i
.

i

L
E i
.

e

UP-7544

This manual is published by the Univac Division of Spertry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC® Systems developments. The infor-
mation presented herein may not reflect the current status of the programming
effort. Fb_r the current status of the programming, contact your local Univac
Representative.

The Univac Diyision will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re-
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

©1967 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

Contents
UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

CONTENTS
CONTENTS Ito5
1. INTRODUCTION 1-1 to 1-3
1.1. GENERAL 1-1
1.2. THE ALGOL COMPILER 1-1
1.3. ALGOL 60 AND UNIVAC 1108 ALGOL 1-2
1.3.1. Extensions to ALGOL 60 1-2
1.3.2. Deviations from ALGOL 60 1-2
1.4, LANGUAGE CONVENTIONS 1-3
2. ELLEMENTS OF THE LANGUAGE 2-1 1o 2-3
2.l. THE CHARACTER SET 2-1
2.2. IDENTIFIERS 2-1
2.3. CONSTANTS 2-9
2.3.1. Integer Constants 2-2
2.3.2. Real Constants 2-2
2.5.3. Double Precision Constants 2-2
2.3.4. Complex Constants 2-3
2.3.5. Boolean Constants 2-3
2.3.6. String Constants 2-3
3. DECLARATIONS 3-1to 3-6
3.1. GENERAL 3-1
3.2. TYPE DECLARATIONS 3-1
3.3. ARRAY DECLARATIONS 3-2
3.4, STRING DECLARATIONS 3-4
3.4.1. String Arrays 3-4
3.5. OWN DECLARATIONS 3-5
3.6. DEFAULLT DECLARATIONS 3-5
3.7. THE COMMENT 3-6

3.8. FORMAT, LIST, SWITCH, PROCEDURE, LOCAL 3-6

UP-7544

UNIVAC 1108 ALGOL

Contents

SECTION:

PAGE:

4. EXPRESSIONS

4.1. GENERAL

4.2. ARITHMETIC EXPRESSIONS

4.2.1. Ordering Rules for Operations
4.2.2. Hierarchy of Operand Types

4.2.3. Operands of Arithmetic Expressions
4.2.3.1. Subscripted Variables

4.2.3.2. Function Designators

4.3. BOOLEAN EXPRESSIONS

4.3.1. Relational Expressions

4.3.2. Boolean Operators

4.3.3. Precedence of Boolean Operations

4.4, STRING EXPRESSIONS
4.5. DESIGNATIONAL EXPRESSIONS
4.6. CONDITIONAL EXPRESSIONS

. STATEMENTS

5.1. GENERAL
5.2. COMPOUND STATEMENTS

5.3. ASSIGNMENT STATEMENTS
5.3.1. String Assignment Statements

9.4, MULTIPLE ASSIGNMENT STATEMENTS
5.5. STATEMENT LABELS

5.6. PUNCTUATION

5.7. DUMMY STATEMENTS

. CONTROL STATEMENTS

6.1. GENERAL

6.2. UNCONDITIONAL CONTROL STATEMENTS
6.2.1. The co To Statement
6.2.2. The swiTCH

6.3. CONDITIONAL CONTROL STATEMENTS

6.4. ITERATIVE CONTROL STATEMENTS - THE FOR STATEMENT

6.4.1. Simple List Element

6.4.2. STEP — UNTIL List Element
6.4.3. WHILE List

6.4.4, Termination of FOR Statements

-11t04-8

.lh.h
[y

1

|
co =23 S DB W W NN

N S SN .h..f..h.b.h.p

BN N =
| | 1 |
(=<

5-1 to 5-5
5-1
5-1
5-1
5-3

Rev. 1 Contents
UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:
7. PROCEDURES 7-11t07-11
7.1. INTRODUCTION 7-1
7.2. VALUE ASSIGNMENT (CALL BY VALUE) AND NAME REPLACEMENT
(CALL BY NAME) 7-3
7.3. SPECIFICATIONS 7-4
7.4. FUNCTION PROCEDURES 7-5
7.5. RECURSIVE PROCEDURES 7-6
7.6. EXTERNAL PROCEDURES 7-17
7.6.1. ALGoOL External Procedures 71-7
7.6.2. FORTRAN Subprograms 7-8
7.6.3. Machine Language Procedures 7-9
. BLOCK STRUCTURE 8-1 to 8-5
8.1. GENERAL 8-1
8.2. BLOCKS 8-1
8.3. LOCAL AND GLOBAL IDENTIFIERS 82
8.4. THE LOCAL DECLARATION 83
. INPUT/OUTPUT 9-1to 9-23
9.1. GENERAL 9-1
9.2. FREE-FORMAT OUTPUT ON PRINTER AND CARD PUNCH 9-1
9.3. FREE-FORMAT INPUT FROM CARDS 9-3
9.4, LIST PARAMETERS - THE LIST DECLARATION 9-4
9.5. FORMATTED OUTPUT - THE FORMAT DECLARATICON 9-6
9.5.1. Nonediting Codes 9-7
9.5.2. Editing Codes 9-8
9.5.3. Repetition of Editing Codes 9-10
9.5.3.1. Simple Repetition 9-10
9.5.3.2. Variable Repetition 9-10
9.5.3.3. Indefinite Repetition 9-11
9.6. FORMATTED INPUT 9-14
9.7. FILE HANDLING 9-16
9.7.1. Sequential Files 9-17
9.7.2. Random Access Files 9-17
9.7.3. Alternate Symbionts 9-18

Rev. 1 Contents
UP‘7544 UN'VAC]]08 ALGOL SECTION: PAGE:
9.8. OTHER DIRECTIVES 9-18
9.8.1. Rewind 9-18
9.8.2. Modifiers and Position 9-18
9.8.2.1. Modifiers 9-18
9.8.2.2. Position 9-19
9.8.3. Labels - 9-19
9.8.3.1. Position Procedure 9-19
9.8.3.2. Read Procedure 9-99
9.8.3.3. Write Procedure 9-921
9.8.3.4. Margin Procedure 9-21
10. OPERATION 10-1
10.1. SOURCE CARD FORMAT 10-1
10.2. OPERATING INSTRUCTIONS 10-1
APPENDICES
A. BASIC SYMBOLS AND THEIR CARD CODES A-1to A-2
B. STANDARD PROCEDURES AND TRANSFER FUNCTIONS B-1 to B-4
C. ERROR MESSAGES C-1to C-4
Cl. COMPILATION ERRORS C-1
C2. RUN-TIME ERRORS C-4
D. EXAMPLES OF PROGRAMS D-1 to D-6
E. JENSEN'S DEVICE AND INDIRECT RECURSIVITY E-1to E-1
F. FILE-HANDLING PROCEDURES
The information in this section has been
incorporated in Section 9.
G. SYNTAX CHARTS G-1to G-38
Gl. GENERAL G-1
G2. PROGRAM -

G3. DECLARATION

G3.1. Type Declaration

G3.2. Array Deciaration
G3.3. String Declaration
G3.4. String Array Declaration
G3.5. Switch Declaration
G3.6. External Procedure Declaration
G3.7. Procedure Declaration
G3.8. Local Declaration
G3.9. List Declaration
G3.10. Format Declaration

[|

[pNep N epWeplepep WepWepl >R ep W ep BN e
]
— s e O 00~ O O W N

W N O

Other trademarks of Sperry Rand Corporation appearing in the text of this

publication are: UNISERVO
FASTRAND

UP-7544

UNIVAC 1108 ALGOL

Contents

SECTION: PAGE:
G4. STATEMENT G-14
G4.1. Block G-15
G4.2. Compound Statement G-16
G4.3. Assignment Statement G-17
G4.4. o To Statement G-18
G4.5. Conditional Statement G-19
G4.6. rFoOR Statement G-20
G4.7. Dummy Statement G-21
G4.8. Procedure Statement G-22
G5. EXPRESSION G-23
G5.1. Variable G-24
G5.2. Function Designator G-25
G5.3. Arithmetic Expression G-26
G5.4. Boolean Expression G-27
G5.5. Designational Expression G-28
G6. BASIC ELEMENTS G-29
G6.1. Identifier, Letter, Letter String, Digit G-29
G6.2. Number G-30
G6.3. String, Logical Value G-31
G6.4. Delimeter G-32
G7. INPUT/OUTPUT PROCEDURES G-33
G7.1. Input Procedure Statement G-33
G7.2. Output Procedure Statement G-34
G7.3. Position Procedure Statement G-35
G7.4. Rewind Procedure Statement G-36
G7.5. Summary of Format Codes G-37
G7.6. Grouping of Format Codes G-38
FIGURES
8-1. Local and Global Identifiers 8-5
TABLES

9-1. Output Nonediting Codes 9-8

9-2. Output Editing Codes 9-9

9-3. Input Editing Codes 9-17

UNIVAC 1108 Multi-Processor System
ALGOL Programmers Reference Manual
UP-7544 July 22, 1968

UPDATING PACKAGE "A"

UNIVAC 1108 Multi-Processor System P.I.E. Bulletin 14, UP-4103.14, announces the
release and availability of Updating Package "A" for the "UNIVAC 1108 Multi-Pro-
cessor System ALGOL Programmers Reference Manual," UP-7544, 46 pages plus 1 Up-

dating Summary Sheet. This material should be utilized in the following manner:

DESTROY FORMER FILE NEW

SECTION PAGES NUMBERED PAGES NUMBERED
Contents 3 and 4 3 Rev. 1 and 4 Rev. 1
Section 3 1 and 2 1* and 2 Rev. 1

3 and 4 3 Rev. 1 and 4%
Section 4 1 and 2 1¥ and 2 Rev. 1
Section 5 5 5 Rev. 1
Section 6 3 and 4 3 Rev. 1 and 4%
Section 7 3 and 4 3% and 4 Rev. 1

9 and 10 9% and 10 Rev. 1
Section 8 3 and 4 3% and 4 Rev. 1
Section 9 1 and 2 1 Rev. 1 and 2%

3 and 4 3% and 4 Rev. 1

5 thru 23 5 Rev. 1 thru 22 Rev. 1
Section 10 1 and 2 1 Rev. 1
Apperdix B 1 and 2 1 Rev. 1 and 2 Rev. 1
Appendix F 1 thru 6 N. A.t
Apperdix G 33 thru 36 33 Rev. 1 thru 36 Rev. 1

* These pages, backups of revised pages, remain unchanged.
t Information in Appendix F has been greatly expanded and incorporated into
Section 9.

PAGE:

UP-7544 UNIVAC 1108 ALGOL l

SECTION:

1. INTRODUCTION

1.1. GENERAL

This manual describes the ALGOL language for the UNIVAC 1108 System. The basis
for this language is the ‘‘Revised Report on the Algorithmic Language, ALGOL 60’
(Communications of the ACM, Vol. 6, January 1963, 1-17). This implementation of
ALGOL is very close to that of the report. Its one significant omission is the omis-
sion of dynamic own arrays. Some of its more significant additions include three new
data types (STRING, COMPLEX, REAL 2), and default declarations. Provision is
made for inclusion of procedures written in assembly language or FORTRAN V.

This manual is intended as an introduction to ALGOL 60 and as a reference manual

in the use of UNIVAC 1108 ALGOL and is not intended as an exhaustive, self-contained
description of ALGOL 60. The text consists principally of definitions and rules for
writing ALGOL programs, examples of these rules, and some sample programs.

A set of appendices includes special sections on file-handling procedures, UNIVAC
1108 ALGOL syntax in chart form, and sample ALGOL programs; lists of basic symbols,
library procedures, and diagnostic messages.

1.2. THE ALGOL COMPILER

The ALGOL compiler is a program which accepts statements expressed in ALGOL and
produces programs for the UNIVAC 1108 System.

An ALGOL program is a sequence of statements written in ALGOL language. These
are translated by the compiler into the language of the computer: machine language.
The ALGOL statements are called the source code, and the translated statements are
called the object code. The compiler itself is a program written in machine language
and is called the UNIVAC 1108 ALGOL 60 Compiler. While translating the ALGOL
statements, the compiler looks for errors in syntax (that is, for errors in the forms or
construction of statements).

The compiler operates in two passes. The first pass scans the statements and does
about 95 percent of the work required to produce the final object code. The second
pass goes into operation immediately after all the statements have been scanned; it
completes the remaining details of producing the object code. Upon successful
compilation, the object code can be read into the main storage and executed. Activi-
ties that occur during compilation are sometimes referred to as compile-time activities;
for instance, compile-time diagnostics. The execution phase is referred to as run-
time.

UP-7544 UNIVAC 1108 ALGOL |

SECTION: PAGE:

1.3. ALGOL 60 AND UNIVAC 1108 ALGOL

There are several differences between ALGOL 60 as defined in the revised report
and 1108 ALGOL 60. In that ALGOL is intended as a standard language and com-
patibility of programs between machines is becoming more and more important, those
differences must be explicitly pointed out. They fall into two classes: extensions
to ALGOL 60 and definition of things left undefined by the report; modifications or
omission of ALGOL 60 entities.

1.3.1. Extensions to ALGOL 60

Extensions to ALGOL 60 include the following:

m STRING and STRING ARRAY variables enhance the value of ALGOL as a data
processing language.

B New arithmetic types COMPLEX and REAL 2 enhance the value of ALGOL to
scientific users.

m XOR, an additional Boolean operator is provided.

m EXTERNAL PROCEDURE declarations are provided for convenience in pro-
gramming large problems and for building libraries.

m I/0 and other library procedures are provided and, related to them, are the
FORMAT and LIST declarations.

m A compact form for GO TO and FOR statements is allowed.

®m Variables are given values of zero or blank at the entrance to a block; thus
initialization statements need not be made.

m The controlled variable of a FOR statement has a defined value when the
statement is terminated by exhaustion of the FOR list.

® The OTHERWISE declaration or declaration by default is provided.
® The variables in a multiple assignment statement need not be the same type.

® Arguments of type COMPLEX and REAL 2 are permitted for various standard
functions.

1.3.2. Deviations from ALGOL 60

@ Because of hardware requirements, identifiers are unique only to their first
twelve characters and may contain no blanks; numbers may contain no blanks,
and certain basic symbols are reserved identifiers (see Appendix A).

m OWN arrays are not dynamic.

® Numeric labels are not allowed.

m The comma is the only parameter delimiter allowed in a procedure call.

m A LOCAL declaration is required to resolve all forward references to identifiers.

® An integer raised to an integer power always produces a REAL value.

UP-7544

UNIVAC 1108 ALGOL SECTION:

PAGE:

m All the formal parameters of a procedure must be specified and must agree in
type with the actual parameters.

These and other restrictions are covered in more detail in later sections of this
manual.

1.4. LANGUAGE CONVENTIONS

ALGOL is described in terms of three languages in this manual: reference, publi-
cation, and hardware language.

The reference language is that which defines ALGOL in the ALGOL 60 Revised
Report. It is computer independent and utilizes the basic ALGOL symbols to
define the language syntax and semantics. Throughout the text, but sparingly, the
syntax of 1108 ALGOL is described in terms of this reference language.

Example:
< identifier> : := <letter > / <identifier> <letter> / < identifier > <digit>
(Read : := as ‘is’ and / as ‘or’)

This says that an < identifier > is either a <letter > or an < identifier > followed
by a <letter> or an <identifier> followed by a <digit>. Further discussion of
identifiers is found in 2.2.

While having the advantage of compactness and precision, the formalism is not

suitable as an introduction to ALGOL and so has been used only as a summary aid.

Except for the formal definitions of the reference language, the hardware language
(the language acceptable to the UNIVAC 1108) has been used throughout the text.
All basic symbols which appear in the text, as well as all examples, are written in

upper case letters. This is the form in which they appear in the hardware language.

For publication purposes, the boldface type delineates the basic UNIVAC 1108
ALGOL symbols. Transliteration rules for basic symbols are given in Appendix A.

Statements may be separated from each other by either the semicolon or the dollar
sign. Because of keypunch limitations, the $ is commonly accepted and has been
used in all examples throughout this manual.

The following symbols are considered equivalent:
* is equivalent to : (colon)
= is equivalent to := (replacement operator)

UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

2. ELEMENTS OF THE LANGUAGE

2.1. THE CHARACTER SET

2.2,

The ALGOL compiler employs a character set which is commonly available as a
variant of the usual Hollerith code (FORTRAN H set) plus a few special UNIVAC
1108 characters. These are:

Letters A-Z

Digits 0-9

Special characters +-=(),%$/ *. space
UNIVAC 1108 special characters &< >'C

In addition, some multiples of characters are given meaning as if they constituted
a single character:

. . colon (interchangeable with :)

/ / integer divide

** exponentiation

&& base 10 scale factor (double precision)

:= replacement (instead of merely =)

A complete list of these characters and the transliteration rules from the ALGOL
60 report is given in Appendix A.

IDENTIFIERS

Identifiers are names that the programmer chooses to use to refer to the various
things which make up a program — variables, labels, switches, formats, procedures,
etc. Identifiers must begin with a letter and may be followed by any number of
letters and/or digits. None of the special characters listed in 2.1 (including a
space) may be used in an identifier. The compiler considers two identifiers iden-
tical if the first 12 characters are alike.

The following are all legitimate identifiers but the last two are not unique since
their first 12 characters are identical.

X AS

SUMX AlB2C3

Y NONL INEARRESIDUE
ALTITUDE NONLINEARRESULT

Some basic symbols have the same form as identifiers and are called RESERVED
IDENTIFIERS (see Appendix A). These can never be used except in their intended
context as basic symbols. For example, the word BEGIN can never be used as

the name of a quantity because it has an inherent meaning within the language and
cannot be redefined. On the other hand, several common arithmetic functions are
available for use without being declared, but these names can be redefined as
identifiers (see Appendix B). All identifiers, including reserved identifiers, must

UP-7544

SECTION: PAGE:

UNIVAC 1108 ALGOL l

2.3.

2.3.1.

2.3.2.

2.3.3.

be separated from each other in the source language by DELIMITERS. All the
special characters listed in 2.1 are delimiters. The space is a rather unique de-
limiter in that a sequence of spaces is treated as one space.

CONSTANTS

Six types of constants may be uswd in the UNIVAC 1108 ALGOL source program
language. They are integer, real (single precision, floating point), double precision,
complex, Boolean, and string constants.

Integer Constants

Integers are whole numbers represented intemallgl by 35 bits plus the sign. Range
of an integer N (in magnitude) is from zero to 23 - 1 inclusive (23’5 -1-=
34359738367).

If positive, the integer may be prefixed with a plus sign. If negative, it must be
prefixed with a minus sign.

EXAMPLES: 0 +23
70 2222222222
-204 +0

Real Constants

A real constant is a string of eight or fewer digits with a decimal point. The
point may precede, follow or be imbedded within the digits. Internally it is
represented as a floating point number with 9 bits for the sign®of the number and
exponent and 27 bits for the fraction. The plus sign is optional, but a negative
sign must precede a negative constant. The magnitude ranges from approximately
10 ~38 16 1038 or it may be zero.

EXAMPLES? 3.1416 750.
0.0 +1.7
645 -z04

If desired, a scale factor may be appended to a real constant to indicate that it is
to be multiplied by the indicated power of 10. This scale factor is represented by
an ampersand followed pethaps by a plus or minus sign and then by an integer.
The integer specifies the power of 10 to be used and is limited to two digits.
2.65&6 means 2.65 x 100 or 2,650,000.
-17.4458&-5 means - 17.445 x 10-> or - 0.00017445

In addition a real constant may be written as an integer followed by a scale
factor or a scale factor by itself may be used to signify a real constant.
2&-6 means 2.0&-6 or .000002
&7 means 107 or 10,000,000.0

Double Precision Constants

Double precision constants are used for double precision calculations. The
magnitude ranges from approximately 107308 5 10308 o it may be zero. The
maximum number of digits is 18.

UP-7544

UNIVAC]]08 ALGOL SECTION: PAGE:

2.3.4.

2.3.5.

2.3.6.

Double precision constants are differentiated from real constants by use of &&
for power of ten, or by inclusion of between 9 and 18 digits in the fixed point
part. Double precision constants are ordinarily used only with variables of type

REAL 2.

The following are acceptable double precision constants:

3.141592653589793
1.049652345666&=22
40655&&‘“

1.0&&2

4&8&0

Complex Constants

The general form of a complex constant is:

<R1:R2>

where R1 and R2 are real or integer constants and where < and > are required.
Examples:

<1.0, 1.0> represents 1 +i
<7.08&-2, - 2> represents 0.07-2i
< 0.0, 1.0> represents i

Boolean Constants

Only two Boolean constants are allowed:

TRUE
FALSE

String Constants

A string constant is a string of characters not containing a quote but enclosed
by quotes. The maximum size of a string constant is 4095 characters.

Examples:

*STANDARD DEVIATION =
'PRINCIPLE RATE PERIOD PAYMEMT?

UP-7544

SECTION: PAGE:

UNIVAC 1108 ALGOL l

3.1.

3.2.

3. DECLARATIONS

GENERAL

An ALGOL program may be broken into logical segments called blocks which are
complete and independent units. Their structure is discussed in Section 8. One
important property of a block is that, at the beginning of the block, all of the local
entities that are to be referenced inside the block must be declared. Declarations
determine how the compiled program will treat certain of its elements; thus it is neces-
sary to precede the use of an identifier with a declaration of type. An identifier may
appear in only one declaration within a block; however a block may contain blocks
within itself (as shown in 8.3). Any of these blocks may declare variables taking on
names used in outer blocks, thus redefining them for the inner block.

TYPE DECLARATIONS

The type declaration defines the type of variable named by an identifier. This
declaration specifies that all values which the identifier assumes must be of the
designated type. The general form of type declaration is:

< type> < type list>

where <type list>is a list of identifiers separated by commas. Each declaration is
terminated by a ; or $. The five possible type declarations are:

INTEGER — Integral values represented internally by 36 bits. The range of an integer
(in magnitude) is zero thru 2°°—1 inclusive.

REAL — Floating point numbers internally represented by 9 bits for sign of the number
and the exponent and 27 bits for the fraction. The range of a real number (in magni-
tude) is 10—38 to 1038 and 0 with approximately 8 digits of precision. Any real
quantity which is less than 10-38 s represented by zero.

REAL 2 — Floating point numbers internally represented by 12 bits for sign of the
number and the exponent and 60 bits for fraction. The range of a REAL 2 number (in
magnitude) is approximately 10—308 {5 10308 and zero with approximately 18 digits
of precision.

COMPLEX — Complex values of the form A + i*B where A and B are REAL numbers.

BOOLEAN — Truth values, TRUE or FALSE.

UP-7544

’ Rev. 1

UNIVAC]]08 ALGOL SECTION: PAGE:

3.3.

Examples of type declarations are:

INTEGER Ir Jr Ke COUNTER %
REAL Xe Yo TEMPy» VELOCITY %
BOOLEAN AJAX B

COMPLEX Z1e 220 Ur V %

REAL 2 Ar Br C %

ARRAY DECLARATIONS

When declaring simple variables as described above, a different name must be used

for each different variable being defined. The ARRAY declaration provides a means
of referring to a collection of numbers that fall into a matrix or array by the use of a
single identifier.

This ARRAY declaration specifies to the compiler the structure which is to be
imposed on this collection. An array is a group or set of elements arranged so that
each may be identified by its position within the group. The compiler considers all
elements of array to be of the same type.

Arrays in this compiler are restricted to those of rectangular construction in n-
dimensional space.

For example, the declaration REAL ARRAY A(1:10) defines an array A with ten
elements which may be referenced by:

ACL) AC2) A(3) A(L) A(S) A(6) A7) A(R) A(9) n(10),
The general form of array declaration is
< type>ARRAY <array list> (<bound pair list>)
where type may be of any of the types given in 3.2. If type is omitted, it is assumed

to be REAL. The array list specifies the names of the arrays. The bound-pair list
consists of a bound pair for each array dimension. Each bound pair is of the form:

lower limit:upper limit
A complete array declaration for a single atray is of the form:
ARRAY A(l{:uy, lyiuy, 13:ug, ———1).

Where I’s represent lower bounds and u’s represent upper bounds. Either or both of
the bounds may be negative, but 1; < uj.

For example:

INTEGER ARKAY TI(0i4e 1313)

| Rev. 1

UP-7544 UNIVAC 1108 ALGOL

SECTION: PAGE:

defines an array composed of five rows and three columns of integers as follows:

I(0r1) 1(0e2) I(0¢3)
I1(1.1) I(1.,2) I1(1,3)
I1(2+1) I(er2) 1(2:3)
I1(3.1) I1(302) I1(3+3)
I1(4,1) I1(402) I1(4,3)

In the previous declaration, the parts 0:4 and 1:3 are called bound pairs, and each set

of them defines a subscript position. The first digit of the bound pair specifies the
lowest possible value for that subscript position, and the second specifies the highest.
An element of array I is referenced by the identifier I followed by a subscript list en-
closed in parentheses (see 4.2.3.1). Since the lower bound of the first subscript position
is 0, I(3,2) refers to the element in the fourth row and second column of array I. There

is no limit to the number of subscript positions an array may have. However, declarations
like

REAL ARRAY A(6:5) %

are not allowed, since the lower bound must not be greater than the upper bound.
This declaration would result in an execution-time error.

Array identifiers of the same type, separated by commas, may be included in one
declaration:

BOOLEAN ARRAY A(l.e2)r 8(1:10,14:22)» C(~217,63100)

If two or more arrays are of the same type and same size, they may be listed sequentially
with the dimension specification after the last array identifier in the group.

COMPLEX ARRAY COMs COMI»DECOM,COMCONJ(3210) %

This declaration defines four one-dimensional arrays. Each consists of eight
complex numbers and the subscripts of the elements range from three to ten.

One of the most important feature of ALGOL is that the expressions for the bound pairs
need not be constants; they can be any expression referring to non-local variables and
constants.

Example:

REAL ARRAY A(LINsI//23ENTIER(X)»02TIMEMAX) »2P4rBPRtmtNFITTT Y4
DPLeDP2(=INFINITY:INFINITY) %
SENFINITY)- %

The size of these arrays depends on the values of N, I, X, TIMEMAX, and INFINITY.
Therefore, the size varies from one execution to another. Because of this, the actual
storage cells for the array are allocated during execution each time the block (in which
the array declaration occurs) is entered; i. e., at the place the array is declared. This
is called ‘dynamic’ storage allocation. All the variables in a program except own
variables (see 3.5) are allocated in storage in this way. Section 8 explains the process
of allocating variable storage for ALGOL. Note that the dynamic allocation concept
cannot be used in the outermost block (i. e., the bound pair list may contain only
constants in the array declarations in the outermost block).

UP-7544

3
UNIVAC 1108 ALGOL l lSECTION: PAGE:

3.4,

3.4.1.

STRING DECLARATIONS

The STRING declaration provides a means of referring to a collection of alphanumeric
characters in Fieldata code by the use of a single identifier, and at the same time
specifies to the compiler the structure which is to be imposed on this collection. The
string declaration defines the name and length of the string:

STRING S(a0) %
Strings may have substrings, either named or unnamed:
STRING S(L(4Q)rR(UO)) %

defines a string S as having a length of 80 characters with the first 40 characters being
a string L and the second 40 a string R.

STRING S(6eS7(10)r4,Q(89Q9(1)+2)) %

6 | 10 4 81
[—s7— | Q9]

The above declaration defines the strings S, §7, and Q and Q9. It also gives their
relative position since 6, 4, and 2 are unnamed substrings. The expression for the
length of a string must be positive and less than 4096. Strings, like simple variables
and arrays, may be declared with an identifier list:

STRING CARD (80)r LINE(132)» ITEM(CODE(DEPT(2)s SECTION (8))»
S5rNAME (30) » RATE(S5)» TIME(S)» GROSS(10)r NET(30))%

The string CARD holds 80 characters corresponding to a card image. Correspondingly,
the string LINE holds one print line image. The string ITEM, on the other hand, has
the somewhat complicated structure shown below:

DEPT(2) SECTION(8)
CODE(10) 5)

Net
(10)

Gross
(10)

Time

(5)

Rate
%)

NAME(30)

ITEM(75)

ITEM has 75 characters partitioned into the strings CODE, NAME, RATE, TIME, GROSS,
and NET. In addition, the string CODE of 10 characters is partitioned into the strings
DEPT and SECTION. Thus

ITEM(8) = CODE(8) = SECTION(6).

String Arrays

A combination of the string and array declarations defines a quantity known as a
string array. A string array is an array whose elements are strings. The form of
declaration is:

STRING ARRAY S(<string part>: <array part>)

UP-7544 UNIVAC 1108 ALGOL SECTION:

PAGE:

where < string part >specifies the length of each element of S (and also defines any
substrings just like a string declaration) and <array part>is the list of bound pairs
just as for a simple array (see 3.3).

Example:
STRING ARRKAY S(L(40)»R(u40)21:30» 1210) 5

defines a two-dimensional array S with ten rows and ten columns. Each element of
the array is a string of 80 characters. Furthermore each string consists of substrings
L and R each 40 characters long. Referencing of substrings is discussed in 4.4.

3.5. OWN DECLARATIONS

Whenever a block is entered, the simple variables and arrays that are declared within
that block are given the value zero, and strings are given the value (blank) in each of
their character positions. The additional symbol OWN in front of any one of these types
of declarations changes this initialization in the following way: the first time the block
is entered they are given initial values as above. In subsequent entrances to the block
they have the same value as they had on the last exit from the block.

Examples:

BEGIN INTEZGER I %
REAL FXe FY $
OWN BOOLEAN ALPHA,BETA %
OWN REAL ARRAY DEV (1:10» 1210) %

In general all declarations allowed in 3.2, 3.3, and 3.4 of this chapter are also permitted
as OWN declarations. The exception to this rule is that the length of a string or the
length of any of the subscript positions of an array does not change after the first
entrance to the block. Thus, if a block begins by:

BEGIN OWN ARRAY A(O:N)

and N has the value six (elements are numbered zero through six), the length of A
remains seven throughout the program even if N has a different value at the next
entrance to the block.

3.6. DEFAULT DECLARATIONS

The OTHERWISE declaration allows the programmer to specify that all simple variables
(those without subscripts), unnamed in a type declaration are assumed to be of a given

type.

BEGIN REAL Xr FXr» FPX %
INTEGER OTHERWISE

UP-7544 UNIVAC 1108 ALGOL ‘

SECTION: PAGE:

means that any other simple variables besides X, FX, FPX that are encountered in this
block are to be integers. The OTHERWISE declaration may not be used in connection
with an array or string. A hazard of this declaration is that it carries the danger that
‘new’ variables may be created unintentionally and not noticed.

Example:

BEGIN INTEGER OTHERWISE 4
BOOMBOOM = 2%
AEN = 4%
5C0MBOOM = ((BOOMROOM+AEN) *BOOMBOOM+AEN) *BOOMRBOM

The variable BOOMBOM has crept into the calculation when BOOMBOOM was the
proper one. Therefore the OTHERWISE declaration must be used with care. Another
type declaration may follow the OTHERWISE declaration.

3.7. THE COMMENT

The COMMENT allows the programmer to include such things as clarifying remarks and
identifying symbols in the printed compilation. A comment may serve any purpose the
programmer desires once it is ignored by the compiler.

Two commonly used forms are:

BEGIN COMMENT < any sequence not containing ; or § >;
; COMMENT < any sequence not containing ; or $§ >;

Example:
BEGIN COMMENT SAMPLE PROGRAM USING UNIVAC 1108 ALGOL $

Any characters following an END and preceding another END, ELSE, or a semicolon
are also treated as comments.

Examples:

END OF INNER LOOP END OF OUTER LOOP %
END THIS TERMINATES THE THEN PART ELSE
END OF HEAT TRANSFER PROGKAM %

3.8. FORMAT, LIST, SWITCH, PROCEDURE, LOCAL

The other declarations are of a more complicated nature and appear in other parts of the
manual. FORMAT and LIST are concerned only with input/output and are discussed in
Section 9. Procedures are discussed in Section 7 and switches in Section 5. The -
LOCAL declaration is added to the language to allow faster (one pass) translation into
object code. It is discussed in Section 8.

UP-7544 UNIVAC 1108 ALGOL : SECTION: PAGE:

4. EXPRESSIONS

4.1. GENERAL

An expression is a rule for computing a value. There are four kinds of expressions:
arithmetic, Boolean, string, and designational. Expressions are composed of operands,
operators and parentheses. Operands are constants, variables, function designators, or
other expressions. Operators are symbols which designate arithmetic, relational, or
logical operations, and parentheses are used to determine the sequence of operations
to be performed. The value of an arithmetic expression is a number of the type
INTEGER, REAL, REAL 2 or COMPLEX. The value of a Boolean expression is
either TRUE or FALSE, and the value of a string expression is a string of symbols.
The value of a designational expression is a statement label. Expressions must be
formed in accordance with mathematical convention and with the rules discussed in

the following paragraphs.

4.2. ARITHMETIC EXPRESSIONS

Arithmetic quantities are combined into arithmetic expressions by means of the follow-
ing arithmetic operators:

+ denotes addition

— denotes subtraction

* denotes multiplication
/ denotes division

** denotes exponentiation
// denotes integer division

The expression
A//B

can be written only when A and B are both of type INTEGER. The expression has the
integer value of the unrounded quotient of A by B.

Thus 5//3 =1

The expression
A**B

means A raised to the power B.

UP-7544

Rev. 1
UNIVAC 1108 ALGOL ‘

SECTION: PAGE:

4.2.1.

4.2.2.

Ordering Rules for Operations

When arithmetic expressions are evaluated, the arithmetic operations are performed
according to the following rules of priority or ptecedence.

Class 1 ** Exponentiation
Class 2 ~ Unary minus
Class 3 * Multiplication

/ Division

// Integer division
Class 4 + Addition

— Subtraction

Expressions with operators in different classes are evaluated in order (1, 2, 3, and then
4) unless parentheses are used to change the order. Expressions containing opera-

tors in the same class are evaluated from left to right. Parentheses may be used to

override the given order of evaluation. Expressions within innermost parentheses
are evaluated first.

Examples:
Expression Compiler Interpretation
A=-B~-C (A=B)=C
A-B**xC A= (B**xC)
A* k[=C k%] (AX*R)=(Ck%kD)
AtB/C A+(B/C)
A/B/C (A/B)/C
A¥xp¥%C (A%X3) *%C
~A%%2 - (A¥%2)

Hierarchy of Operand Types

Mixed-mode arithmetic is permitted. The evaluated arithmetic expression assumes
the type of the dominant operand type in the expression. The order of dominance is
COMPLEX, REAL 2, REAL, and INTEGER. Exponentiation routines for COMPLEX
REAL 2 and REAL 2COMPLEX have not been implemented.

Example:

INTEGER
REAL

REAL 2
COMPLEX

then

OO0 0w
n
L] @t P

I*R IS REAL
R2+R IS REAL 2
C-R2+I IS COMPLEX

INote that the order of precedence for the unary minus and exponentiation has been reversed from
1107/1108 EXEC II ALGOL. Under the EXEC II system Y= -A**2 would always produce a positive

result for Y.

UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

There are two exceptions to the above rule:

m A/B is REAL when A and B are INTEGER

A**B is REAL when A and B are INTEGER

4.2.3. Operands of Arithmetic Expressions

The operands of arithmetic expressions are constants, variables, function designators
(defined below), or other arithmetic expressions.

4.2.3.1.

4.2.3.2.

Subscripted Variables

A variable may be either a simple variable or a subscripted variable. A subscripted
variable represents one of the following:

(1) A single element of an array denoted by the identifier which names the array
followed by a subscript list enclosed in parentheses,

(2) A portion of a string variable, or

(3) A combination of both (1) and (2) in the case of STRING arrays. A subscript
list consists of arithmetic expressions separated by commas.

The following are examples of subscripted variables:

ACI»J)

MUI+1rJ+])
VIF(P+1)9Q+12)
ZOWCT) o X (T)eY(T)e2(T))
Xx(13)

AlI*291//72)

The expressions which make up the subscript may be of any complexity. REAL
values are allowed, in which case the real number is rounded to the nearest integer.
Each subscript expression must have a value which is not less than the minimum
and not greater than the maximum specified by the ARRAY declaration or for the
string as specified by the STRING declaration (see Seciion 3). The number of
subscript expressions must equal the number of dimensiuns of the array as given

in the ARRAY declaration. Thus, if an array is declare. as follows,

REAL. ARRAY A(1:10+1:10)
then A(3,11) is undefined.

Function Designators

A function designator is either a call on a declared function procedutre (see Section
7) or a call on a standard function. These standard functions are the ones com-
monly employed in mathematics, such as the square root, sine, and arctangent
functions. A complete list of the available functions is given in Appendix B. For
example, the function whose value is the squate root of X is called SQRT; there-
fore if

REAL X %

UP-7544

UNIVAC 1108 ALGOL 1

SECTION: PAGE:

then

SORT (X)

is a function designator.

Operands themselves may be arithmetic expressions, and combining them by means
of operators may give rise to more arithmetic expressions. Assuming the declara-
tions:

REAL R &

INTEGER I %
INTEGER ARRAY A(0:10) %

Then the following are valid arithmetic expressions:

(R¥I)/(A(L)+7)
(ACA(2))=T*%3)*MOD (A(T7) o1t)

MOD is an example of a standard function. In these examples, liberal use is made
of parentheses to indicate order of evaluation.

4.3. BOOLEAN EXPRESSIONS

The only Boolean constants are TRUE and FALSE and these have their fixed, obvious
meaning. A Boolean operand may be either a simple variable that has occured in a
Boolean declatation, a subscripted variable that has appeared in a'Boolean array
declaration or a Boolean function designator such as NUMERIC, or a Boolean constant
(see Appendix B). Boolean expressions are:

Boolean operands

Arithmetic or string expressions connected by the relational operators LSS, LEQ,

EQL, GEQ, GTR or NEQ

Boolean expressions connected by the logical operators NOT, AND, OR, IMPL, EQIYV,
or XOR

4.3.1. Relational Expressions

The relational operators have the semantic meanings

ALGOL MATHEMATICAL
EXPRESSION NOTATION MEANING
ALSS B A< B Less than
A LEQB A< B Less than or equal to
A EQL B A=B ‘Equal to
A GEQ B AZB Greater than or equal to
A GTR B A>B Greater than
A NEQB A#Z B Not equal to

UP-7544

UNIVAC 1108 ALGOL

SECTION: PAGE:

4.3.2,

For arithmetic or string expressions A and B, the Boolean expression:
A < relational operator>B

is TRUE if the relation holds and FALSE if it does not. A and B may be mixed
mode. If either A or B is COMPLEX, only the relations EQL and NEQ can be used.
If A and B are both string expressions (see 4.4), the strings are compared character-
by-character starting at the left. The shorter string is considered to be filled out

with blanks to the length of the longer. The collation sequence of characters is that
of Fieldata.

Boolean Operators

The six Boolean (logical) operators are:

NOT negation

AND conjunction

OR inclusive disjunction (inclusive OR)
IMPL implication

EQIV equivalence

XOR exclusive disjunction (exclusive OR)

The value of a Boolean expression of the form:
A <Boolean operator>B

is obtained from the following table. NOT is a unary operator.

A B NOT A AORB AANDB A XORB AIMPL B A EQIV B
TRUE TRUE | FALSE TRUE TRUE FALSE TRUE TRUE
TRUE FALSE | FALSE TRUE FALSE TRUE FALSE FALSE
FALSE TRUE | TRUE TRUE FALSE TRUE TRUE FALSE
FALSE FALSE | TRUE FALSE FALSE FALSE TRUE TRUE

Assume the following declarations:

BOOLEAN ArB %
REAL XrYrZ %
STRING S(100) %

Then the following are legitimate Boolean expressions.

B AND A

10,0 LEQ X AND X LEQ 99.0

NOT B OR A

NOT (X LSS Y IMPL Z EQL Z%x%2)
NUMERIC(S) OR NOT ALPHABETIC(S)

In the above example NUMERIC and ALPHABETIC are standard functions (see
Appendix B).

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

4.3.3. Precedence of Boolean Operations

Parentheses may be used to specify the order of operations in Boolean expressions.
If parentheses are omitted (or within parentheses), Boolean expressions are scanned
from left to right, and operations are performed according to the following precedence:

(1) Arithmetic operations according to 4.2.1.
(2) Relational operations

(3) NOT

(4) AND

(5) OR XOR

(6) IMPL

(7) EQIV

Example:
A+l GTR B OR € AND G+2 NEQ H
will be computed as

(CA+1) GTk B) OR (C AND ((G+2) NEQ H))

Parentheses should be used in compound expressions to avoid confusion or misinter-
pretation by human readers (not the compiler).

4.4. STRING EXPRESSIONS

Strings have no operators which produce a string result. Substrings of a declared string
are defined by giving a starting position and a length, For example, if S is a string
variable

STRING S(120)
then
S(i)

denotes the ith character in the string S where the characters are numbered from the left
starting with one. Thus, S(6) is the sixth character in string S.

5(i,j)

denotes a string of j characters taken in ascending order from string S starting with the
character in the ith position. S(1,10) is the substring of S consisting of the first ten
characters of S. The substring S(1) is equivalent to S(1, 1). That is, if the length is
omitted, it is taken to be 1.

UP-7544 UNIVAC 1108 ALGOL

SECTION: PAGE:

In summary, consider string S.
STRING S(10/R(20) +STACK(3+OP(5)) s 14)

In this string the following three string expressions all have the same value; that is,
they all refer to the same five characters.

S(34¢5)
STACK (4¢5)
oP

Partial string-array variables are subscripted variables with two separate subscript
lists separated by a colon (:). A subscripted string variable is written as

S(< string part>:<subscript list >)
If S is a two-dimensional string array, then
S(3i:j, k)

denotes the ith character in the j, kth element of the string array S. If a group of
characters is desired, then

834, 1:j, k)

will denote the group of 1 characters taken in ascending order starting with the char-
acter in the ith position from the j, kth element in the string array. On the other hand,
if the entire string from the j, kth element in the string array is desired, then the colon
may be omitted. Thus,

SG, k)
specifies the entire string.
Example:
STRING ARRAY S(L(40),R(4D)1:1001210)
then

S(43e40s4010)

specifies the last 40 characters of the string in the fourth row and tenth column of the
two-dimensional array. Each of the elements consists of 80 characters.

A numeric string expression may be used as an arithmetic operand:

S(LeS)+1
s(1) ECL 1

UP-7544 UNIVAC 1108 ALGOL

SECTION: PAGE:

When used in this context, the string expression is converted to an integer expression
by a transfer function. If the string does not represent an integer, an error message is
printed (see Appendices B and C). If the integer value of the string is greater than
(235—1), an error message results.

4.5. DESIGNATIONAL EXPRESSIONS

Designational expressions are expressions whose values are statement labels (see 5.5).
The form of a designational expression is either a label, a switch variable, or a condi-
tional expression in which the value of a Boolean expression determines which of two
designational expressions to use. For further details see 6.2 and 6.3.

4.6. CONDITIONAL EXPRESSIONS

The value of an expression may depend on the value of a Boolean expression. For
example,

IF X EQL Y THEN 1 ELSE 2

is an integer expression whose value is 1 or 2 depending on whether X equals Y. The
general form of a conditional expression is:

IF <Boolean expression> THEN <simple expression >
ELSE < expression >

The expression following THEN and the expression following ELSE must be of the
same kind (arithmetic, Boolean, or string). The expression following ELSE may be
another conditional expression.

Example:
IF X GTR 0 THEN 0 ELSE (X EQL 0)

is illegal because in some cases it has an arithmetic value (0) and in other cases a
Boolean value (X EQL 0). In the cases where the constituent expressions are arith-
metic, then the type of the entire expression is always the more general of the two
expressions:

IF X EQL 0 THEN <1.002.0> ELSE 2,0

has a value of either<1.0,2.0>0r<2.0,0.0>; that is, a value of type COMPLEX.
Note that ELSE must always be present in conditional expressions.

The < simple expression>may be any expression not starting with IF, or any expression

put into parentheses. For example, the following is not a simple expression because it
begins with |F, but it contains a simple expression in the parentheses.

IF A THEN X+4(IF B THEN X ELSE Z) ELSE IF B THEN Z ELSE O

UP-7544

UNIVAC 1108 ALGOL secTioN: oace:

5.1.

5.2,

5.3.

5. STATEMENTS

GENERAL

The ALGOL statement is the fundamental unit of operation within the language. The
operations to be performed are specified by statements which may be divided into two
classes:

® Assignment statements

m Control statements

This section discusses assignment statements, combination of statements, statement
labels, and rules for punctuating statements. Section 6 is devoted exclusively to
control statements.

COMPOUND STATEMENTS

A number of statements may be grouped to form a compound statement which is to be
considered as a single statement. The general form of a compound statement is:

BEGIN S1 4 S2 $ seeee $ SN END

where Sq through S, are single statements or other compound statements. The words
BEGIN and END serve as opening and closing statement parentheses. Note the
absence of $ between S, and END.

ASSIGNMENT STATEMENTS

An assignment statement is of the form:

\% e or
vi= e

Where v is a variable (simple or subscripted), e is an expression, and the equal sign
is known as the replacement operator. This replacement operator is not equivalent to
the equal sign in mathematical notation. The assignment statement specifies that the
expression e is to be evaluated and this value is to replace the current value of the
variable v.

UP-7544

SECTION: PAGE:

UNIVAC 1108 ALGOL \

Examples:

Replace the current value of SUM with zero.
SUM = 0 %
X =Y +272 % Replace the current value of X with the value of
ACI) = X1 % ¥ +2).
N=N+19%

Replace the current value of the Ith element of
array A with the value of X1.

Increase the value of N by 1.

Note that the last example is not a valid algebraic equation, but it is a valid assign-
ment statement. On the other hand, a valid algebraic equation such as:

Z¥%2 = Xkx2 + YH%2

has no meaning to the compiler as Z**2 is not an identifier. Neither an expression nor
a constant may appear to the left of the replacement operator.

In the statement

N = IF X EQGL Y THEN 1 ELSE 2

N is assigned the value 1 or 2 depending on whether X equals Y. In the assignment
statement

v=e

v must be compatible in type with e. The compiler includes transfer functions to
transfer from the type of e to the type of v. The available transfer functions are sum-
marized at the end of Appendix B, If v and e are of different types, then the compiler
converts e to the type of v before the assignment is made.

If the conversion is from REAL to INTEGER then the result is rounded to the nearest
integer as in the following example:

INTEGER I %
I = 1.57 ¢

The assignment statement assigns the value 2 to I. This is equivalent to writing
I=ENTIER (1.57 + 0.5) where ENTIER is a standard function which returns the
integral part of the argument.

If the expression e is BOOLEAN, then v must also be BOOLEAN. If e is a string
expression then v must be type STRING or INTEGER; type INTEGER applies only if
the expression is a numeric string (see Appendix B). If e is an arithmetic expression
then the v must be arithmetic. v may be type STRING if e is INTEGER.

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

5.3.1. String Assignment Statements

If the variable V in V = S is a string variable, then this is known as a string assign-
ment statement. In this case, the expression S must be either arithmetic or of type
STRING. If S is an arithmetic expression then it is first converted to type INTEGER
and then into its associated string.

In all cases, the replacement is made such that the leftmost character of the right-hand
side replaces the leftmost character in the left-hand variable. If the string on the
left-hand side is longer, extra spaces are supplied to the right as necessary to fill

out the left-hand string. If the string on the right-hand side is longer, any excess of
characters from the right-hand side is dropped (that is, the replacement is left justified
in the left-hand string variable).

As an illustration, consider the following uses in which A is a string variable:

A before Statement A after
ABCDEF A = "XYZ2Uvw! XYZUVW
ABCDEF A = '"LOOP~DE=LOOP* LOOP=D
ABCODEF A = "HOW! HOW
ABCDEF A(2) = Q¢ AQCDEF
ABCDEF A(2¢3) = 'xXY2? AXYZFF
ABCDEF A(2¢3) = 69 AB9 EF

It is preferable to write the last statement in the form A(2, 3) = '69A' so as to avoid
the time consuming integer-to-string conversion. One word of caution, the string
replacements are performed a character at a time starting with the leftmost character;
hence, a replacement of the form

S(29 N=1) = S(1eN-1) 9

will result in the character in the 1, 1 position, S(1, 1), being propagated down the
string (i.e. the first N characters of the string S will all be the same as the character
in S(1, 1)).

Characters in a string can be shifted right or left by this type of statement. To shift
the characters in a string right, first move the string into another string of the same
length and then perform a replacement operation. For example, let S and T be strings
of the same length; then the following statements shift S right one position and leave
the first character unchanged.

T=5
S(2» N=1) = T(1l» N-1) %

Similarly S can be shifted left by

S(1s/N=1) = S(2/N=1) $

UP-7544

UN'VAC]]08 ALGOL SECTION: PAGE:

5.4. MULTIPLE ASSIGNMENT STATEMENTS

The same value can be assigned to a number of variables by means of a multiple as-
signment statement. If the variables to which a value is being assigned are mixed in
type, then type conversions are performed. Assume X, Y, and E are REAL, and I is

INTEGER. Then the statement

X=1=Y=ZE®S$

evaluates E and assigns this value to Y; the value of Y is then rounded to an integer
and assigned to I; the value of I is converted to REAL and assigned to X.

The general form of assignment statement is of the form

where the V’s are variables (simple or subscripted) and E is an expression. If the V’s
include subscripted variables, then the order of evaluation is as follows:

(1) Any subscript expressions are evaluated in sequence from left to right.
(2) The expression E is evaluated.

(3) The value of the expression is assigned to all variables proceeding from right to

left (as in the example X=I=Y=E) with the subscripts having values as determined
in 1.

If the value of I is 1 before this statement is encountered,
ACI) = B(I+1) = 1 = I+1 %

then evaluation continues as follows (A and B real arrays)

(1) The subscript for A is determined as 1 and for B as 2.
(2) 1is incremented by 1 thus it becomes 2.

(3) The integer is converted to REAL and assigned to A(1) and B(2).
Thus A(1)=B(2)=2.0

5.5. STATEMENT LABELS

In order to identify a statement a name may be attached to it. This name is called a
statement label and permits one statement.to refer to another. A label is an identifier
— a string of letters and digits beginning with a letter. Numeric labels are not per-
mitted in this implementation of ALGOL. The string may be of any length but like
any identifier they must be unique within the first 12 characters (see 2.2). The label
precedes the statement and is separated from it by a ":" (or..). Multiple labels are
permitted.

Examples:

L1s Y = AxX + BxC &
START: SUMX = 0 %
STARTISUMX = 0 %

L1 L2% 1.3 L4 X=Y %

UP-7544

Rev. 1 5

SECTION: PAGE:

UNIVAC 1108 ALGOL

5.6.

5.7.

A label is defined by its actual occurrence and is therefore local to the block in which
it occurs. Of course, each label must be different from all other identifiers referenced
within the block. See Section 8 for further discussion of labels and blocks.

PUNCTUATION

Each statement as well as each declaration must be terminated by a $ ora ;. In a
compound statement, a $ preceding the END would be redundant and may be omitted.

The end of a line has no meaning as punctuation. There is no restriction as to the
number of cards that may be used for forming a statement. Spaces must not appear
within numbers, labels, or in basic symbols (except for GO TO and REAL 2). However,
spaces must be used to separate adjacent symbols composed of letters or digits.
Spaces may be used freely for indentation or to facilitate reading.

DUMMY STATEMENTS

A dummy statement performs no operation. It can be used to place a label.
Example:

L1: END
DO %

UP-7544

6
SECTION: PAGE:

UNIVAC 1108 ALGOL l

6.1.

6.2.

6.2.1.

6. CONTROL STATEMENTS

GENERAL

The compiler translates successive statements in the order in which they appear in
the program. The statements are also executed in this same order unless the pro-
grammer interrupts this normal sequence with a ‘‘transfer of control.’”” Once the
transfer has taken place, successive statement sequencing continues from the new
point of reference.

Transfer of control in ALGOL is accomplished through use of three kinds of control
statements — unconditional, conditional, and iterative.

UNCONDITIONAL CONTROL STATEMENTS.

The GO TO statement causes an unconditional transfer of control to another part of
the program.

The GO TO Statement

The GO TO statement may be written in any one of three ways:
®m GO TO <designational expression®

m GOTO «designational expressiony»

m GO <Ldesignational expression>

There are three forms of designational expressions, the label being the simplest.

Example:

L:Q = SIN(SQRT(Z)) %
L}

GO TO L %

GO TO L interrupts the normal sequence of instructions and restarts at the state-
ment with the label L.

6

SECTION:

UP-7544 UNIVAC 1108 ALGOL l

PAGE:

Alternatively the designational expression may take the form of a conditional ex-
pression.

Example:

GO TO IF X EQGL Y THEN L1 ELSE L2 %

In this case if X equals Y, control is transferred to the statement labeled L1;
otherwise, the transfer is to L2.

A third form of designational expression is a SWITCH variable explained below.

6.2.2. The SWITCH

The SWITCH declaration names a group of alternative points in a program to which
control may be transferred. It includes a means for selecting a given designational
expression from the SWITCH list by means of a subscript expression (evaluated at
execution time) with the SWITCH identifier. In effect, the SWITCH declaration
defines a SWITCH variable which is similar to a one-dimensional array except that
the elements are designational expressions.

To start with, a switch must be described by a SWITCH declaration prior to its use
as a switch variable. The range of subscripts is from 1 to n, where n is the number
of elements in the switch list. If a subscript expression on a switch variable falls
outside the defined range of the switch, then the switch operation is ignored.

The general form of the declaration is

SWITCH <switch identifiery = &£switch list>

or

SWITCH SWITCH 1 =eq, e, €3, — — —e; $

where SWITCH1 is the name of the switch and ey — — — e, are designational
expressions.

A switch element is referenced in a GO TO statement by means of the switch
identifier with the appropriate subscript:

GO TO SWITCHN1(I)

where I is an arithmetic expression. This expression is evaluated when the GO TO
is executed. Control is transferred to the statement designated by element I in the
switch list of the SWITCH declaration (counting from left to right).

To illustrate, assume that it is necessary to transfer to statements labeled L1,
L2, L3, and L.4 depending on whether the value of J is 1, 2, 3 or 4. This could be
accomplished with the following GO TO statement:

60 TO IF J EQL 1 THEN L1 ELSE
IF J EQL 2 THEN L2 ELSE
IF J Eck 3 THEN L3 ELSFE
IF J EQL 4 THEN L4 %

I Rev. 1

UP-7544 UNIVAC 1108 ALGOL

SECTION: PAGE:

However, it is much easier to set up a switch to accomplish the same thing

SWITCH S = L1lr L2 L3 LU %

L]
L]
L]
(]
G

0 70 S(J) %

Example:

SWITCH S = L1y IF X GTR Y THEN L2 ELSE L3+ L4, T(I+6)» LS %

If the switch variable S is referenced from a GO TO statement
GO TO S(J)o

the following transfer of control is made depending upon the value of J:

(1) If J = 1 then control transfers to L 1.

(2) If J = 2 then control transfers to either L2 or L3 depending upon X and Y.

(3) If J = 3 then control transfers to L4.

(4) IfJ = 4 then control transfers to the label which is the value of the (I+6)th
designational expression of the switch T.

(5) If J =5 then control transfers to L5.

6) Ifj<1

or

J > 5 then no transfer is executed.

6.3. CONDITIONAL CONTROL STATEMENTS

Conditional control statements cause certain statements to be executed or skipped
depending on values of Boolean expressions. The |F statement provides for executing
a statement if, and only if, some relation is true and for skipping over a statement if
this relation is false.

The |F statement may take the form:

IF B1 THEN S1 % S2 %

where Bl is a Boolean expression, Sl is a statement not beginning with IF, and S2
is any statement. If Bl is true, then S1 is executed after which control passes to
§2. If Bl is false, then S1 is skipped and control continues at S2.

In diagram form:

Bl True

1 \

IF B1 THEN S1 $ S2 $

Bl False

UP-7544 UNIVAC 1108 ALGOL ’

SECTION: PAGE:

The general form of the |IF statement is:

IF 81 THEN S1 ELSE S2 % 53 %

If B1 is true, statement S1 is executed and statement S2 is skipped; if Bl is false,
statement S1 is skipped and S2 is executed. In either case, control continues with
statement S3 (except when either S1 or S2 contains a GO TO statement).

In diagram form

Bl True

I v Y

IF Bl THEN S1 ELSE S2 $ S3 %

B1 False

In conditional statements, the statement following THEN can not start with IF. It
may be conditional only if it is enclosed by a BEGIN — END pair. There is no
restriction on the type of statement following ELSE.

Example:

IF BOOL THEN BEGIN IF C GEQ@ =5 THEN GO TO CHECK
END ELSE V = V+1 %

The following example illustrates ‘‘nested’’ conditional statements:

Bl True B 7
i Em— "

IF Bl THEN S1 ELSE IF B2 THEN S2 ELSE S3 § S4 %

b I

Bl False B2 False

Example:

IF DISC LSS 0 THEN GO TO IMAGROOTS
ELSE IF DISC EQL O THEN X1 = X2 = =B/(2%A)

ELSE BEGIN
SDISC = SQRT(DISC) %
X1 = (=B+SDISC)/(2*p) %
X2 = (=B = SDISC)/(2%A)
END %

6.4. ITERATIVE CONTROL STATEMENTS — THE FOR STATEMENT

The FOR statement facilitates programming iterative operations. A part of the pro-
gram is iterative if it is to be executed repeatedly a specified number of times, if it
is to be executed for each one of a designated set of values assigned to a variable,
or if it is to be executed repeatedly until some condition is fulfilled. The FOR
statement handles any of these three conditions.

UP-7544

SECTION: PAGE:

UNIVAC 1108 ALGOL '

6.4.1

6.4.2.

The general ALGOL FOR statement consists of a <FOR clause>» followed by a
statement S (simple or compound) where a< FOR caluse> is:

FOR <variable> = <FOR list> DO

The <FOR list> is a sequence of <FOR list elements> separated by commas.
The value of each <FOR list element>» is assigned to the controlled or iteration
variable in turn from left to right and the statement S is executed once for each value.

All FOR list elements must be of a type compatible with the controlled variable
which may be any type of simple or subscripted variable.

There are three possible kinds of FOR list elements:

m <arithmetic expression>

m <arithmetic expressionyp STEP <arithmetic expression> UNTIL <arithmetic
expressiond

8 <arithmetic expression» WHILE <Boolean expression>

. Simple List Element
FOR V = < arithmetic expression®» DO S §
or
FORV:el, €y, €3, €4, — — — €N DO S §
The controlled variable V is successively given the values of the arithmetic ex-
pressions, ey, ey, €3, — — — ey. The statement S is executed once for each value
of V.
Example:

FOR X = 100'105'2.5'305'705 DO S %

STEP - UNTIL List Element

FOR V = < arithmetic expression > STEP < arithmetic expression >
UNTIL < arithmetic expression > DO S §

or
FOR V = E1 STEP E2 UNTIL £E3 DO S %

where El is the starting or initial value of V
E2 is the increment by which V is increased algebraically
E3 is the limiting or terminal value of V

UP-7544

UNIVAC 1108 ALGOL ‘

SECTION: PAGE:

The effect of the FOR statement is probably best described by the equivalent
ALGOL statements:

V=ELlS

L1: IF (V=-E3)*SIGN(E2) LEQ 0 THEN
BEGIN

S %

V=V+E2EHS

GO TO L1

END

In all cases if the test fails initially, the statement S is not executed at all.. SIGN

(X) is a call on a standard function which will return the value 1,0, or —1 depending
on whether the value of the argument X is positive, zero, or negative, respectively.
This can be shown graphically as follows:

V assumes initial
value, E1

V - E1l (V - E3)* SIGN(E2)

V=V+E2

Add increment 1
to 'V

STATEMENTS

The statement S may redefine V as well as the variables appearing in E2 and E3.
Changing E1 will have no effect on the execution of the FOR statement as the
initial value is assigned to V before S is executed. Extreme care must be taken
in assigning values to V within S as this may prevent V from reaching the terminal
value.

The more compact form of the FOR statement

FOR V = (E1+£2+E3)DO0 S %

may be used instead of

FOR V = E1 STEP E2 UNTIL E3 DO S 3

FOR I = 1 STEP 1 UNTIL N DO S %

FOR I = (101/N) DO S % '
FOR X = (342941¢9.9) DO S %

UP-7544

UNIVAC 1108 ALGOL ' SECTION: PAGE:

6.4.3. WHILE List

FOR V = < arithmetic expression > WHILE < Boolean expression > DO S §
or
FORV = EWHILEBDOS S

First V is set equal to the arithmetic expression E. If B is ttue, statement S is
executed. After the execution of S, V is replaced by E and again B is tested. If,
on the other hand, B is false, then S is skipped and control resumes with the state-
ment following the FOR statement.

This can be represented graphically as follows:

FALSE

E=——V

TRUE

STATEMENT
S

The statement S may redefine V or the variables in the expressions E and B.

Example (taken from Problem 2 Appendix D):

FOR B = 0.5 * (A/701.DB + OLOB)
WHILE ABS(B=OLDB} GTR 10%k(=6)*RB
DO OLDB =B %

In this example the FOR statement is executed until B, the square root of A, is
accurate to six digits.

The three forms of the list elements may be combined:

FOR K = 1¢3¢5,10 STEP 2 UNTIL 20,50 WHILE B DO S %

The statement S will be executed for
K -=1,3,510,12,14,16,18,20 and

will then assume the value 50 as long as B is true.

UP-7544

6

UNIVAC 1108 ALGOL '

SECTION: PAGE:

6.4.4. Termination of FOR Statements

The following section should be carefully read because it deals with concepts that
are not defined in rigorous ALGOL 60. The problem is that a program written in
UNIVAC 1108 ALGOL 60 which utilized these concepts would possibly not work

on a machine with a different version of ALGOL. The concern here is with the
value of the iteration variable in a FOR statement when the FOR statement is
terminated. The ALGOL 60 report leaves this value as undefined when the FOR
statement is terminated by exhaustion of the <FOR list> , but in UNIVAC 1108
ALGOL it is well defined, and indeed, very useful. It is because of its usefulness
that it is documented hete with the warning that it may not work on another machine.

If the statement S has a GO TO statement leading out of the FOR statement, the
value of the iteration variable is the same as it was before the GO TO statement
was, executed. (This is also true in ALGOL 60.) If the exit is made from the FOR
statement because of the exhaustion of the < FOR list>, then the value of the
variable is that value it held last as may be determined from the equivalent ALGOL
statements. For example, to find the first nonblank character of a string, either
one of two methods could be used.

STRING S(120)%

INTEGER IsR %

I=0 %

FOR I=I+1 WHILE (I LSS 121 AND S(I) EaQL * ')
DO 3

IF I EQL 121 THEN GO TO STRINGALLBLANK

ELSE FOUNDIT: R=RANK(S(I)) %

That method depends on the exhaustion of the <FOR list> , either because the
whole string has been scanned or because a nonblank character has been found.
In one case, the final value of I is 121 and in the other it is the index to the non-
blaak character. Note that a dummy statement DO $ follows the FOR statement
(see 5.7). RANK is a standard function returning the Fieldata equivalent of the
first character of the string.

The second method is as follows:

FOR I=(1¢1+120) DO IF S(I) NEQ ' ' THEN GO TO FOUNDIT %
G0 TO STRINGALLBLANK %
FOUNDIT: R=RANK(S(I)) %

This method produces the correct value of I because an exit is made from the FOR
statement by a GO TO statement.

UP-7544

6

UNIVAC 1108 ALGOL l

SECTION:

PAGE:

A GO TO statement from outside a FOR statement referring to a label within the

FOR statement may result in an undefined situation and should thus be avoided.

FOR I=(1.1,N) DO

BEGIN

L

L:

.

L]

END %
L]
GO TO L %

The above statement, GO TO L, is not allowed.

However, it is easy to program the above logic by not using the FOR statement.

Example:
1 =0
LOOP: I = I+1 &
[
.o o
[]
[]
e IF T LSS N GO TO LOOP %
[)
[

GO TO L %

UP-7544

7

SECTION: PAGE:

UNIVAC 1108 ALGOL

7.1

7. PROCEDURES

INTRODUCTION

A procedure in ALGOL is used to specify an independent section of a program (which
usually represents an algorithm) that can be called or executed at different points
throughout the same program or may be used in other programs. The operations to be
performed are fixed, but a list of parameters makes it possible for a procedure to be
used with varying values and/or variables.

A procedure must be declared in the declaration part of the block in which the pro-
cedure is referenced. More than one procedure may be defined at the beginning of a
block. During program execution when a block is entered, the first statement executed
is the first executable statement following the procedures (if any).

The procedure declaration consists of a procedure heading and a procedure body.
The heading consists of a procedure identifier, a formal parameter list, if any, a
value list, if any, and specifications, if any. The procedure body follows the spec-
ifications and consists of a statement, compound statement, or a block.

Example:

PROCEDURE NFACT (ARG1» ARG2) %

INTEGER ARGl» ARG2 %

BEGIN
INTEGER I %
ARGZ = 1 %
FOR I = 1 STEP 1 UNTIL ARG1 DO

ARGZ2 = ARG2*I%
END

In the above example NFACT is the identifier for a procedure that calculates the
value of N factorial. ARG1 and ARG2 are the formal parameters (arguments) for the
procedure. ARG1 is the number whose factorial is to be calculated, and ARG2 is the
result after the procedure has been executed. ARG1 and ARG2 are INTEGER vari-
ables. The BEGIN—END pair sets off the body of the PROCEDURE. The BEGIN-
END pair can be dropped if the procedure body is just one statement. Since I is de-
clared as an INTEGER, it is local to NFACT.

A ‘‘call’’ of the above procedure would be of the form:

NFACT (N»FACT) $

NFACT (N1.FACT1) $

7

SECTION:

UP-7544 UNIVAC 1108 ALGOL ‘

PAGE:

In the first call, the actual parameters N and FACT are substituted for the formal
parameters ARGl and ARG2. Later the parameters-N1 and FACT1 are substituted
for ARG1 and ARG2 in the same fashion. Thus procedure is a closed subroutine,
and the call establishes a linkage to the subroutine.

An alternate form of the parameter list allows comments to be inserted between the
formal parameters since the comma separating formal parameters is equivalent to:
) < string > : (

PROCEDURE NFACT (ARGle ARG2)

could be written as:
PROCEDURE NFACT (ARG1) AND STORE RESULT IN! (ARG2) %
or

PROCEDURE NFACT (ARG1) ARG1 INPUT AND ARG2 OUTPUT: (aRG2) %

The following is a procedure for.the multiplication of two matrices:

PROCEDURE MATMUL (A»BeCeNIMIP) $
REAL ARRAY A'BeCr %

INTEGER N+MeP %

BEGIN INTEGER IrJeK %

REAL TEMP %

FOR I=1 STEP 1 UNTIL N DO

FOR J=1 STEP 1 UNTIL P DO

BEGIN TEMP=040 $ FOR K=1 STEP 1 UNTIL M DO
TEMP=TEMP+B(I 'K} *xC(KodJ) %
A(IyJ)=TEMP END I+J LOOP

END MATMUL %

A procedure statement calls for the execution of a procedure body.

Given the declaration
REAL ARRAY A1(1231001:7)% A2(1310,1215)e A3(1:1501:7) %
then the procedure statement

MATMUL (A1,A2¢:A3910¢1597) %

has the effect of multiplying the two matrices A2 and A3 and storing the results in
Al.

Expressions may also be used as actual parameters. Care must be taken to match
the type and kind of each formal and actual parameter in any call.

UP-7544

7
UNIVAC 1108 ALGOL ' SECTION: PAGE:

7.2. VALUE ASSIGNMENT (CALL BY VALUE) AND NAME REPLACEMENT (CALL BY

NAME)

The above procedure NFACT makes use only of the value of ARG1 whereas it changes
the value of the actual parameter which replaces ARG2. Thus NFACT could be re-
written as follows:

PROCEDURE NFACT (ARGLlr ARG2)
VALUE ARGl %
INTEGER ARG1l» ARG2 %
SEGIN

- INTEGER I %

ARG2 = 1 %

FOR I = 1 STEP 1 UNTIL ARG1 DO
ARG2 = ARG2*]

END%

The procedure statement

NFACT (NUMRER FACTORIAL) %

has this effect: the value of the actual parameter, NUMBER, replaces ARG1 when
the procedure statement is encountered and NFACT does not have access to the
location assigned to NUMBER. ARG1 is known as a € Call by value> parameter.
A value parameter must also have a type specification and cannot appear to the left
of the replacement operator in the procedure.

Any parameter (such as ARG2) which is not listed in the VALUE part of the procedure
declaration is said to be a <Call by name> parameter. The name FACTORIAL re-
places the name ARG2. The value of FACTORIAL is changed as the procedure is
executed.

In the following examples, numeric values or expressions are used as actual para-
meters:

NFACT (15,FACT1) %
NFACT (J+K+M'FACT2) %

It should be noted that a value parameter which is an array or string identifier re-
quires that the entire array or string supplied by the procedure call be copied locally
within the procedure. As a result large amounts of working storage may be used un-
expectedly when the procedure is called. All calculations in the procedure use that
temporary copy. As an example, suppose it is necessary to find the determinant of
a matrix without destroying the matrix. The usual computational methods for finding
determinants destroy the matrix with which they are working. Thus the original
matrix must be copied somewhere. Specifying the array as VALUE accomplishes
this:

UP-7544

Rev. 1 7
UNIVAC 1108 ALGOL SECTION: PAGE:

7.3.

REAL PROCEDURE DET(A) SQUARE MATRIX WHOSE DIMENSION TS:(N)%
VALUE AsN %

REAL ARRAY A %

INTEGER N %

BEGIN

(STATEMENTS)

DETzooo END DET %

This is an example of a function procedure explained in 7.4. If an expression is used
as an actual parameter, and if the parameter is called by name, then the expression
is reevaluated at each occurrence of the formal parameter in the procedure.

SPECIFICATIONS

The <type> of all formal parameters defined by a procedure declaration must be
specified in the specification part of a procedure heading. The format of the speci-
fication part is as follows:

<specificationy» <identifier list>;

The specification may be in any one of the following forms:
<type>

ARRAY

<type> ARRAY

STRING

STRING ARRAY

PROCEDURE

<type> PROCEDURE

LABEL

SWITCH

FORMAT

LIST

and< type> is one ALGOL type: INTEGER, REAL, REAL 2, BOOLEAN, or COMPLEX.

The <identifier list> consists of the formal parameter identifiers contained in the
procedure declaration separated by commas.

The reason that all formal parameters must be specified is that the compiler must
know the type and kind or class of all parameters in order to compile proper machine
code.

Examples:

INTEGER I» K ¥

REAL X» Y 3

REAL ARRAY Z
BOOL.LEAN PROCEDURE F 3
STRING S ¥

7

SECTION: PAGE:

UP-7544 UNIVAC 1108 ALGOL '

Specifications do not include information about lengths of strings, the dimensions
and bounds of arrays, the formal parameter parts of procedures, or the contents of
formats and lists. The actual declarations of these exist elsewhere in the program.
The details of constructing a procedure can be illustrated by an example:

PROCEDURE TRANSPOSE (A) ORDERI(N) %
VALUE N %
ARRAY A %
INTEGER N %
BEGIN
REAL W %
INTEGER Iv K %
FCR I = 1 STEP 1 UNTIL N DO
FOR K = 141 STEP 1 UNTIL N DO

BEGIN
W= A(I»K) &
ACTIeK) = A(KeI) %
A(KeI) = W

END

END TRANSPOSES$

7.4. FUNCTION PROCEDURES

Procedures which are to be used as functions (e.g., SIN, EXP) must have a type
associated with the procedure identifier (i.e. procedure name). This type declaration
must be the first symbol of the procedure declaration. Also for the function procedure
to have a value associated with it, the procedure identifier must occur at least once
as the left part of an assignment statement in the procedure body. In addition, at
least one of these assignment statements must be executed on a given procedure call
for a value to be assigned to the procedure. If more than one such assignment state-
ment is executed within the body, then the last one executed before exiting from the
procedure determines the value associated with the procedure. Any other occurrences
of the procedure identifier within the body of the procedure are considered as re-
cursive calls on the procedure.

The procedure NFACT could be written so that the only parameter would be N and the
value of NFACT would be N factorial.

INTEGER PROCEDURE NFACT (ARG) %
INTEGER ARG %

HBEGIN
INTEGER I» TEMP %
TEMP = 1 %

FOR I = 1 STEP 1 UNTIL ARG
DO TEMP = TEMP*I%
NFACT = TEMP
END NFACT 9

The call for the above procedure would be of the form

COMMENT SET FACT = N FACTORIALS
FACT = NFACT(N) $

UP-7544

UNIVAC 1108 ALGOL SECTION: PAGE:

7.5.

A function procedure is referenced by a function designator which defines a single
numerical or logical value. NFACT(N) is a function designator which will have an
integral value and can thus be used in any expression in which an integer variable
could be used.

RECURSIVE PROCEDURES

In the example above, a new variable TEMP was used to store the intermediate result
of the calculation of N factorial. Then the extra statement NFACT = TEMP was
needed to give NFACT the proper value. The reason for this is that inside the pro-
cedure body, whenever the name of the procedure occurs on the left-hand side of an
assignment statement, it is a < procedure assignment > statement, that is, the state-
ment which assigns the value to the procedure. Wherever else the name occurs, it is
a call on the procedure:

This kind of construction can be used to produce another version of NFACT which
is even simpler to write. In fact, it requires only one statement in the procedure
body:

INTEGER PROCEDURE NFACT(N) %
INTEGER N %
NFACT = IF N EQL 0 THEN 1 ELSE N*NFACT(N=-1) %

which is equivalent to the recursive definition

1 n=0

i

factorial(n)

n*factorial (n-1) n >0

A procedure call with the actual parameter 4 (FACT = NFACT(4)) has the following
effect. After the subroutine linkage is set up, the procedure body is virtually changed
to:

NFACT=IF 4 EQL O THEN 1 ELSE 4%
NFACT (3)

NFACT(3) is another call of the functional procedure having the result that the call
is replaced with the procedure body: :

NFACT=IF 4 EQL 0 THEN 1 FLSE 4 %
(IF 3 EQL 0 THEN 1 ELSE 3*NFACT(2))

This produces another call on NFACT resulting in another change of the statement.
This goes on until finally:

NFACT=IF 4 EGL 0O THEN 1 ELSE 4%
(IF 3 EQL 0 THEN 1 ELSE 3%(IF 2
EQL 0 THEN 1 ELSE 2* (IF 1 EGL O
THEN 1 ELSE 1*(IF 0 EQL 0 THEN 1
ELSE 1% (NFACT(0)))))) %

UP-7544

UNIVAC 1108 ALGOL

SECTION: PAGE:

7.6.

7.6.1.

The process is terminated when 0 EQL 0 occurs in the relation of the conditional
expression. The usual expression for the factorial is obtained after the unnecessary
parts of the above statement have been removed:

4 factorial =4*3*2%*1

All procedures written in ALGOL may be called from within themselves. But it
should be mentioned that recursive procedures are not always put to good use. For
example, using the recursive properties of procedures makes a much neater looking
NFACT, but also a much less efficient one. However, recursive procedures may
have practical uses. For example, multiple integration programs use a quadrature
procedure to evaluate the inner function as well as to do the integration. (See ACM
Algorithm 233 ““Simpson’s Rule for Multiple Integration,”” Communications of the
ACM Vol. 7, No. 6, June 1964.)

EXTERNAL PROCEDURES

External procedures are procedures whose bodies do not appear in the main program.
They are compiled separately and linked to the main program at its execution. The
EXTERNAL declaration serves the purpose of informing the compiler of the existence
of these procedutres, their types (if any), and the proper manner to construct the
necessary linkages. The general form of the external declaration is:

EXTERNAL <kind> <type> PROCEDURE < identifier list>

where <type> is the arithmetic type or is empty, < identifier list> is a list of identi-
fiers of external procedures, and

<kind> ::= empty/FORTRAN/NON—-RECURSIVE

The words ‘FORTRAN’ and ‘NON—-RECURSIVE’ have special significance only in
this context. Procedures of kind < empty> are ALGOL procedures and are treated
exactly like an ordinary procedure declared within the program. However, they need
not be written in ALGOL language. Procedures of kind ‘FORTRAN’ are FORTRAN
subroutines or functions and procedures of kind ‘NON—RECURSIVE’ are necessarily
written in machine language. In the following paragraphs we assume a knowledge of
the UNIVAC 1108 Executive System, FORTRAN (see 7.6.2), and the UNIVAC 1108
Assembler (see 7.6.3). ' ‘ '

ALGOL External Procedures

An ALGOL program which consists entirely of a procedure is nonexecutable be-
cause it contains only a procedure declaration (see 7.1.). When such a program is
compiled, the name of the procedure is marked as an entry point when the program
is entered into the program file. Like all names in the program file the first six
characters of the procedure name must define it. Such a procedure may be refer-
enced from another ALGOL program as an external procedure. :

7

SECTION:

UP-7544 UNIVAC 1108 ALGOL l

PAGE:

Example:
PROGRAM 1

BEGIN REAL PROCEDURE DET(AN)%
REAL ARRAY A %

INTEGER N $

VALUE A'N %

BEGIN
COMMENT THIS PROCEDURE FINGS THE DETERMINANT OoF A REAL M BY N

MATRIX Ar LEAVING A UNCHANGED AND ASSIGNING THE VALUE TO DET %

.
DET =-e o« o« END DET
END %

PROGRAM 2

BEGIN REAL ARRAY MATRIX (1:10.1:10) %
EXTERNAL REAL PROCEDURE DET $

WRITE(DET(MATRIX»10)) %

END %

A user could build a library of procedures that are useful to him and then refer to
whichever he needed by merely declaring them as external procedures in his main
program.

7.6.2. FORTRAN Subprograms

A FORTRAN subroutine or a FORTRAN function may be made available to an
AL GOL program by the declaration:

EXTERNAL FORTRAN < type> PROCEDURE < identifier list>

Actual parameters in calls on such procedures may be either expressions or arrays.
(Labels, string expressions, and string arrays are specifically excluded.) The
FORTRAN subprogram is a subroutine or function depending on the absence or
presence of < type®» in the external declaration. A FORTRAN function is used
like an ALGOL functional procedure i.e., as an expression. For example, if

DET (above) wete a FORTRAN subroutine:

PROGRAM 1

SUBROUTINE DET(AsNeD)

DIMENSION A(NeN)

C DET FINDS THE DETERMINANT OF A REAL NXN
C MATRIX A AND LEAVES THE RF‘SULT IN Do

C DESTROYING A.

D:.QQ

END

UP-7544

7

SECTION:

UNIVAC 1108 ALGOL |

PAGE:

7.6.3.

PROGRAM 2

BEGIN REAL ARRAY MATRIX(1:10,1:10) %
REAL DETVALUE %
EXTERNAL FORTRAN PROCEDURE DET $

DET(MATRIXe10,DETVALUE) %
END % ’

Machine Language Procedures

A procedure written in 1108 Assembler language may be referenced in either of two
ways. The more difficult manner occurs when the procedure is declared exactly as
an ALGOL external procedure. In this case the Assembler procedure must behave

like an ALGOL procedure (that is, it must be able to handle recursive calls). Here
the nonrecursive case is considered. The form of the declaration for these is:

EXTERNAL NON—-RECURSIVE < type> PROCEDURE <« identifier list >

To understand how to write such procedures consider the coding produced by the
ALGOL compiler as the result of a call in the following program:

EXTERNAL NON=~RECURSIVE PROCEDURE PUNCH %
INTEGER Qr S %

PUNCH(G»S) %

The statement PUNCH (Q,S) results in the four lines of coding:

LMJ 11,PUNCH

+ 2

F 00+01,0190Q
F 00e01+010S

The second line states the number of parameters being handed through and the
following lines provide information about each parameter in turn. The actual form
of IF is defined elsewhere in the system by a FORM directive

F FORM 6 3¢ 30 24

which specifies the number of bits in each field of F. (See “UNIVAC 1108 As-
sembler Programmers Reference Manual,’”’ UP-4040.)

UP-7544

7

SECTION:

’ Rev. 1

UNIVAC 1108 ALGOL

PAGE:

10

The four fields of F are defined and encoded as follows:

KIND

00 = Expression
010 = Array
050 = Label

il

TYPE

01 = INTEGER
02 - REAL

03 = COMPLEX
04 = BOOLEAN

05 = STRING
06 = REAL 2
REFERENCE
00 = Constant
01 = Name
02 - Indirect
06 = Result
LOCATION

The location field specifies the location of the parameter. Indirect addressing may
be specified and index register 11 is usually designated in this 24—bit field. With
this in mind, the following rules should be followed in writing an Assembler pro-
cedure:

(1) The return point for a call with N parameters is (X11)+N+1.

(2) The value of the procedure (if any) must be left in register A2 (and A3 for
COMPLEX and REAL 2), absolute 14.

(3) Registers 1—4 may not be used without saving and restoring.

(4) Register 10 must never be destroyed.

(5) The Ith parameter should be referenced by an indirect command, e.g.,

LA A2er%xIeX11

If the parameter under reference is a double-word quantity (COMPLEX or
REAL 2) its second half is in the next location, and the parameter should be
referenced with a DL A2,*1,X11

oL A2r%T9X11

(6) When using an arithmetic or a Boolean expression, the word referenced in rule
(5) is the value of the expression.

(7) When using either an arithmetic or a Boolean array, the word referenced in (5)
is itself the address of the following information:

number of elements , address of first element
precision , N

lower bound (N) , length (N)

lower bound (1) , length (1)

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

11

where N is the number of dimensions of the array, lower bound (I) is the value
of the lower bound of subscript position (I) and length (I) is its length.
(8) When using a string expiession, the word referenced in (5) is a string descriptor

of the form:

F FORM 1206018

F length, start, address

‘length’ is the length of the string which starts at character position ‘start’ of
the word at ‘address.’ For this purpose ‘start’ is coded as 0—5 to select a sixth
of a word, S1-S6.

(9) When using a string array, the word referenced in (5) consists of two addresses,
the left one being the address of a string descriptor and the right one the address
of the array information (as in 7). The address field of the string descriptor
must be added to the first element address to find the first element of the string
array. Both arrays and string arrays are stored by column.

(10) The name of the external procedure must be the entry point of the Assembler

procedure.

8 1
SECTION: PAGE:

UP-7544 UNIVAC 1108 ALGOL l

8. BLOCK STRUCTURE

8.1. GENERAL

In ALGOL 60 a program is a block. In turn, this block may contain subblocks. This
structure serves to facilitate the construction of a program, for these subblocks may
be checked out independently before being fitted together in the final program.

8.2. BLOCKS

A block consists of two parts, a heading and a body.. The heading comes first and is
identified by the symbol BEGIN or €label> :BEGIN. This is followed by all the
declarations needed within the block: simple variables, arrays, strings, lists, formats,
procedures, etc. The body of the block contains the statements of the block. The
end of the block comes with the matching END to the BEGIN of the block head.

Example:

BLOCK1?! BEGIN REAL ARRAY X(1:10) $
INTEGER I %
FOR I=(1,1,10)D0 X(I)=SIN(I) %
END

The first two lines constitute the block head and the other statements constitute the
body. The block head may appear in the body of another block. The inner block is
then said to be ‘nested’ in the first (outer) block:

BEGIN INTEGER N $
READ(N) %
BEGIN REAL ARRAY A(1iINs1:N) $

END INNER BLOCK
END OUTER BLOCK

As a special case, the first (outermost) block of the program need not be enclosed
in a BEGIN-END pair, although formally this is required. Instead a program may
start with a declaration. All other blocks do require a BEGIN-END pair. The
double use of the BEGIN—-END parentheses should be noted by the user. A group of
statements enclosed by a BEGIN-END pair forms a compound statement if the state-
ment following the BEGIN is not a declaration. If this statement is a declaration, a
new block is defined rather than a compound statement.

UP-7544

UNIVAC 1108 ALGOL

o8
"SECTION: PAGE:

8.3. LOCAL AND GLOBAL IDENTIFIERS

All identifiers declared within a block are caled local identifiers (i.e., local to the
given block). Any that do not occur in declarations in the given block, but that do
appear in a block containing the given block, are called global or nonlocal identifiers
(to the given block). Each block introduces, at the time it is entered, a new level of
nomenclature in the sense that all identifiers declared for the block assume the
meaning implied by the declaration. However, identifiers in blocks containing the
given block which are not redeclared retain their old significance. When the block

is left, all the identifiers declared within it lose all their significance. When a
variable is declared in an outer and also in an inner block, the variable assumes the
value last assigned in the outer block on exit from the inner block.

Example:
BLOCK1: BEGIN REAL X %
INTEGER I %
X=2 %
BLOCK2: BEGIN REAL Y %
INTEGER I %
YzX %
I=X %
END BLOCK 2 %
I=X %
END BLOCK 1

This example has two blocks, the first with variables X and I and the second with
variables Y and I. The I of block 1 cannot be referenced from within block 2 because

‘block 2 has its own I.

Note that an identifier such as Y in the example, existing in an inner block, can
never be referenced from an outer block because the identifier has no meaning in the
outer block. In particular, this means that all labels (which are defined not by
declaration, but by occurrence) are local to the block in which they occur, and so
cannot be referenced from outside. Thus, a GO TO statement cannot lead into the
middle of a block. All blocks must be entered through their headings. Exit is made
from a block either by ‘‘falling through’’ the bottom of the block through the last
END, or by a GO TO statement which must lead to an outer block.

The OTHERWISE declaration has the effect of stopping any reference to global
(simple variable) identifiers.

Example:

BEGIN REAL X %

L}
BEGIN INTEGER OTHERWISE $
X=0 %

END %

END %

UP-7544

PAGE:

UNIVAC 1108 ALGOL)

SECTION:

8.4.

In the inner block, the variable X is an integer variable (now defined in this block)
rather than the REAL X of block 1. If, in the above example, a thitd block was
nested in block 2 and reference was made to an undeclared variable called Z, then
Z would be defined as an integer local to the block with the OTHERWISE declara-
tion. Blocks need not be nested; they can be disjoint, in which case there is no
communication of identifiers:

BEGIN REAL eee$

END %
BEGIN INTEGERees%

L]
END 5

The programs may be written by two different people, checked out separately, and
then joined together in this manner with absolutely no problems about conflicting
use of identifiers.

THE LOCAL DECLARATION

Since the 1108 ALGOL 60 compiler examines the source language only once, it must

never meet an identifier without knowing what the identifier represents. For example,
suppose P and Q are procedures declared in the same block and in the body of P is a
call to Q. The declarations could be arranged so that Q is first:

BEGIN PROCEDURE Q@ %
BEGIN

END Q %
PROCEDURE P $
BEGIN

L]
Q %

END P %

PAGE:

Rev. 1 8
UP-7544 UNIVAC 1108 ALGOL SECTION:

But if Q also calls P (P and Q are mutually recursive) then clearly it is impossible
to put them both first. The LOCAL declaration must be used to resolve such forward
references (using an identifier before it is defined):

BEGIN LOCAL PROCEDURE P %
PROCEDURE @ %
BEGIN

P %

END @ %
PROCEDURE P %
BEGIN

Q
END P %

The allowable uses of the LOCAL declaration are:

LOCAL LABEL oo

LOCAL PROCEDURE o4

LOCAL < type > PROCEDURE s 4.4
LOCAL SWITCH eee

LOCAL FORMAT ees

LOCAL LIST s..

The only relaxation of this rule is that a label serving as the object of a GO TO
statement or in a SWITCH declaration need not appear in a LOCAL declaration;
instead it is assumed that it will eventually be defined in the block. Thus the

GO TO statement or SWITCH declaration has the same effect as a LOCAL declaration.
However, if the label is already defined in an outer block of the given block (either

by occurrence, LOCAL or SWITCH declaration, ot as the object of a GO TO statement)
then that definition of the label is assumed for the inner block.

To further illustrate the concept of local and global identifiers consider the block
displayed in Figure 8—1. The variables I, J, K, X, Y, Z and labels L1, L2, are

local identifiers in block 1. Only I, K, X, Y, Z, L1, L2 will be global to block 2,
while J is redefined and local in block 2 along with L, M, U, V. In block 3,1, Y, Z,
L1, L2 from block 1 are global along with J, L, U, V from block 2. K, M, N, W, X,
and L3 are local in block 3. Consider the statement, L3. The global variable Y will
be replaced by the sum of the local variable X with the product of the global variables
V, Z. The statement L4 in block 4 looks the same as L3 in block 3. However, the
variable X in this case refers to the variable X in block 1 rather than the variable X
in block 3; hence the effect of the statements will be different.

UP-7544

8

lSECTION:

UNIVAC 1108 ALGOL l

PAGE:

In block 5, the statement labeled L5 has an erroneous GO TO L4 after the word
THEN. The label L4 is defined in block 4 and has no meaning within block 5 since
the blocks are disjoint. However, the GO TO L1 is correct and will send control to
the statement labeled L1 in block 1. This in effect will cause the program to re-
enter block 2.

Block 1
INTEGER I»JeK?$
REAL XeYeZ3
L1: BEGIN
INTEGER Jrel oM} Block 2
REAL Ue Vi
BEGIN Block 3
INTEGER KeMoN3
REAL WeX3i
L3 Y=X+V%Z}
END?
BREGIN Block 4
ROOLEAN Rle B23
INTEGER P» Q3
REAL 21» 22}
L4s Y=SX+V%Zi
END?
END3
L2: BEGIN Block 5
INTEGER Vo 2%
REAL I» M}
BOOQLEAN B1l3
LS: IF Bl THEN GOTO Lu ELSE
GOTO L.1}
END?#

Figure 8=1. Local and Global Identifiers

UP-7544

Rev. 1 9
UNIVAC 1108 ALGOL SECTION:

PAGE:

9.1.

9.2,

9. INPUT/OUTPUT

GENERAL

Input and output operations are accomplished in UNIVAC 1108 ALGOL by means of
library procedures. The two main ones, READ and WRITE, are more flexible than
ordinary procedures written in ALGOL because the number of parameters in an actual
call or even the order of the parameters is not rigidly specified. The general form of
1/0 call is:

<1/0 procedure> (Kdevice>, <format identifier> , <modifier list>, <parameter list> ,
<actual label list>)

where <1/0 procedure> is READ or WRITE;

<device > specifies the external medium;

<format identifier> is the name of the format specifying output editing or
card layout for input; '

< modifier list> specifies parameters whose action is to output markers in
the information which later may be used for positioning;

< parameter list> is a list of I/O variables and expressions;

<actual label list > specifies where control will be transferred in case of
contingencies.

The two other important I/0O procedures, POSITION and REWIND, are concerned ex-
clusively with magnetic tape and tape-simulated drum operations.

FREE-FORMAT OUTPUT ON PRINTER AND CARD PUNCH

Arrays and values of expressions can be printed by simply calling the WRITE procedure
in the following way:

WRITE(PRINTER, v{,v, ..., vq)

where each v; is an expression or an array identifier. In a similar manner, if the output
is to be punched, the call is:

WRITE(PUNCH, Vi Vo, - ey V)

PRINTER and PUNCH are device names which specify the output unit to be used. If
no device is named, PRINTER is assumed:

WRITE(vy, v, « - ., vp)

In the following description the word ‘print’ v is used in discussing the action of
WRITE, but the word ‘punch’ may be substituted. Significant differences between the
two devices are noted.

The action of WRITE is to evaluate the expressions in the order they are listed in the
call and print their values in the following manner: except for string expressions, 10
values are printed on each line (6 per card if punching). Each value occupies a field
of 12 character positions or columns. If the actual parameter is an array it is decom-
posed by columns. Each occurrence of WRITE begins printing on a new line.

UP-7544

UNIVAC 1108 ALGOL J

SECTION: PAGE:

Examples:

REAL ARRAY A(1310) %

L]
WRITE(PRINTELPAYS
acts the same as

WRITEAPRINTESrA(L) e A(2)Yra0erp(10))

For multidimensional arrays the decomposition is such that the leftmost subscript varies
most frequently. Thus the sequence

BOOLEAN ARRAY A(li2,1:1291:2) %

NRITE(PRINTER»A) %
acts like

WRITE(PRINGTE R »ACLelel) e AC(2e s 1) v A(L19291) sA(20201)0
ACLr1e2) A (20 102) 02 (10202)0A(29202)) &

The expression or array element is printed in a form consistent with its type.

Type Form
INTEGER Integer form, right justified in the field. Includes a leading
minus if the expression is negative. Leading zeros are not
printed.

REAL and REAL 2 Both types are printed right justified in the form X.XXXX,*NN,
where NN represents the power of ten, preceded by the appropriate
sign. A negative number is preceded by a minus sign.

BOOLEAN Either TRUE or FALSE is left justified in the field.

COMPLEX The real and imaginary parts are each given a field as for REAL.
Thus, only five expressions of type COMPLEX can be printed on
the same line.

Strings are a slight exception in that they always start a new line. Whenever a string
expression occurs as a parameter, the previous expressions, whether their number is a
multiple of 10 or not, are printed. Then the string is printed on a new line. The next
parameter will be printed on the following line. For example, if A and B are REAL
and have the values 7.0 and 0.004 respectively, then the statement

WEITECYAZY A "B Be A QVER RYPA/B)

UP-7544

UNIVAC 1108 ALGOL ‘

SECTION:

PAGE:

VECTOR A

MATRIX B
TRUL

9.3.

would produce the following lines on.the printer:

A=
7406000 00
H=
4o0000P=03
A OVER B
1,7500» 03

Example:

INTEGER ARRAY A(1:15) %
BOOLEAN ARRAY B(1:2e1:2) %
INTEGER I»d %

FOR I=(1s1,15)D0 A(I)=I-3 %
FOR I=(ls192) DO FOR J=(1+1+2) DO B(I»J)=I GEG J %
WRITE('VECTOR A'»A» "MATRIX B*'B) %

produces the following output:

FREE-FORMAT INPUT FROM CARDS

For reading punched cards in free-format mode, the procedure READ is called with

device CARDS:

READ(CARDS, v{,vQ, .+, Vy)

where each v; is a variable or array identifier. Again, if no device is written, CARDS

is assumed:

READ(v{, v9, - » +» Vp)

This procedure reads the next input card and scans the information on it. Each con-

stant on the card is assigned to the next parameter in the order it appears in the call.

UP-7544

UNIVAC 1108 ALGOL

SECTION:

| Rev. 1

PAGE:

9.4.

Arrays are handled in the same manner as for WRITE. Constants on the cards must be
punched in the same form as they appear in the ALGOL source language (see 2.3) with
the exception that a comma(,) may be used in place of the ampersand (&). Constants
on a card are delimited by one or more blanks and by the end of the card. Therefore,
there is no restriction as to where a constant may appear on the card. If there is not
enough information on the first card to satisfy the READ procedure, a second card is
read, and so on. Any information not taken from the last card is lost (i.e., the next
call to READ reads a new card). An * punched on a card causes the remainder of the
card to be ignored. Otherwise, all 80 columns of the card are scanned for information.
An example of a call on READ:

REAL ArB 9%
INTEGER COUNTER %

READ (CARDS»A»BrCOUNTER) %

Data Card

=Tl « 099 362236

assigns the values —7.2 to A, .099 to B and 362236 to COUNTER. It is not necessary
for the type of the constant on the card to match the type of the actual parameter.
Transfer functions are used automatically if such functions are defined (see Appendix
B).

LIST PARAMETERS — THE LIST DECLARATION

A LIST declaration associates a set of ordered expressions with a LIST identifier.
The identifier used in the expressions must be defined prior to their inclusion in
LIST declaration. Thus, the other declarations should precede the LIST declaration.

A LIST may include three kinds of elements:
m Expressions
- M Array identifiers

m FOR clauses

Example:

REAL ARRAY A(1INs1IN) %
INTEGER IeJ %
LIST L1(FOR I=(1s1+N) DO FOR J=(1+1+eN) DO A(TIrJ)) $

L]

READ(LL) S
WRITE(LL) %

This example uses the same LIST for both input and output. Expressions in a list

which are to be within the scope of the FOR statement are surrounded by parentheses
and not by a BEGIN-END pair.

UP-7544

Rev. 1 9

SECTION:

UNIVAC 1108 ALGOL

PAGE:

Another example utilizing LIST:

REAL XrXY $

INTEGER WIDDLE $

BOOLEAN ARRAY @ (1:10) %

STRING BEAN (36%5) $

INTEGER I %

LIST L(1.0rXeXYrFOR I=(191¢5)D0CO(I) »BEAN(36*(I~1)+1,36)),
SQRT (WIDDLE*%3)) $

The LIST L defines the following sequence of expressions:

1.0 X XY @(1) BEAN(1,36) Q(2) BEAN(37936) Q(3) BEAN(73,36)
Q(4) BEAN(109¢36) Q(5) BEAN(145+36) SORT(WIDDLE**3)

Besides being allowable as parameters to READ and WRITE, lists may also be used
as parameters to MAX and MIN. All of the elements in the list are treated as call-by-
name parameters and are not evaluated until they are referenced.

One precaution is required when using a LIST. Do not use a list containing an iteration
variable within the scope of an outer iteration using the same variable as in the following:

INTEGER I %
ARRAY ARGGGHA (1:10) %
LIST LISP(FOR I=10 STEP -1 UNTIL 1 DO ARGGGHA(I)) %

FOR I=(1,2+47)DO
BEGIN

.

WRITE (LISP) %
.

END %

In this case the value of I would be changed in the course of the write statement
causing an infinite loop.

UP-7544

Rev. 1

UNIVAC 1108 ALGOL

SECTION: PAGE:

9.5.

FORMATTED OUTPUT — THE FORMAT DECLARATION

It is often desirable to print or punch information in a specific manner rather than to
accept the positioning automatically provided by the WRITE procedure.

The FORMAT declaration, which is included with the other declarations at the beginning
of the block, provides a means of specifying how a printed page (or punched card) is to
be formatted. A format is a set of specifications that can be interpreted by the 1/0
procedures to control the editing of information. The format takes this form:

FORMAT < identifier> (<format specifications>)
The following lines specify two formats, FEIN and FTWAIN:

FORMAT FELIN(X10¢D7e2¢X5¢R1782A1,1)
FTWAIN(BOrS10eI5eX2rT1U99A3E)S

A single format identifier may be included as a parameter in a call on WRITE, but its
position in the call does not matter. For example, the two following calls in WRITE
are equivalent.

REAL AeB 9

WRITE(PRINTER'FEINeArB)S
WRITE(A»B'FEIN)S

A format specification consists of a series of editing and/or nonediting codes separated
by commas. An editing code corresponds to a value to be printed and specifies how the
value is to be edited. A nonediting code controls printing, spacing or insertion of blanks
or constants into the print line. The action of WRITE, when a format is being used, is
to pair each output expression with its corresponding editing code in the format. Non-
editing codes are executed as they are encountered.

UP-7544

UNIVAC 1108 ALGOL

Rev. 1 9

SECTION: PAGE:

9.5.1.

Nonediting Codes

In nonediting codes listed below, s and t are unsigned integers and w indicates the

number of character positions.

Two conventions are that As is the same as As.0

and A is the same as A0.0. For phases that require a t, both s and t must be less

than 64.

FORMAT CODE

ACTION(PRINTER)

ACTION(PUNCH)

As.t Activate
Es Eject
Xw Expunge
'< any Insert
string literal
not con-

taining a

!>I

Prints the line just
edited. Skip s lines
before printing and
t lines after.

Ejects the page to
logical line s-1 if

s-1 is below margin

on current page. The
next line to be printed,
if it specifies Al.t,
prints on line s. If s-1
is on the current page
and is below the cut-
rent line, Es skips to
s-1 and the page is not
ejected.

Skips the next w char-
acter positions (i.e.,
inserts w blanks in the
line).

Inserts the string
enclosed in quotes
into the line.

Punches the edited
line into a card.
s and t are ignored.

Ignored

Same

Same

Table 9-1. Output Nonediting Codes

Rev.
UP-7544 UNIVAC 1108 ALGOL ev- 1 SECTION: ? PAGE:

9.5.2. Editing Codes

The editing codes are the same for both printing and punching. Each code acts on
one value to be printed. The w specifies the field width (that is, the total number
of character positions to be used in the editing, including signs, decimal points and
comma). If w is too small to do the proper numeric editing, two asterisks are printed
and the value is edited according to R12.5. Any editing done beyond the edge of the
output medium (132 or 128 columns on the printer, 80 columns on the card punch) is
lost. The d is interpreted differently for different codes. In format codes that use no
d (as Sw), w must be smaller than 4096. In codes that include d, w must be enough
larger than d to include at least the decimal point, a sign, and the exponent with its
sign if there is one.

FORMAT CODE ACTION

Bw Boolean Prints TRUE or FALSE in the field, left justified. If the field
is too short as much as possible is printed, e.g., B1 results in
T or F.

Dw.d Decimal Prints a decimal number with d places after the decimal point,
right justified in the field, and with a leading minus sign if
negative.

Iw.d Integer Prints an integer number right justified in the field with a
leading minus sign if negative. The integer is printed to the
base d where d=0 and d=10 are equivalent. In the latter cases
the .d can be omitted. Range of d: 2 < d < 10.

Rw.d Real Prints d significant digits of a REAL or REAL 2 variable in
the form X.X. X, NN for REAL or X.X. X, NNN for
REAL 2. A leading minus is printed if the number is negative.
If the power of ten, NN or NNN, is negative it is preceded by a
minus sign. Note that w must always exceed d by 6 or more (7
or more for REAL 2) to allow for #., tNN or ., +NNN.

Sw String Prints the first w characters of a string left justified in the
field. If the string is shorter than w characters, the rest of
the field is space filled.

Tw.d Truncated Prints a number with a decimal point right justified in the
field. Only the first d significant digits are printed; a leading
minus sign is printed if negative.

Table 9-2. Output Editing Codes

The type of the actual parameter is transferred to the type demanded by the editing
code in any case for which there are transfer functions defined. A complex number
is edited using two successive editing codes, the first for the real part and the
second for the imaginary part.

UP-7544

UNIVAC 1108 ALGOL l Rev. 1

SECTION:

PAGE:

The following examples illustrate the use of various editing codes:

REAL AeB %
FORMAT F1(X2rD7e29rX5¢rR17.8¢rA1.1) %

L]

AST2.474 %
B=—-.12345678 %
WRITE(F1,ArB) %

The above coding would print A and B as follows:

F1 (X2r D72 X5¢ R17.8» Alel) 9

/ N\ vk e —

ADAAT24TAMAALDAA=L 23U56T78r~01

1 blank line -e—o

If F1 above were

FLUYAZY» D720 X5r 'B='p R17.8r A2.1)

then the printout would be 2 blank lines ——

A=SAAT2 U4 TAAAAAB=AAA=]23U56T78,~01

1 blank line —e—

To compare the three real codes D, R and T, suppose

REAL A 3

FORMAT OK(D10+4+R10.4¢T10442A1) &
A=0.001107 %

WRITECA»A»AvOK) S

The printed line would then be as indicated below:

O_K (D104 R].Ooq'! TlO.’«H Al) %

/ \ \ 1 blank line <—I

ALAAAL0011A1,1079»=03A04,001107

UP-7544

Rev. 1 9 10
UNIVAC 1108 ALGOL SECTION: PAGE:

9.5.3. Repetition of Editing Codes

A single editing cdde (or a group of editing codes) can be used a number of times
without actually repeating the code itself in the format statement. Three different
methods can be used:

®m Simple repetition — used when the number of repetitions required is known.

® Variable repetition — used when the number of repetitions depends on data.

® Indefinite repetition — used when the number of repetitions is indeterminate.

9.5.3.1.

9.5.3.2.

Simple Repetition

An editing code may be repeated by prefixing it with an unsigned nonzero integer
constant which specifies how many times that code is to be repeated.

Example:
FORMAT FLl(R1A«8/R16+8/R16.80A1)

is equivalent to

FORMAT F1(3R16.89A1)

It is also possible to repeat a group of editing codes by enclosing them in paren-
theses and preceding this parenthetical group with an unsigned nonzero integer
constant indicating the number of repetitions of the group. There is no limit to the
depth of nesting, editing codes or groups of codes,

Given the declaration

BOOLEAN ARKAY BOOL(1:7s+1:4) %

the following format would permit printing the array elements with only one row per
line

FORMAT FORM (7(6B7+A1)) %

Variable Repetition

A second type of repetition is the variable repeat. Instead of an integer, an arith-
metic expression or Boolean expression enclosed in colons specifies the number
of repeats. The Boolean values TRUE and FALSE are equivalent to one and zero,
respectively.

Example:

INTEGER ARRAY A(1:INel1:IM) 9
FORMAT F(:iN:(IMI(R16.8)ral1))

would print the array one row per line (so M should be less than 9). The expression
(N or M) is evaluated every time the variable repeat is encountered during the format
scan. If N or M have a value of zero or less, the group of format codes under control
of that repeat expression is skipped. Note that in this type of repetition, the codes to
be repeated must be enclosed in parentheses even if there is only one such code.

UP-7544

Rev. 1 9 11

SECTION: PAGE:

UNIVAC 1108 ALGOL

9.5.3.3.

Indefinite Repetition

A final variant of editing code repetition is the indefinite or unlimited repeat. This
is accomplished by enclosing a group of format codes in parentheses without pre-
ceding this parenthetical expression with an integer constant. The innermost
parenthetical group that is not preceded by an integer constant is unlimited and will
be used repeatedly until the output list is exhausted.

Given:
FORMAT ONANDON (E1»*'VECTOR B'»Ale(D7.2rA1)) 3%
REAL 2 ARRAY p(1:m) %

then

WRITE (Es» ONANDON) %

will produce the following on a new page

VECTOR B

XXXX e XX
XXXX o XX
XXXX o XX
XXXX e XX

As an extension of this feature note that the parentheses surrounding an entire
format are indefinite repeats. If there are more values to print upon reaching the
end of the format string the whole format is repeated. Writing stops when the two
following conditions are satisfied: there are no more values to be edited, and the
right parenthesis of an indefinite repeat is encountered. Any editing code en-
countered when there is nothing more to be edited is treated as Xw. Nonediting
codes are honored.

Example:

REAL A»B 3

FORMAT Z(SD7.2¢A2.3»'ABOVE IS DERUG 1'9A1) %
A = 17.00 %

B = =16.00 %

WRITE (ArA/2:BeB/2¢2) %

produces

AAL1T7400AAAE«SDA=18.00AA~9.,00
ABOVE 1S DEBUG 1

A common error to watch for is the omission of an activation code within an
indefinite repeat (or within a format declaration in general):

FORMAT QTE(E» (BR16.8)¢A1,.2)

Rev..1 9

12

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:
would skip to the top of the next page but would not print anything. This error
could be corrected as follows:

FORMAT QTE(Er» (8R16.89A1,2))
In this format, E is equivalent to EO which has the effect of skipping to the bottom
line of the current page. EO followed by Al will print on the top line of the next
page.
Format codes to the right of an indefinite repeat or unlimited group can never be
reached. The following output format:
FORMAT FORMO(XSeISeD10«39A1r (I5ru4D1039A1)eX10r150A1,2) &
used with a WRITE statement will cause the first two values to be printed ac-
cording to I5 and D10.3. Since the inner parenthetical group is not preceded by
an integer, printing will continue according to specifications within the parentheses
until the output list is exhausted. The last three codes will never be reached.
The following example illustrates how versatile formats and lists can be. It prints
an (N,M) array in a real format:
WALG,SIT TEST,TEST
CYCLE 000 COMPILED BY 103 0005 ON 04/19/63 AT 1n:37:43
S1 L1
1 INTEGER Mr Ny 11y I2¢ Iy J $
2 REAL R $
3 RpAL ARRAY A (l:5001320) %
4 FORMAT ALL(x11leiENTIER(MIN(IL+9¢N))~=I14+12 ('COL'2I3,X6) ALl Mz ("ROWY, I3,
5 SENTIER(MIN(I1+49,N))=T141:(R12,53)0A1)0A2) 3
3] LIST HAIR (pOR I1=(1910sN) DO (FOR [2z(I1,1sMINC(ILI+9,N)) DO 12,
7 FOR J=(lelem) DO (Jy FOR I2=(11,1 MINCIL49,N)) DO A(I2ed))))S
8 R = 0.0%
9 M = 24g
10 N = l8g
11 FOR I = (l,1eN) GO
12 FOK J = (1,1,M) UO
Bl
13 BEGIN
14 K=R + 1,0 %
15 All,J) = R
El
16 END &
17 WRITE (aLbLeHAIK) %
START COMPLIATION TIME 1S 10:37:42
END COMPLIATION PHASE 1 10:37:u43
END COMPLIATION PHASE 2 10:37:43
Fl

COMPILATION COMPLETE

Rev. 1 9 13
UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

The WRITE statement using format ALL and list HAIR has the effect of printing

the elements of a real array by rows with ten elements per line. The output has

this form:
WAWT TesST

CoL 1 co- 2 coL 3 oL coL s coL 6 coL 7 coL 8 coL 9 coL 10
ROw 1 1,00000+00 2e900Vr+01 %,9000,+6L 7,3000,401 9.7000,+01 1,2100,+02 1.4500,402 L,6900,+02 1,9300,+02 2,1700,+02
ROW ¢ 2,00009+00 2460099 +01 2,0000,+0% 7,4000,+01 9,8000,4+01 1,2200,+02 1,4600,+02 1,700U0,+402 1,9400,402 2,1800,+02
HOw 3 3,U0009+0d 247G0Y¢+01 5,1000,+01 745300,+01 9.9000s+01 1,2300,402 1.47009402 1,7100,402 1,9500,+402 2,1°00,+02
ROW % #,U000r+0U0 246800Us+01 D,2000,+401 7,6000,+01 1.0000,402 1,2400,+02 1.,48009+402 1,7200,+02 1,9600,+02 2.2000,+02
ROW 5 5,00000+0U Ze900Yr+0L 545000,40L 7,7000,401 1,01000402 1,500,402 1.,4900,402 1,7300,+02 1,9700,+02 2,2100,+02
ROW 6 ©,u0N0s+0u 3.000Vr+01 U.4000,+01 7,8000,+01 1.02000402 1,2600,+02 1,5000,+402 1,7400,+402 1,9800,402 2.,2400,+02
ROW 7 T,u000er+00 341000401 9,5000,+01 7,9000,401 1.03000+402 1,2700+402 1.51000402 1,75009+02 1,9900,+402 2,2300,+02
ROW 8 H,00009r+0U0 3ecy0ts+0l L,6000,+01 8,0000,+01 1.04009402 1,2800,402 1,52000+02 1,7600s+02 2,0000,+02 2.24004+02
ROW 9 9,uU00r+0U 342000, +01 ©,7000,+01 8,1000+401 1405000402 1,2900,+02 1,53000+¢02 1,7700s402 2,0100,402 2.2%00,+02
ROw 10 1,0000e+0L 3.400Ye+0L H,6000,+01 8,2u00,+01 1.06000402 1,3000,+02 1.5400,+02 1,7800,402 2,0200,+02 2.2600,+02
Ruw 11 1,1000s+01 3.500Ve+01 5,9000,401 8,3000,+01 1.G7000+02 1,3100,402 1.55000+402 1,7900,402 2,0300,+02 2.2700,+02
ROW 12 1,20000+0L 3.000Y,+01 ©,0000,401 8,4u00,4061 1,08000402 1,3200,402 1.5600,402 1.8000,+02 2,0400,+02 2,2800,+02
ROW 13 1,3uD0e+0L 34700Ur+01 ©,1000,40L 8,5000,+01 1.09000402 1,3300,+02 1,57000+402 1,8100,402 2,0500,+402 2.2900,+02
HOw 149 L1,4000s+0L 3.800ve+0l ©,2000,+401 B,6U00,+0% 1,1000++02 1,3800,+02 1.5800,+02 1.6200,402 2,0600,+02 2,3000,+02
ROW 15 1,50000401 3.900Ye+01 ©,5000,+01 8,7000s+01 1,11000402 1,3500,+02 1.5900,+02 1.8300,+02 2,0700,+02 2,3100,+02
ROw 16 1l,0U0gr+Uk 4.Up0ve+0l ©,4000,+01 B,8000,+01 1.12000402 1,3600,+02 1.6000,+02 1,8400,402 2,0800,+02 2,3200,+02
ROW 17 L1,/00Uge+0L 4413G0Ur+01 ©,5000,401 B,9000,+01 1.1300+402 1,3700s+02 1,0100,+02 1,8500,+02 2,0900,+02 2.33004+02
ROw 18 L,00U0r+01 44200V +01 ©o6000,+01 9,0000,401 1,1400,402 1,3R00,+02 1,6200,+402 1.8600,402 2,1000,+02 2,3400,+02
ROW 19 L1,9000r+0L 4,300Ue+01 ©,7000,+0L 9,1000,+01 1,15000402 1,390,402 1.63009+02 1.,8700,+02 2,1100,+402 2,3500,+02
ROw 20 2,00000+04 H4430Ve+0Ll 0,000,401 9,2000,+01 1.16000402 1,4000,402 1,64000+02 1,8800,402 2,1200,+02 2.3600,+02
KOW 21 2,100G¢r+0L1 4a950Y»+01 L,95000,+01 9,3000,401 1417000402 1,4100,+02 1,6500,+02 1,8900,+02 2,1300,+02 2.3700,402
ROw 22 2,200Q040L ba0u0Us+ul 7,0000,+U1 9,4000,+01 1.,18000402 1,4200,+02 1,6600,+02 1.9000,+02 2,1400,+02 2.3800,+02
ROW 23 2,300G0+01 8.7006s+01 7,1000+4+01 9,5000,+01 1419009402 1.,4300,402 1,6700,+02 1,9100,402 2,1500,+02 2.3900,+02
ROw 24 2,4000r+0L 4.390Y»+0L 7,2000,+01 9,0000,+01 1,2000r,+02 1,4400,402 1,6800,+02 1.9200,402 2,1600,+02 2.4000,+02
coL 11 coL 1e coL 13 coL 14 coL 15 coL 16 coL 17 coL 18

ROW 1 2,4100s+02 2.050U»+02 £,6900,+02 3,1500,+0; 3,37009+02 3,6100,+402 3,8500.,+02 ,0900,+02
ROW 2 2,42000+02 2+0560U:+02 2,9000,+02 3.14000+0e 3038000402 3,62009+402 3.8600,+02 4,1000,+02
ROW 3 2,43000+02 2,070V e+02 2,9100,+02 3.1500040> 3439000402 3,0300,+402 3,8700,+02 4,1100,+02
ROW 4 2,4400r+0e 2e050Ur+02 £,9200,+02 3,1600e40.2 3.40000+02 J,6400,+02 3.8800,+02 H,1200,+402
ROW D 2,45000+02 2,690V, +02 2.9300,+02 3,1700,+0> 3.41000+02 3.6500,402 3.8900,+02 4,1300,+02
ROW 0 2,406G00+02 2e700Ue+02 £,9400,+402 3,1000s+0- 3.42000402 3,66000+02 3,9000,+02 4,1400,+02
ROW 7 2,470yur+0e 2471099402 2,9500,+02 3,1900,40. 3.,43000402 3.6700,+02 3.91000+02 4,1500,+02
RUW 8 2,40000402 2472090402 <49600,+02 3,2000,+402 3.44%000402 3,0800,+02 3.9200,+02 4,1600,+02
ROW 9 2,4900r+02 2+730vs+02 &£,9700,+02 3,2100,+02 3.4500,402 3,0900,+02 3,9300s402 4,1700,+02
ROw 10 2,50000402 Ze7409r+02 Z49800,+02 3,2200040. 3,46000402 3,7000,+02 3.,9400,+02 4,.1800,+02
ROw 11 2,0100r402 247,500,402 2,9900,+02 3,2500,402 3.47000+402 3,7100,402 3,9500,+02 4,19000+02
ROW 12 2,0200r+0e Ze750Ur+02 S,0000,+402 3,2400,+0. 3.4800,402 3,7200,402 3,96000+02 4,2000,+402
ROW 13 2,2300r+08 247709+ +02 3.0100,+02 3.2500,402 3.49000402 3,7300,+02 3.9700,+02 4,2100,+02
ROW 14 2,5400,402 24740V 9+02 25,u200,402 3,2500,+02 3450000402 3,7400,+02 3,9800,+02 4,2200,+02
ROW 19 2,05045r+04 2479009402 3,0300,+02 3.2700,40. 3451000402 3,7500,+402 3,99000+02 4,2300,402
ROW 16 2,9000¢+0& 2.800Us+02 5,0400,+02 3.2000,+0: 3.52009402 3,7600,+02 H,0000,+02 4,2400,+02
KOow 17 2,570pr402 Z4810Ur+02 3.0500,+02 3,2900,+02 3.53000402 3,7700,+02 4,0100,+02 4,2500,+02
ROw 18 2,0600r+02 2482000402 5,0600,402 3,35000,+02 3.54000402 3,7300,+02 4,0200,+02 4,2600,+02
ROw 19 2,0900¢+02 2.830Ur+02 3,0700,+02 3,31000+0s 3455000402 3,7900,+02 H,0300,+02 4,2700,+02
ROW 20 2,00000+02 Z+040Ve+02 S,0800,402 3,32000+0s 3.56000402 3,8000,402 4.,0400,402 4,2800,+402
ROW 21 2,0100¢+02 2e8530Vr+02 2,0900,402 3,3300,+0.2 3.57000+02 3,8100,+02 H,0500,+02 4,2900,+02
ROW 22 2,02000402 2+850V0+02 5,1000,+02 3,3400,+02 3.58000402 3,8200,+02 4.,0600,+02 4,3000,402
ROW 23 2,0300r+02 2.070Us+02 341100,+02 3,3500,40. 3.5900r+02 3.8300,402 4,0700,+02 4,3100,+02
ROW 24 2,0400r+02 2.830Y9402 9,1200,+02 3,3500040 3.60000402 3,8400,402 4,0800.+402 4,3200,+02

EXIT EXEC3 ALGUL LIBRAKY

| Rev. 1

UP-7544 UNIVAC 1108 ALGOL

SECTION: PAGE:

9.6. FORMATTED INPUT

As with writing, a format may be included as a parameter to the READ procedure. A
format tells how the card is laid out. The major advantage in using formats is that
constants need no longer be delimited by blanks, and strings need not be enclosed in
string quotes — the format specifies the ‘fields’ in which information lies. The dis-
cussion that follows is based on an example designed to illustrate most of the funda-
mentals of reading formatted cards.

The format declaration is the same as described in 9.5. The difference between a
format being used as a parameter to WRITE and one being used as a parameter to
READ is that the editing and nonediting codes are interpreted slightly differently.
However, they are enough alike that in many cases the same format may be used with
both procedures.

The following example illustrates reading data from cards according to a specified
format. The information pertains to student records with each card having the follow-
ing format:

Column Contents

1-5 Student number
6-7 Student initials
8-21 Student name
22 Status

23-24 Curriculum
38—-44 Course name
47 Credit hours
60 Letter grade

The problem is to read the above data in a form that will make the manipulations easy
and permit printing all the information. It is this type of problem which gives rise to
the necessity of specifying the card format. The steps necessary to achieve this
result are:

(1) Read a card

(2) Accept columns 1-5 as an integer Student number
(3) Accept columns 6-7 as a string Student initials
(4) Accept columns 8-21 as a string Student name
(5) Accept column 22 as an integer Status

(6) Accept columns 2324 as an integer Curriculum

(7) Skip the next 13 columns

(8) Accept columns 38-44 as a string Course name
(9) Skip 2 columns

(10) Accept column 47 as an integer Credit hours

(11) Skip 12 columns

(12) Accept column 60 as a string Grade

UP-7544

Rev. 1 9 15
UN'VAC]]08 ALGOL SECTION: PAGE:

The FORMAT declaration can be used to take care of all the above functions. For
example, the format could be

FORMAT VAYDRLICA»PISeS295140 110129 X1305GT79X2e 119 X12051)%

Note there is one entry in the format for each numbered line above. Each of the items
in the above format is referred to as a ‘format code’. Of course, the initial A is
analogous to the terminal AS.t of the write and is required to activate the subsequent
READ procedure.

A reasonable program segment for the above problem would be:

ITHTEGER STURIHOeSTATICURCTI P CREDS %

STRING INITIALS(2) v MAVE(164) »COURCE(T) v GRADE (1) &

FORMAT VAYDRETICA»ISeS2e 510910120 X130ST7eX20119X129S1Y) %

LIST FRIEURICH(STUDRNO » INTTIALS e NAME»STATI»CURCT
COURSE P CREDNS»GRALE) %
READ(CARDS o FRIEDHICHs VAYDRRET) 9

Only two nonediting codes are permitted with an input format:

A activation code — required as the first code of the format to activate the
subsequent READ procedure.

Xw — skip over w columns on the card

The editing codes (some of which are not in the example) have the following mean-
ings, and w and d are restricted as before (see 9.5).

FORMAT CODE ACTION

Bw Boolean Accepts Boolean information from the field — either TRUE,
FALSE, or 1, O.

Dw.d Real Accepts real information from the field. If the number is al-
ready real, (i.e., has a decimal point or exponent part) then
that determines the decimal. Otherwise, a decimal point is
inserted d places to the left of the right edge of the field.

Fw Free Accepts an unspecified number of values from the field.
These numbers must be punched in free format mode; that is,
values may be punched any where within w character posi-
tions.

Iw.d Integer Accepts information from the field as being integer to the
base d. d=0 is equivalent to d=10.

Rw.d Real Same as Dw.d
Sw String Accepts the whole field as a string.
Tw.d Real Same as Dw.d

Table 9-3. Input Editing Codes

. 16
UP-7544 UNIVAC 1108 ALGOL Rev. 1 SECTION: ? PAGE:

9.7. FILE HANDLING
The general form of I/0 call is:

<I/0 Procedure> (<device> , < format >, < modifier list > , « parameter list>,
< actual label list>)

Where

<1/0 Procedure> is either READ or WRITE
< device> is CARD, PRINTER, PUNCH, FILE (filename, location),

APRINTER or APUNCH

< modifier list > see section 9.8.2.1
< parameter list> is a list of all of the I/O variables of lists
< actual label list> see section 9.8.3

When the device is FILE the above call takes either of two forms:
Sequential files

<10 Procedure> (File(filename), < modifier list > , < parameter list>,
< actual label list >)

Random Files

<10 Procedure > (FILE(filename, location), < modifier list > , < parameter list > ,
< actual label list >)

In these forms < filename > is the internal name of the file. According to system
requirements, the name must be at most 12 characters long, left justified, and space-
filled. If the string is less than 12 characters long, the compiler supplies trailing
blanks.

< location>is an integer specifying the location relative to the beginning of the file
at which the I/0 operation is to begin.

The I/0 operation is unformatted whenever the device is FILE. In case of doubt
concerning allowable operations on files, and for information concerning the assignment
and use of files, see the ““UNIVAC 1108 Executive Programmers Reference Manual’’,
UP-4144 (current version). The ALGOL linkages permit the user complete access to
the file handling capabilities of the 1108 Executive.

To simulate magnetic tape on other devices, such as drum or FASTRAND, all files
can be handled as sequential access storage devices that can be parameters to

REWIND and POSITION statements (see 9.8).

If a non-existent file is referenced, the compiler assigns a temporary FASTRAND
mass storage file to that name. Since the information in a sequential file is written
out in blocks containing various extra words that specify information about the block,
one should be careful about accessing the same file both randomly and sequentially.

Rev. 1 9 17
UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:
9.7.1. Sequential Files
If the device name FILE is followed by only one parameter, then the file is treated
as if it were a sequential file. Information in such files is stored in blocks of 252
words or less. The format of these blocks is:
H1 S T3

| | ! | |
l N LB I BSN |
| | | 1
I | | I
| DATA 1

N [I

WORDS / I | ONE
i | BLOCK
CHECK SUM
| N | LB | BSN |
| | | l
N — number of words in block. Must be 249 words or less.
LB - last block flag.
= 0 for not last block.
= 1 for last block.
BSN — block sequence number in logical record.
The WRITE statement writes one logical record. Information is packed in blocks with
all but the last block containing 249 words of data. The last block (LB flag = 1) may
contain less than 252 words. One logical record is the information written out by one
write statement.
The READ procedure reads blocks of data from the device until all of the variables
have been filled. All information in the last logical record read which is not used by
that READ is lost, i.e., the next call on READ starts reading the following logical
record.
See Section 9.8 for operations on sequential files.
9.7.2. Random Access Files

If the device name Fl LE is followed by two parameters, the first one is the name
of the file, as before. The second is the location relative to the beginning of the file
at which this READ or WRITE operation is to begin in the file.

Magnetic tape files cannot be referenced randomly. Integer, real and BOOLEAN
variables take one word per variable. Real 2 and complex variables occupy two
words. Strings are always left-justified in the first word in which they are written.
Thus an N-character string occupies ENTIER(N + 5)/6 words. No descriptor is
written out with any of the information, so it is not difficult to determine how many
words any block of information will occupy.

UP-7544

18
UNIVAC 1108 ALGOL

SECTION: PAGE:

| Rev. 1

9.7.3.

Alternate Symbionts

The 1108 Executive allows the user to define print and punch files other than the
standard two. Information is these files is written out when the output device is
free. In particular, the file will be written out at the end of the run. To use this
ability from ALGOL, specify device APUNCH or APRINTER with one parameter.
This parameter is the internal name of the file to which the information is to be
written pending output. If the file is a tape file, the output will not be written out
automatically, This operation must be initiated by the appropriate Executive control
statement.

9.8. OTHER DIRECTIVES

9.8.1.

9.8.2.

REWIND and POSITION operations are useful in manipulation of files. In addition
supplementary marks can be made on a file in order to facilitate access to information.

REWIND
The form of the REWIND statement is:
REWIND (<file list>¢, INTERLOCK, < file list > 5)

where either < file list > may be empty. If < file list>{ is empty then INTERLOCK
should be left out.

This statement rewinds all of the files in < file list >{ with interlock or if they are

temporary non-tape files, it releases them. All of the files in < file list > are rewound
without interlock.

Modifiers and POSITION

9.8.2.1. Modifiers

A modifier list may be provided as a parameter to WRITE. This list may contain
either EOF (< expression>) or KEY (< expression>) or both. Note that EOF and
KEY mean the same thing as EOF (0) and KEY (0). If the modifier list contains
KEY, then a KEY record is written preceding the usual record written out. If it
contains EOF, then an EOF record is written after the usual record.

If <expression > is a string, the first six characters identify the record. The
modifier EOI may also be used, in which case an end-of-information mark is written
out after the usual record and EOF block.

UP-7544

UNIVAC 1108 ALGOL Rev. 1 secrions | - ace:

19

9.8.2.2. POSITION

The procedure POSITION positions a file to a previously written KEY or EOF
record, to the end of information, or advance it over a given number of ordinary
recotds. The call is:

POSITION(FILE(filename), < position parameter> , < label list>)

where the position parameter is:
EOF (<expression>)

-EOF (<expression>)

KEY (<expression>)

~KEY (<expression>)
integer expression

EOI

-EOI

The direction of positioning is indicated by the sign of the position parameter,
positive for forward and negative for backward. If the position parameter is EOI,
the file is positioned to the next EOI mark. If the position parameter is an integer
expression, the command advances over that many logical records ignoring KEY
records.

Key records are also ignored when encountered by a READ statement. Abnormal
exits from the POSITION procedure are listed in section 9.8.3.

The procedure POSITION always positions over the record it is looking for in the
direction indicated.

9.8.3. Labels

In many of the I/O operations unexpected situations may be encountered. In order
to inform the user of their existence and to enable him to recover, several label
parameters may be supplied to the procedure. These are used as alternate exits in
abnormal situations. If more labels are provided than are expected, the procedure
will respond with an Improper Parameter message.

9.8.3.1. POSITION Procedure

At most two parameters are allowed. The following defines the exits that occur in
various situations:

Parameter to POSITION Condition Exit to
EOF End of Information First Label
KEY End of Information First Label
integer expression EOF Record First Label
End of Information Second Label

If only one label is given, all exits to the second label go to the first. If no label
is given, exit is made normally, that is to the next ALGOL statement.

UP-7544

Rev. 1 20

UNIVAC 1108 ALGOL

SECTION: PAGE:

9.8.3.2.

READ Procedure

Control cards are identified by a master space (a 7—8 punch) in column 1. Except

for the EOF control card, these cards are not read by an ALGOL program. However,
the programmer can detect them by using labels as parameters to.the READ procedure.
In that case, if an attempt is made to read such a card, the READ procedure terminates
reading and exits to the given label.

When an EOF card is encountered by the READ procedure, reading terminates. No
new values are assigned to the remaining parameters in the input list. If a label is
present as a parameter, the exit is made to that label. Otherwise, exit is made to
the next ALGOL statement. The next time the READ procedure is called, it begins
by reading the card after the EOF card. Thus, the purpose of EOF is to give the
programmer a convenient method of separating sections of data of unknown length.

If a control card other than an EOF card is encountered, no more data cards can
be read for that run.

At most three labels may be supplied as parameters to READ, If only one is specified
all exits to the second label will be made to the first. If no third label is specified

the program terminates upon encountering a situation that would require exiting to
the third label.

The editing of the READ procedure is controlled in the following way, depending
on the number of labels in the READ call:

EXIT TO

DEVICE CONDITION LABEL NO. NO LABEL
CARD EOF Card 1 normal return

any other control card 2 program terminated

error in read 3 program terminated
FILE EOF record 1 normal exit

end of information 2 normal exit

error in read 3 program terminated

Example:

BEGIN ARRAY A(1I120)%
LOCAL LABEL OKeFIMN D

WEEDSREAD(CARDS ArOK FIN) B

.

OK: WRITE ('EOF = CARD READEPR') $ GO TO WEED %
FIN: WRITE('PROGRAM TERMINATED BY CONTROL CARD') %
EMND %

UP-7544

Rev. 1 9

SECTION: PAGE:

UNIVAC 1108 ALGOL

21

9.8.3.3.

9.8.3.4.

WRITE Procedure

Only one label is allowed as a parameter to WRITE. Exit is made to this label if
an attempt is made to write past the physical end of the FILE.

MARGIN Procedure

The procedure MARGIN provides the ALGOL user the means for controlling the form
of the output of the PRINT symbiont (See ‘“1108 Executive Programmer’s Reference
Manual’’ UP-4144). The form of the call on MARGIN is:

MARGIN(<control string >)

where <control string> is a string containing one or more control functions.

Spaces are ignored prior to the first, or between functions. Each function begins
with a single letter, followed by a comma, followed by any special information
required, and terminated by a period. The format of the information character
string varies according to the function but must not contain a period.

The following control functions are allowed:

L — Space printer to logical line nn, where logical line is defined as the line
number relative to the top margin setting (see M below). All line positioning
and printing is performed within the defined margin settings. (The bottom
logical line of a page is identical to the top logical line —1 of the next page.)
Positioning to a logical line on printers with space-print operation is to
logical line n — 1; therefore when n = 1, the logical line setting is the last
line of the current page. This is also true when n = 0, or when n is greater
than the length of the logical page. When n is less than or equal to the
current line of the current page, the succeeding page is positioned to the
logical line n — 1. The format of this function is:

L,nn,

H — Initiate heading printing. This function provides the user with an automatic
means of printing a heading on each succeeding page of his print file. The
format of this function is:

H, option, page #, text of heading

If the option field contains the letter X, a page and date will not be printed

as part of the heading. Option n turns the heading off. A page count is main-
tained by the processing symbiont. When the page # field is blank, the page
count current to the field is used to begin page numbering. When coded, page #
is made the page number. In addition to the page number, the current date is
included in the heading, and both will appear in the upper right corner of each
page. This position of the heading is the second line above logical line 1.

If the upper margin is one line or non-existent, no heading is printed. As many
as 17 words of heading text may be supplied.

UP-7544

Rev. 1 9 22

UNIVAC 1108 ALGOL SECTION: PAGE:

Set margins. This function supplies the information for re-adjusting page
length and top and bottom margins. The standard print page definition

is 66 lines per page with a top margin setting of six lines, and a bottom
margin setting of three lines. Note that the top and bottom margins refer to the

number of blank lines at the top and bottom of the page respectively. Thus the
standard margin setting is 66,6,3 giving 57 printable lines. This page definition
is assumed at the beginning of each print file. When the M function is used, a
page alignment procedure is initiated with the page length parameter. This func-
tion is also used to return to the standard page length. The format of this function
is:

M, length, top, botton
Set maximum line width. The standard of 22 words (132 characters) is assumed
unless the W control is used. The format of the function is:

W, width

where width specifies the maximum line width in words.

Special form request. This function enables the user to instruct the operator
to load a special form required to process the print or punch file. The format
of this function is:

S, message text

where the message text can be up to ten words long. When this function is
encountered by the processing symbiont, the message is displayed on the
operator’s console in the form:

run ID/filename c/u options
message text

The user’s message text is displayed on the line following the symbiont
message. The options available to the operator for answering the message
depend on the symbiont. The following options are included in the 0755 HSP,
Card Punch and the 1004 Printer and Card Punch symbionts:

Begin processing the output file.

Return file to symbiont queue. The print or punch file will be passed temporarily
and placed behind the next file of this symbiont queue.

UP-7544 UNIVAC 1108 ALGOL Rev. 1 secTion: 10 ace

10. OPERATION

10.1. SOURCE CARD FORMAT

The source language statements to the compiler must come initially from punched
cards. Only columns 1-72 are read for information in free format and anything
following column 72 is considered to be a (space) delimiter. Columns 73—80 can
be used for any purpose desired, e.g., short comments or serial identification.
There is no restriction on placing statements on a card but the usual practice is
to arrange them for easy reading and modification. The full 80 columns may be
utilized for input data at execution time.

10.2. OPERATING INSTRUCTIONS

The ALGOL compiler operates like all the processors in the UNIVAC 1108 Executive
System and, besides the standard options, includes some unique to itself. The
available options are:

A Accept the results of compilation even if errors were detected.

S Single spaced listing of ALGOL source statements.

L The compiled assembly language instructions are listed along with the source
code.

N (or lack of any other print option) Suppress all printing by the processor. If
‘N’, disregard any other print option.

T Print the timing for phases 1 and 2 of compilation.
X Abort the run immediately if any error is found.
Z Delete the formation of run-time diagnostic information.

O,R References to subscripted variables normally generate a call to a library
procedure. This procedure, besides calculating the proper address, also
checks that the requested operation is legal (i.e., that the subscript variables
are in the range of the declaration). With the R option (remove checking) this
checking is not done but the address calculation is, thus giving greater speed
to the object program. The O option (open) is even faster in that the necessary
coding to calculate the address is compiled in line, thus removing the call and
return times from the reference. Of course, the O option requires more main
storage. When the program is working, and if the subscript expressions
are not data-dependent, then the R option should be used. If main storage
permits, the O option should be used. Neither should be used when the
program is being debugged.

UNIVAC 1108 ALGOL

Appendix A

SECTION: PAGE:

APPENDIX A. BASIC SYMBOLS AND
THEIR CARD CODES

This appendix lists the basic symbols of UNIVAC 1108 ALGOL 60, with the cor-
responding symbol for the reference language and the punched card code.

REFERENCE UNIVAC 1108 *
LANGUAGE ALGOL 60 CARD CODE

TRUE TRUE

FALSE FALSE

— — 11

% * 11-4-8

/ / 0-1

= // 0-10-1

A *% 11-4-8 11-4-8

< LSS

< LEQ

= EQL

> GEQ

> GTR

NEQ

= EQlV

) IMPL

Vv OR

A AND

- NOT

go to GO TO or GOTO

if IF

then THEN

else ELSE

for FOR

do DO

, (comma) , (comma) 0-3-8

. . 12~3~8

10 & 2-8

*Symbols for which a card code is not specified are reserved identifiers.

UNIVAC 1108 ALGOL

Appendix A

SECTION:

PAGE:

REFERENCE UNIVAC 1108 *
LANGUAGE ALGOL 60 CARD CODE
tor. . 5-8 or 12-3-8 12-3-8
; $or; 11-3-8 or 11-6-8
1= = or:= 3-8 or 5-8 3-8
STEP STEP
UNTIL UNTIL
WHILE WHILE
COMMENT COMMENT
((0—-4-8
)) 12-4-8
C (or[C 0—4-8 or 12-5-8
7) or] 12—-4-8 or 11-5-8
’ (apostrophe) ’ (apostrophe) 4-8
BEGIN BEGIN
END END
OWN OWN
BOOL EAN BOOL EAN
INTEGER INTEGER
REAL REAL
ARRAY ARRAY
SWITCH SWITCH
PROCEDURE PROCEDURE
LABEL LABEL
VALUE VALUE
< (for complex 12-6-8
> constants) 6—8

* Symbols for which a card code is not specified are reserved identifiers.

In addition, the following reserved identifiers have been introduced into the

language:

LIST
FORMAT
EXTERNAL
OTHERWISE
LOCAL

GO

TO

XOR
STRING
COMPLEX
REAL 2

UP-7544

Appendix B

SECTION:

Rev. 1
UNIVAC 1108 ALGOL l

PAGE:

APPENDIX B. STANDARD PROCEDURES
AND TRANSFER FUNCTIONS

The following procedures are available for use without being declared. The names
ate not reserved identifiers and may be redefined in any block. The * indicates
“‘not applicable’’

NAME NO. OF TYPES OF RESULT TYPE OF
PARAMETERS PARAMETERS RESULT
ABS 1 INTEGER I x| INTEGER
REAL I xI REAL
REAL 2 I x| REAL 2
COMPLEX 1 x| REAL
ALPHABETIC 1 STRING TRUE if the | BOOLEAN
string con-
sists of all
spaces or
alphabetics
(A-Z);
FALSE
otherwise
ARCCOS 1 REAL Arccos(x) REAL
REAL 2 Arccos(x) REAL 2
ARCSIN 1 REAL Arcsin(x) REAL
REAL 2 Arcsin(x) REAL 2
ARCTAN 1 REAL Arctan(x) REAL
REAL 2 Arctan(x) REAL 2
CARDS 0 * None *
CLOCK 0 * Present time |INTEGER
of day in
seconds since
00:00
COMPLEX 2 INTEGER, REAL The complex | COMPLEX
number
x+i¥y

Rev. 1 Appendix B
UNIVAC 1108 ALGOL SECTION: PAGE:
NAME NO. OF TYPES OF RESULT TYPE OF
PARAMETERS PARAMETERS RESULT
COS 1 REAL Cos(x) REAL
REAL 2 Cos(x) REAL 2
COMPLEX Cos(x) COMPLEX
COSH 1 REAL Cosh(x) REAL
REAL 2 Cosh(x) REAL 2
COMPLEX Cosh(x) COMPLEX
DOUBLE 1 INTEGER, REAL Real 2 REAL 2
representa-
tion of x
DRUM 1 INTEGER None *
ENTIER 1 REAL, REAL 2 Integer part | INTEGER
of x
EOF Oor1l Any expression None *
EOI 0 * None *
EXP 1 REAL Exp(x) REAL
REAL 2 Exp(x) REAL 2
COMPLEX Exp(x) COMPLEX
IMAGINARY 1 COMPLEX Imaginary REAL
part of x
INTEGER 1 REAL, REAL 2 Entier INTEGER
(x+0.5)
KEY Oorl Any expression None *
LENGTH 1 STRING Length of INTEGER
string
LN 1 REAL Ln(x) REAL
REAL 2 Ln(x) REAL 2
COMPLEX Ln(x) COMPLEX
MARGIN 3o0r4 INTEGER first 3 (see section 9)| *
MAX List of ex- REAL, INTEGER Algebraic REAL
pressions largest
element of
list
MIN List of ex- REAL, INTEGER Algebraic REAL
pressions smallest
element of
list

UNIVAC 1108 ALGOL

Appendix B

SECTION:

PAGE:

NAME NO. OF TYPES OF RESULT TYPE OF
PARAMETERS PARAMETERS RESULT
MOD 2 INTEGER x(mod y) INTEGER
NUMERIC 1 STRING TRUE if the | BOOLEAN
string is
acceptable to
the string-
integer trans-
fer function;
FALSE
otherwise
POSITION Special *
: list
PRINTER 0 * None *
PUNCH 0 * None *
RANK 1 STRING The fieldata [INTEGER
equivalent
of the first
character of
the string
READ Special *
list
REAL 1 INTEGER, REAL 2 Real repre- REAL
sentation of x
COMPLEX Real part ofx | REAL
REWIND Special *
list
SIGN 1 INTEGER 1x>0 INTEGER
0x =0
-1x<0
SIN 1 REAL Sin(x) REAL
REAL 2 Sin(x) REAL 2
COMPLEX Sin(x) COMPLEX

UP-7544

UNIVAC 1108 ALGOL

Appendix B

SECTION:

NAME NO. OF TYPES OF RESULT TYPE OF
PARAMETERS PARAMETERS RESULT
SINH 1 REAL Sinh(x) REAL
REAL 2 Sinh(x) REAL 2
COMPLEX Sinh(x) COMPLEX
SQRT 1 REAL Sqrt(x) REAL
REAL 2 Sqrt(x) REAL 2
COMPLEX Sqrt(x) COMPLEX
TAN 1 REAL Tan(x) REAL
REAL 2 Tan(x) REAL 2
COMPLEX Tan(x) COMPLEX
TANH 1 REAL Tanh(x) REAL
REAL 2 Tanh(x) REAL 2
COMPLEX Tanh(x) COMPLEX
TAPE 1 INTEGER None *
WRITE Special * * *
list

The following transfer functions transfer an expression of one type to another type.
These functions are evoked automatically by the compiler whenever necessary.
Functions for which the arguments are listed may be called explicitly.

FUNCTION TYPE OF ARGUMENT TRANSFERRED TO TYPE
REAL(X) INTEGER REAL
DOUBLE(X) REAL 2
(intrinsic) STRING
COMPLEX(REAL(X),0) COMPLEX
INTEGER(X) REAL INTEGER
DOUBL E(X) REAL 2
COMPLEX(X,0) COMPLEX
INTEGER(X) REAL 2 INTEGER
REAL(X) REAL
COMPLEX(REAL(X),0) COMPLEX
(intrinsic) STRING INTEGER

PAGE:

UP-7544

UNIVAC 1108 ALGOL

Appendix C 1

SECTION: PAGE:

Cl1.

APPENDIX C. ERROR MESSAGES

COMPILATION ERRORS

The following is a list of error messages that can occur during compilation with an
explanation of what may be the cause of an error. An * is printed under the approximate
location of the offending syntax, but in some cases this may not be of help; for example,
a missing left parenthesis is not found until the whole statement has been scanned.
Spurious error messages may be printed for particularly malformed programs. These
usually disappear after the first few errors have been eliminated.

ERROR

EXPLANATION

Illegal character pair
Constant too large

Improper block structure
Improper declaration

Duplicate declaration/specification

Improper declaration /specification

Improper specification

Improper specification

Improper own declaration

Improper external declaration

Duplicate value specification
Improper label specification
Improper value specification

Improper array declaration

Improper array declaration

Self explanatory
Self explanatory

A declaration has occured other than at
the head of a block ’

An element in the identifier list is not
an identifier

A name in the identifier list has already
been defined in this block

The identifier list is malformed

OWN, LOCAL, or EXTERNAL has been
used in a procedure specification part

The name is not a formal parameter

OWN not followed by INTEGER, REAL,
REAL2, COMPLEX, ARRAY

EXTERNAL not followed by <type>,
FORTRAN, NONRECURSIVE or PRO-
CEDURE

The parameter has already been specified
as value

It does not occur in a specification part
of a procedure

It does not occur in a procedure spec-
ification part

Bound pairs malformed

Bound pairs either not separated by a
comma or a : missing

UP-7544

UNIVAC 1108 ALGOL

Appendix C

SECTION:

PAGE:

ERROR

EXPLANATION

Improper list declaration
Improper switch declaration

Improper switch declaration

‘Improper procedure declaration

Improper procedure parameter

Duplicate procedure parameter

Improper parameter delimiter

Improper procedure specification

Improper label definition
Duplicate label definition
Improper format phrase
Improper format phrase
Improper format phrase
Improper repeat phrase

Improper repeat phrase

Undefined format symbol
Improper string declaration

Improper string array declaration

Improper procedure call

Improper procedure call

Improper procedure assignment
Improper IF statement
Improper IF statement
Improper use of THEN

Improper use of ELSE

A malformed list
Malformed switch list
The ‘=’ is missing

The next symbol after the procedure
name is not a (or $

A formal parameter is not an identifier

There is another formal parameter of
this name already

The parameter delimiter is neither a
comma nor) <letter string> : (

This parameter has been named in a
value specification

A numeric or other malformed label
Self explanatory

The w or d field is too large

A string field has more than 132 char.
An extra)

A zero repeat phrase

A noninteger expression as a variable
repeat phrase

Self explanatory
Expression for length is malformed

Either 1ength expression or subscript
pairs are malformed

Incorrect number of arguments for library

procedure

Arguments for library procedure are of
incorrect type

Self explanatory
Malformed conditional statement
Self explanatory
Self explanatotry

Self explanatory

UNIVAC 1108 ALGOL

c

SECTION: PAGE:

ERROR

EXPLANATION

Improper FOR statement

Improper GO statement

Improper GO statement

Extra right parenthesis

Extra left parenthesis

Missing operator

Missing operator

Missing operand

Extra END

Missing END

Improper use of //operator
Improper assignment statement

Undefined transfer function

Improper use of a list identifier
Improper use of label

Improper use of a reserved identifier
Improper use of an array identifier
Undefined relational operand
Improper string expression
Misplaced semicolon

Misplaced comma

Undefined variable

Misplaced colon
Improper correction

Compiler capacity exceeded

Malformed FOR list

GO not followed by a designational
expression

A malformed designational expression
Self explanatory

Self explanatory

Implied multiplication has been used
Self explanatory

Self explanatory

Self explanatory

Self explanatory

One or both operands are not integer
The left-hand side is not a variable

The transfer function called for by this
statement is not defined

List used in other than a procedure call
A label appears out of context

Reserved identifier appears out of context
Array identifier appears out of context
Self explanatory

Malformed string expression

A semicolon ($) appears out of context

A comma appears out of context

Reference is made to an undeclared
variable

A colon appears out of context
Correction card out of order

Internal tables of compiler exceeded

UP-7544

UNIVAC 1108 ALGOL

Appendix C

SECTION: PAGE:

C2. RUN-TIME ERRORS

An error during execution results in the printing of an error message, the name of the
library procedure involved, if applicable, and the line number of the ALGOL program at
which execution was currently taking place. The program is then terminated. The following

is the list of the possible error messages.

ERROR

EXPLANATION

Incorrect number of arguments
Memory capacity exceeded
Bad input/checksum error
Undefined type conversion
Insufficient data for program

Improper parameter

Improper array declaration

Improper string declaration

Unrecoverable tape/drum error
Attempt to pass end of record
Constant out of range

Characteristic overflow
Att‘empted division by zero
Improper number of dimensions
Subscript out of range

Result undefined

Argument out of range

Illegal character

Illegal format phrase

Incorrect number of arguments to an ALGOL
or library procedure

Space for dynamic storage of variables
has been exceeded

Tape or drum hardware error, or possibly
an attempt to read a non-ALGOL formatted
tape

Self explanatory

Non-EOF control card read with no exit
label in READ call

A formal and actual parameter do not agree
in either type or kind

A lower bound expression is greater
than the corresponding upper bound
expression

The string length is negative or greater
than 4095

Hardware fault
Recotrd is shorter than the input list
Self explanatory

A real number of magnitude greater than
1038 generated

Self explanatory

Reference to a subscripted variable has
a different number of subscript positions
than was declared for the array

Subscript expression is out of the range
of the declaration

Arithmetic library function not defined
for argument

Argument out of range for a meaningful
result for an arithmetic library procedure

Data catd has an illegal character

Self explanatory

UP-7544

Appendix D

UNIVAC 1108 ALGOL |

SECTION: PAGE:

APPENDIX D. EXAMPLES OF PROGRAMS

This appendix contains some simple examples illustrating the use of UNIVAC 1108 ALGOL 60.
Each has been run on the 1108 and some sample input and results are shown.

BEGIN
COMMENT EXAMPLE 1
CALCULATION OF VALUFE OF ARITHMETIC FXPRESSICN
WITH READ IN VARIABLES %
REAL ArBeC %
INTEGER TOILL %
READ (CARDSeArBeC) %
TOILL = A+B**C/A %
WRITE (PRINTERA»B»CrTOILL) &

DATA
5 62 1le222
RESULTS:

5.00000+00 6,20000+00 1.2220++00 7

BEGIN
COMMENT EXAMPLE 2
CALCULATION OF SQUAREROOT: Be OF A REAL NUMRERY
Ae WITH 6 DIGITS ACCURACY BY NEWTON=RAPHSON ITERATION $
REAL ArBrOLDB 3
READ (CARDS»A) 3
OLDB = 1.0 9%
FOR B = 0.5%(A/0LDB+0OLDB) WHILE ABS(B=0OLDR) GTR 1n*x*(=6)*B DO
oLbB = B %
WRITE (PRINTERrA'B) %
END PROGRAM %

DATA
577777
RESULTS:

5¢7778¢+00 2.,4037,400

UP-7544

Appendix D

SECTION:

UNIVAC 1108 ALGOL '

PAGE:

X

BEGIN
COMMENT EXAMPLE 3

VALUE OF A POLYNOMIAL Y=B(0)+B(1)*Xeseeeee +B(N).X*¥xN $
REAL XeY $

INTEGER KoN $
READ (CARDS*N) $
COMMENT DEGREE OF POLYNOMIAL READ FROM CARDS. INNER BLOCK PERFORMS
READING OF COEFFICIENTS AND CALCULATIONS ANn PRINTING OF
RESULTS %
BEGIN
REAL ARRAY B(O:IN) %
READ (CARDS(B) $
READ (CARDS»X) %
Y = B(N) %
FOR K=N=1 STEP =1 UNTIL 0 DO Y = Y*X+B(K) %
WRITE (PRINTERs*VALUE OF A POLYNOMIAL OF DEGREF'»*N='sN»
"COEFFICIENTS' vBr tXS0oXe 'YSV,Y) §
END CALCULATION $
END PROGRAM %

DATA

13
10223 3¢5 7052 -4,02 ’33.5
5455

RESULTS:

VALUE OF A POLYNOMIAL OF DEGREE

N=
4

COEFFICIENTS
1.2230¢400 3.50000+00 7.5200,+00 =4.0200,+00 =3,%500,+01
5.5500,+00

Y=
-3.22200+04

Appendix D

SECTION:

UP-7544 UNIVAC 1108 ALGOL l

PAGE:

BEGIN
COMMENT EXAMPLE 4
PROGRAM WITH A REAL PROCEDURE* BIGr» WHICH FINDS THE LARGEST
OF THE N LOWER=INDEXED ELEMENTS (STARTING WITH INDEX=1) OF A
ONE=DIMENSIONAL ARRAYr» A¢ WITH POSITIVE ELEMENTS $
REAL PROCEDURE BIG(NwA) %
VALUE N %
INTEGER N %
REAL ARRAY A %
BEGIN
INTEGER B %
REAL C!D %
B=1%
ACL) %
D - A(B+1) %
F CLSS 0 THEN D = A(B+1) &
B B+1 %
IF B LSS N THEN GO TO L %
BIG = D %
END BIG %
REAL ARRAY F(13:50) %
REAL H!K %
READ (CARDS(F) &
COMMENT CALL OF BIG TO FIND THE LARGEST OF THE 20 Lr~WER
FLEMENTS OF F $ H = BIG(20+F) %
WRITE (PRINTER'H) $
COMMENT LARGEST ELEMENT IN F %
K = BIG(50¢F) %
COMMENT USE OF BIG IN MCRE COMPLEX EXPRESSION %
H = H + BIG(10,F)/K*BIG(15eF) %
WRITE (PRINTER!H¢K) %
END PROGRAM %

D
Le c
1

DATA

1622 3¢55 1 22¢2 05 742 8012 21,4 Hol 2245 0,422
552 0412345 5.88 3,55 7,53 4 52 3 1 77 5 22.1
Sel 243 342 Ha2 9,85 8,99 5.66 66 44 11 2 44,7
5512 LU4,1 2,89 7.521 8.56 S.42 4488 64789 5,423
741234 9,753 B.741 5 6

RESULTS:

5.52000+01
7.1330,+01 7.,70000401

UP-7544

Appendix D

SECTION:

UNIVAC 1108 ALGOL l

PAGE:

Example 5. Newton’s Method of Successive Approximations

AREA A

Given: An area A defined by a circular arc of radius r and its chord.
Required: Find the value of angle x subtended by the arc.

Solution: The relationship between A and x is:

A= (x — sin x)

2

Like many practical problems, this one has no analytic solution. However, methods have been
developed to find approximate solutions to such problems. The method to be used here is called
Newton’s Method. If the solution x to

f(x) = 0

is to be found, then a sequence of values approximating the solution x is given by

% - £(x0)/ (%)

X

n+1

For this problem

f(x) = (1/2)r%x,, - sin x,) - A
and

(%) = (1/2)r%(1 - cos xp)-

UP-7544

v Appendix D
UNIVAC 1108 ALGOL SECTION: PAGE:

Therefore, using elementary algebra, the approximation scheme is

Xy, — sin x,; — 2A /12

Xn+l = ¥ —
1 — cos X

This equation is solved repeatedly, each time with the previous value of x,, 1 substituted
for x, to compute a new value for x,,1. The second term of the equation is the difference
between successive approximations.

When this difference becomes less than some specified value, the sequence of approximations
is said to have converged to a solution. The iteration procedure is then terminated and the
problem is considered solved.

Practical considerations place a limitation on the number of iterations permitted. If the
sequence of approximations does not converge within a prescribed number of iterations, the
procedure is terminated and the approximate solution is rejected.

The conditions used in this example are:

Area = 1.5
Radius = 5.0

The first approximation is xq =1.0. The iteration procedure is then performed for a maximum of
nine iterations. If the successive approximations differ by less than 0.00001, then the sequence
of approximations is considered convergent. The iteration procedure is then terminated and the

sequence of approximations and differences is printed out in the form of a table. Otherwise,
the program is terminated with no output.

The following identifiers in the program represent the corresponding physical quantities:
AREA Area enclosed by chord and arc (A)

RADIUS Radius of circle (r)

ANGLE Approximation to the angle x
CHANGE Difference between successive approximations
SMALL Criterion for convergence

G For convenience, the quantity 2A /12

Appendix D

SECTION: PAGE:

UP-7544 | UNIVAC 1108 ALGOL I

The program is as follows:

BEGIN
COMMENT EXAMPLE S
SAMPLE PROGRAM USING UNIVAC 1108 ALGOL %
REAL AREAr RADIUS» SMALL» G %
INTEGER I» K %
REAL ARRAY ANGLEt(1:10)» CHANGE(1:9) %
FORMAT Fl0(X9» *ITERATION® # X50 YANGLE ¢ X932 *CHANGE*r21e1)
F11(X13+11+D015.6¢D14+5,A1)
F12(X99*THE ITERATION PROCEDURE HAS CONVERGED'(Al) $
COMMENT SET UP VALUES TO BE USED IN PROBLEM $
AREA = 1.5 %
RADIUS = 5.0 %
SMALL = 1.08-5 %
G = (2.0%AREA)/(RADIUS**2) ¢
COMMENT BEGIN ITERATION LOOP == MAXIMUM OF 9 ITERATIONS $
ANGLE(1) = 1.0 %
FOR I = 1 STEP 1 UNTIL 9 DO
BEGIN
COMMENT COMPUTE CHANGE IN APPROXIMATE SOLUTIOM %
CHAMGE(I) = (ANGLE(I)=SIN(ANGLE(I))=G)/(1.0-COS(ANGLE(I))) %
COMMENT TEST FOR CONVERGENCE OF APPROXIMATE ScLUTION %
IF ABS(CHANGE(I)) LSS SMALL THEN GO TO L110 %
COMMENT APPROXIMATION HAS NOT CONVERGED = COMPUTE NEXT
APPROXIMATION %
ANGLE (I+1) = ANGLE(I) = CHANGE(I)
END $
COMMENT END OF LOOP ~ ITERATION PROCEDURE HAS NOT CONVERGED 3%
GO TO FIN $
COMMENT THE ITERATION PROCEDURE HAS CONVERGED %
1.110% WRITE (PRINTER(,F10) %
WRITE (PRINTER(!F11le FOR K=1 STEP 1 UNTIL I DO
(Ko ANGLE (K) # CHANGE (K))) %
WRITE (F12) %
FINS
END OF PROGRAM %

Note that a completely blank card gives a blank line in print.

The sample gave the following result:

ITERATION ANGLE CHANGE
1 1.,000000 . 08381
2 «916186 00742
3 +908770 00006
4 2908714 «00000

THE ITERATION PROCEDURE HAS CONVERGED

This is in excellent agreement with the theory.

Appendix E
UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

APPENDIX E. JENSEN'S DEVICE AND
INDIRECT RECURSIVITY

The purpose of this section is to acquaint the reader with two interesting programming tech-
niques, namely Jensen’s Device and Indirect Recursivity. A thorough treatment of the recursive
concept may be found in ‘“The Use of Recursive Procedures in ALGOL 60’’, H. Rutishauser
The Anual Review in Automatic Programming, Pergamon Press, London, 1963.

Jensen’s Device comprises the use of two parameters in a procedure call, in which one is a
function of the other. Neither may be a value parameter.

The following example is a method of evaluating an approximation to the definite integral of a
function by means of Simpson’s Rule over one interval. The algorithm may be written:

REAL PROCEDURE SIMPS (X»ARITHs A» B) &

VALUE A*B % REAL X» ARITHs, A'B $

BEGIN REAL FA» FMe FB %
X=A $ FASARITH $ X=B $ FBZARITH $
X=B=A)/2 $ FM=ARITH %
SIMPS=(B=A) % (FA+4XFM+FB) /6

END SIMPSON INTEGRATION $

In a call of SIMPS, ARITH may be any arithmetic expression. Jensen’s Device refers to the
case when ARITH is a function of X. For example, the call:

=SIMPS(ZyEXP(Z%Z)r 0e0r 1.0)

would cause ARITH to be replaced by EXP(Z*Z) in the running program. This call evaluates
an approximation to the integral

1
f eZz dz
0
In evaluating an approximation to the double integral
1 1
f f eX¥ dy dx
0 0

indirect recursivity may be used by making the parameter corresponding to ARITH a call to
SIMPS itself, thus

I=SIMPS (X SIMPSIYPEXP(X*Y)r 0aOr 140}y 0.0r 1.0)

More material may be found in: E.W. Dijkstra, A Primer of ALGOL 60 Programming, Bound
Variables, Academic Press, London, 1962, pp. 57-59.

UP-7544

. Appendix G
UNIVAC 1108 ALGOL SEC TION: PAGE:

Gl.

APPENDIX G. SYNTAX CHARTS

GENERAL

This appendix summarizes the syntax of the UNIVAC 1108 ALGOL 60 compiler in chart
form. Charts for the input/output procedures are also included as well as a brief descrip-
tion of possible format specifications.

The use of the charts is very simple and almost self explanatory. The concept being
defined is specified in a rectangle at the top of each chart.

type declaration L=

The definition consists of a series of symbols connected by lines indicating the flow of
symbols which define the concept. Two kinds of symbols are used: those with round
corners (or circles) and those with square corners. The round-cornered boxes contain
symbols that stand for themselves. Square-cornered boxes contain names of concepts
which are defined elsewhere in the chart and may be found by a quick reference to the
Table of Contents for the appendix.

»

In some places a special ‘“or’’ symbol has been used to conserve space. It should be

understood as follows:

{} is equivalent to

In some sections a pair of letters may mark two spots in a definition. Underneath that
section that letter pair followed by a name appears. This means that name will be used
in lieu of the string of symbols between the letter pair in other charts.

The charts use only one of the two possible representations for some symbols in ALGOL.
The following equivalences should be noted:

Symbol used in this chart Alternate representation
([
) 1
GO TO GO or GOTO
$;

In addition, comments may be inserted in the program by means of the following equiva-
lences:

$ COMMENT <any sequence not containing a $>$ equivalent to $
BEGIN COMMENT <any sequence not containing a $>$ ¢ ’’ BEGIN

END <any sequence not containing END or ELSE or >8 ‘¢ ’’ END

The charts make no mention of the use of spaces within ALGOL. A space has no mean-
ing in the language (outside of strings) except that it must not appear within numbers,
identifiers, or basic symbols, and must be used to separate adjacent symbols composed
of letters or digits. Spaces may be used freely to facilitate reading.

Appendix G

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:
G2.| Program | ::=
l1108 ptograml >

S -

AA: |1108 program

Explanation: A program is a complete set of declarations and statements which define an
algorithm for solving a problem. The logic of this algorithm (its correctness) .
is the business of the programmer. The compiler only checks that the syntax
(form) is correct.

A UNIVAC 1108 program is simply an ordinary program without the outermost
BEGIN-END pair.

Notice that the $ is used to separate declarations and statements and is not
inherently a part of a declaration or statement. Nevertheless, it will be shown
in most examples for clarity.

UP-7544

Appendix G

SECTION:

UNIVAC 1108 ALGOL

PAGE:!

G3. |Declaration | ::=

———‘>l string declaration __II
/_———’I string array declaration, JL
\-——-—D! external procedure (v!uclm‘z\tion

proqtdure declaration —'r

___-__—4 local declaration

list doclarahon

format declaration

Explanation: There are 10 types of declarations each of which is defined in detail on the
following pages.

UP-7544

Appendix G

SECTION: PAGE:

UNIVAC 1108 ALGOL J

G3.1.| Type Declaration | ::=

| identifier l

OO | local or own type TT

Explanation: A type declaration declares the mode of arithmetic that the following identifiers

Examples:

will assume in the block. Types REAL 2 and COMPLEX associate two 1108 words
with the identifier, the others one. Upon entrance to a block, identifiers are

given the value zero, unless they are also declared OWN, in which case they

have the same value they had on the last exit from the block.

INTEGER I4»PAK/LOOPCNT $

OWN BOOLEAN ANYLEFT»LASTOUT %
COMPLEX C/»CINVS %

REAL 2 DP %

OWN REAL QIN,QOUT»MAXITEM %

UP-7544

UNIVAC 1108 ALGOL s..:ﬁ‘f.‘i,i‘?di" G

PAGE:

’{ local or own type |—-\
Lo - ARRAY

G3.2.| Array Declaration

arithmetic L U arithmetic
] cxpression expression

BB l bound pair list I CCI; bound pair] UUI upper bound —I LLI lower bound]

Explanation: An array declaration associates an identifier with a one-dimensional or larger
matrix of values. The arithmetic expressions define the lower and upper limits
of each dimension. The type plays the same role as for simple variables. If

Examples:

omitted, type REAL is assumed.

COMPLEX ARRAY CCON4 (0:N),CP1(1:N+1) $
BOOLEAN ARRAY BAND¢!BOR¢/BXOR(=4i4) $

REAL ARRAY B(I=1:I+1)»XINITIAL?YINITIAL(=NINy=NINe122) &

OWN INTEGER ARRAY I(1:5)sJeKeL(ENTIER(X):P112) %
ARRAY XYZ4(1:IN*2) %

Appendix G 6

SECTION: PAGE:

UP-7544 UNIVAC 1108 ALGOL

G3.3.| String Declaration | ::i=

substring declaration

identifier arithmetic expression ™y

STRING

substring declaration

(D
88 I J U‘
d substring declaration
(e S
o

Explanation: A string declaration associates an identifier with a variable whose value is a
string of characters. The number of characters in the string must be less than
4096. A group of characters of a string may be named as a substring.

Examples:

STRING ST1(36) eNAME(INITIALS(2)9LAST(16)) $

STRING PI(N+2)QUOTE(1) %

OWN STRING NEXTOUT(80) %

STRING ALPHA(BETA(2¢GAMMA (4)»2) vDELTA(EPSILON(6))20) $

A dix G
UP-7544 UNIVAC 1108 ALGOL I Lecf.gi? -

PAGE:

G3.4.| String Array Declaration | ::=

> / C \ r—@uwa ARRAY identifier ° length part ‘ bound pair list °

Explanation: A string array is a matrix whose elements are strings. Appended to the length
part of the declaration are the bound pairs for each dimension, just as for an
ordinary array.

Examples:

STRING ARRAY SA(80:0:100)»CARD(LABEL(8)r0P(6)92,0PERAND(64)212N) %
OWN STRING ARRAY LASTFILE (CLENGTH:1:507) %

Appendix G

SECTION: PAGE:

UP-7544 UNIVAC 1108 ALGOL l

G3.5.| Switch Declaration | ::=

Y

designational expression

- identifier

Explanation: A switch declaration associates an identifier with an ordered list of designational
expressions, A switch is used to transfer to a label depending on the value of

some variable,

Examples:

SWITCH JUMP = L1»STARTFEIL4,CALC %
SWITCH BRANCH = IF BETA EQL 0 THEN L1 ELSE JUMP(J)»START $%

UP-7544

Appendix G

SECTION:

UNIVAC 1108 ALGOL l

PAGE:

&————————p» EXTERNAL

G3.6.| External Procedure Declaration | ::=

.

PROCEDURE identificr

L
NON-RECURSIVE

Explanation: This declaration specifies a list of identifiers which are to be the names of

Examples:

procedures not found in the program. These procedures may be written in assembly
language (NON-RECURSIVE), FORTRAN or ALGOL, The type of the external
ptocedures is specified if they are functional procedures.

EXTERNAL FORTRAN REAL PROCEDURE CBRT %

EXTERNAL FORTRAN PROCEDURE NTRAN(INVS $

EXTERNAL PROCEDURE ROOTFINDER KEYINeKEYOUT $
EXTERNAL NON=RECURSIVE PROCEDURE TYPEIN»TYPEOUT %

Appendix G 10

SECTION:

UP-7544 ' UNIVAC 1108 ALGOL I

PAGE:

G3.7. | Procedure Declaration | ::=

identifier

Ja— i
PROCEDURE i

"_. = '
! o
FF| formal parameter part]
type
ARRAY

PROCEDURE

HH| procedure heading
TT| procedure body
8 specification part

VV| value part

W

R

STRING ARRAY

SWITCH

LABEL

LIST

FORMAT

_ - ,

Explanation: A procedure declaration associates an algorithm with a procedure identifier.
The principal constituent of a procedure declaration is a statement which is
executed when the procedure is ‘‘called’’ (see 7.4). The procedure heading
specifies that certain identifiers appearing within the procedure body are formal
parameters. A parameter may also be specified as “VALUE’’ in which case
the procedure statement, when called has access only to the value of the corre-
sponding actual parameter, and not to the actual parameter itself.

Examples:

PROCEDURE ZEROSET (A/N) 9%

VALUE N % INTEGER N % ARRAY A %

BEGIN COMMENT THIS PROCEDURE ZEROES AN ARRAY ASSUMED
DECLARED ARRAY A(1:IN) %

INTEGER I $

FOR I = 1 STEP 1 UNTIL N DO A(I) = 0 END ZEROSET %

INTEGER PROCEDURE FACTORIAL (NUMBER) %

VALUE NUMBER % INTEGER NUMBER %

FACTORIAL = IF NUMBER LSS 2 THEN 1 ELSE NUMBER * FACTORTA
(NUMBER=-1) 9%

BOOLEAN PROCEDURE BOOL 3%

BOOL = NOT (FINISHED AND OFF OR FIRST AND LAST) %

UP-7544

UNIVAC 1108 ALGOL Appendix G 11

SECTION: PAGE:

-— LOCAD———

Explanation:

Examples:

G3.8. | Local Declaration =

PROCEDURE

identificr

The local declaration is a preliminary declaration of identifiers before they are
actually declared (or, in the case of a label, used). This is necessary to allow
forward references, use of an identifier before it has been defined.

LOCAL LABEL L1+ENDFILE %
LOCAL SWITCH SALPHA %
I.OCAL BOOLEAN PROCEDURE SLASH(ENDTAPE $

UP-7544

Appendix G 12
UNIVAC 1108 ALGOL [secTion: PAGE:

G3.9.| List Declaration | ::=

L

arithmetic expression

Boolean expression

array identifier

@ P identifier ° string array identifier °

for clause]——D‘ list element
° list element o

/

Explanation:

Examples:

PP .l|

LL| list element

A list defines an ordered sequence of expressions and array identifiers. A list
may only be used as a parameter to a procedure, and, ultimately, only be a
procedutre written in some language other than ALGOL.

LIST OUT (A+1eN+1,FOR I = (1,1,NMAX)IDO(Q(I)»QRES(I))) $
LIST L1(AYBeC)e 2(IF MOD(Qr2)EQL 0O THEN B ELSE Q) %

Appendix G

SECTION:

UP-7544 UNIVAC 1108 ALGOL l

PAGE:

G3.10.[Format Declaration | ::=

string z
letter 1—4 unsigned integer .

simple phrase
unsigned integer H

phrasc sct

C .
-'{ identifier (& °

B o %) “
AA‘ simple phrase I ‘

BB phrase set |
) arithmetic expression
ce (7] o O

Boolean expression

@4
O J
L

Explanation: A format is a special string of symbols which are passed on to an input/output
routine for editing and control. Integers in front of a format code specify the
number of times that code is to be repeated.

Examples:

FORMAT NEWPAGE(Er *X=COORDINATE'»X28+ *'Y=COORDINATE'rA1) %

FORMAT REP(5(4 R16+89rA1)9A02¢512¢'='9D10+1,S120'='9m10,1,A1) 3
FORMAT VECTOR (10T10.,4+A1) »PATTERN('SWITCHES ARE'¢8BrrA1) 3
FORMAT MATRIX (IN:(:M:(D4.,2rA1))) %

. UP-7544

UNIVAC 1108 ALGOL JAppendix G) 14

G4.| Statement =

block

compound statement

agsignment statement

GO TO statement

conditional statement

FOR statement

dummy statement

procedure statement

Explanation: Statements define the sequence of operations to be performed by the program.
The eight types of statements are each defined in the following pages.

SECTION:

UP-7544 UNIVAC 1108 ALGOL l Appendix G J proms

G4.1.| Block | ::=

o

Explanation: A block automatically introduces a new level of nomenclature by a set of
declarations. This means that any identifier declared in the block has the
meaning assigned by the declaration, and any entity represented by such an
identifier outside the block is completely unaccessible inside the block. The
identifiers declared within a block are said to be local (to that block) while
all other identifiers are nonlocal or global to that block.

Example:

L:BEGIN INTEGER ARRAY A(1:10) %

AC1) =1 9%
FOR J = (201+10) DO A(J) = A(J=1)+ U &
FOR J = (101,10) DO WRITE (JrA(J)) %

END %

UP-7544

Appendix G

SECTION:

UNIVAC 1108 ALGOL l

PAGE:

16

G4.2. | Compound Statement | ::=

[statement

Explanation: A compound statement serves to group a set of statements by enclosing them with

Example:

a BEGIN-END pair. This group is then treated as a single statement.

BEGIN T= 0 % FOR I = 1 STEP 1 UNTIL M DO

T= B(JeI) * C(IK) +T %

IF T GTR 820 OR OVFLOW THEN GO TO SPILL %
END®

\j

UP-7544

Appendix G 17

SECTION: PAGE:

UNIVAC 1108 ALGOL

G4.3. |Assignment Statement | ::=

variable

arithmetic expression

procedure identifier
: label

L J

Boolean expression

Explanation: An assignment statement assigns the value of the expression on the right-hand

Examples:

A(L) =

side to the variable and procedure identifiers on the left-hand side. A procedure
identifier is only permitted on the left-hand side if the statement appears in the
body of that functional procedure. If any of the left-part variables are subscript-
ed variables, they are evaluated before the expression is evaluated. Transfers
of type are automatically evoked when necessary.

B(I) = &35 %

AANDB = A AND B OR EPS1 GEQ EPS2 $

P = SQRT(B**2 = 4xA*C) %

T =S = MYO*EPSO* (2%PI*F) **2%

S(VeK=2) = COS(ANGLE) + 045 *(IF S1 THEN K**3 ELSE Kx*5) %

NAME (10

6P + 1) = YIFTHEN' %

Appendix G 18
UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:
G4.4.| GO TO Statement | ::=
P - i)’& designational expression I |
O

Explanation: A GO TO statement transfers control to the statement with the label determined
by the designational expression.

Examples:

GO TO PARTY4 %

GO TO OPS (I=2) %

60 TO IF ALPHA GTR 0 THEN Q17 ELSE JUMP(=ALPHA) %
GO TO TRACK (IF MOD(Ps2) EQL 1 THEN I ELSE A(I)) %

Appendix G

SECTION:

UP-7544 UNIVAC 1108 ALGOL ‘

PAGE:

G4.5. | Conditional Statement | ::=

compound statement

\

procedure statement

Boolean expression

- ®
(o

UU‘ unconditional statement

Explanation: The IF statement causes the execution of one of a pair of statements depending
on the value of a Boolean expression. If this expression is TRUE then the
statement after the THEN is executed and the statement after the ELSE is
skipped. If FALSE, then the statement after the ELSE is executed, if the
ELSE clause is present.

Examples:

IF C1 GTR 10 THEN A(0e0) = KMAX(I) ELSE GO TO LOOP %
IF BOOL.(J) IMPL BOOL(J+1) THEN STEP(J) = 'VALID' ELSF STEP(J) =
"INVALID' % '
IF I GEQ@ O THEN BEGIN FOR K = =I STEP 1 UNTIL I DO B(K) = =COS(A=1) %
SUM = ADDUP(B) END ELSE
BEGIN IF I EQL =~1 THEN GO TO ERROR ELSE
GO TO NEXT END $

UP-7544

Appendix G

UNIVAC 1108 ALGOL '

PAGE:

SECTION:

G4.6.| FOR Statement | ::=

arithmetic arithmetic
expression expression —

O]

FOR

variable

arithmetic arithmetic
expression | expression " ==
Boolean
@ expression |f———— — — —

N
U

LL:| for list

arithmetic
—_—— expression

arithmetic
expression
L F
G

Explanation: The FOR statement controls the execution of the statement following the DO

Examples:

a number of times while the variable to the left of the = is assigned the values

determined by the FOR list. The (,,) construction is equivalent to the STEP-
UNTIL construction.

FOR I = 1 STEP 1 UNTIL N DO FOR J = 1 STEP 1 UNTIL M DO

ACI»J) = 0 %

FOR S = S + 1 WHILE P(S) NEQ 'A' AND S LEQ 80 DO BEGIN
N=N*10 + P(S) $ IF OVFLOW THEN Go TO
SIZERR END %

FOR S = (1¢2%S=Sy 2%*10)s=1v=29=4 DO IF LOGAND(S»VAR)
THEN GO TO YES %

UP-7544 UNIVAC 1108 ALGOL Appendix G 21

SECTION: PAGE!

G4.7.| Dummy Statement | ::=

y

(o)

Explanation: A dummy statement does nothing. It may serve to place a label.

Examples:

FOR I = (1»1/N) DO FOR J = (1r1eN) DO BEGIN
IF I EQL J THEN GO TO ENDLOOP %

*
.
eee B ENLLOOP: END %
0%
S =

BiR%l
X i

0 S + 1 WHILE P(S) NEQ *A' DO %

UNIVAC 1108 ALGOL

Appendix G

SECTION: PAGE:

22

- UP-7544

o

AA: actual parameter

Explanation: A procedure statement is a call on a declared procedure. The actual parameters

G4.8.| Procedure Statement | ::=

(O

N

expression

array identifier

string array identifier

switch identifier

procedure identifier

format identifier

list identifier

I'_.I list element

for clause

(D /
T

letter
string

of the call replace the formal or dummy parameters throughout the body of the

declared procedure. If the corresponding formal parameter has been ‘““VALUE?”’
specified then only the value of the actual parameter is used by the procedure.

Examples:

MARGIN (62+/5604) %
P{A»BrCrInJeK) %
ROOTFINDER (NeOrERGDET¢KOEF ¢ =4&&0»&&=5¢5,08&=191000)

UP-7544

Appendix G
UNIVAC 1108 ALGOL

23

SECTION: PAGE:

G5. | Expression | ::=

Explanation:

ﬂ arithmetic expression }_\
l Boolean expressxon -
\’! designational expression }/

There are three types of expressions, classified according to their values. An
arithmetic expression has a numerical or a string value, a Boolean expression
is either TRUE or FALSE, and a designational expression has a label as a
value.

Y

Appendix G

UP-7544 UNIVAC 1108 ALGOL SECTION: PAGE:

G5.1.| Variable =

]
variable identifier |

array identifier

arithmetic expression

string identifier

arithmetic expression

arithmetic expression

subscript list

string array identifier

substring part

Explanation: A variable is a designation given to'a single value, A variable identifier is a variable named in

: . a type declaration,
LL:y subscript list

Examples: DFELTA

BOOLV(7)
CARD(4)

CARD(I, 6)

A(P(4), NxSIN(ANG), 3)
CUROUT(J,K)
CUROUT(1:J, K)
CUROUT(1, 6: J, K)

Explanation: A variable is a designation given to a single value. A variable identifier
is a variable named in a type declaration.

Examples:

DELTA

BOOLV(7)

CARD

CARD (4)

CARD(I» 6)
A(P(4) s N*¥SIN(ANG) ¢ 3)
CUROUT (JeK)
CUROUT(13JrK)
CUROUT(1r6: JrK)

UP-7544

Appendix G
UNIVAC 1108 ALGOL | secTion: PAGE:

25

G5.2.| Function Designator | ::=

.____.——-4->| identifier

Explanation: A function designator defines a single numeric or logical value by applying
the rules of the procedure declaration to the actual parameters. Only a procedure
which has a type associated with it can be a function designator. Besides
those functional procedures declared in the program, several standard ones
are available for use without being declared.

Examples:

CLOCK
ARCTAN(1.0)
BACKSLASH(AL,A2)

UNIVAC 1108 ALGOL '

Appendix G 26
UP-7544 SECTION: PAGE:
G5.3. | Arithmetic Expression | ::=
simple arithmetic expression }; | o

string

unsigned number

15 ‘ variable s
® O, (az)
' function designator

arithmetic
expression

II:

@
SS:[simple arithmetic expression J k é m‘ \ J
__5“/

. J

Explanation: An arithmetic expression is a rule for computing a numerical value.

Examples:

A(lh) + 2 * SQRT(D**3) = DELTA
IF A LSS &-5 THEN 0 ELSE A&+5S
Q(MOD(Nr2) + 1) * (IF FIRST THEN 10 ELSE RATIO)//3

Appendix G

SECTION:

UP-7544 UNIVAC 1108 ALGOL L

PAGE:

27

G5.4. |Boolean Expression | ::i=

v

/_——.F‘Aple Boolean expression H

variable
] s
function designator ! » ELSE

| L
simple arithmetic relational simple arithmetic
expression H operator I cxpression

N - /

if clause

Explanation: A Boolean expression is a rule for computing a logical value.

Examples:

FIRST AND NOT SPECIAL
A LSS DELTA OR ITERATIONS GTR MAXN
IF BETA THEN TRUE ELSE IF STEP(I) IMPL STEP(I+1) THEM QVALUE

IF BETA THEN TRUE ELSE IF STEP(I) IMPL STEP(I+1) THEN QVALUE(P»1)
ELSE QVALUE(PrI-1)

' Appendix G
UP-7544 | UNIVAC 1108 ALGOL 7

SECTION: PAGE:

G5.5. [Designational Expression | ::=

]

simple designational expression I

Y

switc
. A arithmetic expression
If clause identifier O metle exp

designational expression

SS:L simple designational expression

Explanation: A designational expression is a rule for computing the label of a statement.
A switch identifier followed by an arithmetic expression in patenthesis
refers to the label in the corresponding position in the switch declaration.

Examples:

L10
IF BETA THEN CALC ELSE NEXT (K//2)

Appendix G

SECTION:

UP-7544 UNIVAC 1108 ALGOL l

PAGE:

. LEMENT
G6. BASIC E NTS G6.1. | Identifier | ::=.

Letter =

Letter | ...
String :

Digit | ::=

| identifier sim

L variable identifier J::: L array identifier 1::

L string identifier T::: r string array identifier]::.
*——- ﬂtter l >
L switch identifier I::- rprocedure identifier tim
digit
! 1ist identifier]::- r format identifier =
o
]

l label l::= [identifier J

Iletter]
.——-————GIBIC‘DIE'F'GIHII[J lKlLIMINlOIPlQlRlS‘TIUIVIWIXIYD‘*————-’

letter
string

. r EEQE:}—“ij“““——’

O—-——-G|1|Z|3|4l5|6|7|8@*7 >

Explanation: An identifier is a name chosen to represent a variable, array, etc. Only the
first 12 characters of an identifier uniquely define it.

Examples: ’

P47

DELTA
SQRTROOOF 2
E1C4PDQ

UP-7544

Appendix G
UNIVAC 1108 ALGOL SECTION: PAGE:

30

G6.2.| Number | ::=

unaigned
integer

unsigned 1
integer

I1: integer

Y

] digit L L8
I TT: | complex number:l

Explanation: A number is written in its usual decimal notation with the conventions of & for

Examples:

power of ten and corner brackets for complex numbers. Numbers are of four
types: REAL, INTEGER, REAL 2 and COMPLEX. REAL 2 is differentiated
from REAL by use of && for power of ten, or there may be between 9 and 18
digits in the fixed point part. COMPLEX numbers are distinguished by the
comer brackets, where the first number is the real part and the second the
imaginary.

1

-1009

'04031

3.1459
‘1800&“
-<1v0>

20&=5
+1800,8&0

&=6

+{ =, 060 &=2>

Q
integer integer
>)% -
T
decimal decimal
number number
Uu: I unsigned integer]

Appendix G

SECTION:

PAGE:

UP-7544 UNIVAC 1108 ALGOL J

G6.3.] String L=

Logical Value | ::=

\|

.) o)
T\

C—(¢anyl108character except 'y })

Explanation: A string constant is any string of characters which are used as parameters
to procedures or with string variables.

Examples:

'DOGGENBURG STR. 22°
'NEQ?

'BJARNE WIST!?

1227 KALPHA?

'REAL ARRAY!

-

FALSE

[]

Explanation: A logical value is a Boolean constant,

UP-7544

UNIVAC 1108 ALGOL

Appendix G

SECTION: PAGE:

32

G6.4.| Delimiter | ::=

A

gz | nno) —
on | ano | yor')
vor | piss | po)

—/

I& ’&&l : I $ I - I(|) ISTEP I UNTIL I WIIILEICOMME D—“

_OWNl BOOLEANI H‘JTEGERI REAL l REAL 2 | COMPLE‘_XI STRING

AHHAY' SWITCH I PROCEDUREI EXTERNALI LIST ' FORMATI LOCAL

(

[] [[o)

AA:

RR:

LL:

S8:

VALUE I LABEL

I arithmetic operator —I Pp:

’ rclational operator

! DD:

I Boolean operator ’

BB:

| sequential operator

, cc:

separator

specificator

UP-7544

Rev. 1 Appendix G
UNIVAC 1]08 ALGOL SECTION: PAGE:

33

G7. INPUT/OUTPUT PROCEDURES

G7.1.1Input Procedure Statement | ::=

oD

~

CARDS

format
— identifier _——
‘filename’ @;tionﬁ

i designational

expression

list identificr

designational
’ expression

Explanation:

Examples:

list element

A call on procedure READ reads data from the specified input device into the
variables indicated by the list elements. The designational expressions are
used as exit points in case end-of-file or end-of-information conditions are
met on that device. Note that READ() is a legitimate statement but the effect
is the same as ‘‘No operation’’.

READ(CARDSPLEOF »LEOT s A»ByCeSeEPSTLON) %

READ(FILE(INDEX)» FOR I=(1r1,KMAX) DO FOR J=(1r1+LMAYX)
DO ERG(IvJ)) %

READ(DATE) %

| UP-7544 UNIVAC 1108 ALGOL Rev. 1 Appendix G 34

SECTION: PAGE:

G7.2.] Output Procedure Statement | ::=

PRINTER

arithmetic expression J—

-)
K M format
Boolean expression B

identilier 4 ———
Z designational
- expression [
at end of parameter list

Explanation: A call on procedure WRITE outputs the values defined by the list to the
device specified. Modifiers (KEY, EOF, EOI) produce special marks on
tape. A format controls editing on paper and punched cards. The designation-
al expression is used as a return point if the output device functions abnormal-
ly. Note that WRITE() is the same as ‘‘No operation’’.

at end of parameter list

Y

I | list identifier l

list element

MM

Examples:

WRITE (PRINTERe F10e FOR IZ(1s1eN) DO A(I»J)) %
WRITE ('CHLCKPOIMNT CHARLIE'rA) %

WRITE (FILE('TAPE1')KEY(I)»ABORTLAB!DUMPLIST) %
WRITE (FILE('*OUTPUT')»EOF('LAST')EOQI) %

Appendix G

SECTION:

\ Rev. 1

UP-7544 7 UNIVAC 1108 ALGOL

PAGE:

G7.3.| Position Procedure Statement | ::=

arithmetic expression

POSITION ° @ ‘ ‘filename’

modifier

! designational 3

designational
expression

expression

\j

Explanation: The procedure POSITION positions a file forward or backward a number of
records or searches for a KEY, EOF, or EOI marker. The designational ex-
pressions are used as exits in case the search fails.

Examples:

POSITION (FILE('TAPE')r»=2) %
POSITION (FILE(YINPUT®), KEY('PRICES')»ABORT) $
POSITION (FILE('OUTPUT'),» EOI) $

35

‘ Rev. 1

UP-7544 UNIVAC 1108 ALGOL Appendix G 36
G7.4.] Rewind Procedure Statement | ::=
(e

REWIND

‘filename’

Y

Explanation: A call on procedure REWIND rewinds the specified files. The modifier

Examples:

INTERLOCK will cause all previously named files to be rewound with
interlock (read/write protect).

REWIND (FILE(*INPUT®)r» FILE(*OUTPUT")) %
REWIND (FILE(*TAPEL1')s INTERLOCKs FILE('TAPE2')) $

UP-7544 UNIVAC 1108 ALGOL Appendix G

SECTION: PAGE:

G7.5. Summary of Format Codes

A format code of the form Qw.d where Q is a letter and w and d are unsigned integers
is interpreted according to the following table. The integer w, except where noted,
always specifies the width of the field under consideration. Also, Qw = Qw.0 and

Q = Q0.0. The word ‘“print’’ has been used in the description of output action, but
‘“‘punch’’ may be freely substituted.

Letter Input Output
A Activate Read one card Print the edited line, skipping w
lines before and d lines after print-
. ing. (w and d ignored for punch).
B Boolean Accept a logical value Print a Boolean expression as
from the field either either TRUE or FALSE.
TRUE, FALSE, or 1,0.
D Decimal Accept a real value. If Print a number with decimal
the actual number is of point inserted and d digits after
INTEGER type then insert the decimal point.

a decimal point d places
to the left of the right end of

the field.
E Eject Eject the page to logical line
w — 1.
F Free Accept an unspecified
number of values from
the field punched in free-
format mode.
I Integer Accept an integer from Print an integer to the base d
the field. (d=0 = d=10).
R Real Same as letter D. Print d digits of a real number

with decimal point and attached
exponent part.

S String Accept a string from the Print a string.
field.
T Significance| Same as letter D. Print the first d significant digits
of a number with the decimal point
inserted.

X Skip Skip the field. ' Skip the field.

UP-7544

Appendix G

UNIVAC 1108 ALGOL SECTION: PAGE:

G7.6. Grouping of Format Codes

Format codes may be repeated in execution by four methods:

(a) Placing an unsigned integer in front of a format code:

7D9.2

This has the same effect as if the phrase D9.2 was written 7 times.

(b) Enclosing a group of format codes in parentheses and placing an unsigned
integer before the parenthetical expression:

This has the effect of expanding the phrase inside the parenthesis 7 times.

(c) Similar to (b) above but using an integer or Boolean expression enclosed in
colons before the parenthetical expression. The value of the expression deter-
mines the number of times the enclosed code or group of codes is to be repeated:

tNMAX//3+1:(6R18.89A1)

(d) Enclosing a group of format codes in parentheses but not preceding this parentheti-
cal expression with an integer constant. This means the enclosed codes are to be
used until there is no more output (or input) to process. The parentheses sur-
rounding the entire format string are interpreted in this manner.

FORMAT FOUT(4(S10¢X5)en2)

(IR AY Y GREBEY S

UP.7544

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	G-33
	G-34
	G-35
	G-36
	G-37
	G-38
	xBack

