
UNIVAC 10150 SYSTEMS

MAGNETIC TAPE SYSTEM

P R 0 V I S I 0 N A L D 0 C U M E N T

PAL TAFE AS~E~BLER

UP 3940.5

UP 3940.5

This document is provisional in nature and is intended as a
vehicle for m~eting immediate needs witlj,,,regard to system
familiarization and orientation. UNIVAC°'Division of Sperry
Rand Corporation reserves the right to change and/or modify
such information contained herein as may be required by
subsequent system developments.

1. CONTENTS

2. INSTRUCTION REPERTOIRE

3. DATA GENERATION

4. ASSEMBLER DIRECTIVES

A. BEGIN

B. PROO, DO, AND NAME

1. PROO

2. DO

a. The L.abel Field

b. Conditional DO

3. NAME

C. SEGJP

D. LDKEY

5. PAL ASSEMBLY ERROR CODE

ILLUSTRATIONS

PROO Reference Line. Fi.gure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

PROO Definition Called by the Reference Line.

Resultant Lines Produced from the PROO Reference Line.

Sample Procedure and Reference Line Listing.

MOVE Procedure.

UP 3940.5 PROVISIONAL

1. C 0 N TENTS

Page

CONrENTS

1 tol

2 to 3

4to24

4

5

5

8

9

13

16

23

24

25 to25

Page

10

10

10

12

18

CONTENTS

2. I N S T R U C T I 0 N R E P E R T 0 I R E

The PAL Tape Assembler is an extension of the PAL Card Assembler. It uses the same instruction

repertoire. Because of the tape control system, however, additional operatjnns are required when using

the Halt, Then Jump and Jump Display instructions. These operations are explained in the description

of the Executive Routine.

UP 3940.5 PROVISIONAL 1

3. D A TA GENER A T I 0 N - F 0 R M

The data generation procedure FORM provides the programmer with the facility of arranging data in any

desired manner. The rules for the use of the procedure FORM are as follows:

• The FORM line must have a label.

• The word FORM must appear in the operation field.

• The operands field of the FORM line may contain from one to eight expressions. Each expression

is either a decimal number not greater than 48, the letter T, or the letter X. Each expression

specifies the number of bit positions required for the value that is represented by the

expression in the line to which FORM will apply.

• The total of the expressions entered in the operands field must not exceed 96 and must be a

multiple of 6. Each T has a value of 6, and each X has a value of 3 (see following page).

• The FORM line must precede all lines to which it is applicable.

• A succeeding line to which a FORM line is to apply must contain:

a. the label entry of the FORM line in its operation field;

b. as many expressions in its operands field as there are expressions in the operands field

of the FORM line. The labels appearing in this operands field reference the ~

significant character of a field.

To illustrate the use of a FORM line, assume that a program is using a subroutine that writes a block

on tape whenever a JR instruction to the label WRITE is executed. The subroutine requires that

whenever such a JR instruction is written, the following line must specify the addresses of two

counters which are contained in a six character field. The first 18 bits of the 36 bit field must

contain the address of the counter the program uses to count the number of records in each block; the

following 18 bits must contain the address of the counter used to count the number of characters in

each block.

P'ROVISIONAL
UP 3940. 5

2

The FORM line is written as follows:

OPERANDS
30 40

I
I

4514

When the assembler encounters the entry ADDR2 in the operation field of a succeeding line, it will be

supplied with two expressions, the values of which are to be arranged in two contiguous 18 bit

fields.

Communication with the subroutine is accomplished by writing

18 19

OPERANDS
30

I
I

451

where ITM:::T is the label of the record counter, and CHBCT is the label of the character counter.

When the program is assembled, the six characters immediately following the JR instruction will

contain the addresses of these two counters.

It should be noted that the subroutine whose first instruction is labeled WRITE must contain some

provision to increment the Mportion of that instruction by 6, in order that control be returned to

the next instruction in sequence, bypassing the .ADDR2 line.

The T and X entries on a FORM line specify special treatment of the corresponding expressions on any

succeeding line to which the FORM line applies. If these corresponding expressions are labels, the

assembler handles them as follows:

T specifies that the value of the defined label is to be divided by four, and that a six-bit·

quotient is to be produced.

X specifies that thirty-two is to be subtracted from the value of the defined label, and

that the difference is to be divided by four, producing a three-bit quotient.

In both cases, after the arithmetic operations have been performed on the label, only the quotient is

retained, and the remainder is ignored.

A T entry, therefore, directs the assembler to convert a label (which is equated to a fifteen-bit

binary address) into a tetrad number, while an X entry directs the assembler to convert a label into

an index register number.

UP 3940.5 PROVISIONAL 3

4. A S S E M B L E R D I R E C T I V E S

Assembler directives are devices used by the programmer to supply information to the PAL Assembler.

The information supplied by these directives controls the disposition or the program, program

instructions, or storage areas required by the program. Although they affect the assembly or program

instructions, the lines in •hich these assembler directives appear are not assembled as instructions.

The following assembler directives are available with the Tape System ln addition to those with the

Card System - ORIG, END, EQU, and A.REA.

A. BEGIN

4

Every program to be assembled must have the assembler directive BEGIN in the operation field of the

first line. The BEGIN directive causes the start of the assembly process.

A program name or up to six characters may be in columns 7 through 12 of the BEGIN line. When the

program is assembled on tape, however, only the first four characters (7 through 10) are used for

program identification in the tape header block. rr the program is to be loaded in segments, the

program name is incremented with each segment (see Section 4-C, page 23).

zzzz may be any value that does not start with X.

n directs the loading or the program. Where n

OPERANDS
30 40

I
I

451

=an absolute address of 520 or greatel)the assembler assigns the value as the absolute address

of the first character or a program. Only one absolute program may be loaded. The executive

will not load a second program of either the absolute or relative type.

• 3 a relative program will be loaded. If the 80 column version executive is used, the first

program (A) will be loaded at the beginning of the first available row following the Executive

Routine. If the 90 column version executive is used,·it will be loaded, behind the executive,

at the beginning of the first available even numbered row.

PROVISIONAL
UP 3940.5

If a concurrent version of the executive is used and two programs (A and B) are to be run, the

second program (B), loaded with zzzz BEGIN 3, will be placed in the high end of storage.

= 5 program A will be loaded just as described for 3. However, program B, loaded with zzzz

BEGIN 5 is placed in storage directly behind program A.

B. PROC, DO, and NAME

The user is 1i.rged to devote careful attention to this section. The judicious construction and use

of procedures which ref'l.ect particular installation computational needs enable the user to build an

installation-oriented assembler-compiler. The primary significance of this feature is the reduction

of the time expended in coding, thereby freeing programmers for the more creative tasks of problem

analysis and problem solving.

The assembler directives PROC, DO, and NAME allow the programmer to incorporate procedures in a

program. A procedure is a series of instructions which the programmer anticipates writing

several times. To save himself the time and effort required to write a series of instructions

repeatedly, the programmer writes them once in a procedure definition. Each time that the same

series of instructions is required, the programmer simply writes a procedure reference line. At

that point, the assembler inserts the coding lines contained within the procedure.

By means of a procedure definition, the programmer gives the assembler the fixed portions of an

operation only once; whenever the operation is required, the programmer calls it into the program

by writing a reference line in which he supplies the variable portions. The assembler then combines

the fixed portions with the variable portions to produce instructions which are then inserted into

the program at the point where the reference line appears.

The programmer may write the reference line calling a procedure anywhere in the program as

frequently as desired. The procedure definition, however, appears only once.

1. PROC

The procedure reference line contains

UP 3940.5

•a label (optionally) in the label field,

•the name of the called procedure in the operation field, and

•the appropriate parameters in the operands field.

PROVISIONAL 5

6

For eXBJllPle, a reference line for a procedure named MOVE is

E LABEL
N
6 7 11

OPERATION

13 18 19

OPERANDS

30
I
I

451

The procedure definition consists of a number of coding lines, the first of which contains

• the procedure nam.e in the label field,

• the assembler directive PROO in the operation field, and

• an expression in the operands field (not required} •

The last line of the procedure definition is an END directive.

The PROO line identifies all following lines, up to the first END line, as being part of the

same procedure nam.ed in the label field. The purpose of the expression in the operands field

of the PROO line will be explained under the discussion of the directive NAME.

The following limits are placed on the use of the PROO assembler directive.

a. A procedure definition must have been defined before it may be referenced.

b. A procedure definition may not appear within another procedure definition.

c. A procedure definition may not appear within the range of a DO line (see Section 4-B-2) •

d. A full comments line, i.e., one with a period in column 7, may appear within a procedure

definition, as well as within the range of a DO line. Comments may be 'Written after the

last expression on a line, but will not appear in the listing of generated coding lines.

e. Reference to a library routine or a procedure may not appear in the operation field of any

line within a procedure definition.

f. A FORK definition within a procedure definition may be referenced only by lines within the

procedure definition. However, lines within the procedure may reference FORM statements

external to the procedure definition.

An eXBJ11Ple of a procedur..:;.:e;._:d~ef~ini~~t~i~o~n~,_n~s~m~ed~•MJVE;.;..;.;~':.....;i~s;.__..,. ____________________________ ~
E LABEL OPERATION OPERANDS

6 7 11 13 1819 30 40
I
I

451

t
l--ll!flilLL.J[l.!~-l--l!....LD~l!!l.J.-'--lllEL--'-..1-.L-L.....1.....L.-'--'-....1.-..1..-"-L-1-'-1-'--'--'--'-'-'1-'-I_,___._~

PROVISIONAL UP 3940.5

Fixed portions of a procedure definition are written exactly as the programmer wishes them to

appear in the generated coding. Variable portions, which in the generated coding are to be

replaced by the parameters in the reference line, are represented by indexed labels. An

indexed label is the procedure name followed by a decimal number enclosed in parentheses.

This number defines which parameter supplied by a reference line is to replace the indexed

label. For example, the indexed label MOVE (3) is replaced in the generated coding by the

third expression on a reference line.

A complete procedure reference line and the procedure definition that it calls is written

as follows. The reference line ·e LA!EL .-.....,...,. __,-................................... _____ .. __
1

I
6 7 40 451

r.or.
calls the following procedure definition

Line l is a PROC line, identifying all succeeding lines up to the next END line as being part

of the MOVE procedure.

Lines 2 and 3 are instructions written in generalized form. The M and L expressions of these

instructions are indexed labels.

Line 4 is an END directive, indicating that there are no more lines in this procedure.

"1len the reference line is assembled, the assembler replaces every MOVE (1) in the definition

with 5, every MOVE (2) with the label TOTAL, and every K>VE (3) with the label CDTOT, and the

following coding is generated.

BA1 TOTAL, 5

SA1 CDTOT, 5

Every time the programmer wishes to transfer a field of n characters from A to B using ARJ.,

therefore, he does not have to code each instruction line; instead, all he has to do is write

E LA!EL OPERATION OPERANDS :
~ 7 11 r13 18

I
6 19 30 40 451

M.o v E_j_ _j_ 17&_.. _A~ B j _j_ I I
I

j I _j_
I

and the assembler supplies the co~rect coding in the object program and on the output listing.

UP 3940.5 PROVISIONAL 7

8

Another wa:y that a variable may be provided in a procedure definition is by putting the

unindexed procedure name in the operands field. When the procedure is assembled the name is

replaced by a number that equals the number of param.eters in the reference line.

For example, the reference line

E LABEL OPERATION
6 7 11 13 1819

OV6 F I F £.

with the procedure definition

causes the following coding to be generated.

BA1

2. DO

OPERANDS
30

OPERANDS
30

40

40

MOV C. 2) 1, 1 ,'410 1V 1E1

FIELD1, 8, 4

I
I
I

451

!
45 1

I
I

I I

The DO directive causes a number of lines to be repeated a certain number of times.

A DO directive contains

• an A (optiona11Y) in the label field 'Which acts as a counter. A further explanation of

the label is given separateiy.

• the assembler directive DO in the operation field.

• two expressions in the operands field:

• The first expression specifies the number of times that the DO is to be executed.

• The second expression specifies the number of lines inunediate;Ly following the DO line

that will be repeated.

The DO directive may exist either inside or outside of a procedure. However, when used in

conjunction with a PROO directive, it imparts a greater degree of flexibility to a procedure.

The following limits are placed on the use of the DO directive.

• The maximum number of nested DO 's, i.e. , DO' s within DO' s, within DO 1 s, is ten.

The assembler will not process more than ten levels of DO's at one time.

• Labels may not appear in the operands field of a DO line, with the exception of the

label of the same or another DO line.

• References to a library routine or a procedure may not appear in the operation field of

any line within a DO.

PROVISIONAL UP 3940.5

In the following example the DO line directs the assembler to repeat the next two lines,

four times.

LABEL
7 11

OPERANDS
30

I
I

451

I
1-l.-..L.....L.....&......1-l--IOa!l..!!..l......L....-'-1.1..J.!!!J.9!~-Lll!J..J..L.....J_._._....L.....L...J--L......L....~~--L......L......L.JL-.J......L.......l-J'-<-L.....L....i

After the assembler has processed the above DO line, the DO line and the next two lines

will be replaced by

Fl' 6, 9,
AD1 FLD, 6,
Fl' 6, 9, 1

AD1 FLD, 6, 1

Fl' 6, 9, 1

AD1 FLD, 6, 1

Fl' 6, 9, 1

AD1 FLD, 6, 1

a. The Label Field

The DO line may have an entry in the label field, however, it is not treated as a label.

The "label" of a DO line serves as a counter. Its use is to allow the programmer to vary

UP 3940.5

the number of parameters which he supplies to a single procedure, and to allow the

procedures to handle a variable number of parameters.

When the procedure is first entered, the "label" of a DO line originally has a value of l.

Ea.ch time the DO is executed, this value is incremented by l.

When the assembler processes the line

OPERANDS
30 40

I
I

451

the first time A has a value of l. In the second repetition of the DO, A has a value of

2; in the third repetition, its value is 3; and in the fourth repetition, its value is 4,

After the fourth repetition of the DO, the assembler has completed the DO. The value of

the DO "label" is available for examination, i.e., the programmer can test the value of

the counter at any time prior to the occurrence of another DO line that has an entry in the

label field.

PROVISIONAL 9

10

If the indexed label MNE(A+3) appears in the procedure, this indexed label is MOVE(4) in

the first iteration of the DO; MWE(5) in the second; and so on.

This example illustrates the use of a DO within a procedure and the DO label •

OPERATION

11

Figure 1. PROO Reference Line.

Figure 2. PROO Definition Called by the Reference Line.

01 BA1 TOTAL, 5

02 SA1 C'DTOT, 5

03 BA1 GRPAY, 5

04 SA1 NTPAY, 5

Figure 3. Resultant Lines Produced from the PROO Reference.

This procedure generates the coding required to transfer any number of fields of the same

length (up to sixteen characters).

The parameters required by a reference line calling this PROO definition are:

(1) The first parameter specifies the number of Bring-Store instruction pairs required;

(2) the second parameter specifies the size of the :fields which must all be the same

length; and

(3) as many pairs of addresses (label of the sending field :followed by the label of the

receiving field) as there are moves ~pecified.

When the assembler encounters the procedure reference line (Fig. 1) the MOVE procedure

(Fig. 2) is referenced. The second line of the procedure is a DO statement with a label A.

The value of the label at this point is one.

The DO statement directs the assembler to repeat the next 2 lines, MOVE(l) times. The

reference line supplies 2 for M)VE(l). For the purpose of this reference line.the DO

PROVISIONAL UP 3940.5

UP 3940 • .5

statement is equivalent to

E OPERATION

11 13 1819

OPERANDS

30 40
I
I

451

The first time that the DO is executed, since A has a value of 1, the indexed label MJVE

(A+A+l) is equivalent to HJVE(3), which is the label TOT.AL. The first line of Figure 3

is generated. The indexed label HJV'E(A+A+2) is equal to MJVE(4), and the second line of

Figure 3 is generated.

In the second iteration of the DO, A has a value of 2. When the assembler processes MOVE

(A+A+l) and MJV'E(A+A+2), the indexed labels have the values MWE(.5) and MOVE(6),

respectively, resulting in the generation of lines 3 and 4 of Figure 3.

Note that the first indexed labels appearing on lines 3 and 4 of Figure 3 used A+A to

represent twice the value of A. This is the only legitimate way to represent a multiple

of the value of a DO label; 2A is illegal.

Figure 4 shows the output listing from an actual assembly of the S8llle procedure call.

PROVISIONAL 11

ERROR LOCATION SIZE Ix DATA LINE LABEL OP OPERANDS COMMENTS PROGRAM-ID
000600 00101 MOVER BEGIN 0600 MOVER
000005 00 I 02 IN I EQU 5 MOVER
000012 001031N2 EQU 10 MOVER ,, 000017 OOIOllOUTI EQU 15 MOVER

• 0000 211 001050UT2 EQU 20 MOVER

0 00106 MOVE PROC 0 MOVER
00 I 07 A DO MOVE (I), 2 MOVER < 00108 BA I MOVE (A+A+ I), MOVE (2) MOVER - 00109 SA-I MOVE (A+A+2), MOVE (2) MOVER .,.
00110 END MOVER -0 00111 MOVE 2,5, I NI ,OUTI, I N2,0UT2 MOVER

000600 ·5600000505 * BA I IN I, 5 z 000605 5200001205 SAi OUT I , 5

> 000612 560000 1705 BAI I N2, 5 ... 000617 52000021105 SAi OUT2, 5
3000060000 00112 END 0600 MOVER

Figure 4. Sample Procedure and Reference Line Listing.

b. Conditional DO

UP 3940.5

A form. of the DO directive, known as a conditional DO, is executed only if a specified

condition exists. The first expression of such a DO line is a combined expression,

consisting of two expressions related by one of the following symbols:

= (the first expression is equal to the second)

I (the first expression is not equal to the second)

> (the first expression is greater than the second)

< (the first expression is less than the second)

An example of a conditional DO in a PROO definition is

I
I

40 451

If M:>VE(2) is less than 17, the condition is true and the first expression is replaced by

a 1, effectively making the line

LABEL OPERATION

6 7 11

J.

OPERANDS

30 40
I
I

451

which results in the generation of the one line immediately following it. If MOVE(2) is

greater than or equal to 17, however, the condition is not true, and the line becomes

OPERATION OPERANDS

30 40 45

and the DO is not executed, since the assembler is directed to copy the next one line,

zero times.

The following example is an expansion of the MOVE procedure given above. By means of a

conditional DO, the procedure determines whether the length of the operands is greater

than 16. If not, the transfer(s) will be effected through ARl; if the operands are 17 or

more characters in length, codi~g for Block Transfer(s) will be generated.

PROVISIONAL 13

14

The ref'erence lines calling this procedure are of the same format as that shown in Figure 1.

Ir the reference line is

and the procedure is

The following coding is generated :

BA1 ACCT!,

SAl ACCTA,

BAl ACCT2,

SAl ACCTB,

BAI ACCT3,

SAl ACCTC,

OPERANDS
30

8

8

8

8

8

8

40
I
I

451

Line 2 of the procedure is a conditional DO. The assembler examines parameter 2, and since

the condition is satisfied, this expression is replaced by a 1. The procedure therefore

directs the assembler to DO the next line once.

The next line is an unconditional 00. All of the coding lines falling within the range of

this DO, i.e., the next two lines, are counted as part of the conditional 00 • .Although the

conditional DO specifies repeat one line, it actually controls three lines due to the

following unconditional DO.

PROVISIONAL UP 3940.5

The next conditional DO appears on line 6. Again the assembler com.pares the second para.met~r

of the reference line against 16. It is less than 16 and therefore is replaced with zero(O).

The two lines falling within the range of this DO, therefore, are uot copied. The second

line, within the range of this conditional DO, is another DO which controls two more lines.

If the reference line is

OPERATION

13 1819

the conditional DO on line 2 becomes

OPERANDS

30

OPERANDS

30

40

40

1 COMMENTS -
I

45146 50

c

1 COMMENTS -
I

45146 50

and everything within its range is skipped, taking the assembler do'Wll to the conditional

DO on line 6. This becomes

E LABEL OPERANDS

30

1 COMMENTS -
I I

6 7

UP 3940.5

40

I I

45146 50

I
I

t I I I I

because the second para.meter of the reference line is greater than 16, and the following is

generated

FT 25, 18

FT FLD1, 17

TTR FLDA

FT FLD2, 17

TTR FLDB

FT FLD3, 17

TTR FLOO

PROVISIONAL 15

16

A conditional DO can also be written within a procedure through the use of the unindexed

procedure name. As already explained in Section 4-B-l, an unindexed procedure name in the

procedure definition is treated as a mmiber equal to the number of parameters in the procedure

reference line.

For example, with

OPERATION
11 13 1819

OPERANDS
30

I
I

451

the condition of the following DO directive is met because there are four parameters in the

procedure reference line

.3. NAME

OPERANDS
30 40

t
I

451

The assembler directive NAME allows the programmer to assign alternate procedure names to a

procedure definition. The purpose of this is twofold: first, a pseudo-operation, i.e., the

operation field entry in a reference line, can be rendered more meaningful.; and second, the

assembler evaluates a parameter within the procedure definition, rather than on the r.eference

line, as a basis for processing conditional DO•s. The parameter that is evaluated is parameter

O, which was mentioned in the discussion of PROC.

Parameter 0 is the single expression which appears on a PROO line. Whenever a procedure is

referenced by means of the label of the PROO line, the value of parameter 0 is the expression

appearing in the operands field. Whenever the same procedure is referenced by the label of a

NAME line, parameter 0 of that reference line is the expression appearing in the operands field

of the NAME line.

A NAME line is written immediately following the PROO line of the procedure for which it is an

alternate name; or immediately following a NAME line naming the same procedure. A maximum of

ten NAME lines are allowed within a procedure definition. A NAME line consists of

•an alternate name for a procedure, written in the label field;

•the entry NAME in the operation field; and

•an expression in the operands field.

PROVISIONAL UP 3940.5

Figure 5 shows a procedure definition for a procedure which may be referenced by any of the

following names: MOVE, TRFR, TRFI, TRTR, and TRTI. Whenever this procedure is referenced by a

line containing MOVE in the operation field, the value of MOVE(O) is O; whenever it is referenced

by the entry TRFR in the operation field, the value of MJVE(O) is l; and so on.

uP 3940.5 PROVISIONAL 17

.. • 0
< -"' -0 z

OPERANDS
30 40

Figure 5.)l)VE Procedure

1 COMMENTS~--~~~-.
I

45146 50 60 70

1T.RA

The format of a reference line calling this procedure by the name HJVE is as follows•

a KJVE(O) is O;

• M)VB(l) is a decimal integer indicating the number of times that a move is to be executed;

• M)VB(2} is the number of characters, up to a maximum of sixteen, that will be moved on each

transfer;

• M'.>VE(3) is an expression of the form !Rn, where n is 1 or 2, specifying the arithmetic

register to be used in effecting the transfer;

• MJVE(4) is the index register modifying all origin addresses;

• M'.>VE(5) is the index register modifying all destination addresses; and

• all succeeding pairs of parameters are pairs of addresses naming the origin and destination

addresses of each transfer.

When the following reference line is written

OPERATION

the following coding is generated:

(1) BA2 TOTAL, 5, 3

(2) SA2 CDTOT, 5, 4

(3) BA2 GRPAY, 5, 3

(4) SA2 NTPAY, 5, 4

Figure 6. Coding Generated from the Illustrated MJVE Call.

The generation proceeds as follows:

a. When the programmer calls for the procedure by the name M>VE, the assembler is directed to

equate parameter 0 to O.

b. When line 6 of the procedure definition is evaluated, parameter 0 is found to be equal to O,

effectively making this line

LABEL
7 11

UP 3940.5

OPERANDS
30

PROVISIONAL

I
I

451

19

20

The two lines controlled by this DO are line 7 and line ll. Line 7 controls the one line on

line 8, which in turn controls the two lines on lines 9 and 10. As far as line 6 is concerned,

lines 8, 9, and 10 are a part of line 7.

c. Line 7 is evaluated next. The assembler is directed to test parameter .3 against ARl..

Parameter .3 is not equal to ARl, which makes line 7 equivalent to

OPERANDS
30

I
I

451

The assembler therefore bypasses line 7, as well as lines 8, 9, and 10, which are all treated

as one line.

d. Upon evaluating line ll, parameter .3 is found to be .AR2, making this line

E LABEL
6 7 11

OPERANDS
30

I
I

451

e. Line 12 is then executed. It is an unconditional DO, directing the assembler to copy the

next two lines, HJVE(l) times. As this reference line is processed, MJVE(l) is replaced by

the supplied parameter, making this line

OPERANDS
30

I
I

451

f. In the first iteration of the DO, B has a value of 1. Line 1.3, therefore, is processed as

if it read

E LABEL
6 7 11

I
I

451

and when the indexed labels are replaced by the parameters supplied on the reference line,

line 1 of Fig. 6 is generated. Line 14 becomes

PROVISIONAL UP .3940.5

OPERATION

18 19

resulting in the generation oi line 2 of Fig. 6.

I
I

451

g. In the second iteration of the DO~ B has a value of 2, and lines 13 and 14 become

LABEL

7 11

and lines 3 and 4 of Fig. 6 are generated.

I
I

451

The DO has now been executed MJVE(l) times.

The assembler proceeds to the next line of the procedure definition.

h. Line 15 also calls for an evaluation of MDVE(O). Since parameter 0 is equal to O, the

condition of inequality is not satisfied, and line 15 becomes

~
LABEL OPERATION OPERANDS 1

I
7 11 13 18 19 30 40 45

--1 --1 2>.0 ~ :l J J
"""T

The assembler therefore bypasses the next seven lines. These next seven lines comprise

lines 16, 17, 19, 21, 23, 25, and 27. Line 18 is considered part of line 17, line 20 is

considered part of line 19, etc.

The assembler thereupon encounters the END directive, .mich terminates the processing of

this reference line.

Whenever a reference line calls this procedure via any of the alternate names assigned to it

by the directive NAME, the coding generated effects a block transfer. This block transfer

will be either a transfer from or a transfer to, with or without incrementing the base

address of the sending or receiving field, depending upon the call.

uP 3940,5 PROVISIONAL 21

22

Ir the reference line contains TRFR, a transfer from store, resetting the base address, will

be generated; TRFI calls for a transfer from, incrementing base address; TRTR calls for a

transfer to, resetting the base address; and RTRI calls for a transfer to store, imorementing

the base address.

The reference line must supply five parameters:

a HJVE(l) is the number of characters;

• HJVE(2) is the address of the sending field;

• HJVE(.3) is the address of the receiving field;

• HJVE(4) is the index register modifying the address of the sending field; and

a KJVE(5) is the index register modifying the address of the receiving field.

Note that the indexed labels are always written using the name of the procedure, rather

than the alternate names.

The reference line

I! LABEL OPERATION

6 7 11

causes the following lines to be generated:

(1) FT

(2) FT

(.3) TFl

Figure 7.

so, 18

CDOUT, 16, 4

WSTOR

Coding Generated from the Illustrated TFRI Call.

The logia of the generation is as followsa

I
I

451

a. Because the procedure is called by the name TRFI, the assembler is directed to equate

K>VE{O) to 2. When line 6 is processed, therefore, lines 7 and ll, and everything falling

within their range, are bypassed.

b. When line 15 is processed, M:JV'E{O) is fOUIJd to be unequal to zero, thereby satisfying the

condition of inequality and making this line

LABEL OPERATION OPERANDS

7 11 13 1819 30 '

PIOYISIONAL

40
I
I

451

UP .3940.5

c. The first of the seven lines is line 16. After processing this line, line 1 of Fig. 7 is

generated.

d. Since M.OVE(O) is equal to 2, the condition specified by the DO on line 17 is satisfied; and

line 2 of Fig. 7 is generated.

e. The condition on line 19 of the procedure is not satisfied, and the assembler proceeds to

line 21.

f. MJVE(O) is equal to 2, satisfying the condition specified on line 21, resulting in the

generation of line 3 of Fig. 7.

Note that HnTE(4) on this reference line is blank, indicating no index register modification

of the address of the sending field. The rule governing omitted expressions applies to

reference lines: if an expression other than the last one on a line is omitted, the comma

ending that expression must appear on the line.

g. The conditions specified on lines 23, 25, and 27 are not satisfied, bringing the assembler

to the END directive and terminating the processing of the reference line.

O. SEGJP

The segment jump directive enables the programmer to produce an object program. divided into segments.

These segments are loaded from tape and utilized one at a time.

The SEGJP assembler directive contains

•SEGJP in the operands field, and

• an integer representing an absolute address, or a label in the operands field.

When the assembler comes to the SEGJP directive

LABEL

7 11

OPERANDS
30 40

I
I

45

it causes a ''!'"block to be produced containing a jump instruction to the label (ST.ART) or address

in the operands field. In this way SEGJP is similar to the END directive.

Following the T" block, an "S" block is produced to mark the beginning of the next program. segment.

The 11 S" block is similar to the "R" block beginning the f'irst program. segment. The as11embler creates

the segment ID by adding a one to the program. or preceding segment m.

UP 3940.5 PROVISIONAL 23

If the program. ID (columns 7-10 of the BEGIN directive) contains a muneric value in columns 9 and 10,

a decimal 01 is added. If the program ID contains an alphabetic character in column 9 and a numeric

value in column 10 a decimal l is added.

D. LDKEY

24

The load key directive makes it possible for the programmer to key instruction blocks containing

assembled object code.

The LDKEY assembler directive contains

• LDKEY in the operation field, and

• a bina.ry value of o-63 in the operands field.

For example, the directive

E LABEL
IN
6 7 11

OPERANDS

30 40 d5

, I

will cause a 1 LDKEY ' block to be assembled. The LDKEY block is the same as an 'instruction' block

except for the first character. The key obtained from the operands field of the dir~ctive (22)

becomes the first character, replacing the W. This assembly continues until 112 characters of

object code have been processed, an ORIG directive is used, or another LDKEY directive is encountered.

Care should be taken that the key does not duplicate any character being used by the assembler,

loader, or utility routines to identify specific block types (see the description of system and

library tape conventions).

PROVISIONAL UP 3940.5

ERROR CODE

L

E

0

s

c

D

F

M

p

5. P A L A S S E MB L Y E R R 0 R C 0 D E

DESCRIPTION

Duplicate or undefined label or more than 10 labels

on a line.

Expression is too large, or has been omitted.

Unrecognizable OP code.

Card sequence error.

Tape block count error. Indicates block was

missed during assembly.

M:lre than 10 nested DO's or an incorrect expression

on a DO line.

Incorrect form statement or form table has been

exceeded. (13 characters per entry)*

A referenced procedure is missing from the

assembler library.

More than 30 parameters associated with a PROO

reference or the PROO name table has been exceeded.

(5 characters per entry)*

* FORM and PROO use the same 360 character table in 8X storage. Therefore, the limit of the

number of FORM and PROO names that can be used is interdependent.

UP 3940.5 PROVISIONAL 25

