
ALGOL

UP.7S44

This manual is published by the Univac Divisio~ of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC ® Systems developments. The infor­
mation presented herein may not reflect the current status of the programming
effort. FO.r the current status of the programming, contact your local Univac
Representative.

The Univac Diyision will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re­
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

©1967 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

I Contents 1
UP.754~ ___ . __ U_N_I_V_A_C_ll_0_8_A.....;..;.L..;..G..;;.O..;;;;L~ _____&... _____ --'-;;;.;;SE;;..;;C;..;.T.;.;;IO;.;.;N.:..: __ --L..;..P..;..;.A.;;.;GE~: ___ _

CONTENTS

1. I~ITRODUCTION

1.1. GENER:AL

1.2. THE ALGOL COMPILER

1.3. ALGOL. 60 AND UNIVAC 1108 ALGOL
1..3.1. ExtensionstoALGOL60
1..3.2. Deviations from ALGOL 60

1.4. LANGUAGE CONVENTIONS

2. El.EMENTS OF THE LANGUAGE

2.1. THE CHARACTER SET

2.~~. IDENTIFIERS

2.3. CONSTANTS
2.3.1. Integer Constants
2.3.2. Rea I Constants
2J.3. Double Precision Constants
2.2:.4. Complex Constants
2.3.5. Boolean Constants
2.2:.6. String Constants

3. DECLARATIONS

3.1. GENERAL

3.2. TYPE DECLARATIONS

3.3. ARRAY DECLARATIONS

3.4. STRING DECLARATIONS
3.4.1. String Arrays

3.5. OWN DECLARATIONS

3.6. DEFAULT DECLARATIONS

3.7. THE COMMENT

3.8. FORMAT, LIST, SWITCH, PROCEDURE, LOCAL

CONTENTS

1 to 5

1-1 to 1-3

1-1

1-1

1-2
1-2
1-2

1-3

2-1 to 2-3

2-1

2-1

2-2
2-2
2-2
2-2
2-3
2-3
2-3

3-1 to 3-6

3-1

3-1

3-2

3-4
3-4

3-5

3-5

3-6

3-6

UP-7S44 UNIVAC 1108 ALGOL

4. EXPRESSIONS

4.1. GENERAL

4.2. ARITHMETIC EXPRESSIONS
4.2.1. Ordering Rules for Operations
4.2.2. Hierarchy of Operand Types
4.2.3. Operands of Arithmetic Expressions
4.2.3.1. Subscripted Variables
4.2.3.2. Function Designators

4.3. BOOLEAN EXPRESSIONS
4.3.1. Relational Expressions
4.3.2. Boolean Operators
4.3.3. Precedence of Boolean Operations

4.4. STRING EXPRESSIONS

4.5. DESIGNATIONAL EXPRESSIONS

4.6. CONDITIONAL EXPRESSIONS

5. STATEMENTS

5.1. GENERAL

5.2. COMPOUND STATEMENTS

5.3. ASSIGNMENT STATEMENTS
5.3.1. String Assignment Statements

5.4. MULTIPLE ASSIGNMENT STATEMENTS

5.5. STATEMENT LABELS

5.6. PUNCTUATION

5.7. DUMMY STATEMENTS

6. CONT ROL STAT EME NTS

6.1. GENERAL

6.2. UNCONDITIONAL CONTROL STATEMENTS
6.2.1. The GO TO Statement
6.2.2. The SWITCH

6.3. CONDITIOf'lAL CONTROL STATEMENTS

6.4. ITERATIVE CONTROL STATEMENTS - THE FOR STATEMENT
6.4.1. Simple List Element
6.4.2. STEP - UNTIL List Element
6.4.3. WHILE List
6.4.4. Termination of FOR Statements

Contents

SEC TION:

4-1 to 4-8

4-1

4-1
4-2
4-2
4-3
4-3
4-3

4-4
4-4
4-5
4-6

4-6

4-8

4-8

5-1 to 5-5

5-1

5-1

5-1
5-3

5-4

5-4

5-5

5-5

6-1 to 6-9

6-1

6-1
6-1
6-2

6-3

6-4
6-5
6-5
6-7
6-8

2
PAGE:

I Rev. 1 Contents 3
~:~, ___ , ___ U,_N_IV_A_C_l_l_08_A_L_G_O_L ______ -,-_____&-s_EC_T_IO_N_I __ --L_P_A_G_EI __ _

7. PROCEDURES

7.1. INTRODUCTION

7.2. VALUE ASSIGNMENT (CALL BY VALUE) AND NAME REPLACEMENT
(CALL BY NAME)

7.3. SPECIFICATIONS

7.4. FUN CT ION PRO CEO U RES

7.5. HECURSIVE PROCEDURES

7.6. EXTERNAL PROCEDURES
7.6.1. ALGOL External Procedures
7.6.2. FORTRAN Subprograms
7.6.3. Mach ine Language Procedures

8. BLOCK STRUCTURE

8.1. GENERAL

8.2. BLOCKS

8.3. l.OCAL AND GLOBAL IDENTIFIERS

8.4. THE LOCAL DECLARATION

9. INPUT/OUTPUT

9.1. GENERAL

9.2. FR E E-FORMAT OU TPUT 0 N PR INTER AN 0 CARD PU N CH

9.3. FRE E-FORMAT IN PUT FROM CAR OS

9.4. LIST PARAMETERS - TH E LIST DECLARATION

9.5. FORMATTED OUTPUT - THE FORMAT DECLARATION
9.5.1. Nonediting Codes
9.5.2. Editing Codes
9.5.3. Repetition of Editing Codes
9.5.3.1. S imp Ie R e pe tit ion
9.5.3.2. Va ria b Ie R e pe tit ion
9.5.3.3. Indefinite Repetition

9.6. FO RMATT ED IN PUT

9.7. FILE HANDLING
9.7.1. Sequential Files
9.7.2. Random Access Files
9.7.3. Alternate Symbionts

7-1 to 7-11

7-1

7-3

7-4

7-5

7-6

7-7
7-7
7-8
7-9

8-1 to 8-5

8-1

8-1

8-2

8-3

9-1 to 9-23

9-1

9-1

9-3

9-4

9-6
9-7
9-8
9-10
9-10
9-10
9-11

9-14

9-16
9-17
9-17
9-18

UP-7S44 UNIVAC 1108 ALGOL

9.8. OTHER DIRECTIVES
9.8.1. Rew ind
9.8.2. Mod ifiers and Pos ition
9.8.2.1. Mod ifiers
9.8.2.2. Position
9.8.3. Labels,
9.8.3.1. Position Procedu re
9.8.3.2. Read Procedure
9.8.3.3. Write P roced ure
9.8.3.4. Margin Procedure

10. OPERATION

10.1. SOURCE CARD FORMAT

1 0.2. 0 PER A TIN GIN ST R U C T ION S

APPENDICES

A. BASIC SYMBOLS AND THEIR CARD CODES

B. STANDARD PROCEDURES AND TRANSFER FUNCTIONS

C. ERROR MESSAGES

C 1. COM P I LA T ION E R RO R S

C2. RUN-TIME ERRORS

D. EXAMPLES OF PROGRAMS

E. JENSEN'S DEVICE AND INDIRECT RECURSIVITY

F. FILE-HANDLING PROCEDURES

The information in this section has been
incorporated in Section 9,

G. SYNTAX CHARTS

G1. GENERAL

G2. PROG RA M

G3. DECLARATION
G3.1. Type Declaration
G3.2. Array Declaration
G3.3. String Declaration
G3.4. String Array Declaration
G3.S. Switch Declaration
G3.6. Externa I Procedure Declaration
G3. 7. Procedure Dec larat ion
G3.B. Local Declaration
G3.9. List Declaration
G3.l0. Format Declaration

Rev. 1 Contents

SECTION:

9-18
9-18
9-18
9-1B
9-19
9-19
9-19
9-29
9-21
9-21

10-1

10-1

10-1

PAGE:

A-I to A-2

8-1 to 8-4

C-l to C-4

C-l

C-4

0-1 to 0-6

E-l to E-l

G-1 to G-38

G-l

G-2

G-3
G-4
G-S
G-6
G-7
G-8
G-9
G-10
G-ll
G-12
G-13

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are: UNISERVO

FASTRAND

4

I Contents 5
UP-'~~, _______ U_N __ I_V_A_C_l_l0_8_A_L_G_O_L ______ ---J ______ ,,-SE_C_T_IO_N_: __&_P_A_G_E_: __ _

G4. STATEMENT
G4.1. Block
G4.2. Compound Statement
G4.3. Assignment Statement
G4.4. GO TO Statement
G4.5. Conditional Statement
G4.6. FOR Statement
G4.7. Dummy Statement
G4.8. Procedure Statement

G5. EXPRESSION
G5.1. Variable
G5.2. Function Designator
G5.3. Arithmetic Expression
G5.4. Boolean Expression
G5.5. Designational Expression

G6. BASIC ELEMENTS
G6.1. Identifier, Letter, Letter String, Digit
G6.2. Number
G6.3. String, Logical Value
G6.4. Delimeter

G7. INPUT/OUTPUT PROCEDURES
G7.1. Input Procedure Statement
G 7.2. Output Procedure Statement
G7.3. Pos ition Procedure Statement
G 7.4. Rew ind Procedure Statement
G7.5. Summary of Format Codes
G7.6. Grouping of Format Codes

FIGURES

8-1. Loca I and G loba I Identifiers

TABLES

9-1. Output Nonediting Codes

9-2. Output Editing Codes

9-3. Input Editing Codes

G-14
G-15
G-16
G-17
G-18
G-19
G-20
G-21
G-22

G-23
G-24
G-25
G-26
G-27
G-28

G-29
G-29
G-30
G-31
G-32

G-33
G-33
G-34
G-35
G-36
G-37
G-38

8-5

9-8

9-9

9-17

UNIV~= 1108 Multi-Processor System
ALGOL Programmers Reference Manual
UP-7544 July 22, 1968

UPDATING PACKAGE "A"

UNIVAC 1108 Mul ti-Processor System P. I. E. Bulletin 14, UP-4103.14, announces the
release and availability of Updating Package "A" for the "UNIVAC 1108 Mul ti-Pro­
cessor System ALGOL Programmers Reference Manual," UP-7544, 46 pages plus 1 Up­
dating Summary Sheet. This material should be utilized in the following manner:

DESTROY FORMER FILE NEW
SECTION PAGES NUMBERED PAGES NUMBERED -----

Contents 3 and 4 3 Rev. 1 and 4 Rev. 1
Section 3 1 and 2 1* and 2 Rev. 1

3 and 4 3 Rev. 1 and 4*
Section 4 1 and 2 1* and 2 Rev. 1
Section 5 5 5 Rev. 1
Secti.on 6 3 and 4 3 Rev. 1 and 4*
Section 7 3 and 4 3* and 4 Rev. 1

9 and 10 9* and 10 Rev. 1
Secti.on 8 3 and 4 3* and 4 Rev. 1
Section 9 1 and 2 1 Rev. 1 and 2*

3 and 4 3* and 4 Rev. 1
5 thru 23 5 Rev. 1 thru 22 Rev.

Sec tion 10 1 and 2 1 Rev. 1
Appec.dix B 1 and 2 1 Rev. 1 and 2 Rev. 1
Appendix F 1 thru 6 N. A.;
Appec.dix G 33 thru 36 33 Rev. 1 thru 36 Rev.

* These pages, backups of revised pages, remain unchanged.
; Information in Appendix F has been greatly expanded and incorporated into

Section 9.

1

1

UP-7~~ __________ UN __ IV,AC_l_l_08 __ A_L_G_O_L ________ ~ __ ~ _______ ~,~~: __ 1 __ ~I~p_A_G_E:_1 ____ ___

1. INTRODUCTION

1.1. GENERAL

This manual describes the ALGOL language for the UNIVAC 1108 System. The basis
for this language is the "Revised Report on the Algorithmic Language, ALGOL 60"
(Communications of the ACM, Vol. 6, January 1963, 1-17). This implementation of
ALGOL is very close to that of the report. Its one significant omission is the omis­
sion of dynamic own arrays. Some of its more significant additions include three new
data types (STRING, COMPLEX, REAL 2), and default declarations. Provision is
made for inclusion of procedures written in assembly language or FORTRAN V.

This manual is intended as an introduction to ALGOL 60 and as a reference manual
in the use of UNIVAC 1108 ALGOL and is not intended as an exhaustive, self-contained
description of ALGOL 60. The text consists principally of definitions and rules for
writing ALGOL programs, examples of these rules, and some sample programs.

A set of appendices includes special sections on file-handling procedures, UNIVAC
1108 ALGOL syntax in chart form, and sample ALGOL programs; lists of basic symbols,
library procedul'es, and diagnostic messages.

).2. THE ALGOL COMPILER

The ALGOL compiler is a program which accepts statements expressed in ALGOL and
producE~s programs for the UNIVAC 1108 System.

An ALGOL program is a sequence of statements written in ALGOL language. These
are translated by the compiler into the language of the computer: machine language.
The ALGOL statements are called the source code, and the translated statements are
called the object code. The compiler itself is a program written in machine language
and is called the UNIVAC 1108 ALGOL 60 Compiler. While translating the ALGOL
statements, the compiler looks for errors in syntax (that is, for errors in the forms or
construction of statements).

The compiler operates in two passes. The first pass scans the statements and does
about 95 percent of the work required to produce the final object code. The second
pass goes into operation immediately after all the statements have been scanned; it
completes the remaining details of producing the object code. Upon successful
compilation, the object code can be read into the main storage and executed. Activi­
ties that occur during compilation are sometimes referred to as compile-time activities;
for instance, compile-time diagnostics. The execution phase is referred to as ~­
time.

UP-7S44
1

UNIVAC 1108 ALGOL SECTION:

1.3. ALGOL 60 AND UNIVAC 1108 ALGOL

There are several differences between ALGOL 60 as defined in the revised report
and 1108 ALGOL 60. In that ALGOL is intended as a standard language and com­
patibility of programs between machines is becoming more and more important, those
differences must be explicitly pOinted out. They fall into two classes: extensions
to ALGOL 60 and definition of things left undefined by the report; modifications or
omission of ALGOL 60 entities.

1.3.1. Extensions to ALGOL 60

Extensions to ALGOL 60 include the following:

• STRING and STRING ARRAY variables enhance the value of ALGOL as a data
processing language.

• New arithmetic types COMPL EX and REAL 2 enhance the value of ALGOL to
scientific users.

• XO R, an additional Boolean operator is provided.

• EXTERNAL PROCEDURE declarations are provided for convenience in pro­
gramming large problems and for building libraries.

• I/O and other library procedures are provided and, related to them, are the
FORMAT and LIST declarations.

• A compact form for GO TO and FOR statements is allowed.

• Variables are given values of zero or blank at the entrance to a block; thus
initialization statements need not be made.

• The controlled variable of a FOR statement has a defined value when the
statement is terminated by exhaustion of the FOR list.

• The OTH E RWI SE declaration or declaration by default is provided.

• The variables in a multiple assignment statement need not be the same type.

• Arguments of type COMP LEX and REAL 2 are permitted for various standard
functions.

1.3.2. Deviations from ALGOL 60

• Because of hardware requirements, identifiers are unique only to their first
twelve characters and may contain no blanks; numbers may contain no blanks,
and certain basic symbols are reserved identifiers (see Appendix A).

• OWN arrays are not dynamic.

• Numeric labels are not allowed.

• The comm a is the only parameter delimiter allowed in a procedure call.

• A LOCAL declaration is required to resolve all forward references to identifiers.

• An integer raised to an integer power always produces aRE AL value.

2

PAGE:

UP-7~, ______ . ___ U_N_IV._A_C __ 1_10_8 __ A_L_G_O_L _________________ ~ ________ ~�5_E_CT_I_ON_:_1 ____ ~I_p_AG_E_:_3 ____ __

• All the formal parameters of a procedure must be specified and must agree in
type with the actual parameters.

These and other restrictions are covered in more detail in later sections of this
manual.

1.4. LANGUAGE CONVENTIONS

ALGOL is described in terms of three languages in this manual: reference, publi­
cation, and hardware language.

The reference language is that which defines ALGOL in the ALGOL 60 Revised
Report. It is computer independent and utilizes the basic ALGOL symbols to
define the language syntax and semantics. Throughout the text, but sparingly, the
syntax of 1108 ALGOL is described in terms of this reference language.

Example:

< identifier> : := < letter> / < identifier> < letter> / < identifier> <digit >

(Read: := as 'is' and / as 'or')

This says that an < identifier> is either a < letter> or an < identifier> followed
by a < letter> or an < identifier> followed by a < digit>. Further discussion of
identifiers is found in 2.2.

While having the advantage of compactness and precision, the formalism is not
suitable as an introduction to ALGOL and so has been used only as a summary aid.
Except for the formal definitions of the reference language, the hardware language
(the language acceptable to the UNIVAC 1108) has been used throughout the text.
All basic symbols which appear in the text, as well as all examples, are written in
upper case letters. This is the form in which they appear in the hardware language.

For publication purposes, the boldface type delineates the basic UNIVAC 1108
ALGOL symbols. Transliteration rules for basic symbols are given in Appendix A.

Statements may be separated from each other by either the semicolon or the dollar
sign. Because of keypunch limitations, the $ is commonly accepted and has been
used in all examples throughout this manual.

The following symbols are considered equivalent:
.. is equivalent to : (colon)
= is equivalent to := (replacement operator)

UP-75~, ___ . __ U_N_'_V_A_C_l_l_08_A_L_G_O_L ______ ,,--____ --I..1_SE_C_TI_O_N:_2 __L..-P_A_GE_:_1 __ _

2. ELEMENTS OF THE LANGUAGE

2.1. THE CHARACTER SET

The ALGOL compiler employs a character set which is commonly available as a
variant of the usual Hollerith code (FORTRAN H set) plus a few special UNIVAC
1108 characters. These are:

Letters A-Z
Digits 0-9
Special characters + - = () , $ / * . space
UNIVAC 1108 special characters : & < > ' [J;

In addition, some multiples of characters are given meaning as if they constituted
a single character:

/ /
**
&&

colon (interchangeable with :)
integer divide
exponentiation
base 10 scale factor (double precision)
replacement (instead o.f merely =)

A complete list of these characters and the transliteration rules from the ALGOL
60 report is given in Appendix A.

2.2. IDENTIFIERS

Identifiers are names that the programmer chooses to use to refer to the various
things which make up a program - variables, labels, switches, formats, procedures,
etc. Identifiers must begin with a letter and may be followed by any number of
letters and/or digits. None of the special characters listed in 2.1 (including a
space) may be used in an identifier. The compiler considers two identifiers iden­
tical if the first 12 characters are alike.

The following are all legitimate identifiers but the last two are not unique since
their first 12 characters are identical.

X
SUMX
y
ALTITUDE

A5
A1B2C3
NONLINEA.RRESIOUE
NONLINEARRESULT

Some basic symbolG have the same form as identifiers and are called RESERVED
IDENTIFIERS (see Appendix A). These can never be used except in their intended
context as basic symbols. For example, the word BEGIN can never be used as
the name of a quantity because it has an inherent meaning within the language and
cannot be redefined. On the other hand, several common arithmetic functions are
available for use without being declared, but these names can be redefined as
identifiers (see Appendix B). All identifiers, including reserved identifiers, must

UP-7544
2

UNIVAC 1108 ALGOL SECTION:

be se.parated from each other in the source language by DELIMITERS. All the
special characters listed in 2.1 are delimiters. The space is a rather unique de­
limiter in that a sequence of spaces is treated as one space.

2.3. CONSTANTS

Six types of constants may be uSLd ;n the UNIVAC 1108 ALGOL source program
language. They are integer, real (single precision, floating point), double precision,
complex, Boolean, and string constants.

2.3.1. Integer Constants

Integers are whole numbers represented internall5 by 35 bits plus the sign. Range
of an integer N (in magnitude) is from zero to 23 - 1 inclusive (235 - 1 =
34359738367).

If positive, the integer muy be prefixed with a plus sign. If negative, it must be
prefixed with a minus sign.

EXAMPLES: 0

2.3.2. Real Constants

70
-204

+23
2222222222
+0

A real constant is a string of eight or fewer digits with a decimal point. The
point may precede, follow or be imbedded within the digits. Internally it is
represented as a floating point number with 9 bits for the sign" of the number and
exponent and 27 bits for the fraction. The plus sign is optional, but a negative
sign must precede a negative constant. The magnitude ranges from approximately
10 -38 to 1038 or it may be zero.

EXAMPLES: 3.1416
0.0

.645

750.
+1.7

-2:0.4

If desired, a scale factor may be appended to a real constant to indicate that it is
to be multiplied by the indicated power of 10. This scale factor is represented by
an ampersand followed perhaps by a plus 01' minus sign and then by an integer.
The integer specifies the power of 10 to be used and is limited to two digits.

2.65&6 means 2.65 x 106 or 2,650,000.
-17.445&-5 means - 17.445 x 10-5 or - 0.00017445

In addition a real constant may be written as an integer followed by a scale
factor or a scale factor by itself may be used to signify a real constant.

2&-6 means 2.0&-6 or .000002
&7 means 107 or 10,000,000.0

2.3.3. Double Precision Constants

Double precision constants are used for doubleprecision calculations. The
magnitude ranges from approximately 10-308 to 10308 or it may be zero. The
maximum number of digits is 18.

2
PAGE:

UP'75~, ______ . ___ U_N_IV_A_C __ ll_0_8_A_L_G_O_L ____________ ~ ________ ~I_S_EC_T_IO_N_:_2 ____ ~PA_G_E_: _3 ____ __

Double precision constants are differentiated from real constants by use of &&
for power of ten, or by inclusion of between 9 and 18 digits in the fixed point
part. Double precision constants are ordinarily used only with variables of type
REAL 2.

The following are acceptable double precision constants:

3.141592653589793
1.049652345666&-22
4.655&&-4
1.0&&2
48&0

2.3.4. Complex Constants

The general form of a complex constant is:

<Rl,R2)

where Rl and R2 are real or integer constants and where < and> are required.

Examples:

< 1.0, 1.0> represents 1 + i
< 7 .Ol~-2, - 2 > represents 0.07-2i
< 0.0, 1.0> represents i

2.3.S. Boolean Constants

Only two Boolean constants are allowed:

TRUE
FALSE

2.3.6. String Constants

A string constant is a string of characters not containing a quote but enclosed
by quotes. The maximum size of a string constant is 4095 characters.

Examples:

'STANDARD DEVIATION ='
'PRINCIPLE RATE PERIOD PAYMENT'

___ Up_~, ___________ U_N __ IV_A_C __ l_l0_8 __ A_L_G_O_L _____________ ~ ________ ~1~S~EC~T~IO~N~:_3 ____ ~p~AG~E~: __ 1 __ __

3. DECLARATIONS

3.1. GENERAL

An ALGOL program may be broken into logical segments ca11ed blocks which are
complete and independent units. Their structure is discussed in Section 8. One
important property of a block is that, at the beginning of the block, a11 of the local
entities that are to be referenced inside the block must be declared. Declarations
determine how the compiled program will treat certain of its elements; thus it is neces­
sary to precede the use of an identifier with a declaration of type. An identifier may
appear in only one declaration within a block; however a block may contain blocks
within itself (as shown in 8.3). Any of these blocks may declare variables taking on
names used in outer blocks, thus redefining them for the inner block.

3.2. TYPE DECLARATIONS

The type declaration defines the type of variable named by an identifier. This
declaration specifies that a11 values which the identifier assumes must be of the
designated type. The general form of type declaration is:

< type> < type list>

where < type list> is a list of identifiers separated by commas. Each declaration is
terminated by a ; or $. The five possible type declarations are:

INTEGER - Integral values represented internally by 36 bits. The range of an integer
(in magnitude) is zero thru 235_1 inclusive.

REAL - Floating point numbers internally represented by 9 bits for sign of the number
and the exponent and 27 bits for the fraction. The range of a real number (in magni­
tude) is 10-38 to 1038 and 0 with approximately 8 digits of precision. Any real
quantity which is less than 10-38 is represented by zero.

REAL 2 - Floating point numbers internally represented by 12 bits for sign of the
number and the exponent and 60 bits for fraction. The range of a REAL 2 number (in
magnitude) is approxim ately 10-308 to 10308 and zero with approxim ately 18 digits

of precision.

COMPL EX -- Complex values of the form A + i*B where A and B are REAL numbers.

BOOLEAN -- Truth values, TRUE or FALSE.

UP-7544 UN IVAC 1108 ALGOL

Examples of type declarations are:

I r'JTEGER
HEAL
IjOOLEAN
COMPLEX
I~[AL 2

I, J, K, COUNTER $
X, y, TEMP, VELOCITY $
AJr,X $
Z 1, 22, U, V $

A, fj, C $

3.3. ARRAY DECLARATIONS

Rev. 1 I SECTOO", 3

When declaring simple variables as described above, a different name must be used
for each different variable being defined. The AR RAY declaration provides a means
of referring to a collection of numbers that fall into a matrix or array by the use of a
single identifier.

This ARR A Y declaration specifies to the compiler the structure which is to be
imposed on this collection. An array is a group or set of elements arranged so that
each may be identified by its position within the group. The compiler considers all
elements of array to be of the same type.

Arrays in this compiler are restricted to those of rectangular construction in n­
dimensional space.

For example, the declaration REAL ARR A Y A(l: 10) defines an array A with ten
elements which may be referenced by:

A(l) A(2) A(3) A(4) A(S} A(6) A(7) A(S) A(9) A(lO>.

The general form of array declaration is

< type>ARRAY < array list> « bound pair list»

where type may be of any of the types given in 3.2. If type is omitted, it is assumed
to be REAL. The array list specifies the names of the arrays. The bound-pair list
consists of a bound pair for each array dimension. Each bound pair is of the form:

lower limit:upper limit

A complete array declaration for a single array is of the form:

Where l's represent lower bounds and u's represent upper bounds. Either or both of
the bounds may be negative, but Ii ~ ui'

For example:

It'J1LGLH f\HHAY 1(0:4,1:3)

2
PAGE:

UP07d, ___ . __ U_N_I_V_A_C_l_l_0B_A_L_G_O_L __ , ____ -.L __ R_e_v_, ~.~O,_N_:_3 ___ I_p_A_G_E_:_3 __ _

defines an array composed of five rows and three columns of integers as follows:

1(0,1)
1(1,1)
I(2,1)
1(3,1)
1(4,1)

1(0,2)
1(1,2)
1{2,2)
I{3,2)
1(4,2)

1(0,3)
1(1,3)
1(2,3)
1(3,3)
1(4,3)

In the previous declaration, the parts 0:4 and 1:3 are called bound pairs, and each set
of them defines a subscript position. The first digit of the bound pair specifies the
lowest possible value for that subscript position, and the second specifies the highest.
An element of array I is referenced by the identifier I followed by a subscript list en­
closed in parentheses (see 4.2.3.1). Since the lower bound of the first subscript position
is 0, 1(3,2) refers to the element in the fourth row and second column of array I. There
is no limit to the number of subscript positions an array may have. However, declarations
like

REAL ARRAY AC6:S) $

are not allowed, since the lower bound must not be greater than the upper bound.
This declaration would result in an execution-time error.

Array identifiers of the same type, separated by commas, may be included in one
declaration:

If two or more arrays are of the same type and same size, they may be listed sequentially
with the dimension specification after the last array identifier in the group ..

COMPLEX ARRAY COM, COMI,DECOM,COMCONJ(3:10) $

This declaration defines four one-dimensional arrays. Each consists of eight
complex numbers and the subscripts of the elements range from three to ten.

One of the most important feature of ALGOL is that the expressions for the bound pairs
need not be constants; they can be any expression referring to non-local variables and
constants.

Example:

REAL. ARRAY A(1:N,II/2:ENTIER(X) ,O:TIMEMAX) ,f)'Pl.OP2(Tt1F!I~ITY+­
OP1,DP2{-INFINITY:INFINITY) $

~(1\lI'TY-}-"$ t

The size of these arrays depends on the values of N, I, X, TIMEMAX, and INFINITY.
Therefore, the size varies from one execution to another. Because of this, the actual
storage cells for the array are allocated during execution each time the block (in which
the array declaration occurs) is entered; i. e., at the place the array is declared. This
is called 'dynamic' storage allocation. All the variables in a program except own
variables (see 3.5) are allocated in storage in this way. Section 8 explains the process
of allocating variable storage for ALGOL. Note that the dynamic allocation concept
cannot be used in the outermost block (i. e., the bound pair list may contain only
constants in the array declarations in the outermost block).

· uP-7~1 UNIVAC 1108 ALGOL ________ ~ ____________ .I~S~E~C_TI~O~N~:_3 ____ ~PAGE:

3.4. STRING DECLARATIONS

The STRING declaration provides a means of referring to a collection of alphanumeric
characters in Fie1data code by the use of a single identifier, and at the same time
specifies to the compiler the structure which is to be imposed on this collection. The
string declaration defines the name and length of the string:

STRING S(aO) $

Strings may have substrings, either named or unnamed:

STRING S(L(40),R(40» $

defines a string S as having a length of 80 characters with the first 40 characters being
a string L and the second 40 a string R.

The above declaration defines the strings S, S7, and Q and Q9. It also gives their
relative position since 6, 4, and 2 are unnamed substrings. The expression for the
length of a string must be positive and less than 4096. Strings, like simple variables
and arrays, may be declared with an identifier list:

STRING CARD (80), LINE(132), ITEM(CODECDEPTC2), SECTION (8»,
5,NAME(30), RATE(S), TIME(S), GROSS(lO), NET(lD»$

The string CARD holds 80 characters corresponding to a card image. Correspondingly,
the string LINE holds one print line image. The string ITEM, on the other hand, has
the somewhat complicated structure shown below:

DEPT(2) I SECTION(8) Rate Time Gross Net

CODE(10) (S) NAME(30) (S) (S) (10) (10)

ITEM(7S)

ITEM has 7S characters partitioned into the strings CODE, NAME, RATE, TIME, GROSS,
and NET. In addition, the string CODE of 10 characters is partitioned into the strings

DEPT and SECTION. Thus

ITEM(8) := CODE(8) := SECTION(6).

3.4.1. String Arrays

A combination of the string and array declarations defines a quantity known as a
string array. A string array is an array whose elements are strings. The form of
declaration is:

STRING ARRAY S«string part>: <array part»

4

UP-7~, ______ , ___ U __ N.I_V_A_C __ 11_0_8_A_L_G_O_L _____________ ~ ________ ~I_S~EC_T_IO_N_:_3 ____ I~p_A~G~E'~' _5 __ ___

where < string part> specifies the length of each element of S (and also defines any
substrings just like a string declaration) and < array part> is the list of bound pairs
just as for a simple array (see 3.3).

Example:

STRING ARRAY S(L(40),R(40):1:10, 1:10) $

defines a two-dimensional array S with ten rows and ten columns. Each element of
the array is a string of 80 characters. Furthermore each string consists of substrings
Land Reach 40 characters long. Referencing of substrings is discussed in 4.4.

3.5. OWN DECLARATIONS

Whenever a block is entered, the simple variables and arrays that are declared within
that block are given the value zero, and strings are given the value (blank) in each of
their character positions. The additional symbol OWN in front of anyone of these types
of declarations changes this initialization in the following way: the first time the block
is entered they are given initial values as above. In subsequent entrances to the block
they have the same value as they had on the last exit from the block.

Examples:

BEGIN INTEGER I $
REAL. FX, FY $
OWN BOOLEAN ALPHA,BETA $
OWN REAL ARRAY DEV (1:10, 1:10) $

In general all declarations allowed in 3.2, 3.3, and 3.4 of this chapter are also permitted
as OWN declarations. The exception to this rule is that the length of a string or the
length of any of the subscript posi tions of an array does not change after the first
entrance to the block. Thus, if a block begins by:

BEGIN OWN ARHAY A(O:N)

and N has the value six (elements are numbered zero through six), the length of A
remains seven throughout the program even if N has a different value at the next
entrance to the block.

3.6. DEFAULT DECLARATIONS

The OTH E RWISE declaration allows the programmer to specify that all simple variables
(those without subscripts), unnamed in a type declaration are assumed to be of a given

type.

BEGIN REAL X, FX, FPX $
INTEGER OTHERWISE

UP-7544 UNIVAC 1108 ALGOL I SECTION, 3 PAGE:

means that any other simple variables besides X, FX, FPX that are encountered in this
block are to be integers. The OTH ERWISE declaration may not be used in connection
with an array or string. A hazard of this declaration is that it carries the danger that
'new' variables may be created unintentionally and not noticed.

Example:

BEGIN INTEGER OTHERWISE ~
ROOMBOOM = 2$
AEN = 4$

t300~·lBOOrv1 = « BOOMROOM+AE~~) *ROnMBoorv1+AEN) *BOOMBOM

The variable BOOMBOM has crept into the calculation when BOOM BOOM was the
proper one. Therefore the OTH ERWISE declaration must be used with care. Another
type declaration may follow the OTH ERWISE declaration.

3.7. THE COMMENT

The COMM EN T allows the programmer to include such things as clarifying remarks and
identifying symbols in the printed compilation. A comment may serve any purpose the
programmer desires once it is ignored by the compiler.

Two commonly used forms are:

BEGIN COMMENT<any sequence not containing; or $ >;
; COMM EN T < any sequence not containing; or $ >;

Example:

BEGIN COMM ENT SAMPLE PROGRAM USING UNIVAC 1108 ALGOL $

Any characters following an END and preceding another END, ELSE, or a semicolon
are also treated as comments.

Examples:

END OF INNER LOOP END OF OUTER LOOP $

END THIS TERMINATES THE THEN PART ELSE
END OF HEAT TRANSFER PROGRAM $

3.8. FORMAT, LIST, SWITCH, PROCEDURE, LOCAL

The other declarations are of a mort complicated nature and appear in other parts of the
manual. FORMAT and LIST are concerned only with input/output and are discussed in
Section 9. Procedures are discussed in Section 7 and switches in Section 5. The
LOCAL declaration is added to the language to allow faster (one pass) translation into
object code. It is discussed in Section 8.

6

UP.~, __________ U_N __ I_V_A_C __ ll_O_8_A._L_G_O_L _________________________ ~1_SE_C_T_IO_N_:_4 ______ PA_G_E_:_1 __ ___

4. EXPRESSIONS

4.1. GENERAL

An expression is a rule for computing a value. There are four kinds of expressions:
arithmetic, Boolean, string, and designational. Expressions are composed of operands,
opera.tors and parentheses. Operands are constants, variables, function designators, or
other expressions. Operators are symbols which designate arithmetic, relational, or
logical operations, and paren theses are used to determine the sequence of operations
to be performed. The value of an arithmetic expression is a number of the type
INTEGER, REAL, REAL 2 or COMPLEX. The value of a Boolean expression is
either TRUE or FALSE, and the value of a string expression is a string of symbols.
The value of a designational expression is a statement label. Expressions must be
formed in accordance with mathematical convention and with the rules discussed in
the following paragraphs.

4.2. ARITHMETIC EXPRESSIONS

Arithmetic quantities are combined into arithmetic expressions by means of the follow­
ing arithmetic operators:

+ denotes addition
_. denotes subtraction
* denotes multiplication
I denotes division
** denotes exponentiation
I I denotes integer division

The expression

AIIB

can be written only when A and B are both of type INT EGER. The expression has the
integer value of the unrounded quotient of A by B.

Thus 5113 = 1

The expression

A**B

means A raised to the power B.

UP-7S44
Rev. 1 4

UNIVAC 1108 ALGOL PAGE: SECTION:

4.2.1. Ordering Rules for Operations

When arithmetic expressions are evaluated, the arithmetic operations are performed
according to the following rules of priority or precedence.

Class 1 ** Exponentiation
Class 2 Unary minus 1

Class 3 * Multiplication

I Division

II Integer division
Class 4 + Addition

Subtraction

Expres sions with operators in different classes are evaluated in order (1, 2, 3, and then
4) unless parentheses are used to change the order. Expressions containing opera-

tors in the same class are evaluated from left to right. Parentheses may be used to
override the given order of evaluation. Expressions within innermost parentheses
are evaluated firs t.

Examples:

Expression

A-B-C
A-B**C
A**B-C**D
A+B/C
AlBIC
A**B**C
-A**2

4.2.2. Hierarchy of Operand Types

Compiler In terpretation

(A-B)-C
A-(B**C)
(A**B)-(C**D)
A+(B/C)
(A/B)/C
(A**B)**C
-(A**2)

Mixed-mode arithmetic is permitted. The evaluated arithmetic expression assumes
the type of the dominant operand type in the expression. The order of dominance is
COMPLEX, REAL 2, REAL, and INTEGER. Exponentiation routines for COMPLEX
REAL 2 and REAL 2COMPLEX have not been implemented.

Example:

INTEGER
REAL
REAL 2
COMPLEX

then

I*R
R2+H
C-R2+1

I $
R $
R2 $
C $

IS REAL
IS REAL 2
IS COMPLEX

1 Note that the order of precedence for the unary minus and exponentiation has been reversed from

1107/1108 EXEC II ALGOL. Under the EXEC II system Y= -A**2 would always produce a positive

result for Y.

2

UP-75~ ______ . ___ U_N_IV_A_C __ l_l0_8_A_L_G_O_L ____________ ~ ________ ~I_S_EC_T_IO_N_:_4 ____ ~PA_G_E_:_3 ____ __

There are two exceptions to the above rule:

• AlB is REAL when A and B are INTEGER

• A**B is REAL when A and B are INTEGER

4.2.3. Operands of Arithmetic Expressions

The operands of arithmetic expressions are constants, variables, function designators
(defined below), or other arithmetic expressions.

4.2.3.1. Subscripted Variables

A variable may be either a simple variable or a subscripted variable. A subscripted
variable represents one of the following:

(1) A single element of an array denoted by the identifier which names the array
followed by a subscript list enclosed in parentheses,

(2) A portion of a string variable, ·or

(3) A combination of both (1) and (2) in the case of STRING arrays. A subscript
list consists of arithmetic expressions separated by commas.

The following are examples of subscripted variables:

A(!,J)
M(!+l,J+l)
V(F(P+l),Q+12)
Z(W(T),X(T),Y(T),Z{T»
X(13)
A(I*2,I//2)

The expressions which make up the subscript may be of any complexity. REAL
values are allowed, in which case the real number is rounded to the nearest integer.
Each subscript expression must have a value which is not less than the minimum
and not greater than the maximum specified by the ARRAY declaration or for the
string as specified by the STRING declaration (see Secfion 3). The number of
subscript expressions must equal the number of dimens"iuns of the array as given
in the ARRAY declaration. Thus, if an array is dec1are~. as follows,

REAL ARRAY A(1:10,1:10)

then A(3, 11) is undefined.

4.2.3.2. Function Designators

A function designator is either a call on a declared function procedure (see Section
7) or a call on a standard function. These standard functions are the ones com­
monly employed in mathematics, such as the square root, sine, and arctangent
functions. A complete list of the available functions is given in Appendix B. For
example, the function whose value is the square root of X is called SQRT; there­
fore if

REAL X 'n

UP-7S44

4
UNIVAC 1108 ALGOL 5 EC TION: PAGE:

then

SQRT (X)

is a function designator.

Operands themselves may be arithmetic expressions, and combining them by means
of operators may give rise to more arithmetic expressions. Assuming the declara­
tions:

REAL R $
INTEGER I $
INTEGER ARRAY A(O:10) $

Then the following are valid arithmetic expressions:

(R*I)/(A(1)+7)
(A(A(2»-I**3)*MOD(A(7),4)

MOD is an example of a standard function. In these examples, liberal use is made
of parentheses to indicate order of evaluation.

4.3. BOOLEAN EXPRESSIONS

The only Boolean constants are T RU E and FALSE and these have their fixed, obvious
meaning. A Boolean operand may be either a simple variable that has occured in a
Boolean declaration, a subscripted variable that has appeared in a"Boolean array
declaration or a Boolean function designator such as NUMERIC, or a Boolean constant
(see Appendix B). Boolean expressions are:

• Boolean operands

• Arithmetic or string expressions connected by the relational operators L SS, L E Q,
EQL, GEQ, GTR or NEQ

• Boolean expressions connected by the logical operators NOT, AND, OR, IMPL, EQIV,
or XOR

4.3.1. Relational Expressions

The relational operators have the semantic meanings

ALGOL
EXPRESSION

A LSS B
A LEQ B
A EQL B
A GEQ B
A GTR B
A NEQ B

MATHEMATICAL
NOTATION

A< B
A:::; B
A=B
A~B
A>B
A"f:. B

MEANING

Less than
Less than or equal to
Equal to
Greater than or equal to
Greater than
Not equal to

4

UP-7~ __ . ___ , __ U_N_I_V_A_C_l_l_0_8 _A_L_G_O_L __ , ___ ~ __ ~N_:_4~I_PAG_E:_5 ___

For arithmetic or string expressions A and B, the Boolean expression:

A -< relational operator> B

is T RU E if the relation holds and F AL SE if it does not. A and B may be mixed
mode. If either A or B is COMPLEX, only the relations EQL and N EQ can be used.
If A and B are both string expressions (see 4.4), the strings are compared character­
by-character starting at the left. The shorter string is considered to be filled out
with blanks to the length of the longer. The collation sequence of characters is that
of Fieldata.

4.3.2. Boolean Operators

The six Boolean (logical) operators are:

NOT
AND
OR
IMPL
E~~IV

XOR

negation
conjunction
inc1usi ve disjunction (inclusive OR)
implication
equi valence
exclusive disjunction (exclusive OR)

The value of a Boolean expression of the form:

A -< Boolean operator> B

is obtained from the following table. NOT is a unary operator.

A B NOT A A OR B

TRUE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE
FALSE TRUE TRUE TRUE
FALSE FALSE TRUE FALSE

Assume the following declarations:

BOOLEAN A,8 $
REAL X,Y,l $
STRING S(100) $

-
A AND B A XOR B

TRUE FALSE

FALSE TRUE
FALSE TRUE
FALSE FALSE

Then the following are legitimate Boolean expressions.

B AND A
10.0 LEQ X AND X LEG 99.0
NOT B OR A
NOT (X LSS Y IMPL Z EQL Z**2)
NUMERIC(S) OR NOT ALPHABETIC(S>

A IMPL B

TRUE

FALSE
TRUE
TRUE

A EQIV B

TRUE
FALSE
FALSE
TRUE

In the above example NUMERIC and ALPHABETIC are standard functions (see
Appendix B).

UP-7544
4

UNIVAC 1108 ALGOL SECTION: PAGE:

4.3.3. Precedence of Boolean Operations

Parentheses may be used to specify the order of operations in Boolean expressions.
If parentheses are omitted (or wi thin parentheses), Boolean expressions are scanned
from left to right, and operations are performed according to the following precedence:

(1) Arithm etic operations accordin g to 4.2.1.

(2) Relational operations

(3) NOT

(4) AN D

(5) OR XOR

(6) IMPL

(7) EQIV

Example:

A+l GTR B OR C AND G+2 NEO H

will be compu ted as

«A+l) GTk B) OR CC AND ((G+2) NEQ H»

Parentheses should be used in compound expressions to avoid confusion or misinter­
pretation by human readers (not the compiler).

4.4. STRING EXPRESSIONS

Strings have no operators which produce a string result. Substrings of a declared string
are defined by giving a starting position and a length. For example, if S is a string
variable

STRING 5(120)

then

SCi)

denotes the ith character in the string S where the characters are numbered from the left
starting with one. Thus, S(6) is the sixth" character in string S.

S(i,j)

denotes a strin g of j characters taken in ascending order from string S starting with the
character in the ith position. S(1,10) is the substring of S consisting of the first ten
characters of S. The substring S(l) is equivalent to S(1, 1). That is, if the length is
omitted, it is taken to be 1.

6

UP-75~ ______ . ___ U_N_IV_A_C __ 1_10_8_A_L_G_O_L ____________ ~ ________ ~1~S~EC~T~IO~N~: __ 4 __ -LI~PA~G~E~: __ 7 __ ___

In summary, consider string S.

In this string the following three string expressions all have the same value; that is,
they all refer to the same five characters.

5 (;34,15)
STACK (4,5)
OP

Partial string-array variables are subscripted variables with two separate subscript
lists separated by a colon (:). A subscripted string variable is written as

S(<: string part>: < subscript list»

If S is a two-dimensional string array, then

S(i:j, k)

denotes the ith character in the j, kth element of the string array S. If a group of
characters is desi red, then

SCi, l:j, k)

will denote the group of 1 characters taken in ascending order starting with the char­
acter in the ith position from the j, kth element in the strin g array. On the other hand,
if the entire string from the j, kth element in the string array is desired, then the colon

may be omitted. Thus,

S(j, k)

specifies the entire string.

Example:

STRING ARRAY S(L(40),R(40):1:10,1:10)

then

specifies the last 40 characters of the string in the fourth row and tenth column of the
two-dimensional array. Each of the elements consists of 80 characters.

A numeric string expression may be used as an arithmetic operand:

5<1,5)+1
5(1) EOL 1

UP-7S44
4

UNIVAC 1108 ALGOL SECTION: PAGE:

When used in this context, the string expression is converted to an integer expression
by a transfer function. If the string does not represent an integer, an error message is
printed (see Appendices B and C). If the integer value of the string is greater than
(235_1), an error message results.

4.5. DESIGNATIONAL EXPRESSIONS

Designational expressions are expressions whose values are statement labels (see 5.5).
The form of a designational expression is either a label, a switch variable, or a condi­
tional expression in which the value of a Boolean expression determines which of two
designational expressions to use. For further details see 6.2 and 6.3.

4.6. CONDITIONAL EXPRESSIONS

The value of an expression may depend on the value of a Boolean expression. For

example,

IF X EQL Y THEN 1 E.LSE 2

is an integer expression whose value is 1 or 2 depending on whether X equals Y. The
general form of a conditional expression is:

I F <Boolean expression> TH EN < simple expression>
ELSE < expression>

The expression following TH EN and the expression following ELSE must be of the
same kind (arithmetic, Boolean, or string). The expression following ELSE may be
another conditional expression.

Example:

IF X GTR 0 THEN 0 ELSE (X EQL 0)

is illegal because in some cases it has an arithmetic value (0) and in other cases a
Boolean value (X EQL 0). In the cases where the constituent expressions are arith­
metic, then the type of the entire expression is always the more general of the two
expressions:

IF X EQL 0 THEN <1.0.2.0) ELSE 2.0

has a value of either<1.0,2.0>or<2.0,0.0>; that is, a value of type COMPLEX.
Note that ELSE must always be present in conditional expressions.

The < simple expression> may be any expression not starting with IF, or any expression
put into parentheses. For example, the following is not a simple expression because it
begins with IF, but it contains a simple expression in the parentheses.

IF A THEN X+(IF B THEN X ELSE Z) ELSE IF B THEN Z ELSE 0

8

UP-75~, ___ ._U_N_I_V_A_C_ll_0_8_A_L_G_O_L ______ ____ --I.I_SE_C_T_IO_N_: _5_---I p_A_G_E:_l_~_

5. STATEMENTS

5.1. GENERAL

The ALGOL statement is the fundamental unit of operation within the language. The
operations to be performed are specified by statements which may be divided into two
classes:

• Assignment statements

• Conh'ol statements

This section discusses assignment statements, combination of statements, statement
labels, and rules for punctuating statements. Section 6 is devoted exclusively to
control statem en ts.

5.2. COMPOUND STATEMENTS

A number of statements may be grouped to form a compound statement which is to be
considered as a single statement. The general form of a compound statement is:

BEGIN Sl $ S2 $ ••••• $ SN END

where Sl through Sn are single statements or other compound statements. The words
BEGIN and END serve as opening and closing statement parentheses. Note the
absence of $ between Sn and END.

5.3. ASSIGNMENT STATEMENTS

An assignment statement is of the form:

v = e or
v:= e

Where v is a variable (simple or subscripted), e is an expression, and the equal sign
is known as the replacement operator. This replacement operator is not equivalent to
the equal sign in mathematical notation. The assignment statement specifies that the
expression e is to be evaluated and this value is to replace the current value of the
variable v.

UP-7544 UNIVAC 1108 ALGOL

Examples:

SUM = 0 $
X = Y + Z $
A(I) = Xl $
N = N + 1 $

5
SECTION:

Replace the current value of SUM with zero.

Replace the current value of X with the value of
(Y + Z).

Replace the current value of the Ith element of
array A with the value of XL

Increase the value of N by 1.

Note that the last example is not a valid algebraic equation, but it is a valid assign­
ment statement. On the other hand, a valid algebraic equation such as:

PAGE:

has no meaning to the compiler as Z**2 is not an identifier. Neither an expression nor
a constant may appear to the left of the replacement operator.

In the statement

N = IF X EQL Y THEN 1 ELSE 2

N is assigned the value 1 or 2 depending on whether X equals Y. In the assignment
statement

v must be compatible in type with e. The compiler includes transfer functions to
transfer from the type of e to the type of v. The available transfer functions are sum­
marized at the end of Appendix B. If v and e are of different types, then the compiler
converts e to the type of v before the assignment is made.

If the conversion is from REAL to INTEGER then the result is rounded to the nearest
integer as in the following example:

INTEGER I $
I = 1.57 $

The assignment statement assigns the value 2 to I. This is equivalent to writing
1= ENTlER (1.57 + 0.5) where ENTlER is a standard function which returns the
integral part of the argument.

If the expression e is BOOl EAN, then v must also be BeOl EAN. If e is a string
expression then v must be type STRING or INTEGER; type INTEGER applies only if
the expression is a numeric string (see Appendix B). If e is an arithmetic expression
then the v must be arithmetic. v may be type STRING if e is INTEGER.

2

UP-75~, _________ U_N_I_V __ A_C_l_l_08 __ A_L_G_O_L ____________ ~ ___________ IS_E_C_TI_ON_: ___ 5 ___ ~_P_A_G_E: ____ 3 __ ___

5.3.1. String Assignment Statements

If the variable V in V = S is a string variable, then this is known as a string assign­
ment statement. In this case, the expression S must be either arithmetic or of type
STRING. If S is an arithmetic expression then it is first converted to type INTEGER
and then into its associated string.

In all cases, the replacement is made such that the leftmost character of the right-hand
side replaces the leftmost character in the left-hand variable. If the string on the
left-h and side is Ion ger, extra spaces are supplied to the righ t as necessary to fill
out the left-hand string. If the string on the right-hand side is longer, any excess of
characters from the right-hand side is dropped (that is, the replacement is left justified
in the left-hand string variable).

As a.n illustration, consider the following uses in which A is a string variable:

A before Statement A after

ABCDEF A = 'XYZUVW' XYZUVW
ABCDEF A = 'LOOP-DE-LOOP' LOOP-D
ABCDEF A = 'HOW' HOW
ABCDEF A(2) = 'G' .l\QCDEF
ABCDEF AC2,3) = 'XYZ' AXYZE'F
ABCDEF A(2,3) = 69 A69 EF

It is preferable to write the last statement in the form A(2, 3) = 169.6.1 so as to avoid
the time consuming integer-to-string conversion. One word of caution, the string
replacements are performed a character at a time starting with the leftmost character;
hence, a replacement of the form

5(2, N-l) = S(l,N-l) $

will result in the character in the 1, 1 position, S(l, 1), being propagated down the
string (Le. the first N characters of the string S will all be the same as the character
in S(l, 1)).

Characters in a string can be shifted right or left by this type of statement. To shift
the characters in a string right, first move the string into another string of the same
length and then perform a replacement operation. For example, let Sand T be strings
of the same length; then the following statements shift S right one position and leave
the first character unchanged.

T = S
5(2, N-l) = T(l, N-l) $

Similarly S can be shifted left by

UP-7544
5

UNIVAC 1108 ALGOL SECTION:

5.4. MULTIPLE ASSIGNMENT STATEMENTS

The same value can be assigned to a number of variables by means of a multiple as­
signment statement. If the variables to which a value is being assigned are mixed in
type, then type conversions are performed. Assume X, Y, and E are REAL, and I is
INTEGER. Then the statement

x = I = Y = £ $

evaluates E and assigns this value to Y; the value of Y is then rounded to an integer
and assigned to I; the value of I is converted to REAL and assigned to X.

The general form of assignment statement is of the form

PAGE:

where the V's are variables (simple or subscripted) and E is an expression. If the V's
include subscripted variables, then the order of evaluation is as follows:

(1) Any subscript expressions are evaluated in sequence from left to right.

(2) The expression E is evaluated.

(3) The value of the expression is assigned to all variables proceeding from right to
left (as in the example X=I=Y=E) with the subscripts having values as determined
in 1.

If the value of I is 1 before this statement is encountered,

A(I) = 8(1+1) = I = 1+1 $

then evaluation continues as follows (A and B real arrays)

(1) The subscript for A is determined as 1 and for B as 2.

(2) I is incremented by 1 thus it becomes 2.

(3) The in teger is converted to REAL and assigned to A(1) and B(2).

Thus A(1)=B(2)=2.0

5.5. STATEMENT LABELS

In order to identify a statement a name may be attached to it. This name is called a
statement label and permits one statement, to refer to another. A label is an identifier
- a string of letters and digits beginning with a letter. Numeric labels are not per­
mitted in this implementation of ALGOL. The string may be of any length but)ike
any identifier they must be u'nique within the first 12 characters (see 2.2). The label
precedes the statement and is separated from it by a ":" (or ..). Multiple labels are
permitted.

Examples:

Ll: Y = A*X + B*C $
START: SUMX = 0 $
START:SUMX = 0 $

Ll: L2: L3: L4 X=V $

4

~, ______ . _____ U_N __ IV_A_C __ l_l0_8_A __ LG __ 0_L __________ ~ ____ R_ev_._l _____ 1~S~EC~T~IO~N~:_s ____ ~I~PA~G~E~:_S __ __

A label is defined by its actual occurrence and is therefore local to the block in which
it occurs. Of course, each label must be different from all other identifiers referenced
within the block. See Section 8 for further discussion of labels and blocks.

S.6. PUNCTUATION

Each statement as well as each declaration must be terminated by a $ or a;. In a
compound statement, a $ preceding the END would be redundant and may be omitted.

The end of a line has no meaning as punctuation. There is no restriction as to the
number of cards that may be used for forming a statement. Spaces must not appear
within numbers, labels, or in basic symbols (except for GO TO and REAL 2). However,
spaces must: be used to separate adjacent symbols composed of letters or digits.
Spaces may be used freely for indentation or to facilitate reading.

5.7. DUMMY STATEMENTS

A dummy statement performs no op"eration. It can be used to place a label.

Example:

Ll: END
DO $

UP·7544 UNIVAC 1108 ALGOL I SECTION, 6 I PAGE, 1

6. CONTROL STAT·EMENTS

6.1. GENERAL

The compiler translates successive statements in the order in which they appear in
the program.. The statements are also executed in this same order unless the pro­
grammer interrupts this normal sequence with a "transfer of control." Once the
transfer has taken place, successive statement sequencing continues from the new
point of reference.

Transfer of control in ALGOL is accomplished through use of three kinds of control
statements - unconditional, conditional, and iterative.

6.2. UNCONDITIONAL CONTROL STATEMENTS.

The GO TO statement causes an unconditional transfer of control to another part of
the program.

6.2.1. The GO TO Statement

The GO TO statement may be written in anyone of three ways:

• GO TO <designational expression>
• GO TO <designational expression>
• GO <designational expression>

There are three forms of designational expressions, the label being the simplest.

Example:

t:Q = SIN(SQRT(Z» $

•
•
•
GO TO L $

GO IO L interrupts the normal sequence of instructions and restarts at the state­
ment with the label L.

UP-7S44
6

UNIVAC 1108 ALGOL SECTION:

Alternatively the designational expression may take the form of a conditional ex'"
pression.

Example:

GO TO IF X EQL Y THEN Ll ELSE L2 $

In this case if X equals Y, control is transferred to the statement labeled L 1;
otherwise, the transfer is to L2.

A third form of designational expression is a SWITC.H variable explained below.

6.2.2. The SWI TCH

PAGE:

The SWI TCH declaration names a group of alternative points in a program to which
control may be transferred. It includes a means for selecting a given designational
expression from the SWI TCH list by means of a subscript expression (evaluated at
execution time) with the SWI TCH identifier. In effect, the SWI TCH declaration
defines a SWITCH variable which is similar to a one-dimensional array except that
the elements are designational expressions.

To start with, a switch must be described by a SWITCH declaration prior to its use
as a switch variable. The range of subscripts is from 1 to n, where n is the number
of elem ents in the switch list. If a subscript expression on a switch variable falls
outside the defined range of the switch, then the switch operation is ignored.

The general form of the declaration is

SWI TCH <switch identifier> = <switch list>

or

where SWITCH 1 is the name of the switch and el - - - en are designational
expressions.

A switch element is referenced in a GO TO statement by means of the switch
identifier with the appropriate subscript:

GO TO SWITCHN1(I)

where I is an arithmetic expression. This expression is evaluated when the GO TO
is executed. Control is transferred to the statement designated by element I in the
switch list of the SWI TCH declaration (counting from left to right).

To illustrate, assume that it is necessary to transfer to statements labeled L 1,
L2, L3, and L4 depending on whether the value of J is 1, 2, 3 or 4. This could be
accomplished with the following GO TO statement:

GO TO IF J EQL 1 THEN Ll ELSE
IF J EQL 2 THEN L2 ELSE
IF J E0L 3 THEN L3 ELSE
IF J EQL 4 THEN L4 $

2

UP-7~, _____ U_N_I. V_A_C_l_l0_8_A_L_G_0_L __
Rev. I I SECTION, 6 PAGE:

However, it is much easier to set up a switch to accomplish the same thing

SWITCH S = L1, L2, L3, L4 $

•
•
•
•
GO TO S(J) $

Example:

SWITCH S = Ll, IF X GTR Y THEN L2 ELSE L3, L4, T(I+6), L5 $

If the switch variable S is referenced from a GO TO statement

GO TO S(J),

the following transfer of control is made depending upon the value of J:

(1) If J = 1 then control transfers to L 1.
(2) If J = 2 then control transfers to either L2 or L3 depending upon X and Y.
(3) If J = 3 then control transfers to L4.
(4) If J = 4 then control transfers to the label which is the value of the (I +6)th

designational expression of the switch T.
(5) If J = 5 then control transfers to L5.
(6) If J < 1

or

J > 5 then no transfer is executed.

6.3. CONDITIONAL CONTROL STATEMENTS

Conditional control statements cause certain statements to be executed or skipped
depending on values of Boolean expressions. The I F statement provides for executing
a statement if, and only if, some relation is true and for skipping over a statement if
this relation is false.

The I f= statement may take the form:

IF B1 THEN Sl $ S2 $

where B 1 is a Boolean expression, SI is a statement not beginning with IF, and S2
is any statement. If BI is true, then S1 is executed after which control passes to
S2. If BI is false, then S1 is skipped and control continues at S2.

In diagram form:

B1 True

.1 t
IF B1 THEN SI $ S2 $

I 1
BI False

3

UP-7S44 J. UNIVAC 1108 ALGOL

The general form of the IF statement is:

IF 81 THEN Sl ELSE S2 $ S3 $

If B1 is true, statement S1 is executed and statement S2 is skipped; if B1 is false,
statement S1 is skipped and S2 is executed. In either case, con tro! continues with
statement S3 (exc~pt when either S1 or S2 contains a GO TO statement).

In diagram form

B1True

t I t
IF B1 THEN S1 ELSE S2 $ S3 $

L_. __ ~Ll
B1 False

In conditional statements, the statement following TH EN can not start with IF. It
may be conditional only if it is enclosed by a BEGIN - EN D pair. There is no
restriction on the type of statement following ELSE.

Example:

IF BDOL THEN BEGIN IF C GEQ -5 THEN GO TO CHECK
END ELSE V = V+l $

The following example illustrates "nested" conditional statements:

B1 True

~I B2 True ==J +1
IF B1 THEN S1 ELSE IF B2 THEN S2 ELSE S3 $ S4

I t I
B1 False B2 False

Example:

IF DISC LSS 0 THEN GO TO IMAGROOTS
ELSE IF DISC EQL 0 THEN Xl = X2 = -9/(2*A)
ELSE BEGIN

SDISC SQRT(DISC) $
Xl = (-B+SDISC)/(2*A) $
X2 = (-B - SDISC)/(2*A)

END $

6.4. ITERATIVE CONTROL STATEMENTS - THE FOR STATEMENT

t I

The FOR statement facilitates programming iterative operations. A part of the pro­
gram is iterative if it is to be executed repeatedly a specified number of times, if it
is to be executed for each one of a designated set of values assigned to a variable,
or if it is to be executed repeatedly until some condition is fulfilled. The FOR
statement handles any of these three conditions.

J
$

UP-7S~ ______ • ___ U_N_IV_A_C __ ll_0_8_A_L_G_0_L ____ . ________ ~ ________ ~I~S~E~CT~IO~N~:_6 __ ~~p~A~G~E:~5 ____ _

The general ALGOL FO R statement consists of a < FO R clause> followed by a
statement S (simple or compound) where a< FOR caluse> is:

FOR <variable> = < FOR list> DO

The <~FOR list> is a sequence of -<FOR list elements> separated by commas.
The value of each <FOR list element> is assigned to the controlled or iteration
variable in turn from left to right and the statement S is executed once for each value.

All FOR list elements must be of a type compatible with the controlled variable
which may be any type of simple or subscripted variable.

There are three possible kinds of FOR list elements:

• <arithmetic expression>
• <arithmetic expression> STEP <arithmetic expression> UNTIL <arithmetic

expression>
• < arithmetic expression> WHIL E <Boolean expression>

6.4.1. Simple List Element

FOR V = < arithmetic expression> DO S $

or

FOR V = e l' e 2' e3' e 4' - - - eN DO S $

The controlled variable V is successively given the values of the arithmetic ex­
pressions, el' e2' e3' - - - eN' The statement S is executed once for each value
of V.

Example:

6.4.2. STEP - UNTIL List Element

FOR V = <
U~4TI L <

or

FOH V

arithmetic expression > ST E P < arithmetic expression
arithmetic expression > DO S $

E1 STEP E2 UNTIL E3 DO S $

where E 1 is th e starting or initial value of V
E2 is the increment by which V is increased algebraically
E3 is the limiting or terminal value of V

>

UP-7S44

6

UNIVAC 1108 ALGOL SEC TION:

The effect of the FOR statement is probably best described by the equivalent
ALGOL statements:

v = El $
Ll: IF (V-E3)*SIGN(E2) LEQ 0 THEN
BEGIN
S $
V = V + E2 $
GO TO Ll
END

PAGE:

In all cases if the test fails initially, the statement S is not executed at alL SIGN
(X) is a call on a standard function which will return the value 1,0, or -1 depending
on whether the value of the argument X is positive, zero, or negative, respectively.
This can be shown graphically as follows:

V assumes initial
value, E1

v = E1

Add increment
to V

NO

YES

The statement S may redefine V as well as the variables appearing in E2 and E3.
Changing E1 will have no effect on the execution of the FOR statement as the
initial value is assigned to V befqre S is executed. Extreme care must be taken
in assigning values to V within S as this may prevent V from reaching the terminal
value.

The more compact form of the FO R statement

FOR V = (E1,[2,E3)00 5 $

may be used instead of

FOR V = £1 STEP E2 UNTIL E3 DO 5 $
FOR I = 1 STEP 1 UNTIL N 00 S $

FOR I = (1,1,N) DO S $
FOR X = (3.2,.1,9.9) DO 5 $

6

UP.7~ __ . _____ U_N_I_V_A_C_l_l_0_8 _A_L_G_O_L __ , I 'ECTION' 6 PAGE:

6.4" 3. WH I L. E List

FOR V = < arithmetic expression> WHI L E < Boolean expression> DO S $

or

FOR V = E WHILE B DO S $

First: V is set equal to the arithmetic expression E. If B is true, statement S is
executed. After the execution of S, V is replaced by E and again B is tested. If,
on the other hand, B is false, then S is skipped and control resumes with the state­
ment following the FOR statement.

This can be represented graphically as follows:

FALSE
E--...V

TRUE

The statement S may redefine V or the variables in the expressions E and B.

Example (taken from Problem 2 Appendix D):

FOR 8 = O~5 * iA/OLDB + OLOB)
WHILE ABS(S-OLOS) GTR 10**(~6)*B
DO OLDB = B $

In this example the FOR statement is executed until B, the square root of A, is
accurate to six digits.

The three forms of the list elements may be combined:

FOR K = 1,3,5,10 STEP 2 UNTIL 20,50 WHILE B DO 5 $

The statement S will be executed for

K = 1,3,5,10,12,14,16,18,20 and

will then assume the value 50 as long as B is true.

7

UP-7544
6

UNIVAC 1108 ALGOL SECTION:

6.4.4. Termination of FOR Statements

The following section should be carefully read because it deals with concepts that
are not defined in rigorous ALGOL 60. The problem is that a program written in
UNIVAC 1108 ALGOL 60 which utilized these concepts would possibly not work

PAGE:

on a machine with a different version of ALGOL. The concern here is with the
value of the iteration variable in a FOR statement when the FOR statement is
terminated. The ALGOL 60 report leaves this value as undefined when the FOR
statement is terminated by exhaustion of the <FOR 1ist~ , but in UNIVAC 1108
ALGOL it is well defined, and indeed, very useful. It is because of its usefulness
that it is documented here with the warning that it may not work on another machine.

if the statement S has a GO TO statement leading out of the FOR statement, the
value of the iteration variable is the same as it was before the GO TO statement
was, executed. (This is also true in ALGOL 60.) If the exit is made from the FOR
statement because of the exhaustion of the < FOR list>, then the value of the
variable is that value it held last as may be determined from the equivalent ALGOL
statements. For example, to find the first nonblank charact er of a string, either
one of two methods could be used.

STRING 5(120)$
INTt:GER I,R $
1=0 $
FOR 1=1+1 WHILE (1 LSS 121 AND 5(1) EQL' ')
00 $

IF I EQL 121 THEN GO TO STRINGALLBLANK
ELSE FOUNDIT: R=RANK(S(I» $

That method depends on the exhaustion of the < FO R list> , either because the
whole string has been scanned or because a nonblank character has been found.
In one case, the final value of I is 121 and in the other it is the index to the non­
blallk character. Note that a dummy statement DO $ follows the FOR statement
(see 5.7). RANK is a standard function returning the Fieldata equivalent of the
first character of the string.

The second method is as follows:

FOR 1=(1,1,120) DO IF S(I) NEQ ' , THEN GO TO FOUNDIT $
GO TO STRINGALLBLANK $
FOUNDIT: R=RANK(S(I» $

This method produces the correct value of I because an exit is made from the FOR
statement by a GO TO statement.

8

UP-7~, ______ . __ U_N_IV_A,_C __ 1_10_8_A __ LG_0 __ L __________ ~ __________ ~1~SE~C~T~IO~N:~6 ____ ~i~p~AG~E~:_9 ____ ___

A GO TO statement from outside a FO R statement referring to a label wi thin the
FOR statement may result in an undefined situation and should thus be avoided.

FOR 1=(l,l,N) DO
BEGIN
•
•
L:
•
•
END $

•
•
GO TO L $

The above statement, GO TO L, is not allowed.

However, it is easy to program the above logic by not using the FOR statement.

Example:

I _. 0
LOOP: I - 1+1 $

•

•
•
• IF I LSS N GO TO LOOP $

•
•
•
•

GO TO L $

UP-75~~ __ ., ___ , __ U_N_I_V_A,_C_l_l_0_8 _A_L_G_O_L ______ ~ ____ __1.I_SE_C_T_IO_N:_7 __ ...LI_p_A_GE_:_1 __ _

7. PROCEDURES

7.1. INTRODUCTION

A procedure in ALGOL is used to specify an independent section of a program (which
usually represents an algorithm) that can be called or executed at different points
throughout the same program or may be used in other programs. The operations to be
performed are fixed, but a list of parameters makes it possible for a procedure to be
used with varying values and/or variables.

A procedure must be declared in the declaration part of the block in which the pro­
cedure is referenced. More than one procedure may be defined at the beginning of a
block. During program execution when a block is entered, the first statement executed
is the first executable statement following the procedures (if any).

The procedure declaration consists of a procedure heading and a procedure body.
The heading consists of a procedure identifier, a formal parameter list, if any, a
value list, if any, and specifications, if any. The procedure body follows the spec­
ifications and consists of a statement, compound statement, or a block.

Example:

PROCEDURE NFACT (ARGI, ARG2) $

INTEGER ARGI, ARG2 $

BEGIN

END

INTEGER I $

ARG2 = 1 $
FOR I = I STEP 1 UNTIL ARGl DO

ARG2 = ARG2*I$

In the above example NF ACT is the identifier for a procedure that calculates the
value of N factorial. ARG1 and ARG2 are the formal parameters (arguments) for the
procedure. ARG 1 is the number whose factorial is to be calculated, and ARG2 is the
result after the procedure has been executed. ARG1 and ARG2 are INTEGER vari­
ables. The BEGIN-END pair sets off the body of the PROCEDURE. The BEGIN­
END pair can be dropped if the procedure body is just one statement. Since I is de­
clared as an INTEGER, it is local to NF'ACT.

A "call" of the above procedure would be of the form:

•
•
•
NFACT (Nl,FACT1) $

UP-7S44 UNIVAC 1108 ALGOL
7

SECTION:

In the first call, the actual parameters N and FACT are substituted for the formal
parameters ARG land ARG2. Later the parameters"'N land F ACTl are substituted
for ARGl and ARG2 in the same fashion. Thus procedure is a closed subroutine,
and the call establish.es a linkage to the subroutine.

An alternate form of the parameter list allows comments to be inserted between the
formal parameters since the comma separating formal parameters is equivalent to:

) < string> : (

PROCEDURE NFACT (ARG!, ARG2)

could be written as:

PROCEDURE NFACT (ARG!) AND STORE RESULT IN: (ARG2) ,

or

PAGE:

PROCEDURE NFACT (ARG1) ARGl INPUT AND ARG2 OUTPUT: (ARG2) $

The following is a procedure for . .the multiplication of two matrices:

PROCEDURE MATMUL (A,B,C,N,M,P) $
REAL ARRAY A,B,C, $
INTEGER N,M,P $
UEGIN INTEGER I,J,K $
REAL TEMP $
FOR 1=1 STEP 1 UNTIL N DO
FOR J=l STEP 1 UNTIL P DO
BEGIN TEMP=O.O $ FOR K=l STEP 1 UNTIL M DO
TEMP=TEMP+B(I,K)*CCK,J) $

A(I,J)=TEMP END I,J LOOP
END MATMUL $

A procedure statement calls for the execution of a procedure body.

Given the declaration

REAL ARRAY Al(1:10,1:7), A2(1:10,1:15), A3Cl:15,1:7) $

then the procedure statement

MATMUL (Al,A2,A3,10,15,7) $

has the effect of multiplying the two matrices A2 and A3 and storing the results in
AI.

Expressions may also be used as actual parameters. Care must be taken to match
the type and kind of each formal and actual parameter in any call.

2

~~ ______ . ______ U.N __ IV_A_C __ l_l0_8_A_L_G_O_L ________________ ~ ________ ~I~s~EC~T~IO~N~:_7 _____ ~PA~G~E~:_3 __ __

7.2. VALUE ASSIGNMENT (CALL BY VALUE) AND NAME REPLACEMENT (CALL BY
NAME)

The above procedure NF ACT makes use only of the value of ARGl whereas it changes
the value of the actual parameter which replaces ARG2. Thus NF ACT could be re­
written as follows:

PROCEDURE NFACT (ARG1, ARG2)
VALUE AHGI $
INTEGER ARGl, ARG2 $
ijEGIN

INTEGER I $
ARG2 = 1 $
FOR I = 1 STEP 1 UNTIL ARGl DO

ARG2 = ARG2*I
END$

The procedure statement

NFACT (NUM8EH,FACTORIAL) $

has this effect: the value of the actual parameter, NUMBER, replaces ARGl when
the procedure statement is encountered and NF ACT does not have access to the
loca.tion assigned to NUMBER. ARG 1 is known as a < Call by value> parameter.
A value parameter must also have a type specification and cannot appear to the left
of the replacement operator in the procedure.

Any parameter (such as ARG2) which is not listed in the V ALU E part of the procedure
declaration is said to be a < Call by name> parameter. The name FACTORIAL re­
places the name ARG2. The value of FACTORIAL is changed as the procedure is
executed.

In the following examples, numeric values or expressions are used as actual para­
meters:

NFACT (15,FACT1) $
NFACT (J+K+M,FACT2) $

It should be noted that a value parameter which is an array or string identifier re­
quires that the entire array or string supplied by the procedure call be copied locally
within the procedure. As a result large amounts of working storage may be used un­
expectedly when the procedure is called. All calculations in the procedure use that
temporary copy. As an example, suppose it is necessary to find the determinant of
a matrix without destroying the matrix., The usual computational methods for finding
determinants destroy the matrix with which they are working. Thus the original
matrix must be copied somewhere. Specifying the array as VALU E accomplishes
this:

UP-7S44
Rev. 1 7

UNIVAC 1108 ALGOL SECTION: PAGE:

REAL PROCEDURE DET(A) SQUARE MATRIX WHOSE DIMENSION TS:CN)$
VALUE A,N $
HEAL ARRAY A $
INTEGER N $
BEGIN
(ST A TEf'.1ENTS)
DET=. •• EI40 DET $

This is an example of a function procedure explained in 7.4. If an expression is used
as an actual parameter, and if the parameter is called by name, then the expression
is reevaluated at each occurrence of the formal parameter in the procedure.

7.3. SPECIFICATIONS

The < type> of all formal parameters defined by a procedure declaration must be
specified in the specification part of a procedure heading. The format of the speci­
fication part is as follows:

<specification> < identifier list>;

The specification may be in anyone of the following forms:

<type>

ARRAY

<type> ARRAY

STRING

STRING ARRAY

PROCEDURE

<type> PROC EDUR E

LABEL

SWITCH

FORMAT

LIST

and< type> is one ALGOL type: INTEGER, REAL, REAL 2, BOOLEAN, or COMPLEX.

The <identifier list> consists of the formal parameter identifiers contained in the
procedure declaration separated by commas.

The reason that all formal parameters must be specified is that the compiler must
know the type and kind or class of all parameters in order to compile proper machine
code.

Examples:

INTEGEH I, K
REAL X, Y ;
REAL ARRAY Z I
BOOLEAN PROCEDURE F
STRING S ;

4

UP-754~ ______ . __ U_N __ IV._A_C __ ll_0_8_A_L_G~O_L ____________ ~ ________ ~I~S~EC~T~IO~N~:7 ____ ~P~A~G~E'~' _5 ____ __

SpecifiCations do not include information about lengths of strings, the dimensions
and bounds of arrays, the formal parameter parts of procedures, or the contents of
formats and lists. The actual declarations of these exist elsewhere in the program.
The details of constructing a procedure can be illustrated by an example:

PROCEDURE TRAr-.JSPOSE (A) ORDER: (N) $

VALUE N i
ARRAY A i
INTEGER N $
BEGIN

REAL W $
INTEGEH I, K $
FOR I = 1 STEP 1 UNTIL N DO
FOR K = 1+1 STEP 1 UNTIL N DO

BEGIN

END

W = A(I,K) $

A(I,K) = A(K,I) $
A(K,I) = W

END THANSPOS[$

7.4. FUNCTION PROCEDURES

Procedures which are to be used as functions (e.g., SIN, EXP) must have a type
associated with the procedure identifier (Le. procedure name). This type declaration
must be the first symbol of the procedure declaration. Also for the function procedure
to have a value associated with it, the procedure identifier must occur at least once
as the left part of an assignment statement in the procedure body. In addition, at
least one of these assignment statements must be executed on a given procedure call
for a value to be assigned to the procedure. If more than one such assignment state­
ment is executed within the body, then the last one executed before exiting from the
procedure determines the value associated with the procedure. Any other occurrences
of the procedure identifier within the body of the procedure are considered as re­
cursive calls on the procedure.

The procedure NFACT could be written so that the only parameter would be N and the
value of NF ACT would be N factorial.

INTEGER PROCEDURE NFACT (ARG) $
INTEGER AHG $
BEGIN

INTEGER I, TEMP $
TErwiP = 1 $
FOR I = 1 STEP 1 UNTIL ARG

00 TEMP = TEMP*I$
NFACT = TEMP

END NFACT $

The ca11 for the above procedure would be of the form

COMMENT SET FACT = N FACTORIAL$
FACT = NFACT(N) $

UP-7s44
7

UNIVAC 1108 ALGOL SECTION:

A function procedure is referenced by a function designator which defines a single
numerical or logical value. NF ACT(N) is a function designator which will have an
integral value and can thus be used in any expression in which an integer variable
could be used.

7.5. RECURSIVE PROCEDURES

PAGE:

In the example above, a new variable TEMP was used to store the intermediate result
of the calculation of N factorial. Then the extra statement NF ACT = TEMP was
needed to give NF ACT the proper value. The reason for this is that inside the pro­
cedure body, whenever the name of the procedure occurs on the left-hand side of an
assignment statement, it is a <procedure assignment> statement, that is, the state­
ment which assigns the value to the procedure. Wherever else the name occurs, it is
a call on the procedure.

This kind of construction can be used to produce another version of NF ACT which
is even simpler to write. In fact, it requires only one statement in the procedure
body:

INTEGER PROCEDURE NFACT(N) $
INTEGEH N $
NFACT = IF N EQL 0 THEN 1 ELSE N*NFACT(N-l) $

which is equivalent to the recursive definition

factorial(n) == I n == 0

== n*factorial (n-I) n > 0

A procedure call with the actual parameter 4 (F ACT = NF ACT(4)) has the following
effect. After the subroutine linkage is set up, the procedure body is virtually changed
to:

NFACT=IF 4 EQL 0 THEN 1 ELSE 4*
NFACT (3)

N F ACT(3) is another call of the functional procedure having the result that the call
is replac~d with the procedure body:

NFACT=IF 4 EQL 0 THEN 1 ELSE 4 *
(IF 3 EQL 0 THEN 1 ELSE 3*NFACT(2»

This produces .another call on NF ACT resulting in another change of the statement.
This goes on until finally:

NFACT=IF 4 EQL 0 THEN 1 ELSE 4*
(IF 3 EQL 0 THEN 1 ELSE 3*(IF 2
EQL 0 THEN 1 ELSE 2* (IF 1 EQL 0
THEN 1 ELSE l*(IF 0 EQL 0 THEN 1
ELSE 1* (NFACT(O»»» $

6

UP-7~~ ___ ,._U_N_I_V_A_C_ll_0_8_A L_G_O_L ______ -,--____ ---L.I";;";SE;;"';;;C;";'T;";'IO';";'N:;...7 __ ...JI~· P;..;.A;.:.G.::.;E:_7 __ _

The process is terminated when 0 EQL 0 occurs in the relation of the conditional
expression. The usual expression for the factorial is obtained after the unnecessary
parts of the above statement have been removed:

4 factorial =4*3*2* 1

A11 procedures written in ALGOL may be ca11ed from within themselves. But it
should be mentioned that recursive procedures are not always put to good use. For
example, using the recursive properties of procedures makes a much neater looking
NFACT, but also a much less efficient one. However, recursive procedures may
have practical uses. For example, multiple integration programs use a quadrature
procedure to evaluate the inner function as we11 as to do the integration. (See ACM
Algorithm 233 "Simpson's Rule for Multiple In te gra:tion," Communications of the
ACM Vol. 7, No.6, June 1964.)

7.6. EXTERNAL PROCEDURES

External procedures are procedures whose bodies do not appear in the main program.
They are compiled separately and linked to the main program at its execution. The
EXT E RNAL declaration serves the purpose of informing the compiler of the existence
of these procedures, their types (if any), and the proper manner to construct the
necessary linkages. The general form of the external declaration is:

EXTERNAL <kind> <type>- PROCEDURE < identifier list>

where <type> is the arithmetic type or is empty, < identifier list> is a list of identi­
fiers of external procedures, and

< kind> :: = empty/FORTRAN/NON -RECURSIVE

The words 'FORTRAN' and 'NON-RECURSIVE' have special significance only in
this context. Procedures of kind < empty> are ALGOL procedures and are treated
exactly like an ordinary procedure declared ~ithin the program. However, they need
not be written in ALGOL language. Procedures of kind 'FORTRAN' are FORTRAN
subroutines or functions and procedures of kind 'NON-RECURSIVE' are necessarily
written in machine language. In the fo11owing paragraphs we assume a knowledge of
the UNIVAC 1108, Executive System, FO~.TRAN (see 7.6.2), and the UNIVAC 1108
Assembler (see 7.6.3).

7.6.1. ALGOL External Procedures

An ALGOL program which consists enti~ely of a procedure is nonexecutable be­
cause it contains only a procedure declaration (see 7.1.): When such a program is
compiled, the name of the procedure is marked as an entry point when the program
is entered into the program file. Like a11 names in the program file the first six
characters of the procedure name must define it. Such;a procedure may be refer­
enced from another ALGOL program a~an external procedure.

UP·7544 UNIVAC 1108 ALGOL

Ex'ample:

PROGRAM 1

BEGIN REAL PROCEDURE DET(A,N)~
REAL ARRAY A $
INTEGER N $
VALUE A,N $
BEGIN

7 8
SECTION: PAGE:

COMMENT THIS PROCEDURE FINDS THE DETERMINANT OF A REAL ~J BY N
MATRIX A, LEAVING A UNCHANGED AND ASSIGNING THE VALUr TO DET $

•
•
OEl =~ ••• END DET
END $

PROGRAM 2

BEGIN REAL ARRAY MATRIX (1:10.1:10) $
EXTERNAL REAL PROCEDURE OET $

•
•

WRITE(DET(MATRIX,lO» $

•
•

END '£

A user could build a library of procedures that are useful to him and then refer to
whichever he needed by merely declaring them as external procedures in his main
program.

7.6.2. FORTRAN Subprograms

A FORTRAN subroutine or a FORTRAN function may be made available to an
ALGOL program by the declaration:

EXTERNAL FORTRAN<type> PROCEDURE <identifier list>

Actual parameters in calls on such procedures may be either expressions or arrays.
(Labels, string expressions, and string arrays are specifically excluded.) The
FORTRAN subprogram is a subroutine or function depending on the absence or
presence of < type> in the external declaration. A FORTRAN function is used
like an ALGOL functional procedure i.e., as an expression. For example, if
DET (above) were a FORTRAN subroutine:

PROGHAM 1

SUBROUTINE DET(A,N,D)
DIMENSION A<t~,N)

C DET FINDS THE DETERMINANT OF A REAL NXN
C MATRIX A AND LEAVES THE RESULT IN 0'
C DESTROYING A •

•
•
[)= •••

END

UP-~, ___ ,, __ U_N._I_V_A_C_l_1_08_A_L_G_O_L ______ I...-____ --1..1 ':.:E:.:..c..:.;,T,..,;..oN..:.;,:_7 __ .J..I_p_AG.:.,:E:.:.:_
9
__

PROGRAM 2

BEGIN REAL ARRAY MATRIX{I:10,1:10> $

KEAL DETVi~LUE $
EXTERNAL FORTRAN PROCEDURE DET $

•
•
UET(MATRIX,10,DETVALUE) $

END $

7.6.3. Machine Language Procedures

A procedure written in 1108 Assembler language may be referenced in either of two
ways. The more difficult manner occurs when the procedure is declared exactly as
an ALGOL external procedure. In this case the Assembler procedure must behave
like an ALGOL procedure (that is, it must be able to handle recursive calls). Here
the nonrecursive case is considered. The form of the declaration for these is:

EXTERNAL NON-RECURSIVE< type> PROCEDURE < identifier list>

To understand how to write such procedures consider the coding produced by the
ALGOL com piler as the result of a call in the following program:

EXTERNAL NON-RECURSIVE PROCEDURE PUNCH $
INTEGER Q, S $

•
PUNCH(Q,S) $

The statement PUNCH (Q,S) results in the four lines of coding:

LMJ
+
F
F

11,PUNCH
2
00,01,01,Q
00,01,01'5

The second line states the number of parameters being handed through and the
following lines provide information about each parameter in turn. The actual form
of]<' is defined elsewhere in the system by a FORM directive

which specifies the number of bits in each field of F. (See "UNIVAC 1108 As­
sembler Programmers Reference Manual," UP·4040.)

UP-7544
Rev. 1

UNIVAC 1108 ALGOL

The four fields of F are defined and encoded as follows:

KIND

00 = Expression
010 = Array
050 = Label

TYPE

01 = INTEGER
02 =- REAL
03 = COMPLEX
04 = BOOLEAN
05 = STRING
06 = REAL 2

REFERENCE

00 = Constant
01 = Name
02 = Indirect
06 = Result

LOCATION

7
SECTION: PAGE:

The location field specifies the location of the parameter. Indirect addressing may
be specified and index register 11 is usually designated in this 24-bit field. With
this in mind, the following rules should be followed in writing an Assembler pro­

cedure:

(1) The return point for a call with N parameters is (X 11) + N + 1.
(2) The value of the procedure (if any) must be left in register A2 (and A3 for

COMPL EX and REAL 2), absolute 14.
(3) Registers 1-4 may not be used without saving and restoring.
(4) Register 10 must never be destroyed.
(5) The Ith parameter should be referenced by an indirect command, e. g.,

LA A2,*I,Xl1

If the parameter under reference is a double-word quantity (COMPLEX or
REAL 2) its second half is in the next location, and the parameter should be
referenced with a DL A2,*I,Xll

(6) When using an arithmetic or a Boolean expression, the word referenced in rule
(5) is the value of the expression.

(7) When using either an arithmetic or a Boolean array, the word referenced in (5)
is itself the address of the following information:

number of elements
precision
lower bound (N)

lower bound (1)

, address of first element
N

, len gth (N)

, length (1)

10

UP-75~, __________ U_N_IV_A_C __ l_l0_8_A __ L_G_O_L ____________ ~ ________ ~I_S_EC_T_IO_N_: __
7
_____ P_AG_E_: _____

1
__
1

where N is the num ber of dimensions o'f the array, lower bound (I) is the value
of the lower bound of subscript position (I) and length (I) is its length.

(8) When using a string expression, the word' referenced in (5) is a string descriptor
of the form:

F FORM

F length, start, address

'length' is the length of the string which starts at character position' start' of
the word at 'address.' For this purpose 'start' is coded as 0-5 to select a sixth
of a word, Sl-S6.

(9) When using a string array, the word referenced in (5) consists of two addresses,
the· left one being the address of a string descriptor and the right one the address
of the array information (as in 7). The address field of the string descriptor
must be added to the first element address to find the first element of the string
array. Both arrays and string arrays are stored by column.

(10) The name of the external procedure must be the entry point of the Assembler
procedure.

UP-7~~ ______ . __ U_N_I_V_A_C_l_l_08 __ A_L_G_O_L ______________________ ~I_SE_C_TI_O_N:_8 ______ P_A_GE_: __
1

____ __

8. BLOCK STRUCTURE

8.1. GENEF~AL

In ALGOL 60 a program is a block. In turn, this block may contain subblocks. This
structure serves to facilitate the construction of a program, for these subblocks may
be checked out independently before being fitted together in the final program.

8.2. BLOCKS

A block consists of two parts, a heading and a body., The heading comes first and is
identified by the symbol BEGIN or <label> : BEGIN. This is followed by all the
declarations needed within the block: simple variables, arrays, strings, lists, formats,
procedures, etc. The body of the block contains the statements of the block. The
end of the block comes with the matching EN D to the BEGIN of the block head.

Example:

BLOCK1: BEGIN REAL ARRAY X(1:10) $
INTEGER I $
FOR I=(1,1,10)DO XCI)=SIN(I) $

END

The first two lines constitute the block head and the other statements constitute the
body. The block head may appear in tl}e body of another block. The inner block is
then said to be 'nested' in the first (outer) block:

BEGIN INTEGER N $
READ(N) $

BEGIN REAL ARRAY A(1:N,1:N) $

•
•

END INNER BLOCK
END OUTEH BLOCK

As a special case, the first (outermost) block of the program need not be enclosed
in a BEGIN - EN D pair, although formally this is required. Instead a program may
start with a declaration. All other blocks do require a BEGIN - EN D pair. The
double use of the B EGIN- EN D parentheses should be noted by the user. A group of
statements enclosed by a BEGIN - EN D pair forms a compound statement if the state­
ment following the BEGIN is not a declaration. If this statement is a declaration, a
new block is defined rather than a compound statement.

UP-7S44 UNIVAC 1108 ALGOL -I SECTION, 8 PAGE:

8.3. LOCAL AND GLOBAL IDENTIFIERS

All identifiers declared within a block are cal-led local identifiers (i. e., local to the
given block). Any that do not occur in declarations in the given block, but that do
appear in a block containing the given block, are called global or nonlocal identifiers
(to the given block). Each block introduces, at the time it is entered, a new level of
nomenclature in the sense that all identifiers declared for the block assume the
meaning implied by the declaration. However, identifiers in blocks containing the
given block which are not redeclared retain their old significance. When the block
is left, all the identifiers declared within it lose all their significance ... When a
variable is declared in an outer and also in an inner block, the variable assumes the
value last assigned in the outer block on exit from the inner block.

Example:

BLOCK1: BEGIN REAL X $
INTEGER I $
X=2 $

BLOCK2: BEGIN REAL Y $
INTEGER I $
Y::X $

END BLOCK 2 $
I=X $

I=X $

END BLOCK 1

This example has two blocks, the first with variables X and I and the second with
variables Y and I. The I of block 1 cannot be referenced from within block 2 because

. block 2 has its own I.

Note that ~n identifier such as Y in the example, existing in an inner block, can
never be referenced from an outer block because the identifier has no meaning in the
outer block. In particular, this means that all labels (which are defined not by
declaration, but by occurrence) are local to the block in which they ocCur, and so
cannot be referenced from outside. Thus, a GO TO statement cannot lead into the
middle of a block. All blocks must be entered through their headings. Exit is made
from a block either by "falling through" the bottom of the block through the last
END, or by a GO TO statement which must lead to an outer block.

The OTH ERWISE declaration has the effect of stopping any reference to global
(simple variable) identifiers.

Example:

BEGIN REAL X $

•
•
BEGIN INTEGER OTHERWISE $
X=O $

•
•
END $

•
•

END $

2

UP-7~, __________ U_N_IV_A __ C_l_l_08 __ A_L_G_O_L ____________ ~ ________ ~1~S_E_CT_I_ON_:_8 ____ ~P_A_GE_: __ 3 __ ___

In the inner block, the variable X is an integer variable (now defined in this block)
rather than the REA L X of block 1. If, in the above example, a third block was
nested in block 2 and reference was made to an undeclared variable ca11ed Z, then
Z would be defined as an integer local to the block with the 0 TH E RWI SE declara­
tion.. Blocks need not be nested; they can be disjoint, in which case there is no
communication of identifiers:

BEGIN REAL ••• $

•
•
END $

BEGIN INTEGER ••• $

•
•
END $

The programs may be written by two different people, checked out separately, and
then joined together in this manner with absolutely no problems about conflicting
use of identifiers.

8.4. THE LOCAL DECLARATION

Since the 1108 ALGOL 60 compiler examines the source language only once, it must
never meet an identifier without knowing what the identifier represents. For example,
suppose P and Q are procedures declared in the same block and in the body of P is a
ca11 to Q. The declarations could be arranged so that Q is first:

BEEaN PROCEDURE Q $

EiEGIN
•
•
END Q it

PROCEDURE P $

BEGIN
•
•
Q $

•
•
[NO P $

UP-7544
Rev. 1

UN IVAC 1108 ALGOL PAGE:

But if Q also calls P (P and Q are mutually recursive) then clearly it is impossible
to put them both first. The LOCAL declaration must be used to resolve such forward
references (using an identifier before it is defined):

UEGIN LOCAL PROCEDURE P $
PHOCEDURE Q $

tJEGIN

•
P $

•
END Q $

PROCEDURE P $
LiEG I N

•
•

•
•
END P $

The allowable uses of the LOCAL declaration are:

LOCA.L LABEL •••
LOCAL PROCEOURE •••
LOCAL < type > PROCEOLJF~[•••
LOCAL S~ITCH •••
LOCAL FOFMAT •••
LOCAL LIST •••

The only relaxation of this rule is that a label serving as the object of a GO TO
statement or in a SWI TCH declaration need not appear in a LOCAL declaration;
instead it is assumed that it will eventually be defined in the block. Thus the
GO TO statement or SWI TCH declaration has the same effect as a LOCAL declaration.
However, if the label is already defined in an outer block of the given block (either
by occurrence, LOCAL or SWI TCH declaration, or as the object of a GO TO statement)
then that definition of the label is assumed for the inner block.

To further illustrate the concept of local and global identifiers consider the block
displayed in Figure 8-1. The variables I,], K, X, Y, Z and labels L 1, L2, are
local identifiers in block 1. Only I, K, X, Y, Z, L 1, L2 will be global to block 2,
while] is redefined and local in block 2 along with L, M, U, V. In block 3, I, Y, Z,
L1, L2 from block 1 are global along with], L, U, V from block 2. K, M, N, W, X,
and L3 are local in block 3. Consider the statement, L3. The global variable Y will
be replaced by the sum of the local variable X with the product of the global variables
V, Z. The statement L4 in block 4 looks the same as L3 in block 3. However, the
variable X in this case refers to the variable X in block 1 rather than the variable X
in block 3; hence the effect of the statements will be different.

4

UP_7~J UNIVAC 1108 ALGOL ISECTION. 8

In block 5, the statement labeled L5 has an erroneous GO TO L4 after the word
TH EN. The label L4 is defined in block 4 and has no meaning within block 5 since
the blocks are disjoint. However, the GO TO L 1 is correct and will send control to
the statement labeled L 1 in block 1. This in effect will cause the program to re­
enter block 2.

Block 1
INTEGEH I,J,KJ
REAL X,y,Z;
L1: BEGIN

END;
L2: BEGIN

END;

Block 2 INTEGER J,L,M;
REAL U, V'
BEGIN Block 3

INTEGER K,M,N;

END'
BEGIN

INTEGER V, Z'
REAL I, MJ
BOOLEAN 81;

REAL W,X;
L3: Y=X+V*Z'

Block 4
BOOLEAN 81, A2'
INTEGER p, Q;
REAL Z1, Z2J
L4: Y=X+V*Z'

Block 5

L5: IF 81 THEN GOTO L4 ELSE
GOTO LlJ

Figure 8-7. Local and Global Identifiers

I Rev. 1 I 9 1
UP-75~, ___________ U_N_I_V_A __ C ___ 11_0_8 ___ A_L_G_O ___ L ______________ ~ _____________ ~_SE~C_T_IO_N_: ______ ~_P_AG~E~: ______ __..

9. INPUT/OUTPUT

9.1. GENERAL

Input and output operations are accomplished in UNIVAC 1108 ALGOL by means of
library procedures. The two main ones, READ and WRITE, are more flexible than
ordinary procedures written in ALGOL because the number of parameters in an actual
call or even the order of the parameters is not rigidly specified. The general form of
I/O c:all is:

<I/O procedure> «device>, <format identifier>, <modifier list>, <parameter list> ,
<actual label list>)

where < I/O procedure> is R E,AD or W R IT E;
< device> specifies the external medium;
< format identifier> is the name of the format specifying output editing or

card layout for input;
< modifier list> specifies parameters whose action is to output markers in

the information which later may be used for positioning;
< parameter list> is a list of I/O variables and expressions;
< actual label list> specifies where control will be transferred in case of

contingencies.

The two other important I/O procedures, POSITION and REWIND, are concerned ex­
clusively with magnetic tape and tape-simulated drum operations.

9.2. FREE-FORMAT OUTPUT ON PRINTER AND CARD PUNCH

Arrays and values of expressions can be printed by simply calling the WRITE procedure
in the following way:

where each vi is an expression or an array identifier. In a similar manner, if the ou tpu t
is to be punched, the call is:

PRINTER and PUNCH are device names which specify the output unit to be used. If
no device is named, PRINTER is assumed:

In the following description the word 'print' v is used in discussing the action of
WRITE, but the word 'punch' may be substituted. Significant differences between the
two devices are noted.

The action of WRITE is to evaluate the expressions in the order they are listed in the
call and print their values in the following manner: except for string expressions, 10
values are printed on each line (6 per card if punching). Each value occupies a field
of 12 character positions or columns. If the actual parameter is an array it is decom­
posed by columns. Each occurrence of WRITE begins printing on a new line.

~ ____________ U_N_IV_A_C. __ l_l_08 __ A_L_G_O_L ____________ ~ ________ ~I_s_E_CT_IO_N_: __ 9 __ ~_P_A~GE~: __ 2 _____ ,

Examples:

HE A L I-V~ HAY A (1 : 1 0) 'i.

vJ R 1 T [(PHI i'~ T f:' h , A) $

acts the same as

l!J R ITt. (PHI NT E h , A (1) , A (2) , • • • , f.' (1 0))

For multidimensional arrays the decomposition is such that the leftmost subscript varies
most frequently. Thus the sequence

t.iOOLEAN Af<.RA'f A(1:2,1:2,1 :~~) $

•
NRIT[(PHINTEf<,A) $

acts like

';fJ HIT L (P I { I r J T E !"\ , A (1 , 1 , 1) , A (2 , 1 , 1) , f\. (1 , 2 , 1) , l\, (2 , 2 , 1) ,
A(1,1,2),A(2,1,2)'A(1,2,2),A(2,2,?» ~

The expression or array element is printed in a form consistent with its type.

Type

INT EGER

REAL and REAL 2

BOOLEAN

COMPLEX

Form

Integer form, right justified in the field. Includes a leading
minus if the expression is negative. Leading zeros are not
printed.

Both types are printed right justified in the form X.XXXX,±NN,

where NN represents the power of ten, preceded by the appropriate
sign. A negative number is preceded by a minus sign.

Either T RUE or FA L 5 E is left justified in the field.

The real and imaginary parts are each given a field as for REA L.
Thus, only five expressions of type COMPL EX can be printed on
the same line.

----_ .. _----------------

Strings are a slight exception in that they always start a new line. Whenever a string
expression occurs as a parameter, the previous expressions, whether their number is a
multiple of 10 or not, are printed. Then the string is printed on a new line. The next
parameter will be printed on the following line. For example, if A and B are REAL
and have the values 7.0 and 0.004 respectively, then the statement

'of.J' ; IT [(, /\ = , , l\. , , fj =, , n , • A 0 V [F~ P t , A / I:))

UP.~, ___ , __ U_N __ IV_A_C_l_l_08_A_L_G_O_L ______ L-____ ...l..:I '::E:,::,C':'T~I~ON:.:.:_9_--L,:P,:,AG~E~:_3 __

VECTOR A

{vIA TI< I X [3

THUE

would produce the following lines on·the printer:

A=
7.,0000, 00

d=
4410000,-03

A OVEH B
1117500, 03

Example:

INTEGER ARRAY A(1:15) $
BOOLEAN ARRAY 8(1:2,1:2) $
INTCGEf< I,J ':h

•
•
FOR 1=(1,1,15)00 A(I):I-3 ~
FOR 1=(1,1,2) DO FOR J=(1,1,2) DO R(I,J)=I GEG J $

wRITE('VECTOR A',A,'MATRIX 8',8) $

produces the following ou tpu t:

-2
8

TRUE

-1
9

FALSE

o
10

TRUE

1
11

2
12

3
13

~~----------~------~ 12 12 12 12

9.3. FREE-FORMAT INPUT FROM CARDS

For reading punched cards in free-format mode, the procedure READ is called with

devi ce CA RDS:

where each vi is a variable or array identifier. Again, if no device is written, CARDS

is assumed:

This procedure reads the next input card and scans the information on it. Each con­
stant on the card is assigned to the next parameter in the order it appears in the call.

UP-7544
Rev. 1 9

UNIVAC 1108 ALGOL SECTION: PAGE:

Arrays are handled in the same manner as for WRITE. Constants on the cards must be
punched in the same form as they appear in the ALGOL source language (see 2.3) with
the exception that a comma(,) may be used in place of the ampersand (&). Constants
on a card are delimited by one or more blanks and by the end of the card. Therefore,
there is no restriction as to where a constant may appear on the card. If there is not
enough information on the first card to satisfy the READ procedure, a second card is
read, and so on. Any information not taken from the last card is lost (i.e., the next
call to READ reads a new card). An * punched on a card causes the remainder of the
card to be ignored. Otherwise, all 80 columns of the card are scanned for information.
An example of a call on READ:

REAL Ad] $
INTEGER COUNTER $

READ(CARDS,A,B,COUNTER) $

Data Card

.099 362236

assigns the values -7.2 to A, .099 to Band 362236 to COUNTER. It is not necessary
for the type of the constant on the card to match the type of the actual parameter.
Transfer functions are used automatically if such functions are defined (see Appendix
B).

9.4. LIST P ARAMETE:RS - THE LI ST DECLARATION

A LIST declaration associates a set of ordered expressions with a LIST identifier.
The identifier used in the expressions must be defined prior to their inclusion in
LIST declaration. Thus, the other declarations should precede the LIST declaration.

A LIST may include three kinds of elements:

• Expressions

• Array identifiers

• FOR clauses

Example:

REAL ARRAY A(I:N,I:N) $
INTEGER I,J $
LIST LI(FOR r=(I,!,N) DO FOR J=<I,I,N) DO A(I,J» $

•
•
HEAD(Ll)$
wRITE(Ll) <1

This example uses the same LIST for both input and output. Expressions in a list
which are to be within the scope of the FOR statement are surrounded by parentheses
and not by a BEGIN-END pair.

4

UP-~, __________ U_N_.I_V_A_C __ ll_0_8_A_L_G_O __ L _____________ ~_R_e_v_,_1 ~ECT'_IO_N_:_9 ____ ~I_PA_G_E_: _5 __ ___

Another example utilizing LIST:

REAL X,XY $
INTEGER WIDDLE $
BOOLEAN ARRAY Q (1:10) $
STRING BEAN (36*5) $

INTEGER I $
LIST L(1.0,X,XY,FOR I=(1,1,5)DO(Q(I),BEAN(36*(I-1)+1,36»,

SQRT(WIDDLE**3» $

TheL IS T L defines the following sequence of expressions:

1.0 X XY Q(l) BEAN(l,36) Q(2) BEAN(37,36) Q(3) BEAN(73,36)
Q(4) BEAN(109,36) Q(5) BEAN(145,36) SQRT(WI00LE**3)

Besides being allowable as parameters to READ and WRITE, lists may also be used
as parameters to MAX and MIN, All of the elements in the list are treated as call-by­
name parameters and are not evaluated until they are referenced.

One precaution is required when using a LIST, Do not use a list containing an iteration
variable within the scope of an outer iteration using the same variable as in the following:

INTEGER I $
ARRAY ARGGGHA (1:10) $
LIST LISP(FOR 1=10 STEP -1 UNTIL 1 DO ARGGGHA(I» $

•
FOR 1=(1,2,47)00
BEGIN

•
•
WHITE (LISP) $

•
END $

In this case the value of I would be changed in the course of the write statement
causing an infinite loop,

___ U_P_-7_S_4_4 __ Jl~., ______________ U_N_IV_A_C~ __ 1_10_8 __ A_L_G_O_L __________ ~ ReV., __ 1 ____ ~I,_E_c_TI_ON_:~9 __ ~I~p_A_G_E: ___ 6 ____ ~ ___

9.S. FORMATTED OUTPUT - THE FORMAT DECLARATION

It is often desirable to print or punch information in a specific manner rather than to
accept the positioning automatically provided by the WRITE procedure.

The FORMAT declaration, which is included with the other declarations at the beginning
of the block, provides a means of specifying how a printed page (or punched card) is to
be formatted. A format is a set of specifications that can be interpreted by the I/O
procedures to control the editing of information. The form~t takes this form:

FO RMA T < identifier> «form at specifications»

The following lines specify two formats, FEIN and FTWAIN:

FORMAT FEIN(XIO,D7.2,X5,R17.S,Al.1),
FTWAIN(B6,SlO,I5,X2,T14.9,A3,E)$

A single format identifier may be included as a parameter in a call on WRITE, but its
position in the call does not matter. For example, the two following calls in WRITE
are equivalent.

HEAL A,B $

•
•
WRIT[(PRINTER,FEIN,A,B)$
WRITE(A,B,FEIN)$

A format specification consists of a series of editing and/or nonediting codes separated
by commas. An editing code corresponds to a value to be printed and specifies how the
value is to be edited. A nonediting code controls printing, spacing or insertion of blanks
or constants into the print line. The action of WRITE, when a format is being used, is
to pair each output expression with its corresponding editing code in the format. Non­
editing codes are executed as they are encountered.

UP-7'_S44 I UNIVAC 1108 ALGOL Rev. 1 I 9 ~ ________ • ________________ ~~~~ ____ • __________ ~ _________ ~_IO_N_: _______ ~_P~A~G~E~: ______ __
7

9.S.1. Nonediting Codes

In nonediting codes listed below, sand t are unsigned integers and w indicates the
number of character positions. Two conventions are that As is the same as As.D
and A is the same as AD.D. For phases that require a t, both sand t must be less
than 64.

F :ORMAT CODE

As.t

Es

Xw

.ny
Ig

1< a

strir
not
tain
!>i

con-
ing a

Activate

Eject

Expunge

Insert
literal

ACTION(PRINTER) ACTION(PUNCH)

P rin ts the line just Punches the edited
edited. Skip s lines line into a card.
before printing and sand t are ignored.
t lines after.

Ejects the page to Ignored
10 gical lin e s-1 if
s-1 is below margin
on current page. The
next line to be printed,
if it specifies AI. t,
prints on line s. If s-1
is on th e curren t page
and is below the cur-
ren t line, Es skips to
s-1 and the page is not
ejected.

Skips the next w char- Same
acter positions (Le.,
inserts w blanks in the
line).

Inserts the strin g Same
enclosed in quotes
into the line.

Table 9-7. Output Nonediting Codes

UP-7544 UNIVAC 1108 ALGOL
Rev. 1

9.5.2. Editing Codes

The editing codes are the same for both printing and punching. Each code acts on
one value to be printed. The w specifies the field width (that is, the total number
of character positions to be used in the editing, including signs, decimal points and
comma). If w is too small to do the proper numeric editing, two asterisks are printed
and the value is edited according to R12.S. Any editing done beyond the edge of the
output medium (132 or 128 columns on the printer, 80 columns on the card punch) is
lost. The d is interpreted differently for different codes. In format codes that use no
d (as Sw), w must be smaller than 4096. In codes that include d, w must be enough
larger than d to include at least the decimal point, a sign, and the exponent with its
sign if the re is one.

FORMAT CODE

Bw Boolean

Dw.d Decimal

Iw.d Integer

Rw.d Real

Sw Strin g

Tw.d Truncated

ACTION

P rin ts T RUE or F AL SE in the field, left justified. If the field
is too short as much as possible is printed, e. g., B 1 results in
T or F.

Prints a decimal number with d places after the decimal point,
right justified in the field, and with a leading minus sign if

negative.

Prints an integer number right justified in the field with a
leading minus sign if negative. The integer is printed to the
base d where d=O and d=10 are equivalent. In the latter cases

the .d can be omitted. Range of d: 2 ~ d ~ 10.

Prints d significant digits of a REAL or REAL 2 variable in
the form X.X X, NN for REAL or X.X X, NNN for
REAL 2. A leading minus is printed if the number is negative.
If the power of ten, NN or NNN, is negative it is preceded by a
minus sign. Note that w must always exceed d by 6 or more (7
or more for REA L 2) to allow for ±., ±NN or ±., ±NNN.

Prints the first w characters of a string left justified in the
field. If the string is shorter than w characters, the rest of
the field is space filled.

Prints a number with a decimal point right justified in the
field. Only the first d significant digits are printed; a leading

minus sign is printed if negative.

TobIe 9-2. Output Editing Codes

The type of the actual parameter is transferred to the type demanded by the editing
code in any case for which there are transfer functions defined. A complex number

is edited using two successive editing codes, the first for the real part and the
second for the imaginary part.

UP-7~, __________ U_N_I._V_A_C_l_l_0_8_A_L_G_O_L ____________ ~ __ R_e_v_._l ____ ~I,_E_c_TI_O_N: __ 9 __ ~I~p_A_G_E: ___ 9 __ ___

The following examples illustrate the use of various editing codes:

REt\L A,B $
FORMAT Fl<X2,D7.2,X5,R17.8,Al.1) $

•
•
A=12.474 $
B=· ... 12345678 $
WRITE<Fl,A,B) $

The above coding would print A and B as follows:

z?1 R17\, l:~a:~)li~:
AA8672.47666AA666-1.2345678,-01

1 blank line

If Fl above were

F 1 ('j=" D::J,. 2, ~X5' 'fj=' ~/R17. 8, A2.1)

then the printout would b~ 2 blank lines --1

.L. / /' __
A=6A72.4766AAAB=AAh-l.2345678,-Ol

1 blank line -4----'

To compare the three real codes D, Rand T, suppose

REJ\L A $
FORMAT OK(DIO.4,R10.4,TI0.4,Al) $

A=O.001107 $
WRITE(A,A,A,OK) $

The printed line would then be as indicated below:

UP-7544
Rev. 1 I sceTOON, 9 UNIVAC 1108 ALGOL

9.5.3. Repetition of Editing Codes

A single editing code (or a group of editing codes) can be used a number of times
without actually repeating the code itself in the format statement. Three different
methods can be used:

• Simple repetition - used when the num ber of repetitions required is known.

• Variable repetition - used when the number of repetitions depends on data.

• Indefinite repetition - used when the number of repetitions is indeterminate.

9.5.3.1. Simple Repetition

An editing code may be repeated by prefixing it with an unsigned nonzero integer
constant which specifies how many times that code is to be repeated.

Example:

is equivalent to

FOR~,iAT F1(3R16.8,Al)

PAGE:

It is also possible to repeat a group of editing codes by enclosing them in paren­
theses and preceding this parenthetical group with an unsigned nonzero integer
constant indicating the number of repetitions of the group. There is no limit to the
depth of n'esting, editing codes or groups of codes.

Gi ven the declaration

the following format would permit printing the array elements with only one row per
line

FORMAT FORM (7(687,A1» $

9.5.3.2. Variable Repetition

A second type of repetition is the variable repeat. Instead of an integer, an arith­
metic expression or Boolean expression enclosed in colons specifies the number
of repeats. The Boolean values TRUE and FALSE are equivalent to one and zero,
respecti ve1y.

Example:

INTEGER ARRAY A(1:N,1:M) $

FOR MAT F (: f ~: (: M: (R 16 • 8) , (\ 1))

would print the array one row per line (so M should be less than 9). The expression
(N or M) is evaluated every time the variable repeat is encountered during the format
scan. If N or M have a value of zero or less, the group of format codes under control
of that repeat expression is skipped. Note that in this type of repetition, the codes to
be repeated must be enclosed in parentheses even if there is only one such code.

10

Up_~, ______ . _____ U_N_IV_A_C __ l_l_08 __ A_L_G_O_L ____________ ~ ___ R_e_v._1. ____ ~I_s_E_cT_I_ON_:_9 ______ ~p_A_G_E_: _1_1 __ _

9.5.3.3. Indefinite Repetition

A final variant of editing code repetition is the indefinite or unlimited repeat. This
is accomplished by enclosing a group of format codes in parentheses without pre­
ceding this parenthetical expression with an integer constant. The innermost
paren thetical group that is not p receded by an in teger constant is unlimited and will
be used repeatedly until the output list is exhausted.

Given:

FORMAT ONANDON (El,'VECTOR 8',Al,(D7.2,Al» $

REAL 2 ARRAY B(l:M) $

then

WRITE(B,ONANQON) $

will produce the following on a new page

VECTOR B

xxxx.xx
XXXX.XX
XXXX.XX
XXXX.XX

As an extension of this feature note that the parentheses surrounding an entire
format are indefinite repeats. If there are more values to print upon reaching the
end of the format string the whole format is repeated. Writing stops when the two
following conditions are satisfied: there are no more values to be edited, and the
right parenthesis of an indefinite repeat is encountered. Any editing code en­
coun tered when there is nothin g more to be edited is treated as Xw. N onediting

codes are honored.

Example:

REAL A,B 5:;

FORMAT Z(5D7.2,A2.3,'ABOVE IS DERUG I t ,Al) $
A = 17.00 $
H = -18.00 $
WRITE (A,A/2,B,g/2,Z) $

produces

~AI7.00A668.50A-18.006A-9.OO

,\BOVE IS DEBUG 1

A common error to watch for is the omission of an activation code within an
indefinite repeat (or within a format declaration in general):

FOR~AT QT[(E,(8RI6.8),Al.2)

1 Rev. 1 I 9 12
__ UP_-7_S44___ . _____________ U_N_I_V_A_C_l_l_O_8_A __ L_G_O_L ______________ ~ ____________ ~_s_E_C_T_IO_N_: ______ ~_P_A_G_E: __________ _

(iilALG, 51 T
CYCLE 000

51
1
2
.3
4
5
6
7
ti
9

10
11
12

t31
1.3
14
15

E:.1

would skip to the top of the next page but would not print anything. This error
could be corrected as follows:

FORMAT QTE(E,(8R16.8,Al.2»

In this format, E is equivalent to EO which has the effect of skipping to the bottom
line of the cu rren t page. EO followed by A 1 will print on the top line of the next
page.

Format codes to the right of an indefinite repeat or unlimited group can never be
reached. The following output format:

FORMAT FORM9(X5,I5,DIO.3,Al,(I5,4DlO.3,Al),X10,I5,Al.2) $

used with a WRITE statement will cause the first two values to be printed ac­
cording to IS and D10.3. Since the inner parenthetical group is not preceded by
an integer, printing will continue according to specifications within the parentheses
until the output list is exhausted. The last three codes will never be reached.

The following example illustrates how versatile formats and lists can be. It prints
an (N ,M) array in a real fonn at:

TE5T,TEST
COMPILED BY 1,03 0005 ON 04/19/68 AT 10:37:43
L1
IN T EGER M, j\J, 11, 12, I, J $
REAL K $
REAL AkRAY A(1:50,1:~0) $
FORMAT ALL(X1 1 ,:ENTIER(MIN(11+9.N»-11+1: ('COL',I3,X6),Al,:M:('ROW',I3,

:EN f lER(i\',!iHll+9,N))-11+1: (R12.2j) ,Al) ,A2) $

LIST HAIR (FOt< 11=(1,11j,N) aO (FOR 12=(11.1,P.llN(Il+9,N» 00 12,
FOK J=(l,l,~) 00 (~, FOR 12=(11,1.MIN(Il+9,N» 00 A(I2,J»»$

R = 0.0$
M = 2~$
N = 18S
FOk I = (l,l,N) CO
FOk J = (l,l,M) DO

bEGIN
R = R + 1.0 :£,
A(l,J) = R

16 lNO $
17 WHITE (AlL,HAlk) $

START COMPLIATION TIME IS 10:37:42
END COMPlIATION PHASE 1 10:j7:43
ENU COMPLIATIOI~ PHASE 2 10:37:43

Fl
COI~IPILAT IOI~ COtvlPLI:':TE

I Rev. 1 9 13
UP-~~ ________________ U_N_I_V_A __ C __ ll_0_8 __ A_L_G_O __ L _______________ ~ ____________ L-SE_C_T_IO_N_: ______ ~_P_AG_E_: ______ _

kUi;
HOw .0
HOw 3
H0w '+
HUI'< :J

HOI/ b

HOw 1
HOw M
Rvw 9
lOw 1U
kuw 11
I{V./ 1.0
HOI'< 13
k()1\ 1'+
ROv. 10
Hvw 1b
kOw 11
HOI'< 1tl
HVI'o 19
ROw 20
HOw 21
HOw 22
fh)w 23
ROw 24

ROil 1
t{Ovi 2
fWo'i 3
HOw 4
kOw :>
ROI'< I:>
H01\ 7

Huw tl
ROw 9
HOw 10
ROw 11
kvw 12
kUw 13
HOw 14
ROw 1~

ROw 16
kOw 17
RO.v H3
kOw 19
Hlll'o 20
HOw 21
RO.v 22
HOw 23
HOW 24

CI)... 1
1.uu Ull.+uU
2.UOOu.+O l)

3,UOO().+ou
4,UUIJ0'+Ou
O,U(;Ou.+UU
b,uOI.l().+uu
7.uu!JU'+OU
b,UUI)U'+OU
9.uUiJU'+OU
1. UUO(;. +01
1,1UOU.+ul
1,.o(JOI)r+Ul
1.julli,l.+Ul
1,,+uOO.+Ul
1,::> lJll u·+lJ1
1, <.llJllu' +u 1
1, (l,(JUri-Ol
1. oUUl,. +01
1,':IUliU.+01
2,ul,OU'+OJ.
2,1li(IU.+0 1
2,<:::onO,+G1
2,.)U(l0,+01
2,'+UUu,+01

COL 11
2,'+100,+02
2.'+2ltO.+02
2,,+jOU,+02
2,'+400,+0.0
2,,+!JLtQ,+02
2.40Gd.+0 2
2,,+70,,,+0.::
2,'+bO ').+02
2,'+90U.+02
2,oUOOo+02
2,ol()U'+O.o
2.02Uu'+0.::!
2.;:,.30u,+02
2,0400.+0""-
2,0!JOu.+0 2
2,ObOa.+0.::!
2,J70 u o+02
2,JoOOo+U2
2,0900,+02
.2,0000,+02
2,1:>10(j'+0<!
2,0200,+02
2,030u'+O.o
2,0'+0()I+02

The WRITE statement using format ALL and list HAIR has the effect of printing
the elements of a real array by rows with ten elements per line. The output has
this form:

COL 2
<::.~'(jO",+Ol
.::!.c.nO'),+01
2.7c;ou,+01
2.bUO U,+01
2''.:'uO'),+1J1
3.UlJU IJ ,+01
3.11l0 f" +U1
3.,,_o)OlJ, ,t01
3';::'liO li ,+01
.1.4·o0v, +01
3.;"oou,+U1
.1.ooO;J,+01
3.700 u ,+01
3.eoO lJ ,+01
3.Youu,+01
4.UuOU,+01
4.10lJ u ,+01
4.~llUu,+01

4·joou.+01
4.400 u ,+01
4.:c>uo d ,+U1
4 • 0 (, U U , + u 1
4. 7uO'J ,+01
I~ .<JuOI!, +v1

COL 1.0
2.0:}uu,+02
2.Ubo u ,t02
2.t>7U u o+02
2.0bO u ,+02
<:.1:>90 u ,+lJ2
2.7uO J ,+02
2.710 u .+02
2.120 u ,+02
2.7jOu,+02
2.J'lfo u ,+1J2
2.7,,01J,+02
2.7"ou,+02
2.770 u ,+02
2./:Jo u .+02
2.7';10U,+02
2.dUo LJ .+02
2.tllo u ,+U2
2.tl,~ou,+02

2.UjOUo+02
2.tJ'+Ou,+02
<:::.0:10 u ,+02
2. 6"ou, +02
2.070 u,+02
2.Udo u,+02

COL 3
'+ • .,,000,+01
->,0000,+01
~',1000,+01
: ... <::000,+01
~, • ..lOUO,+Ol
:....4000,+01
:....::>OliO,+01
:".6000,+01
;:.,.7000,+01
!:J.bOOO,+Ol
~),'::IliOO ,+01
b.OOOO,+OI
Cl.IllOO,+Ol
'),;::000,+01
i~,.)OOO.+Ol
,-,,4000.+01
u.OllOO,+U1
v.bOOIJ,+OI
('.7000,+01
".tuOO,+U1
c,. ':>ono, +01
I.OOOO,+u1
'.1000,+ul
7.",000,+01

COL 13
2.6900,+02
,,:.':1000,+02
2 • .,,1000+02
<::.9200,+02
2.Si300,+02
c:..':I400,+02
;;.9~100,+O.o

", • .,,600.+02
;c.SllOO,+02
<::.9tlOO,+02
2.9900,+02
,).uOOO,+02
.~. 0 100, +02
-:>.u200,+02
3.0300,+02
.'i.04()0,+02
'~.USOO,+02
-".u600,+02
j.0700.+02
3.0800,+02
..).0900,+02
6.1000.+(J2
-'01100,+02
.).1200,+02

;:;OL 'I
7,.10000+01
7,4tJOO.t01
7,::>JOO.+01
7.bl)00, tOl
7,(1)000+01
7.dUOO,+01
7.9uOO,..0\
fl.OllOO.+O\
8.10)00,+01
11,2UOO,+01
El,3tJOOo+Ol
8,4dOO.+O\
B.50000+01
8.6UOO,+01
8.71100,+01
li.euOo.+ot
S.9000.+01
9.0uOO.+01
9. 1 i10 0, + 01
9,2uOO.+Ol
9,JuOO,+Ol
9.4000,+01
':I.~uOO,+Ol
<),bl)OO,+Ol

COL 14
3,1.500,+0,'
.3.1'+00,+0.:
301:;,00, +0.'
3,1600,+0.::
3.1700,+OJ
3.1000. +O,c'
3,1900,+0.'
3.2UOO dO;'
3.21000+0-'
3,<:;200,+0.-
3.2.500. +0.'
3,2-100,+0~
3.2:)00,+0,:'
3,2;.)00,+0,-~
3.2700,+0,­
j.2t\00,+0~

3,2900 dO ...
j,jOOo.+O~·

3 • .3100,+0,
3,3.::!00,+0,1
3.3jOO,+0~

3,.5'tUO.+o -
3 djOO. +0.,
3.3'-lOO,+0-'

COL 5
9.7000.+01
9.8000,+01
9.90000+01
1.0000,+02
1.0100,+U2
1.0?OO,+02
1.0300,+02
1.0400,tO~
1.0500.+02
1.0600,+02
1.0700,+02
1.01100,..02
1.u900H02
1.10000+02
1.1100,+02
1.1200.+02
1.1300.+02
1.1400,+02
1.1500,+02
1.1600,+02
1.1700,+02
1.1800.+02
1.19000+02
1.C::000.+02

COL 15
3.3700,+02
3.3800,+02
3.31300,+02
3.4000,+02
3,4100,+02
3.4200,+02
3.4300,+02
3.4'+00,+02
3.45000+02
3.4600,+02
3.4700, +-02
3.4800,+02
3.4900,+02
.5.50000+02
3.5100,+02
3.5200,+02
3.5300,+02
3.5400,+02
3.55000+02
3.5600,+02
3.57000+02
3.5800,+02
.3.5900,+02
3.6000,+02

COL b
1.C:1UO,+02
1.220uo+02
1.2300,+02
1.2400,+02
1 • .:50u,+02
1.2600.+02
1.2700,+02
1.2801),+02
1,.0900,+02
1,.3000.+02
1 • .310U,+02
1.3200,+02
1.33000+02
1.,)4000+02
1..3500,+02
1.3600,+02
1,.170(J,+02
1.31'100,+02
1,39000+02
1.4000,+02
1.4100,+02
1.4200,+02
1.'f300,+02
1,4400,+02

COL 16
3.6100,+02
3.6200.+02
3.6300.+02
3,1:>400,+02
3.65000+02
3.66000+02
3,6700,+02
3.bflOOo+02
3.0900,+02
3.7000,+02
3.7100,+02
3.720U,+02
3.7300,+02
3,7400,+02
3.75000+02
3.7600,+02
3,7700,+02
3.7[100,+02
3.79000+02
3.8000,+02
3.13100.+02
3.d200,+02
3.13300,+02
3.tl400,+02

CUL 7
1.4~(J0,+02

1.4600,+02
1.4701),+02
1.4800,+02
1.49UO,+02
1.00000+02
1.510Uo+02
1.5200.+02
1.5301),+02
1.0400,+02
1.05UO.+02
1.56000+02
1.5700,+02
1.58000+02
1.0900.+02
1.60000+02
1.b11J0,+02
1.6200,+02
1.6300,+02
1.64000+02
1.6500,+02
1.6600,+02
1.6700,+02
1.6800,+02

cOL 17
3.85000+02
3.86000+02
3.8700.+02
3.88000+02
3.8900.+02
3.':1000,+02
3.9100,+02
3.9200,+02
3.93000+02
3.9400,+02
3.9500,+02
3.':1600.-+-02
3.97000+02
3.9800,+02
3.9900,+02
4.0000.-+-02
4.0100,+02
4.02000+02
4.03000+02
4.0400.+02
4.05lJO,+02
4.06000+02
4.0700,+02
4.0800,+02

CUL d
1.hYOO,+02
1.700(J,+02
1.710lJo+02
1.7200,+02
1.7300,+02
1.740 lJ r+02
1.75000+02
1.7600,+02
1.770(J,+02
1.71100,+02
1.7900,+02
1.HOOO.+02
1.810n,+02
1.h200 0+02
1.8-iOlJo+02
1.P4000+02
1.1I5011,+02
1.AoOO.+02
1.b700,+02
1.8BnO,+02
1.8400,+02
1,9000.+02
1.91011,+02
1.92000+02

COL 1S
4.0QO Oo+02
4.10000+02
4.11000+02
4.12000+02
4.13000+02
4.1400,+02
4.1500,+02
4.16000+02
4.1 7 00,+02
4.1AOOo+02
4.1900,+02
4.2000,+02
4.2100,+02
4.22000+02
4.23000+02
4.24000+02
4.2500.+02
4.2600,+02
4.27000+02
4.2S00,+02
4.2900,+02
4.3000,+02
4.3100,+02
4.3200,+02

COL 9
1.':i3110,+02
1.';1400.+02
1.9500.+02
1.Y600,+02
1,':1700,+02
1.Sl800,+02
1.9900.+02
2.UOOOo+02
2.(J100.+02
2.02000+02
2.0300,+02
2.0400,+02
2.05000+02
2.06000+02
2.u700,+02
2.0800,+02
2.0900.+02
2.1000,+02
2,1100.+02
2.12000+02
2.1300,+02
2,14000+02
2.1500,+02
2.1600,+02

COL 10
2.1700,+02
2,11'00.+02
2.1"00.+02
2.2l!00.+02
2.21000+02
2.2":00.+02
2,2300.+02
2.2 4 00.+02
2.2',00, +02.
2.2('00,+02
2.2700.+02
2.21\00,+02
2.2<)00.+02
2,3000,+02
2.3100.+02
2.3;;00.+02
2. 3~00 0+02
2.34 00,+02
2.3500.+02
2.3(,00,+02
2.37 00,+02
2.31'>00,+02
2.3<100.+02
2.4000,+02

EXIT EXLCa ALGUL L1URAHy

UP-7544
Rev. 1 9

UNIVAC 1108 ALGOL SECTION:

9.6. FORMATTED INPUT

As with writing, a format may be included as a parameter to the READ procedure. A
format tells how the card is laid out. The major advantage in using formats is that
constants need no longer be delimited by blanks, and strings need not be enclosed in
string quotes - the format specifies the 'fields' in which information lies. The dis­
cussion that fo11ows is based on an example designed to illustrate most of the funda­
mentals of reading formatted cards.

The format declaration is the same as described in 9.5. The difference between a
format being used as a parameter to WRITE and one being used as a parameter to
READ is that the editing and nonediting codes are interpreted slightly differently.
However, they are enough alike that in many cases the same format may be used with
both procedures.

The fo11owing example illustrates reading data from cards according to a specified
format. The information pertains to student records with each card having the follow­
ing format:

Column Contents

1-5 Student number
6-7 Student initials
8-21 Studen t name
22 Status
23-24 Curriculum
38-44 Course name
47 Credit hours
60 Letter grade

The problem is to read the above data in a form that will make the manipulations easy
and permit printing a11 the information. It is this type of problem which gives rise to
the necessity of specifying the card format. The steps necessary to achieve this
result are:

(1) Read a card

(2) Accept columns 1-5 as an integer

(3) Accept columns 6-7 as a string

(4) Accept columns 8-21 as a string

(5) Accept column 22 as an integer

(6) Accept columns 23-24 as an integer

(7) Skip the next 13 columns

(8) Accept columns 38-44 as a string

(9) Skip 2 columns

(10) Accept column 47 as an integer

(11) Skip 12 columns

(12) Accept column 60 as a string

Student number

Student initials

Student name

Status

Curriculum

Course name

Credit hours

Grade

14
PAGE:

UP-7~~ ______ . ____ U_N_IV._A __ C_l_l_O_8_A_L_G_O __ L _____________ ~ __ R_e_v_._1 ____ ~I~s~E~c~Tl~ON~:_9 ____ _L_PA_G~E~: __ 1_5 __ __

The FO RMA T declaration can be used to take care of all the above functions. For
example, the format could be

Note there is one entry in the format for each numbered line above. Each of the items
in the above format is referred to as a 'format code'. Of course, the initial A is
analogous to the terminal AS.t of the write and is required to activate the subsequent
READ procedure.

A reasonable program segment for the above problem would be:

rr J h:. 0 [1\ STU D fJ 0 , S T 1\ T I , C U F C I , C P [D S 1·
(, r r< 1 ij GIN I T I /\ L S (2) , fi t\ lv' L (lll) , C () U H (':~ [(7) , G F l\ D F (l) "t

F 0 i ~ ;·1 A TV!, Y r- F t. I (J\ , I ') , S 2 , :'> J it , I 1 , I 2 , Xl:') , S 7 , X 2 , 1 1 , Xl£::' , 5 1) $
LIST Fr< I Euh I Ct-d 5 TUDNO, It'.ll T I AL~; d\JI\Mf: , S TA 1 I , (I. Ir?c I ,

C OU~·< ~')E_: , C Id::r' S , GfU\ [:1-.) III
1~t AD (C i\l~DS, F:Z I CDr< I CIt, VI', Y[,:!!L 1) s,

Only two nonediting codes are permitted with an input format:

A activation code - required as the first code of the format to activate the
subsequent READ procedure.

Xw - skip over w columns on the card

The editing codes (some of which are not in the example) have the following mean­
ings .• and wand d are restricted as before (see 9.5).

FORMAT CODE

Bw Boolean

Dw.d Real

Fw Free

Iw.d In teger

Rw.d Real

Sw String

Tw.d Real

ACTION

Accepts Boolean information from the field - either T RU E,
FALSE, or 1, O.

Accepts real information from the field. If the number is al­
ready real, (i.e., has a decimal point or exponent part) then
that determines the decimal. Otherwise, a decimal point is
inserted d places to the left of the right edge of the field.

Accepts an unspecified number of values from the field.
These numbers must be punched in free format mode; that is,
values may be punched any where within w character posi­
tions.

Accepts information from the field as being integer to the
base d. d=O is equivalent to d= 10.

Same as Dw.d

Accepts the whole field as a string.

Same as Dw.d

Table 9-3. Input Editing Codes

UP-7544 UNIVAC 1108 ALGOL
Rev. 1 9

SECTION: PAGE:

9.7. FILE HANDLING

The general form of I/O call is:

< I/O Procedure> (< device> , < format> , < modifier list> , < parameter list> ,
< actual label list>)

Where

<I/O Procedure> is either READ or WRITE
< device> is CARD, PRINTER, PUNCH, FILE (filename, location),

APRINTER or APUNCH

< modifier list> see section 9.8.2.1
< parameter list> is a list of all of the I/O variables of lists
< actual label list> see section 9.8.3

When the device is FILE the above call takes either of two forms:

Sequential files

< 10 Procedure> (File(filename), < modifier list> , < parameter list>,
< actual label list>)

Random Files

< 10 Procedure> (FILE(filename, location), < modifier list> , < parameter list> ,
< actual label list>)

In these forms < filename> is the internal name of the file. According to system
requirements, the name must be at most 12 characters long, left justified, and space­
filled. If the string is less than 12 characters long, the compiler supplies trailing
blanks.

< location> is an integer specifying the location relative to the beginning of the file
at which the I/O operation is to begin.

The I/O operation is unformatted whenever the device is FILE. In case of doubt
concerning allowable operations on files, and for information concerning the assignment
and use of files, see the "UNIVAC 1108 Executive Programmers Reference Manual",
UP-4144 (current version). The ALGOL linkages permit the user complete access to
the file handling capabilities of the 1108 Executive.

To simulate magnetic tape on other devices, such as drum or FASTRAND, all files
can be handled as sequential access storage devices that can be parameters to
REWIND and POSITION statements (see 9.8).

If a non-existent file is referenced, the compiler assigns a temporary FA STRAND
mass storage file to that name. Since the information in a sequential file is written
out in blocks containing various extra words that specify information about the block,
one should be careful about accessing the same file both randomly and sequentially.

16

L Rev. 1 I 9 17
___ U_P_-75_4_4___ _ ______ . _____ U_N_I,_V_A_C __ l_l_O_8 __ A_L_(._;_O_L ____ . __ ~ ______ ~ ____________ ~_S_EC_T_I_O_N_: ______ ~P_A_G_E_: ______ __

9.7.1. Sequential Files

If the device name F I LEis followed by only one parameter, then the file is treated
as if it were a sequential file. Information in such files is stored in blocks of 252
words or less. The format of these blocks is:

~
H1 S4 T3

I N LB BSN

~ -1
N 1~

DATA
I

DATA
~ WORDS ~
I

CHECK SUM

~
N LB BSN

N number of words in block. Must be 249 words or less.
LB last block flag.

= o for not last block.

= 1 for last block.
BSN block sequence number in logical record.

The WR IT E statement writes one logical record. Information is packed in blocks with
all but the last block containing 249 words of data. The last block (LB flag = 1) may
contain less than 252 words. One logical record is the information written out by one
write statement.

The READ procedure reads blocks of data from the device until all of the variables
have been filled. All information in the last logical record read which is not used by
that READ is lost, i.e., the next call on READ starts reading the following logical
record.

See Section 9.8 for operations on sequential files.

9.7.2. Random Access Files

If the device name FI LE is followed by two parameters, the first one is the name
of the file, as before. The second is the location relative to the beginning of the file
at which this READ or WRITE operation is to begin in the file.

Magnetic tape files cannot be referenced randomly. Integer, real and BOOLEAN
variables take one word per variable. Real 2 and complex variables occupy two
words. Strings are always left-justified in the first word in which they are written.
Thus an N-character string occupies ENTlER (N + 5)/6 words. No descriptor is
written out with any of the information, so it is not difficult to determine how many
words any block of information will occupy.

ONE
BLOCK

UP-7S44
Rev. 1 I SECTION, 9 UNIVAC 1108 ALGOL PAGE:

9.7.3. Alternate Symbionts

The 1108 Executive allows the user to define print and punch files other than the
standard two. Information is these files is written out when the output device is
free. In particular, the file will be written out at the end of the run. To use this
ability from ALGOL, specify device APUNCH or APRINTER with one parameter.
This parameter is the internal name of the file to which the information is to be
written pending output. If the file is a tape file, the output will not be written out
automatically. This operation must be initiated by the appropriate Executive control
statement.

9.8. OTHER DIRECTIVES

REWIND and POSITION operations are useful in manipulation of files. In addition
supplementary marks can be made on a file in order to facilitate access to information.

9.8.1. REWIND

The form of the REWIND statement is:

REWIND «file list>l' INTERLOCK, < file list> 2)

where either < file list> may be empty. If < file list>1 is empty then INTERLOCK
should be left out.

This statement rewinds all of the files in < file list> 1 with interlock or if they are
temporary non-tape files, it releases them. All of the files in <. file list >2 are rewound
without interlock.

9.8.2. Modifiers and POSITION

9.8.2.1. Modifiers

A modifier list may be provided as a parameter to WRITE. This list may contain
either EOF « expression» or KEY « expression» or both. Note that EOF and
KEY mean the same thing as EOF (0) and KEY (0). If the modifier list contains
KEY, then a KEY record is written preceding the usual record written out. If it
contains EOF, then an EOF record is written after the usual record.

If < expression> is a string, the first six characters identify the record. The
modifier EOI may also be used, in which case an end-of-information mark is written
out after the usual record and EOF block.

18

___ U_P_~,~ ____________ U_N._I_V_A_C __ 1_1_0_8_A __ L_G_O_L ______________ ~ __ R_e_v_._1 ____ ~I_s_E_c_T_IO_N_:_9 ____ ~_p_A_GE_: ___ 1_9 ___

9,,8.2.2. POSITION

The procedure POSITION positions a file to a previously written KEY or EOF
record, to the end of information, or advance it over a given number of ordinary

records. The call is:

POSIT ION(FILE(filename), < position parameter> , < label list»

where the position parameter is:

EOF (< expression>)

-.EOF « expression>)

KEY (< expression»

-·KEY «expression»

integer expression

EOI

-,EOI

The direction of positioning is indicated by the sign of the position parameter,
positive for forward and negative for backward, If the position parameter is EOI,

the file is positioned to the next EOI mark. If the position parameter is an integer
expression, the command advances over that many logical records ignoring KEY
records.

Key records are also ignored when encountered by a READ statement. Abnormal
exits from the POSIT ION procedure are listed in section 9.8.3.

The procedure POSITION always positions over the record it is looking for in the
direction indicated.

9.8.3. Labels

In many of the I/O operations unexpected situations may be encountered. In order
to inform the user of their existence and to enable him to recover, several label
parameters may be supplied to the pr0cedure. These are used as alternate exits in
abnormal situations. If more labels are provided than are expected, the procedure
will respond with an Improper Parameter message.

9.8.3.1. POSIT ION Procedure

At most two parameters are allowed. The following defines the exits that occur in
various situations:

Parameter to POSITION Condition Exit to

EOF End of Information First Label
KEY End of Information First Label
integer expression EOF Record First Label

End of Informa tion Second La'bel

If only one label is given, all exits to the second label go to the first. If no label
is given, exit is made normally, that is to the next ALGOL statement.

Rev. 1 9
UNIVAC 1108 ALGOL SECTION: PAGE:

9.8.3.2. READ Procedure

Control cards are identified by a master space (a 7-8 punch) in column 1. Except
for the EOF control card, these cards are not read by an ALGOL program. However,
the programmer can detect them by using labels as parameters to the READ procedure.
In that case, if an attempt is made to read such a card, the READ procedure terminates
reading and exits to the given label.

When an EOF card is encountered by the READ procedure, reading terminates. No
new values are assigned to the remaining parameters in the input list. If a label is
present as a parameter, the exit is made to that label. Otherwise, exit is made to
the next ALGOL statement. The next time the READ procedure is called, it begins
by reading the card after the EOF card. Thus, the purpose of EOF is to give the
programmer a convenient method of separa ting sections of data of unknown length.

If a control card other than an EOF card is encountered, no more data cards can
be read for that run.

A t most three labels may be supplied as parameters to READ. If only one is specified
all exits to the second label will be made to the first. If no third label is specified
the program terminates upon encountering a situation that would require exiting to
the third label.

The editing of the READ procedure is controlled in the following way, depending
on the number of labels in the READ call:

DEVICE CONDITION

CARD EOF Card
any other control card
error in rea d

FILE EOF record
end of informa tion
error in read

Example:

nEGIN ARRAY A(1:20)$
LOCAL LAGEL 0K,FIN $

•
•
wEEO:R[AO(CA~DS,A,OK,FIN) ~

•

EXIT TO
LABEL NO. NO LABEL

1 normal return
2 program terminated
3 program terminated

1 normal exit
2 normal exit
3 program terminated

OK: WRITE ('EOF - CARD READEP') $ GO TO ~EED $

FIN: WRITE('PROGRAM TEKMINATED BY CONTROL C~RD') $
END $

20

___ UP~, __________ U_N_I_V_A_C __ l_1_08 __ A_L_G_O_L ____________ ~ __ R_e_v_._1 ____ �~s~E~cT~IO~N~:_9 ____ ~I~p~A~GE~: __ 2_1 __ __

9.8.3.3. WRITE Procedure

Only one label is a llowed as a parameter toWRI T E. Exit is made to this label if
an attempt is made to write past the physical end of the FILE.

9.8.3.4. MARGIN Procedure

The procedure MA RGI N provides the ALGOL user the means for controlling the form
of the output of the PRINT symbiont (See "1108 Executive Programmer's Reference
Manual" UP-4144). The form of the call on MARGIN is:

MJ\RGIN(<control string»

where <control string> is a string containing one or more control functions.

Spaces are ignored prior to the first, or between functions. Each function begins
with a single letter, followed by a comma, followed by any special information
required, and terminated by a period. The format of the information character
string varies according to the function but must not contain a period.

The following contro I functions are allowed:

L - Space printer to logical line nn, where logical line is defined as the line
number relative to the top margin setting (see M below). All line positioning
and printing is performed within the defined margin settings. (The bottom
logical line of a page is identical to the top logical line -1 of the next page.)
Positionin g to a logical line on printers with space-print operation is to
logical line n - 1; therefore when n = 1, the logical line setting is the last
line of the current page. This is also true when n = 0, or when n is greater
than the length of the logical page. When n is less than or equal to the
current line of the current page, the succeeding page is positioned to the
logica 1 line n - 1. The format of this function is:

L,nn,

H - Initiate heading printing. This function provides the user with an automatic
means of printing a heading on each succeeding page of his print file. The
format of this function is:

H, option, page tt, text of heading

If the option field contains the letter X, a page and date wi 11 not be printed
as part of the heading. Option n turns the heading off. A page count is main­
tained by the processing symbiont. When the page 11 field is blank, the page
count current to the field is used to begin page numbering. When coded, page tt
is made the page number. In addition to the page number, the current date is
included in the heading, and both will appear in the upper right corner of each
pa ge. This position of the heading is the second line above logical line 1.
If the upper margin is one line or non-existent, no heading is printed. As many
as 17 words of heading text may be supplied.

9 22
UP-7544 L Rev. 1

UNIVAC 1108 ALGOL SECTION: PAGE: - -.---~~------------

M - Set margins. This function supplies the information for re-adjusting page
length and top and bottom margins. The standard print page definition
is 66 lines per page with a top margin setting of six lines, and a bottom
margin setting of three lines. Note that the top and bottom margins refer to the
number of blank lines at the top and bottom of the page respectively. Thus the
standard margin setting is 66,6,3 giving 57 printable lines. This page definition
is assumed at the beginning of each print file. When the M function is used, a
page alignment procedure is initiated with the page length parameter. This func­
tion is also used to return to the standard page length. The format of this function
is:

M, length, top, botton

W - Set maximum line width. The standard of 22 words (132 characters) is assumed
unless the W control is used. The format of the function is:

W, width

where width specifies the maximum line width in words.

S Special form request. This function enables the user to instruct the operator
to load a special form required to process the print or punch file. The format
of this function is:

S, message text

where the message text can be up to ten words long. When this function is
encountered by the processing symbiont, the message is displayed on the
operator's console in the form:

run ID/filename c/u options
message text

The user's message text is displayed on the line following the symbiont
message. The options available to the operator for answering the message
depend on the symbiont. The following options are included in the 0755 HSP,
Card Punch and the 1004 Printer and Card Punch symbionts:

A Begin processing the output file.

Q Return file to symbiont queue. The print or punch file will be passed temporarily
and placed behind the next file of this symbiont queue.

UP-7_S44 I UNIVAC 1108 ALGOL I Rev. 1 I 10 ~, ________________ • _________________________________ .~_~_C_T_I_O_N_:~ ____ ~_P_A_G_E_: ________ _

1

10. OPERATION

10,,1. SOURCE CARD FORMAT

The source language statements to the compiler must come initially from punched
cards. Only columns 1-72 are read for information in free format and anything
following column 72 is considered to be a (space) delimiter. Columns 73-80 can
be used for any purpose desired, e.g., short comments or serial identification.
There is no restriction on placing statements on a card but the usual practice is
to arrange them for easy reading and modification. The full 80 columns may be
utilized for input data at execution time.

10.2. OPERATING INSTRUCTIONS

The ALGOL compiler operates like all the processors in the UNIVAC 1108 Executive
System and, besides the standard options, includes some unique to itself. The
available options are:

A Accept the results of compilation even if errors were detected.

S Single spaced listing of ALGOL source statements.

L The compiled assembly language instructions are listed along with the source
code.

N (or lack of any other print option) Suppress all printing by the processor. If
'N', disregard any other print option.

T Print the timing for phases 1 and 2 of compilation.

X Abort the run immediately if any error is found.

Z Delete the formation of run-time diagnostic information.

0, R References to subscripted variables norm ally generate a call to a Ii brary
procedure. This procedure, besides calculating the proper address, also
checks that the requested operation is legal (i. e., that the subscript variables
are in the range of the declaration). With the R option (remove checking) this
checking is not done but the address calculation is, thus giving greater speed
to the object program. The 0 option (open) is even faster in that the necessary
coding to calculate the address is compiled in line, thus removing the call and
return times from the reference. Of course, the 0 option requires more main
storage. When the program is working, and if the subscript expressions
are not data-dependent, then the R option should be used. If main storage
permits, the 0 option should be used. Neither should be used when the
program is being debugged.

UP-7~~, _________ U_N_I_V._A_C_1_1_0_8_A_L_G_O_L ____________ ~ __________ .I_SE_~_;_I~_:~_.d_i_X_A~I~p_A_G_E_:_1 ____ __

APPENDIX A. BASIC SYMBOLS AND
THEIR CARD CODES

This appendix lists the basic symbols of UNIVAC 1108 ALGOL 60, with the cor­
responding symbol for the reference language and the punched card code.

TRU
FAL
+

x

=

:::>
-V-

" ,
go tc
if
then
else
for
do
, (co

10

REFERENCE
LANGUAGE

E
SE

I

mma)

UNIV AC 1108 CARD CODE *
ALGOL 60

TRUE
FALSE
+ 12
- .. 11

* 11-4-8
I 0-1

II 0-1 0-1

** 11-4-8 11-4-8
LSS
LEQ
EQL
GEQ
GTR
NEQ
EQIV
IMPL
OR
AND
NOT
GO TO or GOTO
IF
THEN
ELSE
FOR
DO
, (comma) 0-3-8

12-3-8
& 2-8

* Symbols for which a card code is not specified are reserved identifiers.

UP-7544
Appendix A 2

UN IVAC 1108 ALGOL SECTION:

REFERENCE UNIVAC 1108 CARD CODE *
LANGUAGE ALGOL 60

: : or .. 5-8 or 12-3-8 12-3-8
; $ or ; 11-3-8 or 11-6-8
: = = or : = 3-8 or 5-8 3-8
STEP STEP
UNTIL UNTIL
WHILE WHILE
COMMENT COMMENT
((0-4-8
)) 12-4-8
C (or C 0-4-8 or 12-5-8
:J) or :J 12-4-8 or 11-5-8
, (apostrophe) , (apostrophe) 4-8
BEGIN BEGIN
END END
OWN OWN
BOOL EAN BOOLEAN
INT'EGER INTEGER
REAL REAL
ARRAY ARRAY
SWITCH SWITCH
PROCEDURE PROCEDURE
LABEL LABEL
VALUE VALUE

< (for complex 12-6-8
> constan ts) 6-8

* Symbols for which a card code is not specified are reserved identifiers.

In addition, the following reserved identifiers have been introduced into the
language:

LIST
FORMAT
EXTERNAL
OTHERWISE
LOCAL
GO
TO
XOR
STRING
COMPLEX
REAL 2

PAGE:

I Rev. 1 Appendix B 1
UP-7~~, __________ U __ N_IV __ A_C __ 11_0_8 __ A_L_G_O_L ______________ ~ ____________ ~S_E_C_T_IO_N_: ________ PA_G_E_: ______ __

A

A

A

A

A

C

C

C

AplPENDIX B. STANDARD PROCEDURES
AND TRANSFER FUNCTIONS

The following procedures are available for use without being declared. The names
are not reserved identifiers and may be redefined in any block. The * indicates
"not applicable"

NAME NO.OF TYP ES OF RESUL T TYPE OF
PARAMETERS PARAMETERS RESUL T

BS 1 INTEGER I xl INTEGER
REAL I xl REAL
REAL 2 I xl REAL 2
COMPLEX I xl REAL

LPHABETIC 1 STRING TRUE if the BOOLEAN
string con-
sists of all
spaces or
alphabetics
(A-Z);
FALSE
otherwise

RCCDS 1 REAL Arccos(x) REAL
REAL 2 Arccos(x) REAL 2

RCSIN 1 REAL Arcsin(x) REAL
REAL 2 Arcsin(x) REAL 2

RCTAN 1 REAL Arctan(x) REAL
REAL 2 Arctan(x) REAL 2

ARDS 0 * None *

LOCK 0 * Present time INTEGER
of day in
seconds since
00:00

OMPLEX 2 INTEGER, REAL The complex COMPLEX

number
x+i*y

U_P_._7_S_44 ____ ~I, . ____________ ~U~N~I~V~A~C~1~10~8~A~L~G~O~L _____________ ~ ____ R_e_v_._1 ____ ~I~sE~Ac~~~~:~:~~_i_X __ B __ ~I~p~A~GE~: __ 2. _______ _

NAME NO.OF TYP ES OF RESUL T TYP E OF
PARAMETERS PARAMETERS RESUL T

COS 1 REAL Cos(x) REAL
REAL 2 Cos(x) REAL 2
COMPLEX Cos(x) COMPLEX

------------1-._-----------f---

COSH 1 REAL Cosh(x) REAL
REAL 2 Cosh(x) REAL 2
COMPLEX Cosh(x) COMPLEX

DOUBLE 1 INTEGER, REAL Real 2 REAL 2
represen ta-
tion of x

--1-----_.-

DRUM 1 INTEGER None *
ENTlER 1 REAL, REAL 2 In teger part INTEGER

of x

EOF o or 1 Any expression None *
EOI 0 * None *
EXP 1 REAL Exp(x) REAL

REAL 2 Exp(x) REAL 2
COMPLEX Exp(x) COMPLEX

-
IMAGINARY 1 COMPLEX Imaginary REAL

part of x

INTEGER 1 REAL, REAL 2 Entier INTEGER
(x+O.S)

-

KEY o or 1 Any expression None *
LENGTH 1 STRING Length of INTEGER

string

LN 1 REAL Ln(x) REAL
REAL 2 Ln(x) REAL 2
COMPLEX Ln(x) COMPLEX

MARGIN 3 or 4 INTEGER first 3 (see section 9) *

MAX List of ex- REAL, INTEGER Algebraic REAL
pressions largest

element of
list

--
MIN List of ex- REAL, INTEGER Algebraic REAL

p ressions smallest
element of
list

UP-7~, ________ U_N __ IV_A_C __ 1_10_8_A __ LG __ O_L ____________ ~ ________ ~I_s_~_~_~:_~_~_iX __ B __ ~I_p_AG_E_:_3 ____ ___

NAME NO.OF TYPES OF RESUL T TYPE OF
PARAMETERS PARAMETERS RESUL T

M OD 2 INTEGER x(mod y) INTEGER

N UMERIC 1 STRING TRUE if the BOOLEAN
string is
acceptable to
the string-
integer trans-
fer function;
FALSE
otherwise

P OSITION Special *
list

P FHNTER 0 * None *
P UNCH 0 * None *

R ANK 1 STRING The fieldata INTEGER
equivalent
of the first
ch aracter of
the string

R EAD Special *
list

R lEAL 1 INTEGER, REAL 2 Real repre- REAL
sentation of x

COMPLEX Real part of x REAL

R EWIND Special *
list

SI GN 1 INTEGER 1 x > 0 INTEGER
o x .,,0

-1 x < 0

SI N 1 REAL Sin(x) REAL
REAL 2 Sin(x) REAL 2
COMPLEX Sin(x) COMPLEX

UP-7S44
Appendix B

UNIVAC 1108 ALGOL SECTION:

NAME NO.OF TYP ES OF RESUL T TYPE OF
PARAMETERS PARAMETERS RESUL T

SINH 1 REAL Sinh(x) REAL
REAL 2 Sinh(x) REAL 2
COMPLEX Sinh(x) COMPLEX

SQRT 1 REAL Sqrt(x) REAL
REAL 2 Sqrt(x) REAL 2
COMPLEX Sqrt(x) COMPLEX

TAN 1 REAL Tan(x) REAL
REAL 2 Tan(x) REAL 2
COMPLEX Tan(x) COMPLEX

TANH 1 REAL Tanh(x) REAL
REAL 2 Tanh(x) REAL 2
COMPLEX Tanh(x) COMPLEX

TAPE 1 INTEGER None *

WRITE Special * * *
list

The following transfer functions transfer an expression of one type to another type.
These functions are evoked automatically by the compiler whenever necessary.
Functions for which the arguments are listed may be called explicitly.

PAGE:

FUNCTION TYP E OF ARGUMENT TRANSFERRED TO TYPE

REAL(X) INTEGER REAL
DOUBLE(X) REAL 2
(intrinsic) STRING
COMPLEX(REAL(X),O) COMPLEX
INTEGER(X) REAL INTEGER
DOUBLE(X) REAL 2
COMPLEX(X,O) COMPLEX
INTEGER(X) REAL 2 INTEGER
REAL(X) REAL
COMPL EX(REAL(X),O) COMPLEX

(in trinsic) STRING INTEGER

4

I I Appendix C
UP-7~~, ___________ U_N __ IV._A __ C __ l_l0_8 __ A_L __ G_O_L ____________________________ ~._S_E_C_T_IO_N_: _______ ~_P_AG_E_: __________ _

1

APPENDIX C. ERROR MESSAGES

Cl" COMPILA TION ERRORS

The following is a list of error messages that can occur during compilation with an
explanation of what may be the cause of an error. An * is printed under the approximate
location of the offending syntax, but in some cases this may not be of help; for example,
a missing left parenthesis is not found until the whole statement has been scanned.
Spurious error messages may be printed for particularly malformed programs. These
usually disappear after the first few errors have been eliminated.

ERROR

Illegal character pair

Cons tan t too large

Improper block structure

Improper declaration

Duplicate declaration/specification

Improper declaration /specificati.on

Improper specification

Improper specification

Improper own declaration

Improper external declara tion

Duplicate value specification

Improper label specification

Improper value specification

Improper array declaration

Improper array declaration

EXPLANATION

Self explanatory

Self explanatory

A declaration has occured other than at
the head of a block

An element in the identifier list is not
an identifier

A name in the identifier list has already

been defined in this block

The identifier list is malformed

OWN, LOCAL, or EXTERNAL has been
used in a procedure specification part

The name is not a formal parameter

OWN not followed by INTEGER, REAL,
REAL2,COMPLEX,ARRAY

EXTERNAL not followed by <type>,
FORTRAN, NON RECURSIVE or PRO­
CEDURE

The parameter has already been specified
as value

It does not occur in a specification part
of a procedure

It does not occur in a procedure spec­
ification part

Bound pairs malformed

Bound pairs either not separated by a
cO.mma or a : missing

UP-7S44 UNIVAC 1108 ALGOL

ERROR

Improper list declaration

Improper switch declaration

Improper sw itch declaration

Improper procedure declaration

Improper procedure parameter

Duplicate procedure parameter

Improper parameter delimiter

Improper procedure specification

Improperlabel definition

Duplicate label definition

Improper format phrase

Improper forma t phrase

Improper format phrase

Improper repeat phrase

Improper repeat phrase

Undefined format symbol

Improper string declaration

Improper string array declaration

Improper procedure call

Improper procedure call

Improper procedure assignment

Improper IF statement

Improper IF statement

Improper use of THEN

Improper use of ELSE

Appendix C
SECTION:

EXPLANATION

A malformed list

Malformed switch list

The '=' is missing

The next symbol after the procedure
name is not a (or $

A formal parameter is not an identifier

There is another formal parameter of
this name already

The parameter delimiter is neither a
comma nor) <letter s trin g> : (

This parameter has been named in a
value s pecifica tion

A numeric or other malformed label

Self explanatory

The w or d field is too large

A string field has more than 132 char.

An extra)

A zero repeat phrase

A noninteger expression as a variable
repeat phrase

Self explanatory

Expression for length is malformed

Either length expression or subscript
pairs are malformed

PAGE:

Incorrect number of arguments for library
procedure

Arguments for library procedure are of
incorrect type

Self explanatory

Malformed conditional statement

Self explanatory

Self explanatory

Self explanatory

2

UP-75~ UNIVAC 1108 ALGOL

ERROR

Improper FOR statement

Improper GO statement

Improper GO statement

Extra right parenthesis

Extra left parenthesis

Missin g opera tor

Missing operator

Missing operand

Extra END

Missing END

Improper use of / / opera tor

Improper assignment statement

Undefined transfer function

Improper use of a list identifier

Improper use of 1a bel

Improper use of a reserved identifier

Improper use of an array identifier

Undefined relational operand

Improper string expression

Misplaced semicolon

Misplaced comma

Undefined variable

Misplaced colon

Improper correction

Compiler capacity exceeded

I SECTION, C

EXPLANATION

Malformed FOR list

GO not followed by a designationa1
expression

A malformed designational expression

Self explanatory

Self explanatory

Implied multiplication has been used

Self explanatory

Self explanatory

Self exp1ana tory

Self explanatory

One or both operands are not integer

The left-hand side is not a variable

The trans fer function called for by this
statement is not defined

PAGE:

List used in other than a procedure call

A label appears out of context

Reserved identifier appears out of context

Array identifier appears Ol1.t of context

Se if ex plana tory

Malformed string expression

A semicolon ($) appears out of context

A comma appears out of context

Reference is made to an undeclared
variable

A colon appears out of context

Correction card out of order

Internal tables of compiler exceeded

3

UP-7544 UNIVAC 1108 ALGOL
Appendix C

SEC TION: PAGE:

C2. RUN-TIME ERRORS

An error during execution results in the printing of an error message, the name of the
library procedure involved, if applicable, and the line number of the ALGOL program at
which execution was currently taking place. The program is then terminated. The following
is the list of the possible error messages.

ERROR

Incorrect number of arguments

Memory capacity exceeded

Bad inpu t/ checksum error

Undefined type conversion

Insufficien t data for program

Improper parameter

Improper array declaration

Improper string declaration

Unrecoverable tape/drum error

Attempt to pass end of record

Constant out of range

Characteristic overflow

Attempted division by zero

Improper number of dimensions

Subscript out of range

Result undefined

Argument out of range

Illegal character

Illegal format phrase

EX PLANATION

Incorrect number of arguments to an ALGOL
or library procedure

Space for dynamic storage of variables
has been exceeded

Tape or drum hardware error, or possibly
an attempt to read a non-ALGOL formatted
tape

Self explanatory

Non-EOF control card read with no exit
label in READ call

A formal and actual parameter do not agree
in either type or kind

A lower bound expression is greater
than the corresponding upper bound
expression

The string length is negative or greater
than 4095

Hardware fault

Record is shorter than the input list

Self explana tory

A real number of magnitude greater than
10 38 generated

Self explanatory

Reference to a subscripted variable has
a different number of subscript positions
than was declared for the anay

Subscript expression is out of the range
of the declaration

Arithmetic library function not defined
for argument

Argument out of range for a meanin gful
result for an arithmetic library procedure

Data card has an illegal character

Self explanatory

4

UP-7~ ___ . _______ . ___ U_N_IV._A_C __ 1_10_8 __ A_L_G_O_L _______________ ~ ________ ~1~S~EA~C~~~~:~~d_i_X_D __ ~I~p~AG~'E~:_l ____ __

A~PPENDIX D. EXAMPLES OF PROGRAMS

This appendix contains some si mple examples illustrating the use of UNIVAC 1108 ALGOL 60.
Each has ,been run on the 1108 and some sample input and results are shown.

BEGIN
COMMENT EXAMPLE 1

CALCULATION OF VALUE OF ARITHMETIC ~XPRESSJ0N
WITH READ IN VAPIABLES $

REJ~L A,B,C $
INTEGER TOILL. $

READ (CARQS,A,B'C) $
TOILL = A+B**C/A $
WRITE (PRINTER,A,B,C,TOILL) $

DATA

5 6.2 1.222

RESULTS:

5.0000,+00 6.2000,+00 1.2220,+00 7

BEGIN
COMMENT EXAMPLE 2

CALCULATION OF SQUAREROOT, B, OF A REAL NUMPER,
A, WITH 6 DIGITS ACCURACY BY NEWTON-RAPHSON IT[RATION $

REAL A,B,OLDB $
READ (CARDS,A) $

OLDB = 1.0 $
FOR B = O.5*(A/OLDB+OLDB) WHILE ABS(A-OLOA) GTR 10**<-6)*8 00

OL,DB = B $
WRITE (PRINTER,A,B) $

END PROGRAM $

DATA

5.77777

RESULTS:

5.7178,+00 2.4037,+00

UP-7S44

BEGIN
COMMENT

UNIVAC 1108 ALGOL

EXAMPLE :3

Appendix D 2
SEC TION: P AG E:

REAL
INTEGER

READ
COMMENT

VALUE OF A POLYNOMIAL Y=S(O)+..B(l)*X ••••••• +B(N)*X**N $
X,Y $

BEGIN

K.N $
(CARDS.N) $
DEGREE OF POLYNOMIAL READ FROM CARDS. INNER BLOCK PERFORMS
READING OF COEFFICIENTS AND CALCULATIONS ANn PRINTING OF
RESULTS $

REAL ARRAY B<O:N) $
READ (CARDS.B) $
READ (CARDS,X) $
Y = B(N) $
FOR K=N-l STEP -1 UNTIL 0 DO Y = Y*X+B(K) $
WRITE (PRINTER, 'VALUE OF A POLYNOMIAL OF DEGREF,,'N:',N,

'COEFFICIENTS'.B.,X='.X,'Y=',y) $
END CALCULATION $

END PROGRAM $

DATA

4
1.223 3.5 7.52 -4.02 -33.5
5.55

RESULTS:

VALUE OF A POLYNOMIAL OF DEGREE
N=

4

COEFFICIENTS

1.2230,+00 3.5000,+00 7.5200.+00 -4.0200.+00 -3.~500,+Ol
x=

5.5500,+00
y=
-3.2220,+04

I Appendix D 3
UP-754~~ ________ U_N_IV_A_C ___ ll_0_8_A_L_G_O_L ____________ ~ _____________ ~s_E_CT_I_ON_: ______ ~P_A_G_E: ________ __

BEGIN
COMMENT EXAMPLE 4

PROGRAM WITH A REAL PROCEDURE' AIG, WHICH FrNDS THE LARGEST
OF THE N LOWER-INDEXED ELEMENTS (STARTING WITH INDEX=1) OF A
ONE-DIMENSIONAL ARRAY, A. WITH POSITIVE ELE~ENTS $

REAL PROCEDURE BIG(N,A) $
VALUE N $
INTEGER N $
REAL ARRAY A $
BEGIN

INTEGER B $
REAL C,D $

B = 1 $
o = A(l) $

L: C = 0 - A(B+l) $
IF C LSS 0 THEN 0 = A(B+l) $
B = 8+1 $
IF B LSS N THEN GO TO L $
BIG :: 0 $

END BIG $
REAL ARRAY F(1:50) $
REAL. H,K $

READ (CARDS,F) $

COMMENT CALL OF BIG TO FIND THE LARGEST OF THE 20 LrWER
ELEMENTS OF F $ H = BIG(20,F) $

WRITE (PRINTER,H) $

COMMENT LAR6EST ELEMENT IN F $
K :: BIG(!30,F) $

COMMENT USE OF BIG IN MORE COMPLEX EXPRESSION $
H = H + BIG(lO,F)/K*BIG(15,F) $
WRITE (PRINTER,H,K) $

END PHOGRAM $

DATA

1.22 3.55 1 22.2 0.5 7.2 8.12 21.4 4.1 22.5 0.422
55.2 0.12345 5.88 3.55 7.53 4 5 2 3 1 17 5 22.1
5.1 2.3 3.2 4.2 9.85 8.99 5.66 66 44 11 2 44.7
55.12 44.1 2.89 7.521 8.56 5.42 4.88 6.189 5.423
7.1234 9.153 8.741 5 6

RESULTS:

5. 5c~O 0, +01
7.1330,+01 7.7000,+01

UP-7544 UNIVAC 1108 ALGOL

Example 5. Newton's Method of Successive Approximations

AREA A

Given: An area A defined by a circular arc of radius r and its chord.

Required: Find the value of angle x subtended by the arc.

Solution: The relationship between A and x is:

r2
A == - (x - sin x)

2

Appendix D
SECTION: PAGE:

Like many practical problems, this one has no analytic solution. However, methods have been
developed to find approximate solutions to such problems. The method to be used here is called
Newton's Method. If the solution x to

f(x) == 0

is to be found, then a sequence of values approximating the solution x is given by

For this problem

and

4

I Appendix D 5
UP-75~~~ _________ U_N_I_V_A_C __ l_l_0_8 __ A_L_G_O __ L ______________ ~ ____________ ~SE_C_T_IO_N_: ______ ~_PA_G_E_: ________ __

Therefore, using elementary algebra, the approximation scheme is

xn+1 = xn - ----------
1 - cos xn

This equation is solved repeatedly, each time with the previous value of xn+ 1 su bsti tu ted
for xn to compute a new value for xn+1' The second term of the equation is the difference
between successive approxim ations.

When this difference becomes less than some specifie d value, the sequence of approximati ons
is said to have converged to a solution. The iteration procedure is then terminated and the
problem is considered solved.

Practical considerations place a limitation on the number of iterations permitted. If the
sequence of approximations does not converge within a prescribed number of iterations, the
procedure is terminated and the approximate solution is rejected.

The conditions used in this example are:

Area = 1.5

Radius = 5,,0

The first approximation is xl = 1.0. The iteration procedure is then performed for a maxi mum of
nine iterations. If the successive approximations differ by less than 0.00001, then the sequence
of approximations is considered convergent. The iteration procedure is then terminated and the
sequence of approximations and differences is printed out in the form of a table. Otherwise,
the program is terminated with no output.

The following identifiers in the program represent the corresponding physical quantities:

AREA Area enclosed by chord and arc (A)

RADIUS Radius of circ Ie (r)

ANGLE Approximation to the angle x

CHANGE Difference between successive 'approximations

SMALL Criterion for convergence

G For convenience, the quantity 2A/r2

UP-7S44
Appendix D 6

UNIVAC 1108 ALGOL SECTION:

The program is as follows:

BEGIN
COMMENT EXAMPLE 5

SAMPLE PROGRAM USING UNIVAC 1108 ALGOL $
REAL AREA, RADIUS, SMALL, G $
INTEGER I, K $
REAL ARRAY ANGLE\1:10), CHANGE(!:9) $
FORMAT FlO(X9,'ITERATION',X5,'ANGLE',X9"CHANGE"A1.1),

F11(X13,Il,D15.6,D14.5,Al),

PAGE:

F12(X9,'THE ITERATION PROCEDURE HAS CONVERGED',Al) $
COMMENT SET UP VALUES TO BE USED IN PROBLEM $

AREA = 1.5 $
RADIUS = 5.0 $
SMALL = 1.0&-5 $
G = (2.0*AREA)/(RADIUS**2) $

COMMENT BEGIN ITERATION LOOP MAXIMUM OF 9 ITERATIONS $
ANGLECl) = 1.0 $
FOR I = 1 STEP 1 UNTIL 9 DO

BEGIN
COMMENT COMPUTE CHANGE IN APPROXIMATE SOLUTIO'" $

CHANGECI) = (ANGLECI)-SrNCANGLE(I»-G)/C1.0-COS(ANGLECI») $
COMMENT TEST FOR CONVERGENCE OF APPROXIMATE SCLUTION $

IF ABS(CHANGE(I» L5S SMALL THEN GO TO Lll0 $
COMMENT APPROXIMATION HAS NOT CONVERGED - COMPUTE NEXT

APPROXIMATION $
ANGLE(I+1) = ANGLE(I) - CHANGE(I)

END $
COMMENT END OF LOOP - ITERATION PROCEDURE HAS NOT CONVERGED $

GO TO FIN $
COMMENT THE ITERATION PROCEDURE HAS CONVERGED $

L1l0: WRITE (PRINTER,F10) $
WRITE (PRINTER,F11, FOR K=l STEP 1 UNTIL I DO

(K,ANGLE(K),CHANGE(K») $
WRITE (FI2) $

FIN:
END OF PHOGRAM $

Note that a completely blank card gives a blank line in print.

The sample gave the following result:

ITERATION ANGLE
1 1.000000
2 .916186
:3 .908770
4 .908714

THE ITERATION PROCEDURE

CHANGE
.08381
.00742
.00006
.00000

~.iAS CONVERGED

This is in excellent agreement with the theory.

I I Appendix E
UP-7~~~ ________ ., _______________ U ____ N_I_V.A __ C ____ l_l_0_8_A ____ L_G_O_L _______________________ ~ ______________________ ~ __ S_E_C_T_IO_N_: ________ ~P_A_G_E_: ________________ _

1

APPENDIX E. JENSEN'S DEVICE AND
INDIRECT RECURSIVITY

The purpose of this section is to acquaint the reader with two interesting programming tech­
niques, namely Jensen's Device and Indirect Recursivity. A thorough treatment of the recursive
concept may be found in "The Use of Recursive Procedures in ALGOL 60", H. Rutishauser
The Anual Review itl Automatic Programming, Pergamon Press, London, 1963.

Jensen's Devi ce comprises the use of two parameters in a procedure call, in which one is a
function of the other. Neither may be a value parameter.

The following example is a method of evaluating an approximation to the definite integral of a
function by means of Simpson's Rule over one interval. The algorithm may be written:

REAL PROCEDURE SIMPS (X.ARITH, A, B) $
VALUE A,B $ REAL X, ARITH, A,B $
BEGIN REAL FA, FM, FA $

X=A $ FA=ARITH $ X=B $ FB=ARITH $
X~B-A)/2 $ FM=ARITH $
SI~PS=(B-A)*(FA+4*FM+F8)/6

END SIMPSON INTEGRATION $

In a call of SIMPS, ARITH may be any arithmetic expression. Jensen's Device refers to the
case when ARITH is a function of X. For example, the call:

would cause ARITH to be replaced by EXP(Z*Z) in the running program. This call evaluates
an approximation to the integral

1

f 2
e Z dz

o

In evaluating an approximation to the double integral

1 1
f f eXy dy dx
o 0

indirect recursivity may be used by making the parameter corresponding to ARITH a call to
SIMPS itself, thus

More material may be found in: E. W. Dijkstra, A Primer of ALGOL 60 Programming, Bound
Variables, Academic Press, London, 1962, pp. 57-59.

1 , I I Appendix G
UP-7~~ UNIVAC 1108 ALGOL SECTION: PAGE:

------.----------------------------~--------~~~~----~~~-------

APPENDIX G. SYNTAX CHARTS

G1. GENERAL

This appendix summarizes the syntax of the UNIVAC 1108 ALGOL 60 compiler in chart
form. Charts for the input/output procedures are also included as well as a brief descrip­
tion of possible format specifications.

The use of the charts is very simple and a 1most self explanatory. The concept being
defined is specified in a rectangle at the top of each chart.

I type declaration

The definition consists of a series of symbols connected by lines indicating the flow of
symbols which define the concept. Two kinds of symbols are used: those with round
corners (or circles) and those with square corners. The round-cornered boxes con tain
symbols that stand for themselves. Square-cornered boxes contain names of concepts
which are defined elsewhere in the chart and may be found by a quick reference to the
Table of Contents for the appendix.

In some places a special "or" symbol has been used to conserve space. It should be
understood as follows:

-c + I -)-- is equivalent to

In some sec,tions a pair of letters may mark two spots in a definition. Underneath that
section that letter pair followed by a name appears. ,This means that name will be used
in lieu of the string of symbols between the letter pair in other charts.

The charts use only one of the two possible representations for some symbols in ALGOL.
The following equivalences should be noted:

Sym bol used in this chart

(
)

GO TO
$

Alternate representation

GO or GOTO

In addition, comments may be inserted in the program by means of the following equiva­
lences:

$ COMMENT <any sequence not containing a $>$ equivalent to $

BEGIN COMMENT <any sequence not containing a $>$" "BEGIN

END <any sequence not containing END or ELSE or $ >$" "END

The char ts make no mention of the use of spaces within ALGOL. A space has no mean­
ing in the language (outside of strings) except that it must not appear within numbers,
identifiers, or basic symbols, and must be used to separate adjacent symbols composed
of letters or digits. Spaces may be used freely to facilitate reading.

UP-7S44
Appendix G

UNIVAC 1108 ALGOL SECTION: PAGE:

--------------------------11.1108 program II------------I .. ~

AA: 11108 program

Explanation: A progr am is a complete set of declarations and statements which define an
algorithm for solving a problem. The logic of this algorithm (its correctness) -
is the business of the programmer. The compiler only checks that the syntax
(form) is correct.

A UNIVAC 1108 program is simply an ordinary program without the outermost
BEGIN -END pair.

Notice that the $ is used to separate declarations and statements and is not
inherently a part of a declaration or statement. Nevertheless, it will be shown
in most examples for clarity.

2

UP-7544__ I UNIVAC 1108 ALGOL I Appendix G ~, __________ , __________ • ____________________________________ ~ __________________ L.~S~E~C~T~IO~N~:~ ________ ~P~A~G~E~:~ __________ ___

3

....

G3. Declaration

~
·1 type declaration

array declaration

string declaration

·1 string arraY:declarati0:-=J

.. I switch declaration

.. I E:'xt0rnal procedure declaration

.. I pror,dur" declarati00-

local d,;c1aration

list d"claration

·1 format dt'claration ~

Explan.ation: There are 10 types of declarations each of which is defined in detail on the
following pages.

..

UP·7544
Appendix G

UNIVAC 1108 ALGOL SECTION: PAGE:

G3.1. Type Declaration

.~
o

00 I local or own type TT~

Explanation: A type declaration declares the mode of arithmetic that the following identifiers
will assume in the block. Types REAL 2 and COMPLEX associate two 1108 words
with the identifier, the others one. Upon entrance to a block, identifiers are

Examples:

given the value zero, unless they are also declared OWN, in which case they
have the same value they had on the last exit from the block.

INTEGER I4,PAK,LOOPCNT $
OWN BOOLEAN ANYLEFT,LASTOUT $

COMPLEX C,CINVS $
REAL 2 OP $
OWN REAL QIN,QOUT,MAXITEM $

4

UP-7544~ UNIVAC 1108 ALGOL
Appendix G

SECTION: I PAGE'

G3.2.1 Array Declaration

local or own type'

BIl [~~~ eel bound pair uu I upper boun~ LL I lower bound

Explanation: An array declaration associates an identifier with a one-dimensional or larger
matrix of values. The arithmetic expressions define the lower and upper limits
of each dimension. The type plays the same role as for simple variables. If
omitted, type REAL is assumed.

Examples:

COMPLEX ARRAY CCON4 (O:N),CP1(1:N+l) $
BOOLEAN ARRAY BAND,BOR,BXOR(-4:4) $
REAL ARRAY BCI-l:I+l),XINITIAL'YINITIAL(-N:N,-N:N,1:2) $
OWN INTEGER ARRAY IC1:S),J,K,LCENTIER(X):P112) $
ARRAY XYZ4(1:N*2) $

5

UP-7S44

ss: I substring declaration

LL: I length part

UNIVAC 1108 ALGOL

substring declaration

Appendix G
SECTION: PAGE:

G3.3. String Declaration

arithmetic expression

substring declaration

Explanation: A string declaration associates an identifier with a variable whose value is a
stri ng of characters. The number of characters in the string must be less than
4096. A group of characters of a string may be named as a substring.

Examples:

STRING ST1(36),NAME(INITIALS(2)'LAST(16» $
STRING Pl(N+2),QUOTE{l) $
OWN STRING NEXTOUT(80) $
STRING ALPHA(BETA(2,GAMMA(4),2)'DELTA(EPSILON(6»,20) $

6

UP-7S44 UNIVAC 1108 ALGOL
Appendix G

SECTION: PAGEl

G3.4.1 String Array Declaration

bound pair list.

Explanation: A string array is a matrix whose elements are strings. Appended to the length
part of the declaration are the bound pairs for each dimension, just as for an
ordinary array.

Examples:

7

STRING ARRAY SA(80:0:100),CARD(LABEL(B)'OP(6),2,oPERAND(64):1:N) $

OWN STRING ARRAY LASTFILE (CLENGTH:l:S07) $

UP·7S44
Appendix G

UNIVAC 1108 ALGOL SECTION: PAGE:

G3.S. Switch Declaration "-

designational expression

Explanation: A switch declaration associates an identifier with an ordered list of designational
expressions. A switch is used to transfer to a label depending on the value of
some variable.

Examples:

SWITCH JUMP = Ll,START,FEIL4,CALC $

8

SWITCH BRANCH = IF BETA EQL 0 THEN Ll ELSE JUMP(J),START $

I Appendix G 9
UP-75~_~ ___________ ,_U_N ____ IV_A __ C ____ ll_0_8 ____ A_L_G_O ____ L ______________________ ~ ________________ ~_SE_C_T_IO_N_: ________ ~P_A_G_E_: ______________ _

G3.6. External Procedure Declaration

---------(~)----~----------------~-~-----

Explatn~tion: This declaration specifies a list of identifiers which are to be the names of
procedures not found in the program. These procedures may be wri tten in assembly
language (NON-RECURSIVE), FORTRAN or ALGOL. The type of the external
procedures is specified' if they are functional procedures.

Examples:

EXTERNAL FORTRAN REAL PROCEDURE eBRT $
EXTERNAL FORTRAN PROCEDURE NTRAN,INVS $

EXTERNAL PROCEDURE ROOTFINDER,KEYIN,KEYOUT $
EXTERNAL NON-RECURSIVE PROCEDURE TYPEIN,TYPEOUT $

UP-7S44

HH I procedure heading

TT I procedure body I
55 I specification part

VV I value part]

FFI formal parameter part

UNIVAC 1108 ALGOL
Appendix G 10

SECTION: PAGE:

G3. 7.1 Procedure Declaration

Explanation: A procedure declaration associates an algorithm with a procedure identifier.

Examples:

The principal constituent of a procedure declaration is a statement which is
executed when the procedure is "called" (see 7.4). The procedure heading
specifies that certain identifiers appearing within the procedure body are formal
parameters. A parameter may also be specified as "VALUE" in which case
the procedure statement, when called has access only to the value of the corre­
sponding actual parameter, and not to the actual parameter itself.

PROCEDURE ZEROSET (A,N) $
VALUE N $ INTEGER N $ ARRAY ~ $
BEGIN COMMENT THIS PROCEDURE ZEROES AN ARRAY ASSUM~D

DECLARED ARRAY A(l:N) $
INTEGEH I $
FOR I = ! STEP 1 UNTIL N DO A(I) = 0 END ZEROSET $
INTEGER PROC~DURE FACTORIAL (NUMBER) $
VALUE NUMBER $ INTEGER NUMBER $
FACTORIAL = IF NUMBER LSS 2 THEN ! ELSE NUMRER * FACTORIAL

(NUMBER-!) $
BOOLEAN PROCEDURE BOOl $
BOOL = NOT (FINISHED AND OFF OR FIRST AND LAST) $

UP-7S44 UNIVAC 1108 ALGOL
Appendix G

SECTION: PAGEl

G3.8. Local Declaration

Explanation: The local declaration is a preliminary declaration of identifiers before they are
actually declared (or, in the case of a label, used). This is necessary to allow
forward references, use of an identifier before it has been defined.

Examples:.

LOCAL LABEL Ll,ENDFILE $
LOCAL SWITCH SALPHA $
LOCAL BOOLEAN PROCEDURE SLASH,ENDTAPE $

11

UP-7S44
Appendix G

UNIVAC 1108 ALGOL SECTION: PAGE:

G3.9. List Declaration

arithmetic expression

Boolean expression

array identifier

string arrsy identifier

LLI list element

Explanation: A list defines an ordered sequence of expressions and array identifiers. A list
may only be used as a parameter to a procedure, and, ultimately, only be a
procedure written in some language other than ALGOL.

Examples:

LIST OUT (A+!,N+l,FOR I = (1,1,NMAX)DO(Q(I),0RES(I») $

LIST Ll (A,B'C), .2(IF MOD(Q,2)EQL 0 THEN [~ ELSE Q) $

12

UP-7S44 UNIVAC 1108 ALGOL
Appendix G

SECTION: ~AGE:

G3.1 0.1 Format Declaration

AA I simple phrase I

BD I p~rase ~
cc I Phra'se]

--------0---------
~---------------------~---------------------

Explanation: A format is a special string of symbols which are passed on to an input/output
routine for editing and control. Integers in front of a format code specify the
number of times that code is to be repeated.

Examples:

FORMAT NEWPAGE(E,'X-COORDINATE',X28,'Y-COORDINATE',Al) $
FORMAT REP(5(4 R16.8,Al)'AO.2,S12"=',D10.1,S12"="~10tl,Al) $
FORMAT VECTOR (lOTIO.4,Al),PATTERN('SWITCHES ARE"8B~,Al) $
FORMAT MATRIX (:N:(:M:(D4.2,Al») $

13

UP-7S44 UNIVAC 1108 ALGOL
Appendix G

SECTION:

14
PAGE:

G4.1 Statement .. =

.r-----I...-t compound statement

....__---II1Iot assignment statement

~----~ conditional statement

---------11Il0'l FOR statement 1----------'

'-------II~ procedure statement

Explanation: Statements define the sequence of operations to be performed by the program.
The eight types of statements are each defined in the following pages.

UP-75~, _________ U_N_I_V_A_C __ l_l_0_8_A_L __ G_O_L ____________ ~~ __________ ~~$~E~~T~~~~e~Nn~:d_i_X_G __ ~p~A~G~E~: __ 1_5 ____ ___

G4·1.1 Block I 00-

--------r ~~~-------------~

~~~ $ $ 

Explanation: A block automatically introduces a new level of nomenclature by a set of 
declarations. This means that any identifier declared in the block has the 
meaning assigned by the declaration, and any entity represented by such an 
identifier outside the block is completely unaccessible inside the block. The 
identifiers declared within a block are said to be local (to that block) while 
all other identifiers are nonlocal or global to that block. 

Example: 

L:BEGIN INTEGER ARRAY A(1:l0) $ 
A(l) = 1 $ 

END $ 

FOR J (2,1,10) DO A(J) = A(J-1)+ J $ 
FOR J = (1,1,10) DO WRITE (J,A(J» $ 



UP-7S44 UNIVAC 1108 ALGOL 
Appendix G 

SEC T ION: PAGE: 

G4.2.\ Compound Statement 

Explanation: A compound statement serves to group a set of statements by enclosing them with 
a BEGIN -END pair. This group is then treated as a single statement. 

Example: 

BEGIN T= 0 $ FOR I = 1 STEP 1 UNTIL M DO 
T= B(J,I) * C(I,K) +T $ 
IF T GTR 820 OR OVFLOW THEN GO TO SPILL $ 

END$ 

16 



I I Appendix G 
UP-754~ ____ ., __ ..... _______ U_N_I_V_A_C ____ l_l_0_8_A ____ L_G_O_L ____________ . __________ ~ ________________ ~.~S~E~C~T~IO~N~: _______ ~P~A~GE~:~ ______ __ 

17 

G4.3. Assignment Statement .. -

arithlnetic C'xpr(>ssion 

Boolean expression 

Explanation: An assignment statement assigns the value of the expression on the right-hand 
side to the variable and procedure iden tifiers on the left-hand side. A procedure 
iden tif ier is only permitted on the left-hand side if the statemen t appears in the 
body of that functional procedure. If any of the left-part variables are subscript­
ed variables, they are evaluated before the expression is evaluated. Transfers 
of type are automatically evoked when necessary. 

Examples: 

A(l) = BCI) = &35 $ 
AANDB = A AND B OR EPSl GEQ EPS2 $ 
P = SQRT(B**2 - 4*A*C) $ 
T = S - MYO*EPSO*(2*PI*F)**2$ 
S(V.K-2) = COS(ANGLE) + 0.5 *(IF Sl THEN K**3 ELSE K**S) $ 
NAME(!. 6:P + 1) = 'IFTHEN' $ 



UP-7S44 
Appendix G 18 

UN IVAC 1108 ALGOL SECTION: PAGE: 

G4.4.\ GO TO Statement 

dcsignational expression 

Explanation: A GO TO statement transfers control to the statement with the label determined 
by the designational expression. 

Examples: 

GO TO PART4 $ 
GO TO OPS (1-2) $ 
GO TO IF ALPHA GTR 0 THEN Q17 ELSE JUMP(-ALPHA) $ 
GO TO TRACK (IF MOD(P,2) EQL 1 THEN I ELSE ACI» $ 



UP-75~~ __________ U_N_I_V_A_C __ l_l_0_8_A_L __ G_O_L ______________ ~ __________ ~_S_~C_~_~_:_~~_1_·X_G ____ ~P_A_G_E_:_1_9 ____ ___ 

G4.s. Conditional Statement 

~1liO".O" •• ' ••.• ;00 

'-OEY 
u~ unconditional statement 

Explanation: The I F statement causes the execution of one of a pair of statemen ts depending 
on the value of a Boolean expression. If this expression is TRUE then the 
statement after the THEN is executed and the statement after the ELSE is 
!O;kipped. If FALSE, then the statement after the ELSE is executed, if the 
ELSE clause is present. 

Examples: 

IF C1 GTR 10 THEN A(O,O) = KMAX(I) ELSE GO TO LOOP $ 

IF BOOL(J) IMPL BOOL(J+l) THEN STEP(J) = 'VALID' ELSr STEP(J) = 
'INVALID' $ 

IF I GEQ 0 THEN BEGIN FOR K = -I STEP 1 UNTIL I DO B(K) = -COS(A-I) $ 
SUM = ADDUP(B) END ELSE 
BEGIN IF I EQL -1 THEN GO TO ERROR ELSE 

GO TO NEXT END $ 



UP·7544 
Appendix G 20 

UNIVAC 1108 ALGOL SECTION: PAGE: 

G4.6·1 FOR Statement I .. -

'(')-@ 
~ 

FF: I for clause I 

,r---------------- --

LL: I for list I 
......... -------- - --

Explanation: The FOR statement controls the execution of the statement following the DO 

Examples: 

a number of times while the variable to the left of the = is assigned the values 
determined by the FOR list. The (,,) construction is equivalent to the STEP· 
UNTIL construction. 

FOR I = 1 STEP 1 UNTIL N 00 FOR J = 1 STEP 1 UNTIL M DO 
A(!,J) = 0 $ 

FOR 5 - S + 1 WHILE peS) NEG 'A' AND 5 LEQ 80 DO BEGIN 
N=N*lO + pes) $ IF OVFLOW THEN Go TO 
5IZERR END $ 

FOR 5 = (1,2*5-$, 2**10),-1,-2,-4 DO IF LOGAND(S,VAR) 
THEN GO TO YES $ 



UP-7S44 I UNIVAC 1108 ALGOL Appendix G ~, ________________________________________ ~ __________ ~S~E~C~TI~O~N~: ____ ~~P~A~G~E~: ______ __ 

21 

G4. 7.1 Dummy Statement 

e----' ... 

Explanation: A dummy statement does nothing. It may serve to place a label. 

Examples: 

FOR I = (l,l,N) DO FOR J = (1,1,1'0 DO BEGIN 
IF I EQL J THEN GO TO ENDLOOP $ 

• 
• 
• 
• • • $ ENULOOP: END $ 

5 = 0 $ 

FOR 5 = S + 1 WHILE peS) NEG 'A' DO $ 



UP-7S44 
Appendix G 

UNIVAC 1108 ALGOL SECTION: PAGE: 

G4. s.1 Procedure Statement 

Explanation: A procedure statement is a call on a declared procedure. The actual parameters 
of the call replace the formal or dummy parameters throughout the body of the 
declared procedure. If the corresponding formal parameter has been ''"VALUE'' 
specified then only the value of the actual parameter is used by the procedure. 

Examples: 

MARGIN (62,56,4) $ 
P(A,B,C,I,J,K) $ 
ROOTFINOER (N,O,ERGDET,KOEF,-4&&O,&&-5,5.0&&-1,lOOO) $ 

22 



I Appendix G 23 
UP-75~, ___ , __ U_N_1 V_A_C_l_l_08_A_L_G_O_L _______ -'-______ -'--s_E_c_T_lo_N_l ___ .L....P_A_G_E_l ___ _ 

GS.I Expression 

-------------~----..I Boolean expres::;:]r--------II!~--------------__I .... 

designational expression 

Explanation: There are three types of expressions, classified according to their values. An 
arithmetic expression has a numerical or a string value, a Boolean expression 
is either TRUE or FALSE, and a designational expression has a label as a 
value. 



UP-7S44 

variable identifier 

array identifier 

string identifier 

string array identifier 

LL:I subscript list 

SS: I substring part 

Appendix G 
SECTION: UNIVAC 1108 ALGOL 

Gs.1.1 Variable 

arithmetic expression 

arithmf'tic expression 

arithmetic expression 

subscript list 

su bstring part 

~lanation; A v~riable is a designation given to' a singlc valu!', A variable identifier is a variable named in 
a type declaration. 

~~a_lI1£le.s-, DELTA 
BOOLV(7) 
CARD 
CAllD(4) 
CARD(I,6) 
A(P(4)' N"SIN(ANG). 3) 
CUnOUT( J, K) 
CUROUT(l:J, K) 
CUnOUT(1,6: J,K) 

Explanation: A variable is a designation given to a single value. A variable identifier 
is a variable named in a type declaration. 

Examples: 

DELTA 
BOOLV(7) 
CARD 
CARD(4) 
CARD(I, 6) 
AfP(4),N*SIN(ANG),3) 
CUROUT( J,K) 
CUROUT(l:J,K) 
CUROUT(1,6: J,K) 

24 
PAGE: 



I Appendix G 25 
UP-75~~ __________ U_N_IV __ A_C __ l_l0_8 __ A_L_G __ O_L ___________________________ ~_SE_C_T_IO_N_: ______ ~P_A_G_E_: ______ ___ 

Gs.2.1 Function Designator 

_---~tifiCr 

actual parameter 

Expllana tion: A function designator defines a single numeric or logical value by applying 

Examples: 

the rules of the procedure declaration to the actual parameters. Only a procedure 
which has a type associated with it can be a function designator. Besides 
those functional procedures declared in the program, several standard ones 
are available for use without being declared. 

CLOCK 
AHCTAN(l.O) 
BACKSLASH(Al,A2) 



UP-7S44 
Appendix G 

UNIVAC 1108 ALGOL 5 EC TION: PAGE: 

GS.3.1 Arithmetic Expression .. -

simple arithmetic expression .. 

Boolean expression 

II: 1 if claus" • 

ss:1 simple arithmetic C'xprcssion 

... 

Explanation: An arithmetic expression is a rule for computing a numerical value. 

Examples: 

A(4) + 2 * SQRT(D**3) - DELTA 
IF A LSS &-5 THEN 0 ELSE A&+5 
Q(MOO(N,2) + 1) * (IF FIRST THEN 10 ELSE RATIO)//3 

26 



I Appendix G 27 
UP-754j~~ _________ U_N_I_V_A_C __ l_l0_8 __ A_L_G __ O_L _______________ ~ __________ ~_SE_C_T_IO_N_: ______ ~P_A_G_E_: ________ _ 

GS.4.1 Boolean Expression 

simple arithmetic 
expression 

,----------.-/(~I ~ I ~ I ~ I ~ )l-II.-J------------

Explanation: A Boolean expression is a rule for computing a logical value. 

Examples: 

FIRST AND NOT SPECIAL 
A LSS DELTA OR ITERATIONS GTR MAXN 
I F BETA THEN TRUE ELSE IF STEP ( I) I~1PL STEP ( 1+1) THEt' QVALUE 
IF BETA THEN TRUE ELSE IF STEP(I) IMPL STEP(I+l) THEN QVALUE(P,I) 

ELSE QVALUE(P,I-l) 



UP·7544 UNIVAC 1108 ALGOL 
Appendix G 

SECTION: 

GS.S. Designational Expression 

simple designational expr('ssion 

arithmetic expression 

designational expression 

88:1 simple designational expression 

Explanation: A designational expression is a rule for computing the label of a statement. 

Examples: 

A switch identifier followed by an arithmetic expression in parenthesis 
refers to the la bel in the corresponding position in the switch declaration. 

LIO 
IF 8ETA THEN CALC ELSE NEXT (K//2) 

28 
PAGE: 



UP-75~, ______ , __ U_N_I_V_A_C_l_1_0_8_A_L_G_O_L ______ . ______ ~ __________ ~I~S_E_~T_~_~N_e~_d_iX __ G~I_p_A_G_E_: _2_9 ____ __ 

G6. BASIC ELEMENTS 
G6 .1.

1 
Identifier ::=. 

EiJ··-

E~::" 
variable identifier 1 ::. I array identifier ~:. 

string identifier I::. [String array identifier I:: . 
... 

switch identifier I::· Grocedure identifier I ::. 

list identifier I::· G:,at identifier I:: = 

~::= I identifier 

_~IB Ie ID IE IF IG I H I I IJ IK I L IMI NI 0 I pi Q I RI s I TI u I v I w\x \Y I z)~-----" 

'~~----I[ letter 

(:-------~ 

Explana tion: An iden tifier is a name chosen to represent a varia hIe, array, etc. Only the 
first 12 characters of an identifier uniquely define it. 

Examples: 

P47 
DELTA 
SQRTROOOF2 
E1C4POQ 



UP-7S44 UNIVAC 1108 ALGOL 
Appendix G 

SECTION: PAGE: 

G6.2.! Number 

r------------- - --

~~t__---- - --

UU: I unsigned intege~ 

II: ~~ 

PP: I unsigned num be~ 

QQ: I decimal number] 

TT: I complex number] 

Explanation: A number is written in its usual decimal notation with the conventions of & for 
power of ten and corner brackets for complex numbers. Numbers are of four 
types: REAL, INTEGER, REAL 2 and COMPLE'X. REAL 2 is differentiated 
from REAL by use of && for power of ten, or there may be between 9 and 18 
digits in the fixed point part. COM PL E X numbers are distinguished by the 
corner brackets, where the first number is the real part and the second the 
imaginary. 

Exam~les: 

1 
-1009 
-.4031 
3.1459 
-18,084 
-<1,0> 
20&-5 
+1800.&&0 
&-6 
+< -.06, &-2> 

30 



---~-

I Appendix G 31 
UP-75~~, __________ U_N_I_V_A_C __ l_l_0_8_A __ L_G_O_L ______________ ~ __________ ~_S_E_C_T_IO_N_: ______ ~P_AG_E_: ________ _ 

G6.3. [ String I 
I Logical Value 

Explanation: A string constant is any string of characters which are used as parameters 
to procedures or with string variables. 

Examples: 

'DOGGENBURG STR. 22' 
'NEQ' 
'B..JARNE WIST' 
'227 KALPHA' 
'REAL AHRAY' 

.------------

Explanation: A logical value is a Boolean constant. 



Appendix G 32 
UP-7S44 UNIVAC 1108 ALGOL SECTION: PAGE: 

G6.4"1 Delimiter ""-

A 
+ I - I * I I I II I **}------------------4 ........... 

~ ! ~ I-------------------.... ~ 
'---~--~----~----~--~--~ 

I~I~I~ 

<;!2 T.2 I !!. I ~ I ~ I ~ I ££. t------------

-----~----......... ~, I . I & I && I : I $ I· I < I) I ~ I ~ I \Yl.!!!df I ~'~--- .. ---4~--~~--

PROCEDURE! EXTERNAL! ~ ! F~' I ~ 
I END I------------------------------~~ 

'-~---------- c 

AA: I arithmetic operator I'P: I scpRrator I 
RR: I relational operator DO: I declarator f 

LL: I Boolean operator BB: I bracket 

SS: I sequential operator CC: I specificator 



Rev. 1 Appendix G 33 
UNIVAC 1108 ALGOL 

G7. INPUT /OUTPUT PROCEDURES G7 .1.
1 
Input Procedure Statement .. -

Explanation: A call on procedure READ reads data from the specified input device into the 
variables indicated by the list elements. The designational expressions are 
used as exit points in case end-of-file or end-of-information conditions are 
met on that device. Note that READ( ) is a legitimate statement but the effect 
is the same as "No operation?'. 

Examples: 

k[AO<CARDS,LEOF,LEOI,A,B,C,S,EPSILON) $ 

READ(FILECINDEX), FOR I:(l,l,KMAX) DO FOR J=(l,l,LMAX) 
DO ERG<I,J» $ 

REAL){ DA TE) $ 



UP-7S44 UNIVAC 1108 ALGOL Rev. 1 

G7.2. [O"utput Procedure Statement 

,r----------- - --

~-------

1---------- - --

arithmetic expreSSi~ 

Boolean expression 1--------''--------- - - -

-----(f-----
at end of parameter list 

at end of paranleter Hst 
MM: I modifier 

Explanation: A call on procedure WRITE outputs the values defined by the list to the 
device specified. Modifiers (KEY, EOF, EO!) produce special marks on 

Examples: 

tape. A forma t con troIs edi ting on paper and punched cards. The designation­
al expression is used as a return point if the output device functions abnormal­
ly. Note tha t WRITE( ) is the sam e as "No opera tion". 

Wf~ I TE 
WHITE.. 
WRITE 
WRITE 

(Pf~It~TFR, FlO, FOH I=(l,l,~\J) 00 A(I,J» $ 

( 'C H [C K POI ~J T C H A R L I [ , , fI) $ 

(FILE('TAPE1'),KEY(I),ABORTLAB,DUMPLIST) $ 

(FILE('OUTPUT'),EOF('LAST'),EOI) $ 



I Rev. 1 I Appendix G 
UP-7~~ _____________ U_N ____ IV __ A_C __ 1_10_8 __ A_L __ G_O_L ________________ ~ ______________ ~.~S~E~C~T~IO~N~: ______ ~P~A~G~E~: _______ _ 

35 

G7.3. Position Procedure Statement 

---~.01/ 'O'''""H"",3L1 
, expreSSlon 

---

~-----

dcsignational 
expression 

arithlllctic expression 

Explanation: The procedure POSITION positions a file forward or backward a number of 
records or searches for a KEY, EOF, or EOI marker. The designational ex­
pressions are used as exits in case the search fails. 

Examples: 

POSITION (FILE('TAPE'),w2) $ 

POSITION (FILE('INPUT'), KEY('PRICES'),ABORT) $ 

POSITION (FILE('OUTPUT'), EOI) $ 



UP-7544 

.------

UNIVAC 1108 ALGOL 
Rev. 1 

G7 .4.1 Rewind Procedure Statement 

Explanation: A call on procedure REWIND rewinds the specified files. The modifier 
INTERLOCK will cause all previously named files to be rewound with 
interlock (read/write protect). 

Examples: 

REWIND (FILE('INPUT'), FILE('OUTPUT'» $ 

REWIND (FILE('TAPE1'), INTERLOCK, FILE('TAPE2'» $ 



UP-754~~ UNIVAC 1108 ALGOL I Appendix G 
• SECTION: PAGE: 

G7. S. Summary of Format Codes 

-

A format code of the form Qw.d where Q is a letter and wand d are unsigned integers 
is interpreted according to the fol1ow~ng table" The integer w, except where noted, 
always specifies the width of the field under consideration. Also, Qw = Qw. 0 and 
Q = QO.O. The word "print" has been used in the description of output action, but 
"punch" may be freely substituted. 

Letter Input Output 

A Activate Read one card Print the edited line, skipping w 
lines before and d lines after prin t-

~ 
ing. (wand d ignored for punch). 

B Boolean Accept a logical value Print a Boolean expression as 
from the field either either TRUE or FALSE. 
TRUE, FALSE, or 1,0. 

D Decimal Accept a real value. If Print a number with decimal 
the actual number is of point inserted and d digits after 
INTEGER type then insert the decimal point. 
a decimal point d places 
to the left of the right end of 
the field. 

E Eject Eject the page to logical line 
w-l. 

F Free Accept an unspecified 
number of values from 
the field punched in free-
format mode. 

I Integer Accept an integer from Print an integer to the base d 
the field. (d=O == d= 10). 

R Real Same as letter D. Print d digits of a real number 
with decimal point and attached 
exponent part. 

S Strin g Accept a string from the Pri nt a string. 
field. 

T Si gnificance Same as letter D. Print the first d significant digits 
of a number with the decimal point 
inserted. 

X Skip Skip the field. Skip the field. 

37 



UP-7S44 
Appendix G 

SECTION: UNIVAC 1108 ALGOL 

G7.6. Grouping of Format Codes 

Format codes may be repeated in execution by four methods: 

(a) Placing an unsigned integer in front of a format code: 

109.2 

This has the same effect as if the phrase D9.2 was written 7 times. 

(b) Enclosing a group of format codes in parentheses and placing an unsigned 
integer before the parenthetical expression: 

This has the effect of expanding the phrase inside the parenthesis 7 times. 

PAGE: 

(c) Similar to (b) above but using an integer or Boolean expression enclosed in 
colons before the parenthetical expression. The value of the expression deter­
mines the number of times the enclosed code or group of codes is to be repeated: 

(d) Enclosing a group of format codes in parentheses but not preceding this parentheti­
cal expression with an integer constant. This means the enclosed codes are to be 
used until there is no more output (or input) to process. The parentheses sur­
rounding the entire format string are interpreted in this manner. 

FORMAT FOUTC4CSI0,XS)'A2) 

38 



U P.7544 


	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	G-33
	G-34
	G-35
	G-36
	G-37
	G-38
	xBack

