
UNIVAC 1050 SYSTEMS

MAGNETIC TAPE SYSTEM

DESIGN SPECIFICATIONS

FORTRAN

LANGUAGE SPECIFICATIONS

UP 3940.21

This document is provisional in nature and is intended as a vehicle for
meeting immediate needs with regard to system familiarization and orienta­
tion. UNIVAC® Division of Sperry Rand Corporation reserves the right to
change and/or modify such information contained herein as may be required
by subsequent system developments.

@ REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A.

TABLE OF CONTENTS

Page

1 • 0 INTRODUCTION 1 -1 to 1-3

1 . 1 GENERAL 1 -1

1 • 2 THE FORTRAN PROGRAM 1 -1

1 • 3 WRITING THE PROGRAM 1 -1

1 .4 STATEMENT ORDER 1-2

2.0 FORTRAN CONSTANTS, VARIABLES AND ARRAYS 2-1 to 2-3

2. 1 CONSTANTS 2-1
2. 1 • 1 Integer Constants 2-1
2. 1 . 2 Real Constants 2-1
2. 1 • 3 Double-Precision Constants 2-1
2.1 .4 Logical Constants 2-2
2. 1 • 5 Hollerith Constants 2-2

2.2 VARIABLES 2-2
2. 2. 1 Integer Variables 2-2
2.2.2 Real Variables 2-2
2.2.3 Double-Precision Variables 2-3

2.3 ARRAYS 2-3

3.0 FORTRAN EXPRESSIONS 3-1 to 3-4

3. 1 GENERAL 3-1

3,2 ARITHMETIC EXPRESSIONS 3-1
3. 2 .1 Definition 3-1
3.2.2 Formulation Rules 3-2
3.2.3 Evaluation Rules 3-2

3.3 RELATIONAL EXPRESSIONS 3-3
3. 3. 1 Definition 3-3
3.3.2 Evaluation Rules 3-3

3.4 LOGICAL EXPRESSIONS 3-4
3 .4.1 Definition 3-4
3 .4. 2 Evaluation Rules 3-4

4.o FORTRAN STATEMENTS 4-1 to 4-22

4. 1 SPECIFICATION STATEMENTS 4-1
4. 1 • 1 EXTERNAL Statements 4-1
4. 1 . 2 Type Statements 4-1
4.1.3 DIMENSION Statements 4-2
4. 1 .4 COMMON Statements 4-2
4. 1 . 5 EQUIVALENCE Statements 4-3

UP 3940.21 CONTENTS

CONTENTS

4.2

4.3

ASSIGNMENT STATEMENTS
4.2.1 Arithmetic Assignment Statement
4.2.2 Logical Assignment Statement
4.2.3 Control Assignment Statement

CONTROL STATEMENTS
4.3.1 GO TO Statements

4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3. 7
4.3.8

a. Unconditional GO TO Statement
b. Assigned GO TO Statement
c. Computed GO TO Statement
Arithmetic IF Statement
Logical IF Statement
DO Statement
CONTINUE Statement
CALL Statement
RETURN Statement
Program Control Statements
a. PAUSE Statement
b. STOP Statement
c, END Statement

Page

4-3
4-3
4-4
4-4

4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-10
4-10
4-11
4-11
4-11
4-11
4-11

4.4 INPUT/OUTPUT STATEMENTS 4-12
4.4.1 General 4-12
4.4.2 FORMAT Statement 4-12

a. Numeric Fields 4-13
b. Alphanumeric Fields 4-14
c. Skipped Fields 4-14
d, Record Termination 4-14
e, Scale Factor Usage 4-15
f. Logical Conversion 4-15

4.4.3 READ Statement 4-15
4.4.4 WRITE Statement 4-16
4.4.5 Magnetic Tape-Positioning Statements 4-17
4.4.6 Input/Output Lists 4-17

4.5 FJNCTIONS, SUBPROGRAMS, AND SUBROUTINES 4-17
4.5.1 General 4-17
4.5.2 Functions 4-17

a. External Functions 4-18
b. Intrinsic Functions 4-19

4.5.3 Subprograms 4-20
a. General 4-20
b. FUNCTION Subprogram 4-20

4.6 SUBROUTINE SUBPROGRAM 4-20

4.7 DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS 4-21
4.7.1 DATA Statements 4-21
4.7.2 BLOCK DATA Subprograms 4-21

APPENDIX A - SPECIAL SUBROUTINE SUBPROGRAMS FOR
HANDLING "HARDWARE IF" CONTROL STATEMENTS

A-1

UP 3940.21

1.0 INT R 0 DUCT I 0 N

1.1 GENERAL

FORTRAN (FORmula TRANslator) is a problem oriented programming language which
provides a precise statement form for mathematical, scientific and data pro­
cessing applications. The FORTRAN compiler interprets the FORTRAN source
language and produces executable machine language object programs.

1 . 2 THE FORTRAN PROGRAM

A FORTRAN program consists of statements to handle communication with external
units, description and definition of data, and manipulation and computation of
data. Also included in the FORTRAN system are procedures for including sub­
programs such as functions and subroutines. The FORTRAN statements available
will be discussed in the following sequence:

a. Specification Statements
b. Assignment Statements
c. Control Statements
d. Input/Output Statements
e. Functions, Subprograms and Subroutines
f. DATA Statement and BLOCK DATA Subprogram

1.3 WRITING THE PROGRAM

A FORTRAN program may be written using the following characters:

a. Alphabetics A through z
b. Numerics 0 through 9
c. Special Characters + Plus

- Minus
* Asterisk
I Slash
= Equal
(Left Parenthesis
) Right Parenthesis

' Comma
Decimal Point

d. Blank Space

The alphabetics must be written as capitals. Blank spaces may be used for
clarity but they are ignored by the FORTRAN processor, except when used in a
Hollerith constant (See Section 2.1.5).

The FORTRAN Coding form is shown on page 1-3.

UP 3940. 21 1 -1

Each FORTRAN statement is written on a line in columns 7-72. If the statement
exceeds one line, any non-blank character in column 6 designates continuation.

Statement numbers may be written in columns 1-5 to establish reference ooints
within the program. It is not necessary to number every statement. In general,
statement numbers are used to establish transfer of control. Explanatory comments
may be incorporated within a FORTRAN program by placing a "C" in column 1 and the
comment in 2-80.

Columns 73-80 may be used for card number, program identification, etc; they are
not processed but will appear on the printed listing.

1,4 STATEMENT ORDER

1-2

The user must maintain the following statement sequence when writing a FORTRAN
program to insure successful compilation.

SUBROUTINE or FUNCTION
EXTERNAL Statement
TYPE Statements
DIMENSION Statements
COMMON Statements
EQUIVALENCE Statements
BODY Statements
END Statement

Statements

uP 3940.21

UNIVAC FORTRAN
PROGRAMMING FORM

PROGRAM ________________________ _ PROGRAMMER _______ DATE _____ PAGE __ OF __ PAGES

I\) -c• CE

--"
~ FO" OMM NT

JMe:'EERNT }FORTRAN STATEMENT
5 7 10

I
w UP·2508 Rev. I

J

J_

J_

_l

J_

_l

_l

..1

..1

_l

_l

l

..1

J_

..1

..1

l...L...L

J_

_l

l ...L

l

l

..l

J_

J_

.L

'

...J....L...L

__.. ..
20

l
J_

_l

J_

J_

..1

..1

..1

..1

L

J_

.1

.1
J_

..1

..1

l

J_...L

J_

..1

I

..1 ..l...L

..1

J_

J_

J_

..1

...J. .J. ...L

..1

30 "°
.1 .1
J_ l_

J_ J_

J_ .1 ...L

J_ _l

_l _l

l l

l l
J_ J_

l l

...!. l
J_ l

..1 l
J_ l ..L

..1 _l

l...1. l
J_ ...Ll ...L -.L-.L

J_ ...l l
J_ J_

..1 _l

...L...J. ...L...L l...L ...L

J_ ...L ...1....1.l ...L...L

...J. ...LJ_ ...J. ...L...J....J....l l...L ...J.

J_ l
..1 J_

..1

J_ ..l

J_ ..l

...1....1 ...I.. l
J_ _l

'
50 60 72 80 90

.1 .1
J_ J_

J_ .1

.1 -.L .1
J_ I j_ ..L

.1 .1 ...L ..L

.1 .11....1....1.

.1 .1 ...L ..l.....1.. ...1.

J_ J_

.1 .1

.1 .1 ..L ..L ..L ..l....l.

J_ J_ ... L.L.L ...L ..L...L....1.. ..L ...L

l .11..

1--.L -.L...l -.L...l. -.L J_ ...L ...L ...L...l...1....1.

J_ J_ ..L

J_ .1 -.L ...J....l ...J. ...L ..L...1....1....1. t....J..._

.L .L ...L -.L...l...L...l ...lL...L

.L .L ...l ...L...L

L ..l ...L.l _l_ _I_ ...L _LL

l J

.l...L -.L ...L l ..l ...l...L ...l ...l1.....L...L...L

J_ l ...L ..l...L ...L

J__ ..l l ...L ...L...L ..l. ...I.. ...1.....1. ...L1.. ...L

J_ l ...l ...l1.. ...L

J_ l

_l ...J. .1 ...I.. ...1.....1.. ...l.....L...l...l....l.

J_ ..l J_ ...L ...l ...L...l..L ...L _l_ ...L

J_ ...L J_ ...L ...L ..L1.. ...L ...L-1. ...L ...L...L ...L...L...L

.L ...J. J_ .L ..L ..L...1......1....L ...1. ...1. _l_ ...L ...L1.. ..L...L...L

l l ...L

(80-90 COLUMN FORM)

2.0 FORTRAN C 0 N S T AN T S, VARIABLES AND ARRAYS

2. 1 CONST ANTS

A FORTRAN constant is a quantity whose written representation is fixed and in­
variable. A constant defines both value and data type. There are five types of
constants permissible within the UNIVAC 1050 FORTRAN language: integer, real,
double precision, logical, and Hollerith. An integer, real, and double precision
constant is considered to be signed when immediately preceded by a plus or minus.

2.1.1 Integer Constants

Integer constants are formed by strings of from one to five significant
digits with optional leading zeros. They may be defined as having
positive, negative, or zero integral values. For example:

0
12

99999
00055555

Computation or input operations may not result in a value larger than
99999.

2.1.2 Real Constants

Real constants are defined as positive or negative decimal values ranging
in magnitude between 10-50 and 1Q+49. A real constant consists of an
integer part, a decimal point, a fractional part, and optionally an
exponent. Either the integer part or the fractional part may be blank,
but not both. A UNIVAC 1050 FORTRAN real constant may not exceed 8 digits
in length (excluding the decimal point and exponentiation). Any real
constant exceeding eight digits will be truncated from the right. Examples
of real constants are:

0.1
1. 2
0.95

123.45678

A decimal exponent may be appended to a real or integer constant by using
the letter "E" followed by an optionally signed one or two digit integer
constant. This exponent is interpreted as a scale factor of ten raised to
the power specified by the integer after E and applied to the constant.
For example:

7.6E-5(i.e.7.6 x 10-!l
12.5E25(i.e.12.5 x 10 5 }

2.1.3 Double-Precision Constants

UP 3940. 21

Double-precision constants are defined as positive or negative decimal
values ranging in magnitude between 10-5n and 10+0 with a maximum of 14
digits of precision for the integer and fractional parts. The letter "D"
followed by an optionally signed one or two digit integer constant must be
appended to all double-precision constants. The interpretation of "D" is
the same as for the "E" exponent of a real constant. Examples of double­
precision constants are:

2-1

O.ODO
0.095010
3.14159265359DO

2.1.4 Logical Constants

(i.e. 0.0 x 100}
(i e .095 x 1010)
(i:e: 3.14159265359 x 100)

There are only two logical constants, either .TRUE. or .FALSE. representing
the truth values ~rue and false respectively.

2.1.5 Hollerith Constants

Hollerith constants are strings of alphanumeric data written in form

n H c

where

n is the number of characters in the constant.

H is the letter indicating a Hollerith constant.

c is the Hollerith constant consisting of any symbol
combination capable of representation in the processor.
A blank is a valid and significant character in a
Hollerith constant.

Examples of Hollerith constants ares

1H+
10HNET PROFIT
5HSTOP.

2.2 VARIABLES

2-2

A FORTRAN variable is a quantity identified by a programmer-established name
and for which the value and type (real, integer, double-precision, etc.) are
defined by the programmer. Variables may be redefined by the programmer or
program, but the values assumed are always of the same type once type is
defined. All FORTRAN variables (integer, real, double precision or logical)
are symbolic names of from one to six alphanumeric characters, where the first
character must be alphabetic.

2.2.1 Integer Variables

In FORTRAN, integer variables may be specified in two ways:

a) By a variable name beginning with the alphabetic
characters I, J, K, L, M, or N.

b) By an INTEGER type statement which overrides any
alphabetic in the first character of the variable
name. See Section 4.1.2.

Examples of integer variables are:

INTEGER A, B, REAL (which defines A, B, and RE.AL as
integer variables)

J2
MONEY

2.2.2 Real Variables

Real variables may be represented in FORTRAN as follows:

a) By a variable name beginning with any alphabetic
character except I, J, K, L, M, and N.

b) By a REAL Type statement which overrides any alphabetic
in the first character of the variable name. See Section 4.1.2.

UP 3940.21

Examples of real variables are:

REAL INPUT, 11, 12 (which defines INPUT, 11, and I2 as real
variables)

AVGE
PROFIT

2.2.3 Double-Precision Variables

2.3 ARRAYS

Double-precision variables must be specified by the DOUBLE PRECISION Type
statement. For example,

DOUBLE PRECISION I1, A, AVGE

See Section 4.1.2.

An array is an ordered set of data (integer, real, double precision or logical)
of one, two or three dimensions. It is identified by a programmer-established
variable name. Each element of the array is referenced by appending a subscript
to the variable. A subscript is a list enclosed in parentheses immediately
following the array name. The number of expressions in a subscript must corre­
spond to the declared dimensionality of the array. Subscript expressions may be
written in any one of the following forms:

c*v+k
c*v-k
c*v
v+k
v-k
v
k

(i.e. c x v+k)
(i.e. c x v-k)
(i.e. c xv)

where c and k are positive integer constants and v is a previously defi~ed
integer variable. For example,

UP 3940.21

INPUT (I, J, K)
A (10)
REST (2, I+1)
NET (5*NET1 +3)
THETA (7*BETA4 -6)

2-3

3.0 F 0 R T R A N E X P R E S S I 0 N S

3.1 GENERAL

This section presents the formulation rules for FORTRAN arithmetic, relational
and logical expressions. The simpler type of expression is defined as any single
term (i.e. constant, variable or function). Compound expressions are formed from
combinations of terms and operators. The general form of a FORTRAN compound
expression is:

Term Operator Term
or

Term Operator Term Operator . . . • . Operator Term

3.2 ARITHMETIC EXPRESSIONS

3.2.1 Definition

UP 3940.21

An arithmetic expression is any single arithmetic term or combination of
arithmetic terms and arithmetic operators. The permissible arithmetic
terms are:

a. Integer, real, and double-precision constants

b. Integer, real, and double-precision variables and array elements

c. Integer, real, and double-precision function references

The FORTRAN arithmetic operators are:

Operator Represents Example

+ Addition A+B = The value of A plus the value of B

Subtraction A-B = The value of A minus the value of

* Multiplication A*B = The value of A multiplied by the
value of B

B

I Division A/B = The value of A divided by the value
of B

** Exponentiation A**B = The value of A raised to the power
B

Using the arithmetic operators, a term may be combined with another term
of the same type, yielding a result of the same type. Also, a real term
may be combined with a double-precision term producing a double-precision
result. Examples of integer and real arithmetic expressions follow:

1 + II J
Z - SIN(X) I COS(Y) **2.0

Note: When a fractional part occurs from the division of two integers,
it is truncated leaving an integer quotient.

For example:
10/4 = 2.5

this is truncated to 2.

3-1

3-2

3.2.2 Formulation Rules

When writing compound arithmetic expressions, the following formulation
rules must be observed.

a. No two operators may appear contiguously. If a plus or minus siqn
is used to specify a positive or negative term and not addition
or subtraction, it must be denoted as such by using parentheses and
not written contiguous to the preceding operator. For example, the
following are invalid expressions:

A** - B
X1 + Y2 I - C**Z

which must be written as follows to be correct:

A** (-B)
X1 + Y2 I (-C)**Z

b. All elements of an arithmetic expression must be of the same type,
either integer or real,with the following two exceptions:

(1) In a real expression, real elements may be exponentiated to an
integer power. For example,

(A + B)**J

is valid.

(2) The arguments of an arithmetic function may differ in type from
the other elements in the expression, as long as the function
result is of the same type as the rest of the expression.
For example:

SUM/FLOAT (N)

is a valid real expression.

3.2.3 Evaluation Rules

a. An arithmetic expression is evaluated according to an established
priority of operators and in cases of equal operator priorities
from left to right. The established priorities of the arithmetic
operators are:

Operator

**
*/
+-

Priority

1 (highest)
2
3 (lowest)

For example, the FORTRAN evaluation of the expression

4 + 6 * 2**3

according to priority is as follows:

1. 2**3 = 8
2. 6*8 = 48
3. 4+48 = 52

b. Sets or levels of parentheses must be used in order to override
the evaluation of operator priorities defined above. Parentheses
are always evaluated first from the innermost out. For example
the FORTRAN expression for the formula

UP 3940, 21

is

((A - B) I (A + B)) **C

and would be evaluated as follows:

(1)
(2)
(3)
(4)

A - B
A+B
I
**C

3.3 REL~TIONAL EXPRESSIONS

3.3.1 Definition

A relational expression consists of two arithmetic expressions separated
by a relational operator. Its general form is:

Arithmetic expression .Relational operator. Arithmetic expression

The two arithmetic expressions must conform to the following:

a. both must be integer
b. both must be real
c. both must be double precision
d. one may be real and the other double precision

The relational operators are:

Operator

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

Represents

less than
less than or equal to
equal to
not equal to
greater than
greater than or equal to

3.3.2 Evaluation Rules

TJP 3940.21

a. The value of a relational expression is either .TRUE. or .FALSE.
depending on whether the designated relation is true or false.
For example:

A.LE.1.0 If A less than or equal to 1.0, the value is .TRUE.
If A greater than 1.0, the value is .FALSE.

b. When evaluating relational expressions, all arithmetic operators are
of higher priority than the relational operators. Therefore, the
values of the two arithmetic expressions are determined before the
relational comparison takes place. All of the relational operators
are of the same priority.

c. If both a real and double precision expression ap~e~rs in a relational
expression, evaluation occurs as if a double precision zero were to
the right of the operator and the difference between the two terms
were on the left. For example:

A. EQ. D

where A is real and D is double precision would be evaluated as if it
were written

(A)-(D).EQ. O.ODO

Note that the second term specified (D) is subtracted from the first
(A).

3-3

3.4 LCXlICAL EXPRESSIONS

3.4.1 Definition

3-4

A logical expression consists of logical elements combined with logical
operators. The general form is

Logical expression .Logical operator. Logical expression

The permissible logical elements ares

a. logical constants
b. logical variables or logical array elements
c. logical functions
d. relational expressions

The logical operators are:

Operator Represents

.AND. logical conjunction

.OR. logical disjunction

.NOT. logical negation

3.4.2 Evaluation Rules

Example

A.AND.B If A and Bare both .TRUE.,
the value of the expression
is .TRUE. Otherwise, it has
the value .FALSE.

A.OR.B If either A or B or both
have the value .TRUE., the
value of the expression is
.TRUE. Otherwise, it has
the value of .FALSE.

.NOT.A If A has the value .FALSE.,
the expression has the value
.TRUE. If A has the value
.TRUE., the expression has
the value .FALSE.

In any evaluation of expressions, arithmetic operators are of highest
priority, relational operators are of a lower priority, and the logical
operators are of the lowest priority. The priorities of the logical
operators are:

.NOT. 1

.AND. 2
.oo. 3

For example, the logical expression

.NOT.A+B.EQ.1.0.AND •• TRUE.

would be evaluated as follows:

a. arithmetic expression A+B
b. relational expression .EQ.1.0
c. logical expressions; first .NOT. (highest priority),

then .AND •• TRUE.

Assuming A+B is equal to 1.0, the value of the above expression is .FALSE.

UP 3940.21

4.o F 0 R T R A N S T A T E M E N T S

4.1 SPECIFICATION STATEMENTS

The Specification Statements are used to define the type, quantity and arrangement
of the data to be processed. There are five types of Specification Statements.

a. EXTERNAL Statements
b. Type Statements
c. DIMENSION Statements
d. COMMON Statements
e. EQUIVALENCE Statements

These non-executable statements must precede all executable program statements and,
when used, must be specified in the order given above.

4.1.1 EXTERNAL Statements

The EXTERNAL Statement is used to declare subroutine and function names as
external procedures. It must be used to declare as external procedures all
subroutine and/or function names which are used as arguments to other
external procedures in CALL Statements.

The general form of the EXTERNAL Statement is:

EXTERNAL name list

where "name list" contains the subroutine and/or function names. The type
of a function, i.e., if it is integer, real, double precision or logical,
is established by the Type Statement in which it appears or by alphabetic
convention. For example, the real function TCATE is declared as an
external procedure by

EXTERNAL TCATE

4.1.2 Type Statements

UP 3940.21

The Type Statements are used to declare the types of variables, arrays,
non basic external functions, and statement functions as INTEGER, REAL
(single precision floating point), DOUBLE PRECISION (double precision
floating point), or LOGICAL. (The types of the basic external functions
and the intrinsic functions are as specified in section 4.5.2.)

In the absence of a Type Statement for a variable, array, or function, the
name will be considered of type INTEGER if its first character is an I, J,
K, L, M or N and otherwise it will be considered to be of type REAL.

The general form of the Type Statements is

INTEGER
REAL
DOUBLE PRECISION
LOGICAL

name list
name list
name list
name list

where "name list" may contain variable names, array names (with or without
its dimensions declared), and/or function names each separated by a comma.
It should be noted that if a varialle, array or function name appears in a
Type statement, it must precede all other references to the name, (with
the exception of references in SUBROUTINE and/or FUNCTION and EXTERNAL
statements) and also that a variable, array or function name may only appear
in one Type statement.

4-1

Examples of Type statements are:

REAL INPUT(20) 1MEAN,KILL
DOUBLE PRECISiuN I,A,B1

4.1.3 DIMENSION Statements

The DIMENSION Statement is used to define the maximum size of each array
in a FORTRAN program. The general form of the DIMENSION statement is:

DIMENSION variable (subscript list), variable (subscript list), •••

where "variable" may be of integer, real, double precision or logical type.
"Subscript list" may be of 1, 2, or 3 integer constants separated by
commas specifying a one, two or three dimensional array. When specifying
a one-dimensional array, the integer subscript may not exceed 5 digits.
When specifying a two or three dimensional array, the product of the
integer subscripts may not exceed 5 digits. Zero (O) or negative values
may never appear as array subscripts.

Example:

DIMENSION I(5),A(10,10),ARRAY(3,3,3)

If a variable has already been dimensioned in a Type statement, it is not
necessary to restate it in a DIMENSION statement.

4.1.4 COMMON Statements

The COMMON Statement is used to economize on data storage among separately
compiled portions of a FORTRAN program allowing different variables to
sha~e storage locations during the execution of a program.

The general form of a COMMON statement is:

COMMON/Block name/variable list/Block name/variable list/ •••

where "Block name", the symbolic name given to the block, is from 1 to 6
alphanumeric characters the first of which is alphabetic. "Variable-list11

is a list of variable names and/or array names (with or without dimension
declarators) whose values are to be placed' in the common block named. Each
entry in the variable list must be separated by commas. Arrays may be
DIMENSIONed in a COMMON statement; however, if this is done, they must not
have been DIMENSIONed previously.

For compatability with earlier FORTRAN compilers 1 "Blank Common11 will be
provided though its use is discouraged. 11Blank (.;ommon" may be specified
in either of the following forms:

1) COMMON variable list (i.e., no block-name)

2) COMMON II variable list (i.e., two consecutive slashes)

Labeled common blocks may be added at the end of either of the above "Blank
Common" statements or be specified ahead of the two consecutive slashes in
the second form.

The rules for assigning storage to labeled and blank common blocks within
a FORTRAN program and among separately compiled FORTRAN programs are:

a. Within any single FORTRAN program, symbolic common block names
or blank common may occur more than once. The FORTRAN processor will
extend the named common blocks or Blank common to include the
variables and/or arrays in the order of their appearance.

b. The size of a common block in a single FORTRAN program is the sum of
the storage units required for each element introduced through COMMON
and EQUIVALENCE, (EQUIVALENC~ statements may be used to lengthen
common blocks, labeled or blank, only beyond the last assignment for
that block made directly by common statements.)

4-2 UP 3940.21

The storage units are:

No 1 of Units

1
5

10
16

Type of Element
Logical
Integer
Real
Double Precision

c. In separately compiled FORTRAN programs, common blocks of the same
name must be of the same size. The sizes of blank common do not have
to be the same in separately compiled FORTRAN programs.

Examples:

COMMON/A/FOUR(4),TEACH,PLAY(5),/B/INCH,JAR
COMMON BETA,GAMMA,OMEGA
COMMON ALIPH,BET,/GIMEL/DALID,HEY

4.1.5 EQUIVALENCE Statements

The EQUIVALENCE statement is used to permit sharing of data storage within
separately compiled FORTRAN programs or subprograms. The general form of en
EQUIVALENCE statement is:

EQUIVALENCE (variable list)~ (variable list) •••

where 11variable list11 contains the variables, arrays and/or array elements
whose values are to share the same storage (or part of the same storage).
The names in the variable list must be separated by commas and each pair
of parentheses enclosing the variable lists must be separated by commas.

It is recommended that only variables of the same mode be equivalenced.
However, if it becomes necessary to EQUIVALENCE variables or arrays of
different modes, the variables or array elements requiring less storage
space will share space starting with the first character of the variable
requiring greater storage space.

Arrays or a particular element in an array may be used in the variable list.
If an array name is used without referring to a specific numbered element
of that array, the element treated will be the first member of that array.
If one element of an array is equivalenced to one element of another array,
the entire arrays are equivalenced.

Examples:

EQUIVALENCE (A,B,C (2,5)),(INK,JACK,MINE)
EQUIVALENCE (INDIAN(10),SQUAW(5),CHIEF(2))

4.2 ASSIGNMENT STATEMENTS

There are three types of assignment statements:

Arithmetic assignment statement
Logical assignment statement
Control assignment statement

4.2.1 Arithmetic Assignment Statement

UP 3940. 21

The general form of the arithmetic assignment statement is:

Arithmetic variable=Arithmetic expression

The arithmetic assignment statement causes the evaluation of the "arithmetic
expression" on the right and the replacement of the "arithmetic variable"
on the left with the expression result. Note that in FORTRAN the meaning
of the equal sign (=) is replacement and that in an arithmetic assignment
statement the left hand side must always be a single variable or array
element. The rules governing the expression evaluation and resultant
conversion to the mode of the arithmetic variable are as follows:

4-3

Rules For Arithmetic Statement Evaluation

Type of
ir Ari thmetic-variableir

Integer

Integer

Integer

Real

Real

Real

Double Precision

Double Precision

Double Precision

Examples:

Type of
"Arithmetic-expression"

Integer

Real

Double Precision

Integer

Real

Double Precision

Integer

Real

Double Precision

I =A * B
A = K(J)-I

Assignment Rule

Assign expression result
without change
Truncate expression

-result to integer and
assign
Truncate expression
result to integer and
assign

Convert expression
result to real
Assign expression result
without change
Evaluate expression in
DP and assign most
significant part

Convert expression
result to double preci­
sion and assign
Evaluate expression
exten~ing to double
precision and assign
Assign expression result
without change

D = SQRT(B**2-(4.0*A/C))

4.2.2 Logical Assignment Statement

The logical assignment statement whose general form is

Logical variable=Logical expression

causes the evaluation of the "Logical expression" on the right and the
replacement of the "Logical variablen on the left with the expression
result. The left hand side of a logical statement must be a single logical
variable name or logical array element. The value of the "logical
expression" which is assigned to the "logical variable" must be either
.TRUE. or .FALSE.

Examples:

FLAG= RED.AND.WHITE.AND.BLUE
BEST= (GOOD.LT.BETTER.LT.BEST).OR.NONE

4.2.3 Control Assignment Statement

The general form of the control assignment statement is:

ASSIGN Statement Number TO Integer variable

The ASSIGN statement is used .QDJ..y for the assignment of a "statement
number" to a non-subscripted "integer variable" which is later used by an
assigned GO TO statement. (See Section 4.3.1.b). Execution of an ASSIGN
statement sets the value of the "integer variable" to the designated

4-4 UP 3940. 21

11 statement number 11 • The subsequent execution of any assigned GO TO statement
using that 11 integer variable 11 causes control to be transferred to the
executable statement labeled by the assigned 11 statement number". For
example,

ASSIGN 10 TO J

.
8 GO TO J

.
10 Z=(X+Y) **Z

causes the statement number 11 1011 to be assigned to variable J and the
assigned GO TO is executed as GO TO 10 transferring control to the
arithmetic statement labeled 10.

Note: In an ASSIGN statement the 11 statement-number 11 must refer to an
executable statement in the same FORTRAN program and the 11 integer­
variable" may not be referenced in any statement other than an
assigned GO TO until it has been redefined.

4.3 CONTROL STATEMENTS

The Control Statements are used to alter the sequential order in which FORTRAN
statements are normally executed. There are eight types of Control Statements:

a. GO TO statements
b. Arithmetic IF statement
c. Logical IF statement
d. DO statement
e. CONTINUE statement
f. CALL statement
g. RETURN statement
h. Program control statements

The statement labels used within control statements must refer to executable
statements within the same FORTRAN program.

4.3.1 GO TO Statements

UP 3940.21

All of the GO TO statements are used to transfer control to a statement
other than the next in sequence. There are three types of GO TO statements:

Unconditional GO TO statement
Assigned GO TO statement
Computed GO TO statement

a. Unconditional GO TO Statement

This statement is used to unconditionally transfer control to a
designated statement. The form o~ the unconditional GO TO statement is:

GO TO Statement number

Execution of an unconditional GO TO statement causes the statement
indicated by the 11 statement number" to be executed next.

Example:

6 A= (B+C)/(B-C)
GO TO 8

7 A= (B-C)/(B+C)
8 X= SQRT(A)

The 11 GO TO 811 in the above example transfers control to the arithmetic
statement labeled 11 811 bypassing the arithmetic statement labeled "7".

4-5

4-6

b. Assigned GO TO Statement

The assigned GO TO statement is used to transfer control conditionally
based upon the ASSIGNED value of a variable to a designated statement.
An assigned GO TO statement is of the form:

GO TO integer variable, (statement number list)

The"integer variable" may not be subscripted. A "statement number list"
may be present and must be enclosed in parentheses. Each list element
is separated by a comma.

At the time of execution of an assigned GO TO statement, the value of
the "integer variable" must have been assigned by the execution of an
ASSIGN statement. The 11 sta·tement number list" provides a visual
reference ~or the programmer. (See Section 4.2.3.) Execution of the
assigned GO TO causes control to be transferred to the statement
identified by the assigned statement number.

Example:

3 ASSIGN 8 TO J

.
4 GO TO J , (6 , 8 , 1 0)

In the example statement 3 assigns the statement number 8 to variable J
and statement 4 transfers control to statement 8 the same as if it had
been written:

4 GO TO 8

c. Computed GO TO Statement

The computed GO TO statement is used to transfer control to one of
several possible statements depending upon the value of a control
variable. The general form of a computed GO TO statement is:

GO TO (Statement number list), integer variable

The "integer variable" must be non-subscripted and may assume only
positive values. The "statement number list•r specifies the statement
numbers to which control may be transferred depending upon the value
of the "integer variable'r and must be enclosed in parentheses and

-followed by a comma. The statement numbers in the list must be
separated by commas.

The value of the "integer variable" determines the statement number in
the "statement number list 11 to which control will be transferred by a
computed GO TO statement. If the 11 integer variable" has the value 1,
the computed GO TO will transfer control to the statement whose number
is first in the statement number list"; if the "integer variable" has
the value 2, control will be transferred to the statement whose number
appears second in the "statement number list", etc.

For example,

GO TO (17,19,21),J.

transfers control to statement 17 when J=1, statement 19 when J=2 and
statement 21 when J=3.

Note: The maximum value that the "integer variable" may assume must be
the same as the number of statement numbers in the "statement
number list 11 •

UP 3940. 21

4.3.2 Arithmetic IF Statement

The arithmetic IF statement transfers control to a designated statement
depending upon the value of an arithmetic expression. An arithmetic IF
statement is of the form:

IF (arithmetic expression) n1 ,n2 ,n3

where "n1 ,n2 ,n3 11 are statement numbers which must be separated by commas.
The "arithmetic expression" which may be of type integer, real, or double
precision must be enclosed in parentheses.

Execution of an arithmetic IF statement causes the "arithmetic expression"
to be evaluated. If the expression value is less than zero, control is
transferred to statement 11 n1 ", if it is equal to zero, control is
transferred to statement 11 n2 ", and if it is greater than zero, control is
transferred to "n3 ".

For example,

IF (A-B) 10,10,20

If the value of A-B is less than or equal to zero, statement 10 is executed
next. If the value of A-B is greater than zero, statement 20 is executed
next.

4.3.3 Logical IF Statement

The general form of the logical IF statement is:

IF (logical expression) FORTRAN statement

The 11 logical expressionrr must be enclosed in parentheses. Any executable
"FORTRAN statement" except a DO statement or another logical IF statement
may follow the parentheses.

Execution of a logical IF statement causes the "logical expression" to be
evaluated. If the expression value is .FALSE., the remainder of the IF
statement is skipped and control proceeds to the next statement in sequence.
If the expression value is .TRUE., the "FORTRAN statement" is executed. For
example,

IF (A.AND.B) Z=1.0

If both A and B have the value .TRUE., the expression is .TRUE. and Z is
set to 1.0. If both A and B do not have the value .TRUE. the expression
is .FALSE. and control proceeds to the next statement in sequence.

4.3.4 DO Statement

The DO statement is used to execute a defined number of times the set of
statements which are in the defined range of a DO statement. In other
words, a DO statement is used to define an iterative loop within a FORTRAN
program. The two general forms of a DO statement are:

DO statement number Integer-variable= m1 ,m2 ,m3

or

DO statement number Integer-variable= m1 ,m2

where

a. The "statement-number"is the label of the executable statement which
terminates the DO statement. Execution begins with the next sequential
statement follQwing the DO and proceeds up to and including the statement
whose "statement-number" appears in the DO statement. This is called
the range of the DO. The terminal statement may not be a GO TO of any
form, arithmetic IF, DO, RETURN, STOP, PAUSE, END, or a logical IF con­
taining any of these statements. A dummy CONTINUE statement (see
Section 4.3.5) should be used instead.

UP 3940.21 4-7

4-8

b. The unsubscripted "integer variable 11 is used as the control variable
for the DO-loop. It assumes a new value each time the DO-loop is
executed.

c. The parameters 11m1 11 (the initial parameter), "m2 11 (the terminal
parameter) and 11 m3 11 (the incrementation parameter) are each either an
integer constant or an integer variable. In the second form of the
DO statement parameter 11 m8 11 is not stated; this implies a value of 1
for the incrementation parameter. At the time of execution, 11 m1 11 , 11 m2 11

and 11m8 11 must be non-zero and positive.

Example:

The statement

DO 12 J = 2,10,2

causes the execution of
statement 12 in a loop.
execution of the range,
and the values 6, 8 and
range.

all statements following it up to and including
J will have the value 2 during the first

4 during the second execution of the range,
10 during the succeeding executions of the

The control "integer variable" and the parameters 11m1 •r, 11 m2 11 and "m3 rr,
if they are integer variables, are available for use as variables or
in subscripts in statements throughout the range of the DO as long
as their values are not altered. The value of the control variable is
also available outside of the range of a DO statement if control is
transferred outside that range before completion by a GO TO or an
arithmetic IF statement.

Example:

The DO-loop

DO 100 I= 1,25
100 A(I) = B(2* I-1)

is executed equivalent to the execution of the statements:

A(1) =B(1)
A(2) = B(3)
A(3) = B(5)

A(25) = B(49)

One or more DO-loops may be contained or nested within the range of
another DO-loop. The following rules must be observed when nesting
DO-loops.

Range
of 25

Rule 1: If the range of a DO includes another DO, the range of the
inner DO must lie completely within the range of the outer
00.--

Example: Permitted by Rule

..-----25 DO 40 I = 1 , 10

.
Range [30 ~o 35 J =
of 30 • .

35 A(J) = B(I)*A(J)

1'20

.
.___ __ 40 CONTINUE

UP 3940.21

Example: Violation of Rule 1

10 DO 20 M = 1'10

.
Range 15 DO 25, N = 1 '10
of 10

.
Range 20 CONTINUE
of 15

.
25 CONTINUE

Rule 2: Transfer of control by IF or GO TO statements into the
range of a DO statement from outside its range is not
permitted except in the case of an extended DO defined
by Rule 3. Such transfers would not allow the control
variable to be set up and evaluated properly.

Example:

Range 10
of 5

.
GO TO 10

.
DO 20 K = 2,20,21

Z(K) = Z(K)/X(K-2)

.
20 CONTINUE

Illegal transfer

of control into

the range of

a DO

Rule 3: A DO statement has an extended range only when both of the
following conditions exist:

(a) An arithmetic IF or a GO TO statement within the range of
the innermost DO of a completely nested nest transfers
control outside of the nest.

(b) An arithmetic IF or a GO TO statement outside of the nest
described in (a) causes control to be returned into the
range of the innermost DO of the completely nested nest.

UP 3940.21 4-9

Range
of 10

Example

Range
of 101

of an extended DO:

100 DO 110 J = 1,10

.
101 DO 110 K = 1'10

.
GO TO 11 5' ---------------. Transfer of

105' A(K) = A(K)/A(K-1) control from
innermost DO
outside by
GO TO.

106

.
"-----'-11 0 CONTINUE

Return of control
to innermost DO
by arithmetic IF

11 5' IF (K-1) 106, 106,105' ----------~

It should be noted that the extended range of a DO may not contain
another DO that has an extended range.

4.3.5' CONTINUE Statement

The CONTINUE statement is a dummy statement which is used as the terminating
statement of a DO, when the DO-loop would end on a GO TO, arithmetic IF,
DO. RETURN. STOP. PAUSE, END, or logical IF containing any of the preceding.
The form of the CONTINUE statement is:

CONTINUE

Execution of a CONTINUE simply continues the normal execution sequence.

Example:

DO 113 I= 1,100

.
111 IF (A(I).EQ.O.O)GO TO 13
112 PROD= PROD * A(I)
113 CONTINUE

4.3.6 CALL Statement

4-10

The CALL statement is used to reference any designated SUBROUTINE subprogram.
The general form of a CALL statement is:

CALL Subroutine name (Argument list)

The "argument list" containing the actual arguments separated by commas must
be enclosed in parentheses. See Section 4.5'.2 for the description of and
rules for the actual arguments to a SUBROUTINE subprogram. If there are no
arguments, the "argument list" and its enclosing parentheses are omitted.

Execution of a CALL statement transfers control to the
which performs its operation upon the input arguments.
subroutine returns control to the sequential statement
statement.

Examples of CALL statements are:

CALL INVERT (A B,C,D)
CALL TYPE (10HSINE ERROR)
CALL PSIGN (Y,Z,M,N).

named subroutine
Upon completion the

following the CALL

UP 3940.21

4.3.7 RETURN Statement

The RETURN statement is used to logically end a procedure subprogram and,
therefore, it may be used only in a procedure subprogram. A RETURN
statement is of the form:

RETURN

Execution of a RETURN statement in a SUBROUTINE subprogram causes control
to be returned to the statement directly following the subroutine CALL
statement.

In a FUNCTION subprogram, the execution of a RETURN statement causes control
to be returned to the statement which contained the function reference and
the current value of the function is made available to that statement.

Example

SUBROUTINE SWAP (A,B)
TS=A
A=B
B=TS
RETURN

4.3.8 Program Control Statements

UP 3940. 21

The three program control statements are:

PAUSE
STOP
END

a. PAUSE Statement

The two general forms of a PAUSE statement are:

PAUSE Integer constant
or

PAUSE

Execution of the PAUSE statement causes execution of the object
program to be halted and "PAUSE iiiii 11 to be logged on the printer. If
the "integer constant 11 is not specified, only the word "PAUSE" will be
printed. Upon manual restart by the computer operator, the program
resumes at the sequential statement following the PAUSE statement.

b. STOP Statement

The STOP statement is used to terminate the execution of the object
program. The STOP statement should be used at the logical end rather
than at the physical end of the program. The two general forms of the
STOP statement are:

STOP Integer constant
or

STOP

Execution of the STOP statement causes immediate termination of the
object program, 11 STOP iiiii 11 (or just 11 STOP 11) to be displayed on the
PRINTER, and control to be transferred to the executive routine.

c. END Statement

The END statement is used to specify the physical end of the program
and indicates the completion of a compilation to the FORTRAN processor.
The form of the END statement is:

END

4-11

The END statement must be used as the last physical statement of every
FORTRAN compilation (i.e. main-program or subprogram). Both the STOP
and END statements will terminate the program in the same manner.
Therefore, if the physical end of a program is also the logical end,
only an END statement need be used and the STOP statement may be omitted.

4.4 INPUT/OUTPUT STATEMENTS

4.4.1 General

Input/Output Statements control and direct the transmission of data between
input and output peripheral units and the Central Processor. UNIVAC 1050
input data may be supplied either on punched cards via the Card Reader or
on magnetic tape; output data may be produced either on punched cards via
the Card Punch Unit, in printed form via the Printer or on magnetic tape.

There are three types of input/output statements:

Statements that cause transfer of records of sequential files to and
from internal storage.

Statements that provide for positioning and demarcation of external
files.

Data Specification statement.

The INPUT/OUTPUT Statements are:

FORMAT
READ (Unit) List
READ (Unit,Format)
VJRITE (Unit) List
WRITE (Unit,Format)
ENDFILE unit
REWIND unit
BACKSPACE unit

List

List

In order to conform with previous versions of the FORTRAN language, the
following additional Input/Output statements are available:

PRINT List
PRINT Format, List
PUNCH List
PUNCH Format, List
WRITE OUTPUT TAPE Unit, List
WRITE OUTPUT TAPE Unit, Format, List
WRITE TAPE Unit, List
READ List
READ Formati List
READ INPUT TAPE Unit, List
READ INPUT TAPE Unit, Format, List
READ TAPE Unit, List

4.4.2 FORMAT Statement

4-12

FORMAT Statements are used in conjunction with the input/output statements
to provide editing information between the internal representation and the
external character strings.

The FORMAT Statement is of the form

Statement number FORMAT (q1 t 1 z1 q2 t 2 z2 ••• qntnzn)

where (1) each q is a series of slashes or empty specification.

(2) each t is a field descriptor or group of field descriptors.

(3) each z is a field separator.

UP 3940.21

The field descriptors are of the forms

srFw.d
srEw.d
srGw.d
srDw.d
riw
rLw
rAw
nHh1h 2 ••• hn
nX
Ow

where:

1)

2)

3)

4)

5)

6)

The letters F, E, G, D, I, L, A, H, 0 and X indicate the manner of
conversion and editing between the internal and external representations.

~ and n are nonzero integer constants representing the width of the
field in the external character string.

g is an integer constant representing the number of digits in the
fractional part of the external character string (except for G conversion
code).

~, the repeat count, is an optional nonzero integer constant indicating
the number of times to repeat the succeeding basic field descriptor.

~ is optional and represents a scale factor designator.

each h is one of the characters that can be represented on the UNIVAC
1050. -

For all descriptors, the field width must be specified and the number of
digits in the fractional part must be specified where applicable. The
width must be greater than or equal to the fractional part.

a. Numeric Fields

S::a.!lbol

I
E

F

G

D

0

UP 3940. 21

The six numeric field descriptors I, E, F, G, D and 0 are used to
specify input/output of integer, real, double precision and octal data.

Editing Action Editing Code
Internal External

Integer variable to/from decimal integer Iw
Real variable to/from floating point Ew.d

decimal number
Real variable to/from fixed point Fw.d

decimal number
Real variable to/from generalized Gw.d

E or F
Double precision to/from double precision Dw.d
variable floating point

decimal number
Binary number to/from octal integer Ow

With all numeric input conversions, leading blanks are not significant
and other blanks are zero. Plus signs may be omitted. With the F, E,
G, D input conversions, a decimal point appearing in the input field
overrides the decimal point specification supplied by the field
descriptor. With all output conversions, the output field is right
justified, The number of characters produced by an output conversion
must not exceed the field width.

Editing codes for successive fields must be separated by commas. If a
group of editing codes is to be repeated, the group can be placed inside
parentheses and the number of times the group is to be repeated preceding
it.

4-13

4-14

Example:

The FORMAT statement

5 FORMAT (2I3,2(I2,F4.2),E8.3,06)

might cause the output

123 645 61 9.87 27 3.45 .237E604 054321

E8.3 06

b. Alphanumeric Fields

UNIVAC 1050 FORTRAN provides two means for reading or writing
alphanumeric data. The control symbols are A and H. The codes using
these symbols are Aw and nH, where w and n are unsigned integer constants.

Both the A and H type editing codes transmit to the input or output
medium the literal representation of Hollerith characters. The
Hollerith characters in the A type, however, are specified via a
transmission list in an input or output statement, while the Hollerith
characters in the H type immediately follows the editing code in the
FORMAT specification itself.

A Hollerith type editing code need not be followed by a comma and may
be contiguous with another editing code.

Example:

The FORMAT statement

20 FORMAT (8HOVERFLOW)

will cause the output

OVERFLOW

c. Skipped Fields

The editing control symbol X provides for ignoring characters of input
or insertion of space characters in output. The editing code using
this symbol is nX, where n denotes the number of characters to be
ignored on input or the number of spaces to be produced in output.

X need not be followed by a comma and may be contiguous with another
editing code,

Example:

The FORMAT

555 FORMAT (4HRATE3X4HTIME3X8HDISTANCE)

might produce

RATE666TIME666DISTANCE

d. Record Termination

r~ a group of editing codes begin or end with a slash (/), the current
record is terminated and the next record is set to begin construction.
Entire records may be ignored on input or blank (skipped) records may
be produced on output by writing consecutive slashes.

Example:

556 FORMAT(4HRATE/4HTIME/8HDISTANCE)

might produce

uP 3940.21

RATE
TIME
DISTANCE

e. Scale Factor Usage

A scale factor designator is defined for use with the F, E, G, or D
conversion and is of the form nP where n, the scale factor, is an
integer constant or minus followed by an integer constant.

The scale factor affects the conversions in the following manner:

1) For F, E, G and D input conversions (provided no exponent exists
in the external field) and Fnoutput conversions. External
value= Internal value X 1o±

2) For E and D output, the real constant part of the quantity is
multiplied by 1on and the exponent is reduced by n.

3) For G output, the effect of the scale factor is suspended
unless the magnitude of the datum to be converted is outside
the range that permits the effective use of F conversion. If
the effective use of E conversion is required, the scale factor
has the same effect as with E output.

Example:

Using the following data

-.8743E+2 -.00777EO .006736E+2

the statement FORMAT (1P3F12.3)

could cause to be printed

f. Logical Conversion

The logical field descriptor Lw indicates that the external field
occupies w positions as a string of information. The external input
field must consist of optional blanks followed by a T if true and any
other non-blank character if false. Any characters following are
ignored. The external output field consists of w-1 blanks followed by
a T or F.

4.4.3 READ Statement

uP 3940.21

The READ Statement activates the input process, allowing the programmer to
introduce data into the computer from an input medium. Depending upon the
type of data to be processed, there may or may not be an associated FORMAT
statement. For this reason, there are two general forms of the READ
statement:

READ (Unit~Format)List
READ (UnitJList

where:

Unit

Format

List

is the unit designation for the input medium utilized.

is the designation of a FORMAT editing code specification if a
Formatted control statement is employed for edited data-either
a statement number of a FORMAT statement or an array name
specifying an object-time introduced Format Specification.

is the list of elements defining the data to be transmitted and
the order of transmission. (See section 4.4.6).

4-15

Example:

READ(4,100)A,B,I

The unedited READ statement will accept input according to the variable
types in the list; that is,

~
Integer
Real
Double precision
Logical

Input

5 characters
1 0 characters
16 characters

1 character

For both real and double precision variables, it is assumed that the
value is already in excess 50, where the first two digits are the
characteristic and the remaining are the mantissa.

Example:

The following READ statement

READ(4)A,I

would expect as input

511000000000001

for the real value and the integer value of 1, respectively.

To conform with previous versions of the FORTRAN language, the following
statements are acceptable:

READ List
READ Format, List
READ INPUT TAPE unit, List
READ INPUT TAPE unit, Format, List
READ TAPE unit, List

where unit is an unsigned integer constant specifying the logical tape
transport number from which reading is to take place. Any of these
statements are acceptable alternates to the above READ statements.

4.4.4 WRITE Statement

4-16

The WRITE Statement activates the output process, controlling and directing
the transmission of data from computer to peripheral unit. The WRITE
statement has two general forms:

WRITE(Unit~Format)List
WRITE(UnitJList

where Unit is the unit designation for the output medium utilized, and
Format and List is defined as in the READ statement.

Unedited WRITE statements output according to the same rules defined for
unedited READ statements (See Section 4.4.3).

To conform with previous versions of the FORTRAN language, the following
statements are acceptable:

PRINT List
PRINT Format,List
PUNCH List
PUNCH Format,List
WRITE OUTPUT TAPE Unit,List
WRITE OUTPUT TAPE Unit,Format,List
.WRITE TAPE Unit ,List

UP 3940.21

4.4.5 Magnetic Tape-Positioning Statements

There are three magnetic tape-positioning statements available in the
UNIV A.C 1050 FORTRAN language. They are:

REWIND Unit
BACKSPACE Unit
ENDFILE Unit

The execution of a REWIND statement causes the tape mounted on a UNISERVO
specified to be rewound. The BACKSPACE statement causes the magnetic tape
mounced on the specified UNISERVO to be positioned at the beginning of the
logical record last written or read. The ENDFILE statement causes an
end-of-file indication to be written on the tape mounted on the specified
UNI SERVO.

4.4.6 Input/Output Lists

The input list specifies the names of the variables and array elements to
which values are assigned on input. The output list specifies the
references to variables and array elements whose values are transmitted.
Input and output lists are of the same form.

A list is a simple list, a simple list enclosed in parentheses, a DO-implied
list, or two or more lists separated by commas. A simple list contains
one or more variable names, array element names or array names, separated
by commas. A variable name or array element name specifies itself. An
array name specifies all of the array element names defined by the array
declarator.

A DO-implied list is a list followed by a comma and a DO-implied specifica­
tion, all enclosed in parentheses. A DO-implied specification is of one of
the forms:

i = m1 ,m2 ,m3 or
i = m1 ,m2

where the elements i, m1 ,m2 ,m3 are as defined for the DO statement.

The elements of a list are specified for each cycle of the implied DO.

Example:

WRITE(6,100)I,A,((TWO(I,J),I=1,10),J=1,5),NEXT

4.5 FUNCTIONS, SUBPROGRAMS, AND SUBROUTINES

4.5.1 General

A subprogram is a set of FORTRAN procedures which may be used a number of
times, either within the same program or in different programs. By
designating a set of these procedures as either a FUNCTION or SUBROUTINE
subprogram, a complete set of procedures may be activated by a single
referencing statement and does not have to be written out each time.

Many mathematical routines are maintained in the form of a library of
subroutines. These subroutines are available to the programmer whenever
he may desire to utilize them in his FORTRAN program.

4.5.2 Functions

UP 3940.21

If the value of one quantity is dependent upon the value of another quantity
or values of other quantities, then it is said to be a function of the
other(s). The first quantity is called the function and the other
quantity(ies) the argument(s).

The general form of a function reference in FORTRAN is

Function-name (Argument list)

4-17

4-18

where the actual arguments in the "argument list 11 must be separated by
commas and the entire list must be enclosed in parentheses. A function
reference evaluates the named function for the actual arguments specified
and returns a single value to the function name at the point of reference.

There are two types of functions available in the FORTRAN language

External functions

Built-in functions

a. External Functions

There are two kinds of external functions: basic external functions
which are available on the library and non-basic external functions
which are written by the programmer as FUNCTION Subprograms (see
Section 4.5.3.b).

An external function is referenced by using its reference in an
arithmetic or logical expression in exactly the same manner as one
would use a variable.

The actual arguments which constitute its 11 argument list" must agree
in order, number and type with the corresponding dummy arguments in the
defining FUNCTION subprogram or with the arguments given in the table
of basic external functions below. An actual argument in an external
function reference may be one of the following

1) A variable name
2) An array name
3) An array element
4) Any other expression
5) External procedure name

The basic external functions available in the FORTRAN library are:

FORTRAN Name

SIN
cos
TAN
ASIN
ACOS
ATAN
SINH
COSH
TANH
EXP
EXP10
ALOG
ALOG10
SQRT
CBRT
AT ANZ

DSIN
DCOS
DTAN
DAS IN
DA COS
DATAN
DEXP
DEXP10
DLOG
DLOG10
DSQRT
DCB RT
DATAN2

Mathematical Function

Trigonometric Sine
Trigonometric Cosine
Trigonometric Tangent
Trigonometric Arcsine
Trigonometric Arccosine
Trigonometric Arctangent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Exponential (eX)
Exponential (1ox)
Natural Logarithm (LOGX)
Common Logarithm (LOG1ox)
Square Root
Cube Root
Arctangent of ratio (a1 /a2)

Double Precision Sine
Double Precision Cosine
Double Precision Tangent
Double Precision Arcsine
Double Precision Arccosine
Double Precision Arctangent
Double Precision Exponential (ex)
Double Precision Exponential (1ox)
Double Precision Natural Logarithm
Double Precision Common Logarithm
Double Precision Square Root
Double Precision Cube Root
Double precision arctangent of ratio
(ada2)

Ar_ru, ments
No. Type

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2

1
1
1
1
1
1
1
1
1
1
1
1
2

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

D.P
D.P
D.P
D.P
D.P
D.P
D.P
D.P
D.P
D.P
D.P
D.P
D.P

UP 3940. 21

b. Intrinsic Functions

FORTRAN
NAME

ABS
!ABS
DABS

AINT
INT
!DINT

AMOD
MOD
DMOD

A.lvfAXO
AMAX1
MAXO
MAX1
DMAX1

AMINO
AMIN1
MINO
MIN1
DMIN1

FLOAT

FIX

SIGN
!SIGN
DSIGN

DIM
IDIM

SNGL

DBLE

UP 3940. 21

The symbolic names of the intrinsic functions are predefined and have
a special meaning and type. The actual arguments of these functions,
which constitute the argument list, must agree in type, number, and
order with the specification in the Table following and may be any
expression of the specified type.

Execution of an intrinsic function reference results in the evaluation
of the named function for the actual arguments specified, returning
the single value result to the point of reference.

The form of an intrinsic function reference is

f(a.1,•• ••• an)

where f is the name of the intrinsic function and ai are the actual
arguments. ai may be any arithmetic expression.

INTRINSIC FUNCTIONS

NO. OF FUNCTION MODE OF
ARGS. ARGUMENT FUNCTION

Real Real
1 Determine the absolute value Integer Integer

of argument Double Double

Truncation. Eliminate frac- Real Real
1 tional portion of argument Real Integer

Double Integer

a1 (mod a 2). Subtract from the Real Real
2 1st argument the appropriate Integer Integer

integer multiple of the 2nd Double Double
argument so that the remainder
is less than the 2nd argument
but non-negative

Integer Real
Real Real

~2 Select the largest value Integer Integer
Real Integer
Double Double

Integer Real
Real Real

~2 Select the smallest value Integer Integer
Real Integer
Double Double

1 Convert argument from integer Integer Real
to real

1 Convert argument from real to Real Integer
integer

Replace the algebraic sign of Real Real
2 the 1st argument by the sign of Integer Integer

the 2nd argument Double Double

2 Positive difference. Subtract Real Real
the smaller of the 2 arguments Integer Integer
from the 1st argument

1 Obtain the most significant Double Real
~art of a double precision
!argument

1 ~xtend a single precision Real Double
~loating point argument to
~ouble precision

4-19

4.5.3 Subprograms

a. General

Within the UNIVAC 1050 FORTRAN System, it is possible to define
subprograms which may be called upon by other FORTRAN programs.
Generally, these subprograms are not commonly enough used to warrant
their inclusion in a library. Subprograms must be independently
compiled and incorporated into other FORTRAN programs for execution.
They are not independently executable.

There are three types of subprograms:

FUNCTION subprograms
SUBROUTINE subprograms
BLOCK DATA subprograms (Section 4.6.2)

b. FUNCTION Subprogram

ThB general form of the FUNCTION Statement is:

t FUNCTION f (a1,a2 , ••• ,an)

where:

(1)

(2)

(3)

t, the type, is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL,
or absent in which case the mode of f is determined by the
alphabetic naming conventions.

f is the symbolic name of the function.

FUNCTION Subprograms are constructed with the following restrictions:

(1) The symbolic name of the function must also appear as a variable
name in the defining subprogram. The value of this variable at
the time of execution of any RETURN statement in this function
subprogram is the value of the function.

(2) The symbolic name of the function must not appear in any
nonexecutable statement, except as the symbolic name of the function
in the FUNCTION statement.

(3) The symbolic names of the dummy arguments may not appear in a
COMMON, EQUIVALENCE or DATA statement.

(4) All formal argument names must occur in at least one executable
statement in the subprogram. The actual arguments to a FUNCTION
subprogram reference may be either an arithmetic expression, a
logical expression, an array name, another external function name
or a SUBROUTINE name. If a FUNCTION or SUBROUTINE subprogram name
appears as an argument, its name must also appear in an EXTERNAL
statement in the referencing program.

(5) The FUNCTION subprogram may contain any statement except BLOCK
DATA, SUBROUTINE, or another FUNCTION.

(6) The FUNCTION subprogram must contain at least one RETURN statement.

4.6 SUBROUTINE SUBPROGRAM

The general form of the SUBROUTINE statement is:

SUBROUTINE s (a1,a2 , ••• ,an)

where:

4-20 UP 3940.21

s is the symbolic name of the subroutine.
ai are the dummy arguments which may be a variable name, an array name or an

external procedure name.

A SUBROUTINE subprogram may produce many values from one reference whereas a
FUNCTION subprogram may only ~reduce one.

SUBROUTINE subprograms are constructed with the following restrictions:

a. The symbolic name of the subroutine must not appear in any statement in this
subprogram except as the symbolic name of the subroutine in the SUBROUTINE
statement itself.

b. The symbolic names of the dummy arguments may not appear in a COMMON,
EQUIVALENCE or DATA statement.

c. The SUBROUTINE subprogram may define or redefine one or more of its arguments
so as to effectively return results.

d. The SUBROUTINE subprogram may contain any statement except BLOCK DATA, FUNCTION,
or another SUBROUTINE statement.

e. The SUBROUTINE subprogram must contain at least one RETURN statement.

f. A Hollerith string may appear as an actual argument for a subroutine.

4.7 DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

4.7.1 DATA Statements

4.7.2

The DATA Statement enables the FORTRAN programmer to cause data to be
produced internally at the time of initial loading of the object program.

The general form of the DATA statement is:

DATA List/Literal list/,List/Literal list/ .••

where List contains names of variables and array elements, and Literal
list may consist of any combination of the following forms separated
by commas:

a) Integer constants
b) Real constants
c) Alphanumeric characters (i.e. Hollerith constants)
d) Double precision constant
e) Logical constant

It is possible to repeat literals without explicitly rewriting them by
indicating the number of times the literal is to be repeated followed by
an asterisk.

The DATA statement must be preceded by any COMMON, DIMENSION, EQUIVALENCE
or TYPE statements that relate to the variable names in the DATA statement's
lists.

Example:

DATA(A(I) ,B(1) ,I=1'5)/o.o, 1 .0,8*123.4/

The memory locations will appear as follows:

A(1) o.o B(1) 1. 0
A(2) 123.4 B(2) 123 .4
A(3) 123.4 B(3) 123.4
A(4) 123 .4 B(4) 123.4
A(5) 123 .4 B(5) 123 .4

BLOCK DATA Subprograms

The compilation of data into named COMMON blocks must be done in a
separately compiled subprogram known as a BLOCK DATA subprogram. The first
statement of this subprogram is a BLOCK DATA statement whose general form is:

uP 3940.21 4-21

4-22

BLOCK DATA

The only types of statements that may occur in a BLOCK DATA subprogram are
the following:

BLOCK DATA
Type statements
DIMENSION
COMMON
DATA
END

All of these statements are non-executable statements. All elements
appearing in a COMMON block whose name is used in a COMMON statement in a
BLOCK DATA subprogram must appear in the COMMON statement in the BLOCK
DATA subprogram even though this is the only appearance of such variable
names in the BLOCK DATA subprogram.

Example:

BLOCK DATA
DIMENSION THEy(4)
COMMON/ALL/YOU,THEY/
DATA(THEY(I),I=1,4)/2.o,1.o,2*3.4/,YOU/5.0/
END

UP 3940.21

APPENDIX A - SPECIAL SUBROUTINE SUBPROGRAMS FOR HANDLING "HARDWARE IF 11· CONTROL STATEMENTS

In prior versions of FORTRAN, the language provided certain machine oriented control
statements enabling control to be altered depending on certain hardware switches and
indicators. These 11Hardware IF11 control statements have been eliminated from the
FORTRAN language. UNIVAC 1050 FORTRAN incorporates a set of special SUBROUTINE
subprograms whose specifications are given in the table below for simulating the
11Hardware IF11 control statements.

Subroutine
Subprogram
OVERFL

DVCHK

SLITE

SLITET

SSWTCH

PARITY

EOF

EOT

Calling Sequence

CALL OVERFL(j)

CALL DVCHK(j)

CALL SLITE(i)

CALL SLITET(i,j)

CALL SSWTCH (i,j)

CALL PARITY(j)

CALL EOF(j)

CALL60T(j)

Operation

The integer variable 11 j" will be set to 1 if an
overflow condition exists, otherwise "j 11 will
be set to 2. The overflow indicator is set to
OFF after execution.
The integer variable 11 j 11 will be set to 1 if a
divide-check condition exists; otherwise 11 j 11

will be set to 2. The divide-check indicator is
set to OFF after execution.
If the value of the integer expression 11 i 11 is
zero, all sense lights will be set to OFF. If
the value of 11 i" is 1,2,3,etc., the corresponding
sense light will be set to ON,
The integer expression 11 i 11 is evaluated and the
corresponding sense light is tested and set to
OFF. If the sense light was ON, the integer
variable 11 j 11 will be set to 1; otherwise 11 j 11

will be set to 2.

The integer expression "i 11 is evaluated and the
corresponding sense switch is tested. If the
sense switch was ON, integer variable 11 j 11 will
be set to 1; otherwise 11 j 11 will be set to 2.
The integer variable 11 j 11 will be set to 1 if an
incorrectable error exists in the peripheral
I/O operation; otherwise "j" will be set to 2.
The integer variable 11 j 11 will be set to 1 if an
end-of-file record is sensed; otherwise 11 j 11 will
be set to 2.
The integer variable 11 j'1 will be set to 1 if an
end of tape condition exists; otherwise 11 j 11 will
be set to 2.

The last three subroutines listed above pertain to I/O operations and when used they
must immediately follow the I/0 statement they reference,

UP 3940.21 A-1

