SPERRY UNIVAC
1100/80 Systems

Processor and Storage

Programmer Reference

SPERRY == LINIVAC

COMPUTER SYSTEI UP-8492

This document contains the latest information available at
the time of publication. However, Sperry Univac reserves
the right to modify or revise its contents. To ensure that you
have the most recent information, contact your local Sperry
Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.
AccuScan, FASTRAND, PAGEWRITER, SPERRY UNIVAC,

UNISCOPE, UNISERVO, UNIVAC, and <4+ are trademarks of
the Sperry Rand Corporation.

©1977 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

8492 SPERRY UNIVAC 1100/80 Systems PSS-1
UP-NUMBER . ' Processor and Storage Programmer Reference UPDATE LEVEL PAGE

Page Status Summary

ISSUE: UP-8492

Section Pages | Update Section Pages | Update Section Pages | Update

Cover/Disclaimer

PSS 1
Contents 1 thru 12
1 1 thru 7
2 1 thru 3
3 1 thru 16
4 1 thru 26
5 1 thru 70
6 1 thru 70
7 1 thru 23
8 1 thru 12
Appendix A 1 thru 9
Appendix B 1 thru 14
Appendix C 1 thru 18
Appendix D 1 thru §

User Comment
Sheet

Total: 287 pages
and cover

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

Processor and Storage Programmer Reference

Contents-1
PAGE

UPDATE LEVEL

Page Status Summary

Contents
1. Introduction
1.1. GENERAL

1100/80 SYSTEM CONFIGURATIONS

1. Central Processor Unit

2. Main Storage

3. Input/Output Unit (IOVU)

.4. System Console

5. System Transition Unit (STU)

6. System Maintenance Unit

7. Auxiliary Storage and Peripheral Subsystems

Processing Unit

2.1. GENERAL

2.2. CONTROL SECTION

2.2.1. Control Section Operation
2.2.2. Instruction Repertoire
2.2.3. Control Registers

2.2.4. Data Shift/Complement/Store Operation
2.3. ARITHMETIC SECTION
2.4. MAINTENANCE SECTION
2.5. INPUT/OUTPUT UNIT (I0U)
Storage

3.1. GENERAL

3.2. MAIN STORAGE
3.2.1. Main Storage Addressing

Contents

- -
| I
-— -—

- d e h) e b
[
NN O - -

8492

SPERRY UNIVAC 1100/80 Sghm. Contents-2
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

3.2.2. MSU Address Assignments 3-2

3.2.3. Fixed Address Assignments 3-5

3.3. BUFFER STORAGE 3-7

3.3.1. Set Associative Addressing 3-7

3.3.2. Address Interleave 3-9

3.4. CONTROL STORAGE 3-10
3.4.1. Control Register Selection Designator 3-10
3.4.2. Control Register Address Assignments 3-10
3.4.2.1. Storage for MSR Value - Address 0143 3-11
3.4.2.2. User Index (X) Register — Addresses 0001 - 0017 3-12
3.4.2.3. User Accumulator (A) Registers — Addresses 0014 - 0033 3-13
3.4.2.4. User Unassigned Registers — Addresses 0034 - 0037 3-13
3.4.2.5. EXEC Bank Descriptor Table Pointer Register - Address 0040 3-13
3.4.2.6. Immediate Storage Check Interrupts — Addresses 0041 - 0042 3-13
3.4.2.7. Normal Interrupts — Addresses 0043 - 0044 3-13
3.4.2.8. User Bank Descriptor Table Pointer Register — Address 0045 3-13
3.4.2.9. Bank Descriptor Index Registers — Addresses 0046 - 0047 3-13
3.4.2.10. Quantum Timer - Address 0050 3-13
3.4.2.11. Guard Mode - Addresses 0051 — 0053 3-13
3.4.2.12. Immediate Storage Check Status — Address 0054 3-14
3.4.2.13. Normal Status - Address 0055 3-14
3.4.2.14. Unassigned Registers - Addresses 0056 - 0067 3-14
3.4.2.15. Jump History Stack — Addresses 0070 - 0077 3-14
3.4.2.16. Real-Time Clock Register (RO) — Address 0100 3-14
3.4.2.17. User (R1) Repeat Count Register — Address 0101 3-14
3.4.2.18. User (R2)/Mask Register — Address 0102 3-14
3.4.2.19. User (R2-R5)/Staging Registers (SR1-SR3) — Address 0103 - 01056 3-15
3.4.2.20. User (R6-R9)/J-Registers (JO-J3) - Address 0106 - 0111 3-15
3.4.2.21. User R-Registers (R10-R15) - Addresses 0112 - 0117 3-15
3.4.2.22. Executive (RO) R-Register — Address 0120 3-15
3.4.2.23. Executive (R1) Repeat Count Register — Address 0121 3-15
3.4.2.24. Executive (R2)/Mask Register - Address 0122 3-15
3.4.2.25. Executive (R3-R5)/Staging Registers (SR1-SR3) - Addresses 0123 - 01253-15
3.4.2.26. Executive (R6-R9)/J-Registers (JO-J3) - Addresses 0126 - 0131 3-15
3.4.2.27. Executive R-Registers (R10-R15) — Addresses 0132 - 0137 3-15
3.4.2.28. Executive Index Registers (X1-X15) - Addresses 0141 - 0157 3-16
3.4.2.29. Executive Accumulator Registers (AO-A15) - Addresses 0154 - 0173 3-16
3.4.2.30. Executive Unassigned Registers — Addresses 0140, 0174 - 0177 3-16
3.4.2.31. Control Register Protection 3-16
Processor 4-1

4.1. ARITHMETIC SECTION 4-1

4.1.1. General Operation 4-1

4.1.1.1. Data Word 4-1

4.1.1.2. Data Word Complement 4-2

4.1.1.3. Absolute Values 4-2

4.1.2. Microprogrammed Control 4-2

4.1.3. Main Adder Characteristics 4-2

4.1.4. Fixed-Point Single- or Double-Precision Add or Subtract Overflow and Carry 4-2

8492 SPERRY UNIVAC 1100/80 Systems Contents-3
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
4.1.4.1. Overflow 4-3
4.1.4.2. Carry 4-3
4.1.4.3. Arithmetic Interrupt 4-3
4.1.5. Fixed-Point Division 4-3
4.1.6. Fixed-Point Multiplication 4-4
4.1.7. Floating-Point Arithmetic 4-4
4.1.8. Floating-Point Numbers and Word Formats 4-4
4.1.8.1. Single-Precision Floating—Point Numbers 4-6
4.1.8.2. Double-Precision Floating-Point Numbers 4-6
4.1.8.3. Negative Floating—Point Numbers 4-6
4.1.8.4. Residue 4-7
4.1.9. Normalized/Unnormalized Floating-Point Numbers 4-7
4.1.10. Flcating-Point Characteristic Overflow/Underflow 4-7
4.1.10.1. Floating-Point Characteristic Overflow 4-7
4.1.10.2. Floating-Point Characteristic Underflow 4-8
4.1.10.3. Floating-Point Divide Fault 4-8
4.1.11. Fixed-Point to Floating-Point Conversion 4-8
4.1.12. Floating-Point Addition 4-8
4.1.12.1. Double-Precision Floating—Point Addition 4-9
4.1.13. Floating-Point Subtraction (Add Negative) 4-9
4.1.14. Floating-Point Multiplication 4-9
4.1.15. Floating-Point Division 4-9
4.1.16. Floating-Point Zero 4-9
4.1.17. Byte Instructions 4-10
4.2. CONTROL SECTION 4-10
4.2.1. Instruction Word Format 4-10
4.2.2. Instruction Word Fields 4-11
4.2.2.1. Use of the f-Field 4-11
4.2.2.2. Description of the j~Field 4-11
4.2.2.2.1. Use of the j~Field as an Operand Qualifier 4-11
4.2.2.2.2. Use of the j-Field to Specify Character Addressing 4-14
4.2.2.2.3. Use of j-Field as Partial Control Register Address 4-19
4.2.2.2.4. Use of j~Field as Minor Function Code 4-19
4.2.2.3. Uses of the a-Field 4-19
4.2.2.3.1. Use of the a-Field to Reference an A-Register 4-19
4.2.2.3.2. Use of the a-Field to Reference an X-Register 4-20
4.2.2.3.3. Use of the a-Field to Reference an R-Register 4-20
4.2.2.3.4. Use of the a-Field to Reference a Jump Key 4-20
4.2.2.3.5. Use of the a-Field to Reference Halt Keys 4-20
4.2.2.3.6. Use of the a-Field as Minor Function Code 4-20
4.2.2.4. Use of the j- and a-Fields to Specify GRS Control Register Address 4-21
4.2.2.5. Use of the x-Field 4-21
4.2.2.6. Use of the h-Field 4-22
4.2.2.7. Use of the i-Field 4-22
4.2.2.8. Description of the u-Field 4-23
4.2.2.8.1. Use of the u-Field as an Operand Address Designator 4-24
4.2.2.8.2. Use of the u-Field as an Operand Designator 4-24
4.2.2.8.3. Use of the u-Field as a Shift Count Designator 4-24
4.2.2.8.4. Restrictions on the Use of the u-Field 4-25

Instruction Repertoire

8492

SPERRY UNIVAC 1100/80 S ms Contents-4
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
5.1. INTRODUCTION 5-1
5.2. LOAD INSTRUCTIONS 5-2
521. Load A - LLA 10 5-2
5.2.2. Load Negative A — LN,LNA 11 5-2
5.2.3. Load Magnitude A - LMLMA 12 5-2
5.2.4. Load Negative Magnitude A - LNMA 13 5-2
5.25. LoadR - LLR 23 5-3
5.2.6. Load X Modifier - LXM 26 5-3
5.2.7. Load X - LLX 27 5-3
5.2.8. Load X Increment - LXI 46 5-3
5.29. Doubleload A - DL f=71 j=13 5-3
5.2.10. Double-Load Negative A - DLN 71,14 5-3
5.2.11. Double Load Magnitude A - DLM 71,15 5-4
5.3. STORE INSTRUCTIONS 5-4
5.3.1. Store A - S, SA 01 5-4
5.3.2. Store Negative A - SN,SNA 02 5-4
5.3.3. Store Magnitude A - SM,SMA 03 5-4
53.4. StoreR - S,SR 04 5-5
5.3.5. Store Constant Instructions — XX 05; a = 00-07 5-5
5.3.6. Store X - S,SX 06 5-5
5.3.7. Double Store A - DS 71,12 5-5
5.3.8. Block Transfer - BT 22 5-6
65.4. FIXED-POINT ARITHMETIC INSTRUCTIONS 5-6
654.1. Addto A - AAA 14 5-7
5.4.2. Add Negative to A - ANANA 15 5-7
5.4.3. Add Magnitudeto A - AMAMA 16 5-7
5.4.4. Add Negative Magnitude to A -~ ANMANMA 17 5-7
5.45. Add Upper - AU 20 5-8
5.4.6. Add Negative Upper - ANU 21 5-8
54.7. Addto X - AAX 24 5-8
5.4.8. Add Negative to X - ANANX 25 5-8
5.4.9. Multiply Integer - MI 30 5-8
5.4.10. Multiply Single Integer - MSI 31 5-8
5.4.11. Multiply Fractional - MF 32 5-9
5.4.12. Divide Integer - DI 34 5-9
5.4.13. Divide Single Fractional - DSF 35 5-9
5.4.14. Divide Fractional - DF 36 5-10
5.4.15. Double-Precision Fixed-Point Add - DA 71,10 5-10
5.4.16. Double-Precision Fixed-Point Add Negative - DAN 71,11 5-10
5.4.17. Add Halves - AH 72,04 5-10
5.4.18. Add Negative Halves - ANH 72,05 5-10
5.4.19. Add Thirds - AT 72,06 5-11
5.4.20. Add Negative Thirds - ANT 72,07 5-11
5.5. FLOATING-POINT ARITHMETIC 5-11
5.5.1. Floating Add - FA 76,00 5-11
5.6.2. Floating Add Negative - FAN 76,01 5-12
5.5.3. Double-Precision Floating Add - DFA 76,10 5-12
5.5.4. Double-Precision Floating Add Negative - DFAN 76,11 5-13

8492

SPERRY UNIVAC 1100/80 Systems Contents-5
UP-NUMBER Processor and Storage gl"ogrammer Reference UPDATE LEVEL PAGE
5.5.5. Floating Multiply - FM 76,02 5-13
5.5.6. Double-Precision Floating Multiply - DFM 76,12 5-14
5.5.7. Floating Divide - FD 76,03 5-15
5.5.8. Double-Precision Floating Divide - DFD 76,13 5-15
5.5.9. Load and Unpack Floating - LUF 76,04 5-16
5.5.10. Double Load and Unpack Floating — DFU 76,14 5-16
5.5.11. Load and Convert to Floating - LCF 76,05 5-16
5.5.12. Double Load and Convert to Floating - DFP, DLCF 76,15 5-17
5.5.13. Floating Expand and Load - FEL 76,16 5-18
5.5.14. Floating Compress and Load - FCL 76,17 5-18
5.5.15. Magnitude of Characteristic Difference to Upper - MCDU 76,06 5-19
5.56.16. Characteristic Difference to Upper — CDU 76,07 5-19
5.6. SEARCH AND MASKED-SEARCH INSTRUCTIONS 5-19
b.6.1. Search Equal - SE 62 5-22
5.6.2. Search Not Equal - SNE 63 5-22
5.6.3. Search Less Than or Equal - Search Not Greater - SLE,SNG 64 5-22
5.6.4. Search Greater - SG 65 5-23
5.6.56. Search Within Range - SW 66 5-23
5.6.6. Search Not Within Range - SNW 67 5-24
5.6.7. Mask Search Equal - MSE 71,00 5-24
5.6.8. Mask Search Not Equal - MSNE 71,01 5-25
5.6.9. Mask Search Less Than or Equal — Mask Search Not Greater - MSLE,MSNG 5-25
5.6.10. Mask Search Greater - MSG 71,03 5-26
5.6.11. Masked Search Within Range - MSW 71,04 5-26
5.6.12. Masked Search Not Within Range - MSNW 71,05 5-27
5.6.13. Masked Alphanumeric Search Less Than or Equal - MASL 71,06 5-27
5.6.14. Masked Alphanumeric Search Greater - MASG 71,07 5-28
5.7. TEST (OR SKIP) INSTRUCTIONS 5-28
5.7.1. Test Even Parity - TEP - 44 5-28
5.7.2. Test Odd Parity — TOP 45 5-29
5.7.3. Test Less Than or Equal to Modifier - TLEM 47 5-29
5.7.4. TestZero - TZ 50 5-29
$5.7.56. Test Nonzero - TNZ 51 5-30
5.7.6. TestEqual - TE 52 5-30
$5.7.7. Test Not Equal - TNE 53 5-30
$5.7.8. Test Less Than or Equal - Test Not Greater - TLE,TNG 64 5-30
$5.7.9. Test Greater - TG 55 : 5-31
$5.7.10. Test Within Range - TW 56 5-31
$5.7.11. Test Not Within Range - TNW 5§57 5-31
5.7.12. Test Positive - TP 60 5-32
5.7.13. Test Negative - TN 61 5-32
5.7.14. Double-Precision Test Equal - DTE 71,17 5-32
5.8. SHIFT INSTRUCTIONS 5-33
5.8.1. Single Shift Circular - SSC 73,00 5-34
5.8.2. Double Shift Circular - DSC 73,01 5-34
5.8.3. Single Shift Logical - SSL 73,02 5-34
5.8.4. Double Shift Logical - DSL 73,03 5-35
5.8.5. Single Shift Algebraic - SSA 73,04 5-35
5.8.6. Double Shift Algebraic - DSA 73,05 5-35

8492

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

UPDATE LEVEL

Contents—t
PAGE

5.8.7. Load Shift and Count - LSC 73,06

5.8.8. Double Load Shift and Count - DLSC 73,07
5.8.9. Left Single Shift Circular - LSSC 73,10
5.8.10. Left Double Shift Circular - LDSC 73,11
5.8.11. Left Single Shift Logical - LSSL 73,12
5.8.12. Left Double Shift Logical - LDSL 73,13

5.9. UNCONDITIONAL JUMP INSTRUCTION

5.9.1. Store Location and Jump - SLJ 72,01
5.9.2. Load Modifier and Jump - LMJ 74,13
5.9.3. Allow All Interrupts and Jump - AAlJ 74,07

5.10. BANK DESCRIPTOR SELECTION INSTRUCTIONS
5.10.1. Load Bank and Jump - LBJ 07,17

5.10.2. Load I-Bank Base and Jump - LIJ 07,13

5.10.3. Load D-Bank Base and Jump - LDJ 07,12

5.11. CONDITIONAL JUMP INSTRUCTIONS

5.11.1. Jump Greater and Decrement - JGD 70

5.11.2. Double-Precision Jump Zero - DJZ 71,16

5.11.3. Jump Positive and Shift - JPS 72,02

5.11.4. Jump Negative and Shift - JUNS 72,03

5.11.5. Jump Zero - JZ 74,00

5.11.6. Jump Nonzero - JUNZ 74,01

5.11.7. Jump Positive - JP 74,02

£.11.8. Jump Negative - JN 74,03

5.11.9. Jump - Jump Keys - JJK 74,04

5.11.10. Halt Jump - Halt Keys and Jump - HJHKJ 74,05
5.11.11. Jump No Low Bit - JUNB 74,10

5.11.12. Jump Low Bit - JB 74,11

5.11.13. Jump Modifier Greater and Increment - JMGI 74,12
5.11.14. Jump Overflow - JO 74,14;a =0

5.11.15. Jump Floating Underflow - JFU 74,14;a = 1
5.11.16. Jump Floating Overflow - JFO 74,14;a = 2
5.11.17. Jump Divide Fault - JDF 74,14;a =3

5.11.18. Jump No Overflow - JUNO 74,16;a =0

5.11.19. Jump No Floating Underflow - JNFU 74,15;a = 1
5.11.20. Jump No Floating Overflow - JNFO 74,15;a = 2
5.11.21. Jump No Divide Fault - JNDF 74,15;a = 3
5.11.22. Jump Carry - JC 74,16

5.11.23. Jump No Carry - JNC 74,17

5.12. LOGICAL INSTRUCTIONS

5.12.1. Logical OR - OR 40

5.12.2. Logical Exclusive OR - XOR 41
5.12.3. Logical AND - AND 42
5.12.4. Masked Load Upper - MLU 43

5.13. MISCELLANEOUS INSTRUCTIONS
5.13.1. Load DR Designators - LPD 07,14
5.13.2. Store DR Designators - SPD 07,15
5.13.3. Execute - EX 72,10

5-35
5-36
5-36
5-36
5-36
5-37

5-37
5-37
5-38
5-38

5-38
5-38
5-39
5-39

5-40
5-40
5-40
5-40
5-40
5-41
5-41
5-41
5-41
5-41
5-42
5-42
5-42
5-42
5-43
5-43
5-43
5-43
5-43
5-44
5-44
5-44
5-44
5-44

5-44
5-45
5-45
5-45
5-46

5-46
5-46
5-46
5-47

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

Processor and Storage Programmer Reference UPDATE LEVEL

Contents-7
PAGE

5.
5.
5.

5

~

5.

&
5

~

5.

5

Le

[

n
4

[

[4

[4

o

[4;]

o

MM AOOOaaooo

nmoomoaO oo aam

13.4. Executive Request ~ ER 72,11

13.5. Testand Set - TS 73,17, a=0

13.6. Test and Set and Skip - TSS 73,17; a = 1
.13.7. Test and Clear and Skip - TCS 73,17, a = 2
13.8. No Operation - NOP 74,06

.13.9. Store Register Set - SRS 72,16

.13.10. Load Register Set - LRS 72,17

13.11. Test Relative Address - TRA 72,15

.13.12. Increase Instructions - XX 05;a = 10-17

.14. BYTE INSTRUCTIONS

.14.1. Byte Move - BM 33,00

.14.2. Byte Mcove With Translate - BMT 33,01
.14.3. Byte Translate and.Compare - BTC 33,03
.14.4. Byte Compare - BC 33,04

.14.5. Edit - EDIT 33,07

.14.6.1. Function Byte

.14.56.2. Subfunction Byte

.14.6. Byte to Binary Single Integer Convert -~ Bl 33,10
.14.7. Byte to Binary Double Integer Convert - BDI 33,11
.14.8. Binary Single Integer to Byte Convert - B 33,12
.14.9. Binary Double Integer to Byte Convert - DIB 33,13
.14.10. Byte to Single Floating Convert - BF 33,14
.14.11. Byte to Double Floating Convert - BDF 33,15
.14.12. Single Floating to Byte Convert - FB 33,16
.14.13. Double Floating to Byte Convert -~ DFB 33,17
.14.14. Byte Add - BA 37,06

.14.15. Byte Add Negative - BAN 37,07

.15. EXECUTIVE INSTRUCTION REPERTOIRE

.15.1. Prevent All Interrupts and Jump - PAlJ 72,13
.16.2. Enable/Disable Dayclock - EDC,DDC 73,14, 11-12
.156.3. Select Dayclock - SDC 73,14, 13

.15.4. Select Interrupt Locations - SIL 73,15, 00
.15.5. Load Breakpoint Register - LBX 73,15, 02
.15.6. Store Processor ID - SPID 73,15, 05

.15.7. Load Quantum Timer - LQT 73,15, 03

.15.8. Load Base - LB 73,15 10

.15.9. Load Limits - LL 73,15, 11

.15.10. Load Addressing Environment - LAE 73,15, 12
.15.11. Store Quantum Time - SQT 73,15, 13

.15.12. Load Designator Register - LD 73,15, 14
-15.13. Store Designator Register - SD 73,15, 15
.16.14. User Return - UR 73,15, 16

.15.15. Reset Auto-Recovery Timer - RAT 73,15, 06
.15.16. Toggle Auto-Recovery Path - TAP 73,5, 07
.16.17. Store System Status - SSS 73,15, 17

.15.18. Diagnotics - 73,14, 14 - 17

.15.19. Input/Output Instructions

Input/Output

5-47
5-48
5-48
5-48
5-48
5-49
5-49
5-49
5-50

5-51
5-55
5-656
5-56
5-57
5-57
5-58
5-60
5-61
5-63
5-63
5-64
5-64
5-65
5-65
5-65
5-66
5-66

5-66
5-67
5-67
5-67
5-67
5-67
5-67
5-68
5-68
5-68
5-68
5-68

+ 5-68

5-69
5-69
5-69
5-69
5-69
5-69
5-70

SPERRY UNIVAC 1100/80 Systems

8492 Contents-8
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

6.1. INTRODUCTION 6-1

6.2. FUNCTIONAL CHARACTERISTICS 6-1

6.2.1. Channels 6-3

6.2.2. Subchannels 6-5

6.3. CONTROL OF INPUT/0OUTPUT DEVICES 6-5

6.3.1. Input/Output Device Addressing 6-5

6.3.2. States of the Input/Output System 6-6

6.3.3. Condition Codes 6-10
6.3.4. Instruction Format and Channel Address Word 6-10
6.3.5. Instruction Operation 6-17
6.4. 170 INSTRUCTIONS 6-17
6.4.1. Sense Release - SRL 75,00 6-17
6.4.1.1. Byte or Block Multiplexer Channel Operation 6-18
6.4.1.2. Word Channel Operation 6-18
6.4.2. Start I/0 Fast Release — SIOF 75,01 6-19
6.4.2.1. Byte or Block Multiplexer Channel Operation 6-19
6.4.2.2. Word Channel Operation 6-20
6.4.3. Testl/O0 - TIO 75,02 6-20
6.4.3.1. Byte or Bluck Muitiplexer Channel Operation 6-21
6.4.3.2. Word Channel Operation 6-21
6.4.4. Test Subchannel - TSC 75,03 6-21
6.4.4.1. Byte or Block Multiplexer Channel 6-21
6.4.4.2. Word Channel Operation 6-22
6.4.5. Halt Device - HDV 75,04 6-22
6.4.5.1. Byte or Block Multiplexer Channel Operation 6-23
6.4.5.2. Word Channel Operation 6-24
6.4.6. Halt Channel - HCH 75,05 6-24
6.4.6.1. Byte or Block Multiplexer Channel Operation 6-24
6.4.6.2. Word Channel Operation 6-25
6.4.7. Load Channel Register - LCR 75,10 6-25
6.4.7.1. Byte and Block Multiplexer Channel 6-25
6.4.7.2. Word Channel Operation 6-26
6.4.8. Load Table Control Words — LTCW 75,11 6-26
6.4.8.1. Byte and Block Multiplexer Channel 6-26
6.4.8.2. Word Channel Operation 6-27
6.5. EXECUTION OF I/0 OPERATIONS 6-27
6.5.1. Channel Command Word 6-28
6.5.2. CCW Completion 6-31
6.6. COMMAND CODE 6-37
6.6.1. Transfer in Channel Command - TIC 6-38
6.6.2. Store Subchannel Status Command - SST 6-39
6.7. DATA TRANSFER 6-39
6.7.1. Format Flags (E, A, B, and C) 6-39
6.7.2. Skip Data - SK 6-40
6.7.3. Data Address Decrement - DAD 6-40

6.7.4. Data Address Lock - DAL

6-40

8492

SPERRY UNIVAC 1100/80 Systems

Contents-9

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
6.8. CHAINING OPERATIONS 6-40
6.8.1. Data Chaining 6-41
6.8.2. Command Chaining 6-41
6.8.3. El Chaining (ES| Word Interface Only) 6-42
6.8.4. Truncated Search 6-43
6.8.5. Truncated Search Restrictions 6-44
6.9. INTERRUPT GENERATION FLAGS 6-44
6.9.1. Program Controlled Interruption — PCI 6-44
6.9.2. Monitor - MON (Word Channel Only) 6-45
B6.10. STATUS 6-45
6.11. INSTRUCTION STATUS 6-49
6.12. STATUS TABLE 6-50
B6.13. STORE SUBCHANNEL STATUS - SST 6-52
6.14. SUBCHANNEL STATUS 6-53
6.14.1. SIOF Device Check (Bit 52) (Byte or Block Multiplexer Channel Only) 6-53
6.14.2. Interface Control Check (Bit 53) 6-53
6.14.3. Channel Control Check (Bit 54) 6-53
6.14.4. Channel Data Check (Bit 55) 6-53
6.14.5. Not Used (Bit 56) 6-54
6.14.6. Program Check (Bit 57) 6-54
6.14.7. Monitor (Bit 58) (Word Channei Only) 6-54
6.14.8. Incorrect Length (Bit 568) (Byte and Block Multiplexer Channels Only) 6-55
65.14.9. Program Controlled Interrupt (Bit 59) 6-55
6.15. DEVICE STATUS 6-55
B6.16. DATA CHAINING PRECAUTIONS 6-56
6.17. SUBCHANNEL EXPANSION FEATURE AND CHANNEL BASE REGISTER 6-63
6.18. MASK REGISTER 6-63
6.19. INITIAL LOAD 6-65
6.20. BACK-TO-BACK OPERATION (Word Channel Only) 6-65
6.21. PRIORITIES 6-66
68.22. BASIC PROGRAMMING PROCEDURE 6-66
6.23. PROGRAMMING EXAMPLES 6-67
Interrupts 7-1

7.1. INTRODUCTION

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 & ms
Processor and Storage Programmer Reference

UPDATE LEVEL

Contents-10
PAGE

7.2. INTERRUPT SEQUENCE
7.2.1. Program Status

7.2.2. Addressing Status
7.2.3. Interrupt Status

7.3. INTERRUPT TYPES

7.3.1. Program Exception Interrupts

7.3.2. Arithmetic Exception Interrupts

7.3.3. Program-Initiated Interrupts

7.3.4. Interprocessor Interrupt

7.3.5. Clock Interrupts

7.3.6. Storage Check Interrupts

7.3.6.1. Immediate Storage Checks

7.3.6.2. Delayed Storage Check Interrupts
7.3.6.2.1. SIU/MSU Errors and Internal SIU Errors
7.3.6.2.2. Storage Check Interrupt Status

7.3.7. Power Check Interrupt

7.3.8. Byte status Code

7.3.9. Multi-Processor-Interrupt Synchronization

7.4. INPUT/OUTPUT INTERRUPTS
7.4.1. Machine Check Interrupts
7.4.2. Normal Interrupts

7.4.3. Tabled Interrupts

8. Executive Control
8.1. GENERAL

8.2. PROCESSOR STATE
8.2.1. Designator Register

8.3. INTRODUCTION TO ADDRESSING
8.3.1. Main Storage Organization

8.3.2. Program Segmentation

8.3.3. General Theory of 1100/80 Addressing
8.3.4. Bank Descriptor

8.3.5. Limits

8.3.6. Control Information

8.3.7. Bank Descriptor Registers

8.3.8. Address Generation

8.3.9. P-Capturing Instructions

Appendix A. Glossary

Appendix B. Summary Of Word Forniats
Appendix C. User Instruction Repertoire
Appendix D. Character Codes

User Comment Sheet

i
- —h

i
OO OMNNNN

o]

1
o

8-12

8492

SPERRY UNIVAC 1100/80 Systems

Contents-11

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
FIGURES
Figure 1-1. SPERRY UNIVAC 1100/81 System Minimum Configuration 1-2
Figure 1-2. SPERRY UNIVAC 1100/82 System Expended Configuration 1-3
Figure 3-1. Main Storage Mapping of 262K Words 3-3
Figure 3-2. Main Storage Unit Address Assignment 3-4
Figure 3-3. Requester Absolute Address Format 3-9
Figure 4-1. Data Transfers From Storage 4-12
Figure 4-2. Data Transfers to Storage 4-13
Figure 4-3. J-Register Format for Character Addressing Mode 4-15
Figure 4-4. Byte Selected for Valid Combinations of BL and Ob Field Values 4-16
Figure 5-1. J-Register Format 5-51
Figure 6-1. 1100/80 Input/Output Unit 6-2
Figure 6-2. Byte or Block Multiplexer Channel Compared to 1100/80 Word Channel 6-4
Figure 6-3. Block Multiplexer Channel 6-68
Figure 6-4. Word Channel ISI Interface Example CCW List 6-70
Figure 7-1. Format of Guard Mode Interrupt Status 7-6
Figure 7-2. Format of Addressing Exception Interrupt Status 7-7
Figure 7-3. Format of Breakpoint Interrupt Status 7-8
Figure 7-4. Format of Interprocessor Interrupt Status 7-8
Figure 7-5. Format of Immediate Storage Check Interrupt Status 7-10
Figure 7-6. Storage Check Interrupt Status Word 7-13
Figure 7-7. Power Check Interrupt Status 7-14
Figure 8-1. Basic Designator Register States 8-6
Figure 8-2. Bank Descriptor and BDT Pointer Formats 8-9
Figure 8-3. Base Value Selection 8-11
TABLES
Table 1-1. Fully Supported Configurations 1-4
Table 3-1. MSR Values vs. Module Identification 3-5
Table 3-2. Fixed Address Assignment 0200-0237 3-6
Table 3-3. Fixed Address Assignments 0240-0277 3-7
Table 3-4. Words/Blocks Per Storage Set as a Function of Main Storage/Buffer Capacity 3-8
Table 3-5. MSR Selection 3-10
Table 3-6. GRS Register Assignments O Through 63 3-11
Table 3-7. GRS Register Assignments 64 Through 127 3-12
Table 4-1. Instructions that Condition the Carry and Overflow Designators 4-3
Table 4-2. Single-Precision Floating—Point Characteristic Values and Exponent Values 4-5
Table 4-3. Double-Precision Floating-Point Characteristic Values and Exponent Values 4-5
Table 4-4. Explanation of J-Register Fields for Character Addressing Mode 4-15
Table 4-5. Output Ob Values Produced When BL = O 4-17
Table 4-6. Output Ob Value Produced When BL = 1 4-18
Table 4-7. Output Ob Values Produced When BL = 2 4-18
Table 4-8. Output Ob Values Produced When BL = 3 4-19
Table 4-9. Summary of Use of i-Field 4-23
Table 5-1. Truth Table for Logical OR, XOR, and AND 5-45
Table 5-2. J-Register increment Field Values 5-53
Table 5-3. Byte Status Word 5-54
Table 5-4. Byte String Sign Codes 5-55
Table 5-5. Function Byte Interpretation 5-58
Table 5-6. Subfunction Byte Interprataion 5-60
Table 5-7. Summary of Staging Register and J-Register Fields 5-62

8492

SPERRY UNIVAC 1100/80 Sgtoms Contents—-12
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

Table 6-1. Device Addressing 6-7

Table 6-2. Channel, Subchannel, and Device States 6-8

Table 6-3. 1/0 System Composite State vs Condition Codes 6-11
Table 6-4. 1/0 iInstruction Condition Codes for Byte or Block Channel 6-12
Table 6-5. 1/0 Instruction Condition Codes for Word Channels 6-14
Table 6-6. MSU Data Format - 36-Bit Format, Forward Operation 6-32
Table 6-7. MSU Data Format - 36-Bit Format, Backward Operation 6-33
Table 6-8. Format Flags vs Type of Channel 6-34
Table 6-9. CCW Flags vs Termination Conditions on Byte or Block Multiplexer Channel 6-35
Table 6-10. CCW Flags vs Termination Conditions on Word Channel 6-37
Table 6-11. CCW Command Code 6-38
Table 6-12. 10U Status 6-47
Table 6-13. 10U Fixed Addresses 6-49
Table 6-14. Byte Data Packing on Abnormal Boundaries 6-58
Table 6-14. Byte Data Packing on Abnormal Boundaries (continued) 6-59
Table 6-14. Byte Data Packing on Abnormal Boundaries (continued) 6-60
Table 6-14. Byte Data Packing on Abnormal Boundaries (continued) 6-61
Table 6-14. Byte Data Packing on Abnormal Boundaries {continued) 6-62
Table 6-15. Scratch Pad Formats for Subchannel Expansion Feature 6-64
Table 6-16. Interrupt Mask Register 6-65
Table 7-1. Interrupt Priority 7-2

Table 7-2. Byte Status “ode Definition 7-15
Table 7-3. General Input Format for Byte-to—Floating Instructions 7-16
Table C-1. Mnemonic/Function Code Cross-Reference C-1

Table C-2. Instruction Repertoire C-4

Table D-1. Fieldata To ASCIl Code Conversion D-1

1-1

8492 SPERRY UNIVAC 1100/80 Systems
UPDATE LEVEL PAGE

UP-NUMBER Processor and Storage Programmer Reference

1. Introduction

1.1. GENERAL

This manual provides information on the central processor unit (CPU), main storage unit (MSU), buffer
storage (SIU), and input/output unit (IOU) of the SPERRY UNIVAC 1100/80 Systems.

The SPERRY UNIVAC 1100/80 Systems are high-performance, software compatible, extensions to
the proven SPERRY UNIVAC 1100 Series Systems. Designed to enhance the efficiency of the
SPERRY UNIVAC 1100 Series, the 1100/80 Systems offer dependable and highly effective
processing in real-time, demand, and batch modes and excel in multiprocessing applications.

Although the 1100 Series Systems may differ in hardware design, software compatibility is
maintained. All components of the 1100/80 Systems (processing units, input/output units, storage
units, and peripherals) are controlled by the SPERRY UNIVAC 1100 Series Operating System.
Industry standard language processors and application software are provided. The flexible design
of the 1100/80 Systems allows the user to select a system to best meet his individual requirements.

1.2. 1100/80 SYSTEM CONFIGURATIONS

The basic 1100/8 1 Processing System (1x1 configuration) consists of two functionally and physically
independent units: one CPU and one IOU. The processor organization is intrinsically that of a
multitask processor and is designed for operation in a multiprogramming environment. The basic
system may be expanded by adding a CPU and/or an IOU up to a total of two CPUs (1100/82 System)
and two I0Us (2x2). The basic 1x1 configuration is shown in Figure 1-1. A 2x2 configuration is
shown in Figure 1-2. Table 1-1 lists all fully supported configurations.

1.2.1. Central Processor Unit

The processing unit is the central element of a large-scale system that is capable of serving both
business and scientific applications in batch, demand, and real-time environments. The processing

. unit provides compatibility with prior 1100 Series Systems at the user object level, depending on
internal code selections, peripheral configurations, and software implementation of hardware
enhancements and user interfaces.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage

rogrammer Reference

UPDATE LEVEL

PAGE

SYSTEM
MAINTENANCE
UNIT

MAIN STORAGE
262K WORDS
(0 TO 7)

STORAGE EXPANSION

262K WORDS
(0 TO 7)

STORAGE INTERFACE
UNIT
4K WORDS

4K BUFFER EXP.

SiU EXPANSION
4K WORDS

SYSTEM
TRANSITION
UNIT

400 HZ

MOTOR/ALTERNATOR

MMA . MmMA |
CENTRAL INPUT/QOUTPUT 1/0
PROCESSOR UNIT EXPANSION
UNIT
2-4 -4
CHANNEL CHANNEL
MODULES MODULES
SYSTEM
CONSOLE
(ONE OR MORE)

NOTE: Main storage must contain a minimum of 524K words.

Figure 1-1. SPERRY UNIVAC 1100/81 System Minimum Configuration

8492 SPERRY UNIVAC 1100/80 SFloms 1-3
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
T T T T T I |
|
: STOR. EXP. MAIN STORAGE MAIN STORAGE STOR. EXP. |
|
: 262K WORDS 262K WORDS 262K WORDS 262K WORDS |
|
: (1 TO 4) (1 TO 4) (1 TO 4) (1 TO 4) (
L i i o v e | _ o _____ !
STORAGE INTERFACE UNIT SIU EXPANSION
4K WORDS 4K WORDS
4K BUFFER EXPANSION 4K BUFFER EXPANSION
MMA MMA
CENTRAL CENTRAL
PROCESSING UNIT PROCESSING UNIT
\><
L1 —~

r.ece™~—~—T1" {1 /Y- 1

| (

| |

: i/0 EXP. INPUT/ INPUT/ 170 EXP. !

| OUTPUT OUTPUT :

I UNIT UNIT UNIT UNIT |

| |

! I

l I

o A S _u

1-4 2-4 2-4 1-4
CHANNEL CHANNEL CHANNEL CHANNEL
MODULES MODUES MODULES MODULES
SYSTEM 400 HZ MOTOR/ SYSTEM SYSTEM CONSOLE
TRANSITION ALTERNATOR MAINTENANCE (TWO OR MORE)
UNIT {1 OR 2) UNIT

NOTE: Main storage must contain a minimum of 1048K words.

Figure 1-2. SPERRY UNIVAC 1100/82 System Expended Configuration

s Processor and Storage Programmer Reference woreieve |t
Table 1-1. Fully Supported Configurations
Configuration
1100/81 1100/82

Units 1X1 1X2 2X1 2X2
CPU 1 1 2 2
iou 1 2 1 2
Main Storage (words) 524K - 524K - 1048K - 1048K -

4194K 4194K 4194K 4194K
Storage Interface Units (words) gK (1) - 8K (1 - 16K 16K
16K 16K

System Console 1-N#* 1-N#* 2-N#* 2-N#
System Transition Unit 1 1 1 1
System Maintenance Unit 1 1 1 1
Motor/Alternator 1 1-2 1-2 1-2

* N equals any number required, but it is limited by /0.

(1) May be one 8K buffer or two 4K buffers.

The basic processing unit consists of the following components:

B A control and arithmetic section that includes fixed-point arithmetic; logical data manipulation;

@ Instruction, interrupt, and arithmetic control and control storage;

8 Maintenance section which acts as a device and a control during off-line maintenance

procedures initiated by the maintenance processor; and

B Interfaces for two input/output units, one storage interface unit, one system maintenance unit,
one system transition unit, and the system interrupt network.

The processing unit also has the following features:

B Floating-point instruction control and arithmetic.

B Byte-oriented instruction control and arithmetic.

The processing unit has the following general characteristics:

B A complete set of arithmetic, logical, manipulative, data transfer, and sequence control

instructions.

8492
UP-NUMBER

1-5

SPERRY UNIVAC 1100/80 Sgtoms
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

B A comprehensive relative addressing mechanism providing program segmentation and storage
protection.

B An absolute addressing range of sixteen million 36--bit words.
B A basic instruction fetch period of 200 nanoseconds.

A general purpose microprogrammed arithmetic section.

1.2.2. Main Storage

The 1100/80 main storage system consists of large capacity storage units plus high speed storage
buffers to achieve increased performance from the lower speed main storage. Operation of the buffer
is transparent to software, to the extent that software organization affects the miss rate, or percentage
of instructions, or operands not located in the buffer when requested.

The basic main storage unit consists of 262K words located in a single cabinet. This can be expanded
up to eight storage cabinets, minimum memory is 524K words.

The basic storage interface unit contains 8K words of buffer storage. In addition, a second 4K-word
buffer may be added which may be expanded to 8K words giving a maximum buffer size in a system
of 16K words.

1.2.3. Input/Output Unit (I0V)

The basic 1100/81 System configuration includes one input/output unit (IOU). The IOU controls all
transfers of data between the peripheral devices and main storage. Transfers are initiated by a CPU
under program control. The I0U includes independent data transfer paths to the CPU and to main
storage. The primary mode of I/0 transmission is through byte channels with word channels available
as an option.

The IOU consists of two sections: a control section and a section containing from two to four
input/output channel modules. An IOU expansion allows up to four additional channel modules to
be added to the I0U. The word I/0 channel option provides four word 1/0 channel modules and

occupies one byte channel module position. A second IOU with identical expansion capabilities can
be added to a system.

The control section includes all logic associated with the transfer of function, data, and status words
between main storage and the subsystems. It also services 1/0 requests from either one or both of
the CPUs (in a multiprocessor system) and routes interrupts to one of the two processing units.
Interrupt routing may be specified by program.
The 10U capabilities are given below.
B Primary mode of 1/0 transmission through byte channels; word channels are optional.
M Channel transfer rates of:

- 3.0 x 108 bytes per second {maximum) on a block multiplexer channel module;

- 200 x 103 bytes per second (maximum) on a byte multiplexer channel module;

- 500 x 103 words per second aggregate for a word channel module.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 § s
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

Externally specified index (ESI) and internally specified index (ISl) transfer modes on the word
channels.

Channel buffering
Interrupt tabling

Parity generation/checking capability on all ISI channels.

1.2.4. System Console

The system console provides the means for communication with the Executive System. The basic
console consists of the following major components:

The CRT/keyboard consists of a UNISCOPE 100 Display Terminal. The display formatis 16 lines
with 64 characters per line. The seven-bit ASCIl character set, consisting of 95 characters plus
the space, is used. The keyboard provides all of the operator controls required for generating
data and initiating transfers.

The incremental printer operates at 30 characters per second and provides a hard copy of
console messages. (Five additional incremental printers may be connected to a console.)

Maintenance interface for remote console operation by means of the system maintenance unit
and the Total Remote Assistance Center (TRACE) computer system.

The fault indicator, located on the incremental printer, provides the operator with a visual
indication of a fault condition in a major system component. The actual component and nature
of the fault may then be determined from indicators on the operator/maintenance panel on the
system transition unit.

A standard byte multiplexer channel interface.

1.2.5. System Transition Unit (STU)

The STU contains the controls and indicators required for control and assignment of the system units.
The functions controlled by the STU are:

Power sequencing

Controls turn-on/turn-off of main system power and sequencing of ac power in the CPUs, IOUs,
and main storage (including buffer storage sections).

Partitioning

This function provides the ability to assign the individual units to either one of two independent
applications or to isolate it from either application for off-line concurrent maintenance. Included
in this function is the control for the automatic expansion or compression of the main storage
address range for both applications. This operation provides contiguous main storage ranges
for either or both applications for any combination of main storage unit assignments.

This function also indicates the operational status of each central complex unit. The state of
these status conditions are available to system software for configuration control.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S

Proar -7
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

The ability to partition peripheral subsystems is provided by controls on the individual
subsystems and, optionally, for byte peripheral subsystems, by software command.

| Initial Load

This function provides the ability to set MSR (module select register) values, select initial load
paths and initiate the initial load operation for either one of two applications.

| | Automatic Recovery

This function provides the system, specified in Application O, with an automatic system recovery
capability. When auto-recovery is enabled and the system software does not reset the
auto-recovery timer within the preset time interval, the system is cleared, reloaded, and
reinitiated. The system provides two recovery paths. The alternate recovery path is
automatically initiated when an attempted recovery fails. The function provides for software
resetting of the auto-recovery timer and selection of the auto-recovery path to be used by the
next auto-recovery attempt.

B Processor and Input/Output Unit Controls

This function provides the controls and indicators required for manual control of the processors
and input/output units.

1.2.6. System Maintenance Unit

The system maintenance unit provides for diagnostic checkout and fault isolation by the automatic
comparison of maintenance indicators against known correct data and the creation of dumps. The
system maintenance unit includes a maintenance processor, communications capability, UNISCOPE
100 Display Terminal, card tester and peripherals.

1.2.7. Auxiliary Storage and Peripheral Subsystems

The 1100/80 Systems offer a full range of auxiliary storage and peripheral subsystems to provide
the capability to satisfy many requirements. The following list of peripheral equipment is the
minimum available with the 1100/80 System. This minimum has been established to ensure an
adequate complement for customer engineering and software support.

Minimum Complement Alternate

1. One 0716 Card Reader and one 0776 High
Speed Printer Subsystem

2. 8430/8433/8434 Disk Subsystem with one One disk subsystem as follows:
5046 Control Unit and two 8430 or two - 5024 Control Unit with two 8425
8433 or two 8434 Disk Storage Units Disk Storage Units

3. UNISERVO Magnetic Tape Subsystem with UNISERVO Magnetic Tape Subsystem
5042 Control Unit and four UNISERVO 30 with 5017 Control Unit and four

Tape Units UNISERVO 12/14/16/20 Tape Units

2-1
PAGE

8492 SPERRY UNIVAC 1100/80 Sgtoms
UP-NUMBER Processor and Storage Programmer Reference

UPDATE LEVEL

2. Processing Unit

2.1. GENERAL

The 1100/80 Central Processing Unit (CPU) contains a control section, an arithmetic section, a
maintenance saction, a General Register Stack, and interfaces through which it is connected to other
equipment. The IOU controls all data transfers between peripheral devices and storage. Transfers
are initiated by a CPU under program control.

2.2. CONTROL SECTION

The control section of the CAU interprets instructions and directs all processor operations except
certain 1/0 operations. It is discussed briefly below and in more detail in 4.2.

2.2.1. Control Section Operation

The program instruction words are sequentially loaded into the control section. Each instruction word
is interpreted by the control section which generates the signals necessary to perform the instruction.
The instruction words are located in main storage and the data words (operands) are located either
in main storage or in the addressable control registers which are part of the control section. The
control section includes an address formation segment which generates the absolute main storage
addresses to obtain the instruction words.

The instruction word is divided into fields. These fields specify to the control section the function
to be performed, which portion of the operand is to be used, a control register, indexing, index register
modification, indirect addressing, and an operand address.

2.2.2. Instruction Repertoire

The instruction repertoire includes fixed—-point and floating-point arithmetic, logical functions, byte
operations, block transfers, comparisons, tests, I/0 control, and special purpose instructions. There
are over 200 basic instructions in the repertoire. Partial word data transfers and repetitive operations
are included in the instruction repertoire. Indexing capability is provided with all instructions. Indirect

addressing capability is also provided and is usable to any level with full indexing capability at each
level.

Instructions such as data transfers, single—pfecision fixed-point adds, and certain logical functions,
require less than 250 nanoseconds for complete execution. Indexing (18-bit) does not add to the
execution time of an instruction. Details of the instruction repertoire are found in Section 5.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

2-2

UPDATE LEVEL PAGE

2.2.3. Control Registers

The 128 addressable control registers in the general register stack (GRS) of the control section are
integrated—circuit registers. These control registers are addressed either explicitly or implicitly by
the instructions. They fall into four categories: index registers, arithmatic registers, special registers,
and unassigned registers.

The control registers are discussed in detail in Section 3.

2.2.4. Data Shift/Complement/Store Operation

The CPU includes circuitry which permits the various store instructions to bypass the arithmetic
section. This circuitry includes the shifting capability needed for storing partial words in main
storage, the sign testing capability needed for the Store Magnitude A instruction, and the
complementing capability needed for the Store Negative A and Store Magnitude A instructions.

2.3. ARITHMETIC SECTION

All arithmetic computation is microprogram controlled and is performed using the nonaddressable
registers of the arithmetic section. These arithmetic processes can be performed in either fixed-point
or floating—point mode. Fixed-point arithmetic instructions provide for single-precision,
double-precision, half-word, and third-word addition and subtraction, and for fraction and integer
multiplication and division. Floating-point instructions provide for both single—precision and
double-precision operation. The arithmetic section also performs certain logical operations such as
shifting and comparisons. The instruction word may be used to specify the transfer of any chosen
portion of a word (half, third, quarter, or sixth) to the arithmetic section. The ability to transfer only
the selected portion of a word minimizes the number of masking and shifting operations required.

A shift matrix in the arithmetic section permits the completion of an entire single word shift operation
in one main storage cycle time. By use of the matrix, the shift operation can shift a single or double
word operand in either direction up to 72 bit positions.

Details on the operation of the arithmetic section are found in 4.1.

2.4. MAINTENANCE SECTION

The maintenance section performs all diagnostic tests using its own repertoire of commands. It
operates only when the processor is in maintenance mode. In this mode the processing system can
be operating either online or offline. When online, the processing system and the maintenance
system operate concurrently. In this case the maintenance system is connected to and operating on
the byte bus and the processing system operates normally except that the processing operation is
suspended whenever the maintenance system needs to use the processor data and control paths for
executing a maintenance function.

2.5. INPUT/OUTPUT UNIT (10U)

The 10U is a separate functional entity. 1/0 activity is initiated when the interpretation of certain
instructions by the CPU causes signals to be sent to the IOU. Once an I/0 operation is initiated, the
10U and the subsystem control the input and output transfers. The IOU operates with a wide variety
of peripheral devices, and it requires minimal attention from the CPU.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

2-3
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

Once an I/0 operation is initiated by the program, I/0 activity is independent of program control. The
I/0 data flows between main storage and the peripheral subsystem through an I/0 channel. Each
170 channel consists of 36 input data lines, 2 input parity lines, 36 output data lines, 2 output parity
lines, and various control signal lines. All data word bits are transmitted in parallel to or from the
subsystem.

The I/0 unit has four interfaces: a storage interface, a processor interface, a control unit-peripheral
interface, and a system transition unit interface.

Details of the 10U are presented in Section 6.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

3-1
PAGE

UPDATE LEVEL

3. Storage

3.1. GENERAL

The storage system comprises up to 4,194,304 words of main storage, up to 16,384 words of high
speed buffer storage and 128 words of control registers.

The main storage units (MSUs) provide storage for the instruction and data words. The storage
interface unit (SIU) provides high speed buffer storage between the storage units and the processor
and between the storage units and the input-output units (IOUs). The 128 addressable control
registers in the control section of each CPU provide fast access storage for data and control words.

3.2. MAIN STORAGE

A data or instruction word consists of 36 information bits and two parity bits. The two parity bits
provide hardware parity checking on each 18-bit segment of the word transferred over the MSU-SIU
interface.

Data to or from main storage is transferred in block increments of eight contiguous words. The eight
words, comprising four double words (72 data, 4 parity bits) are transferred in four sequential
operations. Each double word is written into or read from storage as an 80-bit word (72 data, 8 ECC).
The eight error correction code (ECC) bits are generated from the write data. If a single-bit error is
detected during a read, the error correcting code is used to correct the data. If multiple errors are
detected in the stored data the processor is notified with an Interrupt signal.

A main storage cabinet contains 262K or 524K words. A maximum of eight cabinets may be used
in a system. Figures 1-1 and 1-2 show the minimum and expanded system configurations.

3.2.1. Main Storage Addressing

Main storage addressing is continuous from the lowest order address to the highest. Figure 3-1
shows the MSU mapping of 262K words into 8-word block increments. Each block contains eight
contiguous words and the blocks are sequential relative to the set addresses. Also shown is the
relationship of the set address portion of an absolute address to the blocks stored in an MSU when
the buffer capacity is 4096 words. That is, in each 262K module of main storage there are 128
8-word blocks for each set address or, stated differently, 1/128 of the total storage capacity
(regardless of size) is assigned to each set address. For an expanded buffer of 8192 words 1/256
of the total storage capacity is assigned to each set address. Set addresses associated with a buffer
storage capacity of 4096 words are on a modulo 1024 and for a 8 192-word buffer capacity the set
addresses are on a modulo 2048.

8492
UP-NUMBER

3-2

SPERRY UNIVAC 1100/80 Sgtems
PAGE

Processor and Storage Programmer Reference

UPDATE LEVEL

When a requested absolute address is not in buffer storage the SiU initiates a request to main storage
to read out the 8-word block containing the needed address and data. The request is initiated by
bussing the 18 bits of the absolute address (shown in the following format) to all the MSUs in the
configuration. The identified MSU executes the read cycle.

3.2.2. MSU Address Assignments

A system can have one to eight MSUs with each MSU having 262K or 524K words each. A maximum
configuration has 4,194,304 words in eight cabinets. The system is capable of addressing
16,777,216 words which is divided into upper and lower address ranges of 8,388,608 words each.

The addressing for the first MSU (0) installed always begins at the mid-address 223 -1 (8,388,607)
minus the size of that main storage unit (262K or 524K). The second MSU (1) begins its addressing
at 223 if the SIU upper address is present. More MSUs can be added on either side of the mid-address
point up to eight MSUs. MSUs added to either address range are assigned to the configuration with
their numbers in an increasing order going away from the midpoint address. (See Figure 3-2.) This
method of MSU assignment allows using a system of as little as one MSU and expanding it to eight
MSUs with no change in the addressing logic. Table 3-1 shows the absolute addresses for MSUs
assigned to specific positions in a maximum storage configuration.

This redundancy in the SIU allows concurrent addressing of the upper and lower address ranges and
the even and odd addresses within each address range. It is possible to service four requests
concurrently.

Note that the minimum SIU configuration is 8K words which can be one 8K buffer or two 4K buffers,
with one 524K MSU or two 262K units. However, the system will operate in a degraded mode with
one 4K SIU and one 262K MSU.

8492 SPERRY UNIVAC 1100/80 Systems 3-3
UP-NUMBER Processor and Storage grogrammer Reference UPDATE LEVEL PAGE
Figure 3-1. Main Storage Mapping of 262K Words
Sets MSU Words Sets MSU Words
8K 4K 8K 4K
0 (0] 0o - 7 254 126 6147 - 6135
1 1 8 - 15 255 127 6136 - 6143
| 2 16 - 23 0 0 6144 - 6151
(1) | 1 6152 - 6159
| 3 24 - 31 | | |
| 4 32 - 39 | (7) |
| l | } I 1
| | | | 127 7160 - 7167
| 126 1008 - 1015 (4) (0] 7168 - 7175
127 127 1016 - 1023 | 1 7176 - 7183
(M \ | 1
128 0 1024 - 1031 [(8) |
129 1 1032 - 1039 | | |
| 2 1040 - 1047 255 127 8184 - 8191
| | | 0 0 8192 - 8199
| (2) | 1 1 8200 - 8207
| I | (9)
254 126 2032 - 2039 2 2 8208 - 8215
255 127 2040 - 2047 3 3 8216 - 8223
0 0 2048 - 2055 | | |
| 1 2056 - 2063 | | |
| | | | 127 9208 - 9215
| (3) | (5)
| i | (0] 9216 - 9223
127 127 3064 - 3071 f ! I
(2) l (10) !
128 0 3072 - 3079 | | |
| 1 3080 - 3087 255 127 10240 - 10247
I l ! |
| (4) | | Z 2 | ¥
I I | | | |
254 126 4080 - 4087 128 0 261120 - 161127
255 127 4088 - 4095 (64) | |
0 o] 4096 - 4103 | | |
1 1 4104 - 4111 (128)
2 2 4112 - 4119 | | |
(5) 255 127 262136 - 262143
3 3 4120 - 4127
4 4 4128 - 4135
I | |
| | I
126 126 5104 - 5111 NOTE:
127 127 5112 - 5119
(3) The numbers in parentheses () show the
128 0 5120 - 5127 association of the number of buffer-set
129 1 5128 - 5135 increments to each 262K of storage.
[2 5136 5143
I

(6)

MSU7 MSU5s MSU3 MSU1 MSuUo MSU2 MSU4 MSU6
| I l | 262K | 262K | l I
223 223 223 223 228 922 222 222 922
223 220 9223 220 923 219 223 218 223_3 221 222 221 222 1 222 9221 Q22
2219 219 220 218 220 218 218 220 921 220 221 219 221 218 21
218 219 219 220 218 220 918 218
218 218

SIU Upper Address Range

SIU Lower Address Range ————————>

Figure 3-2. Main Storage Unit Address Assignment

HISWNN-dN

13A3T 1vadN

39vd
v-€

FYNCICICY) mwwemma 8BeI01S pue 1085820ig

Z698

S 08/001 i JVAINN AHH3dS

sSwIe)

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

Processor and Storage

rogrammer Reference

UPDATE LEVEL

PAGE

Table 3-1. MSR Values vs. Module Identifi

Lower Address Range
MSR Value Address Ranges (Octal) Physical Module
(Octal)
140 30 000 000 - 30 777 777
144 31 000 000 - 31777 777 MSU6
- 1560 32 000 000 - 32 777 777
154 33 000 000 - 33 777 777 MSU4
160 34 000 000 - 34 777 777
164 35 000 000 - 35 777 777 MSU2
170 36 000 000 - 36 777 777
174 37 000 000 - 37 777 777 MSuo
Upper Address Range
MSR Value Address Ranges (Octal) Physical Module
(Octal)
200 40 000 000 - 40 777 777
204 41 000 000 - 41 777 777 Msu1
210 42 000 000 - 42 777 777
214 43 000 000 - 43 777 777 MSU3
220 44 000 000 - 44 777 777
224 45 000 000 - 45 777 777 MSUS
230 46 000 000 - 46 777 777
234 47 000 000 - 47 777 777 MSuU7

3.2.3. Fixed Address Assignments

The interrupt subroutine entrances and certain status words are assigned fixed locations in main
storage as shown in Tables 3-2 and 3-3. The listed addresses are relative to the contents of the
7-bit module select register (MSR) and the position of the SIU Upper/Lower switch. MSR may be
manually loaded by pressing the desired combination of the seven MSR switches and the SIU
Upper/Lower switch on the system transition unit partitioning panel. When an initial load operation

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

UPDATE LEVEL

3-6
PAGE

is performed, the value in the MSR identifies the main storage area in which the incoming data is
to be stored. During an ESI-I/0 operation the value in the MSR identifies the high order bits of the
address of the main storage locations from which the ES| access control words and chain pointer
words are obtained.

Octal

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

Decimal

128
129
130
131
132
133
134
1356
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
1561
162
1563
154
155
156
167
168
159

Table 3-2. Fixed Address Assignment 0200-0237

Assignment

Reserved for Hardware Default

Unassigned

Unassigned

Unassigned

I/0 Normal Status Interrupt

I/0 Tabled Status Interrupt

I/0 Machine Check Interrupt

Unassigned

Quantum Timer Interrupt

Real Time Clock Interrupt

Dayclock Value

Dayclock Interrupt

Immediate Storage Check Interrupt

Invalid Instruction

Executive Request Interrupt

Guard Mode Interrupt

Test and Set Interrupt

Characteristic Underflow Interrupt

Characteristic Overflow Interrupt

Divide Check Interrupt

Addressing Exception Interrupt

Breakpoint Interrupt

Interprocessor Interrupt

Power Check Interrupt

Delayed Storage Check Interrupt

Jump History Stack Interrupt

Emulation Interrupt

Unassigned

All fixed addresses are relative to the MSR.

8492
UP-NUMBER

3-7
PAGE

SPERRY UNIVAC 1100/80 Sgtoms

Processor and Storage Programmer Reference UPDATE LEVEL

Table 3-3. Fixed Address Assignments 0240-0277

Octal Decimal Assignment

240 160 Processor O Channel Address Word O
241 161 Processor O Channel Address Word 1
242 162 Unassigned

243 163 Unassigned

244 164 Processor 1 Channel Address Word 0O
245 165 Processor 1 Channel Address Word 1
246 166 Unassigned

247 167 Unassigned

250 168 Processor O Interrupt Address Word
251 169 Unassigned

252 170 Unassigned

253 171 Unassigned

254 172 Unassigned

255 173 Unassigned

256 174 Unassigned

257 175 Unassigned

260 176 Processor O Interrupt Address Word
261 177 Processor O Channel Status Word O
262 178 Processor O Channel Status Word 1
263 179 Processor O Channel Status Word 2
264 180 Processor 1 Interrupt Address Word
265 181 Processor 1 Channel Status Word O
266 182 Processor 1 Channel Status Word 1
267 183 Processor 1 Channel Status Word 2

All fixed addresses are relative to the MSR. Addresses 270 through 277 are unassigned.

3.3. BUFFER STORAGE

Buffer storage is in the storage interface unit (SIU) and is transparent to users, processors, IQUs, and
the operating system. The only access to main storage is through the SIU with absolute addresses.
The basic buffer capacity is 4096 word (36 bit 4+ parity bit words) and is expandable in 4096 word
increments to 16,384 words.

The storage interface unit, comprises two identical and functionally independent halves, SIU upper
and SIU lower. SIU upper provides access to MSUs assigned with absolute addresses 223
(8,388,608) and up; SIU lower provides access to MSUs assigned with absolute addresses 223 —1
(8,388,607) and down. Each SIU half contains a buffer of 4096 words, expandable to 8192 words
maximum and a table of the block addresses (called tag) of the words resident in the buffer.

3.3.1. Set Associative Addressing

Both the buffer and the absolute address space in main storage are divided into sets. Each set in
the buffer is associated with a corresponding set of absolute addresses in main storage. Each buffer
set is functionally a 4-entry content-addressable memory, where each entry represents a block (8
words) of main storage in an associated absolute address space set. A block is eight contiguous
words beginning at an address divisible by eight. Each buffer set contains four 8-word blocks (32
words) and its contents could be any four blocks from a like numbered storage set. For example,
buffer set 1 could contain blocks 4104-4111, 8-15, 6152-6159, 2056-2063 from storage set 1.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S
Processor and Storage

ems
rogrammer Reference

UPDATE LEVEL

3-8
PAGE

Figure 3-1 shows the relationship of main storage blocks to the 4K and 8K buffer sets. For a 4K
buffer 1/128 of all storage blocks are associated with a given buffer set. For an 8K buffer 1/256

of all storage blocks are associated with a given buffer set.

For example, main storage blocks

associated with the 4K and 8K buffer sets are on a modulo 1024 and 2048, respectively, as follows:

Set O

0-7

1024-1031

2048-2055

3072-3079

etc.

4K Buffer

Set 1

8 - 156
1032-1039
2056-2063
3080-3087

etc.

Set 127

1016-1023

2040-2047

3064-3071

4088-4095

etc.

Set O

0-7
2048-2055
4096-4103
6144-6151

etc.

8K Buffer
Set 1
8-15
2056-2063
4104-4111
6152-6159

etc.

Set 255

2040-2047
4088-4095
6136-6143
8184-8191

etc.

Table 3-4 shows the relationship of the number of buffer sets to the number of words and 8-word

blocks in a storage set for the 1100/80 main storage capacities available.

Table 3-4. Words/Blocks Per Storage Set as a Function of Main Storage/Buffer Capacity

4K Buffer (128 Sets)

8K Buffer (256 Sets)

Main Storage Words Per Storage Blocks Per Words Per Blocks Per
Capacity Set Storage Set Storage Set Storage Set
(Words)
262144+ 2048#* 256% 1024#% 128+
524288 4096 512 2048 256
786432 6144 768 3072 384
1048576 8192 1024 4096 512
1310720 10240 1280 5120 640
16572864 12288 1536 6144 768
1835008 14336 1792 7168 896
2097152 16384 2048 8192 1024
2359296 18432 2304 9216 1162
2621440 20480 2560 10240 1280
2883584 22528 2816 11264 1408
3145728 24576 3072 12288 1536
3407872 26624 3328 13312 1664
3670016 28672 3584 14336 1792
3932160 30720 3840 16350 1920
4194304 32768 4096 16384 2048

#* Degraded mode only

3-9
PAGE

8492 SPERRY UNIVAC 1100/80 Systems

UP-NUMBER , Processor and Storage Programmer Reference UPDATE LEVEL

3.3.2. Address interleave

When the SIU contains an upper and lower half then each half may be configured as an even and
odd segment. When a requesters absolute address (contents of Figure 3-3 sans MSR) is sent to the
SIU, bit 23 selects the upper or lower half and bit O selects the odd or even segment in that SIU half.
The set address initiates the reading of four block addresses from the tag and the data from the buffer.
A comparison is made between the requested block address and the four tag block addresses and
if the requested block is resident, the data is sent to the requester; if not, bits 20 through 3 with MSR
appended is sent to main storage. (See 3.2.1.) The MSR values are listed in Table 3-5.

L— MSR Jl

(223,222,221,220,219,218,217,216,215,214,213,212, 211,210 29, 28, 27, 26 25, 24, 23 22 21, 20

—_——

Block Address L— Set Address ———

223 = 0 Selects lower address range 223 - 1 and down (SIU Lower)
=1 Selects upper address range 223 and up (SIU Upper)
222 _ 210 Block address
29 -23 _ Set addresses - O - 127 (4096 word basic buffer)
210 _23 _ Set addresses - 0 -255 (8192 word expanded buffer)
22 _21 _ Selects 1 of 4 odd or even words (00-11)
20 - 0 = Even word segment
1 = Odd word segment
NOTE:

MSR is appended by the SIU when an MSU request is made.

Figure 3-3. Requester Absolute Address Format

8492 SPERRY UNIVAC 1100/80 Systems 3-10
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
Table 3-5. MSR Selection
MSU Granularity Number Of SIU Upper Bits SIU Lower Bits
(Millions;g of Words
Words) (Millions,g)
Available To
SIU Half
2 1.1/2 1/4 23 22 21 20 19 18 23 22 21 20 19 18
X 1/4 1 0 0 0 0 O o 1 1 1 1t 1
X X 1/2 1 0 0 0 O 1 o 1 1 1 1 0
X 3/4 1 0 0 0 1 O o 1 1 1t 0 1
X X X 1 1 0 0 0 1 1 o 1t 1 1t 0 O
X 1 1/4 1t 0 0 1 0 O O 1t 1 0 1 1
X X 1 1/2 1 0 0 1 0 1 o 1 1 0 1 0
X 1 3/4 1 0 0 1 1 O O 1t 1 0 0 1
X X X X 2 1 0 0O 1 1 1 0O 1t 1 0 0 O
NOTE:

Bit 16 & 17 of MSR will always be zero in the normal (non-debug) case regardless of SIU half
selection.

This optional redundancy in the SIU allows concurrent addressing of the upper and lower address
ranges and the even and odd addresses within each address range. It is possible to service four
requests concurrently.

3.4. CONTROL STORAGE

The control section of the CPU includes a general register stack (GRS) comprising 128 addressable
control registers that can be independently referenced in paraliel with main storage. Each control
register stores a word consisting of 36 information bits. The control registers are addressable by
the a-, and x-fields of the instruction word and by the value U developed in the index subsection
of the CPU's control section. The details of control register addressing are explained in Section 4.
Table 3-6 and 3-7 summarize the control register address assignments.

3.4.1. Control Register Selection Designator

The 128 addressable control registers include one set of registers for use by the user program and
another set for use by the Executive program. The control register selection designator (D6) in the
designator register defines which set of registers is addressed by the a- and x-designators of an
instruction word. When D6 = O, the user program set of control registers is addressed; when D6
= 1, the Executive program set of control registers is addressed. The contents of D6 has no effect
on the choice of a control register for any particular value of U.

3.4.2. Control Register Address Assignments

Operand addresses Og through 1774 are assigned to the control registers. The following paragraphs
define the various uses and related address assignments for the control registers.

8492
UP-KUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

3-11
PAGE

UPDATE LEVEL

3.4.2.1. Storage for MSR Value — Address 0143

During Initial Load of the system the value in the module select register (MSR) is loaded into GRS
by the hardware. This one time load makes the MSR value available for referencing by software.

QOctal

0000
0001

0011
0012
0013
0014
0015
0016
0017
0020
0021

0033
0034

0037
0040
0041
0042
0043
0044
0045
0046
0047
0050
0051
0052
0053
0054
0055
0056
0057

0067
0070

0077

Decimal

0
1
9
10
1
12
13
14
15
16
17

27
28

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

55
56

€63

Table 3-6. GRS Register Assignments O Through 63

Register Assignment

Initial Load MSR Value — X3

User X1

User X9

User X10

User X11

User X12/A0

User X13/A1

User X14/A2

User X15/A3

User A4

User AS

User A15

Unassigned

Unassigned

Exec BDT Pointer

Immed. Stor. Check Program Return Address

Immed. Stor. Check Designator Register

Normal Program Return Address

Normal Designator Register

User BDT Pointer

E/0j0—O0] BDIO [E[2J0—0| BDI2

E10—O0| BDI1 [E[30—0| BDI3

Quantum Timer

Guard Mode Program Return Address

Guard Mode Designator Register

Guard Mode Interrupt Status

Immed. Stor. Check Status

Normal Status

Unassigned

Unassigned

Jump History Stack

Jump History Stack

Note that locations 060 through 067 are used as temporary working storage locations
by the processor, and their contents are therefore unpredictable. Delay Storage Checks
are classed as normal interrupts.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

UPDATE LEVEL

3-12
PAGE

Octal

0100
0101
0102
0103
0104
0105
0106
0107
0110
o111
0112

0117
0120
0121
0122
0123

0137
0140
0141

0153
0154

6157
0160

0173
0174

0177

Table 3-7. GRS Register Assignments 64 Through 127

Decimal

64
65
66
67
68
69
70
71
72
73
74

79
80
81
82
83

95
96
97

107
108

111
112

123
124

127

Register Assignment

Real Time Clock

User R1/Repeat Count

User R2/Mask Register

| User R3/Staging Register 1

User R4/Staging Register 2

User R6/Staging Register 3

User R6/JO

User R7/J1

User R8/J2

User R9/J3

User R10

User R15

Exec RO

Exec R1/Repeat Count.

Exec R2/Mask Register

Exec R3/Staging Register 1

Exec R15

Unassigned

Exec X1

Exec X11

Exec X12/A0

Exec X15/A3

Exec A4

Exec A15

Unassigned

Unassigned

3.4.2.2. User Index (X) Register - Addresses 0001 - 0017

The index registers, referred to as X-registers provide the programmer with address modification
capability (indexing).

An index register contains a modifier field (Xm), which is used to modify the operand address
(indexing), and an increment field (Xi), which is used to modify the modifier field (automatic
incrementation). If designator register bit 7 (D7) and the i-bit of an instruction are one, 24-bit index
register mode is specified. In this mode, Xm is the lower 24 bits of the index register (bits 23-0),
and Xi is the upper 12 bits of the index register (bits 35-24). In all other cases, 18-bit index register
mode is selected. In this mode, Xm is the lower 18 bits of the index register (bits 17-0), and Xi is
the upper 18 bits of the index register (bits 35-18).

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

3-13

UPDATE LEVEL PAGE

3.4.2.3. User Accumulator (A) Registers — Addresses 0014 - 0033
The A-registers store arithmetic operands and results. The actual computation or logical function
is performed in the arithmetic section and the results are stored in the A-register or registers specified

by the instruction. Four of the A-registers (addresses 0145 — 0174) overlap registers assigned as
X-registers. This affords additional versatility in the use of A-registers and X-registers.

3.4.2.4. User Unassigned Registers — Addresses 0034 - 0037

Two of these unassigned registers (00345 and 00355) serve as an extension of the set of user
A-~registers when D6 = O and an instruction which requires more than one user A-register is being
performed. All four of these unassigned registers can serve as general purpose registers.

3.4.2.5. EXEC Bank Descriptor Table Pointer Register - Address 0040

The word at this location is read when the Executive bank descriptor pointer is specified.

3.4.2.6. Immediate Storage Check Interrupts — Addresses 0041 - 0042

When an interrupt occurs, these registers temporarily store the captured program return address and
designators, respectively.

3.4.2.7. Normal Interrupts - Addresses 0043 - 0044

When an interrupt occurs, these registers store the normal captured program return address and
designators, respectively.

3.4.2.8. User Bank Descriptor Table Pointer Register - Address 0046

The word at this location is read when the user bank descriptor pointer is specified.

3.4.2.9. Bank Descriptor Index Registers - Addresses 0046 — 0047

The control register at address 0463 is used as a holding register for bank descriptors O and 2. The
register at address 0474 is used as a holding register for bank descriptors 1 and 3.

3.4.2.10. Quantum Timer - Address 0050

When an interrupt occurs the captured quantum timer value is stored in this register.

3.4.2.11. Guard Mode - Addresses 0051 - 00563

When a Guard Mode Fault interrupt occurs: the program return address is captured in address 00514,
the designators are captured at address 00524 and the status is captured at address 0053,.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

3-14
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

3.4.2.12. Immediate Storage Check Status — Address 0054

When an Immediate Storage Check interrupt occurs the status is stored in this register.

3.4.2.13. Normal Status — Address 0055

Address 0055 stores all processor generated interrupt status except Immediate Storage Check status
and Guard Mode status.

3.4.2.14. Unassigned Registers - Addresses 0066 — 0067

The processor uses 0060g through 0067g as temporary working storage.

3.4.2.15. Jump History Stack - Addresses 0070 - 0077

The jump history stack consists of eight general register locations (070 to 07 7) that hold recent 24-bit
absolute jump instruction addresses. Bit 35 of each entry contains a pass flag indicating whether
the entry was stored on an odd or even pass through the stack. Entry stacking is activated by a LBRX
instruction, according to the conditions specified in the breakpoint register. Unless terminated by
one of these conditions, the process continues in a wraparound manner, and older entries are
subsequently overwritten by new entries.

3.4.2.16. Real-Time Clock Register (RO) - Address 0100

The contents of the lower half (bit positions 17-00) of the real-time clock (RTC) register are decreased
by one every 200 microseconds, independent of program control or supervision. A Real-Time Clock
interrupt occurs if the RTC value in the lower half of the RTC register is zero when a decrementation
cycle is initiated. The upper half (bit positions 35-18) of the RTC register should not be used.

3.4.2.17. User (R1) Repeat Count Register - Address 0101

The contents of the repeat counter register define the number of times a repeated instruction is
executed. During execution of a repeated instruction the contents of the lower half of the repeat count
register are decreased by one each time the repeated instruction is executed. If an interrupt occurs
during the sequence of repeated executions of an instruction, the repeat sequence is suspended to
process the interrupt, and the current count is left in R1. The repeated sequence may be resumed
after the interrupt has been processed. The final value of the count after the repeat sequence
terminates is always available in R1. If the contents of the repeat count register is zero, the repeated
instruction is not executed and the execution of the next instruction is initiated. Zero is defined as
all zeros or all ones in the lower half of the word (bit positions 17-00); the upper half (bit positions
35-18) of the repeat count register should not be used.

3.4.2.18. User (R2)/Mask Register — Address 0102

The bits in the mask register specify the fields of operands to be operated upon in certain instructions.
A logical is performed with the operand and the mask and/or its complement. The portions of
the operand so selected are then used in the instruction operation.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

3-1%
PAGE

UPDATE LEVEL

3.4.2.19. User (R2-R5)/Staging Registers (SR1-SR3) - Address 0103 - 0105

The three staging registers are used for holding operand information and operation status for byte
instruction execution.

3.4.2.20. User (R6-R9)/J-Registers (JO-J3) - Address 0106 - 0111
When designator register bit 4 (D4) is one, j—field values of 4 through 7 specify registers R6 through
R9, respectively, instead of partial-word selections. These registers provide character addressing and

indexing in & manner that is similar to, and in addition to, the word indexing function of the
X-registers.

3.4.2.21. User R-Registers (R10-R15) - Addresses 0112 - 0117

These registers are unassigned and serve as general purpose registers. When D6 = O, each of these
registers can be implicitly addressed by one of the values 124 through 174 in the a-fisld of a Load
R or Store R instruction.

3.4.2.22. Executive (RO) R-Register — Address 0120

This register is unassigned and serves as a general purpose register. When D6 = 1, this register
is implicitly addressed when the a-field of a Load R or Store R instruction equals zero.

3.4.2.23. Executive (R1) Repeat Count Register — Address 0121

This register has the same function and format as the user R1 repeat count register when D8 = 1.

3.4.2.24. Executive (R2)/Mask Register — Address 0122

This register performs the same function as the user R2 mask register when D6 = 1.

3.4.2.25. Executive (R3-R5)/Staging Registers (SR1-SR3) - Addresses 0123 - 0128

These registers perform the same function as the user SR1 - SR3 staging registers when D6 = 1.

3.4.2.26. Executive (R6-R9)/J-Registers (JO-J3) — Addresses 0126 - 0131

These registers perform the same function as the user JO — J3 registers when D6 = 1.

3.4.2.27. Executive R-Registers (R10-R15) - Addresses 0132 - 0137

Tho_se registers are unassigned and serve as general purpose registers. When D6 = 1, each of these
registeis can be implicitly addressed by one of the values 124 through 174 in the a-field of a Load
R or Store R instruction.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

3-16
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

3.4.2.28. Executive Index Registers (X1-X15) - Addresses 0141 - 01567

When D6 = 1, these registers perform the same functions as the user index ragisters.

3.4.2.29. Executive Accumulator Registers (AO-A15) - Addresses 0154 - 0173

When D6 = 1, these registers perform the same function as the user A-registers.

3.4.2.30. Executive Unassigned Registers — Addresses 0140, 0174 - 0177

When D6 = 1, these registers are used in the same manner as the unassigned registers at addresses
0345 - 037,.

3.4.2.31. Control Register Protection

When operating in guard mode (D2 = 1 and D6 = 0) a Guard Mode interrupt will occur if an attempt
is made to execute a privileged (Executive) instruction or to store data into an Executive GRS location.

8492 SPERRY UNIVAC 1100/80 Systems
UP-NUMBER Processor and Storage Programmer Reference

4-1
PAGE

UPDATE LEVEL

4. Processor

The 1100/80 Central Processor Unit (CPU) comprises an arithmetic section, control section,
maintenance section, general register stack, and interfaces for communicating with other units in the
system.

The arithmetic and control sections are discussed in this section. The general register stack (GRS)
is discussed in Section 3. A brief discussion of the maintenance section is in Section 2.

4.1. ARITHMETIC SECTION

4.1.1. General Operation
During the execution of logical and arithmetic instructions the following steps are performed:

1. Transferinput data from instruction word specified storage locations or control registers to input
registers in the arithmetic section. During the transfer, the input data are processed by the main
control section to provide absolute values.

2. Perform the arithmetic operations of addition, subtraction (add negative), multiplication, division,
byte manipulation, skip detection, etc., as specified by the instruction word.

3. Transfer final results from the arithmetic section to temporary holding registers, general register
storage (GRS), or indicate skip condition.

4.1.1.1. Data Word

The highest order binary bit represents the sign of the value contained in the remaining bit positions.
If the sign bit contains a zero, the word is positive and 1's in the remaining bit positions represent
significant data. If the sign bit contains a one, the word is negative and O’s in the remaining bit
positions represent significant data. A binary data word containing all zeros is referred to as positive
zero (+0). A binary data word containing all ones is referred to as negative zero (-0).

8492 SPERRY UNIVAC 1100/80 Systems

4-2
UP-NUMBER Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

Example: (assume a 4-bit word length)

+3 = 0011,
-3 = 1100

Nonsigificant data bit

Significant data bits

4.1.1.2. Data Word Complement

The ones complement of any binary arithmetic data word is obtained when all zeros in the word are
changed to ones and all the ones are changed to zeros. An arithmetic data word of positive value,
when complemented, becomes a negative value; and a negative value, when complemented,
becomes a positive value.

4.1.1.3. Absolute Values

The absolute value of an arithmetic number is the magnitude of the number regardless of the sign.

Example: Binary Value Absolute Value
001110 (+14) 001110 (14)
110001 (-14) 001110 (14)

4.1.2. Microprogrammed Control

The 1100/80 arithmetic section consists of three major parallel data paths. The main adder, the
shifter, and the multiplier. The cycle time of the main adder and the shifter are both 150
nanoseconds. The multiplier is designed to have a 4-bit add and shift cycle time of 100 nanoseconds.
The main adder and shifter are extensively microprogram-controlled; however, the multiplier repeat
cycles are self-initiated.

4.1.3. Main Adder Characteristics

The "main adder" of the processor arithmetic section performs single- or double-precision adds or
subtracts, or logical operations.

4.1.4. Fixed-Point Single- or Double-Precision Add or Subtract Overflow and Carry

In fixed—-point arithmetic, the execution of certain instructions can result in an overflow or a carry
condition. During execution, D1 and DO are cleared to zeros; the overflow and carry conditions set
bits D1 and DO, respectively, in the designator register. These bits can be sensed by certain other
instructions. Each of these designators, when set to one, remains in the "set” condition until the next
time any one of the instructions in Table 4-1 is executed or until the Load Designator Register
instruction is executed.

8492
UP-NUMBER

4-3
PAGE

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

UPDATE LEVEL

4.1.4.1. Overflow

An "overflow" condition is detected when one of the ten instructions in Table 4-1 is executed and
the numeric value of the result obtained exceeds the maximum numeric value that can be contained
in the register holding the final result. Under this condition the resulting sign will be incorrect, an
overflow enable is generated and sent to control and designator D1 is set.

Table 4-1. Instructions that Condition the Carry and Overflow Designators

Function Code (Octal) Instruction
f= 14, j= 00-17 Add to A
f=15 j=00-17 Add Negative to A
f=16, j= 00-17 Add Magnitude to A
f=17, j=00-17 Add Negative Magnitude to A
f=20, j=00-17 Add Upper
f=21, j=00-17 Add Negative Upper
f=24, j=00-17 Add to X
f=25 j=00-17 Add Negative to X
f=71, j=10 Double-Precision Fixed-Point Add
f=71, j=11 Double-Precision Fixed-Point Add Negative
4.1.4.2. Carry

A "carry" condition is detected when an arithmetic carry is generated out of the sign bit position as
the result of the addition of two numeric values. The sign combinations which could set designator
DO to a 1-bit indicating that a carry has occurred.

4.1.4.3. Arithmetic Interrupt

The arithmetic section cannot cause a system interrupt. But, when an arithmetic fault occurs, it
generates a fault condition signal which allows the control section to set the appropriate designator
bit. Other processor conditions in conjunction with those arithmetic fault conditions determines
whether or not control generates an interrupt.

4.1.5. Fixed-Point Division

The process of dividing one fixed-point number by another consists of transferring the numbers to
the arithmetic section, performing a series of trial subtractions to form a quotient and a remainder,
transferring the properly signed quotient to a register and, if the remainder is to be saved, transferring
ti:\eﬁproperly signed remainder to another register. All divide operations use the main adder and
shifter.

8492
UP-NUMBER

4-4
PAGE

SPERRY UNIVAC 1100/80 Sgtoml

Processor and Storage Programmer Reference UPDATE LEVEL

4.1.6. Fixed-Point Multiplication

The arithmetic section contains a fast multiplier unit to handle multiplications. The main adder and
shifter are used only in the beginning and ending cycles for input and output data adjustments.

4.1.7. Floating—-Point Arithmetic

Floating-point arithmetic handles the scaling problems which arise in computations involving
numbers which vary widely in range. In floating—point arithmetic, the numbers are represented in
a special format so that the computer can automatically handle the scaling.

4.1.8. Floating-Point Numbers and Word Formats

Floating-point numbers in the instructions are represented in single-precision format as a 27-bit
fractional quantity multiplied by the appropriate power of two, or in the double-precision format as
a 60-bit fractional quantity multiplied by the appropriate power of two. The power of two is called
the exponent. In machine representation, the exponents are biased to make them lie in the range
of positive numbers or zero. These biased exponents are called characteristics. The fractional part
is referred to as the mantissa. The two format types, single-precision and double-precision, are as
follows.

Single—Precision Floating-Point Format

S Characteristic Mantissa

35 34 27 28 o

Double-Precision Floating—Point Format

S Characteristic Mantissa

7170 60 69 36
Mantissa

35 0

An explanation of the sign bit, characteristic, and mantissa follows:

B SIGN - The sign bit expresses the sign (S) of the numerical quantity represented by the
floating-point number.

If S = 0, the numerical quantity is positive (+).
If S = 1, the numerical quantity is negative (-).

B CHARACTERISTIC - The characteristic represents both the numerical value and the sign of the
exponent.

8492
UP-NUMBER

4-5
PAGE

SPERRY UNIVAC 1100/80 Sgtoms

Processor and Storage Programmer Reference UPDATE LEVEL

Single—Precision_ Characteristic - The 8-bit characteristic of a single-precision
floating—-point number represents an exponent value in the range + 127 through -128. The

characteristic is formed by adding a bias of + 128 (200g) to the exponent. Table 4-2 shows
the range of characteristic values and corresponding exponent values.

Table 4-2. Single-Precision Floating—-Point Characteristic Values and Exponent Values

Decimal Values Octal Values
Characteristic Unbiased Characteristic Unbiased
Exponent Exponent
255 +127 377 +177
128 000 200 000
000 -128 000 -200

2. Double-Precision Characteristic - The 11-bit characteristic of a double-precision

floating-point number represents an exponent value in the range + 1023 through -1024.
The characteristic is formed by adding a bias of +1024 {2000g) to the exponent. Table
4-3 shows the range of characteristic values and the corresponding exponent values.

Table 4-3. Double-Precision Floating-Point Characteristic Values and Exponent Values

Decimal Values Octal Values
Characteristic Unbiased Characteristic Unbiased
Exponent Exponent
2047 +1023 3777 +1777
1024 0000 2000 0000
0000 -1024 0000 -2000

MANTISSA - The mantissa portion of a floating—point number represents the fractional part of
the number. In the instructions the fractional part is normalized so that the absolute values
represented are greater than or equal to 1/2 but less than one. Zero cannot be represented
in this range and it is considered to be normalized as it stands. The binary point of a

3492
UP-NUMBER

4-6

SPERRY UNIVAC 1100/80 Sg«ms
r PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

floating—point number is assumed to lie between the last bit of the characteristic and the first
bit of the mantissa. The mantissa of a single-precision floating-point number contains 27 bits;
for a double-precision floating-point number, the mantissa contains 60 bits. The mantissa need
not be normalized for all instructions.
4.1.8.1. Single-Precision Floating—Point Numbers
A single-precision floating—-point number can be derived from a positive decimal number as follows:
Example Given number = + 124,
+12,0 = 1100, = .1100, x 10, +4
B Sigh=+4+ =0
Characteristic = exponent + bias
= 00 000 100, + 10 000 000,
= 10 000 100,
B Mantissa = .110 000 ... 000,

B The format for the floating—point number is as shown (sign included):

Sign Characteristic Mantissa

o 10 000 100 1100 ... o = 204600000000

36 34 27 26 0

4.1.8.2. Double-Precision Floating-Point Numbers

A double-precision floating-point number can be derived from a positive decimal number following
the same steps that were used for single-precision with these two exceptions:

B A bias value of 2000g is added to the exponent to form the characteristic. For single-precision
the value is 200g.

B The single-precision floating-point number for =120 (including sign) is 573 177 777 777,.

4.1.8.3. Negative Floating-Point Numbers

A floating-point number can be derived to represent a given negative number as follows:
B Represent the given number as a positive floating—piont number.

B Form the ones complement of the entire positive floating-point number.

Example Given number = -12,,

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

4-7
PAGE

UPDATE LEVEL

B The single-precision floating-point number for + 12,4 (including sign) is 204 600 000 0004.

B The single-precision floating—point number for -12,, (including sign) is 673 177 777 7774.

4.1.8.4. Residue

When a single-precision floating—point add or add negative operation is performed, the result
consists of two single-precision floating—point numbers. One of the numbers represents the algebraic
sum and the other number is the residue.

When the two 36-bit input operands for an Add or Add Negative instruction are transferred to the
arithmetic section, their characteristics are examined, and the mantissa of the input operand with the
smaller characteristic is right-shifted a number of bit positions equal to the difference between the
characteristics. The bits shifted out of the 36-bit arithmetic register are saved in an auxiliary register.
The portion of the mantissa saved in the auxiliary register is used to form the residue and it is not
included in the algebraic addition. After completion of the addition and any shifting necessary to
normalize the sum, the sum and the residue are packed into single-precision floating-point format
and transferred to two consecutive registers.

4.1.9. Normalized/Unnormalized Floating—Point Numbers

A floating-point number is normalized when the leftmost bit of the mantissa is not identical to the
sign bit or when all bits of the mantissa are identical to the sign bit. A floating—point number is
unnormalized when all bits of the mantissa are not sign bits and the leftmost bit of the mantissa is
identical to the sign bit.

All floating-point operations produce a normalized result when the input operands are normalized.
The sums produced by Floating Add and Floating Add Negative instructions and the result produced
by the Load And Convert To Floating instruction are always normalized regardless of whether or not
the input operands are normalized. When either or both input operands are not normalized, the result
obtained may be less accurate than if normalized input operands had been used.

Normalized input operands must be used for the Floating Multiply, Divide, Compress And Load, and
Expand And Load instructions. If normalized input operands are not used for these instructions, the
results are undefined.

4.1.10. Floating—-Point Characteristic Overflow/Underflow

Floating-point characteristic overflow/underflow occurs when the characteristic does not lie in the
range representable in the number of bits allowed for the characteristic.

When any of the Floating—Point Add, Add Negative, Multiply, Divide or Load And Convert instructions
or the Compress And Load instruction are performed, overflow or underflow may occur.

4.1.10.1. Floating-Point Characteristic Overflow

Single—precision floating—point characteristic overflow occurs when the 8-bit characteristic of the
resultant most significant single-precision floating-point word represents a number greater than
3774 and the associated mantissa is not zero.

Double—precision floating-point characteristic overflow occurs when the 11-bit characteristic of the
resultant double~precision floating-point number represents a number greater than 3777g and the
associated mantissa is not zero.

8492
UP-NUMBER

4-8
PAGE

SPERRY UNIVAC 1100/80 Systems

Processor and Storage Programmer Reference UPDATE LEVEL

When overflow is detected, the action taken depends on designator bit D20. Designator bit D22 is
always set.

4.1.10.2. Floating-Point Characteristic Underflow

Single-precision floating-point characteristic underflow occurs when the resultant floating-point
word represents a negative number and the associated mantissa of the result is not zero. This means
that the exponent of the result is less than -200g, thus the attached sign (positive - because absolute
value is used) changes due to the borrow. If the characteristic of the residue (Floating Add, Floating
Add Negative), remainder (Floating Divide), or the least significant single—precision word of the
product (Floating Multiply) represents a negative number, this fact by itself does not resuit in
underflow. Instead, the residue, remainder, or least significant word of the product is cleared to all
zero bits or set to all one bits (to reflect the appropriate sign).

Double-precision floating—point characteristic underflow occurs when the 1 1-bit characteristic of the
result represents a negative number, i.e., the exponent of the result is less than 2000g, the mantissa
of the result is not zero, and designator D5 is cleared.

When underflow is detected, designator D21 is always set and the action taken by the processor
depends on the state of designator D20.

4.1.10.3. Floating-Point Divide Fault

For single- or double—precision floating-point division a divide fault condition will be detected when
the mantissa of the divisor is zero. The action taken depends on designator D8 (for single-precision
floating-point division only) and designator D20. Designator D23 is always set.

4.1.11. Fixed-Point to Floating-Point Conversion

Conversion of a fixed-point number to floating—point number is performed in the arithmetic section.
The first input operand contains a characteristic (biased exponent) which defines the location of the
binary point for the fixed-point number with respect to the standard position of the binary point for
a floating-point number. The second input operand is the signed fixed- point number to be
converted.

The conversion process consists of transferring the two operands to the arithmetic section, shifting
the fixed-point number,.if necessary, to position its bits as the mantissa for a normalized
floating-point number. Modify the characteristic to reflect the magnitude and direction of the
normalizing shift. Pack the shifted fixed-point number (mantissa) and the modified characteristic in
floating-point format. Load the packed results in a register (conversion to single-precision
floating-point format) or into two consecutive registers (conversion to double-precision floating-point
format).

4.1.12. Floating-Point Addition

The process of adding two floating-point numbers consists of loading the numbers into the arithmetic
section, determining the difference between the characteristics of the two numbers, shifting (right)
the mantissa of the number having the smaller characteristic, adding the mantissas, combining the
results in floating-point format, and transferring the resulting floating-point numbers to GRS.

The‘ipput operands for floating-point addition need not be normalized numbers. For single-precision
addition, the sum (most significant word produced) is always a normalized number. The residue word

8492
UP-NUMBER

4-9
PAGE

SPERRY UNIVAC 1100/80 Sgﬁoms

Processor and Storage Programmer Reference UPDATE LEVEL .

may or may not be a normalized number. For double-precision addition, the sum is always a
normalized number.
4.1.12.1. Double-Precision Floating—Point Addition

The steps performed for double-precision floating-point addition are similar to those for the
single—precision addition with these six differences:

1. Each of the two operands occupy two 36-bit registers in the arithmetic section. In
single-precision addition both operands are contained in two 36-bit registers.

2. The mantissa sum can contain a maximum of 60 bits in double-precision addition instead of
27 bits as in single—precision addition.

3. The bits that are shifted out of the right end of the 36-bit register when the operands are lined
up prior to addition are lost. There is no residue.

4. Double-precision characteristic overflow occurs when the characteristic is greater than 37774
and the mantissa is not zero.

5. Double-precision underflow occurs when the exponent is less than -2000g and the mantissa
is not zero. In single-precision the value is -200g.

6. The sum is stored in two consecutive registers, A and A + 1. No residue is stored.

4.1.13. Floating—Point Subtraction (Add Negative)

Floating-point subtraction (both single-precision and double-precision) uses the same routine as for
the Floating-point Add operation.

4.1.14. Floating-Point Multiplication

The process of multiplying two floating-point numbers consists of loading normalized input operands
into the arithmetic section, unpacking, multiplying the mantissas, adding the characteristics, packing
the results into floating— point format, and transferring the result to GRS. The results obtained for
all cases in which either or both input operands are not normalized numbers are undefined.

4.1.15. Floating-Point Division

The process of dividing one floating-point number by another consists of loading the normalized input
operands into the arithmetic section, unpacking, dividing one mantissa by the other, subtracting the
characteristics, packing the results into fioating—point format, and transferring the result to GRS. The
results obtained for all cases in which either or both input operands are not normalized numbers are
undefined.

4.1.16. Floating-Point Zero

Floating-point zero can be defined as a floating—point number having all mantissa bits identical to
the sign bit.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

4-10
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

4.1.17. Byte Instructions

This class of instructions is designed to permit transference, translation, comparison, and arithmetic
computation of data in the form of predetermined bit patterns (e.g., half words, third words, quarter
words, and sixth words) referred to as bytes.

There are a total of 15 distinct instructions that perform the various multiword (byte string) operations
noted above. These instructions may be arranged under three functional groups:

1. instructions that invoive byte transfers and manipulations between one storage location and
another.

2. instructions that permit the mutual transference and manipulation of data among storage and
various control and arithmetic registers, and

3. instructions that perform decimal arithmetic addition and subtraction operations.

Twelve of the byte instructions are performed in the arithmetic section. The remaining three
instructions (33,00 - Byte Move, 33,01 - Byte Move with Translate, and 33,07 - Edit) are
performed in the main control section.

4.2. CONTROL SECTION

4.2.1. Instruction Word Format

During the running of a program in the SPERRY UNIVAC 1100/80 Processor, instructions are
transferred from main storage locations to the control section of the Central Processing Unit (CPU).
The instructions are transferred from sequentially addressed main storage locations until the
sequence is broken by the program or interrupted by the control section’s reaction to some special
condition or event. Each instruction is a coded directive to the control section; the control section
initiates a sequence of steps necessary to perform the particular operation prescribed by the
instruction. The 36-bit instruction word, illustrated below, is subdivided into seven fields.

f i a X hii u
35 30 29 26 25 22 21 18 17 16 15 o
where:
f= Function Code
i= Operand Qualifier, Character Addressing, partial Control Register Address, or Minor Function
Code
a= A-, X-, or R-register; Channel number, Jump Key or Stop Keys number: Minor Function Code:;

partial Control Register Address

X = Index Register

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems)
Processor and Storage Programmer Reference

4-11

UPDATE LEVEL PAGE

h = Index Register Incrementation Control

i = Indirect Addressing Control, Base Register Suppression Control, 24-Bit Indexing Control, or
Operand Basing Selector

u= Operand Address or Operand Base

4.2.2. Instruction Word Fields

The following paragraphs describe the manner in which the CPU’s control section reacts to the
contents of each of the seven fields of an instruction word.

4.2.2.1. Use of the f-Field

The f-field is used to define the basic operation to be performed for all legal values of f less than
or equal to 70g (except 075, 335, and 37g). When the f-field is 074, 33g, 374 or greater than 704,
the f- and j-fields are combined to form a 10-bit field used to define the basic operation. For eleven
of these f, j combinations, the value in the a-field is used to define variations of the basic operation.
All function codes are defined in Section 5 and listed in Appendix C.

4.2.2.2. Description of the j-Field

When f is less than 70g (except 07g, 33g and 37g), the j-field is used as an operand qualifier or to
identify a J-register used in the character addressing mode. When f is equal to 70g, the j-field is
used as part of a control register address. When f is 075, 334, 374 or greater than 70, the j-field
and the f-field are used to define a basic operation, and, in this instance, the j-field operates as a
minor function code.

4.2.2.2.1. Use of the j-Field as an Operand Qualifier
When the f-field of an instruction contains a value in the range 014 through 67g (except 074, 334
and 37g) and D4 = O, the j-field is used as an operand qualifier which specifies the data transfer

pattern to or from main storage except as specified in 4.2.2.2.2.

The j-field can contain values ranging from 00g through 17g. Each value except 45 through 74
determines a specific data transfer pattern. Each of the j-field values 4g through 75 may specify either

of two different data transfer patterns, or character addressing with the choice dependent on the

contents of the quarter word mode selector (D 10) and the character addressing mode selector (D4)
of the designator register (See 8.2.1). If D4 = 1, character addressing is specified and each of the
i-field values 4g through 7g specify a J-register as explained in 4.2.2.2.2. Figures 4-1 and 4-2
illustrate all the possible data transfer patterns which can be specified by the j-field when D4 = O.

8492 SPERRY UNIVAC 1100/80 Sg\omt 4-12

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
J Quarter-Word .
(Octal) | Designator# Storage Location Arithmetic Register
0 Oor1 |35 0 @ 35 o]

1| oo | [i7 o (85 seros__ _ 1817 d
2 | oot fas 1e] (835 raros__ _ 1817 J
3 | oo | 17 o (185 igns_ _ _ 18] |
asx | 0 las 18] (8 a5 signs__ _ 1617 o
sox | o | Y e D 1

oo-oIIIIIIC
6ux 0 l |23 12] }—@“ﬁgs_si_ggs_ o _|2|11 0

T# 0 [35 24[%
P [De O T
SH 1 L ls o]*‘@ﬁ'
oer | | I N e O T
e | Y O A T

10 Oor 1 I
no | oo [I I e O o PP
|

12 Oor1

" Oor1 L l23 18] }-—‘—3 fg;_;g;g;_'_-_-_:-_-.-_-_ -_;-
14 0or1 I |2924l] . 335 zoros 5-

15 Oor1 Es 3o| r3; oros

16% %% Oor1 L i17 0;5—z_or;s- o —18 17 OI

17 % %% Oor1 l J17 gﬁ—s:gt_'l; o _18 17 0]

* The Quarter-Word Designator bit (D10) is held in the designator register.

*% Character Addressing Designator bit (D4) will imply J-Register usage for instruction codes less
than f = 70 (except 07, 33, 37) for character or byte manipulation. D4 overrides D10.

*#% {f x = O, the h, i, and u are transferred. If x is not equal to zero, then u + (X,) is transferred.

Figure 4-1. Data Transfers From Storage

or e Processor and Storage Programmer Reference P I
(O:tal) %u:srit:;\g?;d Arithmetic Register :> Storage Location
0 Oor1 !35 o —(36)—as o]
1 0 or 1 [l12 li7 o
2 0or 1 I Jn 035 uﬂ]
3 Oor 1 ']17]17 o]
ann 0 [|17 o—(18—3s 18]]
. 0 L T o2 v o
6% 0 l |11 of——@“ei lza 12]]
T 0] |11 Wss 24]]
awn 1 L ls ol—@——>|]26 18]]
sex | [O b o
oxe |1 l b o in o |
Tax 1 | O |
10 Oor 1 L]5 o ls o]
| ot L Js_o—o— e |
12| oort L s 7o |
13 | oori [s l2318] |
14 Oor 1 I ls o]29 24[]
16 Oor1] Is 035 3ol]
16 0or 1 No Data Transfer
17 0or 1 No Data Transfer

* The Quarter-Word Designator bit (D10) is held in the designator register.

* % Character Addressing Designator bit (D4) will imply J-Register usage for instruction codes less
than f = 70 (except 07, 33, 37) for character or byte manipulation. D4 overrides D10.

Figure 4-2. Data Transfers to Storage

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

4-14
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

B Operand qualification when f = 104 through 674 (except 335 and 37g)

These instructions require the transfer of a full 36-bit word or a partial word to the arithmetic
section.

1. If j = 00g, the full 36-bit word addressed by U is transferred to the arithmetic section.

2. Ifj = 01gthrough 1565 and U specifies a main storage location (U > 200g), a partial word
is transferred to the arithmetic section. In the arithmetic section, the partial word is
extended to a full 36-bit word either by zero fill or by sign bit fill from the leftmost bit
position of the partial word, as illustrated in Figure 4-1.

3. |Ifj= 16gor 174, an 18-bit partial word is transferred to the arithmetic section. Details
on the formation of this partial word and its extension are given in 4.2.2.8.2.

When j = 01g through 155 and U specifies a control register (U < 177g), the j-field is treated as
if it contained 00g and the full 36-bit word is transferred from the control register to the arithmetic
section.

B Operand qualification for store and block transfer instructions

The full 36-bit word in the control register specified by the a-field (see 4.2.2.3.1) is transferred
to a nonaddressable register in the data shift/complement/store section (f=01g through 044
and 06g). The nonaddressable register is cleared to O when f=054.

1. If j = 00g, the full 36-bit word is transferred from the nonaddressable register to the
location (main storage or control register) specified by U.

2. If j= 01g through 155 and U specifies a main storage location (U 200g), a partial word
is transferred from the least significant bit positions of the nonaddressable register to the
main storage location as shown in Figure 4-2. The contents of the remaining bit positions
of the main storage location are not changed. Partial word writes of a third word, quarter
word, or sixth word increase the storage cycle time to 200 nanoseconds.

3. Ifj= 16gor 174, data is never transferred from the nonaddressable register to any storage
location {(main storage or control register).

When j = O1g through 155 and U specifies a control register (U < 177g), the j-field is treated as
if it contained 00g, and the full 36-bit word is transferred to the control register.

4.2.2.2.2. Use of the j-Field to Specify Character Addressing

When the f-field of an instruction contains a value in the range 01 through 67g (except 07g, 33,
and 37g), D4 (the character addressing mode selector) = 1, and j = 4g, 5g, 6g, or 74, the character
addressing mode is specified. When the character addressing mode is specified, a j—field value of
4, 5, 6, or 7 specifies JO, J1, J2, or J3, respectively, in the GRS, as the register defining character
or byte size, the position of the byte within a word, and other details. When D6 = O, the J-register
is selected from the set of four J-registers at GRS locations 106 through 1115. When D6 = 1, the
J-register is selected from the set of four J-registers at GRS locations 126 through 1314. The format

of a J-register word as used in the character addressing mode is shown in Figure 4-3 and explained
in Table 4-4.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

4-15
UPDATE LEVEL PAGE

I| BL |E

Iw b Ow Ob

35 34 33 32 31

21 20 18 17 32 0

Figure 4-3. J-Register Format for Character Addressing Mode

Table 4-4. Explanation of J-Register Fields for Character Addressing Mode

Bit Positions

J-Register Interpretation
Field ldentifier

35 | The I-bit of the J~Register in conjunction with the h-bit of the
instruction, specifies whether or not the contents of the Ow and
Ob-fields are modified when the instruction is performed as
follows:
B | = 0 or h = 0 specifies no J register modification#*
B | = h = 1 specifies modification of Ow and Ob by iw
and Ib, respectively.
34,33 BL Specifies the byte length, as follows:
B BL = O specifies a 9 bit byte
@ BL = 1 specifies an 18 bit byte
] BL = 2 specifies a 6 bit byte
B BL = 3 specifies a 12 bit byte
32 E Specifies the bit used to extend the byte to 36 bits, if necessary,
as follows:
B E = O specifies extension with O bits
B E = 1 specifies extension with the high order bit of the
byte

31-21 lw Iw specifies the increment (or decrement) in words. Ib specifies
the increment (or decrement) in bytes. If | = O, or h = O these
two values are ignored.

20-18 Ib Ifl = 1 and h = 1, the values in the Ilw and Ib-fields are added
to the values in the Ow and Ob-fields, and the sums are stored
in the Ow and Ob-fields after the initial values in these two fields
are used to form the absolute address of a word and select a byte
within the word.

17-3 Ow The offset in words. - This value is used to form the relative

address U and the absolute addresses Sl and SD.

8492 SPERRY UNIVAC 1100/80 Systems 4-16
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
Table 4-4. Explanation of J-Register Fields for Character Addressing Mode (continued)
Bit Positions J-Register Interpretation
Field Identifier
2-0 Ob The offset in bytes. This value is used to select a particular byte

within the selected word. The valid values of Ob for the possible
values of BL are shown in Figure 4-4. Other byte selections are

not defined.
* Ifl = 0, h = 1.in the instruction word specifies index register modification when x z O.
BL=0 Ob =0 Ob =2 Ob =4 Ob =6
(9-bit bytes)
35 27 26 1817 98 0
BL =1 Ob =0 Ob =4
(18-bit bytes)
35 18 17 0
BL = 2 Ob=0|0Ob=1|0Ob=2|0b=3|0b=4|[0b=25
(6-bit bytes)
35 30 29 24 23 18 17 12 11 65 0
BL =3 Ob =0 Ob =2 Ob =4
(12-bit bytes)
35 24 23 12 11 0
Figure 4-4. Byte Selected for Valid Combinations of BL and Ob Field Values
The additions performed when | = 1 and the h-bit of the instruction = 1 are symbolized by
Ob 4+ Ib = Ob
and

Ow + lw — Ow

The values in the Ow- and Ob-fields are always treated as positive values in these additions. The
high order bit in the Iw-field (bit 31 of the specified J-register) is applied as the sign of both the Iw-
and Ib-fields. If this sign is a zero bit, forward modification of Ow/Ob is performed. Forward
modification permits incrementing the Ow— or Ob-field value (or both) to produce new Ow- and
Ob-field values to select any desired byte in lower order bit positions of the same word or select any
desired byte in any word having a higher address. If the sign bit applied to the lw- and Ib-fields is
a one bit, backward modification of Ow/0b is performed. Backward modification permits
decrementing the Ow- and Ob-field value (or both) to produce new Ow- and Ob-field values to select

8492
UP-NUMBER

4-17

SPERRY UNIVAC 1100/80 Systems
UPDATE LEVEL PAGE

Processor and Storage Programmer Reference

any desired byte in higher order bit position of the same word or select any desired byte in any word
having a lower address.

The result produced for the addition Ob + Ib — Ob is dependent on the two values used as inputs,
the sign in the Iw-field and the value in the BL- field, as shown in Tables 4-5 through 4-8. The valid
combinations of Ob and Ib are shown in these tables. The result produced when any other
combination is used is undefined.

The addition Ow + Iw — Ow is performed in an 18-bit ones complement subtractive adder after
extending the 15-bit Ow-field to 18 bits with three high order zero bits and extending the 11-bit
Iw-field to 18 bits with seven high order bits identical to the sign bit in the Iw-field. A carry or borrow
generated in the addition Ob + Ib — Ob also enters the Ow + Iw — Ow addition. The sum is stored
in the Ow field of the specified J-register after the initial value in the Ow field is used to form the
relative and absolute addresses needed for the instruction.

If the value in the Ow field is modified by adding a positive Iw value to produce an 18-bit sum greater
than 077777¢ or by adding a negative Iw value to produce a negative 18-bit sum, the 15-bit value
stored in Ow is undefined. Producing a negative 18-bit sum is a common programming error which
can be avoided by choosing an artificially high—initial value for Ow and reducing the initial value of
Xm by a like amount.

If the value U produced by the addition u + Xm + Ow (see 4.2.2.5) for an instruction which specifies
the character addressing mode is less than 200g, a register in the GRS is not referenced. Instead,
the values S| and SD are produced, and if U passes the storage limits test, an attempt is made to
reference main storage.

Table 4-5. Output Ob Values Produced When BL = 0

Valid Input Ob Values
BL = O (9-Bit Number Of Valid 0 2 4 6
Bytes) Bytes Ib
Forward Or Value
Backward

Forward -0 0 0 2 4 6
Modification 1 2 2 4 6 O¢
(Jz; = 0) 2 4 4 6 Oc 2.
3 6 6 Oc 2, 4.
Backward 0 7 0 2 4 6
Modification 1 5 6p 0 2 4
3 1 2g 4g 6g 0

For valid Ob/Ib input combinations
C = Carry (+ 1) to Ow + Iw — Ow addition

B = Borrow (- 1) to Ow + lw — Ow addition

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S
Processor and Storage

rogrammer Reference

UPDATE LEVEL

4-18
PAGE

Table 4-6. Output Ob Value Produced When BL = 1

Valid Input Ob Values

BL = 1 (18-Bit Bytes) Number Of Valid (0] 4
Bytes Ib
Forward Or Value
Backward
Forward 0 0 0 4
Modification (J31 = 1 4 4 O¢
Backward 0 7 0 4
Modification (Jq, = 1 3 4p 0

For Valid Ob/ib Input Combinations

C = Carry (+ 1) to Ow 4 Iw — Ow addition
B = Borrow (- 1) to Ow + Iw — Ow addition
Table 4-7. Output Ob Values Produced When BL = 2
Valid Input Ob Values
BL = 2 (6-Bit Number Of Valid Ib (4] 1 2 3 4 5
Bytes) Bytes Value
Forward Or
Backward

0 0 0 1 2 3 4 5

Forward 1 1 1 2 3 4 5 O¢
Modification 2 2 2 3 4 5 O¢ 1c
(J31 = 0) 3 3 3 4 5 OC 1c 2c
4 4 4 5 O¢ 1c 2c 3¢

5 5 5 O¢ 1c 2. 3¢ 4.

0 7 0 1 2 3 4 5

Backward 1 6 5a 0 1 2 3 4

Modification 2 5 4 5g 0 1 2 3

Uz = 1) 3 4 3 4p 5g 0 1 2

4 3 2p 35 4p 5 0 1

5 2 1g 2 35 4q 55 0

For valid Ob/Ib combinations

c

Carry (+ 1) to Ow Iw — Ow addition

B = Borrow (- 1) to Ow Iw — Ow addition

8492 SPERRY UNIVAC 1100/80 Sgtems

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE

l 4-19

Table 4-8. Output Ob Values Produced When BL = 3

Valid input Ob Values
BL = 3 (12-Bit Number Of Valid Ib 0 2 4
Bytes) Bytes Value
Forward Or
Backward
Forward 0 0 0 2 4
Modification 1 2 2 4 O¢c
(J31 = 0) 2 4 4 Oc 2c
Backward 0 7 0 2 4
Modification 1 5 4p 0 2
(J31 = 1) 2 3 25 48 0

For valid Ob/Ib combinations
C = Carry (+ 1) to Ow Iw — Ow addition

B = Borrow (- 1) to Ow Iw — Ow addition

4.2.2.2.3. Use of j-Field as Partial Control Register Address

When f = 70g, the most significant bit of the j—field is ignored by the hardware, and the three
low-order bits are combined with the contents of the a—field to form a 7-bit control register address.

4.2.2.2.4. Use of j-Field as Minor Function Code

When f = 074, 335, 375, or 714 through 764, the value in the j-field is a minor function code
designator. An explanation of the details of each of these instructions is given in Section 5 they are
summarized in Appendix C.

4.2.2.3. Uses of the a-Field

The contents of the a—field of an instruction word has a number of uses. The exact use is dependent
on the instruction being performed and, in many cases on the contents of the designator register.

4.2.2.3.1. Use of the a-Field to Reference an A-Register

For most of the instructions, the value in the a-field references one of the A-registers. When the A-,
X-, and R-register set selector, D6, is equal to O, each value in the range 00g through 174 in the a-field
references one of the user A-registers in the range of control register addresses 144 through 33,
respectively. When D6 = 1, each value in the range 00g through 174 in the afield references one
of the Executive A-registers in the range of control register addresses 1645 through 1734
respectively. In some instructions, the value in the a—field references two or three A-registers. When
two or three A-registers are referenced, the value in the a-field explicitly references register Aa, and
implicitly references registers Aa+ 1 and Aa+ 2.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

4-20
PAGE

UPDATE LEVEL

The unassigned control registers at addresses 34g, 35g, 174g and 1754 can be used as extensions
of the two sets of 16 A-registers. For example, when a = 17g and the instruction requires referencing
three A-registers (Aa, Aa+ 1, and Aa+2) then:

B If D6 = O, the last user A-register (address 33g) is referenced for Aa, the first user unassigned
control register at address 34g is referenced for Aa+ 1, and address 354 is referenced for Aa4 2.

B If D6 = 1, the last Executive A-register at address 1734 is referenced for Aa, the following
Executive unassigned control register at address 174y is referenced for Aa+ 1, and address
175g is referenced for Aa+ 2.

4.2.2.3.2. Use of the a-Field to Reference an X-Register

For certain instructions, the value in the a-field references one of the X-registers. When D6 = O,
each value in the range of 01g through 174 in the a-field references one of the user X-registers in
the range of control register addresses O1g through 174 respectively; if a Og, the user nonindexing
X-register at control register address 000g is referenced. When D6 = 1, each value in the range
of 01g through 17 in the a-field references one of the Executive X-registers in the range of control
register addresses 1414 through 1574 respectively; if a = Og, the Executive nonindexing X-register
at control register address 140g is referenced.

4.2.2.3.3. Use of the a-Field to Reference an R-Register

For certain instructions, the value in the a-field references one of the R-registers. When D6 = O,
each value in the range of 00g through 173 in the a-field references one of the user R-registers at
control register addresses 100g through 117, respectively. When D6 = 1, each value in the range
of 00g through 174 in the a-field references one of the Executive R-registers at control register
addresses 120g through 1374, respectively.

4.2.2.3.4. Use of the a—Field to Reference a Jump Key

For a Jump Key instruction, each value in the range of 01g through 174 in the a-field references one
of the 15 select jump control circuits in the CPU. These circuits may be individually set and cleared
via switches on the operator/maintenance panel on the STU.

4.2.2.3.5. Use of the a-Field to Reference Halt Keys

For a Halt Keys and Jump instruction, each of the four bit positions in the a-field references one of
the four select stop control circuits in the CPU. These circuits may be individually set and cleared
via switches on the STU.

4.2.2.3.6. Use of the a-Field as Minor Function Code

The value in the a—field specifies a particular variation of the basic operation initiated by the f, j
combination of the following instructions:

B Load Breakpoint Register/Store Jump Stack,

n Load Processor State Register,

8492

SPERRY UNIVAC 1100/80 Sygtoms 4-21

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
B Initiate Interprocessor Interrupt/Enable Second Day Clock/Enable Day Clock/Disable Day Clock,
B Test and Set/Test and Set and Skip/Test and Clear and Skip,
B Jump Overflow/Jump Floating Underflow/Jump Floating Overflow/Jump Divide Fault,
B Jump No Overflow/Jump No Floating Underflow/Jump No Floating Overflow/Jump No Divide

Fault,

4.2.2.4. Use of the j— and a-Fields to Specify GRS Control Register Address

For the Jump On Greater And Decrement instruction, the values in the j-field and a-field combine
to form a 7-bit address (the leftmost bit of the j—field is ignored). The 7-bit address specifies which
one of the 112 addressable GRS control registers is to be used as the counter for the instruction.

4.2.2.5. Use of the x-Field

An indexing operation which utilizes a ones complement subtractive adder occurs for every
instruction. If the A—, X-, and R-register set selector, D6, is equal to O, each x-field value in the range
01g through 174 references one of the user X-registers at control register addresses O1g through
174, respectively. If D6 = 1, each x-field value in the range O1g through 174 references one of the
Executive X-registers at control register addresses 14 1g through 167, respectively. When the value
in the x-field is not zero, the value in the Xm-field of the X-register specified by the x-field is added
to the extended contents of the u-field to form the relative operand address or an operand. This
indexing operation is symbolized by the notation: u 4+ Xm = U except for instructions which specify
the character addressing mode (see 4.2.2.2.2) and for most byte instructions. (See 4.1.17.) In these
cases it is symbolized by the notation u + Xm 4+ Ow = U. Xm is an 18-bit field unless 24-bit indexing
is specified.

When the value in the x-field is zero, no index register is referenced. However, an indexing operation
does occur. It consists of adding an 18-bit half word of all zero bits to the extended u-field value
to form the relative operand address or operand. This indexing operation is symbolized by the
notation: u + 0 = Uoru 4+ 0 4+ Ow = U.

An indexing operation never produces a U value consisting of all one bits. This applies when U is
a relative address and also when U is extended with zero bits (j = 16g) or with sign bits (j = 17)
for use as an immediate operand.

Example: If jz 16 or 175, u = 0000014, and Xm = 7777764
then

u+ Xm = U = 000001g + 7777765 = 000000g

Example: Iff =10 - 674 (except 33 and 37g). j = 16 or 174,
i=0,u= 1777774, and Xm = 600000g,
then

U+ Xm=U= 1777774 + 6000005 = 0000004

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S ms
Processor and Storage Programmer Reference

4-22
PAGE

UPDATE LEVEL

Example: Iif f =10 - 674 (except 33 and 37g), j = 16 or 17,
h=i=1u= 177777g and x = O,
then

h,i,u+ 0 =U= 7777774 = 0 = 000000,

4.2.2.6. Use of the h-Field

If the x-field of an instruction contains a nonzero value, the h-bit determines whether or not the
contents of the X-register specified by the x—field of the instruction or the Ow- and Ob-fields of an
instruction specifying the character addressing mode are modified.

After the indexing operation is complete, if h = 1, and x z O for an instruction which does not specify
the character addressing mode, or an instruction which specifies the character addressing mode and
a J-register containing | = O (see 4.2.2.2.2), the contents of the Xi—field of the specified X-register
are added to the contents of the Xm-field of the same register and the sum is stored back in the
Xm-field. The process is Xm + Xi — Xm. If D7 or i = O, the addition is performed in an 18-bit
ones complement subtractive adder. If D7 = i = 1, the addition is performed in a 24-bit ones
complement subtractive adder.

The only time index register modification produces an output of -0 occurs when both inputs are -0;
that is, -0 + -0 = -0.

After the indexing operation is complete for an instruction which specifies the character addressing
mode and a J-register containing | = 1, if h = 1, the contents of the Iw- and Ib—fields of the J-register
are added to the contents of the Ow- and Ob-fields, respectively, as explained in 4.2.2.2.2. In this
case Xm is not modified.

The modification of Xm or of Ow and Ob are performed without increasing instruction execution time.

If h = 0, neither Xm nor the Ow- or Ob-field is modified; the I-bit is ignored in this case.

4.2.2.7. Use of the i-Field

The i-field can be used to specify normal addressing, indirect addressing, absolute addressing, or
to extend the u-field of an instruction.

ifi = 1 and D7 = 0, indirect addressing occurs for all instructions except when f = 014 through
06g. 10g through 32g, 344 through 36g, 404 through 67g and j = 164 or 174. For the exception,
x ¢ O is also a required condition for indirect addressing.

Indirect addressing will not occur if:

[i=0

@ f = 01g through 065, 104 through 324, 344 through 364, 40g through 67g, j = 16g or 174
and x = 0. (Then the i-field is used as and extension of the u-field.)

@ D7 = 1 (Theni = 1 specifies absolute addressing, i = O specifies normal address generation
of u + Xm,))

8492) SPERRY UNIVAC 1100/80 S ms 4-23
UP_NUME=R Processor and Storage Programmer Reference UPDATE LEVEL | Pace
The above cases are summarized in Table 4-9.
Table 4-9. Summary of Use of i—Field
Exceptions
i D7 All Instructions f is less than 70 (Except 07, 33 and 37) and
j=16 or 17 and:
xz O x=0
0 0 Normal Addressing
Operand is (u + Xm)
0 1 Normal Addressing
Operand is h, i, u
1 (0] Indirect Addressing Indirect Addressing
1 1 Absolute Addressing Operand is (u 4+ Xm)
(Xm = 24 Bits)

When indirect addressing is specified, it is initiated after calculating the relative address and the
absolute address in the index subsection, even if U < 177g. The contents of bit positions 21 through
O of the main storage location addressed are transferred to the control section of the CPU, where
they replace the x—, h-, i-, and u-field values of the current instruction. The modified instruction is
then performed just as if the whole instruction word were initially obtained in its modified form from
main storage. Indexing and index register incrementation (if specified) are performed in the normal
manner for both the original and the modified instruction. If the modified instruction also specifies
indirect addressing, the whole process of indirect addressing is repeated. The repetition or cascading
of indirect addressing continues until the modified instruction contains a O bit in the i-field, or
contains all O bits in the x-field for the f, j combinations which lead to the use of i to extend the u-field,
at which time indirect addressing ceases and the modified instruction is performed.

If f = O1g through 674 (except 074, 334, and 37g). j = 16g or 174, and x = O in an instruction as
it is initially obtained from main storage or as it is modified as a result of an indirect addressing
operation, indirect addressing does not occur even if i = 1. In this case, the i-field is used as an
extension of the u-field.

4.2.2.8. Description of the u-Field
The ultimate use of the u-field depends on the values in the f and j-fields of the instruction.

For most f, j combinations, u is used to form an operand address. The indexed extension of the value
in the u-field of the instruction is used as the relative address of a main storage location or as the
address of a GRS location.

For certain f, j combinations, the indexed extension of the value in the u-field of the instruction (or
of a modified instruction in the case of indirect addressing) is used as the operand for some
instructions, as a count in the case of shift instructions. For other f, j combinations, the value in the
u-field has no effect on the result of the instruction.

4-24

8492 SPERRY UNIVAC 1100/80 Sg&oms
r PAGE

UMUM% Processor and Storage Programmer Reference UPDATE LEVEL

4.2.2.8.1. Use of the u-Field as an Operand Address Designator

When the value in the u-field of an instruction is an operand address designator because of the f,
j combination or the specifying of indirect addressing, the 16-bit u value is extended to 18 bits with
two high order zero bits to form one input to the index adder. Xm is the other input. U, the 18-bit
output of the index adder, is used as the relative address of a main storage location if U > 200g.

If U < 200g, U is normally used as the absolute address of a GRS location. However, if U< 200g
and the instruction specifies indirect addressing, a jump to address, or the address for an Execute
instruction (see 5.13.3), U is the relative address of a main storage location rather than the absolute
address of a GRS location.

For any given u-field value, a value can be chosen for the Xm portion of the specified index register
which will produce any desired value of U in the range 000000g through 7777764. (Itis not possible
to produce the value 7777774))

Certain instructions use U to reference both U and U+ 1 as a double-length (72-bit) word. In this
case, U is the address of the most significant 36 bits and U+ 1 is the address of the least significant
36 bits.

4.2.2.8.2. Use of the u-Field as an Operand Designator

The value in the u-field of an instruction (or a modified instruction) is an operand ingredient rather
than an operand address ingredient if indirect addressing is not specified and

B f=07gandj= 144
B f = 10g through 67g (except 335 and 37g) and j = 16g or 17g; or
B 733 and j = 00g through 05g or 10g through 13g (all shift instructions).

When the value in the u-field of an instruction (or a modified instruction resulting from an indirect
addressing sequence) is an operand designator, the 16-bit value in the u-field is extended to 18 bits
to provide one of the inputs to the index adder for an indexing operation. This 18-bit value normally
consists of O bits in the two leftmost bit positions and the 16-bit value from the u-field in the
remaining bit positions. However, if f = 10g through 674 (except 33g and 37), j = 164 or 17g, and
x = 0O, the bits in the h and i-fields are used in the two leftmost bit positions in place of the O bits.
When h and i are both 1 bits and they are used to extend a u-field whose value is all 1 bits, the output
of the index adder is all O bits rather than all 1 bits.

The 18-bit index adder output is normally sent to the arithmetic section where it is extended to
become a 36-bit operand by O-bit fill (j = 16g) or by filling with bits identical to the leftmost bit of
the index adder output (j = 17g).

4.2.2.8.3. Use of the u-Field as a Shift Count Designator

The value in the u-field of an instruction (or a modified instruction) is a shift count designator if f =
73g and j = 00 through 054 or 10 through 13g. In these cases the 16-bit u-value is extended to
18 bits with high order zero bits and added to Xm to form the 18-bit value U. The appropriate low
order bits of U are used as the shift count.

4-25

8492 SPERRY UNIVAC 1100/80 Systems
PAGE

UP-NUMBER Processor and Storage Programmer Reference lunm LeveL

4.2.2.8.4. Restrictions on the Use of the u—Field

When indirect addressing is not specified, certain instructions require the value in the u-field to be
zero. These instructions are:

] Initiate Interprocessor Interrupt
B Enable Day Clock
B Disable Day Clock

If this restriction is violated, the results produced are undefined.

8492
UP-NUMBER

5-1
PAGE

SPERRY UNIVAC 1100/80 Systems

Processor and Storage Programmer Reference UPDATE LEVEL

5. Instruction Repertoire

5.1. INTRODUCTION

This section describes the operation performed by each instruction in the 1100/80 user repertoire.
These descriptions are grouped by types of instructions.

An introduction to each group presents information that is common to all instructions in the group.
The detailed descriptions of the individual instruction have the following format:

[] Instruction name Mnemonic code Octal function code

B Symbolic description of the operation performed by the instruction. The symbology used is
defined in Appendix A.

B Textual description of the operation performed by the instruction.

8 Sequentially numbered notes which provide special information related to the instruction, if
appropriate.

For all instructions, any possible value may be used in the a-, x-, h—, i-, and u-fields unless an
exception to this rule is stated in the notes. Any possible value may be used in the j—field except
when j is a minor-function-code designator or when an exception is stated in the notes.

If the value of the j-field is 016 and 017 (an immediate operand specification) and the value of the
x-field is zero, the h-bit, i-bit, and u-field make up the 18-bit operand. If the h- and i-bits are one
and the value of the u-field is 0177777, however, the resulting operand is zero, not all ones. A
negative zero can be generated as an immediate operand only by load negative instructions using
x=, h-, i-, and u—fields of zero.

If the value of the a-field of the instruction is 017 (A1 5) and the instruction makes use of more than
one arithmetic register (A+ 1 or A+ 2), those registers are located at GRS location 034 and 035, or
0174 and 0175, depending on the value of D6. If automatic index register incrementation occurs,
the value of Aa or Xa are not affected. However, the value of U or U+ 1 (if U < 0200) or A+ 1 (for
two pass instructions, which require both U and U+ 1) may be affected; if Xx is referenced as one
of these operands, the updated index value is used.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-2
PAGE

UPDATE LEVEL

5.2. LOAD INSTRUCTIONS
The single-precision load instructions transfer data to the arithmetic section where a 36-bit word
is always formed. The 36-bit word is then transferred to the register specified by the a-field of the
instruction. Single-precision data-word transfers from storage to the arithmetic section is controlled
by the value in the j-field.
For the double-precision load instructions, the j~field is a minor function code and full 72-bit data
transfers result.
5.2.1. Load A - LA 10

U —A

The contents of U is transferred under j-field control to the arithmetic section and then to Aa.

5.2.2. Load Negative A - LN,LNA 11

-U) = A
The contents of U is transferred under j-field control to the arithmetic section. The ones complement
of the value in the arithmetic section is transferred to Aa.
5.2.3. Load Magnitude A - LM,LMA 12

[(U)|—A
The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the value in the arithmetic section is a 1 bit, it is complemented:; if the sign bit is a O bit, it is not
complemented. The final value (always positive) is transferred from the arithmetic section to Aa.

For j-field values 3-7 (quarter word not set) and 17 sign bit 35 controled by sign extention.

1. This instruction is the same as Load A (see 5.2.1) for j = H1, H2, Q1-Q4, or S1-S6.

5.2.4. Load Negative Magnitude A - LNMA 13

-[U | —=A
The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the value in the arithmetic section is a O bit, it is complemented; if the sign bit is a 1 bit, it is not
complemented. The final value (always negative) is transferred from the arithmetic section to Aa.

For j-field values 3-7 (quarter word not set) and 17 sign bit 35 controled by sign extention.

1. This instruction may be used to load -0 into an A-register by using j = 16g or 174, and x =
h=i=u=0.

2. This instruction is the same as Load Negative A (see 5.2.2) for j = H1, H2, Q1-Q4, or S1-S6.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-3

UPDATE LEVEL PAGE

525 LoadR - LLR 23
) =R,

The contents of U is transferred under j-field control to the arithmetic section and then to the
Ra-register specified by the a-field.

1. If the processor is in user mode, an attempt to Load RO causes a Guard Mode interrupt.

5.2.6. Load X Modifier — LXM 26
(U) — Xayy_o: Xagg_yg unchanged
The contents of U is transferred under j-field control to the arithmetic section; the low-order 18 bits
of the value in the arithmetic section is transferred to the lower half (bits 17-0) of the X-register
specified by the a-field; the upper half (bits 35 through 18) of the X-register remains unchanged.
1. This instruction loads only the low-order 18 bits of the specified X-register even if D7 = i =
1 to specify 24-bit indexing.
5.2.7. Load X - LLX 27
(U) — Xa
The contents of U is transferred under j-field control to the arithmetic section and then to the
X-register specified by the a-field.
5.2.8. Load X Increment - LXI 46
(U) - xa35_18; Xa 17-0 Unchanged
The contents of U is transferred under j-field control to the arithmetic section; the low-order 18 bits
of the value in the arithmetic section is transferred to the upper half (bits 35-18) of the X-register
specified by the a-field. The lower half (bits 17-0) of the X-register remains unchanged.
1. This instruction loads the full high-order 18 bits of the specified X-register even if D7 = i =

1 to specify 24-bit indexing.

5.2.9. Double Load A - DL f=71 | 13

(UU+1) — AA+1

The contents of U and U+ 1 are transferred to the arithmetic section and then to Aa and Aa+1,
respectively.

5.2.10. Double-Load Negative A - DLN 71,14
—“U.U+4+1) —- AA41

The contents of U and U+ 1 are transferred to the arithmetic section where the 72-bit value is
complemented and then transferred to Aa and Aa+1, respectively.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-4

UPDATE LEVEL PAGE

5.2.11. Double Load Magnitude A - DLM 71,15

[(UWU+1)| — AA+1
The contents of U and U+ 1 are transferred to the arithmetic section. If the sign bit (bit 35) of U is
a 1 bit, the 72-bit value in the arithmetic section is complemented; if the sign bit is a O bit, the 72-bit
value is not complemented. The final value (always positive) is transferred from the arithmetic section
to Aa and Aa+ 1.
5.3. STORE INSTRUCTIONS
The single-precision store instructions transfer data from a control register specified by the a—field
to the storage location or control register addressed by U. Exceptions to this are the Store Constant
instructions. (See 5.3.5.)
Single-precision data-word transfers to storage are controlled by the j-field. If j = 16g or 17g, no
data is stored. A Guard Mode interrupt will occur, however, if U < 200g and an Executive register
is specified in user mode, orif U > 02004 and a storage-limits or write-protection violation occurs.
Indexing, index incrementation/decrementation, and indirect addressing function normally in all
cases.
5.3.1. Store A - S,SA 01

(A) - U

The contents of Aa is transferred under j-field control to location U.

1. If j = 16g or 174, no data is stored.

5.3.2. Store Negative A - SN,SNA 02
—A) = U
The complement of the value of Aa is transferred under j-field control to location U.

1. Ifj = 16g or 174, no data is stored.

5.3.3. Store Magnitude A - SM,SMA 03
A —U

If tﬁe sign bit (bit 35) of the value of Aa is one, the value is complemented. The final value (always
positive) is transferred under j-field control to focation U. '

1. Ifj = 16g or 174, no data is stored.

5-5

8492 SPERRY UNIVAC 1100/80 Sgﬁems
PAGE

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL

5.3.4. StoreR - S,SR 04
(Ra) — U

The contents of the Ra-register specified by the a-field is transferred under j-field control to location
u.

1. If j = 16g or 174, no data is stored.

5.3.5. Store Constant Instructions - XX 05; a = 00-07
Constant — U

A constant value specified by the a-field is transferred under j-field control to location U. The
following octal constant values may be stored:

Y4 a=20 000000 000000 Zero

SNz a=1 777777 7177777 Ones

SP1 a=2 000000 000001 Plus One

SN1 a=3 777777 777776 Minus One
SFS a=4 050505 050505 Fieldata Blanks
SFz a==56 606060 606060 Fieldata Zeros
SAS a==6 040040 040040 ASCI| Blanks
SAZ a=7 060060 060060 ASCIl Zeros

5.3.6. Store X - S,8X 06
(Xa) = U

The contents of the Xa-register specified by the a-field is transferred under j~field control to location
u.

1. Ifj = 16g or 17g, no data is stored.

5.3.7. Double Store A - DS 71,12
(AAA+1) = UU+1

The contents of Aa and Aa+ 1 are transferred to locations U and U+ 1, respectively.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Sgtoms 5-6
Processor and Storage Programmer Reference UPDATE LEVEL PAGE

5.3.8. Block Transfer - BT 22
(Xx + u) — Xa + u, repeat k times; k = the initial count in the repeat count register

A source word is transferred under j-field control to the arithmetic section, and then under j-field
control to a destination word-location. The repeat count is decreased by 1. The
source-to—-destination transfer step is repetitively performed until the repeat count has been
decreased to 0. The x-field specifies the X-register used with the u-field to determine the effective
source word-address. The a-field specifies the X-register used in determining the effective
destination word-address.

1. A word containing the desired repeat count in the rightmost 18-bit positions must be loaded
in the repeat count register (R1) before performing the Block Transfer instruction.

2. If the initial repeat count is +0, no data is transferred. If - O, then 40 is written into bits 17-0
of the repeat count.

3. If j = 16g or 174, no data is transferred; however, the repeat count is decreased to zero.

4. Ifthe x-field is zero, no data is transferred. The contents of the X-register specified by the a-field
remain unchanged regardless of the contents of the a- and h-fields.

5. If aninterrupt occurs before the repeat count has decreased to zero, the termination pass occurs
at the conclusion of the currently active data transfer. The remnant repeat count is stored in
R1. When the interrupt is honored, the captured P value is the address of the Block Transfer
instruction or the address of the Execute instruction which led to the Block Transfer instruction.
Thus, this address can e preserved and, when the interrupt has been processed, it is possible
to return to the Block Transfer instruction and continue executing this instruction at the point
where it was terminated for the interrupt. If the Block Transfer instruction was entered by means
of an Execute instruction, the h-field of the Execute instruction must be zero so that, when the
program returns to the Execute instruction, the effective U address will again lead to the Block
Transfer instruction. If the Block Transfer instruction specifies indirect addressing (i = 1), the
h-field must be zero to enable the program to return to the same effective U address and
complete the Block Transfer instruction in the event of an interrupt.

6. If there is no indirect addressing (i = O0), the h-field is normally one. If h = 0, no
incrementation/decrementation of the index registers occurs. When h = O, the source and
destination addresses are the initial contents of the index registers used repetitively for every
transfer performed. Thus, no more than one data transfer is effectively performed.

7. If the x-field is not zéro, but the a-field is zero, the a-field references index register zero (X0),
and proper operation occurs.

5.4. FIXED-POINT ARITHMETIC INSTRUCTIONS

The fixed-point arithmetic instructions perform integer or fractional addition, subtraction,
multiplication, and division. In a single-precision arithmetic instruction, the transfer of data from
location U in storage to the arithmetic section is under the control of the contents of the j-field of
the instruction. For double—precision and paralle! half-word and third-word arithmetic operations,
the value in the j-field is a minor-function code.

For all arithmetic instructions, indexing, index incrementation/decrementation, and indirect
addressing function normally.

8492
UP-NUMBER

5-7

SPERRY UNIVAC 1100/80 S%tems
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

The overflow and carry designators are set according to the results of the operation for all add and
add-negative instructions except add and add-negative halves and thirds.

The sign of the result is determined by the rules of algebra except for add and add-negative
instructions where both operands are zero. In this case, the result is positive zero, except for add
instructions where both operands are negative zero, and add-negative instructions where the
minuend (Aa) is negative zero and the subtrahend (U) is positive zero.
5.4.1. Addto A - AAA 14

{A) + (U) — A
The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is added algebraically to the contents of Aa. The sum is stored in Aa.
5.4.2. Add Negative to A — AN,ANA 15

(A) - (U) — A
The contents of U is transferred under j—field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of Aa. The difference is stored
in Aa.
5.4.3. Add Magnitudeto A - AMAMA 16

A+ (U] —A
The contents of U is transferred under j~field control to the arithmetic section. If the sign bit (bit 35)
of the 36-bit value in the arithmetic is one, the value is complemented:; if the sign bit is zero, the value
is not complemented. The final 36-bit value in the arithmetic section (always positive) is added
algebraically to the contents of Aa. The sum is stored in Aa.

Only valid for j = 3-7, 17.

1. This instruction is the same as Add To A (see 5.4.1) for j = H1, H2, Q1-Q4, or S1-S6.

5.4.4. Add Negative Magnitude to A — ANM,ANMA 17

(A -] —A
The contents of U is transferred under j-field control to the arithmetic section. If the sign bit (bit 35)
of the 36-bit value in the arithmetic section is one, the value is complemented; if the sign bit is zero,
the value is not complemented. The final 36-bit value in the arithmetic section (always positive) is
subtracted algebraically from the contents of Aa. The difference is stored in Aa.

Only valid for j = 3-7, 17.

1. This instruction is the same as Add Negative To A (see 5.4.2)forj = H1, H2, Q1-Q4, or S1-S6.

8492
UP-NUMBER

5-8

SPERRY UNIVAC 1100/80 Sgtoma
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

5.4.5. Add Upper - AU 20

(A) + (U) = A41
The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is added aigebraically to the contents of Aa. The sum is stored in Aa+ 1. The
contents of U and Aa remain unchanged.
5.4.6. Add Negative Upper - ANU 21

(A) - (U) = A+1
The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of Aa. The difference is stored
in Aa+ 1. The contents of U and Aa remain unchanged. ‘
5.47. Addto X - AAX 24

(Xa) + (U) — Xa
The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is added algebraically to the contents of the Xa-register specified by the a-field.
The sum is stored in the Xa-register specified by the a—field.
5.4.8. Add Negative to X - ANANX 25

(Xa) - (U) — Xa
The contents of U is transferred under j-field control to the arithmetic section. The 36-bit value in
the arithmetic section is subtracted algebraically from the contents of the Xa-register specified by
the a-field. The difference is stored in the Xa-register specified by the a-field.
5.4.9. Multiply Integer - MI 30

(A) x (U) = AAH1
The contents of U is transferred under jfield control to the arithmetic section. The contents of Aa
is multiplied algebraically by th 36-bit value in the arithmetic section, producing a 72-bit product.
The most significant 36 bits of the product (including sign bits) are stored in Aa. The least significant
36 bits of the product are stored in Aa+1.
1. Bit positions 71 and 70 of the product are always sign bits. The product of any two 35-bit

positive integers cannot exceed a 70-bit positive integer.
5.4.10. Multiply Single Integer - MSI 31

(A) x (U) — A
The contents of U is transferred under j—field control to the arithmetic section. The contents of Aa

is multiplied algebraically by the 36-bit value in the arithmetic section, producing a 72-bit product.

The least significant 36 bits of the product are stored in Aa. The most significant 36 bits of the
product are lost.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-9
Processor and Storage Programmer Reference

UPDATE LEVEL l PAGE

1. The 36-bit result stored in Aa does not represent the product as a signed number if the leftmost
37 bits of the 72-bit product formed in the arithmetic section are not identical.

5.4.11. Multiply Fractional - MF 32
(A) x (U) = AA+1

The contents of U is transferred under j-field control to the arithmetic section. The contents of Aa
is multiplied algebraically by the 36-bit value in the arithmetic section, producing a 72-bit product
which is shifted left circularly one bit position. The leftmost 36 bits of the shifted product, including
the sign bit, are stored in Aa. The rightmost 36 bits are stored in Aa+ 1.

1. This instruction performs an operation identical to the Multiply Integer instruction (see 5.4.9)
except that the 7 2-bit result of the multiplication process is shifted left circularly one bit position
prior to storing it in Aa and Aa+1.

2. The rightmost bit of the result in Aa+ 1 is a sign bit and it is identical to the leftmost bit of the
result in Aa.

5.4.12. Divide Integer - DI 34
(A A4+1) + (U) — A; - remainder — A+ 1

The contents of U is transferred under j-field control to the arithmetic section. The 72-bit signed
number in Aa and Aa+ 1 are divided algebraically by the 36-bit value in the arithmetic section. The
36-bit signed quotient is stored in Aa. The remainder retains the sign of the dividend (the leftmost
bit of the initial contents of Aa) and is stored in Aa+1.

1. The absolute value of the 72-bit signed dividend (Aa,Aa+4 1) should be less than the absolute
value of the divisor (j-determined portion of U) multiplied by 235. If this relationship is not
satisfied and D20 is zero, Aa and Aa+ 1 are cleared to zero and D23 is set to one. If this
relationship is not satisfied and D20 is one, Aa and Aa+ 1 remain unchanged, D23 is set to one,
and a Divide Check interrupt results. This includes the case in which the divisor equals zero.

5.4.13. Divide Single Fractional - DSF 35
(A) : (U) = A41

The contents of U is transferred under j-field control to the arithmetic section. The contents of Aa
is divided algebraically by the 36-bit value in the arithmetic section. The 36-bit signed quotient is
stored in Aa+ 1. The remainder is lost. The contents of Aa remain unchanged.

1. The absolute value of the dividend (Aa) should be less than the absolute value of the divisor
(i-determined portion of U). If this relationship is not satisfied and D20 is zero, Aa+ 1 is cleared
to zero and D23 is set to one. If this relationship is not satisfied and D20 is one, Aa+4 1 remains
unchanged, D23 is set to one, and a Divide Check interrupt results. This includes the case in
which the divisor equals zero.

2. Thisinstruction performs an operation like that of divide integer except that the quotient appears
to be shifted one bit to the right.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-10
PAGE

UPDATE LEVEL

5.4.14. Divide Fractional - DF 36
(AL A4 1) : (U) — A; remainder — A4 1
The contents of U is transferred under j-field control to the arithmetic section. The 72-bit signed
number in Aa and Aa+ 1 are divided algebraically by the 36-bit value in the arithmetic section. The
36-bit signed quotient is stored in Aa. The remainder retains the sign of the dividend (the leftmost
bit of the original contents of Aa) and is stored in Aa+1.
1. The absolute value of the leftmost half of the dividend (Aa) should be less than the absolute value
of the divisor (j-determined portion of U). If this relationship is not satisfied and D20 is zero,
Aa and Aa+ 1 are cleared to zero and D23 is set to one. If this relationship is not satisfied and
D20 is one, Aa and Aa+ 1 remain unchanged, D23 is set to one, and a Divide Check interrupt
results. This includes the case in which the divisor equals zero.
2. This instruction performs an operation identical to divide integer except that the quotient
appears to be shifted one bit-to the right.
5.4.15. Double-Precision Fixed-Point Add - DA 71,10
(AA+1) + (UU+1) — AA+1
The 72-bit signed number from U and U+ 1 are added algebraically to the 72-bit signed number
from Aa and Aa+1. The 72-bit sum is stored in Aa and Aa+1.
5.4.16. Double-Precision Fixed-Point Add Negative - DAN 71,11
(AA+1) - (UU+1) = AA+41
The 72-bit signed number from U and U+ 1 are subtracted algebraically from the 72-bit signed
number from Aa and Aa+1. The 72-bit difference is stored in Aa and Aa+ 1.

5.4.17. Add Halves - AH 72,04
(A)3s5_18 + (Ulzs_13 — Azs_1g
(A)y7.0 + (U170 = Ay70

The conteqts of each half (18-bit portion) of U is added algebraically to the contents of the
corresponding half of Aa. The sums are stored in the corresponding halves of Aa.

1. There is no interaction between the upper and lower halves of the operands. A carry from bit

position 17 is propagated to bit O rather than bit 18. A carry from bit position 35 is propagated
to bit 18 rather than bit O.

5.4.18. Add Negative Halves - ANH 72,05
(Al3s_18 — (Ulzs_153 — A3s_1a: |

(Aly7.0 - (U0 = A0

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-11
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

The contents of each half (18-bit portion) of U is subtracted algebraically from the contents of the
corresponding half of Aa. The differences are stored in the corresponding halves of Aa.

1. There is no interaction between the upper and lower halves of the operands. A borrow from

bit position 17 is propagated to bit O rather than bit 18. A borrow from bit position 35 is
propagated to bit 18 rather than bit O.

5.4.19. Add Thirds - AT 72,06
(Al3s-24 + (Ulzs_24 = Azs_24
(Al23_12 + (Ul2z_12 = Az3q2
A10 + U110 ~ Ao

The contents of each third (12-bit portion) of U is added algebraically to the contents of the
corresponding third of Aa. The sums are stored in the corresponding thirds of Aa.

1. A carry from bit position 11, 23, or 35 are propagated to bit O, 12, or 24, respectively, rather
than to bit 12, 24, or O.

5.4.20. Add Negative Thirds — ANT 72,07

(A)35_24 — (U)zs_24 — Azs_24:
(A)23_12 = (U)23_12 = Az3_12
(A)y120 - (U110 = A0

The contents of each third (12-bit portion) of U is subtracted algebraically from the contents of the
corresponding third of Aa. The differences are stored in the corresponding thirds of Aa.

1. A borrow from bit position 11, 23, or 35 are propagated to bit O, 12, or 24, respectively, rather
than to bit 12, 24, or O.
5.5. FLOATING-POINT ARITHMETIC
Floating-point arithmetic operations allow for efficient computation involving numerical data with a
wide range of magnitudes. Indexing, index incrementation/decrementation, and indirect addressing
function normally in all floating—point arithmetic instructions.
The greatest precision is obtained in floating-point arithmetic operations when the floating-point
input operands are normalized numbers. Certain floating-point operations produce undefined results
if normalized input operands are not used. The supporting notes indicate which instructions are
affected.
5.6.1. Floating Add - FA 76,00
(A) + (U) — A; residue — A4+1if D17 = 1

The single-precision floating—point number from location U is added to the single—precision
floating-point number from Aa. The resulting sum is normalized and then stored in single—precision

8492
UP-NUMBER

5-12

SPERRY UNIVAC 1100/80 Sgtoms
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

floating—point format in Aa. If D17 = 1, the residue in single-precision floating—-point format is stored
in Aa+41.

1. The result stored in Aa is a normalized number even if either or both of the input operands are
not normalized. No attempt is made to normalize the residue stored in Aa+4 1.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the most significant word of the result is + 0, the word stored depends on
D8.

4. The sign of the most significant word of the result is the sign of the large input operand. The
sign of the other operand is assigned to the residue.
5.6.2. Floating Add Negative — FAN 76,01
(A) - (U) — A; residue — A41if D17 = 1
The single-precision floating—point number from location U is subtracted from the single-pre~ision
floating-point number from Aa. The resulting difference is normalized and then stored in
single-precision floating—point format in Aa. If D17 = 1, the residue in single-precision floating-point

format is stored in Aa+1.

1. The result stored in Aa is a normalized number even if either or both of the input operands are
not normalized. No attempt is made to normalize the residue stored in Aa+1.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the most significant word of the result is *+ 0, the word stored depends on
D8.

4. The Floating Add Negative operation is ideniica! +» the Floating Add operation described in 5.5.1
except that the ones complement of the contents of location U is used as the second operand.

5. The sign of the most significant word of the result is the sign of the large input operand. The
sign of the other operand is assigned to the residue.
5.5.3. Double-Precision Floating Add - DFA 76,10
(AA+1) + (UU+1) = AA+1
The double-precision floating-point number from locations U and U+1 are added to the
double-precision floating—point number from Aa and Aa+1. The resulting sum is normalized and

then stored in double-precision floating— point format in Aa and Aa+ 1.

1. The result stored is a normalized number even if either or both of the input operands are not
normalized.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.
3. If the exponent value of the sum is less than -1024 and D5 and D2 are one, a Floating-Point

Characteristic Underflow interrupt does not occur. Instead, +0 is stored in Aa and Aa+1. |If
D20 is zero, D5 is ignored.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-13
PAGE

UPDATE LEVEL

4. If the mantissa produced is floating—point zero, the result stored is +0 regardless of the signs
and characteristics of the input operands.
5.5.4. Double-Precision Floating Add Negative - DFAN 76,11
(AA+1) - (UU+1) > AA+1
The double-precision floating-point number from locations U and U+ 1 are subtracted from the
double-precision floating—point number from Aa and Aa+- 1. The resulting difference is normalized

and then stored in double-precision floating-point format in Aa and Aa+ 1.

1. The result stored is a normalized number even if either or both of the input operands are not
normalized.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the exponent value of the difference is less than -1024 and D5 and D20 are one, a
Floating-Point Characteristic Underfiow interrupt does not occur. Instead, +0 is stored in Aa
and Aa+ 1. If D20 is one and D5 is zero, the interrupt occurs. If D20 is zero, D5 is ignored.

4. The Double-Precision Floating Add Negative operation is identical to the Double-Precision
Floating Add process described in 5.56.3 except that the ones complement of the contents of
U and U+ 1 is used as the second operand.

5. If the mantissa produced is floating-point zero, the result stored is +0, regardless of the signs
and characteristics of the input operands.

5.5.5. Floating Multiply - FM 76,02
(A) x (U) — A(and A+1if D17 = 1)

The single-precision floating-point number from Aa is multiplied by the single—precision

floating-point number from location U. The resulting double-length product is packed into two

single-precision floating-point numbers. The most significant portion of the product in
single-precision floating—point format is stored in Aa. If D17 = 1, the least significant portion of the

product in single-precision floating—point format is stored in Aa+ 1.

1. If either or both input operands are not normalized numbers, the results are undefined. The
following notes apply only if both input operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. The portion of the product stored in Aa is a normalized number. No attempt is made to normalize
the number stored in Aa+ 1.

4. The algebraic rule for signs applies to the portions of the product stored in Aa and Aa+1.
5. If the mantissa of either or both input operands is zero, the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the values of the characteristics of the input operands.

b. If D8 is zero, the result stored in Aa is +0 regardless of the signs of the input operands.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-14
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

c. If D8 is one and if the exponent value is in the range -128 through + 127, the most
significant product-word will reflect the magnitude of the characteristic produced and the
sign produced by the mantissa arithmetic.

If the exponent value of the most significant product-word is greater than +127 or less
than —128, the result stored in Aa is £ O, whichever would reflect the signs of the input
operands.

The value of D8 has no effect on the least significant product-word. When the mantissa for the
least significant product-word is zero, it is packed with the appropriate characteristic. If the
characteristic of the residue is less than —128, the result stored in Aa+ 1 is + 0, whichever would
reflect the signs of the operands.

A characteristic overflow of the most significant word can occur; however, the characteristic of
the residue could be in the range 000 through 377. In this case, the result stored in Aa is *
0 depending on the algebraic rule of the sign, and the residue is packed with the appropriate
characteristic and stored in Aa+ 1.

If the characteristic of the number stored in Aa is greater than or equal to 27 then the
characteristic of the number stored in Aa+ 1 is 27 less than the characteristic in Aa.

6.5.6. Double-Precision Floating Multiply - DFM 76,12

AA+ 1) x (UU+1) = AA+1

The double-precision floating—point number from Aa and Aa+ 1 multiplied by the double—precision
floating-point number from locations U and U4 1. The product is normalized and stored in
double-precision floating-point format in Aa and Aa+ 1.

1.

1

If either or both input operands are not normalized numbers, the results are undefined. The
following notes apply only if both operands are normalized numbers.

A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

The result stored in Aa and Aa+ 1 are always a normalized number.

The algebraic rule for signs applies except for the special cases covered in notes 5b and 6.
If the mantissa of either or both input operands are zero, the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the values of the characteristics of the input operands.

b. The result stored in Aa and Aa+ 1 are +0 regardless of the signs of the input operands.

If the exponent value of the product is less than —-1024 and D5 and D20 are one, a Floating-Point
Characteristic Underflow interrupt does not occur. Instead +0, regardless of the signs of the
input operands, are stored in Aa and Aa+ 1. If D20 = 1 and D5 = O, the interrupt occurs. If
D20 = 0, D5 is ignored.

8492
UP-NUMBER

5-15
PAGE

SPERRY UNIVAC 1100/80 Sgtems

Processor and Storage Programmer Reference UPDATE LEVEL

5.5.7. Floating Divide - FD 76,03

(A) + (U) = A; remainder —» A41if D17 = 1

The single-precision floating—point humber from Aa is divided by the single-precision floating—point
number from location U. The quotient is stored in Aa in single—precision floating—point format. If
D17 = 1, the remainder is stored in Aa+4 1 in single-precision floating—-point format.

1.

If either or both input operands are not normalized numbers, the results are not defined. The
following notes apply only if both operands are normalized numbers.

2. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

3. If the mantissa of the divisor (U) is zero, a Divide Check interrupt occurs.

4. The quotient stored in Aa is a normalized number. No attempt is made to normalize the
remainder that is stored in Aa+1 when D17 = 1,

5. The algebraic rule for signs applies to the quotient stored in Aa. The sign of the dividend is
assigned to the remainder stored in Aa+4 1.

6. If the mantissa of the dividend (Aa) is zero but not the divisor (U), the following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs, regardless of
the characteristics of the operands. Y

b. If D8 = 0, the quotient stored in Aa is 40 regardless of the signs of the operands.

c. IfD8 = 1 and the exponent value of the quotient is greater than + 128 or less than -128,
the quotient stored in Aa is * 0, whichever would reflect the signs of the input operands.

7. If the exponent value of the remainder is less than —128, the remainder stored in Aa+1is * O,
whichever would reflect the sign of the divide::~ from Aa.

8. Ifthe characteristic of the dividend from Aa is greater than or equal to 27, then the characteristic
of the number stored in Aa+ 1 for the remainder is 27 or 26 less than the characteristic of the
dividend.

5.5.8. Double—Precision Floating Divide - DFD 76,13

(AA+1) : (UU+1) = AA+1

The double-precision floating—point number from Aa and Aa+ 1 are divided by the double-precision
floating—point number from locations U and U+1. The quotient is stored in Aa and Aa+1 in
double-precision floating-point format. The remainder is not retained.

1.

If either or both of the input operands are not normalized numbers, the results are undefined.
The following notes apply only if both operands are normalized numbers.

A Floating-Point Characteristic Overflow/Underflow interrupt may occur,
If the mantissa of the divisor is zero, a Divide Check interrupt occurs.

The result stored in Aa and Aa+ ' are always a normalized number.

8492 SPERRY UNIVAC 1100/80 Sgtoms

5-16
UP-NUMBER Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

The algebraic rule for signs applies except for the special cases explained in notes 6b and 7.

(&)

6. [f the dividend mantissa (Aa, Aa+ 1) is zero and the divisor mantissa (U,U+ 1) is not zero, the
following applies:

a. A Floating-Point Characteristic Overflow/Underflow interrupt never occurs regardiess of
the values of the characteristics of the input operands.

b. The result stored in Aa and Aa+ 1 are +0 regardless of the signs of the operands.

7. If the exponent value of the quotient is less than -1024, and D5 and D20 are one, a
Floating—Point Characteristic Underflow interrupt does not occur. Instead + 0, regardless of the
signs of the input operands, are stored in Aa and Aa+ 1. If D20 = 1 and D5 = O, the interrupt
occurs. If D20 = O, D5 is ignored.

5.5.9. Load and Unpack Floating - LUF 76,04
[{V) l34-27 — Aq_o. zero fill;

(U)ze_o — A+ 126—0’ sign fill

The single-precision floating-point number from location U is transferred to the arithmetic section

and unpacked. The absolute value of the biased characteristic of the input operand is transferred

to bits 7 through O of Aa; bits 35 through 8 of the Aa is filled with O bits. The mantissa of the input
operand is transferred to bits 26 through O of Aa+ 1; bits 35 through 27 of Aa+ 1 are filled with bits

identical to the sign of the floating—point number in U.

1. No attempt is made to normalize the operand.

5.5.10. Double Load and Unpack Floating -~ DFU 76,14

I (U,U+ 1)70—60 | hand A1o_o, zero fi",

(U,U+ 1)59—36 hand A+ 123_0, Slgn fl",
The double-precision floating-point number from locations U and U+ 1 are transferred to the
arithmetic section and unpacked. The absolute value of the biased characteristic of the input operand
is transferred to bits 10 through O of Aa; bits 35 through 11 of Aa are filled with O bits. The leftmosi
24 bits of the mantissa, (U),3_. are transferred to bits 23 through O of Aa+ 1; bits 35 through 24
of Aa+ 1 are filled with bits identical to the sign of the floating—point number in locations U and U+1.
The rightmost 36 bits of the mantissas (U+ 1) are transferred to Aa+2.

1. No attempt is made to normalize the operand.

5.5.11. Load and Convert to Floating - LCF 76,05
(Ulgs — A+13g; [normalized (U)ly6_0 = A+ 15¢.0:

if (U)zg = O: (A)y_o ¢ normalizing count — At+134.59:

8492 SPERRY UNIVAC 1100/80 Systems
UP-NUMBER Processor and Storage Programmer Reference

5-17

UPDATE LEVEL PAGE

if (U)3g = 1: ones complement of [(A);_o * normalizing count] — A+ 13,4 57
The fixed-point number from iocation U is sent to the arithmetic section where it is shifted right or
left, as required, to normalize it. The normalizing shift count is added to the characteristic from the
rightmost eight bits of Aa if a normalizing right-shift is required. It is subtracted from the
characteristic if a normalizing left-shift is required. The adjusted characteristic (complemented if U
is negative) is packed with the normalized value from U to form a single-precision floating—point
number. The packed result is stored in Aa+ 1. The contents of Aa remain unchanged.
1. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.
2. The 28 leftmost bits from Aa are ignored: (Aa);_o must be prebiased.
3. If the resultant mantissa is zero, the following applies:

a. If D8=0C, the result stored in Aa is +0.

b. IfD8=1, and the resultant characteristic is in the range 000 through 377, the characteristic
is packed with the zero mantissa and stored in Aa.

c. If D8=1, and the resultant characteristic is a negative number, * O is stored in Aa
depending on the sign of the input operand.

5.5.12. Double Load and Convert to Floating ~ DFP, DLCF 76,15

(U)35 g A+ 135; [normalized (U,U+ 1)]59_0 - A+123—0 and A+2,

if (U)gg = O: (A)10_0 * normalizing count — A+ 134-24:

if (U)gs = 1: ones complement of [(A);o_¢ * normalizing count] = A4 13,4 24
The double-precision fixed-point number from locations U and U+ 1 are sent to the arithmetic section
where it is shifted right or left, if necessary, to normalize it. The normalizing shift count is added to
the characteristic from the rightmost 11 bits of Aa if a normalizing right-shift is required. It is
subtracted from the characteristic if a normalizing left-shift is required. The adjusted characteristic
(complemented if U is negative) is packed with the normalized value from U and U+1 to form a
double-precision floating-point number and the packed result is stored in Aa+1 and Aa+2. The
contents of Aa remain unchanged.
1. A Floating-Point Characteristic Overflow/Underflow interrupt may occur.

2. The 25 leftmost bits from Aa are ignored; (Aa);q_o must be prebiased.

3. If the 72-bit input operand from U and U+ 1 are ¢, the result stored is +0 regardless of the
sign of the 72-bit operand.

4. I_f thg adjusted characteristic represents a negative number when D20 and D5 = 1, a
F-_Ioatmg—F'oint Characteristic Underflow Interrupt does not occur. Instead +0, regardless of the
sign of the 72-bit operand, is stored.

8492 SPERRY UNIVAC 1100/80 Systems

5-18
UP_NUMBER Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

5.5.13. Floating Expand and Load - FEL 76,16

If (U)gg = O: (U)gg_27 + 16005 — Azg_s4:

if (U)gg = 1: (U)gs_27 — 1600g — Ajg_ 540

(U2g-3 = A2z 0

(Ulao = A+135_33;

(U)zs — A+1329
The single—precision floating—-point input operand from location U is transferred to the arithmetic
section. The three fields of the operand are expanded to form a double-precision floating—point
number as follows:

a. The sign bit is stored in bits 71 and 32 through O.

b. The 8-bit characteristic which includes a bias of 2004 is modified to an 11-bit characteristic
which includes a bias of 20004 and it is stored in bits 70 through 60.

c. The 27-bit mantissa is stored in bits 59 through 33.
The result is transferred to Aa and Aa+1.

1. If the operand is not in the normalized single-precision floating—point format, the results stored
are undefined. The following notes apply only if the input operand is a normalized number.

2. If the mantissa of the input operand is * O, the result stored in Aa and Aa+1 are +0 regardless
of the sign of the operand. ‘

3. A Floatipg—Point Characteristic Overflow/Underflow interrupt will not occur as a result of this
instruction.
5.56.14. Floating Compress and Load - FCL 76,17
If (U)gg = O: (U)zs_24 - 16005 — Agg_57:
if (Ulgs = 1: (U)gs_24 + 16005 — Agg 59:
(U230 — Aze-3:
(U+1)35-33 = Az

The double precision floating-point operand from locations U and U+ 1 are transferred to the

arithmetic section. The three fields of the operand are compressed to form a single-precision
floating-point number as follows:

a. The sign bit is stored in bit 35.

b. The 11-bit characteristic which includes a bias of 20004 is modified to an 8-bit characteristic
which includes a bias of 200g and it is stored in bits 34 through 27.

c. The 27 leftmost bits of the mantissa (bits 23 through O from location U and bits 35 through
33 from location U+ 1) are stored in bits 26 through O.

6-19

8492 SPERRY UNIVAC 1100/80 Sgtoms
PAGE

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL

The result is transferred to Aa.

1. The following notes apply only if the operand is a normalized number.

2. ¥ D20 = 1, a Floating-Point Characteristic Overflow interrupt occurs if the characteristic of the
operand is greater than 4127, and a Floating-Point Characteristic Underflow interrupt occurs
if the characteristic of the operand is less than —128. D21 is set when an underflow condition
is detected, and D22 is set when an overflow condition is detected.

3. The contents of U+ 135 ¢ are ignored.

4. If the operand is not a normalized number or is equal to + O, the result stored in Aa is +0
regardless of the characteristic of the input operand.

5.5.15. Magnitude of Characteristic Difference to Upper - MCDU 76,06

[(A) |35-27 — | (U) I35-27 — A+1g g zeros = A4 15¢ ¢

The absolute value of the characteristic of the single—precision floating-point number from location
U is subtracted from the absolute value of the characteristic of the single-precision floating—point
number from Aa.

The absolute value of the 9-bit difference is stored in bits 8 through O of Aa+ 1. Bits 35 through
9 of Aa+ 1 are zero filled. The contents of Aa is not changed.

1. The mantissas from location U and from Aa are ignored.

5.6.16. Characteristic Difference to Upper - CDU 76,07
ﬂ (A) l35—27 - l (U) I35_27 - A+18—0’ Sigﬂ bits to A+ 135_9

The absolute value of the characteristic of the single-precision floating— point number from location
U is subtracted from the absolute value of the characteristic of the single-precision floating-point
number from Aa. The 9-bit signed difference is stored in bits 8 through O of Aa+ 1. Bits 35 through
9 of the Aa+1 are filled with bits identical to the sign of the difference. The contents of Aa is not
changed.

1. The mantissas from location U and from Aa are ignored.

5.6. SEARCH AND MASKED-SEARCH INSTRUCTIONS

There are six search instructions, each of which compares the contents of either one or two
A-registers with the contents of storage locations or control registers. There are eight masked-search
instructions, each of which compares contents of predefined bit positions of either one or two

A-registers with the contents of the corresponding bit positions of storage locations or control
registers.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-20
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

These are all multistage instructions. The various stages required to perform these instructions are
as follows:

B An initial stage

B Repeated test stages (any number from O to 262,143)

B Termination stage

If indirect addressing is specified, it proceeds prior to initiation of the first test stage.

The initial stage prepares the control section and the arithmetic section for the test stages. The
following steps are performed during the initial stage:

B The P-register is incremented: (P) + 1 — P

B The contents of the repeat count register (R1) is transferred Ato the index subsection.
B The contents of the specified A-registers are transferred to the arithmetic section.
[

The contents of the mask register (R2) is transferred to the arithmetic section for a
masked-search inst'uction.

These steps are performed only during the initial stage and are not repeated during the test stages.

The rightmost 18 bit positions of R1 contain the repeat count; that is, the maximum number of test
stages to be performed. R1 must be loaded with the desired repeat count prior to initiating a search
or masked search instruction. If the initial repeat-count is +0, the termination stage is initiated
immediately following the completion of the initial stage; there are no test stages. If the repeat count
is not zero, a series of one or more test stages is initiated.

During each test stage, the value U is formed in the index subsection. For the search instructions,
an input operand is transferred to the arithmetic section under j-field control. The inputs to the test
process are the values obtained using the effective U address and the A-register or registers specified
by the instruction.

For the masked-search instructions, the contents of the j-field is a minor-function code. The inputs
to the test process are:

B the logical product of the mask from R2 and the input operand addressed by U
@ the logical products of the mask and the specified A-registers.

Each bit of the logical product is the logical product of the contents of corresponding bit positions
of the two words. The logical product of two bits gives the same results as the Logical [AND.

The search and masked-search instructions include algebraic and alphanumeric comparisons.
During an algebraic comparison, the leftmost bit of each of the 36-bit values are considered to be
a sign bit; a positive number is always recognized as being greater than a negative number. During
an alphanumeric comparison, the leftmost bit of each of the 36-bit values are considered to be a
numeric bit rather than a sign bit.

If the test process shows that the specified conditions are met, the repeat count is decreased by one
and the termination stage is initiated. If the specified conditions are not met, the repeat count is
decreased by one and examined. If the decreased repeat count is zero, the termination stage is
initiated. If the decreased repeat count is not zero, another test stage is normally initiated. It should
be noted that if x = O, Xi = O, or h = O, the same value for U will be formed in each test stage.

8492
UP-NUMBER

5-21

SPERRY UNIVAC 1100/80 Sgtoms
r PAGE

. Processor and Storage Programmer Reference UPDATE LEVEL

As previously indicated, the termination stage is initiated if the initial repeat count is zero, if the repeat
count is decreased from one to zero during the test stage, or if the conditions specified by the search
or masked-search instruction are detected during a test stage. If an interrupt is detected during either
an initial stage or one of the test stages, the termination stage is initiated immediately following that
stage. The P-register is reset and the repeat count is stored so that the search instruction can be
resumed when the interrupt condition has been satisfied.

The termination stage is used to transfer the current repeat count from the index subsection to the
rightmost 18-bit positions of R1. The contents of the P-register may or may not be changed during
the termination stage, as follows:

B If the termination stage is entered as a result of detecting that the initial repeat count is zero
during the initial stage or detecting that the decreased repeat count is zero during a test stage
for which the specified conditions are not detected (no find), the contents of the P-register are
not changed during the termination stage. The P-register contains the address of the instruction
following the search or masked-search instruction, or the address of the instruction following
the Execute instruction which referenced the search or masked-search instruction (next
instruction condition).

B |If the termination stage is entered as a result of detecting the specified conditions during a test
stage (a find has been made), the P-register is incremented during the termination stage: (P)
+ 1 — P. Since the P-register was also incremented during the initial stage, it now contains
the address of the search or masked-search instruction (or the address of the Execute instruction
which referenced it) + 2 (skip next instruction condition).

B If the termination stage is entered as a result of recognizing an interrupt, the P-register is
decreased by 1 during the termination stage: (P) ~ 1 = P. This decrease offsets the
incrementation of the P-register performed during the initial stage; the P-register now contains
the address of the search or masked-search instruction, or the address of the Execute instruction
which referenced it. This address can be preserved so that when the interrupt condition has
been satisfied, the search or masked-search can be resumed at the point where it was
terminated for the interrupt. If the search or masked-search instruction is entered by means
of an Execute instruction, the h-field of the Execute instruction should be zero (that is, no
incrementation) so that when the program returns to the Execute instruction after an interrupt,
the effective U address will again lead to the search or masked-search instruction.

If the search or masked-search instruction specifies indirect addressing (i-field = 1), the h-field
should be zero to enable the program to return to the same effective U address and resume the search
or masked search after an interrupt.

For equality searches (SE, SNE, MSE, MSNE), +0 does not equal -0; for arithmetic searches (SLE, SG,
SW, SNW, MSLE, MSE, MSW, MSNW), 40 is greater than -O; for alphanumeric searches (MASL,
MASG), -0 is greater than +O0.

When a search or masked-search is resumed after an interrupt, the initial stage is again performed
to prepare the control section for the remaining test stages and to transfer the contents of the
specified A-register to the arithmetic section for the comparisons performed in the test stages. When
h = 1 (that is, index register incrementation is specified), if the a— and x-fields reference the same
control register, the contents of that register will have been altered by the index incrementation which
occurred before the search or masked search was interrupted. As a result, when the search or masked
search is resumed, the value referenced by the a-field to be used in the test stages are no longer
the original test value used before the interrupt occurred. Therefore, when h = 1, the a—field and
x-field should not specify the same control register so that the search or masked—search instruction
can be resumed in the event of an interrupt.

8492
UP-NUMBER

5-22

SPERRY UNIVAC 1100/80 Sgtom.
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

5.6.1. Search Equal - SE 62

Skip NI if (U) = (A), else repeat
During the initial stage, the contents of the repeat count register (R1) are transferred to the index
subsection, the contents of Aa is transferred to the arithmetic section, and the P-register is
incremented.
if the initial repeat count is zero, the next instruction (NI) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.

This value from U is compared with the value from Aa and:

B [If (U) = (Aa), the termination stage is initiated. This stage stores the remnant repeat count and
increments the P-register. (Skip to Nl)

If (U) z (Aa) and the repeat count is not zero, another test stage is initiated.

@ if (U) + (Aa) and the repeat count is zero, the termination stage stores zero as the remnant
repeat—count and the P-register is not incremented.

1. 40 is not equal to -0.

5.6.2. Search Not Equal - SNE 63

Skip NI if (U) z (A), else repeat
During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa is transferred to the arithmetic section, and the P-register is
incremented.
If the initial repeat count is zero, the next instruction (NI) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.

The value from U is compared with the value from Aa and:

B if (U) 2 (Aa), the termination stage is initiated. The termination stage stores the remnant repeat
count and increments the P-register. (Skip Ni.)

B If (U) = (Aa) and the repeat count is not zero, another test stage is initiated.

If (U) = (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
stores zero as the remnant repeat count and the P-register is not incremented.

1. 40 is not equal to -0.

5.6.3. Search Less Than or Equal - Search Not Greater - SLE,SNG 64

Skip NI if (U) < (A), else repeat

During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa transferred to the arithmetic section, and the P-register is incremented.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-23
PAGE

UPDATE LEVEL

If the initial repeat count is zero, the next instruction (NI} is initiated.

if the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.
The value from U is compared with the value from Aa and:

B If (U) < (Aa), the termination stage is initiated. The termination stage stores the remnant repeat
count and increments the P-register. (Skip NLI.)

If (U) > (Aa) and the repeat count is not zero, another test stage is initiated.

B If(U) > (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
stores zero as the remnant repeat count and the P-register is not incremented.

1. 40 is greater than -0.

5.6.4. Search Greater - SG 65

Skip NI if (U) > (A), else repeat
During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa is transferred to the arithmetic section, and the P-register is
incremented.
If the initial repeat count is zero, the next instruction (NI) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j—field control.

The value from U is compared with the value from Aa and:

B If (U) > (Aa), the termination stage is initiated. The termination stage stores the remnant repeat
count and increments the P-register. (Skip NI.)

B If (U) < (Aa) and the repeat count is not zero, another test stage is initiated.

If (U) < (Aa) and the repeat count is zero, the termination stage is initiated. The termination stage
stores zero as the remnant repeat count and the P-register is not incremented.

1. 40 is greater than -0.

5.6.6. Search Within Range -~ SW 66

Skip NI if (A) < (U) < (A+1), else repeat
During the initial stage the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa and Aa+ 1 are transferred to the arithmetic section, and the P-register
is incremented.
If the initial repeat count is zero, the next instruction (N1) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat

count is decreased and the contents of U is transferred to the arithmetic section under j—-field control.
The value from U is compared with the value from Aa and:

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-24
UPDATE LEVEL PAGE

B If (U) > (Aa) and (U) < (Aa+ 1), the termination stage is initiated. The termination stage stores .
the remnant repeat count and increments the P-register. (Skip Nl.)

B If (U) < (Aa) or (U) > (Aa+ 1), and the repeat count is not zero, another test stage is initiated.

W If(U) < (Aa)or (U) > (Aa+ 1), and the repeat count is zero, the termination stage is initiated. The
termination stage stores zero as the remnant repeat count and the P-register is not incremented.

1. 40 is greater than -O.
2. Normally, (Aa) < (Aa+1). However, if (Aa) > (Aa+ 1), there is no value from U which can
satisfy the conditions (Aa) < (U) < (Aa+1).

5.6.6. Search Not Within Range - SNW 67

Skip NI if (U) < (A) or (U) > (A+ 1), else repeat
During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa and Aa+ 1 are transferred to the arithmetic section, and the P-register
is incremented.
If the initial repeat count is zero, the next instruction (NI) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section under j-field control.

The value from U is compared with the value from Aa and:

B If (U) < (Aa) or (U) > (Aa+ 1), the termination stage is initiated. The termination stage stores
the remnant repeat count and increments the P-register. (Skip NI.)

B If (U) > (Aa) and (U) < (Aa+ 1), and the repeat count is not zero, another test stage is initiated.
B If (U) > (Aa) and (U) < (Aa+ 1), and the repeat count is zero, the termination stage is initiated.
The termination stage stores zero as the remnant repeat count and the P-register is not

incremented.

1. Normally, (Aa) < (Aa+1). If, however, (Aa) > (Aa+1), there is no value from U which will
not satisfy the conditions (U) < (Aa) or (U) > (Aa+1).

2. 40 is greater than -O.

5.6.7. Mask Search Equal - MSE 71,00

Skip NI if (U) (R2) = (A) (R2), else repeat
During the initial stage, the contents of the Repeat Count Register (R1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.
If the initial repeat count is zero, the next instruction (Nl) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat

count is decreased and the contents of U is transferred to the arithmetic section. (U) [ARD (R2) are
compared to (Aa) (R2) and:

5-25
PAGE

8492 SPERRY UNIVAC 1100/80 Sgtoms

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL

m If(U) {R2) = (Aa) (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

H If(U) (R2) z (Aa) (R2) and the repeat count is not zero, another test stage is initiated.

B If(U) (R2) z (Aa) (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. 40 is not equal to -0.

5.6.8. Mask Search Not Equal - MSNE 71,01

Skip NI if {U) (R2) z (A) (R2), else repeat.
During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.
If the initial repeat count is zero, the next instruction (NJ) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) (R2) are

compared to (Aa) (R2) and:

B If(U) (R2) z (Aa) (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

B U (R2) = (Aa) (R2) and the repeat count is not zero, another test stage is initiated.

| fU) (R2) = (Aa) (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. 40 is not equal to -0.

5.6.9. Mask Search Less Than or Equal - Mask Search Not Greater - MSLE,MSNG 71,02
Skip NI if (U) (R2) < (A) (R2), else repeat

During the initial stage, the contents of the repeat count register (R1) is transferred to the index

subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products

of the values from Aa and R2 are formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (N)) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat

count is decreased and the contents of U is transferred to the arithmetic section. (V) (R2) are

compared to (Aa) (R2) and:

B If(U) (R2) < (Aa) (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

m If) (R2) > (Aa) (R2) and the repeat count is not zero, another test stage is initiated.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-26
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

| If(U) (R2) > (Aa) (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. 40 is greater than -0.

5.6.10. Mask Search Greater - MSG 71,03
Skip NI if (U) (R2) > (A) (R2), else repeat

During the initial stage, the contents of the repeat count register(R1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero; the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) (R2) are
compared to (Aa) (R2) and:

|) (R2) > (Aa) (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register. (Skip Nl.)

| If) (R2) < (Aa) (R2) and the repeat count is not zero, another test stage is initiated.

m If(L) (R2) < (Aa) (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. 40 is greater than -0.

5.6.11. Masked Search Within Range - MSW 71,04
Skip NI if (A) (R2) < (V) (R2) < (A+1) (R2), else repeat.

During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa, Aa+ 1, and R2 are transferred to the arithmetic section, the logical
products of the values from Aa and R2 and the values from Aa+1 and R2 are formed, and the
P-register is incremented, If the initial repeat count is zero, the next instruction (NI} is initiated.

if the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. The logical products
are compared and:

| U (R2) > (Aa) (R2) and (V) (R2) < (Aa+1) (R2) the termination stage is

initiated. . This stage stores the remnant repeat count and increments the P-register. (Skip NI.)

B If(U) (R2) < (Aa) (R2) or (U) (R2) > (Aa+1) (R2) and the repeat count is not

zero, another test stage is initiated.

| If) (R2) < (Aa) (R2) or (V) (R2) > (Aa+1) (R2) and the repeat count is zero,
the termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

1. Normally, (Aa) [AND (R2) < (Aa+ 1) [AND (R2). If, however, (Aa} [AN] (R2) > (Aa+ 1) [BND (R2),

no possible value of U will satisfy the search condition.

8492
UP-NUMBER

5-27

SPERRY UNIVAC 1100/80 Sgtoms
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

2. 40 is greater than -0.

5.6.12. Masked Search Not Within Range - MSNW 71,05
Skip NI if (U) (R2) < (A) (R2) or (U) (R2) > (A4 1) (R2), else repeat

During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 and the values from Aa-+1 and R2 are formed, and the P-register is
incremented.

If the initial repeat count is zero, the next instruction (NI) is initiated.

If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. The logical products
are compared and:

B i (V) (R2) < (Aa) (R2) or (V) (R2) > (Aa+1) (R2) the termination stage is
initiated. This stage stores the remnant repeat count and increments the P-register. (Skip NI.)

| IfU) (R2) > (Aa) (R2) and (U) (R2) < (Aa+1) (R2) and the repeat count is

not zero, another test stage is initiated.

| If (U)[AND (R2) > (Aa) (R2) and (U) [AND] (R2) < (Aa-1) (R2) and the repeat count is zero,
the termination stage stores zero as the remnant repeat count and the P-register is not
incremented.

1. Normally, (Aa) [ANT] (R2) < (Aa+ 1) [ERD (R2). If, however, (Aa) [END (R2) > (Aa+ 1) [BND (R2),

every possible value of U will satisfy at least one of the following conditions:
(L) (R2) < (Aa) (R2)
() (R2) > (Aa+1) (R2)

2. 40 is greater than -0.

5.6.13. Masked Alphanumeric Search Less Than or Equal - MASL 71,06

Skip NI if (U) (R2) < (A) (R2), else repeat
During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the values from Aa and R2 are formed, and the P-register is incremented.
If the initial repeat count is zero, the next instruction (NI) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) (R2) are

compared alphanumerically to (Aa) (R2), and:

B If(V) (R2) < (Aa) (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register. (Skip NI.)

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-28
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

B If(U) (R2) > (Aa) (R2) and the repeat count is not zero, another test stage is initiated.

B If(U) (R2) > (Aa) (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. -0 is greater than +O.

5.6.14. Masked Alphanumeric Search Greater - MASG 71,07

Skip NI if (U) (R2) > (A) (R2), else repeat
During the initial stage, the contents of the repeat count register (R1) is transferred to the index
subsection, the contents of Aa and R2 are transferred to the arithmetic section, the logical products
of the value from Aa and R2 are formed, and the P-register is incremented.
If the initial repeat count is zero, the next instruction (NI) is initiated.
If the initial repeat count is not zero, the first test stage is initiated. During each test stage, the repeat
count is decreased and the contents of U is transferred to the arithmetic section. (U) (R2) are

compared alphanumerically to (Aa) (R2), and:

B If(U) (R2) > (Aa) (R2), the termination stage is initiated. This stage stores the remnant
repeat count and increments the P-register (skip NI).

If (U) (R2) < (Aa) (R2) and the repeat count is not zero, another test stage is initiated.

If (U) (R2) < (Aa) (R2) and the repeat count is zero, the termination stage stores zero
as the remnant repeat count and the P-register is not incremented.

1. -0 is greater than +0O.

5.7. TEST (OR SKIP) INSTRUCTIONS

Test instructions are used to read one or more words from storage or control registers and test for
certain conditions. The result of the test is used to determine whether the instruction addressed by
the incremented contents of the P-register (next instruction) should be performed or skipped.

The next instruction (NI) is always read from storage. If the decision is made to skip NI, it is discarded,
the P-register is incremented a second time, and the contents of the P-register is then used to address
the following instruction.

Indirect addressing, indexing, and index register incrementation/decrementation operate normally.

5.7.1. Test Even Parity - TEP 44
Skip NI if (U) (A) has even parity.

The value from U is transferred to the arithmetic section under j—field control, where it is used with
the contents of Aa to form a 36-bit logical product.

If (V) (Aa) has an even number of 1 bits, the next instruction (NIl) is skipped and the instruction
following NI is performed.

8492 SPERRY UNIVAC 1100/80 Systems
UP-NUMBER Processor and Storage Programmer Reference

6-29

UPDATE LEVEL PAGE

If (U) (Aa) has an odd number of 1 bits, NI is performed.

5.7.2. Test Odd Parity - TOP 45
Skip NI if (A) (U) has odd parity.

The contents of U is transferred to the arithmetic section under j—field control, where they are used
with the contents of Aa to form a 36-bit logical product.

if (U) [AND (Aa) has an odd number of 1 bits, the next instruction (NI) is skipped and the instruction
following NI is performed.

If (U) (Aa) has an even number of 1 bits, NI is performed.

5.7.3. Test Less Than or Equal to Modifier - TLEM 47

Test Not Greater Than Modifier - TNGM

Sklp NI if (U)17_o < (xa)17_o; always (Xa)17_0 + (Xa) 35-18 Xa17_o
The contents of U is transferred to the arithmetic section under j—field control. The contents of the
index register addressed by the a-field (Xa) is transferred to the arithmetic section. The rightmost
18 bits of the value from U is subtracted from the rightmost 18 bits of the value from Xa (this is

performed as if the leftmost 18 bits of each operand were zeros).

i (U)y70 < (Xa)y7_g (the sign of the difference is positive), the next instruction is skipped and the
instruction following NI is performed.

If (U)y7_0 > (Xa)y7_g (the sign of the difference is negative), Nl is performed.

In either case, the leftmost 18 bits from Xa are added to the rightmost 18 bits from Xa, and the sum
is stored in the rightmost 18 bit positions of Xa. The leftmost 18 bit positions of Xa are not changed.

1. Iif a = 0, index register zero (XO) is referenced.
2. 40 is less than -0.

3. Both Xay;_g and the value from U is considered to be 18-bit numeric values with a positive sign
implied.

4. Only the rightmost 18 bits of the value from U are involved in the operation. Values of O, 1,
or 3 in the j-field yield the same results. Values of 164 or 17g in the j-field yield the same result.

5. It h = 1anda = x, the specified index register is incremented or modified only once.

5.7.4. TestZero - TZ 50
Skip Nl if (U) = = O.
The contents of U is transferred to the arithmetic section under j—field control.

If the value transferred is + O, the next instruction is skipped and the instruction following NI is
performed.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-30
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

If the value transferred is not * O, Nl is performed.

1. The contents of the a—field are ignored.

5.7.5. Test Nonzero - TNZ 51
Skip NI if (U) 2z = O.
The contents of U is transferred to the arithmetic section under j—field control.

If the value transferred is not + O, the next instruction is skipped and the instruction following NI is
performed.

If the value transferred is * O, Nl is performed.

1. The contents of the a—field are ignored.

5.7.6. TestEqual - TE 52
Skip NI if (U) = (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) = (Aa), the next instruction is skipped and the instruction following NI is performed.
If (U) z (Aa), NI is performed.

1. 40 is not equal to -0.

5.7.7. Test Not Equal - TNE 5§53
Skip NI if (U) z (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) z (Aa), the next instruction is skipped and the instruction following NI is performed.
If (U) = (Aa), NI is performed.

1. 40is nc_it equal to -0.

5.7.8. Test Less Than or Equal - Test Not Greater - TLE, TNG 54
Skip NI if (U) < (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) < (Aa), the next instruction is skipped and the instruction following NI is performed.

5-31
PAGE

8492 SPERRY UNIVAC 1100/80 Sgtoms

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL

If (U) >> (Aa), NI is performed.

1. 40 is greater than -O.

5.7.9. Test Greater — TG 55
Skip NI if (U) > (A).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
is also transferred to the arithmetic section.

If (U) > (Aa), the next instruction is skipped and the instruction following NI is performed.
If (U) < (Aa), Nl is performed.

1. 40 is greater than -0.

5.7.10. Test Within Range - TW 56
Skip NI if (A) < (U) < (A+1).

The contents of U is transferred to the arithmetic section under j-field control. The contents of Aa
and Aa+ 1 are also transferred to the arithmetic section.

If (Aa) < (U) < (Aa+ 1), the next instruction is skipped and the instruction following NI is performed.
If (U) < (Aa) or (U) > (Aa+1), NI is performed.
1. 40 is greater than -O.
2. Normally, (Aa) < (Aa+1). If, however, (Aa) > (Aa+ 1), there is no value of U that can satisfy the
condition (Aa) < (U) < (Aa+1).
5.7.11. Test Not Within Range - TNW 57
Skip NI if (U) < (A) or (U) > (A+1).

The contents of U is transferred to the arithmetic section under j—field control. The contents of Aa
and Aa+ 1 are also transferred to the arithmetic section.

If (U) < (Aa) or (U) > (Aa+1), the next instruction is skipped and the instruction following NI is
performed.

If (U) > (Aa) and (U) < (Aa+ 1), NI is performed.
1. 40 is greater than -O.

2. Normally, (Aa) < (Aa+1). If, however, (Aa) > (Aa+ 1), every possible value of U will satisfy at
least one of the following conditions:

U) < (Aa)

5-32
PAGE

8492 SPERRY UNIVAC 1100/80 Sgloms

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL

or

(U) > (Aa+1)

5.7.12. Test Positive - TP 60
Skip NI if (U)zg = O.
The contents of U is transferred to the arithmetic section under j-field control.

If the sign bit (bit 35) of the value from U is a O bit, the next instruction is skipped and the instruction
following NI is performed.

If the sign bit is a 1 bit, Nl is performed.
1. The contents of the a—field are ignored.

2. Always skip when j = H1, H2, Q1-Q4, or S1-S6.

5.7.13. Test Negative - TN 61
Skip NI if (U)zg = 1.
The contents of U is transferred to the arithmetic section under j-field control.

If the sign bit (bit 35) of the value from U is a 1 bit, the next instruction is skipped and the instruction
following NI is performed.

If the sign bit is a O bit, NI is performed.
1. The contents of the a-field are ignored.

2. Never skip when j = H1, H2, Q1 - Q4, or S1 - S6.

5.7.14. Double-Precision Test Equal - DTE 71,17
Skip NI if (U, U4 1) = (A, A+ 1)

The contents of U, U+ 1, Aa, and Aa+ 1 are transferred to the arithmetic section. U, U+ 1 and Aa,
Aa+ 1 are 72-bit operands.

If (U, U+ 1) = (Aa, Aa+ 1), the next instruction is skipped and the instruction following Nl is performed.
If (U, U+ 1) 2z (Aa, Aa+ 1), NI is performed.

1. 40 is not equal to -0O.

8492
UP-NUMBER

5-33
PAGE

SPERRY UNIVAC 1100/80 Sgtoms
Processor and Storage Programmer Reference

UPDATE LEVEL

5.8. SHIFT INSTRUCTIONS

Each shift instruction transfers either one or two words to the arithmetic section, moves or shifts the
bits of the words, and stores the shifted word or words in one or two control registers.

The following basic types of shifts are provided for both single~-word (36-bit input operand) and
double-word (two 36-bit words treated as a 72-bit input operand) operations:

Right circular

For a right—circular shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n bit positions to the right. Bits shifted out the right end of the register
appear in the leftmost bit positions vacated by the shift.

l_eft circular

For a left-circular shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n places to the left. Bits shifted out the left end of the register appear
in the rightmost bit positions vacated by the shift.

For example: A shift count of 6 for a right—circular shift applied to 765432101234 as the input
operand produces 3476543210124 as the result. The same result is produced using a shift
count of 30 for a left- circular shift.

For a single-word circular shift, a shift count of 72 or 36 produces the same result as a shift
count of O (no shift). A shift count of 37 produces the same effect as a shift count of 1, a shift
count of 38 produces the same effect as a shift count of 2, and so on.

Right logical

For a right-logical shift, a shift count of n moves the contents of all bit positions of the register
holding the input operand n places to the right. Bits shifted out the right end of the register
are lost. The leftmost bit positions vacated by the shift are zero filled.

For example: A shift count of 6 for a right-logical shift applied to 765432101 2344 as the input
operand produces 0076543210124 as the result.

Left Logical

For a left-logical shift, a shift count of n moves the contents of all bit positions of the input
operand register n places to the left. Bits shifted out the left end of the register are lost. The
rightmost bit positions vacated by the shift are zero filled.

For example: A shift count of 6 for a left-logical shift applies to 7654321012344 as the input
operand produces 5432101234004 as the result.

Right algebraic

For an algebraic shift (right only, since no left algebraic shift is provided), a shift count of n moves
the contents of all bit positions of the register holding the input operand n places to the right.
Bits shifted out the right end of the register are lost. The bit positions vacated by the shift are
filled with bits identical to the leftmost bit (sign bit) of the original input operand.

For example: A shift count of 6 for an algebraic shift applied to 765432 1012344 as the input
operand produces 7776543210124 as the result.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-34
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

The two Load Shift and Count instructions are basically left circular shift instructions. The shift count
is determined by the configuration of the bits of the input operand. If the two leftmost bits are not
identical, the shift count is zero. If the two leftmost bits are identical, the operand is shifted left
circular by the minimum amount to position the bits of the input operand so that the two leftmost
bits are not identical. The shift count is the count of the number of bit positions shifted. If all bits
of an input operand are identical, no amount of circular shifting will position its bits so that the two
left-most bits are not identical. In this instance, the shift count is 35 (single-word operand) or 71
(double-word operand). The shift count is stored in a control register.

For all shift instructions, except the two Load Shift and Count instructions, the input operands are
specified by one or two A-registers, and the shift count is specified by bits 6 through O of the effective
U. Indirect addressing, indexing, and index register incrementation/decrementation operate normally
for all shift instructions.

The shift count can be any number between O and 72. If a shift count of 73 to 127 (1114 through
177g) is specified, the result produced is undefined. The value in the u-field of the shift instruction
and the value of Xm (if x z O) must be chosen accordingly.
For the two Load Shift and Count instructions, the effective U specifies the input operand address
just as for the other load instructions. The scaled result is loaded in the specified A-register (A, A4 1
for Double Load Shift And Count instruction). The number of shifts required for scaling is stored in
the next consecutive register A4+ 1 (or A+2 for Double Load Shift And Count instruction).
5.8.1. Single Shift Circular - SSC 73,00

Shift (A) right circularly U places.
The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through O
of U is transferred to the arithmetic section. The value from Aa is shifted right circularly by the number
of bit positions specified by the shift count. The shifted value is stored in Aa.

1. The result stored is not defined for shift counts greater than 72.

2. 1f 36 < n < 72, a shift count of n produces the same result as a shift count of n-36.

5.8.2. Double Shift Circular - DSC 73,01
Shift (A, A+ 1) right circularly U places.
The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits

6 through O of U is transferred to the arithmetic section. The 72-bit value fro Aa and Aa+ 1 is shifted

right circularly the number of bit positions specified by the shift count. The shifted value is stored
in Aa and Aa+1.

1. The result stored is not defined for shift counts greater than 72.

5.8.3. Single Shift Logical - SSL 73,02
Shift (A) right U places, zero fill.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through O
of U is transferred to the arithmetic section. The value from Aa is right shifted the number of bit
positions specified by the shift count. Bits shifted out of the rightmost bit positions are lost; the
vacated leftmost bit positions are zero filled. The shifted value is stored in Aa.

8492

5-35
PAGE

SPERRY UNIVAC 1100/80 Sgtoml

Processor and Storage Programmer Reference UPDATE LEVEL

1. The result stored is not defined for shift counts greater than 72.

2. If 36 < U < 72, the result stored in Aa is +0.

5.8.4. Double Shift Logical - DSL 73,03

Shift (A,A+ 1) right U places, zero fill.
The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits
6 through O of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is right
shifted the number of bit positions specified by the shift count. Bits shifted out of the rightmost bit
positions are lost; the vacated leftmost bit positions are zero filled.

1. The result stored is not defined for shift counts greater than 72.

5.8.5. Single Shift Algebraic - SSA 73,04
Shift (A) right U places, sign fill.
The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through O
of U is transferred to the arithmetic section. The value from Aa is right shifted the number of bit
positions specified by the shift count. Bits shifted out of the rightmost bit positions are lost; bits
identical to the content of bit 35 of the initial value from Aa appear in the vacated leftmost bit
positions. The shifted count is stored in Aa.
1. The result stored is not defined for shift counts greater than 72.
2. 1£35 < U < 72, all bits of the result stored in Aa are identical to the leftmost bit of the input
operand from Aa.
5.8.6. Double Shift Algebraic - DSA 73,05
Shift (A, A+ 1) right U places, sign fill.
The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits 6
through O of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+1 is right
shifted the number of bit positions specified by the shift count. Bits shifted out of the rightmost bit
positions are lost; bits identical to the contents of bit 35 of the initial value from Aa appear in the

vacated leftmost bit positions. The shifted value is stored in Aa and Aa+ 1.

1. The result stored is not defined for shift counts greater than 72.

5.8.7. Load Shift and Count - LSC 73,06
(U) — A; shift (A) left circularly until (A)3g # (A)z4; number of shifts — A4 1.
The contents of location U is transferred to a nonaddressable 36-bit register in the arithmetic section

and .then shifted left circularly the minimum number of bit positions which will make bit 35 unequal
to bit 34. The resultant scaled number is transferred to Aa and the shift count to Aa+1.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

65-36
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

1. If bit 35 of the value from location U is not equal to bit 34, the number is already scaled and
no shift occurs: (U) — Aa; + 0 — A, A4 1.

2. If the value from location U is * 0: (U) — Aa, the shift count is 35, and 435 — Aa+1.

5.8.8. Double Load Shift and Count - DLSC 73,07

(U, U+1) = A, A+ 1; shift (A, A+ 1) left circularly until (A, A+ 1);4 2 (A, A+ 1)50; number of shifts
- A42.

The contents of U and U+ 1 are transferred to a nonaddressable 72-bit register in the arithmetic
section and then shifted left circularly the minimum number of bit positions which will make bit 71
unequal to bit 70. The resultant scaled number is transferred to Aa and Aa+ 1 and the shift count
to Aa+2.

1. Ifbit 71 of the value from U and U+ 1 are not equal to bit 70, the double length number is already
scaled and no shift occurs: (U) — Aa; (U+1) — Aa+1; 40 — Aa+2.

2. If the double-length value from locations U and U+ 1 are + 0: (U) — Aa; (U+ 1) — Aa+1; the
shift count is 71; 107g — Aa+2.
5.8.9. Left Single Shift Circular - LSSC 73,10
Shift (A) left circularly U places.
The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through O
of U is transferred to the arithmetic section. The value from Aa is shifted left circularly the number
of bit positions specified by the shift count. The shifted value is stored in Aa.

1. The result stored is undefined for shift counts greater than 72.

2. If 36 < n < 72, a shift count of n produces the same result as a shift count of n-36.

5.8.10. Left Double Shift Circular - LDSC 73,11
Shift (A, A4 1) left circularly U places.
The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits

6 through O of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+ 1 is shifted

left circularly the number of bit positions specified by the shift count. The shifted value is stored in
Aa and Aa+1.

1. The result stored is undefined for shift counts greater than 72,

5.8.11. Left Single Shift Logical - LSSL 73,12
Shift (A) left U places, zero fill.

The contents of Aa is transferred to the arithmetic section. The shift count from bits 6 through O
of U is transferred to the arithmetic section. The value from Aa is left shifted the number of bit
positions specified by the shift count. Bits shifted out of the leftmost bit positions are lost; the vacated
rightmost bit positions are zero filled. The shifted value is stored in Aa.

8492
UP-NUMBER

6-37
PAGE

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

UPDATE LEVEL

1. The result stored is undefined for shift counts greater than 72.

2. If 36 < U < 72, the result stored in Aa is +0.

5.8.12. Left Double Shift Logical - LDSL 73,13
Shift (A, A+ 1) left U places, zero fill.

The contents of Aa and Aa+ 1 are transferred to the arithmetic section. The shift count from bits 6
through O of U is transferred to the arithmetic section. The 72-bit value from Aa and Aa+1 is left
shifted the number of bit positions specified by the shift count. Bits shifted out of the leftmost bit
positions are lost; the vacated rightmost bit positions are zero filled. The shifted value is stored in
Aa and Aa+1.

1. The resuit stored is undefined for shift counts greater than 72.

5.9. UNCONDITIONAL JUMP INSTRUCTION

A jump is a change in the sequence in which instructions are executed. It is accomplished by placing
a new value in the P-register. Each unconditional jump instruction performs a unique operation in
addition to the common operation of placing a new value in the P-register.

If the relative "jump to" address is less than 200g, the next instruction is taken from the storage
location addressed by the value rather than from a control register.

The Jump Keys instruction can be used to specify either a conditional or an unconditional jump. The
Halt Jump/Halt Keys And Jump instruction specifies an unconditional jump, but the halt portion is
conditional. Both of these instructions are included in the section on conditional jump instructions
(see 5.11).

65.9.1. Store Location and Jump - SLJ 72,01

Relative P+1 — U;9_o; jump to U1
The P-register is incremented. An 18-bit relative return address is stored in the rightmost 18 bits
of the? location specified by the operand address. The value of the operand address plus one is
transferred to the P-register as the "jump to" address. The upper half of the operand is unchanged.

1. The contents of the a-field are ignored.

2. |If U < 200g, the 18-bit relative return address is stored in the rightmost 18 bits of the control
register addressed by U and the leftmost 18 bit positions of that control register are unchanged.

3. The relative return address is stored in the low—order 18 bits of a word. If this 18-bit relative
f'eturn address is larger than 16 bits, the two high order bits will be interpreted as h and i bits
if the address is used in an instruction. The instruction may produce erroneous results.

8492
UP-NUMBER

5-38

SPERRY UNIVAC 1100/80 Sgumt
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

5.9.2. Load Modifier and Jump - LMJ 74,13
Relative P+ 1 — Xa;7_o; jump to U

The P-register is incremented. An 18-bit relative return address is stored in the rightmost 18 bits
of the index register specified by the a—field. The leftmost 18 bits of that index register are not
affected. The value of the operand is transferred to the P-register as the "jump to" address.

1. ¥ D6 = 0 and the value in the a-field is zero, the relative return address is stored in index register
zero (XO0).

2. If index register incrementation is specified, the relative return address is stored in the index
register specified by the a-field after the new value for Xm is stored in the index register
specified by the x-field. As a consequence, if the value in the a-field is not zero and it is the
same as the value in the x—field, it makes no difference whether the value in the h-field is zero
or one.

5.9.3. Allow All Interrupts and Jump - AAIlJ 74,07
Allow all interrupts and jump to U.

This instruction allows interrupts prevented by the occurrence of an interrupt or the execution of a
Prevent All Interrupts And Jump instruction.

1. The contents of the a-field are ignored.

2. The Allow All Interrupts And Jump instruction does not affect the Dayclock interrupt when it
is disabled by the Disable Dayclock instruction and enabled by the Enable Dayclock instruction.

5.10. BANK DESCRIPTOR SELECTION INSTRUCTIONS

Each program may be composed of or associated with a large number of program or data segments;
of these, up to four may be active at any given time. Bank Descriptor selection instructions allow
a program to selact which segments are among the four that are currently active.

5.10.1. Load Bank and Jump - LBJ 07,17

The LBJ instruction loads the bank descriptor register selected in bit positions 34 and 33 of the index
register specified by the a-field of the instruction word (Xa) with a new bank descriptor, stores the
old bank descriptor specifications and program address in Xa as return information, and then jumps
to the location specified by the operand address. An Addressing Exception interrupt occurs if the
bank descriptor register named in Xa is not available for use as dafined by the designator register.
The new bank descriptor is located by adding the bank descriptor index contained in bit positions
18 through 29 of Xa to the bank descriptor table pointer selected in bit position 35 of Xa; if bit 35
is zero, the user pointer and table are selected, and if bit 35 is one, the Executive pointer and table
are selected if D19 is one. An Addressing Exception interrupt occurs if the bank descriptor index
value exceeds the length of the table, or if bit 35 of Xa is one and D19 is zero.

When the new bank descriptor is located, the associated use count field is increased by one under
§torage lock, and an Addressing Exception interrupt occurs if the R-flag of the bank descriptor is one,
if there is a V-flag violation, or if the use-count field is increased from all ones to zero.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S ms
Processor and Storage Programmer Reference

5-39

UPDATE LEVEL PAGE

Before the new bank descriptor values are actually loaded, the old bank descriptor is located and
the use—count field is decreased by one under storage lock. An Addressing Exception interrupt occurs
if the C-flag of the old bank descriptor is one and the use count is decreased to zero, or if the use
count is decreased from zero to all ones. The new bank descriptor is loaded in the bank descriptor
register, the P-flag is transferred to designator register bit 2 (D2), and the W-flag of the new bank
descriptor is placed in the appropriate write—protection bit of the designator register (D13 through
D 16).

The specifications of the old bank descriptor is copied from the GRS processor-state storage area
into the upper half of Xa, the relative program address is copied into the lower haif of Xa, and the
specifications of the new bank descriptor is then stored in GRS. The operand address is formed and
a jump to that location is effected. If both an address exception and jump address guard mode limits
violation occur during the execution of this instruction, the address exception will be taken.

The following are the formats of Xa before and after execution of the instruction:

Xa Before Execution

E|{BDR| 0—0 New BDI Not Used

36 34 3332 3029 1817 0

Xa After Execution

E|BDR| 0—O Old BDI Relative Program Address

356 34 3332 3029 1817 1]

5.10.2. Load I-Bank Base and Jump - LIJ 07,13

Thg LIJ instruction is executed as a special case of the LBJ instruction. Bit positions 34-33 of Xa
is ignored; if D12 is zero, BDRO is selected, and if D12 is one, BDR1 is selected.

5.10.3. Load D-Bank Base and Jump -~ LDJ 07,12

Thg LDJ instruction is executed as a special case of the LBJ instruction. Bit positions 34-33 of Xa
is ignored; if D12 is zero, BDR2 is selected, and if D12 is one, BDR3 is selected.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

65-40
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

5.11. CONDITIONAL JUMP INSTRUCTIONS

Each of the conditional jump instructions performs a test for a specific condition (or set of conditions).
if the condition is satisfied, the value U is transferred to the P-register and the instruction addressed
by U is performed next. If the condition is not satisfied, the next instruction (NI) is performed.

5.11.1. Jump Greater and Decrement — JGD 70

Jump to U if (control register) > O; go to NI if (control register) ja < 0; always (control register)
ja —1 — control register ;.
If the 36-bit signed number in the control register addressed by the rightmost 7 bits of the ja-field
is greater than zero (bit 35 contains a O bit and the number does not consist of all O bits), the
instruction at location U is executed next. If the number is less than, or equal to, zero (bit 35 contains
a 1 bit or the number consists of all O bits), the next instruction is performed. In either case, the
number is decreased by one and the difference is stored in the control register addressed by the
ja-field.
1. A Guard Mode interrupt occurs (if guard mode is set) when the ja—field specifies a value in the
range 40g through 100g, or 1204 through 177g when D2 = 1. This is true regardless of the
value of D6 (A-, X-, and R-register set selector).

2. The leftmost bit in the j-field is ignored.

5.11.2. Double-Precision Jump Zero - DJZ 71,16
Jump to U if (A A4+1) =+ 0; go to NI if (AA+1)z £ O.
If the 72-bit operand contained in Aa and Aa+ 1 is * O, the instruction at location U is performed
next. If the operand is not ¢+ O, the next instruction (NI) is performed.
5.11.3. Jump Positive and Shift - JPS 72,02
Jump to U if (A)35 = O; go to NI if (A)3s = 1. always shift (A) left circularly one bit position.

If bit _35 of Aa contains a O bit, the instruction at location U is performed next. If bit 35 contains
a 1 bit, the next instruction is performed. The contents of Aa is always shifted left circularly one bit
position.

1. The bit shifted out of bit 35 of Aa is shifted to bit O of Aa.

5.11.4. Jump Negative and Shift - JNS 72,03
Jump to U if (A)3g = 1; go to NI if (A)ag = O; always shift (A) left circularly one bit position.

!f bit 35_ of Aa is a 1 bit, the instruction at location U is performed next. If bit 35 is a O bit, the next
instruction is performed. The contents of Aa is always shifted left circularly one bit position.

1. The bit shifted out of bit 35 of Aa is shifted to bit O of Aa.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

6-41
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

5.11.5. Jump Zero - JZ 74,00
Jump to U if (A) = * O; go to NI if (A) z + O.

If (Aa) is * O, the instruction at location U is performed next. If Aa does not contain * O, the next

instruction is performed.

5.11.6. Jump Nonzero - JNZ 74,01
Jump to U if (A) 2 + O; go to NI if (A) = = O.

If (Aa) is not + O, the instruction at location U is performed next. If (Aa) is * O, the next instruction

is performed.

5.11.7. Jump Positive - JP 74,02
Jump to U if (A)35 = O; go to NI if (A)gg = 1.

If bit 35 of Aa is a O bit, the instruction at location U is performed next. If bit 35 is a 1 bit, the next

instruction is performed.

5.11.8. Jump Negative - JN 74,03
Jump to U if (A)zg = 1; go to NI if (A)gg = O.

If bit 35 of Aa is a 1 bit, the instruction at location U is performed next. If bit 35 is a O bit, the next

instruction is performed.

5.11.9. Jump - Jump Keys - J,JK 74,04
Jump to U if a = O or if a = set SELECT JUMPS switch; go to NI if neither is true.

If the a—field contains all O bits, the instruction at location U is performed next. If the a-field contains

a value in the range of 1 through 15 (1g through 17g) and the correspondingly numbered SELECT

JUMPS switch/indicator is set, the instruction at location U is performed next; if the correspondingly

numbered SELECT JUMPS switch/indicator is not set, the next instruction is performed.

1. The indicator for each of the 15 SELECT JUMPS switch/indicators is turned on by pressing that
SELECT JUMPS switch/indicator. Each is turned off by pressing the associated clear switch.
Either can be done while the processor is running.

2. Care should be exercised in using a value other than all O bits in the a-field if the program is
to run concurrently with one or more other programs. Any other program may include a Jump

Keys instruction with the same value in the a-field and specify that it is to be run with the
corresponding SELECT JUMPS switch/indicator set.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-42
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

5.11.10. Halt Jump - Halt Keys and Jump - HJHKJ 74,05

Stop if [a=0 [OR] if (a set SELECT STOPS switches) z 0] D2 = O; on restart or
continuation jump to U.

If the a-field contains all O bits, the execution of program instruction halts. If the a-field contains
a 1 bit in a bit position which corresponds to a lit SELECT STOPS switch/indicator, the program halts.

In either case, a manual restart causes the instruction at location U to be performed next.

If neither of the conditions described above is fulfilled, the instruction at location U is performed and
the program does not halt.

1. Unless the processor is operating in privileged mode (D2=0) when a halt condition is satisfied
for a Halt Keys And Jump instruction, it does not actually halt. Instead, it proceeds with the jump.

2. Theindicator for each of the four SELECT STOPS switch/indicators is turned on by pressing one
of the SELECT STOPS switch/indicators. They are turned off by pressing the associated clear
switch.

3. If the program address register is manually changed while the processor is halted, program
execution will resume at the new address when the processor is restarted.

5.11.11. Jump No Low Bit - JNB 74,10
Jump to U of (A), = O; go to NI if (A), = 1.

If bit O of Aa is a O bit, the instruction at location U is performed next. If bit O is a 1 bit, the next
instruction is performed.

1. If the Jump No Low Bit instruction is used to determine whether the value in Aa is an even or
an odd integer, consideration must be given to the sign of the value.

5.11.12. Jump Low Bit - JB 74,11
Jump to U if (A), = 1; go to NI if (A), = O.

If bit O of Aa is a 1 bit, the instruction at location U is performed next. If bit O is a O bit, the next
instruction is performed.

1. If a Jump Low Bit instruction is used to determine whether the value in Aa is an even or an odd
integer, consideration must be given to the sign of the value.

5.11.13. Jump Modifier Greater and Increment - JMGI 74,12
Jump to U if (xa)17_o > 0; go to NI if (X8)17_° < 0; a'WaYS (Xa)|7_o + (Xa)35_18 and xa17_o.

If the signed number in bits 17 through O of the X-register specified by the a-field is greater than
zero (bit 17 is a O bit and the number does not consist of all O bits), the instruction at location U is
performed next. If the number is less than or equal to zero (bit 17 is a 1 bit or the number consists
of all O bits), the next instruction is performed. In either case, the signed number in bits 35 through
18 of the X-register is added to the signed number in bits 17 through O and the sum is stored in
bits 17 through O of the X-register.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Sygtoms
Processor and Storage Programmer Reference

5-43
PAGE

UPDATE LEVEL

1. The number in Xa,;_o before the addition is tested rather than the number resulting from the
addition.

2. If a = x and h = 1, the specified index register is effectively modified only once for each
execution of the instruction.

5.11.14. Jump Overflow - JO 74,14;a =0
Jumpto U if D1 = 1, goto Nlif D1 = O.
Where a-field is an extention of f- and j-field.

If the overflow indicator (D 1) is one, the instruction at location U is performed next. If D1 is zero,
the next instruction is performed.

1. Performing the Jump Overflow instruction does not change D1.

5.11.156. Jump Floating Underflow - JFU 74,14;a = 1
Jump to U if D21 = 1, clear D21; go to NIl if D21 = O.
If the characteristic underflow indicator (D2 1) is one, ;he instruction at location U is performed next
and D21 is cleared by the instruction. If D21 is zero, the next instruction is performed.
5.11.16. Jump Floating Overflow - JFO 74,14;a = 2
Jump to U if D22 = 1, clear D22; go to NI if D22 = 0.
If the characteristic overflow indicator (D22) is one, the instruction at location U is performed next
and D22 is cleared by the instruction. If D22 is zero, the next instruction is performed.
5.11.17. Jump Divide Fault - JDF 74,14;a = 3
Jump to U if D23 = 1, clear D23; go to NI if D23 = O.
If the divide fault indicator (D23) is one, the instruction at location U is performed next and D23 is
cleared by the instruction. If D23 is zero, the next instruction is performed.
5.11.18. Jump No Overflow - JNO 74,15;a=0
Jump to U if D1 = 0; go to Nl if D1 = 1.

If the overflow indicator (D1) is zero, the instruction at location U is performed. If D1 is one, the
next instruction is performed.

1. Executing the Jump No Overflow instruction does not change D1.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-44
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

5.11.19. Jump No Floating Underflow - JNFU 74,15;a =1
Jump to U if D21 = 0; go to NI if D21 = 1; clear D21.
If the characteristic underflow indicator (D2 1) is zero, the instruction at location U is performed next.
If D21 is one, the next instruction is performed. D21 is cleared by the instruction.
5.11.20. Jump No Floating Overflow - JUNFO 74,15;a = 2
Jump to U if D22 = 0; go to NI if D22 = 1; clear D22.
If the characteristic overflow indicator (D22) is zero, the instruction at location U is performed next.
If D22 is one, the next instruction (NI) is performed. D22 is cleared by the instruction.
5.11.21. Jump No Divide Fault - JNDF 74,15;a =3
Jump to U if D23 = O; go to NI if D23 = 1; clear D23.

If the divide fault indicator (D23) is zero, the instruction at location U is performed next. If D23 is
one, the next instructior is performed next. D23 is cleared by the instruction.

5.11.22. Jump Carry - JC 74,16
Jump to U if DO = 1; go to NI if DO = O.

If the carry indicator (DO) is one, the instruction at location U is performed next. If DO is zero, the
next instruction is performed.

1. The contents of the a-field are ignored.

2. Performing the Jump Carry instruction does not change DO.

5.11.23. Jump No Carry - JNC 74,17
Jump to U if DO = O; go to NI if DO = 1.

If the carry indicator (DO) is zero, the instruction at location U is performed next. If DO is one, the
next instruction is performed.

1. The contents of the a-field are ignored.

2. Performing the Jump No Carry instruction does not change DO.

5.12. LOGICAL INSTRUCTIONS

The three logical operations are the Logical Inclusive OR (referred to as the Logical OR and symbolized
by [BR]). the Logical Exclusive OR (symbolized by [XOR)); and the Logical AND (symbolized by [AND)). Each
of these instructions uses two input operands. One input operand is obtained from location U and
the other from an A-register. Table 5-1 lists the four possible combinations of the two bits from any

bit position of the two input operands and the result produced for that bit position for each of the
three basic operations.

8492 SPERRY UNIVAC 1100/80 Sgtoms 5-45
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
Table 5-1. Truth Table for Logical OR, XOR, and AND
Input Bits Output (Result) Bit
First Operand Second Operand OR XOR AND

-~ 200
- - O

0
1
o
1

- 000

0
1
1
o

The Masked Load Upper instruction performs a compound logical operation; the contents of selected
bit positions of one operand are merged with the contents of the remaining bit positions of a second
operand.

5.12.1. Logical OR - OR 40
(A) OR] (U) — A+1

The contents of Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section, as follows:

B The result contains a 1 in each bit position for which the corresponding bit position of either
(or both) of the input operands contains a 1.

B The result contains a O in each bit position for which the corresponding bit position of both input
operands contains a O.

The result is stored in Aa+4 1.

5.12.2. Logical Exclusive OR - XOR 41
(A) (U) = A+1

The contents of Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithmetic section under j—field control. A 36-bit result is formed in the arithmetic section, as follows:

B The result contains a 1 in each bit position for which the corresponding bit position of either
{but not both) of the input operands contains a 1.

B The result contains a O in each bit position for which the contents of the corresponding bit
position of the input operands are both O or both 1.

The result is stored in Aa+1.

5.12.3. Logical AND - AND 42
(A) BND (U) — A+1

The contents of Aa is transferred to the arithmetic section. The contents of U is transferred to the
arithmetic section under j—field control. A 36-bit result is formed in the arithmetic section, as follows:

8492

SPERRY UNIVAC 1100/80 Systems

5-46
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

B The result contains a 1 in each bit position for which the corresponding bit position of both input
operands contains a 1.

B The result contains a O in each bit position for which the corresponding bit position of either
(or both) of the input operands contains a O.

The result is stored in Aa+1.

5.12.4. Masked Load Upper - MLU 43

[() (R2) 1Rl [(A) AND NOT (R2) — A+1
The contents of Aa and R2 are transferred to the arithmetic section. The contents of U is transferred
to the arithmetic section under j-field control. A 36-bit result is formed in the arithmetic section,

as follows:

B The result contains a 1 in each bit position for which the corresponding bit position of the
operand from U and the operand from R2 both contain 1 bits.

B The result contains a 1 in each bit position for which the corresponding bit position of the
operand from Aa and the ones complement of the operand from R2 both contain 1 bits.

B The result contains O bits in the remaining bit positions.
The result is stored in Aa+1.

1. The desired value must be loaded in R2 (mask register) by an instruction preceding the Masked
Load Upper instruction.

5.13. MISCELLANEOUS INSTRUCTIONS

Each of the eight following instructions is classed as miscellaneous.

5.13.1. Load DR Designators - LPD 07,14

U;y_5.3-0 — Designator register:

Bit0 — D4 Bit3 — D10

Bitt —- D5 Bits — D17

Bit2 — D8 Bit6 — D20
Bits 0, 1, 2, 3, 5, 6, and 7 of U are transferred to the designator register bits; D4, D5, D8, D10, D17,
and D20, respectively. These are the only designator bits which can be changed by a user program.
5.13.2. Store DR Designators - SPD 07,15

Designator register bits — Uy_q; zeros — U,;_g

D4 - BitO D12 — Bit 4

8492

SPERRY UNIVAC 1100/80 Systems

Processor and Storage Programmer Reference UPDATE LEVEL PAGE

D5 — Bit1 D17 —Bit5

D8 — Bit2 D20 — Bit6

D10 — Bit 3
D20, D17,D12, D10, D8, D5, and D4 of the designator register are transferred to bit positions 7-0
of U, respectively. The upper half of the operation location is unaffected.
5.13.3. Execute - EX 72,10

Execute the instruction at U.
The P--register is incremented provided the instruction was addressed by the contents of the
P-register. The instruction at location U is transferred to the control section to replace the Execute
instruction as the next instruction to be performed.
1. The contents of the a—field are ignored.

2. The remote instruction, specified by U, is always obtained from a storage location.

3. Execute instructions may be cascaded; that is, the instruction in the remote location may be an
Execute instruction.

4. The P-register is incremented only once, when the original Execute instruction is obtained for
execution.

5. Generally, an interrupt cannot occur between the time an Execute instruction is started and the
instruction (or instructions) it leads to has been completed except when an Execute instruction
leads to a repeated instruction (see 5.3.8 and 5.6). An interrupt cannot occur between the start
of the Execute instruction and the completion of the initial stage of the repeated instruction. The
interrupt, however, can cause initiation of a termination stage immediately following completion
of the initial stage or any time thereafter in order to permit the interrupt to occur.

6. If an Execute instruction leads to a repeated instruction, index register incrementation should
not be specified for the Execute instructions or for any indirect addressing sequence involved
(see 5.3.8. note 6, and 5.6).

6.13.4. Executive Request - ER 72,11
Generate Executive Request interrupt

An Executive Request interrupt is generated.

1. A Guard Mode/Storage Limits interrupt will occur if indirect addressing is specified (i = 1, D7
= 0) and the operand address causes a storage limits violation.

2. The contents of the a-field are ignored.

5-47

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-48
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

5.13.6. Testand Set - TS 73,17, a=0

If (U)zg = 1, Generate Test and Set interrupt; if (U)zg = O, go to NL;

always O1g — Ugag_30; (U)ag.o unchanged.
A storage cycle is initiated to read and then write the operand specified by the operand address. |f
bit 30 of the operand is one, a Test and Set interrupt occurs. If bit 30 of the operand is zero, the
next instruction is performed. The write portion of the storage cycle includes writing ones in bits
35 through 30 of the storage operand. Bits 29 through O at location U are neither examined nor

altered.

1. If U < 200g, always interrupt.

5.13.6. Test and Set and Skip - TSS 73,17; a =1

If (U)gg = O, skip NI; if (U)3g = 1, go to NI; always O1g — Ujzg_30: (U)ag_o unchanged.
A storage cycle is initiated to read and then write the operand specified by the operand address. |f
bit 30 of the operand is zero, the next instruction is skipped. If bit 30 of the operand is one, the next
instruction is performed. The write portion of the storage cycle includes writing ones in bits 35

through 30 of storage location U. Bits 29 through O at location U are neither examined nor altered.

1. If U < 200g, always execute NI.

5.13.7. Test and Clear and Skip - TCS 73,17; a = 2

If (U)3o = O, perform NI; if (U)3o = 1, skip NI; always clear (U) 35-30' (U)ag_o unchanged.
A storage cycle is initiated to read and then write the operand specified by the operand address. If
bit 30 of the operand is zero, the next instruction is performed. [f bit 30 of the operand is one, the
next instruction is skipped. The write portion of the storage cycle includes writing zeros in bits 35
through 30 of storage location U. Bits 29 through O at location U are neither examined nor altered.

1. I (U) < 200, always execute NI.

5.13.8. No Operation - NOP 74,06
Proceed to next instruction.

This instruction ensures that there is an interval between the end of the instruction that precedes it
and the start of the one that follows it.

1. The contents of -the a-field are ignored.

2. The only effects that the values in the x-, h—, i-, and u-fields can have on the operation is the
index register incrementation obtained when x z 0 and h = 1, and the indirect addressing delay
introduced when i = 1 and D7 = O.

8492 SPERRY UNIVAC 1100/80 Sgtomn 5-49
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
65.13.9. Store Register Set - SRS 72,16
Aa contains an address and count for each of two GRS areas. These areas are stored consecutively,
starting at the location specified by the operand address of the instruction. If either or both count
values are zero, no transfer occurs to the respective area(s).
The following is the format of Aa for this instruction:
Area 2 Area 2 Area 1 Area 1
0-0 Count 001 Address |°° Count 0-0| Address
35 34 33 27 26 25 24 18 17 18 15 98 76 0
5.13.10. Load Register Set - LRS 72,17
The format of Aa and the operation of the instruction are like that of SRS, except that information
is transferred from the location specified by the operand address to the area specified by Aa.
5.13.11. Test Relative Address - TRA 72,15
This instruction provides a means to determine whether a specific relative address is within a given
relative addressing range. The operand address is the first word of a four-word packet defining an
addressing environment to be used in testing the relative address. The packet contains a designator
register, bank descriptor table pointer, four bank descriptor indexes, and E bits, in the following
format:
Designator Register
Word O
Bank Descriptor Table Pointer
Word 1
ignored BDI O E| ignored BDI 2
Word 2 2
ignored BDI 1 E| ignored BDI 3
Word 3 3
365 34 3029 1817 16 12 11

8492

SPERRY UNIVAC 1100/80 Systems

5-50
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

The relative address to be tested is contained in Xa;;_go- This relative address is translated into an
absolute address within the addressing environment specified by the above packet. Relative
addresses less than 200g are treated as a storage address, not GRS addresses. The four E bits within
the packet determine whether the BDT pointer in the packet (E=0) or the-EXEC BDT pointer (E=1)
contained in GRS 40 is to be used to reference the respective bank descriptor. The TRA instruction
ignores D19, does not check table length violations, does not cause MSR basing, and will not produce
a Guard Mode interrupt as a result of a relative address out of limits.

Prior to fetching of packet Word O, the designator register is stored in GRS 443. A check for EXEC
GRS area storage is not made on this store. This store has the effect of making the current designator
state, specifically D12, available for use by a user who is normally expected to execute the TRA
instruction with an operand address of 445. At the same time, this allows use of some pre-set
designator state to be used if the operand address is other than 44.

The results of this instruction are stored in Xa and indicated by skip or no skip. If the relative address
tested is within limits, the number of the bank descriptor register within whose limits the relative
address exists, is stored in Xa 34_33. and the absolute address produced is stored in Xagz_go. If the
relative address does not fall within any limits, Xa is cleared to zero and the next instruction is
executed. If the relative address tested is within limits, the write protect bit of the Bank Descriptor
within whose limits the relative address exists is tested. If it is zero, the next instruction is skipped;
if it is one, the next instruction is executed.

5.13.12. Increase Instructions - XX 05:a = 10-17

The operand specified by the operand address is transferred under j~field control to the arithmetic
section, increased by a value specified by the a—field control to the arithmetic section, increased by
a value specified by the a-field, and stored under j-field control in the location specified by the
operand address; the operation is performed under storage lock {test and set). If the initial operand
or the result is zero, the next instruction is executed; otherwise, the next instruction is skipped. The
following values may be selected by the a-field:

mnemonic a-field increase value
INC 10 + 1 plus one
DEC 1 -1 minus one
INC2 12 +2 plus two
DEC2 13 -2 minus two
ENZ. 14 - 17 0 zero (-0 is changed to +0 for sign-extended
operands)

The increase and zero test operations depend on the j-field values to some degree. Certain j-field

.values extend or interpret the sign of the operand (W, XH1-XH2, T1-T3); for these values, the increase

is a ones complement, sign-extended operation, and either positive zero or negative zero satisfies
the zero test. The remaining j-field values do not consider the sign of the operand (H1-H2, Q1-Q4,

S$1-S6): for these values, the increase is a twos complement, field-size operation, and only positive
zero satisfies the zero test.

8492

SPERRY UNIVAC 1100/80 Systems

5-51
Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

5.14. BYTE INSTRUCTIONS

This class of instructions is designed to permit transference, translation, comparison, testing, and
arithmetic computation of data in the form of predetermined bit patterns (e.g., half words, third words,
quarter words, and sixth words) referred to as bytes.

There are a total of 15 distinct instructions that perform the various multiword (byte string) operations
noted above. These instructions may be arranged under three functional groups:

1. instrucitons that involve byte transfers and manipulations between one storage location and
another.

2. instructions that permit the mutual transference and manipulation of data among storage and
various control and arithmetic registers.

3. instructions that perform decimal arithmetic addition and subtraction operations.

These instructions operate on strings of characters (byte strings) under control of J-registers and
staging registers. The J-registers are implicitly addressed by the instruction and are used to index
through the byte strings. One J-register is provided for each of four possible byte strings used by
an instruction. These registers, JO through J3, are located in GRS addresses 106g - 1114 for user
programs, or 126g - 13 1g for Executive programs. Figure 5-1 shows the J-register format including
the function of the various fields.

Staging and control information necessary to handle the byte strings are held in staging registers.
Three R-registers (R3, R4, and Rg of GRS), designated as SR1, SR2, and SR3, respectively, are used
for this purpose. The information stored in these registers provide the capability of interrupting the
performance of certain instructions. The actual information stored may vary from one instruction to
the next. See the individual instructions for use of the staging registers.

Byte string addressing is accomplished through use of the instruction’s u-field, index registers
specified by the x-field of the instruction, and the OW (offset in words) field of the appropriate
J-register. The address of byte string O (designated SJO), for example, is given by summing the
contents of u, Xx, and the OW field of JO (U + Xx + JOgy). The address of byte string 1 (SJ1) would
be given by (U + Xx + 1 4+ J1gw). etc. A particular byte within the word of a byte string is pointed
to by the Ob field (offset in bytes) of the J-register. Byte strings may begin on any word-fraction
boundary compatible with byte size; i.e., strings of 6-bit bytes must be located on sixth-word
boundaries, 9-bit bytes on quarter-word boundaries, etc. The length of a byte string, in number of
bytes, is stored in staging register SR3. The length of byte string O (designated LJO) is stored in bit
locations 35-27 of SR3, the length of byte string 1 (LJ 1) is bit locations 26-18 of SR3, and the length
of byte string 2 (LJ2) in bit locations 17-9 of SR3. Any, all or none of these values may apply for
a particular instruction.

| [MIWI|E Iw Ib Oow Ob

36 34 33 32 31 217 20 18 17 3 2 0

Figure 5-1. J-Register Format

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 S ms
Processor and Storage Programmer Reference

5-62

UPDATE LEVEL PAGE

Field Function

| J-register modifier bit; used with the h-bit of the instruction to control J
(1=1) or X{I=0) register modification.

M Mode 6/9-bit modulus: O = 9-bit mode (ASCII)
1 = 6-bit mode (Fieldata)

w Width 6-12 or 9-18 bits: O = 6/9 bits
1 = 12/18 bits

E a) for 33,03
E = Translate:
0 = translation
1 = no translation

b) for all other byte instructions E must be zero.

c) for character addressing (non-byte instructions).
0 = no sign extension

1 = sign extension

w Increment in words
Ib Increment in bytes
Oow Offset in words
Ob Offset in bytes

The direction in which each instruction progresses through its operand byte strings is specified per
instruction in the J-register. The increment word (Iw) and increment byte (Ib) fields of the J-register
are used during instruction execution to update the effective byte address. The effective value of
Iw and |b may be either + 1, the actual value loaded into the register by the program depends on
the byte length being used. The value of lw must be * O and have the same sign as |b. Therefore
Iw is effectively Iwb sign extended (lwb).

Table 5-2 gives the values of Iwb for 41 and -1 effective increments for 6, 9, 12 and 18-bit bytes.

Some of the extended-sequence byte-manipulation instructions are designed to permit their
interruption during their execution. However, interrupts are accepted only following the store or
compare phase of the instruction. As the instruction completes each of these phases, a check is made
to see if an interrupt is waiting to be processed. If an interrupt request is current, it is acknowledged
and processed immediately. When the instruction is again activated, the interrupt control bits are
decoded, and control is returned to the appropriate phasa of execution. There are three bits (29-27)

in SR1 that are available for interrupt control, thus providing up to 7 types of interrupt classification
within an instruction.

8492

SPERRY UNIVAC 1100/80 Systems

5-53
Processor and Storage Programmer Reference

UP-NUMBER UPDATE LEVEL PAGE
Table 5-2. J-Register Increment Field Values
For a Byte Length And an Effective Increment of The Value of | Must be

of

6 bits +1 +1
6 -1 -1
9 +1 +2
9 -1 -2
12 +1 +2
12 -1 -2
18 +1 +4
18 -1 -4

There are seven restrictions on byte addressing that should be noted:
1. The result of an instruction performed on overlapping byte strings is undefined.

2. A byte string may not wrap around its J-register offset field; i.e., Ow cannot be incremented
through its maximum value of 777774 or decremented through its minimum value of 00000g.

3. Normal address limits violation detection and interrupt will be in effect.
4. All instructions utilizing the J-registers must have their operands located in storage.

5. The h-field of all byte instructions must be set to 1. This is set automatically by the assembler
when a byte mnemonic is encountered.

6. The I-field of all J-registers used must be set to 1.
7. The E-field of all J-registers used must be set to O for all byte instructions except 33,03.

The 33,03-04; 33, 10-11; 33, 14-17; and 37, 06-07 instruction will store a 7-bit status word in
SR3,_g either upon successful completion of the instruction or upon detection of an error condition

which prevents completion of the instruction. A definition of the 7 status bits is contained in Table
5-3.

Successful completion of an instruction will result in the storing of an all-zero word except for the
cases of a decimal-add overflow (27, 06-07) or a missing mantissa field (33, 14-15).

When dealing with 9-bit bytes, the ASCII format shall be accepted and only ASCIl is generated when
used for operations involving signed numeric-byte strings. An ASCII byte is the eight lowest-order
bits in a quarter word. The byte is divided into a 4-bit zone and a 4-bit digit; the zone is the most
significant part of the byte. The sign convention adopted for a byte string is called "trailing-included

sign format,” i.e., the sign of the byte string is contained in the zone (Z) portion of the least significant
byte.

There are three exceptions to the "trailing-included sign convention".The Byte-to-Single Floating
Conversion (fj = 33, 15) instructions use a separate non-included sign byte with the byte string. This
byte is simply a "+" or "-" character.

Table 5-4 gives the binary coding for the plus and minus signs to be used in ASCIl and Fieldata
coding. The hardware checks for a minus sign in arithmetic operations.. If the sign of the arithmetic
operations is not minus, then the result is assumed to be plus. The types of signs accepted and
generated by each of the byte-manipulation instructions are listed in the table.

Table 5-3. Byte Status Word

Status Bit Type of Error Instruction and Condition Detected
Bit O Set Format Error 33-10,11 Byte not digit or blank {checked on all but last byte) or least significant 4 bits of last byte
greater than 9.
37-06,07 Byte not digit (checked on all but first byte) or least significant 4 bits or first bytes greater than
9.
33-14,15 a. Two signs in string not separated by at least one non-blank character.
b. Two decimal points in mantissa
c. Significant character not found.
d. Illegal character in string.
e. lllegal character in exponent.
f. Decimal point last character and no digit in string.
Bit 1 Set Underflow 33-15 Magnitude of input too small to represent in double-precision floating—point number.
33-14,15 Exponent negative and power of ten too small to represent double—precision floating-point
format.
Bit 2 Set Overflow 33-10 Magnitude of input too large to represent in 35 binary bits.
33-11 Magnitude of input too large to represent in 71 binary bits.
37-06,07 Decimal-add overflow.
33-14 Magnitude of input too large to represent in single-precision floating—point.
33-15 Magnitude of input too large to represent in double—precision floating-point.
33-14,15 Mantissa interpreted as integer too large to represent in 60 binary bits.
Bit 3 Set Decimal Point Error 33-14,15 a. Decimal point count greater than 31.
b Two decimal points in mantissa.
c. Decimal point last character and no digit in string.
Bit 4 Set No Significant Character | 33-14,15 a Bits O, 3, or 6 set and significant character not read yet.
Found-
b. Mantissa field does not contain at least one digit (note that a blank following a decimal
point is considered a digit).
String does not contain at least one nonblank and nonsign character.
Bit 5 Set Exponent Found or Byte 33-14,-15 Bits 0, 1, 2, 3, or 6 set and exponent field detected.
Roundup
33-16-17 b. Byte 10 (33,16) or 19 (33,17) is greater than four.
Bit 6 Set Mode Error 33-10,11 6- or 9-bit mode not selected (W bit) on one of the following instructions.
33-14,15
Bit 7 Set Byte Compare 33,03-04 Compare encountered during instruction.

n
Z6v8

8Bei01S pue 108582014
S 08/00} L IVAINN AUYIJS

eoueleey JewweiBos

sSweo

13A3T 3LvaAdN

39vd

vs-9

8492 SPERRY UNIVAC 1 100/80 Systems 5-56
UPLNUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
Table 5-4. Byte String Sign Codes
Sign Conventions
Character Code Formats + -
1. ASCII Included (Zone portion) 1010 1011
2. Fieldata Included 11 10
3. ASCII Separated (Entire byte) 00101011 00101101
4. Fieldata Separate 100010 100001

5.14.1. Byte Move - BM 33,00
Transfer LJ1 bytes from source string to receiving string. Truncate or fill.

This instruction transfers LJ1 bytes from a source string starting at address SJO to a receiving string
starting at address SJ1. The byte string at address SJO contains LJO bytes; the byte string at address
SJ1 contains LJ1 bytes. If LJ1 is less than LJO, the move will be truncated when LJ1 bytes have
been transferred. If LJ1 is greater than LJO, then (LJ1-LJO) fill bytes will be added in the trailing
positions of the byte string located at address SJ1. The contents of SR2,,_o are used as the fill byte.

When byte strings of different byte size are transferred, the receiving string determines how many
bits from each source string byte will be accepted. For example, if SJ1 is in the nine-bit mode and
LJ- is in six- bit mode, the three leading bits of the SJ1 byte are made zero. If SJ1 is in the six-bit
mode and SJO is in the nine-bit mode, only the six least significant bits of the SJO byte are accepted,
the rest being lost.

Both the values LJ1 and LJO are reduced by one following each byte move. Ths instruction is
terminated when the value of LJ1 equals zero (LJ1 = 0).

1. This instruction is interruptible after each store operation.

2. The Iwb fields in JO and J1 must be loaded with effective values of + 1wb, depending on mode
and width.

3. The desired fill byte must be loaded in SR2,,_,

5.14.2. Byte Move With Translate - BMT 33,01
Translate and transfer LJ1 bytes from source string to receiving string. Truncate or fill.

This instruction translates and transfers LJ1 byte from byte string SJO tp byte string SL1. The
translation and transfer process uses byte string SJ2 as a translation table for byte string LO. That
is, each byte of the string SJO is used as an index to a byte in string SJ2. The SJ2 byte thus addressed
is transferred to the byte string SJ1. If the value of LJ1 is less than LJO, the transfer terminates when
LJ1 bytes have been processed. If the value LJ1 is greater than LJO, then (LJ1-LJO) transiated fill

bytes are placed in the trailing positions of SJ1. The contents of SR2,,_g are used to index the fill
byte.

V\(hen byte strings of different byte size are transferred, the receiving string determines how many
plts from each byte of the source string will be accepted. If SJ1 is in the six-bit mode and SJ2 is
in the nine~bit mode, only the six least significant bits of SJ2 byte are accepted, the rest being lost.

8492 SPERRY UNIVAC 1100/80 Systems

5-56
UP-NUMBER Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

The translation table pointer register, J2, must be in the 9- or 18-bit mode. This restriction does
not prevent FIELDATA translations, but it requires that the translation table bytes are either 9- or
18-bit entries. Both the values LJ1 and LJO are decreased by one following each byte translation.
When the value of LJ1 is equal to zero (LJ1 = 0), the instruction is terminated.

The fill byte referenced by SR2,;_g must be preloaded left shifted one bit if MW = 0 in JO (see Figure
5-1), indicating the source string is 9-bit bytes, and must be preloaded left shifted two bits if BL =
1 in JO, indicating the source string is 18-bit bytes.

1. This instruction is interruptible after each byte store operation.

2. The Iwb fields of JO and J1 must be loaded with effective values of *, depending on mode and
width (see Table A3).

5.14.3. Byte Translate and Compare — BTC 33,03

Optionally, transiate and compare LJO bytes from SJO with LJ1 bytes from SJ1; terminate the
instruction on not equal or when both LJO and LJ1 equal zero; when:

(A) > O; string SJO > SJ1
{A) = O; string SJO = SJ1
(A) < O; string SJO < SJ1

This instruction optionally translates and compares LJO bytes of string SJO with the optionally
translated LJ1 bytes of string SJ1. String SJ2, starting at address (u +(X+2)+J2,,), is used as the
translation table for strings SJO and SJ1 when the corresponding E bit is zero. A one in the
corresponding E bit inhibits translation. Thus a translation can be made on either or both strings.
If no translation is desired, the Byte Compare instruction (33,04) should be used. The comparison
is made by subtracting the optionally translated SJ 1 byte from the optionally translated SJO byte and
storing the result in register Aa. If the contents of Aa is zero (Aa = 0), then the next pair of bytes
are translated or not, according to the content of (E) and compared. If the contents of Aa is not zero
(Aa = z 0), or if both of the strings SJO and SJ1 have a value of LU1 = O and LJO = O, then the
instruction is terminated. The values of LJ1 and LJO are always decreased by one, and the JO- and
J1-registers are increased or decreased by one, depending upon the direction addressed.

When the instruction termination occurs, the relative value of an SJO string in respect to the value
of an SJ1 string may be determined as follows:

B If the contents of the Aa-register is positive (A > 0), then the SJO string is greater than the SJ1
string (after optional translations).

B If the contents of the Aa-register is zero (Aa = 0), then the SJO string is equal to the SJ1 string
(after optional translations).

B If the contents of the Aa-register is negative (Aa < 0), then the SJO string is less than the SJ1
string (after optional translations).

1. If either string SJO or string SJ1 is depleted before the other, trailing fill characters are
added to the shorter string.

2. The fill byte for string SJO is contained in SR1,5_g and the fill byte for string SJ1 is
contained in SR23¢ ;4.

5-67
PAGE

8492 SPERRY UNIVAC 1100/80 Systems

UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL

3. The fill bytes in SR2 must be preloaded left shifted one bit if MW = O in JO indicating the
source string is 9-bit bytes and must be preloaded left shifted two bits if MW = 1 in JO
indicating the source string is 18-bit bytes (see Figure 5-1).

5.14.4. Byte Compare - BC 33,04

Compare LJO bytes from string SJO with LJ1 bytes from string SJ1; terminate instruction on
not equal or when both LJO and LJ1 are zero.

The corresponding string SJ1 byte is subtracted from the string SJO byte, the result is stored in Aa,
and a zero test is performed. The value of LJ1 and LJO are always decreased by one, and the JO-and
J1-registers are updated. If the contents of the Aa is zero, the next pair of bytes are tested. If the
value of Aa is nonzero, or both LJ1 and LJO are zero (i.e., the longer string has been depleted), the
instruciton is terminated. .

When the instruction termination occurs, the relative value of an SJO string in respect to the value
of an SJ1 string may be determined as follows:

B If the contents of the Aa-register is positive (Aa > 0), then the SJO string is greater than the
SJ1 string.

B If the contents of the Aa-register is zero (Aa = 0), then the SJO string is equal to the SJ 1 string.

B If the contents of the Aa-register is negative (Aa < 0), then the SJO string is less than the SJ1
string.

1. If either string SJO or string SJ1 are depleted before the other, trailing fill characters are
added to the shorter string. The fill byte for the string SJO is contained in SR2,5_g and
the fill byte for string SJ1 is contained in SR235_,.

2. This instruction is interruptible after each compare.

3. The lwb-fields of JO and J1 must be loaded with effective values of + 1wb, depending on
mode and width (see Table 6-2).

5.14.5. Edit - EDIT 33,07
Edit byte string SJO and transfer to string SJ1 under the control of string SJ2.

A source byte string (string SJO) specified by the u-field of the instruction, utilizing registers Xx and
JO, are edited into a receiving byte string (string SJ 1) specified by the u-field of the instruction, Xx
+ 1.and J1. Specific editing commands are coded within a control byte string (string SJ2) whose
location is designated by the J2 register, the u-field of the instruction, and the register Xx + 2. The
control stream commands are designed to duplicate all of the functions of the PICTURE clause of the
COBOL compiler. Therefore, the main use of the Edit instruction is to make the appropriate editing
changes to a numeric byte string for output to the printer. For example, blanking—out the leading
zeros, adding a "$" character or the appropriate sign code, inserting commas or a decimal point within
the number, or appending a descriptor word such as "CR" or "DB".

The following information describes and summarizes the basic operational steps of the Edit
instruction.

A typical field in the control strean. (string SJ2) will contain the following elements:

8492 SPERRY UNIVAC 1100/80 Systems 5-58
UP_NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
Function Byte Skip Count Subfunction Subfunction Flag Byte
(Table 5-5) (optional) (Table 5-6) (or Text) > (End-of-Field)

The function byte specifies control information for the whole field following it (see Table 5-5). One
function of this byte is to specify whether there is a skip count or not. If there is a skip count it is
given in the next byte. The rest of the field contains a series of subfunction bytes and text bytes.
The subfunction bytes are those described in Table 5-6 and specify operations to be performed as
the source string is edited into the receiving string. The text bytes are bytes similar to the source
string bytes which may be edited into the receiving string. The last subfunction byte in the field is
the flag byte which establishes the end—of-file action. The flag byte may be followed by another field
starting with a function byte, or a second flag byte indicating termination of the Edit instruction.

Operation of the Edit instruction is based on performing a sequence of field "microprograms" defined
by the control string. A field scan is established when the instruction is initiated or when the initiation
of a new field occurs and results in certain "function initiation" actions based on the contents of the
function byte. The first control stream byte must be the function byte. It will be stored in staging
register SR1,¢4 1g. If a skip count is required, as indicated by the function byte, the second control
stream byte contains the skip count and is transferred from the O control stream to staging register
SR1,;7_g. Next, the J1-register is saved in J3. This saves the position of the first byte of the receiving
string for use if the "blank-if-zero” command (bit O of function byte is set) is required when the end
of the field is encountered. Finally, the skip count (SR1,5_g) is used to skip the indicated number
of bytes in the receiving string. This is done by updating J1 position Owb as many times as the value
in SR1,,_g (skip count). At this point the edit is established.

When the function initiation actions are completed for this field, the first subfunction byte is
transferred from the control stream to SR1g_g for interrogation. The subfunction byte is transferred
from the control stream to SR1g_, for interrogation. The subfunction and text bytes are sequentially
interrogated until a "flag” (end—of-field) subfunction byte is encountered. At this point the end—of-field
action is completed and another function is initiated. This process continues until two "flag" bytes
are encountered together indicating termination of the instruction. A detailed description of the
function byte, subfunction, and text bytes follows.

5.14.5.1. Function Byte

The interpretation of the function byte is given in Table 5-5. A more detailed descripton of each bit
position follows:

Table 5-5. Function Byte Interpretation

Function Byte
Bit o 1
5 No Skip Count Skip Count Foliows
4 Fixed Sign Floating Sign
3 Fixed Symbol Floating Symbol
2 Sign = Minus or Fill Sign = Minus or Plus
1 Edit - No Sign Action Sign Action on Edit

8492 SPERRY UNIVAC 1100/80 S ms 5-59
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
Table 5-5. Function Byte Interpretation (continued)
Function Byte o B
0 Normal Edit Blank if Zero

Function Bit 5 — A skip mechanism is included that allows the programmer the option of ignoring
a series of bytes in the receiving string. The skip count is placed in position SR1,,_g during
function initiation and specifies the number of bytes to be skipped in the receiving string before
the first subfunction byte is interrogated. The maximum value allowed is 63, for either the
6 or 9 bit mode.

Function Bit 4 - If fixed sign is indicated, an appropriate sign byte (as specified by function bit
2) is placed in the receiving string position specified by SR235_,5. SR235_15 must be loaded
by the subfunction "sign—position indicator” discussed in 5.14.5.2. If floating sign is indicated,
an appropriate sign byte is placed in the receiving string position specified by SR2,_,,.
SR2,,_g is loaded by the subfunctions "digit select” or "significance start indicator" as discussed
in 5.14.5.2. In either case, a fill byte is transferred to the receiving string where the sign will
be. The sign bytes are specified by the programmer in SR3 and are transferred to the receiving
string when a "flag" subfunction byte is interrogated (end-of-field action). This bit has no
meaning unless function bit 2 (sign action on edit) is set to 1.

Function Bit 3 - If this bit is a 1 bit, the symbol specified by the programmer in SR3g o is
transferrred to the receiving string at the position specified by SR2,,_o. Position SR2,,_ 4 is
loaded the same way as for "floating sign" above. If both function bits 3 and 4 are set to one,
the floating sign will be inserted and the floating symbol ignored. As with the sign codes the
symbol is actually inserted during end—-of-field action. If function bit 3 is a zero there is no symbol
inserted during end-of-field action. A symbol may still be inserted into the receiving string
during subfunction interrogation with a "symbol-position indicator" subfunction (described in
5.14.5.2).

Function Bit 2 - If function bit 2 is a O, the sign code inserted into the receiving string is either
a minus or a fill as appropriate. If function bit 2 is a 1 bit, the sign code is either a minus or
a plus. The plus, minus, and fill bytes are specified by the programmer in SR3,;_g, SR3,¢_15.
or SR335_27. respectively. This bit has no meaning unless function bit 1 (sign action on edit)
is set to one.

Function Bit 1 - If function bit 1 is a 1, the sign action indicated by bits 4,2 and the sign of the
source string is taken (i.e., a plus, minus, or fill byte is inserted into the receiving string). If bit
1 is zero, no plus or minus bytes are inserted into the receiving string. The only effect bit 4
(floating sign) would have is to insert a fill byte in the position where the floating sign byte should
be.

Function Bit O - The programmer has the option of leaving an all-zero receiving field or replacing
it with fill bytes. The field is considered to be all-zero until a nonzero byte has been transferred
from the source string by a "digit select" subfunction. Position SR13, is set to one when the
first nonzero digit is transferred. SR13, is not set to one by any subfunction other than "digit
select”. The entire receiving string field is replaced with fill bytes during end-of-field action (see
"flag” subfunction in 5.14.5.2) if function bit O and SR14, are both set to 1. The start and end
of the field are indicated by J3 (loaded during function initiation) and J1, respectively.

8492 SPERRY UNIVAC 1100/80 Systems

$-60
UP-NUMBER Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

5.14.56.2. Subfunction Byte

The interpretation of the subfunction byte is given in Table 5-6 and discussed in the following

paragraphs.
Table 5-6. Subfunction Byte Interpretaion
Byte Function Fieldata Symbol

000 000 011 Pass Byte i

000 101 111 Significance Start Indicator \

000 100 110 Digit Select &

000 111 110 Symbol Position Indicator o

000 111 010 Sign Position Indicator * (apostrophe)
000 101 001 Trailing Text Start Indicator (

000 111 111 Flag (End-of-Field) t b

B Pass Byte - If the control byte is a "pass byte", the byte currently pointed at by the source field
pointer is transferred to the receiving string intact.

B Significance Start Indicator - If the control byte is a "significance start byte," the "significance
trigger” SR14, is set to one. Also, if either floating sign (function bit 4 set) or a floating symbol
(function bit 3 set) will be require, then the receiving field pointer, J1-register, is stored in
SR2,,_9. and a fill byte SR33g_, is inserted in the receiving field. This fill byte is replaced by
the appropriate sign byte in end-of-field processing as indicated by the function byte bit
settings. If the "significant trigger” has already been set to one, this byte is ignored.

B Digit Select - If the control byte is a "digit select byte,” the byte currently pointed at by the source
field pointer and the significance trigger are examine, according to the following criteria:

1. If the significance trigger is off, and the source byte has a zero digit portion, the receiving
field will have a fill character (SR335_,) inserted into it.

2. If the significance trigger is off and the source byte is not a zero,

a. the significance trigger is set on, and

b. if either floating sign or floating symbol will be required, the receiving field pointer
(J1) is stored in SR2,,_,, and a fill byte, (SR335_5) is inserted in the receiving string.
This fill byte is replaced by the appropriate sign byte in end-of-field processing as
indicated by the function byte bit settings. The receiving field pointer (J1) is
incremented, and

c. the source byte is transferred to the receiving string.

3. If the significance trigger is "on,” then the source byte is transferred to the receiving field.

4. Ifthis is the first nonzero digit to be transferred from the source string, SR15, is set to one
for use when interrogating the "blank-if-zero" function bit in end-of-field processing.

5. The appropriate zone code, as prescribed by the receiving string pointer (J1), is always
written into the receiving string. ’

8492

5-61
PAGE

SPERRY UNIVAC 1100/80 Sygtoms
Processor and Storage Programmer Reference

UPDATE LEVEL

An exception to the above "digit-select” transmission exists if the zone portion of the byte is
negative sign (sign overpunch). In this case, the "N" bit is turned "on" (SR13,) and the negative
sign bits are replaced by the appropriate zone code.

Symbol Position Indicator - If the control byte is a "symbol position indicator”, the symbol byte
(SR3g_o) is stored in the receiving field. The setting of function bit 3 does not affect the operation
of this subfunction byte.

Sign Position Indicator - If the control byte is a "sign position indicator,” the receiving field
pointer, contained in the J1-register, is copied into the fixed-sign position pointer (SR235 _43)
and the fill character (SR335_,5) is transmitted to the receiving field. This fill byte is replaced
by the appropriate sign byte in end-of-field processing as indicated by the function byte bit
settings. This subfunction byte must be used to indicate the position of the fixed sign if the
function bit 4 is O (fixed sign).

Trailing Text Start Indicator - If the control byte is a "trailing text start” byte, the trailing text
trigger (SR133) is set to one. If a negative sign has been detected in the source string scan
(SR13, set to one), any text information encountered in the control string is now transferred to
the receiving string. If SR13, equals zero, fill bytes (SR335_5) are transferred to the receiving
field rather than the text bytes.

Flag Byte (End-of-Field) - If the control byte is a "flag” byte, then the end-of-field action will be
established. At this point the appropriate sign insertion and "blank-if-zero" command actions
are done as indicated by the function byte. The net control stream byte is either a function byte
starting a new field or another flag byte terminating the Edit instruction.

If the control byte is none of the subfunction bytes of Table 5-6, it is assumed to be a text byte. If
either SR133 and SR13, are set (see Table 5-7) or SR13,4 is set and SR133 is not set, the text will
be transferred to the receiving field. In all other cases, the fill byte (SR335_,7) will be transferred to
the receiving field.

A summary of staging register (SR1-SR3) and J-register (JO-J3) usage are given in Table 5-7.

1.

The Iwb-fields of JO, J1, and J2 must be loaded with effective values of + 1wb, depending on
values of + 1wb, depending on mode and width (see Table 5-2).

SR3 must be loaded with the desired codes.

This instruction is interruptible.

65.14.6. Byte to Binary Single Integer Convert - Bl 33,10

Convert LJO byte in string SJO into a signed binary integer in register A.

This instruction converts byte string SJO composed of LJO bytes, coded in either ASCII or Fieldata,
into a signed binary integer in the Aa-register. The JO-register initially points to the leftmost byte
in the string and is set for left-to-right incrementation. The sign must be represented in the zone
of the least significant byte.

Table 5-7. Summary of Staging Register and J~Register Fields

Field

Position

Function

CMP (Complement Mode)
ST (Significance Trigger)
T (Trailing Text Trigger)
N (Negative Bit)

C (Control Bit)

L (Skip Bit)

| (Interrupt Bits)
Function

Skip Count
Subfunction
Fixed-Position Pointer

Floating~-Position Pointer

Fill Byte
Negative-Sign Byte
Plus-Sign Byte
Symbol Byte

Source Pointer
Receiving Pointer
Control Pointer
Start-of-Field Pointer

SR14 (BTO)
SR15, (BT1)
SR155 (BT2)
SR15, (BT3)
SR13, (BT4)

SR13, (BT5)
SR1,g 57 (BT6-8)
SR1,6 15 (BS2)
SR1,5_g (BS3)
SR1g_o (BS4)
SR245 g (BHO)

SR2,7_9 (BH1)

SR3 35_57 (BBO)
SR3,6 15 (BB1)
SR3,_g (BB2)
SR3g_, (BB3)
Jo

J1
J2
J3

No complement if O, complement if 1.

set to 1 if the control byte is a "significant start: byte.

Set to 1 when a trailing text start indicator has been detected.

Set to 1 when a ncgative sign has been detected.

Set to 1 when the first nonzero digit is transferred from the source string
by the "digit select’ subfunction.

Set to 1 if a skip is in progress.

Controls return after instruction interrupt.

Contains active Edit field function.

Contains skip count to bypass receiving field.

Contains active Edit subfield function or text.

Acts as index modifier for pointing to byte in receiving string which will
receive fixed sign or symbol. Receives contents of J1-register position
Owb.

Acts as index modifier for pointing to byte in receiving string which will
receive floating sign or symbol. Receives contents of J1-register position
Owb.

Byte used when fill is called for.

Byte used when negative sign insertion is specified.

Byte used for positive sign insertion.

Byte used for symbol insertion.

Points at source byte for Edit action.

Points at byte to receive edited byte.

Acts as index modifier for pointing to control string (byte).

Copy of contents of J1-register at start of field. Used to control
blank-if-zero action.

T3A3IN 3lvadn

39vd

29-S

8oue108Yy Jowmemo:‘a 9B1101S pue J0Sse0id
()

Z6v8

S 087001 1 JVAINN AHYILS

swi

8492

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-63
PAGE

UPDATE LEVEL

A 7-bit status word is stored in the low-order bits of SR3,;_g. An all zero word indicates successful
completion of the instruction. Bit O set indicates a Format error and is set if one of the input bytes
is not a digit or a blank (checked on all but the last byte) or the least significant 4 bits of the last
byte are greater than 9. Bit 1 set indicates an overflow condition and is set if the magnitude of the
input string SJO is too large to be represented by 35 binary bits.

1. If the arithmetic section detects a register overflow, an interrupt (to MSR + 2503 is ¢enerated.

2. The Iwb-field of JO must be loaded with effective value of + 1 depending on mode and width
(see Table 5-2).

3. J1,J2 and J3 are not used in this instruction.

5.14.7. Byte to Binary Double Integer Convert -~ BDI 33,11
Convert LJO bytes in string SJO into a signed binary integer in registers A and A4 1.

This instruction converts byte string SJO composed of LJO bytes, coded in either ASCII or Fieldata,
into a signed binary integer in the Aa— and Aa+ 1-register. The JO-register initially points to the
leftmost byte in the string and is set for left-to-right incrementation. The sign must be represented
in the zone of the least significant byte.

A 7-bit status word is stored in the low-order bits of SR3,,_g. An all zero word indicates successful
completion of the instruction. Bit O set indicates a Format error and is set if one of the input bytes
is not a digit or a blank (checked on all but the last byte) or the least significant 4 bits of the last
byte are greater than 9. Bit 1 set indicates an overflow condition and is set if the magnitude of the
input string SJO is too large to be represented by 72 binary bits.

1. If the arithmetic section detects a register overflow, an interrupt (to MSR + 250g) is yenerated.

2. The Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width
(see Table 5-2).

3. J1,J2 and J3 are not used in this instruction.

5.14.8. Binary Single Integer to Byte Convert - IB 33,12

Convert the binary integer in A to byte format and store in string SJO.
This instruction converts the binary integer contained in the Aa-register to a byte format and stores
the results in string SJO. String SJO is LJO bytes long and the rightmost byte has the sign in the
zone portion.
The converted number is right-justified and zero—filled in the string. If string SJO is not long enough
to accommodate the converted number, the remaining bytes will be truncated. The JO-register must

be set for negative incrementation and point to the rightmost byte.

1. The Iwb-field of JO must be loaded with effective value of -1, depending on mode and width
(see Table 5-2).

2. J1,J2 and J3 are not used in this instruction.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems

5-64
Processor and Storage Programmer Reference

PAGE

UPDATE LEVEL

5.14.9. Binary Double Integer to Byte Convert - DIB 33,13
Convert the binary integer in A and A4 1 to byte format and store in string SJO.

This instruction converts the binary integer contained in the Aa—- and A+ 1-registers to a byte format
in string SJO. String SJO is LJO bytes long and the rightmost byte has the sign in its zone portion.

The converted number is right—justified and zero filled in the string. If string SJO is not long enough
to accommodate the converted number, the remaining bytes will be truncated. The JO-registers must
be set for negative incrementation and point to the rightmost byte of string SJO.

1. Iwb-field of JO must be loaded with effective value of -1, depending on mode and width (see
Table 5-2).

2. J1,J2 and J3 are not used in this instruction.

5.14.10. Byte to Single Floating Convert — BF 33,14
‘ Convert LJO bytes in string SJO into a single-length floating—point format in register A.

This instruction converts byte string SJO composed of LJO bytes, coded in either ASCII or Fieldata,
into a single floating—point number in register Aa.

String SJO may have either a leading plus—sign character (+) or a leading minus-sign character (-
that indicates the sign of the mantissa. In the absence of either a plus or minus sign, the mantissa
is assumed to be positive. The mantissa must be representable in 30 binary bits if interpreted as
an integer and may or may not contain a decimal point character. If the mantissa does not contain
a decimal point character, this character is assumed and its position is contained in SR3,¢_,g. If the
decimal point character is present, this condition overrides the effect of SR3,4_,g.

The exponent, if present, follows the least significant digit of the mantissa. An exponent is indicated
by an E or D character followed by a mirus sign and then the digits, if the exponent is negative. If
the exponent is positive the E or D character is followed by the digits alone or by a plus sign followed
by the digits. The E or D character may be optionally omitted. In this case, either a plus sign or a
minus sign must precede the digits of the exponent. The exponent must be limited to two digits. If
an exponent is not present, 10° will be assumed.

A 7-bit status word is stored in the low-order bits of SR3,9_o. An all zero word indicates successful

completion of the instruction. For possible error conditions and status word indications see Table
5-3.

1. Floating-point interrupts (characteristic underflow/overflow) may occur during the instruction.

2. Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width (see
Table 5-2). :

3. J1,J2 and J3 are not used in this instruction.

4. SR3 positions 26-18 are the number of digits to the right of the decimal point.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-65
PAGE

UPDATE LEVEL

5.14.11. Byte to Double Floating Convert - BDF 33,15

Convert LJO bytes in string SJO into a double-length floating—point format in registers A and
A+1.

This instruction converts byte string SJO composed of LJO bytes, coded in either ASCII or Fieldata,
into a double—precision floating—point number in registers Aa and Aa+1.

The SJO string may have either a leading plus-sign character (+) or a leading minus-sign character
(-) that indicates the sign of the mantissa. In the absence of either a plus or minus sign, the mantissa
is assumed to be positive. The mantissa must be representable in 60 binary bits if interpreted as
an integer and may or may not contain a decimal point character. If the mantissa does not contain
a decimal point character, this character is assumed and its position is contained in SR3,4_45. If the
decimal point character is present, this condition overrides the effect of SR3,4_;5.

If the exponent is present, it follows the least significant digit of the mantissa. The exponent is formed
according to the same rules that apply to the Byte to Single Floating-Point instruction (see 5.14.10),
except that there may be up to three digits in the exponent.

A 7-bit status word is stored in the low-order bits of SR3,4_;. An all zero word indicates successful
completion of the instruction. For possible error conditions and status word indications see Table 5-3.

1. Floating-point interrupts (characteristic underflow/overflow) may occur during the instruction.

2. Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width. (See
Table 5-2.)

3. J1,J2 and J3 are not used in this instruction.

4. SR3 position 26-18 is the number of digits to the right of the decimal point.

5.14.12. Single Floating to Byte Convert - FB 33,16
Convert the single-length floating—point number in A to byte format and store in string SJO.

This instruction converts a single-length floating—point number contained in the Aa-register to a byte
string starting at address SJO. The format of the resulting string SJO contains two numbers. The
first number is a nine-byte decimal fraction that has its sign in the zone part of the least significant
byte. The second number is a two-byte exponent with its sign in the zone portion of the least
significant byte.

1. the Iwb-field of JO must be loaded with effective value of + 1, depending on mode and width.
(See Table 5-2.)

2. J1,J2 and J3 are not used in this instruction.

5.14.13. Double Floating to Byte Convert - DFB 33,17

Convert the double-length floating~point number in A and A+ 1 to byte format and store in string
SJO.

This instrgction converts a double-length floating-point number contained in the Aa- and
Aa 4 1—reg|ster§ to a byte string starting at address SJO. The format of the resulting string is similar
to that of the Single Floating to Byte Convert (see 5.14.12.) instruction except that the first number

8492

5-66

SPERRY UNIVAC 1100/80 Sgums
PAGE

Processor and Storage Programmer Reference

UPDATE LEVEL

is equivalent to an 18-byte string and the second number is equivalent to a three-byte string. The
first number is the mantissa and the second number is the exponent. Each number has its sign in
the zone porticn of the least significant byte.

1. The Iwb-field of JO must be loaded with effective value of 4+ 1, depending on mode and width.
(See Table 5-2.)

2. J1,J2, and J3 are not used in this instruction.

5.14.14. Byte Add - BA 37,06

Add the LJO bytes in string SJO to the LJ1 bytes in string SJ1 and place the results in string
SJ2.

This instruction adds byte string SJO (of length LJO) to byte string SJ1 (of length LJ1) and stores the
results in byte string SJ2 (of length LJ2). Only 6-bit Fieldata or 9-bit ASCII formats may be used.
The sign of the SJO and SJ1 strings must be stored in the zone portion of the least significant byte.
If the length of the resultant byte string is smaller that LJ2 digits, then the SJ2 string will be zero
filled. The J-registers must point to the least significant digit and should be set for right-to-left
incrementation.

1. This instruction is interruptible.

2. The Ilwb-fields of JO, J1, and J2 must be loaded with the effective value of -1, depending on
mode and width. (See Table 5-2))

5.14.15. Byte Add Negative - BAN 37,07

Subtract the LJO bytes in string SJO from the LJ1 bytes in string SJ1 and place the results in
string SJ2.

This instruction subtracts byte string SJO (of length LJO) from byte string SJ1 (of length LJ1) and
stores the results in byte string SJ2 (of length LJ2). Only 6-bit Fieldata or 9-bit ASCIl format may
be used. The sign of the SJO and SJ1 strings should be stored in the zone portion of the least
significant byte. If the length of the resultant byte string is smaller that LJ2 digits, then string SJ2
will be zero filled. The J-registers must point to the least significant digit and should be set for
right-to-left incrementation.

1. This instruction is interruptible.

2. The Iwb-fields of JO, J1, and J2 must be loaded with effective value of -1, depending on mode
and width. (See Table 5-2.)

5.16. EXECUTIVE INSTRUCTION REPERTOIRE

T.he instructions in this group are intended for use by the Executive system. When designator register

but.s ;35 and 2 are zero, the Executive repertoire is selected. This allows execution of all Executive

(privileged) instructions in addition to those of the user repertoire. The Executive repertoire includes

instructions for control of the processor state, interrupts, input/output, and instrumentation.

The Executive control instructions defined for the processor are described in the following
paragraphs. They are listed in Appendix B.

8492

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-67
PAGE

UPDATE LEVEL

5.15.1. Prevent All Interrupts and Jump - PAlJ 72,13

The processor will not recognize certain interrupt requests received following the completion of the
instruction nor will it react to interrupt requests received following the start of the execution of the
instruction.

The following interrupts may be prevented by this instruction:
B AllI/0 interrupts, including those for normal status, tabled status, and machine check interrupts.

This instruction causes the internal dayclock register value of the processor to be replaced at the start
of the next update cycle with the value in the dayclock location in fixed storage.

5.15.2. Enable/Disable Dayclock - EDC,DDC 73,14, 11-12

These instructions enable and disable, respectively, the internal dayclock of the processor. When
a dayclock is enabled, if the dayclock is also selected the dayclock vailue is stored in the dayclock
location in fixed storage during each update cycle, and a dayclock interrupt request may be generated
by the dayclock.

5.156.3. Select Dayclock - SDC 73,14, 13

Each processor contains an internal dayclock. One dayclock in each application may be selected at
any given time to store its value in the dayclock location in fixed storage. The operand address of
the instruction specifies the processor number whose dayclock is selected for this function; note that
the selected dayclock must also be enabled (via EDC).

5.15.4. Select Interrupt Locations - SIL 73,15, 00

Bits 22 through 16 of the operand are transferred to the module select register (MSR) specified by
bit 23. If bit 23=1, transfer is to MSR in SIU upper half; if bit 23=0, transfer is to MSR in SIU lower
half.

MSR is used as the base for all fixed address assignment references, and there is a separate MSR
for the lower half of the addressing range (0-8M) and the upper half of the addressing range (8—16M);
the load path selection of the system transition unit determines which is to be used for fixed
references.

5.16.5. Load Breakpoint Register - LBX 73,15, 02

The operand specified by the operand address is transferred to the breakpoint register. This
establishes the modes of operation for the breakpoint mechanism, and activates and establishes the
modes of operation for the jump history stack.

5.16.6. Store Processor ID - SPID 73,15, 06

The binary serial number is stored in the first third of the operand, the two character fieldata revision
level is stored in the second third of the operand, the processor features provided are stored in the
fifth sixth of the operand (bit 8 byte-oriented instructions, bit 7 floating-point instructions) and the
binary processor number is stored in the last sixth of the operand.

8492
UP-NUMBER

" 5-68
PAGE

SPERRY UNIVAC 1100/80 Systems

Processor and Storage Programmer Reference UPDATE LEVEL

5.15.7. Load Quantum Timer - LQT 73,15, 03

The full-word operand specified by the operand address is placed in the quantum timer.

5.15.8. Load Base - tB 73,15 10

Bits 17 through O of the operand specified by the operand address are placed in the base-value field
of the bank descriptor register specified by bits 34 and 22 of Xx. If the xfield of the instruction
is zero, BDRO is implicitly specified.

5.15.9. Load Limits - LL 73,15, 11

Bits 35 through 24 and 23 through 15 of the operand specified by the operand address are placed
in the upper and lower limits fields, respectively, of the bank descriptor register specified by bits
34-33 of Xx. If the X-field of the instruction is zero, BDRO is implicitly specified.

5.15.10. Load Addressihg Environment - LAE 73,15, 12

The double-word operand specified by the operand address contains four bank descriptor
specifications in the following format:

El XX | ign- 8DIO E ign- BDI2

0 ored 2| XX | ored

E| XX | ign- BDI1 E| XX | ign- BDI3

1 ored 3 ored

3534 3332 3029 181716 1614 1211 0

This operand is placed in GRS locations 046 and 047, and the limits and base values of the four bank
descriptors specified by this operand are placed in the respective bank descriptor registers. The bank
descriptor table length check is not performed on the bank descriptor index supplied by the
instruction. Bank descriptor flags and use counts are neither interpreted nor altered by LAE.

5.16.11. Store Quantum Time - SQT 73,15, 13

The current value of the quantum timer is stored at the operand address, which may be in GRS or
storage. Execution of this instruction has no effect on D29.

5.16.12. Load Designator Register -~ LD 73,15, 14

The. full-word operand specified by the operand address is placed in the designator register. All
designator register specifications are in effect at the completion of this instruction.

8492

5-69
PAGE

SPERRY UNIVAC 1100/80 Sgoms

Processor and Storage Programmer Reference UPDATE LEVEL

5.15.13. Store Designator Register - SD 73,15, 15

The contents of the designator register is stored at the location by the operand address.

5.15.14. User Return - UR 73,15, 16

This instruction provides an orderly mechanism for returning to a user program. The instruction
effectively combines LD and jump except that the component operations are performed with the
correct repertoire, addressing, and register set.

The double-word operand specified by the operand address contains the relative program address
and designator register value that establish the user operating state.

The second word of the operand is placed in the designator register, and all specifications are put
in effect. The lower 24 bits of the first word of the operand then becomes the relative program
address. If the relative program address is subsequently found to be out of limits, the interrupt will
capture the new P-value.

Bit positions 23 through 18 of the relative address and the A-flag (bit position 35 of the same word)
should be zero, unless base register suppression (D35 = 0, D7 = i = 1) is intended or was in effect
when the address was stored as the result of an interrupt.

5.15.15. Reset Auto-Recovery Timer - RAT 73,15, 06

This instruction resets the timer in the auto-recovery section of the partitioning unit. This must be
done within an interval specified by the auto-recovery design in order to prevent an automatic intia!
load from being initiated.

5.15.16. Toggle Auto-Recovery Path - TAP 73,5, 07

The system allows for two auto-recovery paths (processor/IQU/SIU Half combinations). Each time
an auto-recovery is attempted, the path selection is toggled. When a successful recovery does occur,
this instruction allows the software to return the auto-recovery selection to the successful path.

5.16.17. Store System Status -~ SSS 73,15, 17

This instruction stores two words of system status at the location specified by the operand address.
System status includes partitioning information relating to each processor 10U, SIU, and MSU.

5.16.18. Diagnotics - 73,14, 14 - 17

These instructions are provided to test a large portion of the arithmetic hardware and a smaller portion
of the control section hardware. They generate specific operands, cause arithmetic to exercise its
logic, and place results in GRS. The results may be then tested via TE/TNE instructions to verify
operation. If an error is found it is recommended that diagnostic procedures using scan and/or test
routines be used. Detail instructions are:

MDA 73, 14, 14 - Generates A and A+ 1 operands of 0707—07, a U operand of 070707070622,
and a U+ 1 operand of 2525—25. The result, A=00372706711, A+1=256171354400 is stored
in GRS addresses 62 and 63.

8492

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

5-70
UPDATE LEVEL PAGE

MDB 73, 14, 15 - Generates an A operand of 0707—07, an A+ 1 operand of 070707070701, a
U operand of 070707070600, and a U+ 1 operand of 0707—-07. The result, A=771177117711,
A41=777777776677 is stored in GRS addresses 62 and 63.

73, 14, 16, and 17 - are undefined and will not operate.

5.15.19. Input/Output Instructions

The I/0 instructions are described in detail in Section 6.

For each 1/0 instruction, the operand address specifies the 10U, channel, and device number, if
applicable. For certain instructions, the index register specified by the a-field of the instruction (Xa)
contains a parameter associated with the operation, generally an address. Each 1/0 instruction skips
the next instruction if the operation was initiated properly, and a condition code of zero is stored in
the upper sixth—-word of register Xa.

If the next instruction is executed, the upper sixth-word of register Xa contains a code that describes
one of four conditions: 000 = operation initiated, 020 = status is available, 040 = busy, and 060
= not operational; the remainder of Xa is not disturbed.

The Input/Output instructions are:

Sense Release (SRL-75,00)

SIO Fast Release (SIOF-75, 11). Xa contains the first CCW address.

Test 1/0 (TI0-75, 02)

Test Subchannel (TSC-75, 03)

Halt Device (HDV-75, 04)

Halt Channel (HCH-75, 05)

Load Channel Register (LCR-75, 10): Xa contains the value to be loaded.

Load Table Control Words (LTCW-75, 11): Xa contains the first CCW address.

NOTE:

Because of the single IAW and CSW locations for a processor, 1/0 instructions that may alter these
locations must be executed with interrupts locked out.

8492

6-1
PAGE

SPERRY UNIVAC 1100/80 Systems

Processor and Storage Programmer Reference UPDATE LEVEL

6. Input/Output

6.1. INTRODUCTION

The input/output unit (IOU) provides a means of communications between the processor and its
external media. Under processor control the IOU handles all transfer of data and status between
peripherals and main storage. It minimizes processor involvement in input/output operations, yet
provides a flexible method of controlling and interrogating input/output activity. This section
describes the 10U’s system philosophy, functional characteristics, various hardware and software
options, and overall operation.

6.2. FUNCTIONAL CHARACTERISTICS

The 10U has three interfaces: a storage interface, a processor interface, and a control unit or
peripheral interface. Each IOU consists of one control module and from two to eight channel modules.
(See Figure 6-1.) The control module handles all the interfacing with the storage unit and either one
or two processors. The control module to processor(s) interface initiates instructions and handles
interrupts. The control module to storage interface transfers data, input/output control words, and
status between the channel modules and the storage interface. The control module establishes a
data handling and interrupt priority among the eight channel modules.

8492 SPERRY UNIVAC 1100/80 Systems 6-2
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
-
w 1=
S
o)
M% © c L
i S <2
= <
Z0 © >0
< @) b [al
=T =
e B
SO0O0Dw —2hFuwreun oW
sy =

OICZZW| OOZFXO- DZ—k

0 :
2 :
@
@ : S00Dw
wF : e =
2 : OTCZZW
® o .
8 Y
[- :
= : . :
- — ; Z | = T DT T :
-2 . |9 LMODULE_W
&S =5 “,l "CHANNEL“.A_l llllllllllllll =
[&) : w :
522 ¢ |%a | T L
ﬁAA _AI.-I.L j———————— :
MLZ. : gl S00D4w _R
o : o <= gl |- T T T T T T T T T T T T =
&« ; 3w OT<ZZwa
m : c>yy | T—mmome——-- :
< : =
w : Zo | 0 e :
: o | (-
S : <--—-- _ g - e >
m : _CHANNEL_“
% : <---4 T TTT———- :
£ _ | - :
® : | " o — 7 1
o : AM.II_ L - 20D Jw :
o = - e e >
€ ® : | | I
£e8 |[: - OTCZZwa,
8z o T
.m”m A 9 “ " e s = T P
Ea £ I - SO00DWw :
z [“ L-- n Tﬂllllllt!llllllmv
D= | | OXCZZWwa)
b4 S, T —- o
|
B A .
W .9 “ iMODULE_W —ZWweue <OWw
2 I < UozrE6I T 5z
m k=N _CHANNEL_ :
G e — :
................... [
|
o - |
Swl 5w
w0 O 0 O
n < n <
Ww W EF.
0T O Xy
SEl g
a < a Z
v v

Figure 6-1. 1100/80 Input/Output Unit

8492

6-3

SPERRY UNIVAC 1100/80 Sgtoms
PAGE

Processor and Storage Programmer Reference

UPDATE LEVEL

6.2.1. Channels

A channel is defined as a channel module. The channel handles all interfacing with the control units.
The channel executes input/output instructions, formats and transfers data, generates interrupts and
status, and establishes priority among input/output instructions, data transfers, and interrupts. Each
channel is designated by feature to be either a byte multiplexer channel, a block multiplexer channel,
or an 1100 series compatible word channel.

A channel provides a standard interface for communicating with control units. A control unit provides
the logical capability necessary to adapt the standard form of control provided by the channel to the
characteristics of an input/output device. A control unit may be housed separately and connected
to one or many devices, or it may be physically and logically integrated with an input/output device.
Input/output devices provide external storage and a means of communications for a processing
system. Magnetic tape units, printers, storage devices such as disks and drums, consoles, and card
readers are examples of input/output devices.

Priority among devices is established by the control units. Priority among control units is determined
by their physical connection to the channel. Each 1100/80 word channel has a maximum of four
parallel input/output interfaces, each with an assigned priority. (See Figure 6-2.) Each byte or block
multiplexer channel has one input/output interface, and many control units are physically connected
to the interface, but only one control unit at a time is logically connected to the channel. (See Figure
6-2.) The channel polis the control units serially, and the highest priority control unit requiring service
logically connects to the channel. A byte multiplexer connects to a control unit for the length of time
to transfer one byte of data. A block multiplexer connects to a control unit for the length of time
to transfer a block of data. No other device can communicate over the interface during the time a
block is being transferred.

CHANNEL
MODULE

BYTE OR BLOCK

CHANNEL MODULE

1100/80

MULTIPLEXER WORD CHANNEL
CHANNEL
Intfc Intfc Intfc Intfc
DEVICE DEVICE p—— o 5 A 3
1 | UNIT _ | L
] I
DEVICE DEVICE A pos—
| | UNIT
CONTROL CONTROL CONTROL CONTROL
DEVICE }
DEVICE CONTROL B UNIT UNIT UNIT UNIT
[[UNIT
A B c D
I
DEVICE DEVICE c CONTROL - T - -
l l UNIT DEVICE H DEVICE H DEVICE H DEVICE H
DEVICE DEVICE o
| CONTROL DEVICE DEVICE DEVICE DEVICE
| UNIT
DEVICE DEVICE DEVICE [DEVICE M DEVICE I DEVICE H
E CONTROL
| I UNIT DEVICE DEVICE DEVICE DEVICE
DEVICE DEVICE .
| CONTROL DEVICE H DEVICE H DEVICE H DEVICE H
| UNIT
DEVICE DEVICE G DEVICE DEVICE DEVICE DEVICE
CONTROL
| [UNIT
H
Figure 6-2. Byte or Block Multiplexer Channel Compared to 1100/80 Word Channel

HIGNNN-IN

0.

T3A3 3Lvadn

‘39vd

v-9

ebei01S pue 1085890.g

oiék

eoueejey Jewwesd

Z6v8

S 087001 1 DVAINN AYY3dS

8492
UP-NUMBER

6-5

SPERRY UNIVAC 1100/80 Sgtoms
PAGE

Processor and Storage Programmer Reference

UPDATE LEVEL

6.2.2. Subchannels

A subchannel is defined as a set of control words that manages input/output operations. Each set
of control words contains a data address, a data count, the mode of the subchannel, the storage
address of the next control word, and special flags. Subchannels may be either shared or nonshared.
A subchannel is referred to as shared if two or more devices use the same subchannel for input/output
operations. On a shared subchannel only one device at a time can transfer data. A subchannel is
referred to as nonshared if it is associated and can be used only with a single input/output device.
On a 1100/80 word channel, ISl subchannels are shared and ESI subchannels are nonshared.

An IOU channel has the capability of maintaining eight resident subchannels. The basic word channel
provides that all eight (four in word channel) resident subchannels are shared. In word channel
modules with the subchannel expansion feature (F1654-00) and option O (C1655-00), there are four
resident shared subchannels, four resident nonshared subchannels, and 124 nonresident nonshared
subchannels. With the subchannel expansion feature and option 1 (C165501), there are eight
resident nonshared subchannels and 120 nonresident nonshared subchannels. Nonresident,
nonshared subchannels are kept in main storage. With the subchannel expansion feature and option
1, the eight most recently active nonshared subchanneis are held in the channel. The remaining 120
subchannels are held in main storage. If the channel receives a reauest for a nonshared subchannel
that is not resident in the channel, the least recently used resident nonshared subchannel is
determined and then moved into main storage. The requested nonshared subchannel is then moved
from main storage to the channel, and the request is handled. With the subchannel expansion feature
and option O, each channel has four shared subchannels and 128 nonshared subchannels. The four
most recently active nonshared subchannels are kept resident in the channel, and the remaining 124
nonshared subchannels are held in main storage.

6.3. CONTROL OF INPUT/OUTPUT DEVICES

The processor controls 1/0 operations by means of eight I/0 instructions: Sense Release (SRL), Start
I/0 Fast Release (SIOF), Test I/0 (T10), Test Subchannel (TSC), Halt Device (HDV), Halt Channel (HCH),
Load Channel Register (LCR), and Load Table Control Words (LTCW). The instruction Load Channel
Register addresses either the control module or a channel. The instructions Halt Channel and Load
Table Control Words address only a channel; they do not address an I/0 device. All other instructions
address a channel and subchannel. On a byte or block multiplexer channel, the Sense Release, Test
I/0, and Halt Device instructions may also address the device.

6.3.1. Input/Output Device Addressing

An 1/0 device and its associated channel module and control module are designated by a 13 bit I/0
address. The I/0 address has an 8 bit device address in bits 00-07, a channel address in bits 08-11,
and an IOU number in bit 12. Because the maximum configuration allows for only eight channel
modules, bit 11 of the channel address is ignored and bits 08-10 are used to select a channel module.
Of the 8 bit device address, bit 07 specifies whether the selected subchannel is shared or nonshared.
Device addresses with bit 7 equal to zero specify nonshared subchannels and device addresses with
bit 7 equal to one specify shared subchannels. Each nonshared subchannel, regardless of channel
type, is identified by a unique device address allowing a maximum of 128 nonshared subchannels
per channel. On a word nonshared subchannel bit 06 of the device address specifies the ESI

interface. If bit 06 equals zero, ES| interface O is selected and if bit 6 equals one, ESI interface 1
is selected.

For shared subchannels on a byte or block multipiexer channel, bits 04-06 of the device address
select one of eight shared subchannels and its associated control unit. Bits 00-03 select one of a
maximum of 16 devices. This allows a maximum of eight shared subchannels and 128 devices per
byte or block multiplexer channel. There is a maximum of four shared subchannels and four

8492

6-6

SPERRY UNIVAC 1100/80 Sgtom.
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

associated ISl interfaces on a word channel. Bits 05-06 of the device address select the subchannel
and the ISl interface. Bit 04 must be zero and bits 00-03 are ignored. On word channels, the device
address selects only a subchannel and an interface. The device is selected by an external function
word.

Each channel can accommodate a different number of devices depending upon the type of channel
(byte or block multiplexer or 1100 Series) and the option selected (all shared, subchannel expansion
feature — option O, or subchannel expansion feature — option 1) (See Table 6-1). Except for the rules
described, the assighment of channel and device addresses is arbitrary.

6.3.2. States of the Input/Output System

The result of an 170 instruction is determined by the collective state of the channel, subchannel, and
device selected by the I/0 address. Depending on the type of channel and the I/0 instruction being
executed, different combinations of the states of the channel, subchannel, and device will be
interrogated to determine the response to an I/0 instruction. When the response to an I/0 instruction
is determined by the state of the channel, the subchannel and device are not interrogated. If the
response to an I/0 instruction is determined by the state of the subchannel, the device is not
interrogated. On a word channel the device is never interrogated to determine an 1/0 instruction
response.

The channel, subchanrnel, and device can each be in one of four states. (See Table 6-2.) There are
13 composite states that cover all the conditions detected by an 1/0 instruction. In the following
paragraphs each composite state is identified by three letters. The first letter identifies the state of
the channel, the second letter identifies the state of the subchannel, and the third letter identifies the
state of the device. The three letters indicate the state of the channel, subchannel, and device
selected by the I/0 address of the 1/0 instruction. There are two exceptions:

1. For the LTCW instruction, the second letter indicates the state of the status table subchannel.

2. Forthe LCRinstruction, the second letter indicates whether the channel has the feature installed
to handle the LCR instruction.

Table 6-1. Device Addressing

Word Channel (1100 Series)
Device Byte Multiplexer | Block Multiplexer Eight Shared Subchannel Subchannel
Addresses Channel Eight Channel 128 Subchannels Expansion Expansion
(Hexadecimal) Shared Nonshared Feature Option O | Feature Option 1
Subchannels Subchannels
00-3F,¢ Not used Nonshared Not Used Nonshared ESI Nonshared ESI
Interface A#* Interface A%*
40-7F¢ Not Used Nonshared Not Used Nonshared ESI Nonshared ESI
Interface B#* Interface B#*
80-8F,¢ Shared O** Not Used Shared O ISI Not Used Not Used
Interface A
90-9F,¢ Shared 1 Not Used Not Used Not Used Not Used
AO-AF,¢ Shared 2 Not Used Shared 2 iSI Not Used Not Used
Interface B
BO-BF,¢ Shared 3 Not Used Not Used Not Used Not Used
CO-CF,¢ Shared 4 Not Used Shared 4 IS| Shared 4 IS| Not Used
Interface C Interface C
DO-DF,¢ Shared 5 Not Used Not Used Not Used Not Used
EO-EF,g Shared 6 Not Used Shared 6 ISI Shared 6 ISI Not Used
Interface D Interface D
FO-FF,g Shared 7 Not Used Not Used Not Used Not Used
Number of 8 Shared O Shares 4 Shared 2 Shared O Shared
Subchannels 0 Nonshared 128 Nonshared O Nonshared 128 Nonshared 128 Nonshared

ESI Interface A has 64 device addresses 00-3F, and ESI| Channel B has 64 device addresses 40-7F.

*#% This number designates which of the eight channel hardware registers are associated with which device addresses. For
nonshared subchannels, option O uses hardware registers O, 1, 2, and 3, and option 1 uses hardware registers O, 1, 2, 3,

4,5, 6 and 7.

T3A37T Lvadn

39vd

L9

o6e10)S pue 108$8201d
S 087001 L IVAINN AHYIIS

eoues9jey sewwesbou

Z6v8

8492

SPERRY UNIVAC 1100/80 Systems

6-8
Processor and Storage Programmer Reference

UP-NUMBER UPDATE LEVEL PAGE
Table 6-2. Channel, Subchannel, and Device States

Channel Abbreviation Definition

Available A Ready to accept a nonpenetrating or
penetrating instruction.

Iinterrupt Pending | Not defined.

Working w Operating in burst mode (block multiplexer
channel only), and can accept and execute
only penetrating instructions.

Not Operational N Not installed or offline.

Subchannel
Available
Interrupt Pending
Working

Not Operational

Device

Available
Interrupt Pending
Working

Not Operational

Abbreviation Definition

A Ready to accept new command.

| Holding status.

w Busy execuﬁng previous command.
N Not installed.

Abbreviation Definition

A Ready to accept new command.

I Holding status.

w Busy executing previous command.
N Not installed or not operational.

The symbol X in place of a letter indicates that the state of the corresponding component is not
significant for the execution of an instruction. Unless specifically noted, the composite state applies
to any type of channel.

Channel Available (AXX): (Byte and block muitiplexer channels only.) The channel is available.
The states of the subchannel and device are not significant. This condition is detected only by
a Halt Channel (HCH) instruction.

Subchannel Available (AAX): The addressed channel and subchannel are operational, not busy
executing a previous command, and not holding status. Tha state of the device is not significant.
On a word channel a device is never interrogated to determine the response to an I/0 instruction.

8492
UP-NUMBER

SPERRY UNIVAC 1100/80 Systems
Processor and Storage Programmer Reference

6-9

UPDATE LEVEL PAGE

Device Available (AAA): (Byte and block multiplexer channels only) The addressed channel,
subchannel, and device are operational, not busy executing a previous command, and not
holding status.

Interrupt Pending in Device (AAl) or Device Working (AAW): (Byte and block multiplexer
channels only) The addressed channel and subchannel are available. The addressed control
unit or I/0 device is executing a previously initiated operation or is holding status. The following
situations are possible:

1. The control unit is executing an operation on the addressed device or on another device
associated with the same control unit.

2. The device or control unit is executing an operation on another channel or subchannel.

3. The device or control unit is holding status for the addressed device or another device
associated with the same control unit.

Device Not Operational (AAN): (Byte and block multiplexer channels only) The addressed
channel and subchannel are available. The addressed I/0 device is not operational. This occurs
when the control unit for the addressed device is not installed or not on line.

Interrupt Pending in Subchannel (AlX): The addressed channel is available. The addressed
subchannel is holding status from either a previously initiated operation or the present
instruction attempting to be initiated. The subchannel is ready to store its status in a channel
status word (CSW). The status can be for the addressed device or another device on the
subchannel. The state of the addressed device is not significant unless a Test I/0 instruction
is issued to a byte or block multiplexer channel, and the addressed subchannel is holding status
for the addressed device. In this case a Test I/0 command is issued by the channel, and the
channel status word always contains device status.

Subchannel Working (AWX): The addressed channel is available. The addressed subchannel
is busy executing a previously executed operation. The state of the device is not significant.

Subchannel Not Operational (ANX): The addressed channel is available. The addressed
subchannel is not operational. This occurs when the channel is not equipped to handle that
subchannel because of the particular type of channel and features selected.

Interrupt Pending in Channel (IXX): This condition is never detected because channel status is
reported by an independent interrupt mechanism. Channel status is not detectable or retrievable
by way of I/0 instruction. (See Machine Check interrupts.)

Channel Working (WXX): (Block multiplexer channel only) The addressed channel is operating
in burst mode (transferring a block of data). The states of the subchannel and device are not
significant. The TIO, TSC, and LCR instructions do not penetrate a channel in a working state
and are not executed. A Halt Device (HDV) instruction penetrates a working channel only if the
channel is working with the addressed device. The HCH instruction always penetrates a working
channel and halts the device that has control of the channel interface at the time that the HCH
instruction is received. The Start I/0 Fast Release (SIOF) instruction always penetrates a working
channel. The response to the SIOF instruction is determined by the state of the subchannel.

Channel Not Qperational (NXX): An addressed channel is not operational when it is not installed
in the system or is not on line. The states of the addressed subchannel and device are not
significant.

Hardware Fault (XXX): If the IOU detects a hardware fault before the channel is selected, the
instruction is terminated and a machine check interrupt is generated. The state of the I/0 system
is insignificant.

8492

SPERRY UNIVAC 1100/80 Sg"ms

Processor and Storage

rogrammer Reference

UPDATE LEVEL

6-10
PAGE

Software Fault (XXX): (Byte and Block multiplexer channel only) If an SRL instruction is issued
to a block multiplexer channel that had not previously presented unit check device status, the

instruction is not executed regardless of the state of the 1/0 system.

6.3.3. Condition Codes

The result of an 170 instruction is reported by a two bit condition code. The condition code is stored
by the processor in bits 34-35 of the Xa register at the time the execution of the instruction is
completed. The condition code is determined by the composite state of the I/0 system selected by
the 1/0 instruction. Tables 6-3, 6-4, and 6-5 show the relationship between the condition code for
each instruction and the composite state of the I/0 system. Special conditions affecting the condition

code are also indicated.

6.3.4. Instruction Format and Channel Address Word

All 1/0 instructions have an f = 754. The j value specifies the particular /0 instruction to be initiated:

j = 00g = Sense Release

j = 01g = Start I/0 Fast Release
j =025 = Test I/0

j = 03g = Test Subchannel

j = 04g = Halt Device

j = 05g = Halt Channel

j = 10g = Load Channel Register

—

11g = Load Table Control Words

(SRL)
(SIOF)
(TI0)

(TSC)
(HDV)
(HCH)
(LCR)

(LTCW)

8492

6-11

SPERRY UNIVAC 1100/80 Sgtoms
PAGE

Processor and Storage Programmer Reference UPDATE LEVEL

Table 6-3. 1/0 System Composite State vs Condition Codes

Composite | Condition Byte Mux Channel Block Mux Channel Word Channel
State Code
AAA# 0,1 HDV, TIO HDV, SRL, TIO, SRL (1)
AAl 1 HDV, TIO HDV, TIO (1)
AAW 1 HDV, TIO HDV, TIO (1)
AAN 3 HDV, TIO HDV, TIO (1)
AAX 0.0, 1 LCR, LTCW, TSC LCR, TSC, SIOF HDV, LCR, LTCW,
TIO, TSC, SIOF
AIX 1, 2 (a) HDV, LTCW, SIOF, HDV, SIOF, TIO, TSC HDV, LTCW, SIOF,
TIO, TSC TIO, TSC
AWX 0,12 HDV, LTCW, HDV, HDV, HDV, SIOF, TIO, HDV, LTCW, SIOF,
SIOF, TIO, TSC TSC TIO, TSC
ANX 3 HDV, LCR, LTCW, DHV, LCR, SIOF, TIO, HDV, LCR, LTCW,
SIOF, TIO, TSC TSC SIOF, TIO, TSC
AXX 0 HCH HCH (2)
IXX - (2) (2) (2)
WXX 0,2 (3) HCH, HCV, TIO, TSC, (4)
LCR
WAX 0 (3) SIOF (3)
WIX 1,2 (3) SIOF, SIOF, HEV, TIO, (3)
TSC
WWX 0, 2 (3) HDV, HDV, SIOF, TIO, (3)
TSC
WNX 3 (3) HDV, LCR, SIOF, TIO, (3)
TSC
NXX 3 HCH, HDV, LCR, HCH, HDV, LCR, HCH, HDV, LCR,
LTCW, SIOF, TIO, TSC | LTCW, SIOF, TIO, TSC LTCW, SRL, SIOF,
TIO, TSC
XXX 2,3 HCH, HDV, LCR, HCH, HDV, LCR, HCH, HDV, LCR,
LTCW, SRL, SIOF, TIO, | LTCW, SRL, SIOF, TIO, | LTCW, SRL, SIOF,
TSC, SRL TSC, SRL TIO, TSC
A = Available I = Interrupt Pending W = Working N = Not Available

X = Any of the above states

The three letters, from left to right, indicate the state of the channel, subchannel, and device
selected by the 1/0 address with two exceptions: a) For the LCR instruction, the second letter indicates
whether the channel has the feature installed to handle the LCR instruction, b) For the LTCW
instruction, the second letter indicates the state of the status table subchannel.

a. Special conditions in the channel determine whether a condition code of 1 or 2 will be
presented. These special conditions are covered in Table 6-4.

1. A word channel never interrogates a device to determine a response to an 1/0 instruction.

2. This condition is not detectable by any I/0 instruction.

3. Byte channels and word channels do not transfer blocks of data, only bytes or words, and

thus can never be in the working state.

4. The word channel is never in the working state.

Table 6-4. I/0 Instruction Condition Codes for Byte or Block Channel

State# Channel Conditions | SRL (a) | SIOF (b) TIO TSC HDV HCH LCR LTCW
AAA Block - 0/1 (c) - 0 - 0 - - -
AA| Byte, Block - - - 1 - 1 - - -~
AAW Byte, Block - - - 1 - 1 - - -
AAN Byte, Block - - - 3 - 3 - - -
AAX Byte, Block - - 0/1(e) - 0 0 - o 0
AlX Byte, Block (1) and (3) - 1 1 1 1 - - 1
AlX Byte, Block (1) and (4) - 2 2 2 2 - 0 2
AIX Byte, Block (2) - 2 2 1 2 - - -
AWX Byte, Block - - 2 2 2 1 - - 0
ANX Byte, Block - - 3 3 3 3 - 3 3
AXX Byte, Block - - - - - - 0 - -
IXX Byte, Block - - - - - - - 10 - -
WXX Block - - - 2 2 - 0 - -
WAX Block - - 0/1 (e) - - 2 - 2 -
WIX Block (1) and (3) - 1 - - 2 - - -
wiX Block (2) or (4) - 2 - - 2 - - -
WWX Block - - 2 - - 1/2 (d) - - -
WNX Block - - 3 3 3 3 - 3 -
NXX Byte, Block - - 3 3 3 3 3 3 3
XXX Byte, Block (5) 2 2 2 2 2 2 2 2
XXX Block (6) 3 - - - - - - -
Byte, Block (7) - 2 - - - - - -

States: A = Available

Footnotes for table are as follows:

| = Interrupt Pending W = Working N = Not Available X = Any of above states

eouesejoy Jomwmﬂ% eBe101S pue 10s5820.4

Z6v8

S 087001 L IVAINN AHYIdS

* The three letters, from left to right, indicate the state of the channel, subchannel, and device selected by the I/0 address with two
exceptions: a) for the LCR instruction, the second letter indicates whether the channel has the feature installed to handle the LCR
instruction, b) for the LTCW instruction, the second letter indicates the state of the status table subchannel.

T3A3T ALvadn

39vd

-9

8492

SPERRY UNIVAC 1100/80 S ms
Processor and Storage Programmer Reference

6-13
PAGE

UPDATE LEVEL

Footnotes for Table 6-4.

The Sense Release instruction will respond with a condition code of O or 1 only if Unit Check
device status has been presented via interrupt or previous instruction. Only one Sense Release
instruction per Unit Check device status byte will be accepted. In all other cases a condition
code of 3 will be returned.

If the SIOF queue is full, or the channel is in contingent connection mode, the SIOF instruction
will unconditionally receive a condition code of 2.

For an immediate command, the condition code may equal 1. For any other command, the
condition code equals O.

If the channel is working (operating in burst mode) with the addressed device, the operation is
terminated and the condition code equals 1. If the channel is working, but not with the
addressed device, the condition code equals 2.

If a hardware or software error is detected when retrieving the second word of the CAW, a CSW
is stored and the instruction receives a condition code of 1. If no hardware or software error
is detected, the instruction receives a condition code of O.

(1) Subchannel is holding status for addressed device.

(2) Subchannel is holding status for a device other than the addressed device.

(3) Interrupt cancellation was not attempted or was attempted and completed successfully.

(4) Interrupt carcellation was attempted and was unsuccessful.

(5) Hardware fault was detected when reading first word of the CAW and Machine Check
interrupt was generated.

(6) Unit Check status had not been presented via interrupt or instruction.

(7) The channel is in contingent connection mode.

Table 6-5. 1/0 Instruction Condition Codes for Word Channels

State# Channel Conditions SRL SIOF TIO TSC HDV HCH LCR LTCW
AAX Word - - 0 0 0 0 - 0 0
AlX Word 1 - 1 1 1 1 - - 1
AlX Word (2) - 2 2 2 2 - - 2
AWX Word - - 2 2 2 0 - 9 (4]
ANX Word - - 3 3 3 3 - 3 3
AXX Word - - - - - - - - -
IXX Word - - - - - - - - -
WXX Word - - - - - - - - -
NXX Word - - 3 3 3 3 - 3 3
XXX Word (3) 2 2 2 2 2 2 2 2
XXX Word (4) 3 - - - - 3 - -

States
A = Available

| = Incerrupt Pending

W=

Working

N = Not Available

X = Any of the above statements

* The three letters, from left to right, indicate the state of the channel, subchannel, and device respectively.

(1
(2)
)
(4)

Interrupt cancellation was not attempted or was attempted and completed successfully.
Interrupt cancellation was attempted unsuccessfully.
Hardware fault was detected when reading first word of the CAW and Machine Check interrupt was generated.

The Sense Release and Halt Channel instructions are not accepted on a word channel.

T3A3 3Lvadn

39vd

vi-9

eouesasey Jewummo:a eBe1015 puv 1088090.d

z6v8

S 087001 L DVAINN AUY3dS

6-156
PAGE

8492 SPERRY UNIVAC 1100/80 Systems
UP-NUMBER Processor and Storage Programmer Reference

UPDATE LEVEL

Bits 00-12 of u + Xm specify the I/0 address (the I0U, channel, and device numbers). Bits 00-23
of Xa consist of either the starting address of the CCW or STCW list or the register input data for
the LCR instruction. Upon detection of an I/0 instruction, the processor builds a channel address word
(CAW) in a fixed location of low—-order storage. The CAW is for hardware use only and consists of
two 36-bit words, CAW O and CAW 1. The j-value is stored in CAW O bits 26-29. Bits 00-12 of
u + Xm (the I/0 address) are stored in CAW O bits 00-12. Bits 00-23 of Xa (the first CCW or STCW
address or register input data) are stored in CAW 1 bits 00-23. The IOU refers to the CAW only during
the execution of an 1/0 instruction. The pertinent information thereafter is stored in the channel.

I/Q Instruction Format

f=175 i a X hii u

35 3029 26 25 2221 18 17 16 156 (o]

i Specifies 1/0 instruction
a Address of register holding first CCW address

X u 4+ Xm bits 0-12 equal I/0 address

8492 SPERRY UNIVAC 1100/80 Systems

6-16
UP-NUMBER Processor and Storage Programmer Reference UPDATE LEVEL PAGE
CAW
Not .
35 3029 2625 13121 87 0
i 1/0 instruction
| 10U number

CA Channel Address

DA Device Address

CAW 1

Not Used

Address of first CCW or STCW

7 _ 60 69

36

8492 SPERRY UNIVAC 1100/80 Systems

6-17
UP_NUMBER Processor and Storage Programmer Reference

UPDATE LEVEL PAGE

6.3.5. Instruction Operation

Upon detection of an 1/0 instruction, the processor builds the CAW and then initiates the 10U via
the processor/IOU interface. The I0OU establishes instruction priority between the two processors
(Processor O has priority over Processor 1) and reads CAW O. If the IOU detects a hardware fault
in reading CAW 0, the instruction is immediately terminated, a Machine Check interrupt is generated,
and a condition code of 2 is presented to the processor.

If no hardware fault is detected, the IOU then executes the instruction. Depending on the I/0
instruction, the I0U uses the state of the channel, the states of the channel and subchannel, or the
states of the channel, subchannel, and device to determine the condition code. When the IOU has
completed the 1/0 instruction, the processor clears bits 30-33 of Xa and stores the condition code
in bits 34-35 of Xa. Bits 00-29 of Xa are left unchanged. If the condition code equals O, the
processor skips the next instruction in the program. If the condition code equals 1, 2, or 3, the
processor executes the next instruction.

6.4. 170 INSTRUCTIONS

Programming Note: An I/0 instruction may cause a Channel Status Word (CSW) to be stored. To
prevent the contents of the CSW stored by the instruction from being destroyed by an immediately
following 1/0 interrupt, interrupts must be locked out before issuing the 1/0 instruction and must
remain locked out until the information in the CSW provided by the instruction has been acted upon
or stored elsewhere for later use.

Use Tables 6-4 and 6-5 to determine what the condition code response to an I/0 instruction means.
The I/0 instructions can be classified as penetrating or nonpenetrating. A penetrating I/0 instruction
is always executed even if the channel is in a working state. (Note that only a biock multiplexer
channal can be in a working state.) A nonpenetrating I/0 instruction always receives a busy response
(condition code = 2) when attempted on a channel in a working state. The Start I/0 Fast Release
and Halt Channel instructions are penetrating instructions and are always executed even on working
channels. A Halt Device instruction is executed only if: a) the channel is working with the addressed
device, or b) the channel is in the available state.

For any 1/0 instruction a condition code of zero indicates that the instruction was completed
successfully. A condition code of one always indicates that a valid CSW has been written into
low-order storage. A subchannel is always returned to the available state after being relieved of
status by an instruction or an interrupt. A condition code of two indicates that the |/0 instruction
was not executed. A condition code of 3 indicates that the instruction was not executed because
either the channel, subchannel, or device was not operational.

After each instruction, the condition codes and the conditions causing each condition code are listed.

6.4.1. Sense Release ~ SRL 75,00

A Sense Release instruction initiates the execution of a CCW list on the 10U, channel, subchannel,
and device specified by the i/0 address. A Sense Release instruction is accepted only on a block
or byte multiplexer channel and only if the addressed channel has previously presented Unit Check
device status via interrupt or previous instruction. In all other cases the instruction is not accepted
and a condition code of 3 is returned.

When the biock multiplexer channel receives Unit Check status from a device, all further channel
operations are temporarily halted. The handling of any further device requests and the execution of
queued SIOFs are halted by the block multiplexer channel until an SRL instruction is received.
However, all I/0 instructions are still executed. '

8492

SPERRY UNIVAC 1100/80 Systems

6-18
Processor and Storage Programmer Reference

UPDATE LEVEL lPAGE

When the byte multiplexer channel receives Unit