FERENCE

m
n
il

ROGHRAMMERS HE

UP-7636

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC® Systems developments. The infor-
mation presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

~The Univac Division will issue updating packages, utilizing primarily a -
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re-

serves the right to make such additions, corrections, and/or deletions as,

in the judgment of the Univac Division, are required by the development of

its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are:

FASTRAND

©1968 - SPERRY RAND CORPORATION PRINTED IN U.S.A

Preface
SECTION:

UNIVAC 1108 ; - ‘ l

PAGE:

UME-7636 EXTENDED ALGOL

PREFACE

Y

This is a detailed programmer’s reference manual for Univac 1108 Extended ALGOL.

It is divided into three main logical areas: structure and use of the language,
operating environment and systems control, and appendices covering special topics.

In the text of this manual Univac 1108 Extended ALGOL reserved words, when used
as reserved words, appear in bold face type; metalinguistic variables are italicized.
If a reserved word is part of a metalinguistic variable and is being used as the
metalinguistic variable, then it will be italicized and not boldfaced. If the reserved
word appears in text but has no relation to the ALGOL reserved word, it will not be
boldfaced. '

The reader is assumed to have programming experience and a familiarity with the
1108 Operating System, For those unfamiliar with ALGOL 60 and/ or the 1108
Multiprocessing Operating System, the following publications are suggested as
references;

1;. Univac 1108 Operating System Programmers Reference Manual.

2. McCracken, Daniel D., An Introduction to ALGOL Programming (New York:
John Wiley and Sons, 1962).

3. Dijkstra, E.W., A Primer of ALGOL 60 Programming (London and New York:
Academic Press, 1962).

4, Naur, P., et al.,, Revised Report on.the Algorithmic Language ALGOL 60
(Communications of the Association for Computing Machinery, Vol. 6, No. 1,
Jan., 1963).

Whete it is possible, to assure adherence, the language of the Revised Report
(ref, 4) has been used verbatim.

R UN'VAC]]08 Contents
LTME 7636 EXTENDED ALGOL l SECTION: PAGE:
CONTENTS
PREFACE 1
CONTENTS 1to4
1. INTRODUCTION TO UNIVAC 1108 EXTENDED ALGOL 1-1to 1-2
2, STRUCTURE OF THE LANGUAGE 2-1t02-9
2.1. BASIC COMPONENTS 2-1
2.1.1. Letters 2-1
2.1.2. Digits ' 2-1
2.1.3. Delimiters 2-2
2.1.4, Spaces 2-3
2.1.5.. Comments 2-3
2.1.6. Identifiers 2-3
2.1.7. Numbers 2-5
2.1.8. Strings 2-7
2.1.9. Constants 2-8
3. GENERAL COMPONENTS OF EXPRESSIONS‘ 3-1t03-6
3.1. GENERAL 3-1
3.2. BASIC COMPONENTS OF EXPRESSIONS 3-1
3.2.1. Variables ' 3-1
3.2.2. Function Designators 3-2
3.2.3. Time Function 3-3
3.2.4. Transfer Functions 3-6
3,2.5. Pseudo-Transfer Functions 3-6
4, EXPRESSIONS 4-1 to 4-13
4,1, EXPRESSIONS GENERAL 4-1
4.2, ARITHMETIC EXPRESSIONS 4-1
4.3. BOOLEAN EXPRESSION 4-5
4.4. DESIGNATIONAL EXPRESSIONS 4-8
4.5. PARTIAL WORD DESIGNATOR 4-10
4.6. CONCATENATE EXPRESSION 4-12
5. STATEMENTS, COMPOUND STATEMENTS, BLOCKS AND PROGRAMS 5-1to 5-3

UNIVAC 1108

UME-To% EXTENDED ALGOL ecnmm | onse,
6. UNCONDITIONAL STATEMENTS 6-1to 6-14
6.1. GENERAL 6-1
6.2. ASSIGNMENT STATEMENT 6-1
6.3. GO TO STATEMENT 6-3
6.4. DUMMY STATEMENT 6-4
6.5. FILL STATEMENT 6-4
6.6.. PROCEDURE STATEMENT 6-5
6.7. 1/0 STATEMENTS 6-8
6.8. ZIP STATEMENT 6-8
6.9. ON STATEMENT 6-10
6.10. SOURCE TO DESTINATION STATEMENTS 6-12
6.11. SORT/MERGE STATEMENTS 6-14
6.12. ACTIVITY STATEMENTS 6-14
. CONDITIONAL STATEMENTS 7-1107-3
. ITERATIVE STATEMENTS §-1to 8-6
8.1. GENERAL 8-1
8.2. FOR STATEMENT 8-1
8.3. DO STATEMENT 8-5
. DECLARATIONS 9-1to 9-16
9.1. GENERAL 9-1
9.2, TYPE DECLARATION 9-2
9.3. LABEL DECLARATION 9-4
9.4. SWITCH DECLARATION 9-6
9.5. FORWARD REFERENCE DECLARATION 9-7
9.6. ARRAY DECLARATIONS 9-9
9\.7. ABSORD DECLARATION 9-11
9.8. DEFINE DECLARATION 9-12
9.9. MONITOR DECLARATION 9-13
9.10. DUMP DECLARATION 9-15
9.11. 1/0 DECLARATIONS 9-16

- UNIVAC 1108 :
UME-7636 EXTENDED ALGOL s e
10. PROCEDURE DECLARATIONS 10-1 to 10- 5
10.1. GENERAL PROCEDURE DECLARATIONS 10-1
10.2. PROCEDURE DECLARATION 10-1
10.3. EXTERNAL PROCEDURE DECLARATION 10-3
11. INPUT/QUTPUT 11-1 to 11-56
11.1. GENERAL DESCRIPTION 11-1
11.1.1. File Assignments 11-1
11.1.1.1. Tape Files 11-1
11.1.1.2. Drum Files 11-2
11.1.1.3. Punch and Print Files 11-2
11.1.1.4. Card Files ' 11-3
11.1.1.5. Compiler Generated Assignment Table 11-4
l 1.1.6. User External Assignments 11-6
1.1.2. Blocking Specifications 11-7
11.1.2.1. Unblocked Records 11-7
11.1.2.2. Blocked Records 11-7
11.1.2.3. ALGOL /0 Formats 11-8
11.1.3. Internal Buffering 11-10
11.1.4. File Labelling 11-10
11.1.4.1. Tape File Labels 11-10°
11.1.4.2. Drum File Labels 11-11
11.2. DECLARATIONS 11-11
11.2.1. General 11-11
11.2.2. File Declaration 11-12
11.2.3. Switch File Declaration 11-18
11.2.4. Format Declaration 11-19
11.2.5. Switch Format Declaration 11-32
11.2.6. List Declaration 11-33
11.2.7. Switch List Declaration 11-34
11.2.8. Namelist Declaration 11-35
11.2.9. Line Declaration 11-37
11.3. STATEMENTS 11-39
11.3.1. General 11-39
11.3.2. Read Statement 11-39
11.3.3. Free-Field Input 11-44
11.3.4. Write Statement 11-46
11.3.5. Space Statement 11-49
11.3.6. Close Statement 11-50 .
11.3.7. Rewind Statement 11-52
11.3.8. Lock Statement 11-52
11.4. 1/0 SWITCH DESIGNATORS 11-53
11.4.1. General" 11-53
11.4.2. Switch File Designator 11-53
11.4.3. Switch Format Designator 11-54
11.4.4. Switch List Designator C11-55

UNIVAC 1108

UME-7636 EXTENDED ALGOL seosontents | L f

12, ACTIVITY CONTROL 12-1to 12-8

12.1. ACTIVITY STATEMENTS 12-1

12.2. EXECUTE STATEMENT 12-3

12.3. WAIT STATEMENT 12-5

12.4, DELETE STATEMENT 12-6

12.5. EVENT STATEMENT 12-7
13. SORT/MERGE STATEMENTS 13-1 to 13-11

13.1. SORT STATEMENT 13-1

13.2. MERGE STATEMENT 13-7
APPENDICES

A. ERROR DIAGNOSTICS A-1to A-3

B. RESERVED WORDS FOR 1108 EXTENDED ALGOL B-1to B-1

C. INDEX OF METALlNGUIgTIC VARIABLES C-1toC-3

D. SPECIAL TOPICS D-1to D-3
FIGURES

5-1. Schematic Representation of Block Structure in ALGOL 5-3

7-1. Schematics of Conditional Statements 1-2

12-1. Synchronous Processing 12-1

12-2. Asynchronous Processing 12-2

12-3. Synchronization of Asynchronous Activities 12-2
TABLES

3-1. Standard Library Functions 3-4

3-2. Standard Transfer Functions 3-6

11-1. Intemnal/Extemal Device Assignment 11-6

11-2. Characteristics of Types of Input Edit Phrases 11-20

11-3. Characteristics of Types of Output Editing Phrases h 11-27

11-4. Boolean Values for Various Field Widths in Output Editing Phrase 11-28

UME-7636 1

SECTION:

UNIVAC 1108
EXTENDED ALGOL

PAGE:

1. INTRODUCTION TO 11O8
EXTENDED ALGOL

A syntactic, semantic, and pragmatic description of the UNIVAC 1108 Extended ALGOL
Language is delineated in this manual.

The basis for this language is the ‘‘Revised Report on the Algorithmic Language, ALGOL
60’’, The language, ALGOL 60, can be considered to be a subset of UNIVAC 1108 Extended
ALGOL. The subset language has been expanded to include extensive input/output device -
communication under Exec 8, provision for formatting of data (Section 11.2.4), and the cap-
ability of sorting and merging data by use of source language statements that interface with
the 1108 SORT/MERGE package. (Section 13) In addition, source language statements are
available to allow the pr'ogram'mer to utilize the powerful multiprogramming capability of the
1108 system, Specifically, these statements permit a synchronous processing of procedures,
the capability to test the status of independent events, and the facility to resume synchron-
ous processing (Section 12). Program debugging is enhanced by the inclusion of statements
to display a variable and its contents when its value is changed or to conditionally display
a variable at any point in the program (Section 9.9). An option is available to generate an
automatic flow-chart of the source language.

A partial word designation may be indicated for both bit and character fields of the value of
a variable or the result of an expression. Also, any field of a variable word may be modified
(Section 4.5), '

Segmentation or paging of arrays has been implemented (Section 9.6) so that multi-
dimensioned arrays of any size may be declared,

UNIVAC 1108 Extended ALGOL deviates from ALGOL 60 in the following areas:

A set of reserved identifiers has been defined (see Appendix B) to enable a more
efficient and faster translation.

The compiler for UNIVAC 1108 Extended ALGOL is essentially a single pass
translator; it requires, therefore, that all labels be declared in the top of the block
in which they appear and that all forward references to procedures or switches be
declared at the top of the block in which their declaration appears, These require-
ments significantly enhance translation time.

UME-7636

UNIVAC 1108
EXTENDED ALGOL

SECTION: PAGE:

The syntax of the ALGOL language is described in terms of metalinguistic symbols and
variables combined to form metalinguistic formulae,

The metalinguistic symbols as used here have the following interpretation:

< > brackets are used to contain the sequences of characters representing a
metalinguistic variable

o= a metalinguistic connective meaning ‘‘is defined as’’ and separates the
metalinguistic variable on the left from its respective metalinguistic
formula on the right.

(%] ’?

| means ‘‘or’’ and separates the multiple definitions of a metalinguistic
formula from one another. '

Metalinguistic variables are sequences of characters enclosed in brackets (< >) which
define a set of things.

Metalinguistic formulae are the statements of the rules of syntax (the grammar) for the
ALGOL language. Consider-as an example the simple language called ‘‘add, expression’’.
The alphabet of ‘‘add expression’’ consists of the objects A, B, C, D, +.
The grammar for the language follows:
<variable>::= A|B|C|D
<expression> :: = <variable> | <expression> + <variable>

Note the recursive definition implied in the metalinguistic formula called expression.

If one were to parse the good expression A + B + C + D in this language, it would be as
follows:

A+B+C+D
exp 1
exp 2

exp 3
exp 4

A set of appendices include a complete presentation of error diagnostics, reserved words,
and metalinguist:c variables. ;

2

SECTION:

i UNIVAC 1108
UME-7636 EXTENDED ALGOL l

PAGE:

2. STRUCTURE OF THE LANGUAGE

2.1, BASIC COMPONENTS
2.1.1. Letters
2.1.1.1. Syntax

<letter>::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

S

2.1. 1'.2. Semantics

All letters of the alphabet are included in the valid character set for UNIVAC
1108 Extended ALGOL. Letters do not have individual meanings; they are used
singly or in combination for forming identifiers and strings.

2.1.1.3. Examples

s Single characters as identifiers
A:=B+C DIVv2

» Multiple character identifiers
RESULT
COoS
PHIL

e String
'THIS IS AN ALPHA STRING®

2.1.2. Digits

2.1.2.1. Syntax
<digit>:: = 0/1]2|3{4[5]6|7]8|9
<octal digit>::=0|1]2|3|4(5/6|7

2.1.2.2. Semantics

All numbers are included in the valid character set for UNIVAC 1108 Extended
ALGOL. Digits are used for forming numbers, identifiers, and strings.

2.1.2.3. Restrictions
Only zero thru seven are valid for octal representationé.
2.1.2.4. Examples
@ integer numbers 1, 129, 100000
m real numbers 31.7, 7.0E2
e identifiers TOTAL, A2, RESULT10, SWT200
| B octal numbers 6, 137, 643
2.1.3. Delimiters
2.1.3.1. Syntax
<delimiter>: : - <operator> | <separator> | < bracket> | <declarator> | <Specificatdor>
~operator>:: - <arithmetic operator>| <relational vperator>
| <logical operator> | <sequential operator>
<arithmetic operator>::=+1 | — | * |/ | DIV] ** | MOD
<relational operator>::=<|=|> | LSS | LEQ | EQL| GEQ | GTR | NEQ
“togical operators::= EQV | IMP | OR | XOR | AND | NOT
<sequential operator>:: = GO TO | IF | THEN | ELSE | FOR | DO | READ)|

WRITE | SPACE | REWIND | LOCK | CLOSE | FILL | ZIP | ON |
EXECUTE | EVENT | WAIT | DELETE | SORT | MERGE | RELEASE |
SAVE | PAGE | DBL | NO | PURGE | UNTIL | WHILE | STEP | REVERSE

<separator> ::=,|;|:]:=| & | COMMENT | % | <single space>
<bracket>::= (|) | []7]] BEGIN | END | #| .[| .[

~declarator>:: = OWN | INTEGER | REAL | COMPLEX | BOOLEAN | ALPHA |
DOUBLE | TASK | EVENT | ARRAY | SWITCH | LABEL |
FORWARD | PROCEDURE | FILE | SWITCH FILE | FORMAT
SWITCH FORMAT | LIST | SWITCH LIST | MONITOR| DUMP |
DEFINE | ABSORB | NAMELIST | LINE| IN | OUT | CORE

<specificator> :: = VALUE

2.1.3.2. ‘Semantics

Delimiters have a fixed meaning and their basic function, as implied by their
name, is obvious.

UNIVAC 1108
EXTENDED ALGOL 2

SECTION: PAGE:

2.1.4. Spaces

Spaces can be used between language elements for readability, but in general,
spaces may be used or omitted. Exceptions are where the space becomes the
delimiter when separating basic components such as reserved words, identifiers,
logical values, unsigned numbers, and multi-character delimiters,

2.1.5. Comments

2.1.5.1. Semantics

In order to include explanatory text at various points in a program, the COMMENT
convention is included.

The sequence of basic symbols: is equivalent with

; COMMENT <any sequence not containing ;>; ;

BEGIN COMMENT <any sequence not containing ;>; BEGIN

END <any sequence not containing END or END

WHILE or UNTIL or; or ELSE>

2.1.5.2. Examples
1 10 20 30 40 50 60
ST Y T T L S T T T T T S G O O O SO St S T SO S A AN Y UG G I U S U S GO U T O T Y S U0 G VU S A N B B NI PR
_1 1 1 1B{EG N, |COMMENT, THE, FOLLOWI NG ,PROGRAM |COMPUTES, THE PRODUCTH 0,F ;TWO | !
Loty L S OMPIATABLE MATRICES:, | | v vt oo ccr ool oo e oo ool
T I SO T T S T L S S S T T T S T T S T O O T OOV VO [S S SO S Y N T [S S SV 0 O B A S T S B B B B G BB SR
ol 1y i COMMENT TABLE JSEARCH:, P N T T T T SO UO T H H HU S T H U H S H S TOTH NO S A A O |
S T B R W) S S B T S Y T N T N H U N S N S B R N S S R S S G S S SRR RO |
T U O G O T SV S O ST T D TS I T G U OO U T G O T T S G S OO B SO S B SOV S DOV N U S U U O R A
| o a0 1V Fp (A (6TyR, B THEN [BEGIN By =Cl+DPy, ool v vy laa e e beeee el
L Xe S| BN (TH LS, 1S, AN, B XA MPLE OF A COMMENT, (ELSIE, 60 ,T,0, LAIBS i 1 11 1]

TR N T U VAT N T S T T JY T T O O N S VT VPO MO T O T SN N TN VN U Y T Y S Y S T W S S N A M W

2.1.6. Identifiers

2.1.6.1. Syntax

<identifier>: : = <letter> | <identifier> <letter> | <identifier> <digit>

2.1.6.2. Semantics

Identifiers are used to name labels, variables, switches, formats, lists, arrays,
procedures, files, and programs. The same identifier can be used to denote dif-
ferent quantities if declared in different blocks.

UNIVAC 1108 : ' ’

UME-7636. EXTENDED ALGOL

SECTION:

2.1.6.3. Restrictions

s Identifiéers must begin with a letter and contain only letters and digits. Any
combination, beyond the first letter of letters. or digits or both is permissable.

s Reserved words of UNIVAC 1108 Extended ALGOL may not be used as
identifiers.

w No space may appear within an identifier.

. Identxhers may be any number of characters in length. However only the fll'St
' 12 characters are unique. :

2.1,6.4. Examples
A
AL

MA TRIX

- DC220
AC110T0220
A‘lB2C3.
EXAMINATIONANNUAL
EXAMINATIONMEDICAL
EXAMINATIONMATERNITY
NOTE: The last two identifiers ele ‘not unique because their first twelve

charactets are identical. The identifier inmediately preceding the last
two is unique; the twelfth character differs.

PAGE: .

; UNIVAC 1
UME-7636 EXTENDED ALGOL | o 2 e
2.1.7. NUMBERS
2.1,7.1. Syntax
<number> : ;: = <unsigned number> | + <unsigned number> | — <unsigned number>
<unsigned number> :: = <decimal number> | <special exponent part>| <decimal
number> <exponent part>
<decimal number> :: = <unsigned integer> | <decimal fraction> | <unsigned
integer> <decimal fraction>
<decimal fraction> :: = . <unsigned integer>
<special exponent part> ::= @ <integer>
<exponent part> :: = @ <integer> |E <integer> |D<integer>
<integer> :: = <unsigned integer> | + <unsigned integer> | — <unsigned integer>
<unsigned integer> D= <digit> | <unsigned integer> <digit>

2.1,7.2. Semantics

Numbers may be of four basic types, INTEGER, REAL, DOUBLE, or COMPLEX.
Unsigned numbers are composed of digits and the following basic symbols:

+, - E, ., @D.

Integer numbers are positive or negative whole numbers or zero.

The limits of an integer number are + 235 1 (34, 359, 738, 367).

A number is considered as REAL (single precision floating point) if it contains
a decimal point and/or E or @ in the exponent. Real numbers have one to eight
significant digits. The limits of a real number are approximately * 1038.

A real number may be expressed in several ways. It need not contain a decimal
point if it contains an exponent part. If a decimal point is used, it can appear at
the beginning of the number or embedded between two digits. An exponent may
follow a real number if it is preceded by E or @. The following are acceptable.
ways of representing the real number 256:

25.6E1, 25.6E+1, 2560.0E—1, 256.0, .256E3, 25.6@1, .00256@5.

A number is considered as DOUBLE (double precision floating point) if it is
REAL with more than 9 significant digits or contains D in the exponent. Double
ptecision numbers may have up to 18 significant digits, The limits of double

- . +
ptecision numbers are approximately + 10 308,

UME-7636

UNIVAC 1108
EXTENDED ALGOL

SECTION:

PAGE:

2.1.7.3.

2.1.7.4.

In the 1108 hardware representation the important difference between integer and

réal numbers is that real quantities are stored in the computer in floating point
form, If arithmetic is done on a combination of REAL and INTEGER values the

result is always REAL in UNIVAC 1108 Extended ALGOL.

NOTE: At compile time, numbers which exceed the allowable number of digits
are flagged — CONSTANT TOO LARGE —~ and an unreliable result is

returned,

Restrictions

Only the special exponent part, @<integer>, is allowed to stand alone as a real

number.

Examples

a Unsigned numbers

1234.567
@68
1234.56Q@78
1234.56E78

n Decimal numbers

1356
.666
1234,567

8 Exponent parts

@66
@-36
@+63
E-7
E06
D6
D36

s Numbers

number type

123 integer

123.5 real

123E+2 real

123@-3 real
12345678910.5 double precision
1234.5D6 double precision
@12 real

E+5 invalid

Unsigned integers

6

69

253647
34359738367

Decimal fractions

.6
.69

Special E xponent part

@63

Integer number

6
+63
—-636

UNIVAC 1108 l

UME-7636 - 2
Ex[ENDED ALGOL SECTION: PAGE:
2,1.8. Strings
2,1.8.1, Syntax

<string> :: = '<open string>'

<string bracket character> :: =

<open string> :: = <proper string>|'<open string>'|<open string> <open string>

<proper string> :: = <any sequence of four thousand ninety six or less basic

symbols>|<empty>
2.1.8.2, Semantics

In order to enable the language to handle arbitrary sequences of basic symbols the

string bracket character is used. Strings are used in move statements (see 6.10),

file declarations, label part (see 11.2.2), and format declarations (see 11,2.4.).

Proper strings are used following the COMMENT separator and the END bracket

with the special restrictions that are noted.

2.1.8.3, Restrictions

» Within a proper string a single quote must be represented as two quotes to
yield one, i,e., 'This is a "string" ‘.

e Within the label part of the file declaration, the string is limited to twelve
alphanumeric characters. This is a restriction of the 1108 file labelling
system. ‘

s A string used within an arithmetic expression as an alpha constant is
limited to any combination of six alphanumeric characters and/or special
symbols of the UNIVAC 1108 Extended ALGOL.

m Proper strings following the END bracket can be any sequence of basic
symbols not containing END, ;, WHILE, UNTIL, or ELSE. END, ELSE,
WHILE, UNTIL, and ; stop the scan legally; any other operator appearing in
the string will stop the scan and be marked in error.

» Proper strings following the COMMENT separator can be any sequence of
basic symbols not containing a ; .

2.1.8.4. Examples
m String

'ANY COMBINATION OF LETTERS, DIGITS, AND/OR SPECIAL CHARACTERS
NOT TO EXCEED 4096

'ABCDEFGHI]KLMNOPQRSTUVWXYZO123456789*/.@[] B) —+<=> & $(%:,'

UME-7636

UNIVAC 1108
EXTENDED ALGOL 2

SECTION: PAGE:

2.1.9. Constants

2.1.9.1.

2.1.9.2.

Syntax

<constant> : : = <Boolean constant>| <alpha constant>|<octal constant>|
<complex constant>|<number>

<Boolean constant> :: = TRUE|FALSE

<alpha constant>:: = '<any sequence of six or less characters >'
<octal constant> :: = %<octal number>|%D<octal number>

<octal number> : : = <octal digit>|<octal number> <octal digit>
<complex constant> : : = COMPLEX (<real part>, <imaginary part>)
<real part> :: = <real number>

<imaginary part> :: = <real number>

Semantics

Constants are quantities, characters, ot character strings whose values do not
change, or ate regarded as fixed, during a certain sequence of program steps or
mathematical operations.

The Boolean constants ate TRUE and FALSE.

The % signifies an octal constant. Octal constants are treated as integers.

The % followed by a D signifies a double precision constant, which will be
treated as double precision floating point in all arithmetic operations.

The string bracket character (') is used as the beginning and ending delimiter for
strings.

For number see section 2,1.7.

. UNMNIVAC 1108
UME-7636 EXTENDED ALGOL l

SECTION:

2

PAGE:

2.1.9.3. Examples
alpha constants
'KEY S
'DATE'
octaluconstants
%3742 %D3742
%432 %D200712400000001277001423
complex constant
COMPLEX (1.0,0.1)
COMPLEX (9.9, 5.2012)
Boolean constant
TRUE

FALSE

UME-7636

UNIVAC 1108
EXTENDED ALGOL 3

SECTION: PAGE:

3. GENERAL COMPONENTS
OF EXPRESSIONS

3.1. GENERAL

The algorithmic language, ALGOL 60, is composed primarily of arithmetic expres-
sions, Boolean expressions, and designational expressions, Basic components of
these expressions are numbers, constants, variables, logical values, function
designators, and elementary arithmetic, relational, logical, and sequential operators.

- 3.2. BASIC COMPONENTS OF EXPRESSIONS

3.2.1.

3.2.1.1.

3.2.1.2,

Variables
Syntax .
<variable> :: = <simple variable>|<subscripted variable>
<simple variable> :: = <variable identifier>
<variable idéntifier> 1 = <identifier>
<subscripted variable> : : = <array iden£ifier> [<subscript list>"]
<array identifier> :: = <identifier>
<subscript list> :: = <subscript expression>|<subscript list>,

<subscript expression>

<subscript expression> :: = <§1rithmetic expression>
Semanﬁésv

A variable is a designation given to a single value. This value may be used in
expressions for forming other values and may be changed at will by means of
assignment statements, The type of the value of a particular variable is defined
in the declaration for the variable itself or for the cotresponding array identifier.
Subscripted variables designate values which are components of multidimensional
arrays. Each arithmetic expression of the subscript list occupies one subscript
position of the subscripted variable, and is called a subscript. The complete list
is enclosed in the subscript brackets [_|. The array component referred to by a
subscripted variable is specified by the actual numerical value of its subscripts.

Each subscript position acts like a variable of type INTEGER and the evaluation
of the subscript is understood to be equivalent to an assignment to this fictitious
variable. The value of the subscripted variable is defined only if the value of the
subscript expression is within subscript bounds of the array. '

UME-7636 3

SECTION:

UNIVAC 1108
EXTENDED ALGOL

PAGE:

The number of subscripts in a subscript list must agree with the declared di-
mension of the array referenced. Subscript evaluation is from left to right within
the subscript list and the result will be transferred to type INTEGER if the
result is not of this type.

3.2.1,3, Examples
Simple variables
VALUE3
TANGENTVALUE
DELTA
Al
B
C999
Subscripted variable
A[1,147]
MATRIX [X MOD Y, P1/2]
VARPQ [_IF P<Q THEN X ELSE Y, Z**2_|
3.2.2, Function Designators

3.2.2.1. Syntax

<function designator> :: = <procecure identifier> <actual parameter part>
<procedure identifier> :: = <identifier>

<actual parameter part> :: = <empfy>| (<actual parameter list>)

<actual parameter list> : : = <actual parameter >|<actual parameter list>

<parameter delimiter> <actual parameter>

<actual parameter> :: = <expression>|<array row>|<array identifier>|
<procedure identifier> | <format identifier> |
<list identifier>|<file identifier>|
<switch1identifier>|<switch file idéntifier>|)
<switch format identifier>|<switch list identifier>|
<switch file designator>|<switch format designator>|.
<switch list designator>

<parameter delimiter> :: =, |) '<proper string>' (

UNIVAC 1108

UME-7636 EXTENDED ALGOL ' ' . SECTION: 3 . PAGE:

3.2.2.2. Semantics

A function proceduie is .indicated by assigning a type to a procedure declaration.

Standard library functions are available that may be referenced without being
declared, Since the library function identifiers are not reserved, the programmer
may declare functions using the standard library names, thereby over-riding the
system routines within the scope of the function declaration,

The standard library functions supplied for UNIVAC 1108 Extended ALGOL are
described in Table 3-1, ‘ ' '

3.2.3. Time Function

3.2.3.1. Syntax.

<time function> :: = TIME (<arithmetic expression>)

3.2.3.2. Semantics

- The time function makes available time and date information relative to the
program requesting it. The various functions provided for by particular parameter
codes yield the time required by the system, or certain components of it, to exe-

. cute a program, or parts of a program. The time function can be any valid arithme-
tic expression which must yield an integer value of 0 through 4. For'the valid ‘
‘codes, the following information will be provided:

Code Result
0 Current Julian calendar date in FD code, e.g.,
Year Day
»

68 - 001

67 ' 304
1 Total elapsed time ﬁom run start time through to time of request in

seconds.

2 Actual elapsed processor time in milliseconds.
3 Binary zero.
4 Time of day in milliseconds from midnight obtained from instantaneous

clock reading.

If the value of the arithmetic expression is not one of the valid integers, a
run time error is generated, ‘

3.2.3.3. Examples
TIME (0)

TIME (4)

TIM.E ((A+B) DIV 2)

UNIVAC 1108

UME-76
E-7636 EXTENDED ALGOL ‘ 3
SECTION: PAGE:
FUNCTION NUMBER OF TYPES OF TYPE OF
DESIGNATOR | PARAMETERS | PARAMETERS | RESULT RESULT DEFINITION
ABS 1 INTEGER INTEGER | x] Produces the absolute
| ft
REA L REAL |X| value of the argument
X.
DOUBLE DOUBLE x|
COMPLEX REAL x|
ARCGCOS 1 REAL REAL arccos (x) Produces the principle
I f th ccosi
DOUBLE DOUBLE farccos (x) valve of the arccosine
of the argument x.
ARCSIN 1 REAL REAL arcsin (x) Produces the principle
DOUBLE DOUBLE larcsin (x) value of the arcsine
of the argument x.
ARCTAN 1 REAL REAL arctan (x) Produces the principle
0 value of the arctangent
OUBLE DOUBLE [arctan (x) of the argument x.
CO0s 1 REAL REAL cos (x) Produces the cosine
of the argument x.
DOUBLE DOUBLE |cos (x)
COMPLEX COMPLEX [cos (x)
COSH 1 REAL REAL cosh (x) Produces the hyper-
bolic cosine of the
DOUBLE DOUBLE |[cosh (x)
argument x.
COMPLEX COMPLEX [cosh (x)
DOUBLE 1 INTEGER DOUBLE |double precision]| Produces the doubie
REAL DOUBLE representation precision floating
of x. point reptesentation
of the argument x,
ETEST 1 EVENT BOOLEAN Returns a TRUE value
if event variable set,
FALSE if event
variable Clear.
EXP 1 REAL REAL exp (x) Produces the ex-
DOUBLE DOUBLE |exp (x) ponential function
pix of the argument x.
COMPLEX COMPLEX [exp (x)
IMAGINARY 1 COMPLEX REAL Imaginary part of x.
LN 1 REAL REAL In (x) Produces the natural
togarithm of the
DOUBLE DOUBLE {In (x)
argument x.

Table 3—1. Standard Library Functions
(Part 1 of 2)

UME-7636

UNIVAC 1108

EXTENDED ALGOL 3
SECTION: PAGE:
FUNCTION NUMBER OF TYPES OF TYPE OF
DESIGNATOR | PARAMETERS | PARAMETERS | RESULT RESULT DEFINITION
MAX list of REAL REAL Returns the alge-
expressions i
p INTEGER REAL braically largest
element of the
argument list .
MIN list of REAL REAL Returns the alge-
expressions i
p INTEGER REAL braically least
element of the
argument list.
RANDOM 1 REAL REAL Random number
genetator.
SIGN 1 INTEGER INTEGER x>0:=1 Produces one of the
REAL thiee v:fllues listed
x=0:=0 depending upon the
DOUBLE value of the argument
COMPLEX x<0:=1 X.
SIN 1 REAL REAL sin (X) Produces the sine
fth t x.
DOUBLE DOUBLE sin (x) of the argument x
- COMPLEX COMPLEX sin (x)
SINH 1 REAL REAL sinh (x) Produces the
) hyperbolic sine of
DOUBLE DOUBLE sinh (x) the argument x.
COMPLEX COMPLEX sinh (x)
SQRT 1 REAL REAL sqrt (x) Produces the square
. root of the argument
DOUBLE DOUBLE sqrt (x) «
COMPLEX COMPLEX sqrt (x)
TAN 1 REAL REAL tan (x) Produces the tangent
of the argument x.
DOUBLE DOUBLE tan (x)
COMPLEX COMPLEX tan (x)
TANH 1 REAL REAL tanh (x) Produces the hyper~
bolic tangent of the
DOUBLE DOUBLE tanh (x) argument x.
COMPLEX COMPLEX tanh (x)

Table 3—1. Standard Library Functions

(Part 2 of 2)

UME-7636

UNIVAC 1108
EXTENDED ALGOL

3

SECTION:

PAGE:

3.2.4. Transfer Functions

Transfer functions between any pair of quantities or expressions may be defined,
The result of a transfer function being performed on an expression is that the
result of an expression of one type is changed to another type, The standard
transfer functions provided in UNIVAC 1108 Extended ALGOL are described

in Table 3-2.

TRANSFER TYPE OF INPUT OUTPUT TYPE LIMITATION AND
FUNCTION USED ARGUMENT AFTER TRANSFER COMMENTS
ENTIER (x) REAL or INTEGER The value produced is

the largest integer not
DOUBLE greater than the value
of x.
FIXED (x) REAL or INTEGER The value produced is
the rounded result of
DOUBLE
the value of x.
REAL (x) INTEGER REAL
DOUBLE
COMPLEX
DOUBLE (x) INTEGER or DOUBLE
REAL
COMPLEX (x, 0) REAL COMPLEX
COMPLEX (REAL (x), 0) INTEGER or COMPLEX
DOUBLE

Table 3-2. Standard Transfer Functions

3.2.5. Pseudo-Transfer Functions

The pseudo-transfer functions, BOOLEAN and INTEGER, are provided so that
Boolean operators may be applied to non-Boolean variables and arithmetic operators
may be applied to Boolean variables. The value of the argument is not altered with

the exception that when type BOOLE AN is applied to a type DOUBLE argument, the
DOUBLE argument is truncated to type INTEGER. The format is as follows:

BOOLEAN (x) — for x equal to type INTEGER, REAL, DOUBLE, or COMPLEX.

INTEGER (x) — for x equal to type BOOLEAN.

UME-7636 UNIVAC 1108 4

EXTENDED ALGOL | | secrion: orocs

4. EXPRESSIONS

4.1. EXPRESSIONS GENERAL

4.1.1. Syntax

<expression> :: = <arithmetic expression> | <Boolean expression>
<designational expression>

4.1.2. Semantics

The primary entities of programs describing algorithmic processes are arithmetic
expressions, Boolean expressions, and designational expressions.

4.2, ARITHMETIC EXPRESSIONS
4,2.1. Syntax

<arithmetic expression> :: = <simple arithmetic expression> | <if clause>
<simple arithmetic expression> ELSE <arithmetic expression>

<simple arithmetic expression> :: = <term> | <adding operator> <term>|
<simple arithmetic expression> <adding operator> <term>

<term> :: = <factor> | <term> <multiplying operator> <factor>

<adding operator> :: = + | —

<factor> :: = <primary> | <factor> xx <primary>

<multiplying opetator> :: = x| / | DIV | MOD

<ptimary> :; = <unsigned number> | <variab1e>‘| <function designator> |
(<arithmetic expression>) | <constant> | <partial word
designator> | <concatenate expression>|(<assignment

statement>)

<if clause> :: = |IF <Boolean expression> THEN

UNIVAC 1108

UME-7636

EXTENDED ALGOL 4

SECTION: PAGE:

4.2.2,

Semantics

An arithmetic expression is a rule for computing a numerical value, For simple
arithmetic expressions, the value is obtained by executing the indicated arithmetic
operations on the actual numerical values of the primaries of the expression. In the
case of numbers, the value isobvious. For variables it is the current value, and for
function designators it is the value that is assigned upon execution of the pro-
cedure named, An alpha constant must not be greater than one word and is treated
as an INTEGER constant. The value of partial word designator primaries is the
current value ofthe field as specified by left bit of field arithmetic expression

and the number of bits in field arithmetic expression. The new value stored into
the left base as a result of the application of the concatenate operator is the value
of t he concatenate expression ptimary. Finally, in arithmetic expressions enclosed
in parenthesis the value must, through arecursive analysis, be expressed in terms
of the values of the other kinds of primaries.

The syntax for the general arithmetic expression includes an if clause which en-
ables one of several arithmetic expressions to be selected for execution, The
selection is as follows: The Boolean expressions of the if clauses are evaluated one
by one in sequence from left to right until the value TRUE is found. The arithme-

tic expression following the THEN delimiter is then executed. If the final Boolean
expression value is FALSE, the expression following ELSE is executed.

It is important to note that the syntax for UNIVAC 1108 Extended ALGOL permits
the expression following THEN as well as the expression following ELSE to be

the general arithmetic expression.

For example:

10 20 30 40

TN TN NN AU U S VO T OO O N S T U IO O Y SO TG NG S N S0 N W O O A SOV B B IR I S R

JdF, BELl THEN JF, BIE2, ,THEN, EI ELSE ,E2, ,BLSE, E3;,

Apart from the Boolean expressions of if clauses, the constituents of simple
arithmetic expressions must be of types COMPLEX, DOUBLE, REAL, or
INTEGER (An ALPHA variable is treated as INTEGER). Mixed mode operations
are allowed. The type of the result of a mixed mode operation will be according
to the intersection of operand 1 and operand 2 in the following chart:

OPERAND 2 .
OPERAND 1
COMPL.EX DOUBLE REAL INTEGER
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX
DOUBLE COMPLEX DOUBLE DOUBLE DOUBLE
REAL COMPLEX DOUBLE REAL REAL
INTEGER COMPLEX DOUBLE REAL INTEGER

Note that the result of a COMPLEX, DOUBLE operand pair yields a COMPLEX

result with a zero imaginary part,

UME-7636

UNIVAC 1108 '
EXTENDED ALGOL

SECTION: PAGE:

The floating point (_iivide operator, / , yields a REAL result, even if both operands
are INTEGER.

The MOD operator yields the remainder of an integer division. If one or both
operands associated with the MOD operator are of arithmetic type other than
INTEGER, conversion to INTEGER will be performed previous to the execution of
the MOD operation.

DIV is the integer divide operator. Both operands associated with the integer divide
operator must be INTEGER.

The operation,factorxx primary,denotes exponentiation, where the factor is the
base and the primary is the exponent.

Writing i for a number of INTEGER type, r for a number of REAL type, and e for a
numb er of either INTEGER or REAL type, the result is given by the following rules:

axx1 If 1 > 0, axaxa...xa (i times), result of the same type as a.

If i=0, if a# 0, result of 1 of the same type as a
if a = 0, undefined

Ifi<0,ifa# 0, 1/(akaxa...+a) (the denominator has -i factors),
result of type REAL

if a= 0, undefined.

axsr If a> 0, EXP (rxlIn (a)), result of type REAL
If a =0, if r >0, 0.0, result of type REAL
if r <0, undefined
If a <0, always undefined

It should be noted that both the base and the exponent may be of type DOUBLE or
COMPLEX, with the limitations as indicated by the following chart that lists the
type of the result at the intersection of the base and exponent pair.

EXPONENT
BASE
INTEGER REAL DOUBLE COMPLEX
INTEGER INTEGER REAL DOUBLE COMPLEX
REAL REAL REAL DOUBLE COMPLEX
DOUBLE DOUBLE DOUBLE DOUBLE *
COMPLEX COMPLEX COMPLEX * COMPLEX "

*I1legal combination

The sequence of operations within one expression is generally from left to right
utilizing the following rules of arithmetic operator precedence:

first: ® ok
second: « / DIV MOD

third: + -

UME-7636 UNIVAC 1108 I

EXTENDED ALGOL

SECTION: PAGE!

The expression between a left parenthesis and the matching right parenthesis is
evaluated by itself and this value is used in subsequent calculations, Conse-
quently the desired order of execution of operations within an expression can
always be arranged by appropriate positioning of parenthesis.

The maximum value of an INTEGER result is i(235—1). If the result should
exceed this value, the 1108 overflow indicator will be set as a result of a carry
into the sign position. A hardware interrupt is not affected by fixed point overflow
but the sign of the result will be changed. The maximum value of a REAL result
is from 1037 to 10-38 and of a DOUBLE result is from 10307 to 10-308, Character-
istic overflow or underflow for all arithmetic operations yielding REAL or

DOUBLE results can occur, causing an 1108 hardware interrupt. (The ALGOL
programmer can capture this interrupt by use of the on statement (See Section 6.9).)

4.2.3. Restrictions

TASK and EVENT variables may not be referenced in arithmetic expressions.
4.2.4. Examples
Arithmetic Expressions:
BETA+GAMMAxx 2 MOD DELTA DIV EPSILON
IF BOOL1 THEN X-Y ELSE Txx2

TOTAL10+ (IF BA[10~ THEN SIGMA ELSE IF BA[9] THEN SIGMA 10
ELSE ZERO)

IF BOOL2 THEN A/B ELSE C
Simple Arithmetic Expression:

PIxRx%2*xxH |

AR1[B,3 |- AR B*2,B+C_]. XMOD Y:R+Z_]

AR2[PW[X,Y,Z].[E1:E2]] /CAT[1]&(R*S), E3:MAX(F)-1:E3_]
Terms:

Axx2x(B+C),

SIN(B.[X:Y }+Z)/AR1[ROW,COL_J«*OMEGAx(BETA-GAMMA)
Factors:

A

AxxF1 (X)

Y & ((R+S) *+X) [E1:E2:E3]

UME-7636

UNIVAC 1108
EXTENDED ALGOL : SECTION:

PAGE:

4.3.

4.3.1.

Primaries:
A
50.001
AR [ROW, COL, L7
PW.[E1:E2]
CON & CAT [E1:E2:E3]
COS(E1/E2)
(-A+BxC/Dxx2)
INTEGER(BOOL1)+BETA

BOOLEAN EXPRESSIONS

Syntax

<Boolean expression> :: = <simple Boolean> | <if clause> <Boolean expression>
EL SE <Boolean expression>

<simple Boolean> :: = <implication> | <simple Boolean> EQV <implication>
<implication> :: = <Boolean term> | <implication>IMP <Boolean term>

<Boolean term> : : = <Boolean factor> | <Boolean term> OR <Boolean factor> |
<Boolean term> XOR <Boolean factor>

<Boolean factor> :: = <Boolean secondary> | <Boolean factor> AND <Boolean
secondary> N

<Boolean secondary> :: = <Boolean primary>| NOT <Boolean primary >
<Boolean primary> : : = <logical value> | <variable> | <function designator> |
<relation> | (<Boolean expression>) | <partial word designator> |

<concatenate expression> [(<assignment statement>)

<relation> :: = <simple arithmetic expression> <relational operator>
<simple arithmetic expression>

<relational operator> :: =<| =|>| LSS | LEQ | EQL | GEQ| GTR | NEQ

UME-7636 EXTENDED ALGOL

SECTION: PAGE:

UNIVAC 1108 '

4.3.2. Semantics

A Boolean expression is a rule for computing a logical value. The principles of
evaluation are entirely analogous to those given for arithmetic expressions,

It should be noted that since the if clause of a Boolean expression is defined to be
IF followed by Boolean expression, a nesting of if clauses is perfectly valid (see
examples).

Variables, function designators, partial word designators, and the left base and
right base of a concatenate expression entered as Boolean primaries must be

declared BOOLEAN.

An exception to the above statement is if the pseudo-transfer function BOOLEAN
is applied to the result of an arithmetic expression. The least significant bit of the
arithmetic argument will be tested for a TRUE or FALSE logical value,

The logical operators, listed in the order (highest to lowest) of precedence of use
are:

NOT (negation).’ The negation of a TRUE Boolean variable is FALSE and
the negation of a FALSE Boolean variable is TRUE.

AND (conjunction), The conjunction of two variables is TRUE if and only if
both Boolean variables are TRUE.

OR (disjunction). The disjunction of two Boolean variables is TRUE if one
-of the variables is TRUE, or both of the Boolean variables

are TRUE.

IMP (implication). An implication of two Boolean variables is FALSE if the
first Boolean variable, or antecedent, is TRUE and the
second Boolean variable, or consequent, is FALSE; other-
wise it is TRUE.

EQV (equivalence), The equivalance operation on two Boolean variables is
TRUE if and only if both ate TRUE or both are FALSE.

In addition to the above, the set of logical operators for UNIVAC 1108 Extended
ALGOL includes the exclusive or function, XOR, which in Boolean expressmns
assume s the same priority level as the inclusive or, OR:

XOR The result of the application of the exclusive or operation on two
Boolean variables is TRUE if and only if one or the other, but not
both, is TRUE.

The Boolean primary, relations, yields a TRUE or FALSE result depending on the
truth value of the indicated comparison between the named arithmetic expressions.

UME-7636 UNIVAC 1108

EXTENDED ALGOL ‘

| secTion:

PAGE:

The relational operators are:

LSS or <
LEQ
EQL or =
GEQ
GTR or >

NEQ

Less Than

Less Than or Equal To
Equal To

Greater Than or Equal To
Greater Than

Not Equal To

All relational operators have the same order of precedence.

The order of precedence (from highest to lowest) for all operators in both arithmetic
expressions and Boolean expressions is as follows:

k¥

DIV MOD

LSS LEQ EQL GEQ GTR NEQ

NOT

AND

OR XOR

IMP

EQY

It should be noted that all logical operators operate upon the whole 1108 word. The
NOT, AND, OR, and XOR utilize the equivalent 1108 hardware instructions, while

IMP and EQV can be defined in terms of AND, OR, and NOT operations.

The truth value of a Boolean quantity is determined by testing the least significant
bit of the word tobe 1 (TRUE) or 0 (FALSE).

UME-7636

UNIVAC 1108
EXTENDED ALGOL

4

SECTION:

l PAGE:

4.3.3.

Examples

Boolean Expressions:

BOOL1

TRUE

NOT sSw1

Ax B> X 452

IF B1 THEN X ELSE Y GEQ 50

IF X LSS Y THEN B1 ELSE B2

IF B1 THEN B2 ELSE B3

IF X=Y THEN B1 ELSE B2 THEN B3 ELSE B4 THEN A GTR B ELSE
IF B5 THEN NOT B6 ELSE B7

B1AND (IF B2 THEN B3 ELSE A GTR B)OR X+Y LSS T#xSxxR

B1 OR B2 IMP B3 AND B4 OR B5

Bl EQY X GEQ Y

4.4 DESIGNATIONAL EXPRESSIONS

4.4.1,

Syntax

<designational expression> :: = <simple designational expression> | <if clause>
<designational expression> ELSE <designational expression>

<simple designational expression> :: = <label> | <switch designator>|
(<designational expression>)

<switch designator> :: = <switch identifier> [<subscript expression>|
<switch identifier> :: = <identifier>

<label> :: = <identifier>

UME-7636

UNIVAC 1108 ‘
EXTENDED ALGOL

SECTION: PAGE:

4.4.2,

. 4.4.3.

Semantics

A designational expression is a rule for obtaining a label of a statement. Again,
the principles of evaluation are entirely analogous to that of arithmetic expressions.

In the general case the Boolean expressions of the if clauses will select a designa-
tional expression. If this is a label, the desired result is already found. A switch
designator refers to the corresponding switch declaration and, by the actual numeri-
cal value of its subscript expression, selects one of the designational expressions
listed in the switch declaration by counting from left to right beginning with zero.
Since the designational expression thus selected may again be a switch designator
this evaluation is obviously a recursive process. The subscript expression is de-
fined to be an arithmetic expression and, so, evaluation is analogous, The result,
however, if not of type INTEGER, will be converted to INTEGER so that a one to
one mapping can exist between the set of positive integers and zero and the result
of the subscript expression,

If the integer value of the subscript expression is not a member of the set associated
with the switch identifier named, the switch designator is undefined and program

control continues in sequence,

Examples

Designational Expressions:
LABEL1
ENTRYPATH [N(M+1)]
IF BOOL1 THEN LABEL1 ELSE ENTRYPATH [N(+1)]

IF BOOL1 THEN IF BOOL2 THEN SWITCHTO[X | ELSE IF BOOL3 THEN
LAST ELSE START ELSE COMPUTE

SWITCH [IF A>B THEN 0 ELSE IF A=B THEN X ELSE Y
Switch Designators:

ENTRYPATH[X+Y]

SWITCHTO [IF B1 THEN X ELSE Y]

SWITCHTO [10}

UNIVAC 1108 l

SECTION:

10

PAGE:

UME-7636 EXTENDED ALGOL

4.5. PARTIAL WORD DESIGNATOR

4.5.1.

©4.5.2.

Syntax

<partial word designator> : : = <partial word operand> .[<bit field description>]|
<partial word operand>, [<character field description> |

<partial word operand> :: = <variable> | (<arithmetic expression>)
<bit field description> :: = <left bit of field>:<bits in field> | <left bit of field>

<character field description> :: = <left character of field>:<characters in field> |
<left character of field>

<left bit of field> :: = <arithmetic expression>

<bits in field> :: = <arithmetic expression>

<left character of field> :: = <arithmetic expression>
<characters in field> :: = <arithmetic expression>

Semantics

The function of the UNIVAC 1108 Extended ALGOL partial word designator is
to allow operations on specified bit or character fields of a single or double
precision word, rather than upon the entire word.

The partial word operand may be of type INTEGER, REAL, DOUBLE, or
COMPLEX. The following chart delineates the field variability for partial word
references:

RANGE OF FIELD
TYPE OF OPERAND Left Bit No. Bits Left Char. No. Char.
of Field in Field of Field in Field
INTEGER 0-35 1536 0-5 1-6
REAL 0-35 136 0-5 1-6
DOUBLE 0-71 : 1-36 0-11 156
COMPLEX 0571 1-36 011 16

Note that when the partial word operand is double precision (DOUBLE or COMPLE X),

any bit from 0 to 71 may be specified as the left most bit, but the number of bits in
the field may not exceed an 1108 single precision word of 36 bits. Accordingly, the
left character of a double precision word may be indicated by an integer value from

0 to 11, but the number of characters may not exceed 6.

UNIVAC 1108

4

SECTION:

PAGE:

11

UME-7636 EXTENDED ALGOL , I

4.5.3.

4.5.4.

The bit field and character field descriptions are arithmetic expressions. Therefore,
like the subscript expression, the fields must be checked at run time. The compiler
will convert the result of the arithmetic expressions designating the fields to type
INTEGER if the result is other than INTEGER. The run time partial word routine
will check to see that the sum of the INTEGER values for the two fields does not
exceed 36 for single precision bit partial word operands or 71 for double precision
bit partial word operands. The corresponding character limits are 6 and 11, The
specified field of a partial word operand appearing as an expression will be extracted
and right justified in the word.

For a partial word designator appearing in the left part of an assignment statement,
the indicated value will be stored into the specified partial word field,

Restrictions

A partial word designator in a left part list must be the left-most part.

If a partial word designator is specified as an actyal parameter in a procedure call
statement, the corresponding formal parameter may not appear in a left part list.

Examples

MATRIX [5,4].[LB:NB]
GAMMA, [LC:NC]
BIGWD. [34:20]
(SIN(X)),[(5]
(X+Y*Z), [L+2: N**2]

A,[2:3]:=B:=C:=D, [1:3];

4

SECTION:

UME-7636

UNIVAC 1108 :
EXTENDED ALGOL

PAGE:

4.6. CONCATENATE EXPRESSION

4.6.1. Syntax

<concatenate expression> :: = <left base> <link part>
<left base> :; = <variable>

<link part> :: = & <right base> <link description> | <link part> & <right base>
<link description>

<right base> :: = <general primary>
<general primary> :: = <primary> | <Boolean primary>

<link description> :: =[<left bit of left base>:<left bit of right base>:<number
of bits in link>]

<left bit of left base> :: = <arithmetic expression>
<left bit of right base> :: = <arithmetic expression>
<number of bits in link> :: = <arithmetic expression>

4.6.2. Semantics

The word concatenate means a chaining together of objects. The UNIVAC 1108
Extended ALGOL concatenate expression allows such an operation up to word
length for a single precision or double precision left base. Moreover, any bit field
of the right base primary may be extracted and stored into any bit field of the left
base variable, provided the fields are of the same length, Note the recursive syntax
definition for the link part, signifying concatenation of any number of right base
elements provided word left for the left base is not exceeded.

The link description fields are all defined to be arithmetic expressions and so
must be checked to be within limits at run time.

The limits of variability for the link description fields and limit of the sum of the
left bit of field and number of bits in field is as follows:

CONCATENATE LEFT MOST NUMBER OF BITS | SUM OF LEFT BIT AND
OPERAND BIT IN FIELD IN FIELD NUMBER OF BITS
INTEGER 0-35 136 36
REAL 0-35 136 36
DOUBLE 071 1572 72
COMPLEX 0+71 1572 72

UME-7636

UNIVAC 1108
EXTENDED ALGOL

I SECTION:

PAGE:

13

4.6.3. Restrictions

When combining single and double precision bases, a meaningful result will be
obtained only if the number of bits in field value does not exceed 36.

4.6.4. Examples

X&Y [LBX:LLBY:NB]
X&Y [LBX:LBY:NB] & Z [LBX+B:LBY+Q:NB]
R & ((X+Y)*Z [0:20:16]

DA&DB [36:0:36]

5

SECTION: PAGE:

L UNIVAC 1108
UME-7636 EXTENDED ALGOL l

= STATEMENTS
COMPOUND STATEI\/IENTS,
BLOCKS, AND PROGRAMS

5.1. SYNTAX

<statement> :: = <unconditjonal statement> | <conditional statement> | <iterative
statement>

<unconditional statement> ; : = <basic statement>| <compound statement> | <block>

<basic statement>:: = <unlabelled basic statement> | <label>:<basic statement>

<unlabelled basic statement>;: = <assignment statement>]| <go to statement>|
<dummy statement> | <fill statement>|<procedure statement> |
<I/0 statement> | <zip statement> | <sort statement> | <merge
statement> | <move statement> | <compare statement> | <activity

statement> | <on statement>

<compound statement>:: = <unlabelled compound statement> | <label> : <compound
statement>

<unlabelled compound statement> : : = BEGIN <compour\1d tail>
<compound tail> :: = <statement> END | <statement> ; <compound tail>
<block>:: = <unlabelled block>| <label>: <block>

<unlabelled block>: : = <block head> ; <compound tail>

<block head> :: = BEGIN <declaration> | <blockhead>; <declaration>

<conditional statement>:: = <if statement> | <if statement>ELSE <statement>|
<label> : <conditional statement>

<if statement>:: =<if clause> <statement>
<if clause>: : =|F <Boolean expression> THEN

<iterative statement>::=<for statement> | <do statement>

5

SECTION:

, UNIVAC 1108 :
UME-7636 EXTENDED ALGOL l

PAGE:

5.2, SEMANTICS

The ALGOL statement is the fundamental unit of operation within the UNIVAC 1108
Extended ALGOL. language. Statemeii:s are grouped into three major categories:
unconditional, conditional, and iterative., Unconditional statements directly specify
a particular action to be performed. Conditional statements will select one of several
different courses of action depending on a calculated Boolean value. The iterative
statements describe a repetitive process and provide methods of formingloops in a
program,

Statements are normally executed consecutively as written. This sequence of
sequential operation may be broken by unconditional statements which explicitly
define a labelled successor, i.e., go to statements or by conditional statements
which provide a means whereby the execution of a statement, or series of statements,
is dependent upon the logical value produced by evaluation of a Boolean expression;
i.e., if statements,

In order for one statement to refer to another and make it possible to effect a trans-
fer of control, it is necessary to be able to identify a statement. A statement is
identified by a label. A statement label can be any valid identifier and is separated
from the statement which it names by a colon (:); i.e., label : statement.

Compound statements or blocks are sets of statements which are treated as a unit,
Groups of statements forming a compound statement must be bracketed by the
reserved words BEGIN and END.

A series of statements or compound statements common to each other by virtue of
the defining declarations are enclosed within the statement parentheses, BEGIN
and END, and constitute an ALGOL block. -

Every program must at least be one block and may be-composed of many blocks;
that is, it must start with a BEGIN, be followed by any necessary declarations,
then be followed by the statements of the program, and terminate with an END.

Every block automatically introduces a new level of nomenclature,

The whole program is a block and declarations at the beginning of the outermost
block refer to the whole of that and any nested blocks; i.e., global variables.
Declarations at the beginning of inner blocks are only known within the inner block
in which they are declared; i.e., local variables. An identifier declared in one block
is undefined in any block that is not internal to it. Should an identifier declared in
an inner block already have a meaning established in the encompassing outer block,
then the outer block meaning is temporarily ignored. At the end of the inner block,
the outer block meaning is restored. Hence, the range of a declaration extends over
the whole of the block in which it is declared, including all inner blocks, unless the
identifier is redeclared in such an inner block. If redeclared, the new declaration
holds for the redeclaring block and all subsequent inner blocks until the END
bracket of the declaring block is encountered.

i UNIVAC 1108
UME-7636 EXTENDED ALGOL

SECTION: PAGE:

The fundamental concept of local and global identifiers is demonstrated in the
schematic diagram of block structure shown in figure 5-1, In Figure 5-1 the variables
A, B, C, and BI are local to block Bl and global to blocks B2, B3 and B4. The
variable Al is local to B1, global for B4 and redefined with the value declared in B2
as local for B2 and global for B3. The variables D and E are local to block B2,
global to B3 and undefined in B1 and B4, Variables F and G are local to B3 and
undefined for all other blocks, and variables H, J, K, L, and M are local to B4 and
undefined for all other blocks.
B1: BEGIN
REAL A, B, C;
INTEGER Al BI;
B2: BEGIN
ALPHA D, E, AJL;
B3: BEGIN
REAL F, G;
END B3;
END B2;
B4: BEGIN
ALPHAH, J;
REAL K, L, M;
END B4;

END B1;-

Figure 5—1. Schematic Representation of Block Structure in ALGOL.

UNIVAC 1108 ,
EXTENDED ALGOL 6

SECTION: PAGE:

UME-7636

6. UNCONDITIONAL STATEMENTS

6.1. GENERAL

6.1.1. Syntax

<unconditional statement> :: = <basic statement> | <compound statement>| <block>
<basic statement> ;: = <unlabelled basic statement> | <label> : <basic statement>
<unlabelled basic statement> : : = <assignment statement> | <go to statement> |

<dummy statement> | <fill statement> | <procedure statement> |
<I/O statement>| <zip statement>| <on statement>|<move
statement> | <compare statement> | <sort statement> | <merge
statement> | <activity statement> -

<compound statement> :: = <unlabelled compound statement> | <label> :
<compound statement>

<unlabelled compound statement> :: = BEGIN <compound tail>
<compound tail> :: = <statement> END |<statement>‘ ; <compound tail>
<block> :: = <unlabelled block> | <label> :<block>

<unlabelled block> :: = <block head> ; <compound tail>

<block head> :: = BEGIN<declaration> | <block head> ; <declaration>

6.1.2. Semantics

Unconditional statements directly specify a particular action to be performed.
This group of statements includes the basic constructs implied by the assignment
statement, go to statement, procedure statement and I/O statements. Each basic
statement listed will be discussed separately.

6.2, ASSIGNMENT STATEMENT

6.2.1. Syntax
<assignment statement> :: = <left part list <arithmetic expression> |
<left part list> <Boolean expression>
<left part list> :: = <left part> | <left part list> <left part> | <partial word

designator>: =

<left part> :: = <variable> : = | <procedure identifier> : =

UME-7636

UNIVAC 1108 ‘
EXTENDED ALGOL

6

SECTIQN:

PAGE:

6.2.2. Semantics

6.2.3.

Assignment statements serve for assigning a value to one or more variables or
procedure identifiers. The simplest form of an assignment statement is : variable,
replacement operator (: =), expression; i.e., V : = E,

Evaluation of the assignment statement proceeds in the following order:

(1) Any subscript expression occutring in the variables of the left part are
evaluated in sequence from left to right,

(2) The expression following the final (right-most) replacement operator is
evaluated.

(3) The value of the expression is assigned to all left part variables, with
subscript expressions, if any, having the values derived in the first step. If
the value from step 2 yields a type different from that of a left part variable,
an attempt is automatically made to convert the value to the type of the left
part variable.

Throughout UNIVAC 1108 Extended ALGOL, ALPHA variables are compatible
with type INTEGER. Therefore, if the result of the arithmetic expression is of
type ALPHA or INTEGER and an ALPHA variable appears in the left part list,
the result will be stored unchanged. If the result is any other arithmetic type, it
will be converted to INTEGER and stored into the ALPHA variable.

Restrictions

1. If the type of the expression is BOOLEAN, the left part list elements must be
BOOLEAN.

2. Neither TASK nor EVENT variables may be used in assignment statements,

6.2.4. Examples

1 10 20 30 40
P S S R VOV OO WU OO DU O U U U 1 SO T T OGN A0 N S0 N Y SO N O Y NN OO 1 DO A O B S A O

L_L_L_l_lﬁli_l_:_lﬂr*;d,l},,l,,l,,,l,l,,,l,m PO U TR T U YOS TN O N TN TN W Y WY WO Y WO N Y T N U A L Loododd
e et e e v e e b e b e b ey
L A =B Cl o e b coee e e s v e be e e
(AR N VOO S NN A NN 0% U O VOO N SO O O VU0 NN T YU VY VA N0 U T YU A SO 0% YO SO S W N S TN U A WY TN WA S A
g AV =Bl =Cle =D =F+6 DUV i s
A DU NN AU U OO0 U SO T YU TR TN T U O S N T WO T U U TN Y N Y O T S O PO T B B B B S B B
e Xe = YerlZie =000 0 0 o b e e e o o b e v e e

) UNIVAC 1108 . ’ .
UME-7636 EXTENDED ALGOL I

SECTION: PAGE:

6.3. GO TO STATEMENT

6.3.1.

6.3.2.

6.3.3.

Syntax

<go to statement> :: = GO TO <designational expression>

Semantics

A go to statement interrupts the normal sequence of operations and provides a
method of unconditional transfer to the point in the program defined by the value

of the designational expression. When the designational expression is a label, the
statement causes a transfer to the point in the program indicated by the label. In
the case of a more complex designational expression, the next statement executed
will be the one having the label indicated by the value of the designational expres-
sion.

Restrictions

Labels must be declared in the block in which they appear as a statement label. A
go to statement cannot lead from outside a block to a point within that block; each
block must be entered at the head of the block so that the associated declarations
can be invoked,

In the event of an undefined switch designator, the go to statement is equivalent
to a dummy statement and transfer of control does not occur; normal consecutive
sequence of statement execution continues,

6.3.4. Examples

1 10 20 30 40

TN T N GO T GO N SO Y U N O T U S ST O Y U TN PO N U YA S O SO WO N0 A O
(160,10 JLOOP s o by e e b e e
AR R U I R S B T E N KN S A T S S S S ST A A ST S S B T i B A AR
1 1GOTO (SWITCGHAS3 e v L v v o b v e b a1
RSN N U U S T T T YO OO T T T U U Y T W N O N0 NN N SO OO
11,6070 4,F A NEQ 0, TIHEN SWTCHA[3, | (ELSE LLQQAR; | 4 1

URIVAC 1108
UME-7636 ! : I J 6
EXTENDED ALGOL SECTION: PAGE:
6.4. DUMMY STATEMENT
6.4.1. Syntax
<dummy statement> :: = <empty>
6.4.2. Semantics
A dummy statement does not cause the execution of any operation. It may be
used to place a label.
6.4.3. Examples
A A A Cc
1 10 20 30 40 s
lllll]!llllllll|llL]lJllllllilllllllllIllllllll
L am98P L e b v b e e L
l'Illlllll]Lllllllllllllllllll!I(IlllLllIlIlIIlI
PR ST YO U AT O N YOS WO Y WO N0 U U U WY AN YOO S N DU W WY O AT A DO S O MO SN SO N W

6.5, FILL STATEMENT

6.5.1. Syntax

<fill statement> :: = FILL <array identifier> [<row de31gnator>] WITH
<value list>

<array identifier> :: = <identifier>

<row designator> :: = *| <row>,*

<row> :: = <arithmetic expression> | <row> ,<arithmetif: expression>
<value list> :: = <constant> | <value list>, <constant>|<string>|

<value list>, <string>
6.5.2, Semantics

The fill statement causes one row of an array to be filled with a list of specified
values.

The row designator identifies which rowis to be filled. The right most subscript
position must contain an asterisk (*). In a single d1mens1onal array only the
asterisk is given as the row designator.

If the arithmetic expressions used as row designators yield other than integer
values, they are converted to INTEGER.

The values specified in the value list will teplace the current values of the row
being filled. The number of elements in the row indicated may differ from the
number of values in the value list specified. If the number is less than the number
of elements, the elements with the largest subscript values will remain the same.

UME-7636

UNIVAC 1108
EXTENDED ALGOL

SECTION:

6

PAGE:

If the number of values is greater than the number of elements, the right-most
values in the value list are ignored and only as many values will be used as exist

corresponding element positions.

RESTRICTIONS:

Complex constants may not beused in a fill statement.

6.5.3. Examples

1 10 20 30 40 50 60 80
B S T T O U O U O Ot U N S T T T T T T T S A O A O U S S S T O N A O S S B S A B S S R S S B B N N R R R S SO DR
BT T T T T T T T T T S S S S T T S S T T I U S B T T S S S T IO S S S T U S N N S S S S S S S U S S N R S S S T PR T R S S SR
| oF bl MATRGX Led o IWIHTIHG 14060200071, =376 42,1 317060, 8 E=I1i20 0 0 a0 b s e b Ty
BT T T T S U T T S T T S S S T S O O T S T S S S U T T U T O S S A T S S S T N S N U Y S N S S S A B S B B Y B S B R G|
N S T W T U U U0 S S T SN YOSV 0 Y WO O MO R Y WO AT YW YW P OO T T T S ST Y VOO0 OGO S0 O 0 WY O VA 0 N S SO W
Lo Pl (ARRYD L3, 00 0]y W TH 01,0250, 1307.2, I EX TEMNDED [ALGOL' (, %713:6,124, ~4316..82D-3; .
T T T T S T U A S O T T T T T T T [T SO U G S0 DO O Y T VY A OO S S O IO S T B S S S Y A S SO N T S B B

6.6 PROCEDURE STATEMENT

6.6.1,

6.6.2.

Syntax

<procedure statement> ::

<procedure identifier> ;: = <identifier>

<actual parameter part> : : = <empty> |(<actual parameter list>)

<actual parameter list> : : = <actual parameter> | <actual parameter list>
<parameter delimiter> <actual parameter>

<procedure identifier> <actual parameter part>

<actual parameter> :: = <expression> | <array tow> | <array identifier> | <procedure
identifier> | <file identifier> | <format identifier> | <list identifier> |

<switch identifier> | <switch file identifier> | <switch format
identifier> | <switch list identifier> | <switch file designator> |
<switch format designator> | <switch list designator>

<parameter delimiter>:: = , |)'<proper string>"(
<array row> ::

Semantics

= <array identifier> [<row designator>]

A procedure statement calls for the sequential execution of a previously defined
procedure body. The procedure identifier designates the particular procedure body
to be executed and the actual parameter part supplies the arguments to be passed

to the procedure.

Formal and actual parameters must correspond in number, type and kind. This

correspondence must also be positional, i.e., correspondence is checked by

comparing, in the order given, the formal parameter list of the procedure declaration

with the actual parameter list of the procedure call.

UNIVAC 1108

UME-7636 EXTENDED ALGOL I i

SECTION: PAGE:

If the formal and actual parameters do not agree in kind or type, or if they differ in
number, an error message will be generated at run time. Correspondence is checked
at run time so that the actual parameters of a referenced external procedure may
also be verified.

Basically the procedure statement operates as follows:

All formal parameters which were value declared in the heading of the
procedure declaration are assigned the values of the corresponding actual
parameters; assignments are considered as being performed explicitly before
entering the procedure body. These formal parameters subsequently are treated
as local to the procedure body.

All formal parameters which were not value declared are replaced by the cor-
responding actual parameters throughout the procedure body. There is no
conflict between identifiers inserted through this process and other identifiers
local to the procedure body which are identical to the formal parameters.

The procedure body, modified by value assignments and name replacements, is
then executed,

There are two means of calling for parameters within a procedure: call by value
and call by name, For a parameter to be called by value it must be specified in
the value part of the procedure declaration; all other parameters are considered
called by name,

6.6.2.1. Value Assignment (Call by Value)

Procedure parameters called by value are evaluated once and a quantity,
identified by the formal parameter, is created local to the procedure and the
result of this evaluation is assigned to it. Thereafter, the corresponding actual
parameter is inaccessible to the procedure unless the procedure is called again.

Evaluation of actual parameters called by value and the subsequent value as-
signment to their corresponding formal parameters is performed in the order given
by the actual parameter list of the calling statement. All value assignments take
place before entry is made into the procedure body.

Actual parameters which may be called by value are arithmetic, Boolean, and
designational expressions and array identifiers.

If the actual parameter is an expression it is evaluated according to the rules
previously defined for expressions and the value is stored in the local cell set
aside for this parameter, :

If the actual parameter is an array identifier, the cotresponding formal parameter
must be used as an array identifier. An identical array local to the procedure is
created and all curtrent values of the actual array are then assigned to the cor-
responding elements of the newly created array, Only declared CORE arrays may
be used in this manner.

UNIVAC 1108

UME-7636 EXTENDED ALGOL J i

SECT!ON: PAGE:

6.6.2.2. Call By Name

Parameters called by name are re-evaluated each time they are referenced within
the procedure body. An actual parameter called by name is treated as a non-local
quantity and is accessible throughout the procedure. If the actual parameter is a
simple variable called by name wherever the corresponding formal parameter ap-
pears in the procedure body it is replaced by the identifier of the simple variable.
If the actual parameter is a subscripted variable, wherever the corresponding
formal parameter appears in the procecure body, it is replaced by the subscripted
variable; the subscript expression remains intact, and is evaluated each time it
is referenced during execution.

If the actual parameter is a partial word designator, it replaces the corresponding
formal parameter throughout the procedure body. The partial word designator is
referenced each time it is encountered during execution of the procedure, The
corresponding formal parameter must not appear in the left part of an assignment
statement. lf the actual parameter is a function designator, the corresponding
formal parameter is replaced by the function designator wherever it appears, and
it is evaluated each time it is encountered during execution of the procedure body.

When an expreéssion is called by name, the corresponding formal parameter is re-
placed by the expression. This expression, then, is evaluated each time it is
encountered during execution of the procedure body.

If the actual parameter called by name is an array identifier, the corresponding
formal parameter is teplaced by the array identifier wherever it appears in the
procedure body. No local array is generated and any use of this formal parameter
in the procedure body references the actual array designated by the array identi-
fier.

If the actual parameter is a switch identifier, switch file identifier, switch format
ident ifier, or switch list identifier, the corresponding formal parameter is re-
placed by the respective identifier wherever the formal parameter occurs in the
procedure body. Thus a switch, switch file, switch format, or switch list declara-
tion which has been declared outside the procedure body can be accessed during
the execution of the procedure body.

If the actual parameter passed is a procedure identifier, the corresponding
formal parameter is replaced by the procedure identifier wherever the formal
parameter appeats in the procedure body. Access can thus be made to another
procedure which has been declared outside the procedure body.

If the actual parameter passed is a file identifier, format identifier, ot list

ident ifier, the corresponding formal parameter is replaced by the identifier of the
actual parameter whereverthe formal parameter appears in the procedure body.
1/0 statements in a procedure body can thus utilize files, formats, and lists
which have been declared outside the procedure body.

For value called parameters, the replacement of formal paramters by actual
parameters occurs prior to execution of the procedure body.

UME-7636 l

UNIVAC 1108 . 6
EXTENDED ALGOL _ SECTION: PAGE:

6.6.3.

6.6.4.

For name replaced parameters, each time the replaced parameter is encountered,
the mechanism goes outside of the procedure, re-evaluates, and then uses the
value.

Finally, the procedure body as modified by value and/or name replacement of
parameters is executed,

Restrictions

@ A formal parameter which occurs as a left part variable in an assignment

statement within the procedure body and is not called by value, can only cor-
tespond to an actual parameter which is a variable.

A partial word designator must not be passed as an actual parameter if the
formal parameter is to be used on the left-hand side of an assignment statement.

An array used as an actual parameter must have the same number of dimensions
as its corresponding formal parameter. Arrays used as formal parameters must
have CORE specified if the actual parameter to be passed is a declared CORE
array, or if it is a one dimensional array.

YALUE declared.

Examples

A non-CORE declared array may not be passed to a formal parameter which is

10 20

30

e e b ey v e |

PROCT, [(GNARA) ;1 |

lIIll_L,J,IlIl,Alll

R T U T T OO S U T T O T OO U B S O

L PIRIOIC2, (AR20, 3)l COMNST)G L e e
U T S U O OO GO U U O T OO T S A O S S SO A R SR IO N MY Y
ST T H U TN TR S T T S W O S U [N O ST S T R U YW S O T N N S SO W O S
r (1 PROCI, (S I NGA+3),, | CONST 3, A+B/A2+CiaDy;y | 101
PN T G TN Y S S N O YT U (N U W N T S ST Y O B

A more extensive set of examples is provided in the section on procedure

declarations.,

6.7, 1/0 STATEMENTS

All I/O statements will be discussed in section 11.3, Input/Oufput.

6.8.

6.8.1.

ZIP STATEMENT

Syntax

<zip statement> :: = ZIP WITH <array row>

UNIVAC 1108

UME-7636 EXTENDED ALGOL 6 9

SECTION: PAGE:

6.8.2. Semantics

The zip statement allows one object program to initiate a completely separate run
stream, which may include other compilations or executions, The zip statement
causes information in the designated array row to be recognized as control card
information. The array row must contain a*¥START’ control card followed by
parameter information and a period.

For a more detailed explanation of the ¥START control card see UNIVAC 1108
EXECUTIVE Programmers Reference Manual, Section 5.4.7.

The VY START control card has as its parameter the name of a catalogued file. This

file may be assigned by the user externally of via an ALGOL file statement. The file must
contain an actual run stream, which was created by the YDATA or YFILE processor

or by an ALGOL program.

6.8.3. Example

1 10 20 30 40

AU O N T SN N SN U N T YO U A T UG VAN S N U Y U SO0 N A 0 N U Y S W WO AU B IO O B O B B

| R L MAITIRIE X %) W LTH S TARIT, O F L LE L " 0 1

PSR N T N T N T A VO G Y TR VOO D T N O (OO OO G A 1 O U W T O U [NG SO0 U A A
AN Y O TN U U (O U YU A U HG W U1 O G T YO U N VO Y Y S SO S A M M S Y WO

(L Z P W T O MATRIEX, (53 O TV T B A B B Lo o g
T T T Y S W T WS U O O S O S T A T S YT O I WYY B B S O

In the example given FILEL could have been created in the following manner:

1 10 20 - 30 40 50
VAS G, G L LIED L F/i/i/5000 | o an e b v e boc il
VD AT AL G FIULE Y b e b i e e b b
VRIUN_(RIUNTDLL 1319191610121, PIRIONECT, 15,500 1 oot Lo il
VALG, VSE, (ALGTL, RALGT, | 0 vl il [W SR U
L1 BEGHING REAL X5y |y o0 b v b e e v o b
O O S GO N TV U U W T T N OO0 WO S YU S O WO Y T AN S ST T N N AWV N) A E Y S AN OO 00 NN SRR O B
YT T U T I Y Y U OO GO T W TN U YOO T W YOO S O VOO O N Y ST S N U EN N N SO T Y O
ORI T U U ST OO T G U T G T U YO W W OO S DO Y W U AU N S O AU A N O U S S B SO
O T TS T Y T O YT YO A O YU O S U AN TV O T AN A OO O O T WO NI Y NS A
Lot ENDG L e b s L v v b v by

Y END, ., (TH S, CGONTROL, |CARD TERMINATES THE |DBATA PROCESSOR,

When the zip statement is encountered the run in FILE1 will be given to the
Executive and the program ALG1 will be compiled and executed.

UNIVAC 1108

UME-7636 EXTENDED ALGOL cecmion C eee, 1O
6.9. ON STATEMENT
6.9.1. Syntax
<on statement> :: = ON <condition> <statement> | <ON <condition>
<condition> :: = OVERFLOW | UNDERFLOVW | ZERODIVIDE
6.9.2. Semantics

The on statement allows the programmer to specify an alternate statement sequence
to be executed if an unusual condition occuts during progtam execution, When these
statements are present, it will override the normal sequence of the operating system,
After execution of these statements, control is transferred back to the point in the
program following the statement at which the condition occurred,

There are two ways in which the on condition is made inactive. Termination of the
block in which the on condition statement occurred will inactivate the special

action. If the same on condition is specified and no statement given, the condition
reverts to normal system action.

Valid conditions are:

Condition Name

Cause

Normal System Action

OVERFLOW

UNDERFLOW

ZERODIVIDE

Floating Point
Overflow

Floating Point
Underflow

Division by zero;
floating or integer

Comment and terminate

Comment, set result to
zero and continue

Comment and terminate

i

These conditions will result in the normal system action unless an associated on
statement is given, The ON condition holds for the scope of the block in which it
is given until another ON condition is specified, which will override the previous

one,

UNIVAC 1108
EXTENDED ALGOL secrion: O

PAGE:

11

6.9.3. Examples

Initiate special action

1 10 20 30 40 50 60 80
LJ [0 = L U T T S S S T 0 T B O SO B O DA S BN U 0 S Y S T S W0 TS SO N S SN WA U B R B B S S U B B R SRS RO R
O T B O o T S S T O YO B S S S B T A B T S S T T S N (N S O S S S U S TOU U B G SR S SR T S R T R NN R R
Lo REAL AGIB G n L ca oo by co s s d oy v v e b vt s e s e b e o
S T T I T O O W T Y S Y OO S O T S U SR 0 UV T NN SO (B O M S S S WA EAT O ST M N W RO
by 0 PROCEDURE, RECOVER(V) iy v Ly v vy v by v v by v v s g v v gy vy g Ly g
L T . T T T T T Y G ST N O O SO YO B O Y S T OO0 A AU W S S W AR B N S ST SO A I [

L T S . T T T G U O T O U T U A T S S T T S S T S B O S S OO VA Y B VI B R I
soaa BNPOF PROCEDURE, |\ (L s i aa oo b s D e o L G 1

o @M O VERFLO W BIEG N 1= 1 RECOVERCHD iy (EMND v L el s o g

PN T N T TS T G TS S T S N TS T SO A S S ST AN ST A S O O S S S S S S O S S WA S S S S
L O Y ST RO, YL et L 2 L T T O S G OV I S U S O 0 [T S YN S W O S T U T S T B S 0 N S M IR SN B S A W R U BT RO
G By = A AL G COMMENT |GENNERATESL OVERFLOW-MAX LMUM (LS| IEXCEEDEDG 0 | oo a1]
L oo ay aBEGHUN (GOMMENT] (NES TED BLOCK: « ol v v e bo e il e L a1
I S U O T S O T Y O T T 0 G S (T S S S U T 0 TS O S T G Y 0 B R A S B B
YRR S T Y U T 5 SN S VO T T YT S T O Y NN SO T T AN T S S T (N N A Y A S A S U S U SO M A O U A A Y Y VAT
L T BT 00 O S DO T TS O 0 O VOO0 N N G O O N T T A S T N O S Y O N EO0 S B GO S BV S S
borea o a0 [UNDERFELOW IWMRITE, (GELLE L FUNDRY ;G v v bavanrr v by e e e v i
[O Y T T T L S T O S T T D 0 T 0 O S W Y S N0 S HS T WO H O H0 U SYH W S SA N A SO T S S SO A B R
Lttt B = A ALL NG COMMENT 1 GENERATES WUNDERFLOW, 1 00 oy oo caen v b e aoa o]
T T Y N O .38 A T T N [T ST O T T 0T A O T N T G T T T [T T T T T T N [T I T T S T T T N T S O S S ST 0 W B
Lo 11 1 ON [OVERFLOW;, ICOMMENT ,URON ,OVERFLOW CONDI TION ,5YSTEM ACTLON (LS, (NOW \ 11 |
tot a0 IPERFORMED G v b s e e b e s b v g v b e e b
T T T T 1Y OO T T S N Y S T T S O O O TS O N S O S U S I O 0 (OO B S0 B

U O N T T 1Y T YT OO T U SN Y S SO U (G S S TS Y U S T OV S S ST N O SN0 SO0 S BT A B AU | J,J_L,J_A_A4

TN T P U S T O 0 WU U S S Y T S WU ST VO NS S Y ST O VGO T SO0 S A Y NV VAN
e 1 JEyNDl NESTED BIOCK:y 4o] e b I DO T T A SO S T VAN Y Y 0 N U I N S GV S W WO

I S S S T S T T O S S S T N S OV S O G P T S O W O W

e 1 1 CIOMMENT (T HE ON S TATEMENTS, 61,V EN I[N ;THE (NES TIED, BLO/CK; JAIRE NO (LONGER 1 1114

oottt LERFECTILYE), L SIYS T EM LACT LON Wil L |NOW, BE, P ERIFO0RMED (FIQR (UNBPERFELOMW ., 1 i i1 i
bl 11 (OVERFELOW Wit L CAUSE (THE PROCEDURE RECOVER TO BE CALLED;, \ {100

r,l T TN N SOV S S S O T T Y A YO 00T T S DU TS A SO S NS O T Y S T O O B O Y O T A O O O S S

T T T O T S T S T T SO SO T SO R Y S T O T S S VA SOt S T U S S ST WO 0 O O S Y DU S I N O SN S O U S S B NOVEN B S SO S

Lol L U S S T T U T S 0 T U S S S S O S G A O IO N SO A S AN AN ST S RO

bu oo o o1 EBND G PROGRAM G | v v g s o lbar s v el v e v v v e b v e i L c u‘

VT T U U T Y T N N A SO 0T T T NS S VAU GO ST TV T U S W S O Y A T N T S W A Y W S N S N SR

UNIVAC 1108
EXTENDED ALGOL .

UME-7636

6 12

SECTION:

PAGE:

6.10. SOURCE TO DESTINATION STATEMENTS

6.10.1.

6.10.2.

Syntax

<source to destination statement> :: = <move statement>|<compare statement> |
<transfer in statement> | <transfer out statement>

<move statement>:: = MOVE (<source part>,<destination>)

<source part> :: = <source> <slink> | <source part>,<source> <slink>
<source> ;: = <subscripted variable> | <string>

<slink>:: =,[<left char>;<number of char>] | <empty>

<left char> :: = <arithmetic expression>

<number of char> :: = <arithmetic expression>

<destination>:: = <subscripted variable><dlink>

<dlink>: =, [<left char>]

<compare statement>:: = COMPARE (<source part>,<destination>)
<transfer in statement> :: = MOVE OCT (<source><slink>,<variable>)
<transfer out statement> ;: = MOVE DEC (<variable>,<out destination>)
<out destination> : = <subscripted variable><slink>

Semantics

B The source to destination statements provide for the transfer, comparison, or
conversion of characters from one or more sources to a single destination.

® The move statement transfers, left to right, characters from any number of
sources to a single destination.

The only limitation on the number of characters is that the destination array
provided must be large enough to contain them, If this limit is exceeded, a run
time error message will be given,

The compare statement tests characters from any number of sources for equality
with the characters of a single destination. The result of the comparison is
indicated by the variable COMP. If all characters ate equal, COMP is assigned
the Boolean value TRUE, otherwise, COMP is FALSE. COMP will be declared
by the compare statement if it has not been previously declared in the local
block.

m The transfor in statement converts characters (presumably numeric fieldata)
from a single source, to its octal equivalent, and stotes this result in the
destination variable specified; i.e. decimal to binary conversion.

UME-7636

UNIVAC 1108
EXTENDED ALGOL secrion: © P AGE:

13

The destination variable is assumed INTEGER. Since the number of characters
specified in the source may be of any positive integer magnitude, care must be
taken not to exceed the storage capacity of the destination varlable otherwise
an unrecoverable error condition will result,

In converting the source character string leading blanks are ignored, If the first
non-blank character is a fieldata plus or minus it is used to determine the sign
of the octal equivalent, otherwise the first non-blank and succeeding characters
in the specified field are treated as positive numeric fieldata and when con-
verted the result is considered positive.

The transfer out statement moves octal data from a single source variable which

is assumed type INTEGER, converts it to decimal in the field data form, and
moves this result into the specified destination character locations;
to decimal conversion. Note that out destination is unique to this statement,
Care must be taken to see that the number of characters specified in slink is
sufficient to handle the number being converted including a sign character,
otherwise an unrecoverable error will result, If the number of characters plus
the sign character is less than the number specified in slink, the string is right
justified with leading blanks. '

i.e., binary

m In all source to destination statements the left char field must yield an integer
value ranging from 0 through 5; characters in a word are numbered left to right;
values outside of this range will generate an unrecoverable error. Evaluation of
the arithmetic expression of the number of char variable must yield an integer
number with a value of one or more; a value of zero or less will generate an

unrecoverable error,

6.10.3. Restrictions

m Bit specification is not permitted in the source to destination statements. Bit
specification is provided for in partial word operations.

® Slink may only be empty if the source is a string.

6.10.4. Examples

In the follow.ing examples, consider A, D, E, and H as declared ALPHA arrays
and F, G, and I as INTEGER variables.

1 10 20 30 40 50 60 80
T T T T O B T O B O S O T I T S AU T O O 0 N 0 S (Y T S S S S AV SO T S KA SO U SO SO B O IO T S I B B OO BT
| MOVIE LA 2 et 16] ABS BT WT0 T i e b e sl
N T T T T T T N USSR W O WO U O T (W Y Y S AUV T SO SO AU W TN U B ST N B S RO
o COMPARE AT, 103 3, 103t S AINUARY 11,0 1096180, 0 [0 T, T D T A T O T S W O S S I IOV B R WO ST R
IlllllllJlllLLIIIllLI!IllJllAIlIllLLLII]ILAIIIIIIlIIll\lllll\lllll\ vl
MOV O T LGB G203 Ll Gy b e el st D L i
O T S T T T G U U VO S G O T U GO O S O U S SO U ST A S S Y S SO GO SR R T S SO R R NN W A ORI
T T S O O T S O O I O S S O B S SO0 S S O U A O U T S T DO A SO D D U OO S SR T Y O S T SV SO UV W A S S PRV UO0 WS TS
Lo MOVE BEEC (O e MDDy D 200 v et e e bt b
TN IS NI A SO N U TN U0 O S O (YO T YT O U G S N S T N VU [T T S O S O O O Y T 0 S AT O S YW S G O T S0 S T
S S T O U YT S VN T U WO TP SO Y T W U0 UG S O I S SN S SO O S A S B T T O S S S S S A H S0 1O SO U ST T ROV S O WO O BB
en o MOVE DIEC GEL ML T2) G s e e i e L e e e b e bl

NOTE: The argument list of MOVE can be identical with that of COMPARE.

UME-7636

UNIVAC 1108 ,
EXTENDED ALGOL 6 14

SECTION: PAGE:

6.11, SORT/MERGE STATEMENTS

Because of the extensive parameter requirements of the sort statement and merge
statement, they will not be covered here but will be handled separately in Section
13 in this manual,

6.12. ACTIVITY STATEMENTS

Activity statements provide multiprocessing capabilities; they are covered separately
in Section 12 of this manual.

UME-7636

UNIVAC 1108 ‘ ' "

EXTENDED ALGOL

l SECTION: PAGE:

7. CONDITIONAL STATEMENTS

7.1, SYNTAX

<conditional statement> :: = <if statement> | <if statement>ELSE<statement>|
<label>:<conditional statement>

<if statement> : : = <if clause> <statement>
<if clause>:: = |IF <Boolean expression> THEN

7.2. SEMANTICS

The conditional statement provides a way to change the sequence of execution of
statements at run time, '

The execution of a conditional statement may be described as follows:

The Boolean expressions of the if clauses are evaluated one after the other in
sequence from left to right.

If a TRUE value is found, the statement following THEN will be executed.Unless
this statement defines its successor explicitly, the next statement to be executed
will be the statement that follows the complete conditional statement.

If the conditional statement consists only of the if statement and the result of the
Boolean expression is FALSE control will pass to the statement following the com-
plete conditional statement.

If the delimiter EI.SE is specified and the result of the Boolean expression is FALSE,
the statement following THEN is by-passed and the statement following ELSE will
be executed. -

UNIVAC 1108 . : |

UME-7636 EXTENDED ALGOL sections || pace °
For further explanation note the following figure:
(1) IF Bl THEN S1; Ss2
t 4
Bl FALSE
(2) 'F B1 THEN S1 ELSE S2;S3
{ }
B1 FALSE
? Y
(3) IF B1 THEN IF 8‘2 THEN S1 ELSE S+2 ELSE IF 3{3 THEN S3 ELSE 8}4; S5
A
B2 FALSE B3 FALSE
| I
statement 1 statement 2
Bl FALSE

(49) IF Bl THEN IF Bf THEN S1 ELSE Sf;S3

B2 FALSE

B1 FALSE

NOTE: (3) illustrates that both the statements following THEN and ELSE
may be conditional statements (ALGOL 60 only allows the statement follow-
ing ELSE to be conditional)

(3) and (4) denote that ELSE is always associated with the nearest THEN.
Figure 7—1. Schematics of Conditional Statements

A go to statement may reference a labelled statement within a conditional statement,
Execution begins with the labelled statement and succeeding order from this point in
the program is then determined in the same manner as if entrance had beén made at
the beginning of the conditional statement,

UNIVAC 1108

UME-7636 EXTENDED ALGOL 7

secTion: PacE:
7.3, EXAMPLES
IF CLAUSES
IF A—B NEQ O THEN
IF BOOL1 AND BOOL2 THEN
IF STATEMENTS
. 1 - - - - - - -

A T T T U U N 0 S O S T G0 W W ST S T W OV WO Y VA S S Y TN T OO0 WO S T O O SO U AT U A SO U T B ST O S S B B A
oo R GAR B« 2) 2> LT, T HEN PROCCPT P20 iy by s oo e boa e o b e

I T T O YO W 0 T YT N O T T W O 0 U O Y T W Y S 0 YU T O U Y N U S O U Y 0 A S .

ST T I T N VO O 00 T U T T T O S T S T S G IO N S U 0 S O TN TS IO S Y S OO T W T U0 0 S A S O
v WF BOOLY, OR NOT(|BOOL2 AND BOOL3) THEN 60 T0 ,LABX: , i1y vy byaa 101y

S T U T 0 [G Y OO ST T U YO T U0 S S S TS S S G S T Y T S S S S N S T A A SO Y W .

CONDITIONAL STATEMENTS

L T U YT OO Y O SO S SO O O O 0 T VYOO G T S S T O T O S W O Y T SN WY SO SO G W W Y WA
v WF BOOLI, T HEN BEGIN X :=51N(X); 60,70 $TART2 END ELSE X:=Xnlyy 44, |,

T T S T S T T T YU 00 S S S Y N T T WOV W T SO Y O SN B Y SO A M S S MDY S S S ST Y S B AR O

T T YT N O U T T T SO U0 [S TS T T S 0T S SO0 U T S O T T S O T VO Y O M T T S S U A S O SO RS RO

O T T A U N O A T YT ST DO T T T Y (O T YOS O O U O T S S Y S N) O T S O WO U U S T W O S O S S
Lot LF AGBL GANDL (G Bl B T HEN FOR =1 S T BR 1, UNT L (10, 0,0, MATI T AT 400 0 J
it oot |ELSE, (1F, JA+|B EQL D THEN FOR (l,:=1, ST EP 1, UNT I L, D, DO IMAT 1 Jiti=00ul 4 1111

YU T U T S T S SO0 0T 0 T O S S T 0T WS TS W O U TS O U T S 0T 0 S T TS Y N YW T S T N S SO

8

SECTION: PAGE:

UNIVAC 1108 ,
UME-7636 EXTENDED ALGOL

8. ITERATIVE STATEMENTS

8.1. GENERAL

8.1.1. Syntax

<iterative statement> :; = <for statement> | <do statement>

8.1.2. Semantics

Iterative statements are used as a convenient method of forming loops in a program; -
they permit the repetitive execution of a statement zero or more times.

8.2, FOR STATEMENT

8.2.1. Syntax

<for statement> :: = <for clause> <statement>| <label>: <for statement>

<for clause> :: = FOR <variable>:=<for list>DO

<for list> :: = <for list element> | <for list>,<for list element>

<for list element> ;: = <arithmetic expression> | <arithmetic expression>STEP
<arithmetic expression> UNTIL <arithmetic expression> |
<arithmetic expression> WHILE <Boolean expression> |
<arithmetic expression> STEP<arithmetic expression>

WHILE <Boolean expression>

8.2.2. Semantics

A for statement provides a method of forming loops in a program; it allows for the
repetitive execution of the statement following the for clause zero or more times.

There are three distinct steps involved in the execution of a for statement:
(1) Value assignment to the controlled variable.
(2) Test of the limiting condition.

(3) Execution of the statement following the DO.

UNIVAC 1108

UME-7636 EXTENDED ALGOL | 8

SECTION: PAGE:

In a for list the initial value assigned to the controlled variable is that of the left-
most arithmetic expression in the for list element.

The for list may contain more than one for list element. The process described by
more than one for list element in a for list is exactly like that described by writing
a series of for statements, each with one of the for list elements, with identical
controlled variables, and the same statement following each DO.

The for list element determines what values are to be assigned to the controlled
variable and what test to make of the controlied variable to decide whether or not

to execute the statement following DO. When a for list element has been exhausted,
the next element in the for list is considered, progressing from left to right, When
all the elements in a for list have been utilized, the for list is considered exhausted
and control is continued in sequence.

All for list elements must be of a type compatible with the controlled variable which
may be any type of a simple or subscripted variable.

There are four kinds of for list elements:

(1) The for list element as a simple arithmetic expression.
FOR V : =<arithmetic expression> DO §;
A for list element may be an arithmetic expression, in which case only one
value is assigned to the controlled variable, V. There is no limiting condition,
therefore no test is made. After assigning the initial value to the controlled
variable the statement, S, following DO is executed.

FOR V : = El' Ez, E3 "'Eﬂ DO S;

A for list may contain a list of for list elements which may be arithmetic ex-
pressions, In this case the controlled variable, V, is successively given the
values of the arithmetic expressions El, E2' E3, En The statement, S, is
executed once for each value of V.

(2) The For list element as a STEP-UNTIL element,
FOR V : =<arithmetic expression> STEP <arithmetic expression>
UNTIL <arithmetic expression> DO S;

or for ease of description

where E, is the starting or initial value of V
E, is the increment by which V is increased algebraically
Ej is the limiting or terminal value of V

UME-7636

UNIVAC 1108 .
EXTENDED ALGOL

SECTION: PAGE:

(3

4

If the for list element is of the STEP-UNTIL element form, a new value is
assigned to the controlled variable each time the statemernt following DO is
executed. First, an initial value, that of E,, is assigned to the controlled
variable. All subsequent assignments are equivalent to: V: = V + E,, and
are made immediately after the statement following the DO is executed. The
limiting condition on the value of V is given by E3, which is evaluated each
time through the loop. A test is made immediately after each assignment to V
to determine whether or not the value of V has passed E3. If V has not passed
E3, the statement following DO is executed. If V has passed E3, the element
has been exhausted and the statement following DO is not executed. If the
value of E, is zero, the program may easily be caught in a closed loop.

The for list element as a WHILE element,

FOR V : = <arithmetic expression>WHILE <Boolean expression>DO §;
or for ease of description

FOR V:=E WHILEBDO S ;

where E is an arithmetic expression
B is a Boolean expression
S is an ALGOL statement

The value of E is assigned to the controlled variable V as long as the logical
value of the Boolean expression, B, is TRUE. First the value of E is assigned
to the controlled variable. A test is made on the logical value produced by B;
if the value is TRUE the statement, S, following DO is executed. This process
is continued until the value of B is FALSE, at which time the list element has
been exhausted.

The for list element as a STEP-WHILE element,

FOR V : = <arithmetic expression> STEP <arithmetic expression>
WHILE <Boolean expression> DO S ;

or for ease of description
FOR V:-E; STEP E, WHILEB DO S ;

where Eq is the starting or initial value of V
E, is the increment by which V is increased algebraically
B is a Boolean expression

If the for list element is a STEP-WHILE element, it calls for a new value to be
assigned to the controlled variable V if the value of B is TRUE each time the
statement following DO is executed. First, the initial value, El’ is assigned to
the controlled variable. All subsequent assignments are: V : =V + Eg, and are
made imme diately after the statement following DO is executed., A test is made
after each assignment to V to determine if the logical value of B is TRUE. If
the value of B is TRUE, the statement following DO is executed; otherwise,
the list element has been exhausted.

UNIVAC 1108

UME-7636 EXTENDED ALGOL l JSECT.ON: 8

PAGE:

Value of the controlled variable upon exit from the for statement varies. If the
statement S has a go to statement leading out of the for statement, the value of
the controlled variable is the same as it was before the go to statement was
executed.

If the exit is made from the for statement because of the exhaustion of the for
list, then the value of the controlled variable is undefined and is not accessible

after exit,

8.2.3. Restric=tions

A transfer to a labelled statement within the scope of a for statement through the
use of a go to statement from outside of the for statement is not allowed; the label
is undefined.

8.2.4. Examples

m for list elements

A

I+ 2

10 STEP -1 UNTIL 0

1 STEP 1 WHILE I =]

A + B WHILE C>A
@ for lists

A, 1+ 2

1, 2,3, 4STEP 2 UNTIL 100, 200 WHILE I>], 400 WHILE T =] + K
@ for clause:

FORI1:=1STEP 1 UNTIL 10 DO

FORJ:=1,2, 10, 20 STEP 2 WHILE J <1 DO

UNIVAC 1108 I

UME-7636 ‘ 8
EXTENDED ALGOL SECTION: PAGE:
® for statements
1 10 20 30 40
FYRNSN T N N W TN U NN VU VU U WO WORN O YU T A WYY OO YN O TN T SO A S WO HN S W U0 MOOU U SN0 Y SN S T MO
L 1 aFQR A =B DO (S Vo oo e e s e
ST VNS NN MU VO N HO O O U VO O T S O WO U S A N DRV 00 WY O S WO A A A1 A0 M A A B A

et FOR, Ay =B, (€+13),7:UB-14) 1,0 (P DO (S0 0 o el oo

TR N TR VU YN0 T U000 NN WAL VU YU T VU OO S YOO A UG T TR Y A TOON WO M U A0 SV A N SOOX A WO SO MV AN B SO0 A O S R A

.. FOR, A:=B,,C, DE STIEP 2, UNT 1 L] ;1,00 DO Sl 1 1 1 1 11

IlIIlllllIJlLJlllllllllllllll[llllllll_illlllllll

1 FOR) A:={R,,C+D STEP —E MUNTIL,)0, DO S5y 0 | oy v i1
SO T SO O N T M U T SN AN U YOO O OO TN T O O N U OV A T T O T T SN N A MO
SN T GO H OO S0 N Y N Y NN WY N VO WY SN VAN A U O U N S VOO S W RO NI M BN O §
. FOR A:=B,C,D WHILE E<F DO Si; , v ol vt
TN VU S SO W RS TR0 JNNO TN WU VO HO OO MY U CUO IO SN JORS UUN S VA WY VOOV N U AN T O S T S A N S N A A S T AU S

ek LFIOIRI 1A|:I""IBIII(LCJ+L2L)J/IJI ISJLEIPI llL IWHI'ILIEI 1A1>IDI IDIOI Jsl;l Lo 41l

8.3. DO STATEMENT

8.3.1. Syntax

<do statement> :: = DO <statement> UNTIL <Boolean expression>| DO <statement>
WHILE <Boolean expression>

8.3.2. Semantics

The do statement provides another method of controlling an iterative loop in a
program. It allows for the repetitive execution of the statement following the DO
zero or more times until the limiting condition is met or while the limiting condition
holds.

The DO-UNTIL construction executes the statement following the DO repetitively
until the value of the Boolean expression becomes TRUE.

The DO-WHILE construction executes the statement following the DO répetitively
until the value of the Boolean expression becomes FALSE.

In both cases, program execution continues with the next statement in sequence
when the condition is met.

8.3.3. Examples

In the following examples $1, S2....85 represent any valid ALGOL statements.

IllllllI]ll1l]T]l(lllll

IIII]IIT

TrTTTTY "’1‘T‘r‘i‘*‘r—r‘“r—r—r—r*1‘

TS TS TR Y E T TH TGN e S TS TS N 19’ aE T 0

T

T

T T Tt T 7]' T 1T 771 T L] 1T T 11 1 L I T T I] P10 [T 1 1 LIS | R R 1

e T I 1 7 | L I A l L L R L e l L A O O R R D | T T T T 1T

T°T7 17771770 T T =T T | [T T T T 11 T a7 1 T o1 LT T T T T T &l Tal 1 1T
1 l tT's” Tr'g'<dy! T3 'W'ml "1's" To'a

T'_F”T"T—‘T”T"T] LR A AL A e R

I[Il"'lli"“""1llll]ll

TT77 T

LI A Y LA B O B LA e e e O R A N D O Y N B
T 177 l!‘s|sl |,'I3l+lvl<lgl l-!llll]Nlnl Ia|Nlal lvlsl l_’lzlsl I_'ll|sl INI IWaTgl Iolql LR
TTTTTT LA N T TTTTTT "’T‘b'1“”1‘ r“l LI T N A O A B
TTTTTT T j T T 17T T 17T 1T 17T 71777 | T T T 77T T T ‘ T TTTT _]_»1 T T
T T 1T T | YT TTTTTTUTTT T l 77T 7T‘f'Tz' I"s’] T 0]0' 'i']‘ﬁlv1) l-f] T-L1N In] ll[s T lol G| T 17
T T T T] T TTTTTTTT T | 1T T‘“Y'T"’T“T"Tvl'»T'T'T"T 0 N A I e P |] T T T T T
oy 0g 0Z oL
iA9vd INOILD3Ss .
8 70971V A3AN3LX3 P —

80LL DVAINN

UME-7636

UNIVAC 1108 .
EXTENDED ALGOL

SECTION: PAGE:

9.1.

9. DECLARATIONS

GENERAL

9.1.1, Syntax

9.1.2.

<declaration> :: = <type declaration> | <label declaration> | <switch declaration> |
<forward reference declaration> | <array declaration> | <absorb
declaration> | <define declaration> | <monitor declaration> |
<dump declaration> | <procedure declaration> | <I/O declarations>

Semantics

Declarations serve to define certain properties of a quantity and assign an identifier
to the quantity so that it may be referenced in a program. A declaration for an
identifier is valid only for the block in which it is declared, Outside of the block in
which it is declared, a particular identifier has no meaning and can be used for other
purposes,

Dynamically this implies that at the time of entry into a block (through the BEGIN
since labels inside are local and not accessible from outside) all identifiers de-
clared in the block heading assume the significance implied by the nature of their
declarations. If these identifiers have already been defined by other declarations
outside of the current block, they are temporatily given a new significance, and the
encompassing outer meaning is forgotten, Identifiers not redeclared for the current
block retain their old meaning, The following diagram demonstrates this principle:

10 20 30 40

1.1

BEGHEUN | v e b v e b e et b e i

1 (COMMENT BLOCK T ;L oo vov oo oy oy e b

11

Lo REAL AL, B S o b e

1.1

L VUNTEGER, D, By Lo el e e e 1

L.l

—
1 JALPHA ARRAY, LMAlTll———L]l:lzlolJl:x AN SN TN N VO S T DO WL O S A MR O A O N

.

[S T Y U U W T VA U S VOO TN Y T I S U IO U WU VOO M SO OO U O A OO SN0 DU U O U UOY WO SO SN SN WO S OO S S |
.

:
OO N U N A% O N U0 YO N NG O U N N T O U U N N SO T MY T U WOY W IOt IO Y RN O S O S T
:

I[lllLIILllllll‘,l;ltllllllllllLlLIII!I,L.Al,,.l__l,.,l,,iml.,..L-L

L1 B EGIN COMMENT BLOCK2 - NESTED ; |, o1l 1.1

Lra 1 REAL ADG b e b e e

T T U | lllNiTlElGlElRl lFl;l 1 l Lol LJ‘,,_Lyl_,J,[IS U O TR W O B | | oAb oL

SN TR W |

REAL ARRAY |Bl[:1,hh]1<0|]151 TSN USSR O U T SO O O 1O NN O N VO U A N GO

. .
Lol b ol I Y NS IS OO S S S Y l,,_.l‘,J,,,_JM..‘J.,,AJN-_LN..,.L._J.,_J..,,J_“,l.“l._,L;..J.,,J__”,YL. L .L._J,,K.L,J. Loobodobohl

Y N N N TV V| TR T S 0N HO% T VA O A T S Y L.J__.L__L.,.L.J.,,,L,,LML,,J,,;,J_, oo d |__,L,(‘,.l,‘.l.m.l,.._iu_L

b g A I=C i v b e b e b gy

{1 |E|N|D| IBILQOJCJKJZ_LI',J,,,,I__LA_,,_[__] Lodo Lo L1t LI) O O N S 1. lllll S R N

TSN SN U O T N AN T T Y N U T U N U MY O T WO U N M WO U NN VR WOOR 1 U0 WO IO O OO0 IO IR
.

N IO VA N S W | J_‘l I A WO O O B § I,L,,L,l Lol bbby 1 RN SO NS S | 1,LM,L_;,LWI,‘J.J.-_L,,_L-J.,J.._J_

E/ND, |BLLL,QL_C_LK|]1LL_‘1 [

SO T O T U O HU U A T Y T NN SO TN S N NN DO T WO SO PO B

R R NS T T S TN U TS VO TN N O TN N T T UUO N N N T MY SO T S N WA U Y 000 W A S SO S 0 T WY

UME-7636

UNIVAC 1108
EXTENDED ALGOL

9

SECTION:

9.1.3.

C, E, and MAT declared in block 1 are global to block 2. The variables A, B,

&D are redefined 1n block 2 and therefore are local to block 2 and any reference to
them in block 2 will reference the new meaning and not the meaning declared in
block 1. In block 1 references can only be made to variables defined in block 1; no
variables declared in block 2 are accessible to block 1.

Upon exit from a block (through END, or by a go to statement) all identifiers de-
clared for that block become inaccessible.

Aside from identifiers associated with the standard functions, all identifiers used
within a program must be declared. No identifier may be declared more than once in
any one block head.

Examples

‘ .

10 20 30 40

S T N N T DO O UV SO O YT YON TR A0 00 O N N OO T Y O U I S MO T O A S U NS S I IO SO G

| gk ABEL L LY 82000 0 oy e b e e e

RN N N N T N U VT Y O U VN T Y AN U N JOY U U Y T Y O U YT SO M U SO T N AT W Y N B I B
L L BOOLIEAIN (B B2 0 Lo e o ro boe e v e e g
4)1 I S L | S O USEE VRNN N FOS B LJ) U A VR Y T S T | l {1 Y RS U U T S S | ! § MUY O N S A O
| G PNTEGER, ALBL G PG i Lo s i
N T T T TN T U IGO0 U OO B A | AN TR UOU S SO T O U YO UON S SO T SO A WO WO H OO S A
L aREAL I TRACK l-L_LV AL_J_i ON, ANGLIE:: v e b
I T S T U Y TV OO 0 U U0 N SO (S T O T O VY Y O U T A S Y N N A WO W0 B A0 OO
P MLPHA DATE, NAME ;| 0 0 vy v b v v e by
1 T U U OO M T OO U T T T VRO Y S YT Y N T VY WU A SN W A WA Y W SO0 W N WA A B A B B B B B A

L1 IOIWINJ 1|1N|T1EIGLEI RI IE"lc -[LRJ_J K E N T_lRLYJJ_l ST N N S R B U WS N SR S B

_1~.1__I,L,.L._.LML,‘.|_J_[._,..,IMJ,.L l_J‘.-J,v.l“,l.,,,l,,_l;.._l. TSR RN O N Y S S I,,L_.J...L TN R U S W | I 1 FDE I S ¢
9.2, TYPE DECLARATIONS
9.2.1, Syntax

<type declaration>: : = <local or own type> <type list>

<local or own type>::. = <type>| OWN<type>

<type> :: - INTEGER | REAL | COMPLEX | BOOLEAN | ALPHA | DOUBLE |
TASK | EVENT

<type list> :: = <simple variable> | <type list> ,<simple variable>

PAGE:

- UME-7636

UNIVAC 1108 . I L s |
EXTENDED ALGOL o 0 |secrion: | eace:

9.2.2, Semantics
Type declaratmns serve to declare certain 1dentn‘1ers to represent simple variables

of a given type.

‘ Upon first entry into a block, all variables ére initially set to zero.

An additional declarator, OWN, may mark a declaration. Variables declared OWN
retain their value upon exit from the block; at reentry into the particular block,
variables maintain the value they had upon last exit. Values of variables not
declared QWN are cleared to zero upon reentry into the block and must be re-
initialized by ‘the program, : :

Type declared variables are represented as follows:

INTEGER -~ Integral values rep:ésented internally by 36 bits. The range of an
‘integer (in magnitude) is zero through 235“1 inclusive.

REAL - Floating point numbers internally represented by 9 bits for sign and
exponent of the number and the exponent and 27 bits for the fraction. The range
of a real number (in magnitude) is 10-38 to 1038 with approximately 8 digits of

" precision, Any real quantity which is less than 10-38 js represented by zero. . -

DOUBLE - Floating point numbers internally.represented by 12 bits for sign and .

exponent of the number and 60 bits for fraction, The range of a DOUBLE number
(in magnitude) is approximately 10-308 o 10308 w1th approximately 18 digits of

precision,

COMPLEX - Complex values of the form A + ixB where A and 8 are reai numbers.
'BOOLEAN — Truth values, TRUE or FAL SE.
AL‘PHA —~ Any set of 6 or less characters.

_TASK and EVENT types are used in connection with the activity statements for
. multiprocessing of ALGOL proced ures and will be discussed in Section 12,

ACTIVITY CONTROL.

UNIVAC 1108 :

UME-7636 EXTENDED ALGOL cecrion e
9.2.3. Examples
1 10 20 30 40
v v e b e e b e e e v Lo ey e by e i
L L 1 A LNTEIGEIRL AL UBLCL P0G, o el s e v e b
I YO O Y YO N YA WU W DO GO TN A O S A N T U T TS S N O 0 N AN Y Y S N A Y
o REAL o R GR2i;: 0 0 o b v v b e e e by
TR WY S T U VR T N N W N Wt T N SO TG U Y S T WU A N T U NG TS U O T TN G WO S WS O
| o DOUBLLE | DRI oo boe e o e v b e e v e b
AN T SN U OO YU YT U0 T N G TS O T Y N SO S VO (O O Y O O W 1
L1 A SOMPILEX] CX LXK e e b e by
IO G T YT U0 U W S S O Y OV OO U0 SO T O YT S S ST YN EOY N M N B
+ BOOLEAN , BV, B2, 83|; , v 0ol g b
IR T T VU N T TN A UUR U Y S TS O WA WO YO TN O YT SO T SO SO0 T S U W S A O N U Y O
b ALPHA | INAME,DATE IDENT ;| o 0 0l

'9.3. LABEL DECLARATION

9.3.1, Syntax
<label declaration> :: = LABEL <label list>
<label list> :: = <label>|<label list>,<label>
<label> :: = <identifier>

9.3.2. Semantics

Labels are used to name certain points within a program so that these named points
may be referenced by go to statements.

The label declaration in a block heading defines those labels that will be used in
that block to mark statements,

9.3.3. Restrictions

B All labels must be declared and have meaning only within the block in which
they are declared. :

M In nested blocks, a label must be declared in the head of the innermost block in
which the associated labelled statement appears.

® A block can be entered only through the block head.

® If any statement in a procedure body is labelled, this labe! must be declared in
the procedure body.

A procedure body itself must not be labelled.

UNIVAC 1108 .

UME-7636 EXTENDED ALGOL seerions 0 | maces
9.3.4. Examples
1 10 20 30 40
T O U U U Y N O VO SO OO O OO YU S ST S SO SO0 OO U N B O O T 10 TN WU O S O OO

.. BEGIN |, ICOMMENT, BLOCKI; ,

o JENTEGER, VG

el

L.l

Loodo b1 I Y N

[D N

O T N 0 OO0 O OO OO0 WO O W B |

|t e ABE L LT l2 b3 ka4 Lo v e e b i

L [S|WJ!]TIC1H1

SW Ve =k b4 NS

LlILIIlllllm,lé,lliJlllltllll{llx’blllllllLillllllL
ISR LU TITT bbb L R OO YO TS A SO T U0 YOI Ot PR SO T U U W YOO N IO Y SO DO O N
AN S U Y ORI W I JL_l A .,kil IO S IS U I O O WU U T DU YT N N TR Y SO U S U A A SO N Y O B SO
[voooab2:, |BEGHN COMMENT, BLOCKZ2;
| oo e JEABEL L 0S5 s e e e o e

S T U N U U U T VOO S 7 WU O WUt TN U U Y U O U WO N NN A N U O N W N W N T S A Y S N B |
T N T S U PO A 20 S TR LS T S NV S SO WO SO T TN TN AU AU U O O UURS NN Y R O SN T IO DU H Y W SO O
N |) N S N S | L :.I I TR S R S T I l.‘,Jv B) J | .t L‘_l JO! | SN T | L1 .J | D O S SR R B |

.
I D S S) I | lLl4{: L=l L. L L.t l FI | (Lol 1k 1 | Lol 1 1 F R N N S|] [1 1 L. 1

.
T N NS N N N N | l A l;l Loododod o L l ot o Lo b L) [§ SV VU SO SN N W SO | J | AR U A I |
b 60 T0 b3 b e e e b

A
RTINS TN WYV TOOR TN U S O 1 PO T TN T O OO N WO J00 U U U OO0 Y SO O U U 0 0 GO B O N
NN T U VUK U O U U0 VAN T U N VO U YO T W AT WY VO SO W O YOO S Y OO 1 KNS T WOOU N U0 N SO
el L L 480 TO SWT VL bl o b
[R N N | l§) PO W N OR U 00 N U Y U NN NN OO T N SO N N U WU U WU NS A R O O DA N B
(IR S U ST TR AN o e e FO A SO O NONE N T T U TG N T 00 N WY N H TOY WO RO R AT SO SO S B N A
O U O U YO0 U OO O N VT N M UOUE IS S OV DU HOU O VT N VR U WO S VNIV TOO NOON I NN Y N VY OO0 WO Y
Lt L dENDy BILOCK 2y Lo it e v e b
Lok 1: TGN TN VNN WO N O O NG S OO SO UG YOO N N OO W Y W I IR R B T S AN N O
IIIlI!lLlElll'llllliIlillllll((llll&llllliilllll[
,_J_J_L.‘.L.A,i,,,LI:.@,,LfL_?if‘_.‘lt”|..<.N_JHJ,.,L,.L,,L,1_.”.= 8 VU S OR UON U DU T O U VO ORC N A HE U SO SO O I
N N U U AL ST N U T N T U T N N N T N WA S N N AN N AT AN A AU RN AR
oo kA JEND BLOCK Y Gy e o b e e on e
T T U U VO YO0 FAE S TN VOO OO A O HUR T SO U Y0 S T U T T O (N N O U O I T T O 0 OO Y WO O
SN T Y N N VO T O U V0% W U0 O V05 000 O O N VY U T N T O VA OO U N VOO0 Y Y00 HER VN VU OO ANV S WO 0

Note that in the previous example L4 is redeclared in Block 2, The GO TO L4

statement of Block 2 will result in a jump toL4 in Block 2, The GO TO L3 state-
ment of Block 2 will result in a jump to the outer block, thereby causing an end to
Block 2. The reference to SW1 in Block 2 could result in a jump within Block 2 or
to Block 1, depending on the value of 1.

UNIVAC 1108
UME-7636 EXTENDED ALGOL SECTION: ? PAGE:

9.4. SWITCH DECLARATION

9.4.1. Syntax

<switch declaration> :: = SWITCH <switch identifier> : = <switch list>

<identifier>

<switch identifier> : :

<switch list> :: =<designational expression> | <switch list>, <designational
expression>

9.4.2. Semantics

A switch declaration defines the set of values of the corresponding switch designators.
These values are given one by one as the values of the designational expressions
entered in the switch list. With each of these designational expressions there is
associated a positive integer, 0, 1, 2, ..., obtained by counting the items in the list
from left to right, The value of the switch designator corresponding to a given value

of the subscript expression (cf. section 3.5. Designational Expressions) is the value
of the designational expression in the switch list having this given value as its
associated integer.

An expression in the switch list will be evaluated every time the item of the list in
which the expression occurs is referred to, using the current values of all variables
involved.

A designational expression that appears as an element of a switch list will be
evaluated at the level of declaration of the switch, not at the level of the switch
designator if the levels are different. Note the following example:

1 10 20 30 40 50 60 80
T S O U T U T T T T S T T S S T T T T T S (S T O Y S T O T U T SO A S T OO S A Y A S SR U DU U S W T SO0 B I B O
SRR - Y =1 I P O G T T T T T S S S S T T S U T S U SO S S UV TR SO Va00 WY AOF S ST SN S SR U TS SO S S S BT O N
Lo o hNTIEGER L A B o o oo e v by e e b v e o e |
Lo ABIEL bl k2 L3 bdi o s o b v v v b oo v b o e e v o e e i e
L S UTGH) TESTPATH G L, (NFASB L b e b e b
Ll |T,H.E.r{ L2 ELSE L3, L v b o o ba v vt b c v by o e i
T O U T I T PO S N S SO S T USSR S Y S O U G A O S TN OSSOSO SO SO N WO U0 O Y SO0 T S U S T N B B 0 Y S
T S E L S SO S R B S R N R S SR RS NSRS O AU SRR S A AU ErT
Leecte oy Lo aBEBSEN cr b v ool v oo b v vy v ca s el ve o by wy i
poa e b p JHINTEIGER GG P T A A T T SV S T ST O Y S SO S O N N B W T S ST A0 A S ST M R
Lo ooy e REALL A oy e b et e o b v oo L e e oo i
Lo v b oy v akABEL LhiakZiie b oo v v b vornaer el Coa o e b oo e e b e e i
T O S T B S O S T S B Uy O S O VU S (S S S S S S I (UOV S GO O SN T OOV S WO T O SOY SO0 VO T SO A S U T OO0 SN DO DS VOO (Y ST WO S O S MR B
L aa o aeo To TESTPATHLL G oy v b v b e ca b
ST S T N T S S ST T L T PSS H SN ST S SO0 G M AT A S A AT A S A W T A A A S A R R R R AR SR T I B SR S S A
R O U T T T T T S S T S B O O S S O T T S S T S S U A A0 S SO 00 SV U VU NS SO PP AT AT T O T VA S S T AT VIO S AN S0 S 00 S WA
T U T IO N G Y =T 1> T S L O O T T T (O SO U O N S U T O W T N U Y U YO WO B U YOO N (Y OO O N NG I SO A 0 B B R N
B T T T T T T T T T 6 T B 0 A A OV B SR
T TN T T A T B GO U SR S ST S S R S S ST O S A N S S S S R S S A IO NS S N NV E H S AR S S S
ca O END s L e b e b s e e e b e Lo v v v v v e b v e Ly

UNIVAC 1108
EXTENDED ALGOL 9

SECTION: PAGE:

UME-7636

The designational expression TESTPATH (I], is at a different block level from the
switch declaration, TESTPATH . Furthermore, A, L1, and L2 have been re-declared

in the inner block, If the value of I (The subscript expression of the switch designa-
tor) should result in a reference to the first or second element of the switch declar-
ation, then A, L1, or L2 of the outer block would be referenced; i.e. the reference
would be at the level of the switch declaration.

9.4,3. Example

1 10 20 30 40

U WY T O U U T YO W VO T YO YOO VN U U M SO Y WO T YOO T S U U SO Y 0 T T U SO A (00 A W Y B
ISR R S N Y SN SO SO | !,AJ.,,.J S NI R U Y) W | Lod b o gt 1o i l TN NS SN SN SOV VU N A | __‘L, FR TN SN TN U S |
Lt L aSWILITICH 1 SW = AR ki ABI 200 0 o e s b
TSNNSO NUR SN TO0% W T N SN A T NN N S N N U Y WO T Y A N U YO T O O VU A0 U0 U WO O N Y S A

Ll aSWil TiCH S =hi i db 2,0 L B TIHIE N 1SJW1E'J| (JHLSE (L3,

R U R Y OO WO W |].A_l,,_J_.,,J,,,L,l TR RN NS U AU W RO TR TR SO SO WO NORNY SN A NOO0Y WA OO SO SO SN NN Y | O S IS U S B |

L S WETCH EERRORS W T, CH: = S TARTL, PARILT YER,EXT T

FUNNE TS U I U U U 0 Y O T WO N U N U VO SO OO RO UON T U SO OO M NN SO S WO VOO A N0 YO Y A K VO B

9.5. FORWARD REFERENCE DECLARATION

9.5.1. Syntax

<forward reference declaration>:: = <forward procedure declaration>|<forward
switch declaration>

<forward procedure declaration>:: = FORWARD <procedure type> PROCEDURE
<procedure list>

<procedure type>:: = <empty> | <type>
<procedure list>:: = <procedure identifier> | <procedure list>,<procedure identifier>
<forward switch declaration>:: = FORWARD SWITCH <switch identifier list>

<switch identifier list>:: = <switch identifier> | <switch identifier list>, -
<switch identifier>

9.5.2. Semantics

The forward refercnce declaration establishes the existence of a forward referenced
procedure ot switch which cannot be declared in the normal manner prior to its use.
A procedure or switch must be defined before it may be referenced in the program,

UNIVAC 1108
UME-7636 EXTENDED ALGOL scrions PAGE:

However, in the special cases such as (1) a procedure calls another procedure

which in turn references the first procedure; (2) a switch references another switch
which in turn references the first switch; it is impossible to declare both procedures
or switches before they reference each other. In order to use such recursive references,
the forward reference declaration is used. The procedure identifiers in the procedure
list or the switch identifiers in the switch identifier list will be marked temporarily

as defined, The normal procedure declaration or switch declaration must appear

later in the program.

9.5.3. Examples

1 10 " 20 30 40 50

L1 IBIEIGJIINI IFIOlRIwIAIRIDI lPlRchIEIDIUIRIEI IPI;I | N Y Y TN N | ! {1 TN S N O T I | I N Y T T N T B |

N T NS S S IPI,RI,Olcl,gipJUIRIEI IQI;IIIIIJ,lJIIll]lllllll||lll|}|1|lllllll|

L L1 o BESEN v s v c v v e e v b

.
1R S O U N T N O P YOS T Y S VO Y T U N U YT T T O U TSI S T T N [N O T OO0 N A A

.
NS T T T T O N U T T N S S AT O YOO VO T N O AN T T S T T T T I N T S SN T W N A N O

[T N A TN U0 N Lt O WO (O Y U VA S SN Y WY TR S S T AT T M S T YT I ST T T S N T Y A S M T S M WO O

:
A S YV T Y T VO U S T S Y O U O PO U AN U S U S UT SO G (U G S WS S S N OO W S R A A

P T T G TN N YU VH U N NS T U N U WO T T N ST T T N S S S A A SN N S SO M N B

BND G i s e b e b
l|||[l||IPIR|°ICIE]DIU1R1EIJH;|||lllll\I||l||1|l\|Illlll\lll\lllllll

IlllIllllB'EIGIIINI\IIIllllllli!ll]|1I|llll||1|l|||||IIIIII?II\

TS N T O U N I U O YO N T U T VT U T ST N U S TV N TN T O S ST O OO S SN S B

AR T U U U T T T S Y N SO T ST W AT N O A N N O N Y N T AV Y B B S S A

H
P N VOV Y I U S O T U VO U O O U S T T N TN T NP N H Y B B Y B B AN SO S B BT I

Lot aBINDG e s s e b v b v e by vy g
prop g g i PNTIEGER | by b dKis v v b v v e by v v v e b e

IS T T | ILIAIBlElLl 1 |L|1|.|L12|,|L|3|:| U R T S S NN T S B B H BB A | T Y N S I I T ’ I RO N T |
2+ FORWARD, SHVTCH SW2, SW35:(00 Ly v e b
L SW T CH (SW = L L2, L F JA THEN, ISlwlz\Elljl ELSE SW3 |I_J!;l L
Ce g SWHTCH (SW2): =) ILI3II[SIwI]l[llijl'Islwl3[:ljljl;l I BT R B R S U TR S B S N U R A B
G SN TCH | SW3e = LT, B3 SW YLK s e

llll|J|||I.|Illl|1|Lllllfllllll|I||||||\||Ll||||I|J_LI|I|III
.
AN T T T T T U0 T T A O N P T T N T U S T T N AT Y N TN B N Y Y B A

:
PR T TN Y T T ST T T T O U S A Y N U N T O T N T U T T U W Y N T U S A

PO S =515 11 > U N T A O U T T N O U W N M N WA T T T T U T N T TV N U OO N A

1 UNIVAC 1108 :
UME-7636 EXTENDED ALGOL , 9 e
9.6. ARRAY DECLARATIONS
9.6.1. Syntax
<array declaration> :: = <array type> ARRAY <array list>|<array type> CORE ARRAY
<array list>
<array type>:: = <empty> | <type>| OWN<type>
<array list>.: = <array segment>|<array list> <array segment>
<array segment> :: = <array identifier> [<bound pair list>_]|<array identifier>,
<array segment>
<bound pair list>:: = <bound pair> | <bound pair list>,<bound pair>
<bound pair>:: -~ <lower bound>: <upper bound>
<lower bound>:: = <arithmetic expression>
<upper bound>:: = <arithmetic expression>

"9.6.2. Semantics

The concept of ‘array’ considerably enhances the power of ALGOL 60. An array can
be considered to be a sequence of variables, referenced by the same identifier, but
with each variable in the sequence being uniquely addressable by its fixed location
in the sequence.

The array declaration, then, defines one of several identifiers to represent multi-
dimensional arrays of subscripted variables, and gives the dimension of the arrays,
the bounds of the subscripts, and the type of the variables.

. Arrays, like simple variables, may be declared to be OWN or by default are local to
the block of declaration. Initially all arrays are set to binary zero. If declared OWN,
the value assigned to each element of the array must be preserved at the end of the
block of declaration for the array and restored upon re-entry. This concept implies
non-stack stoi-age; UNIVAC 1108 Extended ALGOL, however, utilizes the dynamic
stack to contain an OWN array while the block in which it was declared is active,
but maintains a current copy of the OWN array on drum to reinitialize the array upon
re-entry of its block of declaration,

Arrays must be declared to be of type REAL, INTEGER, DOUBLE, COMPLE X,
BOOLEAN, or ALPHA; with all elements of any array being of the same type, If
type is not specified, REAL is implied. ’

The dimension of an array is fixed at declaration time by the number of bound pairs
specified; each reference to an array element, therefore, must list an entry for each
dimension,

UME-7636

UNIVAC 1108
EXTENDED ALGOL

9

SECTION:

PAGE:

10

9.6.3.

The bound pairs of the array declaration define the lower bound and upper bound for
each dimension specified. The syntax permits the bounds to be defined by arithmetic
expressions, the bounds, then, may be fixed at compilation time if an integer con-
stant is given for the bounds, or the bounds may vary if an expression of variable
primaries is used to define the bounds.

A dynamic, or variably bound, array is assigned storage in the stack according to
the current value of the variables defining the bounds. In order forsuch variables to
have a value, they must be declared in a block that is global to the block of the
array declaration. For this reason, dynamic arrays may not be declared in the outer-
most block and dynamic OWN arrays are not permitted.

An array is defined only when the values of all upper bounds are not smaller than
those of the corresponding lower bounds. The result of a subscript expression
must be of type INTEGER; if the result is not of this type, the compiler will gen-
erate a transfer to type INTEGER.

The limit for the value of the size of any dimension is 4096. If CORE array is
declared, storage will be allocated in the stack for the entire array at declaration
time. In the absence of the word CORE, only the area specified by the rightmost
bound pair will be reserved in the stack; the entire non-core, or segmented array,
will be resident on the drum within the scope of the non-core array declaration.

The programmer need not be concerned with the segmenting of arrays since the
compiler generates code to execute this function.

It should be emphasized that run time will be increased in direct proportion to the
frequency of referencing different setst of array data.

All one dimension arrays are CORE arrays, even if the word CORE is omitted in
the declaration. At every array reference, the valuesof the subscripts are checked
to see that the address designated is contained within the array. If it is not, a non-
recoverable run time error will result,

Examples

10 20 30 40 50 60 80

Lo oo b i !
L O AIRRAY, AL B G N 1000, M50 5, D=5 12 i 1,
T T T T S T S S S S T S T S S P S S U S S S S S S SR N S N SR S S S ST S T Y
T U N D T S T S T S T S S R T S R T S S S S PR SR S S SRR Y

T T O U N T O N WU T TN W0 0 ST N Y SO Y [S S ST BRI S A S R SR

LT T T T T T S T S T S B VU SR S O IR O SR Y

1

Vo b
1 Lol 1y
'

1 1
' O O R
i 1

v b '

|
'
1
' EON I |
L

1 OO R WO W S T WY |
foeaa SN T E G | R S R
LI T T T T T T T T T S T TS 0 R U S Y N U S N SN W SO SO SR N BRI Ll s
T S T S S S ST B S T S DO R S S T S A B S RO S P S G AN SR SR SRR S B R P |
L T T e T S L L S O A N D O R B RN B SR A | I R R

1
.
i
I
.
=
LJ,JOAWANI I'INTEGERL lAlRlRAA’YI vKIEIEAPI ILJ|>F1 lx\'lol ITAHIEINI lol LEJLLSIEJ A‘,L:IXIHSJO,J;"L:L
.
i
.
.

Lo REML CIORE ARRAY BETA L [Y, X0 10,:,Y 0 101, X520, %5 %200)

e

Lov v iuuy

tSet is defined as the stack-resident area of a segmented array defined by the
rightmost bound pair, for a two dimensional array, it is one row,

UNIVAC 1108 : 9
EXTENDED ALGOL

SECTION: PAGE:

UME-7636

9.7. ABSORB DECLARATION

9.7.1. Syntax
<absorb declaration> :: = ABSORB <subscripted variable>,<absorb array declaration>
<absorb array declaration> :: = <sarray type> ARRAY <array segment>
<sarray type> .: = <type>| <empty>

<array segment>:: =<array identifier>[<bound pair list>"]| <array identifier>,
<array segment>

<bound pair list>:: = <bound pair> | <bound pair list>, <bound pair>
<bound pair>:: = <lower bound>:<upper bound>

<lower bound> :: = <arithmetic expression>

<upper bound> :: = <arithmetic expression>

9.7.2, Semantics
The absorb declaration allows two or more artays to share common storage.

The subscripted variable must refer to a pteviously declared CORE atray; to be
henceforth identified as the absorbing array. The absorbing array may absorb any
number of arrays with the same bound pair specification in the same absorb
declaration. Arrays with different bound pair specifications may be absorbed by
the same absorbing array in individual absorb declarations.

The number of words in the absorbing array from the point of absorption must be
equal to or greater than the number of words in the absorbed array. The mapping of
an absorbed array into an absorbing array is accomplished at run time; therefore,
both absorbing and absorbed arrays may have dynamic bounds.
The type fields of the absorbed and absorbing array need not be the same.

9.7.3. Restrictions

® Absorbing arrays must be CORE arrays.

m Absorbed arrays may not be declared with OWN or CORE specifications, these
attributes are inherited from the absorbing array.

® An array may be absorbed only once, since it is absorbed by a declaration.

m An absorbed array may not itself absorb arrays.

UNIVAC 1108

UME-7636 :
EXTENDED ALGOL SECTION: 9 PAGE: 12
9.7.4. Examples
1 10 20 30 40 50
[T T T T O T T YU O U0 T S AT YOO O SO N U N U O YO T N YUY S T WY U [Y O
[REAL ARRAY, MATRIX 150,00 5 o b b e
| L UNTEGER (CORE ARRAY SUML 1K~ fi20e s QKT) b2 0 L
S T O T T T T T T O U N T Y YOO Y A YT YU YT U T T S Y T T YT O S0 O A B
I T U U T T A T T T NN T T U T S S T S [T T TN T O SO W S W T GO W MO A
.. ABSORB MATRI X[107, I NTEGER ARRAY ¢ [1:20 |5 |, (.,
PN T S S T O LA O W W T U OO O O O W T Y T T O S AN T T T YN YT T Y SO0 00 N A B0 M
| . . ABSORB |MATRIX [80/],D0UBLE ARRAY, D [0:9 s vy 0y Lywy oy
T T T YU IS T O T YT N JO O A T T O MU O YO T T T T N S A N S S I WO O
L1 (ABSORB {MATRIX, |E|11:]4:| JNTEGER, |ARRAY, 1, ,J, KE!II:IZIO:]MI I R R R
R S S T T I U O S G T T G T ST O S Y Y Y Y Y S SO B B
. ABSORB, MATRIX [1], ALPHA ARRAY LETTER[L1:UT, L2,:U2]:,

IlllJ\JVII'!IJI,JAI,IllIIIIllll|lllv.l..l._..L.__L__L__L.lLllllllIII

|

L

L -

|

L

|

L1 ABSORB, |S UM, 1‘——-|X|’|Y|],\ (REAL, ARRA]Y, IRIEISIE] |=\5|0L17I S N B

PR T TSR T I Y S N S S OO O WO O T U T U T S S T S A A H S WAV B R R R

L -y

121

ABSORB, |SUM |E1)Sl,+121'_15g1'| M NTEGER ARRAY PART 1|:||‘\‘ LI E I vz,

t

T T T R R A N Y P T T T T T U A T T T T T T S T U N T T Y O T O

9.8. DEFINE DECLARATION

9.8.1. Syntax

<define declaration>:: = DEFINE <definition list>

<definition list> :: = <definition part>| <definition list>,<definition part>

<definition part>:: = <defined identifer> = <definition> #
<definition> : : = <symbol> | <definition> <symbol>

<symbol>:: = <delimiter> | <identifier> | <constant>

9.8.2. Semantics

The define declaration defines an identifier as a set of basic ALGOL components.
The appearance of a defined identifier results in it being replaced by its associated

definition. Such replacement must result in a legitimate ALGOL construct, When
identifiers are used in a definition they will, at the time the defined identifier is
used, refer to the meaning applicable at the level of the define declaration. This

point is important only when the defined identifier is used in a nested block which

contains a declaration affecting an identifier in the defining construct. A define

declaration may contain another defined identifier.

9.8.3. KRestrictions

M Any basic component used in a definition must be completely contained therein;
for instance, a part of an identifier cannot be used in a definition with the other

part being supplied later in the program,

This rule also applies to delimiters, unsigned numbers and strings.

UME-7636

UNIVAC 1108

EXTENDED ALGOL 2

SECTION:

RAGE:

13

@ All identifiers in the definition must be previously declared.

B The meaning of an identifier in the definition given is always employed whenever
the defined identifier is used.

m The well-formed construct of a definition must not contain a declarator or a
specificator.

B A defined identifier must not be used in a fill statement, a format declaration nor
as a formal parameter.

9.8.4. Example
1 10 20 30 40 50 60
| ¢ DEFINE | RK=RUNGEKUTTA#,ROOT=(=B+ S QRT (B 24 A" IC)Y) iitha 00]
TN T T T T U T T W O Y VO Y 0N S AN T Y O O OO S O N VA A NS A IO R O
o (BEFINE (UNT=INTEGRATE (X Y, ZD)#in o cooa Lo ool og o1l
|l||Illlll|]l]lll]lll||illlll|IJIllLllllJl_ll|lllLllJ_L|ll|llL
| oo D EFE LNE, (FLMDO=FIOIR L =1 WS TEIP 1 JUNTLLL M DO G o L e o sl
T T N N 0 O U T T T T YT T TN WO T T U0 N T T T T U0 T A O U O T O S O S N S A N S A S G BV S S R |
§ I | lDlEIFlllNlEl lAlS[G|=|A|:l?,IIJNITIQJZl LI S T S § I_LLALLJ,l IS I | I,L...l_\ SRS S I B ‘ NS T T A S O A { l
co o aa o dereavellyvalid g p o e b e e s b s s b e
111 DERILNE ASG=A;: = UUNT s 0 0 oy e va g e vve v L g gl
U T T T U S T S U SO I U WO O T N Y O N Y SO N N T O S S U O U O NN U N (Y O VOO S S SO W U O O
TN T T N S N TN O T G TS OO YT T SO T GO U N Y I Y WO O N A W AU WY S T U SO RO T U IO S WO U S S BV EN RN |
9.9, MONITOR DECLARATION
9.9.1. Syntax
<monitor declaration>:: = MONITOR <mfile part> (<monitor list>)
<mfile part>:: = <empty> | <file identifier>
<monitor list>:: = <monitor list element> | <monitor list>,<monitor list element>
<monitor list element>:: = <simple variable> | <subscripted variable> |
<array identifier> | <switch identifier> <procedure identifier> |
<label>
9.9.2. Semantics

The monitor declaration allows the programmer to display variables whenever their
values are changed and to trace the path of a program by displaying labels and
switches when they are encountered.

The file part of a monitor declaration is optional except as noted in restrictions.
When given it does not specify that this particular monitor list is placed in the
given file. Instead, all monitored elements are placed on the most recently given
file.

UNIVAC 1108
EXTENDED ALGOL 9

SECTION: PAGE:

UME-7636

When a monitored variable or array or procedure identifier is used in the left hand
part of an assignment statement; the following information is written on the
designated file:

identifier : = value assigned or

array identifier [S1, S9, ..., Sy |: = value assigned

When a monitored switch is encountered, the following information is written:

switch identifier [V |, where V is the current value of the subscript expres-
sion.

When a monitored label is encountered the following information is written:
label identifier

When an array identifier is given, all variables in the array are monitored, If a
subscripted variable is given only that element of the array will be monitored.

9.9.3. Restrictions

®m In each block before a reference to a monitored identifier occurs at least
one MONITOR declaration with a non-empty file part must have appeared.

B All monitor list elements must have been previously declared and labels may only
be monitored in the block in which they are declared,

9.9.4. Examples :

1 10 20 30 40 50 60 80
o B EG N REAL vy AGBL G DG o b r e b e bl a1
v e IWNTEGER S s s v b e o b b b a
e cISABEL by b v cc s b v e e b n v b v ca
s IR E A OUT JRGLE Y VG G12020 0 0 e b o b v e vl e s o v Lo e v
g FRUVLE QYT FLLE2 V(T ,122) 000 0 b e s i b s i s e s a
e IMORETOR R LE T CGALB LT G e g b e e e b i
ot e IMOINCETOR, y (FIGLE2 GG D v s b v bo e e nh e va v cen by o
v et [GOMMENT 1A B Gl D LT M Ly ALL 1B E PLACED |ON (FILLE2 (BIECGAUSE, (LTl 0 g
Lot ba ooy WAS THE JLATEST (GUVEN;, vy v 00 ol o v ol v v ad o |
;o BEGUN REAL v A s bt a b v e e b v e b v e by v vy
Lo v o IWNTEGER o JARRAY (LG b 0o v v v bav oo v b oo a e c e b ce
o s e JRLLE OUT IFLLES, L0220 o0 oo b s oo b s b e e o s o

a1 IMONETOR R LES, GAL UGS D b v b e e e
I I Y T N Y T B | |C|0|M|MIE(NIT|).]AII,‘ALI lvl‘\lel IAABJLXEISI IAIR\EI INlo|wA lMlolNilj,Tl,quElDl IoiN\ IFIII!-JEI:”H Lo).d

]
R B SR A R !

YOS S S N N U I U . U0 MO W S Y O S AU T T N S T S T T A S W T W N A T O NN AN S0 Y SO MO W IO MY

I S B A

Fov e v v b aat o baeo s v wace b v v e b o Lo ccasca v bea g

FIIR AN T O B A B B W

T BT L7 O U Tt T T O A S S T S (A O O ST T AT T T O O Y O O 1 B0 T B B S O B

T U N T T T S A T T U T U T O N NN YOO O O G T O G N O 0 O WA U0 O DO B Y B S B B S

TN S T Y A 00 SV SRR O SR Y B A Y B RO

B T T T U S T O U A S S T A T S T T S T T T S O S S S S S S S S S T SO S SO SO ST N SO TR IO PO TN NGRS (S S O A SO S U O Y S B Y B R R A
Ly IGOMMENT, |, JUPRON LEAVIING THE NES|TED BLOCK |MONITORED, [VARIABLES |),)) 112

Lo v aa b ov oo IAGATN GO ONG FELE2D Gy | v v cc oo b s i c e

BT T T T T T T B S O T T S T S O S B T T S S K S T S S S S T S SO S S T A S S A T SO B S SO SO0 S S N S TSN TR AU UAF S0 Y O BV R S R B WU

T T ST T 0 U 1 U O U Y N H S T T U S S O U TS SO T S TV I T Y N TV O O S Y A O A WV A VSO B B S

TR S IO <11 1 - N T U TS U T S A S YO U U U U T O A T B S S U0 I H U T SO SO0 U WO O O U MU AV U U (Y ST VRO WSO BN YO0 O S SO S S S S

UME-7636

UNIVAC 1108 ‘
9 15

EXTENDED ALGOL SECTION: PAGE:

9.10. DUMP DECLARATION

9.10.1

9.10.2.

9.10.3.

Syntax

<dump declaration> :: = DUMP <dump part>

<dump part> :: = <file identifier> (<dump list>)<label>:<dump condition>

<dump condition> :: = WHEN <Boolean expression> |WHEN <Boolean expression>
EVERY <arithmetic expression> |WHEN <Boolean expression>
EVERY <arithmetic expression>WHILE <Boolean expression>|
WHEN <arithmetic expression>| WHEN <arithmetic expression>
EVERY <arithmetic expression>|WHEN <arithmetic expression>
EVERY <arithmetic expression> WHILE <Boolean expression>|<empty>

<dump list> :: = <dump list element>|<dump list>,<dump list element>

<dump list element> :: = <simple variable>| <subscripted variable> | <array
identifier> | <label>

Semantics

The dump declaration allows a programmer to display variables at any pofnt during
the execution of his program.

The dump condition is evaluated when the label is encountered. If there is a dump
condition and the WHEN and WHILE portions of the condition have been satisfied,
the dump declaration becomes active, The DUMP will then be executed each time
its label is encountered provided the WHILE and EVERY portions of the dump
condition are satisfied (if present)., Once the dump declaration has become active
and the WHILE condition is not satisfied the DUMP becomes inactive and remains
so until the block in which it is declared is re-entered. If a dump condition is not
ptesent, the DUMP will be executed each time its label is encountered.

In the case of WHEN dump condition it may be represented either by an arithmetic
or Boolean expression. If the condition is an arithmetic expression, it will refer to
the number of times the label named in the dump declaration has been encountered.
If it is a Boolean expression, a true value means the condition is satisfied.

All dump list elements are placed on the file given immediately preceding the
dump list.

The dump list elements are displayed in the same format as in the monitor
declaration.

Restrictions

The colon following the label is given only when a dump condition is present,

UNIVAC 1108 9 16
UME-7636 EXTENDED ALGOL sEcTioN: PAGE:

9.10.4. Examples

1 10 20 30 40 50

L BEGEIN L b ey | L v I‘l TET NI S R
t g REALL A, B, CiD;y ILINTEGER. (I, 1 BOOLEAN BOOWLG 1oy x Lo a1
L ARRAY X Y Zi G 00 T ol e s e e b e e b
b aRABEL L k2 b3 b4 el s e b e v v v b
b FNLE QUT R, VO 00202000y 0y e b e
L4 FILLE O uT, lFLZ1 O 22 G i gl e

Lt DWUMPL R Gl Ve AL B C) e Y WHEN S BVERYL by oo b s
L1t DWUMPL R Gl X YD) b Ve Lo e b i
L 101U|M|P|.1511 LGZD) b2l WHEN (X D1)=A EVER Y (2[%), WHILE (BOOL;i i
||||||1||l:11||1114||||||||||1|||||||1||||11|||111|x|1||
PO ST U U H HO CTEU O T T U TO T U H TOH HO U0 O W N S WO A B N S SO B M A WA MBS
T S U T I T S N W T U U T S O S N IO S SN U S SO S N NS O
i BNDG L e b e e b e o b e e e

9.11. 1/0 DECLARATIONS

I/0 declarations will be covered in Section 11.2.

UME-7636

UNIVAC 1108
EXTENDED ALGOL 10

SECTION: PAGE:

10. PROCEDURE DECLARATIONS

10.1. GENERAL PROCEDURE DECLARATIONS

10. 1.1, Syntax

<general procedure declaration>: : = <procedure declaration> | <external procedure
declaration>

10.1.2. Semantics

The follow ing pages describe the syntax and semantics for both the procedure
declaration and external procedure declaration. The external procedure declaration
is a special feature of UNIVAC 1108 Extended ALGOL and enables communication
between an ALGOL program and programs compiled at a previous time written in
ALGOL or FORTRAN. :

10.2. PROCEDURE DECLARATION

10.2.1. Syntax

<procedure declaration>:: = PROCEDURE <procedure heading> <procedure body>|
<type> PROCEDURE <procedure heading><procedure body>

<procedure heading> :: = <procedure identifier> <formal parameter part> ;
<value part><specification part>

<procedure identifier> :: = <identifier>
<formal parameter part> :: = <empty> [(<formal parameter list>)
<formal parameter list> :: = <formal parameter>|<fomal parameter list>

<parameter delimiter> <formal parameter>
<formal parameter>:: = <identifier>
<value part> :: = VALUE <identifier list> ; | <empty>
<identifier list> : : = <identifier> | <identifier list>,<identifier>

<specification part> :: = <specifier> <identifier list>; |<specification part>
<specifier><identifier list>; |<empty>

<specifier> : : = LABEL |<type>| SWITCH | PROCEDURE | <type> PROCEDURE|

ARRAY | <type> ARRAY | FILE | LIST | FORMAT | SWITCH
FORMAT | SWITCH LIST|SWITCH FILE |

<procedure body> :: = <statement>

UNIVAC 1108) 10
UME-7636 EXTENDED ALGOL

SECTION: PAGE:

10.2.2. Semantics

The ALGOL procedure provides a convenient means of defining an algorithm and
giving it a name so that it may be referenced or called anywhere within the scope
of the declaration of the procedure identifier. Furthermore, different actual
parameters or arguments may be passed to the procedure at each call,

The procedure declaration consists of the procedure heading and the procedure
body. The identifier of the procedure appears in the procedure heading followed

by a list of names which designate formal parameters. The formal parameter list
may be empty, but if it is not, each formal parameter name must be further defined
by the specification part. Since the dimension of an array is not indicated by the
specification, all arrays, including those intended to be of single dimension, t must
be specified to be CORE arrays if that is the programmers intent. If the word
CORE does not precede ARRAY in the specification part, the code genetated by-
the compiler at the array reference will be that for a segmented array.

Formal parameters are really dummy variables to which an actual parameter value
of identical type and kind will be passed when the procedure is activated by a
procedure call statement., Formal parameters may be called by value or called by
name. If the formal parameter identifier appears in the value part then when the
procedure is entered the value of the cotresponding actual parameter will be
calculated and in effect will be substituted forthe formal parameter at each oc-
currence within the procedure body. If a formal parameter does not appear in the
value part, it is assumed to be called by name. This means that at every reference
to the formal parameter within the procedure body, the value of the actual parameter
will be calculated (or recalculated). It is possible, then, for the value of a formal

parameter called by name to vary from reference to reference within the procedure
body.

The attributes of actual parameters and formal parameters are checked for
equivalence at run time; if they are not identical in kind and type, an unrecoverable
run time error results, (See Appendix A Error Diagnostics).

An exception to the rule of complete agreement between actual parameters and
formal parameters is that an actual parameter that is defined to be an array row
may be passed to a formal parameter that is specified to be an ARRAY and is
referenced as a single dimension array within the procedure body.

If a type declaration appears before the word PROCEDURE in the heading, a
function procedure is declared, A function procedure is an arithmetic (or Boolean)
primary and may only be referenced in expressions. The name of the function
procedure must appear in a left part list of an assignment statement in the procedure
body. This is, of course, necessary so that a function procedure may exit with a
value. A go to statement leading out of the procedure body is invalid. A label,
however, may be passed as a parameter; thereby enabling an exit from the procedure
other than the terminating END of the procedure body.

Declarations may be made in the procedure body, defining identifiers that are local
to the procedure body.

t an arrays used as single dimension must be declared CORE.

UME-7636

UNIVAC 1108

10

EXTENDED ALGOL cccmion, et

10.2.3. Example

i 10 20 30 40 50 60 80
ST S T T T U W U T T T M U U S S T Y G N S O WY OO T T U G TS W T U T T WA S Y WA B M R W
. [gQC.EMQ MATEMULIT, ((RMAX, CMAX, RVMAX, M, V., P ERR)::I VALUE, RMAX ,CMAX

L1 (RYIMIAXLE O LNTEGE R IRMAIX , ICMAXL,IRVIMAX;; (REAL JARRAY MY Py LABEL] ERR; 1 0 g
r g COMMENT, MATEMULIT, MULT LPLIES, A MATRIIX M OQF RMAX ROWS AND CMAX 1 s {011 a1
L 1 SoLUMNS, BY A VECTOR |V, OF [RVMAX ROWS|., THE PRODUCT 'S P OF RMAX ROWS; , |, |
e o BEGIENG e s b v v cv s b g e vn v v b e by e v v v v by e
vy INTEGER R GGy v b v b v b v e v boe v e Dy iy
i v WE GMAX, NEQ, RVMAX THEN 60 TO ERR;, , v v v va b by v v g
ity vy (FOR R0, STTEP 0, UNTIIL RMAX DO | v v vy vl v v b v by v nn gy
bt oo BBGUN Loy v e b s s by vy e b s v v e by e e by e e
Lo v e tSUMe =100 vy coa g oo c v Lo v b v el v v by e ey
s sl FRORC Gl (STEPR I UNTLL CMAX DO L e b i e b v e
Lo g b c e SUMe=tSUM sk MORGICTSVOC e L e v e e v b s
P S ST S BN SRR 31 1 IR LT U P S IS S S U G U SO U0 S S S TS T (O S T S A TS S B VO UV O O A B 0 B T U
PR S VT DO S BN Y L 110 2 ST N NV S AT SN A O Y T S AT T T T T AT AT B S S A S BN SV O S B O O TS N N MG A A
PIY 1T YO T U I U N U T S TS S U S TG T U S A Y T ST A ST T S S TS T W G T T W Y
Cev e b e b e o b vaca b b b v b e g

10.3. EXTERNAL PROCEDURE DECLARATION

10.3.1.

10.3.2.

Syntax

<external procedure declaration> :: = EXTERNAL <kind> PROCEDURE <proc
list> | EXTERNAL <kind> <type> PROCEDURE <proc Ilist>

<kind> :: = FORTRAN | <empty>
<proc list> :: = <proc part> | <proc list>,<proc part>

<proc part> :: = <procedure identifier> |
<procedure identifier> (<efile part><element patt>)

<efilepart>: : = <file name>. | <empty>

<element part> :: = <element name> | <element name>/<version name> | <empty>

Semantics

External procedures are procedures whose bodies do not appear in the main program.
They are compiled separately and linked to the main program at its execution. The
external procedure declaration serves the purpose of informing the compiler of the
existence of these procedures, their types (if any), and the proper manner to con-

struct the necessary linkages.

The file and element information is given in standard UNIVAC 1108 Executive
System format, This information is used by the ALGOL compiler when it generates

maps for run-time execution.

UME-7636

UNIVAC 1108 10 4
EXTENDED ALGOL SsECTION: PAGE:

If no file or element is given, the external procedure is assumed to be in the file
TPF$ and will be automatically collected by the system. If only a <file name>
is given, the compiler adds a LIB file name statement to its map of the object
code, This file is assumed to have been VPREP’ed and it will be searched for
any external procedure names. Thus, if a user has many external procedures in a
file, he need only give that file name once. If the user wishes to name specific
elements, he should give file name . element name/version name.

Examples:
1 10 20 30 40 50 60 80
T T T O S T T T T T T T T T L T T T T T T O T A T T S O S O T N U Y SO SN SV SO N SOV U NN B SO SO W B WG
Lo 1 EEXTIERNAL PROCEDUVRE (XGF LET)0 Y, Zr oo b vy o v b oo ooy oo b o vy v v e
1 it 1CIOMME NIT, \T/HiE; |PROCIED.ULRE X, 1S AS;SIUMED; TIO) (BIE: ;1N JFIILETL . PIRIOCEIDIWRIES Y JAND « o o 14 11 4 |
Ve aZ MAY BN TIRER, IBE BN FLILE L OR TPFES G s o b o ow e b e v Lo e e
I U U WS T T A S N N S S SRR S T AR FORN T TN OO N N AV U T A SO T OO DU O S VS O T N N S T T S T YU A0 A S N S M R
LS S T T T S T T S T T T T S S T O T S O T T TS S T U O A S U T S S T SN S N SN SO O SO N S SN OO IOT WO S S S Y S A S N S WY AT
T T T T T T e T S B T T S T S S (U (S S T U T T S S B O T T [S S O U S UV A S S T S S O U OO 00 0 0 N S A B ST O
v EXTERNIAL, FORTRAN REAL PROCEDURE MATEC(FELE2 MATIE) o beac s o oo b oo
o0 1 1 GOMMENT, TTHE PRIO:CEDURE, MATE 1,S ASSUMED (TO B E, ITHE SUBROUITIMNE. NAME | 1 s 1 11001y
L1 OF EILEMENT MATIE BN RILE s oy b v v b e vy v Lo v v v e by v a s
S T O Ty TR N R S U B U B SR U S A RS AR I T T S T T S T T T S T T S S T BT S 0 T B T A A R

NOTE: The effect of external procedure declarations in cumulative, i.,e., after
6 files have been specified, an external procedure may reside in any of them.

The word ‘FORTRAN’ has special significance only in this context. Procedures of
kind <empty> are ALGOL procedures and are treated exactly like an ordinary pro-
cedure declared within the program. However, they need not be written in ALGOL
language. Procedures of kind ‘FORTRAN’ are FORTRAN subroutines or functions.

10.3.2.1. ALGOL External Procedures

An ALGOL program which consists entirely of a procedure is nonexecutable be-

cause it contains only a procedure declaration (section 10.1), When such a

program is compiled, thename of the procedure is marked as an entry point when

the program is entered into the program file. The first six characters of the procedure
name must define it. Such a procedure may be referenced from another ALGOL program
as an external procedure.

[

1 10 20 30 40 50 60 80
VAALG, 1S 1 FLLLER 1 S1YaMe, BB 20 A LG T Lo e o vt b 1 JI D T S B
Lo 1 aPROCEDURE MULTCH, S RESULTI G v v o v o b oo b o oo e b v caa by as iy
Lo aVIAILUE [(REAL IRESU LT, (LINTEGER, 1y Jiil v v v v o e s by i b i
l v 410 BEGIIN COMMENT, |THI S, ,PROCEDURE, TAKES ,THE ,PRODUCT OF TWO |I NTEGERS, , | , || Ll
ooe00 1 g b JAND ASSITIGNS, THES MALUE TO A REAL RESU LT v v 00 v b e i
L o b oo RIESURT e B oo b e e b e e sl]
Lot (BNB JPROGRAMG v v v v s v v oo b e v beaa o vraaa b i e
|

T T T T T O O T T T T S S S S O T S S S S T T S T YO (O U ST I T S S ST S WO S EA A AV B R S O

In order to call this procedure from another program the following statements
could be used:

UNIVAC 1108

10 5
EXTENDED ALGOL SECTION: PAGE:
1 10 20 30 40
I T O W U O O U T S T O M O O N U T O T U A S O S W W B
1 1 BEGEN [ENTEGER, (ALIByGy o0 v v b v b i a1
v IRIEBAL RRODIVICT) 5 v e b e b g
L a1 JEXTERNAL (PIRIQGCEDURE MULT (FiLLE2L]ALGH) ;1
Lt IA=EB =20 b v e by
a1 IMULT AL B PIRODIUCTY) o0 0 v 0 v
AU T U S U U Y W vl 0 O S Y O N OO TN T T (O S IO (O O T S A B
U U T WU YT NN s il YU U W 1 TN T S U N A T W YUY YUY WU U T O O A T O SO A WY N
SN TV U Y U T T S G T [N YO U T T T A U T T S S S G O Y N A B A
Lot ENDG b v b b g
[T N N N U S N A O O S Y N B A R o | O U T T T U SN0 I S U O A Y B [TS N
10.3.2.2, FORTRAN Subprograms
A FORTRAN subroutine or a FORTRAN function may be made available to an
ALGOL program by the external procedure declaration.
Actual parameters in calls on such proceduresmay be either expressions or arrays.
The FORTRAN subprogram is a subroutine or function depending on the absence
or presence of type in the external procedure declaration. A FORTRAN function
is used like an ALGOL functional procedure i.e., as an expression, For example,
if MULT (above) were a FORTRAN subroutine:
1 10 20 30 40 50 60 30
B T T T L O S T T S S G S (N W S S S SO T N S S S S O S S U SR RS
@ FIOR, S0y (TIPFS$,. PROTAFS RO o [v s 1 [T T O S S T T S O S S O S S A S S S G R
L sSWBIROWUT LNE, MU TG 3 RESULITD v o s v oo o b ey v waa o v v L Ll L
o aRESULIT = by b b et st v b e a1 L [S T T R S R S S S Y
Lo RETURING G) L P S T T VT AT O O O T A A WV NV SN ST S N SR WA U B SO R A S W ST HY S N B0 S N A W B R S
et BNy cl o ce e v Ca s e L S T T T S A N S S S T T SO U K S S S A SR SO IO SN T AU SRR .
| I P U T Y ORI | I [A | { L T I A] L I L,,LJJ_L N U D S W I | Ll L S l LI T S S E S BN W l,l | S U S A I
In order to call this subroutine from an ALGOL program thefollowing statements
are used:
S Y S O S F B A | l [N P B R R GO I [I R P R 1 L S O Y N Y B § l,l B S R O Y I S I A § l,l,l LU I R T A J L O O (O R | LI T I B O L_
T Y T U N WO I O N TV U W WA SO AAET O E N S S A S A AU N BT SO AR A A H S W S S A S A A A A A S A A A T A A A A A
o BEGHN G UNTEGER, A, Bl JREAL PRODUCT ;oo oo v b ottt ol v v oot v bttt
N T Y B LEIXlTL,EleN,LALI,‘J,,IFlolRITlR,,lALNL lPlRIOIcI EID\ UIRIEI IM\UILITJ ;J,LC,!O,LMIMJELNITK INI Ol IFII lLl El Allsl IGII Jv IE,LNI lBlElclAIULS IEI L I S B | 1
oot IMUETE s D NLGTPES e o e e b e e c g e e ca b s bl i |
O O B Bt Y LV E - FE v T U T O SO U S U N B S S S S SR AN S S N B R S N S RS N O A A A AT BN S| Lol Lol
Lo o MULT GA B, PRIODUCT)iy e TR SRR ST S S A S A R R i AU B S S R ARSI R RS I A A IR AN S A
LI U T I I A | ILT,,I L U T I I S I LS R T N S | l,l Lbod L ,L,IALL,LJ_L [S S I | l LN T R O O (R R B | | [IS N I A | l,J,l I T I I B B L
B R N LLE,.J L T L T T T U T SO S S S W S W SO0 U N S N A N S R S A S RSN K N Y B S R R N B N B R R A B S S
LI S R S P | lEIN‘,DI L1 T B T B R} l [N N A | | LT Y [S S T | l,LJ_LALJ, Lol L L [P (N N O G A | L | NS R S A S A A J L S U R T A Y 1
T B T T S S S T U T B O T S SO O U S T S DO B S S W S S S S R ST ST A B VT S S R S SRS (TS A S O S AR S T R S S A A S A

UME-7636

UNIVAC 1108 . 11
EXTENDED ALGOL

SECTION: PAGE:!

1. INPUT/OQUTPUT

11.1. GENERAL DESCRIPTION

The purpose of this section is to acquaint the user with the interfaces of the ALGOL
1/0 Library and the 1108 Executive System and with the processes initiated during

program execution by compiler generated linkages derived from I/0 declarations and
I/0 statements.

This section is not intended to pre-empt, supplant, or modify any part of the 1108
Executive Programmers Reference Manual. Therefore, the 1108 PRM should be
referenced for clarification of any statement regarding the Executive system.

Descriptions of Executive requirements are intended only as an aid to understanding
the methods employed in the internal processes of conversion from ALGOL 1/0
declarations and I/O statements to Executive interfaces, and consequently to assist
the programmer in the construction of efficient Algol I/0 statements and I/0 declar-
ations,

11v.. 1.1, File Assignments

The Executive requires that files to be read or written must be assigned to the
requesting run by use of Executive Control Statements. The control statements may
be submitted to the Executive by external or internal methods. Externally submitted
control statements are those accessed by the Executive from run streams either
introduced to the System as card input or as pre-stored drum files or as elements
within a file. Internally, control statements are submitted by an executing program
to the Executive via an Executive Request for the Control Statement Formatter

(ER CSFS$).

The ALGOL Compiler generates File Assignment Control Statements as the
products of file declarations. The File Assignment Statements are submitted to

the Executive either internally or externally according to the device type of the
file.

11.1.1.1, Tape Files

Tape File Assignment Statements are externally submitted as they are inserted
into the RUN stream by the ALGOL initializing element prior to execution of

the program. The Executive can, therefore, satisfy the tape unit requirements
before initiating execution of the program, If the tape files or tape units are

not available the run will be delayed until the facility requirements are satisfied.

Tape files are never considered as permanent files by the ALGOL I/0 System,
i.e., tape files are never cataloguéd. The T option (temporary) is always speci-
fied in a tape File Assignment Statement. Other possible options are H- high
density, L - low density, and E - even parity (BCD).

UME-7636

UNIVAC 1108 i
EXTENDED ALGOL secrions 11 PAGE:

11.1.1.2. Drum Files

Drum File Assignment Statements are submitted internally during execution via
ER CSF$. Drum files are always assigned to FASTRAND or Simulated
FASTRAND.

(1) SERIAL and RANDOM Files

The C option (catalogue if RUN completes normally) is always specified
for files declared with SAVE in the file lock part and/or OUT or empty
input/output part and with drum file description part present.

If SAVE is specified cataloguing is accomplished at the end of the block
in which the file was declared, or at occurrence of a close statement ot
lock statement,

If SAVE is not specified and a lock statement is not encountered, cataloguing
is inhibited when the file is closed.

For Files declared IN, the A option, implying reference to a previously
catalogued file, is always specified, ‘

Absence of the drum file description part in a file declaration always
causes assignment with the A option.

(2) UPDATE Files

UPDATE may not be used for temporary files. The A option, implying
reference to a previously catalogued file, is always specified.

UPDATE may not be used to create a file. However, a file declared SERIAL
may be written and catalogued and released with the lock statement and
then in another block, nested or disjoint, declared as an UPDATE file and
processed.

11.1.1.3, Punch .and Print Files

Punch and print File Assignment Statements are internally submitted to the
Executive during program execution via ER CSF$. FASTRAND or Simulated
FASTRAND is always specified as the associated device.

Punching and printing are processed in the Alternate File Mode causing output
to the assigned file rather than a punch or printer, At RUN completion or pro-
grammed file release punching and printing is initiated under Symbiont controls,
The file is then no longer available to the executing program.

Printer back-up tape files may be declared, however, actual printing of the tape
~ file can only be accomplished by an Executive feature totally unrelated to the
ALGOL I/0 system, and therefore, becomes completely a user responsibility.

UME-7636 11

EXTENDED ALGOL

SECTION: PAGE:

UNIVAC 1108 . I

11.1.1.4. Card Files

Card files are introduced to the ALGOL system only through the use of the DATA
processor. The DATA processor is invoked by the processor call statement VDATA.
Card images following the YWDATA Statement and preceding the related VEND
statement are written to the file specified in the VDATA statement and previously
externally assigned by the user.

The file name specified in both the YASG and YDATA statements must be identical
to the file name specified in the corresponding ALGOL file declaration.

11.1.1.4.1. Card Files on Fastrand

Catrd files may be placed on Fastrand in the following simple manner:

1 10 20 30] 40)
’JA_LS_G.L._LIL_I_LQLA_LB.Q.LS_l;.LE_L#_L.L‘LvJ_‘lm._L_,_.I___l Coa b o e dCY D
VDATA L 3 ICARDIS oo | e o G e LG22
dor = b e b e e b e e
AN N TN WU U TP U T N WO NN OO U VA N U N N WU N A O T O WO O VOO0 SO OO Y OO O O WO U B B
U NS W TR U TS e SN Y N TN OO ST OO U AU TN ST A U 0 U W T N O W OO SON O A N YT A O S O A0 WO O O
11 |C|A1R|D| IILMALG[EISI TR T SN A T N VR T T S T DU TN NN N EOY WS SO0 W0 0 M DO SO L l(izl)l | I |
AT TN N U G U S N NS N U U TN A U U Y TN U Y WY U T U N N TN TN TN (N SO IO AN A N OO0 N WO
RO A B A D S N B N AR B AT A S A AN B A R AR R A S A S S A
PR SN O UO YONN TO U J H SNT U T UUN S W SOO N T T U N S Y U T YOS WY S O A N S GO B A
VEND (ST N AU A O T NN ST N WA NN AN TSN U O SN NN AN N N O 0 A N MO U VOO0 N U Y A S

(1) The YASG statement causes assignment of a FASTRAND file of the name
CARDS. The ““T”’ option specifies the file is to be temporary, i.e., the file
will be released at RUN completion or at the occurrence of the Executive
Control Statement, YFREE CARDS. The ‘“F’’ specifies that FASTRAND is
the device to be assigned.

(2) The YDATA and YEND statements ate as stated earlier. The ‘‘I’’ option is
required to specify ‘‘Initial’’ entry into the system of the following images.
The “‘L.”’ option causing the images following to be listed as they are
written to the file specified.

11.1.1.4.2. Card Files on Tape

A card file to be used as input frequently to an ALGOL program may be placed
on tape by use of the DATA statement in the following simple manner:

UME-7636 UNIVAC 1108 . 11
) EXTENDED ALGOL SECTION: PAGE:
1 10 20 30 , 40
VYVASG, T CARDS , T o v v vt a e a e e v b e
YOATA, L, ICARDS, | \ | v v vt oo e b b
RSO U UNN TN T el O O YW A DU TN WO T U YT Y N O YW N A T T O U YO OO SO T W
PN R O R U et SIS N TN SN U0 U U0 U WY S DU TN SO U O U U U S O T N U Y N AN B T WO A O
I T N OO T N el N | l | N Y N U W Y O B | l | T S I | éi [" F IS YO NN U NN RO SO N | I S NN S VO N A
L CARD, VMAGES, | oo v loa v vy v b v oe b e
TRV TN U U N L S U R S IOUY YD O Y WO YUYV N T T TN VO N DO SO 0 U U000 D O S A O O T SR IO
S SR R OO O O Dol NN | I Y N (S N S Y Y l.,‘l | WY A VS W T SN S T J_l SO TN VS S N B | ,,L,i SN0 N U W TSNS NS SO
PSR S N NN N Rl SN NN U WA YOOS N TN O M YU U U S NN U O G N U N M O O WO U N WOt U SO WO A S A OO
YVEND v by v e b e e v v v v
The external control statement required in an ALGOL program RUN stream to
assign the card file, now on tape, would be as follows:
1 10 20 30 40
YASG T o CARDS T v o b v v oo o b a1

where the device specification ‘“T?’ following the file name indicates
tape input, '

Provided that the Assignment Statement precedes program execution in
the RUN stream, the ALGOL I/0 system will accept the specified DATA
tape file as card input and process it as such. The input of card images
from tape is restricted to tape files created by the YDATA statement

and tape files outputted by the ALGOL 1/0 system as blocked items.
The creation of the DATA tape file is unrelated to the ALGOL program,
The process is an Executive feature,

11.1.1.5. Compiler Generated Assignment Table

At the completion of an ALGOL compilation a table of File Assignment State-
ments is listed. The table reflects, with exceptions, the actual control state-
ments to be submitted to the Executive by the ALGOL initializing element and/
or by the ALGOL system at execution.

The exceptions noted above are as follows:

For files declared as DRUM specifying a drum file description part the size
of areas and number of areas may be specified as arithmetic expressions
and therefore are unknown values at time of compilation., The FASTRAND
Assignment Statement requires specification of the FASTRAND area size

to be reserved for the file. The specification field for the reserve is filled
with asterisks during compilation. The asterisks are replaced with the
actual value during execution when the value is known.

UNIVAC 1108

UME.-7636 ~ EXTENDED ALGOL J seemion: JPAGE= i

(2) Ambiguity in device association can result from file declarations intended
to specify labelled input tapes or card files. Example:

1 10 20 30 40
T T TS TN N U U TN U0 TN SO0 SR S VA A O YUY N N SO O O SN N SO U YNNG OO (DU T O S MY O
g IERLLE UN O CARDS, (G V4 0 a1

The compiler cannot determine the intended device and therefore assumes
tape and produces a tape File Assignment. The statement is listed in the
table of assignments which is printed following compilation under the
heading CARDS or TAPE.

At the time of program execution the ALGOL initializing element will resolve
the conflict, If a DATA file of the name in question has been previously
assigned to the RUN, the generated tape Assignment Statement will not be
submitted to the Executive, If the file name is unknown by the Executive,
i.e., in the absence of an external assignment, the tape Assignment Statement
will be utilized.

Inefficiency in the file assignment due to anibiguity in device association can
be easily avoided by the use of the output media part value ‘3’ in file
declarations specifying card files,

Example:
1 10 20 30 40
T O U S T T T NS T O N U S W A SO Y TN Y YO T O Y U Y N T S SN YW Y NS Y WY SO N O
T T T TN TN U N T U U O M A U YO YO T N OO YT T N NS WY AN T N N NS RN Y A S O B B
R I CARDS 3+ Gl U4 v v by

The compiler will not assume a tape file if ‘3"’ is used.

(3) All card, printer, and punch File Assignment Statements are listed under the
heading PERIPHERALS. The card File Assignment Statements are never
submitted to the Executive, They are listed to acknowledge the file and its
associated device,

(4) The file names of files declared as designated devices are listed under that
heading, Device association will be attempted by the ALGOL initializing
element as described in the following section on user external assignments,

UME-7636

UNIVAC 1108 - I .

'EXTENDED ALGOL

SECTION: PAGE:

11.1.1.6, User External Assignments

11.1.1.6.1. External Assignment Statements

The ALGOL programmer may override any or all compiler generated File
Assignment Statements, The presence of an external File Assignment State-
ment in the run stream will inhibit the submission of the ALGOL compiler
generated statement,

The ALGOL initializing element is given control prior to execution of the
ALGOL object program, The initializing element queries the Executive as to
the status of each file specified in a file declaration. If the file is externally
assigned the initializing element bypasses assignment action for the file in
question, However, compatibility checks are made to insure, for example, that

a file declared as output has not been externally assigned to a device restricted
to input, i.e., a card file. The following table reflects allowable changes in

the device declared in the file declaration via external assignments,

Device Declared May be Externally

In ALGOL Program As Assigned as

CARDS CARDS, TAPE, FASTRAND
TAPE IN TAPE, FASTRAND, CARDS
TAPE OUT TAPE, FASTRAND

DRUM IN SERIAL FASTRAND, TAPE, CARDS
DRUM OUT SERIAL FASTRAND, TAPE
PRINTER ‘ FASTRAND, TAPE

PUNCH FASTRAND, TAPE
DESIGNATED DEVICE any except CARDS

Note: Files declared RANDOM or UPDATE may not be changed by external
assignment,

TABLE 11~1. Internal/External Device Assignment

Buffer and item sizes must be compatable for changed devices. Card files, as
described previously, are expected to be inputted in the System Data Format as
created by the DATA statement, Therefore, an External File Assignment chang-
ing a card file to a tape or FASTRAND file must specify a file created by
either a DATA statement or a file outputted by the ALGOL I/0 system with .
buffer specifications of 224 word block size, 14 or less word item size. Tape
or drum serial files changed to card files must have been declared with buffer
specifications of blocked items with a block size of 224 words,

A pﬁnch file changed to a tape file by an External File Assignment will
produce as output a tape file in the format acceptable to the ALGOL 1/0
system as card input.

UNIVAC 1108

UME-7636 EXTENDED ALGOL secrion: 1 | age. 7

11.1.1.6.2. Designated Devices

If a file declared as a designated device is not externally assigned by the
user the initializing element will query the console operator with the me ssage,
‘“file name. DEVICE’’.

Acceptable responses are any of the file declaration output media types except
3" (CARDS). Drum files must be indicated by S, R, or U responses to indicate
accessing technique. Care should be taken by the programmer to avoid the con-
sole communication method of device association. It is time consuming and
requires operator knowledge of the response or on the spot attendance of the
programmer, It is offered by the ALGOL I/0 system as a last resort effort prior
to program termination action,

11.1.2. Blocking Specifications

11.1.2.1. Unblocked Records

The buffer size specified for unblocked records is accepted as the actual data
word size of the block to be read or written, Three control words are added to
the buffer size when creating a block, '

Example:
The blocking specifications of
1,253

will create a block of two hundred fifty-six words. Three control words and two
hundred fifty-three data words are written per block,

The control words are invisible to the user, i.e., they are never passed to the
calling program when read.

FORTRAN V unformatted data blocks on tape are compatable with the above
specification. FASTRAND files created and/or read by FORTRAN V yield two
hundred forty-nine data words. To write or read FORTRAN V unformatted data
blocks on FASTRAND the blocking specification of (1,249) is compatable.

11.1.2.2. Blocked Records

The buffer size specified for blocked records is accepted as the actual block
size to be written. A single control word is affixed to each item of twenty-two

or less words., An additional control word is inserted for each additional twenty-
two words of an item or portion thereof,

[tems or portions of items are never spanned across blocks, A bypass record is
written to fill any unused words at the end of a block.

Example:
The blocking specification of

1,224,22

UME-7636 11
SECTION: PAGE:

UNIVAC 1108 ~
EXTENDED ALGOL

will create a block of two hundred twenty-four words. Nine items of twenty-two
words and one control word, and one bypass record of one control word and
sixteen void words will be written per block. The bypass record will never be
passed to the calling program when the records are read.

FORTRAN V|formatted data blocks on tape or FASTRAND are compatable with
the blocked specification example presented previously. The bypass records will
be ignored,

To eliminate bypass records and unused space in blocked records the user should
compute buffer sizes in terms of item sizes and control words.

In the determination of the most efficient block size for blocked variable length
records the maximum record size sould be considered as the item size to establish
an acceptable minimum number of records per block.

As indicated pteviously, a blocked record file is produced in modified Systems
Data Format.

SDFF block size is two hundred twenty-four words while ALGOL I/0 permits
block size to be specified by the programmer. The ALGOL 1/0 bypass control
word would be considered as a data control word if read by the Executive System.
An SDFF, acceptable to the Executive system, can be output on tape or
FASTRAND through the ALGOL I/0 system as an unlabelled file if the standard
SDFF block size is specified and care is taken to assure that each entire block
is filled with items thereby eliminating bypass records. An SDFF can be read

in the forward direction only by the ALGOL I/O system ptovided the standard
buffer size and maximum item length are properly specified. SDFF label, bypass,
and end of file control words are acknowledgedby the ALGOL 1/0 system,

11.1.2.3. ALGOL I/0 Formats

11.1.2.3.1.Unblocked Records

H1 S4 T3

N LB BSN

CHECKSUM .

N LB BSN

UNIVAC 1108

UME-7636 -~ EXTENDED ALGOL ’ !

SECTION:

PAGE:

N = number of significant words (buffer size specified)
LB = last block flag

- not last block

o
i

= last block

—
i

BSN = always 0

11.1.2.3.2. Blocked Records

1 CONTROL WORD

NW\%

N 1

CONTROL WORD

/‘w"\—_*\H

N = 22
Control Word

S1 S2 S3 S4 T3

it |IL | PL| ti | SEQ NO.

S1 =it = 00 = data or bypass image
= 077 = EOF image
S2 = IL = image length n

S3 = PL= length of previous image
S4 =ti = 010 = data word image
= 040 = bypass image
= 030 = EOF image
T3 =SEQ. NO. = image sequence number within logical record

UNIVAC 1108
11

UME-7636 '~ EXTENDED ALGOL secTion; PAGE:

11.1.3. Internal Buffering

Punch and print files are not buffered by ALGOL 1/0. The PNCHAS$ and PRNTAS
interfaces with the Executive provide the required buffering action.

Card files being of Systems Data Format are always tead with a look ahead factor
of one buffer, i.e., two blocks of two hundred twenty-four words are initially read.
When the second block is accessed the first is refilled (if end of file has not been
encountered), The two block look-ahead provides immediate sequential access to
a minimum of twenty-eight card images. The Systems Data Format of DATA files
truncates unused (blank) words at the end of the image. Therefore, depending on
the content of each card the number of images per each two hundred twenty-four
word block may vary from fourteen to one hundred twelve. The truncated blank
words of a card image are restored upon access of the image. Card file item size
is always fourteen words.

Tape and drum SERIAL or drum UPDATE files are read or written with a look ahead
factor of the number of buffers specified plus one. Drum RANDOM files are never
buffered.

Direction changes in reading unblocked serial files cause look ahead buffers to be
drained and refilled with blocks read in the opposite direction.

The time wasted in this process should be carefully considered when programming
frequent direction reversals, Direction changes in reading blocked records will not
cause buffers to be drained and refilled unless continued reads require access of
the next or previous buffer, Frequent direction changes if confined to records with-
in the current buffer are not penalized by the system overthead required for draining
and refilling buffers.

11.1.4. File Labelling
11.1.4.1, Tape File Labels

11.1.4.1.,1. Output

An output tape file is initially read to test for the presence of a label. If a
label exists, expiration of the purge date is checked. If no label exists or the
purge date has expired, the tape is positioned at load point for a subsequent
write operation, If purge date has not expired, the tape is rewound to load
point and a console message is outputted to inform the operator of this status.
A response of G to the console message will permit the file to be overwritten
despite the purge date. A response of A is interpreted as an indication that a
new tape had been mounted and the label check will be reinitiated. -

A standard one hundred twenty word label is written as the first block of a
labelled output tape.

" UME-7636

UNIVAC 1108 A
EXTENDED ALGOL

11

SECTION:

PAGE:

11

11.1.4.1.2, Input

11.1.4.2,

The standard one hundred twenty word label is expected as the first block of
a labelled input tape. The file name within the label is compared to the file
identifier specified in the file declaration. If the file name is correct, the
program continues. If the file name is incorrect or the label is not present, a
console message is outputted and the tape is repositioned to load point, An
operator response of G will permit the file to be read despite the file name
discrepancy. A response of A indicates that a new tape has been mounted
and the label check should be reinitiated. '

Drum File Labels

All files declared as DRUM are written with an initial label block (one sector).
Within blocked record files the first word of thelabel is a SDFF label control
word which when read by the Executive System or by FORTRAN V causes the
entire sector to be bypassed. In unblocked files the label block is a void block,
i.e., zero significant words.The ALGOL 1/0 system will check purge date within
the standard label prior to performing a write operation, If the purge date has
not expired a console message permits the response, G, to continue processing.
the only alternate response acceptable to the ALGOL I/0O system is an A, in-
structing program termination.

Buffer and/or item sizes will be extracted from the standard labels and (1) will
be compared for compatibility with the specifications of the file declaration or

(2) will be utilized in file processing in the absence of file declaration specifi-
cation, ’

11,2 DECLARATIONS

11.2.1. General

Each particular I/O declaration will be discussed separately in succeeding

sections,
11.2.1.1. Syntax
<I/0 declaration> :: = <file declaration> | <switch file declaration> |
<format declaration> | <switch format declaration> |
<list declaration> | <switch list declaration> | <namelist
declaration> | <line declaration>
11.2,1.2, Semantics

1/0 declarations define the files, formats and lists to be used in [/0O statements,

- UNIVAC 1108 ‘ 11
UME-7636 EXTENDED ALGOL secTioN: PAGE:

11.2.2. File Declaration

11.2.2.1. Syntax

<file declaration>:: = <reel save part> <file lock part> <mode part> <density
part> FILE <in-out part> <file identifier> <label equation part>
<station part> (<buffer part> <save factor>)

<reel save part> :: = <empty>| SAVE

<file lock part>;: = <empty> | SAVE

<mode part> :: = <empty>| ALPHA
<density part> :: = <empty> |[HIGH | LOW
<in-out part> :: = <empty> | IN | OUT
<file identifier>:: = <identifier>

<label equation part> :: = <output media part> <drum file description part>
<label part>

<output media part> :: = 0|1|2|3[4|5|6]7|8|9] DRUM <drum access technique> |
<empty> '

<drum access technique> :: = SERIAL | RANDOM | UPDATE | <empty>

<drum file description part> :: = [<number of areas> : <size of areas>] |
<empty>

<number of areas> :: = <arithmetic expression>

<size of ateas> :: = <arithmetic expression>

<la5el part> :: = <file identification part> | <multi-file identification part>’

<file identification part> | <file identification prefix>
<file identification part> | <empty>

<file identification part> ;: = ‘“12 or less string characters’’
<multi-file identification part> :: = ““12 or less string characters’’
<file identification prefix> :: = ‘12 or less string characters’’
<station part> :: = <empty> | <station identification> | <station phart>

<station identification>
<buffer part> :: = <number of buffers>, <buffer length> , <maximum record
length> | <number of buffers> , <buffer length>| <number of

buffers>, <record specifications> | <number of buffers>

<number of buffers> :: = <arithmetic expression>

UNIVAC 1108

UME-7636 , ' 11 13
EXTENDED ALGOL SECTION: PAGE:
<buffer length> :: = <arithmetic expression>
<maximum record length> :: = <arithmetic expression>
<record specifications> : : = <unblocked specification> | <blocking

11.2.1.2.

specifications> | <empty>

<unblocked specification> :: = <fixed physical record size>

<blocking specification> : : = <fixed logical record size>,<fixed physical

record size> | <fixed physical record size>,<fixed logical
recotd size>

<fixed physical record size> :: = <arithmetic expression>
<fixed logical record size> :: = <arithmetic expression>
<save factor> :.: = SAVE <arithmetic expression> | <empty>
Semantics

(1) Reel Save Part

(2)

©))

4

The real save part is applicable to magnetic tape files only. When SAVE
is used the operator will be instructed to remove the reel when the block
in which the file was declared is exited or when a close statement is
encountered, '

File Lock Part
The file lock part is applicable to DRUM files only and relevant only when
a file is initially created, When SAVE is used the file is catalogued (made

permanent) when the block in which the file is declared is exited or when a
close statement or lock statement specifying the file is encountered.

Mode Part

The mode part is applicable only to magnetic tape files, When ALPHA is
used BCD format is assumed.

Density Part
The density part is applicable to magnetic tape files only. HIGH specifies

800ppi., LOW, 200ppi. In the absense of density part, high density, 800
ppi., is assumed,

UME-7636

UNIVAC 1108 :
EXTENDED ALGOL

11

SECTION:) PAGE:

14

)

6

(7

In/Out Part

IN or OUT must be specified for files having only one mode, i.e. card files
may only be read, therefore IN is required; for printer files OUT is required.
IN or OUT may be specified for drum or tape files to protect against er-
roneous efforts to write onto input or read from output. The absense of IN

. ot OUT pemmits reading and/or writing of drum or tape files. The in-out part

must be empty for UPDATE drum files and tapes to be written, rewound and
read,

File Identifier

For card files the identifier must be exactly that specified externally in the
ASG and DATA control statements,

The file identifier must be specified in all I/0 statements referencing the
declared file. At the completion of any read statement the file identifier
may be referenced as an integer variable to yield number of words read.

Output Media Part
The types of the output media part identify the associated device,

TYPE DEVICE

Card Punch

Printer.

Labelled Tape

Card Input File

Printer

Labelled Designated Device
Printer

Unlabelled Designated Device
Paper Tape Punch

Unlabelled Tape

DRUM FASTRAND or Simulated FASTRAND
empty Labelled Tape

O 0o~ T bW =O

Types 1, 4, 6 are identical.

The value ‘“3’’ isobviously an exception in that it alone specifies an input
file. It is not mandatory, however, more efficient file assignment will result
from the use of ‘“3’’ in file declarations of card input files.

A ““Designated Device’’ is accepted as a file without device association at
compile time. At execution of the resulting object program the file must be
either externally assigned or the type keyed-in via console in reply to the
query ‘‘file identifier. DEVICE"’., Acceptable key-ins are any of the numeric
types or R (random), S (serial), U (update) for drum files. Card files may

not be keyed-in,

UNIVAC 1108 1

UME-7636 EXTENDED ALGOL secmon: 11 | ence:

(8) Drum Access Technique

The accessing technique must be specified for files declared as DRUM .
SERIAL indicates sequential access of records/blocks. Buffering of higher
numbered recotds/blocks is performed on files read and buffering of records/
blocks is performed for files written,

Files declared RANDOM will not be buffered for reads or writes, however a
write of blocked records will be preceded by a read to protect adjacent
records. A record address is always required for RANDOM reads or writes,

UPDATE processing is possible only with permanent files previously
created by the SERIAL or RANDOM process. Reads and writes are buffered,
Writing of blocked records will be preceded by a read if the block is not
currently in the core buffer.

(9) Drum File Description Part

The drum file description part is relevant only when the file is initially
created, It should not be used with files declared IN. Absence of the
drum file description part implies reference to a catalogued file for files
declared QUT.

For SERIAL and RANDOM files if the drum file description part is present
and the file is declared OUT or the in-out part is empty a temporary file is
created and made permanent only if SAVE is specified in the file lock part
and/or a lock statement is encountered.

Drum file description part is never specified for files declared UPDATE.

The creation of a RANDOM file will fill the entire area specified preceding
the current record with void (zero) records if not previously written. Sub-
sequent write operations will overlay the void records. Subsequent read
operations will return either the specified record if present or zeros.

The creation of a SERIAL file will assign the specified size as the reserve
size. The unused area following a close of the file will be released to the
Executive. However, if catalogued, the file may be extended to the system
specified maximum, If temporary a close results in release of all areas
assigned.

The size of areas times the number of areas yields the total number of words
to be assigned on drum. Internal computation converts the number of words in
terms of sectors (28 words), tracks (64 sectors), and positions (64 tracks).
Track and position are acceptable granules to the Executive system. Assign-
ment of drum (FASTRAND or Simulated FASTRAND) is made in terms of
tracks or positions as reserve sizes of the file. Unused areas are available
to the Executive for other assignment. However, extension of the file up to
the system maximum is available to the user upon request. Blocks written to
drum always begin at the first word of a sector and may end at any word with-
in a sector.

: UNIVAC 1108 _
UME-7636 EXTENDED ALGOL seorions |+ | eacer

(10) The file identification part will be utilized as file name in all internal
library Executive references, In its absence, file identifier will be used
as the file name, The Executive references are file assignments, catalogu-
ing, releasing, reading, writing, etc,

(117) File Identification Prefix

The file identification prefix is applicable to files declared DRUM only.
The file identification prefix will be utilized as the file qualifier. In its
absence the Project ID specified in the RUN control image will be used by
the Executive as the file qualifier, ’
The file qualifier is required in all references to catalogued files, If file
identification prefix is absent in a declaration referencing a catalogued file
the qualifier is automatically the Project ID.

(12) Multi-File Identification Part

The multi-file identification part is applicable to magnetic tape files only.
When present it is used as the file identification part as described above,
The file identification part is then used as the tape label name and written
in or searched for in the labels of multi-file tape reels,

(13) Station Part

Station part will be utilized to cause print files to be output to the remote
station initiating the RUN. Station numbers have yet to be determined.

(14) Buffer Part

Buffer sizes for card input or .output files are 14 words. Printer files re-
quire 22 word buffers. Buffer specifications for card or printer files if
other than the above will be ignored and the standard sizes assumed.

If a file is to be blocked, the logical and physical record sizes specified
will be compared. The lesser value will always be assumed to be the
logical record size without regard to the sequence in which they occur.

The block size written todrum or tape for unblocked items is three words

greater than the specified buffer size. Block size of blocked items is

equal to the specified buffer size, however, the number of items per block

is equal to block size divided by item size plus the number of control words per item.
For item size of twenty two words or less, the number of control words per item is one;
for item size greater than twenty-two words an additional control word is required for
each additional twenty~two words or portion thereof. Blocking specifications should be
computed to compensate for control word requirements. Items or portions of items

less than twenty-words are never spanned across blocks. Bypass records are used

to fill any unused words at the end of a block.

. UNIVAC 1108
UME-7636 EXTENDED ALGOL SECTION: t PAGE:

(15) Save Factor

The save factor is applicable to labelled tape and drum files only. The
value specified will be added to the current date and inserted in the file
label. The file cannot be written again until the purge date in the label,
if any, has expired.

11.2.2.3. Restrictions

(1) File names must be unique throughout an ALGOL program. Files may not
be declared twice in the same block.

(2) Files declared UPDATE always reference catalogued files previously
created and declared as SERIAL or RANDOM.

(3) Temporary files are released at the end of the block in which they are declared or
if CLOSE is encountered. Subsequent references to a released file will result
in transfer of control to EOF or EOR labels when specified or the next
statement if EOF or EOR are absent.

A file declaration in a nested or disjoint block specifying the same name as
a previously closed temporary file will cause assignment of a new temporary

file of that name, however the content of the released file is unavailable,

(4) A second file declaration of a previously declared file, if in a nested block,
will cause an automatic close of the previously declared file.

(5) Files may not be declared within a procedure.

11.2.2.4. Examples

1 10 20 30 40 50 60
T T U0 U Y T Y T Y O NS00 W O Y P YV O T Y U G A A O O O O B O Y O
Lo P L E PN CARDS (31T, 1) e ol e e b e v e e ca e o i gl
AN T SO N YU U N N S N U S U S S YT O G O WY YT O S NS O S WO Y Y T N O A Y NN B0 Y B
Lo aF L B JOUT PRINTEIR, (1 G220 Ii v e b e Lo e b e a L
NS I Y I O | \ § IS IR A B V| J_LJ BN Y I S S B i I N T T T A Y S I ' N N N O N T N 'y l Y IO T N T IO | | U S I TN U TN U S | |
o BB N TAPRPE (L2500 0 0w]y ver v el e b e e vy
OO T ST O S S T YO TV T A N O S ST Y NV AU O 0 G S R NAVNS AT SO S A M A E I S VR N S
e (FLLE JOUT TAPE (11,530,500 o oo by v o b o Loy aeaaa 0]
I TORT N TV YT T S O T T T T ST OO ST T T ST S O WO O YN W D O O T O B Y
Loy RV LE |TARE 9 (1,,{440,,000) 0 v Lo v e b e e by v b v g |
S G T T S S S S N S T W G W 5 T Y 0 B R T T T O OO A T Y Y N AN W B

i FLWLE JOUT, TAPE L MULT LFELLE"' LABELMNAME', ((1,,252,120 SAVE 1)) 0000

S S O VT T T SO VO T N T U T S O S S O O S YW [W U BT W ST U T T T TN W (S T T N N OO S G |
v oo ALPHA O FLLE (LN TAPE (1, 50000 0 v o v b e e e b v o be v
Lo e e e by ey v b v e b v e b e g b v g |
i SAVE FLLE OUT TAPE 9 (141000 vy aa b v v b s e by e e |

T T T T U O N TG U S G S U O T T TN N S Y O T A O Y Y O IO W VO
Lt B LE JONE, (DIRIUM (SIERIAIL ([11,00:15:0,0, 11,8000 ;0 v v v by v v v g v e b

OO T T T T T T VAT O Y ST TG S S T S G T Y N SO S VOO0 O S S TN S S U W Y U S SO I AR |
L. FULE |OUT, FIILET [DRUM SERI AL, [A+B:S$ 1 ZE | (" DRUM" FILLETL' (1,161000) ;4 1 41

P R T U VAU HO M T TN U T S T W ST T T S U N O VS NS S Y U N Y Y W RO

(.1 SAVE, JFILLE QUT, TIWO, RANDOM |[11,0:,6000,] |'RANDOM" ", 'IF1LLE2" (,1,]420, 100);, |

UNIVAC 1108

UME-7636 EXTENDED ALGOL secrion: T cncer 1
'1-17.2.3. Switch File Declaration
11.2.3.1. Syntax
<switch file declaration> :: = SWITCH FILE <switch file identifier> : =
<switch file list>
<switch file identifier> :: = <identifier>
<switch file list> :: = <file identifier> | <switch file list>,<file identifier>
<file identifier> :: = <identifier>

11-.2.3.2. Semantics

The switch file declaration associates a switch file identifier with a number of
files as designated by the file identifiers in the switch file list.

Associated with each of the file identifiers in the switch file list is an integer
reference. The references are 0,1,2, ... n~1, obtained by counting the identifiers
from left to right. This integer indicates the position of the file identifier in the
list, The file identifiers are referenced, according to position, by switch file
designators.

If the switch file designator yields a value which is outside the range of the
switch file list, the file so referencedis undefined. Each file identifier used in
a switch file list must have appeared previously in a file declaration, and each
file is governed according to the file declaration in which it was declared.

11,2.3.3. Examples

1 10 20 30 40 50
AR TR NN T YT O TN W T U N N S WY O A T T T U WO U U Y OO Y Y Y N OO Y N N SV AN S I N
g L SN N NN R YO N U N U SN U TG U UO0 T N TN N S S T S HAN SN WY S WY W R A S B B T

L SWLTCH (FLLE SIWHTAPE : = TAIPE, TAPEZ2,TAPES3;, ,I.,J.,,_L*L‘

PR OO O U Y S N TN AU N YO Y U U T T W TN T T N A OO U TN T NSNS N U AN O A Y Y SN T B W

RS S TR SO UOAR T S NN N NS U T TN N N N U S YO VO T T Y N Y O A WO Y N A A WO IO W (OO A S WY W W M A |

1) sw,,\ e _,FI,LE , SWHUNI T :=CARDOUT TAPEOUT, PRINT;]

UNIVAC 1108
UME-7636 : .
EXTENDED ALGOL ‘ 1
SECTION: PAGE:
11.2.4. Format Declaration
11.2.4.1, Syntax
<format declaration> : : = FORMAT <input or output> <format edit part>
<input or output> :: = IN| OUT | <empty>
<format edit part> :: = <format identifier>(<editing specifications>)]
<format edit part>,<format identifier>(<editing specifications>)
<format identifier> :: = <identifier>
<editing specifications>: : = <editing segment> | <editing specifications>/|
/<editing specifications>|<editing specifications>/
<editing segment>
<editing segment> :: = <editing phrase>|<repeat part>(<editing specifications>)|
<editing segment>,<editing phrase>|<editing segment>,<repeat
part>(<editing specifications>)
! <editing phrase> :: = <repeat part> <editing phrase type> <field part> | <string>
<repeat part> :: = <empty> | <unsigned integer>
<editing phrase type> :: = A|D|E|F|I|L|O|X|P|R|S
<field part> :: = <empty> | <field width>.<decimal places>
<field width> :: = <unsigned integer>
<decimal places> :: = <unsigned integer>

11.2.4.2. Semantics

The format declaration associates a set of editing specifications with a format
identifier. The following discussion of format declarations is divided into two
parts; those used for input and those used for output,

11.2.4.2.1. Input Editing Specifications

Input data can be introducedto the system by various media such as punched
cards, magnetic tapes, or paper tapes, Once the information is in the system,
however, it may be considered a string of 6-bit characters regardless of the
input equipment used.

For editing purposes this string can be processed as a set of six-bit char-
acters, The input editing specifications, through the editing phrases, desig-
nate where and in what form the initial values of variables are to be found in
this string,

UME-7636

UNIVAC 1108 _
EXTENDED ALGOL

11 20
SECTION: PAGE:

1112.4.2.1.1. Input Editing Phrases

The editing phrases designate six-bit character processing. They describe
a portion of the input data in which the initial value of one variable is to be
found.

A phrase such as rAw has the same effect as Aw, Aw..., Aw(r times), where
r is the repeat part and w the field width. The field width may specify from
one to 63 characters. If the repeat part of an editing phrase is empty, it is
given a value of 1.

Characteristics of the input editing phrase types are summarized in the
following table:

Editing Editing Type of Variable Example of Field
Phrase Phrase . cei os
Being Initialized Contents
Type Example '
A A6 _ Any TOTALS
D D None Any Operand
E E9.2 Real or Complex +1.18 E-03
F F7.1‘ Real or Complex -3892.5
| 16 Integer -12345
L L4 Boolean TRUE
o 0 Any 777771244121
R R11.2 Integer, Real or +2143567E+4
Complex
S $+2 Real or Complex None
P P15.7 Double +2,1234567D-212
X X6 None Any 6 Characters

Table 11-2. Characteristics of Types of Input Edit Phrases

UME-7636

UNIVAC 1108

EXTENDED ALGOL I

11

SECTION:

PAGE:

21

The definition of each input editing phrase type is given below:

a.

A — initializes a variable to the characters found in the field described
by the field width. If the field width is greater than N (where N is
either six for a single precision variable or twelve for a double pre-
cision or a complex variable), the left most N characters are taken as
the value to be assigned to the variable. If the field width is less than
N, spaces are filled to the right of the characters in the field to make

a total of six characters. The type of the variable can be any, however,
the data transferred from the data string is treated as alpha information
and the variable is initialized with alpha characters.

D — causes six characters in the input data string to be ignored. The
field part should be empty, The use of editing phrase type D is equiva-
lent to the use of editing phrase X6 (See type X).

E — initializes a variable to the number found in the field described by
the field width. The field width must be at least 7 greater than the
number of decimal places specified since the input data is required to
be of either of the following forms:

tn,dd———dezree
tn.dd——-_—-dEtee

The sign of the number must appear first. A digit and a decimal point
must follow the sign. One or more digits may follow the decimal point.
The number of digits following the decimal point must equal the number
of decimal places indicated by the editing phrase. Following the digits
must be the symbol E or @, the sign of the exponent, and a two digit
exponent, The sign of the number may be indicated by +, —, or a single
space which is interpreted as positive.

F — initializes a variable to the number found in the field described by
the field width. The input data must be found in one of the following
forms:

tnn———n.dd—d

t,dd——~—d
The sign of the number.is optional. If there is a sign, it must appear
first; if there is no sign, the number is assumed to be positive, A

decimal point must be present; zero or more digits may precede it, There
must be as many digits after the decimal point as specified by the

decimal places in the editing phrase. The number must be right-justified

in the designated field.

UME-7636

UNIVAC 1108

EXTENDED ALGOL ‘

11

SECTION:

PAGE:

22

i

| — initializes a variable to the integer found in the field described by
the field width. The sign of the number is optional; the applicable rules
are the same as in the case of editing phrase F. The number itself may
consist of one or more digits which must be right-justified in the desig-
nated field.

L — initializes a variable to the logical value found in the field described
in the field width. There ate two possible values, TRUE and FALSE.
The programmer may truncate these input words as follows:

T or F must appear in the field but need not be the leftmost character,

The T or F can be preceded or followed by any number of spaces to fill
the field, If T or F is not the leftmost character of the field, it must be
preceded only by spaces. Whenever the T or F appears it can be followed
by any characters in the field and need not be RUE or ALSE, respectively.

O — initializes a variable to the contents of N octal digits taken from the
input string, where N is equal to 12 for a single precision variable or
equal to 24 for a double precision variable or a complex variable., The
field part is ignored and should be left empty. However, the field width
is always set to 12 or 24 and 12 or 24 characters are taken from the in-
put data string, If either 12 or 24 characters are not available in the
input data string, invalid data will be transferred.

P — is used with double precision numbers. P initializes a variable to
the number found in the field described by the field width. The field
width must be at least 8 greater than the number of decimal places
specified since the input data is required to be of the following form:

+n,ddd——~dDteee

The sign of the number must appear first. The sign may be indicated by
+, —, or a single space which is interpreted as positive, A digit and a
decimal point must follow the sign. One or more digits may follow the
decimal point, The number of digits must be equal to the number of
decimal places in the editing phrase. Following the digits must be the
symbol D, the sign of the exponent, and a 3 digit exponent.

R — initializes a variable to the contents of an input field which may be
written according to the specifications of the |, F, E, or P editing phrase.
The R field has the following syntax:

<R field> :: = <signed R field> | <unsigned R field>

<signed R field> :: = <sign> <unsigned R field>

<sign> :: =+ | -

<space>:: = <single space> | <space><single space>

<unsigned R field> :: = <I field>|<F field> | <E field> |<P field> |

<space> | <space> <unsigned R field> | <unsigned R field>
< space>

UNIVAC 1108

UME-7636 EXTENDED ALGOL secTion: [prce:
<I field> :: = <unsigned integer>
<F field> :: = <I field>.<unsigned integer>|. <unsigned integer> |
<unsigned integer> .
<E field> :: = <F field> <E part> | <E part>| <F field> <space> <E part>
<E part> :: = Ev<exponent>l @<exponent>
<P field> :: = <F field> <P part> | <P part> | <F field><space><P part>
<P part> :: = D<exponent>
<exponent> :: = <unsigned exponent>| <sign><unsigned exponent>
<unsigned exponent> :: = <digit> | <digit> <digit>

The action of the R format (RW) is essentially a free field scan within
the fixed field W. Four cases are possible:

(1) Entire field is blank. For this condition a minus zero is generated.
This condition can be detected programmatically.

(2)

3)

Visible decimal point appears. For this case the field would con-
tain an F . field with or without an E part or P part. That which is
allowed or restricted is as follows:

(a)

(b)

()

(d)

If an E part or P part appears, it must be to the right of the
F field.

Leading blanks, trailing blanks and blanks between the F field
and E part or P part are allowed but ignored,

Imbedded blanks within F field or within the E part or the P part
constitute an error condition,

The decimal places (d) of the RW.d phrase has no meaning and
is ignored.

Implied Decimal Point

The field contains an I field with or without an E part or P part.

For this case, d specifies the location of an implied decimal point between
the dth and (d+1)th positions (counting from right to left), That which

is allowed or restricted is as follows:

(a)

Digits to the left of the implied decimal location are considered °
integer; to.the right, fractional.

. ~ UNIVAC 1108 ‘
UME-7636 EXTENDED ALGOL secrion: 1| eace

(b) If the I field is completely to the left of the assumed decimal
point such that blanks appear to the right of the I field but left
of the assumed decimal point location, an error condition is
assumed.

Example:
| Note: i denotes blanks,
' 123pB% . = error

(c) If the I field is completely to the right of the assumed decimal
point location such that the blanks appear to the right of the
assumed point and to the left of the I field, those blanks are
considered to be zeros.

Example:
Note: I denotes blanks.
Jpp123=,000123

(d) Blanks found embedded within an I field constitute an error
condition,

Example:
Note: b denotes blanks.
123.6%45 =error
(e) Blanks to the left of the I field and to the right of the I field

and blanks between the I field and the E part or P part (if any)
are allowed and ignored.

<123BBE —2=.123E-2

(f) An error condition is assumed if the implied decimal point falls
within the E part or P part,

(4) The field contains an E part or P part only. An E part or P part with
or without a leading sign can be used. For this case, a +1,0@ee, or a
t1.0Deee is generated. Leading and trailing blanks are allowed but

ignored. The decimal places (d) of the RW.d phrase is meaningless and
is ignored.

UME-7636

UNIVAC 1108 ' 11
EXTENDED ALGOL

SECTION:

PAGE:

25

j¢

(5) Miscellaneous notes which apply to all are as follows:
(a) Overpunching of numeric data is not allowed.

(b) In any of the above cases if the data are not right justified and

other than trailing blanks are found, an error condition is assumed.

(c) An error condition is assumed if anything other than an I field,
F field, E field, P field, or blank field is found. ‘

(d) A single digit exponent is allowed.

S — provides the means of scaling data, The S editing phrase is applied
to R phrases only. The $ phrase has the following form:

S<exponent>

When an $§ phrase is encountered in a format, all subsequent values
associated with an R format phrase are multiplied by the designated

power of 10, the exponent. More than one S phrase may appear in a format,

each taking precedence over the one before,
Example of § editing:

$-2
S+4
$3
$+20

X — causes the number of charactets indicated by the field width to be
ignored, The repeat part of the X editing phrase has no meaning, It is

ignored and should be left empty.

Strings — if the input editing phrase is a string, the string in the format

- declaration is replaced by the corresponding input string. The number of

characters transferred from the input string is equal to the number of
characters in the format declaration which are enclosed between the
string bracket characters. For strings used in format declarations, a
maximum of 132 characters is allowed.

11.2.4.2.1.2. Error Conditions

When an error condition is encountered during input editing processing, the
following action takes p lace:

1.

2.

If no parity action label is specified in the read statement, the program
will be terminated,

If a parity action label is specified in the read statement, control is
transferred to this label. The buffer remains unchanged, that is, the
erroneous data remains in the buffer and will be accessed by the next
reference to the file.

UME-7636

UNIVAC

11 .
08 11

EXTENDED ALGOL secTioN: PAGE:

26

11.2.4.2.2.

11.2.4,2.2.1.

Output Editing Specifications

Output can be performed by the system through various media such as magnetic
tape, line printer, and drum. The information in the system ready for output (in
the buffer area) but not yet transferred to the output equipment may be con-
sidered as a string of six-bit characters, regardless of the output media to be
used,

The output editing specifications, by means of the editing phrases, designate
when and in what forms the values of expressions are to be placed in the out-
put data string,

Output Editing Phrases

The editing phrases describe a portion of the output data string into which
output information is to be placed, This information may be one of three kinds:

a, The value of an expression.

b. The characters of the editing’phrase itself (where the editing phrase is
a string).

c. The insertion characters 0 (zero) and spaces.

. A phrase such as rAw has the same effect as Aw, Aw, ... , Aw (r times),
where r is the repeat part and w is the field width. The field width in an
editing phrase may specify a length of one to 63 characters. If the repeat
part of an editing phrase is empty, it is given a value of one.

Characteristics of the output editing phrase types are summarized in Table
11-3.

UME-7636 UNIVAC 1108

EXTENDED ALGOL

11

SECTION:

PAGE:

27

Editing Editing Type of
Example of .
Phrase Phrase Evaluated .
.) Field Contents
Type Example Expression :
A A6 Any RESULT
D D ‘None 6 zeros (000000)
E El11.4 Real, Complex —-1.2500E-02
P P13.5 Double —-1.25012D+124
F F8.3 Real, Complex 6735.125
| 16 Integer ppB1416
L L5 Boolean BTRUE
0 0 Any 777721412712
R R11.4 Real, Complex, $2.1231E+09
Double
) §-2 Real, Complex, None in field; result:
Double 10*%*(—2)*R(subsequent)
X X8 None 8 blanks

Table 11-3. Characteristics of Types of Output Editing Phrases

The definition of each output editing phrase is given below:

a. A — place the value of one expression (N characters, where N is equal to
six for a single precision expression andtwelve for a double precision or

a complex expression) in the field described by the field width. The
counting of the field begins at the high order character, i.e. the leftmost
character, If the field width is greater than N, N characters are placed

left justified in the field, the remaining field is filled with spaces. If the

field width is less than N, the leftmostcharacters of the expression

value are placedin the field. The expression can be of any type; however,

the expression is treated as type ALPHA when an A phrase is used in
the editing specification. If an A type phrase is used for an expression

which has type other than ALPHA, alpha information must be set for the
value of the expression before output editing has taken place.

b. D - places six zeros in the output data string, No expression is associated
with the D phrase, The field part should be empty.

c. E - places the value of one expression in the field described by the

field width. This value has the following form when placed in the output
“data string: pn.dd...dEzee

UME-7636

UNIVAC 1108

SECTION: PAGE:

28

EXTENDED ALGOL 11

e,

The sign of the number is represented by a single space if positive, and
a minus sign if negative, If the field width minus seven is greater than the
number of decimal places specified, leading spaces are used to complete
the field, then the sign of the number, the first significant digit, and a
decimal point are inserted. The value of the expression is rounded to
the number of decimal places specified by the editing phrase. If the
number of significant digits in the expression value is less than the
number of decimal places specified, the digits are left-justified with
trailing zeros. To complete the field, the symbol E, the sign of the
exponent, and the appropriate two-digit exponent are inserted. The sign
of the exponent is indicated by either + or —,

F — places the value of one expression in the field described by the
field width. This value has the following form when placed in the output
string;:

bnn———n.dd——d

The sign of the number is represented by a single space if positive, and
a minus sign (=) if negative. The value of the expression is rounded to
the number of decimal places specified by the editing phrase. If the
number of significant digits thus obtained is less than field width minus
two, leading spaces are used to complete the field, If the number of
significant digits is more than field widthminus two, the entire field will

" be filled with asterisks *.

| — places the value of one expression in the field described by field
width. The expression is rounded to an integer and placed right-justified
in the field, preceded by leading spaces, if any are required, If the number
of significant digits is greater than the field width minus one, the entire
field will be filled with asterisks (*). The sign of the number is the same
asfor the E editing phrase type.

L -places the value of one Boolean expression in the field designated by
field width. Table 11-3 shows the effect of various values of field width.

Field Width BOOLEAN VYALUE

TRUE FALSE

L1 T F

L2 TR FA

L3 TRU FAL

L4 TRUE FALS

L5 TRUEY FALSE

Ln, where n>5 Skip n-5 'then same as LS5

Table 11-4. Boolean Values for Various Fiéld
Widths in Qutput Editing Phrase

UME-7636

UNIVAC 1108

EXTENDED ALGOL ’ ' SECTION: PAGE:

11

29

g.

h.

i.

jo

O -~ place the value of one expression in the output data string., The
number inthe field is an octal digit representative. The field part is
ignored and should be left empty. However, the field width is always set
to twelve or twenty-four depending upon whetherit is a single precision
value or double precision value or complex value of the expression,

P — place the value of one expression in the field described by the
field width. P is used for double precision numbers. This value has the
following form when placed in the output data string:

Wn.dd———dD:eee

The sign of the number is represented by a single space if positive and
a minus sign (--) if negative. If the field width minus eight is greater
than the number of decimal places specified, leading spaces are used to
complete the field. Then the sign of the number, the first signficant digit,
and a decimal point are inserted. The value of the expression is rounded
to the number of decimal places specified by the editing phrase. If the
number of significant digits in the expression value is less than the
number of decimal places, the digits are left-justified with trailing zeros.
To complete the fiel d, the symbol D, the sign of the exponent, and the
appropriate 3 digit exponent are inserted, The sign of the exponent is
indicated by either + or —.

X — places a number of single spaces, as indicated by the field width,
in the output string, ‘

R — places the value of one expression in the field described by the
field width. The output will be either an F-type, an E-type or aP-type
field, depending upon the magnitude of the expression and the type of
the expression, Assuming that:

E = exponent number,

sign = 0 for +, 1 for -,

w = field width,

d = number of decimal places to the right of decimal point, and
I = number of decimal digits to the left of decimal point, then:

(1) The output will be in F- format

(a) if the absolute value of the number is equal to or greater than 1
but less than the maximum allowable integer, and
w> [+d+1+sign.

(b) or if the absolute value of the number is less than 1, and either
ABS(E)<d
or
w<d+6+sign
or
w<d+7+sign

UME-7636

UNIVAC 1108 :

EXTENDED ALGO

11

SECTION: PAGE:

30

11.2.4,2,3.

11.2.4.2.4,

11.2.4.2.5.

(2) The output will be inE-format or P-format if the conditions for F-
format are not met, and
for E-format w>d+6+sign
" or
for P-format w>d+7+sign

(3) If none of the above conditions are met, the field will be filled with
asterisks.

k. S§ — the values associated with the subsequent R format phrases will be
multiplied by such powers of 10 as designated by the integer in the $
format phrase itself. More than one § phrase may appear in a format, each
taking precedence over the one before.

1. String — an output editing phrase may itself be a string. This editing
phrase is defined as placing itself, except for the delimiting string
bracket characters, in the output string, However, an apostrophe can be
placed in the output data string by placing two consecutive apostrophes
in the string output editing phrase where a single apostrophe is desired
in the output area. For a string used in format declarations, a maximum of
132 characters is allowed. '

The Meaning of Symbol /

The symbol / (slash) in the editing specifications indicates a termination of

a record. The rightmost parenthesis of the editing specifications perform the
function of one slash. For input editing specifications, n consecutive slashes
cause n-1 records to be skipped (spaced) from the input file. For output
editing specifications, n consecutive slashes cause n-1 blank records (records
filled with spaces) to be written out to the designated output file.

Editing Specification for Complex Values

A complex value is represented by an ordered pair of real numbers. Therefore,
all editing phrases used for real numbers can be used for complex numbers
except that a pair of editing phrases is required for each complex number. In
otder to describe the format of a complex number, two editing phrases, one
for each portion of the complex number, must be used.

Restrictions

1. Input editing specifications cannot be used as output editing
specifications; the reverse is also true,

2. An input editing phrase must not be a string,

UNIVAC 1108

UME-7636 EXTENDED ALGOL cecrnone 11 | o aces

11.2.4.2.6. Examples

LABEL OPERATION OPERAND COMMENTS
10 20 30 40 50 60

AN T T U T U T T S T S S O T T ST T T (T T A S S YT T G O SO0 S S Y SO T T U U T S (O S N S A SN N S O B R BRI
tan o FORIMAT (LN EDIIT ((Xidy, 206,05 E90020 03 F50 1, X4 b o oo b c o
T T T T T T O S A O U O S U S S W NSO) S O O U OO I B OO

bt aFORIMIAT 1N FL IOAS 5 0Xi31, 1 20E11:010021,,2:F6L1) 03070 Fi20(JA 6, Do, AL6) i | 011

L] TN N R ST U T Y SO T OO T YO O TS U S YU Y OO T T OO T ST T U T SN S A NN T SN S S W

a0 01 L FIORIMAT (00T (FIOIRM L (1 Xi5:61, ' | HEADIL NG 1, X571), FIORM 20 [X1:00,14A6:/1XI70,151A61/1 X020, 1.

ST T T S O O T S S 37 V-0 N T T T T T YT T Y S U T O T T S Y T S A R T S A S U S A B O A
S T Y T O R A W § lml,,i, IS W W A A B ‘ R A P A l | S S] R N S B B | l N N O A O N S | | LN T S R U A W | l N PR A Y Y N N
T T T OV SO VS SO T T (T S T S S T N SO SO O S S A TS S T U T A T S T O A S U A A SO SO T A RO B

t.
L1l FORMAT OUT, F3| (4,102,305, | vy v v by v v b v vy b a1

I S N T O SO0 0 S VO T S T TN N S O OO U OO OO O O Y T 0 O O SO D S S
- ot AFORIMAT, (O UT, FdI(Fi5.2,X2,RI3Ty S =20t v oo s c e i v e

T T T T O S T U O S T S T T T T S T TS IO TS T T VO G T S G Y O T O SO S S Y Y N T A U AT U WO I GO A B
L JFORMAT FMT (G812 3R 120013, 1852, 4 RIO0AD i v Loy v o by cen o nr
Lo v v b vy v v b v oo b e s cv e v bea o e e e b e

et FORMAT, ,OQUT, FM (A6, X7, A8 /A4AA//D i cv b e o b v ol c e e et

l'1“he last character before the right parenthesis is the letter O not zero.

UME-7636

UNIVAC 1108

EXTENDED ALGOL 11

SECTION: PAGE:

32

11.2.5. Switch Format Declaration

11.2.5.1. Syntax

<switch format declaration> :: = SWITCH FORMAT <switch format identifier>:=
<switch format list>

<switch format identifier>:: = <identifier>

<switch format list> :: = <editing specification part> | <switch format list>,
<editing specification part> | <format identifier>| <switch format
list>,<format identifier> | <format identifier>,<switch format list>

<editing specification part> :: = (<editing specifications>)

11.2.5.2. Semantics

The switch format declaration associates a switch format identifier with the
editing specification part or format identifier in the switch format list. Associated
with each editing specification part or format identifier is an integer reference.
The references are 0, 1, 2 ..., obtained by counting the editing elements of the
switch format list from left to right. The integer reference indicates the position
of the editing specification part or format identifier in the list, The editing
specification parts and format identifiers are referenced according to position,

by switch format designators.

If a switch format designator yields a value which is outside the range of the
switch format list, the format so referenced is undefined. If a format identifier
is used in a switch format list, it must previously be defined in a format
declaration.

Editing specifications are identical to the editing specifications of the format
declaration (11.2.4.).

11.2.5.3. Examples

1 10 20 30 40 50 60

T O S S T S T T T S S T T T T T [U T T TS YT D (NOV Y SN T U WA T YT A W O UUON NS JOOF G N Y N WY S S BN A
T T O O T T T T [T T T S T O T T T O S U O S S S TSN Y (YOS O S URT A TS W NN T WY S NS
L S WL TICH (FIORMAIT | SIF =1 (GAG, 311 d 1,0 0020,0X600 LGl X 20,0200140,1301:20) 1,0 0X 7181, 0120 e 1

T T SO T S T T T S S S SO T BT QPN NP 20 U SN« 111 i T S T S S T O S SN S S S S KO Y SN SO W SO S0 U AN Y U S N B

USROS U Y SN T T T T T O NN T SO ST T N T N ST T T O TS N YOS NS T OO T Y U 0 S M S M S
SN T T O O S SO VY S T TS S T (T O T O U S T T T TN S T VO Y T T S S TSN A0 ST W W SN ST OO Y DO S S U DO OO D Y O S B
I U T U T S S T T T S U T T T S U S T T U OO OO0 Y TSN T S S O (T O Y S MO A
Lo SWALTICH (FIORMAT | SHI FT 0= (X708, ,0020) (1 40A16,,00:2) 1, GTO0GAG , 12) 60 0o b v

UME-7636

UNIVAC 1108 : 11
EXTENDED ALGO

SECTION: PAGE:

33

11.2.6. List Declaration

11.2.6.1.

11.2.6.2.

Syntax

<list declaration>:: = LIST <list specification>

<list specification> :: = <list identifier> (<list>) | <list specification>,
<list identifier> (<list>)

<list identifier> : : = <identifier>

<list> :: = <list segment> | <list>,<list segment>

<list segment> : : = <expression part> | <for clause> <list segment> |
<for clause> [<expression list>]

<expression part> :: = <arithmetic expression> | <Boolean expression>

<expression list> :: = <list segment> | <expression list>, <list segment>

Semantics

A list declaration associates a set of expressions (arithmetic or Boolean) with

a list identifier. The list identifier may be used in a read statement for the
variables to be initialized and the order in which the initializing is to be done.
The list identifier may be used in a write statement for specifying values to be
included in an output operation. These values are placed in the output string in
the order of their appearance in the list declaration. Variables in a list declaration
may be either local or non-local to the block in which the list declaration appears,

Restrictions:

1. Since any expression other than a variable is meaningless in an input opera-
tion, a list identifier usedin a read statement must refer to a list declaration
which includes variables only.

2. When used for input, the variables in a list declaration must have been de-
clared as type REAL, INTEGER, ALPHA, BOOLEAN, DOUBLE, or
COMPLEX.

UME-7636

UNIVAC 1108 11
EXTENDED ALGOL SECTION: PAGE:

34

11.2.6.3. Examples

LABEL 0 OPERATION 20 0 OPERAND " CS%MMENTS 60
._];J_I_Lng_l_‘L_LA.LY dooto oo j L T T l | S U W T N A | { OS] \ (IS T U T R SR N l Lot oot
Lo kST om0 X AL). FOR) := P STEP |1, UNTIL, 5 |D0O JBl[lIJL).;A v e e
T T T U O T T T T T T S S T (S S S S S T G T T YT GO OO0 VYT S O O U WO N G W O
AI_LJ_K;lil_LL,L,L § 1NN R TR W I T S | I [S S S A T A | l | SN U R N S R A l U R S O | l F S O R N N S I l S I Y Y TR B

Lo b ST ANSWIERS, (P @, % SARITI(R) Dy (RESULTS (X1, X2 X3, Xi41/020)03] 0 0ovy
N Y Y Y D T SO A S ‘17 B e | 1 LU Y | 1 [T S TR A e | l [SR NS B S A S G R j SV S I S W O S i l L ISR S R L N Y N B
BT T T U T U O S T T T T O T T T S S OO U S SO0 Y S T S N ST TS W A O Y Y B B Y SO

Lo s ST 5873, G FIOR ,1: =0 STEP 1, UNTIL 1,0, DO FOR J;:=,0 STEP 1, UNTIL

I S R ST E S R A R SR R B P PN - T T V1 N PO O 1) B A S S KO O S S S SO I SR A S S A U SR AN S ST A RN
N T S T N l TINONS TO T HI H H NN HS S0 U0 T OO0 N O l IS S S VO T S B [F D I U NS0 T B A I S T I I S B | |) S Y N N S W S |
N T T T TS T S SO O U T U T S S T S S T S T O S T S T U O SO T SO U SO T TN U O TN TURN ST YT N OO WO 0 YO0 W O
Lo gk LiSIT o lidy (B JANID, Gy, (NOT, AIB T, 1 F X=01 THEN RT, EILSE, (R2,)i0 ol vy i a1t
T T S S T U U T Y S S T U [T S U S S A T S S U VOOV AN U T SO T HOOT O O S SO WOV (Y SO OO T SO NN U S S UV Y Y TG W M B
I S T S S SO T T S U S S T T T NS SOV GO SO SO0 O O NSNS0 Y ST Y VOV (W YOO T T Y W ST N S Y Y Y W Y

L LS T RES LTS (GFOR L= 1 (STEPR (1 UNTIE, N Do CADLT,, FOR Jiiel) STEPR,
Lt e e e L g uNTnL (K Do OB G I GO i e

11.2.7. Switch List Declaration

11.2.7.1. Syntax

<switch list declaration> :: = SWITCH LIST <switch list identifier> : =
<switch list list>

<switch list identifier> :: = <identifier>
<switch list list>:: = <list identifier> | <switch list list>,<list identifier>-

11.2.7.2. Semantics

A switch list declaration associates a switch list identifier with a number of
list identifiers. Associated with each of the list identifiers is an integer
reference which is obtained by counting the list identifiers from left to right
starting with zero. This integer indicates the position of the list identifier in
the switch list list. These list identifiers are referenced by means of switch
list designators.

If a switch list designator yields a value which isoutside the range of the
switch list list, the list so referenced is undefined. Each list identifier used
in a switch list list must have appeared previously in a list declaration.

11.2.7.3. Example

1 10 20 30 40

Lot SWIHTICH (LS, T, |LIXI‘I:I=IL1]IIIL|2i' L3y v b

UNIVAC 1108
11

UME-7636 :
EXTENDED ALGOL< SECTION: PAGE:

11.2.8. Namelist Declaration

11.2.8.1. Syntax

<namelist declaration> :: = NAMELIST <namelist list part>

<namelist list part> :: = <namelist identifier> (<namelist parameter part>)|
<namelist list part> , <namelist identifier> (<namelist
parameter part>)

<namelist identifier>; ; = <identifier>

<namelist parameter part>:: = <namelist element> | <namelist parameter part>,
<namelist element>

<namelist element> :: = <simple vatiable> | <array identifier> | <label identifier>

11.2.8.2. Semantics

A namelist declaration associates a list of namelist elements with a namelist
identifier. The namelist identifier may be used in an automatic data read
statement for specifying that the variables to be initialized and the value to
be read in are previded in the input file itself,

The formats of input data records are specified under read statements
(Section 11.3.2). A specific requirement of input data records introduced

into the system via the DATA statement for use with the namelist declaration
is that a space must appear in column one of every item.

Assuming that NAME1lis defined in a namelist declaration and used in a read
statement and A,B, C, LAB, and FILE1 are declared as follows:

1 10 20 30 40

' ettt JREA LT L A Be L oo e e b e

| i o ARRAY, VS i o e e e
b g LABEL LABG e b b

vttt RV LE N FPLET 3 (e V) iy
N N lilNlAiM_LElLl'lSlTl INAME T (A,B,IG, LABDG

PR VRN S TN U Y Y GO Y YO0 WO VAN TG OO N OO TOU S O HUU A SN MY WU P SN S NN T IO OO SO0t O HOU NS T IO A O WO T W

U T T TV T T T B O N T O O T O SO RO PO O G T U Y T T A SO B

Lttt IREAD G OFRLLIET, NAMET) Gl ool gy

UNIVAC 1108

UME-7636 EXTENDED ALGOL cecTion: 1 - 36
Possible input data records of FILE1 may be as follows:
LABEL 0 OPERATION ?0 4, OFERAND ‘0 COMMEN
Istrecord [NAMET o o loog v oo b v ol e e
2nd record B A=,%77,7,00007,7.7,7,7 70, 4 ol o0 v o b b e e
' b B=1,32,3040-000 0 0 v v b e e e e v b e o
) b C=1e 21030 AE6 30 7y v o Lo o c s b e e b e g
P DU ST R T T N Y S U VY OO S AN A SO0 VO N H TSI (N O U0 A NN T S A A U SANH ST ST WA AT
T T T T N U SO U T TS S T ST S S S N O S R SR A S N N R S S S A SR A
4I_I_LE,J__L__L,L,L T T T T S T T U T VO O TN U (Y T T S A OO W N S T D Y WO N SO0 S O O
last record b4, 16,7, 20 4 /ILAB vl b el e L
T U T T O 1 T T Y VO S T U U SO O S U O P G W S N N S U Y Y WU U OO
T T T T U N ST T ST U S T TN N YO A T T N N AT S S O T Y U0 T Y
Lo NOTIE;:, ALL 1, TEMS, MUST HAVE A SPACE I|N COLUMN 1,

11.2.8.3.

The above example would cause records from FILE1 to be read into variables
A, B and array C. Upon executing the last record, indicated by the slash(/),
program control will transfer to the indicated label, LAB.

Restrictions

The first input data record must be the namelist identifier which is referenced

by the read statement.

All variable identifiers and label identifiers used in the input data records
must have been defined previously in a namelist declaration.

m If a label identifier is used in the input data record, it must appear in the
last record and immediately follow the symbol / (slash). A single space

following the symbol / indicates that there is no label following.

11.2.8.4. Example
LABEL OPERATION OPERAND COMMENTS
10 20 30 40 50 60
I T U VO U O Y S W T T TN T S A A A T A SR G AU T Y WA S 0 N YN S U VN YUY YT U AN WO JOOK MO WY S DY SO OO
T T O T S N (O S T N S S S T A S S N TS S SRS [T ST S A U T U H T S S O T T O WY WU O S U S RO SO SO S S O NS
Lt 1 ONCAMIEILI LS T o NAIMEEN T (1A By 1 Cly LA) 0 INIAMIE 2, (A, (LLAB LI, CLaFre 1 DL LABI2))

UNIVAC 1108

UME-7636

EXTENDED ALGOL . 11

SECTION: PAGE:

37

11.2.9. Line Declaration

11.2.9.1.

11.2.9.2.

11.2.9.2.1

11.2.9.2.2

Syntax

<line declaration>: : = LINE <file identifier>(<paper size>, <channel
specification>) <heading control>

<paper size>::=<unsigned integer>

<channel specification>::=<channel number>: <line number> | <channel
specification>, <channel number>: <line number>

<channel number>:: = <unsigned integer>

<line number>: : =<unsigned integer>

<heading control>::=[NO]|[NO,<heading>] | [<heéding>] | <empty>
<heading>:: = <string>

Semantics

The line declaration is used in conjunction with file declarations., The file
identifier so referenced in the line declaration must be a print file. The
UNIVAC 1108 high speed printer does not use the paper loop mechanism to
control carriage return and spacing of a line printer. Form control and spacing
is completely variable and controlled entirely by program. In UNIVAC 1108
Extended AL GOL, the line declaration is used to describe print files, The
form, number of lines per page, and the channel number associated with a
specific line number are specified by the line declaration.

Paper Size

The length of the printer form is expressed as paper size. Paper size
specifies number of lines per page. Standard paper size is 66 lines per page.

Channel Number

Channel numbers referenced the channels on printer control tapes.

Channel numbers are used in conjunction with line numbers to give an associated
reference number and line number which is to be spaced to when utilized in a
write statement. All channel numbers must be defined in the line declaration to
describe the channel number and its associated line number prior to being
referenced by a write statement., A maximum of eleven channel numbers with an
associated line number for each may be specified.

For example, channel 1 is the ‘home paper’ channel. If skip to channel 1 is used

in a write statement, it causes a ‘page eject’ to the line specified in its associa-

ted line number specification,

UME-7636

UNIVAC 1108 . i1

EXTENDED ALGO) SECTION: PAGE:

38

11.2.9.2.13 Heading Control

Heading control indicates whether or not a heading is to be printed on each
new page.

(1) If heading control is empty, it causes the current date and page number to be
printed on each page by EXEC 8.

(2) 1f NO is used, it will not print the EXEC 8 date and page number on each
page. Therefore, if a line declaration with a NO specified does not appear
the EXEC 8 date and page number will always be printed on every page.

(3) If only heading is used, the string in the line declatation will be printed
with the EXEC 8 date and page number appearing on each page.

(4) If NO and heading are used, only the string in the line declaration will be
printed out and no EXEC 8 date or page number will be printed.

11.2.9.3. Restriction

-1) The file identifier used in a line declaration must have appeared previously
in a prevailing file declaration.

2) In the absence of a line declaration, standard UNIVAC 1108 print page
definition will be assumed, Standard UNIVAC 1108 printer page definition
is 66 lines per page, with a top margin setting of 6 lines and a bottom

margin setting of 3 lines, thus giving 57 printable lines.

3) Each channel number declared in a line declaration must be associated
with only one line number.

4) Channel number can only be 1 through 11.

11.2.9.4. Example

1 10 .20 30 40

PN W T U T T S A G T T T U U U U O WU U Y SO YO N U T SO Y T VO N OO A SO TS S OO O

NN NS N AN A NS S | I S N IS N T W | L,i B TS T SR G Y N IS S ll S S O I S U | J‘,,l, S TN VSR IS SR IV S

L b ENE R (66,0 ,6,,,6:,0,0,,,101:,60),] L1

The above example declares that the form is 66 lines per page; and it will be
positioned to line 6 before printing begins, Each skip to channel 1 in a write
statement causes the paper to be ejected and repositioned to line 6 of the new
page. Channel 6 will be associated with line 11, and channel 10 with line 60.
Since no heading control is specified, the EXEC 8 date and page number will
be printed on each page.

UME-7636

UNIVAC 1108 .
EXTENDED ALGOL

11

SECTION:

PAGE:

39

11.3. STATEMENTS

11.3.1.

11.3.1.1.

11.3.1.2.

General

Each particular [/O statement will be discussed separately in succeeding sections.

Syntax

<1/0 statement>::=<read statement> | < write statement> | <space statement> |
<rewind statement>| <close statement> | <lock statement>

Semantics

1/0 statements cause values to be communicated to and from a program and
provide programmatic control of files and I/O units,

11.3.2. Read Statement

11.3.2.1.

Syntax
<read statement>::=READ <direction> (<input parameters>) <action label>
<direction>::=<empty>| REVERSE
<input parameters>: : = <file part> <buffer release> | <file part>
<buffer release>, <format and list part>]
<file part> <buffer release>, <free field part>|
<array row>, <format and list part>| <array row>,
<free field part>
<file part>::=<file identifier> | <switch file designator>
<buffer release>: : =<empty>|[{ NO] | <record address and release part>
<record address and release part>::=[<address>]|[NO]| <empty>
<address>::=<arithmetic expression>
<format and list part>::=<format part> | <format part>,<list>|
 <format part>, <list part> | *, <list>|
*, <list part> | <alpha array identifier>,
<list>| <alpha array identifier>, <list
part> | <arithmetic expression>, <array row>|
<namelist identifier>
<free field part>:: =/, <list>|/,<list identifier>
<format part>::=<format identifier> | <switch format designator>

<list part>:: =<list identifier> | <switch list designator>

<action label>:: =[<end of file label>: <parity label> || [<end of file
label>]| [<parity label>_] | <empty>

<end of file label>:: =<label identifier>

<parity label>:: <label identifier>

UME-7636

UNIVAC 1108
EXTENDED ALGOL

11

SECTION:

PAGE:

40

11.3.2.2, Semantics

The read statement causes values to be assigned to program variables and/or
places information in strings defined in the format declaration.

Direction

REVERSE is used to spécify the reading of magnetic tape or drums in the
reverse direction, Otherwise this field is empty.

For drum files the use of REVERSE causes adjustment sq that the value of

the record pointer is decreased by one from its designated setting before the
read is performed. If the value of the record pointer is N when a read reverse

is executed, the record pointer is set to N-1 before the read is performed. At the
completion of the read reverse, the record pointer remains at N-1,

File part

This field specifies which file is to be read. If array row is used mstead of
the file part, it indicates an Edit and Move read statement.

Buffer release

The buffer release indicates whether the input buffer is to be refilled after it
has been read and edited., If [[NO_] is used the buffer will not be filled and the
current buffer is the next one to be accessed.

Record address and release part

This field applies only to drum files, The address specifies the relative
address of the record in the file to be read and is edited as specified in the
read statement. The record pointer is set to the address before the read is
executed. The record pointer will not be adjusted after the read is executed.
An address must be used with files declared RANDOM. If [[NO] is not used
and address is not specified, the record read will be the current one pointed
at by the record pointer. After the read, the record pointer will be adjusted to
point to the next record. If [NO_] is used, the record read will be the current
one pointed to by the record pointer, After the read, the record pointer will not
be adjusted, i.e., the record pointer will be the same one as before the read
was executed.

Format and list part

The format and list part specifies the action to be taken on input data. If no
format and list part is given, one logical record will be passed without being
read, Such a statement acts as a space statement which only spaces one
record.

763 UNIVAC 1108 |
UME-7636 EXTENDED ALGOL secrions 11 PacE:

A format identifier alone indicates that the referenced . format declaration con-
tains a string into which corresponding characters of the input data are to be

placed, i.e., replace the string in the format declaration with the string in the
data, The referenced format declaration must only contain one string.

A format indentifier together with a list or list identifier designates that the
input data is to be edited according to the specifications of the referenced
format declaration and assigned to the variables of the referenced list.

The asterisk, *, together with a list or list identifier specifies that the input
data is to be processed at word length and that it is to be assigned to the
variables of the referenced list without being edited. The number of words
read is determined by the number of variables in the list or the buffer size,
whichever is smaller.

. The arithmetic expression with an array row specifies that input data is to be
processed at word length and that it is to be assigned to the elements of the
designated array row without being edited. The number of words read is deter-
mined by the number of elements in the array row, the buffer size, or the value
of the arithmetic expression, whichever is smallest,

The alpha array identifier together with a list or list identifier specifies that
the input data is to be edited according to the calculated format specification
stored at the referenced alpha array at execution time and is assigned to the
variables of the referenced list. The calculated format must be placed in a one
dimensional alpha array prior to execution of the read statement.

The namelist identifier indicates an automatic data read statement. The list
information is provided by the referenced namelist declaration and also is
provided in the input file itself. The format information is provided in the
input file, Input data records are defined as follows:

(1) The first character in each data record is always ignored. The first record
of a group of data records to be read must be the namelist identifier which
~ is declared in the referenced namelist declaration. This identifier is

followed by the data items,

(2) The data items must have the following form:
variable element = DATA WORD

They are defined as follows:

<namelist element>:: =<simple variable> | <array identifier> | <label>
<DATA WORD>:: =<value list>

<value list>:: =<initial value>, | <value list>, <initial value>,
<initial value>::=<number>| <string>| % <octal number>
(3) Any selected set of the variables or array identifiers belonging to the

namelist paramecter part of the namelist identifier which appear on the first
record may be used in the manner specified by the above data item.

UNIVAC 1108

UME-7636 EXTENDED ALGOL

11 L 42
SECTION: PAGE:

(4) The end of a group of data records is signaled by a slash (/) instead of a
comma, A label appearing immediately following a slash, i.e., /LABI,
will cause a program transfer to the specified label, LAB1, which must
be specified in the namelist declaration. A slash followed by a space in-
dicates that no label is specified. The program will transfer to the state-
ment immediately following the read statement after the read is executed,
See namelist declaration, Section 11.2.8.2, for examples.

@ Free field part

When the free field part is used, no format declaration is required to provide
the editing specifications for data. Editing specifications are determined by
the format of the data. Data must be formatted as described under FREE
FIELD INPUT, Section 11,3.3.

@ Action labels

The action labels provide a means of transferring control from a read statement
(or space statement) when an end-of-file condition or parity condition occurs,

An end-of-file condition occurs for drum files whenever an attempt is made to
read a record whose address us greater than that of the EOF indicator. The
EOF indicator is always set to the address of the highest addressed record
written in the file,

a Edit and Move

An array row may be used in a read statement instead of a file part. It provides
the means of utilizing the editing features of a read without using I/0 files and
buffer areas. In effect, the array row designated in the read statement is anal-
ogous to a buffer area.

@ When a read statement is executed without specifying an input file, data in the
designated array row is edited and placed in the list. The format part determines
what editing is to take place as the data is moved from the array row to the list.

11.3.2.3. Restrictions

8 When a parity error occurs in reading from tape the redundant record is left in
the buffer,

Tape files must be closed before changing directions when the tape is posi-
tioned following an end-of-file.

® Labels and variables used in an input file for a namelist data read statement
must be declared by a namelist declaration in the block in which the read
statement appears or be global to it.

RLEE R B T'T'

TTvTTTTTT

T ""l" v (TE

TV EYTTDRRONT L X ANV LY G‘TVTGT*Ta T

T "‘."j"T""Y‘I—‘T“‘T"T "I‘“T‘_T"'—]A”T"' rTTTTTTUTTTTTT ‘ B T R S R |—T TTTTTTTTTTR YT [1T T T'T TTTTTTT
B R B Bl LA S e A e L Y R I RS R 47 YT VA ”LI’*r,TaTGI NIRRT T
JLI T e L T A e A A e N A N O O B T
T T ‘] [R T I B 1] [A T R R B S T""[‘ T (I.l. T ST.l T [l lw TJ 1 1, II—_‘i ¥[]|V I)| IG ‘VTjTH‘ [A
LI A | L L A B
U s alv TolsITT Ta s ol N3 N Al T et g A Talviaty T T
’T"T’”T"!’"’I_l“ T T ‘T"T‘T“T“1"“‘["1_'1"‘!'”'1’*!”"{”I“”T T T T [T LI N A B B B T
T T 7] T T T [T T T (Gl Sl _I BW[VN Oll’g[’]rlr:l])l lqlvlaial L
LA e N A O S B B BRI
I FT"]"'T"I L S A e | []’H V'J":T Y—‘I’"Tj I(LLIST_“IF 11 TOINI]lgl.II'[:‘IMIaIN()I GVH|HT”'T T
|l|(||||xlr1tl|||l||||1|1||||1|i|||r(|||"T“r‘l|!l|sr!|||ﬁ
(LA R B B N B A 1TEY’8T9‘T§T"T I(T_Lls1|r-lialgTHl:ll:ll{:lgr-‘r|r:|r3rgla!:’1ﬂ avaly T
LA N N R N N N N A N N O O I N A O O I N B |
ELEEL AL A R B LA S B B Y ("L7s™ 7 llTvm‘lﬁ‘gﬁ—niﬁ‘ '4'alo)ﬁ—“l“aﬁ’grgTaTAlal ¥ avagT T T
JHL I L Y B B B LA ANL F H H B
"TfT'(IE{‘fi‘]}VI Io‘al 19511 I-1||lllNlnl ll1 ldlal'll'sl |0I___l:lll ‘H'O':H"/"'G'I'B"‘l‘l'ﬂ')| Ialv(alul T T
TTTTTTO] LA A A D B B | | | L A L A A A 'T—F'T-“!—_Y—T"T"T”’T—me T l LA A S R S A A B
LANN N N I N O Y D D N N A D D B B I r]_:l(la|||3|-|l|le)| TalyraTyr T Tt
‘“l'"T-T_‘T_r“'T"T“T“'T—F"‘T"”T“'r“"r T‘T TTTTTTVYTTTTTT T T LENN I L N L N I B
T T Y A T O T eIV e s et i)t Tatse A el ety T T
LI [B B B S L I .
LI B R e B I A A B A B T"T”7 LA I B v Al (J.[W :ll ,la 1 |3‘F ' dr’)’r ra rgl’ 7T

FIIIFIFITII_IIT{IFTTTIIFW|'llllllIFTI_[IT!TIIITrTlIll(fll
BRI B | "I L B T fT[Ta T‘T T T To’r'g"1’_|‘1"“]| l(ITT ¥T]Ivlulvl ”A |+ XFT TI Ta ..‘ | :’)T’Ta‘l’v-ré‘r'a“!""r"T“T"'1"‘
TTTTTT T T [L T e | "T'"lﬂ""[_r"‘r"'rﬂ_l'l R B | S A A R S I rrri1i1 I“T""[“'J
LI B B B A LA I R N B r 1B ‘l_—ETH dT T:' lo —]‘r TTG‘“I T—I"I"r_] o 1 'TaTI“la _I ‘:ﬂ"r”;T—I"a‘I"V'T'a_I'&T"T“'T“’I""‘l‘
T T T | T rTTTT "”I_Tj B A R S B B A | [LI A I T B E N B 1T T"T""r'"l'"T'T—T‘T"'T_FWT”T”'J
CE TR T L vy DT e iy TTawaT a3 lan)t TatsTaa'AT3el Taviayt T T T
=TT [T T } TTTTTTTTTTTU T l_"[T T T | T T T I LR S O A A R R e |
T

T‘“]'1 TTT T T'ITTT“jk"] IOMT ldTorg] (1

IL s I 117—7—-|-Tw 577'7 OIN‘]]'r‘raT TaT—IX ITJTeraTv BTBT DI B R

T’1’l'r’||IIITTIII]TTIIlf[YT]‘l"[T11"TTYI’]T‘)—I'I"ITITT]TI"TI'TT7 B
TUTTUTT T]‘ T T 1771 1 'T"T T ‘r'('l‘[l;ﬁbTa"l;rr:lT“T"(T'G'T“'ITITET '|7-| []. w”;‘f“ﬁaTiT’al'-"l il’dw) | lqlvlglul T T71T771
08 oy 4 l
SLINIWWOD ANV¥3d0 NOILVYI3dO RER:A)
sordwexy ‘p €11
39vd] PNOILD3S
e 1 7091V @3aN31Xx3
80LL DVAINN

UNIVAC 1108 . _ 11 44
UME-7636 EXTENDED ALGOL ‘
11.3.3. Free-Field Input
v 11.3.3.1. Syntax
<free field sentence>:: =<field> <field delimiter> | <free field sentence>
<field> <field delimiter>
<field>::=<number>| <string> | % <octal number> |/ | <empty>
<field delimiter>:: =, | <letter> <any proper string not containing a comma>,
11.3.3.2. Semantics

All free-field input is in the form of free-field sentences. Each field in a
sentence is associated with the list element to which it corresponds according
to position. A free-field sentence is not affected by the end of a record. A field,
or field delimiter, may be cartried over from one record to another, Continuation
from record to record is automatic, until the list is exhausted; unused characters
(if any) on the last record read are lost, Al] blanks in free-field sentences,
except those in strings, are completely ignored. Fields are handled as follows:

® Numbers

Numbers which either are represented in integer form or contain a decimal
fraction and/or exponent part are converted to integer, real, double or
complex according to the type of the variables in the list, respectively. Two
real numbers are required for each complex variable.

B String

Strings may be any length. Each list element receives six characters until
either the list or the string is exhausted, The string characters are stored
left-justified with space fill on the right in the list elements. Strings are
enclosed in the string bracket character, i.e. '. In order to read an apostro-
phe or a quote within a string, two string bracket characters must appear in
succession to represent one in the input record.

m Empty

An empty field causes the corresponding list element to be ignored.

m Slash (/)

The slash (/) field causes the remainder of the current record to be ignored.
The record following the slash is considered the beginning of a new field;
therefore the slash field does not require a field delimiter. (The slash field
is unique in this regard.) A slash field has no effect on list elements.

B Logical Values

For free-field input, the integer value 1 (one) and 0 (zero) represent the logical
values TRUE and FALSE respectively,

UNIVAC 1108 :
| EXTENDED ALGOL szerions 1L

UME-7636 45
PAGE:

11.3.3.3. Restriction
Free-field input may not be used with blocked tape records.

11.3.3.4. Examples
Consider each of the following lines as individual records,
1
2
3
@
29
+123 .00 +
29
+ .123@29
,0,X,A1 , 4 A 5 B, / CARD 124
15 IGNORED, ZERO,
% 177, %30, 'THIS IS A STRING', 'DON"T',
STRING' , , , ,
If the above records (free field sentence) were read with the statement

1 10 20 30 40 50
e v e e e v e b e e e o b e e Lo

L R EAD (FLE !LPJ,',LLL'LEJQLRI =0 SITEP 1 1U.L.NITLI_J,!T'_L,,L]J_é_l_‘,,lpLoL,léi[j.l_.l;ll)__lji.v

where A was declared as an array of type real, values would be assigned to
A as follows:

A {0] = 123@29 A (6] - 4.0
A [11 = 123@29 A [7] = 15.0
A (2] = 123029 | A [8]. = Unchanged
A 3] =0 A [9] = 177 (octal)

A [4] = Unchanged A [10]. = 30 (octal)

A [5]. = Unchanged A [11] = THISWI

It

UNIVAC 1108 4
EXTENDED ALGOL

UME-7636 11 46
SECTION: PAGE:
A [12] = SBABST A [15]. = STRING
A [13]. = RINGWY A [16] . = Unchanged
A [14] = DON'TH
11.3.4. Write Statement
11.3.4.1. Syntax
<write statement>::=WRITE(<output parameters>)<waction label>
<output parameters>: : = <file part> <cartiage control> | <file part>
<carriage control>, <wformat and list part>|
<file part> | <array row>,<wformat and list part>
<file part>:: = <file identifier> | <switch file designator>
<carriage control> ::= [PAGE]|<skip to channel>|[DBL]|[NO] | <record
address part> | <empty>
<record address part> ::= [<address>]|<empty>
<address> ::= <arithmetic expression>
<skip to channel> ::= [<arithmetic expression>]
<waction label> ::= [<end of reel label> : <parity label>] | [:<parity
label>] |[end of reel label>] | <empty>
<parity label> ::= <label identifier>
<end of reel label> ::= <label identifier>
<wformat and list part> ::= <format part>| <format part>, <list>|
<format part>, <list part> | *, <list>|
* <list part> | <arithmetic expression>,
<array row> | <alpha array identifier>,
<list>| <alpha array identifier>, <list part>
<format part> ::= <format identifier> | <switch format designator>
<list part> ::= <list identifier> | <switch list designator>
11.3.4.2. Semantics
File part

The file part specifies the file to be used. If an array row is used instead of

the file part, it indicates that it is an Edit and Move write statement.

UNIVAC 1108 ‘
11

UME-7636 EXTENDED ALGOL 7 SECTION: PAGE:

m Carriage control

The carriage control allows for paper control on the line printer. Carriage
control is irrelevant and ignored on all other units except the record address
part which applies only to drum files. PAGE causes the printer to skip to the
next page after the line is printed. Skip to channel causes the printer to skip
to the channel indicated by the value of the arithmetic expression after each
line of print. The arithmetic expression should have a value from 1 through 11,
If the arithmetic expression yields a value other than integer, it will be rounded
to type integer in accordance with the rules applicable to the evaluation of
subscripts. If skip to channel is used, the channel number and its correspond-
ing line number must be defined in the line declaration which follows the file
declaration.

DBL causes the line printer to double space after the line is printed. NO
causes the printer to suppress spacing after the line is printed,

m W format and list part

The wformat and list part specifies the action to be taken on output data, A
format identifier alone indicates that the referenced format declaration con-
tains one or more strings which constitutes the entire output.

A format identifier together with a list or list identifier designates that
variables in the list are to be formatted according to the specifications of the
format declaration and written as output,

The asterisk, *, together with a list or list identifier, specifies that the
variables in the list are to be processed at word length and are to be written
as output without being edited, The number of words written is determined by
the number of variables in the list or the maximum record length, whichever is
smaller. When unblocked records are being used; the maximum record length is
the buffer size.

The arithmetic expression with an array row specifies that the elements of
the array row are to be processed at wotd length and are to be written as
output without being edited. The number of words written is determined by the
number of elements in the array row, the maximum record length, or the value
of the arithmetic expression, whichever is smallest. When unblocked records
are used the maximum record length is the buffer size.

The alpha array identifier, when used in a write statement followed by the
list part, ptovides a means of calculating a format at execution time. The
calculated format must be placed in the one dimensional alpha array prior to
execution of the write statement. '

The record address part applies only to drum files and specifies the relative
address of the record to be edited and written, If address is provided, the
record pointer is set to address before the write statement is executed., If
the record address part is empty, the record pointer is used as it was left by
the previous I/O statement. For RANDOM files, the address must be provided.
After a write statement is executed, the record pointer will be adjusted to the
recotd following the last record written.

UNIVAC 1108

UME-7636 - 11 48
EXTENDED ALGOL SECTION: PAGE:
If only the file part and record address part are provided in a write statement
referencing a drum file, the contents of the current buffer are written,
B Edit and Move
In a write statement, an array row may be used instead of file part, this indi-
cates an Edit and Move write statement. When an Edit and Move write is
executed, data from the list is edited and placed into the designated array
row. The data is edited as specified by the format part as it is moved from the
list to the array row. In effect, the array row designated is used as a buffer
area for writing a record.
m Waction labels
Waction labels provide a means of transferring control from a write statement
when an end of reel condition or a parity condition occurs.
11.3.4.3. Restrictions
B Writing of mixed mode tapes is not possible.
m When a parity error occurs in writing a tape, the redundant record is left in
the buffer.
m If a parity error occurs and the label is not present, the program terminates.
® If an end of reel occurs and the label is not present the program continues;
the record is not written.
11.3.4.4. Examples
LABEL OPERATION OPERAND COMMENTS
10 20 30 40 50 60
e MRUTE G (FILEID,FMT, LESTIO) G b b i g
I T T T T O T T T T S T T S S T O Y O S T T TN TV S YU T TN ST T SO TN NI S ST NS S S B O SO MO
L MRYTE FLLELD XEIPI,AIGLEIJI)I:I U T T T RO O U S NS S Y T S TN W T S AN O A A RO
O T T T T ST TS T T 0T O T T U YU GO W O S A ST N YWY O T ST T N N Y U T O
I T T T lwlRlIlTlEl |(|F|I [LiElI IDI'AF[MITI) l;l -} | P I N O T VO T | [R I I T Oy N N | ' N I S N Y O S S | I IO R N |
A T S T T (A T T S TS U S U S O T S SO OO U S OO SO SO T N TS N YT TN S W ST N [N Y N S W S N N N S S B T
s MRITE (R LE DL LS T D) s PAR T Ll i o
G O U T Y O T O S T T T U T YO YV YO T (N YOO YU T S YT Y W T Y YOO W T T S 1O O O S B A
o WRVTE L GFILEND] [DBL], FMTL,ALBLC,ARALE Y Gy g
N I Y T I | I | SN S SN N N A I | ‘ } N [N SO (R S U N B | I § N0 N S N O T T e | | N T I Y T | l N T S R T Wt | | It 1 4 |
o MRNTE GFLLEND, XH Y, -Z ARAB T 0 T sl b e L
IS T T T O S Y U0 S S T T O SO TN S YOO TN YOO U U A WO S YT T T O U WS S U T I S Y OO A N O S SO OO [
- |(lFJl\LIEJ| ll)‘) |;l 1 SR PR N A | | § NN NS TN SN NN RS S | | I T Lol & 1 L] 3 N VR Y Y S I S B | [- S O T
P G T T U YT U 0 S U WO TN DO 0 S YO O SO TN 1O OO YO T ST T SO O A N TN YT U O T Y T S B A U B S O
Coa g (MRITE L GRL Ell:lXl+lzl]}'1F\Tl’lLlslTl)| |E|E|01F|];| TR T U T N T IO T T N T A A N A RO
BV T T T U N O T O T O YT S O U T U T YO W U T U A I I T T T U OO U T WY O SN I T RO S SO
L MRATE l(IFIIILIEIIIDI'[lkol!IAlElil:]l)lil_L P T T 0 U O SO O T Y T T TN NN O Y S SO B B B M
S S I U Y TR U S | I FS S N S B O S |,,J, 5 N N N Y Y BN Y S | ’ | N I N ,L‘,L,,J,L,l B O W [T N N | I N TN T S S W | l § IR Y I I |
N I | leRlllTlEl, L(,IFJIlLlEllllDl'lFlRlMlTl'lL\SiTl)l ll;lE|°lFlfl~Pl,A41.RJJj;) O S Y S Y | G Y Y N Y S O N l S I N O |
TN NN YU YO T S T T N S S S T N T T T T T WO T T T N VO S S O S S S N S S O
L4 MRNTE, (,FQLEND,FMT,FOR 1}:=1 STEP 1} UNTIL 1,00 DO IA\RIAIEIIIJIIA\Iisl)I;I
A N AR R | O U O Y B J,YL..J B N N N S N T B | TR R O A | | S RS R 11 Ly by
coa o MRTE L CAD T RMT LS T e e e b sl
P U U T T N O NN (Y T T T NS Y A T SV T G N WY DU I P S T Y O A N S O Y T A S A N O T R O B O
Lo WRUTE CFILENDL AL DN ST Y e b b b

UNIVAC 1108
UME-7636 ‘ 11 49
EXTE'NDED ALGOL ’ SECTION: PAGE:
11.3.5. Space Statement
11.3.5.1. Syntax
<space statement> ::= SPACE («<file part>, <number of records>) <action
label>
<number of records> :: = <arithmetic expression>
<file part> ::= <file identifier> | <switch file designator>
<action label> ::= [<end of file label> : <parity label>]
| [<end of file label>]|[: <parity label>] | <empty>
11.3.5.2. Semantics
The space statement is used to bypass input logical records without reading
them,
The value of the arithmetic expression determines the number of records to be
spaced and the direction of the spacing. If the expression is positive, the
records are spaced in a forward direction; if negative, in the reverse direction.
For drum file, the space statement is used to adjust the value of the record
pointer; i.e., the value of number of records is added to the current record
pointer,
11.3.5.3. Examples
1 10 20 30) 40
YU I N OSSN U T G | lA_l.-.J.;.J,l Lo el l l_,_,L_.L,__l,,v_J.A.,_L.,_J.NJ;_.J-.,L, Lo e d L 1 14 I N N [S U N W
L (SPACE (G FILETD, S, ,E,iL_.LE,AlQ.LELF.L,:J_L_J_F:LA.,JR;ll;I T H S S SRS B N S
PO N T T T VO U T T T O N U S U A N O OO O IO N B Y AR B B
PO TN N U I T TN T NS U T U T T U0 N Y O SOOI Y T N N A U N U OO IO OO O O A N O S N W IO T O
L1111 SPACE (FM LEVD,-3) [LEOF:LPAR J; | 1
PSR N OO TN TN U U U AU U000 U0 OO T OO T U U O OO O W G O YV Y SO WY Y S B S |~L...,1,..,L_~A,1,...L_..L i
AN SO O U T U O O U T YOO T U U VU VOO VO Ut U U OO TS PO T Y TN VA Y Y D N SO U WO

1 SPACE, ((FI LEID, A+B~C)yi, | o 1o (a1l 1 Ll 1)

UNIVAC 1108 l

UME-7636 EXTENDED ALGOL SECTION:]1 PAGE: 50
11.3.6. Close Statements
11.3.6.1. Syntax
<close statement> ::= CLOSE (<file part>, RELEASE)| CLOSE (<file part>,
SAVE)| CLOSE (<file part>, *)| CLOSE (<file part>,
PURGE)| CLOSE(<file part>)
11.3.6.2. Semantics

The close statement causes the referenced file to be closed,
The following actions take place:
® On a card output file, a card containing an ending label is punched.

@ On a line printer file, the printer is skipped to the next page, an ending label
is printed, and the printer is again skipped to the next page.

m On a tape output file, the end of file mark is written after the last block on
tape.

® On a drum file, the buffer areas reserved for the file are returned and if the
specified file is a temporary file, the drum space for the file is returned.

If RELEASE is used, the I/O unit is released to the system. If the file is
a tape file, the tape is rewound.

If SAVE is used, the I/0 unit is released to the system, but the unit
requirement of the program is not reduced. If the file is a tape file, the tape
is rewound,

If PURGE is used, the permanent file is closed, decatalogued, and released
to the system.

If the asterisk symbol, *, is used, the file must be a tape file or drum file,
The I/0 unit remains under program control, and if a tape file, the tape is not
rewound. This construct is used to create multi-file reels.

When the asterisk symbol, *, is used on multi-file input tapes, the following
action takes place:

m If the last reference to the file was a forward read statement or a forward
space statement and a CLOSE (file part,*) is executed, the tape is positioned

forward to the label of the succeeding file, if any.

m If the last reference to the file was a reverse read statement or a reverse

space statement and a CLOSE(file part,*) is executed, the tape is positioned .

to a point just in front of the beginning label for the file.

m If the CLOSE (file part,*) is executed after the end-of-file label branch has
been taken, no action is performed to position the file,.

UME-7636

UNIVAC 1108
EXTENDED ALGOL

SECTION:

11

PAGE:

51

When the CLOSE (<file part>,*) is used on a single-file reel, the action taken is
the same as for a multi-file reel. The next reference to this file must be a read
statement in the opposite ditection from that of the prior read on the file.

When the CLOSE (<file part>) is used, it applies only to a random access

drum file.

All file buffer areas are released as a result of all close statements being

executed except CLQSE (<file part>,*),

11.3.6.3. Examples

1 10 20 30 40

U U TN U U Y NN U S OO O IO G | Lol Lt PN N OO N VN O O Y Y S B O
kN O | 1 11 1 IclLlollel I(lFlIIL' ElllDL' IRIEILI ElAl s[El) l;l I 1 - I [R N VOO NSNS N SN I
TR TR TN NN U S A O O T Y 0 Y | [B L1 PRI SN AN AU NN TN N N N O
TN TN VO TN WO W T TN U N S WY A O B A | [| L1 AT S T T R W0 W S A B A Y
A T N SR O S S Y WO SO W 0 0 S | bt . RN BN R AR R R

R TN N R NN TOU N | 1 IclLlollel I(|F||lL1ElIJDL'lslAllel)l;i i 1 | |] | ’ | 1 1 | 1 [
[T S R T TN S S TN U A WY S0 N AR O O | R | L NN B R R Y A

IS S T VO T O OO W Y YO0 Y T O | [T B | L1 IR OO NF R S N S B T Y
TN TN S S T N O S N OO WO T O i R SN R R IR S N N S N S B A
USSR T WO A T N OO T Y A A | Lol L1 RN IR B R N A S A
Lo 11 JCLosE, GFVLENLD,, (*) s (| L [TN I B R N N S A
N I I T WY N S O T [, 1SS T GO AN Y TR B | [1] L1) T J B Y T N T I R |
F R S | S N I | () N S R S SHO W | I L1 i1 L I L1 | S I L do 1 1 1 F SR S S |
AR SN TR SN T NS NS U AT SN T IO T W0 O B [oo Ll PR SNS UNNE SO SO O A O N N S Y
T SN T T NN O W N A B I A A A e Lol L1 AR R A N AR A
Lt gy €L O0sE (FILEID,PURGE): |, I B A B AR R At
L [RN NREE | Ll N N B N RO S e)
[T S S U W U N T N U N B B O A | R R L SR A A AN R R e
TR TN U S A WU S O T WO M RO A [11 I L R BN S S R B
TN TR SN WO R O T F DU WO T OO OO O W | N | L [N B R A A S
Lot e CLosE, ((FLLEND)) G g] L P I NN SO N N S R O B A
AN T W T T OO 0 U NN O O W WO O O [L] L IR N ST Y R B B B
TN TR N O N U AU AN G U TN T Y WY A Lo 1| L R B ST R R

UME-7636

UNIVAC 1108 :
EXTENDED ALGOL

SECTION:

11

PAGE:

52

11.3.7. Rewind Statement

11.3.7.1. Syntax

<rewind statement> :

:= REWIND (<file part>)

<file part> ::= <file identifier> | <switch file designator>

11.3.7.2. Semantics

The rewind statement is used only in reference to tape files and drum files. For
tape files, it causes the referenced file to be closed and the tape to be rewound.

The I/0 unit remains under program control.

For drum files the rewind statement causes the record pointer to be set to the

address of the first record in the file.

11.3.7.3. Restriction

On paper tape files, the rewind statement may be

11.3.7.4. Example

used only on input,

1 10

TN DU T S U U W BT U AT U N N B O B T

T SR N S N W A0 Y B S O B Y O

L g IREWIEND, GFBWLENTD) G o)

- 11.3.8. L.ock Statement

11.3.8.1. Syntax

<lock statement> :

11.3.8.2. Semantics

.= LOCK (<file part>, RELEASE)| LOCK (<file part>,
SAVE)| LOCK (<file part>)

The lock statement is used only in reference to tape files or drum files. For
tape files it causes the referenced file to be closed, the tape to be rewound, an
end of file to be written if output, and an operator message to be printed in-
structing the operator to remove the reel and save it, If RELEASE is used, the
I/0 unit-is released to the system after a new reel is made ready, and the unit
requirement is relieved. If SAVE is used, the I/0O unit is released to the system
after a new reel is made ready, but the unit requirement is not relieved, The
RELEASE or SAVE must be used for tape files to indicate whether the I/0 unit

requirement is relieved or not.

UME-7636

UNIVAC 1108 :
EXTENDED ALGOL

11

SECTION:

PAGE:

53

For drum files all lock statements cause similar actions. These are as follows:

(1) A temporary file declared SERIAL or RANDOM is made permanent,

catalogued.

(2) The buffer areas reserved for the file are returned,

E xamples

11,3.8.3.
.
1 10 20 30 40
L4y b0CK, (FILEID, RELEASE): , A G
_L__L_L_J_!_,L.J_J__LJ_ LoLoboto) | T R Lo bl [VS S G N P I OO S S S L
A T T T T VYT U U YW T YO T W O 0 O WO A S W O SO A I
TN S U O YOO NN N U WU U0 N OO N SO VR WA T SO T O G T S A A A A L I T U A B
TSN T U NS TN N T U W 0 WO IS A O T U U NN U S M OO AN N O N T N W [U]
i1y r g koK (CGFVLEND L, SAVE) G L N N S |
AN ST T T T N N S S O O N S Y W00 T T U O SO NN B O [B T R B S R
TN T O T SOV R T TN T T Y U WO T SO T T Y VYU T Y S N M T VO S O [R S | L
U N O W OO A U VAU TOU U I T VU TN TN P S M VO TN N YT O WO SO W M [N T R B !
BN Y O SN Y W N YU YOO O WU T O U S SO A SO YOO O A [R N I R
a1 v g LOCKGEVLEND) Gy oy L g T S S S N N B

11.4. 1/0 SWITCH DESIGNATORS

11.4.1. General

11.4.1.1,

11.4.1.2,

11.4.2.

11.4.2.1,

Each particular I/O switch designator will be discussed separately in
succeeding sections.

Syntax

<I/0 switch designator >::=<switch file designator> | <switch format
designator> | <switch list designator>

Semantics

L/0 switch designators are used in I/O statements in the same manner as file
identifiers, format identifiers, and list identifiers.

Switch File Designator

Syntax

<switch file designator> ::

<switch file identifier> ::

= <identifier>

= <switch file identifier> Es'ubscript expression> |

UNIVAC 1108
UME-7636 ~ EXTENDED ALGOL |

SECTION:

PAGE:

54

11.4.2.2. Semanticbs

11.4.2.3.

11.4.2.4.

11.4.3.

11.4.3.1.

Switch file designators are used in I/0 statements in the same fashion as file
identifiers,

A switch file designator is used in conjunction with the switch file declaration
specified by the switch file identifier. The value of the subscript expression
determines which file identifier in the related switch file list is to be selected
for use in the I/0 statement. The value of the subscript expression must cor-
respond to the position of the file identifiers in the switch file list. The values
of these positions start with zero, If the value of the expression is other than
integer, it will be converted to an integer in accordance with the rules applicable
to subscript expressions,

If a switch file identifier is used as a patametet in a procedure, it must be
indicated in the specification part of the procedure. The specifier used to indicate
this is SWITCH FILE. The actual parameter which corresponds to such a formal
parameter must be a switch file identifier.

If a switch file designator is used as an actual parameter to a procedure, the
corresponding formal parameter must appear in the speczflcatwn part preceded by
the specifier, FILE.

Restrictions

The value of the subscript expression should correspond to the position of one of
the file identifiers in the switch file list. If the value of the expression is outside
the range of the switch file list, the file so referenced in the I/0 statement

is undefined.

Examples

SWHF [1]]
SWFILE [1F X>N THEN 0 ELSE 1_]

F1SW [INTEGER (X<N)’]

Switch Format Designator

Syntax

<switch format designatot> ::= <switch format identifier> [<subscript

expression>_]

<switch format identifier> ::= <identifier>

UME-7636

i
UNIVAC 1108 11

EXTENDED ALGOL : SECTION: PAGE:

55

11.4.3.2.

11.4.3.3.

Semantics

Switch format designators are used in I/0O statements in the same fashion as are
format identifiers.

A switch format designator is used in conjunction with the switch format

Switch format designators are used in I/O statements in the same fashion as are
format identifiers.

A switch format designator is used in conjunction with the switch format
declaration specified by the switch format identifier. The value of the subscript
expression determines which editing specification part in the related switch
format list is to be selected for use in the I/0 statement. The value of the
subscript expression must correspond to the position of one of the specification
parts in the switch format list. The values of these positions start with zero. If
the value of the expreséion is other than integer, it will be converted to integer
in accordance with the rules applicable to subscript expressions.

If a switch format identifier is used as a formal parameter in a procedure, the
specifier used to indicate this is SWITCH FORMAT. The actual parameter which
corresponds to such a formal parameter must be a switch format identifier.

If a switch format designator is used as an actual parameter to a procedure, the
corresponding formal parameter must appear in the specification part preceded by
the specifier, FORMAT.

Restrictions:

1. The value of the subscript expression should correspond to the position of
one of the editing specification parts in the switch format list. If the value
of the expression is outside of the range of the switch format list, the editing

specification so designated in the I/0 statement is undefined.

Examples
SF [1]

SFHFT [IF X<N THEN O ELSE N_]

11.4.4. Switch List Designator

11.4.4.1.

Syntax

<switch list designator> ::= <switch list identifier> [<subscript expression> |

<switch list identifier> ::= <identifier>

UME-7636

UNIVAC 1108 .
EXTENDED ALGOL

11

SECTION:

PAGE:

56

11.4.4.2.

11.4.4.3.

Semantics

Switch list designators are used in I/O statements in the same fashion as list
identifiers. A switch list designator is used in conjunction with the switch list
declaration specified by the switch list identifier.

The value of the subscript expression determines which list identifier will be
used from the switch list. The value of the subscript expression must correspond
to the position of one of the list identifiers in the switch list. The values of
these positions start with zero. If the value of the expression is other than
integer, it will be converted in accordance with the rules applicable to subscript
expressions. If a switch list identifier is used as a formal parameter in a pro-
cedure, the specifier used to indicate this is SWITCH LIST. The actual param-

eter which corresponds to such a formal parameter must be a switch list identifier.

If a switch list designator is used as an actual parameter to a procedure, the
corresponding formal parameter must appear in the specification part preceded
by the specifier, LIST.

Restrictions:

1. The value of the subscript expression should cotrespond to the position of
one of the list identifiers in the switch list list; otherwise, the list so
referenced in-the I/0 statement is undefined.

E xamples

SWLIST [I7]

SLST [IF A>B THEN O ELSE I+1]

UME-7636
: |

UNIVAC 1108 :
EXTENDED ALGOL

12

SECTION: PAGE:

12. ACTIVITY CONTROL

12, 1 ACTIVITY STATEMENTS

12.1.1.

Syntax

<activity statement> ::= <execute statement>| <wait statement> | <delete

statement> | <event statement>

12.1.2. Semantics

12.1.2.1,

Synchroncus and Asynchronous Processing

Normally, when the object code produced by the compiler is executed, it is
regarded as one activity by the executive system. The program is executed
serially following the logic of the source statements. This is synchronous
processing, ‘

A program can be structured so that serial execution of all parts is not necessary,
it can be written as several independent parts which do not depend on each

other and which can be executed in parallel. This is asynchronous processing.
Activity statements allow programs to take advantage of this independent
structure by calling procedures for processing in parallel with the main program, T

The following diagrams depict the difference between synchronous and
asynchronous processing.

Figure 1 shows synchronous processing; the statements are executed serially in
time. One statement is processed only when all those preceding it have been
processed,

O O O R OTOSOS

time —5= 1

<S) represents an ALGOL statement,

Figure 12—1. Synchronous Processing

T For discussion purposes the main program will be treated as any other activity.

UNIVAC 1108
UME-7636 EXTENDED ALGOL

12 ’ 2
SECTION: PAGE:

Figure 2 shows asynchronous processing, When an execute statement (E) is
encountered an independent activity is begun., The set of statements on each
line is then scheduled with the executive system for simultaneous execution,

—————— O o . S R e
9_ _________ 3'@>1-(-) ————— @11
OO,

tim e e
S : ALGOL statements other than activity statements.

E : execute statements

Figure 12=2. Asynchronous Processing

12.1.2.2, Synchronization of Asynchronous Activities

In order to synchronize two or more activities (e.g., when the individual results
of several activities are to be printed in a single report), an activity may ‘wait’
until another, or several other, activities have completed,

By W ___.-@---@————@-—@1———(@5 — — — (activity A)

@——i—_-—_@——@—-@ (activity B)
-©—®1_4__©“@6 (activity C)

time =

S : ALGOL statements other.than activity statements
E : execute statements

W : wait statements

Figure 12=3. Synchronization of Asynchronous Activities

UNIVAC 1108

UME-7636

EXTENDED ALGOL : 12

SECTION: PAGE:

12.1,2.3.

12.1.2.4,

In Figure 3, three activities are diagrammed (A, B, C). At statement Wy
activity A waits upon B. At Wp B waits upon C.

Activity A will not proceed past Wl until B completes. B. will not complete
until C completes, because at Wy activity B waits upon C. Therefore, at the
time statement Sg is encountered, the entire process is again synchronous, and
all statements following Sg are processed serially (until another EXECUTE

is encountered).

Task Variables

A task is composed of one or more activities, allowing the programmer to treat
related activities as a unit. Tasks are formed by giving a task variable as a
parameter to the execute statement. Since task variables carry information
necessary to communicate with the executive system, they must be given when
it is desired to delete T or synchronize tasks.

Event Variables

An event variable represents a sub-activity, and has two states, set and cleared.
The state of an event variable is program controlled by use of the event statements,

SET and CLEAR.

An event variable can be used to synchronize processing at the sub-activity level
(using the ewait statement). The state of an event variable may be tested by the
intrinsic Boolean function ETEST (Table 3.1, Section 3.2.2.2.) which yields a
TRUE value if the variable is set, At block entry, all event variables are
initially cleared. :

12,2, EXECUTE STATEMENT

12.2.1, Syntax

<execute statement> ::

EXECUTE (<task specification>)

<task specification> ::= <procedure call> | <procedure call>, <task variable>

<task variable> ::= <variable>

12.2.2. Semantics

The execute statement allows programs to multi-process by calling procedures which
will be processed simultaneously with the calling block. Each procedure is regis-
tered with the executive as an independent activity, using the Executive function,

FORKS.

In an execute statement, if a task variable is given the procedure call is associated
with that variable. 1f no task variable is given, the procedure call is not associated
with any task.

T See special cases of the delete statement for exceptions.

cl
UNIVAC 1108 12

UME-7636 EXTENDED ALGOL secTion: Pace:

An activity is terminated in any of the following ways:
(1) it reaches the final END of the procedure;
(2) it tries to complete a goto statement to a non-local label;

(3) it generates an unrecoverable run time error (e.g., subscript out of range;
improper format, etc.),

(4) a delete statement is encountered naming the procedure’s associated
task variable,

In order to wait upon or delete a particular activity, a task variable must be given
in the execute statement, which causes the executive to assign the activity an
identity, There is a limit (36) to the number of activities with an identity which a
program may have executing simultaneously. If this limit is exceeded, ALGOL
will wait until an identified activity terminates and reuse that identity. The
progtammer need not be aware of this restriction because ALGOL will do its own
run time queueing of procedures.

NOTE: There is no limit to the number of activities without identities a program
may have, If it is necessary to have more than the maximum number of
activities simultaneously processing, non-identified activities may be
used.

12.2.3. Restrictions

It is important to consider the effect of multiprocessing upon both the system
and the individual user,

The execute statement allows the user to take advantage of multiple processors

to decrease his throughput time., e.g., in a job which has an elapsed time of 5
minutes, 10 minutes of CPU time can be taken advantage of, Extra time will be
used due to overhead for initialization of activities and activity control house-
keeping done by ALGOL. Multiprocessing also increases system overhead because
the executive must now schedule several separate activities simultaneously.

In demand or real-time situations, a quick response can be vital. In these situations,
the ability to schedule independent activities can be used to achieve this quick
response.

In a batch mode, however, where rapid throughput is not necessary, caution should
be used against indiscriminate use of this capability,

ALGOL library procedures (SIN, COS, MOVE, etc.) may not be used in an execute
statement.

External ALGOL procedures, which have been separately compiled, can be used
in an execute statement.

UNIVAC 1108

UME-7636 EXTENDED ALGOL recmion, 12 res, S
12.2.4, Example
LABEL 0 OPERATION 4, OFPERAND ‘0 coMm
T TN T T Y N U O Y U SO NS A N G T N SN OO S GO S VUG W N G Y W O U SO
Lot ITASK TASKICONTROL G, o f v o v e b
(ST T U S Y R N U VAU Y N SO S O OO A O ST Y NS G O O
S O T T T Y VU T Y T W T A T I T N O O SO T T O U T N N Y U O N S A W I B
OO YOO T O T S SO T O N U T OO P T T TN YO O O O T TG S W S M B
b a1 IEXECUTEGPROCTCARGTY) Viiy o v v v b e
b v e e rac v b v e e vl e e v b
it 1 EXECUTE(GPROC2) ;0o v bv e o b v e b
U S T U USRNSSR
L1111 EXECUTE(PROCT(INPUT, OQUTPUT),, TASKCONTROL,)|:,

12.3 WAIT STATEMENT

12.3.1,

12.3.2.

Syntax

<wait statement> ::= WAIT (<task list>)
<task list> ::= <task variable> | <task list>, <task variable>

Semantics

The wait statement gives to programmers the capability to synchronize processing,
If all the activities associated with the task variables named are completed (or if
the task variables were never associated with any activity) the wait statement has
no effect on the program,

If any activity associated with the task variables given is still processing or
scheduled for processing, the activity issuing the wait suspends itself. It will
continue processing only after all activities associated with the task variables
in the task list have terminated.

12.3.3. Example

1 10 20 30 40 50 60

O T S T N T Y T T O S T S A G ST O DO O OO0 T YO WU OO U OO O WO G T Y O W S W0 OO
i g ITASK (TASKER T G 0 oo b v aae v b e ool
Lt ITASK GARRAY G GONTIROLII L 1500 iy oo Lo v e e v Lo
N T O SO O G O T T O VO U U OO Y N U NS O T YOO U S O SO0 VO WY O 1 A W W N WO WO RO N A S
N TSN U T T S T T W (O U T S GOV VOO YO UV Y YUY WO G T T YO T N S O SO WY W 00 S S) A A
teter v Lo e v e by coen e g e e e b e s e e o Lo
t g e IWALTGTASKER,, TV iy o ol oo Lo v doe v a0 L
oo aoy g IFOR =1, STEP, 2, UNTIL, , 5 DO | WAILT(, CONTROLDII |), 5,

UNIVAC 1108)
UME-7636 EXTENDED ALGOL |

12 } 6
SECTION: PAGE:

12.4 DELETE STATEMENT

12.4.1. Syntax

<delete statement> ::= DELETE(<task list>) | DELETE (<arithmetic expression>)
<task list> ::=<task variable> | <task list>, <task variable>

12,4,2. Semantics

The delete statement is used when one activity wishes to terminate another
activity., When the delete statement is encountered, it causes the immediate
termination of all activities associated with the named task variables using
the executive function ADLTS.

If an arithmetic expression is used, it must be equal to 0 or 1. Any other value
will cause an error to occur.

If the value is zero, all activities other than the one giving the DELETE are
terminated. If the value is one, all activities without identities (those initiated
without a task variable in the execute statement) are deleted. It is possible for
an activity to delete itself,

12.4.3. Example

1 10 20 30 40 ’
U ST T T U U U T N SO A N U T T M O U S N N O S B S B
v e ITASK T, T2, T30 0 b e b
U S T T T T TR T O (TN O N IO A T U O A S O B
Ly g g IPNTEGER, ey v v b e e b
RTINS O T T U 0 OO U Y AU U O S S T S O U O S T IO S S Y S M T S MY M
FER N B S T B IEXECUTECPROCH G)y TV 00w 0 vy v v by gy

|EIXIEICIUITIEI(IPIRIOICIZI'lTl]I)]

[T T R TR SN B R O N A B A S M

TN S T N U S U U N U T U U T NN T A U T S U T I T U T T W S T N N N WY WS S A

a0 g IDELETEGT VT30 b o b

llllllllll'JJlllLllllJLllllI?lllIIIlIII[lIIIIIIl

vy o444y |WWF, DVWF 4SS , 1,0E-6 | THEN L DELETE (),

UNIVAC 1108

UME-7636 EXTENDED ALGOL . cecrion: 22 PacE:
12.5. EVENT STATEMENTS
12.5.1, Syntax
<e§ent statement> ::= <set statement> | <clear statement> | <event wait statement>
<set statement>::= SET (<event list>)
<clear statement> ::= CLEAR (<event list>)
<event wait statement> : := EWAIT (<event list>)
<event list> ::= <event variable> | <event list>, <event variable>

12.5.2. Semantics

The event statements are used to define sub-activity states and to wait for
sub-activity completion,

The set statement indicates that the event is active, If the intrinsic Boolean
function ETEST is given a set event variable as an argument, it returns a value
of TRUE. No waiting is done by the ETEST function, The ewait statement will
suspend the activity issuing it until all event variables in the list are clear. By
using this statement, it is possible to delay an activity until another activity has
reached a certain point,

The clear statement indicates an event is inactive, An EWAIT issues a cleared
variable causing no delay in execution. The ETEST function returns a value of

FALSE.

NOTE: After an EWAIT on an event variable is passed, it leaves that event
variable set, whether or not it was set originally.

UNIVAC 1108
EXTENDED ALGOL

12

SECTION: PAGE:
12,5.3. Example
1 10 20 30 40 50 60 80
T S S T Y U OO O S B T S A PO O U RO TN I S O OO A Y O (S TN S A T NN U S A0 SN (R AV N S Y (O S 0 SO N S O DA I
Lot Lt b LG LEVMENT B L E 203, s s v o b co o o b c b cea b s v
Lo G IREAL L RES VLT, (INETRALG e e b e s v b i L
Lo oinaa s IPIROGEDURE |, (GRAPHGPOLNT, INPUT,, PASSEDP, {PLOTTED)i 1 a v v ool v o o
Lo i1 i IEVENT , PASSED ,PLOTTED: v b b e e b e
Lo oo REAL POLNT,, INPUTG | vy v b o e o ol cu o e b oo d e 1
T T O U T T S O S T O S VOO U0 Y 00 O S YOG U U 0 A S T OO SO A T O NN O T Y W TN O P B B 0 B M
T T L O O S S T (T O S T O T T S U Y U I Y PO IO S0 OO NV SO0 SO O OO0 A Y O YO OO0 OO B OOV N O W S B S
v ICLEARGPASSIEDY i o vy ol s vy s b o v b e v e e Ly g gy
YR NT TN S I U O L0 O T T YT S YO ST SV U N S W SO OGS N T YO T O D A T T W S 0 S O T N U AV SV T N A
T O T T . U T S T S T O T S T U OOV U TS S O S T S W O S T B T T T N O B0 B M O MR R O
T T O o T O I SO S S T e S S T T I T AT T B SOVt S 0 YOO Y I 0 W O O S S S S O N U O Y 0 Y S S W

Lo o a o tLFe POHRT PO LNT TS ,0,,10,0,0,T,

T HEN 6,070 ,L,0,0P ELSE

CLEARGPLOTTED),

L1

L

S S N 0T 0 T O P S S S T O TR T T O SO O TGO U WS OSSN S G N 0 VOO S O T T 00 O 0O H W N S A OV Y B Y Y OO S N SO A0 I
T,EST,(,PlAS;S EDy), AND ETEST(,PLOTTE,D, THEN 6,0 T.0 EXI,T:;
T T S T T O T T S T T T S O T B S S Y DO T G U U S U SO A U S N S SO IO S S POV 0 O AU SN I HAT Y SO I I S WA S0 W Y A SOV A ANV Y SR T BRI
TS TS T U L U T U U T A T T S S T A S VUG U O S0 WU SO U XS T ST S WA T O U O BN S A O A T N S B O
EXITizi 00 JEND OF JGRAPH: o o s e b e v s v v b s g
O T T T L S S T Y T T B S O S T TGO U VO AV O Y S S S0 0 RO WOR TN RN AT AT NS Y B U AN A S A MY M A R
TS SN N T T U IO TN YOO N OO N T N O A N0 O RSSO YA Y AT SO0 N WS S S OO N0 U R T VAN A ST N RS TOY O O TS T 000 OO TN O S T SO ST SO0 Y B B
Lo e cISETG B NGE2Y gy vy v b o e o e e e e o b e b e s
T T S T L O T U B B S S T T U S B U DO U O S O SO TS S U T Y T T N SO O A SO A BN A S B Y Y Y TS ETI A
oo a1 IEXECUTE((GIRAPHORES VYT, LMNET HALLIETY 4E2), e Lo o vl e iy v
T T W OO T T U O U L T G O T (T S B (G S O S S TS W O O U S ST ST O S S O S A0 S S AT A O O WS SO
e (EBWANTOGEY Y G vy s v b v v b v v e by vy e e v e v v v b g
Lo i g JCREARGEYD Gl o - v b e s ol e i b e e e v b o v b e
A A TN o T OO0 00 00 OO Y T T T T T O U S0 W SO0 O T OO S U MO A O O SO N U B O SN Y0 B G S A O
T S O B U o T 0 O T T S T S Y S T T U U TV O O O 0 A TS U IS YO O S A S U O 0 T U SO0 S W S VW AN G B R N RS
ISR U T I O U S U G U0 A0 0 O S T S U N T U0 O D T N T 0V WY T U T O U O Y T A YO TN SO Y T T A A S B B O B S O
L1l TRV T T T ST O O N T OO T A T AW ST WO A 0 T U O S O 00T Y S S T S O U O T T T T WO A (OO N T U S S T

UME-7636

UNIVAC 1108

EXTENDED ALGOL SECTION:

13

PAGE:

13. SORT/MERGE

13.1, SORT STATEMENT

13.1.1,

Syntax

<sort statement> ::=SORT (<input option>, <output option>, <data reduction
’ procedure>, <sort order>, <range inclusion>, <number

of tapes>)

<input option> :: = <input file> | <input procedure>, <record length>

<input file> ::= <file identifier>| <switch file designator>

<input procedure> ::= <Boolean procedure identifier>

<record length> : : = <fixed item size> | <varia'ble item size>

<fixed item size> ::= FIXED RECORD <arithmetic expression>

<variable item size> ::= RECORD <minimum isize>, <maximum isize>

<minimum isivze> : = <arithmetic expression>

<maximum isize> :: = <arithbmetic expression>

<output option> ; : = <output file> | <output procedure>

<outpﬁt file> :: = <file identifier> | <switch file designator>

<output procedure> : : = <Boolean procedure identifier>

<data reduction procedure> :: = <Boole‘an<procedure identifieb | <empty>

<sort order> ::= <own compare> | <key description>

<awn compare$.. = COMPARE <Boolean procedure identifier>

<key description> : ;= KEY <format>, <ordering sequence>, <word position>,

<bit position>, <number of bits>

UME-7636

UNIVAC 1108
EXTENDED ALGOL 13

SECTION:

PAGE!

13.1.2,

<format> ::= <alphabetic variable>

<ordering sequence> ::= <alphabetic variable>

<word position> :: = <arithmetic expression>

<bit position> : .= <arithmetic expression>

<number of bits> ::= <arithmetic expression>

<range inclusion> ::= <hivalue>|<low value> | <empty>

<hivalue> ::= HIGH <arithmetic expression>| HIGH <arithmetic expression>,
OWN KEY <rangeown>| HIGH <hivalue procedure>

<rangeown> ::= <major own>] <major own>, <minotr own>
<major own> :: = <arithmetic expression>

<arithmetic expression>

<minor own> ::
<hivalue procedure> : : = <Boolean procedure identifier>

<low value> :: = LOW<arithmetic expression>| LLOW<arithmetic expression>,
OWN KEY <rangeown>| LOW<low value procedure>

<low value procedure> : : = <Boolean procedure identifier>
<number of tapes> :: = NTAPES<integer number> | <empty>
Semantics

The sort statement causes data, as specified by the input option, to be reordered
as directed by sort order and returned to the program in the manner specified by
the output option. All items specified when using the sort statement must be
specified in the order required as stated in the syntax of the sort statement.

m Input Option

An input option must be given and must be the first item specified in the sort
statement, If an input file is given as the input option, the file must be of
fixed item size only. All records on the file will be taken as input. Item size
and blocking information will be taken from the file declaration and no record
specification is to be made in the sort statement. This file will be rewound
and returned to load point after the SORT has read all the records if tape, and
if drum, the pointer will be reset to point to the first item of the file.

UNIVAC 1108

ME- | |
UME-7636 EXTENDED ALGOL scron: 10 | ence:

If an input procedure is specified, that procedure will be invoked to furnish
input to the SORT. An input procedure must be a Boolean procedure, with an
array as its only parameter,. Array size is determined by the record length
specification. The input procedure, on each call, will either (1) insert the
next record to be sorted into the array parameter, or (2) assign a TRUE value
to the procedure identifier. When a TRUE is returned from the input procedure
to the SORT, the SORT will not use the contents of the array, and will not call
the input procedure again., The record length represents the length of the
records to be sorted. Record length must be stated whenever an input procedure
is specified. For fixed length records, this will be the length of each record
presented to the sort. For variable length records, two values must be stated:
the minimum record length and the maximum, and they must be stated in that
order, Variable length record files to be sorted must have an input procedure,
as opposed to an input file declaration, associated with them,

- m Output Option

An output option must be supplied and must be the second item specified in

- the sort statement. 1f an output file is specified it can only reference a fixed
item size file. The sort will write its output on the specified file, close the
file upon completion and rewind to load point if tape or first item of the file
if drum. If an output procedure is specified, it will be invoked once for every
record that was sorted, and once to allow ‘‘end of output’’ action, This pro-
cedure must be untyped, and must have two parameters: the first a Boolean,
and the second an array. Size of the array is determined by record length.
The first parameter will be TRUE if, and only if, the last record has already
been returned. If the first parameter is FALSE the second parameter will
contain a sorted record.

m Data reduction procedure

The data reduction procedure is optional, but if indicated, must be the third item
specified in the sort statement. If a data reduction procedure is specified, it will
be invoked by the SORT each time records of identical keys are encountered as
the data is sorted; the option to condense items is open at this point. This must
be a Boolean procedure with exactly two parameters, both of which must be
arrays, The result which is returned via the procedure identifier should be TRUE
if the arrays are combined and FALSE if not, If the records (arrays) are combined
the array given as the fitst parameter must contain the combined record; that
given as second is ignored. The key field defined to the SORT of the two
records, if not combined, or of the combined record, if combined, must not be
altered. Data reduction cannot be used with files containing variable size

records.

® Sort order

The programmer has the option of defining a key for the SORT and the SORT
will generate the compare coding for determining which of two records should
be used next in the sorting process, or the programmer may specify a compare
procedure of own code.

UME-7636

13

UNIVAC 1108 -
EXTENDED ALGOL

SECTION: PAGE:

If a compare procedure is specified, it is called by the SORT to determine which
of two records should be used next in the sorting process. It must be a Boolean
proceduie with exactly two parameters, both of which must be atrays. The
arrays must both be equal to the largest record contained in the file to be sorted,
The result which is returned via the procedure identifier should be TRUE if the
array given as the first parameter is to appear in the output before the array
given as the second or if the order is immaterial, and FALSE if the arr:ay‘ given
as the second parameter is to appear in the output before the array given as

the first parameter, o

If a compare procedure is not stated, then a key must be declared. If key is
specified, then the 1108 SORT will generate the compare coding. The key
description defines the field of the record on which the file is to be ordered.
Every record must contain the entire key field described. The output of the
sort will be a file reordered on the specified field.

The key description is composed of the following five variables:

(1) Format

An alphabetic variable specifying the format of the key field as follows:

A alphanumeric

B signed 1108 binary

D signed decimal’

M 7090 IBM* signed binary
U unsigned binary

(2) Ordering Sequence

An alphabetic variable specifying the desired ordering sequence of the
key field as follows:

A ascending field
D descending field

(3) Word Position

An arithmetic expression which must yield an integer number specifying
the number of the word within the record containing the most significant
bit of the key field, The words within a record are numbered from left to
right beginning with 1,

(4) Bit Position

An arithmetic expression which must yield an integer number in the range
of 0 through 35 indicating the bit position within the above defined word
which contains the most significant bit of the key field. The bit positions
within a word are numbered from right to left beginning with 0,

(5) Number of Bits

An arithmetic expression which must yield an integer number specifying
the length of the key field in bits,

*Trademark International Business Machines Corporation

UME-7636 . 13

UNIVAC 1108 '
EXTENDED ALGOL

SECTION: PAGE:

B Range Inclusion

Range inclusion specifications provide the user with the ability to include
only values above or below a given value as input to the SORT. There are
three ways in which the range inclusion facility can be specified or it need
not appear in the sort statement at all,

(1) The hivalue or Iow value facility can be i'n relation to the already specified
key field of the sort statement, In this instance, the key field must only
include two words of the item and will be taken as two whole words.

" (2) It can be in relation to a defined field, OWN KEY. This field can be other
than the key field indicated in the key description or in the case of a
compare procedure where no key field is defined. The OWN KEY specifica-
tion allows for the definition to encompass not more than two words of the
item. If it is only to include one word, then the word number, beginning
with one and counting left to right, must be specified. If it is to encompass
two wotds, then the word numbers of both words must be specified in
sequence, first word major, second minor. :

(3) It can also be a Boolean procedure. This procedure would be called by the
sort in order to determine whether or not to include this item prior to in-
putting the item to SORT. If specifying a procedure, it must be a Boolean
procedure and have an array as its only parameter. The result which is
returned via the procedure identifier should be TRUE if the item is to be
included in the sort and FALSE if not.

If a range inclusion procedure is desired then the procedure name must
stand alone., If a function designator is specified, it must have at least
one parameter,

Arithmetic expressions for HIGH, LOW, and/or OWN KEY must yield an
integer value.

m Number of Tapes

If scratch tapes are indicated, the number must be specified at compile time
and must be an integer number within the range of 2 through 7; it must be the
last item specified in the SORT statement and must be preceded by the
indicator, NTAPES. The philosophy of ALGOL sorts will be to take a
standard of core, scaled to 1108 SORT minimum requirements, and calculate
a suggested drum, scaled minimum also, and avoid use of scratch tapes. Only
if an exceptionally large volume input is expected should scratch tapes be
specified.

13,1.3. Restriction

A general limitation is that array subscripts should not be used which exceed the
maximum record length specified to the SORT.

UNIVAC 1108

UME-7636

EXTENDED ALGOL

SECTION:

13

PAGE:

13.1.4. Examples

E xample #1

1

10 20 30

40

50

60

i BIEGING , ICOMMENT,. SIORT, . PIRGGRAM
s o AP HA KLND,SEQ:, I NTEGER

DEFLNENG [INPUT, & ,0UiTPUT, PROCEIDURES, & ,KE|Y:;
W,ORD, B 1T . RLNTH;,

BIOO,LEAN, B]1,82;,

vl

| Lt Lt
Fooo o o FOULEL NG F N3 0T L4 s b v o o b v i b b
Lo FLLE OUT G FOUT T G 202) s 0 0 v o b co e Do e i s s b
L1 ALPHA ARRAY ARIN, ARO L 1:yva ;o T R R TN WY N ST S ST ST N ST SO A A ST N S E S S
T T T T L T T T T T T Y O N GO 1O O T W O O T S T S B N Y O OO PO N S S AR W0 Y DO AU S MR ST
toe .t BOOLEAN PROCEDURE, INPROC CARTY Gy | v Lo o ol o ba craa |
it L JALPHA CGORE (ARRAY, ARIG i 1y, S O O S O S S YN VI SO Y W O SO0 O WY T
Lo v e IBEGHN v baao s oo v b e o o b e e an c o Loeeac v o b v v b a1
s v b BABEL O EBIOR L PTGGP2G] Gy v b v b a v e b v by
Lo ea ool oo (READ GRLLNG w n ARTD LB ORIy b i 0ol e o e b i 1
bov e e b o UNPROG: I FRALSE; (60 TO (Pl v ot o byvaa oo b oo v b v a1
Lo caed oo 1BOF L FINPROC: TRUE; G0, TO P21, |\ 0yl v vy el e e a0y
PRI S R R WO R IO NP B YO l:li vt oo b e cvaeaseaac b vacag e b v ra e e e rc e Lo e c e gy
AT T S O O T Y 3 W S S W S T T N Y S T S S [N O N S S 0 0 A ST R HA A O ANV W S M SR
N U T N O N 0 I 100 TN R O ng T T S S T T T T S T T T T T VU O O WO A A T TSV B U S 0 Y N S S Y S T O
RTINS0 T WA Y NN B S S S S Y T [S S T S AU B BN A T T T T T O T O O T O O BN TN NN SO0 S Y MY O R BT
O O T SO Lt 1 IL-TE o > T S B O T B O 0T U O W S S S A0 GO VS S T IO YU W S Y T SO M S M U
S S O O S U U o e S S B O O T T T S T T (O O OO OF 008 A U TS S S T T YT Y T VO WO O S T O R
T O T N Y U T Y U T S T[T Y T T Y A0 Y000 Y SN T S TS O WU S A S S OO R A S R T
T T Y T U T T Y T T T TS T S B SO T T U T T T G SO N T S O U T T B S S S O 0 S M AU A S S S SO PO
Lotototot 1o 1 APIRIOCEDURE OPROC, (((BOOLT, AR2) iy vl v s b v b v caaa b v g0
oo 1 |ALPHA CORE ARRAY AR2;, , BOOLEAN BOOLIT: , , |, o v loa vl
e g IBEGUN e e s e b e v s v vl e ca o d s a i b i
v b BABEY (B2 ALPHA O BQFOS L v e b b vy b ey
rar v aa t 1 1B QFQ I"SEMNDSRT iy b s e b e o e e a1
cov e b P 800 T THEN, | BEGN, WRLTE(IFOUT, ., EO0F0);: 160 ,T,0 B2, END ELSE ;|
e e b e WMRETIEGFOUT, e (AIRZD Gyl e o b ca b o b e
[T Tl =111 O O S (U U T (T T T T ST O O S S0 OO O W S T B A S Y SO S
T S T T YA U OO P00 O T VST S TN S S N A S A D N N TV T A T YOO S S ST AN S Y SO Y SO O A A T O IO O A A A
1 10 20 30 40 50 60 80
o e KN = A G e e b e e b e D s ol s
P CSEQe = A G i T I S T R U T S S S R S IO SR S SRR
L LT L L e T O T T S S B S O T S T T SO TV G SO S A I UL Y B N
e WORDE =T b s b i s b e g
by BT =805 DU S T U Y WA S YT YT R T AT T Y U T T ST S T A W S MR WU W A
T O T B N T BRI L T T T O T O T ST U YN O T O [O S N V1O YN P S ST SO OO WO WY TS S
SO T O S I SV A BB F T T T TS T S O T T U0 O 0 Y U 0000V S O P VO Y S U Y O S0 W S N T U0 W S S 0 B M B B N
Lo caed v [T SR FH T U U T S T YT S S O U SO S T S T W S A S S M SR
T T O T T S T YO T S S S T S TS O O T N SN SO T S T VO T S S VY U SO L O T S S DA
T BRI PR BT ol v v b v e b v v L s v v v b
S OOy U OO T . U P TS O T S T TS S S OOt O S W VO S B O O 0T T O 0 AN Y T 0 WY T '
L S ORT(INPROC, FIIXED RECORD RLNTH, OPROC, KEY KIND,SsEQ,WORD,BIT, 108): , |
I U ST T S S T S S S SO BSOS O N S T S OO SRS SOV SOT SO SO SO N SO A VTS T 0 S P O A 0 S AT E TR
S S T U B S T T TS G S T T O B S S SOV ST S S WO WY S O S M B B AR A
e L e e b s b Lo b
i va b e v das o L S O T TS T T T S T S Y WY S S S S B
Coa aBNDG i b Lo v v b e v e dav s v beve |
T T T T O Y T AU T S O S Y 1O O S O T S T T TG T O W G U SV S B O S A A Y 00 B B

UME-7636

UNIVAC 1108

EXTENDED ALGOL

13

An example of a SORT program defining input and output files and a key is
as follows:

Lt

s 1 aBXTIERNAL BOOLEAN PROCEDURE S COMPR;| COMMENT A CGOMPARE PROCEDUVRE | |, ;i 111
ey s NS TEAD O F DEFTNING, [KEY G 0 v e b o o b o e i
lslolRlT‘(lllNllelolcl'JFIIIX\ElD RE\clolRIDI IRLLJN

1 10 20 30 40 50 60 80
| (BEGIN | |COMMENT , SIORT ,PROGRAM DEFINING | NPUT & QUTPUT FILES & KEYS: |\, 1,
| Lo aSIANIE ALPHA FLILE (PN FEN2,,28 00 140 G o e e b s e i e
| oas a1 aSAWVIE JALPHAL FLILE, OU T FOUT, (20,3280, T 40 v v be e ey voeacnboner e v s e |
U N G T T T U T - T T B T T S S S T S T T G O T S T O O O T T S O N A S T S IO DA SO B A Y SO
PR S T T S U T I SV S O S T SO S S T S S RO O T T VA G S T RSO RIS SR
U O OO T I ST T O S B - O O Y S T TS T S O T O O VO I O T O S O Y Y O S S WA GO0 IOV B S O B \44
BT T T S O I T S B S O S ST T S T T T SO O G S T TS SN OO T Y S O DN OO N (O N T W Y R
S S T T O T S IO O S S S T SO T AT O S S Y T T S S S S S S S W T S S B
| IS T O W |$|OIRIT((|F| ! INA',['?JgLuiTi' JKIELY,L l\ IA/ 1 ‘JA,I’Q' \1 i '\315l' 1 110\,01} l; 1,,LJ,LJ¥L,J‘J‘J;I LI L,L,L,LJ,‘,‘L,|7L,I IO] LIPS T N Y
PO T T U ST N T U0 T AN U T P 0 N U WS O W U T U U S O T YO A U0 I Y T S T S S 0
T N S O O T U SO G- T O S 0t O SO O 0 S T G0 OO Y VO O O G T N T VO 10 O W W 0 N B B G
PO S T WO T N S SO N O U U O Y G VO O T S TS O TS VT T O SO VY S O G B0 0 MY S S O
I N O T T T O T S T T S T T T T S S S S T T T T T B O T U TS S0 T S S Y O S (O M W R
PTI0GB0 U O O T T U TS U O WO A T ST Y P S P B VNN T O A A O SO Y Y MR
Another example of a SORT utilizing an own compare procedure instead of KEY
can be generated by replacing the SORT call in the first example by the
following lines:
1 10 20 30 40 50 60 80
T O L T O B T S T T U T T S VO S O POOT O (OO O O U T S 0 (O O O U G B N S T I Y I 00 Y I S R S SO A IO
O T T T T T T U T U T T T U S S S S T T T S T T T O O SO O SO S G S O T S S S S N S S S S S SO A U Y S U T S SR B

LU \TH.O0PROC, COMPARE SCOMPRY i\ | \ vy yu v]y vy

ot

T N S O S T T S S T S Tt N T O T G T OO S W S S OO0 RO SO 0 S ST O U TSSO TS N0 O DO B WO SO0 SO ST

Another example of a SORT utilizing a data reduction procedure and an hivalue
procedure can be generated by replacing the sort call in the first example by
the following lines:

1 10 20 30 40 50 60 80
Lo EXTERMNAL (BOOLEAN PROCEDURE DROC:, EXTERNAL BOOLEAN PROCEDURE HUPRIC: 1 11 11
i1) IGOMMENT, DRIOC, 1S A DATA REDUCT IION PROCEDURE T0, BE 1NVOKED WUPON , \ 1, |
L2l 1111 (|0CCURRENCE OF DUYPLICATE KEYS & HIPRC 1S |A H!GH VALUE PROCEDURE , | , , |
Lo s e o AT hCK (I NPT, RANGE ;G o p v v v b v v b s e b e e b o s
L SUORTIGF N, FIO U T IDROC KEY, 1A e A 131500 108, HMUGH| HEPRC) iy s oo o Lo oo o]
ST U T SO T T OO T S T S OO OO N S O S S O TN T N TN P T T WA Y S WO A H MU GAV N N SO W S TN DA S A O

13.2. MERGE STATEMENT

13.2.1.

Syntax

<merge statement>::= MERGE (<moutput option>, <range inclusion>,
<merge otder>, <merge file list>)

<moutput option> ::= <output file > | <output procedure>, <mrecord length>
<output file> : : = <file identifier> | <switch file designator>
<output procedure> ::= <Boolean procedure identifier>

<mrecord length> : : = <arithmetic expression>

SECTION: PAGE:

UNIVAC 1108

UME-7636 - EXTENDED ALGOL ceemon: B e
<range inclusion> :: = <hivalue> | <low value> | <empty>
<hivalue> :: = HIGH <arithmetic expression>| HIGH <arithmetic expression>,

13.2.2.

OWN KEY <rangeown> | HIGH <hivalue procedure>
<rangeown> : := <major own> | <major own>, <minor own>

<major own> :: = <arithmetic expression>

il

<minor own> :: = <arithmetic expression>

<hivalue procedure> : : = <Boolean procedure identifier>

<low value> :: = LOW <arithmetic expression>| LOW <arithmetic expression>,
OWN KEY <rangeown> | LOW <low value procedure>

<low value procedure>:: = <Boolean procedure identifier>
<metrge order> : : = <own compare> | <key description>
<own compare> : : = COMPARE <Boolean procedure identifier> | <empty>

<key description> ::= KEY <format>, <ordering sequence>, <word position>,
<bit position>, <number of bits>

<format> :: = <simple alphabetic variable>

<ordering sequence> : = <simple alphabetic variable>
<word position> : : = <arithmetic expression>

<bit position> ::= <arithmetic expression>

<number of bits> ::= <arithmetic expression>

<merge file list> : :

]

<merge file>, <merge file>|<merge file>,
<metge file list> .

<merge file> :: = <file identifier> | <switch file designator>

Semantics

The merge statement causes the data in all of the ordered files of the merge file
list to be combined as directed by merge order and returned in merged sequence
as specified by the moutput option. All items specified when using the merge
statement must be specified in the required order as stated in the syntax of the
merge statement.

UME-7636 13

EXTENDED ALGOL

SECTION: PAGE:

UNIVAC 1108 l

® Houtput Option

An output option must be supplied and must be the first item specified in the
merge statement. If an output file is specified it assumes a fixed record size
file, If variable length records are used in the merge files, the record size of
the output file must be equal to or greater than the largest record size of the
merge files, Record size and blocking information will be taken from the file
declaration and no record specification is to be made in the merge statement.

End of merged items will result in an end of file sentinel being written out and
the file returned to load point if tape, or first item of the file if drum (See
rewind without interlock of Section 11.).

If an output procedure is specified, it will be invoked once for every record
merged, and once to allow ‘‘end of output’’ action, This procedure must be
untyped, and must have two parameters: the first a Boolean, and the second

an array., The first parameter will be TRUE if, and only if, the last record has
already been returned. If the first parameter is FALSE, the second parameter

will contain a sorted record. Size of the array, specified as the second parameter,
is determined by mrecord length. The mrecord length represents the maximum
length of records (items) to be written out after merging, and must be specified
when an output procedure is indicated and must not be specified when an

output file is indicated.

m Range Inclusion

Range inclusion specifications provide the user with the ability to include only
values within a specifiéd range, or only values above or below a given value as
input to the MERGE. There are three ways in which the range inclusion facility
can be specified or it need not appear in the merge statement at all.

(1) The hivalue or low value facility can be in relation to the already specified
key field of the merge statement. In this instance, the key field must only
include two words of the item and will be taken as two whole words,

(2) It can be in relation to a defined field, OWN KEY. This field can be other
than the key field indicated in the key description or in case of a compare
procedure where no key field is defined, The OWN KEY specification
allows for the definition to encompass not more than two words of the item,
If it is only to include one word, then the word number, beginning with one
and counting left to right, must be specified. If it is to encompass two
words, then the word numbers of both words must be specified in sequence,
first word major, second minor,

(3) It can also be a Boolean procedure. This procedure would then be called by
the merge in order to determine whether or not to include this item prior to
inputting the item to MERGE. If specifying a procedure, it must be a Boolean
procedure and have an atray as its only parameter. The result which is
returned via the procedure identifier should be true if the item is to be in-
cluded in the merge and FALSE if not. If a range inclusion procedure is
desired, then the procedure name must stand alone. If a function designator
is specified, it must have at least one parameter.

UME-7636

UNIVAC 1108
EXTENDED ALGOL

13

SECTION:

PAGE:

10

Arithmetic expressions for HIGH, LOW, and/or OWN KEY must yield an mteger
value,

Merge Order

The programmer has the option of defining a key for the merge and the MERGE
will generate the compare coding for determining which of two records should
be used next in the merge process or the programmer may specify a compare
procedure of own code.

- If a compare procedure is specified, it is called by the merge to determine

which of two records should be used next in the merge process. It must be a
Boolean procedure with exactly two parameters, both of which must be arrays.
The result which is returned via the procedure identifier should be TRUE if the
array given as the first parameter is to appear in the output before the array given
as the second parameter or if the order is immaterial, and FALSE if the array
given as the second parameter is to appear in the output before the array given
as the first parameter, The arrays must both be equal to the largest record
contained in the files to be merged.

If a compare procedure is not stated, a KEY must be declared. If key speci-
fication is given, then the MERGE will generate the compare coding. The
key description defines the field of the item on which the file is to be ordered.
Every item must contain the entire key field described. The output of the
merge will be a single file merged on the specified key field, The key specx-
fication encompasses the following five fields:

(1) Format
An alphabetic variable specifying the format of the key field as follows:

A alphanumeric

B signed 1108 binary

D signed decimal

M 7090 IBM signed binary
U unsigned binary

(2) Ordering Sequence

An alphabetic variable specifying the desired ordering sequence of the
key field as follows:

A ascending field
D descending field

(3) Word Position

An arithmetic expression which must yield an integer number specifying the
number of the word within the record containing the most significant bit of
the key field. The words within a recotd are numbered from left to right
-beginning with 1,

UME-7636 UNIVAC 1108 13

EXTENDED ALGOL SECTION: PAGE:

(4) Bit Position

An arithmetic expression which must yield an integer number in the range
of 0 through 35 indicating the bit position within the above defined word
which contains the most significant bit of the key field. The bit positions
within a word are numbered from right to left beginning with 0.

(5) Number of Bits

An arithmetic expression which must yield an integer number specifying
the length of the key field in bits.

m Merge file list

The merge file list names the files to be merged; it must contain at least two
and may contain from two to seven ordered files to be merged. Each file
named must be a fixed item size file, but the different files can have different
size items. Item size and blocking information will be taken from the file
declarations associated with the particular files named. Exhaustion of files
will result in the file being returned to load point if tape, or first item of the
file if drum.

13.2.3. Restrictions

A general limitation is that the subscripts of an array should not be used which
exceed the maximum record length specified to the MERGE.,

13.2.4. Examples

1 0 20 30 40 50 60 80
Lo aBEGLN (CIOMMENT, MERIGE, EXAMPLE US NG OUTPUT Fil LE & KEY, DESCRIPTIONG Lo oo 11
oo oo ALPHA KIND, S EQ;, | NTEGER, WORD, B! T, Al B RLNTH G L 0 v v ua v b o v L ee v can
Lo gy 1 BLLE OWT FOUT I G ha22)p Lo v o v v e b et v b e v s
Lo B LEL N MENT 300,040, COMMENT, OQRDERED FiILES, |FOR MERGE - MINT MIN2, MUNS3G
poo g FLLE] VNG WMEN2 S) b b s b v e e b v e by e iy
VO S LY L PO T T TP 2 S B O T YO S TS I G S OO Y N S S S A T S SR B RO S S B O O
s o RN = A G e s o b it il e e s g b b
b ISR A L b s b s o b s b e b
L et IWORD =Ty L e b ey s be v el s e e e v Lo i
iy BN TR =356 L e e b b b v b s e v e
[R R RO ORI Bt 151 PR O T T T YOO S T S O T S N Y O U O YO WO S G T S O B ST T Y S S A
S U T T O S S T T S G U SO T Y T S (S BV S B Y O S S T S S T A (NSO W O A T NS EN SO SN SO S WO S
AA__lJ_A;L._L_I_A_L,J_LI,:J I T T T U T S T O Y TN U SO0 TS Y G N U AT S NS YOO GO ST AW N SN O VOO ST SO SN U U WO A AW WSS S N UAY S S MO N B
S O S T VO S S S G S S S ST T U S T U NS 0 O S U S S O O ST ST S BT P T R RN
IIIIIIA|||II:IIIIALKII\(AIIIIILLIIIAAIIIJ_A;IIIIIII‘III\AII\IIIII]IIIIII\I;lll\ll
L 1 MERGEGFOUT, KEY] (KT ND, S EQ, WORD BT, 1108, MI N, MEN2, MINS3D)G, g Lo gl v]
T U T T A |E| TN T S Y U W T N OO T YW G S WSS T YT O S O 0 T S N S N O O S B W
PN T ST T T YO U T TS T T ST T Y S U U O O W A S VO S T AT T T S0 N A S A SR Ot
ST A AT SO A S AN RO A A SN B S S B S BT AT A TRl BV ST
L ENPG Ly b s e b e v b v b v g b e b e

Other examples with proper procedures could be as follows:

1 LABEL 1 OPERATION 20 N OPERAND © C5%MMENTS 50 80
L1 MERGE(OPROC yRLNTH, COMPARE S COMPIRL ML IND L Ml N2y M INBY a3 0 v b e 0o b i
AN R T ST O L T O T U T T SO S O S T S O v O T N VO SO O U S O S U S O VO L S S ST SO A S S O NG N U A W ROV IO T BTN SO R S
YTV ST T W N U S T Y G Y W T W T T U T N T U S O 0 S YU S A O O WO WY N N0 IO S DA S S SO SO
T T T 00 STV YR 0 DU R T ST O G ST T S WO O S S A OO NV D O VR G S O U S U A0 VO Y T L S U T
YV UGN OGS PO S U YO T Y O O YO YO0V 0 WA N VN T T U SO Y ST TS O S T WA S B S O U S T AUV U T A S AV A S S A
Lt MERGE ((OPROC, L4, HLGH jUibi+2,] (KEY: (K ND,ISE@i V13803160, Ml NG MU N2, Ml Na3) s s | ,LL._LLJ

UME-7636 .

Appendix A

SECTION:

UNIVAC 1108 -
EXTENDED ALGOL

| PAGE:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

APPENDIX A. ERROR DIAGNOSTICS

Thereﬂ are two general types of errors checked for and indicated by appropriate
diagnostics in the UNIVAC 1108 Extended ALGOL compiler: compilation errors

_and run-time errors.

COMPILATION ERRORS

For compilation errors, an asterisk (¥) is printed under the symbol at which

a syntax error is detected, and the error diagnostic is printed on the left-hand
side of the page on the line following. The compiler attempts to recover

and continue compilation following the error diagnostic. Since the Com‘piler
attempts to recover at a particular point, symbols that are invalid at that
point are read, and spurious etror messages are frequently generated following
a legitimate error message, The spurious messages will, of course, disappear
when the legitimate error is corrected,

The possible compilation time error diagnostics follow:

ILLEGAL CHARACTER PAIR 27 IMPROPER FORMAT PHRASE
CONSTANT TOO LARGE ' . 28 IMPROPER FORMAT DECLARATION
IMPROPER BLOCK STRUCTURE 29 IMPROPER NAMELIST DECLARATION
IMPROPER DECLARATION 30 IMPROPER REPEAT PHRASE

DUPLICATE DECLARATION/SPECIFICATION 31 IMPROPER SWITCH FORMAT/FILE/LIST

IMPROPER DECLARATION/SPECIFICATION 32 UNDEFINED FORMAT SYMBOL
IMPROPER SPECIFICATION 33" IMPROPER FORM DECLARATION
IMPROPER SPECIFICATION ‘ 34 IMPROPER USE OF WiTH

MISSING SPECIFICATION 35 IMPROPER DEFINITION

IMPROPER OWN DECLARATION 37 IMPROPER PROCEDURE CALL
IMPROPER EXTERNAL DECLARATION 38 IMPROPER PROCEDURE ASSIGNMENT STATEMENT
- DUPLICATE VALUE SPECIFICATION 39 IMPROPER IF-STATEMENT
IMPROPER LABEL SPECIFICATION - 40 IMPROPER IF-STATEMENT
IMPROPER VALUE SPECIFICATION 41 IMPROPER USE OF THEN
IMPROPER ARRAY DECLARATION 42 IMPROPER USE OF ELSE
IMPROPER ARRAY DECLARATION 43 IMPROPER FOR STATEMENT
IMPROPER LIST DECLARATION 45 IMPROPER ACTIVITY DECLARATION
IMPROPER LOCAL DECLARATION 48 IMPROPER TIMING CLAUSE
IMPROPER SWITCH DECLARATION 52 IMPROPER GO STATEMENT
IMPROPER PROCEDURE DECLARATION 53 EXTRA RIGHT PARENTHESIS
IMPROPER PROCEDURE PARAMETER 54 EXTRA LEFT PARENTHESIS
DUPLICATE PROCEDURE PARAMETER 56 MISSING OPERATOR

IMPROPER PARAMETER DELIMITER 57 MISSING OPERAND

IMPROPER PROCEDURE SPECIFICATION 58 EXTRA END

IMPROPER LABEL DEFINITION 59 MISSING END

DUPLICATE LABEL DEFINITION 60 IMPROPER USE OF DIV OPERATOR

UNIVAC 1108) ‘

UME-7636 EXTENDED ALGOL sl IOV
61 IMPROPER ASSIGNMENT STATEMENT 86 IMPROPER CONCAT SPEC
62 UNDEFINED TRANSFER FUNCTION 87 SORT-IMPROPER INPUT SPECIF
63 IMPROPER USE OF A LIST IDENTIFIER 88 SORT-IMPROPER OUTPUT SPECIF
64 IMPROPER USE OF A LABEL 89 SORT-IMPROPER SPECIF BEYOND I/0

65 IMPROPER USE OF A RESERVED IDENTIFIER 90 IMPROPER DO STATEMENT
66 IMPROPER USE OF AN ARRAY IDENTIFIER 91 MISSING FILE IDENTIFIER .

67 UNDEFINED RELATIONAL OPERAND 92 IMPROPER 10 STATEMENT
" 69 MISPLACED SEMICOLON 93 SORT-DROC IMPOSSIBLE
70 MISPLACED COLON 94 SORT-IMPROPER RECORD SPECIF
71 MISPLACED COMMA 95 SORT-IMPROPER SPECIF SORT ORDER
72- UNDEFINED VARIABLE 96 SORT-IMPROPER FOLLOWING SORT ORDER
75 FILL LIST ELEMENT NOT CONSTANT 97 MERGE-IMPROPER SPECIFICATION
78 IMPROPER EVENT STATEMENT 98 MERGE-ERROR OUTPUT SPECIF
79 COMPILER CAPACITY EXCEEDED 99 MERGE-ERROR RECORD SPECIF
80 DICTIONARY CAPACITY EXCEEDED 100 MERGE-ERROR MERGE ORDER
84 EXTRA RIGHT BRACKET 101 MERGE-ERROR MERGE FILE LIST

85 EXTRA LEFT BRACKET
RUN-TIME ERRORS

An error during execution results in the printing of an error message,

the name of the library procedure involved, and the line number of the
ALGOL program at which execution was currently taking place. The program
is then terminated. The list of run-time errors follows:

INCORRECT NUMBER OF ARGUMENTS TO
MEMORY CAPACITY EXCEEDED IN
UNDEFINED DESIGNATIONAL EXPRESSION IN
READ/WRITE ERROR REF A SEG ARRAY
SORT ERROR

RANGE INCLUSION ERROR

IMPROPER PARAMETER TO PROCEDURE
IMPROPER

UNRECOVERABLE DRUM ERROR IN
CHARACTERISTIC UNDERFLOW °

INCORRECT NUMBER OF ARGUMENTS TO PROCEDURE
CHARACTERISTIC OVERFLOW

ATTEMPTED DIVISION BY ZERO
IMPROPER NUMBER OF DIMENSIONS FOR
SUBSCRIPT OUT OF RANGE FOR

RESULT UNDEFINED FOR -

ARGUMENT OUT OF RANGE FOR

CALLED ROUTINE NOT IN LIBRARY
ILLEGAL OR IMPROPER SEQUENCE OF FORMAT PHRASES IN PARAMETER TO
IMPROPER PARAMETER TO

DEVICE NOT IMPLEMENTED

FILE NOT KNOWN

FILE NOT ASSIGNED

BUFFER IMPROPERLY DEFINED

ERROR IN LIBRARY CALL :

FILE PREVIOUSLY RELEASED CANNOT OPEN
FILE PREVIOUSLY OPENED, NEVER CLOSED
INTERNAL FILE ERROR

UME-7636 -

UNIVAC 1108 -

'Appendix A

SECTION:

PAGE:

EXTENDED ALGOL v l

FEATURE NOT IMPLEMENTED

~ATTEMPT TO WRITE INPUT FILE

ATTEMPT TO READ OUTPUT FILE

'FILE NOT OPENED WHEN READ ATTEMPTED

DEVICE UNKNOWN

FORMAT SPEC MISSING

UNKNOWN CONTROL WORD IN FILE

EOF, NO RETURN SPECIFIED

ATTEMPTED REWIND ON IMPROPER DEVICE
ALGOL 1/0 ERROR

NAMELIST INPUT NONBLANK COL 1

NAMELIST ADDRESS NOT SPECIFIED

NAMELIST NAME INCORRECT IN INPUT ‘
VARIABLE/ARRAY/LABEL NAME IN INPUT NOT FOUND
SPACE FOUND IN NAME IN NAMELIST INPUT
REVERSE READ. DEVICE ILLEGAL

ITEM SIZE GREATER THAN SPECIFIED
IMPROPER LINE CONTROL SPECIFICATION
(FORMAT) IMPROPER FORMAT DECLARATION
(FORMAT) IMPROPER EXPONENT IN INPUT DATA

- (FORMAT) NUMBER IN FORMAT TOO LARGE

(FORMAT) IMPROPER FORMAT PHRASE TYPE
(FORMAT) IMPROPER FORMAT PHRASE
(FORMAT) INPUT DATA VALUE MORE THAN 1 DECIMAL POINT

'(FORMAT) INPUT DATA NON-NUMERIC
(FORMAT) INPUT DATA TOO LARGE

(FORMAT) OUTPUT FORMAT USED IN READ

(FORMAT) INPUT DATA NOT LOGICAL VALUE

(FORMAT) INPUT DATA NON OCTAL

(FORMAT) IMBEDDED SPACE IN INPUT DATA

(FORMAT) INPUT VALUE HAS TRUNCATION ERROR
(FORMAT) INPUT DATA CONVERSION ERROR '
(FORMAT) OUTPUT DATA TOO LARGE FOR FIELD WIDTH

(FORMAT) OUTPUT DATA VALUE EXPONENT TOO LARGE

UME-7636

UNIVAC 1108 -

EXTENDED ALGOL

Appendix B

SECTION:

PAGE:

ABSORB
ALPHA
AND
ARRAY
BEGIN
BOOLEAN
CLEAR
CLOSE
COMMENT
COMPARE
COMPLEX
CONVERSION
CORE
DBL

DEC
DEFINE
DIV

DO
DOUBLE
DRUM
DUMP
ELSE
END

EQL

EQV
ETEST
EVENT
EVERY
EWAIT
EXECUTE
EXTERNAL
FALSE
FILE
FILL
FIXED
FOR
FORMAT
FORWARD
GEQ

GO

GOTO
GTR
HIGH

IF

IMP

IN
INTEGER
KEY
LABEL
LEQ
LINE
LIST

APPENDIX B. RESERVED WORDS FOR

MARINER 1108 EXTENDED

ALGOL

LOCK
Low

LSS
MERGE
MOD
MONITOR
MOVE
NAMELIST
NEQ

NO

NOT
ocT

ON

OR

ouT
OVERFLOW
OWN
PAGE
PROCEDURE
PURGE
RANDOM
REAL
RECORD
RELEASE
REVERSE
REWIND
SAVE
SERIAL
SET
SLEEP
SORT
SPACE
STEP
SWITCH
TASK
THEN

TO
TRACE
TRUE
UNDERFLOW
UNTIL
UPDATE
VALUE
WAIT
WHEN
WHILE
WITH
WRITE
XOR
ZERODIVIDE
ZipP

UME-7636 Appendix C

SECTION:

UNIVAC 1108 : |
EXTENDED ALGOL

PAGE:

APPENDIX C. INDEX OF
o METALINGUISTIC
VARIABLES

<absorb array -declaration> <compound tail>

9.7.1 5.1,6.1.1

<absorb declaration>" 9.7.1 <concatenate expression> 4.6.1
<action labe(> 11.3.2,11.3.5.1 <condition> ’ ’ 6.9.1
<activity statement> 12.1.1 <conditional statement> 5.1,7.1
<actual parameter> 3.2.2.1,6.6.1 <constant> 2.1.9.1
<actual parameter list> 3.2.2.1 ,6.6.1 <data reduction procedure> 13.1.1
<actual parameter part> 3.2.2.1 ,6.6.1 <decimat fraction> 2.1.7.1
<adding opsarator> 4.2.1 <decimal number> 2.1.7.1
<address> 11.3.2.1, 11.3.4.1 <decimal places> 11.2.4.1
<alpha constant> 2.1.9. <declaration> 9.1.1
<arithmetic expression> 42.1 <declarator> 2.1.3.1
<arithmetic operator> 2.13.1 <define declaration> 9.8.1
<array-deciaration> 9.6.1 <definition> 9.8.1
<array identifier> 3.2.1,1 ,6.5.1 <definition list> 9.8.1
<array list> 9.6.1 <definition part> 9.8.1
<atiay row:> 6.6.1 <delete statement> 12.41
<array segment> 9.6.1,9.7.1 <delimiter> 2.1.3.1
<array type> 9.6.1 <density part> 4.4:1
<assignment statement> 6.2.1 <designational expression> 11.2.2.1
<bhasic statement> 5.1, 6.1.1 <destination> 6.10.1
<bit field description> 4.5.1 <digit> 2.1.2.1
<bits in field> 4.5.1 <direction> 11.3.2.1
<bit position> 5.1, 6.1.1 <dlink> 6.10.1
<block> 5.1 .. <do statement> 8.3.1
<block head> 5.1,6.1.1 <drum access technique> 11.2.2.1
<blocking specification> 11.2.2.1 <drum file description part> 11.2.2.1
<Boolean constant> 2.1.9.1 <dummy statement> 6.4.1
<Boolean expression> 4.3.] <dump condition> 9.10.1
<Boolean factor> 4.3.1 <dump declaration> 9.10.1
<Boolean primary> 43.1 <dump list> 9.10.1
<Boolean secondary> 43.1 <dump list element> 9.10.1
<Boolean term>) 43.1 <dump part> 9.10.1
<bound pair> 9.6.1,9.7.1 <editing phrase> 11.2.4.1
<bound pair list> 9.6.1,9.7.1 <editing phrase type> 11.2.4.1
<bracket> 2.1.3.1 <editing segment> 11.2.4.1
<buffer length> 11.2.2.1 <editing specification part> 11.2,5.1
<buffer part> 11.2.2.1 <editing specifications> 11.2.4.1
<buffer release> 11.3.2.1 <efile part> 10.3.1
<cartiage control> 11.3.4.1 <element part> 10.3.1
<channel number> 11.2.9.1 <end of file label> 11.3.2.1
<channel specification> 11.2.9.1 <end of reel label> 11.3.4.1
<character field description> 4.5.1 <event list> 12.5.1
<characters in field> 4.5.1 <event statement> 12.5.1
<clear statement> 12.5.1 <event wait statement> 12.5.1
<close statement> 11.3.6.1 <execute statement> 12.2.1
<compare statement> 6.10.1 <exponent part> 2.1.7.1
<complex constant> 2.1.9.1 <expression> 4.1.1
<compound statement> 5.1,6.1.1 <expression list> 11.2.6.1

<expression part> 11.2.6.1

UNIVAC 1108 . .
UME-7636 EXTENDED ALGOL l Appendix C _
SECTI!ION: PAGE:

<external procedure declaration> 10.3.1 <label declaration> : 9.3.1

<factor> 4.2.1 <label equation part> 11221

<field> 11.3.3.1 <label list> ©93.1

<field delimiter> 11.3.3.1 <label part> 11.2.2.1

<field part> 11.2.4.1 <left base> 4.6.1

<field width> 11.2.4.1 <left bit of field> 4.5.1

<file declaration> 11.2.2.1 <left bit of left base> 46.1

<file identification part> 11.2.2.1 <left bit of right base> 4.6.1

<file identification prefix> 11.2.2.1 <left char> 6.10.1

<file identifier> 11.2.2.1 <left character of field> 4.5.1

<file lock part> 11.2.2.1 <left part> . 6.2.1

<file part> 11.3.2.1,11.3.4.1 , <left part list> 6.2.1
11.3.5.1, 11.3.7.1 <letter> 2.1.1.1

<fill statement> 6.5.1 <letter string> 6.6.1

<fixed item size> 13.11 <line declaration> 11.2.9.1

<fixed logical record size> 11.2.2.1 <line number> 11.2.9.1

<fixed physical record size> 11.2.2.1 <link description> 4.6.1

<for clause> 8.2.1 <link part> 4.6.1

<for list> 8.2.1 <list> 11.2.6.1

<for list element> 8.2.1 <list declaration> 11.2.6.1

<for statement> 8.2.1 <list identifier> 11.2.6.1

<formal declaration> 8.2.1 <list part> 11.3.2.1, 11.3.4,1

<formal parameter> 10.2.1 <list segment> 11.2.6.1

<formal parameter list> 10.2.1 <list specification> 11.2.6.1

<formal parameter part> 10.2.1 <local or own type> 9.2.1

<format> 13.1.1,13.2.1 ~ <lock statement> 11.3.8.1

<format and list part> 11.3.2.1 <logical operator> 2.1.3.1

<format declaration> 11.2.4.1 <low value> 13.1.1, 13.2.1

<format edit part> 11.2.4.1 <low value procedure> 13.1.1 ,13.2.1°

<format identifier> 11.2.4.1 <lower bound> 9.6.1,9.7.1

<format part> 11.3.2.1 , 11.3.4.1 <major own> 13.1.1 , 13.2.1

<for statement> 8.2.1 <maximum record length> 11.2.2.1.

<forward procedure declaration> 9.5.1 <maximum size> 13.1.1.

<forward reference declaration> 9.5.1 <merge file> 13.2

<forwatrd switch declaration> 9.5.1 <merge file list> 13.2.1

<free field part> 11.3.2.1 <merge order> 13.2.1

<free field sentence> 11.3.3.1 <merge statement> 13.2.1

<function designator> 3.2.2.1 <mfile part> 9.9.1

<general primary> 46.1 <minimum size> 13.1.1

<general procedure declaration> 10.1.1 <minor own> 13.1.1,13.2.1

<go to statement> 6.3.1 <mode part> 11.2.2.1

<heading> 11.2.9.1 <monitor declaration> 9.9.1

<heading controi> 11.2.9.1 - <monitor list> 9.9.1

<hivalue procedure> 13.1.1 , 13.2.1 <monitor list element> 9.9.1

<identifier> 2.1,6.1 <moutput option> 13.2.1

<identifier list> 10.2.1 <move statement> 6.10.1

<if clause> 421 ,51,7.1 <mrecord length> 13.2.1

<if statement> 5.1,7.1 <multi-file identification part> 11.2.2.1

<implication> 43.1 .<multiplying operator> 4.2,1

<in=out part> 11.2.2.1 <namelist declaration> 11.2.8.1

<input file> 13.1.1 <namelist element> 11.2.8.1

<input option> 13.1.1 <namelist identifier> 11.2.8.1

<in put or output> 11.2.4.1 <namelist list part> 11.2.8.1

<input parameters> 11.3.2.1 <namelist parameter part> 11.2.8.1

<input procedure> 13.1.1 <number> 2.1.7.1

<integer> 2.1.7.1 <number of areas> . 11.2.2.1

<iterative statement> 5.1 ,8.1.1 <number of bits> 13.1.1, 13.2.1

<1/0 declaration> 11.2.1.1 <number of bits in fink> 46.1

<1/0 statement> 11.3.1 <number of buffers> 11.2.2.1

<I/0 switch designator> 11.4.1.1 <number of char> 6.10.1

<key description> 13.1.1,13.2.1 <number of records> 11.3.5.1

<kind> 10.3.1 ‘ <number of tapes> 13.1.1

<labet> 44.1,93.1 <octal constant> 2.1.9.1

<octal digit> 2.1.2.1

UNIVAC 1108

UME-7636 EXTENDED ALGOL senbpendixC
<octal number> 2.1,9.1 . <special exponent part> 2.1.7.1
<on statement> 6.9.1 <specification part> 10.2.1
<open string> 2.1.8.1 <specificator> 2.1.3.1
<operator> 2.13.1 <specifier> 10.2.1
<ordering sequence> 13.1.1,13.2.1 <statement> 5.1
<out destination> 6.10.1 <station part> 11.2.2.1
<output file> 13.1.1, 13.2.1 <string> 2.1.8.1
<output media part> 11.2.2.1 <string bracket character> 2.1.8:1
<output option> 13.1.1 <subscripted variable> 3.2.1.1
<output parameters> 11.3.4.1 <subscript expression> 3.2.1.1
<output procedure> 13.1.1, 13.2.1 <subscript list> 3211
<own compare> 13.1.1, 13.2.1 <switch declaration> 9.4.1
<paper size> 11.2.9.1 <switch designator> 4.4.1
<parameter delimiter> 3.2.2.1 ,6.6.1 <switch file declaration> 11.2.3.1
<parity label> 11.3.2, 1 11.3.4.1 <switch file designator> 11.4.2.1
<partial word designator> 4.5.1 <switch file identifier> 11.2.3.1 ,11.4.2.1
<partial word operand> 4.5.1 <switch file list> 11.2.3.1
<primary> 4,2.1 <switch format declaration> 11.2.5.1
<proc list> 10.3.1 <switch format designator> 11.4.3.1
<proc part> 10.3.1 _<switch format identifier> 11.2.5.1, 11.4.3.1
<procedure body> 10.2.1 “<switch format list> 11.2.5.1
<procedute declaration> 10.2.1 <switch identifier> 44.1,9.4.1
<procedure heading> 10.2.1 <switch identifier list> 9.5.1
<procedure identifier> 3.2.2.1,6.6.1,10.2.1 <switch list> 9.4.1
<procedure list> 9.5.1 <switch list declaration> 11.2.7.1
<procedure statement> 6.6.1 <switch list designator> 11.4.4.1
<procedure type> 9.5.1 <switch list identifier> 11.2.7.1 , 11.4.41
<ptoper string> 2.1.8.1 <switch list list> 11.2.7.1
<range inclusion> 13.1.1, 13.2.1 <symbol> 9.8.1
<rangeown> 13.1.1, 13.2.1 <task list> 12.3.1 ,12.4.1
<read statement> 11.3.2.1 <task specification> 12.2.1
<record address and release part> 11.3.2.1 <task variable> 12.2.1,12.3.1 ,
<record address part> 11.3.4.1 12.4.1
<record length> 13.1.1 <term> 4.2.1
<record specifications> 11.2.2.1 <time function> 3.2.3.1
<reel save part> 11.2.2.1 <transfer in statement> 6.10.1
<relation> 4.3.1 <transfer out statement> 6.10.1
<relational operator> 2.1.3.1,4.3.1 <type> 9.2.1
<repeat part> ’ 11.2.4.1 <type declaration> 9.2.1
<rewind statement> 11.3.7.1 <type list> 9.2.1
<right base> 4.6.1 <unblocked specification> 11.2.2.1
<row> 6.5.1 <unconditional statement> 5.1, 6.1.1
<row designator> 6.5.1 <unlabelled basic statement> 5.1 ,6.1.1
<sarray type> 9.7.1 <unlabelled block> 5.1,6.1.1
<save factor> 11.2.2.1 <unlabelled compound statement> 5.1,6.1.1
<separator> 2.1.3.1 <unsigned integer> 2.1.7.1
<sequential operator> 2.13.1 <unsigned number> 2.1.7.1
<set statement> 12.5.1 <upper bound> 9.6.1, 9.7.1
<simple arithmetic expression> 42.1 <value list> 6.5.1
<simple Boolean> 4.3.1 <value part> 10.2.1
<simple designational expressnon> 4.4.1 <variable> 3.2.1.1
<simple variable> 3.2.1.1 <vatiable identifier> 3.2.1.1
<sijze of areas> 11.2.2.1 <variable item size> 13.1.1
<skip to channel> 11.3.4.1 <waction label> 11.3.4.1
<slink> 6.10.1 <wait statement> 12.3.1
<sort order> 13.11 <wformat and list part> 11.3.4.1
<sort statement> 13.1.1 <word position> 13.1.1, 13.2.1
<source> 6.10.1 <write statement> 11.3.4.1
<source part> 6.10.1 <zip statement> 6.8.1
<source to destination statement> 6.10.1
<space statement> 11.3.5.1

UNIVAC 1108 - : ' .
EXTENDED ALGOL : Appendix D

SECTION: PAGE:

UME-7636

APPENDIX D. SPECIAL TOPRICS

Two of the more sophisticated concepts of the ALGOL 60 language are recursive pro-
cedures and the facility to call-by-name or call-by-value procedure parameters.

D1, RECURSIVE PROCEDURE CALLS

The theoretical importance of recursive functions and the growing number of applica-
tions in simulation models and experimental mathematics justifies the need for recur-
'sive capability and the effort necessary for implementation of this capability.

The ‘‘Report on the Algorithmic Language ALGOL 60’ states that, ‘‘any other (than
the appearance in the left part list) occurrence of the procedure identifier within the
procedure body denotes activation of the procedure’’.

The normal sequence of execution in an ALGOL 60 program can be altered by a pro-
cedure call statement or by naming a function procedure as a primary in an arithmetic
expression. The above quoted paragraph makes it valid for any procedure to call
itself, or to call a second procedure which then calls upon the first (direct recursion),
or to pass to a procedure. as an actual parameter a call upon itself (indirect recursion).

In either case, it is clear that a procedure may be entered several times before an
exit occurs. (Note that this is not the case for a begin block; the ALGOL Report
‘states that when a GO TO statement naming a global label to the block is executed,
normal block ending must occur.) ' :

If a procedure is involved in recursion all variables local to the procedure, including
parameters called-by-value, must be uniquely identifiable for each level of recursion.
The dynamic run time stack of an ALGOL implementation, which is essentially
‘“‘pushed down’’ for each entry to a block (procedure or begin) and ‘‘popped up’’ at
block exit, enables recursive capability.

REAL PROCEDURE SIGMAD (I, A, B, X);
VALUE A; INTEGER I, A, B; REAL X;

BEGIN
IF B LSS A THEN SIGMAD:=0
ELSE BEGIN
I:=A;
SIGMAD :=X+SIGMAD (I, A+1, B, X)
END;
END;

Figure 1. Example of Direct Recursion

UME-7636.

UNIVAC 1108
EXTENDED ALGOL

Appendix D L2
SECTION: PAGE:

REAL PROCEDURE SIGMAI (I, A, B, X);
VALUE B; INTEGER I, A, B; REAL X;.

BEGIN
REAL SUM;
SUM :=0;
FOR I :=A STEP 1 UNTIL B DO
SUM :=X+SUM;
SIGMAI :=SUM

END;
Y := Z + SIGMAI (C, 1, 50, SIGMAI (R, 1, 50, MAT [C, R]));

COMMENT WITH THE PROCEDURE SIGMAI DEFINED AND CALLED
SPECIFYING ITSELF AS A PARAMETER IN THIS MANNER INDIRECT
RECURSION OCCURS;

Figure 2, Example of Indirect Recursion

D2. PARAMETERS CALLED-BY-NAME OR CALLED-BY-VALUE

When a formal parameter to a procedure appears in the value list for the procedure,

the ALGOL Report specifies that the value of the actual parameter be delivered to the
procedure upon entry to the procedure. If the actual parameter is a variable, the cur-
rent value is delivered, not the address of the variable, so that the variable, itself, is
never altered by the procedure. If the actual parameter is an expression, it is evaluated
upon entry to the procedure and the result is passed to the procedure. Note that the
value passed to a formal parameter called-by-value becomes local to the called pro-
cedure.

A's stated in Chapter 10 of this manual, if a formal parameter does not appear in the
value list of a procedure declaration, it is assumed to be called-by-name.

A formal parameter called-by-name must be evaluated at every reference to the formal
parameter within the procedure body. For actual parameters that are simple variables,
this possible multi-evaluation has no effect, since the address of the simple variable
is delivered at each reference. Note, however, that since the address of the simple
variable, not the value, is delivered to the procedure at each reference to the formal
parameter, the value of the variable may be altered by the procedure.

Call-by-name implies more sophistication for actual parameters that are expressions
or subscripted variables. At each reference to the formal parameter the expression is
evaluated. Since operands of the expression may be known to the procedure (as global
variablesor as parameters), the evaluation of the expression can yield a different
result upon each evaluation,

The following example program, reprinted from the ‘““Communications of the ACM”’
Volume 8, Number 6, June, 1965, will enable the reader to test his understanding of
call-by-name and call-by-value.

Appendix D

UNIVAC 1108 . :
SECTION: PAGE:

UME-7636 EXTENDED ALGOL

‘‘Received February, 1965

TESTING THE UNDERSTANDING OF THE DIFFERENCE BETWEEN CALL-BY-
NAME AND CALL-BY-VALUE IN ALGOL 60

The following short program incorporates most of the basic call-by-name and call-by-
value problems in Algol 60 procedures. The procedures INCV (x) and INCN (x) differ
only in that the formal parameter is called by value in INCV and by name in INCN.
Likewise, ADDV (y) and ADDN (y) differ only in the call-by-value for ADDV and
call-by-name for ADDN. ‘

The problem is to fill in the appropriate blanks within the comment statements. This
_little example has been used successfully, but not extensively, both as a teaching
device and (for a separate group of students) as a testing device, The answers are
given in the last paragraph of this note. Test yourself before examining the answers,

BEGIN REAL a, b;
REAL PROCEDURE INCV (x); VALUE x; REAL x;
BEGIN x :=x+1; INCV :=x END;
REAL PROCEDURE INCN (x); REAL x;
BEGIN x :=x+1; INCN :=x END;
REAL PROCEDURE ADDV (y); YALUE y; REAL y;

ADDV :=y+y,;
REAL PROCEDURE ADDN (y); REAL y;
ADDN :=y+y;

a:=1; b :=ADDV (INCV (a));
COMMENT ais now__, b is now__,
a:=1; b:=ADDV (INCN (a));
COMMENT a is now_, b is now___
a:=1; b :=ADDN (INCV (a));
COMMENT a is now__, b is now__
a =1, b :=ADDN (INCN (a));
COMMENT a is now___, b is now__,
END;

The answers for the blanks in reverse order of their occurrence are 5, 3, 4, 1, 4, 2,
4, 1.

.ROMAN L. WEIL, JR.
Graduate School of Industrial Administration

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

Received February, 1965
Volume 8/Number 6/June, 1965’

UNIVAC |

UP-7636

	0001
	0002
	0003
	001
	002
	003
	004
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	xBack

