERED

1* & 2 Rev.l
3 Rev.l & 4*
9 Rev.l & 10*
13* & 14 Rev.l
1 Rev.l & 2*
5 Rev.l & 6*
7 Rev.l & 8 Rev.l
11* & 12 Rev.l
15 Rev.l & 16 Rev.l
19* & 20 Rev.l
21 Rev. 1 & 22*
29 Rev.l & 30*
35* & 36 Rev.l
37 Rev.l & 38*
39 Rev.l & 40*
41 Rev.l & 42*
51 Rev.l & 52*
53* & 54 Rev.l
55 Rev.l & 56*
61 Rev.l & 62 Rev.l
63 Rev.l & 64 Rev.l
65 Rev.l & 66*
67 Rev.l & 68*
73 Rev.l & 74 Rev.l
81 Rev.l & 82 Rev.l
83 Rev.l & 84*
85 Rev.l & 86*
97 Rev. 1 & 98*
1 Rev.l & 2*
3 Rev.l

*These pages, backups of revised pages, remain unchanged.

o

!

o

c

UP-4084

c

c

UNIVAC 1005

ASSEMBLER·SO

1. INTRODUCTION
TO THE UNIVAC
AND INTERNALLY
PROGRAMMING

1
SECTION.

1005
STORED

The UNIVAC 1005 is a general purpose, stored program, digital computer. The main
store consists of either two or four banks of core memory with 1024 locations per
bank. In addition to providing storage for instructions and data, two types of
Special Registers are provided in core memory to control the operation of the
UNIVAC 1005. The special registers are addressable and in some cases can be used
as additional data storage.

1.1. ADDRESSING TECHNIQUE

Each bank of core memory consists of a 32 row by 32 column matrix of six-bit
memory locations. Each location is addressed by specifying its Row and.Column
coordinates. For example; the first memory location has an address of Row 1,
Column 1; the last memory location has an address of Row 32, Column 32. These
address designations are abbreviated to R11C1 and R32/C32.

In order to store the address of instructions and data in memory, the six bits of two
adjacent memory locations are required. Five of the six bits of the left-hand
location are used to specify the Row coordinate, and five of the six bits of the right­
hand location are used to specify the Column coordinate. A combination of the
sixth bits of both locations is used to specify which of the four possible banks of
memory is involved.

The UNIVAC 1005 utilizes a special five-bit address concept which operates on a
logical rather than a binary arithmetic basis. Special combinations of these five
bits are employed for the values 1 to 31 used as row or column coordinates. These
five-bit combinations, plus the sixth bit required for bank designation, correspond
to the 64 characters of the UNIVAC 1005. Thus, the address of any location in any
bank of core memory can be specified by the proper selection of two of these six­
bit characters.

The foregoing description indicates the similarity and compatibility of the memory
of the UNIVAC 1005 and the UNIV.AC 1004.

1
PAGE,

UP-4084

1

101

201

1701

1801

1901

UNIVAC 100S

ASSEMBLER-80 Rev. 1 1
SECTION,

For the purpose of stored-programming, the main store of the UNIVAC 1005 should
be considered as 1922 (or 3844) consecutively numbered, decimally addressed
memory locations exclusive of all rows numbered 32 and all Columns numbered 32
of each row. The physical arrangement of main store is then no longer a concern of
the programmer. Using this method, the main store of the UNIVAC 1005 takes on
the following appearance:

100 h923

200 2001

300 12100

3601
3701

3801 3844 I
1800

1900

1922 I
BANKS 1 and 2 BANKS 3 and 4

Decimal addressing would then produce the following facility for programming:

First location of Read Input Storage (Card Col. 1)
Last location of Read Input Storage (Card Col. 80)
First location of Print Storage (Print Pos. 1)
Last location of Print Storage (Print Pos. 132)
First location of Punch Storage (Card Col. 1)
Last location of Punch. Storage (Card Col. 80)

DECIMAL ADDRESS

1
80

161
292
293
372

2000
2100

2200

3700

3800

Since Print Position 1 is located at address 161, Print Position 23, for example, is
located 22 positions away at address 183. This same convenience is extended to
the addressing of the programmer's data areas as well as to the other reserved areas
of Input Output storage. A complete description of decimal addressing as provided
by the UNIVAC 1005 Assembly System appears in Section 3.3.3. of this manual.

1.2. BASIC LOGIC AND FORMAT

The UNIVAC 1005 operates on a basic two address instruction logic. A UNIVAC
1005 instruction may contain the address of one or two units of information called
Operands, and an operation code for the process to be performed with these Operands.
The Operands are defined by specifying the address of the most Significant location
(abbreviated MSL), or the address of the least significant location (abbreviated
LSL), or both, depending on the operation to be performed. Operations are specified
by a one character code.

2
PAGE:

c

o

--~~-.. ,,,--.".-.~~~------- .. ~.,~--~, -~-~-~~"---~'~"·'"-'·-"""--uN IVAC -100S -- "'~.~---"-"""-".'-~-----'-.-~ ~-~~ ---'"------,------,-.--------~ I"-~-~--~~~~'

UP-4084 ASSEMBLER.80 Rev. 1 1
IECTION:

The majority of the UNIV AC 1005 instructions require seven character locations in
the following format:

OP is a single character which specifies the operation to be performed.
A is the two character address of the MSL or the LSL of Operand 1.
B is the two character address of the MSL of Operand 2.
C is the two character address of the LSL of Operand 2.

A, B or C may also represent constant information.

The function called for by an instruction is executed in ascending (LSL to MSL) or
descending (MSL to LSL) mode. If the operation is performed in ascending mode,
the A portion specifies the LSL of Operand 1. If the operation is performed in
descending mode, the A portion specifies the MSL of Operand 1. The use of UNIVAC
1005 character codes to specify operation codes and addresses is called absolute
coding or machine coding. A table of these codes and their equivalents is shown
in Section 6. As will be explained in succeeding sections of this manual, the UNIVAC
1005 Assembly System provides a convenient method of specifying these codes. The
output of the Assembler processing is a deck of punched cards containing instructions
in machine code. These cards are read by the UNIVAC 1005 and the instructions stored
in core memory under the control of a Load program. The Load program supplied by
UNIV AC is a special header card which is placed in the front of the instruction cards.

1.3. CONTROL SECTION OPERATION

After the program has been loaded, operation of the UNIVAC 1005 proceeds under
the control of the Instruction Control Counter (ICC). The ICC is one of the Special
Registers located in core memory. The ICC is a two character register which contains
the address of the MSL of the instruction to be accessed next by the UNIVAC 1005.
As each instruction is accessed for execution, the contents of the ICC are incre­
mented by the number of characters in the instruction - - usually seven. This incre­
men t is automatically added to the right-hand character of the ICC, the Column
address portion. When the Column count passes 31, an increment of one is added
to the Row address portion of the ICC, and the Column portion is returned to 1.
The ICC will never create an address of Row 32 or Column 32 because the increment
of 1 to "31" produces a result of 1. Memory Bank specification is also advanced
as the Row count passes 31. Thus,the access and execution of instructions
proceeds in a sequential manner. Instructions are provided to vary this sequential
operation when required.

As each instruction is accessed, according to the address in the ICC, it is trans­
ferred to the Instruction Register (IR). The IR is a seven character Special Register
which is used to examine the instruction. The bit configuration of the single
character Operation code is analyzed by the circuitry which establishes and controls
the functions necessary to perform the required operation. The address portions of
the IR are transferred to the internal storage address controls for OP 1 and OP 2.

3
PAGE.

UP-4084
-----------[fNTv-.. \"cToos· ...

ASSEMB LER-BO

The normal operation of the UNIVAC 1005 when executing instructions is to access
the first character from either the LSL or the MSL of OP 1, and the corresponding
character from OP 2 (LSL or MSL) and perform the process. The determination of
whether the LSL or the MSL is used is based on the mode--ascending or descending
--of the instruction. After operating on the first characters from OP 1 and OP 2, the
operation proceeds with successive corresponding characters of OP 1 and OP 2
until the processing of the last character location of OP 2 has been completed.
This signals the end of the instruction.

During the execution of each instruction, the contents of the ICC are incremented
according to the number of characters in the instruction itself. When the end
operation signal is generated, the new address in the ICC is used to control the
access of the next instruction (NI). The execution of the program proceeds in this
manner to direct the UNIV AC 1005 to accomplish the desired results.

1.4. OTHER INSTRUCTION FORMATS

The instruction repertoire of the UNIV AC 1005 includes a complete set of commands
for control of the operation of the system. In addition to the type of commands
previously mentioned--seven characters, with an OP 1 and an OP 2 address--there
is a second type of command which provides for flexibility and ease of control of
the programming requirements necessary to internally stored program operation.

The second type of instruction is five characters in length and has the following
format:

Where:

OP A B

OP is a one character operation code.

A is a two character address or constant whose value is used or whose
bit configuration is used to perform special functions.

B is a two character address of a loe ation in memory.

As is the case with most stored program computers, there are special commands in
the UNIVAC 1005 with a format that does not precisely conform to these two basic
formats. The Set Condition Instruction is a unique exception to the general rule in
that "B" is used for the normal purpose of "A." These special commands will be
either five or seven characters in length, and the format variation will be indicated
along with a complete description of the operation.

1.5. STORAGE ALLOCATION AND USE

The main store of the UNIVAC 1005 is separated by the hardware into two major
areas--input output store, and working store. Input output store consists of selected
portions of memory reserved for the information received from and transferred to the
input/output devices. When an input or output device is not required by a particular

4

o

I

o

o

UP-4084

c

1.6.

(~:

UNIVAC 1005

ASSEMBLER·SO
SECTION:

1

program, the reserved memory area of that device may be used by the programmer for
storage of instructions or data. The working store consists of these portions of
memory not reserved for input/output information--the remainder of core memory.

The working store is separated by the programmer into two types of areas according
to his programming requirements. A portion of working store is established by the
programmer to store the information (other than input/output) to be processed. The
remainder of working store is used to st'ore the program instructions.

A note should be made at this point that the addressing capability of the instruction
address extends to all of main store. This means that the contents of any memory
location or locations can be accessed as data to be processed. This includes those
locations used by the programmer to store instructions. The use of this capability
to operate on instructions as if they were data is an important technique of internally
stored programming.

INDIRECT ADDRESSING

Another facility provided by the UNIVAC 1005 is the ability to perform Indirect
Addressing. In the UNIVAC 1005, Indirect Addressing is the ability to specify in
the address portion of an instruction the address of the memory location which con­
tains not the data to be processed, but a secondary address which specifies the
location of the data to be processed. From a hardware standpoint, this is accom­
plished by using the primary address--the address in the instruction--to control the
transfer of the secondary address to the IR where it is then used as the address of
the data to be processed.

From a programming standpoint, Indirect Addressing allows the programmer to
establish one series of instructions which perform a programming operation on
separately stored but related items of information. This is accomplished by pro­
gramming the instructions once using primary addresses, and changing the secondary
addre,ss to refer to the proper item for each use of the series of instructions. For

example: a detail card contains four twenty-column transaction items. Each item
contains four five-column fields. The program is written using primary addresses
which refer to a table of secondary addresses. The table is set up to refer to the
address of the fields within an item. A series of addresses in the form of constants
is created by the programmer and stored in a portion of working store. There is a
series of addresses for each of the transaction items as they will appear in Read
Input Storage. Before processing the first transaction item, the program transfers
the series of addresses which refer to this item, to the secondary address table
locations referred to by the primary addresses in the instructions. The first item
is then processed. At the conclusion of the processing of the first item, the program
then transfers the series of addresses which refer to the second transaction to the
table of secondary addresses. The series of instructions is then executed again,
only this time, the table of secondary address references the locations of the fields
of the second transaction item causing it to be processed. The program action of
changing the contents of the secondary address table is then repeated for the
processing of the third and fourth transaction items. An explanation of this example
is shown in Figure 1-1.

5
PAGE:

UP-4084

TRANSACTION ONE

FIELD I FIELD 2 FIELD 3 FIE LD 4

UNIVAC 1005

ASSEMBLER-SO

READ INPUT STORAGE

TRANSACTION TWO TRANSACTION THREE

FIELD I FIELD 2 FIELD 3 FIELD 4 FIELD I FIELD 2 FIELD 3 FIELD 4

1
SECTION:

TRANSACTION FOUR

FIE~D I FIELD 2 FIELD 3 FIELD 4

1 56 10 II 15 16 2021 2526 3031 3536 4041 4546 5051 5556 60 61 6566 7071 7576 80

~ SECONDARY ADDRESS TABLE

ENTRY I ENTRY 2 ENTRY 3 ENTRY 4

ADR. OF ADR. OF ADR.OF ADR.OF

FIELD I FIELD 2 FIELD 3 FIELD 4

MSL LSL MSL LSL MSL LSL MSL LSL

,---1234

CONSTANT STORAGE

{ENTRY I
ADR.OF ADR.OF ADR.OF ADR.OF
FD. I, ITEM I FD. 2, ITEM I FD. 3, ITEM I FD. 4, ITEM 1

ADR.OF ADR.OF ADR.OF ADR.OF
ENTRY 2 FD.l ITEM 2 FD.2 ITEM 2 FD. 3, ITEM 2 FD. 4, ITEM 2

ADR.OF ADR.OF ADR.OF ADR.OF
ENTRY 3 FD. I, ITEM 3 FD. 2, ITEM 3 FD. 3, ITEM 3 FD. 4, ITEM 3

ADR.OF ADR.OF ADR.OF ADR.OF
ENTRY 4 FD. I, ITEM 4 FD. 2, ITEM 4 FD. 3, ITEM 4 FD. 4, ITEM 4

Figure 1-1. Example of Indirect Addressing

6 Ii
PAGE:

o

o

UP-4084

c'

OPERATION

Instr. 1 TRF-D

2 ADD-ALG

3 ADD-ALG

4 SUB-ALG

5 TRF-D

6 Return to
Instruction
2

UNIVAC 100S

ASSEMBLER-SO

INSTRUCTIONS REQUIRED

The * ind icates Ind irect Address ing

FIELD A FIELD B FIELD C

MSL of Entry MSL of LSL of Sec
1 in constant Sec Adr Adr Table
storage - Table

*ADR of Loc 3 *ADR of ADR of Loc
Entry 1, Sec Loc 1 3 Entry 2
Adr Table Entry 2, Sec Adr
(LSL Field) Sec Adr (LSL Fd 2)

(MSL Fd 2)

*ADR of Loc 3 *ADR of Loc ADR of Loc
Entry 2, Sec 1 Entry 3 3 Entry 3
Adr (LSL Fd 2) Sec Adr Sec Adr

(MSL Fd 3) (LSL Fd 3)

*ADR of Loc 3 *ADR of Loc ADR of Loc
Entry 3, Sec 1 Entry 4, 3 Entry 4
Adr (LSL Fd 3) Sec Adr Sec Adr

(MSL Fd 4) (LSL Fd 4)

MSL of Entry MSL of Sec LSL of Sec
2, then 3, then Adr Table Adr Table
4, in constant
storage

1
SECTION:

ACTION

The MS Land LS L addresses of
the Fields of Transaction One
are transferred to the Sec Adr
Table

The primary address in the A
position of the instruction refers
to the lower 2 characters of Entry
1 in the Sec Adr Table. These
two characters are then used as
the A address of this instruction.
The primary addresses in the
Band Cpos iti ons similarly refer
to the Sec Adr Table Entry 2, and
address substitution occurs.

Same as for Instruction 2 except
that substitutes are made from
Entry 2 and Entry 3.

Same as for Instruction 3 except
that substitutions are made from
Entry 3 and Entry 4.

The addresses of the next item
are set up in the Sec Adr Table.

Transfer control to instruction
2 to initiate processing of the
next item.

NOTE: Additional programming techniques are necessary to control the number of times these instructions
are to be executed for each card read. They are not involved with the use of Indirect Addressing,
and were omitted in order to confine the example to the discussion. They will be covered a long
with the UNIVAC 1005 Operations which are used for the additional techniques. (See the JL and
CC instructions if desired.)

Instructions 2, 3 and 4 will not have anything coded in Field C. The MSL and LSL to be used is
defined in Field B.

The normal use of Indirect Addressing is with data which contains a multiple item
format similar to the punched card format in the preceding example. The multiple
item concept is generally used for magnetic tape master and detail files. The use
of the Indirect Addressing capability of the UNIVAC 1005 is not restricted to the
multiple item concept.

Other UNIVAC 1005 Operations and capabilities designed to implement stored
programming techniques are described in this manual along with an example of the
application of the technique.

7
PAGE:

UP-4084

--- ------- '--'---::--~-

UNIVAC 1005

ASSEMBLER-SO

1.7. OTHER SPECIAL REGISTERS

1
SECTION:

There are two Special Registers in addition to the Instruction Control Counter and
the Instruction Register. These are the Multiply /DivideRegister (MDR), and a
multi-purpose register called Register X (rX).

The MDR is 31 locations in length, and is used in the process of Multiplication and
Division. The most significant 10 positions of the MDR are used by the IR and the
ICC during part of each Instruction Cycle. When not required for this purpose, the
least significant 21 locations may be used for intermediate results of other pro­
gramming operations.

Register X is 31 locations in length and is used primarily with the Edit Mask
Operation, otherwise it may be used when Add or Subtract operations involve
Operands of unequal length.

A thorough explanation of the use of rX and the MDR is given in this manual where
the Oper,ations which reference them are discussed.

It should be'remembered that all Special Registers are located in core memory, are
explicitly addressable, and are in addition to the basic two or four banks of main
store.

1.8. SPECIAL REGISTER LOCATIONS

The Instruction Register (IR), the Instruction Control Counter (ICC), and the
Multiply/Divide Register (MDR) constitute an extra row of core memory--Row 32.
This set of special registers is in Row 32 of BANK 1

1 COLUMN 31

1
ROW BANK 1

HARDWARE RESTRICTION
COLUMN 10 CANNOT
BE USED

IR MDR

32

1 7 8 9 10 11 31

Regist~r X constitutes an .extra row of core memory--Row 32 of BANK 2.

- 1
ROW

1 COLUMN· 31

IX
32~ ______________ ~

1 31

BANK 2

8
PAGE:

c

c

c

UP-4084

(~.

UNIVAC 1005

ASSEMBLER-SO
SEC TION:

1

When the ICC is incremented for sequential access of instructions, it advances from
R31/C31 of Bank 1, Bank 2, Bank 3, and Bank 4, to Rl/Cl of Bank 2, Bank 3, Bank
4, and Bank 1 respectively, thus bypassing Row 32 and the special registers. The
use of decimal addressing does not include the specification of the addresses of the
Special Registers.

1.9. ADDRESSING AND USE OF COLUMN 32

Each of the 32 Rows of memory contains 32 columnar positions. The allocation of
memory by the Assembler program is made on the basis of 31 Rows and 31 Columns
per Bank. As described in Secti.on 1.8, Row 32 of Bank 1, 2, 3, and Bank 4 are
excluded from Assembler allocation and are used for the Special Registers. The
explanation of the advance of the Rowand Column portions of the Instruction
Control Counter indicates that not only is Row 32 of memory bypassed, but also
Column 32 of each Row of memory is also excluded from Assembler allocation.

Column 32 of each Row in Bank 2, 3, and 4 becomes a series of one character
locations which can be used by the programmer for such things as single character
constants, control settings, program switches, etc. Decimal addressing does not
include the addressing of any Column 32.

NOTE: Column 32 of each of the Rows in Bank 1 are reserved for hardware/software
control purposes an'd must not be used by the programmer.

Row 32 of Bank 3 and Bank 4 are also not included in the allocation processing of
the Assembler program. Row 32 of Bank 3 and Bank .4 can be used by the programmer
for the storage of data and intermediate results of processing.

Control of an internally stored program computer is accomplished by providing the
computer with a set of instructions which have been designed to produce the desired
results. These instructions are created by the programmer according to the specific
requirements and capabilities of the computer. The instructions must be entered in
the computer memory in a specific sequence using a precise set of characters. This
set of characters constitutes the vocabulary or language of the machine. Machine
languages are dictated by the design characteristics of the computer and seldom
bear any relationship to human language. Furthermore, machine languages seldom
follow any logical pattern that a person could use when writing a program. In
addition to the language barrier, there are many clerical-type functions which a
programmer must perform when writing a program.

9
PAGE:

----------------- _._------_ ...• _------

o

()

UP-4084

(-

c

UNIVAC 1005

ASSEMBLER-SO

2. INTRODUCTION

2
SECTION:

TO ASSEMBLY SYSTEMS

2.1. PURPOSE OF ASSEMBLY SYSTEMS

In order to overcome the language barrier, and to provide the programmer with
clerical-type assistance, an assembly system is usually provided as part of the

software of an internally stored program computer.

The assembly system allows the programmer to use a machine-oriented language
which is also human oriented. The programmer writes the instructions in assembly
language according to the rules of the assembly system. These instructions are
punched into cards and are read into the computer under the control of a program
called the assembler program. The assembler program analyzes the assembly
language instructions and translates or converts this language into the precise
machine language of the computer. An output deck of punched cards is produced
by the assembler processing which contains the machine language instructions.
This deck of cards is then read into the computer under the control of a load
program which stores the instructions in the required sequence. The computer is
then instructed to execute the program.

The deck of cards which contains the instructions written in assembly language is
called the source deck. The output deck of cards which contains the instructions
in machine language is called the object deck. In some cases, the assembly
language is referred to as the source language or source code, and the machine
language is referred to as the object language or object code.

2.2. MNEMONIC CODING

The terms mnemonic, symbolic, and relative coding are sometimes erroneously used
as synonyms. Each term has a specific meaning, and each one constitutes an im­
portant characteristic of an assembler.

An assembly language usually contains a set of mnemonic codes which represent
the Operation codes of the computer. These mnemonic codes are established to
help the programmer remember the code to be used for the Operation needed.

1
PAGE:

UP-4084
UNIVAC 1005

ASSEMB LE R-80

2.3. SYMBOLIC CODING

SECTION:

Symbolic codes are a usual provision of an assembly language to allow the pro­
grammer to assign meaningful names to important information within his program.
For example, the fields of data in a payroll card are known to the programmer b.y

2

the type of information they contain, such as Employee Number, Department, Gross
Pay, etc. There is normally a limitation on the let).gth of a symbolic name. However,
this length is usually enough to permit meaningful abbreviations or contractions.
In the example above, the Employee Number field could be named EMPNO; the
Department field could be named DEP1"; the Gross Pay field could be named
GRPAY. As will be discussed in the section on memory mapping, the actual
addresses of these fields in memory are assigned by the assembler program. When
the name or label appears anywhere in the source language instructions, the assembler
program will use the assigned actual address in the object language instruction.

Symbolic labels are also assigned to instructions in the program which are refer­
enced by other instructions in the program. When a non-sequential transfer of
control is required from one series of instructions to another, the programmer must
specify the point to which control is to be transferred. Since actual addresses are
assigned by the assembly program, the programmer cannot provide the actual
address. By labelling the instruction to which control is to be transferred, he can
use the symbolic address for the same purpose.

2.4. RELATIVE CODING

Relative coding is another assembly system technique which allows the programmer
to specify the location of instructions and data, even though the actual addresses
are assigned by the assembly program. To use the relative coding technique, the
programmer must have a thorough understanding of the memory mapping operation of
the assembler program. Once this is understood, relative coding is a simple yet
powerful programming technique. In the preceding section on symbolic coding is an
explanation of the assembler program assignment of addresses to symbolic labels.
This creates a common fixed point of reference between the programmer and the
assembler program. By using this common fixed point of reference (the label) as a
base, the programmer can specify other locations by their position relative to the
base. For example, if the memory lo-<:ation which is to contain the information from
card column 1 has been given a label of DETCD, then the memory location which is
to contain the information from card column 5 would be 4 locations away. By
specifying an operand of DETCD + 4, the programmer causes the assembler program
to assign the actual address of the operand by mathematically adding the increment
of 4 to the actual address of DETCD. The assembly system usually provides for
decrements to symbolic labels as well as increments.

2.5. MEMORY MAPPING

In order to assign the location of instructions and data, the assembler program must
keep track of the. locations that are used as the assembler processing is performed.
To do this, the assembler program contains an Instruction Location Counter (ILC).

2
PAGE:

o

c

UP-4084
UNIVAC 1005

ASSEMB LER-80
SECTION:

2

This is a program created device, not a piece of hardware. The loading of the
assembler program itself usually sets the ILC to the actual address of the first
memory location. The assembler program then causes the reading.of the first
source language instruction. This instruction is assigned to an actual address
according to the present value of the ILC (in this case, the first memory location).

After the machine language for the instruction has been created by the assembler
processing, a card is punched containing the machine language instruction. The
number of locations that will be required to store the instruction is added by the
assembler program to the value of the ILC creating a new value in the ILC. The
assembler program then causes the next source language instruction card to be
read. This instruction is assigned to an actual address according to the present
value of the ILC. Assume that the actual address assigned to the preceding in­
struction had been R25/Cl and that the instruction was seven characters in length.
(R25/Cl becomes the address of the MSL of the instruction.) The assembler
program would then add seven (the number of locations for the first instruction) to
the machine code equivalent stored in the ILC, and arrive at the machine code
equivalent of R25/C8. This is the actual address assigned to the second instruction
assembled.

The use of this procedure by the assembler program insures that the assignment of
addresses to instructions follows the sequential access of the instructions by the
computer when the object program is executed.

In addition to an ILC, an assembler program may contain a Data Location Counter
(DLC). The DLC provides the programmer with the ability to assign locations to
his data in an area of memory other than the area to be used for instructions. In­
structions are usually assigned to locations starting with the first memory address
(low-numbered locations) and proceeding in ascending sequence. Data is usually
assigned to locations starting with the last memory address (high-numbered
locations) and proceeding in descending sequence.

2.6. DECLARATIVE INSTRUCTIONS

An assembly system with an ILC and a DLC usually provides a set of pseudo­
operations which allow the programmer to establish and modify the value in the
location counters. In addition to the pseudo-operations which manipulate the ILC
and the DLC, there are usually other pseudo-operations which are required to
instruct the assembler program as to the manner in which the assembly processing
is to take place. These pseudo-operations are called declarative instructions.
Unlike the previously mentioned pseudo-operations, declarative instructions, which
are included in the source language deck, do not produce instructions in the object
language deck. The declarative instructions are for the use of the assembler
program during the assembly processing, and not for the computer as part of the
object program.

An example of a declarative instruction would be one that updates the DLC.
Assume the problem called for storing the contents of a header card to print headings
on each new page. The programmer would label the source language instruction

3
PAGE:

UP-4084
UNIVAC 1005

ASSEMBLER-SO
SECTION.

2

line, write the mnemonic pseudo-operation code that decrements the DLC, and
indicate the value of the decrement (the number of locations to be reserved for the
data). Such a line of source code might appear as

Label
HDRCD

OP Code
DA

It of Locations
80

(stands for Define Area)

When this line of source coding is encountered, the DA tells the assembler program
to refer to the DLC. The contents of the DLC are decremented by the number of
locations to be reserved. The new value of the DLC is assigned as the address
of HDRCD. In order to reference the information in the HDRCD area, the programmer
can use relative coding.

2.7. ASSEMBLER PROCESSING

An assembler program consists of a set of machine code instructions designed to
produce specific results. As is the case with any computer program, the assembler
program is designed to receive specific information prepared in a precise format.
It is the responsibility of the programmer to prepare the source language program
deck according to the rules of the assembly system. Any errors in the source
language will produce incorrect results from the assembler processing.

In order to produce a complete object program, the assembler program must read
the entire source program before producing any object instruction cards. During
the reading of the source cards, the assembler program performs a preliminary
analysis and converts or translates from source language to object language wher­
ever possible, eg: the mnemonic operation codes. As each source card is read and
the mnemonic operation code is translated, the assembler program determines the
length of the instruction. The instruction is assigned to an actual address, and
the ILC is updated. If the source language instruction has been assigned a

symbolic address by the programmer, the label and the actual address are stored in
a table. When these labels appear in the source language instructions as Operand
addresses, the assembler program searches the label table using the symbolic
address as the key, and secures the actual address assigned to the label. The
actual address is substituted for the programmer's symbolic operand address.

The assembler program contains many other tables which it references for conver­
sion of th.e source language to object language. After complete analysis and con­
version of the source language, the assembler program causes the object program
to be listed and punched.

4
PAGE.

o

I'

0···· "

o

--------~. -. ···--·-----~~~~ __ -·~__'____ ___ ·~·"____ _____ "L ____ _

UP-4084

C:

c

UNIVAC 1005

ASSEMBLER-SO
SECTION:

3

3. INTRODUCTION TO
THE UNIVAC 1005
ASSEMBLY SYSTEM

Most of the programs for the UNIVAC 1005 will be written in the language of the
UNIVAC 1005 Assembly System. The UNIVAC 1005 Assembly System provides the
programmer with the necessary functions and convenience described in the preceding
section. The use of instruction forms not described in this manual deviates from
UNIV AC recommendations and must be the user's responsibility.

3.1. TERMINOLOGY DEFINITIONS

Alphabetic means a letter from the English alphabet (A through Z)

Numeric means an Arabic numeral (0 through 9)

Alphanumeric means the entire 64 character set of the UNIVAC 1005 which includes
letters, numbers, and special characters.

3.2. CODING FORM

A coding form to be used to record the programmers instruction for subse quent key

punching and processing by the UNIVAC 1005 Assembler program is shown in
Appendix A. The coding form is set up in the same format as the punched card,
and contains an indication of the card columns to be used for each field.

3.2.1. LABEL Columns 1 through 5 LABEL

!
I I : .1

I

This field is provided for the symbolic Labels assigned to those lines of coding
which are referenced by the object program instructions. A Label may consist
of from one to five characters (inclusive) and must begin in column 1 of the field.
The first (left-most) character of a Label must be an alphabetic character. The
remainder of the characters in a Label can be Alphabetic or Numeric. There is no
limit to the number of Labels in a source program. However, if the number of
labels exceeds the limit of the Assembler (approximately 40 labels for the 2 Bank
Assembler and 310 labels for the 4 Bank Assembler) extra processing is required
by the Assembler program. This is fully explained in the section on Operating
the Assembler System. Five positions are provided in the Label field to allow
meaningful assignment of programmer names. However, only the left-most three
positions of a Label are significant to Assembler processing. The first three
positions of each Label must be unique within a program. Extreme care should
be taken when creating Labels.

1
PAGE:

UP-4084
UNIVAC 1005

ASSEMBLER·SO
SECTION.

3

Labels used in a single program must be unique and may appear only once in the
Label field. Labels will be used in the Operand address portion of instruction
lines and may appear there as often as necessary. The explanations in this
manual of the use of the relative coding technique of increments and decrements
to Labels should enable the programmer to address the data in his program without
an excess of Labels.

The Label of a line of coding becomes the symbolic address for the left-most
(MSL) position of the instruction, and is used whenever the instruction is referenced.
Labels are also used for the lines of coding which define data areas, and become
the symbolic address for the left-most (MSL) position of the area set aside for
data.

Since not all1ines of coding require a label, the field may be left blank. Some
examples of labels are:

LABEL

1

!
B~E,G:I IN

I
I ,
I

S TI AI Rt T
I

I I i I
I

N,EIT: I
I I
I

.& II : ,
I
I OPERATION

3.2.2. OPERATION Columns 6 through 10 6

I , I I

This field is for the mnemonic operation codes provided by the Assembler.
Operation codes are usually alphabetic. The majority of Assembler Operation
codes are two characters in length, and must begin in column 6.

2
PAGE:

o

c

c

UP-4084

(~-

UNIVAC 1005

ASSEMBLER-80

Some examples of Operation codes are:

OPERATION

6

T,A

't DI

A. DI I I

SIU 1 I I

M1U1

o.VI I

EINID I

3.2.3. OPERAND 1

3
SECTION,

OPERAND 1

I. FIELD A ± INC.
A.
* 12 18

I I I

This is a heading for those columns which are normally used to specify the
address of the MSL or LSL of OP 1 depending on the ascending or descending
mode of the instruction. This portion of the coding form is also used for other
purposes, since not all Operations involve an Operand 1. The following descrip­
tion of the OPERAND 1 fields is based on the normal use to specify OP 1
addresses. A complete explanation of Operand 1 addressing begins in Section 3.3.

3.2.3.1. IA Column 11

This column is used to indicate Indirect Addressing. When the OP 1 of an in­
struction is a primary address, an asterisk (*) is placed in this column. It must
be left blank at all other times.

3.2.3.2. FIELD A Columns 12 through 16

This fie-Idof the form will normally contain a programmer's symbolic address
for the location of instructions and data within his program. Any Labels which
appear here must also appear in the LABEL field of some line of coding. Field
A is a five position field for OP 1 Labels which always begin in column 12.

3.2.3.3. ± INC Columns 17 through 20

These columns are normally used to indicate an increment to the address as­
signed to a Label. Increments are shown in decimal numbers. If column 17
contains a plus sign (+) the increment is added. If column 17 contains a minus

3
PAGE,

UP-4084
UNIVAC 1005

ASSEMBLER-SO
SECTION:

3

sign (-) the increment becomes a decrement and is subtracted from the Label
address. Increments must be left-justified (begin in column 18). Some examples
of OPERAND 1 addresses are:

OPERAND 1

I. FIELD A ± INC.
A.
* 12 18

D.E T CD

CIAITII - 11 I

I I i I I I

* IIAl11 I

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.

22 28 32 38 *

I I I I I I I I

3.2.4. OPERAND 2

This is a heading for those co lumns which are normally used to specify the MSL
and LSL addresses of Operand 2 in the instruction. This portion of the form is
also used for other purposes. The following description of the OPERAND 2 fields
is based on the normal use to specify OP 2 addresses. A complete description of
OPERAND 2 addressing is found in Section 3.3.

3.2.4.1. lA, FIELD B, ± INC Columns 21 through 30

These fields are normally used to specify the most significant location (MSL)
of OP 2. The description of the contents of these fields is the same as the
description of the contents of OPERAND 1.

3.2.4.2. FIELD C, ± INC Columns 32 through 40

These fields are normally used to specify the least significant location (LSL)
of OP 2.

NOTE: The indication for OP 2 Indirect Addressing is in column 21 only.
Column 31 is not used as part of the specification for OP 2 LSL.

The description of FIELD C and ± INC is the same as the corresponding fields
of OPERAND 1.

4
PAGE:

o

o

UP-4084

c

('

3.2.5. COMMENTS

UNIVAC 1005

ASSEMBLER-SO

-
41

Columns 41 through 61

I I I

3
SECTION:

COMMENTS

56 57

I I I I I I I I I

This portion of the form is provided to allow the programmer to include pertinent
comments as to the purpose of the line or lines of coding. The comments are not
considered by the Assembler processing and merely pass through to the printed
and punched output. These columns are also used to indicate constant values
which are to be included in the object program. This use is described in the
section which covers Constants. Comments used for (1) DC operations, (2)
Comma (,) operations, (3) In line constant operations (*), and Comment Card
operations may not extend beyond column 61. Comments for all other source code
operations may not extend beyond column 56.

CARD NO.

PG LN

~i 62 64

3.2.6. CARD NUMBER Columns 62 through 66

This portion of the form is subdivided into three fields--PAGE NUMBER, LINE
NUMBER, and INSERT NUMBER. These columns are used to indicate the number
of the page of coding, and the number of the line from which the key punched card
was produced. The Card Number field will assist the key punching effort as well
as provide for the re-sequencing of the cards in the event the original sequence is
disturbed. For proper assembly processing, it is necessary that the cards be read
by the Assembler program in the sequence in which they appear in the source
program. The Card Number field is used for external control purposes only. The
Assembler program does not check the sequence as it reads the card.

The INSERT NUMBER column is provided as a facility to insert additional lines
of coding in a source program, after the initial effort, without disturbing the
sequence established by Page and Line Number.

During the assembly processing, the Assembler program assigns a consecutive
number to the output cards in the object program deck. The Assembler assigned
card number is punched into columns 62 through 65. Column 66 is blank in the
output card.

3.2.7. REMAINDER

I

The remainder of the card columns are not examined by the Assembler program, and
are available for whatever use the programmer may determine. Such things as Job
Number, Programmer's Initials, and Date may be included on a repetitive punching
basis. These items will not appear in the object deck or on the output listing
produced by the Assembler. Card Columns 67 through 73 are used for the object
language instructions, and columns 74 through 80 are used for instructions to the
Load program.

5
PAGE:

61 '

I I I

UP-4084
UNIVAC 1005

ASSEMBLER-SO 3 6 i;
SECTION: PAGE:

--------~----------------------------------~--------~~~~--~~~~----I

3.3. OPERAND 1 ADDRESS SPECIFICATION

There are several methods of specifying operand addresses in the UNIVAC 1005
Assembly System. A description of the most commonly used methods follows below.

3.3.1. Symbolic Address (Label) Specification

A definition of a symbolic address and some examples of Labels have been given
in preceding sections. In the UNIVAC 1005 Assembly System, when a Label is used
on a line of coding which defines a data area, that line of coding also includes the
length of the area to be allocated to the data. The Label is theri used to specify
the MSL of the data area. By placing a plus sign (+) as a prefix to the Label when
it is used as an operand address, the programmer can specify the LSL of the data
area.

Example: A Declarative has been used to establish a data area of six positions
with a Label NAME. Assume the data area has been allocated in
memory as:

COLUMN

ROW I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 110 111 I 121
25

NAME

The following use of the Label NAME as an Operand 1 address of a TRF -D in­
struction would then cause a substitution of R25/C6, since a Label specifies the
MSL of the area.

LABEL OPERATION OPERAND 1

I. FIELD A ± INC.
A.

1 6 * 12 18

I

I I I 'tD NAME
I

The use of the plus sign (+) prefix to the Label NAME as an Operand 1 address
in a TRF-A instruction would then cause a substitution of R25/Cll, the LSL of
the area.

LABEL OPERATION OPERAND 1

I. FIELD A ± INC.
A.

1 6 * 12 18

I , , : , T,A I I +,N,A,M1E
I

c

c

UP-4084

c

, ,~,'~_,' .. c"."""_.~ •. ~_,,~_,,_.~,,_~L, ___ ~~_,,,. .-"-,,-,~,,'.,',-,~-~,~" - ~.'---"~-r~~- """, ,"'" " .. "'''''_._,--~

UNIVAC 100S

ASSEMBLER-SO
SECTION:

3

NOTE: The plus sign (+) can be used as a prefix to 5 character Labels by coding
the first 4 characters only. The first 3 characters are significant to the
Assembler program.

Labels must be coded starting in the left-hand position of Field A (column 12).
If the plus sign (+) prefix is used, it must appear in column 12, and the Label
starts in column 13.

3.3.2. Increments To Symbolic Addresses

When a Label has been placed on a line of coding, the programmer knows that the
Assembler program is going to allocate the number of memory locations required by
that line of coding, and will also assign an actual address to the Locations. The
programmer does not know the actual address which will be assigned, but he knows
that the use of the same Label will cause the Assembler program to substitute what­
ever actual address was assigned. Based on this knowledge, the programmer is then
able to specify the address of locations relative to his line of coding. This is
accomplished by indicating an increment or decrement to the Label in the ± INC
field of the Coding form.

Assume that allocation has been made according to the previous example. The
following coding would cause the Assembler program to produce these substitute
addresses:

OPERAND 1

I. FIELD A ± INC.
A.
* 12 18

N,A,ME, + 1

I I

NIAIMIEI + 51 I

I I I I I I

+IN1A1M E- 11 I

I I I I

+ N,AM,E- 5 I

I I I I I I

NIAIMIEI - 31

I I

+NAME + 11 I

= address R25/C7 (MSL + 1)

= address R25/Cll (MSL + 5 = LSL)

= address R25/CI0 (LSL - 1)

= address R25/C6 (LSL - 5 = MSL)

= address R25/C3 (Outside of area)

= address R25/C12 (Outside of area)

It should be noted that the use of increments is
not restricted to addresses within the area allocated
by the line of coding.

PAGE:

7

___ U_P_-_40_8_4_...I. _________ A_S_~N_E_I~_~_C_L_~_~_~_8_0 _ ______ _____ I.,;;S,;;;E,;;,C.;,;TI;.,;;;O.;,;N.;.,' _3 __ ...L.;.,PA;.;.G;;.;E:,;.,_8 ___ I:

When an increment is used, a plus or minus sign must appear in column 17, and the
amount of the increment (in decimal numbers) must start in column 18.

3.3.3. Decimal Addressing

As mentioned in Section 1.1., decimal addressing is provided for by the UNIVAC
1005 Assembly System. This technique allows the programmer to consider the
layout of Input Output, instructions, and data in a consecutive sequential manner.
This eliminates the problems associated with advancing that takes place in Row
and Column addressing.

When a decimal address is specified to the Assembler program, the decimal number
is converted to the two-character address required in the object language.

Decimal addresses take the following form:

l:(N through l:(NNNN

l:(= the special character lozenge which indicates to the Assembler
program that what follows is a decimal number.

N through NNNN = a decimal number which must be left-justified.

Indirect Addressing is allowed with decimal addressing.

Examples of decimal addressing

OPERAND 1

I. FIELD A ±
A.
* 12

l:(11 I

l:(8 I O.

l:(19 16,2 I

l:(11 19.2 12

'NC.

18

1 1

I I

= First location of Read Input Storage (Rl/C1, Bank 1)

= Last location of Read Input Storage (R3/C18, Bank 1)

= First location in Bank 2 (R1/C1, Bank 2)

= Last location in Bank 2 (R31/C31, Bank 2)

When decimal addressing is used, the lozenge (l:() must appear in column 12. The
decimal number must begin in column 13. The decimal number cannot exceed 4
digits, since the maximum address is l:(3844 (four bank system).

3.3.4. Row And Column Addressing

Rowand Column addressing is used when the programmer knows the actual address
of the data. An actual or absolute address in the UNIVAC 1005 is specified by two
6-bit characters which are converted by the computer circuitry into Row, Column
and Bank. Rowand Column addressing in the UNIVAC 1005 Assembly System
allows the programmer to specify Row, Column, and Bank eliminating the need to
memorize or reference tables of the two-character codes required in the object
program.

o

UP-4084
UNIVAC 100S

ASSEMBLER·80
Rev. 1

The following format is used to specify Rowand Column address:

$RRCCBn

3
SECTION.

$ is the indication to the Assembler program that what follows is a Row
and Column address

Example:

RR = the numeric Row Number (1 - 32)

CC = the numeric Column Number (1 - 32)

B must be placed in the ± column of the OPERAND field

n = the numeric Bank Number (1 - 4)

OPERAND 1

I. FIELD A t INC.
A .
• 12 18

MSL of Read Input

'$ 0 1 0 1 B 1

LSL of Read Input

$10131118 B 111

1 jlt 1 I LSL of rX

$131213 1 B 21 1

Indirect Addressing can be specified with machine-oriented addresses by placing
an asterisk (*) in the appropriate column (11 or 21) of the form.

The $ must appear in column 12, 22, or 32, and the letter B must appear in column
17, 27, or 37. Increments to Rowand Column address are not allowed.

Rowand Column address is also used to specify the address of the Special
Registers.

3.3.5. Instruction Location Counter (ILC) Addressing

The ILC is the counter in the Assembler program which keeps track of the allo­
cation of memory locations to instructions. The use of the current value of the
ILC for addressing purposes is provided by the UNIVAC 1005 Assembly System.
Proper use of this technique is based on the programmer's knowledge of the memory
mapping process of the Assembler program. (See Section 2.5).

The $ character, alone, in the left-hand position of Field A, Field B, or Field C
of the coding form, instructs the Assembler program to use the current value of the
MSL of the instruction being assembled as the address for the A, B, or C portion
of the object instruction. An increment or decrement to the address currently in
the ILC can also be specified in the ± INC fields for each address. This increment
or decrement does not change the value of the ILC itself. The maximum increment
or decrement ·is 961.

9
PAGE.

UP-4084
UNIVAC 100S

ASSEMBLER·SO
SECTION.

3

Example 1: Assume the value of the ILC is J:l745 (R25/C1, B1)at the time the
following descending transfer instruction is to be assembled.

LABEL OPERATION OPERAND 1

I. FIELD A ± INC.

1 6
A.
* 12 18

!
I I I I TIDI 1 1 $ I + 7

I

$ + 7 produces an address of 752 (745 + 7) which is the address which will be
assigned to the next instruction.

Example 2: The following coding of a descending transfer instruction will cause
the instruction itself to be transferred.

LABEL OPERATION OPERAND 1

I. FIELD A ± INC.
A.

1 6 * 12 18

I

1 1 : 1 TIQ 1 1 $11 1 I -L
I

3.4. OPERAND 2 ADDRESS SPECIFICATION

The rules for OPERAND 1 address specification (Section 3.3.) apply to OPERAND
2 address specification.

3.4.1. Operand 2, Field C, Blank Addressing

The majority of UNIVAC 1005 Operations require the specification of an A address
(OP 1 MSL or LSL), a B address (OP 2, MSL), and a C address (OP 2 LSL). The
UNIVAC 1005 Assembly System allows the programmer to leave the Field C portion
of the source language instruction blank when a symbolic address is used in Field
B. When a Label is used in the Field B portion of the instruction, the Assembler
program references the Label Table to acquire the MSL address of the area it has
assigned to the Label. The same reference to the Label Table will also produce
the LSL address of the assigned area which the Assembler program will then auto­
matically include in the object instructions as the C address.

If Field B of the instruction does not contain a Label, automatic (blank) addressing
will not be performed. If the Field C portion of the instruction contains any infor­
mation, automatic (blank) addressing will not be performed, and the address
specified in Field C will be used. If the LSL of the area indicated by the Label
in Field B is not to be used, the programmer must specify the desired address in
Field C.

For the following examples, DATA is the Label of a 6 character field assigned by
the Assembler program to R25/C1, B1 (MSL) through R25/C6, B1 (LSL).

10
PAGE.

o

o

UP-4084
'uNlv'At'i'iios~ " '~~~~-"'-~""T"----

ASSEMBLER-SO 3
SECTION:

Example 1:

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

DA T A J .L

The Assembler program will automatically assign R25/C6, Bias the C address.

Example 2:

Example 3:

Example 4:

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

+,D,A,T,A .1 1 j , I ,

The coding in Field B specifies that the LSL of DAT A (+ prefix) is to
be the MSL of the instruction. The blank Field C specifies that the
LSL of DATA is to be the LSL of the instruction. This coding pro­
duces a one character operand with an MSL and LSL of R25/C6, B 1.

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

DATA + 3 -' i II

Field B specifies that the MSL of DATA plus 3 locations (R25/C4,
B 1) is the MSL of OP 2. Again the blank Field C will automatically
produce the LSL of DATA (R25/C6, Bl) as the LSL of OP 2. OP 2
is a 3 character operand.

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

+ ID A T A- 3 +D A TA - 1 I I

11
PAGE:

UP-4084
UNIVAC 1005

ASSEMBLER·SO
SECTION:

3

Field B specifies that the LSL of DATA (+ sign) - 3 (R25/C3, H1) is
to be used as OP 2, MSL. The presence of information in Field C
prevents the automatic (blank) addressing of OP 2, LSL. Field C
specifies that the LSL of DATA (+ sign) -1 (R25/C5, B1) is to be
used as the LSL of OP 2. OP 2 is a 3 character operand.

3.4.2. Operand 2 Indirect Addressing

As explained in Section 1.6., Indirect Addressing utilizes a primary address in the
instruction which specifies the location of a secondary address in memory which
contains the address of the data to be used in the Operation.

When Indirect Addressing is used for OP 2 of an instruction, the primary address
in the instruction must refer to the MSL of a 4 character location that contains the
secondary address. A 4 character secondary address is necessary due to the fact
that OP 2 of the object instruction must specify a 2 character MSL address and a
2 character LSL address.

The specification of Indirect Addressing will cause the UNIVAC 1005, at object
execution time, to perform a 4 location descending transfer from the address
specified in the B portion of the instruction to the Band C portions of the In­
struction Register. The OP 2 will then be accessed based on the new addresses
in the Instruction Register.

If a Label is used with OP 2 Indirect Addressing, the Label is specified in Field
B, and Field C is blank. The Label in Field B must specify an assigned area of
4 characters which contain a B and a C address. The UNIVAC 1005 Assembly
System provides a pseudo-operation which is used for this purpose. (See the DI
Operation, Section 4.10 .. 4.) OP 2 Indirect Addressing is specified by an asterisk
(*) in the IA Field of OPERAND 2 (Column 21). No indication is made in Column

31.

Example: Label JOE has been defined as the primary address for the secondary
address DATA. DATA has been defined as a 6 character area. JOE has
been assigned to locations J::t 801 through J::t 804. DATA has been as­
signed to locations J::t 745 through J::t 750. Thus, in location J::t 801 and
J::t 802 is the machine code equivalent of J::t 745, and in location J::t 803
and J::t 804 is the machine code equivalent of J::t 750.

The following coding will produce a correct Indirect Address reference
to DATA as the OP 2 of an instruction.

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

* .TIO E

12
PAGE:

o

c

c

UP-4084

c

UNIVAC 100S

ASSEMBLER-SO

, ,,"---"-- ,---_._--..

3
.I:CTIONr

When decimal or Row /Column Indirect Addressing is used. Field B must specify
the MSL of the location of the 4 character secondary address.

Example 1: Same as above

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

* txlS ,0, I, I I I I I I L ~

Example 2: R25/C25, Bl = 801

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

* $12 5 2 5 B 1 L _L

3.5. SUMMARY OF FIELD A, FIELD B, AND FIELD C SPECIFICATIONS

3.5.1. FIELD A

Field A of the source language instruction may specify:

1. LSL address of OP 1
2. MSL address of OP 1
3'. Decimal digits
4. Octal digits
5. Test bit conditions
6. Destination address of JUMP TEST Operation
7. Two machine language characters

3.5.2. FIELD B

Field B of the source language instruction may specify:

1. MSL address of OP 2
2. MSL address of OP 1
3. Set condition bits
4. Decimal digits
5. Octal digits
6. Destination address of JUMP TEST Operations
7. Two machine language characters

13
PAGEr

UP-4084

3.5.3. FIELD C

UNIVAC 1005

ASSEMB LER-80

Field C of the source language instruction may specify:

1. LSL address of OP 2
2. Two machine language characters

Rev. 1 3
SECTION:

NOTE: Those specifications not previously explained will be covered in the
Section with the instructions that require or allow the specification.

3.6. STANDARD SYSTEM LABELS

In addition to the programmer assigned symbolic Labels previously discussed, the
UNIV AC 1005 Assembly System provides 15 Standard Labels for predesignated
areas of main store. These Standard Labels are not counted in with the number of
Labels assigned by the programmer. The purpose of the Standard Labels is to
provide uniformity of assignment of these predesignated areas, and reduce the pro­
cessing time of the Assembler program for handling repetitive references to these
areas.

The Standard Labels and predesignated areas are:

STANDARD LABEL PREDESIGNATED AREA DECIMAL ADDRESS ROW/COLUMN ADDRESS

$Rl SO Column Reod Input %:(1 • %:(SO Rl/Cl.R3/C1S, Bl

$R2 2nd Ha If af 160 Col. Reod %:(Sl • %:(160 R3/C19·R6/C5, B 1
Code Image

$RC 160 Column Read Code Imoge %:(1 • %:(160 Rl/Cl·R6/C5, Bl

$PR 132 Column Print Starage %:(161 • %:(292 R6/C6·R 10/C13, B 1

$Pl SO Column PUNCH Storage %:(293 • %:(372 Rl0/C14·R12/C31, Bl

$Pl SO Column Read/Punch Read %:(293 - %:(372 Rl0/C14·Rl2!C31, Bl
Storage

$P2 SO Column Read/Punch Punch %:(373 • %:(452 R13/C1·R15/C1S, B1
Storage

$PC 160 Column Code Image %:(293· %:(452 R 10/C 14·R 15/C lS, B 1
Punch Storage

$Zl 160 Column Read/Punch %:(293 • %:(452 RI0/C14·R15/C1S, Bl
Code Image Read Storage

$Z2 160 Column Read/Punch Code %:(453 • %:(612 R 15/C19·R20/C23, B 1
Image Punch Storage

$BM First Location beyond Input %:(613 R20/C24, Bl
Output Storage

$IR Instruction Register None R32/C1.R32/C7, B 1

$CC Instruction Control Counter None R32/CS·R32!C9, B 1

$XR Register X None R32/C1·R32/C31, B2

$TR Translation Table %:(lS2S • %:(lS91 R2S/C30-R30/C31,B2
or %:(3750 • %:(3S13 or R2S/C30·R30/C31,B4

$S f1 First SO Positions of R6/C6·RS/C23
Print Area

$AR Arithmetic Register None R32/Cl.R32/C31,B 1

14
PAGE:

o

o

o

UP-4084
UNIVAC 1005

ASSEMB LER-80
SECTION:

3

The Assembler processing associated with Standard Labels is the same as for the
Labels assigned by the programmer. That is, the use of a Standard Label as an
address specification within a line of coding will cause the Assembler program to
substitute the MSL of the area identified by the Standard Label. The LSL address
is also specified and substituted in the same manner as for programmer's Labels.

The Standard Label $TR refers to the required location for translation tables when
the hardware translate option of the UNIVAC 1005 is part of the object system.

15
PAGE:

c

c

c

UP-4084

(-

c

UNIVAC 1005

ASSEMB LER·80

4. UNIVAC
SYSTEM

r-----

Rev. 1 4
SECTION:

1005 ASSEMBLY
INSTRUCTIONS

This section of the manual covers the instruction repertoire of the UNIV AC 1005
as programmed through the language of the UNIVAC 1005 Assembly Systems and
the declarative instructions which direct the processing of the Assembler program.

4.1. LEGEND

4.2.

The following abbreviations are used in the description of the UNIVAC 1005
Assembly System.

1L = Operand 1, LSL
1M = Operand 1, MSL
2L = Operand 2, LSL
2M = Operand 2, MSL
3L = least significant location of quotient or product

K = any alphanumeric character
D = any numeric character

CC = characters whose bit positions represent Condition Indicators
NI = MSL Address of the next instruction to be executed
() = contents of the area specified within the parentheses
~ = transfer to

)S = a blank column (space code), used to establish positional notation
IA = Indirect Addressing

NOTE: For a description of Operand·1, Operand 2, and the UNIVAC 1005 machine
language instructions, see Section 1.2.

LENGTH OF OPERANDS

The length of the Operand(s) in a UNIVAC 1005 instruction is normally defined by
the addresses of Operand 2. An instruction is normally terminated when the last
location (LSL if descending mode, MSL if ascending mode) of OP 2 has been
handled. This means that the number of locations in OP 1 must be the same as
the number of locations in OP 2. The maximum size operand for a transfer, arithmetic,
or compare instruction is 961 locations unless otherwise specified.

If the lengths of the Operands (as defined by the programmer) to be processed in an
instruction are not the same, special programming involving the use of Register X
is required. The "Transfer to rX" (TX) command allows the programmer to specify
OP 1, MSL and OP 1, LSL, thus defining the length of OP 1. (See Section 4.3.6.
for complete description of TX.) The destination (OP 2) of the TX command is rX
(31 positions). The TX instruction performs an Ascending Transfer of OP 1 to rX,
beginning at the LSL of each. When the OP 1, MSL (as specified in the instruction)
has been transferred to rX, access of OP 1 is terminated. The TX instruction
continues, transferring space codes into the excess positions of rX until the MSL
of rX has been filled. This signals the end of the instruction.

1
PAGE:

UP-4084
UNIVAC 1005

ASSEMBLER·80
SECTION.

4

After transferring the smaller of the two Operands to rX, the programmer then uses
the appropriate location in rX as the OP 1 address of the instruction which does the
required processing. This insures the use of space codes in the locations which are
added to make the length of OP 1 equal the length of OP 2. This condition is
particularly important for the Arithmetic, the Compare, and the Transfer instructions.

Following is an example of the incorrect use of unequal length Operands and the
erroneous result produced, as well as an example of the use of the TX command to
produce correct results.

Given: -
g Ix I X Ix

701 703

OP 2

OP 1

-------...............

Ix I X

708 710

Locations J:l703
- J:l708 contain
the OP 1 data
(6 locations).

...............
-------------------- ---------.

Locations J:l801 - J:l808 is
801 808 to be the OP 2 (8 Locations)

Example 1: If an Ascending Transfer of OP 1 to OP 2 is executed, the results in
the OP 2 locations would be

X X X X

801 808

since the length of OP 2 (8 Locations) determines the length of the
Operand 1.

Example 2: If a Descending Transfer of OP 1 to OP 2 is executed, the results in
the OP 2 locations would be

I X I X X X X X

801 808

since the length of OP 2 (8 Locations) determines the length of
Operand 1.

In Examples 1 and 2, extraneous locations (the Z's and V's) which are not part of
OP 1 would be transferred. If an Arithmetic instruction was executed using the
same operands, the locations containing the Z's would become part of the OP 1 and
would be combined with the values in J:l801 and J:l802, producing an erroneous result.

Using the same conditions given for the preceding examples, the following example
methods can be used to produce correct results.

-~~--- ---- ----~~~~~~~~~~~~~~-~~~~~~~~

2
PAGE:

o

o

o
I

UP-4084

(-.

\

UNIVAC 1005

ASSEMBLER-SO 4
SECTION: PAGE:

Example 3: Instruction 1. Transfer OP 1 to rX using the TX command. The TX
command provides for specification of OP 1, MSL and LSL.

OP 1
.- -

X X X X X I X I
703 708

rX

R32, B2
)S

14 I I
1 25 26 31

Instruction 2: Ascending Transfer specifying the LSL of rX ($3231B2) as OP 1,
LSL to the destination OP 2 (}:t801 - }:t808). The length of the OP 2 (8 locations)
will cause the low-order 8 locations of rX to be transferred. This will produce the
following results in OP 2.

X X X X

801 808

Example 4: In order to perform Arithmetic instructions on Operands of unequal
length, the type of operation performed in Instruction 1, Example 3
would establish OP 1 in rX. The length of the OP 2 of the Arithmetic
instruction would then control the number of locations to be used from
rX (including high order spaces).

Instruction 1: Transfer OP 1 to rX

I 5 I 5 5 5 5 5

703 708

Row 32, B 2
)S

14 1 1 -I)S 5 5 5 5 5 5

1 25 26 31

Instruction 2: Assume an ADD-ALG instruction

OF 11

Row 32, B 2 J)S I)S :1 ~\ 5 '15 :\
1 24

Original OP 2 =

801

Final OP 2 =
801

808

808

3

UP-4084

.... --_.... ----.-""--.------.--~. -~~--.-~ ---.. --- - ·---·c·--·-------
UNIVAC 1005

ASSEMBLER-SO
SECTION.

4

Example 5: In order to perform a Descending Transfer producing a result of the
smaller OP 1 left-justified (in the most significant locations) in OP 2
and spaces in the remaining low-order positions of OP 2, two instructions
are required.

Instruction 1: Descending Transfer, specifying the portion of the OP 2 locations
which are to receive the significant data, as the OP 2 of the TD
instruction.

OP 1 - -
I X I X X X X I X I

703 708

OP 2

--- -
X X X X X I X I unk unk

801 806 807 808

Instruction 2: Use the Transfer Constant (TK) Instruction to transfer space codes
to the low-order positions of OP 2. (See Section 4.3.5 for a descrip­
tion of the TK instruction.) This will produce the desired result.

X X X I X

801 808

An alternate method to produce the results indicated by Example 5 can
be:

(1) A TX of Operand 1 to the XR.

(2) A TD of R32C26 to locations 801 through 808. The TD instruction
will "wrap around" and pick up two blank characters from R32C1 a
and R32C2, thereby producing a left justified result.

4.3. TRANSFER INSTRUCTIONS

4.3.1. TRANSFER DESCENDING

Mnemonic: TD Mode: DESCENDING Length: 7 IA: YES

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.

1 6
A.
* 12 18

A.
* 22 28 32 38

I

I I ' I TIDI I 1 MI I I 21M I I 2,L, , ..1 ..1
I

-----_._------_._- .-------~-.-

4
PAGE.

c

c

I
I
\

UP-4084

1

1

I

Function:

UNIVAC 1005

ASSEMBLER-SO Rev. 1 4
SECTION:

Transfer descending beginning from OP 1 - MSL specified by Field A; to OP 2 -
MSL specified by Field B, until OP 2 - LSL specified by Field C has been filled.

Example 1:

Given: A 6 location area with the Label CAT has been allocated to R31/Cl
through R31/C6 in Bank 1 (r:t931 through r:t936).

Problem: Transfer Descending the data from card columns 4 through 9 to the area
CAT.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A 1: INC. I. FIELD B 1: INC. FIELD C 1: INC.
A. A.

6 * 12 18 * 22 28 32 38

I
I I TD $ Rll I + 3 C A.T
I

FIELD A; OP 1, MSL:

The Standard Label $R 1 specifies the MSL of Read Input Storage (the location of
card column 1). The increment of +3 causes the MSL of this OP 1 to be the
location of card column 4. $0104Bl or r:t4 can be used to specify the same OP 1,
MSL since the location is known to the programmer.

FIELD B; OP 2, MSL:

The programmer's Label CAT specifies the MSL of the area assigned to CAT by
the Assembler program.

NOTE: $3101Bl or r:t931 could not be used since the programmer does not know
the actual address which will be aSSigned to area CAT.

FIELD C: OP 2, LSL:

Blank addressing will cause the Assembler program to use the LSL address of
the area specified by the Label in Field B. The programmer can also use CAT
+ 5, or + CAT in Field C and produce the same result.

Example 2:

Given: The same area with the Label CAT from example 1. Also, a 6 location
area with the Label DOG has been allocated to Rl/Cl through Rl/C6 of Bank 2
(r:t962 through r:t967).

Problem: Transfer Descending the (CAT) to DOG.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A 1: INC. I. FIELD B 1: INC. FIELD C 1: INC.
A. A.

6 * 12 18 • 22 28 32 38

I

~ I l I TID •• ~A,T, I I D,O GI I I I I
I

5
PAGE:

UP-4084

1

UNIVAC 1005

ASSEMBLER·SO
SECTION.

FIELD A; OP 1, MSL:

The Label CAT specifies the MSL address of the area assigned to CAT.

FIELD B; OP 2, MSL:

The Label DOG specifies the MSL address of the area assigned to DOG.

FIELD C; OP 2, LSL:

4

Blank addressing will cause the Assembler program to use the LSL address of the
area specified by the Label in Field B. The programmer can also use DOG + 5,
or + Dog in Field C and produce the same result.

NOTE: Row/Column or Decimal Addressing can not be used for any of the
addresses, since the actual locations of the data are not known by the programmer.

Example 3:

Problem: Transfer the entire contents of the card in Read Storage to the first 80
print positions of Print Storage.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ±
A. A.

6 * 12 18 * 22 28 32

: TiD •• I $,R •1 •• • $.P,R, I • I $,P, R• •
t

I

FIELD A; OP 1, MSL:

The Standard Label $R1 specifies the MSL of the Read Input Storage area.
$010 1B1 or):(1 could have been used.

FIELD B; OP 2, MSL:

INC.

38

7 19 I

The Standard Label $PR specifies the MSL of the Print Storage area $0606B1 or
):(161 could have been used.

FIELD C; OP 2, LSL:

Blank addressing can not be used, since this would cause the Assembler program
to use the LSL of $PR, the last column of the Print Storage area. $PR t 79 is
the address of Print position 80 which should be the LSL of OP 2. $0823B1 or
):(240 could have been used.

6
PAGE.

o

o

UP-4084

c

1

Example 4:

UNIVAC 1005

ASSEMB LER-BO Rev. 1
SECTION,

Problem: Transfer the data from column 80 of an input card to column 80 of an
output card.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

: •
TLD,] 1 +,$lR, 1 l I +,$, P ,1 1 I I I , , 1 I

I

FIELD A; OP 1, MSL:

The plus sign (+) prefix to the Standard Label $R1 specifies the LSL of Read
Input Storage as the MSL of OP 1. $0318B1 or J:l80 could have been used.

FIELD B; OP 2, MSL:

The plus sign (+) prefix to the Standard Label $P1 specifies the LSL of Punch
Storage as the MSL of OP 2. $1231B1 or J:l372 could have been used.

FIELD C; OP 2, LSL:

Blank addressing in Field C specifies the LSL of the area whose Label is in
Field B. (The plus sign in Field B does not constitute part of the Label. It
instructs the Assembler program to use the LSL address of the labeled area.)
$1231B1 or J:l372 could have been used.

4

NOTE: Since OP 2, MSL and OP 2, LSL specify the same address, a one location
Operand is produced.

4.3.2. TRANSFER ASCENDING

1

Mnemonic: TA Mode: ASCENDING Length: 7 IA: YES

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

I

i L ! 1 TlAI I , I,Ll' I 21M 1 2,L, ,
I

Function:

Transfer ascending beginning from OP 1 - LSL specified by Field A; to OP 2 -
LSL specified by Field C, until OP 2 - MSL specified by Field B has been filled.

Example 1:

Given: A 6 location area with the Label CAT has been allocated to R31/C1
through R31/C6 in Bank 1 (J:l931 through J:(936).

7
PAGE,

UP-4084

1

1

I

UNIVAC 100S

ASSEMB LER-80 Rev. 1 4
SECTION,

Problem: Transfer Ascending the data from card columns 4 through 9 to the area
CAT.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

l T,A, , $,R, I, , + 8 CIA T
I

FIELD Ai OP 1, LSL:

$Rl is the Standard Label for the MSL of Read Input Storage (the location of card
column 1). The increment of + 8 causes the LSL of this OP 1 to be the location
of card column 9. $0109Bl or J:l9 can be used to specify the same OP 1, LSL
since the location is known to the programmer.

FIELD Bi OP 2, MSL:

The programmer's Label CAT specifies the MSL of the area assigned to CAT by
the Assembler program.

NOTE: $3101Bl or J:l931 could not be used since the programmer does not know
the actual address which w ill be assigned to area CAT.

FIELD Ci OP 1, LSL:.

Blank addressing will cause the Assembler program to use the LSL address of
the area specified by the Label in Field B. The programmer can also use CAT
+ 5, or + CAT in Field C and produce the same result.

Example 2:

Given: The same area with the Label CAT from Example 1. Also, a 6 location
area with the Label DOG has been allocated to RIICl through RI/C6 of Bank 2
(J:l962 through J:l967).

Problem: Transfer Ascending the (CA T) to DOG.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A.

6 * 12 18
A.
* 22 28 32 38 ,

, I ' , TIAI , +,C,A,T, , D,O,G, I I I , I , 1 I
I

FIELD Ai OP 1, LSL:

The Label CAT with a plus sign (+) prefix specifies the LSL of the area as­
signed to CAT.

FIELD Bi OP 2, MSL:

The Label DOG specifies the MSL of the area assigned to DOG.

- -----.. ~~-.----... --~--.------- -----------

8
PAGE.

c

UP-4084

1

I

UNIVAC 1005

ASSEMB LER-BO

FIELD C; OP 2, LSL:

4
SECTION:

Blank addressing will cause the Assembler program to use the LSL address of the
area specified by the Label in Field B. The programmer can also use DOG + 5,
or + DOG in Field C and produce the same result.

NOTE: Row/Column or Decimal Addressing can not be used for any of the
addresses, since the actual locations of the data are not known by the programmer.

Example 3:

Given: A 7 position location with the Label XT1 as the last instruction of
a subroutine.

Problem: Transfer Ascending the previous 7 character instruction to the exit line
XT1 of the subroutine.

LABEL OPERATION OPERANO 1 OPERANO 2

:
I

I. FIELO A ± INC. I. FIELO B ± INC. FIELO C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

TA $ - 1 XT Ii 1 J j J _I _I I

FIELD A; OP 1, LSL:

$-1 instructs the Assembler program to use the current value of the ILC minus one
as the address of OP 1, LSL of this instruction. The current value of the ILC is
the MSL of this instruction. The MSL of this instruction minus one is the LSL of
the previous instruction.

FIELD B; OP 2, MSL:

The Label XT1 specifies the MSL of the locations assigned to that instruction by
the Assembler program.

FIELD C; OP 1, LSL:

Blank addressing will cause the Assembler program to use the LSL of the locations
assigned to the instruction stored at XTl.

4.3.3. TRANSFER CLEAR

Mnemonic: TC Mode: ASCENDING Length: 7 IA: Yes

LABEL OPERATION OPERANO 1 OPERANO 2

I. FIELO A ± INC. I. FIELO B ± INC. FIELO C ± INC.
A. A.

1 6 * 12 18 * 22 28 32 38

I

I 1 I TC 1 L I I 21M 1 I 2L I I I
I

9
PAGE:

UP-4084

Function:

UNIVAC 1005

ASSEMBLER·SO 4
SECTION.

Transfer ascending beginning from OP 1 - LSL specified by Field c:A.j' to OP 2 -
LSL specified by Field C, until OP 2 - MSL specified by Field B has been filled.
Clear the OP 1 locations to space codes during the process.

This instruction performs exactly the same as a TA (Transfer Ascending) in­
struction. The only difference is that as the characters are accessed from the
OP 1 locations, they are not returned to the OP 1 locations. The effect of this
instruction leaves the OP 1 characters cleared to space codes.

The rules for coding a TC instruction are the same as the rules for coding the TA
instruction (See Section 4.3.2.)

4.3.4. TRANSFER NUMERIC

1

Mnemonic: TN Mode: ASCENDING Length: 7 IA:' YES

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A •

6 .. 12 18 .. 22 28 32 38

!
I I I I TINI I 1 LI I 2M 2 L I

I

Function:

Transfer ascending beginning from the OP 1 - LSL specified by Field Aj to OP 2
- LSL specified by Field C, until OP 2 - MSL specified by Field B has been
filled. Delete the X and Y bit-positions of the data delivered to OP 2.

This instruction performs exactly like the TA (Transfer Ascending) instruction.
The only difference is that before the characters are stored in the OP 2 locations,
the zone bits (X and Y bit-positions) are stripped off (set to binary zero). The
contents of OP 1 remain unchanged.

The rules for coding a TN instruction are the same as the rules for coding the T A
instruction (See Section 4.3.2.)

4.3.5. TRANSFER CONSTANT

Mnemonic: TK Mode: ASCENDING Length: 7 IA: YES

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.

1 6
A.
.. 12 18

A • .. 22 28 32 38

I I TIKI I KtKI I 21M 2 LI I I I
I

'-~'----"---"'----~------

I"
10 I'

I
PAGE.

c

UP-4084

1

c

Function:

UNIVAC 1005

ASSEMBLER·80
4

SECTION.

Transfer ascending beginning from location 3 of the Instruction Register (IR); to
OP 2 - LSL specified by Field C, until OP 2 - MSL specified by Field B has been
filled. Transfer a maximum of 2 locations (KK) from the IR. If OP 2 is more than
two locations in length, space-fill the unentered high-order locations of OP 2.

When a TK instruction is brought to the IR for execution, the two alphanumeric
characters KK will occupy locations 2 and 3 of the IR. These two locations are
used similar to an OP 1 in an Ascending Transfer. However, the Operation code
(TK) will cause the transfer from OP 1 to cease after the second transfer. The
execution of the instruction will continue until OP 2, MSL has been filled. If
there are more than two locations in OP 2, the excess high-order locations of
OP 2 will be filled with space codes. If there are exactly two locations in OP 2,
the instruction will transfer locations 2 and 3 of the IR (the constant KK). If
there is only one location in OP 2, only position 3 of the IR will be transferred.

NOTE: The character J:((lozenge) may not be used as the first character of a
constant in Field A of this instruction. Code in its bit configuration. (See
Section 4.3.5.3.)

Example 1:

Problem: Store the letters CR in the last (low-order) two locations of Print
Storage.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ±
A. A.

INC.

6 * 12 18 * 22 28 32 38

I

I I : I TIKI I C RI I + $ P R - 1.
I

FIELD A; KK:

The letters CR.

FIELD B; OP 2, MSL:

$PR is the Standard Label for the Print Storage area. The plus sign instructs
the Assembler program to use the LSL of Print Storage, and the minus one causes
the address of Print position 131 to become the MSL of this instruction.

FIELD C; OP 2, LSL:

Blank addressing will cause the Assembler program to use the LSL address of the
area specified by the Label in Field B. The use of the plus sign and the incre­
ment in Field B have no effect on this Assembler program procedure.

11
PAGE.

UP-4084

1

I

1

Example 2:

UNIVAC 100S

ASSEMBLER·80 Rev. 1 4
SECTION.

Problem: Store a minus sign (-) in the LSL of the 10 character area assigned to
FOX. Clear the high-order 9 locations of FOX to spaces.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ! INC. I. FIELD B ! INC. FIELD C ! INC.
A. A •

6 • 12 18 • 22 28 32 38

: TK ~ - i .~ ~ F,O.XI I I • • , I I , J
I

FIELD A: KK:

The ~ (space code) becomes location 2, and the minus sign (-) becomes location
3 of the IR. After they are transferred, the remainder of FOX is space filled.

FIELD B; OP 2, MSL:

The MSL of the area assigned to FOX becomes the MSL of this instruction.

FIELD C; OP 2, LSL:

Blank addressing causes the Assembler program to use the LSL of the area as­
signed to the Label in Field B (FOX) as the LSL of this instruction.

NOTE: See Example 5 for a description of negative constants.

Example 3:

Given: Several fields of the print line are to have a printed sign of plus (+) or
minus (-) based on a condition developed by the program.

Problem: Store the proper sign indication in each of the fields using the TK in­
struction with Indirect Addressing.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A t INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

!
- 1 S II GIN TK * : S liG N + i F3 Djl

I
I I T KI * : S I IG N - 1 + F D 2

I
I , : I TIKI I I *: ISII,G N - 11 I +IF,D I3 I I I I I I I I ,

!

Solution: The location immediately preceding the instruction labeled SIGN has
been established as the secondary address location for the Indirect Addressing
to be performed in the instruction SIGN.

----~-------.---------.-.. ----.---------------------

12
PAGE.

C'
" _ ."j

UP-4084

c
1

UNIVAC 1005

ASS E MB L E R -80
SECTION:

4

The processing in the program will previously determine the sign requirements of
the printed fields. This same portion of the program will then transfer the
appropriate character to location SIGN - 1, and execute a Jump instruction which
transfers control to SIGN.

The instruction in SIGN is then brought to the Instruction Register. Before it is
executed the instruction is examined by the hardware to see if it ca11s for Indirect
Addressing. In this case, it does.

The hardware then automatically uses the address in the A portion of the IR as
the LSL of a two location transfer from memory to the A portion of the IR. The
hardware then examines the Operation code and performs the TK instruction using
the "new" contents of the A portion of the IR as the two character constant KK.

Field B specifies that the LSL of FD 1 is to be used as the MSL of the instruction.
Blank addressing in Field C will cause the same address to be the LSL of the
instruction thus creating a one character OP 2. Each of the instructions will
then transfer the appropriate sign indication to the LSL of each of the print fields.

Example 4:

Problem: Clear Bank 2 to space codes.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

: TIKI I I 16116 I I I I l:t 19 ,6,2, , I l:t1922
I

FIELD A; KK:

The blank columns in the Field A will cause KK to become space codes.

FIELD B; OP 2, MSL:

l:t962 is the decimal address for the first location in Bank 2, which becomes the
MSL of OP 2.

FIELD C; OP 2, LSL:

l:t1922 is the decimal address of the last location in Bank 2, which becomes the

LSL of OP 2.

Solution: This instruction will first transfer the two space codes, and then space­
fi11 the remainder of OP 2---the rest of Bank 2.

If the KK portion of a TK instruction is to contain a negative constant, the minus
sign (-) is used as a prefix to the two decimal digit constant. The Assembler
program wi11 place an X-bit over both of the numerals in KK. If the negative
constant is to be a value from -1 through -9, a zero must be coded between the
minus sign and the decimal numeral.

13
PAGE:

I
I UP-4084

UNIVAC 100S

ASSEMBLER·SO 4 14
_______ _________________________ ______ ..L..S ... E ... C ... T_'O ... N ... ' ___r. ... P ... A.,;;G,;E;,.' ____ I

1

If the KK portion of a TK instruction is to contain a positive constant, no sign
indication is required.

Example 5:

Problem: Store a -1 in the 2 location area assigned to COUNT.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

I

i I : I T,K, , 1.,!il,1, , • C,O U,N.T • • . , .. , ,
I

FIELD A; KK:

The minus sign causes the Assembler program to place a binary 1 in the X bit
position of both the 0 and the 1 in the object language instruction. (See Section
4.4.)

FIELD B; OP 2, MSL:

The address of the MSL of the area assigned to COUNT is used as the MSL of
this instruction.

FIELD C; OP 2, LSL:

Blank addressing causes the Assembler program to use the address of the LSL
of the area assigned to COUNT as the LSL of this instruction.

NOTE: The minus sign (-) symbol cannot.be used as the first character of a
constant in the TK instruction. Code in its bit configuration. (See 4.5.3.)

4.3.5.1. Symbolic Address Substitution

The TK instruction can also be used to change the A, B, or C address of an
instruction. The UNIVAC 1005 Assembly System provides for source language
coding of Labels in the Field A portion of a TK instruction. These Labels are
converted to the two character machine language address assigned by the
Assembler program and stored as KK in the A portion of the object language
TK instruction.

The symbol colon (:) is used in column 12 as a prefix to the Label whose as­
signed address is to become KK.

o

C"·
-f

C:

UP-4084

1

LABEL

Example 6:

UNIVAC 1005

ASSEMB LER·80 Rev. 1
SECTION.

Problem: Change the A address portion of a T A instruction stored in DOG to
refer to CAT.

OPERATION OPERAND 1 OPERAND 2

I. FIELD A :!: INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

4

~
i 1 t 1 TIKI 1 I :_1 + lC1A~T _1_ DIOIGl ~ + 1 DOG + 2

I

FIELD A; KK:

The symbol colon C:) informs the Assembler program that a Labe I appears in
Field A of this TK instruction. The plus sign (+) prefix instructs the Assembler
to use the LSL address of the area assigned to CAT as KK in this instruction.
(The LSL is required due to the ascending mode of the TA instruction.)

FIELD B; OP 2, MSL:

The MSL of the TA instruction stored at DOG contains the Operation code.
Therefore, the MSL of the A portion of that instruction is stored at DOG + 1,
which becomes the MSL of the TK instruction.

FIELD C; OP 2, LSL:

DOG + 2 is the address of the LSL of the A portion of the T A instruction stored
at DOG. This address is used as the LSL of OP 2 of the TK instruction.

NOTE: If the symbol colon (:) is to be used as the constant K, it must be coded
in its bit configuration. (See Section 4.3.5.3. below.)

4.3.5.2. Row/Column and Decimal Addressing

1

LABEL

Row /Column and Decimal Addressing can also be used to cause a machine
language address to be placed in the A portion of the TK ins truction.

Example 7:

Problem: Store the machine language of decimal location)::nOOO as the LSL
of a 7 character instruction stored in FOX.

OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C :!: INC.
A. A.

6 * 12 18 * 22 28 32 38

~
J I l I TI K. I ~11010111l FlO XI + 5 I I I

I

15
PAGE.

UP-4084

LABEL

1

:
1

I

UNIVAC 1005

ASSEMB LER-80

FIELD A; KK:

Rev. 1
SECTION,

The Assembler program will use the two character code for address):(1000 as

KK in this instruction.

FIELD B; OP 2, MSL:

4

FOX is the MSL address of the 7 character instruction. The LSL address
portion (the C portion) of FOX is therefore FOX + 5, which will be used as the
OP 2 MSL of this instruction.

FIELD C; OP 2, LSL:

Blank addressing will cause the Assembler program to use the LSL of the area
assigned to FOX as the OP 2, LSL of this instruction. This is the LSL of the
C portion of FOX.

Example 8:

1000 is the decimal address of R2/C8, Bank 2. The coding for Example 7 could
have read as follows and produce the same result.

OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.

6
A.
* 12 18

A.
* 22 28 32 38

TIKI I I $I~ 12 I~ 18 B2 I FlO XI I + 5, I I I I I

4.3.5.3. Binary Coded Constants

The basic level of machine code is a series of binary bits. In the UNIVAC
1005, 6 binary digits (bits) are stored in each memory location. The UNIVAC
1005 Assembly System allows the programmer to use binary indications, if
necessary, to code his program.

In order to reduce the number of source language columns required for binary
indication,the UNIVAC 1005 Assembly System provides for octal coding. An
octal code is made up of three adjacent binary digits. Thus,two octal digits
can be used to express the contents of one UNIVAC 1005 location. To determine
the octal equivalent of the 6-bit binary code, the following is suggested.

(4) (2) (1) (4) (2) (1)
UNIVAC 1005 bit position X y 8 4 2 1

Octal Digit 11: 1 Octal Digit 11:2

Add the binary value of the bits in the (4), (2), and (1) bit positions (maximum
sum = 7) to create Octal Digit 11:2. Using the same values (4), (2), (1) add the
sum of the X, Y, and 8-bit positions (maximum 7) to create Octal Digit 1I:l.
Write as a two place number.

16
PAGE,

c

o

UP-4084

1

UNIVAC 1005

ASSEMBLER-SO

For example: the bit configuration of the letter A equals

Position 1 = 0

2 = 0
4 = 4

x
o

Y 8

1 o

sum 4 equals Octal Digit #2

Position 8 = 0

Y=2

X=O

sum 2 equals Octal Digit #1

4 2 1

1 o o

SECTION:

Thus the octal form of the letter A is 24. In the same manner, any six bit con­
figuration can be shown by uSing the two digit octal form.

The symbol for number (#) is used as a prefix to indicate to the Assembler
program that octal coding has been used. This symbol (#) must precede the

four octal digits.

Example 9:

Problem: Store two lozenge symbols (tf tf) in the least significant locations of
the area assigned to RAT. (Reminder, the lozenge symbol cannot be used for
KK in the TK instruction.) = 111 101

LABEL OPERATION OPERAND 1 OPERAND 2

4

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.

6
A.
* 12 18

A.
* 22 28 32 38

I

I I ~ I TIKI I #,7,5,7 15 I +IR AIT - 11 I I , , I I
I

FIELD A; KK:

The number symbol (#) indicates to the Assembler program that what follows is
octal coding. The Assembler program then forms the two characters KK.

FIELD B; OP 2, MSL:

+ RAT -1 is the second least significant location of RAT.

FIELD C; OP 2, LSL:

Blank addressing causes the Assembler program to use the LSL of the area as­

signed to RAT as the LSL of this instruction.

17
PAGE:

UP-4084
UNIVAC 1005

ASSEMBLER-SO 4
SECTION, PAGE,

18

NOTE: Octal coding can also be used as a method for addressing in the UNIVAC 0
1005 Assembly System. See Section 6.1 for a complete description.

4.3.6. TRANSFER TO REGISTER X

1

1

I

I

Mnemonic: TX Mode: ASCENDING Length: 5 IA: NO

LABEL OPERATION OPERAND 1 OPERAND 2

:
I

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

~8 6 * 12 18 * 22 28 32

I TX 1 L 11M~1 I _J1 1 J ~.J

Function:

(OP 2 in the TX command is rX). Transfer ascending beginning from OP 1 - LSL;
continuing until OP 1 - MSL has been transferred. Space fill any unentered high
order positions of rX. Maximum OP 1 operand length is 31 locations. (See Section
4.2 for further information.)

NOTE: 1m in Field "B" applies in this case to OP 1 and not to OP 2.

This instruction has an implied OP 2 of rX, which is indicated by the Operation
code. The purpose of this instruction is to provide for the handling of unequal
length operands. Complete specification of the length of OP 1 is made in Field
A and Field B (two addresses), and rX is OP 2. The TX instruction is a 5
character instruction.

Example 1:

Problem: Transfer the 5 characters from card columns 1 thru 5 to the 8 character
field assigned to CAT. NOTE: This requires two instructions:

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

: TX $ R 1 + 4 $IR 11 I I I I I I I
t

I I : I TIAI $ 3 12 13 1 B 2 I C A TI I I
I

Instruction 1 TX

FIELD A; OP 1, LSL:

The Standard Label $Rl + 4 specifies that the address of the fifth position of
Read Input storage is to be the LSL of this instruction.

c

-- .--~------ ------------~- ---~ -------- -------------~

UP-4084

(-

UNIVAC 1005

ASSEMBLER·SO

-- --

4
SECTION: PAGE:

FIELD B; OP 1, MSL:

The Standard Label $R1 specifies that the address of the first position is to be
the MSL of this instruction.

FIELD C; Ignored

Instruction 1 transfers locations 1 through 5 of Read Input storage to the low
order 5 locations of rX (R32/C27, Bank 2 through R32/C31, Bank 2). The
remainder of rX (R32/C1, Bank 2 through R32/C26, Bank 2) is filled with space
codes.

Instruction 2 TA

FIELD A; OP 1, LSL:

$3231B2 specifies that the LSL of rX is to be used as the OP 1, LSL of this in­
struction.

FIELD B; OP 2', MSL:

The MSL address of the area assigned to CAT is to be used as the OP 2, MSL of
this instruction.

FIELD C; OP 2, LSL:

Blank addressing specifies that the LSL address of the area assigned to CAT is
to be used as the OP 2, LSL address of this instruction.

The ascending transfer in Instruction 2 calls for an 8 location transfer (the length
of OP 2, CAT). The low order 5 locations of CAT will contain the 5 characters
from the card which were transferred to the low order positions of rX by Instruction
1. The 3 high order positions of CAT will contain space codes from the un-entered
portion of rX.

4.3.7. TRANSLATE (Optional)

1

NOTE: The Translate instruction can only be used if the UNIVAC 1005 system
for which the program is being assembled has the hardware translate option.

Mnemonic: TR Mode: DESCENDING Length: 7 IA: YES

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 • 12 18 • 22 28 32 38

I
1 I I 1 TIRI I I I I 21M 2 L I I

I

19

UP-4084

Function:

UNIVAC 1005

ASSEMBLER·SO Rev. 1
SECTION,

Translate each of the characters in the field defined as OP 2 (except the LSL)
according to the Translation Table. Return the translated character to OP 2.

4

The use of the Translate option on the UNIVAC 1005 requires that the translated
characters be returned to the same locations from which the characters to be
translated were obtained. Thus,2M and 2L not only define OP 2, they also define
OP 1. Furthermore, the Translate option also requires that OP 2 be one location
longer than OP 1 at the LSL end of OP 2. 2M specifies both OP 1 and OP 2 MSL.
2L specifies the OP 2 LSL, and the hardware automatically uses 2L-1 as the OP 1,
LSL.

The TR instruction replaces each character in the field to be translated with a
character selected from the translate table ($TR). The basis for selecting the
replacement character is the binary value of the character to be replaced (see
Figure 4-1). The binary value of any six-bit character ranges from zero (000000)
through 63 (111111). This binary value provides the character address of the
particular six-bit configuration within the translate table which is to replace the
character. In other words, a character with a binary value of (011111) is replaced
by whatever character is pre-stored in R28/C30 of the translate table; a character
with a binary value of (111111) is replaced by whatever character is pre-stored
in R28/C31 of the translate table; a character with a binary value of (000000) is
replaced with whatever character is pre-stored in R29/C1 of the translate table;
and so on. The contents of the translate table are not altered by the instruction.
The characters to be translated must be in the same bank of storage as the trans­
late table.

The Translation Table must be stored in locations R28/C30, Bank 2 (MSL)
through R30/C31, Bank 2 (LSL) of a 2 bank UNIVAC 1005 system; or in R28/C30,
Bank 4 (MSL) through R30/C31, Bank 4 of a 4 bank UNIVAC 1005 system. More
than one Translation Table can be used in a program provided that the program
transfers the proper set of translation codes to the Translation Table locations
prior to each change in use.

Example 1:

Given: A field of 80 characters received in a communication code stored in an 80
location area assigned the Label INMSG. (INMSG must be in the Last Bank of
storage).

A table of XS-3 codes stored in a 64 location area assigned the Label XS3.

20
PAGE.

o

o

o

UP-4084

I 10
I 1 1 1 1 1
I

ORIGINAL CODE
IN 1005 STORAGE

ORIG. I ADDRESS CODE
CHAR. I OF TABLE COL

x:y 8 4 2 1

010 0 0 0 0

o I 0 0 0 0 1

o i 0 0 0 1 1

o I 0 0 1 1 1

o i 0 1 1 1 0

o I 1 1 1 0 0

Oil 1 0 0 1

Oil 0 0 1 0

o I 0 0 1 0 0

o l 0 1 0 0 0

o I 1 0 0 0 1

0 1 0 0 0 1 0

o I 0 0 1 0 1

010 1 0 1 0

o I 1 0 1 0 1

o I 0 1 0 1 1

o I 1 0 1 1 1

o ! 0 1 1 1 1
o I 1 1 1 1 0

o I 1 1 1 0 1

o I 1 1 0 1 1

o I 1 0 1 1 0

0 ' 0 1 1 0 1

o I 1 1 0 1 0

o : 1 0 1 0 0

0 0 1 0 0 1

o I 1 0 0 1 1

0 1 0 0 1 1 0

o I 0 1 1 0 0

oil 1 0 0 0

o I 1 0 0 0 0
I

X Y8 421

UNIVAC 1005

ASSEMBLER-80 Rev. 1
SECTION:

ROW

28
COL

30 I I 11
I 1 III 1
I

TABLE
ROW ORIGINAL CODE

IN 1005 STORAGE

29 NEW
CHAR.

ORIG. I ADDRESS CODE
CHAR. I OF TABLE COL

T~BLE
COL xi y 8 4 2 1

I
1 1 I 0 0 0 0 0

2 li o 0 0 0 1

3 1 I 0 0 0 1 1

4 1 10 0 1 1 1

5 1 0 1 1 1 0

6 1 I 1 1 1 0 0

7 11 1 1 0 0 1

8 1 11 0 0 1 0

9 1 10 0 1 0 0

10 1 10 1 0 0 0

11 1 : 1 0 0 0 1

12 I 10 0 0 1 0

13 1 I 0 0 1 0 1

14 I i 0 1 0 1 0

15 1 I 1 0 1 0 1

16 1 i 0 1 0 1 1

17 1 I 1 0 1 1 1

18 1 i 0 1 1 1 1

19 1 I 1 1 1 1 0

20 1 i 1 1 1 0 1

21 1 I 1 1 0 1 1

22 1 i 1 0 1 1 0

23 1 I 0 1 1 0 1

24 1 I 1 1 0 1 0

25 ITI 0 1 0 0

26 1 I 0 1 0 0 1

27 1 : 1 0 0 1 1

28 1 I 0 0 1 1 0

29 1 I 0 1 1 0 0

30 1 I 1 1 0 0 0

31 1
I

1 0 0 0 0
I

x Y 8 4 2 1

Figure 4-1. Character Translate Table

4 21
PAGE:

ROW

28
COL

31 I

TA BLE
ROW

30 NEW
CHAR.

Tt~cE

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

;19

30

31

UP-4084

1

UNIVAC 1005

ASSEMBLER·SO
SECTION.

4
PAGE.

A table of communication codes stored in a 64 location area assigned the Label COMCD.

LABEL OPERATION OPERANO 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

I

I I I J TID XS3 1$ TR I ,
I

J I : I ITIRI I I I I II,N,M,SG + I IN M S + 1
I

Instruction 1 TD

FIELD A; OP 1, MSL:

The Label XS3 specifies that the MSL address of the XS-3 table is to be used as
OP 1, MSL.

FIELD B; OP 2, MSL:

The Standard Label $TR specifies that the MSL of the area required for the Trans­
lation Table is to be used as OP 2, MSL of this instruction.

FIELD C; OP 2, LSL:

Blank addressing specifies that the LSL of the area specified by $TR is to be
used as the LSL of this instruction.

Instruction 1 loads the Translation Table with the correct translation characters.

Instruction 2 TR

FIELD A; Ignored

FIELD B; OP 1 and OP 2 MSL:

The characters to be translated must be obtained from and replaced in the same
locations by the translated characters. The address of the MSL of the area as­
signed to INMSG will be used as OP 1 and OP 2 MSL of this instruction.

FIELD C; OP 2, LSL:

This must specify the location + 1 of the last character to be translated. The
character in this location is not disturbed. + INMS (four characters of the INMSG)
specifies the address of the LSL of the characters to be translated. + INMS + 1
specifies the correct OP 2, LSL for this instruction.

If the results of processing are to be translated from XS-3 to Communication code,
two similar instructions could be used. Instruction 1 would load the Translation
Table locations from the COMCD table, and Instruction 2 would cause the trans­
lation.

--~ ------- .. _. __ _._----------

22

o

c

UP-4084

(--
LABEL OPERATION

1 6

I
I I I I T,D, I

I
I I TIRI I I

!

UNIVAC 1005

ASSEMB LER-80

OPERAND 1

I. FIELD A ±
A.

INC.

* 12 18

C,O,MC,D

I I I I I I

4
SECTION:

OPERAND 2

I. FIELD B ± INC. FIELD C ± INC.
A.
* 22 28 32 38

i$,T R, , , I

I N M,S IG , +oI,NMS + 1 1

4.4. ADDITION AND SUBTRACTION

Addition is accomplished in the UNIV AC 1005 in ascending mode using a one char­
acter adder. The LSL of OP 1 is placed in the adder. The LSL of OP 2 is then
added, and the sum digit is returned to the LSL of OP 2. The adder circuitry retains
the presence of a carry, if any. The next corresponding locations are added from
OP 1 and OP 2 (and the preceding carry, if any) and the sum digit is returned to
OP 2. This process continues until the sum digit has been returned to the MSL of
OP 2. Thus OP 2 defines the length of both Operands. Subtraction is accomplished
by adding the tens complement of OP 1 to OP 2.

There are two types of addition and subtraction in the UNIVAC 1005--Algebraic and
absolute.

For Algebraic Add and Subtract operations, the presence of a binary 1 in the X bit
position of the LSL of an Operand indicates a negative value. A negative result
will have a binary 1 in the X bit position of both the MSL and the LSL. A zero
result will have a binary 1 in the Y bit position of the MSL and will have the sign of
OP 2. Spaces in OP 1 and OP 2 are treated as zeroes, and zeroes will be placed
in result locations which do not contain 1 through 9.

For Absolute Add and Subtract, the signs of OP 1 and OP 2 are ignored. Absolute
Add can produce only a positive result. Absolute Subtract is performed by comple­
mented addition and may produce a negative result. However the negative sign
indication is not stored. A zero result will have a binary 1 in the Y bit of the MSL.

Associated with the adder circuitry is a Sign Comparator. As a result of every
arithmetic operation, the Sign Comparator is set to one of three conditions--plus,
minus, or zero. The condition of the Sign Comparator can be tested, for sequential
control purposes. (See Section 4.7.1, JC instruction.)

In the event that a carry isproduce4 'as a result of adding the OP 1 and OP 2 MSL,
an Overflow indicator is set. Thl!S!: condition can also be tested. (See Section
4.7.1, JC instruction.)

The conditions of the Sign Comparator and the Overflow indicator are set following
every arithmetic operation, and must be tested, if required, before the next arithmetic
operation.

If the Operands for a required arithmetic operation are not of equal length, the
shorter of the two must be transferred to rX using the TX instruction.. rX can then
be used as OP 1.

23
PAGE:

UP-4084
UNIVAC 1005

ASSEMB LER-80
SECTION:

4

4.4.1. ADD ALGEBRAIC

1

1

Mnemonic: AD Mode: ASCENDING Length: 7 IA: YES

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

!
~ II I AID, I I 11L, I I , 21M, I I I j 2jL j

I

Function:

Condition the adder circuitry according to the sign bits of OP 1 and OP 2.
Ascending add the OP 1 - LSL specified by Field A to the OP 2 - LSL specified
by Field C; replacing OP 2 - LSL with the sum digit. Continue until a sum digit
has been placed in OP 2 - MSL specified by Field B. Set the Sign Comparator.
Set the Overflow indicator, if necessary. The arithmetic is performed according
to the rules for algebraic addition.

Example 1: EQUAL LENGTH OPERANDS

Problem: Add Quantity 1 from card columns 1 through 5 to Quantity 2 from card
columns 6 through 10. Store the result in the Quantity 2 locations.

LABEL OPERATION OPERAND 1 OPERAND 2

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC.
A. A.

6 * 12 18 * 22 28 32 38

I
I I I I AID I):(5 I I):(6):(1 .0

• I •
I

FIELD A; OP 1, LSL:

):(5 is the decimal address for the LSL of Quantity 1.

FIELD B; OP 2, MSL:

):(6 is the decimal address of the MSL of Quantity 2.

FIELD C; OP 2, LSL:

):(10 is the decimal address of the LSL of Quantity 2.

Example 2: UNEQUAL LENGTH OPERANDS

Given: Input Amount is in card columns 61 through 65. TOTAL is the Label
assigned to an area of 10 locations.

Problem: Add Input Amount to TOTAL

~~~~~ ----_._-- -~--------
-~~---- --------

24 
PAGE: 

o 

o 



UP-4084 

1 

UNIVAC 1005 

ASSEMBLER·SO 

, -

SECTION: 
4 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 

I I : I TIX I I ):(16 151 I ):(16 11 • • • I 
I 
I 

I 
A DI I + .$IXIR I I I TO TIA,L • • • • 

Instruction 1 TX 

FIELD A; OP 1, LSL: 

):(65 is the decimal address of the LSL of Input Amount in Read Input Storage. 

FIELD B; OP 1, MSL: 

):(61 is the decimal address of the MSL of Input Amount in Read Input Storage. 

FIELD C; Ignored 

This instruction transfers the 5 character Input Amount field to the low order 5 
locations of rX. The high order locations of rX are space filled. 

Instruction 2 AD 

FIELD A; OP 1, LSL: 

$XR is the Standard Label for the MSL of rX. +$XR specifies the LSL of rX. 

FIELD B; OP 2, MSL: 

The Label TOTAL specifies the MSL of the area assigned to TOTAL. 

FIELD C; OP 2, LSL: 

Blank addressing causes the Assembler program to use the LSL of the area as­
signed to TOTAL. 

This instruction specifies a 10 character OP 1 and OP 2. The 10 character OP 1 
will consist of the 5 low order locations of rX that were transferred from Input 
Amount, and the next 5 locations of rX known to contain space codes. 

4.4.2. SUBTRACT ALGEBRAIC 

Mnemonic: SU Mode: ASCENDING Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

1 6 * 12 18 * 22 28 32 38 

I 
: 

I~ ITT 1.LI I 21M • • 2.L I I I I I 
I 

25 
PAGE: 



UP-4084 

Function: 

-- - --------"--"-"- -------""-------~-" ---------"--- -"--- ----"--

UNIVAC 100S 

ASSEMBLER-SO 
SECTION: 

4 

This instruction performs exactly the same as ADD ALGEBRAIC (Section 4.4.1.). 

NOTE: OP I is subtracted from OP 2 and the result is delivered to OP 2. 

4.4.3. ABSOLUTE ADD (ADD MAGNITUDE) 

1 

Mnemonic: AM Mode: ASCENDING Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
* 12 18 1· 22 28 32 38 

I 

, . ' , AIMI I I LI I 21M 2L I I 

I 

Function: 

Ignore the signs of OP I and OP 2. Ascending add the OP I - LSL specified by 
Field A to the OP 2 - LSL specified by Field C, replacing OP 2 - LSL with the 
sum digit. Continue until a sum digit has been placed in OP 2 - MSL specified 
by Field B. Set the Sign Comparator. Set the Overflow indicator if necessary. 

This instruction performs the same as Algebraic Add except the sign bits of OP I 
and OP 2 are ignored during the process. The X bit of OP 2, LSL is not changed 
by this ins truction. 

4.4.4. ABSOLUTE SUBTRACT (SUBTRACT MAGNITUDE) 

1 

Mnemonic: SM Mode: ASCENDING Length:"" 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 1· 22 28 32 38 

SM 
• I.L, • I I 2.M, • I I I 21LI I I I • 

Function: 

This instruction performs exactly the same as ADD MAGNITUDE (Section 4.4.3.) 

NOTE: OP I is subtracted from OP 2 and the result is delivered to OP 2. The 
comparator is s_et to the results of the subtract (+, or -, or ~). 

Although the signs are ignored for the processing if a negative result is produced, 
it will be stored in true (not complement) form in OP 2. 

For example: OP I = 7, OP 2 = 3, 3-7 = 4 which is the result stored in OP 2. The 
X bit of the original OP 2, LSL remains unchanged. 

----"--- --------- --"----------- "-- ---------------""----- ----

26 I, 

PAGE: 

c 

c 

c 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 4 
SECTION: 

C'- 4.4.5. ADD CONSTANT 

1 

1 

Mnemonic: AK Mode: ASCENDING Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

! 
i I I 

I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 
A. 

18 * 22 28 32 38 

AK DD 2 M I , 2 L, , I I 

Function: 

Add algegraic ascending beginning with location 3 of the Instruction Register; to 
the OP 2 - LSL specified by Field C, until OP 2 - MSL specified by Field B has 
received a sum digit. Add a maximum of 2 locations (DD) from the IR. If OP 2 
is more than two locations in length, spaces are considered as a prefix to DD. 
Set the Sign Comparator. Set the Overflow indicator if necessary. 

DD must always appear as a two digit constant. If the value of DD is less than 

ten, place a '" in column 12. The maximum value of DD is 99. 

Negative constants are specified by placing a minus sign (-) in column 12 
followed by a two digit DD. The Assembler program will use this indication to 
place a binary 1 in the X bit position of both digits. The X bit over the right hand 
digit becomes the sign of the constant DD. The X bit over the left hand digit is 
ignored in the AK instruction. 

Example 1: 

Problem: Add 1 to the value of a 4 location area assigned to COUNT. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 
I I I I A,K I 

'" 1 
CO U NT I 

I 

FIELD A; DD: 

01 becomes the two characters in locations 2 and 3 of the IR when this instruction 
is executed. 

FIELD B; OP 2, MSL: 

The address of the MSL of the area assigned to COUNT is used as the OP 2, MSL 

of this instruction. 

FIELD C; OP 2, LSL: 

Blank addressing causes the Assembler program to use the address of the LSL of 

COUNT as the OP 2, LSL of this instruction. 

27 
PAGE: 



28 
UNIVAC 1005 

______________ ~ _________________ A_S_S_E_M __ B_L_E __ R_.8_0 ________________ ~~ __________ ~~S=E~C~TI~O~N~: ______ ~P~A~G~E~: ______ ~I UP-4084 

1 

I 

When the addition is performed, it operates the same as the Add Algebraic (AD) 
instruction, except that if the OP 2 is more than two locations in length (as in 
Example 1), space codes are added to the excess locations. The carty, if any, 
also is added in the excess locations. The AK instruction terminates when a sum 
digit has been delivered to the MSL of OP 2. 

Example 2: 

Problem: Subtract 1 from the value ofa 4 location area assigned to COUNT. 

NOTE: Subtraction is performed by adding a negative constant. 

LABEL OPERATION OPERAND 1 OPERAND 2 

r 
I 

I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
* 12 18 

A. 
* 22 28 32 38 

AK - 0 1 COUNT 

FIELD A; DD: 

The minus sign (-) prefix to the constant 0 1 (DD) causes the Assembler program 
to place a binary 1 in the X bit positions of locations 2 and 3 of this instruction. 
The X bit of position 3 is the sign of the constant DD. The X bit of position 2 
is ignored in the AK instruction. 

FIELD B; OP 2, MSL: 

The address of the MSL of the area assigned to COUNT is used as the OP 2, MSL 
of this instruction. 

FIELD C; OP 2, LSL: 

Blank addressing causes the Assembler program to use the address of the LSL of 

COUNT as the OP 2, LSL of this instruction. 

Space codes will be subtracted from the two high order locations of COUNT, and 
borrows will occur, if any. 

4.5. COMPARE INSTRUCTIONS 

Comparison in the UNIVAC 1005 may be considered to consist of two phases-­
performing the comparison, and testing the result of that comparison. The first 
phase--performing the comparison is accomplished through use of one of the Compare 
instructions. The purpose of a Compare instruction is to establish (set) a condition 
in the Comparator based on the relationship of the Operands which are compared. 
The condition of the Comparator is then tested by means of a Jump Test instruction. 
The Comparator which is set and tested by the Compare and Jump Test instructions 
should not be confused with the Sign Comparator which is set and tested by the 
Arithmetic and Jump Condition instructions. 

c 

c 



UP-4084 

c 

UNIVAC 1005 

ASSEMBLER·SO Rev. 1 4 
SECTION: 

The condition of the Comparator is set as a result (the only result) of the execution 
of a Compare instruction. The contents of OP 1 and OP 2 remain unchanged by a 
Compare instruction. The condition of the Comparator will not change until another 
Compare instruction is executed. The Comparator may be tested as often as required. 

The Compare instructions operate in ascending mode. In the event of a signed 
comparison, this enables the circuitry to first examine the sign bits, which are 
located in the LSL of the Operands. Except for sign considerations, the result 
condition of the Comparator is based on the last difference, if any, encountered 
during the comparison. 

The Operands in a Compare instruction must be of equal length. For signed com­
parison of unequal length Operands, the shorter of the two should be transferred to 
rX using the TX instruction (Section 4.3.6 ). In signed Compare instructions, space 
codes are considered equal to zeros. 

The maximum Operand length in a Compare instruction is 961 locations. 

4.5.1. COMPARE NUMERIC SIGNED COMPARISON 

1 

Mnemonic: CN Mode: ASCENDING Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 
A. 
* 22 28 32 38 

I 
I I I I C,N I 1 L, I 2 M 2 LI I 1 i 

I 

Function: 

Compare ascending the OP 1 - LSL (including sign) specified by Field A, to the 
OP 2 - LSL (including sign) specified by Field C. Continue until the OP 2 - MSL 
specified by Field B has been compared. Ignore the X and Y bit positions of OP 1 
and OP 2 (except sign). Set the Comparator to one of three conditions. 

OP 1 > OP 2; OP 1 < OP 2: OP 1 = OP 2. 

When a signed comparison is performed, the relationship of OP 1 and OP 2 can be 
established if the signs (X bit position of LSL) are not alike. If the signs are 
alike, the values of OP 1 and OP 2 are then automatically compared to determine 
the result. 

If the signs are alike and both plus, the Operand with the larger absolute value 
is the greater. If the signs are alike and 'both minus, the Operand with the larger 
absolute value is the least. If the signs are not alike, the Operand with the plus 
sign is the greater. Only if the signs are alike and the absolute values are the 
same is the result equal. 

29 
PAGE: 



UP-4084 

1 

UNIVAC 1005 

ASSEMB LER·80 
SECTION. 

In Compare Numeric (CN), the zone bits (X and Y positionS) of OP 1 and OP 2 
are ignored (except for the consideration of the sign bits). Space codes are 
compared as equal to zeros. 

4 

The result of a CN instruction is set in the Comparator, and must be tested by a 
JT instruction (Section 4.7.2) before the execution of any subsequent 
Compare instruction. 

Example 1: 

Problem: Compare Total Deductions from card columns 5 through 10 to the Gross 
Pay in a 6 character area assigned to GRPAY. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ! INC. FIELD C ! INC. 
A. A. 

6 .. 12 18 .. 22 28 32 38 

! 
1 ~ i_I C1N1 I 1 llll.r'~1 I I G1RIP1AIY I I 1 ~ 1 J 

I 

FIELD Ai OP 1, LSL: 

ll10 is the decimal address of the LSL of Total Deductions (column 10 of Read 
Input Storage). 

FIELD Bi OP 2, MSL: 

The Label GRPA Y specifies the MSL address of the area assigned to GRPAY. 

FIELD Ci OP 2, LSL: 

Blank addressing causes the Assembler program to use the LSL of the area as­
signed to GRPA Y as the LSL of this instruction. 

1) If Total Deductions (OP 1) is more than Gross Pay (OP 2), the Comparator is 
set to Greater Than. OP 1 > OP 2. 

2) If Total Deductions (OP 1) is the same as Gross Pay (OP 2), the Comparator 
is set to Equal. OP 1 = OP 2. 

3) If Total Deductions (OP 1) is smaller than Gross Pay (OP 2), the Comparator 
is set to Less Than. OP 1 < OP 2. 

4.5.2. COMPARE ABSOLUTE (MAGNITUDE) UNSIGNED COMPARISON 

Mnemonic: CM Mode: ASCENDING Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

22 28 32 38 1 6 .. 12 18 .. 
I 

I I : I CIM l I j 1 L 21M I I I 21L I 
I 

30 
PAGE. 

c 

c 



UP-4084 

1 

Function: 

UNIVAC 1005 

ASSEMB LER-80 
SECTION. 

Compare ascending the numeric bits (8, 4, 2, 1) of OP 1 - LSL (excluding sign) 
specified by Field A, to the OP 2 - LSL specified by Field C. Continue until 

4 

the OP 2 - MSL specified by Field B has been compared. Ignore the X and Y bit 
positions of OP 1 and OP 2 including the sign bits. Set the Comparator to one of 
three conditions: 

OP 1 > OP 2; OP 1 < OP 2; OP 1 = OP 2. 

The comparison is made on the absolute magnitude of the numeric (8, 4, 2, 1) 
values of OP 1 and OP2. The X bit positions of OP 1, LSL and OP 2, LSL (sign 
bits) are also excluded from consideration. Thus a plus 3 would compare equal 
to a minus 3. Space codes are compared as equal to zeroes. 

The result of a CM instruction is set in the Comparator, and must be tested by a 
JT instruction (Section 4.7.2) before the execution of any subsequent 
Compare instruction. 

Example 1: 

Problem: Compare Actual Tolerance from the area assigned to ACTOL (5 locations) 
to the Allowed Tolerance in the area assigned to AL TOL (5 locations). 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 
A. 
* 22 28 32 38 

I 

I I : I C,M , I I +,AIC,TIO 1 A1L1TI01L -.l-.l -.l 
I 

FIELD A; OP 1, LSL: 

The plus sign (+) prefix to the Label ACTO causes the Assembler to use the 
address of the LSL of the area assigned to ACTOL. 

FIELD B; OP 2, MSL: 

The address of the MSL of AL TOL is used as the MSL of OP 2. 

FIELD C; OP 2, LSL: 

Blank addressing causes the Assembler program to use the address of the LSL 
of ALTOL as LSL of OP 2. 

I 

31 
PAGE. 



__ U ..... _f>-,-4-0-8-4_-.. __ --_____ A_SU_SN_~_~_~_~_1_:_~_~8_0 ________ -L. ______ ...L:.S.:.;EC::.T.:.:j.:::.O::::;N:~4_~' __ L.!P~A~G:!E:.:.: _3_2 __ ~J 
i 

Tolerances are usually ± n. If AL TOL contains n, the Actual Tolerance (ACTOL) 
could have been calculated to a plus or minus value. The CM instruction will 
ignore the signs, and compare to determine if the absolute value of the Actual 
Tolerance is greater than the Allowed Tolerance. 

1) If the Actual Tolerance (OP 1) is more than the Allowed Tolerance (OP 2), the 
Comparator is set to Greater Than. OP 1 > OP 2. 

2) If the Actual Toleran<;:e (OP 1) is the same as the Allowed Tolerance (OP 2), 
the Comparator is set to Equal. OP 1 = OP 2. 

3) If the Actual Tolerance (OP 1) is smaller than the Allowed Tolerance (OP 2), 
the Comparator is set to Less Than. OP 1 < OP 2. 

If the Allowed Tolerance is 5, an Actual Tolerance of ± 4 would compare Less 
Than. 

. 
4.5.3. COMPARE ALPHANUMERIC UNSIGNED COMPARISON 

1 

I 

Mnemonic: CA Mode: ASCENDING, Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

.I 
I I CtA 1 L 2M 2 L I I 
I 

Function: 

Compare ascending the bit pattern of OP 1 - LSL specified by Field A, to the bit 
pattern of OP 2 - LSL specified by Field C. Continue until the bit pattern of 
OP 2 - MSL specified by Field B has been compared. Exclude sign considerations, 
but include sign bit positions. Set the Comparator to one of two conditions. 
OP 1 = OP 2; OP 1 f. (unequal to) OP 2. 

The purpose of the CA instruction is to determine if all bits in OP 1 are exactly 
the same as all bits in OP 2. There are only two results: all the bits of OP 1 
are exactly the same (equal condition), or they are not the same (unequal con­
dition). Spaces do not equal zeroes. 

The comparison is performed on an ascending b.asis using the X Y 8 4 2 1 bits of 
each corresponding location of OP 1 and O.P 2 beginning with the LSL. The 
determination of the condition which exists between the two Operands is made as 
soon as any difference is detected between characters in corresponding locations. 
If all locations have been compared and no difference is detected, an equal con­
dition exists. 

.-.",-,,~,,----~----,-----

I 

o 

c 



.-c.....r~-~-.~--.-.---~-- -_. _____ ._. ___________ ~~ __ ._ 

UP-4084 '. 
UNIVAC 1005 

ASSEMBLER-SO 4 33 

1 

c 

SECTION: 

Example 1: 

Given: Employee Number (5 locations) and Employee Name, last name first (24 
locations) from a Payroll Master Card have been stored in two adjacent areas 
assigned to MNUM and MNAME. 

MNUM I MNAME ' .. .' 

I., 

Detail cards containing the Employee Number in columns 1 through 5 and the first 
four letters of the last name of the employee are in columns 6 through 9. 

Problem: Compare Employee Number and Name from the detail card to MNUM and 
the first four locations of MN AME. 

LABEL OPERATION OPERAND 1 OPERAND 2 

, I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

: CIA, , ):(,9, , , , M,N U,M , M,N,A,M,E + 3 I I , 
I 

FIELD A; OP 1, LSL: 

):( 9 is the decimal address of the Read Input Storage location which contains the 
information from card column 9. 

FIELD B; OP 2, MSL: 

The Label MNUM causes the address of the MSL of the area assigned to MNUM 
to be used as the MSL of this instruction. 

FIELD C; OP 2, LSL: 

.' 

MNAME + 3 is the address of the location of MNAME that contains the fourth letter 
of last name stored from the master card. This address becomes the LSL of the 
CA instruction. 

Solution: The 5 locations of MNUM and the first 4 (high order) locations of MNAME 
become a 9 location OP 2, and are compared to the information from card columns 
1 through 9 in Read Input Storage. The assignment of the two Labelled Storage 
areas· (MNUM and MNAME) to adjacent memory locations is accomplished by proper 
use of Declarative instructions. 

The result of the CA instruction is set in the Comparator and can be tested in the 
next or some subsequent instruction (provided no intervening Compare instruction 
is executed). 

PAGE: 



UNIVAC 1005 ' 

____ U_P_-4_0_8_4 __ ~ _____________ A_S_S_E_M_B_L_E_R_-8_0 ______________ ~ ________ ~~~~4 ____ ~~~3_4 __ ~1\ 
SECTION: PAGE:. 

4.5.4. COMPARE CONSTANT UNSIGNED COMPARISON 

1 

1 

Mnemonic: CK Mode: ASCENDING Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

! 
1 _I ~ J CIK. 1 • K.K ••• l 21M..! , I _1 I 2,LI .L 1 

I 

I 

Function: 

Compare alphanumeric ascending the bit pattern of KK specified in Field A; 
beginning with the bit pattern stored in the location 2L specified by Field C; 
continuing until the bit pattern stored in the location 2M has been compared. 
Compare all bits. If 2M and 2L specify the same address, a one character com­
parison is made. If 2M and 2L specify more than a 2 location OP 2, space codes 
(binary zeroes) are compared to the excess positions of OP 2. Set the Comparator' 
to one of two conditions: KK = OP 2; KK lOP 2. 

When a CK instruction is brought'to the IR for execution, the two alphanumeric 
characters (KK) will occupy locations 2 and 3 of the IR. These two locations are 
used similar to an OP 1 in a Compare Alphanumeric instruction (Section 4.5.3.) 
However, the Operation code CK will cause the comparison to continue after the 
second character comparison has been made. Space codes are compared to any 
additional locations of OP 2. 

The CK instruction is an unsigned bit-for-bit compare instruction. Spaces do not 
equal zeroes, and sign considerations are ignored. OP 2 will usually be a one or 
a two character operand. 

The instruction is to be used to test for the presence of whole characters in 
storage location. (The Jump Compare OK) instruction (Section 4.7.5) can be 
used to test for the presence of specific bits in a storage location.) Binary 
coding (Section 4.3.5.3.) may be used, but should not be necessary, since this is 
a character comparison. 

Example 1: 

Problem: Test the information in card column 80 for a 3. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 . * 22 28 32 38 

: CK 1~3 ~ 8,0 J:t 8,0 • I 

o 

c 



UP-4084 

1 

I 

FIELD A; KK: 

UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

The )S 3 in the KK positions of Field A will be in locations 2 and 3 of the IR 
when this instruction is executed. 

FIELD B; OP 2, MSL: 

4 

J:l 80 is the decimal address of the location in Read Input Storage which contains 

the information from card column 80. 

FIELD C; OP 2, LSL: 

J:l 80 is the decimal address of the location in Read Input Storage which contains 
the information from card column 80. 

Solution: Since the OP 2 - MSL and OP 2 - LSL specify the same location, a one 
character comparison is made, using the 3 from location 3 of the IR (the right-hand 
K). The space code ()S) is required to position the 3 so that it is in the right-hand 
K position (column 13 of the form). If card column 80 contained only a 3 punch, 
the Comparator is set to equal. If card column 80 contained any other punches 
(or none at all), the Comparator is set to unequal. The Comparator is tested by 
use of the Jump Test OT) instruction. 

Example 2: 

Given: A two location counter is being arithmetically reduced by 1. The counter 
is stored in the two locations assigned to COUNT. 

Problem: Test the value of COUNT to see if it is equal to zero. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ! INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

: 
rlK ? 0111 C OUN T I 

I 

FIELD A; KK: 

The characters? 0 in the KK positions of Field A become locations 2 and 3 of 
the IR when this instruction is executed. 

FIELD B; OP 2, MSL: 

The address of the MSL of the area assigned to COUNT is used as the OP 2, MSL 
of this instruction. 

FIELD C; OP 2, LSL: 

Blank addressing causes the Assembler program to use the address of the LSL of 
the area assigned to COUNT as the OP 2, LSL of this instruction. 

35 
PAGE: 

f 
j 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 
Rev. 1 

4 
SECTION. 

Solution: The contents of COUNT are being arithmetically reduced by 1. When 
the value of COUNT is reduced to zero, the operation of the Arithmetic unit of 
the UNIVAC 1005 will cause a Y bit to be placed over the MSL of the result. The 
internal code for the question mark (?) is the same as an XS-3 zero with a Y bit. 
The CK instruction performs a bit-for-bit comparison. When COUNT is reduced 
to zero, this CK instruction will set the Comparator to equal. 

NOTE: Addresses can also be specified in the KK portion of a CK instruction by 
using the same notation described in Sections 4.3.5.1.; 4.3.5.2.; and 4.3.5.3. 

4.6. CONDITION INDICATORS 

The UNIVAC 1005 provides for two program controlled sensing switches, Sense 1tl 
and Sense 11:2. By using the Set Condition (SC) instruction, the programmer can turn 
these switches ON (Set to 1) or OFF (reset to 0) during the execution of a program. 
The condition of the Sense switches can be used to control the sequence of the 
execution of instructions during the program through use of the Jump Condition 
(JC) instruction. The Jump Condition instruction is used to test for the ON con­
dition of the switches. If the Sense switch being tested is ON (Set), the transfer 
of control will occur. If the Sense switch being tested is OFF (reset), the program 
proceeds with the next sequential instruction (NI). 

There are other uses for the Set Condition and Jump Condition instruction. A 
complete description of both instructions is given below. 

4.6.1. SET CONDITION 

1 

Mnemonic: SC Mode: SPECIAL Length: 5 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

S C CC 

Function: 

Set or reset the Conditions or Controls which correspond to each bit position of 

CC which contains a binary 1 as specified in Field A. 

Each of the bit positions of CC correspond to a Condition Indicator or a Control 
setting. The presence of a binary 1 in a bit position of CC will cause the Con­
dition or Control to be set or reset by the SC instruction. The presence of a binary 
zero in a bit position will not change the status of a Condition or Control. 

Although coded in Field A (to simplify source coding), the bit patterns of CC must 
occupy locations 4 and 5 (the B portion) of the object instruction. Locations 2 
and 3 of the object instruction are ignored by the UNIVAC 1005, and should be 
blank. Locations 4 and 5 constitute bit positions 19 through 24 and 25 through 
30 of the instruction. 

36 
PAGE. 

o 

o 

o 



UP-4084 

c-

UNIVAC 1005 

ASSEMBLER·SO Rev. 1 
SEC TION: 

The Conditions and Controls which correspond to the bit position of CC are as 
follows: 

BIT POSITION CONDITION/CONTROL 

19 (X) . SET ODD PARITY (See Section 4.13.) (Magnetic Tape) 
20 (Y) SET EVEN PARITY (See Section 4.13.) (Magnetic Tape) 
21 (8) SET SENSE 2 (ON) 
22 (4) SET SENSE 1 (ON) 
23 (2) RESET SENSE 2 (OFF) 
24 (1) RESET SENSE 1 (OFF) 

25 (X) RESET PPT for channel 8 punching 
26 (Y) SET PPT for channel 8 punching 
27 (8) SET SERVO 2 (See Section 4.13.) 
28 (4) SET SERVO 1 (See Section 4.13.) 
29 (2) SET CONSOLE INDICATOR 2 (ON) and HALT 
30 (1) SET CONSOLE INDICATOR 1 (ON) and HALT 

The Condition Indicators and Controls can be set (or reset) individually or in 
multiples as the programmer requires. 

4 

NOTE: Caution should be used when coding multiple bits in CC, in order to 
prevent illogical bit patterns which require the UNIV AC 1005 to establish opposing 
conditions. The results of such a conflict are unpredictable. 

Binary coding is normally used to specify a multiple bit pattern for CC (See 
Section 4.3.5.3.), in which case Field A must always contain a number sign (11) 
in column 12 followed by four octal digits for binary coding. 

The UNIVAC 1005 Assembly System provides the following mnemonic Switch 
Names if only a single Condition or control is to be set (or reset) by the SC in­
struction. A number sign (11) must appear in column 12 followed by the two-place 
mnemonic Switch Name in columns 13 and 14. 

SWITCH NAME BIT POSITION CONDITION /CONTROL 

11 SO (Alpha) 19 SET ODD PARITY 
lISE 20 SET EVEN PARITY 
11+2 21 SET SENSE 2 (ON) 
11 + 1 22 SET SENSE 1 (ON) 

11- 2 23 RESET SENSE 2 (OFF) 

11 - 1 24 RESET SENSE 1 (OFF) 

11 S2 27 SET SERVO 2 
11 Sl 28 SET SERVO 1 
lIH2 29 CONSOLE INDICATOR 2 and HALT 

lIH1 30 CONSOLE INDICATOR 1 and HALT 

11 H3 29,30 CONSOLE INDICATORS 1 & 2 & HALT 

37 
PAGE: 



UP-4084 

1 

1 

UNIVAC 100S 

ASSEMB LER-80 
SECTION: 

4 

It should be noted that the Switch Names for the Sense switches have a plus sign 
(+) for set (ON) and a minus sign (-) for reset (OFF); the Controls for magnetic 
tape operations have a prefix of the letter S; and the Halt and Console Indicators 
have a prefix of the letter H. 

Example 1: 

Problem: Set Sense 1 (ON) 

LABEL OPERATION OPERAND 1 OPERANO 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 
I • I • S.C. I # +.1 • I I I I 

• 

I 

FIELD A; CC: 

The Switch Name # + 1 causes the Assembler program to create a binary 1 in bit 
position 22, and the binary zeros in all other bit positions of CC. 

NOTE: The octal coded constant # 1341313 would produce the same CC. 

FIELD Band C: 

Blanks. 

Example 2: 

Problem: Reset Sense 2 (OFF) and Halt the UNIVAC 1005 with Console Indicator 
#1 ON. 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
* 12 

A. 
18 * 22 28 32 38 

• SIC # III 2 1 1/1.1 I I 

FIELD A; CC: 

The bit pattern of the octal constant #0201 will cause a binary 1 in bit positions 
23 and 30, and binary zeros in all other bit positions of CC. 

NOTE: Switch Names cannot be used since multiple bits are required. 

38 
PAGE: 

c 

o 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 
Rev. 1 4 

SECTION: 

4.6.2. STOP (HALT) 

1 

Mnemonic: STOP Mode: SPECIAL Length: 5 IA: NO 

lABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

28 32 38 6 * 12 18 * 22 

I 
I I I I SITIOIP [(ISlelel B e I 10 w I) I I J 1 I I i ...i 

I 

Function: 

The STOP command is a variation of the SC instruction (Section 4.6.1.) provided 

in the UNIVAC 1005 Assembly System to enable the programmer to easily specify 
and rapidly recognize those instructions which STOP (HALT) the operation of the 
UNIVAC 1005 during the execution of the object program. Permissible speci­
fications in Field A are Switch Names ttHl or ttH2 or ItH3. One of these switch 
names must be coded in Field A. 

4.7. SEQUENCE CONTROL INSTRUCTIONS 

Instructions in the UNIVAC 1005 are stored, accessed, and executed in serial 
sequence. This sequential operation is used as long as the program does not 
require branching. 

The accessing of instructions is under the control of the Instruction Control 
Counters. There are two single position counters; one for Rqw R32/C8/B1, and 
one for Column R32/C9/B1. The Column Counter is automatically incremented by 
five or seven as each instruction is transferred to the Instruction Register. The 
increment is determined by instruction type. The Row Counter is advanced by one 
each time the Column Counter advances beyond thirty-one and returns to one. Bank 
specification is also modified when the Row Counter passes 31. The Instruction 
Control Counters provide the Control Unit with the address of the next instruction 
(NI). 

JUMP instructions are used in the UNIVAC 1005 to vary the normal instruction 
sequence. The JUMP instructions change the contents of the Instruction Control 
Counters if conditions specified by the JUMP instruction are present. If not, the 
contents of the Instruction Control Counters remain unchanged, and the normal 
execution sequence (NI) is followed. 

The UNIVAC 1005 instruction repertoire contains seven Jump instructions for 
sequence variation. 

4.7.1. JUMP CONDITION 

Mnemonic: JC Mode: SPECIAL Length: 5 IA: NO 

lABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

1 6 * 12 18 * 22 28 32 38 

I : J ICI I CC J,A _1 I ...i ii J ...i I 

39 
PAGE: 



UP-4084 

Function: 

UNIV.AC 1005 

ASSEMB LER·80 4 
SECTION: 

If any of the conditions are met which correspond to binary 1 bits of CC specified 
by Field A; transfer control (JUMP) to the Jump Address (JA) specified by Field 
B. Otherwise, execute the next sequential instruction (NI). 

NOTE: In some cases, the indicators specified by 1 bits in CC are reset by this 
ins truction. 

The J A specified by Field B must be the address of the MSL of the instruction 
to which control is to be transferred if the Jump occurs. Since instruction addresses 
are assigned by the Assembler program, Field B will normally contain a pro­
grammer's Label. The current value of the ILC maintained by the Assembler 
program during assembly processing can also be used by specifying the dollar 
sign symbol ($) with Increment. The J A occupies locations 4 and 5 of the in­
struction. 

The bit patterns of CC occupy locations 2 and 3 of the JC instruction. Locations 
2 and 3 constitute bit positions 7 through 12 and l3 through 18 of the instruction. 
If a single binary 1 bit appears in any of the bit positions of CC and the corres­
ponding condition (indicator) is set (ON), the Jump will occur. If multiple 1 bits 
are present in CC and anyone of the corresponding conditions (indicators) is 
set (ON), the Jump will occur. Otherwise, the next sequential instruction is 
executed. 

The conditions and indicators which correspond to the bit positions of CC are 
as follows: 

BIT POSITION 

7 (X) 

8 (Y) 

7 and 8(X, Y) 

CONDITION/INDICATOR TESTED 

Form Overflow. Form Overflow is set when the Form Over­
flow position of the Forms Control Tape is sensed by the 
carriage. 

Form Overflow is reset when tested. 

Arithmetic Overflow. Arithmetic Overflow is set when the 
result of an Arithmetic ADD or SUBTRACT instruction 
exceeds the capacity of OP 2. 

Arithmetic Overflow is not reset when tested. 

NOTE: Form Overflow and Arithmetic Overflow cannot be 
tested in the same JC instruction. (See below.) 

End of Tape. End of Tape is set when that condition is 
detected by a Uniservo. The presence of binary l's in bits 
7 and 8 of CC constitute a specific test for End of Tape. 
If both bits are present, Form Overflow and Arithmetic Over­
flow are not tested or changed. 

40 
PAGE: 

o 

c 



UP-4084 

c~ 

9 (8) 

10 (4) 

11 (2) 

12 (1) 

13 (X) 

14 (Y) 

15 (8) 

16 (4) 

UNIVAC laOS 

ASSEMBLER-SO 

End of Tape is reset when tested. 

Rev. 1 
SECTION: 

NOTE: EOT is a separate indicator that is set by the 
Uniservo. It can be tested only through the combination 
bits 7 and 8 of character 2. The indicator is reset when 
tested. 

4 

Sense 2 Set. The Sense 2 Indicator has been set by the SC 
ins truction. 

Sense 2 is not reset when tested. 

Sense 1 Set. The Sense 1 Indicator has been set by the SC 
instruction. 

Sense 1 is not reset when tested. 

Alternate Hold 2 Set. Alternate Hold 2 Condition Indicator 
is set (ON) when the Alternate Hold Switch 11 2 console 
light is turned ON by depression of the switch. 

Alternate Hold 2 is not reset when tested. 

A Iternate Hold 1 Set. Alternate Hold 1 Condition Indicator 
is set (ON) when the Alternate Hold Switch 11 1 console 
light is turned ON by depression of the switch. 

Alternate Hold 1 is not reset when tested. 

Interrupt. Interrupt is set when the UNIVAC 1005 receives 
an Interrupt Signal from a peripheral unit. 

Interrupt is not reset when tested. 

Unit A lert. Unit Alert is set when a peripheral unit is in 
an abnormal condition. 

Unit Afert is not reset when tested. 

Parity Error. Parity Error is set when a parity error is 
detected. This may be set as the result of a magnetic 
tape parity error, mod error (OL Tl), invalid card code, or 
paper tape read (even parity detected). 

Parity Error is reset when tested. 

Sign Comparator Plus. The Sign Comparator is set to Plus 
when the result of an Arithmetic instruction is positive, and 
not zero. 

The Sign Comparator is not reset when tested. 

41 
PAGE: 



UP-4084 
UNIVAC 100S 

ASSEMBLER-SO 
SECTION, 

4 

17 (2) Sign Comparator Zero. The Sign Comparator is set to Zero 
when the result of an Arithmetic instruction is zero. 

18 (1) 

The Sign Comparator is not reset when tested. 

Sign Comparator Minus. The Sign Comparator is set to 
Minus when the result of an Arithmetic instruction is 
negative and not zero. 

The Sign Comparator is not reset when tested. 

The conditions may be tested individually or in multiples (except Form Overflow 
and Arithmetic Overflow) as the programmer requires. Binary coding is normally 
used to specify a multiple bit pattern for CC (See Section 4.3.5.3.), in which case 
Field A must always contain a number sign (#) in column 12 followed by four octal 
digits for binary coding. 

The UNIVAC 1005 Assembly System provides the following mnemonic Condition 
Names if only a single condition is to be tested by the jC instruction. A number 
sign (#) must appear in column 12 followed by the two-place mnemonic Condition 
N arne in columns 13 and 14. 

CONDITION NAME BIT POSITION CONDITION 

#FF 7 Form Overflow 

#AF 8 Arithmetic Overflow 

#+2 9 Sense 2 Set 

#+1 10 Sense 1 Set 

#-2 11 Alternate Hold 2 (ON) 

#-1 12 Alternate Hold 1 (ON) 

#IN 13 Interrupt 

#UA 14 Unit Alert 

#PE 15 Parity Error 

#AP 16 Sign Comparator Plus 

#AZ 17 Sign Comparator Zero 

#AM 18 Sign Comparator Minus 

#ET 7x8 End of Tape 

When the jC command is executed by the UNIVAC 1005 at object time, and the 
jump is to occur, locations 4 and 5 of the IR are transferred to the Instruction 
Control Counter. Locations 4 and 5 of the IR contain the jump address specified 
in the jC command. These two characters become the address used by the ICC 
to control the access of the next instruction. 

42 
PAGE, 

o 

c 

o 
I; 
I 



UP-4084 

c 

1 

1 

1 

c 

Example 1: 

UNIVAC 1005 

ASSEMBLER-SO 4 
SECTION: 

Problem: Transfer control to the instruction labelled FOF if Form Overflow has 
occurred. 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

J C It F F FOF 

FIELD A; CC: 

It FF is the Condition Name for Form Overflow and causes the Assembler program 
to place a binary 1 in position 7, and binary zeroes in all other positions of CC. 
It 4000 would produce the same pattern for CC. 

FIELD B; JA: 

The programmer's label FOF causes the Assembler program to use the address of 
the MSL of that instruction as the J A of this instruction. If Form Overflow has 
been sensed, the jump will occur. 

Example 2: 

Problem: Do not jump to the instruction labelled ERROR if the last previously 
executed Arithmetic instruction produced a positive result without Arithmetic 
Overflow. 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

38 6 .. 12 18 • 22 28 32 

I J ICI I It 12101013 I 
ERR 0, R I I I I 

FIELD A; CC: 

The octal coding will produce binary 1 's to test Arithmetic Overflow, Sign Com­

parator Zero, and Sign Comparator Minus. 

FIELD B; JA: 

The address of the MSL of the instruction labelled ERROR will be used as the 
jump address in this instruction. 

Solution: The jump will occur if any of the three conditions tested does exist. 
The jump will not occur if none of the three conditions tested exists. 

43 
PAGE: 



UP-4084 
UNIVAC,l005 

ASSEMBLER-SO 
SECTION: 

4 

4.7.2. JUMP TEST 

1 

Mnemonic: JT Mode: SPECIAL Length: 5 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 
I I I I J ,T, I J ,A 11 , I I J,A 2, I I I , , I I 

I - < 
Function: 

Test the condition established by the last previously executed Compare instruction. 
If equal, transfer control to instruction J A1 specified by Field A. If less than (or 
unequal, for alphanumeric comparison), transfer control to instruction J A2 specified 
by Field B. If greater than, allow control to pass to the next sequential-instruction 
(NI). 

The result of a Compare instruction is the setting of the Comparator based on the 
relationship of OP 1 to OP 2. If the Compare was a numeric comparison, the 
Comparator is set to one of three conditions: equal, less than, or greater than. If 
the Compare was an alphanumeric comparison, the Comparator is set to one of two 

conditions: equal, or unequal. The Comparator remains set until another Compare 
instruction is executed. 

The purpose of the JT instruction is to test the setting of the Comparator, and 
transfer control to the addresses specified in the JT instruction, based on the 
setting. There are three possible settings of the Comparator as ~ result of a 
numeric comparison, and only two addresses in the JT instruction. The necessary 
"third" address is implied, and is the instruction which immediately follows the 
JT instruction. If the previously executed comparison was an alphanumeric 
comparison, only two settings are possible, so that the JT instruction will always 
jump to one of the two addresses specified in the instruction, following an alpha­
numeric comparison. 

Since the Assembler program assigns addresses to instructions, the addresses 
specified in the JT instruction will usually be programmer's labels. The current 
value of the ILC maintained by the Assembler program during Assembly processing 
can also be used, by specifying the dollar sign symbol ($) with increment. 

Example 1: 

Given: A comparison has been made of the Quantity Ordered(OP l)to the 
Quantity on Hand (OP 2). 

Problem: If the Quantity Ordered is equal to Quantity on Hand, transfer control 
to the instruction labelled SAME. If the Quantity Ordered is less than the Quantity 
on Hand, transfer control to the instruction labelled SHIP. (If the Quantity 
Ordered is greater than the Quantity on Hand, control will automatically pass to 
the next instruction.) 

-------~.-~~~ ~-.. ------~~-.-~---.-

44 
PAGE: 

o 

c 



UP-4084 

1 

1 

LABEL OPERATION 

6 

I 

UNIVAC 1005 

ASSEMBLER-SO 

OPERAND 1 

I. FIELD A :t 
A. 

INC. 

* 12 18 

4 
SECTION: 

OPERAND 2 

I. FIELD B ± INC. FIELD C :t INC. 
A. 
* 22 28 32 38 

I I ' , IJ ,T, I I SIAIMIEI I S,H I IPI I I J _II ~ 

I 

I 

FIELD A; JA1 (equal): 

If the Comparator is set to equal, the address of the MSL of the instruction 
labelled SAME, locations 2 and 3 of the JT instruction, is transferred to the ICC. 

FIELD B; JA 2 (less than): 

If the Comparator is set to less than, the address of the MSL of the instruction 
labelled SHIP, locations 4 and 5 of the JT instruction, is transferred to the ICC. 

Example 2: 

Given: The Employee Name from a detail card (OP 1) has been compared to the 
Employee Name from a Master Card. 

Problem: If the Names are equal, transfer control to the address which follows 
the LSL of the JT instruction. If the names are unequal, transfer control to the 
instruction labelled ERROR. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 
A. 
* 22 28 32 38 

: IT T $ j 11 + 5 1 E,RJRIOIR I I J II I 
I 
I 

FIELD A; JA1 (equal): 

The dollar sign symbol ($) causes the Assembler program to use the current 
value of the Ins truction Location Counter with an increment of 5 as the J A 1 
address of the JT instruction. 

FIELD B; JA2 (unequal): 

L1 

The address of the MSL of the instruction labelled ERROR is used as the JA2 
address. 

Solution: The source language instruction taken from the card which immediately 
follows the JT instruction during the Assembly processing, will be assigned to 
the address which follows the LSL of the JT instruction. During the Assembly 
processing of the JT instruction, the ILC contains the address which is assigned 
to the JT instruction MSL. The JT instruction will occupy that location, and 4 
more. Thus the ILC ($) plus an increment of 5 wi'll be the same address that will 
be assigned to the instruction which is assembled after the JT. 

45 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

4 

4.7.3. UNCONDITIONAL JUMP 

1 

Mnemonic: J Mode: SPECIAL Length: 5'IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
* 12 18 

A. 
* 22 28 32 38 

I 

, , ' , J I I I J,A, I I , , I I I I , I I 
I 

Function: 

Transfer control to instruction JA specified by Field A. 

When this instruction is executed, an unconditional transfer is made of the J A to 
the ICC. Thus the address specified in Field A becomes the address of the next 
instruction to be executed. 

In many cases, a J instruction will be the last instruction of a sub-routine which 
has been entered through use of the JR instruction. 

The J A address occupies locations 4 and 5 in the object instruction. 

4.7.4. JUMP RETURN 

1 

Mnemonic: JR Mode: SPECIAL Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 
A. 

22 28 32 38 * 
I 

, I ' , J,R, , I J A 2,L , I I RA I I 

I 

The object language instruction produced from the source language JR above, has 
the format and will appear in the Instruction Register as follows: 

IR Locations 

Function: 

1 

JR 

A 
23 
RA 

B 
45 
JA 

C 
67 
2L 

Transfer ascending, locations 3 and 2 of the IR (RA) specified by Field C; 
beginning with the address 2L specified by Field B. Then transfer the J A 
specified by Field A to the ICC. 

46 
PAGE: 

o 

I' 

o 

c 



UP-4084 

C" . ~ 

UNIVAC 1005 

ASSEMB LER-BO 
SECTION: 

4 

The two characters produced from the RA (Return Address) are stored in locations 
2 and 3. The two characters produced from the JA are stored in locations 4 and 
5. The two characters produced from 2L are stored in locations 6 and 7. These 
location numbers refer to the positions of the object instruction as it is stored in 
memory, and to the positions the instruction will occupy in the Instruction Register 
(IR) when the instruction is executed. 

When the instruction is executed, the following operations are automatically per­
formed: 

1. Locations 2 and 3 of the IR are transferred (ascending) beginning at the memory 
location whose address is in positions 6 and 7 of the IR. 

2. Locations 4 and 5 of the IR are transferred to the Instruction Control Counter 
(ICC) and are used to control the access of the instruction to be executed next. 

The purpose of the JR instruction is to provide a simple method of interrupting the 
sequential execution of instructions in order to execute a special subroutine. 
After the execution of the special subroutine, control is to be returned to the in­
struction which sequentially follows the JR instruction. 

The special subroutine is called a closed subroutine. This means that the 
entrance (the first instruction executed) is closed as far as the initiation of the 
subroutine by the sequential advance of the ICC. It also means that the exit 
(the last instruction executed) is closed to prevent resumption of the program 
through the sequential advance of the ICC. 

A closed subroutine normally has the following form: 

(1). The first instruction to be executed (the entrance line) has a label which is 
the name of the subroutine. 

(2). The last instruction to be executed (the exit line) has a label, and is usually 
an unconditional jump instruction (Operation J). 

(3). If there are multiple points within the subroutine from which exit might occur, 

they must transfer control to the exit line. 

Using this form for closed subroutines, the JR instruction is then set up as 
follows: 

FIELD A; JA: 

Contains the label of the entrance line of the subroutine. 

FIELD B; 2L: 

Contains the address of the LSL of the exit line of the subroutine. 

FIELD C; RA: 

Contains the label of the address of the MSL of the instruction to which control is 
to be transferred after the subroutine has been executed . 

47 
PAGE: 



- -- r··-·-·---~-·-···-----·-·~--------··----- ------ ----

UNIVAC 1005 

UP-4084 ASSEMBLER-SO 4 

1 

I 

SECTION. 

NOTE: If the return address (RA) of the JR instruction is to be the address of the 
instruction stored sequentially following the JR instruction ($ + 7), Field C of the 
JR instruction may be left blank. The Assembler program will automatically insert 
the address equivalent of $ + 7 in locations 2 and 3 of the object instruction. If 
the return address (RA) of the JR instruction is to be anything other than $ + 7, 
the required address must be coded in Field C according to the rules for Assembly 
System addressing. 

Example 1: 

Given: A subroutine has been established to calculate square root. The entrance 
line is labelled SQRT. The exit line is a J instruction labelled EXIT .. 

Problem: Execute the subroutine, and return control to the next sequential in­
struction. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

: T R SIO R T + E X I T I I 
I 

FIELD A; JA: 

The address of the MSL of SQRT is used in Locations 4 and 5 of the object in­
struction. 

FIELD B; 2L: 

The plus sign (+) prefix to the label EXIT causes the address of the LSL of that 
instruction to be used as the locations 6 and 7 of this instruction. 

FIELD C; RA: 

Blanks in Fie ld C cause the Assembler program to use the current value of the 
ILC (the address of the JR instruction) plus 7 as the address RA in locations 2 
and 3 of this instruction. 

Solution: At the time the JR instruction is assembled, the ILC contains the 
address assigned to the JR .instruction. The implied $ + 7 is the same as the 
value which will be in the ILC when the Assembler program assigns an address 
to the next instruction. At execution time, this two character address of the next 
instruction is transferred automatically in ascending mode, from locations 3 and 
2 of the IR to the LSL and LSL minus one of the instruction EXIT. These two 
locations of the instruction EXIT constitute the J A of an unconditional jump (]) 
instruction. 

After setting up the RA in the exit line, the two characters from locations 4 and 
5 of the JR instruction are automatically transferred to the ICC. This causes the 
instruction stored at SQRT to become the next instruction executed. 

48 
PAGE: 

o 

o 

o 



UP-4084 

c' 

c) 

.... , 

1 

UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

4 

After the execution of the instructions in the subroutine, the instruction EXIT 
will be executed. The J instruction stored at EXIT now contains a J A address 
set up by the JR instruction. This J A address is the address of the instruction 
stored sequentially following the JR instruction. Thus control is returned to the 
main chain of the program. 

When the square root subroutine is reused at another point in the program, the 
entry is also made by a similar JR instruction. This JR instruction will set upa 
new RA in the exit line (EXIT) which will return control to the instruction which 
follows the new JR instruction. 

The effect of the JR instruction can be produced by using a TK instruction followed 
by a J instruction. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I I 
: T,K , : $, I + 12 + IE XII T 1 I I I I I -
I 

-.l -.l 1 I J, I , S Q,R,T I I I I I I I .1 

The instruction which is to follow the execution of the square root subroutine is 
the one which will be coded and assembled following the J ins truction. The 
address which will be assigned to that instruction is the value of the ILC at the 
time the TK is assigned, plus 7 for the length of the TK instruction, plus 5 for 
the length of the J instruction--$ + 12. 

The use of the JR instruction thus saves the memory locations required for the J 
instruction, the access time of the J instruction, and the programmer time to 
calculate the return address. 

4.7.5. JUMP COMPARE 

1 

Mnemonic: JK Mode: SPECIAL Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6. * 12 18 * 22 28 32 38 

I 

I I : I 11K, , K. , , , I IIA I I I 21L, I I I 

Function: 

Using the bit positions of K, specified in Field A, which contain binary 1 bits; 
test the corresponding bit positions of the memory location whose address is 
specified by 2L in Field C. If the bit positions of 2L which correspond to binary 
1 bit positions of K all contain binary 1 bits, transfer control to the JA address 
specified in Field B. If any of the bit positions of 2L which correspond to binary 
1 bit positions of K do not contain a binary 1 bit, proceed with the next sequential 
instruction (NI). 

NOTE: Bit positions of 2L which correspond to binary zero positions of K are 
ignored by the test and may contain binary zero or binary one. 

49 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 4 50 
.-.. ______ "-_____________ .-.. ___________ ...L _______ --1L.;S;.,;E;.,;C;.,;T:.;,IO:.N;,;;';""" __ .....L,;.P,;.;",:;G,:E,;.' -----i 

1 

The purpose of the JK instruction is to perform a test for bit(s) present in the 
contents of a memory location. If K contains only a single binary 1 in the X bit 
position, and the contents of the memory location specified by Field C also 
contains a binary 1 in the X bit position, the jump to JA will occur. If the memory 
location specified by Field C does not contain a binary 1 in the X bit position, 
the jump will not occur, and the program continues with the next sequential in­
struction (NI). The presence or absence of binary 1 's in the other bit positions 
of 2L are not involved in the operation, and have no effect on the result. 

If K contains multiple binary 1 bits, then each corresponding bit position of 2L 
must also contain a binary 1, or the jump will not occur. 

Example 1: 

Problem: Test the information stored in location 80 for the presence of a binary 
1 in the X bit position. If present, transfer control to CRDT. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 
A. 
* 22 28 32 38 

I 

J,K I I I I I 
, 

I I I CIR D,T l:(,8 IO I I 
I 

FIELD A; K: 

The apostrophe (') is the UNIVAC 1005 character which contains a binary 1 in 
only the X bit position. 

FIELD B; JA: 

The address of the MSL of the instruction labelled CRDT is used as the J A of 
this instruction. 

FIELD C; JA: 

l:( 80 is the decimal address of the location which contains the information from 
card column 80 of Read Input. 

Solution: If the information stored from card column 80 contains a binary 1 in the 
X bit position, the jump to CRDT will occur. 

Example 2: 

Problem: If card column 25 contains only the letter D, transfer control to DED. 
If card column 25 contains anything other than the letter D, transfer control to 
NOTO. 

D = 010 111 

.---~ .. ---
... -~-~.~.~------~. ------

c 

c 

I 

I,· 
! 



UP-4084 

LABEL OPERATION 

1 6 

I 

I I : I i TIKI I , 
I 

• 
I 1, K 
I 

• • : I JIK. 0 0 

• 

UNIVAC 1005 

ASSEMBLER-SO 

OPERAND 1 

I. FIELD A ± INC. 
~. 12 18 

" I •• I 

5 

Do 0 •• •• 

Rev. 1 4 
SECTION: 

OPERAND 2 

I. FIELD B ± INC. FIELD C ± INC. 
A. 
* 22 28 32 38 

N,O,T.D, I 0 J:t,2 15 1 I Ii 

N 0. T. D ~2 5 o , 

D,E.D. 0 • 0 J:t. 2.5. • I • 

N.O.T:o. • I •• •••• • I • 
o 0 •• I • 0 I I I . 

Instruction 1: 

If card column 25 contains a binary 1 in the X bit position, it does not contain 
only the letter D, and control is transferred to NOTD. 

Instruction 2: 

If card column 25 contains a binary 1 in the 8-bit position (X S3 code for 5), it 
does not contain only the letter D, and control is transferred to NOTD. 

Instruction 3: 

The previous two instructions have eliminated the possibility of the presence of 
binary 1 in the X bit and the 8-bit pos itions. If the remaining positions all contain 
binary 1 bits, this instruction will transfer control to DED. If card column 25 did 
not contain a D, this instruction will not jump, and control will sequentially pass 
to the next instruction--which is NOTD. 

The character K will appear in location 2 of the object instruction. Location 3 
is not used. Locations 4 and 5 will contain the] A address. Locations 6 and 7 
will contain the address of the location to be tested. 

NOTE: Octal coding may be used in Field A to specify K of the JK instruction. 
Column 12 must contain a number sign (It), and columns 13 and 14 must contain 
two octal digits whose bit pattern must produce the required K. Columns 15 and 
16 of the coding form must contain fiJfiJ. Location 3 of the JK instruction is ignored. 

4.7.6. JUMP LOOP 

Mnemonic: JL Mode: SPECIAL Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

1 6 * 12 18 * 22 28 32 38 

• 
: IT L • OD • ! il.A Is. I •• + 2 •• 
I 

51 
PAGE: 



UP-4084 

Function: 

UNIVAC 100S 

ASSEMBLER-SO 4 
SECTION. 

Subtract 1 from locations 2 and 3 of the IR (which will contain DD specified by 
Field A). Transfer ascending the result from locations 2 and 3 of the IR to 2L 
specified by Field C. If the result is positive or zero, transfer control to the JA 
specified in Field B. If the result is negative, proceed with the next sequential 
instruction. 

NOTE: 2L must specify the address of the least significant 0 in memory, Maximum 
OD = 99. 

$ + 2 in Field C may be left blank, in which case the Assembler will provide the 
$ + 2 address. 

The purpose of the JL instruction is to provide a means to control the number of 
times a series of instructions are to be repetitively executed. The series of in­
structions is called a loop. 

A loop is established to perform a common operation on each of a set of similar 
data, thus eliminating the need for a separate series of instructions for each of 
the set of data. 

A loop may consist of four sections 

(1) Initialization 

(2) Processing 

(3) Modification 

(4) Control 

The Initialization section prepares the loop to be used for the first of the repe­
titive executions. The Processing section cons ists of the operations to be per­
formed on the data. The Modification section changes the addresses in the 
Processing instructions to refer to the next set of data. The Control section 
determines when the loop has been executed the required number of times. 

The Control section of a loop in the UNIVAC 1005 will usually consist of a single 
JL instruction. The DO portion of the JL instruction must be set to a beginning 
condition in the Initialization section, due to the fact that DO is changed during 
the execution of the loop. Assume a loop is to be executed three times. DD will 
be 02 in the JL instruction at load time. After the execution of the Processing 
and Modification sections, the JL instruction is executed for the first time. 2L 
specifies the memory address of DO. DD is reduced by 1 in the IR and the result 
(01) is stored at 2L, replacing the 02. The result is positive, so the jump occurs 
to JA which usually specifies the first instruction in the Processing section. 
After the execution of the Processing and Modification sections, the JL instruction 
is executed the second time. DO, which now is 01, is again reduced by one in the 
IR, and the result (00) is stored at 2L, replacing the 01. The result is zero, so 
the jump occurs to JA. After the execution of the Processing and Modification 
sections, the JL instruction is executed the third time. DO, which now is 00, is 

52 
PAGE: 

o 

o 



UP-4084 

c 

1 

UNIVAC 1005 

ASSEMBLER·SO 
SECTION: 

4 

again reduced by one in the IR, and the result (-1) is stored at 2L, replacing the 
00. This time, the result is negative. Therefore,the jump to JA does not occur, 
and the program continues with the instruction (NI) which sequentially follows 
the JL instruction. The loop has been executed exactly "DD" + 1 times, three in 
this example. However, the value of DD in the stored JL instruction has been 
changed by the execution of the loop and now reads -1. Before the loop is executed 
again, the value of DD must be re-stored to the correct number of times the loop 
is to be executed. This is usually accomplished in the Initialization section by 
using a TK instruction with KK equal to the initial value of DD. The 2M and 2L 
of the TK instruction specifies the address of the DD portion of the JL instruction. 

A skeleton example of the coding for the previously described loop is as follows: 

LABEL OPERATION OPERANO 1 OPERANO 2 

I. FIELD A ± INC. I . . FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 
I IN IITI TIK 02 I C N T RL + 1 CNTRL+ 21 I 

I 

1 I : I I I I I 
I 

P ~OIC S 1 I I I ~ I I 1 I , , I , I , , 11 .Ll I i 
I 
I I I I I I 
I 

M 0 D'F Y , , 1 1 , I 1 I. , I 11 1 , 
I : I I I I I 

I 
C,N TIR L JILl I 02 PROCS CNTRL+ 2 I , 

The loop is entered by executing the instruction labeled UNIT. This sets DD 
equal to 02 in the JL instruction, labeled CNTRL. There are usually other 
operations required in the Initialization section. The fact that DD is 02 when 
loaded, and is reset to 02 for the first use of the loop should not be of concern to 
the programmer. Notice that Field C specifies the address of DD in memory. 

NOTE: If Field C is left blank by the programmer, the Assembler automatically 
provides the value of $ + 2 for Field C. 

The Modification section will usually involve the use of the COUNT (CC) in­
struction, which is explained in Section 4.8. 

Section 1.6. on Indirect Addressing contains an example of the use of a loop. In 
the example, Instruction 6 would be a JL instruction with a DD of 03, and a JA of 
the address of Instruction 1, the first instruction of the Processing section. In­
struction 5 would be replaced by the instructions necessary to perform the 
Modification section requirements. Instruction 1 would be preceded by the Initial­
ization section instructions including a TK instruction which sets the DD of the 
JL instruction to 03. 

53 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMB LER·80 Rev. 1 4 
SECTION: 

4.7.7. JUMP INDIRECT 

1 

1 

Mnemonic: JI Mode: SPECIAL Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 
A. 
* 22 28 32 38 

I 

I I : I J, I, , I ,J ,A , I , I I I I , I I I 

I 

Function: 

Transfer descending two locations be ginning with the IJ A (Indirect Jump Address) 
specified in Field A to the Instruction Control Counter (ICC). 

NOTE: If Indirect Addressing is specified (asterisk in column 11) two levels of 
IJA will occur. 

Field A of a Jump instruction 0) specifies the address to which control is to be 
transferred. Field A of the Jump Indirect instruction (1) specifies the address of 
the address to which control is to be transferred. 

The JI instruction is a pseudo-operation in the UNIVAC 1005 Assembly System. 
The JI instruction produces a TD command which has an OP 1 of the IJA, and an 
OP 2 of the ICC. OP 1 contains the address of an instruction (2 characters). 
When these two characte'rs are transferred to the ICC, they are used to control the 
access of the next instruction. Thus control is transferred, not to the IJA, but to 
the address stored in the locations specified by the IJA. 

Assume there are several points in a closed subroutine at which the processing is 
concluded. Each one of these points must return control to the instruction which 
follows the JR instruction used to enter the closed subroutine. This can be 
accomplished by coding a Jump 0) instruction at each of the ending points in the 
subroutine which transfers control to the exit instruction. The J A of the exit 
instruction was set up by the JR instruction to transfer control to the instruction 
following the JR instruction. However, by coding a Jump Indirect (1) instruction 
at each of the ending points with an IJ A that refers to the J A portion of the exit 
instruction, the execution of the second jump is eliminated. 

Assume that EXIT is the label of the exit instruction of a closed subroutine. Each 
of the ending points would conclude with the following instruction: 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 
A. 

18 * 22 28 32 38 

I 
~ I I I J ,I, , E,X, I, T, + 3 I I I I , I I I I 

I 

54 
PAGE, 

o 

C' \ ) 

c 



UP-4084 

.M······· ...... _ .. _~~ ...... _._. .. ..... ~ ..... ,,_ ... , ~.."~.,,~.~,,~ .... _ .......... ___ ......... _____ . __ ._ .... _~ .. 

UNIVAC 1005 

ASSEMB LER·80 Rev. 1 4 
SECTION: 

When the JI instruction is executed, the two character address stored in locations 
4 and 5 of EXIT, by the JR instruction, are transferred to the ICC. This effectively 
transfers control to the instruction following the JR instruction. 

4.8. COUNT 

1 

Mnemonic: CC Mode: SPECIAL Length: 5 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ! INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

: CC D.D. I I I 21M, I I I I I I I I 1 I 
I 

Function: 

Using address arithmetic, modify by DD, specified in Field A; the two character 
Row, Column, and Bank address stored beginning at 2M, specified by Field B. 

The purpose of the CC instruction is to provide a means of address modification 
according to the special logic of row, column, and bank addressing employed 'in the 
UNIVAC 1005. Addresses are specified by the full 6-bit positions of two adjacent 
characters. The Arithmetic Unit of the UNIVAC 1005 operates on a 4-bit numeric 
basis. Thus, the Add and Subtract instructions cannot be used for address modifi­
cation. 

The CC instruction operates on the full 6 bits of the two character address stored 
in the locations specified by 2M using the decimal value of DD as the modifier. If 
the address is to be decremented, a minus sign (-) is placed in column 12 of Field 
A, and DD is placed in columns 13 and 14. If the address is to be incremented, 

DD is placed in columns 12 and 13 and assumed to be plus. DD must always be two 
digits (00 through 99 maximum). If DD is less than ten, a 0 is placed in column 12. 
When DD is a decrement, the Assembler program places an X bit over both of the 
numeric digits in the object instruction. 

2M usually specifies the address of the MSL of the A portion of another instruction 
which is to be modified to reference a new set of data. 

Section 1.6.on Indirect Addressing contains an example of the use of a loop. The 
Modification section of the loop would consist of a single CC instruction that would 
replace Instruction 5. The CC instruction would modify the A portion of Instruction 
1 by the number of locations required for each entry in constant storage. Since two 
characters are required for MSL and two for the LSL of each of the four fields in a 
Transaction, the value of DD must be 16. 

Assume that Entry 1 of the constant storage area was labeled ENTl, and the 
Secondary Address Table was labeled SECAT. Instruction 1 would be: 

55 
PAGE: 



UP-4084 

LABEL OPERATION 

1 6 

UNIVAC 1005 

ASSEMBLER-SO 

OPERAND 1 

I. FIELD A !: 
A. 

INC. 

* 12 18 

I. 
A. 
* 

4 
SECTION: 

OPERAND 2 

FIELD B !: INC. FIELD C !: INC. 

22 28 32 38 

! 
P~R OIC S TD E NIT 11 I SIE,CIA,T SECAT + 1 15 1 

1 

1 

I 

The first execution of this instruction will cause a descending transfer beginning 
with the MSL of ENT1 (Entry 1 of constant storage) to the MSL of SECAT (the 
Secondary Address Table). The transfer will continue until the LSL of the 
Secondary Address Table has been filled. The remainder of the processing will 
then operate on Transaction 1. 

Before Instruction 1 is executed the second time, the two characters in locations 
2 and 3 of Instruction 1 must be modified to transfer from Entry 2 of constant storage 
to the Secondary Address Table. The following CC instruction would be used to 
modify PROCS (Instruction 1, locations 2 and 3). 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A !: INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

32 38 6 * 12 18 * 22 28 

ac 1 6 P ROC S + 1 I I I I I 

Each time this CC instruction is executed, the OP 1-MSL address in PROCS is in­
cremented by 16. This will cause successive transfers of each of the entries in 
constant storage. However, after the last execution of the loop, the A portion of 
PROCS will have an address of the location which follows the last location of 
constant storage. The Initialization section must then contain the following TK 
instruction which is executed before PROCS: 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± I. INC. A. A. 
6 * 12 18 * 22 28 32 138 

TK : E1N ,T,l 1 PIRjOjC,S + 1, , PjR1O,CjS + b~ i 
I 

The use of the colon (:) will cause the Assembler to use the address of ENT1 as 
KK in the TK instruction. These two characters are transferred to locations 2 and 
3 of PROCS, so that each first execution of PROCS will refer to Entry 1 of constant 
storage. 

The complete coding for the loop is as follows: 

56 
PAGE: 

o 

C·" ~ . 
. ~ 

o 



UP-4084 

LABEL OPERATION 

1 6 

I 

UNIVAC 1005 

ASSEMBLER-SO 

OPERAND 1 

I. FIELD A ± 
A. 

INC. 

* 12 18 

4 
SECTION: 

OPERAND 2 

I. FIELD B ± INC. FIELD C ± INC. 
A. 
* 22 28 32 38 

I N I'TI TK 13 3 C N TLR1L + 1 C N T R~L + 2 
I 

I 
I T K, : E N,T 1 PROCS+ 1 PROCS + 2 
I 

P,R,O:C,S T,O, , I E,NI TI1, I I S,E1C,A,T I I S,E,C,A,T + 1,5, , 
I , : , A,O, I I * S,E,C,A,T + 2, , * S ,E,CIA,T + 4, , , , I , I , , 
, , : I A. Q I I *S,E,C,AT + 6 , I * S E C A T+ 8 , 
j it L S ,U 1 L L * S,E,C A,T + 1 i13 L * S E,C,A,T + 1,2, I I , , 

M,o,olF Y C,C, I I 1 , 6 , , , , I P R,O,C,S + 1, , , , , I , 
C~N1TLRt l J,LL L I I3 L3 L , L L L P,R,OLC,S C,N TLR, L + 2 , , 

4.9. EDIT INSTRUCTIONS 

The UNIVAC 1005 instruction repertoire includes two types of instructions which 
perform editing and logical operations. The logical operations provide for the 
deletion (erasing) of 1 bits and the insertion (superimposing) of 1 bits on the bit 
positions of a memory location. The edit instruction provides for the preparation 
of output data for printing and punching. The edit functions include such things 
as zero suppression, character insertion, asterisk fi1l, etc. 

The erase function performs logical (or binary) multiplication of the corresponding 
bit positions of a constant and the contents of a memory location and stores the bit 
by bit product back in the same memory location. A binary zero in either or both 
corresponding bit positions of the constant and the memory location contents will 
produce a zero bit in the product. Only if both bit positions contain a binary 1 will 
the product bit be binary 1. Thus 13 x 13 = I<l, 0 x 1 = 13, 1 x 13 = 13, 1 x 1 = 1. 

The superimpose function performs logical (or binary) addition, without carry, of 
the corresponding bit positions of a constant and the contents of a memory location, 
and stores the bit by bit sum back in the same memory location. A binary 1 in 
either or both corresponding bit positions of the constant and the memory location 
contents wi1l produce a binary 1 as the sum. Only if both bit positions contain a 
binary zero will the sum be a binary·zero. Thus 0 + I<l = I<l, I<l + 1 = 1, 1 + fil = 1, 
1+1=1. 

The edit instruction requires the use of a pattern of characters called a mask to 
control the alteration of a field or fields of data for output. The mask pattern must 
be transferred to rX before the execution of the edit instruction. 

57 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMBLER·SO 
SECTION: 

4 

4.9.1. EDIT LOGICAL 

I 

Mnemonic: EL Mode: SPECIAL Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. --

6 * 12 18 * 22 28 32 38 

, E,L, , I K,K, I I J 1,M, , , , I 2,M, I I , , 

Function: 

Erase the bit positions of the contents of location 1M specified in Field B which 
correspond to the bit positions of location 2 of the IR (the left hand K) which 
contain binary zero. Then, superimpose a binary 1 on the bit positions of 2M 
specified in Field C which correspond to bit positions of location 3 of the IR 
(the right hand K) which contain a binary 1. 

NOTE: If 1M and 2M specify the same location, the erase precedes the super­
impose, on that location. 

The two characters (KK) in the A portion are used individually. The instruction 
uses the left hand character (which appears in location 2 of the IR when the in­
struction is executed) as the bit pattern for the erase function. The right hand 
character (which appears in location 3 of the IR) is used as the bit pattern for the 

superimpose function. 

The erase function is performed on the character in the location (1M) specified in 
Field B. The superimpose function is performed on the character in the location 
(2M) specified in Field C. The erase and superimpose can be performed on the 
same character by specifying the same location in 1M and 2M. 

NOTE: The UNIV AC 1005 Assembly System provides an instruction to erase only 
(EE) and an instruction to superimpose only (ES). 

The character whose zero bits are used to erase is coded in column 12. The 
character whose one bits will be superimposed is coded in column 13. 

Example 1: 

Given: A card field in columns 6 through 9 will contain an X punch over column 
9 if it is negative. This field will be transferred to print position 66 through 69. 
All of Print storage has been cleared as a result of the previous PRINT, 

EXECUTE command. 

Problem: Provide the instruction which will print a minus sign from print position 
70, and delete the X bit over the information from card column 9. 

58 
PAGE: 

c 

I' 

c 



UP-4084 

c 
1 

1 

C; 
. ,.,Y 

UNIVAC 1005 

ASSEMBLER·SO 
SECTION: 

4 

LABEL OPERATION OPERAND 1 OPERAND 2 

r. FIELD A ± INC. r. FIELD B ± INC. FIELD C ± INC. 
A. A. 

22 28 32 38 6 * 12 18 * 
I 

I • : • ElL. I I = 1- I I I I ):t .9 I I I I $.P.R •• + 619~ 
I 

FIELD A; KK: 

The bit configuration of the equal sign C=) in column 12 is 011 111. The bit 
configuration of the minus sign C-) is 000 010. 

FIELD B; 1M: 

):t 9 is the decimal address of the location in Read storage which contains the in­
formation from card column 9. This becomes the erase address. 

FIELD C; 2M: 

$PR is the Standard label for the MSL of Print storage. $PR + 69 is the address 
of print position 70. This becomes the superimpose address. 

Solution: The binary zero in the X bit position of the equal sign will erase the 
X bit position of Read storage for column 9. The binary 1 in each of the other bit 
positions of the equal sign will prevent the erase of the corresponding bit positions 
of Read storage for column 9. 

The fact that Print storage is cleared after a PRINT, EXECUTE allows the super­
impose of the binary 1 in the 2 bit position of the minus sign, on the binary zero 
in the 2 bit position of print position 70. If print position 70 was not known to be 
all binary zeroes, two steps would be required to solve this problem. 

NOTE: The TK instruction can be used to replace a single character in memory, 
rather than erase with space and superimpose with the character. 

Octal coding can be used to specify the bit configuration of KK in the EL in­
struction. The number sign CU) is coded in column 12 followed by four octal 
digits. The coding for the previous solution in octal would be: 

LABEL OPERATION OPERAND 1 OPERAND 2 

r. FIELD A ± INC. r. FIELD B ± INC. FIELD C ± INC. 
A. A. 

28 32 38 6 * 12 18 * 22 

: ELI I • ul3~7 10_12 ):t .9 1 • I $ P R + 6 19. 
• 

I • • 

The binary configuration of octal 37 is 011 111. The binary configuration of 
octal 02 is 000 010. 

S9 
PAGE: 



--.--.------.- .. -~ ... -- ._--------_._._,---- -_. -_._----

___ U_P_-_4_0_8_4_-'-_________ A_S_~_~_I~_~_C_L_~_~_~_8_0 _ _______ ...L.------"'-SE-C-T-I-ON-'-4--...L.P- A...;G;.;;E;.;.' _6_0 ___ 1-

4.9.2. EDIT ERASE 

1 

, 

Mnemonic: EE Mode: SPECIAL Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I EE K 1 M I 

Function: 

Erase the bit positions of the character stored at 1M specified by Field B which 

correspond to bit positions of K, specified in column 12 of Field A, which contain 
binary zero. 

This instruction is a pseudo-operation provided by the Assembly System and is 

a variation of the EL instruction. The operation code EE causes the assembler 
program to automatically use the address of 1M in locations 4 and S. Characters 
6 and 7 (2M of an EL instruction) are assembled as two blanks. The blank column 
13 will produce binary zeroes so that no bits are superimposed. 

If octal coding is used, the number sign followed by four octal digits must be 
specified, and the last two must be 00. 

NOTE: If a memory location is to be cleared to binary zeroes, use a TK with 
KK equal to l6l6. 

4.9.3. EDIT SUPERIMPOSE 

1 

Mnemonic: ES Mode: SPECIAL Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 • 12 18 ~. 22 28 32 38 

E,S, , I KI , I , I 21M, I 

Function: 

Superimpose the binary 1 bit positions of K, specified in column 12 of Field A, 
on the corresponding bit position of the character stored in 2M specified in Field 
B. 

This instruction is a pseudo-operation provided by the Assembly System and is a 
variation of the EL instruction. The operation code ES causes the Assembler 
program to automatically use the address of 2M in locations 6 and 7. Characters 

- ---------_. ---

I 
I 

c 

c 

c 



UP-4084 

.(-

UNIVAC 1005 

ASSEMBLER-SO Rev. 1 4 
SECTION: 

4 and 5 (1M of an EL instruction) are assembled as two blanks. The Assembler 

program also automatically places K in location 3, and puts all binary l's in 

location 2 so that no bits are erased. 

If octal coding is used, the number sign followed by four octal digits must be 
specified, and the first two must be 77. 

PAGE: 

4.9.4. EDIT 

1 

Mnemonic: ED Mode: DESCENDING Length: 7 IA: YES 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 • 12 18 * 22 28 32 38 

EO 1 M 2M 2 L 

Function: 

Initialize a two phase instruction of editing data in X register and transfer the results 
to Operand 2. 

Phase I, edit descending beginning at OP 1-MSL according to the corresponding special 
characters in the edit mask in rX; when a sentinel (;t) or the LSL of the X register 
(R32C31B2) is detected in the edit mask, editing is terminated. 

Phase II transfers the X register in a descending mode to Operand 2 until OP 2-LSL is 
sensed. 

NOTE: OP 2 should contain the exact number of characters that are in the edit mask 
excluding the sentinel position. The sentinel position of the mask will be space filled 
upon completion of Phase I. 

The Edit (ED) instruction performs a location by location transfer of the appropriate 
characters from OP 1 to the locations of rX according to the edit functions specified 
by special characters placed in corresponding locations of rX and transfers rX to OP 2. 
The length of OP 2 is dictated by the length of the mask in rX (31 locations maximum). 
The result character to be stored in OP 2 will be either the character from OP 1 
processed according to the edit action specified by the special characters in the mask, 
or a character to be inserted from the mask. The mask is usually stored as a constant 
and must be transferred to rX before the execution of the ED instruction. The mask in 
~X is changed by the ED instruction. 

Indirect AddreSSing can be specified for the address of the data to be edited 
(OP 1) and for the destination of the edited output (OP 2). 

The following symbols are used as special characters in the mask to specify the 
edit action: 

61 



UP·4084 
UNIVAC 1005 

ASSEMB LER·80 

\ (Backward Slash). 

Rev. 1 4 
SECTION: 

When this special character is detected in the mask, it will cause zeros, COMMAS, 
and spaces from OP 1 to be replaced with asterisks (*) until a character which is 
not a zero, COMMA, or a space is recognized from OP 1. The asterisk fill operation 
started by the backward slash can be restarted during the ED instruction by placing 
additional backward slashes in the mask. 

6. (Delta Symbol). 

When this special character is detected in the mask, it will cause zeros, 
commas and spaces from OP 1 or rX to be replaced with space codes (binary 
zeroes) until a character which is not a zero, comma,or space is recognized from 
OP 1. The zero suppress operation started by the Delta symbol can be re· 
started during the ED instruction by placing additional Delta symbols in the 
mask. 

NOTE: If a comma appears in the mask and a previously started asterisk fill 
or zero suppress function has not detected a significant character, the comma 
will be replaced by an asterisk or a space code. 

xx (Lozenge). 

When this character is detected in the mask, it allows the current corresponding 
character from OP 1 to be transferred to OP 2. If asterisk fill or zero suppress 
has been previously started, the character from OP 1 is handled accordingly. 

~ (Unequal Symbol). 

When this character is sensed in the mask (Phase I), it will be space filled 
and terminates Phase 1. 

All characters other than backward slash, Delta, lozenge, and unequal which appear 
in the mask will be inserted in OP 2 prior to the current character from OP 1. 

The function of the ED instruction when executed is to first examine the MSL of 
rX. At this precise point in time, the current character from OP 1 is OP l·MSL. 
What happens next is based on the character in the MSL of rX. Basically, one of 
two possibilities exist: the character in the MSL of rX is not one of the four 
special characters, or it is one of the four special characters. 

If the character in the MSL of rX is not one of the four special characters, the 
character in rX will remain in the MSL of rX. The next character in the mask will 
then be examined. At this point in time, the current character from OP 1 is still 
the OP l·MSL. If the second character in the mask is not one of the four special 
characters, it will also remain. This examination will continue until one of the 
four special characters is detected. (If the mask does not contain a backward 
slash, a Delta, or a lozenge, the ED becomes a TD of rX to OP 2.) 

When a special character is detected in the mask (other than the unequal symbol), 
the current character from OP 1 (which in this example, is still the OP I-MSL) is 
transferred to the next most significant location of rX. When this occurs, the next 
most significant character of OP 1 becomes the current character from OP 1. Mask 
examination is also advanced to the next most significant location of rX. This 
operation is continued until the first of the following occurs: 

62 
PAGE: 

o 

C' "\ , .~ 

~ 

c 



UP-4084 

1 

• 

• 

UNIVAC 1005 

ASSEMB LER·80 Rev. 1 
SECTION. 

(1) The mask examination detects the unequal signal. The EDITING terminates, 
and the current character from OP 1 is not handled. 

(2) The LSL of rX is detected. The LSL position is handled and editing is 
terminated. 

The length of OP 2 cannot be greater than the length of the mask (maximum 31 
locations). If OP 2 is smaller than the mask, the excess positions of the mask 
are not transferred. If the mask is less than 31 characters in length, the unequal 
sign should be used as the least significant character in the mask, but is not 
counted in the length of the mask or the length of OP 2. 

The length of OP 1 is determined by the number of locations in the mask which 
contain special characters other than the unequal sign, assuming that the length 

4 

of OP 2 and the mask are the same. The presence of any of the special characters 
in OP 1 will not change the operation of the ED instruction. 

Example 1: 

Given: A ten location operand labeled SUM which contains dollars and cents. 

Problem: Print the contents of SUM as follows: 

1. Precede with a dollar sign. 
2. Zero suppress. 
3. Insert commas. 
4. Insert the decimal point. 
5. Print the word "TOTAL" two print positions to the left of the dollar sign, and 

starting in print position 11111. 

Contents of SUM: 0 0 0 1 2 .. 6 8 9 3 

1 2 3 4 5 6 7 8 9 10 

Constant stored at MASK: 

T 0 T A L 't 15 $ !l J:t , J:t J:t J:t . J:t J:t J:t J:t J:t f 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Instructions: 

LABEL OPERATION OPERANO 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

: TD M.A.S.K. • $,X,R. , I , $,X.R, , + 2 1 
I 
I ~Q SUM $PR + 1 0 0 $ P R + 1 2 1 
I 

63 
PAGE: 



UP-4084 

0 0 0 1 
1 2 3 4 

Instruction 1. 

UNIVAC 1005 

ASSEMBLER·SO Rev. 1 

The mask is transferred from MASK to the high order end of rX. 

Instruction 2. (See illustration below). 

4 
SECTION. 

The MSL of SUM becomes the current character from OP 1. The MSL of rX contains 
the letter "T" which is not a special character. The "T" therefore remains in the 
MSL of rX. The examination and editing continue until the delta is reached. The 
MSL of OP 1 is still the current character of OP 1. 

Delta (location 9) is the character in the m ask. This starts the zero suppress 
function, and causes the transfer of the current character from OP 1. The 0 from 
OP I-MSL is changed to a space code, and transferred to location 9 of rX. The 
next position of the mask (location 10) contains a lozenge which causes the new 
current character from OP 1 (location 2) to be transferred to rX,and is found to 
contain a comma. Since zero suppress is still active, the comma is changed to 
a space in rX. The next location of the mask (location 12) contains a lozenge 
which causes the transfer of the current character from OP 1 (location 3) to be 
transferred to rX (with zero suppression). The next position of the mask (location 
13) contains a lozenge which causes the current character from OP 1 (location 4) 
to be transferred to rX. However, the current character from OP 1 is not a zero or 
a space. This terminates the zero suppress function. Transfers of OP 1 to rX con­
tinue for the next two locations. At this point,the location is the mask (location 15) 
contains a comma. Since zero suppress is no longer active, the comma remains in 
rX. The next three locations from OP 1 (locations 6, 7, and 8) are transferred to 
rX. The next location of the mask (location 15) contains a period, which remains in 
rX. The next two locations from OP 1 (locations 9 and 10) are transferred to rX. 

At this point, the sentinal (;t) in the mask is sensed. The sentinel position is space 
filled and editing is terminated. The contents of the X register are now transferred 
to OP 2 in a descending mode until OP 2-LSL is sensed. 

NOTE: After editing, the X register contains the result to be placed in Operand 2. 

2 4 6 8 9 3 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

~ OP! 
-..; :---

T 0 T A L 15 15 $ !1 ):( , ):( ):( ):( , ):( ):( ):( . ):( ):( i-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

rX 

T 0 T A L 15 15 $ 15 15 15 15 1 2 , 4 6 8 9 3 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

OP2 

64 
PAGE. 

29 30 31 

29 30 31 

29 30 31 

c 



UP-4084 

(~ 

UNIVAC 1005 

ASSEMBLER-SO Rev. 1 
4 

SECTION: 

4.10. DECLARATIVE INSTRUCTIONS 

Declarative instructions are instructions from the programmer to the Assembler 
program to control its operation during assembly processing. No object language 
instructions are produced from a source language Declarative, but the source 
language information is automatically carried through to the object deck in the 
event re-assembly is desired at a later time. 

Declarative instructions include provision for establishing constants in the object 
program. The output from a Declarative which sets up a constant will include the 
constant, and instructions to the Load routine for loading the constant. 

The Assembler program maintains two counters which control the assignment of 
memory locations and addresses of the instructions, and the working storage for 
the object program. The Instruction Location Counter (ILC) is incremented by the 
Assembler program when allocating memory for instructions and in-line constants. 
The Data Location Counter (DLC) is decremented by the Assembler program when 
allocating memory for working storage and Declarative constants. 

These counters are not hardware, but are program locations established and up­
dated by the operation of the Assembler program. When the Assembler program is 
loaded, the initial value of the ILC is set to the address of the first location 
following the Read/Punch Punch storage area--Row 15, Column 19, Bank 1. Un­
less otherwise specified, this will be the address assigned to the MSL of the first 
object language instruction assembled. A Declarative instruction is provided which 

allows the programmer to place a new value in the ILC. 

The initial value of the DLC is the address of the last location in memory--Row 
31, Column 31, Bank 2 for a two bank system, or Row 31, Column 31, Bank 4 for 
a four bank system. No provision is made for specifically placing a new value in 
the DLC. The value of the DLC is decremented as working storage areas and 
Declarative constants are called for by the source language program. 

4.10.1. DEFINE INSTRUCTION LOCATION COUNTER 

LABEL 

1 

: 
I , 

Mnemonic: DL 

OPERATION OPERAND 1 OPERAND 2 

r. FIELD A ± INC. r. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

DL XXXXX I I I I I I I I I I I I 

Function: 

Set the value of the Instruction Location Counter to the known address specified 
in Field A. 

65 
PA GE: 



UP-4084 

1 

UNIVAC 1 DOS 

ASSEMBLER-SO 

NOTE: A plus or minus increment may also be used. 

4 
SECTION: 

When the current (or initial) value of the ILC is not the address desired by the 
programmer for the allocation of the next instruction, the DL Declarative is used 
to establish a new value in the ILC before the next instruction is allocated. 
Caution mus.t be exercised by the programmer when changing the value of ILC 
to insure that an address is not assigned more than once by the Assembler program. 

The current value of the ILC (the symbol $) may also be used in Field A. 

Example 1: 

Given: The Read/Punch Unit is not used by the object program. 

Problem: Start the allocation of instructions in the first location following the 
Print storage area. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

: DL $ P 1 
I 
I 

FIELD A: 

$Pl is the Standard Label for the MSL of the Punch (Read/Punch Read) storage 
area. 

Solution: This card must be the first source language input card which effects 
the ILC. The known value of the Standard Label $Pl (RI0, C14, 81) is stored 
by the Assembler program in the ILC, a~d is used as the address of the first 
instruction assembled. $101481 or J:l293 could also have been used in Field A 
to produce the same value in the ILC. 

NOTE: Programmer's labels cannot be used in Field A. 

Example 2: 

Given: Code Image and Punch storage are not used by the object program. 

Problem: Use these areas for instructions. 

66 
PAGE.: 

o 

c 



UP-4084 

LABEL OPERATION 

1 6 

J 
I • I I D,L. I 

I. 

UNIVAC 1005 

ASSEMBLER·SO 

OPERAND 1 

FIELD A t INC. 
A. 
• 12 18 

tr.8 1!. I I 

I. 
A. 
• 

Rev. 1 4 
IECTION, 

OPERAND 2 

FIELD B t INC. FIELD C t INC. 

22 28 32 38 

I I I I I 1 1 i 
! Is T ,A IR, T I I I • • I I • I 1 I I i i ii ...l • 

1 

Instruction 1; 

This instruction sets the value of the ILC to the address of the first location 
following Read Storage. 

Instructions 2 through n. 

These lines of coding beginning at START are assigned to addresses beginning 
with tr 81 and continuing according to the number and length of the instructions. 
The programmer must determine when the ILC will have been incremented to the 
pOint where it contains the value which is six less than the value of the first 
location of Print storage. At that point,he must code the J instruction to prevent 
the sequential advance of the ICC at object time from securing instructions from 
the Print storage area. He must then code the second DL declarative to prevent 
the ILC from assigning instructions to addresses in Print storage during Assembly 
processing. 

Example 3: 

Given: An unconditional jump instruction. 

Problem: Store a 2 character constant, XV, in the ignored 2nd and 3rd character 
of the assembled jump instruction. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A t INC. I. FIELD B t INC. FIELD C t INC. 
A. A • 

6 • 12 18 • 22 28 32 38 

I 

I I : I 11 • I ADDR. I I I I I I 

• 
r D LI I • $ •• - 4 • • i ...l 1 ...l I 

• I : • *. • 2, I I • XIV, I I I I ii ...1 i...11 Ii I 
I I ! , D.L ••• $ + 2 1 I I , I , I I , I 

• 

67 
PAGE, 



UP-4084 
UNIVAC 1005 

ASSEMBLER·SO 

Line 1: The unconditional jump instruction. 
Line 2: Set the ILC to the second character of the jump instruction. 

4 
SECTION: 

Line 3: Define an In-Line Constant of XY(2 characters) to be assigned in the 
second and third characters of the jump instruction. 

Line 4: Set the ILC to the address following the jump instruction. 

NOTE: The value of $ as used in Line 2 differs from the value of $ as used in 
Line 4. 

4.10.2. DEFINE AREA 

1 

Mnemonic: DA 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 • 22 28 32 38 

I 

I I I I DIA I X XIX I 
I 

Function: 

Allocate an area of working storage with a length as specified in Field A. Sub­
tract the number of locations in the area from the value of the DLC. Use the new 
value + 1 of the DLC as the MSL of the area. 

NOTE: This instruction will usually have a Label to be used for referencing by 
the programmer. 

The loading of the Assembly program sets the initial value of the DLC to the last 
location of memory--R31/C31, B2 or R31/C31, B4. When an area of working 
storage is required, the programmer uses the DA declarative to cause the Assembler 
program to allocate the required number of locations. This allocation begins at 
the last location of memory and proceeds toward the first location of memory by 
decrementing the value of the DLC by the size of the area required. 

The number of locations to be allotted by the DA declarative is coded in columns 
12, 13, and 14 of Field A. The maximum number of locations which can be 
allotted by a single DA instruction is 961. 

The use of the DA declaratives to allocate working storage does not prevent the 
same locations from being assigned to instructions. In the event of a lengthy 
program, the assignment of instructions may increment the value of the ILC until 
it is greater than the value of the DLC. The programmer can recognize whether 
or not this situation has occurred by examination of the object printout from the 
Assembly processing. 

The DA dec1aratives should be coded on a separate page of coding paper to en­
able the programmer to obtain a "picture" of the full area of working storage. 
It will also enable the programmer to assess the possibility of exceeding the 

68 
PAGE. 

o 

o 



UP-4084 

C-· 
- . 

c:' 

1 

UNIVAC 1005 

ASSEMB LE R-SO 
SECTION: 

4 

total memory capacity for working storage and instructions. Seven times the 
number of instructions (the maximum number of locations required for instructions) 
added to the ILC starting value will produce the ILC maximum value. The sum 
of the numbers in Field A of the DA and DC declaratives when subtracted from 
the starting DLC value will produce the lowest value of the DLC. The number of 
locations set aside for in-line constants and Indirect Address constant, if any, 
should be included. 

The Define sub-field declarative is used in conjunction with the DA declarative 
to provide definition and labelling of sub-fields within the locations allocated 
by a DA declarative (See Section 4.10.2.1.) 

The contents of the memory locations allocated by a DA declarative are not 
entered at object load time, and are not automatically set to blanks or zeroes. 

Example 1: 

Problem: Establish a working storage area of ten locations, to be used in the 
accumulation of a total. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 
TIOITIAIL DIAl I 1 10 1 I I I I I I I I I I J I 

I 

Solution: Assume that this is the first DA declarative to be assembled for an 
object program to be run on a two bank UNIVAC 1005. The loading of the 
Assembly program set the initial value of the DLC to l:l1922. The area TOTAL 
would be assigned to locations l:l1913 to l:l1922 inclusive. The label TOTAL 
is then used to specify the MSL of this 10 location area throughout the program. 
The new value of the DLC is l:l1912 (l:l1922 minus 10). 

4.10.2.1. DEFINE SUB-FIELD 

The Define Sub-field declarative can only be used following a DA declarative. 
The Define Sub-field declarative does not change the value of either the ILC 
or the DLC. It does not allocate memory. 

The purpose of the Define Sub-field declarative is to establish labels for 
fields within an area that has been allocated by the immediately preceding DA 
declarative. The address assigned to th~ label of a Define Sub-field declarative 
is'determined by the Assembler pr9gram by calculating its location relative to 
the MSL of the area allocated by t~e ,DA declarative. 

'\ I 

The Define Sub-fie ld declarative is specified by placing a minus sign (-) in 
column 6. Complete specification of the Define sub-field declarative is as 
follows: 

69 
PAGE: 



.... --~-- ---.-.--.-~----.~~~~-~----.-.-.-.----.--

UP-4084 

1 

1 

LABEL OPERATION 

6 

I 

I I ' , i, I I 
I 

UNIVAC 1005 

ASSEMB LER-80 

OPERAND 1 

I. FIELD A ± 
A. 

INC. 

* 12 18 

XIXIX I 

SECTION: 

OPERAND 2 

I. FIELD B ± INC. FIELD C ± INC. 
A. 
* 22 28 32 38 

VIV VI I I I 

Where XXX is the character number within the DA field of the least significant 
(right most) location of the sub-field. 

VVV is the number.of locations within the sub-field. 

It is recommended that sub-fields be defined in their order of appearance (left 
to right) within the DA field, however there is no restriction on the sequence 
of defining sub-fields. Sub-fields may be overlapped, either partially or wholly, 
without producing inconsistent object code. 

Example: 

Given: A master card is to be read and transferred to working storage for the 
subsequent processing of detail cards. 

Problem: Define an 8~ location area with sub-fields according to the following 
master card format: 

Card Columns 1 through 7 

LABEL OPERATION 

6 

8 through 30 
31 through 40 
41 through 50 
51 through 60 
61 through 70 
71 through 80 

OPERAND 1 

I. FIELD A ± 
A. 
* 12 

Stock Number 
Description 
Balance on Hand 
Shipped to Date 
Shipped this Week 
On Order 
Minimum Level 

INC. I. FIELD B 

18 
A. 
* 22 

OPERAND 2 

± INC. FIELD C ± INC. 

28 32 38 

! 
MiA. SIT, R D,A , I I 81~' I I I I I I I I I I I I I 

I 
S T KIN 0- 7 7 

I 
D,E,slc,R -I I I 3101 , I I 213, I I I I I , , 

I 

B,A,Llo,H -I I I 41fl I I I 11~ I I I I I , I I , , 
I 

TI PlDIA,1 -I I I 510 I I I 1.9 I , 
T H,S:W,K - I I , 6 fl I I 1 fl, I I I I I I I 

I 

o,N,oIRD -1 I I 71~' I I I I 1 ~I I I I , 
I 

M,IINI I -, , , , 8, ~I , I , I 11~1 I I I I , I I L .L .1. , 

4 70 
PAGE: 

c~ 

C" 
, 

C: ' 



UP-4084 

LABEL 

1 

I 

I ~ I 
I 

UNIVAC 1005 

ASSEMB LER-80 
SECTION: 

4 

Solution: The DA instruction allocates an area of 80 locations with an MSL 
identified by the label MASTR. When the Master card is to be transferred from 
Read Input storage, the following single instruction can be used to transfer all 
80 columns. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

TD $ R 1 M A SlT R 

Subsequent coding can then refer to the MSL of the fields in the Master card by 
using the labels of the Define sub-field declaratives. 

4.10.2.2. Subfields of Specific Fixed Address Areas 

There is a second use of the DA declarative which does not allocate working 
storage area. The purpose of this second use of the DA declarative is to 
enable the programmer to establish sub-fields for specific areas of memory. 
Since these areas are "known" to the Assembler program, no allocation is 
made by the DA declarative. 

The DA declarative specifies a known address (standard label, row column 
address or decimal address) in Field A, with or without an increment, and is 
followed by Define sub-field declaratives. The Define sub-field declaratives 
are used to define sub-fields within the area of the known address according to the 
field configuration required by the programmer. The labels assigned by the 
programmer to the Define sub-field declaratives can then be used to reference 
these fields. The value of the DLC is not changed. The "leftmost" character 
(the MSL) of the DA field is considered to be the character whose address is 
specified by Field A of the DA statement; for this use of the DA statement no 
"rightmost" (LSL) address is aSSigned to the DA field. 

Example: 

Given: A card format as follows: 

Card Columns 1 through 10 
11 through 20 
21 through 40 
41 through 60 
61 through 80 

ID Number 
Quantity 1 
Quantity 2 
Quantity 3 
Quantity 4 

Problem: Define Read Input storage giving labels to the card fields. 

71 
PAGE: 



UP-4084 

LABEL OPERATION 

1 6 

UNIVAC 1005 

ASSEMBLER-SO 

OPERAND 1 

I. FIELD A ± 
A. 

INC. 

* 12 18 

I. 
A. 
* 

4 
SECTION: 

OPERAND 2 

FIELD B ± INC. FIELD C ± INC. 

22 28 32 38 

~ 
I , : , DIAl, I 1$,R,11 I I I I I I I I I , 

I 
I 0 

, 
1 till I • I I I 1 0 I , I -

• 
IQ.1. : -, , 2,0, I , , . 1,0 1 , I t , , , , 
IQ,2. : , - 4 0 2 0 , I I , , 
.Q131 : , -, , , , 6,0, , I I , 2,0 I , , 
IQ 4, : , - I 8 0 2 0 

There is no restriction on the number of times a known address may be used to 
define sub-fields in this manner. 

4.10.3. DEFINE CONSTANT 

1 

Mnemonic: DC 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 
A. 

18 * 22 28 32 38 

~ , , : , D,C, , I 0,0,0, , ± C C,C C C, , , , I , 

I 
I 

The purpose of the DC declarative is to enter constant values in the object 
program at load time. The DC declarative usually has a label that is used to 
specify the MSL of the constant. The address assigned to the constant is 
determined by subtracting the number of locations in the constant, specified by 
Field A, from the current value of the DLC plus 1. The Assembler output card 
in the object deck will contain the constant, and the instruction to the Load 
routine to enter the constant in the assigned address. 

The constant is coded beginning in column 18 of the coding form. The sign of 
the constant (plus or minus) is coded in column 17 and is not included in the 
length of the constant. The maximum length of a negative constant is 25 
locations. The maximum number of characters which can be specified in a single 
card for a positive constant is 44. A blank in column 17 will be interpreted as 

a plus. 

Provision is made for the continuation of a positive constant of more than 44 
characters by placing a comma (,) in column 6 of the next card, and continuing 
the characters in column 18. A maximum of 961 characters can be entered as a 
single constant in this manner. The length of the constant is specified in only 
the DC card, and the label (if any) of the DC card refers to the entire constant. 
A label (if any) present on a constant continuation card will refer to only those 
characters appearing on the constant continuatio~ card. 

--------- -~--.--

72 
U 

PAGE: 

I, 

I' 
I 

C 

I 
I 

c 



UP-4084 

c 

c 

1 

UNIVAC 1005 

ASSEMBLER.SO Rev. 1 4 
SECTION. 

The action of the Load program is to use the length specified in Field A to 
determine the number of the columns, beginning at column 18, which are to be 
stored in memory. If the number of characters punched as the constant does not 
agree with the number in Field A, the number of columns specified by Field A 
is used. 

Example 1: 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 
M,A S'K, DC 2 2 T OtT AL)S)S$ AXX, XXp XX, XX ,XX XX • XX XX,~ , 

!. )S )S S TOCK)6'N O. )6')6' )S DE,S C HIE,AID, D,C, 7 6 I I 
I 

_1 I I 1 I I 1 I 1 I I I R1I,P T I ,01 N .16 1)6' )6' elt IC , , , , II , 
L I Mil ,T DC 7 - 9 9 ~ 9 9 9 9 , , , 

1 

I 
I 

MASK is the label of the constant used as the mask in Example 1 of the ED in­
struction. 

HEAD might be used to print the headings on an inventory report. (The actual 
constant would continue through column 61 before starting again in column 18 of 
the continuation card. 

LIMIT is a 7 digit constant with a value of minus 9999999 which would be stored 
as 999999R. 

If it is desired, the DC declarative can be used to allocate a working storage 
area whose initial contents are space codes. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

! 
IT,0,T1A L DC 1 ,9 1 11 I I , , , , , 

I 
I 

The area assigned to TOTAL will be entered with the 10 space codes from 
columns 18 through 27 of the DC card. Caution should be exercised by the 
programmer when using this technique since the area will not be cleared 
if a restart is required. 

If the programmer codes the constants on a separate page and enters the source 
language cards for constants after the cards from the DA page, a single TK in­
struction can be used to clear all of working storage to spaces. 

73 
PA liE. 



UP-4084 

1 

Example 3: 

UNIVAC 1005 

ASSEMBLER-80 
Rev. 1 

4 
SECTION, 

Given: The above recommended procedure is followed, and the last source 
language DA card has a label of LAST. 

Problem: Clear working storages to space codes. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ! INC. FIELD C ± INC. 
A. 

6 .. 12 18 
A. .. 22 28 32 38 

I 

I I I I TIK 111$111$ LIA S T , U1 9 2 2 . 
Solution: The allocation of all preceding DA cards began with a DLC value of 
1922 (two bank system). The value of the DLC was reduced by each DA card 
including the card labeled LAST. Thus,the MSL of all working storage is 
also the MSL of LAST. The 2 space codes from the TK are transferred beginning 
at the LSL of OP 2 (U1922). Since OP 2 is larger than two locations, the 
remainder of OP 2 is cleared to spaces. 

NOTE: This procedure may not be used if the number of locations defined by 
DA statements exceed 961. 

4.10.3.1. In-Line Constants 

LABEL 

1 

: 
I I 

I 

The term in-line constant refers to the allocation of a constant in the portion 
of memory usually allocated to object language instructions. 

The UNIVAC 1005 Assembly System provides for in-line constants through use 
of the asterisk (*) in column 6 of the coding form. The remainder of the in-line 
constant format is the same as for a DC declarative. No continuation cards may 
be used for in-line constants. The in-line constant is allocated based on the 
current value of the ILC, and usually carries a label for identification. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 .. 12 18 
A. .. 22 28 32 38 

* I I D DI I ±CCC CC I I I I I 

The maximum length (DD) of a negative in-line constant is 25 locations. The 
maximum length (DD) of a positive in-line constant is 44 locations. A blank 
in column 17 will be interpreted as a "plus." 

74 
PAGE. 

o 

c 

c 



UP-4084 

c 

Example 1: 

UNIVAC 1005 

ASSEMBLER·SO 4 
SECTION: 

The in-line constant may also be used to enter constants in the memory 
locations between Read Input storage and Print storage. The in-line constants 
should be preceded by a DL with a Field A of ):(81 and followed bya DL with 
a Field A of the Address for the first instruction to be assembled. These cards 
must then precede the first instruction when assembling. 

NOTE: When in-line constants are assembled along with instructions it is the 
programmers responsibility to jump his progr/tm over the stored constants. 

Example 2: 

See Example 3 of Section 4.10.1. 

4.10.3.2. In-Line Comments 

LABEL 

1 

: 
I I 

I 

Columns 41 through 56 of the coding form are headed "Comments" and can be 
used by the programmer to make notes regarding the lines of coding. These 
comments will also appear on the final printout of the Assembly processing. 
They provide an excellent assist to good documentation. 

As a further means to good documentation, the UNIVAC 1005 Assembly System 
provides for in-line comments. An in-line comment allows the programmer to 
use most of the columns of the form for headings and. notes. The in-line 
comment is not allocated to memory in the object program .. It is merely printed 
and punched by the Assembly program. The in-line comment may appear any­
where in the source program. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

)l C CC C C . I 

The in-line comment is specified by placing a period (.) in column 6 followed 
by a blank (space) in column 7. The Comment itself may appear anywhere in 
the coding line from columns 8 through 61. If the required comment is longer 
than 54 characters, additional in-line Comments may be coded with a period 
in column 6 and a space in column 7. 

In order to assist in the documentation, it is suggested that the following in­
line comments be used as the first card or cards of the program to be assembled. 

75 
PAGE: 



UP-4084 

LABEL 

1 

: 
I 1 

I 

I 1 I 1 
1 

1 1 : 1 
1 I 

Example: 

UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

Problem: Print the Program Name, Author's Name, and Date Written as the 
heading of the Assembler printout. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ! INC. FIELD C ! INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

4 

PRO G RAM I D: P A,Y,R,O,L L ,G,R ° S IS I ,T, O N,ET 

. I IA UT H OR:, , A B IT ONES 

.1 IDIAIT E IW1R1I IT T ~N,: ,JIA,N1U AR,Y, 9 " 11 19 16 6 I 1 

4.10.4. DEFINE INDIRECT ADDRESS CONSTANT 

LABEL 

1 

: 
I 

Mnemonic: DI 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ! INC. FIELD C ! INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

b I I A - A I A - B I A - C I 

The purpo~e of the DI address constant is to provide the programmer with the 
means to allocate, identify, and establish the initial contents of a secondary 
address. An instruction which calls for Indirect Addressing contains a primary 
address for the A or the Band C portions of the instruction, and the locations 
referred to by the primary address must contain a secondary address which is 
the address of the data to be processed by the instruction. 

Indirect Addressing is specified in an instruction by placing an asterisk (*) in 
column 11 for OP 1, or column 21 for OP 2 (or both, if r~quired). When an 
asterisk is coded in an instruction where IA is permitted, it causes the Assembler 
program to place a binary 1 bit in the X bit position of location 6 for OP 1 lA, 
or location 7 for OP 2 IA (or both). At object time, when the instruction is 
transferred to the Instruction Register, the UNIVAC 1005 first examines these 
two bit positions. Asterisks coded in instructions where IA is not permitted have 
no effect on the assembler., 

If the X bit of location 6 contains a binary 1, a two location descending transfer 
is made beginning at the address in the A portion of the IR, to locations 2 and 3 
(the A portion) of the IR. If the X bit of location 7 contains a binary 1, a four 

location descending transfer is made beginning at the address in the B portion 
(locations 4 and 5) of the IR, to locations 4 through 7 (the Band C portions) of 
the IR. After performing these functions, the instruction is then executed using 
the addresses currently in the IR regardless of the reoccurence of IA bits. The 
contents of the instruction as stored in memory remain unchanged. 

76 
PAGE: 

o 

o 

I' 
I, 
I 

i 



UP-4084 

1 

UNIVAC 1005 

ASSEMB LER·80 
SECTION: 

In order to provide the locations in the object program for secondary addresses, 
the DI constant declarative is used as follows: 

FIELD A: 

4 

The specification of an address in Field A establishes a two location secondary 
address in the object program. The initial contents of the two location secondary 
address will be the machine language code for the specified address. 

FIELD B: 

The specification of an address in Field B establishes a four location secondary 
address in the object program. The initial contents of the four location secondary 
address will be established according to the rules for Assembly System OP 2 
addressing. If Field B contains a label (Standard or programmer), the two 
character address of the MSL of the area assigned to the label will be used as 
the initial contents of the left hand two locations of the secondary address. If 
Field B contains a label, Field C may be left blank, and the two character 
address of the LSL of the area assigned to the label will be used as the initial 
contents of the right hand two locations of the secondary address. Note coding 
both Fields A and B results in a 6 character pair of secondary addresses. 

FIELD C: 

If Field B does not contain a label, or if the LSL address of the area assignea to 

the label in Field B is not to be used as the initial value of the right hand two 
locations of the secondary address, Field C must contain an address. 

NOTE: The DI constant will usually have a label which is used as the primary 
address in the instruction which calls for Indirect Addressing. 

Example 1: 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 

ClAIT: I to I I I I I DIOIG, I I I I , , I I , I ~l 
I 

F,O xl to I I RAT 
I 

C,O,W: , to ,I, , , +,P,I ,G , t A,N,T, , , t , , , t I , , 
MrOtViE, Dtl, t , Xl,1 t , t t Xl,7 2 ,4 t , t Xl,7,3,3, I , , . 

CA T becomes the MSL address of a two location secondary address which contains 
the MSL address of the area assigned to DOG. CAT may then be used as the 
primary address in the A portion of an instruction. When that instruction is 
executed, the address stored in CAT replaces the address of CAT in the IR. 

77 
PAGE: 



UP-4084 

1 

I 

UNIVAC 1005 

ASSEMBLER-80 
SECTION: 

FOX becomes the MSL address of a four location secondary address which 
contains the MSL and the LSL address of the area ass igned to RAT. 

COW becomes the MSL address of a six location constant which contains (from 
left to right) the address of the LSL of the area assigned to PIG, the address 
of the MSL of the area assigned to ANT, and the address of the LSL of the area 
assigned to ANT. 

MOVE becomes the MSL address of a six location constant which contains (from 
left to right) the address of decimal location 1, the address of decimal location 
724, the address of decimal location 733. 

4 

The Assembler processing for the -allocation of locations to the DI constants is 
the same as for the allocation of the DC and the DA dec1aratives. This means 
that the groups of locations assigned to the DI constants in the previous example 
will be in the reverse sequence in which they are assembled. The characters 
within each constant will appear in the correct sequence. 

Assume the value of the DLC is 1700 when CAT is to be assembled. The (MSL) 
addresses assigned to the labels in the example would be as follows: 

CAT 1699 
FOX 1695 
COW 1689 
MOVE 1683 

This condition may have an effect on the sequence of coding DI constants w,hen 
establishing a table of Indirect Addresses. In the example of Indirect Addressing 
(page 11), a table of secondary addresses was e'stablished with a label of SECAT. 
The coding to establish the table is as follows: 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

32 38 6 * 12 18 * 22 28 

I 
I I D I J:X 1 61.1 .J..J. I::( 2 !if 
I 

I I I D I I I J:X 1 1 J:X 1 5 , 
, , : , D ,I, , , , , , I , , J:X ,6, , , , , J:X,1,!if, , I , , 

s,E,clA,T D,I, , , , , , , I I J:X ,1 1 I , '.J. .J. J:X.J.S.! .J. .! .!.J. 
! 

Using this sequence causes SECAT to be the address of the MSL of the 
Secondary Address Table. The LSL of the table is SECAT + 15. Refer to the 
coding of the loop in Section 4.8 for the use of an Indirect Address table. (The 
constant storage referred to in the example in Section 1.6 also would be set up in 
the same manner.) 

78 
PAGE: 

c 

c 



, ,-, .--- "~-.- ---'-------~ 

UP-4084 
UNIVAC 1005 

ASSEMB LER-80 
SECTION: 

4 

C' 4.10.5. DEFINE END 

1 

1 

Mnemonic: END 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A • 

6 .. 12 18 .. 22 28 32 38 

! 
i _l 11 EIN[DI j XjXIXI I I I I I I I I I I I 

I 

LABEL 

I 

The purpose of the Define End declarative is to provide for the automatic jump to the 
start of the object program after it is loaded by the Load routine. 

Field A specifies the address of the MSL of the first instruction to be executed 
in the object program. Field A usually contains a programmer's label. No 
allocation is made, and the address in Field A is not stored in memory. 

Example 1: 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
.. 12 18 

A • .. 22 28 32 38 

I I I I E,N,D, S,TIA,RI T I I I I I I I t I I I 
\ 
\ 

I 

START is the label of the source language instruction which is to be executed 
first after the object program is loaded. The source language instruction START 
need not be the first instruction assembled. 

NOTE: The Assembler output card produced from the END declarative must be 
the last card loaded by the Load routine, and should be followed immediately by 
the input data to be processed. 

4.11. MULTIPLICATION INSTRUCTIONS 

Multiplication in the UNIVAC 1005 is performed using fixed length operands for 
the multiplier, the multiplicand, and the product. When a Multiply instruction is 
executed by the UNIVAC 1005, the fixed length multiplier and multiplicand are 
transferred from memory to positions in Row 32, Bank 1 where they are then 
operated upon to produce the product--also in Row 32, Bank 1. The product is 
then automatically transferred from Row 32, Bank 1 to memory. During the 
execution, the locations in Row 32, Bank 1 normally reserved by the IR and the 
ICC are used in the calculation of the product. The contents of the ICC are pre­
served and are restored to the ICC automatically, to initiate the next instruction. 

79 
PAGE. 



----.r-----.----~--~-~-- .. ---

UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 

---~-----.----.-.-. ---.~-- ~---.-- _ ... _------------ - . 

4 80 
SECTION: PAGE: 

Multiplication is performed using the absolute (unsigned) values of the multiplier Ci 
and multiplicand, producing an absolute (unsigned) value as the product. Locations 
in the product which do not contain a significant digit (1 through 9) will contain a 
zero (13). Values are treated as integers. 

Since there are three operands in multiplication, the multiply commands of the 
UNIVAC 1005 utilize 3 address logic: OP 1 is the multiplicand, OP 2 is the 
multiplier, and OP 3 is the product. 

There are two multiply instructions in the command structure of the UNIVAC 1005, 
Multiply (MU) and Multiply Long (ML). The difference between the two is the size 
of the fixed length multiplier, multiplicand and product. 

Multiply utilizes a multiplier of exactly six digits, a multiplicand of exactly four 
digits, and produces a product of exactly ten digits. 

Multiply Long utilizes a multiplier of exactly eleven digits, a multiplicand of 
exactly nine digits, and produces a product of exactly twenty digits. 

If the programmer's multiplier and multiplicand do not conform exactly to the 
requirements of one or the other of the multiplication instructions, a Multiply 
Working Storage (MWS) should be established by the programmer (using DA 
declaratives) for a multiplier, multiplicand, and, a product of these lengths. The 
programmer should then transfer his variable length operands to the MWS before 
executing- a multiply instruction. The transfers to MWS should be made via rX 
using the TX instruction. An example of the use of rX as MWS is included in the 
explanation of each of the multiplication instructions. 

4.11.1. MULTIPLY 

LABEL 

1 

: 
I 

I 

Mnemonic: MU Mode: SPECIAL Length: 7 IA: NO 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I MIU I 1 L I 21M I 3 1LI I 1 I 

Function: 

Transfer ascending the four digits beginning at the LSL specified in Field A to 
the multiplicand positions of Row 32, Bank 1. Transfer descending the six 
digits beginning at the MSL specified in Field B to the multiplier positions of 
Row 32, Bank 1. Multiply. Transfer ascending from the product positions of 
Row 32, Bank 1 to the ten locations beginning with the LSL specified in Field C. 

NOTE: After completion of the MU instruction, the product is also available in 
Row 32, Column 21 through Column 30 of Bank 1, until the execution of -.another 
multiplication or division instruction. 

----------- ------_.--

C" , . 

c 

, i 



UP-4084 

C: 

1 

Example 1: 

UNIVAC 100S 

ASSEMBLER.80 Rev. 1 
SECTION: 

Given: A four digit Quantity in card columns 1 through 4. A six digit Price in 
columns 5 through 111l. 

4 

Problem: Multiply Quantity times Price and store the product in the ten location 
area labeled AMT. 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A t INC. I. FIELD B t INC. FIELD C t INC. 
A. 

6 * 12 18 
A. 
* 22 28 32 38 

! 
1 , : , M,U, , J:t 4, I , J:t.5 • +.A.M T I , 

: 
FIELD A: 

J:t4 is the decimal address of the LSL of Quantity. 

FIELD B: 

J:t5 is the decimal address of the MSL of Price. 

FIELD C: 

+ AMT is the address of the LSL of the area assigned to AMT. 

In the event the size of the operands are not the exact length required by the MU 
command, rX (Row 32, Bank 2) can be used as a Multiply Working Storage. The 
multiplicand (4 digits or less) is transferred to rX using a TX command. This 
fills the high-order positions of rX with space codes. A TA command is used to 
transfer the multiplier to rX as follows: Field A contains the LSL address of the 
multiplier in memory; Field C specifies $32 27 B2; and Field B specifies a 
location in rX based on the actual length of the programmer's multiplier. If the 
multiplier is 5 digits, the Field B address would be $32 23 B2. The high-order 
pOSitions of the fixed length multiplicand and multiplier will then contain space 
codes. 

$32 21 B2 can be used as the LSL of the fixed length product of the MU command. 
The programmer can then transfer from rX the actual number of digits in his 
product. 

Example 2: 

Given: A three digit Hours in columns 9 through 11 in the form XX.X. A five 
digit Rate in columns 12 through 16 in the form X.XXXX. 

Problem: Multiply Hours times Rate and store the half adjusted Gross in Punch 
storage positions for columns 21 through 25 in the form XXX.XX. 

81 
PAGE: 



UP-4084 

'b 'b 

1 2 

1 

, 
3 

UNIVAC 1005 

ASSEMBLER·SO· 
Rev. 1 

4 82 
SECTION: PAGE: 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ! INC. 

6 
A. 
.. 12 18 

A. .. 22 28 32 38 

I 
I I I I ITIX, I I Xllll1. I Xl9 , , , , , , 

I 
_1 _L I TA XI 1 6, $ 3 2 2 3 B 2, $ 322 7 B 2 

I 
, I : , M,U, , , IS131213,1 B 2, I Is 1312 1212 B 2 15,3,2,2,1 B 2, , 

I 

, , ~ I A,K, , • ".5. • I Is 32,12 B 2, $,3,2,1,9 B 2, , 
I 

, ~ , T,A, I , $,3,2,118 IE 21 I $,P,1 + 2 rcJ $ PI + 2 4, 
I 

At the completion of the execution of the MU instruction, rX had the following 
appearance. 

PRODUCT 

-------.. ----~------------
15 , , 15 , 15 15 15 0 0 G G G G G G G G 15 R R R R R 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 -------MULTIPLIER 

MUL TIPLICAND 
~ 

15 H H H 

28 29 30 31 

4.11.2. MULTIPLY (LONG) 

LABEL 

1 

: , 
! 

Mnemonic: ML Mode: SPECIAL Length: 7 IA: NO 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ± INC. FIELD C ! INC. 
A. A . 

6 .. 12 18 .. 22 28 32 38 

1M, L • I,L ••• , 2,M . , , 3,L, , , I 

Function: 

Transfer ascending the nine digits beginning at the LSL specified in Field A to 
the multiplicand positions of Row 32, Bank 1. Transfer descending the eleven 
digits beginning at the MSL specified in Field B to the multiplier positions of 
Row 32, Bank 1. Multiply. Transfer ascending from the product positions of 
Row 32, Bank 1 to the twenty locations beginning with the LSL specified in Field 
C. 

NOTE: After completion of the ML instruction, the product is also available in 
Row 32, Column 11 through Column 31iJ of Bank 1, until the execution of another 
multiplication or division instruction. 

The ML instruction is performed in the same manner as the MU instruction except 
for the provision of longer values. The use of rX described in the preceding 
Section 4.1l.Lfor the MU must be modified to take into account the longer 
operands. 

o 

o 



UP-4084 

(~ 

1 

LABEL 

I 

UNIVAC 1005 

ASSEMBLER-SO Rev. 1 4 
SECTION: 

The TX instruction specifies the actual length of the multiplicand. The TA in­
struction has an OP 2-LSL of $32 22 B2 and an OP 2-MSL predicated on the 
actual length of the multiplier. Since the total number of digits in the ML in­
struction multiplier, multiplicand,and product exceeds 31 (the capacity of rX), 
the LSL of OP 3 of the ML instruction can specify $32 30 B1. This will cause 
the product to be transferred to the identical locations in which it was developed. 

Example 1: 

Given: A six digit Quantity in columns 1 through 6. A seven digit Unit Cost in 
columns 7 through 13. 

Problem: Multiply Quantity times Cost. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

38 6 * 12 18 * 22 28 32 

I I I TX $ R 1 + 5 $ R 1 I , 
I I I 

I TIAI $ R 1 + 1 2 $ XR + 1 5 $ X R + 2 1 
I 
I MILl I I +,$IX,R I I I $,X,R I l + h1--L $i3~i2~13 -10 B 11 I 
! 

4.12. DIVIDE INSTRUCTION 

Division in the UNIVAC 1005 is performed using fixed length operands for the 
divisor, the dividend, and the quotient. When the Divide instruction is executed by 
the UNIVAC 1005, the fixed length divisor is transferred to certain positions in rX 
(Row 32, Bank 2), and the fixed length dividend is transferred to positions in Row 
32, Bank 1, where they are operated upon to produce the quotient and the remainder 
--also in Row 32, Bank 1. The fixed length quotient is then automatically trans-
ferred from Row 32, Bank 1 to memory. During the execution of the Divide instruction, 
the locations in Row 32, Bank 1 normally reserved by the IR and the ICC are used 
in the calculation of the quotient. The contents of the ICC are preserved, and are 
restored to the ICC automatically, to initiate the next instruction. 

Division is performed using the absolute (unsigned) values of the divisor and the 
dividend, producing an unsigned value as the quotient. Locations in the quotient 
and remainder which do not contain a significant digit (1 through 9) will contain a 
zero (0). Values are treated as integers. 

Since there are three operands in division, the Divide instruction of the UNIVAC 
1005 utilizes 3 address logic: OP 1 is the divisor, OP 2 is the dividend, and 
OP 3 is the quotient. 

The Divide instruction utilizes a divisor of exactly six digits, a dividend of exactly 
eight digits, and produces a quotient of exactly eight d"igits. If the length of the 
programmer's divisor, dividend,and quotient do not all conform exactly to the 
requirements of the Divide instruction, a Divide Working Storage (DWS) should be 

83 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

4 

established by the programmer for a divisor, dividend, and quotient of these 
lengths. The programmer should then transfer his variable length operands to the 
DWS before executing the Divide instruction. An example of the use of Divide 
Working Storage is given following the explanation of the Divide instruction. 

4.12.1. DIVIDE 

1 

I" 

LABEL 

: 
I 

LABEL 

I 

Mnemonic: DV Mode: SPECIAL Length: 7 IA: NO 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

DV L ~. 1lLI I I j 21M I I I I 3 jLJ 1 j ~~ 

Function: 

Transfer ascending the six digits beginning at the LSL specified in Field A to 
the Divisor positions of rX (Row 32, Bank 2). Transfer descending the eight 
digits beginning at the MSL specified in Field B to the Dividend positions of 
Row 32, Bank 1. Divide. Transfer ascending from the Quotient positions of 
Row 32, Bank 1 to the eight locations beginning with the LSL specified in Field 
C. 

NOTE: After completion of the Divide instruction, the Remainder is available 
in Row 32, Column 18 through column 23 of Bank 1, until the execution of another 
multiply or divide instruction. 

Example 1: 

Given: An eight digit Total Cost in card columns 9 through 16. A six digit 
Total Units in card columns 1 through 6. 

Problem: Divide Total Cost by Total Units, and store the quotient in the eight 
location area labeled UNIT. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 18 
A. 
* 22 28 32 38 

.L I : I DIV I I I %:(16 I I I I %:(1 9 I I I I + U N I T 
I 

FIELD A: 

%:( 6 is the decimal address of the LSL of Total Units (the divisor). 

FIELD B: 

%:( 9 is the decimal address of the MSL of Total Cost (the dividend). 

84 
PAGE: 

c 

c 



UP-4084 

C: 

1 

LABEL 

: 
I 
I , 
I 

FIELD C: 

UNIVAC 1005 

ASSEMBLER-SO Rev. 1 4 
SECTION: 

+ UNIT is the address of the LSL of the area assigned to UNIT (the quotient). 

NOTE: If the divisor is equal to zero, the quotient is all zeros and the remainder 
is all zeros. If the dividend is all zeros, the quotient is all zeros and the 
remainder is all zeros. If the dividend is all spaces, the quotient is all zeros 
and the remainder is all spaces. If the divisor is greater that the dividend, the 
quotient is all zeros and the remainder is the least significant six digits of the 
divident. 

In the event the size of the operands in the program are not the exact length 
required by the DV command, rX (Row 32, Bank 2) can be used as a Divide Working 
Storage. The dividend is transferred to rX using a TX command. This fills the 
high-order positions of rX with space codes. A T A command is used to transfer 
the divisor to rX as follows: Field A specifies the LSL address of the divisor in 
memory; Field C specifies $XR + 15; and Field B specifies ,a location in rX based 
on the actual length of the programmer's divisor., For example, if the actual 
length of the divisor is 5 digits, the Field B address would be $XR + 11. The 
high-order positions of the fixed length dividend and divisor would then contain 
space codes. $XR + 7 can be used as the LSL of the fixed length quotient 
produced by the DV instruction. 

NOTE: If rX is used as DWS, the locations indicated above must be used for the 
divisor. 

Example 2: 

Given: A seven digit Total Revenue in card columns 11 through 17. A four digit 
Total Tons in columns 5 through 8. 

Problem: Divide, Total Revenue by Total Tons and store the maximum 7 digit 
quotient in a 7 location area labeled RPT. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 • 12 18 • 22 28 32 38 

TIX, I J:X 11 ,7, I J J:X ,I 1, , J JI _I I , 

l'rIA 1J:X,s $XR + 1 2 $ X R + 1 5 

, I : , IDIV, , , $,XIRl + liS, :S IX IR, I + 2,3, $,X R, + 7 I I , 
.L .11 1 TJAI " $, x.. ~ J + 7, , R,P T, , , , I , , , , I 

I . 
4.13. INPUT/OUTPUT INSTRUCTIONS 

There are several types of input/output instructions in the UNIV AC 1005 Assembly 
System. Each type is tailored to the requirements and the operating mode of the 
input/output device. 

d:i-

I ,/ 

L 
! IXI I !x i\ i',,;i' !! 

Olv 

85 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMB LER·80 
SECTION: 

4 

One type of input/output instruction is used for the devices which transfer data to 
or from fixed areas in memory reserved for that purpose, or for commands to an~ 
input/output device which do not involve a data transfer (eg. Space 1, Stacker 
Select, etc.) This type is called General Command. 

Each of the devices which does not have a reserved area for input/output data trans· 
fers has its own type of command (eg. Magnetic Tape, DLT, etc.) Each type is 
named for the device it controls. 

In the case of the General Command, certain of the uses of this command have been 
selected as Assembler pseudo-operations in order to provide the programmer with a 
rapid method of specifying often used commands. These pseudo-operations are 
called Shortened General Commands. 

4.13.1. SHORTENED GENERAL COMMANDS 

LABEL 

1 

: 
I 

I 

Mnemonic: GCn Mode: I/O Length: 7 IA: NO 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ! INC. I. FIELD B ± INC. FIELD C ! INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I GCn 

Function: 

Execute Reader, Printer, and Punch input/output commands specified by n, where 
n means the following: 

1- Read, Execute 

2. Test Punch, Punch, Clear 

3. Combines GC1 and GC2 
4. Space 1, Print, Execute 

S. Combines GC1 and GC4 

6. Combines GC2and GC4 

7. Combines GC1, GC2, and GC4 

The GCn operations are pseudo-operation codes which select specific Reader, 
Printer, and Punch operations from the structure of the GC coded operations. 
When any of the specific input operations indicated above are required, the GCn 
may be used. 

Fields A, B, and C must be blank, in the GCn instruction. 

NOTE: When using these GCn commands Fields A, B, and C must be left blank. 

86 
PAGE: 

C,,' : 
~" 



UP-4084 
UNIVAC 1005 

ASSEMB LER-80 
SECTION, 

4 

4.13.2. GENERAL COMMANDS 

1 

I 

Mnemonic: GC Mode: 1/0 Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I . 

I. FIELD A :!; INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
.. 12 

A • 
18 .. 22 28 32 38 

I GC C.C CC CC I I 

The bit positions of locations 2 through 7 of the GC instruction correspond to 
functions of the UNIVAC 1005 input/output devices which have an implied data 
address, or which do not require a data address. 

A thorough knowledge of the various input/output devices of the UNIVAC 1005 is 
required for proper use of the GC command. 

Since the desired input/output functions are indicated by bit positions of the least 
significant six locations of the GC instruction, octal coding is used to specify 
CC in Fields A, B, and C. All three Fields must be specified. 

Octal coding is specified by the number sign (#) followed by four octal digits. 
The bit configuration for the required input/output operations is used to determine 
the four octal digits. 

NOTE: Caution should be exercised by the programmer to avoid specification of 
bits which correspond to conflicting input/output operations. 

The following is a brief description of the input/output functions which corres­
pond to the bit positions in the GC instruction. The functions are listed by the 
type of function. A table is also provided which indicates the corresponding bit 
position in the GC instruction. 

CARD AND PAPER TAPE 

Card Read 

Auxiliary Card Read 

Read Punch Read 

Paper Tape Read-Block 

Paper Tape Read-Character 

This bit sets the Read F.F. The card will be 
read when Execute is given. 

This bit must occur in the same GC as Execute to 
cause card reading. 

This bit sets the Read Punch Read F.F. Read 
will occur when Punch Hold or Punch Clear is 
given. 

This bit must occur in the same GC as Execute. 
Will cause the reading of 80 characters from paper 
tape. 

This bit must occur in the same GC as Execute. 
Will cause the reading of 1 character from paper 
tape. 

87 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMBLER·SO 

End Read on All Bits 

Execute 

PRINTING 

Print 

End Print at 90 Characters 

Space 1 

Space 2 

Skip 1, 2 and 4 

4 
SECTION: 

This bit must occur in the same GC as Execute 
and the bits which cause reading. During the 
read, each character is tested for all 1 bits. If 
detected, reading is terminated. 

This bit causes the devices to execute those 
functions signalled, by various of the other bits, 
either prior to or simultaneous with Execute. 

This bit sets the Print F.F. A line will be printed 
when Execute is given. 

This bit must occur in the same GC as Execute. 
The Print function must be signalled prior to or 
simultaneous with End Print. 

This bit will cause an immediate line space unless 
accompanied by Print, Execute. When accompanied 
by Print, Execute, the line is printed before spacing 
occurs. 

This bit will cause two immediate line spaces un­
less accompanied by Print, Execute. When ac­
companied by Print, Execute; the line is printed 
before spacing occurs. If Space 1 and Space 2 
are given in the same command only Space 2 is 
effective. 

Any combination of these three bits will initiate 
an immediate forms skip, unless accompanied by 
Print, Execute. When accompanied by Print, 
Execute, the line is printed before skip occurs. 

CARD AND PAPER TAPE PUNCHING 

Punch Hold 

Punch Clear 

Punch Test 

Punch Paper Tape-Block 

This bit causes an immediate punch cycle. The 
punch storage area is not cleared follQwing 
punching. 

This bit causes an immediate punch cycle. The 
punch storage area is cleared following punching. 

This bit causes a test to determine if the punch 
storage area is still in use by the last punch 
operation. If it is in use, further execution of 
UNIV AC 1005 instructions is inhibited, until not 
in use. 

This bit must occur in the same GC as Punch Hold 
or Punch Clear. When accompanied by Punch Hold 
or Punch Clear, it causes 80 characters to be 
punched in paper tape. 

---------~--

88 
PAGE: 

o 



UP-4084 

(~ 

c 

UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

4 

Punch Paper Tape-Character This bit must occur in the same GC as Punch Hold 
Character or Punch Clear. When accompanied by Punch Hold 

or Punch Clear it causes 1 character to be punched 
in paper tape. 

Punch Odd Parity­
Paper Tape 

If this bit occurs in the same GC which causes 
paper tape punching, Odd Parity punching will 
occur. 

PROCESSER INPUT/OUTPUT MODE 

Code Image Read 

Code Image Punch 

CARD SELECTION 

Punch Stacker Select 

Auxiliary Reader 
Stacker Select 1 

Auxiliary Reader 
Stacker Select 2 

DATA LINE CONTROL 

Request to Transmit 

MAGNETIC T APE CONTROL 

Rewind MagnetiC Tape 

This bit must occur in the same GC which causes 
reading. When accompanied by the bit or bits 
which cause reading, it causes card or paper tape 
reading in Code Image. 

This bit must occur in the same GC which causes 
punching. When accompanied by the bit or bits 
which cause punching, it causes card or paper 
tape punching in Code Image. 

If this bit occurs in the same GC which causes 
card punching, it causes the card being punched 
to be placed in the Select Stacker on the next 
Punch cycle. 

This bit must occur in the same GC which causes 
reading in the Auxiliary Reader. It causes the 
previous card read to be placed in Stacker 1. 

This bit must occur in the same GC which causes 
reading in the Auxiliary Reader. It causes the 
previous card read to be placed in Stacker 2. 

This bit sets a F.F. that requests data line trans­
mission. The F.F. must be set prior to the 
execution of the instruction (SD) which causes 
data transmission. 

This bit causes an immediate rewind of tape on 
the Servo last set by the Set Condition (SC) in­
struction. 

89 
PAGE: 



OP-4084 
UNIYAC.l005 

ASSEMBLER·80 

Back Space Magnetic 
Tape 

Erase Flip Flop 

4 
SECTION. 

This bit causes an immediate backward movement 
of tape, to the preceding inter-record gap, on the 
Servo last set by the Set Condition (SC) instruction. 

This bit causes the Erase F.F. to be set. When 
the next write tape (WT) instruction is executed, 
5.04 inches of tape will be erased prior to writing 
the block of tape. 

The bit positions which correspond to the previously listed functions are shown 
below. The bit positions are indicated by the Location within the GC instruction, 
on the left hand side of the name of the function. On the right hand side of the 
function is the value of the bit for octal coding purposes. At the bottom of each 
Value column is a box for indicating the sum of the circled values. These boxes 
are identical to the position of the octal digits in each of the fields of the GC 
source language instruction. 

LOCATION 2 LOCATION 3 

BITS VALUE BITS VALUE BITS VALUE BITS VALUE 

X NOT USED 4 4 S,PACE 1 4 X NOT USED 4 4 READ AUX. 4 

Y RESERVED 2 2 READ 2 y SELECT 2 2 READ 2 
STACK 2 PUNCH 
AUX. READ READ 

8 PRINT 1 1 EXECUTE 1 8 SELECT 1 1 READ CODE 1 
STACK 1 IMAGE 
AUX. READ PAPER TAPE 

OR CARD 

FIELDACC=1t D D D D 

90 

C" ,. 



UP-4084 

c 

UNIYAC'l' 00-5" 
ASSEMBLER-SO 

LOCATION 4 

BITS VALUE BITS 

X END READ ON 4 4 PAPER TAPE 
ALL BITS READ BLOCK 

Y NOT USED 2 2 PAPER TAPE 
PUNCH CHAR 

8 PAPER TAPE 1 1 PAPER TAPE 
PUNCH BLOCK READ CHAR 

FIE LD B CC = It D 
LOCATION 6 

BITS VALUE BITS 

X NOT USED 4 4 BACK SPACE 
MAGNETIC 
TAPE 

VALUE 

4 

2 

1 

D 

VALUE 

4 

Y REWIND 2 2 SET REQUEST 2 
MAGNETIC TO TRANSMIT 
TAPE 

8 SET ERASE 1 1 RESERVED 1 
FLIP FLOP 

FIELD C CC = #: D D 

4 91 
SECTION. PAGE. 

LOCATION 5 

BITS VALUE BITS VALUE 

X NOT USED 4 4 SKIP 1 4 

Y SKIP 4 2 2 SPACE 2 2 

8 SKIP 2 1 1 END 1 
PRINT 
AT 90 

D D 
LOCATION 7 

BITS VALUE BITS VALUE 

X NOT USED 4 4 PUNCH 4 
CLEAR 

Y PUNCH 2 2 PUNCH 2 
STACKER TEST 
SELECTOR 
PT PUNCH 

ODD 
PARITY 

\ 

8 PUNCH 1 1 PUNCH 1 
HOLD CODE 

IMAGE 
PAPER 
TAPE OR 
CARD 

D D 



--------------------- -----------------------------------------r~---

UP-4084 
UNIVAC 1005 

ASSEMBLER·SO 
SECTION: 

4 

4.13.3. READ MAGNETIC TAPE 

1 

1 

I 

Mnemonic: RT Mode: DESCENDING Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. 

6 * 12 
A. 

18 * 22 28 32 38 

I 

I I : I RITI I I 1 1 11 2.M I I I I I 
I , 

LABEL 

: 
I 

Function: 

Read forward, transfer descending from magnetic tape to memory beginning at 
2M specified in Field B. Continue read and transfer until an inter-record gap is 
detected. 

NOTE: The Servo on which reading will occur is the Servo last set by a Set 
Condition (SC) instruction. 

Field B specifies the address of the MSL of an area of memory which is to receive 
the block of data from tape. Once initiated by the RT command, reading will 
continue until the inter-record gap, recorded on tape when it was written, is 
detected by the Servo. The area set aside should be at least as long as the 
longest block to be read into memory plus one location. 

NOTE: The information stored in memory will be the data read from tape plus an 
additional space code as the last character stored. 

Example 1: 

Given: TPIN is the label of a DA declarative which established a 251 location 
area. The longest block of tape expected is 250 characters. 

Problem: Read a block of magnetic tape beginning at TPIN. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. r. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

IRT L .J T.LP.JI N 

The machine language instruction produced by the RT source language instruction 
will have the address of the MSL of the input area (TPIN) in locations 4 and 5. 
Locations 2, 3, 6, and 7 will be blank. 

-, 

+ TPIN will contain a space code if a 250 character block is read. 

-------------------------------------------- ---------------- ----

92 
PAGE: 

i 
! 

c 

c 



UP-4084 

c 

UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

4 

NOTE: If the 4 bit position of location 3 contains a binary 1, reading is per­
formed at high gain. This is specified by placing #0004 in Field A. If Field A 
is blank, reading occurs at normal. gain. 

4.13.4. WRITE MAGNETIC TAPE 

1 

I 

1 

LABEL 

: 
I , 

Mnemonic: WT Mode: DESCENDING Length: 7 IA: NO 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

WT 1 LI I I , 11M /121M I I 2,LI I I I 

Function: 

Write forward, transfer descending beginning at OP 1-MSLspecified in Field B 
until OP 1-LSL specified in Field A has been transferred. Also, simultaneously 
transfer descending beginning at OP 1-MSL to OP 2-MSL which is the same 
address as OP l-MSL. Transfer ends at the location of OP 2 which coincides 
with OP 1-LSL. The WT instruction continues until OP 2-LSL specified in Field 
C has been cycled. OP 2-LSL must be OP l-LSL plus 3. 

The OP 1-L-SL must be two locations beyond the last data character to be written 
on tape. The characters in these two extra locations of OP 1 are not written on 
tape and are not disturbed in memory. The contents of the 3 locations to the 
right of OP 1-LSL are not disturbed. Thus the five locations to the right of the 
location which contains the last data character to be recorded on tape are in­
cluded in the machine function, but remain unchanged by the function. 

Example 1: 

Given: TPOUT is the label of a DA declarative which established a 400 location 
area. 

Pro):>lem: Write a block of magnetic tape from TPOUT. 

LABEL OPERATION OPERAND 1 OPERAND 2 

: I 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

WT +TPOU + 2 TPOUT +TPOU + 5 I I 

Consideration need not be given to the contents of the five locations to the right 
of the LSL of TPOUT;. since they are not changed by this instruction. 

NOTE: The Servo on which writing will occur is the Servo last set by a Set 
Condition (SC) instruction. 

93 
PAGE: 



UP-4084 

-.---------.-.. --.---... ----.- --.----.-----r-------.---------,---.----
UNIVAC TOOS 

ASSEMB LER·80 
SECTION: 

4 

A Servo must be set by an SC instruction before the first magnetic tape operation 
is given. Console Clear leaves no Servo set. 

4.13.5. RECEIVE DATA LINE 

1 

1 

, 

Mnemonic: RD Mode: DESCENDING Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

RD 1 M 2 M / 1 M 2 L I 

Function: 

Receive from the Data Line. Store descending beginning at OP 2-MSL specified 
in Field B, continuing until OP 2-LSL specified in Field C has been filled. The 
last two characters stored in OP 2 will be the End of Message character and the 
Longitudinal Parity Character. The preceding characters will be the Data 
characters. 

OP 2-MSL is automatically used as OP 1-MSL. Field A which specifies OP 1-
LSL should contain the same address as Field B. Thus OP 1 becomes a one 
character location. There must be an OP 1 in an RD function fo.r control purposes. 
Blank addressing should not be used in Field C. 

Example 1: 

Given: RDIN is the label of a DA declarative which established an 82 location 
area. 

Problem: Receive the contents of the card transmitted. 

LABEL OPERATION OPERAND 1 OPERAND 2 

: . 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

R,D, 1 , R,D,I,N, , R,D I,N , + ,RP I IN , I 

The contents of the transmitted card will be stored in RDIN through RDIN + 79. 
RDIN + 80 will contain EOM. RDIN + 81 (+ RDIN) will contain the LPC. 

94 
PAGE, 

o 

o 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 4 
SECT'ON: 

(~ 4.13.6. SEND DATA LINE 

1 

1 

Mnemonic: SD Mode: DESCENDING Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

: 
I 

I. FIELD A t INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

SD 1 L 1,M /.2 M 2 L, , 

Function: 

Send via the Data Line. Transfer descending to the Data Line, the information 
beginning at the MSL of OP 1 specified in Field B, continuing until the LSL of 
OP 1 specified in Field A has been transferred to the Data Line. Simultaneously 
transfer descending, the same infoqnation to OP 2. The OP I-MSL is used as 
the OP 2-MSL. OP 2-LSL specified in Field C must be the same as OP l-LSL 
specified in Field A. Blank addressing should not be used. 

The information to be transferred from memory to the Data Line consists of 
Transmission Control Characters, and the data; in the following format: 

OP 1, MSL to OP 1, MSL + 3 

OP 1, MSL + 4 

OP 1, MSL + 5 to n 

OP 1, LSL - 3 

OP 1, LSL - 2 

OP 1, LSL - 1 and OP 1, LSL 

Example: 

Four synchronizing characters 

Space code 

Data 

Turn off Request to Transmit--right hand 
parenthesis ( ) ) 

End of Message Code 

Space Codes 

Problem: Transmit the contents of a card. 

LABEL OPER,ATlON OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
* 12 

A. 
18 * 22 28 32 38 

! 
EO M' DC, , , 4, , , , +) B, , , , I , , , , , 

I 
D,A T:~ D A, 8 IIJ , 
P,R,E: A,M D,C, , , 5, , , '+ S,S,S S , , , , , , , , 
, , l , I I I , , , I , , , , , .I , , , I , I 

I 
, I : , T,D, I , $, R ,I, , , D,A T,A 

I 
I I l , ; G. C; I I #llIJlftl ftl,lIJ I # ftl , 0 IIJIIIJ , , # IIJ 2 0,IIJ , 
, , l I S,D, , , +,E,O,M, , I P R,E,A M +EOM , 

I 

95 
PAGE: 



~"'-~~"-"'-----,----~----~'---'-'----------'--'" ...... _ .... _------ -------._. .. .... - .. ---.. 

UP-4084 
UNIVAC 1005 

ASSEMBLER·SO 
SECTION: 

4 

Solution: The DC and DA dec1aratives allocate a message area of storage which 
contains the 5 constant preamble (PREAM), the data (DATA), and the 4 constant 
trailer. These are allocated in reverse sequence to the order assembled. 

The TD transfers the card data from Read Input storage to the data portion of 
the message area. The GC sets Request to Transmit. The SD does the sending. 

4.13.7. RECEIVE INTERFACE 

1 

Mnemonic: RF Mode: Descending Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 

6 
A. 
* 12 18 

A. 
* 22 28 32 38 

! 
...L J 1 I RIFI •• C.C ••• • M •••• •• LL •• J .L ...L 

I 

Function: 

Receive data from the Unit selected by bits in CC specified in Field A, and store 
in the area whose MSL is specified in Field B, and LSL is specified in Field C. 

The address specified in Field B becomes OP 1-MSL and OP 2-MSL, and the 
address specified in Field C becomes OP 1-LSL and OP 2-LSL during the RF 
function. The M address occupies locations 4 and 5, and the L address occupies 
location 6 and 7. 

The bit positions of CC appear in locations 2 and 3 and are used to indicate 
Unit Number, Input Control, and Output Control. Octal coding is used to specify 
the bit pattern of CC. The number sign (#) followed by four octal digits is 
required to specify octal coding. 

The bit positions of CC and corresponding Unit Number and Input/Output Control 
are as follows: 

Location 2 

X not used 
Y Output Control 3 
8 Output Control 2 

4 Output Control 1 
2 Unit 4 
1 Unit 3 

Location 3 

X not used 
Y Input Control 3 
8 Input Control 2 

4 Input Control 1 
2 Unit 2 
1 Unit 1 

--.--.. -------.---~----

96 
PAGE: 

c 



.~.~. ~"--,-,-_. __ ",_ ,_ ,~~, "., "~,,_,_.,, "M.'. ___ ~,,,,.,.,,,,,, __ • __________ ~ ____ ._,,_ 

UP-4084 

c 

1 

LABEL 

I 

UNIVAC 1005 

ASSEMBLER·SO Rev. 1 4 
SECTION: 

Example 1: 

Problem: Receive an 80 column record from Unit 1 through Input Control 1 and 
store in an 80 location area labeled IN!. 

OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I , I I R,F, I #1 0 101015 I I IN 11 , I , + II,N,1 1 1 1 
I 
I 

Solution: #0005 is octal for 000 000 000 101, which selects Unit 1 and Input 

Control 1. 

4.13.8. SEND INTERFACE 

1 

Mnemonic: SF Mode: Descending Length: 7 IA: NO 

LABEL OPERATION OPERAND 1 OPERAND 2 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ± INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I 

1 , : I SIFI I C,CI I I I MI I , L, I I 1 I 
I 

Function: 

Send data to the Unit Selected by bits in CC specified in Field A; from the area 
whose MSL is specified in Field 8, and LSL is specified in Field C. 

The address specified in Field 8 becomes the OP I-MSL and OP 2-MSL, and the 
address specified in Field C becomes the OP 1-LSL and OP 2-LSL during the SF 
function. The M address occupies locations 4 and 5, and the L address occupies 
locations 6 and 7. 

The bit positions of CC appear in locations 2 and 3 and are used to indicate Unit 
Number, Input Control, and Output Control. Octal coding is Ij.sed to specify the 
bit pattern of CC. The number sign (#) followed by four octal digits is required 
to specify octal coding. 

The bit positions of CC and corresponding Unit Number and Input/Output Control 
are listed in the section on Receive Interface (Section 4.13.7) 

97 
PAGE: 



UP-4084 

I 

LABEL 

I 

Example: 

UNIVAC 1005 

ASSEMBLER·SO 
SECTION: 

Problem: Send to Unit 2 through Output Control 1 the information stored in a 
160 location area labeled OU2. 

OPERATION OPERAND 1 OPERAND 2 

4 

I. FIELD A ± INC. I. FIELD B ± INC. FIELD C ! INC. 
A. A. 

6 * 12 18 * 22 28 32 38 

I , : , S ,F I , I #1 0 ,4 10,2 I 0,U 12 1 1 I 1 + 10lU I 2 1 1 1 
I 

Solution: #0402 is octal for 000 100 0"0 010 which selects Unit 2 and Output 
Control 1. 

----~~-------.-.. --.- -~-------------

98 
PAGE: 

o 



UP-4084 
UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

5 

5. OPERATING PROCEDURES 
FOR 1005 ASSEMBLY 

5.1. LOADING SOURCE PROGRAM 

(1) Set Manual Alteration Switch No.1 on. Place the assembler deck in the input 

hopper followed by the source code deck. Press Start, Clear, Feed and Run. 
The line "Univac 1005 IPM Assembler Pass 1" is printed followed by "Reset 
Alteration Switch No.1". Operator will reset Alteration Switch No. 1 and press 
Run. In the event Alteration Switch No.1 is not reset and Run is pressed, the 
message "Reset Alteration Switch No. I" is printed until the switch is reset. 
During Pass 1, cards with invalid mnemonics will be l.isted. When the processor 
halts (hopper empty) press Run and Stop. It is suggested that the cards with 
invalid mnemonics be repunched and inserted into the source code deck and 
Pass I rerun from the beginning. However, as an alternate recovery, the cards 
with invalid mnemonics should be repunched and then rerun by pressing Feed 
and Run. If Clear or Start was pressed at the end of the Pass, the cards with 
invalid mnemonics could be rerun by (a) doing a manual start at location 148 
or by (b) rerunning Pass I for those cards only. The new cards may then be 
inserted in the intermediate deck. 

(2) Place the assembler deck in the input hopper followed by intermediate deck 1. 
Press Start, Clear, Feed and Run. The line "Univac 1005 IPM Assembler 
Pass 2" is printed. During Pass 2, all assembler dec1aratives are listed except 
for End. When the processor halts (hopper empty), press Run and Stop. Remove 
intermediate deck 2 from the punch stacker. 

(3) Place the assembler deck in the input hopper followed by intermediate deck 2. 
Press Start, Clear, Feed and Run. The line "Univac 1005 IPM Assembler Pass 
3" is printed. Either (a), (b), or (c) occurs. 

(a) Final assembly listing occurs. Continue at (d). 

(b) Halt #1 occurs followed by the printing of "Set Alt Switch 2". Operator 
must set Alteration Switch No.2 and press Run. In the event Alteration 
Switch No.2 is not set and Run is pressed, the message "Set Alt Switch 
2" is printed until the switch is set. Continue at (d). 

1 
PAGE: 



UP-4084 
UNIVAC 1005 

ASSEMBLER·80 

------------ ~-

(c) Neither (a) nor (b) occurs. Continue at (d). 

5 
SECTION: 

(d) When the processor halts (hopper empty), press Run and Stop. Remove the 
output deck from punch stacker. If (a) occurred, this is the final object 
deck, and the assembly is complete. If either (b) or (c) occurred, repeat 
steps (2) and (3) without resetting Alteration Switch No.2; use the most 

recent output as intermediate deck 1. 

NOTE: 

If it is necessary to rerun passes 2 and 3, printouts "Rerunning Univac 1005 IPM 

Assembler Pass 2" and "Rerunning Univac 1005 IPM Assembler Pass 3" will occur 

while rerunning these respective passes. 

5.2. LOADING OBJECT PROGRAM 

A load card is needed to load the object code program when assembly is complete. 
In normal circumstances the first card of the assembly deck can be used for this 

purpose. The load card should be reproduced to avoid misplacement. This card 
inserts the necessary 4 bit into location R31/C32 of bank 1 and commences loading 
the object program. When using this method for loading, the programmer should not 

use memory locations 81 thru 92 in this program. 

5.3. FINAL LISTING 

When assembly is complete, a final listing is produced. This listing contains the 

following: 

• Original Source Code 

• Unfound Indicators 

• Sequence Numbers 

• Object Code Instruction 

• Load Instruction 

• Diagnostic Message 

The columns discussed represent the print positions starting from print position 1. 

5.3.1. Original Source Code 

Columns 1 to 61 inclusive is exactly the same as coded by the programmer. 

1. Instructions Columns 1 to 40 

2. Positive Constants Columns 18 to 61 

3. Negative Constants (minus in Col. 17) Columns 18 to 42 

4. Comment Card Columns 8 to 61 

5. Comment on Instruction Card Columns 41 to 56 

5.3.2. Unfound Indicators 

Columns 59, 60 and 61 represent the unfound addresses of Field A, Field Band 

Field C respectively. The character U will print in the respective column when 
one or more of the Fields are unfound. 

2 
PAGE: 



UP-4084 

c' 

Example: 

UNIVAC 1005 

ASSEMBLER-SO 
SECTION: 

Transfer descending 80 columns of Read to the first 80 columns of Punch. 

TD 
Field A 

$Rl 

Field B 

$Pl 

If Field B was not specified 

TD 

Field A 

$Rl 

Field B 

Blank 

Field C 
$Plt 79 

Field C 

$Pl + 79 

the character U will print in column 60. 

NOTE: If Field C was not specified 

TD 
Field A 

$Rl 

Field B 
$Pl 

Field C 
Blank 

the character U will not print because in this example Field C is optional (See 
instruction formats). 

5.3.3. Sequence Number 

Columns 62 to 65 inclusive is the sequence number of the object program deck. 

5.3.4. Object Code Instruction 

5 

Columns 67 to 73 is the Source Code Instruction translated to actual machine code. 

Example: 

Source Code Instruction 
Column 

Object Code Instruction 

5.3.5. Load Instruction 

67 
TA 

III 

68 69 
$Rl +79 

III [ 

70 71 
$PR 
I I 

72 73 

$PR+79 
\ 

Columns 74 to 80 places the Object Code Instruction in the assigned storage area. 

5.3.6. Diagnostic Message 

Column 82 indicated the following types of errors found: 

1. '(Apostrophe, XBIT) Doubly defined label indication. 

2. & (Ampersand, YBIT) Continuation of a Define Constant out of sequence. 

3. 5 (Five, 8BIT) Define Sub-Field out of sequence. 

4. 1 (One, 4BIT) Length of Define Area or Define Constant equal or less than 

zero. 

5. - (Minus, 2BIT) Extra continuation of a Define Constant. 

NOTE: A combination of the bit pattern of the above error messages may be 
produced. 

3 
PAGE: 





UP-4084 
UNIVAC 1005 

ASSEMB LER-BO Rev. 1 
SECTION: 

6 
PAGE: 

6. PROGRAM TESTING AIDS 

The following tables and charts are provided to facilitate Program Testing. Table 
6-1 can be used to determine several equivalent forms of actual addresses of assembled 
instructions and constants. Table 6-2 describes basic characteristics of the assembled 

UNIVAC 1005 Instruction Repertoire 

ROW OR COLUMN WITHOUT BANK BIT ROW OR COLUMN WITH BANK BIT 

ROW 
MACHINE 

ROW MACHINE 
OR CHAR. 

COLUMN EQUIV. 
NUMBER 

1 space 0 

2 ] 0 

3 " 0 

4 4- 0 

5 ; 0 

6 I 0 

7 F 0 

8 0 

9 1 0 

10 5 0 

11 : 0 

12 - 0 

13 2 0 

14 7 0 

15 B 0 

16 8 0 

17 D 0 

18 [ 0 

19 < 0 

20 It 0 

21 H 0 

22 C 0 

23 \ 0 

24 G 0 

25 A 0 

26 6 0 

27 ? 0 

28 3 0 

29 9 0 

30 E 0 

31 & 0 

32 = 0 

CODE OCTAL OR CHAR. 

XY8421 EQUIV. COLUMN EQUIV. 

0 0 0 

0 0 0 

0 0 0 

0 0 1 

0 1 1 

1 1 1 

1 1 0 

1 0 0 

0 0 1 

0 1 0 

1 0 0 

0 0 0 

0 0 1 

0 1 0 

1 0 1 

0 1 0 

1 0 1 

0 1 1 

1 1 1 

1 1 1 

1 1 0 

1 0 1 

0 1 1 

1 1 0 

1 0 1 

0 1 0 

1 0 0 

0 0 1 

0 1 1 

1 1 0 

1 0 0 

1 1 1 

NUMBER 

0 0 00 1 . 
0 1 01 2 * 
1 1 03 3 ! 

1 1 07 4 M 

1 0 16 5 @ 

0 0 34 6 Z 

0 1 31 7 W, 

1 0 22 8 

0 0 04 9 J 

0 0 10 10 N 

0 1 21 11 % 

1 0 02 12 $ 

0 1 05 13 K 

1 0 12 14 P 

0 1 25 15 S 

1 1 13 16 Q 

1 1 27 17 U 

1 1 17 18 ~ 

1 0 36 19 > 

0 1 35 20 l:( 

1 1 33 21 Y 

1 0 26 22 T 

0 1 15 23 ( 

1 0 32 24 X 

0 0 24 25 / 

0 1 11 26 0 

1 1 23 27 + 
1 0 06 28 L 

0 0 14 29 R 

0 0 30 30 V 

0 0 20 31 i 
1 1 37 32 ) 

Table 6-1. UNIVAC 1005 Address Codes 

Row, Column, Character and Octal Equivalent. 

CODE OCTAL 

XY8421 
EQUIV. 

1 0 0 0 0 0 40 

1 0 0 0 0 1 41 

1 0 0 0 1 1 43 

1 0 0 1 1 1 47 

1 0 1 1 1 0 56 

1 1 1 1 0 0 74 

1 1 1 0 0 1 71 

1 1 0 0 1 0 62 

1 0 0 1 0 0 44 

1 0 1 0 0 0 50 

1 1 0 0 0 1 61 

1 0 0 0 1 0 42 

1 0 0 1 0 1 45 

1 0 1 0 1 0 52 

1 1 0 1 0 1 65 

1 0 1 0 1 1 53 

1 1 0 1 1 1 67 

1 0 1 1 1 1 57 

1 1 1 1 1 0 76 

1 1 1 1 0 1 75 

1 1 1 0 1 1 73 

1 1 0 1 1 0 66 

1 0 1 1 0 1 55 

1 1 1 0 1 0 72 

1 1 0 1 0 0 64 

1 0 1 0 0 1 51 

1 1 0 0 1 1 63 

1 0 0 1 1 0 46 

1 0 1 1 0 0 54 

1 1 1 0 0 0 70 

1 1 0 0 0 0 60 

1 1 1 1 1 1 77 

1 



UP-4084 

1 

I 

Example: 

UNIVAC 1005 

ASSEMBLER-SO 

BANK BITS - (X BIT POSITION) 

BANK ROW 

1 USE TABLE 1 

2 USE TABLE 1 

3 USE TABLE 2 

4 USE TABLE 2 

Convert R16/C6 Bank 4 into Octal. 

-- ------------------- -."-----~-. 

6 
SECTION: 

COLUMN 

USE TABLE 1 

USE TABLE 2 

USE TABLE 1 

USE TABLE 2 

Bank 4 requires the programmer to look up the Row in Table 2 and the Column in 
Table 2. 

Row 16 in Table 2 is Octal 53. Column 6 in Table 2 is Octal 74. 

The octal address for R16/C6 B4 is #5374. 

R2l1C30 Bank 3 is #7330. 

R lIC 1 Bank 1 is #0000 

LABEL OPERATION OPERAND 1 

I. FIELD A ± INC. I. FIELD B 
A. A. 

6 * 12 18 * 22 

: 
It o 0 o 0 I 

I 
I 

OPERAND 2 

± INC. FIELD C 

28 32 

t INC. 

38 

I 

PAGE: 

------------------ - .~---------

2 

o 



C~ 
'" ,;» 

c/ 

c' 

UP-4084 

SYMBOL 

lL 
1M 

2L 
2M 
3L 

-K 
K-
KK 

IA 

UNIVAC 1005 

ASSEMBLER-SO 

z 
U z 

~ ..JO 
I- st ~~~ 
"'" ~ DESCRIPTION CII: 1-""'8 w w uCII: 
a.. Z ""'~ 0 :2: 0 

TRANSFER INSTRUCTIONS 

TA Transfer Asc. 0 
TC Transfer Clear 4 
TO Transfer Desc. ] 
TK Transfer Constant 2 
TN Transfer Numeric ; 

TR Trans late 9 
TX Transfer to Regi ster X :i!: 

COMPARE INSTRUCTIONS 

CA Compare Alphanumeric I 
CK Compare Constant 7 
CM Compare Magnitude F 
CN Compare Numeric 

ARITHMETIC INSTRUCTIONS 

AD Add Algebraic 1 
AM Add Magnitude 5 
DV Divide @ 

ML Multiply Long M 
MU Multiply * 
SM Subtract Magn. -
SU Subtract Algebr. : 

AK Add Constant 6 

COUNT INSTRUCTION 

CHARACTERS 

2/3 4/5 6/7 
IN OBJECT 

FORM 

lL 2M 2L 
1 L 2M 2L 
1M 2M 2L 
KK 2M 2L 
lL 2M 2L 

2M 2L 

lL 1M -

lL 2M 2L 
KK 2M 2L 
lL 2M 2L 
lL 2M 2L 

lL 2M 2L 
lL 2M 2L 
lL 2M 3L 
lL 2M 3L 
lL 2M 3L 
lL 2M 2L 
lL 2M 2L 
DO 2M 2L 

CC I Count W I ±DD 2M 

EDIT INSTRUCTIONS 

EL Edit Logicol 
ES Edit Superimpose 
EE Edit Erase 
ED Edit 

SET INSTRUCTIONS 

Set Conditions 
Stop 

JUMP INSTRUCTIONS 

JC Jump on Conditions 

JK Jump Compare 

JL Jump Loop 
JR Jump Return 

JT Jump Test 

J Jump 
JI Jump Ind irect 

INPUT /OUTPUT INSTRUCTIONS 

GC General Commands 
RT Read Magnetic Tape 
WT Write Magnetic Tape 

RD Rece ive Data Line 

SO Send Data Line 
RF Receive Interface 
SF Send Interface 

DESCRIPTION 

Operand 1 Least Significant Character 
Operand 1 Most Significant Character .. 
Operand 2 Least Significant Character 
Operand 2 Most Significant Character 

KK 
-K 
K-

G 1M 

X CC 
( K-
J DO 
N RA 
Y JA= 

/ -
] IA 

% CC 

$ 
K lL 
P 1M 
S lL 
Q CC 
U CC 

LEGEND 

Least Significant Character of Product or Quotient 
One Character right justified 
One Character left justified 
Two Characters 
Indirect Jump Address 

1M 

IM 
2M 

CC 
CC 

JA 
JA 
JA 
JA 
JA< 

JA 

CC 

2M 
M 
M 
M 
M 
M 

DO 
CC 

JA 
M 

2M 
2M 

2L 

-
2L 

2L 

-

CC 

2L 
2L 
2L 
2L 
L 
L 

L 
ASC. 
DESC. 
AtD 

RA 

Rev. 1 6 
SECTION: PAGE: 

~z 
O~ 
:J:I- INDIRECT 
I- U 
C)::I MODE ADDRESSING zDi: 
wli; 
..J~ 

7 Asc. Yes 

7 Asc. Yes 

7 Oese. Yes 
7 Asc. Yes 

7 Asc. Yes 

7 Oese. Yes 

5 Asc. No 

7 Asc. Yes 

7 Asc. Yes 
7 Asc. Yes 

7 Asc. Yes 

7 Asc. Yes 
7 Asc. Yes 

7 A+D No 
7 A+D No 
7 A+D No 
7 Asc. Yes 

7 Asc. Yes 

7 Asc. Yes 

5 I Spec. I No 

7 
7 
7 
7 

5 
7 
7 
7 
5 
5 
7 

7 
7 
7 
7 
7 
7 
7 

Spec. 
Spec. 
Spec. 
Oese. 

Spec. 
Spec. 
Spec. 
Spec. 
Spec. 
Spec. 
Spec. 

I/O 
Dese. 

Dese. 
Dese. 
Dese. 
Dese. 
Dese. 

No 
No 
No 
Yes 

No 
No 

No 
No 
No 
No 
No 

No 
Yes 

No 

No 
No 
No 
No 
No 
No 

Two Decimal Digits 
Characters whose: bits represent cond itions of Flip Flops 
Address of Next Instruction of a Jump 
Most Significant Position of Both Operand 1 and 2 
Least Significant Position of Both Operand 1 and 2 
Ascend ing 
Descend ing 
Ascending and Descending 
Not Applicable 

Return Address 

Table 6·2. UNIVAC 1005 Instruction Repertoire 

3 



c 



UP-4084 

(~~ 

~, (" 

UNIVAC 1005 

ASSEMBLER-SO Appendix A 
SECTION: PAGE: 

APPENDIX A. UNIVAC 1005 
ASSEMBLER 

:E 
IE 
D 
IL 

I!I 
2 
D 
D 
U 

IE 
w 
oJ 
m 
:E 
w 
ID 
ID 
c( 

U 
eI: 
> -

I 
! 
I 
i 
I 
I Z 
I :J 

CODING FORM 

.. 
w - '" ". " :' "J "': , 

" .'. ' .. 
« 
I>. . 

I 
., 

u. 
0 

I liI 
w 

~ iii 
I>. . 

--.--------------------------~ 
w :«< • 

~ iJ' 

~ 
II< 

" 0 
II< 
I>. 

~ ------------------------------

§ ------------------------------
~ 
" " 

N 

" g .. 
" 

-
" ':i 
~ 
" 

z 

" >= g .. 
" 
..: 
'" :5 

., 
~ 

~ 

" " ..: 
iL 

l;j 

~ 
~ 

" -' w 
iL 

!::: 
"-i* 

~ 
:'I 

0( 

" ..: 
iL 

::: 
'ci-

1 



c 

.~ 
.. ~. 

I 



UP-4084 

_~ __ ~~~~~ ___ ~ __ ~ ____ . ____________ ~c_~ __ ~~ ________ ~ 

UNIVAC 1005 

ASSEMBLER-SO 

APPENDIX B. UNIVAC 

Appendix B 
SECTION: 

1005 
INSTRUCTION TIMING 

OPERATION 
DESCRIPTION 

CODE 
1005 1 1005 II AND III 

Transfer Instructions 

Transfer Descend ing TO 176 + 16(n}us 143 + 13(n Jus 

Transfer Ascend ing TA 176 + 16(n}us 143 + 13(n}us 
Transfer Clear TC 176 + 16(n}us 143 + 13(n}us 
Transfer Numeric TN 176 + 16(n}us 143 + 13(n}us 
Transfer Constant TK 176 + 16(n)us 143 + 13(n Jus 
Transfer to Register X TX 176 + 16(n}us 143 + 13(n}us 
Trans late (Optional Feature) TR 176 + 32(n}us 143 + 26(n}us 

n = number of characters in Operand 2 

Addition and Subtraction 
Add Algebra i c AD 176 + 16(n}us 143 + 13(n}us 
Subtract Algebraic SU 176 + 16(n}us 143 + 13(n}us 
Add Magn itude AM 176 + 16(n}us 143 + 13(n}us 
Subtract Magn itude SM 176 + 16(n}us 143 + 13(n}us 
Add Constant AK 176 + 16(n}us 143 + 13(n Jus 

n = number of characters in Operand 2 

Compare Instructions 

Compare Numeric CN 176 + 16(n}us 143 + 13 (n}us 

Compare Magn itude CM 176 + 16(n}us 143 + 13(n}us 
Compare Alphanumeric CA 176+ 16(n}us 143 + 13(n}us 
Compare Constant CK 176 + 16(n}us 143 + 13(n}us 

n = number of characters in Operand 2 

Condition Indicators 

Set Cond ition SC 144 uS 117 us 
Stop STOP 144 us 117 us 

Sequence Control Instructions 
Jump Cond ition JC 144 us, 208 if jump 117 us, 169 if jump 
Jump Test JT 144 us, 208 if jump 117 us, 169 if jump 
Unconditional Jump J 208 us 169 us 
Jump Return JR 272 us 221 us 
Jump Compare JK 256 us, 320 if jump 208 us, 260 if jump 

Jump Loop JL 208 us, 336 if jump 169 us, 273 if jump 
Jump Indirect JI 208 uS 169 us 

Count CC 240 + 112(00 Jus * 195 + 91(DD}us** 

Edit Instructions 
Edit Logical EL 240 uS 195 uS 
Edit Erase EE 240 us 195 uS 

Ed it Superimpose ES 240 us 195 us 
Edit ED 208 + 32(n Jus 169 + 26(n}us 

n = number of characters in mask 

Multiply Instructions 
Multiply MU 6.4 ms Avg. 5.2 ms Avg. 

Multiply Long ML 18.5 ms Avg. 15.0 ms Avg. 

Divide 
Divide DV 13.7 ms Avg. 11.1 ms Avg. 

liD 
General GC 144 us + liD Time 117 us + liD Time 
Read Tape RT 144 us + liD Time 117 us + liD Time 
Write Tape WT 144 us + liD Time 117 us + liD Time 
Receive Dota Line RD 144 US + liD Time 117 us + liD Time 
Send Data Line SO 144 us + liD Time 117 us + liD Time 

Rece ive Interface RF 144 us + liD Time 117 uS + liD Time 

Send Interface SF 144 us + liD Time 117 uS + liD Time 

Ind irect Address ing 
OPI - Add to normal time 64 us 52 uS 

OP2 - Add to norma I time 80 us 65 us 

* Add 80 US for each change of row. ** Add 65 us for each chonge of row. 
Add 80 uS for each change of bank. Add 65 us for each change of bank. 

1 
PAGE: 

(80) 



t···~ ,. 
., 

I 

I 

I 

I, 



c:' 

·c···· .... . ' 



U P-4084 


