
A

Meta-Assembler
(MASM)
Programmer Reference

UNIVAC
COMPUTER SYSTEMS

UP-8453 Rev. 1

This document contains the latest information available at the
time of publication. However, Sperry Univac reserves the right
to modify or revise its contents. To ensure that you have the
most recent information, contact your local Sperry univac
representative.

Sperry Univac is a division of Sperry Rand Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and
UNIVAC are registered trademarks of the Sperry Rand
Corporation. AccuScan, ESCORT, PAGEWRITER, PIXIE, and
UN IS are additional trademarks of the Sperry Rand
Corporation.

THE MASM SOFTWARE DESCRIBED IN THIS DOCUMENT IS
CONFIDENTIAL INFORMATION AND A PROPRIETARY
PRODUCT OF THE SPERRY UNIVAC DIVISION OF SPERRY
RAND CORPORATION.

This document corresponds to level 2 R 1 of the MASM
software.

© 1977 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

PSS-1
PAGE

UP-8453 Rev. 1~
--~------------~------------

Page Status Summary

Issue: UP-8453 Rev. 1

Section Pages Update Section Pages Update Section Pages Update
~-

Cover/DisclailTler

r----'

PSS 1 _.
Contents 1 thru 5

-'
1 1 thru 80 _.
2 1 thru 21

f----.

Index 1 thru 5

f------.

User Comment

Sheet

f------'

Total: 114 pagles

and cover

_.

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

Contents-1
PAGE

UP-8463 Rev. II
._---- -----------~----~~----------------------------~----------~---------

Contents

Page Stiatus Summary

Content:s

1. Assembler Language 1-1

1. 1. IINTRODUCTION 1-1
1. 1. 1. Dictionary 1-1

1.2. IMASM USAGE 1-2
1.2.1. Processor Call 1-2
1.2.2. Reusability 1-3
1.2.3. Output 1-4
1.2.4. Input 1-4
1.2.4.'1. Statements 1-4
1.2.4.2. Symbols 1-5
1.2.5. Library Searching 1-6

1.3. IFIELDS 1-6
1.3.1. Labels 1-6
1.3.1.'1. Location Counter Specification 1-7
'1.3.1.2. Externalized Labels 1-8
1.3.1.3. Node Selectors 1-8
1.3.2. Operation 1-8
1.3.3. Operand 1-9
1.3.4. Comments 1-10
1.3.5. Other Considerations 1-10
1.3.5.'/. Line Continuation 1-10
1.3.5.2. Paper Ejection 1-11

1.4. IDATA GIENERATION 1-11
1.4.1. Signed Character Strings 1-12
1.4.2. UnsignHd Character Strings 1-13

1.5. VALUES AND EXPRESSIONS 1-13
1.5.1. Values 1-14
1.5.1.'/. Numeric Values 1-14
1.5.1.'1.1. Binary Values 1-14
1.5.1. '1.2. Parenthetic Expression Items 1-15

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.5.1. 1.3. Line Items
1.5. 1. 1.4. Literal Items
1.5.1.1.5. Floating Point Values
1.5. 1.2. String Values
1.5.1.3. Nodes and Selectors
1.5. 1.4. Control Information
1.5.2. Expressions and Operators
1.5.2.1. Level 0 Operators
1.5.2.2. Level 1 Operators
1.5.2.3. Level 2 Operators
1.5.2.4. Level 3 Operators
1.5.2.5. Level 4 Operators
1.5.2.6. Level 5 Operators
1.5.2.7. Level 6 Operators
1.5.2.8. Level 7 Operators
1.5.2.9. Level 8 Operators
1.5.2.10. Level 9 Operators
1.5.2. 11. Level 10 Operators
1.5.2. 12. The Flag Attribute

1.6. ASSEMBLER DIRECTIVES
1.6.1. $ANDF (And If)
1.6.2. $ASCII (Set Character Mode to ASCII)
1.6.3. $CHAR (Define a Data Character Set)
1.6.4. $DEF (Establish Definition Mode)
1.6.5. $DELETE (Delete a Definition)
1.6.6. $DISPLAY (Display Information)
1.6.7. $ DO (Repetitive Generation of a Line)
1.6.8. $EJECT (Eject the Page)
1.6.9. $ ELSE (Conditional Interpretation Alternative)
1.6.10. $ ELSF (Cond. Interp. Conditional Alternative)
1.6.11. $END (End of a Subassembly)
1.6.12. $ENDD (End $00 Iteration)
1.6.13. $ENDF (End Conditional Interpretation Group)
1.6.14. $ENDI (End $REPEAT Iteration)
1.6.15. $ENDR (End a $REPEAT Construction)
1.6.16. $EOU (Equate a Value)
1.6.17. $ EOUF (Equate a Field)
1.6.18. $ FDATA (Set System Character Set to Fieldata)
1.6.19. $FORM (Define a FORM)
1.6.20. $FUNC (Define a function)
1.6.21. $GEN (Data Generation)
1.6.22. $GFORM (Generalized FORM)
1.6.23. $GO (Transfer to a NAME)
1.6.24. $HEX (Set Binary Representation to Hexadecimal)
1.6.25. $IF (Conditional Interpretation)
1.6.26. $INCLUDE (Include Definitions)
1.6.27. $INFO (Special Information)
1.6.27.1. Group Number 1 (Mode Settings)
1.6.27.2. Group Number 2 (Common Block)
1.6.27.3. Group Number 3 (Minimum D-Bank Specification)
1.6.27.4. Group Number 4 (Blank Common Block)

UPDATE LEVEL
Contents-2

PAGE

1-15
1-16
1-17
1-18
1-18
1-22
1-22
1-25
1-26
1-27
1-28
1-28
1-28
1-29
1-29
1-29
1-30
1-30
1-30

1-31
1-31
1-32
1-32
1-33
1-34
1-34
1-34
1-35
1-35
1-35
1-36
1-36
1-37
1-37
1-37
1-37
1-38
1-38
1-38
1-39
1-40
1-40
1-40
1-41
1-41
1-41
1-41
1-41
1-42
1-43
1-43

UP-8453 Rev. 1 SFIERRY UNIVAC 1100 Series Contents-3
UP-NUMBER, ___ L-_____ M_.e_t-a--A-s-s-e-m-b-l-e-r _(M_A_S_M_)_P_r_o_9_ra_m_m_e_r_R_e_fe_r_e_"_c_e ____ ..L.-up_D_ATE_LEV_E_L_---lLP_AG.::..E ___ _

1.6.27.5. Group Number 5 (External Reference Definition)
1.6.27.6. Group Number 6 (Entry Point Definition)
1.6.27.7. Group Number 7 (Even Starting Address)
1.6.27.8. Group Number 8 (Static Diagnostic Information)
~ .6.27.9. Restrictions
11.6.2B. $INSERT (Insert Images)
1.6.2H. $ LEVEL (Dictionary Level Control)
1.6.30. $ LIST (Resume Listing)
1.6.3 'I. $ LIT (Literal Pool Definition)
1.6.32. $NAME (Define an Internal Name)
1.6.3~~. $ NEG (Transform Negative Values)
1.6.34. $NIL (No Action)
1.6.3f5. $OCTAL (Set Binary Representation to Octal)
1.6.3E5. $PROe (Define a PROC)
1.6.37. $REPEAT (Repeat a Statement Group)
1.6.38. $RES (Reserve Space)
1.6.3H. $UNUST (Inhibit Listing)
1.6.40. $WRD (Specify Word Size)

1.7. ASSEMBLER FUNCTIONS
1. 7.1. $AP(e) (Absolute Part)
11.7.2. $ BA(e) (Binary Attributes)
11.7.3. String Conversion Functions
1.7.3.1. $CAS(e) (Convert to ASCII String)
1.7.3.2. $CB (e1,e2) (Convert to Binary Representation)
1. 7 .3.3. $CD(H) (Convert to Decimal)
1.7.3.4. $CFS(e) (Convert to Fieldata String)
1.7.3.5. $CS(e) (Convert to String)
1.7.4. $FN (e'l,e2) (Form a Name)
11.7.5. $ FP (Final Pass)
11.7.6. $GP (Generative Pass)
1. 7.7. $IBITS(e) (Indicator Bits for Expression)
1.7.8. $IC(e) (~dentifier Class)
11.7.9. $ILCN (Initial Location Counter Number)
11.7.10. $ LCB(e) (Location Counter Base)
1. 7.1 'I. $ LCN (Current Location Counter Number)
1.7.12. $ LCV(e) (Location Counter Value)
1.7. 1 ~3. $ LEV (Principal Dictionary Level)
1.7.14. $ LF(e) (Label Field Description)
1.7.1 f5. $ LINES (Line Counter)
1.7.1 E5. $ LP (L.ast Pass)
1.7.17. $ LO (e 1 , ... ,en) (Form a List Starting at 0)
1.7.1 B. $ L 1 (H 1 , ... ,en) (Form a List Starting at 1)
1.7.1 B. $ NODE (Form a Node)
1.7.20. $NS (e1,e2) (Find nth Selector)
1.7.2 '1. $ PAR(e) (Processor Call pz-rameter)
1.7.22. $SL(e) (String Length)
1.7.2:3. $SN (e 1 ,e2) (Find Selector Number)
1.7.24. $SR (e1,e2) (String Repetition)
1.7.2~5. $SS (e1,e2,e3) (Substring Extraction)
1.7.2f5. SSSS (e 1 ,e2,e3,e4) (Substring Substitution)
1.7.27. Typing Functions

1-43
1-43
1-44
1-44
1-'-44
1-44
1-45
1-45
1-45
1-46
1-46
1-48
1-48
1-48
1-48
1-49
1-49
1-49

1-49
1-50
1 50
1-51
1-51
1-52
1-52
1-52
1-52
1-52
1-53
1-53
1-53
1-54
1-54
1-55
1-55
1-55
1-55
1-55
1-56
1-57
1 -57
1-57
1-5}
1-58
1-58
1-58
1-58
1-59
1-59
1-59
1-60

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.7.27.1. $TYPE(e) (Compute Data Type Number)
1.7.27.2. Type Testing Functions
1.7.28. $TMODES (Test Modes)
1.7.29. $(e) (Location Counter Value)

1.8. PROCEDURES
1.8.1. Types of PROCs
1.8.1. 1. Two-Pass PROCs
1.8.1.2. One-Pass PROCs
1.8. 1.3. Words-Given PROCs
1.8.2. Speeding Up a Two-Pass PROC
1.8.3. Calling a PROC
1.8.4. VVaiting Labels
1.8.5. Location Counter Control in PROes
1.8.6. Nesting of PROCs
1.8.7. Use of $NAME and $GO Directives
1.8.8. Using the $GP, $FP, and $LP Functions
1.8.9. Pass Initialization

1.9. FUNCTIONS

1.10. MICROSTRINGS

1. 11. LEVELERS

1.12. ERROR AND WARNING DIAGNOSTICS

1. 13. DEFINITION MODE ASSEMBLY

2. Built-in 1100 Series Features

2. 1. GENERAL

2.2. EOUF (EOUATE A FIELD)

2.3. WRD (DEFINE THE WORD SIZE)

2.4. INSTRUCTION MNEMONIC REDEFINITION

2.5. 1100 SERIES INSTRUCTION REPERTOIRE

Index

User Comment Sheet

TABLES

Table 1-1. MASM Options
Table 1-2. The Hierarchy of Operators in MASM
Table 1-3. Bit Meanings for $INFO Group Number 1
Table 1-4. Selectors Defined on the Result of $BA(e)
Table 1-5. Expression Characteristic Indicator Bits

UPDATE LMl
Contents-4

PAG!

1-60
1-60
1-61
1-62

1-62
1-63
1-63
1-65
1-66
1-67
1-68
1-68
1-69
1-69
1-69
1-70
1-71

1-71

1-72

1-74

1 77

1-78

2-1

2-1

2-1

2-2

2-2

2-3

1-3
1-23
1-42
1-51
1-53

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

Contents-5
'AGE

UP-8453 Rev. ~
___ ~ __________ L_ ______ ___

Table 1-6. Data Type Numbers
Table 1-7. Descripltion of Type Testing Functions
Table 1-8. Mode Elit Settings for $TMODES
Table 1-9. Characteristics of PROC Types
Table 1-10. Two Pass Summary Table
Table 1-1 'I. One Pass Summary Table
Table 1-1 :!. Word Given Procedure Summary Table
Table 1,-1 :1. PROC Types Using Pass-Determination Functions
Table 1-14. MASM Diagnostic Flags
Table 1-H). MASM Error Flags
Table 2-1. User Instruction Repertoire
Table 2-2. Executive Instruction Repertoire

1-60
1-61
1-61
1-63
1-64
1-65
1-67
1-70
1-77
1-78
2-4
2-15

UP-8453 Rev. 1~
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-1
PAGE

--~------------~----------

1. Assembler Language

1. 1. INTnODUCTION

This manual describes the SPERRY UNIVAC 1100 Series Meta-Assembler (MASM) processor and
language. This manual is directed to users with basic Assembler programming knowledge and
experienc€~. Definition of the machine language which is to be assembled by MASM is not given in
this document. This information is available in the relevant hardware manuals.

MASM is called a meta-assembler because it is not specifically bound to generating code for a
particular hardwar~ architecture. With an unaltered environment, MASM will generate code for an
1100 Serit:!s hardware architecture. However, with the directives and built-in functions provided, the
user may alter the environment to generate code for any hardware architecture. This assumes the
output of MASM (1100 Series Relocatable Binary Format) can be converted to an acceptable form
for to the operating system on .the alternate architecture.

The processor accepts both Fieldata and ASCII input and maintains character constants in either code
as specified by the user. MASM uses,an internal code to store character constants which do not have
to be maintained iri a specific character code.

MASM performs specified tasks based on the interpretation of statements received primarily via the
Source Input Routine (SIR$) and produces an output. The output produced depends upon the user's
request. If a relocatable binary element is requested, it is produced by the Relocatable Output Routine
(ROH). M,A,SM optionally produces a printed listing of the the input and its processed form. The
structure of both the input and output forms are presented elsewhere in this manual.

MASM performs its function in two scans of the input. The first scan is known as the summary pass,
and the second is known as the generative pass. These two passes of the source input, that is, from
the first source image encountered to the last source image, are known as the main assembly.
Assemblies invoked within the main assembly are known as subassemblies. Certain initialization is
done at the start of each pass (see 1.8).

1. 1. 1. Dictionary

To use MA.SM effectively, one must have a general knowledge of the storage mechanism known as
the dictionary. The most elementary function of the dictionary is to retain knowledge of labels and
values associated with the labels, such as the value and number of the location counter at the time
the label is defined. At processor initialization the dictionary contains the directives and functions
built into MASM.

UP-8453 Rev. 1

UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-2
PAGE

A name and its value are automatically entered into the dictionary upon detection of a label on an
assembler statement. The value associated with the label is determined by its use in the label field
and the rest of the assembler statement. For example the "value" associated with built-in directives
and functions is not really a value in the normal sense of the word, but rather control information,
which in this case acts not as data to be manipulated, but rather as data to govern the next stage
of manipulation.

Each value entered into the dictionary has a type associated with it. See Section 1.7.25 for definition
of the types available.

The dictionary is structured by levels. These levels define the scope of labels and have the range 0
to n, with 0 being the highest level and n being the lowest level. Labels defined at level 0 are known
outside the program. Labels defined at level 1 are known only to the program. Labels defined at
levels lower than level 1 are known to selected portions of the program. All operation mnemonics
and built-in directives and functions are also known at level 1. The dynamic nesting of subassemblies
causes lower levels to be employed. Labels defined at a particular level stay at that level unless it
is specifically requested that they be known at some higher level.

A value is retrieved upon the presentation of a symbol. The normal retrieval is accomplished by
starting at the level corresponding to the current subassembly and searching progressively higher
levels (i.e., lower numbered levels) until the symbol is found.

1.2. MASM USAGE

1.2.1. Processor Call

MASM is normally a standard processor in SYS$*LlB$ of an 1100 Series system. The 1100 Series
Executive System, Volume 3, System Processors Programmer Reference, UP-4144.3 (current version)
and 1100 Series Executive System, Volume 2, EXEC Programmer Reference, UP-1144.2 (current
version), describe the standard form for calling an 1100 Series language or systems processor. This
information is directly applicable to MASM. Unique to each processor, however, is a set of option
lettE:'rs in addition to the Source Input Routine options. The MASM processor call statement has the
format:

@MASM,options si,ro,so

where si denotes the name of the source input element, fO the relocatable output eiement or, in
the case of a definition mode assembly, the omnibus output element, and so the source output
element. The options are defined in Table 1-1.

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-3
PAGE

UP-8453 Rev. 1~
.~--~------------------~----------

,---.

Option

f--.

A
B

C
0
E
F
G
H
I
J
K
L
M
N
0

P
Q
R
S
T
U
V
W
X

Y
Z

Table 1-1. MASM Options

Description

Not used.
Use batch format in demand mode (assumed if a @BRKPT PRINT$ is active
when MASM is initiated).
Print source images and $DISPLAY strings.
Double space output.
Display walkback information in case of error.
Not used.
SIH$ option.
SIn$ option.
SIn$ option.
SIF~$ option.
SIB$ option.
Same as both Sand R options.
Allows directive redefinition by PROCs.
Assume an implied $UNLIST precedes line 1 of the source language.
Print octal information, including details of the preamble of the output RB
element and values produced by $ DISPLAY (other than strings).
SIB$ option.
SIB$ option.
Print detailed relocation information for generated data (implies the 0 option).
Both C and 0 options.
Not used.
SIB$ option.
Print both input and updated line numbers with the correction lines.
SIR$ option.
Terminate the run if errors occur during the assembly (meaningful for batch
runs only).
Print cross reference listing immediately after the list of entry points.
Print console message if the assembly contains errors.

If no specification helds (si, ro, so) are specified, the assumed source for input is the run stream.
NAME$ in TPF$ is the assumed name for the ro field. No listing options are assumed to be set.

1.2.2. RE~usability

MASM is a reusable processor. This means that if successive calls on MASM are separated only by
transparent control statements (such as @ MSG, @LOG, @HDG), MASM is not reloaded from mass
storage but reads its own control statement, reinitializes itself, and processes the next element. This
saves con:>iderable time and 1/0 resources. Note that this capability is available even if MASM is
being called from a user file (rather than from SYS$*LlB$) prc·./ided that all calls on MASM after the
first in a s€!quence clo not specify the user file (i.e., call is @MASM ...) from which MASM was obtained.
If a reload of MASM is desired for some reason, the @ENDX control statement may be used to
terminate the reusability sequence. Note that when in reuse mode, MASM attempts to minimize the
cost of dynamic storage expansion and storage use by starting the next assembly with a storage size
slightly smaller than the size at the end of the previous assembly.

UP-8453 Rev. 1
UP-NUMBER

1.2.3. Output

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

MASM produces three types of output that are under the control of the user:

1. a printed listing,
2. a relocatable binary (RB) and
3. an omnibus element for subsequent use by MASM.

UPDATE lEVEL
1-4

PAGE

The control available over the printed listing allows blank or text lines to be inserted and new pages
started for readability. The ease of insertion of comm~ntary text is intended to encourage clear and
complete program documentation. The listing may be partly or completely inhibited.

Reading from left to right, the printed output may be divided into five fields. Field 1 starts in the first
print position and contains error flags, if any. Field 2 contains the location counter number and
value. Field 3 contains the binary (octal or hexadecimal) representation of the value generated. Field
4 contains source line numbers, and .Field 5 contains the source image as seen by MASM.

Field 2 is void unless an RS was produced. Field 3 contains the octal or hexadecimal representation
of the binary value associated with the interpretation of field 5. Field 4 may have several formats.
If two columns of numbers are present, then the left column contains the line numbers of the source
output and the right column contains the line numbers of the source input (V option listing). If only
one column of numbers is present, then these numbers are the line numbers of the source output.
If the element contains only images produced by the Conversational Time Sharing System (CTS),
(which implies no corrections were applied through SIR$), the single column of line numbers will be
the CTS line numbers.

At the end of the source input and generated output listing, a summary of the preamble of the
generated RB element is given. This includes the numbers and values of the location counters used,
the locations of the externalized symbols, and the names of the undefined symbols.

Following the preamble, some statistics concerning the processor behavior are given. These include
the number of lines encountered including lines from procedure bodies, the a~sembly time
(accumulated CPU usage) in seconds, and storage utilization. Storage utilization is given in the format
a/b/c/d, where a is the starting size in words of storage pool, b is the number of storage
compactions done, c is the number of ER MCORE$'s done and d is the final size, in words, of the
storage pool.

1.2.4. Input

1.2.4. 1. Statements

MASM processes the input presented to it in terms of statements, where statement is one or P'lore
lines of input text and a line is an 80-character image. A statement can be considered to have two
parts: the functional part, which will be interpreted by MASM, and a comment part, which serves
to provide additional information to people reading the program.

The functional part of a statement may be divided into three fields:

1. a label field,
2. an operation field and
3. an operand field. Each field may contain subfields.

All of the fields and subfields following the label field are in free form. The label field must begin
in column 1 of the the symbolic line. Any or all of the fields may be void. Fields are generally bounded
by one or more spaces and subfields are bounded by commas,

UP-8453 Rev. ~
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-5
PAGE

----~--~~----------~----------

MASM completes the interpretation of the functional part of a line when one of the following four
events occur:

1. the maximum number of fields rlnd subfields required by the operation is encountered;

2. the 80th character is read;

3. the line terminator space period space (.) is encountered; or

4. a line! continuation character (;) is encountered and MASM is not currently processing a string
enclosed in quotes.

Example:

1 .
2.
3.

P F
A

E N [)

FOR M
COMMENT

Explanation:

12,6,18 • FOR M DEFINITION

Line 1 uses all four fields. PF is the label, FORM is the operation field, 12,6,18 are three subfields
in the operand field. Characters to the right of the period are comments.

Line 2 contains only the comment field. It could indicate a logical break in the symbolic code
or give additional commentary.

Line 3 contains only an operation field. MASM knows this is an operation field because it is
the first field not starting in column 1.

1.2.4.2. Symbols

Labels, operations and many operands are generally specified as strings of characters called
"symbols", which are subject to certain restrictions. These restrictions eliminate ambiguities and
protect tht:l processor.

Legitimate MASM symbols may contain the characters A-Z, 0-9, and $. A symbol may not begin
with a di~Jit, and only MASM system symbols may begin with the $ character. Therefore, all
user--defined symbols must begin with an alphabetic character. No distinction is made between
uppercase and lowercase characters when used in symbol names, if an element is being maintained
in ASCII. Thus "ABC" and "abc" are the same symbol. The maximum length of a symbol is 12
characters. Any excess beyond this is ignored.

Example:

1. AB 1 - a valid MASM symbol.

2. 1 AB - an invalid MASM symbol.

3. A#7 - an invalid MASM symbol.

4. $EOl' - an illegal symbol if user tries to insert it into the dictionary.
- a legitimate symbol if referencing the MASM directive $ EQU.

5. AlB - an invalid symbol; a valid expression.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.2.5. Library Searching

The rules for directive type symbol lookup are as follows:

UPDATE LEVEL
I 1-6

PAGE

1. If the M option on the MASM processor call statement is not set, the dictionary is searched.

2. If the file name ASM $ PF is attached to a file assigned to the run that file is searched.

3. If there is a source input file, it is searched. If not, the source output file is searched. If none,
the relocatable output file is searched.

4. If the M option on the MASM processor call statement is set, the dictionary is searched.

5. SYS$*RLlB$ is searched.

If a find is made at any stage of this search, no further searching is done and the definition or sample
is read in from the file where it was found. Note that at step 3, only one of the three files was actually
searched. Once the definition or sample has been found and read in from a file, its definition is placed
in the dictionary and file searching for the symbol will not take place again provided the definition
is not deleted.

1.3. FIELDS

As mentioned earlier, the three fields of the functional part cf a MASM statement are (1) label,
(2) operation and (3) operand.

1.3. 1. Labels

This field is optional and is used to introduce symbols into the dictionary. The label field may be
divided into subfields. These subfields may be further divided into items. The entities which may
be entered as items are:

1. page control,
2. line levelers,
3. node selectors,
4. location counter specifications,
5. dictionary insertion control and
6. MASM symbols.

The first item may be a "/" to indicate page eject. The next item on the line may be a line leveler
of the form "% n:" where n is an unsigned integer (see 1.11). The leveler may be followeo by a
location counter specification of the form "$(e) where e is a expression which evaluates to an integer
in the range of 0 to 63. The next item in the subfield may be a legal MASM symbol, which is the
label. If both a location counter specification and a symbol appear in the iabel field, they must be
in separate subfields. Dictionary control items ,"*", may follow the MASM symbol. The next item
may be a node selection in the form (e l' e 2"") where e indicates some expression that can be
converted to an integer. After the node selectors the dictionary control items may also appear. They
may not appear in both places. As a special case the label field may consist of one or more asterisks.
(See 1.8).

There may be more than one subfield with a legal MASM symbol. The symbols are set to the value
of the current location counter. If the statement has a directive which utilizes a label in its
interpretation, the last MASM symbol in the label field are associated with the directive.

UP-8453 Rev. 1 I ' SI)ERRY UNIVAC 1100 Series 1-7
UP~UMBER ~ _______ M._e_t_a-_A __ ss_e_m __ b_le_r __ (M __ A_S_M __)_P_ro_g __ ra_m __ m_e_r __ R_e_fe_r_e_n_c_e ________ ~_UP_D_A_TE_L_~_E_L __ ~~P_A_GE ______ ___

Examples:

1. /

The label field consists of a single item, the "/" which causes a page eject.

2. /ABe

The label field of line 2 consists of two items, a page eject character and a symbol. The symbol is
implicitly defined.

3. % 1 :$1[3),TAG

The label field of line 3 consists of two subfields. The first subfield contains two items: a line leveler
and a location counter specification. The second subfield consists of a symbol.

4. EOFADR*

The label field of line 4 consists of two items: a symbol and a dictionary control character.

5. ARG*'(1 ,5)
6. ARG('I,5)*

The label fields of these lines have the same effect. The label field of both lines consists of three
items: a symbol, 8 node selection, and a dictionary control character.

7. TAG,IOG

The label field consists of two subfields each containing a symbol. The value assigned to each symbol
depends upon its use.

8. TAG,K $00 10 , +K

The symbol TAG wiH be assigned the value of the current location counter. The symbol "K" is assigned
the incrementing values (1, 2, ...). (See 1.6.7.)

1.3. 1. 1. Location Counter Specification

MASM allocates storage for instructions and data under the control of storage location counters.
There are (54 location c9unters available in MASM, numbered 0 through 63. Any location counter
may be used or referenced in any sequence. The initial location counter number is zero (0). A progrem
remains under control of that location counter number until a new location counter specification is
introduced. When a specific location counter is specified, all subsequent coding is under its control
until another location counter is explicitly specified.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.3. 1.2. Externalized Labels

UPDATE LEVEL
1-8

PAGE

When enough asterisks are suffixed to a MASM label symbol to insert the label at level 0 of the
dictionary, the label is known outside the program and is said to be externalized. Such labels are
entered into the entry point table in the preamble of the RS element. Soma label symbols may not
be externalized (see 1.12).

Example:

Assume a processing level of 1, then:

TAG* EQU 6

inserts the symbol "TAG" at level 0 of the dictionary, which causes the symbol to be known outside
of the program.

1.3. 1.3. Node Selectors

MASM permits usage of nodes and selectors as labels. A selector may be any legitimate assembler
item, expression, or another node and selector. A label may not be used as its own selector (see
1.5.13).

A selector is enclosed in parentheses immediately following the symbol with no intervening spaces.

Example:

1. A(4)

2. A(3,2)

3. X(1,Y(1))

4. X(4,3,SIZEI12)

1.3.2. Operation

The operation field starts with the first non blank character following the label field and is terminated
by a blank. The first subfield must evaluate to a MASM directive, PROe reference, function reference,
or an instruction; in other words, control information. If this is not the case, the operation field is
considered void. Subsequent subfields act as operand input for the operation specified.

1 . R E S 5
2. A E Q U 2
3. A P R 0 C 2
4. L A U
5. + 14

Explanation:

Line 1:

The operation field consists of one subfield and is a valid MASM directive.

UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL
1-9

PAGE

UP-8453 ReV~1, SPERRY UNIVAC 1100 Series

----------- --~----------~----------

Line 2:

The operation field consists of one subfield and is a valid MASM directive.

Line~ 3:

The operation field consists of three subfields. Subfield 1 is a user-defined procedure.
Subfields 2 and 3 are objects which the procedure may reference.

Line~ 4:

The operation field consists of two subfields. Subfield 1 may be an instruction mnemonic,
subjfield 2 is operand information to be used when generating the instruction.

Line 5:

The operation field is void.

1.3.3. Operand

The operand field is more precisely defined as the operand part of the functional portion of a MASM
statement because it may consist of multiple fields.

The operand part begins with the first non blank character after the operation field or label field (if
the operation field is void) and continues until the end of the functional portion of the statement. As
mentioned previously, the operand field may consist of more than one field, or it may be void.

It is not necessary for the operand field to contain the maximum number of subfields implied by the
operation field. V\/hen omitting a slJ'bfield, other than the normal first field or last field, the construct
comma-zero-comma (,0,) or two contiguous commas (") is necessary. If the last subfield is omitted,
a commal is not required after the last coded subfield.

Any subfield referenced but not specified in 'the operand part is evaluated to zero.

Any subfield of any field of the operand portion may be "flagged" by prefixing the subfield with an
asterisk (*). An asterisk cannot stand alone in a subfield, although *0 is acceptable (see 1.8.3).

Example:

1, A EQU 2

The operand part consists of a single field, the value 2.

L. APRoe DOG,*O

The operand part consists of a single field with two subfields. The first subfield is the symbol "DOG"
and the second subfield is a flagged item with the value O.

3. LA,U AO, TAG

The operand part consists of a single field with two subfields. The first subfield is the symbol "AO"
and the second subfield is the symbol "TAG". The leading space in the second subfield is ignored.

UP-8453 Rev. 1
UP-NUMBER

4.

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

APROC APPLE TREE

UPDATE LEVEL
1-10

PAGE

The operand conSists of two fields. Field is the symbol "APPLE" and field 2 is the symbol "TREE".

5. APROC APPLE,,02

The operand part consists of a single field with three subfields. The first subfield is the symbol
"APPLE", the second subfield is void and will be evaluated to zero, and the third subfield evaluates
2.

1.3.4. Comments

As mentioned previously, the part of a MASM statement not occupied by the functional part is the
comment part. All characters are allowed in the comment part.

Example:

1 . APROC 1 COMMENT PART OF STATEMENT

APROC 1 is a user-defined procedure that does not reference any operand fields, therefore the
functional portion of the statement ends with the space following the symbol "APROC 1 ".

2. APROC2 APPLE; A COMMENT

APROC2 is a user-defined procedure which references two fields. The line continuation marks the
end of the functional portion of this line.

3. TREE ANOTHER COMMENT

This line contains the continuation of the functional part of Line 2. "TREE" is the second field of the
procedure reference. The rest of the line is commentary.

4. APROC4 APPLE. A COMMENT MAY GO HERE

APROC4 is a user-defined procedure which mayor may not reference more than one field. The
construct space-period-space (.) marks the end of the functional portion of the MASM statement.
Any references to fields beyond "APPLE" will evaluate to zero.

1.3.5. Other Considerations

1.3.5. 1. Line Continuation

The line continuation character is the semicolon (;). If a MASM statement is longer than 80 characters,
a semicolon may be used to continue the statement onto the next line. There is no limit on the number
of continuation lines. However, readability should be taken into consideration in complex statement
constructs.

If MASM encounters a semicolon outside a quoted string, the scanning of the functional part of the
line is terminated and the remainder of the line is assumed to be the comment portion. The functional
part of the next line is assumed to begin with the first nonblank character. Text on the continuation
line may begin in column 1.

UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL
1-11

PAGE

UP-8453 ReV~l' SPERRY UNIVAC 1100 Series
__ .___ . _______ ---'-_____________________ ...L. _____ --1. ____ _

Example:

1. TAG
2.
3. TAG
4. RES
5.

Explanation:

RES
15

15

A COMMENT
ANOTHER COMMENT

LinEls 1 and 2 produce the same results as lines 3, 4, 5.

If the USt~r wants to continue a quoted string, he may terminate the string of the current line with
a single quote immediately followed by a semicolon. If the first non blank character on the
continuation line is a single quote and the string on the continuation line is a valid MASM quoted
string thl9 two strings is concatenated.

Example:

1. 'ABCO'; THE COMMENT PORTION
2. 'EFG'

Explanati1on:

LinEls 1 and 2 produce a string 'ABCDEFG'

1.3.5.2. Paper Ejection

A slash (/) appearing in column 1 (see 1.3.1) advances the printing to the top of the next page. The
slash appears on the new page. The MASM directive "EJECT" also advances to the next page (see
1.6.8).

1,4. DATA GENERATION

A MASM statement with a void operations field and a nonvoid operand field generates data that is
output tOi the relocatable binary element. MASM accomplishes this by an implied call to the $GEN
directive (see $GEN directive in 1.6.21).

The operand field has the format:

e"e2' ... , on

where e is any valid MASM expression. Each e constitutes a subfield (see 1.2.4.1). If the number
of subfields, n, is a divisor of the word size, b, an n -field word is generated with each field n / b
bits in size. If n is not a divisor of the word size, then an E-flag is generated.

Each e may have a monadic + or -, or the entire operand may have a monadic + or -. If the entire
operand is to have a sign, the operand field must be enclosed in parentheses preceded by the desired
sign.

Example:

1 . WRD 36
+ 15

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE lEVEL

1-12
PAGE

Example 1 generates one 36-bit word with the value 15. The generated octal output appears as:
00000000001 7.

2. WRD 32
-(-4,5,6,7)

Example 2 generates a 32-bit word consisting of four 8-bit fields. The generated octal output
appears as 004 372 371 370 if broken down into its fields; or 00476574770 as a 32-bit word.

3. WRD 16
+ 3,2, 1,0, 1,2,3,2

Example 3 generates a 16-bit word consisting of 8 fields of 2.

1.4. 1. Signed Character Strings

If the character string is signed, the data generated will be right justified, zero filled. The number
of words generated, n, varies according to the following relationship:

n =(c *b)//k

where:

c = numbers of characters
b = number of bits per character
k = number of bits per word

If the value of n is larger than 2, aT-flag is generated. If the word size is greater than 36 bits, n
cannot be larger than 1.

Example:

1. $INSERT 'WRD 36',' $FDATA'

This instruction sets the word size to 36 bits and the character set to Fieldata. (See 1.6.28.)

2. + 'ABCEF'

This line generates the following value:

000607101213

3. - 'ABCEFGH'

MASM generates the following octal value:

777777777771
706765646362

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-13
PAGE

UP-8453 Rev.~1
_________ __ __ -L __________ ~ ______ ___

1.4.2. Unsigned Character Strings

If the opEHand field is a string enclosed in single quotes, without a leading sign, a variable number
of data words may be generated. The value generated is a left justified space filled set of words.
There is no limit on the number of words that may be generated.

Example:

1. $FOATA
2. 'ABCO'
3. 'ABCOEFH'
4. $ASCII
5. 'ABCO'

Explanation:

Line 1:

The character is set to Fieldata.

Line 2:

The octal value generated is:

060710110505

assuming the system character set is Fieldata.

Line 3:

The octal value generated is:

060710111213
15050Ei050505

assuming th£~ system character set is Fieldata.

Line 4:

The system character set is set to ASCII.

Line 5:

The octal value generated is:

101102103104

1.5. VALUES AND EXPRESSIONS

Values are the fundamental elements of MASM subfields. They are computed by the interpretation
of expres'Sions, and are retained by assigning them to symbols and selectors of nodes. MASM has
a large number (; available data types and allows explicit use of typing. This subsection describes
the various data types and the syntax and semantics of the expressions that may be constructed to
evallJate them.

lJP-8453 Rev. 1
UP-NUMBER

1.5. 1. Values

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-14
PAGE

A knowledge of the various kinds of values (also referred to as data types) is necessary to utilize the
full power of MASM for constructing programs. Extremely general PROCs may be constructed which
base their operation on the nature of the data submitted as parameters. A full set of built-in functions
is available for performing transfer from one data type to another, and for testing the data type of
a parameter. These are described in 1.7.

1.5. 1. 1. Numeric Values

The values which occur most commonly in a program are numeric values. All data generated for the
output RB element are numeric data, possibly produced by conversion of other data types. Transfer
functions (functions which perform type conversions) may be invoked explicitly by the source
language (through calling such a function by name) or implicitly by context.

This subsection details the nature of numeric values and the syntax of their external representation
in source language.

1.5. 1. 1. 1. Binary Values

Binary values in MASM may be thought of as integers. The internal arithmetic precision of MASM
for binary arithmetic is 72 bits plus sign. All binary computations performed by MASM are done in
this 73-bit arithmetic, including those leading to a single precision word being generated in the
output.

Elementary numeric items are usually referred to as numbers. Binary numbers may be decimal, octal,
or hexadecimal. The interpretation of a number as octal or hexadecimal depends on the setting of
a global assembly switch, which is controlled by directives.

Decimal numbers begin with a digit 1, 2, 3, 4, 5, 6, 7, 8, or 9. They may not begin with a 0 and may
not contain f) decimal point. Any of the digits 0, 1, 2,3,4,5,6, 7,8, or 9 may be used in a decimal
number.

Octal or hexadecimal numbers must begin with a O. If ~urrent mode is octal, only the digits 0, 1,
2,3,4,5,6, and 7 are permitted in an octal number. If the mode is hexadecimal, the digits permitted
are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. If the last character of a hexadecimal constant
is a D, it is interpreted as a digit, not the double precision postfix operator. Therefore, parentheses
must be placed around the hexadecimal constant with the D suffixed to the right parenthesis to
generate a double precision hexadecimal constant.

Another form of binary item is the label reference, which retrieves a value computed earlier by MASM
and assigned to the label, by the use of the $ EOU directive, the $ EOUF directive, or implicit definition
through having appeared in the label field of an instruction or other generative line. Labels may have
relocation relative to internal location counters of the element being assembled or relative to external
symbols. Two relocatable values are not considered equal unless both the absolute part a'nd the
relocation are the same. Binary values may also have a FORM attached. A form defines the layout
of fields within a word for an item. Such a FORM may be created by use of the I $ built-in form (see
1.6.20), the $ EOUF directive, an instruction, or a programmer-defined form (created with the $ FORM
directive).

Example:

1. 14

SPERRY UNIVAC 1100 Series
IP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-15
PAGE

UP-8453 ReV'~
--_.----- -------.--~------------~---------

This line is interpreted as a decimal number.

2. 014

This line is interpreted as an octal number provided the $OCTAL directive is in effect.

3. 018
4. OF

These lines are interpreted as a hexadecimal number provided the $ HEX directive is in effect.

5. ABC14

This line is a label reference and the symbol is looked up in the dictionary.

1.5.1. 1.:~. Parenthetic Expression Items

An expression may be enclosed by parentheses and be preceded by an operator. Such an expression
is known as a parenthetic expression. Its primary function is that of algebraic grouping.

Example:

1 .

The parenthetic e.xpression (5 + 2) is used to sum 5 and 2 before multiplying by 4.

2. +(6+ 10)

The" +" preceding the parenthetic expression (6 + 1 0) is used to prevent literal generation.

1.5. 1. 1.=~. Line Items

;ine item is an expression involving some manipulation other than the operators listed in 1.5.2. The
IIlformation within the parentheses must be a valid MASM line. exclusive of the label. This means
that an operation field (possibly void) must be present. A line item may thus reference an instruction.
a PROC. a FORM, or may only generate data. If a PROC is called, it may not increment the current
location counter; the current location counter is s()id to be blocked. The PROC called may call other
PROCs inside its own line items; in this way, a number of location counters may come to be blocked.
An attempt to alter a blocked location counter results in a T flag.

To detect a line item. MASM evaluates the first expression following a left parenthesis. If the next
character after the expression is not a right parenthesis. the character must be a comma or a space.
If it is a comma and no significant (not following an operator) space is found before the right
parenthesis, an implicit call to $GEN is made. Otherwise, the first expression after the left parenthesis
must be a directive, instruction, or PROC call. Note that this means MASM recognizes the format
(LA,U AO, 1) as a valid line item.

Example:

1 .
2.
3.

046+(J TAG)
024 +(1,2,3,6)
054+(PVM.U TAG)

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-16
PAGE

Explanation:

Line 1:

The line item, (J TAG), is an 1100 Series instruction mnemonic which ~ hen generated is added
to the constant 046.

Line 2:

The designated word size is divided into four equal parts and each expression of the line item,
(1,2,3,6), is placed into the parts of the word. The result is added to the constant 024.

Line 3:

The line item (PVM,U TAG) calls procedure PVM. The result is then added to the constant 054.

1.5. 1. 1.4. Literal Items

A literal is an expression enclosed in a set of parentheses; that is, there may be no operators at the
same level as the enclosing parentheses (with the exception of unary * and the conditional operators,
as described in 1.5.2). Literals are essentially line items without the preceding operator. Since literals
are relocatable values, all the rules which apply to relocatable values apply to literals. They usually
have an attached FORM as well. To use the value of a literal in an expression, an extra set of
parentheses is req'Jired. The expression 46+P BEGIN) does not cause a literal to be generated.

The value of a literal on a summary pass is zero. It is given its true value only in the generative pass.
Therefore, caution should be used if the value of a literal is ever tested for conditional interpretation
(that is, used before the - > operator or as an operand of a $ DO or $IF directive).

Example:

1 .
2.
3.
4.
5.

A

AZ
Z

Explanation:

Line 1:

EQU
(l,TABLE)
LR
EQU

(ADR1,ADR2)

R5, (PVM, 15 2,ABBC)
(F12618 1,14,ADDR)

The symbol A is associated with the address of the literal

(ADR 1 ,ADR2).

UP-8453 Rev. ~
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-17
PAGE

---~----------~----------

Line 2:

The address of the literal (1 ,TABLE) is generated.

Line 3:

The address of the literal (PVM,15 2,ABBC) is used as an input parameter to the control
information associated with the symbol LA.

Line 4:

The symbol AZ is associated with the address of the literal:

(F126181,14,ADDR).

Line 5:

The symbol Z is set to the value resulting from the evaluation of expression +(ADR 1 ,ADR2). No
literal is involved.

1.5. 1. 1.5. Floating Point Values

Floating point values are used less frequently than binary values. MASM maintains floating point
numbers internally with a 12-bit characteristic, a 70-bit mantissa, and two sign bits, irrespective of
the final precision of the number to be generated.

Floating point numbers may be either decimal, octal, or hexadecimal, the choice between octal and
hexadecimal again depending on the global switch. A floating point number must contain a decimal
point (period), which may be the first character, the last character, or embedded. If the decimal point
is the last character, d blank may not follow it, or else the period is interpreted as the start of a
comment field, rather than as part of a number. (The term "decimal point" is meant to encompass
the octal point or hexadecimal point when a floating point number is represented in either of these
bases.)

A decimal floating point number may begin with a zero if and only if the next character is the decimal
point. Octal (or hexadecimal) floating point numbers always begin with a zero which is followed by
a digit. Other rules for binary numbers apply, particularly that for trailing 0 in hexadecimal mode.

Example:

1.
2.
3.
4.
5.
6.
7.

Explanation:

Line 1:

1.0
0.7
00.7
011.7
00.00006
00.8
0A.4B

This line is interpreted as a decimal floating point number.

UP-8453 Rev. 1
UF-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

Line 2:

UPDATE LEVEL
1-18

PAGE

The value is interpreted as a decimal floating point number because the 0 is followed
immediately by a decimal point.

Lines 3,4 & 5:

These lines are interpreted as octal floating point numbers if an $OCTAL directive is in effect.

Line 6 & 7:

These values are interpreted as hexadecimal floating point numbers provided the $ HEX directive
is in effect.

1.5.1.2. String Values

MASM treats strings as an independent data type, converting them to binary only when necessary
to generate output data or when required by the context of the expression. In addition to string
constants, string values are returned by some of the built-in functions.

String constants are written by coding a single quote (,), followed by any combination of characters
(other than a quote), and terminated by another single quote. A single quote may be included in a
string by writing two single quotes (' ') at the point where it is desired to generate a single quote.
The continuation of a string onto a following line has already been described in 1.3.5. A string may
have up to 262143 characters.

Example:

1 .

2.

3.

A EQU 'A'R

The symbol A is associated with the value 06 with string attributes, indicating right justification.
This assumes the system character set is Fieldata.

A EQU 'ABCDEF'DL

The symbol A is associated with the value 0607101112 with string attributes indicating lett
justification and double precision (defined in 1.5.2.11). This assumes the system character set
is Fieldata.

STG EQU 'abc'

The symbol STG is associated with the value 0141142143 with string attributes indicating right
justification and single precision. This assumes the system character set is ASCII.

1.5. 1.3. Nodes and Selectors

A node is a point of departure for a tree structure. Each node may have a set of selectors defined
for it. The number of selectors is limited only by the amount ot storage available. Each selector is
defined by a unique nonnegative integ~r. The integers used need not be in any particular sequence.
A particular selector of a node is obtained by writing the number of the selector in parentheses
following the node reference. If the value of the selector is itself a node, further selections may be
made by writing the number, separated by commas, of each selection within the same set of
parentheses. The selector number may be computed by MASM expressions.

UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL
1-19

PAGE
UP-.8453 Rev. ~ SPERRY UNIVAC 1100 Series

--------~--.------~------~--------------------------------~----------~-----------

The value given to any particular selector of a node may be any legitimate MASM value, including
another node. The values of various selectors of the same node need not be of the same type. If
a node ref'erence is used in a context which requires a numerical value, the value of the node reference
is the number of sE!lectors defined. Just as may be done with other MASM values, node references
may be passed as alrguments and assigned to labels. A label whose value is a node reference thereby
may be referenced as a subscripted label (see 1.3.1). If a node reference is passed as a parameter
to a PROe (see 1.8), the number of subscripts of the associated paraform is 2 plus the number
permitted for any selection sequence of the node reference itself.

Node references are created by the PROe paraform mechanism, som~ built-in functions, and the
simple writing of a subscripted label in the label field, where the label was not previously defined.
Node references may be deleted by removing all references to them through reassignment or through
the use of the $DElETE directive. Since the ordinary equality test of MASM tests only for numerical
equality (and hence will be satisfied by two nodes with the same number of selectors), a pair of
operators is provided which tests two nodes for exact identity (and non identity); that is, the test is
satisfied only if thH operands are the same node.

Examples of node references:

1 .
2.

$ BA(XEE)(1)

A(4)

Explanation:

Line 1:

Selector "I of the node $ BA(XEE) points to a node; therefore line 1 is a node reference. (See the
$ BA function in 1.7.2).

$BA(XEE)

where r indicates relocation information.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

Line 2:

UPDATE LEVEL
1-20

'AGE

Assume A is a node with at least one selector, 4, which also has selectors. Then A(4) is a
node reference.

where v indicates some value.

Examples of node reference selectors:

1.

2.

A(4,1)

$BA(XEE)(1 ,3)

Explanation:

Line 1:

A graphic representation of this is:

UP-S45d. Rev. 1
UP-NUMBER

.' -.------.----------------------~----------------~--~~--~~--~~~~----

l;PERRY UNIVAC 1100 Series .
Meta-Assembler (MASM) Programmer Reference UPOA tl lEVEL

If the' node A(4) had three vRlues associated with it and they were 2,3/4, then the value of selector
A(4, 11) would be 2.

Line 2:

A graphic representation is:

UP-8453 Rev. 1
UP-HUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE lEVEL

1-22
PAGE

If XEE is undefined, the value associated with $ BA(XEE)(1,3) would be the string 'XEE' (see 1.7.2).

1.5. 1.4. Control Information

Control information is the name used to refer to values associated with MASM directives, built-in
functions, PROC names, and function names; in general, this means a value not associated with data,
but rather values to control the next stage of processing. Control information requires a special
context, which is usually that associated with .the operation field of a MASM line or line item.

Any MASM symbol (or node reference selector) may have both a normal data value and a control
information value. The value used by MASM at any given time depends on the context being
processed. Thus, the operation field of a MASM line (or line item) retrieves the control information
associated with an expression, while other contexts require a data type value. The $ EQU directive
assigns both values; thus it may be seen to have a special context. The slash (I) forces the context
for the following expression to be that for control information (which means that that expression is
usually a label or other elementary item). This operator may be used to pass a directive into a
procedure.

Example:

1. ADD
2. MACRO
3.

Explanation:

Line 1:

EQU
EQU
PVM

AA
$PROC
14,/LA

The symbol ADD may be used as the 1100 Series instruction mnemonic AA (Add to A).

Line 2:

The symbol MACRO may be used as the MASM directive $PROC.

Line 3:

Assuming the symbol PVM is a procedure call, then the symbol LA is passed into the procedure.
Without the prefix operator, I, the symbol LA would be evaluated, with the procedure receiving
the resultant value.

1.5.2. Expressions and Operators

MASM contains both unary and binary (monadic and dyadic) operators, some of which use the same
symbol. Where a symbol has more than one meaning, the context is used to determine which
operator is intended.

Because all MASM arithmetic is performed in high precision, the programmer need not be concerned
with single and double precision mixed m9de arithmetic. The distinction between precision is made
only when data is to be generated, and is fully under the control of the programmer when the level
10 operators are used (see 1.5.2.11).

Some operators demand a particular form for their operands. In some cases a transfer function is
automatically invoked to insure that the operands are of the proper type. Thus, binary numbers are
converted to floating point if used in mixed mode, and similarly, strings are converted to binary.

SPERRY UNIVAC 1100 Series
UP-NUMElER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL '

1-23
PAGE

UP-8453 Rev .. ~
. __ .___ _ _______________ --------------1.----_-"-----__ _

Certain transfer functions are not defined, such as those converting relocatable values to floating
point. If mixed mOlde arithmetic of this type is attempted, an R-flag is generated.

Relocatable values may not be operated on by logical operators, string operators, or scaling operators,
nor may they be multiplied by a value other than absolute 1 or 0, divided by a value other than 1,
or combin,ed with floating point numbers. Violation of 'these restrictions will produce an R-flag and
relocation is lost.

Table 1-2. The Hierarchy of Operators in MASM

Level Operators Description

() -> conditional if-then
I conditional else (exclamation point)

* (unary) set leading asterisk flag
/ (unary) control information context

--

1 \ (unary) negation operator (NOT)

2 < less than

--

<= less than or equal
> greater than

>= greater than or equal
= equal

<> not equal

I
-- node identity
=1= node nonidentity

--

3 string concatentation

4 ++ bit logical OR
- bit logical XOR

._-

~ ** bit logical AND

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

Table 1-2. The Hierarchy of Operators in MASM (continued)

Level Operators Description

6 + arithmetic addition
- arithmetic subtraction

7 * arithmetic multiplication
I arithmetic division quotient
II arithmetic division covered quotient
III arithmetic division remainder

8 *1 fixed poin.t binary scaling

*+ floating point power of 10 positive scaling
*- floating point power of 10 negative scaling
*11 floating point power of 2 scaling

9 + (unary) positive number
- (unary) arithmetic negative

10 D (postfix) double precision
S (postfix) single precision
L (postfix) left justify space fill
R (postfix) right justify zero fill

1-24
PAGE

Generally, these operators are left associative; that is, operations are performed from left to right in
an expression. However, there are some exceptions. Relational operators function globally, so that
the expression A>B>C means the same as (A>B)**(B>C).

The concatenation operations in an expression are performed all at once (other operators and
parentheses permitting) to save the storage otherwise required for intermediate results. The
operators at level 0 are not always left associative.

Level n operators operate an expression whose level is greater than n and produce leve-I n
expressions.

Example:

Let: # be a n binary operator and
a, b, and c be expressions.

Then in the expression:

c <=a #b

c is a level n expression a and b are expressions whose level is greater than n.

UP-8453 Rev. ~
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE lEVEL

1-25
PAGE __ ~ ______________ L_ ________ __

1.5.2. 1. Level 0 Operators

The level 0 operators include conditional expression operators and two special unary operators. Their
structure is perhaps the most complex of all the MASM operators, primarily because they do not
follow simple rules of left associativity, and because, for conditional expressions, more than one
operator is used to form an expression.

Conditional expressions allow the alternative generation of values without multiplying various
expressions by zero or one. Moreover, the unused expression in a conditional expression is not
evaluated, thus permitting the use of functions with side effects in cases where the zero-one
multiplication technique would forbid them. Since microstrings (see 1.10) are evaluated prior to the
evaluation of the line, this does not apply to them. On the other hand, this means that some errors
may fail to be detected, because the expression containing them is not evaluated.

If a, b, c, etc. denote level one expressions, then level zero expressions are constructed from them
in the following way. A level one expression is a level zero expression. So are constructions of the
form:

a-> b ! c
a->b

which are said to be conditional expressions. The first is said to be complete and the second
incompletH (because the! c is missing). Conditional expressions may be substituted for band c in
the above expressions with the restriction that the b in a -> b ! c may be replaced only by a
complete conditional expression. In this fashion, complex conditional expressions may be built. If
all of the conditional expressions involved in such a construction are complete, then the resulting
expression is complete; otherwise, it is incomplete. With these rules, the operators -> and! in a
conditional expression can be matched as follows: As the expression is examined from left to right,
then each! matches with the most recent unmatched -> operator. For example, the expression:

a-> b-> c! d-> e! f! g- > h'

may be pa renthesized as:

a->(b-> c!(d-> e! f)) !(g-> h).

Note that this means that the matching process is performed only at the same parenthesis level;
parenthesos create new higher level expressions to be treated as units when scanning conditional
expressions. The two level zero monadic operators * and / may appear at the beginning of a level
zero expression or following a -> or ! operator.

The operators "->" and Y' are used together to form conditional expressions of the form a-> b! c
and a -> b as described above. To evaluate these expressions, a is first evaluated to a binary value
without relocation. If a is not equal to zero, then the value of the conditional expression is the value
of b. If a is equal to zero, then the value of the conrlitional expression is the value of c or void,
if c is not present.

Since the value of 0 in MASM may be thought of as "false" and any nonzero value as "true", the
expression a -> b! c may be interpreted as "IF a THEN b ELSE c ", while a -> b may be understood
as "IF a THEN b ELSE void". Note that void is not the same as a value of zero or the null string.
There are contexts where this distinction is important, such as the parameters on a $PROC directive
line.

A conditional expression may be used to compute control information for use as a function or as a
directive. Thus, the line:

T->LA! LNA AO,TAG

UP-8463 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

will generate either:

LA AO,TAG (T true)

or

LNA AO,TAG (T false)

depending on the value of T.

UPDATE LEVEL
1-26

PAGE

The level zero unary operators "*" and "/" may appear at the beginning of a level zero expression
or after any occurrence of the "_> II or "! II operators. If these operators appear in front of a conditional
expression, then they are applied to the expression; otherwise, they are applied to the level one
expression which they precede. For example:

and

/a-b-/cld

The first monadic operator is applied to the whole expression, and the second is applied only to c.

The unary operator "*" causes the leading asterisk flag to be set. This flag may be tested by the
appropriate node selector reference.

The unary operator "/" causes the operand to be converted to control information, if possible. If this
is 'lot possible, an error is noted, and the value of the expression is zero. The operator allows the
user to pass directives as parameters without the directives being evaluated when they are passed.
The control information is passed so the directive may be evaluated later.

Some of the level ° operators are exceptions to the usual rule that literals are not generated if there
is an operator at the same parenthesis level. In particular, the unary "*" does not suppress literal
creation, nor does the conditional operators for the consequence of the conditional expression.
Therefore, in the expressions:

(a) ->(b) !(c)

and

*(d)

only the "(a)" is not a literal.

1.5.2.2. Level 1 Operators

The only level 1 operator is the unary operator "\", the NOT operator. Its operand is converted to
binary without relocation. If any bit of the operand conversion result is one, then the result is zero;
otherwise, the value is one.

Two consecutive NOT operators will convert any nonzero value to one, while leaving zero intact. The
unary NOT operator is distinct from the negation operator (unary "_"), in that it works on MASM truth
values, such as those expected by the $IF directive.

UP-S453dev. 1
''It-NUMBIER

Sf)ERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-27
PAGE

---~----------~~----------

1.5.2.3. Level 2 Operators

The level 2 operators include all the relational operators ("=", "<>", "<", "<=", ">", ">=", "==",
and "=/=") and return values of one or zero, according to whether the relation specified is true or
false. A simple relation has the form e 1 r e 2' where r is a level 2 operator, ann e 1 and e 2 are
level 3 expressions.. A compound relation has the form:

e 1 r 1 e 2 r 2 ... r n e n+ 1

with notation as before. The value of this expression is 1 if all of the relations eM r m e m+ 1 for
m = 1, ... , n are true, and zero otherwise. The expressions e l' ... , en are evaluated only up to the first
pair for which the relation is false. For this reason, some errors may not be detected in the
unevaluated portion of the level 2 expression. This does not apply to microstring substitution, which
takes placH before expression evaluation commences.

Since the mode of e m-1 and e m+ 1 may differ from each other and from em' the value of em may
be convert,ed twice. Both of these conversions are made from the same originai value, rather than
one being converted from the other. This achieves maximum consistency.

Except for the o~erators "= =" and" =/ =" (which operate on node references), the level 2 operators
operate on binary, floating, and string values. For a simple relation formed from one of these
operators, iif one of the operands is floating, then both operands are converted to floating; otherwise,
if either operand is binary, then both operands are converted to binary.

Binary and floating values are compared using the natural orderings of these number systems. In
addition, the "=" and" < >" operators also compare relocation for binary operands; two relocatable
binary opelrands are equal only if the absolute part (offset) and all relocations are the same. For the
operators" < ", "< = ", "> ", and" > = ", the relocation of two binary operands must be the same or an
R-flag results.

When strings are compared, they are first converted to strings with the same charar.ter size as follows:
If either string is in a data character set, then both strings are converted to the data character set.
If there is currently no data character set, or if the character sizes of the resulting strings differ, then
a V-flag is lis indicated. Otherwise, if one of the strings is ASCII, then the other is converted to ASCII.
!f either string has the left justification attribute, then the strings are compared as left justified strings
followed by arbitrarily large numbers of space characters. Otherwise, the strings are compared as
right justified strings preceded by arbitrarily large numbers of characters with a code of zero. Once
the strings are justified, they are compared according to the lexical ordering based on the collating
sequence formed by the character codes.

The relation" =" is true if the operands are equal and false if they are not equal. For binary operands,
the relation is true if the values are equal and the relocation matches; otherwise the relation is false.

The relation" < >" is true if and only if the relation" =" is false.

The relation" <" is true if the first operand is less than and not equal to the second operand. For
binary operands, the relocation of the two operands must match.

The relation" < =" is true if the first operand is less than or equal to the second operand. For binary
operands, the relocation of the two operands must match.

The relation ">" is true if the first operand is greater than and not equal to the second operand. For
binary operands the relocation of the two operands must match.

The relation "> =" is true if the first operand is greater than or equal to the second operand. For binary
operands the relocation of the two operands must match.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-28
PAGE

The relation "= =" is computed by converting both operands to node references. If both node
references reference the same node, then the relation is true; otherwise, it is false.

The relation "=1=" is computed by converting both operands to node references. If both node
references reference the same node, then the relation is false; otherwise, it is true.

1.5.2.4. Level 3 Operators

The only level 3 operator is the infix operator" : ". This operator is used to concatenate strings. A
level 3 expression has the form:

where e l' ... , en are level 4 expressions which are converted to strings. The value of the expression
is the result of concatenating the strings e l' ... , en' If any of the strings is in a data character set,
then all of the strings are converted to a data character set. If there is presently no data character
set, or if the character sizes of the resulting strings fail to match, an error is noted. Otherwise, if any
of the strings is in ASCII, then all the strings are converted to ASCII. After the conversions, the strings
are concatenated in the order they appear. The justification and space attributes of the resulting
string are those of the last operand en' If any of the operands is double precision, then the result
is double precision; otherwise, the result is single precision.

1.5.2.5. Level 4 Operators

The level 4 operators perform bitwise logical operations on binary values with appropriate extensions
for 73-bit arithmetic.

For the operator" + + ", the operands are converted to binary without relocation. The result is the
binary value formed by ORing the two operands. A bit in the result is set to one if and only if at least
one of the corresponding bits in the operands is one.

The result of "+ +" is single precision if and only if both operands are single precision. If only one
of the operands has a form, or if both of the operands have the same form, the result retains that
form. Otherwise the result does not have a form.

For the operator "- -", the operands are converted to binary without relocation. The result is the binary
value formed by XORing the two operands together. A bit in the result is one if and only if exactly
one of the corresponding bits in the operands is one. The precision and form attributes are treated
in the same way as for the" + +" operator.

1.5.2.6. Level 5 Operators

The level 5 operator performs a bitwise logical operation on binary values, with appropriate
extensions for 73-bit arithmetic.

For the operator "**", the operands are converted to binary without relocation. The result is the
binary value formed by ANDing the two operands together. A bit in the result is set to one if and
only if both of the corresponding bits in the operands are one. The precision and form attributes
are treated in the same way as for the" + +" operator.

SPERRY UNIVAC 1100 Series
UP-NUMOER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-29
PAGE

UP-84!53 Rev. ~.
----------- --~~----------~------

1.5.2.7. level 6 Operators

The level 6 operators perform arithmetic addition and subtraction on binary or floating point
operands. If at least one operand is floating point, the other operand is converted to floating point
and the result is floating point. Otherwise, the operands are converted to binary, with a truncation
error noted if a string exceeds 72 bits. The II + II operator gives the arithmetic sum of its two operands,
whi~e the "_" operator gives the arithmetic difference of its two operands.

Relocation information is preserved by these operators. However, it should be noted that a result
may be produced which cannot be placed in the output element (such as negative relocation relative
to the bas4~ of a location counter). These limitations are due to the nature of 1100 Series RS format
and the 11100 Series Collector, and are not inherent limitations of MASM. Such values may be kept
and used for later computation without restriction.

1.502.8. Level 7 Operators

The level 7 operators perform arithmetic operations related to multiplication and division; their
conversion requirements are the same as for the level 6 operators.

Relocation information is preserved only in the case that a relocatable value is multiplied or divided
by one. Belocation information is lost if a relocatable value is multiplied by zero, but no error
indication is given. In all other cases, relocation is lost, the binary value without relocation is used,
and an R-flag results.

The "*" operator computes the arithmetic product of its two operands. A result exceeding 72 bits
produces aT-flag.

The "/" operator computes the arithme~ic quotient of its two operands. A divide check condition
produces aT-flag.

The "/ /" operator computes the arithmetic covered quotient of its two operands, and is meaningful
only for bilnary arithmetic. The covered quotient is equal to the ordinary quotient if the division
remainder is zero, and is otherwise one greater than the ordinary quotient.

The "/ / /" operator computes the remainder from the arithmetic division of its two operands, and is
meaningful only for binary arithmetic.

1.5.2.9. Level 8 Operators

The level 8 operators perform shifting and scaling on binary and floating point values. The right hand
operand of each of these operators may not be a floating point value; nonnumeric operands are
converted to binary. Relocatable operands cause R-flags to be indicated.

The "*/" operator causes its left hand operand to be multiplied by the power of two given by the right
hand operand. If the right hand operand is positive, this is a left (logical) shift. If the right hand
operand is negative, this is a right (arithmetic) shift. An error results if either operand is floating point
(T -flag), th,e second operand is relocatable (R-flag), or if too large a value (T -flag) is generated. The
result is a binary value.

The "* +" operator causes its left hand operand to be converted to floating point, if necessary, and
multiplies it by the power of 1 0 given by the right hand operand. The right hand operand may not
be floatingl point, and neither operand may have relocation. The result is always floating point.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-30
PAG~

The "*-" operator causes its left hand operand to be converted to floating point, if necessary, and
divides it by the power of 1 0 given by the right hand operand. The right hand operand may not be
floating point, and neither operand may have relocation. The result is always floating point.

The "*11" operator performs floating point scaling by a power of two, and is intended for use primarily
with octal or hexadecimal floating point numbers. It is similar in all respects to the "* + II operator,
except that multiplication is by a power of two (possibly negative) instead of a power of 10.

1.5.2.10. Level 9 Operators

The level 9 operators are the unary "+" and unary "_". Both of them force conversion of nonnumeric
operands to binary, and both permit relocation. Additionally, the "_" operator returns the ones
complement of its operand. The unary n+" operator is used primarily to establish a numeric context,
such as converting a node reference to its selector count in situations where either a node reference
or a binary value are permitted. The unary II + II is also used to prevent a literal from being generated
when a line item is written and the full 73-bit value and form are required.

1.5.2. 11. Level 10 Operators

The level 10 operators are postfix operators, and are used primarily to specify attributes of a value
used when data is being generated.

The liS" postfix operator converts its operand to a value and sets the precision attribute to single
precision.

The "0" postfix operator converts its· operand to a value and sets the precision attribute to double
precision. If the binary representation mode is hexadecimal, a trailing 0 on a hexadecimal number
is interpreted as part of the number rather than as the double precision postfix operator; therefore,
a pair of parentheses must be used in this case, as in (05FF)0.

The "L" postfix operator converts its operand to a string and sets the justification attribute to left
justification, space fill.

The "R" postfix operator converts its operand to a string and sets the justification attribute to right
justification, zero fill.

Examples:

1.
2.
3.
4.

0470
'abc'O
'const'R
FeTN('X'L)

1.5.2. 12. The Flag Attribute

The flag attribute of a value, also referred to as the leading asterisk flag. is clear for the results of
most of the operators described above, even if one or more of the operands had the flag set. The
unary "*" is generally the only way to set the flag, although some built-in functions return a node
some of whose selectors may have the flag set. Therefore, the programmer should exercise caution
when computing with flagged values, so that tests are not made for the flag on the results of such
computations. (See 1-8 for referencing flagged values.)

UP-8453 Rev. 1~
UP-NUMBI:R

Sf tERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-31
PAGE

---~-----------~~----------

The flag at1tribute is generally used only on values which are selectors of node references. Therefore,
the flag attribute for a selection is tested by prefixing the last selector with an asterisk (as in
ABCP ,3,*15)). A built-in function ($IBITS) is also available to test for the flag.

1.6. ASSEMBLER DIRECTIVES

All MASM directives (except for machine instructions), like all MASM built-in functions, begin with
a n$n character. This means that they may not be written in the label field of a MASM line and,
therefore, redefinition of directives is impossible.

In addition to the basic directive forms with the leading n$n, all MASM directives have synonyms
without the n$n character. These synonyms, unlike the basic forms, may be redefined by the
programmtH, thus providing flexibility without loss of control. Some directives have more than one
synonym. In the following subsections, only those synonyms which cannot be derived from the
directive name by deleting the n$n will be noted. In other words, if $ABC is a directive, the user may
assume thalt ABC is a synonym for $ABC, even if it is not stated explicitly. In the examples throughout
this manual, both the basic forms and their synonyms are used, so that the programmer may become
familiar with both alternatives.

1.6. 1. $ANDF (And If)

The $ANDF directive is called by:

$ANOF e

where e is a binary value with no relocation. This directive is used in conjunction with the $IF, $ ELSE,
$ENDF, and $ELSF directives. This directive will be ignored if MASM is already skipping images
within a conditional construction. If not, e is evaluated. If e is nonzero, no action is taken; if e is
zero, MASM begins skipping images.

If d denote!s one of the directives $ ENDF, $ ELSE, or $ ELSF, the first construction is equivalent to (and
shorter than) the second:

$ANDF e $IF e

d $ENDF
d

Example:

1. $~F A>O
2. + A
3. $ANDF B>O
4. + B
5. $ENDF

UP-8453 Rev. 1
UP-NUMBER

Explanation:

Line 1:

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-32
PAGE

If the expressiun A>O is true then the statements on lines 2 and 3 are interpreted. If A>O is false
then lines 2 through 4 are skipped.

Line 3:

If line 3 is interpreted and the expression B> 0 is true then line 4 is interpreted. If the expression
B > 0 is false then line 4 is skipped.

Line 5:

The $ENDF marks the end of the conditional construct.

1.6.2. $ASCII (Set Character Mode to ASCII)

This directive requires no parameters. It sets the system character set to ASCII. This directive has
special interaction with the $CHAR directive.

1.6.3. $CHAR (Define a Data Character Set)

$CHAR is called as follows:

wh€!re eo indicates character ffame size and in converted by the rules for parameter conversion to
a non negative number is the range 1 to 36.

The order pairs (e,f) indicates the .current and future- character codes, respectively. These are
converted by the rules for parameter conversion to non negative numbers.

If eo is void the previous character frame size remains 1 in effect.

If all parameters are void then any data character character set in inactivated and MASM reverts to
the system character set.

1. If there is no data character set, in effect prior to the use of $CHAR, a table is constructed which
translates each character of the system character set into the character of the new character
set.

2. If there is a data character set with a translation table constructed for the same system character
set, a copy of that table is used.

3. If there is a data character set with a translation table constructed for a system character set
different from the one specified with the current $CHAR, the transldtion table is constructed as
follows: Each character of the current system character set is translated into the equivalent
character of the previous system character set and then, via the translation table, into the final
code.

Once the table has been constructed, then the parameter pairs e j, fj are taken in ordelr and modify
the table to indicate thatthe character of the system character set with the code e j is translated into
f j • If the system character set is Fieldata, then the number of pairs may not exceed 64; if the system
character set is ASCII, the number of pairs may not exceed 128. No value of fj may exceed 1 */36-1.

U.IP-S453 Rev. 1 L SPERRY UNIVAC 1100 Series
!P-NUMBER Meta-Assembler (MASM) Programmer Reference
•. _----- UPDATE LEVEL

1-33
PAGE

Note that this means that the translate table need not be completely redefined in order to alter only
a few characters of it.

The e)dstence of a character translation table overrides the setting of the system character set by the
$ASCIII or $FDATA directives.

Example:

1.
2.
3.
4.
5.
6.

$CHAR 'A',077
+ 'AB'
$ASCII

+
$CHAR

+

'AB'

'AB'

Explanation:

The e)(ample assumes the system character set is Fieldata.

Line 1:

A character translation table is built which converts a value of 06 to 077.

Line 2:

Using the character translation table MASM generates a 07707.

Line 3:

The $ASCII directive sets the system character set to ASCII.

Line 4:

A. value of 07707 is generated because the character translation table overrides the system
character set.

Line 5:

A. $CHAR directive with no parameters removes the character translation table.

Line 6:

MASM generates a value of 101102 because the system character set is ASCII.

1.6.4. $DEF (Establish Definition Mode)

The $ DEF directive (see 1.13) establishes definition mode for the main assembly. This directive must
be intE~rpreted before the beginning of the second pass of the main assembly. If an attempt is made
to generate data in a definition mode assembly, an I-flag is generated. This directive is ignored if
encountered during the second pass of the main assembly.

The $[)EF directive of MASM is distinct from the DEF directive used by PDP. Since DEF should not
occur inside PROCs, the two never interfere with each other. The PDP DEF may still be used in PROCs
intended to be processed by MASM.See SPERRY UNNAC 1100 Series, Vol. 3, System Processors
Programmer Reference, UP-4 144.3, current version. for details of the use of DEF with PDP.

UP-8463 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.6.5. $ DELETE (Delete a Definition)

The $ DELETE directive is called as follows:

label $ DELETE

UPDATE LEVEL
1,;,,34

PAGE

where there are no parameters, but the label field is required. This directive deletes the final
relationship of a definition, which may delete both data and control information, since an identifier
may reference both. If the label is a selection a (5 l' .",5 n)' the effect of $ DELETE is to delete the
selector 5 n of the selection a(5 l' ".5 n-1)' This means that $DELETE may be used to prune trees
built up of nodes and selectors. Nodes and PROe sample blocks, which may be referenced from more
than one place, are deleted when all references to them are deleted. $DELETE may be used in
definition mode to remove PROe sample blocks when the PROe is called solely to establish
definitions.

1.6.6. $DISPLAY (Display Information)

The $DISPLAY directive is called as follows:

where e l' .", en are binary values or strings in a system character set. If the current subassembly
pass is not generative, this directive is ignored. Otherwise, the strings and the binary values are
displayed in the printed listing, if any. The strings are printed in the position normally occupied by
the source image, except that line numbers do not appear. If a string is flagged, an E-flag is produced.
A binary value is printed in the position normally occupied by the assembler output except that no
location counter is specified. A binary value is always printed as soon as it is encountered, but a
string is only printed when another string is encountered in the parameter list, a binary value is
printed, or the end of the parameter list is reached.

If V is a binary value, then of the two statements: .

DISPLAY
DISPLAY
DISPLAY

'V',V
V,'V'
*'ERROR',V

the first displays the information on one line, the second requires two lines for the display, while the
third will produce an E-flag and display the 'ERROR' and V on the same line.

This directive is intended to be used to provide error indication messages from inside PROes.

This directive may also be used to document assembly-time actions such as large table generations
which are not otherwise readable. Strings may be composed dynamically with the use of the
concatenation operators.

1.6.7. $00 (Repetitive Generation of a Line)

The $ DO directive is called as follows:

label $00 rpt ,line

where label is optional and may be any identifier (selections not permitted), line is any valid MASM
line (excluding leveler and page ejector), and rpt is from one to three binary values separated by
commas. At least one space must occur between rpt and the following comma, and if the line to
be generated has a label, it must follow the comma immediately: If rot is only one value, it is

UP-8453 Rev. 1 L SPERRY UNIVAC 1100 Series
UI3~UMBER Meta-Assembler (MASM) Programmer Reference

-------- UPDATE LEVEL
1-35

PAGE

interpreted as end; two values are interpreted as start and end; while three values are interpreted
as stc.rrt, end, and step. If step or start are not specified, values of 1 are used. The label is set
to the value st;:ut and incremented by step until the value end is reached or passed. For each value
given to the label, the specified line is interpreted once.

The start and end value~ must be nonnegative binary values without relocation and may not exceed
262143. The step field may be positive or negative, but not zero, and may not exceed 131071 in
magnitude. If (end-start)/ step is negative, the line is interpreted zero times, and the label is not
definE!d. Any microstrings in the object line are interpreted each time the line is interpreted;
microstrings preceding the space-comma pair are interpreted once (before initiating the $00). $00
directives may be nested. A $00 repetition may be terminated by the $ENDD directive before the
full number of repetitions are performed.

1.6.8. $EJECT (Eject the Page)

This directive requires no parameters. If the current subassembly pass is not generative, this directive
is ign()red. Otherwise, the paper is advanced so that the following printing begins on a new page.

1.6.9" $ ELSE (Conditional Interpretation Alternative)

The $IELSE directive requires no parameters. It is used with the $IF and $ ENDF directives to establish
an altl3rnate set of code to be interpreted. If MASMis conditionally skipping images when $ ELSE
is encountered, skipping is discontinued and interpretation is begun. If MASM is conditionally
interpreting images when $ ELSE is encountered, interpretation is discontinued and skipping is begun.

0.0.10. $ELSF (Cond. Interp. Conditional Alternative)

The $ ELSF dirE~ctive is called by:

where e is a binary value without relocation. This directive is used in conjunction with the $IF-$ ENOF
directives. This directive behaves as a $ ELSE directive if MASM is already interpreting images. If
MASM is skipping images when this directive is encountered, MASM evaluates the expression and
either interprets or skips the images following.

SPERRY UNIVAC 1100 Series UP-8453 Rev. 1
UP-NUMBER Meta-Assembler (MASM) Programmer Reference

Example:

1 : $IF A

a

$ELSF B

b

$ENDF

2: $IF

a

$ELSE
$IF

b

A

$ENDF
$ENDF

B

Examples 1 and 2 are logically the same; however, example 1 is shorter.

1.6. 11. $ END (End of a Subassembly)

The $END directive is called as follows:

$END e

UPDATE LEVEL
1-36

PAGE

where e is converted according tq the rules for parameter conversion. The $ END directive terminates
a subassembly and ends a PROC or function sample. When used to terminate a PROC or function
sample, the $END directive may not be conditionally generated. When a sample is being interpreted,
however, an $ END directive may be conditionally genera~ed and thus terminates execution of that
particular PROC or function.

For a PROC, the expression e is ignored if present. For a function, the value of e is returned as the
value of the function call, and e may have any value, including strings, nodes, or control information.
If e is present on the $END directive which terminates the main assembly, the value of e must be
binary with exactly one relocation item (which is not an external reference). This indicates to the
Collector (and ultimately to the Executive) the address at which the execution of the generated
absolute program is to begin. Naturally, if more than one element in a collection has a transfer
address e specified by a main assembly $ END directive, ambiguity exists which must be resolved
by Collector source language. An element which has a starting transfer address defined is colloquially
said to be a main program. For further details, refer to the 1100 Series, Volume 2, EXEC Programmer
Reference, UP-4144.2 (current version).

1.6.12. $ENDD (End $00 Iteration)

This directive requires no parameters and may be used only if a $00 repetition is being performed.
The $ EN DO terminates the current active group of nested $ DO repetitions.

UP,-8453 Rev. 1
UP-NUMBER L SPERRY UNIVAC 1100 Series 1-37

. __ M_e_t_a_-A_ss_e_m_b_le_r_(_M_A_S_M_)_P_r_o_9_r_a_m_m_e_r _R_e_fe_r_e_n_c_e ____ --'-U_P_OA_T_E_LEV_EL __ .L-.IIA_G_E __

1.6.1 ~t $ENDF (End Conditional Interpretation Group)

This directive ends the conditional code generation group introduced by the most recent use of the
$IF directive. It requires no parameters. Conditional interpretation or skipping for this group stops,
and thle mode of interpretation reverts to that effective for the next outer level of $IF-$ENDF, if any.

$ ENDF has the synonym OFF.

1.6.1 ~~. $ENDI (End $REPEAT Iteration)

The $ENDI direc:tive requires no parameters and may be used only if a $REPEAT construction is active.
It terminates the iteration of the currently active $ REPEAT group, thereby giving control to the next
outer ~~REPEAT group, if any, or else to the main assembly.

1.6.1 Ei. $ENDR (End a $REPEAT Construction)

This directive requires no parameters and may not have a leveler or label field because it is not saved
as part of $ REPEAT sample. This directive has two functions. First, when a $ REPEAT group sample
is being picked up prior to beginning iteration, it serves to indicate the end of a $ REPEAT group
construction, and may therefore not be conditionally generated when it serves this purpose.

When $ EN DR is encountered during repetition, either at the end of the $ REPEAT group, or through
its conditional ueneration, the current iteration is ended, the counter is incremented, and the next
iteration begins.

1.6.16;. $EQU (Equate a Value)

The $ EOU direc:tive is called as follows:

label $EOU e

where e is an (~xpression. If the label is absent, no action is taken. Otherwise, the expression e
is converted according to the rules for parameter conversion, with one exception. Before an
undefined identifier is converted to binary, the dictionary is searched to see if the identifier is defined
as a directive, an internal name, or a procedure name. If such a definition is found, it is taken as
the value of the expression. The label is then given the value of the conversion as its definition.

Of the two statHments:

MACRO
MACRO

EOU
EOU

PROC
/PROC

the second is preferred, since it is always unambiguous, although they both have the same effect.

Symbols given definitions by use of the $ EOU directive are known as explicit definitions and may
be redHfined at will without generation of aD-flag.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.6. 17. $EQUF (Equate a Field)

The EOUF directive is called as follows:

label EOUF u,x,j

UPDAn LEVEL

where u,x,j a.re converted to binary values. For a detailed description, see Section 2.

1.6. 18. $ FDATA (Set System Character Set to Fieldata)

I 1-38
PAGE

The $ FDATA directive requires no parameters and sets the system chara.cter set to Fieldata. It has
the synonym FIELDATA. This directive has special interaction with the $CHAR directive as described
in 1.6.3.

1.6.19. $FORM (Define a FORM)

The $FORM directive is called as follows:

label $FORM e l' e 2'"'' en

where e 1'"'' en are integer values greater than zero whose sum is less than 73. The integer values
in the operand field represent the length in bits of the field of a word (or double word).

The label used on the $FORM is defined as a FORM name, which may be used in the operation field
of a MASM line to specify generation of a datum. The label is used as a FORM reference as follows:

each d j is converted to a binary value and mapped into a field of size e j, as specified on the $ FORM
line defining the FORM name, The fields of a form are adjacent and right justified within a word or
double word.

Example:

1. PF FORM
PF

12,6,18
5,1,TAG 2.

Explanation:

Line 1:

The symbol PF is the form name and is associated with a 36-bit word divided into three fields
of 12, 6, and 18 bits.

Line 2:

Line 2, a form reference line, produces a 36-:-bit word with the values 5,1,TAG in the fields
defined by the symbol PF. If the symbol TAG was associated with the value 01000, then the
octal representation is:

000501001000

A field in a FORM reference can be a line item. If the form of the line item is identical to the
form referenced, and is not a literal, the corresponding fields from both forms referenced are
ORed.

UP-8453 Rev. 1
UP·-NUMBER L SPERRY UNIVAC 1100 Series 1-39

, __ M_e_t_a_-_A_s_se_m_b_le_r_(M_A_S_M_)_P_rO_g_r_8_m_m_e_r_R_e_f_e_re_n_c_e ____ -..L._UP_D_AT_E_L_EV_EL __ ..1-PA_G_E __

Example:

1. FA
2. FB
3. S 1
4.

Explanation:

FORM
FORM
EOU
FB

Lines 1 and 2:

12,6,18
12,6,18
+(FA 0,1 ,TAG)
4,Sl,0

Two symbols are defined, each having an associated form.

Line 3:

A line item is created with one of these forms, FA. If the symbol TAG has the value 01000, then
the octal representation is:

000001001000

The + preceding the line item inhibits literal generation.

Une 4:

A form reference line using S 1 as one of the values may be represented in octal as:

000401001000

The result was produced as follows:

S1 =: 000001001000
FB =_ 000400000000

result == 000401001000

MASM provides a built-in FORM with the name 1$ which corresponds to the 1100 Series instruction
word format. It may be thought of as having the definition:

1$. $FORM 6,4,4,4,2,16

and may be used at will by the programmer.

1.6.20. $ FUNC (Define a function)

The $FUNC dirE~ctive is dealt with in detail in 1.9. The label on the $FUNC directive is assigned the
value of the parameter tree when the function body is being interpreted. If this label is externalized,
the label is defined as a function name with no entry parameter whose entry point is at the beginning
of the function body.

UP-8453 Rev. 1

UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.6.21. $GEN (Data Generation)

The $GEN directive is invoked by the call:

$GEN e 1,···,e n

UPDATE lEVEL
1-40

PAGE

where the action depends on the number of operands. If only one operand is present, its value is
generated as data for the output element. When n is greater than one, the current word size is divided
into n equal fields, each e j is converted to a binary value, and the value of e j is generated in the
;th field. The $GEN directive is invoked implicitly for lines which have no operation field or a void
operation field.

1.6.22. $GFORM (Generalized FORM)

The $GFORM directive is called by:

$GFORM

where all fj and e j are converted to binary values, and the fj must be unrelocated positive integers
whose sum is less than 73. 'The $GFORM directive provides the same effect as if the two lines

F FORM
F

f l"",f n
e 1,· .. ,e n

are written, without actually creating the form F. If any fj happens to be 0, the corresponding e i
is ignored after conversion to binary.

1.6.23. $GO (Transfer to a NAME)

$GO is called by:

$GO n

where n must evaluate to an internal NAME (a label which appears on a $ NAME directive). If the
$GO is in the main assembly, on'ly forward transfer is possible; MASM will begin skipping images
until the specified NAME is encountered. If the $GO is in a procedure or function, transfer may be
made to any NAME of that procedure or function, or any external NAME of any other function or
procedure. If the transfer is out of the present function or procedure, a diagnostic G-flag is produced.
Such transfers are lateral transfers and do not change the subassembly nesting level. A forward $GO
within a procedure/function to a nonexternalized NAME is done by skipping images and may thus
be slower than other $GO operations. To terminate the present procedure or function interpretation,
it is not necessary to do a $GO to a NAME immediately before the $END at the end of the sample.
The following alternatives are preferable:

DO 1, END or 1-END using conditional operator:;
DO e, END or e -END using conditional operators

The first of these is an unconditional termination, while the second is conditioned on the value of
the expression e.

UP--8453 Rev. 1 L SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference

1 .. 6.24. $HEX (Set Binary Representation to Hexadecimal)

UPDATE LEVEL
1-41

PAGE

The S HEX directive requires no parameters and sets the binary representation mode to hexadecimal.

1.6.25. $IF (Conditional Interpretation)

The SIF directive is called by:

SIF e

where e is a binary value without relocation. If e is omitted, a value of 0 is used. SIF increments
the conditional nesting level by 1. If MASM is already skipping images for an outer conditional
construction, this action. continues. If not, the expression e is evaluated and compared with O. If
e is not equal to zero, MASM continues to interpret images. If e is zero, MASM begins to skip images
and continues to do so until a matching SELSE, SELSF, or SENDF is found. 'SIF has the synonym ON.

1.6.26. $INCL.UDE (Include Definitions)

The SINCLUDE directive is called as follows:

SINCLUDE e

where e is a string in the system character set which is of the form n or 'n/v'. Both n and v must
be from 1 to 12 characters from the characters A to Z,O to 9, "S", and "_". If the current assembly
pass is generative, there is no actibn taken. Otherwise, n or n/v is assumed to be the name of an
omnibus element produced by a MASM definition mode assembly. The Assembler libraries are
searchHd for thH element, and, if it is found, the definitions contained in the element are added to
the dictionary for the present assembly- (see 1.2.5). Any previous definitions for the same symbols
are replaced (see 1.13). 0 c>(\.L 0""\'1 '-"'- <"P o..SS !t.. ..

1.6.27. $INFO (Special Information)

The SINFO directive is used to communicate between MASM and the Collector. It is called by:

label SINFO eo"e l' ... ,en

where eO is a binary value without relocation in the range 1 to 8. The meanings of e 1'"'' en and
that of the call itself depend on the value of eO' which is referred to as the group number.

1.6.27.1. Group Number 1 (Mode Settings)

This type of call controls the arithmetic fault mode and quarter-or third-word sensitivity of the output
element. The parameter e 1 is a binary value in the range 0 to 077, which is treated as a bit mask
whose bits have the meanings as shown in Table 1-3.

-~

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

Table 1-3. Bit Meanings for $INFO Group Number 1

Bit Meaning

0* Specify quarter-or third-word sensitivity
1 Quarter-word sensitive
2 Third-word sensitive
3 Specify arithmetic fault mode
4 Arithmetic fault compatibility mode
5 Arithmetic fault noninterrupt mode

*Ieast significant bit.

UPDATE LEVEL
1-42

PAGE

If the current subassembly pass is not generative, then the directive is ignored. If bit 0 is set, the
values of bits 1 and 2 are substituted for bits 25 and 26 of the flag bits word of the element table
entry for the output element. Similarly, if bit 3 is set, then the values of bits 4 and 5 are substituted
for bits 2.9 and 30 of the flag bits word.

For example, the output relocatable element may be marked as quarter-word sensitive by the line:

$INFO 1 3

1.6.27.2. Group Number 2 (Common Block)

This call specifies that a location counter is a common block. The parameter's meanings are:

e 1 A string specifying the common block name.
e 2 The .Iocation counter number to be used to refer to the common block.
e 3 The minimum address of the location counter (optional).

The parameters e 2 and e 3 must be binary values without relocation. The string e 1 must satisfy the
Collector requirements for a common block name (no embedded blanks, commas, or periods). The
effect of this call is to make e 2 refer to the common block named by e 1 with minimum address e 3·
If there are several directives with eland e 2 identical but different values for e 3' the largest of these
values is used.

A location counter must have some space allocated if it is to be included in the output element
preamble. Therefore, a common block location counter must be incremented somewhere in the
element referencing it, either by the $ RES directive or by data generation.

For example, the common block COMDATA would be made available as location counter 4 by the
line:

$INFO 2 'COMDATA',4

SPERRY UNIVAC 1100 Series
Meta-:Assembler (MASM) Programmer Reference UPDATE LEVEL

1-43
PAGE

UP-8453. Rev. 1 L
UP-NUMBER ______________ _ __ ~ __________ _L ______ _

1.6.2 jr .3. Group Number 3 (Minimum D-Bank Specification)

This call specifies the minimum address for the O-bc-nk. The single parameter e 1 is a nonnegative
binary value without relocation which specifies the minimum address. This directive is ignored for
nongenerative passes. If there are several such $INFO directives, the largest value specified is used.

1.6.2J.4. Group Number 4 (Blank Common Block)

This call specifies that a location counter is a blank common block. The parameter's meanings are:

e 1 The location counter number used to refer to blank common.
e 4 The rninimum location counter address.

The interpretations for e 1 and e 2 are the same as for e 2 and e 3' respectively, for a group number
of 2. Blank common may also be referred to by a group number 2 $INFO directive with a name
of 'BLANK$COMMON' for e l'

1.6.2 -l.5. Group Number 5 (External Reference Definition)

This call allows the user to create an external reference to a symbol whjch is spelled using characters
not permitted in a MASM identifier. The parameter e 1 is a string which specifies the name of the
external identifier. It is limited to 12 characters, left justified, space filled, from the Fieldata character
set. The label in the label field is equated to a value of 0 with full value relocation by the identifier

e l'

For example, the line:

PILSCALL INFO 5 'PL\SCAN'

allows a MASM element to reference the external symbol PL \SCAN, which is defined in another
element and written in a different language, by using the label PLSCALL.

1.6.2/' .6. Group Number 6 (Entry Point Definition)

This call performs the same operation as group number 5, but applied to an entry point name. It
allows creation of an entry point whose external name contains characters not allowed in a MASM
identifier. The parameter e 1 is a string (restricted to 12 characters, left justified space filled, from
the Fieldata character set) specifying the name of the identifier, and e 2 is a binary value which
specifi<es the value of the entry point. If the identifier specified by the string e 1 is given more than
one de,finition, only the last one is transmitted to the preamble of the relocatable output element.

For example, the line:

$INFO 6 'VAL\REF',VALR

would make the value of VALR, an internally defined symbol, available to progrAms written in another
language as the external symbol VAL \REF.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.6.27.7. Group Number 7 (Even Starting Address)

UPDATE LEVEL
1-44

PAGE

This call specifies that a location counter must be given a program absolute starting address which
is even. The parameter e 1 specifies the number of the location counter and must be binary without
relocation.

1.6.27.8. Group Number 8 (Static Diagnostic Information)

This call specifies that a location counter is to be a part of the static diagnostic information which
is a part of the absolute element diagnostic tables, rather than a part of a segment. The parameter
e 1 is a binary value without relocation which specifies the number of the location counter to be' used.
Data generated under a group number 8 (formerly known as INFO-O 1 0) location counter are given
their correct values, except that the relocation base of a group 8 location counter is always set to
o by the Collector. This information may be referenced by diagnostic routines at execution time.

1.6.27.9. Restrictions

No location counter may be used in connection with more than one of the group numbers 2, 4, 7,
and 8. At most one location counter can be a blank common block or a labeled common bl,ock with
a given label.

The first six characters of an identifier used for a common block name, an external reference, or an
entry point may not be zero or negative zero when converted to Fieldata.

1.6.28. $INSERT (Insert Images)

The $INSERT directive is called as follows:

$INSERT e 1, .. ·,e n

where e1 , ... , en are strings in a system character set. Each e i is treated as a line to be interpreted
by MASM, beginning with a label field as the first character of the string and so forth. The lines
defined by the strings e i are interpreted in order from left to right. $INSERT directives may be nested,
with lines interpreted at inner levels being interpreted at the proper place between lines interpreted
at higher levels.

Example:

INSERT 'RPT JGD R4,TOP',' J EXIT'

This will have the same effect as the two lines:

RPT JGD
J

R4,TOP
EXIT

SPERRY UNIVAC 1100 Series
UP-,NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE lEVEL

1-45
PAGE

UP-8453 Rev. 1 L
------------ ---~----------~-------

1.6.2~~. $ LEVEL (Dictionary Level Control)

The $ LEVEL directive is called by:

$LEVEL

where e l' e 2' and e 3 are binary values without relocation. For each subassembly (including the
main assembly) there is a principal level of definition in the MASM symbol dictionary. Each new
subassembly in a nest introduces a deeper level of definition in the dictionary as its principal level.

The value of e " on the $ LEVEL directive establishes the dictionary level for the following lines (up
to the next $LEVEL or the end of the subassembly) as being e 1 levels deeper than the current principal
level. The value of e 2 is used to determine the dictionary insertion level for new symbols. e 2 is
always positive and indicates that symbols must be defined at more shallow levels, just as if they had
been written in the label field with trailing asterisks. The value of e 3 determines the level at which
the dictionary search for identifiers begins. Identifiers defined deeper than this level are not found.

For the main assembly, the level more shallow than its initial principal level is that of symbols external
to the assembly itself. These symbols are either the external definitions in the preamble of the
relocatable element or, for definition mode assembly, the symbols retained in the dictionary snapshot
written out as the omnibus element. Therefore, the line:

LEVEL 0,1,0

causes, for an ordinary assembly, all following symbols defined at the current level to be externally
df:fined; for a definition mode assembly, all following symbols are retained in the dictionary snapshot
in the output element. The use of this form eliminates the need for explicitly externalizing (with an
asterisk) all of the symbols defined by the element.

1.6.301. $ LIST (Resume Listing)

The $ LIST directive requires no parameters. It is ignored if the subassembly pass is not generative.
Otherwise, any UNLIST condition in existence (due either to an initial N option or an $UNLIST
directive) is removed, a!1d the printed listing is resumed under control of whichever listing options
were specified on the MASM processor call statement.

1.6.31. $ LIT (Literal Pool Definition)

The $ LIT directive has two distinct forms:

$LlT

and

label $LlT

If the current subassembly pass is not generative, the directive will be ignored. If there is no label,
the implied literal pool counter number is set equal to the current location counter number. If there
is a label field, then a literal function is created which places literals into the pool corresponding to
the current location counter and the label is set equal to that function. At the beginning of the main
assembly, the implied nteral pool location counter number is zero. If there is more than one labeled
$ LIT directive for the same 10c;Jtion counter, the labels are the same function; that is, literal pools
are unique by location counter only, not by name.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

For example, if the lines:

$ (2) ,ABC $ LIT
$(4) $LIT
$(1) (1, TABLE)

ABC (1 ,0)

UPDATE LEVEL
1-46

PAGE

are interpreted, then the literal (1 ,TABLE) is placed in the location counter 4 literal pool, while the
literal ABC(1 ,0) is placed in the location counter 2 literal pool.

1.6.32. $NAME (Define an Internal Name)

The $NAME directive is called as follows:

label $NAME e

where e, which may be void, is converted according to the rules for parameter conversion. The label
specified is given the value of an internal name, whose associated entry value is the value of e. An
internal name may be used to provide an alternate entry point to a PROC or function, or it may provide
a forward transfer point within the main assembly. The object of a $GO directive must be an internal
name. For an internal name to be known outside the PROC or function containing it, it must be
externalized. Nonexternalized names may only be used from within the PROC or function containing
them (or deeper nested calls), and are usually employed only as $GO destinations. For $ NAME
directives contained within a PROC or function sample, the expression e is evaluated only once, at
the time the sample is scanned initially. This means that the value of e does not change from call
to call. The value of e is obtainable as P(O,O) or F(O), assuming that P is the relevant $ PROC label
or F the relevant function label.

1.6.33. $NEG (Transform Negative Values)

The $ NEG directive is called as follows:

$NEG function name

where function name is an entry point to a user-defined function which is called internally by MASM
to transform negative values. If the function name is void, the effect of the $NEG directive is nullified.
There are two instances when the function is called:

1. when a negative value is being output to the relocatable binary element.

2. when a negative value which is part of a larger value is being built. This is the case of forms
both explicit and implicit. This means the transformed value may be entered into the dictionary.

Example:

1: F $

2: TWOS*
3: MSK
4:
5:
6: AZ
7: AF
8:

$FUNC
$NAME

$EQU
$END
$NEG
$EQU
$FORM
AF

F$(2)=72->-ODI1*/F$(2)-1
(F$(1)+1)**MSK
TWOS
+(-2,-3)
7,13,11,5
-3,-10,4,-2

SPERRY UNIVAC 1100 Series
UP-NUMBER ' Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-47
PAGE

UP-8453 Rev. 1 L
-------------- ---~----------~------

9: AX
10:
1 1 :

Explanation:

$EQU

+
-2
AX
10

Lines 1-4 defines the function MASM uses to perform the transformation of negative values from
ones c:omplemj~nt to twos complement

Line 5 indicate negative values are to be transformed by the function TWOS.

Line 6 the transformed value 0777776777775 will be associated with the symbol 'AZ' and entered
into the dictionary.

Line 7 defines the symbol 'AF' as a form reference.

Line 8 uses the form reference 'AF' to generate the 36 bit value 0767775400236 or broken down
into its input fields 0175 017766 0004 036.

Line 9 associates the value -2(ones complement) with the symbol 'AX' and enters it into the dictionary.

Line 10 the value associated with the symbol 'AX' is output to the relocatable binary element after
being transformed to a twos complement negative value.

Line 11 the value -10 is transformed to a twos complement number and output to the RS element.

Care must be exercised when performing arithmetic operations on values which consist wholly or
partially of values which have been transformed.

The $NEG directive and its associated function is in effect for all lines following it or until another
$NEG directive is encountered.

MASM supplies two parameters to the user-defined function:

1. as selector 1 the value

2. as selector 2 the field size of the value in bits

The function should AND tht: transformed value with a value consisting of one bits whose size is equal
to the field size. This is to remove any possible side effects which may have propagated from the
function.

Example:

1: F $

2: SBMAG*
3:

Explanation:

$FUNC
$NAME

$END (-F$(1)ttl*/(F$(2)-1))**(1*/F$(2)-1)

Lines 1/-3 define a function which transform ones complement negative values to sign bit magnitude
negative values.

Line 3 expression complements the value specified by F$(1), sets the sign bit then ANDs the result
with a value of all one bits whose size is the field length.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.6.34. $NIL (No Action)

UPDATE LEVEL
1-48

PAGE

The $ NIL directive requires no parameters and generates no code. If a label (including a waiting label)
is specified, the label is marked as used, preventing definition by implication, but is not given a value.

1.6.35. $OCTAL (Set Binary Representation to Octal)

The $OCTAL directive requires no parameters. It sets the binary representation mode to octal.

1.6.36. $ PROC (Define a PROC)

The $ PROC directive is called as follows:

label $PROC

where e l' e 2' and e 3 are nonnegative binary values without relocation. A detailed discussion of
procedures is found in 1.8. The $ PROC directive serves to introduce a procedure definition. The
label field, if any, may not have selectors; the label is used within the procedure to identify the
parameter tree defined by the call to the procedure. If the label is externalized, it is also given the
value (at the appropriate level) of an entry point to the procedure, with no entry parameter, which
enters the procedure at the first statement.

The parameter e 1 specifies the maximum number of parameter lists allowed (in addition to list 0).
If (] 1 is void, then the number of lists is unlimited. If e 1 is flagged, the procedure is defined as being
one pass.

The parameter e 2' if coded, specifies the number of words generated by the PROC. This value is
computed only once, when the sample is scanned, and may not be changed from call to call. Such
a PROC is called a words-given PROC.

The parameter e 3' if coded, specifies the location counter to be used for generation of the code under
the PROC. If omitted or void, the location counter used is the one active at the point the PROC was
called.

1.6.37. $REPEAT (Repeat a Statement Group)

The $ REPEAT directive has the form:

label $REPEAT rpt

where label, if present, may not have selectors, and rpt is a field of zero to three binary expressions
without relocation. If there is one expression in rpt, it is taken to be end; two expressions are
assumed to be start and end; while three expressions are assumed to be start, end, and step. If
start or step is omitted, the value 1 is used. If end is omitted, the value 262143 is used. Both
start and end must be in the range 0 to 262143, while step must be nonzero with magnitude less
than 131072.

The lines between $REPEAT and the next (unconditional) $ENDR at the same $REPEAT nesting level
are saved as sample. If step does not have the same sign as end-start, the sample statements are
not interpreted. Otherwise, they are interpreted 1 +(end-start)/ step times, with the label set first
to start, then to start + step, and so on. Each iteration is terminated by encountering an $ ENDR
directive, either the unconditional one at the end of the sample, or one generated conditionally. If
an $ENDI directive is encountered, the entire $REPEAT operation is terminated. $REPEAT introduces
.J new sample level but not a new dictionary level.

UP-·8453 Rev. 1 L- SPERRY UNIVAC 1100 Series
-t',I-NUMBER __ Meta-Assembler (MASM) Programmer Reference

1.6.38. $ RES (Reserve Space)

The $ RES directive has the form:

$RES e

UPDATE LEVEL
1-49

PAGE

where e is a binary value without relocation. If the current location counter is blocked, this line is
marked with an I-flag and no action will be taken. Otherwise, the value of e is added to the current
location counter. If the directive appears on a source image, the original value of the location counter
will be printed in the listing. Note th3t the expression e must be fully computable in the summary
pass of the subassembly, since the location counter value is affected. This means that any identifiers
used in computilng e must have their values determined by previously interpreted lines.

1.6.39. $UNLIIST (Inhibit Listing)

The $UNLIST directive requires no parameters. If the current subassembly pass is not generative,
this directive is ignored. Otherwise, any listing being produced is inhibited and remains so until a
$LlST directive is encountered. The processor call N option has the effect of placing an $UNLIST
directive before the first line of the assembly. This is not the same as requesting no listing, since
a $LlST directivH may turn on the listing. To insure that there is no listing. there must be an absence
of all of the listing options (C, 0, E, L, 0, R, or S).

1.6.40. $WRD (Specify Word Size)

The $V'/RD directive is called by

$WRD e

where e is a positive binary value without relocation not exceeding 36. The current word size" in
bits is set to the value of e. Internally, MASM can handle a word size up to 72 bits; however, the
present Operating System interface (RDR) does not support a word size larger than 36 bits.

1.7. ASSEMBLER FUNCTIONS

MASM has a large number of functions built into it for determining the status of the assembly and
the characteristics of an expression, and manipulating the data types of node references and strings.

All buil1t-in functions in MASM begin with the "$" character, which prevents the programmer from
redefining them, since a $ may not appear in column 1 of a line (except for location counter change).
Some built-in functions do not require any arguments. This is indicated by writing the function name
without an argument list following it (that is, "$F" is written, not "$F(n. This is true also for those
functions for which arguments are optional.

The function name itself may be computed by an expression (such as a conditional expression or a
PROC parameter) which evaluates to control information. The statement:

+ (K - > $ L C B ! $ L CV)(1)

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-50
PAGE

computes either $ LCB(1) or $ LCV(1), depending on the value of K. Similarly, the $ EQU directive may
be used to create new names for built-in functions, as in

A $EQU

+
IK-> $LCB ! $LCV
A(1)

Built-in functions generally expect a certain context for their arguments. If an argument is not of
the proper data type, conversion is performed. If the conversion necessary is not defined, a V-flag
is produced.

1.7. 1. $AP(e) (Absolute Part)

The value of $AP(e), where e is a binary expression, is the absolute part of e with all relocation
information deleted. None of the other attributes of e is affected by this function.

An expression of the form" $AP(e)= e" is true if and only if e has no relocation. An expression of
the form:

e 1-$AP(e 1)= e 2-$AP(e 2)

is true if and only if the relocation for e 1 and e 2 is the same.

Examples:

If ABC is,04 7 relative to the base of location counter 1, then $AP(ABC) is 047. The value of $AP($LCV)
is $ LCV-$ LCB.

1.7.2. $ BA(e) (Binary Attributes)

The value of $ BA(e), where e is a binary expression, is a node reference whose elements describe
the binary attributes of e. If a FORM is attached to e, then selector 0 of the node is defined, and
its selectors (starting at 1) are the field sizes of the FORM. If e has m relocation items, then the
selectors 1, ... , m of the value of $ BA are defined, and each of them has three subselectors. The first
of the three is the leftmost bit of relocation, the second is the rightmost bit of relocation, and the
third is the relocation itself. The relocation is binary if relocation is by a location counter. It is a string
(the external reference name) if relocation is by an external reference. If the relocation is negative, .
the third subselector is flagged. If e has neither a form nor any relocation, the value returned by
$BA is an empty node. This is summarized in Table 1-4.

UP-8453 Rev. 1
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-51
PAGE L SPERRY UNIVAC 1100 Series

__ -------.1.----1..._

Selector

(O,j)

(i, 1)

(/,2)

(/,3)

Example:

If the IiInes:

ABC
Z

Table 1-4. Selectors Defined on rhe Result of $BA(e)

Description

Field size in bits of the jth field of the attached FORM, if any. FORM fields are
counted from the left.

Leftmost bit of relocation for the ith relocation item. Bits are numbered from
right to left, starting at O.

Rightmost bit of relocation for the ith relocation item.

If relocation is by a location counter, this is the number of that location
counter. If relocation is by an external reference, this is a string whose
characters are the name of the external symbol.

If relocation is to be subtracted, this value is one.

EOU
EOU

+(J EOR)
$BA(ABC)

have bleen interpreted, and EOR is external, then the value of Z is:

$LO($L 1 (6,4,4 .. 4,2, 16),$L 1 (15,0,'EOR')).

1.7.3. String Conversion Functions

The functions described in this subsection create strings from other data types.

1.7.3. 11. $CAS(e) (Convert to ASCII String)

The eXlPression e is converted to the ASCII character set If e is a string then the string will be
converted from its original character set to its ASCII equivalent. If the expression e is a binary value
then the value is grouped into 9-bit groups with the lower eight bits as significant bits and the
resultant value is marked as an ASCII string.

Example:

1 . + $CAS(,ABCD')

Assuming the system chara~ter set is Fieldata, then the string 'ABCD' is converted to ASCII and output
as:

0'101102103104

UP-8453 Rev. 1
UP-NUMBER

2.

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

+ $CAS(O 12040777)

UPDATE LEVEL
1-52

PAGE

The binary value 012040777 is grouped into 9-bit groups with the lower eight bits as significant
bits. The resultant value is:

012040377

This example would produce aT-flag because bits were lost when only the eight least significant
bits were output.

1.7.3.2. $CB (e 1,e2) (Convert to Binary Representation)

The function $CB(e 1,e2) requires e 1 and e2 to be integers, with ~ e2~26. If e2 is omitted, a value
of zero is assumed. The result of $CB is a string in the system character set which is the
representation of the value of e 1 in the binary representation mode. The significant digits are right
justified within the string, and there are at least one leading zero digit. If e 1 is negative, then the
string begins with "_". If possible, enough leading zeros are included so that the total length of the
string is e 2; otherwise, the length of the string is the minimum size necessary to hold the nonzero
digits (and leading zero) of the representation of e l'

Example:

The value of $CB(2 7,6) is '000033'.

1.7.3.3. $CD(e) (Convert to Decimal)

If e is a binary value without relocation, the value of $ CD(e) is a string in the system character set
which contains the decimal representation of e. If e is negative, a leading "-" is present. The length
of the result is the minimum necessary to contain the significant digits of e.

Example:

The value of $CD(O 144) is '100'.

1.7.3.4. $ CFS(e) (Convert to Fieldata String)

This function works like $CAS, but the resulting string is in Fieldata. If the expression e is a binary
value, the value is grouperl into 6-bit groups, and the resultant value is marked as Fieldata.

1.7.3.5. $CS(e) (Convert to String)

This function works like $CAS and $CFS, except that the result is in the data charetcter set. if any.
If there is no data character set, the result is in the system character set.

1.7.4. $FN (e1,e2) (Form a Name)

The value of $ FN(e l' e 2) is a PROC or function name. The e 1 paretmeter must be a previously defined
procedure or function name, and e 2 is converted according to the rules for parameter conversion,
except that a void expression is also allowed. If e 2 is omitted, a void expression is assumed. The
result of this function is a new entry point to the PROC or function named by e l' except that the
entry parameter is the value of e 2' If e 2 is void, the new entry point acts like a PROC or function
label, while a nonvoid e 2 produces a new entry point of the NAME type (the zero selector is defined).

U!l-8453 R:Ja. 1 L SPERRY UNIVAC 1100 Series
IP-NUMBER Meta-Assembler (MASM) Programmer Reference _._-- UPDATE LEVEL

The new entry point is assumed to be at the first of the procedure or function body.

Example:

1-53
PAGE

If PVT is a PROC: which has no NAME entry point, the value of $ FN(PVT/.6) is the same as that of the
label on the IinE~:

label * NAME 6

1.7.5. $ FP (Final Pass)

The value of $ FF', which requires no parameters, is 1 if the current subassembly pass is the final pass
of the current subassembly and is zero otherwise. This function should be used to control actions
which are to be performed only once during a subassembly, even though the subassembly may
require more than one pass.

1.7.6. $GP (Generative Pass)

The value of $GP, which requires no parameters, is 1 if the current subassembly pass is generative
and is i~ero otherwise. This function should be used to control actions associated with the output
such as listing control and printed displays.

1.7.7. $IBITS(e) (Indicator Bits for Expression)

The expression e is converted according to the rules for parameter conversion. Table 1-5 indicates
the bits set in the result for various characteristics of e.

Table 1-5. 'Expression Characteristic Indicator Bits

Bit Meaning

0* Flagged expression
1 Double precision
2 Negative arithmetic value
3 Left justification
4 Form attached
5 Fieldata string
6 ASCII string

*Ieast significant bit

For example, the value of $IBITS(*'ABC'LD) is 0113 if the current character representation mode is
ASCII.

UP-8453 Rev. 1
UP-NUMBER

. SPERRY UNIVAC 1100 Series
Meta-Assembler· (MASM) Programmer Reference

1.7.8. $IC(e) (Identifier Class)

UPDArE LEVEL
1-54

PAGE

The $IC function takes one argument, which must be a binary value without relocation in the range
o to 127. It returns a portion of the MASM symbol dictionary containing all those identifiers whose
MASM system hash code is e. The value of $IC(e) is a new node reference. The selector m is
defined for this node if there are class e identifiers at level m. Levels refer to the hierarchy of
definitions established by the nest of subassemblies active at the time the $IC function is invoked.
For each selector m, the value of the selection is a reference to a node, which is distinct from all
previously allocated nodes. The selectors defined for this node are consecutive integers starting from
1 which select strings in the system character set corresponding to the identifiers defined at level
m. If the identifier defines a value or node reference, then the string is not flagged. If the identifier
defines control information, the string is flagged.

The following function computes the class number of an identifier (that is, it computes the system
hash value of an identifier) supplied as a string:

F
CLASS*

S

function
NAME
CHAR
FDATA
WHO
EQU

36
$CFS(F(1))

END 127**('RANDOM'*($SS(S,1,6)--$SS(S,7,6)))*/-29

Level 0 in the dictionary is the level of symbols defined outside the main assembly (external symbols
for generative assemblies, saved symbols for DEF-mode assemblies). Level 1 is the level of the main
assembly itself. Higher numbered levels are those of progressively deeper nested subassemblies
(PROCs and functions).

Example:

$IC(14)(1 ,5) is a string which is the name of the fifth identifier in class 14 defined at the level of the
main assembly. This string can be used in a microstring expression to retrieve the identifier itself,
so a symbol table can be constructed for use at execution time.

1.7.9. $ILCN (Initial Location Counter Number)

The function $ILCN requires no parameters and returns th9 location counter number in effect at the
beginning of the current subassembly pass. For the main assembly, the value is always zero. If the
current subassembly is a call to a procedure with a specified location counter number, then $ILCN
is the value of that location counter number. For other subassemblies, $ILCN is the value of $ LeN
at the point at which the subassembly was invoked.

Examples:

Inside a PROC started by the line:

P PROC ,,5

the value of $ILCN is 5. Inside a PROC started by the line:

P PROC

called from a point where the active location counter is 3, the value of $ILCN is 3.

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-56
PAGE

UP-8463 Rev. 1 L
,_, ___ ---L----L...-_

1.7.10. $ LCB(e) (Location Counter Base)

The '$ LCa function requires one parameter or no parameters. The value of e should be in the range
o to 6:3, if given. If e is not within this range, aT-flag is produced. If no parameter is given, the
val.ue of $LCN is used. The value returned by $LCa is 0 relocated by the location counter specified
by the value of f~. In other words, the value of $LCB is the address of the first word of location counter
e.

1.7. 11. $ LCN (Current Location Counter Number)

The $LCN function requires no parameters. Its value is the number of the current location counter.

1.7. 12~. $ LCV(e) (Location Counter Value)

This function returns the current value of the location counter designated by the value of e. If e
is omitted, the value of $ LCN is used for e. This function has the" $" function as a synonym
for compatibility with existing programs and for shorthand convenience.

1.7. 131. $ LEV (Principal Dictionary Level)

The $ LEV function requires no parameters. Its value is the number of the principal dictionary level.
The val:ue of the principal dictionary level is 1 on the main assembly and is incremented by 1 for each
nested subassembly.

Example:

1. P·1fo
2.
3.
4.
5.
6.

Explanation:

Line 4:

PRoe
+$LEV
END
+$LEV
P
END

The value of $l.EV is 1.

Line 5:

The value of $l.EV at line 2 is 2 when procedure P is called.

1.7. 14. $ LF(e) (Label Field Description)

The value of $LF is a description of the waiting label for subassembly e, where e is a positive integer.
For purposes of this function, the active subassemblies are assumed to be n umbered from zero
startino with. the current subassembly. AT-flag is produced if the subassembly does not exist. A
V-flag is produced if the subassembly is protected. The value of $ LF is a new node reference. If
the e th subass(~mbly has no waiting label, the node has no select~rs defined. If there is a waiting
label, the zero selector points to a string in the system character set which represents the identifier.
If the waiting label is a selector definition (i.e., a subscripted label), then selector i is the binary value

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-56
PAGE

of the ;th subscript. Note that $LF(O) is always illegal, since the current subassembly is the line
containing the $ LF call and is always protected. The argument of 1 for $ LF retrieves the waiting label
for the PROC containing the line on which $ LF is called.

For example:

The value of $LF(e)=O is 1 if there is no waiting label. The value of $LF(e)= 1 is 1 if the waiting
label is a simple identifier. The value of $LF(e» 1 is 1 if the waiting label is a selector definition.

Example 1:

If the current subassembly has a waiting label of CLB(4,3), then the value of SLF(l) is SLO(,CLB',4,3).

Example 2:

The following function converts the output of S LF to a string corresponding to the label:

F function
CLF* NAME

IF F(1» 1
A EOU '(': $ CD(F(1, 1))
I DO 2,F(1)-1 ,A EOU
A EOU A:')'

ELSE
A EOU

ENDF
END F(1,0):A

This function may then be used, in a PROC:

INCR*

*
PROC
EOU
END

*0.
[CLF($ LF(1))]+ 1

A:',': $CD(F(1,1))

. THE NULL STRING

which increments the label in the label field of the PROC call line, as in:

K INCR

which has the same effect as the line:

K EOU

1.7. 15. $ LINES (Line Counter)

The function $ LINES requires no parameters. It returns a count of the number of lines scanned by
MASM since the beginning of the assembly. The lines counted include those from source input,
library PROCs, PROC and function interpretation, sample scanning, $REPEAT and $00 repetitions,
$INSERT images, and images skipped by $GO and $IF. Continuation images are considered part of
the initial line and are not counted separately. The final value of the line counter is printed at the
end of an assembly, if the appropriate type of listing is requested.

The line counter provides a simple measure of the cost of the assembly process, which is adequate
for most purposes of optimization. The following lines illustrate how this function may be used to

UP-8453 Rev. 1· I SPERRY UNIVAC 1100 Saries I I 1 57
UP-NUMBER ~, ______ M_et_8_-_A_s_s_e_m_b_l_e_r _(M_A_S_M_) _P_ro_g_r_8_m_m_e_r_R_8_f_e_re_n_c_e ____ ---L_U_'D_I4._TE_l_EV_E_l _--'_P_AG_E_-__

measure the cost of a given section of code:

K EQU $LINES

code being measured

DISPLAY $CD($LINES-K-1)):' LINES'

1.7.16. $ LP (L.ast Pass)

The $LP function requires no parameters. Its value is 1 if the generative pass of the main assembly
is being, performed and zero otherwise. This function is used to control actions which are performed
only after the first (summary) pass of the main assembly is complete.

1.7. 17. $ LO (€I Q ... ,en) (Form a List Starting at 0)

The parameters eo,,,., en are converted according to the rules for parameter conversion. A new node
is constructed whose n + 1 selectors run from 0 to n and whose ith selector value is e j. This function
may be used to construct complex tree structures such as those found in langua'ges such as LISP,
SNOBOL, or PL/I.

For example, if:

A EQU $LO('X',6,$LO(O 14))

then A(O) is 'X', A(1) is 6, and A(2) is a node with A(2,O) having the value 014. No other selectors
of A art~ defined.

1.7. 18" $ L 1 (e 1 , ... ,en) (Form a List Starting at 1)

The $ L 11 function performs an operation identical to that of $ LO, except that the first defined selector
of the result is 1 rather than O.

1.7. 19.. $ NODE (Form a Node)

The $ NODE function requires no parameters. It returns a reference to a node which is distinct from
every other node so far created. The node thus produced has no selections defined. This may be
required if the identifier is assigned a value other than a node and its content expected a node value.

For example, if the line:

A EQU 15

has bee!n interpreted by MASM, then the use of A with a subscript is illegal, as in A(3).
Therefore, the programmer must write:

EQU
EQU

$NODE

in order to achi€lve the desired results.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.7.20. $NS (e1,e2) (Find nth Selector)

UPDATE LEVEL
1-58

PAGE

A nonempty node may have any set of selector numbers in use; they need not be successive integers,
nor need they start at any particular integer. The $NS function requires e 1 to be a node reference
and e 2 to be an ordinal integer less than or equal to the number of selecto"s defined for e l' Then
the value of $ NS(e l' e 2) is the value of the e 2th selector of e l' giving the selectors of e 1 the usual
numerical ordering, so that the smallest selector of e 1 is one, etc. An error results if e 2 is larger
than the number of selectors defined for e l' (The first selector is found when e 2 = 1.)

Since the selectors for a node are ordered by increasing value. the selection mechanism may be used
for sorting. For example, if each sort key K has an associated value VK, then one may initialize

A EOU $NODE

and then perform for each key K:

A(K) EOU VK

The sorted values may be retrieved in order by referencing the selector numbers $ NS(A, 1), $ NS(A,2),
and so on.

Example:

If A(2) and A(4) are the only selectors defined for A, then A($ NS(A, 1)) is the same as A(2), and
A($NS(A,2)) is the same as A(4).

1.7.21. $ PAR(e) (Processor Call Parameter)

The $PAR function provides access to the parameters on the MASM processor call statement. The
argument e must be a binary value without relocation in the range 0 to 63. If e ,is zero, the value
of $ PAR is the option bits from the MASM call in master bit notation (bit 0 corresponds to Z, bit 1
to Y, and so on). For e >0, the function returns the element name subfield of field e of the MASM
processor call statement. If no such field exists, a void string is returned. This function can make
assembly actions depend on parameters specified from outside the MASM environment.

1.7.22. $SL(e) (String Length)

The parameter e must be a string. The value returned is the number of characters in the string e.

Example:

The value of $SL(,SIX+ONE') is 7.

1.7 .23.$SN (e 1 ,e2) (Find Selector Number)

This function is the converse of the $NS function. Where $NS uses an ordinal number to return the
defined selector for a node, $SN uses a defined selector e 2 for the node e 1 and returns its
appropriate ordinal. Therefore, e 1 must be a node reference and e 2 should be a binary value without
relocation. If the selector e 2 is defined for e l' the value of $ SN(e l' e 2) is the ordinal number of
that selector. Otherwise, the value is O.

The expression \\$SN(e 1,e 2) is 1 if e 2 is a selector for e 1 and zero otherwise.

UP-8453 Re:J. 1
UP-NJUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-59
PAGE

--~----------~-------

Example:

If A(2) and A(4) are the only selectors defined for A, then $SN(A,2) is 1 and $SN(A,4) is 2.

1.7.24. $SR (01,92) (String Repetition)

The function $ SA returns a string which is constructed by concatenating e 2 copies of the string e l'
Thus, f) 2 should be a nonnegative binary value without relocation. If e 2 is zero, a void string is
returned.

The value of $SR(,ABC',3) is 'ABCABCABC'.

1.7.25. $SS (.~1,e2,e3) (Substring Extraction)

For this function, e 1 is a string and e 2 and e 3 are integers with e 2~ 1 and e 3~ O. If e 3 is omitted,
1 is used. $SS mturns the substring of e 1 starting at character e 2 (numbered from the left beginning
with 1) of length e 3' If e 3 requests more characters than are present to the end of string e l' the
result is blank filled to e 3 characters. If e 3 is zero, the result is a void string.

This function may be used to left justify strings within a given field size.

1 .
2.

$SS('A', 1, 10):$SS('EQU', 1, 10):'1'
$SS('Example',3,3)

Explanation:

Line 1:

The result has "A", "EQU", and" 1" beginning at character positions 1, 11, and 21, respectively.

Line 2:

The result is the string "amp". This example al5sumes ASCII.

1.7.26,. $SSS (e 1 ,e2,e3,e4) (Substring Substitution)

For this function, e 1 and e 2 are strings, while e 3 and e 4 are integers, with e 3~ 1 and e 4~ O. If e 4

is omitted a value of 1 is assumed. The value of $ SSS is a string constructed by substituting the
string f} 2 for tho e 4 characters of string e 1 beginning at character e 3 of e 1: The other portions
of the nesult are the rest of string e l' The string e 1 is extended by blunks on the right if necessary
to makE~ the expression meaningful. If e 4 is zero, the insertion is done before character e 3' If e 2

is void, this function deletes a substring of e l' The type of resultant string is determined by the
following rules in decreasing precedence:

1. If e 1 or e:2 is data character set, the result is the data character set.

2. If e 1 or e:2 is ASCII, the result is ASCII.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

3. If e 1 or e 2 is Fieldata, the result is Fieldata.

UPOATE LEVEL
1-60

PAGE

The result of the $ 555 function can usually be computed alternatively using the $ SS function and
concatenation operators, but $ 555 provides greater clarity of intent. This function, when combined
with·the $DISPLAY directive, may be used to construct commentary display, at essembly time.

Example:

The value of $SSSrABCDEF','HIJ',3,2) is 'ABHIJEF'.

1.7.27. Typing Functions

MASM has a large number of functions which allow the programmer to interrogate the data type of
an expression.

1.7.27.1. $TYPE(e) (Comp'ute Data Type Number)

The expression e is converted according to the rules for parameter conversion. The value of $TYPE
is an integer corresponding to the type of the expression e as given by Table 1-6 ..

Table 1-6. Data Type Numbers

Number Type

1 Binary value.
2 Floating point value.
3 String value.
4 Node reference.
5 Internal name (NAME line label).
6 PAOe name (label on PAOC line).
7 function name (label on function line).
8 MASM directive (including instruction mnemonics).
9 MASM built-in function.

1.7.27.2. Type Testing Functions

All the functions described in this subsection require one parameter which is converted according
to the rules of parameter conversion. They all return either a 0 or 1, depending on the similarity
between the type of the parameter and the function used.

Table 1-7 indicates for what types the various type testing functions return a 1.

UP-8453 Rev.' 1 I SPERRY UNIVAC 1100 Series 1-61
___ U_P_~~_MB_ER __ ~ _________ M_e_t_a_-_A_s_se_m __ b_le_r __ (M __ A_S_M_) __ P_ro_g_r_a_m __ m __ e_r_R_e_f_e_re_n_c_e ________ ~_UP_D_AT_E_L_~_EL ____ ~PA_G_E ____ _

Table 1-7. Description of' Type Testmg Functions

Function Data Type For Description
Name Which the Value is

1

$TBIN 1 Test for binary
$TeON 5,6,7,8,9 Test for control information
$TDAT 1,2,3,4 Test for data
$TDIR 8 Test for directive
$TFLT 2 Test for floating
$TFNM 7 Test for a function name
$TFUN 9 Test for a built-in function
$TINM 5 Test for an internal name
$TNAM 5,6,7 Test for a name
$TNOD 4 T est for a node
$TPNM 6 Test for a PROe name
$TSTR 3 Test for a string
$TVAL 1,2,3 Test for a value

1.7.28. $TMOIDES (Test Modes)

This function requires no parameters. It returns a binary value with bits set according to Table 1-8.

Table 1-8. Mode Bit Settings for $TMODES

Bit Setting Meaning

0* 1 $ASe" directive in effect
0 $FDATA directive in effect

1 1 $ LIST directive in effect
0 $ UNLIST directive in effect

2 1 $ OeT AL directive in effect
0 $HEX directive in effect

*Ieast significant bit

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.7.29. $(e) (Location Counter Value)

UPDATE LEVEL
1-62

PAGE

This function is the same as $ LCV when used as an expression element. When written in the label
field of a line (the argument is mandatory), this function indicates a change in the number of the active
location counter to the value of e. The following data are then generated und3r location counter
e. This is the only built-in function which may be written in the label field of a line; therefore,'built-in
functions may not be redefined.

1.S. PROCEDURES

Procedures are one means of invoking separate subassemblies within the main assembly. Using
these subassemblies the user may:

1. extend the set of directives and instructions mnemonics provided by MASM,

2. build data structures and

3. generate sequences of coding or data.

PROCs may make use of the full capabilities of MASM, subject only to the restrictions given below
on each type of PROC and restrictions imposed by the context of the call (as in a line item).

A procedure is bounded by a $PROC-$END pair of directives. The lines between the $PROC and
$END are called the procedure sample, and are interpreted by MASM when the procedure is invoked.
The $END terminating the body of the procedure must be unconditional (that is, not the object of a
$DO, within an $IF-$ENDF pair, created by $INSERT or micro substitution, rind so forth).

When supplying expressions on the $ PROC directive, it is important to recognize that a void subfield
may be generated by a conditional expression and has a meaning different from the meaning of a
subfield whose value is zero. This is true for all three subfields. Since the $ PROC directive is
interpreted by MASM when encountered and not saved as part of the PROC body, the expressions
in the $ PROC operand field are evaluated only once, when the PROC sample is saved. The label on
the $ PROC directive line, however, is defined at the level of the body of the PROC and must be
externalized if it is to provide an entry point to the PROC. The same is true for the label, on any NAME
lines inside the PROC; NAME lines also have their expression evaluated only once, at the time PROC
sample is saved. (If the body of the PROC is to be computed by actions taken at the time sample
is saved, this can be done by using levelers, as described in 1.11.) A PROC sample is terminated
by an unconditional, nongenerated $ END directive. The interpretation of a PROC is terminated by
encountering any $END directive, either one conditionally generated, or the one at the end of the
PROC body.

Generally, procedures are used to generate sequences of coding or data which vary based on some
set of parameters, which may be explicitly given to the procedure on the PROC call line or implicitly
determined from values defined at higher levels. Procedures may generate any number of words of
data or instructions, including zero; however, they must be consistent in the in~rementation of
location counters from pass to pass of the higher level subassemblies. If this restriction is ignored,
the output is likely to contain C and D flags, which indicate the values of the location counters were
different in different passes.

Procedur"es must be defined before they are called. This can be done in three ways. The PROC sample
may be included in the source language given to MASM. The PROC sample may be contained in
the dictionary information saved by a definition mode assembly and loaded by the $INCLUDE
directive, or the PROC sample may be in a file in an assembler PROC element processed by the
Procedure Definition Processor (PDP) .. The rules for PROC name lookup in files have been discussed
in 1.2.5.

SPERRY UNIVAC 1100 Series
UP-flIUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-63
PAGE

UP-8453 Re~. 1

____ ._____ I--------_--~-------------~----

1.8. 1. Types o·f PROCs

There are three types of PROCs possible in MASM, depending on whether the first subfield is flagged
or whether the second subfield is nonvoid. A nonvoid second subfield overrides a flagged first
subfield. The three types are known as two-pass (no flag, void second subfield), one-pass (flagged
first subfield, void second subfield), and words-given (second subfield nonvoid). Their characteristics
are summarized briefly in Table 1-9, where the passes referred to in the heading are the passes made
by the next higher subassembly:

Table 1-9. Characteristics of PROC Types

,.

Type of PROC Action Taken on Action Taken on Restrictions
Summary Pass Generative Pass

two-pass summary pass summary and none
generative passes

r-' '-

one-pass summary pass generative pass no forward references

r-'
/Vt) ~t ~S

words-given increment location generative pass no forward
counter by number references, generate

of words given number of words
specified

Note th,at the number of passes performed on a PROC depend on the kind of pass being performed
by the next outE~r subassembly and on the type of PROC being used. This leads to considerable
differences in efficiency among the types of PROCs.

On the PROC call line itself, if the number of fields actually specified is less than the number permitted
by the first $PROC directive subfield value, the PROC call must be terminated by a period-space to
avoid scanning a comment as possible parameters for the PROC.

1.8. 1. 1. Two-Pass PROCs

Two-pass PROCs are not restricted in any way. All operations permitted in the main assembly are
permittod in a two-pass PROC, with the addition of the ability to use the $GO directive to transfer
backward or to another PROC, as well as forward. (In the main assembly, a $GO may only go forward,
not baclkward or into a PROC.) The number of words generated by di::;tinct calls on a two-pass PROC
need not be the same. Forward references to labels local to the PROC may be employed, and variables
externall to the PROC may be manipulated at will. The flexibility achieved may require substantial
processing by MASM. Since a two-pass PROC requires two passes during the higher level generative
pass as well as the summary pass in the higher level summary pass, the number o(passes made by
the innEtrmost pnoc in a nest of calls to two-level PROCs is an e.xponential function of the depth of
nesting. This can be extremely expensive. Consequently, two-pass PROes should be converted to
one-pass or words-given PROCs where possible.

UP-8463 Rev. 1
UP~UM8ER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-64
PAGE

The following example is a series of nested two pass procedures. T"ble 1-10 indicates the number
of passes performed and the values of the built-in functions.

W* PROC]-Ws
END

X* PROC }-W Xs
END

MA
y* PROC J-X Ys

END

Z* PROC J-Y Zs
END

Z
END

Ws, Xs, Y s, and Zs are procedure subassemblies. MA is the main assembly.

Table 1-10. Two Pass Summary Table

M Z Y X W $FP $LP $GP

5 --5 --5 --5 --5 0 0
I

G --5 --5 --5 --5 0

~G-5-5-5 0

~G-5-5 0

~G-5 0 0

~G

Sand G indicate a summary and generative pass, respectively, being performed. The values
associated with the built-in functions $ FP, $ LP, and $GP are as if the functions were in procedure
W.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

1.8.1.2. One-Pass PROes

UPDATE LEVEL
1-65

PAGE

One-pass PROes, as their name implies, iequire only one pass during the generative pass of the next
higher level subassembly. Since the omitted pass is a summary pass, the definitions of labels local
to the subassembly are not available until after they occur. This is why forwrrd references are not
allowed. By eliminating one summary pass, the number of passes made for the innermost nested
PROe call does not grow exponentially with the nesting depth. One-pass PROes also avoid the
problem of double alteration of external variables without the need for the $ FP function.

The following example is a series of nested one pass procedures. Table 1-11 indicates the number
of pass.~s performed and the value of the built-in function.

W'. PROe *n

~ Ws
END

~
X*· PROe *n

W Xs
END

MA

Y* PROe *n

~ X Ys
END

Z* PROe *n

~ Y Zs
END

Z
END

Ws, Xs, Y S, and Zs are procedure subassemblies. MA is the main assembly.

Table 1-11. One Pass Summary Table

M z Y X W

S --s --S --S --S
I
G --G --G --G --G

$FP $LP

o

$GP

o

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE lEVEL

1-66
PAGE

Sand G indicate a summary and generative pass, respectively, is being performed. The values
associated with the functions $FP, $LP, and $GP are as if the functions were in procedure W.

1.8. 1.3. Words-Given PROes

As their name indicates, words-given PROes must generate the same number of words on all calls.
The number of words must of course be the value computed by the expression in subfield 2 of the
$ PROe directive. Words-given PROes need not be scanned at all during the summary pass of the
next higher subassembly, since the primary reason for such a scan is to compute the number of words
generated by the PROe call, which is Already known. As for one-pass PROes, no summary pass is
made for a words-given PROe during the generative pass of the next higher subassembly, so forward
references are not permitted in a words-given PROe.

Because the body of a words-given PROe is not scanned during the summary pass of the next higher
subassembly, there are some additional restrictions imposed because their violation would result in
incorrect values for location counter sizes, dictionary values, and so forth. Therefore a words-given
PROe may not have a change of location counter, any externalized definitions (other than entries to
the PROe), or a definition of a waiting label. If all of these restrictions can be me.t, the words-given
PROe type should be used, as it is the form of PROe which is least expensive in terms of assembly
time.

The following example is a series of nested words-given procedures. Table 1-12 indicates the
number of passes performed and the values of the built-in functions.

w* PROe n,m

~ END Ws

X* PROe n,m

~ W
Xs

END

Y* PROe

~
n,m MA

X
Ys

END

Z* PROe n,m

~ Y
Zs

END

Z

END

UP ... S __ 4 __ 5_3_R_ev_._l----"I'L, __ s_P_E_R_RY __ U_N_'V_A_C_1_10_0_S8_r_i8_S ______________ -'--_____ -'-_1_-_6_7_ UP-NU~BER , Meta-Assembler (MASM.) Programmer Reference UPDATE LEVEL PAGE

W s, Xs, Y s, and Zs are procedure subassemblies and MA is the main assembly.

M

S
I

Z Y

Table 1-12. Word Given Procedure Summary Table

x W $FP $LP

G -G --G --G --G

$GP

Sand G indicate a summary and generative pass, respectively, is being performed. The values
associated with the functions $FP, $LP, and $GP are as if they are in procedure W.

1.8.2. Speeding Up a Two-Pass PROC

If a two-pass PHOC can determine how many words it generates during the first summary pass, it
is possible to do only the global operations and skip the interpretation of the generative directives
during the first summary pass, instead performing a RES of the proper number of words. This can
provide a considerable increase in speed. Similar techniques may be applicable for a one-pass PROC;
the me1thod requires an understanding of the $FP, $GP, and $LP built-in functions.

Exampl,e:

1.,
1 . P1* PROe r 0

2. $IF (/$LP)**$FP
3. $RES P1(1,1)
4. $ELSF $LP**$FP
5. $00 P1(1,1),;
6. t P1(1,1,1)
7. $ENOF
8. $ENO
9. B $EOU $L1(1,2,3,4,5)
10. e $EOU $L1(10,12,14)
1 1 . P1 B
12. P1 e
13. $ENO

Explanation:

Procedure P 1 consists of lines 1 through 8. Line 9 defines a node B with five selectors which
reference the values 1, 2, 3, 4, and 5. Line 10 defines a node C with 3 selectors which reference
the values 10, 12, and 14. Line 11 is a call to procedur~ 1. When both the main assembly and
the subassembly are in the summary pass, the expression 0 LP)* * $ FP from line 2 will be true,
causing line 3 to be interpreted. As a result of line 3, the location counter will be incremented by
5. Line 4 will cause all images up to line 7 to be skipped. Line 8 indicates the end of the procedure.

When the JU.~n assembly is in the generative pass, and the procedure is in the summary pass, the
expressions~ l.P)* * $ FP in line 2 and $ LP* * $ FP in line 4 are both false. Therefore, statements
3, 5, and 6 are skipped.

When both the main assembly and the procedure are in the generative pass, the expression at line
2 is false. The statement at line 3 is skipped, and the expression in line 4 is true. Therefore, the
statem€!nts at lines 5 and 6 are interpreted and the result is output.

UP-8453 Rev. 1
UP·-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-68
PAGE

Line 12 is another call to procedure P 1. The same process is repeated with the appropriate location
counter increment and the number and value of the words output.

1.8.3. Calling a PROC

A PROe is called by writing the name of an entry point to the PROe in the operation field of a MASM
line or line item. PROe entry points are created by externalization of labels on S PROe directives and
SNAME directives, or as the value returned by a call on the SFN built-in function. The operand fields
(and possibly further subfields of the operation field) are passed to the PROe as parameters by
creating a new node whose selections are defined as follows:

(0,0)

(O,j)

(i ,j)

(i,*j)

PRoe entry parameter (value of expression on SNAME line if entry made by SNAME
label, or value specified by SFN built-in function). Not defined if entry made via
SPROe label.

If (0,0) is a defined selection, this is the value of the expression in the jth subfield of
the operation field, numbering the PROe entry name itself as O.

This is the value of the expression in the jth subfield of the jth operand field. Operand
fields and subfields are numbered consecutively beginning with 1.

This is 1 if the expression in the jth subfield of the ith operand field was flagged, and
zero otherwise. The value of i may be zero, if (0,0) is a defined selector, and this will
retrieve the flag attribute of the S NAME line expression if j = O.

The node for which these selections are defined is given as the local definition of the label which
appeared on the SPRoe directive line. Thus, if the PROe began with the line:

P PRoe

the value of the third subfield of the first operand field is obtainable as P(1,3), while a NAME entry
parameter is retrieved by P(O,O).

The parameters in the operand (and operation) subfields of a PROe call are converted according, for
instance, to the rules for parameter conversion. Control information is possible, thus allowing P(1, 1)
to appear in the operation field of a line within the PROe.

1.8.4. Waiting Labels

When a label is written in the label field of a PROe call, a definition is not established for the label
immediately (except for a words-given PROe, which is flot considered further in this subsection).
Instead, a summary pass is made over the PROe body. If a line is encountered during the summary
pass with an asterisk in column 1, the label for thE PROe call line is defined with the value it should
be given if it appeared in the label field of the line with the asterisk in column 1 (but at its proper
dictionary level eKternal to the PROe, of course). If no such line is found, the label on the PROe call
line is given the default value of the address of the first word generated by the PROe, or if the PROe
generates no words, the current location counter value at the start of the PROe subassembly. Within
the PROe. such a label is said to be a waiting label, and it may be examined with the S LF built-in
function. Note also that the SNIL directive may be employed to keep a waiting label from being given
the default definition without giving it any other definition instead.

UP-8453 R~O. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-69
PAGE

---~---------------~-----------

1.S.5. Location Counter Control ir. PROCs

Any PROCmay specify an initial location counter to be used for its generated data by coding the third
field of the $ PROC directive. If that field is void, the location counter in effect at the time of the PROC
call is used as the initial location counter. The number of the initial location counte'" may be retrieved
by the ~~ILeN function. The location counter in use is reset to the initial location counter at the start
of each pass, so, a two-pass PROe need not take special action if a permanent location counter
change is coded within the PROe. After completing a" passes of a PROe, the location counter in
use is reset to the one in use at the time of the PROe ca", if it is different from the initial location
counter and no permanent location counter change is made. As noted previously. a words-given
PROe may not change the location counter in use, other than by specification on the $ PROe directive
line. eare should be exercised when changing location counters in PROes, as unintended effects
may be propagated through higher assembly levels.

1.S.S. Nesting of PROCs

PRoes may be nested statically and dynamically. Static nesting of PROCs occurs if the lines
composing the body of one PROe are physically included in the body of another outer PROe. Dynamic
nesting occurs when one PROe calls on another. A PROe which is statically nested can only be
referenced from the PROe containing it, initially, although externalization of an entry point to an inner
PROe can be performed by deliberate action of an outer PROe. The PROe sample for an inner PROe
is saved when the outer PROe is called, and discarded when the outer PROe is terminated, unless
some rE~ference to the inner PROe sample is still in existence. This is an expensive operation and
should be avoided for the sake of efficiency.

Dynamic nesting of PROes (and functions) is the way new levels of the dictionary arise. Each new
PROe (or function) call begins a subassembly and creates a new principal level of the dictionary for
symbol lookup and insertion. PROCs written at the same static physical level may nevertheless be
nested at greatly differing dynamic levels. For each subassembly, the symbols at more shallow levels
in the dictionary are available for definition and reference, while a local level of the dictionary exists
for symbols whose existence is limited to the current subassembly. An external symbol may be
referenced as an operand at will if there is no local label with the same name; this includes the
parameter node of higher level PROCs if all the PRCes have distinct $PROC directive line labels. An
externall symbol may be used in the label field of a line only by affixing the proper number of asterisks
to it (and before any selector group). Each asterisk indicates one level of externalization.
Externallization may also be used to create new external symbols at a higher level in the same fashion.
The number of asterisks used must be the same for each label field reference to insure that the same
variable is being obtained. Waiting labels may be externalized also; one of the asterisks is ignored
in counting levels of externalization, since the first asterisk indicates that waiting label definition is
intended, and level counting begins at the level at which the waiting label exists, which is already
an extemal level.

1.S.7. Use of $NAME and $GO Directives

In additiion to providing an entry point for a PROC, the $NAME directive may also create a target for
the $GO directive. In the main assembly, a $GO can only transfer control forward to a $NAME label
not yet ,encountered. In a PROC, $GO may transfer control forward, backward, or outside the PROe
altogether. The label on a $NAME line need not be externalized if it is only used as a $GO target
from within the same PROC, since a forward $GO to an unknown name searches to the end of the
PROe while a backward $GO is to a name already passed and therefore known. (Exception: If the
name is defined by a $NAME line which appears earlier in the PROC body than the point at which
the PROC is entered, a backwards $GO to a nonexternalized name is unsuccessful. This situation
should be rather rare.) If a $GO transfers outside tbe PROC to another PROe, a diagnostic G-flag
is generated, since there is a possibility that this is a mistake. Such a $GO is considered to be a lateral

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-70
PAGE

transfer and does not introduce a new level of definition for the dictionary; the environment in the
destination PROC, including the parameter tree, is the same as before the $GO was interpreted. Thus
a lateral transfer can make use of common code without a PROC call and thereby save the time
required to create and later delete a new dictionary level.

A $ NAME line label, if external, may be used as an entry to the PROC containing it. Only if entry is
made via a $NAME label (a so-called internal name) can the zero parameter list be referenced. A
set of internal names may also be used to allow· one PROC to perform a number of distinct but related
actions through the different locations of its entry points. Interpretation of a PROC body begins with
the line following the entry point.

1.8.8. Using the $GP, $FP, and $LP Functions

The $GP, $FP, and $LP built-in functions are usually of value only within a PROC. They allow for
conditional interpretation of code inside a PROC and can aid in speeding up the operation of complex
PROCs.

The $GP built-in function is used to suppress calculations which lead only to values for DISPLAY or
data generation until the generative pass is being performed. Computations which are essential to
determining the value of an external symbol or the amount of incrementation of a location counter
cannot be postponed to a generative pass, since these determinations are the reason for performing
a summary pass.

The $ FP built-in function is used most often to ensure that certain computations are not performed
twice. It is meaningful only in two-pass PROCs, since no other PROC performs more than one pass
per higher level subassembly pass. If an external variable is being incremented in a two-pass PROC,
it is incremented on both passes unless protected by $ FP.

The $ LP built-in function is of use for both one-pass and two-pass PROCs, but not for words-given
PROCs. It can be used to do RES operations during the main assembly summary pass and data
generation based on later defined symbols during the main assembly generative pass, assuming that
the number of words generated on the second PClSS is the same as the incrementation of the location
counter on the first pass.

The applicability of these functions is summarized in Table 1-13.

Table 1-13. PROC Types Using Pass-Determination Functions

Type Description

two-pass $LP, $FP, $GP
one-pass $LP, $GP

words-given none (only one pass made)

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-71
PAGE

UP-8453 RO:J .. 1

,-------------------.--~---------------~-----------

1.8.9. Pass Inutialization

MASM initializes to Fieldata at the start of each pass. On subassemblies, MASM will initialize to the
mode when the procedure was called at each pass through the procedure.

1.9. FUNCTIOINS

Functions provide the programmer with a means for extending the set of functions provided by MASM
as built-in functions with new user-created functions. Functions may use the full capabilities of
MASM, but are generally restricted in the generation of data because the current location counter
is blocked.

A function is delimited by a $FUNC-$END pair of directives, where the $END terminating the text
of the $FUNC mLlst be unconditional (that is, not the object of a $00, within a $IF-$ENDF pair, created
by $INSEAT, or by other conditional construction). The lines between the $FUNC and $END are called
the function sample, and are interpreted by MASM when the function is invoked. Interpretation of
the function is tHrminated by the first $ END image which is encountered whether or not this $ END
was conditionally generated. The value returned by the function is given by an expression in the first
operand field of the $END directive which terminates the function interpretation.

A label lis generally present on the $FUNC directive line. When interpreting the function sample, this
label is given the value (local to the function subassembly) of a node reference with either n or n + 1
selectors defined. The value of selector 1 is that of argument 1 of the function call, selector 2 is
given the value of argument 2, and so on up to argument n for selector n. If the function was entered
via a NAME line, the expression on the NAME line (which was evaluated when the function sample
was first scanned) is used as the value of selector 0 of the function name node reference. Outside
the function, the value of the label on the $FUNC directive line will be known only if it was
externallized. The label is then given the value of an entry point to the function with no entry
parameter. This value is control information, so most uses of the value in expressions where a
function call is NOT intended will require the use of the "/" operator. Similarly, any NAME line used
to provide an entry to the function must have its label externalized, and such a label will be control
information. NAME line labels may be used as $GO objects within the function. The$NAME similarity
between the function parameter and entry mechanism and that for PAOCs should be evident. (Note
that the ~AOC parameter tree has two levels of selection, however.)

Functions may call other Functions and invoke procedures. Any MASM operation is permitted within
a function or in any function or PAOC called from a function with the exception of the incrementation
of a blocked location counter. Since a procedure may generate code under an unblocked location
counter and then call a function, more than one location counter may be blocked at a given time.

Functions, like procedures, are subassemblies. They introduce a new dictionary level for local
definitions, and the lookup and definition of local and external symbols is the same as it is for PAOCs
(except that a function may not have a waiting label). On the other hand, a function is never processed
twice by the same higher level subassembly. Since functions normally do not generate data, a
generatiive pass is not needed. Therefore, forward references cannot occur. However, a function may
be comlPuted on either the summary or generative pass of the lIext higher subassembly.

UP-8453 Rev. 1
UP-NUMBER

Example 1:

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPOAlE LEVEL

1-72
PAGE

This function calculates the character position in the first argument of the first substring which is
equal to the second argument. Both arguments are assumed to be strings.

1. F
2. I NDEX*
3. I
4.
5.
6.
7.
8.

function
NAME
REPEAT
IF
ENOl
ENDF
ENDR
END

o
$SL(F(1))-$SL(F(2))+1
F(2)=$SS(F(1), I ,$SL(F(2)))

Note that I is incremented until the ENOl directive is interpreted. The value of I is available outside
the REPEAT group, and it is returned by the function as its value. If the substring is not found, this
function will still return a value for an index, even though it is not correct. Thus the value of
INDEX('ABCABCABC','BCA') is 2, but also the value of INDEXCABCABCABC','E') is 9. Correcting this
function to return 0 in the no find case is left as an exercise for the reader.

Example 2:

A function which converts a character string into a node reference whose ')elector is a single
character string containing the ith character of the argument string may be written:

1. F function
2. STRNOD* NAME 0
3. A EQU $NODE
4. I DO $SL(F(l)) ,A(I) EQU $SS(F(i), I)
5. END A

The value of STRNODCABC') looks I,ike the node produ~ed by the expression $L lCA','B','C').

Example 3:

STRNOD has an inverse function which converts a node reference whose selections are string-valued
into a string and may be written:

1. F function
2. NODSTR* NAME 0
3. A EQU
4. DO F (1) ,A EQU A: F (1 , I)
5. END A

The value of NODSTR($L l('A','B','C')) is 'ABC'.

1.10. MICROSTRINGS

Microstrings are a means of computing the line to be interpreted by MASMthrough the substitution
of string expressions as parts of a line. Any portion of a line may be generated by microstring
substitution with the exception of the line leveler (see 1.11). A microstring is introduced by a left
bracket ([) and terminated by a right bracket (]). Brackets appearing between single quotes as part
of a character string are not recognized as beginning a microstring. However, this effect may be
obtained through the use of the concatenation operator. The expression between the brackets must
be convertible to a string value in a system character set. The characters of the microstring

UP-8453 Rev. 1
UP-NUMBER

--------~-------

SPERRY UNIVAC 1100 SerietJ
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-73
PAGE

expression value replace the bracketed expression in the line MASM is to as.semble. All microstring
substitution operations take place before any normal interpretation functions, such as label definition,
directivf~ recognition, and so on. This means that the directive itself can be computed partially or
entirely by microstring substitution.

For example, the set of definitions:

1. AO
2. A 1

16. A15

EQU
EQU

EQU

12
13

27

may be effected by the single line:

DO 0,15 ,A[$CD(I)] EQU 1+12

since the value of $CO(I) is progressively '0', '1', '2', and so on. A less trivial example is provided
by a PROe to create conditional jump procedures, as follows:

1. F* function
2. END [P(F(1),*F(2)) -) , * '! ' ,] P (F (1) , F (2))
3. P PROC 2,2
4. JE* NAME *'TNE'
5. JNE* NAME *'TE'
6. JEZ* NAME 'TNZ'
7. JNEZ* NAME 'TZ'
8. K EQU P(O,*O)
9. [P(O,O)] [K-)'P(1,1),'! "]F(1,1+K),:
10. F (1 , 2+K) , P (0, 1) +P (1 , 3+K)
1 1 . J F(2,1),F(2,2)
12. END

which creates a number of NAMEs callable by the programmer with two operand fields, the first
representing the comparison field (where an A register is required for some tests but not others) and
the second field being the jump destination. Thus, the above PROC may be used as in the following
examples:

JNE,S3 AO,TABLE,*X6 O,X 11

or

JEZ FIELO"H2 *RETURN

where the first generates the following instructions:

TE
J

AO,TABLE,*X6,S3
O,X 11

and the second uenerates the following:

TNZ FIELO"H2
J *RETURN

UP-8453 ~ev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-74
PAGE

Note that in this example, three separate microstrings are used. In the function, a microstring
computes either the string * or the void string, and the result is used as an operator, making the value
returned by the function flagged or not. This function also illustrates access from one subassembly
(the function) to variables defined in a higher level subassembly (P, which is the parameter tree of
the PROC P which called the function F). In the PROC itself, microstrings are used to compute the
directive of the test instruction based on which entry point to the PROC was used, and also, depending
on whether an A-field is needed by the instruction, the value for the A-field. The F function is used
by the PROC to set up the U- and X-fields, either of which may have a flag (for indirect addressing
or index incrementation).

1. 11. LEVELERS

Levelers are perhaps the most difficult to understand of all the MASM concepts. This is partly
because, unlike all previous discussion of levels which pertained to dynamic call nesting levels,
levelers pertain to the STATIC nesting levels of PROCs, functions, and REPEAT groups, and they apply
at the time the sample is saved rather than when it is called for interpretation.

MASM lines and microstrings both may have levelers. A leveler has the form %n:, where n is an
unsigned integer. If the leveler for any line or microstring is omitted, an implicit leveler of "%0:" is
used. The leveler for a line is written preceding the label field, while the leveler for a microstring
is written immediately after the left bracket.

For example:

% 1 :ABC EOU

+
14
[%2:$CO(I)]

The static level of a line is determined by the following algorithm:

1. The level at the start of the main assembly is O.
2. The level is incremented by 1 for each $PROC, $FUNC, or $REPEAT directive encountered.
3. The level is decremented by 1 for each $ENO or $ENOR encountered.

Thus, when saving a sample, levels are greater than zero. A line is interpreted if the leveler for the
line is the same as the level of the line. A microstring is substituted if the leveler for the line plus
the leveler for the microstring is equal to the level of the line. Therefore, if the present level is 2 (as
it would be inside a function inside a PROC), the first line and the microstring on the second line would
both be interpreted:

%2:A EOU 'P(1,1)'
% 1: [% 1 :OIR]

It is important to understand that when the static nesting level is being calculated by the programmer,
the same line may be encountered by MASM at different times with different levels. For example,
if F is a function nested statically within the PROC P, when the sample for P is picked up, lines inside
F are at level 2. When P is called, the sample for F as a function (rather than as part of P) is saved,
and these lines are at level 1, since the PROC is being interpreted, which makes it part of the main
assembly.

Some examples may help to make this clear. The first example is a PROC (perhaps a debugging PROC)
which generates code only if a global assembly variable is set. The use of levelers allows the code
inside the PROC to be deleted from the sample so that any calls to the PROC is faster than if the code
were skipped each time the call was performed. In this and the following examples, the level olthe
line is indicated to the left of the line's label field.

UP-8453 Re:J. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-75
PAGE

--~-----------~--------

0 P PROC 0,2*DEBUG
1 SNOOP* NAME 0
1 % 1 : IF DEBUG
1 SLJ SNOOPY
1 + P(l,2),P(l,l)
1 % 1 : ENDF
1 END

Note that the PROC produces the same results without the levelers, but the IF-ENDF group is skipped
each time the PFtOC is called if DEBUG =0. The use of levelers thus saves time in this case. Note
that DEI3UG must be either 1 or 0 and may not be changed in the assembly.

A much more complicated example is taken from Church's lambda calculus. In this case, a PROC
is defin.~d which, when called, causes its waiting label to be defined as function with a given set of
arguments. The function computes and returns the value of an expression using those arguments.
The dummy arguments and the expression are specified as parameters to the PROC.

0 P PROC *2
1 LAMBDA* NAME 0
1 F$ function
2 * NAME
2 % 1 : I REPEAT P (1)
3 [%1:P(1,1)] EOU F $ ([% 1 : $CD (I)])
3 ENDR
2 END [%1:P(2,l)]
1 END
0 etc.

Note that when the sample for this PROC is picked up, no levelers match the level of their line, so
no lines are interpreted. Now assume that LAMBDA is called as follows:

o ADD LAMBDA 'X','Y' 'X+ Y'

Then th,e PROC P is interpreted, resulting in the following:

0 F$ function
1 * NAME
1 % 1 : I REPEAT P (1)
2 [%l:P(l,I)] EOU F $ ([% 1 : $CD (I)])
2 ENDR
1 END [%1:P(2,1)]
0 END

Note that now several line levels match levelers. Therefore, MASM, as it now scans the body of PROC
P attaches the waiting label to the function F$ NAME line. The REPEAT is then interpreted, since its
leveler matches its level. This means that MASM generates the following line P(1) times under control
of the REPEAT, having first picked it up as REPEAT sample:

[% 1 : P(1,1)] EOU F$([% 1 : $CD(I)])

Since the level of this line is matched by the sum of the line's leveler and the leveler of each of the
microstrings, MASM will perform the micro substitution. For the particular LAMBDA call being
considered, MASM thus places the lines:

x EOU F$(1)

UP-8453 Rev. 1
UP-NUMIER

Y

SPERRY UNIVAC 1100 Serlel
Meta-Assembler (MASM) Programmer Reference

Eau F$(2)

UPDATE I.EVEL
1-76

PAGE

into the function body as part of the process of picking up the function sample. This completes the
action of the REPEAT. Finally, the line:

END [% 1 : P(2, 1)]

is reached. Again, the microstring leveler plus the (implicit) line leveler matches the level of the line,
so the substitution is made, resulting in the function body being completed with the line:

END X+Y

This completes the work of the PROe. ADD is now defined as a function which computes the sum
of its arguments, just as if the written the lines are:

F$
ADD*
X
Y

function
NAME
EOU
EOU
END

F $ (1)
F$(2)
X+Y

since this is exactly what has been stored as the function body for ADD. We may then write:

+ ADD(2,3)

and MASM generates the constant 5.

The LAMBDA PROe may be used in a more general way to build up the rest of the lambda calculus·
in the fashion of LISP, e.g.,

FACTORL LAMBDA

+

or at a higher level:

APPLY LAMBDA

+
+

'N' 'N -)N*FACTORL(N-1) ! l'
FACTORL(4) . 24 GENERATED

'F' , 'X' 'F (X) ,
APPLY(/$,2) $(2) GENERATED
APPLY(/FACTORL,5J20 GENERATED

Note that, unlike LISP, MASM requires functions to be identified by the "/" operator.

A more practical use for levelers than LAMBDA might be the inclusion or deletion of debugging
DISPLAYs from a PROe so that skipping would not have to be done for each call of' the PROe. For
example:

P PRoe *1
DINSERT* NAME
I REPEAT P(1)
%2: IF DEBUG

DISPLAY P(1,1)
%2: EN OF

INSERT P(1,1)
ENDR
END

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-77
PAGE·

UP-8453 Rev. 1 I
LIP-NUMBER ~ --------- ---~----------~-------

which always inserts the lines specified on the OINSERT call, but displays them only if DEBUG is set
at the time the PROC is defined.

There are a few exceptions to the rules which should be noted. First of all, observe that SPROC,
SFUNC, and SREPEAT are at the level below the sample which follows them. Second, note that a
leveler is not needed on SEND or SENOR lines, since they are assumed to match up with the
associated SPROC, SFUNC, or SREPEAT and thus have an implied leveler which is the same as the
associated start of sample directive. Finally, it is important to remember that the expression in the
operand field of a S NAME line is evaluated when sample is picked up, sc that a leveler of 1 is implied
for the expression itself in all cases.

1. 12. ERROR AND WARNING DIAGNOSTICS

MASM generates three different diagnostic flags (Table 1-14) and nine different error flags (Table
1-15). These flags may be found in the first portion of each line; a line may have none of these, or
it may have more than one.

Table 1-14. MASM Diagnostic Flags

Flag Meaning

U Undefined identifier used on this line.

G A SGO has transferred control from one PROC to a NAME defined in a different
PROC (lateral transfer of control without change of nesting level).

? Improbable coding sequence. The results may not be what the programmer
intended to generate.

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

Table 1-15. MASM Error Flags

Flag Meaning

e Discrepancy between location counter values of pass 1 and pass 2.

D Redefinition of a label originally defined by implication.

1-78
PAGE

E Error in syntax, or other miscellaneous errors not included in a more specialized
flag.

I Error in directive field: Unknown directive, or attempt to increment a blocked
location counter by use of $RES.

L Level errors, such as incorrect number of $ END directives.

M Microstring error.

o Missing quote terminator.

R Relocation error-loss of relocation information due to mixed mode arithmetic,
multiplication or division of a relocatable value by a value other than one or
zero, etc.

T Truncation of significant bits, value out of range, miscellaneous lost data.

V Inappropriate value-integer where control information expected, etc.

In general, the error flags mark the output element in error, which is later noted by the Collector when
an absolute program is built. The diagnostic flags do not mark the output RS as in error, although
the presence of "?" flags may indicate a programming problem which causes the execution to be
erroneous.

If the E option is used on the MASM control statement, the listing produced by MASM contains
information which may help determine how errors were generated, if any were present. This includes
a form of walkback from within a PROe nest.

If a user attempts to define, at Level 0, a symbol, which is relocated by an external reference, the
symbol is dropped from the entry point table and the element is marked in error.

If a user attempts to define, at Level 0, a symbol which has associated with it the I $ form, the symbol
is dropped from the entry point table and the element is marked in error.

1. 13. DEFINITION MODE ASSEMBLY

Definition mode assembly saves the results of processing a set of definitions for use in several
assemblies. The dictionary is built by MASM as it would be for any assembly. When the assembly
is completed, the set of definitions external to the main assemt)ly are saved in an omnibus element
whose name and file are determined by field 2 of the MASM processor call statement. An assembly
is determined to be definition mode if the $ DEF directive is used in it. A definition mode assembly

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

1-79
PAGE

UP-8453 R:Je. 1

--------- -------.--~----------~~------

may not contain any operations which generate code, as noted in the description of the $ DEF
directive. The msults of a definition mode assembly are retrieved by using the $INCLUDE directive,
which specifies the name of the omnibus element created by the definition mode assembly. The use
of definition mode is considerably faster than the other method for processing definitions, since
MASM is required to read the source language only once. Definitions retrieved by $INCLUDE are
in an internal format and can be placed in the dictionary far faster than would be possible by scanning
various directives, such as $ EOU, $ EOUF, and so on.

As an €!xample, a set of register definitions may be loaded using PDP:

@PDP,I AXR$
DEF

X11 EOU 1
X'~ "-- EOU 2

etc.
R15 EOU 79
AXR$* PROC 0,0

END
@IMASM,I PROGRAM

AXR$
etc.
END

in which case, the definition lines must be assembled each time the AXR$ PROC is called. The DEF
dire,ctive in PDP functions in a completely different manner from the DEF in MASM; see the PDP
descriptions in the 1100 Series Executive System, Volume 3, System Processors Programmer
Reference, UP-4144.3 (current version).

The way to do this, using a MASM definition mode assembly is as follows:

@MASM,I AXR$
DEF
LEVEL 0,1,0

Xl EOU 1
etc.

R15 EOU 79
END

@MASM,I PROGRAM
INCLUDE 'AXR$'
etc.
END

In this case, the definitions need to be assembled from source language only once. Note that the
LEVEL directive is used to make the definitions given external to the main assembly level. This can
also be done by externalizing each label defined, but that requires more work in writing. This is one
of the most frequent uses of the $ LEVEL directive.

MASM does not resolve relocation by an external reference if the symbol is INCLUDEd in an element
in which the external reference is defined. The collector must resolve the relocation.

1. @MASM,IS ELTl
2. DEF
3. LEVEL 0,1,0

UP-8453 Rev. 1
UP-NUMBER

4.
5.
6.
7.

&>
10.

AZ

@MASM,IS

TAG*

Explanation:

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

EaUF TAG
END
ELT2
INCLUDE 'ELT1'

+ 2
LA AO,~
END

UPDATE LEVEL
1-80

PAGE

Lines 1 through 5 constitute a definition mode assembly in which symbol AZ (line 4) is defined and
has relocation by external reference by TAG.

Lines 6 through 10 constitute an element which has the symbol TAG (line 8) defined. The statement
at line 9 produces a relocatable binary output which has relocation by external reference TAG. The
collector must satisfy this.

UP-8453 Rev. 1 SPERRY UNIVAC 1100 Series I I 2-1
UP_NU,_M_BE_R ___ -I ____ ,_,_M_e_ta_-_A_s_s_e_m_b_le_r_(_M_A_S_M_)_P_ro_9_r_a_m __ m_e_r_R_e_f_e_r_e_"_c_e ____ --I-_UP_D_AT_E_L_EV_EL __I_P_AG_E __ _

2. Built-in 1100 Series Features

2.1. GENERAL

As mentioned earlier, MASM, with an unaltered environment, generates code for an 1100 Series
hardware architecture. This section deals with 1100 Series features which are built into MASM.

2.2. EnUF (Eo.UATE A FIELD)

For documentation purposes, or if repeated references are made to the u,x,j fields of a word, it may
be desirable to have a symbol reference these fields. The format is:

label EOUF u,x,j

where I'l, X and j are converted to binary values. The label is assigned a binary value with the 1$
FORM attached, and the values of u, x, and j in bits 0-15, 18-21, and 26-29 respectively, with
appropriate relocation items attached. If u is flagged, bit 16 is set. If x is flagged, bit 17 is set.

Example:

1. IOIBUFAD EOUF 4,X3,H2

The symbollOBUFAD is associated with the values 4,3,1 and the 1$ form is attached. The result
in instruction format is:

00 01 00 03 0 000004

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

If the symbol IOBUFADis used with the 1100 Series instruction LA:

LA AO,IOBUFAD

the result is:

10 01 00 03 0 000004

This is the same as:

LA,H2 AO,4,X3

2. IOFUNC EOUF 3,X3,S2

UPDAT. LEVEL
2-2

PAGE

The symboilOFUNC is associated with the values 3,3, 14 and the I $ form is attached. The result
in instruction format is:

00 14 00 03 0 000003

If the symbol IOFUNC is used with the S~ instruction such as:

SA A2,IOFUNC

the result is:

01 14 00 03 0 000003

This is the same as if the user writes:

SA,S2 A2,3,X3

2.3. WRD (DEFINE THE WORD SIZE)

For all assemblies, the word size is assumed to be 36 bits.

2.4. INSTRUCTION MNEMONIC REDEFINITION

As discussed in Section 1, the M option on the processor call card allows all 1 100 Series instruction
mnemonics to be redefined. This option increases assembly time substantially because the libraries
are searched for every directive which is not typed as a procedure.

UP·-8453 Rev. 1
UP-NUM8EP. UPDATE LEVEL L SPERRY UNIVAC 1100 Serif's

Meta-Assembler (MASM) Programmer Reference
~~--=---_~--L-_

2-3
PAGE

There E~xists a subset of the 1100 Series in~truction repertoire which is alwa'(s capable of redefinition
regardless of the presence or the absence of the M option. This subset contains the following
instructions.

f

0'-.) 17
0'-.) 17
0'-.) 17
3:3 02
3:3 05
3:3 06
3:3 07
37 00
37 01
37 02
37 04
37 05
72 '14
7=~ '17
74 04

a

01
10
1 1

00

Mnemonic

SNZ
INC
DEC
BTT
BPD
PDB
EDIT
oB
Bo
BHo
ODB
DBa
seN
TS
JK

Description

store negative zero
increment by one
decrement by ono
byte translate and test
convert byte to packed decimal
convert packed decimal to byte
edit
compress quarter word byte to binary
expand binary to quarter word byte
compress quarter word byte to halves
quarter word to double binary
double binary to quarter word byte
store channel number
test and set
console selective jump

Another way to redefine instructions is to introduce the redefinition procedures via a definition mode
assembly. The user includes the procedure definitions in the element. The procedures replaces the
standard instruction definitions.

2.5. 1100 SERIES INSTRUCTION REPERTOIRE

Tables 2-1 and 2-2 indicate the user and Executive instruction repertoire, respectively, currently
suppor1ted by MASM. For detailed descriptions, see the appropriate 1100 System Processor and
Storage Programmer Reference, UP-7970 (current version).

UP-8463 Rev. 1
UP-NUMBER

Function
Code (Octal)

f j

00 0-17

01 0-15

02 0-15

03 0-15

04 0-15

05 00-17

05 00-17

05 00-17

05 00-17

05 00-17

05 00-17

05 00-17

05 00-17

05 00-17

05 00-17

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

2-4
PAGE

Table 2-1. User Instruction Repertoire

Mnemonic Instruction Description

- Illegal Operation Causes Illegal Operation Fault Interrupt to MSR
+ 241 8

S,SA Store A (As) -+ U

SN,SNA Store Negative A - (As) -+ U

SM,SMA Store Magnitude A I (As) I -+ U

S,SR Store R (Ra) -+ U

SZ Store Zero Store constant 000000 000000, zeros, in
a = 00 location specified by operand address

SNZ Store Negative Zero Store constant 777777 777777, all ones, in
a = 01 location specified by operand address

SP1 Store Positive One Store constant 000000 000,001, positive one, in
a = 02 location specified by operand address

SN1 Store Negative One Store constant 777777 777776, negative one,
a = 03 in location specified by operand address

SFS Store Fieldata Store constant 050505 050505, Fieldata
a = 04 Spaces spaces, in location speci·fied by operand address

SFZ Store Fieldata Zeros Store constant 606060 606060, Fieldata zeros,
a = 05 in location specified by operand address

SAS Store ASCII Spaces Store constant 040040 040040, ASCII spaces,
a = 06 in location specified by operand address

SAZ Store ASCII Zeros Store constant 060060 060060, ASCII zeros, in
a = 07 location specified by operand address

XX Increase/Decrease
Instructions

INC Increase Operand by Increase operand by one. If initial operand or
a = 10 one result is zero, execute NI; if not zero, skip NI.

UP~8453 Rev. 1 L SPERRY UNIVAC 1100 Series I I 2 5
E Meta-Assembler (MASM) Programmer Reference UPDATE LEVE -U~N_U_MB __ R ____ ~!! ___ ~ _______ L ____ L_~_G_E __ __

Fun
Code

f

05

05

05

05

06

07

07

07

07

07

10

1 1

12

13

ction
(Octal)

j

00-17

00-17

00-17

00-17

0-15

12

13

14

15

17

0-17

0-17

0-17

0-17

Mnemonic

IDEC
a = 11

~NC2

,a = 12

IDEC2
a = 13

IENZ
,a =
14-17

S,SX

ILDJ

ILIJ

ILPD

SPD

lBJ

l,LA

IN,LNA

ILM,LMA

ILNMA

Table 2-1. User Instruction Repertoire (continued)

Instruction Description

Decrease Operand Decrease operand by one. If initial operand or
by one result is zero, execute NI; if not zero, skip NI.

Increase Operand by Increase operand by two. If initial operand or
two result is zero, execute NI; if not zero, skip NI.

Decrease Operand Decrease operand by two. If initial operand or
by two result is zero, execute NI; if not zero, skip NI.

Increase Operand by Increase operand by zero. If initial operand or
zero result is zero execute NI; if not zero, skip NI.

Store X (Xa) ~ U

Load D-bank Base Ignore Xa bit positions 34-33; if 012 = 0,
and Jump select BDR2; if 012 = 1, select BDR3

Load 'I-bank Base Ignore Xa bit positions 34-33; if 012 = 0,
And Jump select BDRO; if 012 = 1, select BDR 1

Load PSR US,5,3-O' ~ PSRM
Designators Bit 6 ~ D20 Bit 2 ~ 08

Bit 5 ~ D17 Bit 1 ~ 05
Bit 3 ~ D10 Bit 0 ~ 04

Store PSR PSRM D-bits ~ US-O
Designators 020 ~ Bit 6 08 ~ Bit 2

017 ~ Bit 5 05 ~ Bit 1
012 ~ Bit 4 04 ~ Bit 0
D10 ~ Bit 3

Load Bank And Load BDR; jump to location specified by the
Jump operand address

Load A (U) ~ A

Load Negative A - (U) ~ A

Load Magnitude A 1 (U) 1 ~ A

Load Negative -I (U) 1 ~ A
Magnitude A

UP-8453 Rev. 1
UP-NUMBER

Function
Code (Octal)

f j

14 0-17

15 0-17

16 0-17

17 0-17

20 0-17

21 0-17

22 0-15

23 0-17

24 0-17

25 0-17

26 0-17

27 0-17

30 0-17

31 0-17

32 0-17

33# 00

33# 01

33# 03

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE lEVEL

2-6
PAGE

Table 2-1. User Instruction Repertoire (continued)

Mnemonic Instruction Description

A,AA Add to A (A) + (U) ~ A

AN,ANA Add Negative To A (A) - (U) ~ A

AM,AMA Add Magnitude To A (A) + I (U) I ~ A

ANM, Add Negative (A) - I (U) I ~ A
ANMA Magnitude to A

AU Add Upper (A) + (U) ~ A+ 1

ANU Add Negative Upper (A) - (U) ~ A + 1

BT Block Transfer (Xx + u) ~ Xa + u; repeat k times

L,LR Load R (U) ~ Ra

A,AX Add to X (Xa) + (U) ~ Xa

AN,ANX Add Negative to X (Xa) - (U) ~ Xa

LXM Load X Modifier (U) ~ Xa17-O; Xa35-18 unchanged

L,LX Load X (U) ~ Xa

MI Multiply Integer (A) x (U) ~ A, A+ 1

MSI Multiply Single (A) x (U) ~ A
Integer

MF Multiply Fractional (A) x (U) ~ A, A+ 1, left circular one bit

BM Byte Move Transfer LJO bytes from source string to
receiving string. Truncate or fill receiving str:ng
as required

BMT Byte Move With Translated and transfer LJO bytes from source
Translate string to receiving string. Truncate or fill

receiving string as required

BTC Byte Translate and Translate and compare LJO bytes from string
Compare SJO to LJ 1 bytes from string SJ1; terminate

instruction on not equal or if both LJO and LJ 1
are zero, when:

(Aa) + ; string SJO > SJ 1
(Aa) 0 ; string SJO =SJ 1
(Aa) - ; string SJO < SJ 1

UP-8453 Rev. 1
UP-NUMBfR

Fun
Code

f

33#

33#

33#

33#

33#

33#

33#

33#

33#

33#

33#

33#

34

35

L SPERRY UNIVAC 1100 Series I I 2 7
__ M __ e_ta_-_A_s_s_e_m_b_le_r __ (M_A __ S_M_)_P_r_o_9_r_a.m __ m_e_r __ R_ef_e_r_e_nc_e ________ ~_UP_D_AT_E_L_~_EL ____ ~_~ __ G_E-__ __

Table 2-1. User Instruction Repertoi!'8 (continued)

ction
(Octal)

j Mnemonic Instruction Description

04 BC Byte Compare Compare LJO bytes from string SJO to LJ 1 bytes
from string SJ 1; terminate instruction on not
equal or if both LJO and LJ 1 are zero

05 BPD Byte to Packed Convert (SJC) packed decimal SJ 1
DeGimal Convert

06 PDB Packed Decimal to Convert packed decimal (SJO) SJ 1
Byte Convert

07 EDIT Edit Edit string SJO and transfer to string SJ 1 under
the control of string SJ2

10 BI Byte to Binary Single Convert LJO bytes in string SJO to a signed
Integer Convert binary integer in register A

11 BDI Byte to Binary Convert LJO bytes in string SJO to a signed
Double Integer binary integer in registers A and A + 1
Convert

12 IB Binary Single Integer Convert signed binary integer in A to byte
to Byte Convert format and store in string SJO

13 DIB Binary Double Convert the binary integer in A and A + 1 to
Integer to Byte byte format and store in string SJO
Convert

14 BF Byte to Single Convert LJO bytes in string SJO to a single
Floating Convert length floating point format in register A

15 BDF Byte to Double Convert LJO bytes in string SJO to a double
Floating Convert length floating point format in registers A and A

+1

16 FB Single Floating to Convert the single length floating point number
Byte Convert in A to byte format and store in string SJO

17 DFB Double Floating to Convert double length floating point number in
Byte Convert A and A + 1 to byte format and store in string

SJO

0-17 01 Divide Integer (A, A + 1) divided by (U) - A; REMAINDER - A
+ 1

0-17 DSF Divide Single [(A, 36 sign bits) right algebraic shift 1 place]
Fractional divided by (U) - A + 1

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

2-8
PAGE

Function
Code (Octal)

Table 2-1. User Instruction Repertoire (continued)

f j Mnemonic Instruction Description

36 0-17 OF Divide Fractiona! [(A, A + 1) right algebraic shift 1 place] divided
by (U) -. A REMAINDER -. A + 1

37# 00 QB

37# 01 BQ

37# 02 OBH

37# 03 BHO

37# 04 ODB

37# 05 DBO

37# 06 BA

37# 07 BAN

40 0-17 OR

41 0-17 XOR

42 0-17 AND

43 0-17 MLU

44 0-17 TEP

Quarter-Word Byte
to Binary Compress

Binary to
Ouarter-Word Byte
Extend

Ouarter-Word Byte
to Binary Halves
Compress

Binary Halves to
Quarter-Word Byte
Extend

Quarter-Word Byte
to Double Binary
Compress

Double Binary ,to
Ouarter-Word Byte
Extend

Byte Add

Byte Add Negative

Logical OR

Discard (A) 35 , (A)26 ' (A), 7 ' and (A)8; remaining
bits (A) ~ A31 -O; (A)31 18 -+ A35-32

Discard (A)35-32 ; (A)31-O ~ A34-27 ' A25- 18 '
A 16-9 ' and A7-O ; zero fill A35 ' A26 ' A 17 ' and
A8

Discard (A)35 ' (A)26 ' (A), 7 ' and (A)8; remaining
bits (A) - A33- 18 and A 15-O; (A)33 ~ A35-34
(A),5 ~ A 17- 16

Discard (A)35-34 and (A), 7-16 ; remaining bits (A)
~ A34- 27 ' A25- 18 ' A 16-9 ' and A7-O ; zero fill
A35 ' A26 ' A17 ' and A8

Discard A35 ' A26 ' A17 ' A8 ' A+ 135, A+ 126,
A+ 117, and A+ 18; remaining bits (A,A+ 1) ~

A27-O and A+ 1; (A)27 A35- 28

Discard (A)3'5-28 ; remaining bits (A,A+ 1) ~

A34- 27 , A25- 18 , A 16-9 , A7-o, A+134-27 ,
A+ 125- 18 ' A+ 116-9 ' and A+ 17-0 ; zero fill
A35 , A26 , A 17 , A8 , A+135' A+1 26 , A+1 17 ,
and A+ 18

Add the LJO bytes in string SJO to the LJ 1 bytes
in string SJ 1 and store the results in string SJ2

Subtract the LJO bytes in string SJO from the
LJ 1 bytes in string SJ 1 and store the results in
string SJ2

(A) [Q8I (U) -. A + 1

Logical Exclusive OR (A) IXDR\ (U) -. A + 1

Logical AND (A) lAND! (U) -. A + 1

Masked Load Upper [(UIIA~~ (R21l IQiiI
[(A) A D NOT (R2)] -. A + 1

Test Even Parity Skip NI if (U) l6tillI (A) has even parity

UP-8453 Rev. 1
UP-NUMBER ,-----L SPERRY UNIVAC 1100 Series

, Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

Function
Code (Octal)

f j Mnemonic

45 0-17 TOP

46 0-17 lXI

Table 2-1. User Instruction Repertoire (continued)

Instruction Description

Test Odd Parity Skip NI if (U) IANDI (A) has odd parity

Load X Increment

2-9
PAGE

47 0-17 TLEM Test Less Than or
Equal to Modifier
Test Not Greater
Than Modifier

Skip NI if (U), 7-0 ~ (Xah 7-0; always (Xah 7-0 +
(Xa)35-18 -. Xa17-O

TNGM

50 0-17 TZ

51 0-17 TNZ

52 0-17 TE

53 0-17 TNE

54 0-17 TLE

TNG

55 0-17 TG

56 0-17 TW

57 0-17 TNW

60 0-17 TP

61 10-17 TN

62 110-17 SE

63 10-17 SNE

64 0-17 SLE

SNG

65 0-17 SG

66 0-17 SW

Test Zero

Test Nonzero

Test Equal

Test Not Equal

Test Less Than or
Equal
Test Not Greater

Test Greater

Test Within Range

Test Not Within
Range

Test Positive

Test Negative

Search Equal

Search Not Equal

Skip NI if (U) = ± 0

Skip NI if (U) t ± 0

Skip NI if (U) = (A)

Skip NI if (U) t (A)

Skip NI if (U) ~ (A)

Skip NI if (U) > (A)

Skip NI if (A) < (U) ~ (A + 1)

Skip NI if (U) ~ (A) or (U) > (A + 1)

Skip NI if (U)35 = 0

Skip NI if (Ub5 = 1

Skip NI if (U) = (A), else repeat

Skip NI if (U) t (A), else repeat

Search Less Than or Skip NI if (U) ~ (A), else repeat
Equal
Search Not Greater

Search Greater Skip NI if (U) > (A), else repeat

Search Within Range Skip NI if (A) < (U) ~ (A + 1), else repeat

67 I O_-_1_7---1_S_N __ W __ -Ls_ea_r_c_h_N_o_t_W_it_h_i n_--L-S_k_iP_N_'_if_(U_)_~_(A_) _o_r _(U_)_>_(_A_+ __ 1)_' _e_'s_e_r_e_p_e_at--l ----.-l Range

UP-8463 Rev. 1
UP-NUMBER

Function
Code (Octal)

f j

70

71 00

71 01

71 02

71 03

71 04

71 05

71 06

71 07

71 10

71 11

71 12

71 13

71 14

71 15

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

2-10
PAGE

Table 2-1. User Instruction Repertoire (continued)

Mnemonic Instruction Description

JGD Jump Greater And Jump to U if (Control Register)ja>O; go to NI if
Decrement (Control Register)ja ~ 0; always (Control

Register)ja -1 -. Control Registerja

MSE Mask Search Equal Skip NI if (U) IANDI (R2) = (A) lAND! (R2), else
repeat

MSNE Mask Search Not Skip NI if (U) IANDI (R2) t (A) lAND! (R2), else
Equal repeat

MSLE Mask Search Less Skip NI if (U) lAND! (R2) ~ (A) lAND! (R2), else
Than or Equal repeat

MSNG Mask Search Not
Greater

MSG Mask Search Greater Skip NI if (U) lAND! (R2) > (A) IANDI (R2), else
repeat

MSW Masked Search Skip NI if (A) IANDI (R2) < (U) IANDI (R2) ~ (A + 1)
Within Range lAND! (R2), else repeat

MSNW Masked Search Not Skip NI if (U) \600 (R2) ~ (A) IANDI (R2) or (U)
Within Range lAND! (R2) > (A + 1) lAND! (R2), else repeat

MASL Masked Skip NI if (U) lAND! (R2) ~ (A) IANDI (R2), else
Alphanumeric Search repeat
Less Than or Equal

MASG Masked Skip NI if (U) IANDI (R2) > (A) IANDI (R2), else
Alphanumeric Search repeat
Greater

DA Double-Precision (A, A + 1) + (U, U + 1) -. A, A + 1
Fixed-Point Add

DAN Double-Precision (A, A + 1) - (U, U + 1) - A, A + 1
Fixed-Point Add
Negative

DS Double Store A (A, A + 1) -. U, U + 1

DL Double Load A (U, U + 1) - A, A + 1

DLN Double Load -(U,U + 1)-.A,A+ 1
Negative A

DLM Double Load I(U,U + 1)I-A,A+ 1
Magnitude A

UP-8463 RO:J. 1 SPERRY UNIVAC 1100 Series 2-11
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL PAGE ---------------__ L-________ -L _____ ___

Fun
Code

f

71

71

72

72

72

72

72

72

72

72

72

72

72

73

73

73

73

73

.~tion

(Octal)

j

16

17

01

02

03

04

05

06

07

10

1 1

16

17

00

01

02

03

04

Mnemonic

DJZ

IDTE

SLJ

.JPS

JNS

AH

ANH

AT

ANT

EX

ER

SRS

LRS

SSC

DSC

SSL

DSL

SSA

Table 2-1. User Instruction Repertoire (continued)

Instruction Description

Double-Precision Jump to U if (A, A + 1) = ± 0; go to NI if (A, A
Jump Zero + 1) t ± 0

Double-Precision Skip NI if (U < U + 1) = (A, A + 1)
Test Equal

Store Location And Relative P + 1 --. U 17-0; jump to U + 1
Jump

Jump Positive And Jump to U if (Ab6 = 0; go to NI if (A)36 = 1;
Shift always shift (A) left circularly one bit position

Jump Negative And Jump to U if (A)36 = 1; go to NI if (A)36 = 0;
Shift always shift (A) left circularly one bit position

Add Halves (Ab6-18 + (U)36-18; --. (A)36-18; (A), 7-0 + (U), 7-0
--. A 17-O

Add Negative Halves (A)36-18 - (Ub6-18 --. (A)36-1.8; (A), 7-0 - (U), 7-0
--. A 17-O

Add Thirds (A)36-24 + (U)36-24 --. A36- 24; (A)23-12 +
(U)23-12 --. A23- 12; (A), 1-0 + (U), 1-0 -A 11 -O

Add Negative Thirds (A)36-24 - (U)36-24 --. A36- 24; (A)23-12 - (U)23-12
--. A23- 12; (A), 1-0 - (U), 1-0 --. A 11 -O

Execute Execute the instruction at U

Executive Request Interrupt to MSR + 2428

Store Register Set Aa contains address and count for each of two
GRS areas

Load Register Set Move specified storage area to GRS area(s)

Single Shift Circular Shift (A) right circularly U places

Double Shift Circular Shift (A, A + 1) right circularly U places

Single Shift Logical Shift (A) right U places, zero fill

Double Shift Logical Shift (A, A + 1) right U places, zero fill

Single Shift Shift (A) right U places, sign fill
Algebraic

UP-8453 Rev. 1

UP-NUMBER

Function
Code (Octal)

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

Table 2-1. User Instruction Repertoire (continued)

UPDATE lEVEL
2-12

PAGE

f j Mnemonic Instruction Description

73 05 DSA Double Shift
Algebraic

Shift (A, A + 1) right U places, sign fill

73 06

73 07

73 10

73 11

73 12

73 13

73 17

73 17

73 17

74 00

74 01

74 02

74 03

74 04

74 05

LSC Load Shift And (U) -. A; shift (A) left circularly until (Ab5 t (A)34;
Count number of shifts -. A + 1

DLSC Double Load Shift (U, U + 1) -. A, A + 1; shift (A, A + 1) left
and Count circularly until (A, A + 1 h 1 t (A, A + 1 ho;

number of shifts -. A + 2

LSSC Left Single Shift Shift (A) left circularly U places
Circular

LDSC Left Double Shift Shift (A, A + 1) left circularly U places

LSSL

LDSL

Circular

Left Single Shift
Logical

Left Double Shift
Logical

TS Test And Set
a = 00

TSS Test And Set And
a = 01 Skip

TCS Test and Clear And
a = 02 Skip

JZ Jump Zero

JNZ Jump Nonzero

JP Jump Positive

IN Jump Negative

J Jump
JK Jump Key

Shift (A) left U places, zero fill

Shift (A, A + 1) left U places, zero fill

If (U)30 = 1, interrupt to MSR + 2448; if (U)30
= 0, go to NI; always 01 8 -. U35-O

if (U)30 = 0, skip NI; if (U)30 = 1, go ,to NI;
always 01 8 -. U35-30

If (U)30 = 0, go to NI; if (U)30 = 1, skip NI;
always clear (U)35-30

Jump to U if (A) = ± 0 go to NI if (A) t ± 0

Jump to U if (A) t ± 0; go to NI if (A) = ± 0

Jump to U if (Ab5 = 0; go to NI if (A)35 = 1

Jump to U if (A)35 = 1; go to NI if (Ab5 = 0

Jump to U if a = 0 or if a = set SELECT
JUMPS control circuit; go to NI if neither is true

HJ
HKJ

Halt Jump Stop if a = 0 or if [a field lAND! set SELECT
Halt Keys and Jump STOPS control circuits] t 0; on restart or

continuation jump to U

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

2-13
PAGE

UP-8453 Rev.~
____ ~ __ ----__ --------------------------------------L---------~---------

Table 2-1. User Instruction Repertoire (continued)

r--

Function
Code (Octal)

f j Mnemonic Instruction Description

74 06 NOP No Operation Proceed to next Instruction

74 07 AAIJ All All I/O Interrupts Allow all I/O interrupts and jump to U
And Jump

74 110 JNB Jump No Low Bit Jump to U if (A)o = 0; go to NI if (A)o = 1

74 11 1 JB Jump Low Bit Jump to U if (A)o = 1; go to NI if (A)o = 0

74 112 JMGI Jump Modifier Jump to U if (Xa), 7-0 > 0; go to NI if (Xa), 7-0 ~
Greater and 0; always (Xah7-O + (Xa)35-18 - Xa17-O
Increment

74 113 LMJ Load Modifier and Relative P + 1 - (Xa), 7-0; jump to U
Jump

74 114 JO Jump Overflow Jump to U if 01 = 1; go to NI if 01 = 0
a = 00

74 114 JFU Jump Floating Jump to U if 021 = 1, clear 021; go to NI if
a = 01 Underflow 021 = 0

74 114 JFO Jump Floating Jump to y if 022 = 1, clear 022; go to NI if
a = 02 Overflow 022 = 0

74 1i 4 JDF Jump Divide Fault Jump to U if 023 = 1, clear 023; go to NI if
a = 03 023 = 0

74 1: 5 JNO Jump No Overflow Jump to U if 01 = 0; go to NI if 01 = 1
a = 00

74 15 JNFU Jump No Floating Jump to U if 021 = 0; go to NI if 021 = 1 ;
a = 01 Underflow clear 021

74 15 JNFO Jump No Floating Jump to U if 022 = 0; go to NI if 022 = 1 ;
a = 02 Overflow clear 022

74 115 JNDF Jump No Divide Jump to U if 023 = 0; go to NI if 023 = 1 ;
a = 03 Fault clear 023

UP-8463 Rev. 1
UP-NUMBER

Function
Code (Octal)

f

74 16

74 17

76 00

76 01

76 02

76 03

76 04

76 05

76 06

76 07

76 10

76 11

76 12

76 13

76 14

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Prugrammer Reference UPDATE LEVEL

2-14
PAGE

Table 2-1. User Instruction Repertoire (continued)

Mnemonic Instruction

JC Jump Carry

JNC Jump No Carry

FA Floating Add

FAN Floating Add
Negative

FM Floating Multiply

FD Floating Divide

LUF Load and Unpack
Floating

LCF Load and Convert To
Floating

MCDU Magnitude of
Characteristic
Difference To Upper

Description

J u m p to U if DO = 1; go to N I if DO = 0

Jump to U if DO = 0; go to NI if DO = 1

(A) + (U) --. A; RESIDUE --. A + 1 if 017 = 1

(A) - (U) --. A; RESIDUE --. A + 1 if 017 = 1

(A) x (U) --. A (and A + 1 if 017 = 1)

(A) divided by (U) --. A; REMAINDER --. A + 1 if
017 = 1

I (U) 134-27 --. A7-O' zero fill
(Uh6-00 --. A + 126-00' sign fill
(U)36 --. A + 135;

(Ub6 --. A + 136, [NORMALIZED (U)h6-O --. A +
126-0; if (U)36 = 0, (Ah-O ± NORMALIZING
COUNT --. A + 134- 27; if (U)36 = 1, ones
complement of [(A) 7-0 ± NORMALIZING COUNT]
--. A + 134- 27

/1 (A) 136-27 - I (U) 136-27 I --. A + 18-0;
ZEROS --. A + 136-9

CDU Characteristic I (A) 136-27 - I (U) 136-27 --. A + 18-0 SIGN BITS
Difference To Upper --. A + 136-9

DFA Double-Precision
Floating Add

DFAN Double-Precision
Floating Add
Negative

DFM Double-Precision
. Floating Multiply

DFD Double-Precision
Floating Divide

DFU Double Load and
Unpack Floating

(A, A + 1) + (U, U + 1) --. A, A + 1

(A. A + 1) - (U, U + 1) --. A, A + 1

(A, A + 1) x (U, U + 1) --. A, A + 1

(A, A + 1) divided by (U, U + 1) --. A, A + 1

I (U, U + 1) 170-60 --. A 10-0' zero fill; (U, U +
1)69-36 --. A + 123-0' sign fill; (U, U + 1)35-0 --.
A+2

UP-8453 Rev. 1 I SPERRY UNIVAC 1100 Series 2-15
UP-NUMBER ~, _____ M_e_t_a_-_A_s_se_m_b_le_r_(_M_A_S_M_)_p_r_o_g_ra_m_m_e_r_R_e_f_e_re_n_c_e ____ -LU_P_DA_T_E _LEV_E_L_----I_P_AG_E __ _

Table 2-1. User Instruction Repertoire (continued)

'-'

Function
Code (Octal)

~.

f j Mnemonic' Instruction

76 15 DLCF, Double Load and
DFP Convert To Floating

76 16 FEL Floating Expand and
Load

76 17 FCL Floating Compress
and Load

indicates for 1110, 1100/40 only
* indicates for 1100/80 only

** not 1100/80

Description

(Uh5 A + 135; [NORMALIZED (U < U +
1)]59-0 A + 123-0 and A + 2; if (U)35' (A) 1 0-0
± NORMALIZING COUNT A + 134-24; if (U)35
= 1, ones complement of [(A),o-o ±
NORMALIZING COUNT] A + 134- 24

If (U)35 = 0; (U)35-27 + 1600s A35- 24

If (U)35 = 1; (U)35-27 - 1600s A35- 24 (U)26-3
..... A23-O; (U)2-O A + 135-33; (U)35 A +
132-0

If (U)35 = 0; (U)35-24 - 1600s A35- 27; if (U)35
= 1; (Uh5-24 + 1600s A35- 27 (U)23-O
A26- 3; (U + 1)35-33 - A2-O

Table 2-2. Executive Instruction Repertoire

r--.

Function
Code (Octal)

f-.

f j Mnemonic Instruction Description

07 01 SOA Store Output Access A ~ OACR; channel number per U5-O
Control Word

07 02 SIP Store Input Pointer (A) -) ICPR; channel number per U5-O
Word

07 03 SOP Store Output Pointer (A) ~ OCPR; channel number per U5-O
Word

07 04 LlA Load Input Access (IACR) ~ A; channel number per U5-O
Control Word

07 05 LOA Load Output Access (OACR) ~ A; channel number per U5-0
Control Word

07 06 LIP Load Input Pointer (ICPR) ~ A; char:"lnel number per U5-O
Word

UP-8453 Rev. 1
UP-NUMBER

Function
Code (Octal)

f j

07 07

07 10

07 11

07 16

07 16

72 00

72 13

72** 14

72 15

72** 15

72** 15

72** 15

72** 16

SPERRY UNIVAC 1100 Series 2-16
PAGE Meta-Assembler (MASM) Programmer Reference UPDATE lEVEL

Mnemonic

LOP

LCB

LPI

LBR
(a = 0)

SJS
(a = 1)

IMI

PAIJ

SCN

TRA

LPS
(a = 0)

LMP
(a = 1)

LUP
(a = 2)

LSL
(a = 0)

Table 2-2. Executive Instruction Repertoire (continued)

Instruction Description

Load Output Pointer (OCPR) ~ A; channel number per Us-O
Word

Load Chain Base
Register

Load Processor
Interrupt Pointer

Load Breakpoint
Register

Store Jump Stack

If a=O, (U),4-O ~ CBR of 10AU channels 0-23
If a= 1, (Uh4-O ~ CBR of 10AU channels 24-47

If a=O, (Uh-O ~ PIP register of IOAU for
channels 0-23
If a= 1, (Uh-O ~ PIP register of 10AU for
channels 0-23

(U) -+ Breakpoint Reg,ister

(Jump History Stack) -+ U, repeat
NOTE: The SJS instruction is noninterruptible

Initiate Maintenance Send Attention Interrupt to Maintenance
Interrupt Processor. If in Maintenance Mode, otherwise

NO-OP

Prevent All I/O
Interrupts And Jump

Store Channel
Number

Test Relative
Address

Prevent all 1/0 interrupts and jump to U

If a=O, channel number ~ U3-O
If a = 1, channel number ~ U3- 0 ;
CAU number ~ US- 4
If a=2, channel number U3-O ;
CAU number -+ U5- 4
If a = 3, channel number Us-O ;
CAU number ~ U14- 12

Used to determine whether a relative address is
within a given relative addressing range

Load Processor State (U) ~ PSRMO
Register

Load Main Processor (U,U + 1) -+ PSRMO, PSRM 1
State Register

Load Utility (U,U+ 1) PSRU
Processor State
Register

Load Main Storage (U) ~ SLRM
Limits Register

UP-8463 Rev. 1 I SPERRY UNIVAC 1100 Series 2-17
UP-NUMBER ~, _____ M_e_t_a_-_A_ss_e_m_b_le_r_(_M_A_S_M_) _P_r_o_9_ra_m_m_e_r_R_e_f_e_re_n_c_e ____ --L..U_P_DA_T_E _LEV_E_L_--..JL....P_AG_E __ _

Table 2-2. Executive Instruction Repertoire (continued)

--
Function

Code (Octal)

f j Mnemonic Instruction Description

72** 16 LUS Load Utility Storage (U) SLRU
(a = 1) Limits Register

72** 16 SL Store Main Storage (SLRM) U
(a = 2) Limits Register

72** 16 SUL Store Utility Storage (SLRU) U
(a = 2) Limits Register

73** 14 1111 (a = 0 Initiate Initiate interprocessor-interrupt per a;
through Interprocessor
5) Interrupt a = 0: Interrupt CAU Number 0

a = 1: Interrupt CAU Number 1
a = 2: Interrupt CAU Number 2
a = 3: Interrupt CAU Number 3
a = 4: Interrupt CAU Number 4
a = 5: Interrupt CAU Number 5

73** 14 ESDC (a Enable Second Day Enable dayclock in IOAU having channels 24-47
=: 108) Clock

73 14 EIDC Enable .Day Clock Enable dayclock in IOAU having channels 0-23
a = 11

73 14 DDC Disable Day' Clock Disable dayclock
a = 12

73 14 SDC Select Day Clock Select Internal Day Clock
a = 13

73** 14 ES (a = Enable Storage Enable storage reference counters on next
148) Reference Counters instruction

73 15 SIL Select Interrupt (U)8-O - MSR
a = 00 Locations

73 15 LBRX Load Breakpoint Transfer operand to Breakpoint Register
a = 02 Register

73 15 LOT Load Quantum Timer Place full-word operand in .Quantum Timer
a = 03

UP-8453 Rev. 1
UP-NUMBER

Function
Code (Octal)

f j

73 15

73 15

73 15

73 15

73 15

73 15

73 15

73 15

73 15

73 15

73 15

73 15

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

2-18
PAGE

Table 2-2. Executive Instruction Repertoire (continued)

Mnemonic Instruction Description

IIIX Initiate Interrupt processor specified by operand address
a = 04 Interprocessor value

Interrupt

SPID Store Processor 10 Store: binary serial number in first third;
a = 05 2-character Fieldata revision level in second

third; processor in last sixth of operand

RAT Reset Auto-Recovery Reset auto-recovery timer in system transition
a = 06 Timer unit

TAP Toggle Toggle path selection after each auto-recovery
a = 07 Auto-Recovery Path attempt

LB Load Base Place operand bits 0 through 17 in base value
a = 10 field of BDR specified by bits 33 and 34 of Xx

LL Load Limits Place operand bits 15 through 23 and 24
a = 11 through 35 in BDR limits fields specified by Xx

bits 33 and 34

LAE Load Addressing Place the double-word operand in GRS location
a = 12 Environment 046 and 047 and the four respective Bank

Descriptor Registers

SQT Store Quantum Time Store Quantum Timer value at the storage
a = 13 location specified by operand address.

Executing this instruction has no effect on 029.
It may be in GRS.

LD Load Designator Place full-word operand in Designator Register
a = 14 Register

SO Store Designator Store Designator Register contents at location
a = 15 Register specified by operand address

UR User Return Provides an orderly return to a user program
a = 16

SSS Store System Status Store two system status words at the location
a = 17 specified by operand address

UP-8453 Rev. 1
UP-NUMBER

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

Table 2-2. Executive Instruction Repertoire (continued)

UPDATE LEVEL
2-19

PAGE

~.----------~.------.~----------------.--------------------------------------.

Function
Code (Octal)

f

73** 16

73* 16

75* 00

75* 01

75* 02

75* 03

75* 04

75* 05

75* 06

75* 07

75* 10

75* 11

75* 12

Mnemonic

LCR
a = 00

LLA
(a = 1)

LlC

L.lCM

JIC

DIC

L.OC

L.OCM

JOC

DOC

l.FC

l.FCM

JFC

Instruction Description

Load Channel Select (U)5-O -+ CSR; if (U)9 = 1, select back-to-back
Register transfer mode

Load Last Address (U)s-o LAR
Register

Load Input Channel For channel [a [QBJ CSR]: (U) IACR; set input
active; clear input monitor

Load Output Channel For channel [a [QBJ CSR]: (U) IACR; set input
and Monitor active; set input monitor

Jump On Input Jump to U if input active is set for channel
Channel Busy [a [QBJ CSR]:

go to NI if input active is clear

Disconnect Input For channel [a [QBJ CSR]: clear input active; clear
Channel input monitor

Load Output Channel For channel [a [QBJ CSR]: (U) ~ OACR (lSI only);
set output active; clear output monitor; clear
function active (lSI only)

Load Output Channel For channel [a [QBJ CSR]: (U) ~ QACR (151 only);
and Monitor set output active; set output monitor; clear

external function active (151 only)

Jump On Output Jump to U if output active is set for channel [a
Channel Busy [QBJ CSR]: go to NI if output active is clear

Disconnect Output For channel [a [QBJ CSR]: clear output active;
Channel clear output monitor; clear function active (151

only)

Load Funct'ion In For channel [a [QBJ CSR]: (U) ~ OACR; set
Channel output active (151 only), function active (151 only),

and force external function; clear output monitor
(151 only)

Load Function In For channel [a [QBJ CSR]: (U) OACR; set
Channel and Monitor output active (151 only), function active (151 only),

force external function, and output monitor (151
only)

Jump On Function In Jump to U if force external function is set for
Channel channel [a [QBJ GSR]; go to NI if force external

function is clear

UP-8453 Rev. 1
UP-NUMBER

Function
Code (Octal)

f j

75* 14

75* 15

75* 16

75* 17

75 00

75 01

75 02

75 03

75 04

75 05

75 10

75 11

75# 16

75# 16

75# 17

75# 17

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

2-20
PAGE

Table 2-2. Executive Instruction Repertoire (continued)

Mnemonic Instruction Description

AACI Allow All Channel Allow all external interrupts
External Interrupts

PACI Prevent All Channel Prevent all external interrupts
External Interrupts

ACI Allow Channel If a=O, allow interrupts on channels 23-0
Interrupts specified by one bits in (U)23-O

If a= 1, allow interrupts on channels 47-24
specified by one bits in (U)23-O

PCI Prevent Channel If a=O, prevent interrupts on channels 23-0
Interrupts spec'ified by one bits in (U)23-O

If a= 1, prevent interrupts on channels 47-24
specified by one bits in (U)23-O

SRL Select Release Initiates the execution of a CCW list

SIOF Start 1/0 Fast Initiates operation specified by bit 00 through
Release 15 of CAW

TIO Test I/O Interrogates the channel, subchannel and device

TSC Test Subchannel Interrogates the channel and subchannel

HDV Halt Device Terminates current operation on channel and
subchannel

HCH Halt Channel Terminates current operation on channel

LCR Load Channel Load the interrupt mask register
Register

LTCW Load Control Words Loads the status table subchannel

ACI Allow Channel Allow interrupts on channel 23-0 specified by
Interrupts a=o one bits in (U)23-O

ACI Allow Channel Allow interrupts on channels 47-24 specified by
Interrupts a = 1 one bits in (U)23-O

PCI Prevent Channel Prevent interrupts on channel 23-0 specified by
Interrupts a=O one bits in (U)23-O

PCI Prevent Channel Prevent interrupts on channels 47-24 specified
Interrupts a = 1 by one bits in (U)23-0

UP-8453 Rev. 1 I SPERRY UNIVAC 1100 Series 2-21
UP~UMDER ~ _______ M. __ e_ta_-_A_s_s._e_m __ b_le_r_(~M_A __ S_M_)_p_r_o_g_r_a_m_m __ e_r_R_e_f_e_r_e_n_ce __________ ~U_P_D_AT_E_L_~_EL ____ ~P_AG_E ______ __

indicate!; for 1110, 1100/40 only
* indicates for 1100/80 only

** not 1100/80

SPERRY UNIVAC 1100 Series UP-8463 Rev. 1
UP-NUMBER Meta-Assembler (MASM) Programmer Reference

Term Reference Page Term

B
E

ENOl
Blocked location

counter 1.9 1-71 EaUF
1.12 1-77

C
F

Function
Control information 1.5. 1.4 . 1-22

D
Definition mode

L assembly
gc~neral 1.6.4 1-34

1.6.26 1-41 Level 0 Operators
1.6.29 1-45 asterisk flag
1.13 1-78 conditional

omnibus output expression
(element 1.2.1 1-2 control

$IDEF 1.6.4 1-34 information
flag attribute

Dictionary
built-in directives 1. 1. 1 1-1 Level 1 Operator
functions 1. 1. 1 1-1 NOT operator
g«~neral 1. 1. 1 1-1 postfix operators

1.8.6 1-69
levels 1.1.1 1-1 Level 2 operators
operation relational

mnemonics 1. 1. 1 1-1 operators

I UPDATE L£VEL
I Index-l

PAGE

Index

Reference Page

1.9 1-71

2.2 2-1

1.6.11 1-36
1.6.23 1-40
1.6.32 1-46
1.7.15 1-56
1.7.27.1 1-60

1.5.2.1 1-25

1.5.2.1 1-25

1.5.2.1 1-25
1.5.2.12 1-30

1.5.2.2 1-25
1.5.2. 11 1-30

1.5.2.3 1-27

SPERRY UNIVAC 1100 Series UP-8463 Rev. 1
UP-NUMBER Meta-Assembler (MASM) Programmer Reference

Term Reference Page Term

comment part
Level 3 operators

concatenation externalized
operator 1.5.2.4 1-28 labels

functional part
Level 4 operators

bitwise logical label field
operations 1.5.2.5 1-28 line

line continuation
Level 5 operators character

bitwise logical operand field
operations 1.5.2.6 1-28 operation field

Level 6 operators statements
arithmetic

addition and MASM USAGE
subtraction 1.5.2.7 1-29 options

ro
Level 7 operators 1.5.2.8 1-29 si

so
Level 9 operators

unary"+" 1.5.2.10 1-30 Microstrings
unary "-" 1.5.2.10 1-30

Level 10 operators 1.5.2. 11 1-30

LEVELERS 1. 11 1-74

Libraries N
ASM$PF 1.2.5 1-6
SYS$*RLlB$ 1.2.5 1-6 N option

Library searching 1.2.5 1-6 NAME

Literals 1.5.1.1.4 1-16
Nodes

LLA 2.5 2-4 node reference
node references

Location 1.12 1-77
Nodes and selectors

Location counter
specification 1.3.1.1 1-6

P
M Passes

generative pass
M option 1.2.5 1-2 summary pass

MASM Input PROC
a label field 1.2.4.1 1-4
an operand field 1.2.4. 1 1-4
an operation

field 1.2.4.1 1-2

UPDATE LEVEL

Reference

1.2.4.1
1.3.4

1.3.1.2
1.2.4.1
1.2.4. 1
1.3.1
1.2.4.1

1.3.5.1
1.3.3
1.3.2
1.5.1.4
1.2.4.1

1.2.1
1.2.1
1.2.1
1.2.1

1.5.2.1
1.5.2.3
1.6.7
1.10
1.12

1.6.30

1.6.23
1.7.27.1

1.9
1.5.2.3

1.5.1.3

1. 1
1. 1

1.6.11
1.6.32
1.7.14
1.7.15
1.7.27.1

Index-2
PAGE

Page

1-4
1-10

1-8
1-4
1-4
1-6
1-4

1-10
1-9
1-8
1-22
1-4

1-2
1-2
1-2
1-2

1-25
1-27
1-35
1-72
1-77

1-45

1-40
1-60

1-71
1-27

1-18

1-1
1-1

1-36
1-46
1-55
1-3
1-56

I

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference UPDATE LEVEL

Index-3
PAGE

UP-8463 Re~. 1
UP-NUMBER --------- ,--~-----------~-------

Term Reference Page Term Reference Page

Procedure $ANOF 1.6.1 1-31
g,eneral 1.6.23 1-40
one-pass 1.8.8 1-70 $AP 1.7.1 1-50
two-pass 1.8.8 1-70
words-given 1.8.8 1-70 $ASCII 1.6.2 1-32

1.6.3 1-32

R $BA 1.5.1.3 1-18
1.7.2 1-50

Relocation information 1.7.1 1-50
1.12 1-77 $CO 1.10 1-72

S
$CHAR 1.6.2 1-32

1.6.3 1-32
1.6.18 1-38

String conversion
functions $OEF 1.6.4 1-34

convert to! 1.13 1-78
ASCII suing 1.7.3.1 1-51

convert to! $OELETE 1.5.1.3 1-18
binary 1.6.5 1-34
representation 1.7.3.2 1-52

convert to! $OISPLAY 1.6.6 1-34
decimal 1.7.3.3 1-52 1.8.8 1-70

convert to!
Fieldata string 1.7.3.4 1-52 $00 1.6.7 1-35

convert to!
string 1.7.3.5 1-52 $EJECT 1.6.8 1-35

Strings 1.5.1.2 1-18 $ELSE 1.6.9 1-35
1.6.25 1-41

Subassemblies 1. 1 1-1
1.7.8 1-54 $ELSF 1.6.10 1-35
1.7.9 1-54 1.6.25 1-41
1.7.14 1-55
1.8 1-62 $ENO 1.6.11 1-36
1.9 1-71 1.6.23 1-40

1.8 1-62

T
1.9 1-71
1. 11 1-74
1.12 1-77

Transparent control
statements $ENOO 1.6.12 1-36

@HOG 1.2.2 1-3
@LOG 1.2.2 1-3 $ENDF 1.6.9 1-35
@MSG 1.2.2 1-2 1.6.13 1-37

1.6.25 1-41
Typin~1 functions 1.8 1-62

tvpe testing
functions 1.7.27.2 1-60 $ENOI 1.6.14 1-37

compute data
type number 1.7.27.1 1-60

UP-8453 Rev. 1
UP-NUMBER

Term

$ENDR

$EQU

$EQUF

$FDATA

$FN

$FORM

$FP

$FUNC

$GEN

$GFORM

$GO

$GP

$HEX

$IBITS

$IC

SPERRY UNIVAC 1100 Series
Meta-Assembler (MASM) Programmer Reference

Reference Page Term

1.6.15 1-37 $IF
1.6.36 1-48
1. 11 1-74

1.6.16 1-37
1.7 1-49 $ILCN
1.13 1-78

1.6.17 1-38 $INCLUDE
1.13 1-78

1.6.3 1-32 $INFO
1.6.18 1-38 restrictions

blank common
1.7.4 1-52 block

common block
1.6.19 1-38 entry point

definition
1.7.5 1-53 even starting
1'.8.1.2 1-65 address
1.8.1.3 1-66 external
1.8.2 1-67 reference
1.8.8 1-70 definition

minimum
1.6.20 1-39 D-Bank
1.9 1-71 specification
1. 11 1-74 mode settings

static diagnostic
1.4 1-11 information
1.5.1.1.3 1-15
1.6.2 i 1-40 $INSERT

1.6.22 1-40
$ LC'B

1.6.23 1-40
1.6.32 1-46 $LCN
1.7.15 1-56
1.8.1.1 1-63
1.8.7 1-69
1.9 1-71 $LCU

1.7.6 1-53 $LCV
1.8.1.2 1-65
1.8.1.3 1-66
1.8.2 1-67 $LEVEL
1.8.8 1-70

1.6.24 1-41 $LF

1.7:7 1-53
$UNES

1.7.8 1-54

UPDATE LEVEL

Reference

1.6.9
1.6.25
1.7.15
1.8

1.7.9
1.8.5

1.6.26
1.13

1.6.27.9

1.6.27.4
1.6.27.2

1.6.27.6

1.6.27.7

1.6.27.5

1.6.27.3
1.6.27.1

1.6.27.8

1.6.28
1.8

1.7.10

1.7.10
1.7.11
1.7.12

1.'1.12

1.7.12
1.7.29

1.6.29
1.13

1.7.14
1.8.4

1.7.15

Index-4
PAGE

Page

1-35
1-41
1-56
1-70

1-54
1-69

1-41
1-78

1-44

1-43
1-42

1-43

1-44

1-43

1-43
1-41

1-44

1-44
1-62

1-2

1-55
1-55
1-55

1-55

1-55
1-62

1-45
1-78

1-55
1-68

1-56

SPERRY UNIVAC 1100 Series
UP-NUMBER Meta-Assembler (MASM) Programm&r Reference UPDATE LEVEL

Index-5
PAGE

UP-8453 Rev. 1~
,--~--------~---------

Term Reference Page Term Reference Page

$LlST 1.6.30 1-45 $TMODES 1.7.28 1-61
1.6.38 1-,49

$UNLIST 1.6.30 1-45
$ LIT 1.6.31 1-45 1.6.38 1-49

1.6.38 1-49
$LP 1.7.16 1-57

1.8.1.2 1-65 $WRD 1.6.39 1-49
1.8.1.3 1-66
1.8.2 1-67 $(e) 1.7.29 1-62
1.8.8 1-70

$LO 1.7.17 1-57

$L 1 1.7.18 1-57

$NAME 1.6.32 1-46
1.8 1-62
1.8.3 1-68
1.8.7 1-69
1.9 1-71

$NIL 1.6.33 46
1.8.4 1-68

$NODE 1.7.19 1-57

$NS 1.7.20 1-58
1.7.23 1-58

$OCTAL 1.6.34 1-48

$PAR 1.7.21 1-58

$PROe 1.5.2.1 1-25
1.6.35 1-48
1.8 1-62
1. 11 1-74

$REPEAT 1.6.15 1-37
1.6.36 1-48
1. 11 1-74

$RES 1.6.37 1-48
1.8.8 1-70

$SL 1.7.22 1-58

$SN "1.7.23 1-58

$SR 1.7.24 1-59

$SSS 1.7.26 1-59

"

'.

'.

"

1-'
::>:

.(J ,

I'

,
, . , . :

I'

USER COMMENT SHEET

Comments concerning the content, style, and usefulness of this manual may be made in the space provided below.
Please fill in the requested information.

Requests for copies of manuals, lists of manuals, pricing information, etc. should be made through your 1100 Series
site manager to your Sperry Univac representative or the Sperry Univac office serving your locality.

System:

Man~al Tith~: ______________________________________ '

UP No: Revision No: ______ _ Update: __________ ,

NameofUser: ___ __

Address of lJser: ______________ ~ ____________________ ~_,

Comments:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

,_..:.o~ _____ ___________________________ -.1

FIRST CLASS

BUSINESS REPLY IVIAIL PERMIT NO. 21

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
BLUE BELL, PA.

POSTAGE WILL BE PAID BY

51::>E~Y~>= UNIVAC
SYSTEMS SUPPORT
ATTN: INFORMATION SERVICES M.S. 4533
P.O. BOX 3942
ST. PAUL, MINNESOTA 55165

I
I
I
I
I
I
I
In c
-i

.-~~---------------------------------,
I
I
I

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	replyA
	replyB

