
c)

INTRDDUCTION
TO RANDOM
PROCESSING

U P·4093

C·:"·"· .,

o

CONTENTS

CONTENTS

(~ 1. INTRODUCTION

2. APPLICATION 2

3. STORAGE DESIGN 6

4. FILE LAYOUT 7

5. METHODS OF AD DR ESSING 8

6. RANDOM VS. SEQUENTIAL FILES 15

7. TIMING RANDOM ACCESS OP ERATIONS 16

o

1. INTRODUCTION

A. WHAT IS RANDOM ACCESS?

In a pure sense, random access is the ability of a storage medium to access information
without time penalty, regardless of its location in storage. Core storage, for example,
is a true random access device, because one accessing of data does not determine the
time required for the following accesses. In punched cards or magnetic tape files on the
other hand, more time is required to go from the first record of the file to the las t, than
is needed to go from a record located at the midpoint to the last. The time penalty is
even greater when going from the last record to the first. In actual practice, random
access is a relative term, meaning that access time is considerably less dependent
upon record location than it is in a sequential filing system.

B. FEATURES OF RANDOM ACCESS

The most common random access devices are magnetic drums and discs. Data are
recorded on the surfaces of these devices in the form of magnetic spots. One signif
icant design feature of the random access device is the clustering of data around the
surface, eliminating the great distances over which records may be spread. This type
of design, when combined with the ability of the reading and writing units to move
directly to an area on the recording surface, provides the random access capability.
These design features are translated into operational characteristics which spell the
difference between random and sequential processing.

The random access unit can:

1. Select a record from a file by taking a direct path to it. This method is opposed to
sequential searching used by serial filing systems.

2. Search a file in either direction with equal facility. Card systems are restricted to
either ascending or descending operation, while most tape systems change the
direction of a search with reduced efficiency.

3. Select a record, deliver i~ to the central processor for alteration, and then return it
to its original location. Changes to punched card or tape records require the creation
of new records.

1

2

2. APPLICATION

A. GENERAL

The seemingly few features of the random access unit combine to provide many unique
advantages when they are applied to a data processing si tuation. Just how the random
access approach differs from the sequential can best be viewed by comparing systems.
Figures 1 and 2 outline two methods of invoicing. The following is a discussion
of the significant differences in results.

B. PRE-SORTING

The Billing Detail Cards in figure 1 are sorted into Customer Number sequence,
because the proper name and address is selected from the mas ter file by a collation
technique, which demands that both files be in the same order.

With a random access system pre-sorting is not required, because the selection of the
name and address is not accomplished by collating. Instead, the system analyzes the
Customer Number in the Billing Detail Card, and then instructs the disc to go directly
to the place where the corresponding name and address is stored. The disc responds by.
retrieving the desired record and delivers it to the main processing system, which,
in the example given in figure 2, is the UNIVAC ® 1004/1005.

While the magnetic tape or punched card system demands pre-sorting the random access
system makes it optional.

C. FILE SEARCHING

In the sequential system, illustrated by figure 1, the selection of the name and address
from the master file is accomplished by reading and comparing each name and address
card to the current detail card. On each non-match condition, another name and address
card is read. This process continues until a match condition occurs; then the printing
of the invoice occurs. Thus, the entire 5,000 names and addresses are read when only
150 were needed; the result is a lower throughput rate.

The random access approach, using the ability to read only the desired record, elimin
ates the reading of unwanted records. Only the names and addresses required are read
into the central processor, because the disc retrieves records, not by collation, but
by directly accessing the ones desired.

® Re~istered Trademark of the Sperry Rand Corporation.

-----~-------" -
-"~--------------.- ----- ----- .--------~----.-.- ---------.------------_._---

o

o

c

BILLING
DETAIL
CARDS

150 CUSTOMERS

BILLING
DETAIL

CARDS

ACCOUNTS
RECEIVABLE

CARDS

TO: ACCOUNTS RECEIVABLE
UPDATE PROCEDURE

UNIVAC

1004/1005

Figure 7.

NAME AND
ADDRESS FILE

5000 CUSTOMERS

CUSTOMER
NAME AND

ADDRESS FILE

INVOICES

3

4

INVOICES

D. BATCHING

BILLING
DETAIL
CARDS

UNIVAC

1004/1005

Figure 2.

BILLING
DETAIL

CARDS

CUSTOMER

NAME AND

ADDRESS FILE

ACCOUNTS

If the number of invoices to be written in the example is 150 per day, the weekly time
loss is relatively high, because 4850 unused (5000-150) name and address records
are passed through the system 5 times each week. This problem is usually reduced by
"batching" the transactions and processing against the master file less frequently.
For instance, it is possible to accumulate transactions for 5 days and perform the
major operations on a weekly basis. Thus, in the billing illustration, the number of
unused cards processed is reduced from 24,500 (4850 x 5) to 4250. Batching is a
compromise between efficient use of the data processing system and satisfying the
dynamic needs of the application.

With a random access system, the invoices can be prepared daily, because the system
running time is directly proportional to the number of transactions, not the number of
other master file records screened. Therefore, the system can be used efficiently and
still respond dynamically.

E. FILE SEGREGATION BY ACTIVITY

Another meth.od of making the sequential system more efficient, is to segregate master
file records by frequency of use. In the invoicing example, the customer name and
address file can be separated into two or more files depending upon the number of
transactions with each particular customer. When invoices are run, only those name
and address cards for active customers are passed through the main computing system.

o

()

(~'

..
The low activity addresses are inserted prior to the invoicing run, or invoices are pre
pared separately. This method requires additional peripheral operations and introduces
a certain loss of control to the overall system.

Occasionally, random access systems use this very same technique to achieve higher
throughput rates, but without the inherent problems of additional peripheral operations
or loss of control. In the application being discussed here, the random access system
would not have to employ the technique at all.

F. UPDATING MULTIPLE FILES

The Accounts Receivable summary cards are outputs of the invoicing run. In a separate
procedure, these cards are used to update the accounts receivable totals.

With a random access system it is possible to store both the name and address and
accounts receivable files on the same media, thereby having both files available at
the same time. This feature enables the system to update the accounts receivable at
the same time, eliminating the need to process the transaction cards twice and provid
ing an up-to-the-minute accounts receivable.

In addition, the unique ability of the random access system to read records, have the
processor update them, then return the adjusted records to their original places in the file,
has interesting systems application. In the case of the accounts receivable, returns or
partial paymen ts can be applied against the open items without the need to create new
cards or tape records as balances are adjusted. Nor is there a need to either entirely
reproduce the file or interfile updated records.

G. STATUS INQUIRY

One of the prime advantages of a punched card system is the ease of reference. If a
credit check is required on a particular account, a visual reference to the accounts
receivable file is usually sufficient, except at those times when the file is out for
processing or when the most recent transactions have not as yet been applied.
Magnetic tape systems on the other hand make reference to files relatively difficult
and time consuming.

Random access systems seek to balance both the need for rapid updating of files and
the ability for ready reference. As more files are added to the random access storage
medium to provide greater multiple file updating capability, more data is available for
external inquiry. Thus, no matter what operation is in progress, credit checks can be
made as long as the accounts receivable file is on-line to the processor.

H. SELECTING RANDOM ACCESS

There are no categorical answers to the question of deciding between punched cards,
magnetic tape, or random access as the solution to the data processing problem. The
selection of a particular system depends upon such factors as cost, speed, file activity,
the need for rapid updating and inquiry. Each of the three basic systems has merit,
depending upon the specific requirements of the applications. In fact, many installa
tions use a combination of all three methods to produce the best results.

5

6

3. STORAGE DESIGN

The recording surface of a random access device is divided into sectors, each of which can
contain one or more records. For purposes of explanation, a sector should be thought of as
having the ability to store one record only. On the Unidisc System, for example, these
sectors are arranged in a circular fashion on the disc. See figure 3 below.

Figure 3

TRACK

SECTOR

TRACK

SECTOR

The average storage capacity of a Sector is 100 alpha-numeric characters. One complete
circle on the disc contains 100 Sectors and is called a track. There are 100 tracks on the
disc, each of which contains 100 sectors. Thus, there are 10,000 sectors to each disc
surface (100 x 100).

Each sector on a track is identified by a two digit number, from 00 to 99, which is known
as the sector address. Further, each track is identified by a number from 00 to 99, which
when placed in front of the sector produces a four digit number ranging from 0000 to 9999.
Thus, each sector is separately identified by a number which is called the address. When
more than one disc unit is used, a single digit number is added to ~he left of the original
address, producing a 5 digit address.

As is the case with storage in the central processor, each address refers to a specific
location in the storage medium. Whenever the central proce,ssor requires a particular
record, it sends the address of the record to the Random Access device, which proceeds
directly to the location specified and retrieves its contents. The random access device is
thus freed of the task of reading and comparing record identifiers such as customer numbers,
employee number, etc. Random access systems perform at higher rates of speed when oper
ating in the address mode, although they possess and often use the ability to search for
records by comparing record identifiers.

o

o

4. FILE LAYOUT

The most common method of organizing a file is to store the records in sequence, as in a
card or magnetic tape file. The first record is stored at address 00000, the second at
00001, etc. Instead of merging new records into the file as they occur, an overflow area
in random access storage, probably at the end, is reserved to receive records added after
the file is sorted and stored. Periodically, these newly added records are incorporated
into the sequenced portion of the file by a sort program. The sort program clears the
overflow area so that it is again ready to receive new records.

The frequency at which the sort operation is p~rformed depends entirely upon the needs of
the particular application. The file may be resequenced prior to the printing of a sequential
report, or when the overflow area becomes filled. The size of the overflow area is deter
mined by the frequency of transactions. It must be large enough to store all records added
between sequencing operations.

Opposed to the sequential file is the random file, which as the name implies, operates
without regard to the order of the stored files. As records are added to the random file, the
central processor converts the record identifier to an address, by means of a randomizing
routine. Once the record is stored, further references to it are made by re-calculating the
address, using the same randomizing routine.

7

8

5. METHODS OF ADDRESSING

A. DIRECT ADDRESSING

In some cases, a technique known as direct addressing can be used to reference records
stored in a Random Access system. The term direct addressing means that the address
of a record to be referenced enters the system as part of the input. There are several
ways in which direct addressing can be accomplished.

In certain of these cases, the record numbering scheme is similar to the addressing structure
employed by the random access system. Assume, for example, a single disc system with
an address range of 0000 to 9999, being used for a payroll system. Employee numbers
could be assigned as five digit numbers within the range of 10000 to 19999, enabling
the system to handle up to 10,000 employees. Thus, whenever a particular employee
record is referenced, the central processor simply uses the last four digits of employee
num ber as an address when the access is made.

This technique, while easy to use, will require reassignment of record identification
numbers in most cases. In addition, it does not provide for alphabetic record identifiers.

In other cases the address of a record is made a suffix of the record identifier and ap
pears on all external documents as part of the record number. Thus, each record brings
its own address into the central processor, simplifying the address calculation within
the system. However, this method is rather inflexible and is burdensome on external
operations, particularly those requiring manual effort.

Occasionally, external indices or directories are used to con vert record identifiers to
random access addresses before entries are made to the system. The index is a cross
reference file, sequenced by record number, in which each record number is paired
with the address of its location in storage. This index could be in the form of card
file in which each card would contain a record number and its respective address.
Transactions to be applied to the master file are sorted into record number order and
matched against the index file. The addresses are then reproduced into the transaction
cards.

Index files allow optimum use of the data processing system at the cost of external
processing time and adding the need for batching. Furthermore, the index file will
require maintenance as records are added and deleted.

~\
! .
'''L../

c

J

V

c

B. REFERENCE ADDRESSING

It is a common practice in UNIVAC random access installations, to use the data process
ing system to convert record numbers to addresses .. This conversion is made automatically
by sub-routines in the main programs, eliminating all external activity.

Reference Addressing is a very important technique for creating addresses from record
numbers. It is an extension of the external index method with the principle difference
being the location of the index. When Reference Addressing is employed, the index is
stored in the data processing system, either in the storage of the central processor or
in the random access unit.

Special techniques, working in concert with the sequential file layout, are used to reduce
the amount of storage required to store the index. An index to 5,000 master records would
be stored in 5,000 cards if an external index were used. Reference Addressing, which is
explained by example below, can reduce the index to only 50 entries.

Figure 4 represents a storage layout chart for a master file of 5,000 records stored on a
disc in locations 0000 through 4999. The number of the first record is 598; the last is
5597. In this example, the records in the file are numbered consecutively, although con
secutive numbering is not a requirement. The number of the record located in the last
sector of each track is stored, along with the respective track number, in a table called
the track index.

Whenever a particular record is to be referenced, its number is compared to the first
record number in the table. If the desired record number is equal to or less than the
first n.umber in the table, the entire record is stored in track 00. If the record number is
grelater than the first number in the table, the comparison moves to the next entry in the
table and continues until an equal or less than result occurs.

In the example shown in figure 4, the comparison will start with the table entry to the
extreme left of the track index. The desired number (1004) will test high for the first
four comparisons and low in the fifth. Since the track numbers are stored in the table,
the program is able to determine the track number as soon as the "less than" condition
occurs. This technique does not require that the transactions be applied in any particu
lar sequence.

The track number of a desired record is thus determined by searching the track index.
The specific record is obtained by searching the specified track in the data mode. That
is, by comparing record numbers.

If the record is not found in the main portion of the file, a search of the overflow track(s)
is made, because the record was added after file was last sorted and reassembled.

--- ---------_.

9

MAIN FILE o
)

SECTORS I
00 01 02 03 04 05 06 07 08 09 99

00 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0697

01 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0797

02 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0897

03 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0997

04 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1097

05 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1197

J

06 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1297

07 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1398

08 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1497

09 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1597

I --
49 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 m

TRACK INDEX

Figure 4.

o
10

()

C. RANDOM ADDRESSING

1. General

Airline reservation applications served by UNIVAC Real-Time systems, reserve
seats, cancel reservations, and answer inquiries concerning the availability of
passenger space while the customer is standing at the reservation desk. Trans
actions and inquiries in this application occur at very high frequency without
in terru ption.

Applications such as this require that the records in random access storage be
available without interruption. Sorting, required to incorporate new records from
overflow storage, causes an interruption in the availability of the master file. The
frequency of sorting is determined by the transaction volume because the overflow
area must be cleared as it becomes filled. Thus, in a dynamic situation, an alter
native to sequential filing must be employed.

Applications with a requirement for dynamic response such as airline reservation
systems, employ random file organization which allows all data to be available
at all times, because sorting to enable the addressing scheme to be efficient is not
necessary. Instead of locating records by reference to indices, random filing systems
use mathematical techniques to calculate addresses from record numbers.

The object of the address calculation is to convert each record number into a unique
address with as few duplications as possible, and to distribute the records evenly
among the available sectors to make efficient use of storage. These objectives are
achieved by converting record numbers on a random basis, hence the term random
izing routine.

There are many techniques for calculating random addresses. By way of the follow
ing example, one method (Prime Number Division) will be explained:

2. Application

A file of 20,000 master records with an 8 digit key is to be stored on a cleared
Unidisc system. The lowest numbered record in the file is 00100000; the highest
number is 99999999. The number of sectors assigned as storage is 40,000. These
sectors are numbered consecutively from 00000 to 39999.

3. Planning the Conversion

Prime number division will be used to reduce the eight digit record number to a 5
digit address within the range of 00000 to 39999. A prime number is a number, other
than zero, that can be divided evenly only by 1 and itself.

Step 1 - Using the highest allotted address - in this case 39999 - select
the corresponding prime number from the table (figure 5). This prime
number is 39989.

Step 2 - Enter this number as a constant to all programs that reference this file.

11

12

HIGHEST
PRIME

HIGHEST
PRIME

ADDRESS ADDRESS
ALLOTTED NUMBER ALLOTTED NUMBER

09999 09973 35999 35999

11999 11987 37999 37997

13999 13999 39999 39989

15999 15991 41999 41999

17999 17989 43999 43997

19999 19997 45999 45989

21999 21997 47999 47981

23999 23993 49999 49999

25999 25999 51999 51997

27999 27997 53999 53993

29999 29989 55999 55997

31999 31991 57999 57991

33999 33997 59999 59999

Figure 5. Table of Prime Numbers

4. The Program

The randomizing routine is a sub-routine of all programs that enter, delete, or
reference records in the file.

This sub-routine is entered prior to any reference to random access storage.

Step 1 - Divide the record number by the prime number - a constant - seeking '-.
a quotient in whole numbers. Assuming the record number is 00246859,
the results will be as follows:

00246859

39989
= 6 and 06925 remainder

Step 2 - Using the remainder (06925) from step 1 as an address, read a record from
random access storage.

NOTE: The highest possible remainder is 39988. Therefore, this
calculated address will always be within the limits of the
storage area provided. o

c

c

Step 3 - Check this sector for a prior entry. If none, go to the next step. If a record
has already been written into the sector, go to sl:ep 5.

The purpose of the test is to prevent the entry of a record into a sector that already
contains a valid entry.

The reason for the prior entry is that it is possible for more than one record number
to generate the same address, no matter which randomizing method is used. In this
case, the duplicate address is caused by the fact that different dividends can leave
the same remainder. For example, seven divided into either 22 or 29 will leave a
remainder of 1.

One way of ascertaining whether or not a sector is available is to clear all sectors
to spaces before the disc is put into service and to clear sectors to spaces as they
become available. Another way is store a unique code in all unused sectors.

Step 4 - Using the remainder from step 1 as an address, write the record into the
sector.

Step 5 - There are two ways of filing a duplicate record within the limits of the
storage area allocated. First, attempt to file the record at the next higher
address - 06926 in the example - repreating the test for a prior record.
Each time a prior record is found, try the next higher sector until an opening
appears. If the search runs beyond the highest address allowed, return to
the lowest address and continue the search. The second method is to turn
control over to the system, allowing it to find the first open sector on the
track, either higher or lower than the original sector.

The number of duplicate addresses generated is related to the size of the random
access storage area provided to store the file. As the number of sectors is increased,
the divisor becomes larger, providing a greater number of possible remainders.

D. ALTERNATE FILING TECHNIQUES

1. Overflow

In the method described, records with duplicate addresses are filed within the con
fines of the storage allocated. This method conserves storage, at the cost of
additional accesses when duplicates occur. These results can be reversed by
adding an overflow area. In this case the original storage area is made smaller and
is called the primary area. An even smaller area, called overflow storage, is provided
to store duplicate records. However, the total number of sectors allocated is larger
than that provided in the single area.

In the example above, sectors 00000 to 39999 were allocated. With the overflow
method the primary area would be 00000 to 29999. The overflow area could be 30000
to 43999. All references, both reading and writing, would first be made to the primary
area. On a duplicate condition, the following references would be made to the over
flow area. Thus, if a record is to be written into sector 05625 and that sector al
ready contains a record, the base address of the overflow area is added to the
original address (05625 + 30000 = 35625). This sum is compared to the highest

13

14

allocated address in overflow storage (43999). If the sum is the lesser value, it
becomes the address at which the next filing attempt is made. If the sum is greater
than the highest overflow address allowed, the highest address is subtracted from
it, and the result is substituted for the original address. The program re-enters the
add and compare steps, repeating the process until a satisfactory address is obtained.

The next reference would be to the new address. If a duplicate address is encountered
here, either the technique described in step 5 of the sample method or reference to a
second overflow area would follow.

The advantage of the overflow method is that the primary area never contains dupli
cates. When the overflow technique is not used, a duplicate can cause an artificial
duplicate, which in turn raises the average number of accesses required to reference
a particular record. If for instance, an attempt is made to file a record at 06925 when
it already contains a record, the record might be filed at 06926. Sometime late~r a
calculated address can be 06926, but this record cannot be filed at its natural loca
tion, because a duplicate is in its place. The overflow method results in higher
throughput rates by reducing the number of accesses required to file or locate a
record. However, more storage is required.

The number of overflow areas provided, if any, and how they are to be handled is
determined by the amount of storage available, the throughput rates required and the
characteristics of the record numbering system.

)

()

o

c

c

6. RANDOM vs. SEQUENTIAL FILES

A. GENERAL

Early in the systems design phase of a random access system, the type of file layout
should be selected. This selection can be made by reviewing the requirements of each
application against the virtues of each method. A discussion of the values of these two
fundamental methods is presented to assist in making the choice.

B. SEQUENTIAL FILES

Sequential filing provides for more efficient use of random access storage because
records are filed in consecutive sectors with no gaps and smaller overflow areas. Only
the requirement for storing the index prevents 100% utilization of storage. Still, the
utilization of storage in sequential filing is 99%, which is rarely attained in a random
file.

Sequential files enable the user to take advantage of the economy of a removable disc.
With a random file all records must be on line during a run. If a file requires several
discs because of its size, the system must include enough disc handlers to permit all
data on the discs to be available at the same time. With sequential files, however,
each disc can be loaded onto a handler as the run demands, just as in a card opera
tion only one tray of cards need be handled at one time.

On the average, fewer accesses are required to locate records in random access storage
with sequential filing. Throughput rates increase as the number of accesses is reduced.

When the choice between filing methods is applied to Unidisc specifically, one other
consideration exists. Unidisc is unique among disc storage systems in that additional
circuitry and random access storage are provided for the specific purpose of streamlining
the sequential file system. These additional features reduce the average time required
to retrieve a record, minimize the programming effort, and eliminate the need to use the
central processor for searching the index.

C. RANDOM FILES

Random Files offer the advantage of never requiring sorting to incorporate new records
into the main body of the file, although sorting may be required before reports are run.
They do not require the system to store index tables. In short, random files are capable
of responding dynamically to demands for data.

15

16

7. TIMING RANDOM ACCESS OPERATIONS

A. GENERAL

The time required to retrieve a record from a random access device is based upon two
fundamental motions which occur outside the central processor (see figure 6). First
is the time required to move the access arm to the desired track. On Unidisc, this
time varies from 0 milliseconds, when the arm is already in position, to 196 milli
seconds, when the maximum distance of 49 tracks must be traversed. The design of
Unidisc provides two sets of read/write heads on the access arm. These heads,

working in tandem, service 50 tracks each (100 T2racks = 50 Tracks). The longest

travel is from Track 0 to Track 49 or 50 to 99 which is 49 tracks.

The time required to start and stop the motion of the access arm is always 45 ms. The
time required to cross each track is 4 milliseconds. Thus, the time required to move 1
track is 49 ms, while the time needed to move 49 tracks is 241 ms.

The other factor is the rotation of the disc on the handler. The selection of a particular
sector on a track is accomplished by means of the rotation. Once the read/write head
is in position, as a result of arm movement, it becomes stationary on the desired track.
From this position on the track, the read/write heads wait for the desired sector to pass
by.

If the sector desired is approaching the read/write head as it assumes its rest position,
very little time delay will be required to read the record.

DISC ROTATES

READ/WRITE HEADS

Figure 6. o

C: If, on the other hand, the sector has just passed the read/write head when it settles
into position, the maximum read time will occur. Maximum read time is 50 milliseconds,
which is the time required for one complete revolution of the disc. These timings are
applied differently for sequential and random operations.

B. RANDOM FILES

Random operation timings are based upon averages, because the distances involved in
anyone access of data are not predictab1e~ Average arm positioning time is derived
as follows:

45 + 4 (N-1)

3
= 110 ms; where N = the maximum number of tracks

traversed (50)

Average Rotational Time is 25 ms.

The average time required to read a record from storage is 110 ms + 25 ms or 135 ms.

Write operations are followed by automatic read/backs of data to verify the recording
operation. This check requires an additional revolution of the disc, adding 50 milli
seconds to the rotational time. Average write time is; 110 ms + 75 ms = 185 ms. The
total access time for a run is estimated by multiplying the average time per reference
by the number of accesses expected. The total access time for obtaining customer
names and addresses--assuming the random file technique is used--in the invoicing
operation (Figure 2) is: 150 X 135 = 20250 ms or an average of 20 seconds. Because
of the possibility of duplicate addresses, some transactions will require more than
one access :0 select the desired record. The overall effect of these extra accesses
varies with the situation.

C. SEQUENTIAL FILES

Since sequential files may be referenced by transaction inputs that are either pre
sequenced or purely random, two different timing methods are needed. If as in the
invoicing application (figure 2), the transactions are not pre-sorted, average access
times are used to estimate run times. Since this operation is essentially random, the
access time is 135 milliseconds per record. Because a prior reference to the index is
required, an additional access is normally required to search the index. However, the
special feature for reference addressing provided with Unidisc reduces the average
time for this first access to 25 milliseconds. The average access time per record is
160 milliseconds (135 + 25 ms = 160 ms). The total access time for the invoicing
application is: 160 ms X 150 = 24,000 ms or 24 seconds.

If references to the file are made sequentially, the average access time per reference
will be reduced. In the invoicing example, the name and address file would be stored
in first fifty tracks on the disc. Assume for purposes of explanation that there is one
detail card for each invoice and that the references will be distributed evenly over the
fifty tracks _ Then, there will be three references to each track. Further, the tracks
will be referenced sequentially, beginning with the first track.

17

18

Once the run has started, the access time for any three references to a track will be
as follows.

First Record

Search Index (average time)

Move access arm from preceding track (1 track max.)

Read Record (average time)

Second Record

Search Index (average time)

Move access arm from preceding track

Read Record (average time)

Third Record

Search Index (average time)

Move Access Arm from preceding track

Read Record (average time)

Total for 3 records

25 ms

49

25
99 ms

25 ms

00

25
50 ms

25 ms

00

25 ms
50 ms

199 ms

Access arm positioning time is quite low, because the movement is always from an ad
jacent track. This time is incurred only once for every three records, because the
second and third records are on the same track as the first record. Since there are 50
groups of records (3 per group), the total access time for this run is: 199 ms X 50 = 9,950
milliseconds or 10 seconds to be compared to 24 seconds for non-sequential input.

Also worthy of note is the fact that no other distribution of desired records in the tracks
can increase the total access time, although it may be reduced. However, record layout
can affect read time. This effect is described in the reference manual.

While the presequencing of inputs reduces the access time, it is not an absolute require
ment. In fact, the scheduling of runs and the resulting demands on peripheral equipment
and operators may make it more desirable to operate with unsorted inputs. Furthermore,
the programming requirements for both sequenced and unsequenced inputs are precisely
the same, making it possible for the Operations Manager to decide whether or not to sort
on a day to day basis.

One other feature of Unidisc that affects throughput rates is its ability to operate
independently of the 1004/1005. Unidisc is known as a buffered device, because it
contains control circuitry and core storage, which relieve the central processor of the
task of monitoring random access operations. Once commanded, Unidisc operates
independently. Thus, computing and any other linput/output function can occur at the
same time as a random access function in a manner similar to the way in which the
Card Punch can overlap the 1004/1005. In the invoicing application, for example, the
access time is not added to the card read time. Only the longer of the two times
affects the throughput rate.

o

o

o

o

o
U P·4093

PRINTED IN U.S.A.

