
A

UNIVAC
IIDDsER'Es
INDEX SEBUENTIAL
FILE IVIANAGEIVIENT
SVSTEIVI [ISFIVIS J
PROGRAMMER REFERENCE

UP - 7780 Rev. 1

This document contains the latest information available at the time of publication. However, the Univac
Division reserves the right to modify or revise its contents. To ensure that you have the most recent
information, contact your local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation in this publication are:

FASTRAND

©1970, 1973 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

7780 Rev. 1

UP.NUMBER

Section

Cover / Disclai mer

PSS

Contents

1

2

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Index

UCS

Page
Number

1

1 thru 4

1 thru 12

1 thru 31

1, 2

1,2,3

1 thru 4

1 thru 10

1 thru 4

1 thru 5

1

1, 2

1 thru 7

1,2,3

UNIVAC 1100 SERIES SYSTEMS PSS 1
PAGE REVISION PAGE

PAGE STATUS SUMMARY

ISSUE: UP-7780 Rev. 1

Update Section Page Update Section Page Update
Level Number Level Number Level

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

Orig.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 1

PAGE STATUS SUMMARY

CONTENTS

1. INTRODUCTION

1.1. INDEXED SEQUENTIAL FILE MANAGEMENT SYSTEM (lSFMS)

1.2. USER RESPONSIBILITY

1.3. ISFMS TERMINOLOGY

1.4. FUNCTIONAL DESCRIPTION OF ISFMS
1.4.1. Data Files
1.4.2. Index Files
1.4.3. Block Organization
1.4.3.1. Data Block
1.4.3.2. I ndex Block
1.4.3.3. Overflow Blocks
1.4.3.4. I nformation Block
1.4.4. Indexing Technique

2. ISFMS COMMAND REPERTOIRE

2.1. GENERAL
2.1.1. Main Storage Index

2.2. OUTPUT FI LES
2.2.1. Open Output
2.2.2. Write Random Output
2.2.3. Close Output

2.3. INPUT FILES
2.3.1. Open Input
2.3.2. Read Sequential Input

2.3.3. Read Random Input
2.3.4. Close Input

2.4. INPUT/OUTPUT FILES
2.4.1. Open Input/Output

PAGE REVISION PAGE

CONTENTS

1-1

1-1

1-1

1-2

1-4
1-4
1-5
1-7
1-7
1-8
1-10
1-11
1-11

2-1

2-1
2-1

2-2
2-2
2-4
2-6

2-8
2-8
2-11
2-13
2-15

2-16
2-16

7780 Rev. 1
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS

2.4.2. Read Sequential Input/Output
2.4.3. Read Random Input/Output
2.4.4. Write Sequential Input/Output
2.4.5. Write Random Input/Output
2.4.6. Write Random Delete Input/Output
2.4.7. Close Input/Output

2.5. INFORM COMMAND

APPENDIXES

PAGE REVISION

2-19
2-21
2-23
2-24
2-26
2-28

2-30

A. COBOL INTERFACE (NON AMERICAN NATIONAL STANDARD COBOL) A-1

A.l. IDENTI FICATION DIVISION A-1

A.2. ENVIRONMENT DIVISION A-1

A.3. DATA DIVISION A-1

A.4. PROCEDURE DIVISION A-2

B. ASSEMBLER INTERFACE 8-1

B.l. GENERAL 8-1

B.2. FILE CONTROL TABLE (FCT) 8-1

B.3. EaUF STATEMENTS 8-2

B.4. RESERVE WORDS 8-3

C. OPTIMIZATION PROCEDURES C-1

C.l. GENERAL C-1

C.2. BLOCKS C-1

C.3. FILE C-3

D. SAMPLE PROGRAMS 0-1

0.1. NON AMERICAN NATIONAL STANDARD COBOL 0-1

0.2. ASSEMBLER 0-3

0.3. AMERICAN NATIONAL STANDARD COBOL (FIELDATA) 0-8

E. ISFMS ERRORS E-1

E.l. GENERAL E-1

E.2. FATAL ERRORS E-l

Contents 2
PAGE

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 3
PAGE REVISION PAGE

E.3. NONFATAL ERRORS E-2

E.4. ERROR CODE 101 UNDER NON AMERICAN NATIONAL STANDARD COBOL E-2

F. SUMMARY OF COMMANDS F-1

F.1. COBOL COMMANDS F-1

F.2. ASSEMBLER COMMANDS F-3

F.3. AMERICAN NATIONAL STANDARD COBOL (FIELDATA) COMMANDS F-4

G. ISFMS RELEASE TAPE G-1

G.1. GENERAL G-1

H. MAIN STORAGE INDEX FEATURE H-1

H.1. GENERAL H-1

H.2. AMERICAN NATIONAL STANDARD COBOL (FIELDATA) H-1

H.3. NON AMERICAN NATIONAL STANDARD COBOL H-1

H.4. ASM H-2

I. AMERICAN NATIONAL STANDARD COBOL (FIELDATA) INTERFACE 1-1

1.1. GENERAL 1-1

1.2. IDENTIFICATION DIVISION 1-1

1.3. ENVIRONMENT DIVISION 1-1

1.4. DATA DIVISION 1-2

1.5. PROCEDURE DIVISION 1-4

1.6. ERROR CONDITIONS 1-6

1.7. ABORT CONDITIONS 1-7

INDEX

USER COMMENT SHEET

7780 Rev. 1
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 4

FIGURES

1-1
1-2
1-3
1-4
1-5
1-6
1-7

ISFMS File
Data File With Associated Separate Index File
Data Block
Index Block
Multilevel Indexing
Hierarchical Data Files
Cross-Referenced Files

TABLES

E-1 ISFMS Nonfatal Errors

PAGE REVISION PAGE

1-5
1-6
1-8
1-9
1-10
1-12
1-12

E-3

•

•

•

f

UNIVAC
SYSTEMS
PUBLICATIONS

UNIVAC 1100 Series

REVISION

Index Sequential File
Management System (ISFMS)
Programmer Reference
UP 7780 Rev. I

This UNIVAC 1100 Series Library Memo announces the release and availability of "UNIVAC 1100 Series Index
Sequential File Management System (lSFMS) Programmer Reference," UP-7780 Rev. I. This is a Standard
Library Item (SLI).

This revision was developed to correspond to level B of the software package. The field support bulletins
accompanying the release of new levels of this software will contain any needed documentation change information.

This revision includes minor corrections and provides:

• additional information on the assembler interface (Appendix B),

• additional error code information (Appendix E),

• additional command information (Appendix F),

• information on main storage index feature (Appendix H),

• information ;J .. American National Standard COBOL (Fieldata) (Appendix I), and

• an index.

Destruction Notice: This revision supersedes and replaces "UNIVAC 1106 System/110B Multi-Processor System
EXEC 8 Indexed Sequential File Management System (lSFMS) Programmer Reference," UP-7780 released on
Library Memo 13 dated April 29, 1970. Also superseded and replaced is Updating Package A for UP-77BO released
on P.I.E. Bulletin I, UP-7B37.1 dated September 22, 1970. Please destroy all copies of UP-77BO, its Updating
Package A, and the associated release memos.

Additional copies may be ordered by your Univac Manager via the Technical and Advertising Materials Requisition,

UDI-578. Send to:

Customer Information Distribution Center (CIDC)
Univac Division Sperry Rand Corporation

P.O. Box 448
King of Prussia, Pa. 1940B

H.MASTERS
Group Manager
Systems Publications

217,630 and 692
Library Memo only

UP-77BO Rev. I (covers and 91 pages) plus
Library Memo to Univac Library Mailing

Lists 37,38, 62,63, and 64.

Library Memo for
UP-7780 Rev. I

May 1973

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-1
PAGE REVISION PAGE

1. INTRODUCTION

1.1. INDEXED SEQUENTIAL FILE MANAGEMENT SYSTEM (lSFMS)

The Univac Indexed Sequential File Management System (ISFMS) is a UNIVAC 1100 Series service routine which

enables the user:

• to establish an ordered (indexed sequential) file on random storage so that each record within the file may
be located directly by the user;

• to locate records, within an established file, either sequentially or randomly;

• to modify or delete old records and store new records within an established file.

ISFMS is collected and executed as part of user programs operating under the EXEC. (See UNIVAC 1100 Series
Operating System Programmer Reference, UP-4144 (current version). ISFMS requires approximately 60008 words of
main storage, exclusive of buffer requirements, which are user-selected. Many of the indexed sequential concepts
employed by ISFMS are similar to those contained in the UNIVAC manual Direct Access Storage Device Concepts,
U£-604 (current version).

The ISFMS service routine is available through the Assembly Language described in the UNIVAC 1100 Series
American National Standard COBOL (Fieldata) Programmer Reference, UP-7845 (current version) and the COBOL
that is described in UNIVAC Fundamentals of COBOL - Series Programmer Reference, UP-7503 (current version).
Unless otherwise stated, the word COBOL and non American National Standard COBOL will always specifically
refer to the COBOL as it is described in the UNIVAC Fundamentals of COBOL - Series Programmer Reference,
UP-7503 (current version). Appendix I of this document describes the American National Standard COBOL
(Fieldata) interface with ISFMS and therefore the word COBOL in that appendix does not refer to UP-7503.

1.2. USER RESPONSIBILITY

The user's interface with ISFMS is outlined below. This interface provides for the user complete flexibility
in the specification, design, and usage of his files. Each user program must provide the following:

• File assignment control cards (@ASG) for each file created and maintained by ISFMS. These control cards
register the files with the operating system and assign areas on the storage device for the file.

• COBOL Environment and Data Division entries appropriate to the file, when a COBOL interface routine
is used (see Appendix A and Appendix I).

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

• File control tables (FCTs) and buffers appropriate to the file, when an assembler interface routine is used
(see Appendix B).

• Error recovery in the event ISFMS encounters a nonfatal error. ISFMS returns an error status code after
each unsuccessful request. The user must interpret this code and take whatever action he deems neces­
sary. In the event of a fatal error, ISFMS automatically terminates the run.

• Loading and saving of the file through the use of @COPY control card.

• Parameters necessary to service requests. These include such things as file name, record key, function
code, and so forth.

1.3. ISFMS TERMINOLOGY

The terminology given here reflects its current usage within ISFMS only. Whenever possible, however,. ISFMS
terminology does conform to the meanings commonly attached to these words in file management/data manage­
ment literature.

• Block

A grouping of records into a size more suitable for mass storage I/O transfers in order to minimize mass
storage accesses and shorten the range index.

Data Block

A grouping or collection of data records and their corresponding record keys. Data blocks contain
the information or data the user has supplied to ISFMS for storage.

Index Block

A grouping or collection of record keys and associated data block pointers. Only the highest record
key per data block is entered into the index block, thereby creating a range index.

Overflow Block

A collection of data records (and their corresponding record keys), which are added after the file
has been created and for which no space is available in the proper data block.

• Control Word

Any ISFMS supplied words. These words are attached to blocks and record to indicate starting positions,
lengths, words available, and so forth.

• File

A physical area on a storage device assigned, using an @ASG control card, to a file. ISFMS operates only
on files contained on mass storage devices. A file contains a·set of records grouped into blocks.

1-2

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SE RIES SY STEMS 1-3
PAGE REVISION PAGE

Data File

A file which contains data records and their corresponding record keys combined into data blocks.
It also contains index blocks and overflow blocks. A data file is a complete ISFMS file.

Index File

A file which contains only index records (in blocks). This file has been built from the data file
for the purpose of high speed index access.

Input File

A data file which has been selected for input processing. Only read commands may be issued to an
input file. The file must have been created previously.

Input/Output File

A data file which has been selected for input/output processing, that is, updatiny. Read, write, insert
and delete commands may be issued to an input/output file. The file must have been previously
created.

Output File

A data file which has been selected for output processing. The file did not exist before and is being
created. Only write commands are allowed.

• I ndexed Sequential

A method of file organization in which records are stored in sequential order and are accessed by means
of a range index, within which each entry points to a block of records.

• Item

A unit of data within a record (see UNIVAC Fundamentals of COBOL-Language Programmer Reference,
UP-7503.1 (current version).

• Mass Storage

Storage, other than main storage, which can be accessed on a direct or random basis. This implies that it
be a FASTRAND drum, magnetic drum, disc or unitized channel storage.

• Range Index

An index in which each entry points to a block of data records.

• Record

The basic unit of data being accessed through ISFMS. A record is a group of related words or items,
the contents of which are determined by the user.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-4
PAGE REVISION PAGE

• Record Key

The user-supplied word(s) by which a data record in a file is identified, sequenced, and controlled.

1.4. FUNCTIONAL DESCRIPTION OF ISFMS

I SFMS utilizes two types of files:

(1) Data Files

(2) I ndex Files

These files are subdivided into blocks. Each block contains record keys, or record keys and data records related
to the other blocks by means of the indexed sequential technique. While this is provided automatically by
ISFMS, the user must be aware that ISFMS is a routine which must be collected with his program and that he
must pass to ISFMS certain parameters which aid ISFMS in establishing the needed files and blocks, and the
relationships between their contents. These parameters are passed to ISFMS through either a COBOL or an
assembler interface program.

1.4.1. Data Files

Any file that has been made known to ISFMS (the file has been opened) can be referenced by the user. The
user can reference up to 10 completely independent data files (each data file mayor may not have a separate
index file associated with it) at any given time (see 1.4.2).

There are three types of data files:

(1) output

(2) input

(3) input/output

The manner in which ISFMS manipulates these files corresponds to that described in UNIVAC Fundamentals of
COBOL-Language Programmer Reference, UP-7503.1 (current version). The user must be familiar with COBOL
because ISFMS, when referenced in the COBOL or assembly language user programs, utilizes some of the COBOL­
provided input/output routines to access a data file.

To initially create a data file, the file must be declared to be an output file, and only output commands can
be used to create the file. Once created, the file may be declared an input file, and input commands are used
to read the file.

Finally, the file may be declared to be an input/output file and input/output commands can be used to read,
write, modify, or delete records in the file. A data file may be closed during a run and then reopened during
the same run as a different type of data file. It is also possible to have up to 10 different data files open
simultaneously during a run.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-5
PAGE REVISION PAGE

A data file is defined as a collection of blocks, each of which is a collection of records. There are three basic

types of blocks:

(1) data

(2) index

(3) overflow

These blocks are described in detail in 1.4.3. In addition, there are COBOL-provided label and sentinel blocks
and an ISFMS-provided information block. The latter contains a description of the positions of the data, index,
and overflow blocks. All blocks generated by ISFMS are the same length, i.e., ~, 'Y:! or track length. A schematic
overview of an ISFMS-prepared file is provided in Figure 1-1.

I
COBOL Unused ISFMS ISFMS
Label COBOL Informa- Index
Block Block tion Blocks

Block

II I III
ISFMS
Overflow
Blocks

II I t III

Figure 1-1. ISFMS File

,
ISFMS
Data
Bloc ks

-~

III---~
COBOL
Sentine I
Block

III~----'

The relationship between the blocks are provided by ISFMS. Based upon block numbers retained within the
information block, ISFMS can determine the location and number of index blocks. The index blocks, in turn,
point to the data blocks. When necessary, the data blocks point to the overflow blocks. The overflow blocks
are used to contain records which will not fit in their respective data blocks. This is discussed in detail in
1.4.3. The ISFMS information block is read during the open and close commands. Other than requiring con­
sideration when allocating file size, information blocks are not of concern to the user of ISFMS.

Through the use of the @ASG and @CAT control cards, a data file may be made simultaneously available to
more than one user. ISFMS, however, is separately collected with each user and no copy is cognizant of any
other copy accessing that data file. To prevent situations occurring where one user is referencing data records
which another user is updating, data files being accessed simultaneously by more than one user should be open
for input only. Updating runs, opening the file for input/output, should be made only when no other user is
accessing the file.

1.4.2. Index Files

A separate index file mayor may not be generated for a data file. If not, the index blocks maintained within
the data fi Ie are referenced as necessary when a command is issued to the data file. If an index file is gener­
ated, it is considered to be a run temporary file, that is, created by the open command, and released by the
close command. If used, the index file is internally assigned by ISFMS by means of the @ASG control card.
This is done based upon parameters supplied by the user in his open data file command (see Section 2).

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SE RI ES SYSTEMS 1-6
PAGE REVISION PAGE

The index file is a copy of the index blocks contained within the data file. Assuming that an index file is
specified by the open command (input or input/output only), ISFMS copies the index blocks from the data file
to the index file. This is a straight block-for-block transfer to the index file, which is always considered empty
when the open command is issued. When a reference to the data file is made (read or write), the index file
is first consulted if necessary and then the proper data block is read. The index blocks within the data file
are never consulted. Upon receiving a close command, the index file becomes extraneous and is deassigned.
The next open command will recreate the index file from the data file. Index blocks are never modified when
opened for input or input/output.

The procedure is somewhat different if the data file does not exist, that is, opening the file for output. At
this point, there are no index blocks to transfer. The number of index blocks required is calculated and the
index file is initialized. As the data blocks are filled and placed in the data file through the write command,
the index blocks are filled and placed in the index file. Upon receiving the close command, the index blocks
are copied from the index file to the data file where they are found when the file is opened for input or input/
output. The index file becomes extraneous and is deassigned after the index blocks have been copied.

There are distinct advantages to having separate index and data files:

• The index file, which is usually small relative to the data file, may be placed on high speed drum or
Fastband; the data file, on slower but larger FASTRAND devices.

• The index file may be placed on different mass storage devices to minimize queuing and head positioning
on anyone channel/device.

Obviously, more mass storage is required when separate index and data files are maintained; however, this is
only for the duration of the run and is always optional. The user may elect to have ISFMS reference the
index blocks within the data file and no separate index file is established.

The user may also elect to use the main storage index feature. The purpose of the main storage index feature
is to minimize the mass storage accesses when processing an ISFMS file. The advantage of separate index and
data files become less distinct when the main storage index feature is utilized. Appendix A describes the main
storage index feature in detail.

Figure 1-2 shows a data file with its associated index file. The unlabeled areas within the data file correspond
to those in Figure 1-2.

Data File

Ind ex File

Index Index Index Index
Block Block Block Block

1 2 3 4

t , , J
Index Index Index Index
Block Block Block Block

1 2 3 4

Figure 1-2. Data File With Associated Separate Index File

IllIllli

III III~

7780 Rev. 1
UP.NUMBER

1.4.3. Block Organization

UNIVAC 1100 SERIES SYSTEMS

Three basic types of blocks are set up by ISFMS:

(1) data blocks

(2) index blocks

(3) overflow blocks

PAGE REVISION PAGE

The following paragraphs discuss the relationship existing between blocks and also examine relationships existing
within blocks.

A fourth type of block, the information block, is also examined.

1.4.3.1. Data Block

A data block consists of:

• data records

• record keys

• ISFMS control words

The data records and their associated record keys are copies of the user-supplied records and keys. The ISFMS­
supplied control words locate the start of the records, record length, and number of words available within the
block.

Assume that a file has been opened as an output file. This indicates that the file is to be created (no data
existed in it before) and that the records are being submitted sequentially. As the data records are submitted,
they are placed in the data block in inverse order from the rear of the data block. The corresponding record
keys are inserted (along with ISFMS-supplied control words) in ascending order from the start of the block.
When the unused area in the center of the block diminishes to the point at which not enough space is available
for another data record and record key, or when the limit (to allow for later additions) specified in the file
description of the open command is reached, ISFMS writes that block to mass storage, reads the current index
block, and inserts the last record key and data block number into it, that is, the highest record key of that

block.

This process is illustrated in Figure 1-3. The first two words are ISFMS control words pertaining to the block.
Following these two words are the two ISFMS-supplied control words pertaining to the first data record, and
then the record key. This sequence, two control words plus record key, is repeated for each data record. An end
of key sentinel follows. The area between this sentinel and the end of record sentinel is available for additional
records. I mmediately following the end of record sentinel is the last data record received, the next to the last,
and so forth. Data records are not separated by control words or sentinels.

1-7

7780 Rev. 1
UP·NUMBER

C
c
W

B
c
W

NOTES:

B
c
W

III
R R Record
c C Key
W W

1
II J

UNIVAC 1100 SE RIES SYSTEMS

R R Record : : E Data E 1
10 C C Key 0 1 Unused Record

W W K I I 0

III l III : III 1

III III III

(1) CCW indicates a COBOL control word which contains the ACTUAL KEY of that block.

(2) BCW indicates block control words:

PAGE REVISION PAGE

Oat
Ree

_I
I

Ill]
ord

" ,

• Word 1 of the BCW contains the block type (i.e., 0003) in Tl, the number of words of data records in T2, and
the number of words of record keys in T3.

• Word 2 of the BCW contains the relative block number in H 1 and the relative address of the first record key in H2.

(3) RCW indicates record control words:

• Word 1 of the RCW contains the relative block number in H1, the record key length in 84, the relative address of
the next record key in T3, and the leftmost bit is used as a delete flag. The record is marked as deleted if the
delete flag is set to 1.

• Word 2 of the RCW contains the data record length in T2 and the relative address of the data record in T3. If
the delete flag is set in word 1, then word 2 will contain the time and date of deletion.

(4) EOK indicates end of keys sentinel.

(5) EOD indicates end of data sentinel.

Figure 1-3. Data Block

If, at a later date, the file is reopened for input/output, additional records may be inserted into the unused area
within the block. Assuming that this is the correct block and sufficient room exists, the data record is inserted
before the other data records and the end of data sentinel is moved forward. The record keys are searched for
the proper position; when found, all higher record keys, record control words, and the end of keys sentinel
are moved backward the necessary number of words to allow insertion of the new record key and record control

words.

Making the same assumptions as previously except that there is insufficient room within the data block, a some­
what different procedure is followed. Upon finding the logical insert point and determining that insufficient
space exists for the new record, the record control word (RCW) of the record logically preceding the insert
point is altered to point to the current overflow block (assuming the existence of records 4 and 6 and the
insertion of record 5, the RCW of 4 is changed to point to record 5). The new record (record 5) is placed in
the overflow block, as is the RCW of the next logical record (record 6). The same procedure is followed when
inserting a new record logically between two existing overflow records. Thus, every record in the data file is
implicitly linked together and a sequential search is never required, even if the record is in an overflow block.

1.4.3.2. I ndex Block

An index block contains:

• the record keys of the highest ascending, that is, last entered, data record within each data block;

• ISFMS-supplied control information.

1-8

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SE RI ES SYSTEMS 1-9
PAGE REVISION PAGE

Entries are made to index blocks only when the file is being created (output file). Each entry is made when the
data block is full and must be written on mass storage. The record key of the last data record entered in the
data block is retained, the current index block is read, the record key is placed following the record key associated
with the previous data block, and the index block is returned to mass storage.

If the user supplies a main storage index buffer the number of mass storage accesses required for 2ach data block
written on mass storage is reduced from approximately three per data block to approximately one per data block.
The main storage index will maintain the lowest level of index block in the main storage buffer until the time
it becomes necessary to write the index block on mass storage.

Figure 1-4 illustrates the contents of an index block. Note that each record key entry points back to its own
data block, which may contain many data records; hence, it is called a range index.

III
C B B R R Record R R Record R R Record
C C C C C Key C C Key C C Key
W W W W W W W W W

III

NOTES:

(1) CCW indicates a COBOL control word which contains the ACTUAL KEY of that block.

(2) BCW indicates block control words:

• Word 1 contains the block type (j.e., 0002) in Tl and the number of words used for record keys in T3.

• Word 2 is not used.

(3) RCW indicates record key control words:

• Word 1 contains the data block number in H 1, the record key length in S4, and the relative address of the record
key in T3.

• Word 2 is not used.

Figure 1-4. Index Block

When the number of record keys (the highest of each data block) becomes large enough to fill the initial index
block, ISFMS automatically generates a new level of index blocks. The block at level 2 is then used to index
into the level 1 blocks. When the initial block of level 2 is full, a third level is started and the remaining
possible level 2 blocks are filled out, also pointing into level 1 (see Figure 1-5). Control words are implied
by arrows.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-10
PAGE REVISION PAGE

2

•••

(to data blocks containing one data record per block)

Figure 1-5. Multilevel Indexing

ISFMS is capable of handling up to seven such levels. To minimize access time, however, use as few levels
as possible. This may be accomplished by using a small record key and a large block size. The latter implies
more data records per block which reduces the absolute number of index entries (in the form of record keys)
as well as providing for additional index entries per index block. Each additional level of index blocks implies
one additional mass storage access, in addition to the access for the data block. Thus, a 2-level index requires
three mass storage accesses to randomly obtain a data record, a 3-level index requires four accesses, and so forth.
One additional access is required if the desired record is in an overflow block. ISFMS, however, always attempts
to minimize the number of accesses by first examining the block presently in main storage and only accesses mass
storage when necessary.

If the user supplies a main storage index buffer the number of mass storage accesses to access a data block is
decreased by one. Thus, a l-Ievel index requires one mass storage access to randomly obtain a data record,
a 2-level index requires two accesses, a 3-level index requires three accesses, and so forth.

1.4.3.3. Overflow Blocks

An overflow block is similar to a data block. It consists of:

• data records

• record keys

• ISFMS-supplied pointers and parameters

The major difference between a data block and an overflow block is that within an overflow block no attempt
is made to maintain the record keys in ascending sequence; instead, they are stored on a first arrived, first
stored basis. Overflow records, however, while being randomly stored, are not randomly accessed. When a record
is not found in its data block, a link directly into the proper overflow block is picked up and followed. If
more than one overflow record is placed logically between two physically sequential records in the data block,
all are linked together. Thus, any overflow record may be located in a minimum number of accesses.

The execessive use of overflow blocks is the best indication of the need to reform the data file, that is, use
this file as input to create a new file. Overflow block usage may be monitored by means of the Inform com­
mand described in 2.5.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-11
PAGE REVISION PAGE

1.4.3.4. I nformation Block

The information block, generated and maintained by ISFMS, provides various summary information on:

• the starting and ending positions of the various types of blocks;

• information taken from the open command as to lengths and number of records;

• the name and qualifier of the internally assigned index file;

• statistics collected for printout by the Inform command.

Other than allocating space (one block) within the file, the user need not make special allowances for the informa­
tion block. He may not reference it directly.

1.4.4. Indexing Technique

ISFMS uses the indexed sequential method. The term indexed implies that a separate index is built through
which the data records are accessed. The term sequential implies that the record keys within the index are
arranged in ascending order and that the data records are logically sequenced within the data block. This form
of indexed sequential uses a range index; that is, an index entry is made only for that data record having the
highest record key within its block. This imposes an ordering of data records from block to block, where each
block must contain data records which fall within its low-high record key range, and a particular block cannot
overlap the range of any other data block. The exception to this rule is the possible use of overflow blocks.

The major advantages of indexed sequential are its speed and simplicity. Each data record within the file is
equally accessible with a maximum access equal to the number of index levels plus the read of the data block
plus the read of an overflow block, if necessary. A limitation is that it is impossible to build multiple indexes
automatically into the same data records, and file updating can become costly if overflow blocks are used ex­
cessively.

It is possible to build hierarchical data relationships and multiple indexes; however, it becomes the user's respon­
sibility to establish and maintain such structures. If a hierarchy is to exist, there must be some logical relationship
existing between different types of data records. For example, a payroll record and a personnel record have a
logical relationship in that both refer to the same employee. The payroll records may be placed within the
first data file, using Social Security number as the record key (ISFMS will automatically generate an index based
upon Social Security number and the user may always reference this file accordingly). The personnel records
may then be placed within a second data file using employee number as the record key on which the file is
to be indexed. Again, the user may reference this file independently by using employee number. The user may
now develop a cross-reference between these two files by placing their record keys within a data record and
storing this into a third file. This data record has its own record key, for example, employee name, upon
which ISFMS will also automatically generate an index. This example is illustrated in Figure 1-6. R indicates

a data record within the data portion of the file.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

Cross-Reference File

Data

Social

Employee No.

I

Index R: Data Index

Personnel File

Figure 1-6. Hierarchical Data Files

PAGE REVISION PAGE

R Data

Payroll File

If the cross-reference file index is searched on the record key SMITH, ISFMS produces the data record of SM ITH.
Within the data record are two items, each containing a record key. The first is SMITH's Social Security number;
the second is SMITH's employee number. The user may choose either record key (or both) and use it to find
the payroll and/or personnel data record. Thus, the user could choose the employee number of SMITH,#13450,
and use this as the record key for a read request of the personnel file. The index of the personnel file would
be searched for record key #13450 and SMITH's personnel record would be presented. SMITH's Social Security
number could be used in a similar manner. Note that if the proper record key had been known in advance,
the cross-reference file search could have been avoided, and the personnel and/or payroll files entered directly.

A similar example may be developed in which one of the items of the personnel or payroll data record (or
perhaps both) contains the record key of the other data record. This eliminates the need for a third file. For
example, if the payroll file data records contain the employee number and the personnel file data records contain
the Social Security number, complete cross-referencing is possible. Figure 1-7 illustrates this possibility.

Employee No.

Data Data

Social Security No.

Personnel File Payroll Fil

Figure 1-7. Cross-Referenced Files

The user can enter the personnel file index, searching for employee number #13450, and ISFMS will present
the associated data record. The user may extract the item containing SMITH's Social Security number and enter
the payroll file index with this as the record key of the payroll data record. SM ITH's payroll record is also
presented.

The previous examples are purely hypothetical; the user could just as well have indexed and searched both files
on employee name, that is, SMITH. The user could have combined the payroll and personnel records into a
joint record called employee record. The area of file structure and definition must be determined based upon the
user's requirements and operating environment.

1-12

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-1
PAGE REVISION PAGE

2. ISFMS COMMAND REPERTOIRE

2.1. GENERAL

There are three types of files, each distinguished by its use:

(1) input

(2) output

(3) input/output.

For each of these files, ISFMS provides a basic set of open, close, read, and write commands. There is also a

special command, Inform.

These commands, if used through the assembly language, are used in the context of the file control table des­

cribed in Appendix B. If used through COBOL, they are used in the context of the Environment Division. In the

first case, they are called using PROCs; in the second, they are called by the COBOL command ENTER.

There are no functions provided for transferring of data from media; therefore, the normal utility routine of

EXEC that is, @COPY, is used for this purpose. Nor are there functions for reorganization of the file; therefore,
the following procedure is recommended:

(1) Read the file sequentially from FASTRAND mass storage, using ISFMS, and write it on a tape.

(2) Read the tape and, using ISFMS, write the file on FASTRAND mass storage.

Small files may be reorganized directly on FASTRAND mass storage; read the file sequentially and then write
the new file. Naturally, the necessary changes to improve efficiency must have been made to the Environment
Division of the new file.

2.1.1. Main Storage Index

ISFMS has been expanded so that the user may specify that he would like to maintain an index block in main
storage. (See Appendix H for specifics).

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-2
PAGE REVISION PAGE

2.2. OUTPUT FILES

2.2.1. Open Output

Application:

The Open Output command is used to open an output file.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING
20 file-name status-word file-description.

where:

20 is the function code for the Open Output command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Status-word is a word which has a special meaning during the entire time a program is processing a file.

After each function is performed, the status-word will contain information about the success or failure

of the function (see E.2.).

File-description is a fixed-length area (six words) and contains the following information:

• Number of records (estimate)

• Record length

Fixed-length format: length in characters (must be a multiple of six)

Variable-length format: average (estimate) record length in characters (must be a multiple of six)

• Maximum record length

Fixed-length format: o
Variable-length format: maximum record length in characters (must be a multiple of six)

• Record key length in characters (must be a multiple of six)

• Number of additional records per block to be inserted in the data area

• Independent overflow area - IOF (number of overflow records for the whole file)

Format 2 (Assembler):

OPO FCT-address, status-word, file-description.

7780 Rev. 1
UP-NUMBER

U N I V A C 1100 S E R I E S S Y S T EMS 2-3
PAGE REVISION PAGE

where:

OPO is the call to a PROC which generates the function code (20) for the Open Output command. The

PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table for the file. For a detailed layout of the
file control table, see Appendix B.

Status-word and file-description are as described in format 1.

Prerequisite Functions:

There are no prerequisite commands for the Open Output command. Open Output is the first command that

must be issued to ISFMS and failure to do so results in an error message and termination of the run. Never­

theless, there is one prerequisite condition, that the file must be assigned to the run using an EXEC control

card as follows:

@ASG,CP file-name, F2/number/TRK or POS/number

where file-name must be the file-name SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION (see A.1)

if COBOL is used, or the name which occupies words 1 and 2 of the file control table (see Appendix B) if the

assembler is used. The options CP stand for a catalogued public file; the user may replace them with a T for

a temporary file. The number of tracks or positions is discussed in Appendix C.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION; status­

word must be defined as 01 level in the WOR KI NG-STORAG E SECTION with PICTU R E x(6); file-description

must be defined as 01 level in the WORKING-STORAGE SECTION with 02 level-numbers for the number of

records, record length, maximum record length, record key length, addition records per data block, and in­

dependent overflow area (lOF), all with PICTURE H9(10) and VALUE as indicated in Appendix C.

I f the assembler is used, the fi Ie control table must be set up by the user, together with the necessary buffer areas
(see Appendix B). The six words of the file description must be given, as indicated in Appendix C, plus one

word (Fieldata zeros) for the status-word.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.2).

Error Conditions:

The run is aborted if errors (a), (c), (d), (e), or (f) occur (see E .2). For nonfatal errors, the codes 101, 102,

210, 213, or 240 through 247 may appear in the status-word. For an explanation of the error codes, see E.3.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-4
PAGE REVISION PAGE

Operation:

The user supplies the Open Output command with the status-word, the file-name, or the address of the file control
table, depending on the format chosen, and the file description.

The command:

(1) Checks the parameters.

(2) Registers the file and internally assigns an index file on drum if there is enough drum available.

(3) Sets up an internal file control table with entries for the internally assigned index file.

(4) Opens the files.

(5) Initializes the index blocks and the data blocks. If the user has supplied a mass storage index buffer,
that area will also be initialized.

(6) Returns control to the user program with the status in the status-word.

2.2.2 Write Random Output

Application:

The Write Random Output command is used to write a record and its record key into an output file.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING
24 file-name record-area record-key-area.

where:

24 is the function code for Write Random Output command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record to be written is located.

Record-key-area is the user program area in which the key of the record to be written is located.

Format 2 (Assembler):

WR RO FCT-address, record-area, record-key-area.

where:

WR RO is the call to a PROC which generates the function code (24) for Write Random Output. The
PROC also generates the address and character length of each parameter.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-5
PAGE REVISION PAGE

FCT-address is the address of the user-built file control table for the file. For a detailed layout of the

file control table, see Appendix B.

Record-area and record-key-area are as described in format 1.

Prerequisite Function:

The file must have been opened for output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and
record-area must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (number of
characters in the record).

Record-key-area must also be defined as 01 level in the same section with PICTURE X (number of characters
in the record key). Note that if the key consists of numeric characters, 9 may be used in place of X in the

PICTURE clause. If the number of characters in the record or record key is not a multiple of six (word
boundaries), FILLER must be used appropriately.

If the assembler is used, the address of the file control table is given and the appropriate areas reserved (number

of words) for the record and the record key. I n both cases, the key of the records to be written must be
ascending.

Exit Conditions:

Upon return to the user program, the status-word contains one of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area and record-key-area still contain the record and record key just written.

Error Conditions:

The run is aborted if error (b) or (c) occurs (see E.2). For nonfatal errors, the codes 101, 102, 210, 211, 230,

240, 248, or 362 appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Write Random Output command with the file-name or the address of the file control table,

depending on the format chosen, and the areas which contain the record to be written and its associated
record key.

The command:

(1) Checks the parameters.

(2) Transfers the record and the record key into the data block.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SE RI ES SYSTEMS 2-6
PAGE REVISION PAGE

(3) I ncrements the number of records written in the file by one (for the statistics stored in the information
block).

(4) Writes the data block, when filled, on FASTRAND mass storage and initializes a new data block.

(5) Updates the index blocks.

(a) Without main storage index:

Reads the index block from magnetic drum or FASTRAND mass storage and updates it after checking
for the seventh and maximum index level which, if occurring, causes an error code to be stored
in the status word.

Writes back on magnetic drum or FASTRAND mass storage the index block and initializes a new
index block when the previous one is filled.

(b) With main storage index: (See Appendix H.)

Updates the main storage index block after checking for the seventh and maximum index level which,
if occurring, causes an error code to be stored in the status word.

The main storage index buffer will be written to mass storage only when a new key is to be in­
serted and there is insufficient space in the current buffer. Writing the main storage index buffer on
magnetic drum or FASTRAND mass storage will cause the buffer to be re-initialized and updated.

(6) Returns control to the user program with the status in the status-word.

2.2.3. Close Output

Application:

The Close Output command is used to close an output file. I t also adds a sentinel record to the file so that
the user can process this file sequentially without encountering a fatal COBOL end of file condition. The ISFMS
one word sentinel record and its associated key are words of all sevens. If the last record supplied by the user
has a key of all sevens, ISFMS will not add its sentinel record to the file.

Format 1 (COBOL):

Enter ISFMS SUBROUTINE REFERENCING
27 file-name inform-area record-key-area.

where:

27 is the function code for Close Output command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-7
PAGE REVISION PAGE

I nform-area is the area into which information will be placed as to what has been done to the file. This

area is required on all Close commands be they on input, output, or input/output files or the special

command, I nform. The inform-area is of fixed length and must be nine words. It contains the following
information pertaining to the status of the file as a whole; all information is relative to the time the file

was initially opened for output:

• Number of blocks

• Number of index blocks

• Number of overflow blocks (IOF)

• Number of records

• Number of records in independent overflow area (lOF)

• Number of records deleted

• Number of records read

• Number of records read from IOF

• Number of records written

Record-key-area must be defined, but need not be initialized; it enables ISFMS to write the sentinel record.

Format 2 (Assembler):

CLO FCT-address, inform-area, record-key-area.

where:

CLO is the call to a PROC which generates the function code (27) for the Close Output command. The

PROC also generates the address and character length of each parameter.

I nform-area and record-key-area are as described in format 1.

Prerequisite Functions:

The file must have been opened for output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

inform-area must be defined as 01 level in the WORKING-STORAGE SECTION with 02 level-numbers for the
nine words of information described above (each with PICTUR E H9 (10)). Record-key-area must be defined

as 01 level in the same section with PICTURE X (number of characters in the record-key) and FILLER with

the appropriate PICTURE to make the number of characters a multiple of six (word boundaries).

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-8
PAGE REVISION PAGE

If the assembler is used, the address of the file control table is given and the appropriate areas reserved (number
of words) for the inform-area and the record-key-area.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The inform-area contains statistics, as described under format 1.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For nonfatal errors, the codes 101, 102, 230,
240, or 248 may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Close Output command with the file-name or the address of the file control table, depend­
ing on the format chosen, the area which will contain the statistics, and the area for the record key.

The command:

(1) Checks the parameters.

(2) Writes a sentinel record if necessary.

(3) Writes the data block on FASTRAND mass storage.

(4) Transfers the index blocks from magnetic drum to FASTRAND mass storage.

(5) I nitializes all IOF blocks.

(6) Creates and writes the information block.

(7) Closes the magnetic drum.

(8) Closes FASTRAND mass storage.

(9) Returns control to the user program with the status in the status-word.

2.3. INPUT FILES

2.3.1. Open Input

Application:

The Open Input command is used to open input files.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SE RI ES SYSTEMS 2-9
PAGE REVISION PAGE

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

10 file-name status-word.

where:

10 is the function code for Open Input command.

File-name is the name of the file which had been created as an output file and which has been SELECTed

in the INPUT-OUTPUT SECTION.

Status-word is the word which contains information about the success or failure of the function (see E.3).

Format 2 (Assembler):

OPI FCT-address, status-word.

where:

OPI is the call to a PROC which generates the function code (10) for the Open I nput command. The
PROC also generates the address and the character length of each parameter.

FCT-address is the address of the user-built file control table for the file. For a detailed layout of the
file control table, see Appendix B.

Status word is described in format 1.

Prerequisite Functions:

There is no prerequisite command for the Open I nput command. Open Input is the first command that must

be issued to ISFMS and failure to do so results in an error message and termination of the run. Nevertheless,
there are the prerequisite conditions that the file has been created as an output file; it mayor may not be

catalogued, and it must have been assigned to the run using an EXEC control card as follows:

@ASG,A file-name, F2/number/TRK or POS/number

The A option represents an already catalogued file (it could be replaced by T - for temporary file). File­

name is the same name as the one on the @ASG control card used to create the output file, and which will

appear in the INPUT-OUTPUT SECTION, to which the SELECTed file-name is ASSIGNed (see A.1) if COBOL

is used, or the name which occupies words 1 and 2 of the file control table (see Appendix B) if the assembler

is used.

Status-word must contain a right-justified Fieldata value with the following meaning:

o The user is asking for the index blocks to be copied from FASTRAND mass storage to magnetic
drum (FH-432); but, if there is not enough space, they are left on FASTRAND mass storage.
ISFMS automatically determines the number of tracks required and internally submits an @ASG.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-10
PAGE REVISION PAGE

The user is asking for the index blocks to be copied from FASTRAND mass storage to magnetic
drum (FH-432); however, if there is not enough space, control is returned to the user's pro­
gram and status-word contains an error code.

2 The user is asking for the index blocks to be left on FASTRAND mass storage.

If the proper value (Fieldata 0, 1 or 2) has not been placed in the status word by the user, ISFMS will force
the default value of 0 to the status word.

Finally, the number of tracks, or positions, specifies the length of the file.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION and
status-word must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X(6).

If the assembler is used, the file control table must be set up by the user, together with the necessary buffer
areas (see Appendix B), plus one word for the status-word, as explained in format 1.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The first record is not read by this command.

Error Conditions:

The run is aborted if the errors (a), (c), (d), (e), or (f) occur (see E.2). For nonfatal errors, the codes 101
or 102 may appear in the status word. For an explanation of the error codes, see E.3.

Operation:

The user suppl ies the Open I nput command with the status-word and the file-name or the address of the file

control table, depending on the format chosen.

The command:

(1) Checks the parameters.

(2) Opens the file.

(3) Reads the information block from FASTRAND mass storage and transfers the information to an internally

set up file control table.

(4) May assign and open the index file, based on the information contained in the status-word.

(5) Will move the highest level index block to main storage, if the user has supplied a main storage index buffer.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-11
PAGE REVISION PAGE

(6) Reads the first data block from FASTRAND mass storage.

(7) Returns control to the user program with the status in the status-word.

2.3.2. Read Sequential Input

Application:

The Read Sequential Input command is used to read the file sequentially, that is, according to the ordering

of the record keys.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

11 file-name record-area record-key-area.

where:

11 is the function code for Read Sequential Input command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record is stored by the Read Sequential Input command.

Record-key-area is the user program area in which the key of the record just read is stored by the Read

Sequential I nput command.

Format 2 (Assembler):

RDSI FCT-address, record-area, record-key-area.

where:

RDSI is the call to a PROC which generates the function code (11) for the Read Sequential I nput com­

mand. The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table for the file. For a detailed layout of the

file control table, see Appendix B.

Record-area and record-key-area are as descri bed in format 1.

Prerequisite Functions:

The file must have been opened for input.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

record-area must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (number of

characters in the record). Record-key-area must also be defined as 01 level in the same section with PICTU REX

(number of characters in the record key). If the number of characters in the record or in the record key is

not a multiple of six (word boundaries), FILLER must be used appropriately.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-12
PAGE REVISION PAGE

If the assembler is used, the address of the file control table must be given and the appropriate areas reserved
(number of words) for the record and the record key.

Regardless of the format used, a Read Sequential Input command following the Open Input command auto­
matically releases the first record of the file to the user program. The user does not have to initialize the key
in order to obtain the first record. Before issuing a Read Sequential Input command at any other point in the
user program, a Read Random Input command must be given to initiate input at the desired point. For example,
to begin sequential processing with a data record having a record key of 100, then record 100 must be read
with a Read Random Input command and sequential processing may proceed from then on. On a Read Sequential
I nput command, the record key of the newly read record is placed in the record-key-area, which automatically
prepares the way for the user to issue the Read Sequential Input command to read the next record.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contains the record read and record-key-area contains its key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For nonfatal errors, the codes 101, 230, 248, 350,
or 360 may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Read Sequential I nput command with the file-name or the address of the file control
table, depending on the format chosen and the areas which contain the record and its key after the command
is executed.

The command:

(1) Checks the parameters.

(2) Checks for more data records in the data block; if not found, it reads the next data block from FASTRAND
mass storage.

(3) Checks for the sentinel record.

(4) Checks whether the record exists or has been deleted.

(5) Checks if the record is an overflow record and, if it is, the number of records read from the 10F area
is incremented by one (for statistics stored in the information block).

(6) Transfers the record to the user-specified area.

(7) Increments the number of records read by 1.

(8) Returns control to the user program with the status in the status-word.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-13
PAGE REVISION PAGE

2.3.3. Read Random Input

Application:

The Read Random I nput command presents the requested record, as specified by the record key, to the user
program.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING
12 file-name record-area record-key-area.

where:

12 is the function code for the Read Random Input command.

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record is stored by the Read Random Input command.

Record-key-area is the user program area in which the user has placed the key of the record to be read.

Format 2 (Assembler):

R DR I F CT -address, record-area, record-key-area.

where:

RDRI is the call to a PROC which generates the function code (12) for the Read Random Input com­
mand. The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table for the file. For a detailed layout of the

fi Ie control table, see Appendix B.

Record-area and record-key-area are as described in format 1.

Prerequisite Functions:

The file must have been opened for input.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and
record-area must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (number of
characters in the record). Record-key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). If the number of characters in the record or in the record key is

not multiple of six (word boundaries), FI LLER must be used appropriately.

I f the assembler is used, the address of the file control table must be given and the appropriate areas reserved
(number of words) for the record and the record key.

Before issuing a Read Random I nput command, the record-key-area must contain the proper key.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-14
PAGE REVISION PAGE

A Read Random Input command may follow a Read Sequential Input command and vice versa. A Read Sequential
Input command following a Read Random Input command reads the next logical record that follows the last

previous record, that is, the one obtained by a Read Random Input command.

Exit Conditions:

Upon return to the user program, the status word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contai ns the record read and the record-key-area sti II contains the given record key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For the nonfatal errors, the codes 101, 102,230,

240, 248, or 361 may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Read Random Input command with the file-name or the address of the file control table,

depending on the format chosen, the area which will contain the record after the function is performed, and the

area which contains the specified key.

The command:

(1) Checks the parameters.

(2) Checks the record key to determine if the data record should reside in the data block which is already

in main storage; if yes go to (7), otherwise continue with (3).

(3) Finds the index block in which the given record key exists (range index).

(4) Reads this index block from magnetic drum.

(5) Matches the record key with a key in the index block, which then points to a data block.

(6) Reads this data block from FAST RAND mass storage.

(7) Searches for the record in this data block and, if not found, continues the search in the overflow block.

(8) Transfers the record, if found, into the user-specified record-area.

(9) I ncrements the number of records read by 1.

(10) Returns control to the user program with the status in the status-word.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-15
PAGE REVISION PAGE

2.3.4. Close Input

Appl ication:

The Close I nput command is used to close an input file. I n the case of sequential processing, it is not necessary

to have processed the fi Ie to the end.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

17 file-name inform-area.

where:

17 is the function code for the Close Input command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Inform-area is the area which will contain information on what has been done to the file.

For a description of this area, see 2.2.3.

Format 2 (Assembler):

CLI FCT-address, inform-area.

where:

eLI is the call to a PROC which will generate the function code (17) for the Close Input command. The

PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table for the file.

I nform-area is the area which will contain information on what has been done to the file (see 2.2.3).

Prerequisite Functions:

The file must have been opened for input.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

inform-area must be defined as 01 level in the WORKING-STORAGE SECTION, with 02 level-numbers for the

nine words of information described in 2.2.3, each with PICTURE H9(10).

If the assembler is used, the address of the file control table is given and the appropriate nine-word area reserved

for the inform-area.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-16
PAGE REVISION PAGE

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The inform-area contains statistics as described in 2.2.3.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error codes 230, 248 may appear
in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Close Input command with the file-name or the address of the file control table, depending
on the format chosen, and the area which will contain the statistics.

The command:

(1) Checks the parameters.

(2) Transfers the statistics to the user-specified inform-area.

(3) Closes and frees the magnetic drum, if it was used for the index file.

(4) Closes FASTRAND mass storage file.

(5) Returns control to the user program with the status in the status-word.

2.4. INPUT/OUTPUT FILES

2.4.1. Open Input/Output

Appl ication:

The Open Input/Output command opens an input/output file.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING
30 file-name status-:word.

7780 Rev. 1
U P.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-17
PAGE REVISION PAGE

where:

30 is the function code for the Open I nput/Output command. File-name is the name of the file which
has been created as output before and which has been SELECTed in the INPUT-OUTPUT SECTION.

Status-word is the word which contains information about the success or failure of the function (see E.3).

Format 2 (Assembler):

OPIO FCT -address, status-word.

where:

OPIO is the call to a PROC which generates the function code (30) for the Open Input/Output command.
The PROC also generates the address and the character length of each parameter.

FCT-address is the address of the user-built file control table for the file. For a detailed layout of the
file control table see Appendix B. Status-word is as described in format 1.

Prerequisite Functions:

There are no prerequisite command for the Open Input/Output command. Open Input/Output is the first com­
mand that must be issued to ISFMS and failure to do so results in an error message and termination of the
run. Nevertheless, there are the prerequisite conditions that the file has been created as output and mayor may

not be catalogued and that it will be assigned to the run using an EXEC control card as follows:

@ASG,A file-name, F2/number/TRK or PaS/number

The A option represents an already catalogued file (it could be replaced by T - for temporary file). File-name
is the same name as the one on the @ASG control card used to create the output file, and which will appear

in the INPUT-OUTPUT SECTION, to which the SELECTed file-name is ASSIGNed (see A.1) if COBOL is used,
or the name which occupies words 1 and 2 of the file control table (see Appendix B) if the Assembler is used.

Status-word must contain a right-justified Fieldata value, with the following meaning:

o

2

The user is asking for the index blocks to be copied from FASTRAND mass storage to magnetic
drum (FH-432); but if there is not enough space, they are left on FAST RAN D mass storage.
ISFMS automatically determines the number of tracks required and internally submits an @ASG.

The user is asking for the index blocks to be copied from FASTRAND mass storage to magnetic
drum (FH-432); however, if there is not enough space, control is returned to the user's program
and status-word contains an error code.

The user is asking for the index blocks to be left on FASTRAND mass storage.

If the proper value (Fieldata 0, 1 or 2) has not been placed in the status word by the user, ISFMS will force
the default value of 0 to the status word.

Finally, the number of tracks, or positions, specifies the length of the file.

7780 Rev. 1
UP.NUMBER

Entry Conditions:

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION and
status-word must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (6).

If the assembler is used, the file control table must be set up by the user, together with the necessary buffer
areas (see Appendix B), plus one word for the status-word, as explained in format 1.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The first record is not read by this command.

Error Conditions:

The run is aborted if any of the errors (a), (c), (d), (e), or (f) occurs (see E.2). For the nonfatal errors, the
codes 101 or 102 may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Open Input/Output command with the status-word and the file-name or the address of the
file control table, depending on the format chosen.

The command:

(1) Checks the parameters.

(2) Opens the file.

(3) Reads the information block from FASTRAND mass storage and transfers the information to an internally
set up file control table.

(4) May assign and open the index file, based on the information contained in the status-word.

(5) Will move the highest level index block to main storage, if the user has supplied a main storage index buffer.

(6) Reads the first data block from FASTRAND mass storage.

(7) Returns control to the user program with the status in the status-word.

2-18

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-19
PAGE REVISION PAGE

2.4.2. Read Sequential Input/Output

Application:

The Read Sequential Input/Output command is used to read the file sequentially, that is, according to the order­

ing of the record keys.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

31 file-name record-area record-key-area.

where:

31 is the function code for Read Sequential Input/Output command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record is stored by the Read Sequential Input/Output

command.

Record-key-area is the user program area in which the key of the record just read is stored by the Read

Sequential I nput/Output command.

Format 2 (Assembler):

R OSlO FCT-address, record-area, record-key-area.

where:

ROSIO is the call to a PROC which generates the function code (31) for the Read Sequential Input/Output

command. The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table for the file.

Record-area and record-key-area are as described in Format 1.

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

record-area must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (number of
characters in the record). Record-key-area must also be defined as 01 level in the same section with PICTU RE X

(number of characters in the record key). I f the number of characters in the record or in the record key is not

a multiple of six (word boundaries), FILL E R must be used appropriately.

If the assembler is used, the address of the file control table must be given and the appropriate areas reserved

(number of words) for the record and the record key.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-20
PAGE REVISION PAGE

Regardless of the format used, a Read Sequential I nput/Output command following the Open Input/Output
command automatically releases the first record of the file to the user program. The user does not have to
initialize the key in order to obtain the first record. Before issuing a Read Sequential Input/Output command at
any other point in the user program, a Read Random Input/Output command must be given to initiate input
at the desired point. For example, to begin sequential processing with a data record having a record key of
100, then record 100 must be read with a Read Random Input/Output command and sequential processing may
proceed from then on. On a Read Sequential I nput/Output command, the record key of the newly read record
is placed in the record-key-area, which automatically prepares the way for the user to issue the Read Sequential
I nput/Output command to read the next record.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contains the record read and record-key-area contains its key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For the nonfatal errors, the codes 101, 230, 240,
248, 350, or 360 may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Read Sequential I nput/Output command with the file-name or the address of the file control
table, depending on the format chosen, and the areas which will contain the record and its corresponding key
after the command is executed.

The command:

(1) Checks the parameters.

(2) Checks for more data records in the data block; if not found, it reads the next data block from FASTRAND
mass storage.

(3) Checks for the sentinel record.

(4) Checks whether the record exists or has been deleted, in which case it continues to the next record.

(5) Checks if the record is an overflow record and, if it is, the number of records read from the IOF area
is incremented by 1 (for statistics stored in the information block).

(6) Transfers the rec·ord to the user-specified area.

(7) I ncrements the number of records read by 1.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-21
PAGE REVISION PAGE

(8) Updates an entry in the internal file control table for the last function with an R for read.

(9) Returns control to the user program with the status in the status-word.

2.4.3. Read Random Input/Output

Application:

The Read Random I nput/Output command presents the requested record, as specified by the record key, to
the user program.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING
32 file-name record-area record-key-area.

where:

32 is the function code for the Read Random Input/Output command.

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record is stored by the Read Random Input/Output
command.

Record-key area is the user program area in which the key of the record to be read is located.

Format 2 (Assembler):

RDRIO FCT-address, record-area, record-key-area.

where:

RDRIO is the call to a PROC which generates the function code (32) for the Read Random Input/Output
command. The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table.

Record-area and record-key-area are as described in format 1. For a detailed layout of the file control
table, see Appendix B.

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

record-area must be defined as 01 level in the WOR KING-STORAGE SECTION with PICTURE X (number of
characters in the record). Record-key-area must also be defined as 01 level in the same section with PICTURE X

(number of characters in the record key). If the number of characters in the record or in the record key is not
a multiple of six (word boundaries), FI LLER must be used appropriately.

7780 Rev. 1
U P-NUM B ER

UNIVAC 1100 SERIES SYSTEMS 2-22
PAGE REVISION PAGE

If the assembler is used, the address of the file control table must be given and the appropriate areas reserved

(number of words) for the record and the record key.

Before issuing a Read Random I nput/Output command, the record-key-area must contain the proper key.

A Read Random I nput/Output command may follow a Read Sequential I nput/Output command and vice versa.
A Read Sequential Input/Output command following a Read Random Input/Output command reads the next
logical record that follows the last previous record, that is, the one obtained by a Read Random Input/Output

command.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contains the record read and the record-key-area still contains the given record-key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2) or the nonfatal error codes 101, 102, 230, 240,

248, or 361 may appear in the status word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Read Random Input/Output command with the file-name or the address of the file control
table, depending on the format chosen, the area which will contain the record after the function is performed,

and the area which contains the specified key.

The com mand :

(1) Checks the parameters.

(2) Checks the record key to determine if the data record should reside in the data block which is already in

main storage; if yes go to (7), otherwise continue with (3).

(3) Finds the index block in which the given record key exists (range index).

(4) Reads this index block from magnetic drum.

(5) Matches the record key with a key in the index block, which then points to a data block.

(6) Reads this data block from FASTRAND mass storage.

(7) Searches for the record in this data block and, if not found, continues the search in the overflow block.

(8) Transfers the record, if found, into the user-specified record-area.

(9) Increments the number of records read by 1.

7780 Rev. 1
U P-NUM SER

UNIVAC 1100 SERIES SYSTEMS 2-23
PAGE REVISION PAGE

(10) Updates an entry in the internal file control table for the last function with an R for read.

(11) Returns control to the user program with the status in the status-word.

2.4.4. Write Sequential Input/Output

Application:

The Write Sequential I nput/Output command rewrites the record which was accessed with the last Read Input/
Output command, either Random or Sequential.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

33 file-name record-area record-key-area.

where:

33 is the function code for Write Sequential I nput/Output command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record to be written is located.

Record-key-area is the user program area in which the key of the record to be written is located.

Format 2 (Assembler):

WRSIO FCT-address, record-area, record-key-area.

where:

WRSIO is the call to a PROC which generates the function code (33) for Write Sequential Input/Output

command. The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table.

Record-area and record-key-area are as described in format 1.

Prerequisite Functions:

The file must have been opened for input/output and the previous command must be either a Read Random

I nput/Output or a Read Sequential Input/Output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

record-area must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (number of
characters in the record). Record-key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). I f the key consists of numeric characters, 9 may be used in place of X
in the PICTURE. If the number of characters in the record or in the record key is not a multiple of six (word
boundaries), FI LLER must be used appropriately.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-24
PAGE REVISION PAGE

If the assembler is used, the address of the file control table must be given and the appropriate areas reserved

(number of words) for the record and record key.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area and record-key-area still contain the record and record key just written. This key has remained
unchanged since the last Read Input/Output command.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For the nonfatal errors, the codes 101, 230,
240, 248, or 363 may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Write Sequential Input/Output command with the file-name or the address of the file
control table, depending on the format chosen, and the areas which contain the record to be written and its
record key.

The command:

(1) Checks the parameters.

(2) Checks if the last command was Read Input/Output.

(3) Checks for a match of the key of the record previously read with the key of the record to be wr.itten.

(4) Checks for a match of the record length with the length of the record previously read.

(5) Transfers the record into the proper area as determined by the key.

(6) Rewrites the current data block on FASTRAND mass storage.

(7) Updates the entry in the internal file control table for the last function with a W for write.

(8) Returns control to the user program with the status in the status-word.

2.4.5. Write Random Input/Output

Appl ication :

The Write Random Input/Output command adds a new record to the file. If the file already contains a record
with the same key, the existing record is not overwritten.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-25

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

34 file-name record-area record-key-area.

where:

34 is the function code for the Write Random Input/Output command.

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record to be written is located.

PAGE REVISION PAGE

Record-key-area is the user program area which contains the key of the record to be written.

Format 2 (Assembler):

W R RIO F CT -address, record-area, record-key-area.

where:

WRRIO is the call to a PROC which generates the function code (34) for the Write Random Input/Output

command. The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table. For a detailed layout of the file control
table, see Appendix B.

Record-area and record-key-area are as described in format 1.

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

record-area must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (number of

characters in the record).

Record-key-area must also be defined as 01 level in the same section with PICTURE X (number of characters

in the record key). If the number of characters in the record or in the record key is not a multiple of six

(word boundaries), FI LLER must be used appropriately.

If the assembler is used, the address of the file control table must be given and the appropriate areas reserved

(number of words) for the record and the record key.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-26
PAGE REVISION PAGE

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area and record-key-area still contain the record and record key just written.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error codes 101, 102, 212, 230, 240

248, or 364 may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Write Random I nput/Output command with the file-name or the address of the file control

table, depending on the format chosen, plus the areas which contain the new record and its key.

The command:

(1) Reads this record randomly and checks if it already exists in the file. If so, error status 364 (see Table E-1)

is returned.

(2) Checks if the read random in (1) required entry into an overflow block, the data block is known to be
full and the record is automatically placed in an overflow block. If the read random in (1) did not require

entry into an overflow block, an attempt is made to place the record in its proper data block. The function
determines whether this block is already in main storage, in which case it determines if there is space

available in this data block for a subsequent transferring of the record into it and if filled, the writing
of the data block on FASTRAND mass storage. If these conditions are not met, the procedure for the

IOF is repeated.

(3) Updates the entry in the internal file control table for the last function with a W for write.

(4) I ncrements the number of records written by 1.

(5) Returns control to the user program with the status in the status-word.

2.4.6. Write Random Delete Input/Output

Application:

The Write Random Delete I nput/Output command replaces a part of the record key control words with the

date of deletion (date and time of day). The record key and record itself are not altered.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-27

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

36 file-name record-key-area.

where:

36 is the function code for the Write Random Delete I nput/Output command.

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION.

PAGE REVISION PAGE

Record-key-area is the user program area which contains the key of the record to be deleted.

Format 2 (Assembler):

WR R D FCT-address, record-key-area.

where:

WR R D is the call to a PROC which generates the function code (36) for the Write Random Delete I nput/

Output command. The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table. For a detailed layout of the file control

table, see Appendix B.

Record-key-area is the user program area which contains the key of the record to be deleted.

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

record-key-area must be defined as 01 level in the WORKING-STORAGE SECTION with PICTURE X (number
of characters in the record). If this number of characters is not a multiple of six (word boundaries), F I LLE R

must be used appropriately.

If the assembler is used, the address of the file control table is given and the appropriate area reserved (number

of words) for the record key. In both cases, the record-key-area contains the key of the record to be deleted.

Exit Conditions:

Upon retu rn to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

Key control word 1 has bit 35 set to 1; key control word 2 contains the date and time of the data deletion.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-28
PAGE REVISION PAGE

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error codes 101, 102, 230, 248, or
361 may appear in the status-word. For explanation of the error codes, see E.3.

Operation:

The user supplies the Write Random Delete I nput/Output command with the file-name or the address of the
file control table, depending on the format chosen and the area which contains the key of the record to be
deleted.

The command:

(1) Reads randomly the record to be deleted.

(2) Sets the key control words to "deleted".

(3) Writes back the data block on FASTRAND mass storage.

(4) Updates the entry for the last function in the internal file control table with W for write.

(5) I ncrements the number of records deleted by 1.

(6) Returns control to the user program with the status in the status-word.

2.4.7. Close Input/Output

Application:

The Close Input/Output command is used to close an input/output file. In the case of sequential processing,
it is not necessary to have processed the file to the end.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING
37 file-name inform-area.

where:

37 is the function code for the Close Input/Output command.

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION.

I nform-area is the area which contains information on what has been done to the file. For a description
of this area, see 2.2.3.

7780 Rev. 1
UP-NUMBER

UN I V A C 1100 S E R I E S S Y S T EMS 2-29
PAGE REVISION PAGE

Format 2 (Assembler):

CLIO FCT-address, inform-area.

where:

CLIO is the call to a PROC which generates the function code (37) for the Close Input/Output command.

The PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table.

Inform-area is the area which contains information on what has been done to the file (see 2.2.2).

Prerequisite Functions:

The fi Ie must have been opened for input/output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and
inform-area must be defined as 01 level in the WORKING-STORAGE SECTION, with 02 level-numbers for the
nine words of information described in 2.2.3, each with PICTURE H9(10).

If the assembler is used, the address of the file control table is given and the appropriate nine-word area reserved
for the inform-area.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The inform-area contains statistics, as described in 2.2.3.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error codes 101, 230, or 248
may appear in the status-word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Close Input/Output command with the file-name or the address of the file control table,
depending on the format chosen and the area which will contain the statistics.

The command:

(1) Checks the parameters.

(2) Reads the information block from FASTRAND mass storage.

7780 Rev. 1
U P-NUM SER

UNIVAC 1100 SERIES SYSTEMS 2-30
PAGE REVISION PAGE

(3) Updates the number of records in the file.

(4) Transfers the statistics to the user-specified inform-area.

(5) Writes the information block back on FASTRAND mass storage.

(6) Closes FASTRAND mass storage.

(7) Closes the index-file, if it had been opened.

(8) Returns control to the user program with the status in the status-word.

2.5. INFORM COMMAND

Appl ication:

The inform command provides the user with the ability to obtain information about the status of the file during

processing.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING
77 file-name inform-area.

where:

77 is the function code for the Inform command.

File-name is the name of the file SELECTed and the INPUT-OUTPUT SECTION.

Inform-area is the area which contains information on what has been done to the file. For a description of

this area, see 2.2.3.

Format 2 (Assembler):

INFORM FCT-address, inform-area.

where:

INFORM is the call to a PROC which generates the function code (77) for the Inform command. The
PROC also generates the address and character length of each parameter.

FCT-address is the address of the user-built file control table.

Inform-area is the area which contains information on what has been done to the file (see 2.2.3).

Prerequisite Functions:

The file must be in an open state.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-31
PAGE REVISION PAGE

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT-OUTPUT SECTION, and

inform-area must be defined as 01 level in the WORKING-STORAGE SECTION, with 02 level-numbers for the

nine words of information described in 2.2.3, each with PICTURE H9(10).

If the assembler is used, the address of the file control table is given and the appropriate nine-word area reserved

for the inform-area.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E .3).

The inform-area contains statistics as described in 2.2.3.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E .2), or the nonfatal error code 230 may appear in the
status-word. For an explanation of this error code, see E.3.

Operation:

The user suppl ies the I nform command with the file-name or the address of the file control table, depending on

the format chosen and the area which contains the statistics.

The command:

(1) Checks the parameters.

(2) Transfers the statistics which are stored in an internally built file control table into the user-specified

inform-area.

(3) Returns control to the user program with the status in the status-word.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS A-l
PAGE REVISION PAGE

APPENDIX A. COBOL INTERFACE
(NON AMERICAN

A.1. IDENTIFICATION DIVISION

NATIONAL

STANDARD COBOL)

This contains the standard information of every COBOL program.

A.2. ENVI RONMENT DIVISION

CONFIGURATION SECTION

This section contains the standard information of every COBOL program.

INPUT-OUTPUT SECTION

In FI LE-CONTROL, the user, besides assigning the card reader, printer, and so forth, has to SELECT his file-name

and ASSIGN it to the external MASS-STORAGE file-name, that is, the file name which appears on the @ASG
card. The user must specify that the ACCESS MODE is RANDOM and give a data-name to the ACTUAL KEY.
This data-name is the one with which the blocks are written on MASS STORAGE, and must be defined with
PICTURE H9(10) in the WORKING-STORAGE SECTION of the Data Division. The ACTUAL KEY should not

be confused with the real record key.

A.3. DATA DIVISION

FILE SECTION

The FD for the file-name specifies:

BLOCK CONTAINS 1 RECORD 1 CONTROL WORD

LABEL RECORD IS FORMOO

DATA RECORD is a data-name for the buffer area in which the ISFMS blocks are read to or written
from. The buffer size is either 1/4, 1/2, or 1 track.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS A-2
PAGE REVISION PAGE

One software control word is subtracted from each of these lengths. This makes the lengths respectively 2682,

5370, and 10746 characters long, and it is given in the PICTURE for the buffer data-name.

WORKING-STORAGE SECTION

The ACTUAL KEY is described in level-number 77 as having PICTURE H9(10). Next on the 01 level are the

areas, describing the record-area and the record-key-area. FI LLER is used, when necessary, to make the lengths

of the above areas a multiple of six (word boundaries). Following this, also on the 01 level, are the file-description,

the status-word, and the inform-area. The file-description contains, on 02 levels, the following:

(1) number of records, with PICTURE H9(10) and the approriate VALUE;

(2) record-length, with PICTUR E H9(10) and VALUE the length in characters (a multiple of six);

(3) maximum record-length, with PICTURE H9(10) and VALUE 0 for fixed length or length in characters

(a multiple of six);

(4) record-key-Iength, with PICTU R E H9(10) and VALUE the length in characters (a multiple of six);

(5) number of additional records, with PICTURE H9(10) and VALUE evaluated as in C.2, formula (9);

(6) independent overflow area, with PICTURE H9(10) and VALUE the number of records that are to be written

in updating runs, as in C.2, formula (6).

The status-word contains, on the 02 level, the following:

(1) function code, with PICTURE X(3);

(2) error code, with PICUTRE X(3) which contains, on the 03 level, the following:

(a) error-class, with PI CTU REX; and

(b) error number, with PICTURE X(2).

For a description of error codes (class and number), see Appendix E.

The inform-area contains, on the 02 level, the information passed with every Close command as well as the

special command Inform. This area will be nine words (see 2.2.3) each with PICTUR E H9(10).

The main storage index feature is optional and if used, it requires an area described on the 01 level. This area
must be equal to (or greater than) the buffer area reserved for the DATA RECORD as it is described in the

FILE SECTION.

A.4. PROCEDURE DIVISION

ISFMS is used through COBOL by the ENTER verb in the following way:

ENTER ISFMS SUBROUTINE REFERENCING

Parameter-1 Parameter-2 Parameter-3 [Parameter-4]

where:

Parameters are as explained in Section 2. A sample program is given in Appendix D.

7780 Rev. 1
U P.NUMBER

UNIVAC 1100 SERIES SYSTEMS 8-1
PAGE REVISION PAGE

APPENDIX B. ASSEMBLER

INTERFACE

B.1. GENERAL

This appendix describes the assembler/ISFMS interface. This interface is available through a set of assembler
PROCs (see Section 2 for the individual commands or Appendix F for the exact calling sequence). The symbolics
of these PROCs are maintained in file 2 of the ISFMS release tape. The assembler program must be collected
with an ISFMS relocatable element assembled for American National Standard COBOL (Fieldata) interface (also
available in file 2). Additionally, the American National Standard COBOL (Fieldata) file handler (CFH) must
be available at collection time. To provide proper interface with ISFMS, the user must include the following
in his assembler program:

(1) A fi Ie control table (FCT) for the fi Ie;

(2) EQUF statements specifying the lengths of parameters used in the PROC calls;

(3) Reserves for the buffer areas and the parameters used in the PROC calls.

The above information corresponds to the information automatically generated by the data division of COBOL.

B.2. FILE CONTROL TABLE (FCT)

A FCT is required by the CFH. The following PROC generates and initializes the CFH FCT.

Label FCT 'file-name',buffer-name,buffer-Iength,actual-key-name,main-storage-index-area,mass-storage-flag.

where:

Label is the name given to the FCT and becomes the first subfield of all commands issued to ISFMS for
file-name.

FCT is the name of the PROC.

File-name is a 12-character literal which is identical (left justified, space filled) to the file-name specified
in the @ASG control statement.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SE RI ES SYSTEMS
PAGE REVISION PAGE

Buffer-name is the label attached to the user-specified reserve area for the ISFMS I/O buffer. This reserve
must be one of the following, depending upon desired buffer length:

Label RES 448.
Label RES 896.
Label RES 1792.

1/4 track
1/2 track

1 track

Buffer-length is the number of words specified in the above RES.

Actual-key-name is the label assigned to the location designated to contain the address of the ACTUAL-KEY.
Thus, actual-key-name must contain the label of the location designated to contain the ACTUAL-KEY. This
initialization is a user responsibility.

For example, if ACTUAL is the label to be placed in the FCT calling sequence and ACTKEY is location
of the ACTUAL-KEY, then:

ACTUAL + ACTKEY.
ACTKEY + O.

The initialization of ACTKEY is an ISFMS responsibility.

The last two fields in the previous proc are optional and if values are supplied they must be as follows:

(1) The first additional field, if supplied, must contain the label of the user reserved area where ISFMS can
process index blocks. If the user supplies a reserved area for processing index blocks, it is likewise his
responsibility to reserve area equal to (or greater than) the user supplied buffer.

(2) The second additional field, if supplied, should contain a "1". A"l" in this field informs ISFMS and
CFH that this ISFMS file should start at a logical increment of 112 words. This option provides more
efficient processing for ISFMS files which reside on disc.

NOTE:

Most users will probably want their disc packs prepped at 112 words.

B.3. EQUF STATEMENTS

The following EOU F statements provide required information on parameter lengths; all lengths must be defined
as follows:

L 1 (1) EOUF length. Block length in characters
length = 2688 if 1/4 track
length = 5376 if 1/2 track
length = 10752 if 1 track

L 1 (2) EOUF 6. Status word length (fixed)
L 1(3) EOUF 36. File description length (fixed)
L2(1) EOUF length. See L 1 (1)
L2(2) EOUF length. Maximum record length in characters
L2(3) EOUF length. Record-key length in characters
L3(1) EOUF length. See L 1(1)

8-2

7780 Rev. 1
UP.NUMBER

L3(2)
L3(3)
L4(1)

L4(2)

EOUF
EOUF
EOUF
EOUF

UNIVAC 1100 SERIES SYSTEMS

54. Inform length (fixed)
length. Record-key length in characters

length. See L 1 (1)

length. Record-key length in characters

B.4. RESERVE WORDS

PAGE REVISION PAGE

Two of the necessary reserve areas have already been discussed; they are for the I/O buffer and the ACTUAL-KEY

location and contents. I n addition, the user must reserve sufficient space for the maximum record size and for

the symbolic record-key. The labels placed on these reserve areas correspond to those used in the individual
commands.

For example:

RECORD-AREA
RECORD-KEY-AREA

RES

RES

value.
value.

maximum size of record
maximum size of key

Finally, the user must establish a status word location, a file description, and an inform area. These have the
following format:

For the status word:

Label + value,

where value equals 608' 61 8, or 628, depending upon where the index is to be positioned (see Sections 2.2.1
and 2.2.3, OPEN commands).

For the file description (see the respective OPEN commands - Sections 2.2.1 and 2.2.3 - for details):

Label +value.
+value.
+value.
+value.

+value.

+value.

For the inform-area:

Label RES 9.

Maximum records
Record length in characters

Maximum length in characters if records area variable in length
Record-key length in characters

Overflow records in block
Overflow records in overflow

inform results.

The contents of these nine words are initialized upon a CLOSE or INFORM command (see Section 2.2.3).

8-3

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS C-1
PAGE REVISION PAGE

APPENDIX C. OPTIMIZATION

PROCEDURES

C.l. GENERAL

The following paragraphs give formulas used in building up a file.

C.2. BLOCKS

To calculate the number of words:

Conversion of characters to words:

number of characters
number of words (1)

6

NOTE:

If the remainder is not zero, the quotient must be rounded to the next integer.

To calculate the number of records per block:

The number of records per block can be found by taking into consideration the record length and the record-key
length:

block length -2
number of records (2)

record-key length + record length +2

The block length is a quarter-track (447 words) or a half-track (895 words) or a full-track (1791 words); the

words in parentheses are one word less than the actual length. This one word is a software-control-word.

The record-key must have fixed-length format. Its length is specified in characters and must be a multiple of

six. The minimum key length is six characters. The maximum is 378 characters.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

The record may have fixed-length format or variable-length format. Its length is specified in characters and must
be a multiple of six. The minimum record length is six characters. The maximum, which is for one record
per block, varies depending on the key length (these two together must equal the block length) from 10,344
characters, when the key length 378 characters, to 10,716 characters when the key length is six characters.

To calculate the number of data blocks:

The number of data blocks is given by the following formula:

number of data blocks
number of records in file

(number of records per block) - (number of
overflow records per block)

(3)

where number of records per block is found from (2), and number of overflow records per block is found from
(8).

To calculate the number of record keys per index block:

The number of record keys per index block is determined by using the following formula:

number of record keys per index block
block length in words -2

key length in words +2

where the block length (in words) is given following (2).

To calculate the number of index blocks:

The number of index blocks is determined by using the following formula:

number of data blocks
number of index blocks

(number of record keys per index block) -1

(4)

+3 (5)

where number of data blocks is given by (3), and number of record keys per index block by (4).

Overflow records in the independent overflow area (lOF):

The processing speed of an indexed sequential file can be greatly increased by writing all overflow records inside

the data blocks. This, however, may prove impractical. Often numerous additional records must be written
in the same data block. If there is not enough space available, some may be placed in the data block, if possible,

and the others in the independent overflow area. I n general, the number of IOF records is the same as the
number of new records which can be written in updating runs, that is:

IOF records
IOF blocks (6)

number of records per block

wh~re the number of records per block is found from (2).

C-2

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SE RI ES SYSTEMS C-3
PA.GE REVISION PA.GE

If the IOF area is almost filled, the file should be reorganized.

Additional records inside the data blocks:

It is advantageous, when updating, to have the new records logically as close as possible to the already existing

ones. The user should, at the time a file is created, reserve a certain number of spare records inside each data

block. This reserved area permits the user to write new records in the data block during the updating run.

A uniform formula for determining the number of additional records inside a data block cannot be given. It

depends on how the file is built and how the run records are distributed. However, the proportion of the number

of data records to the number of records to be added in an updating run is the same proportion used for the

number of data records per block to the number of additional records per block, that is:

number of data records

number of update records

from which is obtained:

number of data records/block

number of additional records/block
(7)

additional records per data block
update records x data records per block

data records
(8)

where update records are known by the user, the data records per block are known from (2), and data records
are the records in the file. This will minimize the IOF area needed.

Additional Blocks:

Every ISFMS file contains the following additional blocks:

Label block:

Block number 0: 1 (I n random files, block number 0 is not used by COBOL.) (9)

Information block for ISFMS:

Sentinel block:

C.3. FILE

To calculate the size of a file:

The size of a file is determined by the number of data bloc,ks, index blocks, independent overflow blocks,

one label block, one unused block, one sentinel block, and one information block which is used by ISFMS.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS C--4

The total number of blocks in the file is given by the formula:

number of blocks in the file
data blocks + index blocks + IOF

blocks + 4 additional blocks

PAGE REVISION PAGE

(10)

where data blocks are given by (3), index blocks by (5), IOF blocks by (6), and additional blocks are as ex­
plained in (9).

To convert to tracks:

The following formula is used to convert the size of the file to tracks:

number of tracks number of blocks x block size in tracks (11)

where number of blocks is given by (10) and block size in tracks is quarter-track, half-track, or full-track as
explained following (2).

To convert to positions:

To convert the size of the file in positions, use the following formula:

number of tracks
number of positions

64
(12)

where number of tracks is given by (11).

NOTE:

In all these calculations, the result must be rounded to the next highest integer.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

APPENDIX D. SAMPLE PROGRAMS

0.1. NON AMERICAN NATIONAL STANDARD COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. ISFMS-TEST-O.
AUTHOR. J P JONES.
INSTALLATION. SPSP.
DATE-CQ\1PILED.
REMARKS. TEST PROGRAM FOR THE ISFMS.

EXAMPLE 1. OUTPUT FILE. CREATE AN IS-FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. UNIVAC-II08.
OBJECT COMPUTER. UNIVAC-II08.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NEW-FILE,
ASSIGN TO MASS-STORAGE ASGRDFLNM,
ACCESS MOOE IS RANDOM,
ACTUAL KEY IS KLEIDI.
SELECT CARDS,
ASSIGN TO CARD-READ-EIGHTY.
SELECT RESULTS,
ASSIGN TO PRINTER.

DATA DIVISION.
FILE SECTION.
FD NEW-FILE

LABEL RECORD IS FORMOO
BLOCK CONTAINS 1 RECORD 1 CONTROL WORD
DATA RECORD IS MASTER-RECORD.

01 MASTER-RECORD PIC X(2682).
FD CARDS

LABEL RECORDS OMITTED
DATA RECORD IS DATA-CARDS.

01 DATA CARDS.
02 NUMBER
02 FILLER
02 CHARS
02 FILLER

PIC 9(2).
PIC X(4).
PIC X(6).
PIC X(68).

D-1

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

FD RESULTS
LABEL RECORDS OMITTED
DATA RECORD IS PRINTOUT.

01 PRINTOUT

WORKING-STORAGE SECTION.
77 KLEIDI

PIC X(132).

PIC H9(10).
77 NOTHING PIC X VALUE IS SPACE.
01 ACTUAL-RECOID.

02 ARL
02 FILLER

01 ~ECORD-KEY.
02 RKL
02 FILLER

01 FILE DESCRIPTION.
02 NUMBER-OF -RECORDS
02 RECORD-LENGTH
02 RECORD-LENGTH-MAX
02 RECORD-KEY-LENGTH
02 OVERFLOW-AREA
02 I-O-F

01 STATOUS.
02 F-CODE
02 ERROR-CODE

03 ERROR-CLASS
03 ERROR-NUMBER

01 INFORM.

PIC A(500).
PIC X(4).

PIC 9(56).
PIC X(4).

PIC H9 (10)
PIC H9(10)
PIC H9(10)
PIC H9(10)
PIC H9(10)
PIC H9(10)

PIC X(3).
PIC 9(3).
PIC 9.
PIC 9(2).

02 NUMBER-OF-BLOCKS PIC H9(10).
02 NUMBER-OF-INDX-BLOCKS PIC H9(10).
02 NUMBER-OF-OVERFL-BLOCKS PIC H9(10).
02 NUMBER-OF-RECORDS PIC H9(10).
02 NUMBER-OF-RECORDS-IN-IOF PIC H9(10).
02 NUMBER-OF-RECORDS-DELETD PIC H9(10).
02 NUMBER-OF-RECORDS-READ PIC H9(10).
02 NMBR-OF-REC-RED-FROM-IOF PIC H9(10).
02 NUMBER-OF-RECORDS-WRITEN PIC H9(10).

01 INFORM-FL-DATA.
02 NUMBER-OF -BLOCKS PIC 9 (6) •
02 NUMBER-OF-INDX-BLOCKS PIC 9(6).
02 NUMBER-OF-OVERFL-BLOCKS PIC 9(6).
02 NUMBER-OF-RECORDS PIC 9(6).
02 NUMBER-OF-RECORDS-IN-IOF PIC 9(6).
02 NUMBER-OF-RECORDS-DELETD PIC 9(6).
02 NUMBER-OF-RECORDS-READ PIC 9(6).
02 NMBR-OF-REC-RED-FROM-IOF PIC 9(6).
02 NUMBER-OF-RECORDS-WRITEN PIC 9(6).

VALUE IS 30 •.
VALUE IS 504.
VALUE IS 0 •.
VALUE IS 60.
VALUE is 1.
VALUE IS 5.

01 MAIN-STORAGE-INDEX-BUFF. PIC X(2682).

0-2
PAGE REVISION PAGE

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS D-3

PROCEDURE DIVISION.
START-TEST.

OPEN INPUT CARDS.
OPEN OUTPUT RESULTS.
ENTER ISFMS SUBROUTINE REFERENCING
05 NEW-FILE STATOUS MAIN-STORAGE-INDEX-BUFF.
ENTER ISFMS SUBROUTINE REFERENCING
20 NEW-FILE STATOUS FILE-DESCRIPTION.
IF STATOUS NOT EQUAL TO '000000' GO TO END-RUN.

CARD-READ.
READ CARDS AT END GO TO FILE-READY.
WRITE PRINT-OUT FROM DATA-CARDS.
MOVE CHARS TO ACTUAL-RECORD.
MOVE NUMBER TO RKL.
ENTER ISFMS SUBROUTINE REFERENCING
24 NEW-FILE ACTUAL-RECORD RECORD-KEY.
IF STATOUS NOT EQUAL TO '000000' GO TO END-RUN.
ENTER ISFMS SUBROUTINE REFERENCING
77 NEW-FILE INFORM.
IF STATOUS NOT EQUAL TO '000000' GO TO END-RUN.
MOVE CORR INFORM TO INFORM-FL-DATA.
WRITE PRINTOUT FROM INFORM-FL-DATA.
GO TO CARD READ.

FILE-READY.
WRITE PRINT-OUT FROM NOTHING AFTER ADVANCING 10 LINES.
ENTER ISFMS SUBROUTINE REFERENCING
27 NEW-FILE INFORM RECORD-KEY.
MOVE CORR INFORM TO INFORM-FL-DATA.
WRITE PRINT-OUT FROM NOTHING AFTER ADVANCING 2 LINES.
WRITE PRINT-OUT FROM INFORM-FL-DATA.

END-RUN.
WRITE PRINT-OUT FROM STATOUS AFTER ADVANCING 2 LINES.
CLOSE CARDS, RESULTS.
STOP RUN.

PAGE REVISION PAGE

D.2. ASSEMBLER

The following sample assembler program creates 40 27-word records while open for OUTPUT. It then closes
and reopens for INPUT-OUTPUT, reads records, modifies and rewrites records, deletes records, and inserts new
records. Then it closes and reopens for INPUT, sequentially reading and printing the records. Finally it reads
randomly, does an inform, closes, and terminates.

@ASM,LI

$(0)
CVTFD~:~

• TEST, • TEST
AXR$

PROC
L
L
SZ
SZ

2
A6,CVTFD(1 ,1).
Xl,(-I,l),
CVTFD(2,1).
A5

L,U Rl,5

ROUTINE WILL TRANSFER
BINARY TO FD AN PUT THESE
TWO WORDS IN THE RECORD ••

7780 Rev. 1
UP.NUMBER

DIVIDE

$(I),START

SER

WRT

DI,U
DSL
DSL
JGD
S
JNZ
DL
DA
OS
END

L,U
L
S
JGD
DL
OS
DL
OS
LMJ
L,U
SZ
S
OS
DL
OS
OPO
TE
ER
L,U
WRRO
TE
ER
A,U
S
S
JGD
CLO
TE
ER
DL
DS
DL
OS
LMJ
L
S
OPIO
TE
ER
L,U
5Z

UNIVAC 1100 SERIES SYSTEMS D-4
PAGE REVISION PAGE

A5,10
A6,6
A5,36
RI,DIVIDE
A 7 ,CVTFD(2, 1), ~:~XI
A5,DIVIDE-I
A5,CVTFD(2,1)
A5,(0606060606060606060606060)
A5,CVTFD(2,1)

XIO,26. LOAD XIO WITH 26
Al ,(0757575757575). LOAD Al WITH 75'S
AI,ACTREC,XIO. STR Al INTO ACTREC+XIO
XIO,SER. JP SER IF 0
AO, ('XXX OPEN'). DBL LOAD AO+l
AO,ACTREC. DBL STR THIS IN ACTREC
AO,('OUTPUT XXX'). DBL LOAD AO+l
AO,ACTREC+2. DBLSTR AO + Al INTO ACTREC+2
XII,PRINTI. GO PRINT IT
AII,I. STR ALL WITH 1
AIO. MAKE IT 0
AII,KEY. STR All INTO KEY
AIO,ACTREC. DBLSTR AIO+AII INTO ACTREC
A12, (, RECORD'). DBL LOAD A12+13
AI2,ACTREC+2. DBLSTR AI2+13+
ADO,STATUX,ADDER. OPEN OUTPUT
AO, ('000000'). TEST TO SEE IF AO=OO
ERR$. NO ITS NOT
RI,40. LOAD RI WITH 40
ADO, ACTREC ,KEY. WR ITE RANDOM
AO, (, 000000'). TEST TO SEE IF AO~OO
ERR$. NO ITS NOT
AII,I. ADD TO All EACH TIME THRU
AII,KEY. STR All INTO KEY
All, ACTREC+ 1. STR All INTO ACTREC+I
RI,WRT. JP TO WRT,IF RI~O
ADO, INFO, KEY. C LOS E OUT PUT
AO, ('000000'). TEST TO SEE IF AO=OO
ERR$.. NO ITS NOT
AO,('XXX OPEN INP'). DBL LOAD AO+AI
AO,ACTREC. DBL STR THIS IN ACTREC
AO,('UT/OUTPUTXXX'). DBL LOAD AO + Al
AO,ACTREC+2. DBLSTR AO + Al INTO ACTREC+2
XII,PRINTI. GO PRINT IT
AO, (' 000000').
AO,STATUX. SET STATUS WORD
ADO,STATUX. OPEN I/O
AO, (' 000000'). TEST TO SEE IF AO=OO
ERR$. NO ITS NOT
AII,I. STR All WITH 1
AIO. MAKE IT 0

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

S AII,KEY. STR All INTO KEY
DS AIO,ACTREC. DBLSTR AIO+AII INTO ACTREC
RDSIO ADO , ACTREC , KEY. READ SEQ 1/0
TE AO, (' 000000'). SEE IF IT IS NEXT ONE
ER ERR$. NO ITS NOT
L,D AI,II. ENTER Al WITH 11
S AI,KEY. STR IT IN KEY
DS AD, ACTREC. DBL STR AO+I INTO ACTREC
RDRIO ADO, ACTREC ,KEY. READ RANDOM 1/0
TE AD, (' 000000'). TEST TO SEE IF AO=OO
ER ERR$. NO ITS NOT
DL A12, (' MODIFY'). DBL LOAD A12+A13
DS AI2,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
WRSIO ADO, ACTREC , KEY. WRITE SEQ 1/0
TE AO, (' 000000'). TEST TO SEE IF AO=OO
ER ERR$. NO ITS NOT
L,D AI,II. ENTER Al WITH 11
S AI,KEY. STR IT IN KEY
DS AD, ACTREC. DBL STR AO+I INTO ACTREC
LMJ XII ,PRINT. GO PRINT IT
L,D AI,23. ENTER Al WITH 23
S AI,KEY. STR IT IN KEY
DS AO,ACTREC. DBL STR AO+I INTO ACTREC
RDRIO ADO, ACTREC ,KEY. READ RANDOM 1/0
TE AD, (' 000000'). TEST TO SEE IF AO=OO
ER ERR$. NO ITS NOT
DL AI2,(' MODIFY'). DBL LOAD A12+A13
DS AI2,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
WRSIO ADO, ACTREC ,KEY. WRITE SEQ 1/0
TE AD, ('000000'). IS TEST EQUAL TO AO
ER ERR$. NO ITS NOT
L,U AI,23. ENTER Al WITH 23
S Al ,KEY. STR IT IN KEY
SZ AD. MAKE IT 0
OS AD, ACTREC. DBL STR AO+I INTO ACTREC
DL A12, (' MODIFY'). DBL LOAD A12+A13
DS AI2,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
LMJ XII ,PRINT. GO PRINT IT
L,D AI,55. LOAD Al WITH 55
S Al ,KEY. STR IT IN KEY
SZ AD. MAKE IT 0
OS AO,ACTREC. DBL STR AO+I INTO ACTREC
DL A12, (, INSERT'). DBL LOAD A12+13
DS AI2,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
WRRIO ADO,ACTREC,KEY. WRITE RANDOM 1/0
TE A 0, (, 000000'). TEST TO SEE IF AO=OO
ER ERR$. NO ITS NOT
L,D AI,55. LOAD Al WITH 55
S AI,KEY. STR IT IN KEY
SZ AO. MAKE IT 0
DS AO,ACTREC. DBL STR AO+I INTO ACTREC
DL A12, (, INSERT'). DBL LOAD A12+13

7780 Rev. 1
UP.NUMBER

SERR

EOF

PRINT

UNIVAC 1100 SERIES SYSTEMS

OS
LMJ
L,U
S
S2
OS
WRRIO
TE
ER
L,U
S
OS
DL
OS
LMJ
L,U
S
OS
DL
OS
WRRD
TE
ER
L,U
S
OS
DL
OS
LMJ
CLIO
TE
ER
DL
OS
DL
DS
LMJ
L
S
OPI
TE
ER
RDSI
TE
J
LMJ
J
TNE
J
ER
CVTFD

PAGE REVISION PAGE

AI2,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
Xll,PRINT. GO PRINT IT
Al,56. LOAD Al WITH 56
AI,KEY. STR IT IN KEY
AO. MAKE IT 0
AO,ACTREC. DBL STR AO+l INTO ACTREC
ADO,ACTREC,KEY. WRITE RANDOM I/O
AO, (' 000000'). TEST TO SEE IF AO=OO
ERR$. NO ITS NOT
Al,56. LOAD Al WITH 56
Al KEY. STR IT IN KEY
AO;ACTREC. DBL STR AO+I INTO ACTREC
A12,(' INSERT'). DBL LOAD A12+13
A12,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
Xll,PRINT. GO PRINT IT
Al,39. LOAD Al WITH 39
Al,KEY. STR IT IN KEY
AO,ACTREC. DBL STR AO+l INTO ACTREC
A12,(' DELETE'). DBL LOAD A12+13
A12,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
ADO,KEY. WRITE RANDOM DELETE
AO,('OOOOOO'). TEST TO SEE IF AO=OO
ERR$. NO ITS NOT
Al,39. LOAD Al WITH 39
Al,KEY. STR IT IN KEY
AO,ACTREC. DBL STR AO+I INTO ACTREC
A12,(' DELETE'). DBL LOAD A12+13
A12,ACTREC+2. DBL STR A12+13 INTO ACTREC+2
XIl,PRINT. GO PRINT IT
ADO,INFO. CLOSE I/O
AO,('OOOOOO'). TEST TO SEE IF AO=OO
ERR$. NO ITS NOT
AO,('XXX OPEN f). DBL LOAD AO+l
AO,ACTREC. DBL STR THIS IN ACTREC
A),('INPUT XXX'). DBL LOAD AO+l
AO,ACTREC+2. DBLSTR AD + Al INTO ACTREC+2
Xll,PRINTl. GO PRINT IT
AO, ('000000').
AO,STATUX.
ADO,STATUX.
AO, (' 000000').
ERR$.
ADO,ACTREC,KEY.
AO, ('000000').
EOF.
Xll,PRINT.
SERR.
AO, ('+11350').
RDNIO.
ERR$.

SET STATUS WORD
OPEN INPUT
TEST TO SEE IF AO=OO
NO ITS NOT
READ SEQ
SEE IF IT IS NEXT ONE
GO TO END OF FILE
GO PRINT IT
JP BACK TO CHECK NEXT
TEST FOR EOF
GO TO READ NEXT I/O
NO ITS NOT

KEY ACTREC. CVRT BIN TO FD THEN STR IN ACTREC.

0-6

7780 Rev. 1
UP.NUMBER

PRINT1

RDNIO

L1 (1)
L1 (2)
L1(3)
L2(1)
L2(2)
L2(3)
L3(1)
L3(2)
L3(3)
L4(1)
L4(2)
ADDER

INFO

ACTUAL
ACTKEY
KEY
BUFFAD
BUFF2
ACTREC
STATUX
$(30)
ADO

UNIVAC 1100 SERIES SYSTEMS 0-7
PAGE REVISION PAGE

L AO,(0000204,ACTREC). SET PACKET FOR PRINT$
ER PRINT$.
J 0,X11. JP BACK TO O+X11
L,U AO,30. LOAD AO WITH 30
S AO,KEY. STR IT IN KEY
RDRI ADO,ACTREC,KEY. READ RANDOM
TE AO, (' 000000'). TEST TO SEE IF AO=OO
ER ERR$. NO ITS NOT
LMJ X11,PRINT. GO PRINT IT
IFORM ADO, INFO. INFORM US TO WHAT HAPPENED
TE AO, (' 000000'). TEST TO SEE IF AO=OO
ER ERR$. NO ITS NOT
CLI ADO, INFO. CLOSE INPUT
TE AO, ('000000'). TEST TO SEE IF AO=OO
ER ERR$. NO ITS NOT
ER EXIT$.
EQUF 2688. RECORD LENGTH IN CHARACTERS (1/4 TRACK)'
EQUF 6. STATUS LENGTH IN CHARACTERS (1 WORD)
EQUF 36. FILE DESCRIPTION IN CHARACTERS (6 WORDS)
EQUF 2688. RECORD LENGTH IN CHARACTERS (1/4 TRACK)
EQUF 162. DATA RECORD IN CHARACTERS (27x6)
EQUF 6. RECORD KEY LENGTH IN CHARACTERS (1 WORD)
EQUF 2688. RECORD LENGTH IN CHARACTERS (1/4 TRACK)
EQUF 54. LENGTH OF INFORM IN CHARACTERS (9 WORDS)
EQUF 6. RECORD KEY LENGTH IN CHARACTERS (1 WORD)
EQUF 2688. RECORD LENGTH IN CHARACTERS (1/4 TRACK)
EQUF 6. RECORD KEY LENGTH IN CHARACTERS (1 WORD)
+ 42. NUMBER OF RECORDS MAXIMUM
+ 162. DATA LENGTH IN CHARACTERS (27X6)
+ O. FIXED (0) LENGTH OR MAX. LENGTH
+ 6. REC.-KEY-LENGTH IN CHAR. (lX6)
+ 1 . NBR. OVERFLOW REC. RESERVED DATA AREA
+ 1 . OVERFLOW REC. FOR THE WHOLE AREA
+ O. NUMBER OF BLOCKS
+ O. NUMBER OF INDEX BLOCKS
+ O. NUMBER OF OVERFLOW BLOCKS (IOF)
+ O. NUMBER OF RECORDS
+ O. NBR. REC. INDEPENDENT OVERFLOW (IOF)
+ O. NUMBER OF RECORDS DELETED
+ O. NUMBER OF RECORDS READ
+ O. NUMBER OF REC. READ FROM IOF
+ O. NUMBER OF RECORDS WRITTEN
+ ACTKEY. ACTUAL KEY FOR THE RANDOM FILES
+ O. SECOND WORD FOR ACTUAL KEY
+ O. ONE WORD RESERVED FOR KEY
RES 448. 1/4 OF A TRACK AS STATED IN FCT CODE
RES 448. MAIN STORAGE INDEX BUFFER-SIZE OF I/O BUFFER
RES 27. SIZE OF THE RECORD
+ 0606060606060. ONE WORD RESERVED FOR STATUS

FCT 'SAM ' ,BUFFAD,448,ACTUAL,BUFF2,1.
CONTAINS A LABEL (ADO) WHICH NAMES THE FILE CONTROL TABLE.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

THE PROC NAME, FCT, WHICH GENERATES THE FILE CONTROL TABLE,
FILE NAME, BUFFER ADDRESS, BUFFER SIZE, ACTUAL KEY FOR THE
RANDOM FILES, ADDRESS OF MAIN STORAGE INDEX BUFFER IF ONE
EXISTS, A 1 IN THE LAST FIELD INFORMS ISFMS AND CFH THAT ISFMS
FILE SHOULD START AT A LOGICAL INCREMENT OF 112 WORDS.
NOTE - LAST TWO FIELDS ARE OPTIONAL AND CAN BE OMITTED.
END START

0.3. AMERICAN NATIONAL STANDARD COBOL (FIELDATA)

The following sample American National Standard COBOL (Fieldata) program creates 20 four-word records
while open for OUTPUT. It closes and reopens for INPUT/OUTPUT, reads records, modifieds and rewrites
records, deletes records, and inserts new records. It then closes and reopens for I NPUT, sequentially reading
and printing the records, after which it closes, and terminates.

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXED-SEQUENTIAL.
REMARKS. PROGRAM WILL CREATE FILE, THEN REVISE IT WITH UPDATES,

DELETIONS, AND INSERTIONS. THE FILE WILL THEN BE LISTED.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT IS-FILE ASSIGN TO MASS-STORAGE-112 FF

ORGANIZATION IS INDEXED WITH INDEX-BUFFER
ACCESS MODE IS RANDOM
FILE-DESCRIPTION IS F-DES
SYMBOLIC KEY IS KEY-IS.
SELECT PRINT-FILE ASSIGN TO PRINTER.

DATA-DIVISION.
FILE-SECTION.
FD IS-FILE LABEL RECORDS ARE STANDARD DATA RECORD IS IS-REC.
01 IS-REC PICTURE X(5376)'
FD PRINT-FILE

LABEL RECORDS ARE OMITTED
01 PRINT- LINE
WORKING-STORAGE SECTION.

DATA RECORD IS PRINT-LINE.

77 KEY- IS
01 F-DES.

05 NUMBER-RECORDS
05 RECORD-LENGTH
05 FILLER
05 RECORD-KEY-SIZE
05 RESERVE-OVERFLOW

VALUE 20
VALUE 24
VALUE 0
VALUE 6
VALUE 4
VALUE 20 05 RESERVE- IOF

05 STATUS-WD VALUE SPACES
01 REC-l.

PICTURE X(30).

PICTURE 9 (6),

PICTURE 9(10)
PICTURE 9(10)
PICTURE 9 (10)
PICTURE 9(10)
PICTURE 9(10)
PICTURE 9(10)
PICTURE X(6).

05 FILLER VALUE 'LOGICAL RECORD' PICTURE X(18).
05 REC-NUMBER PICTURE 9(6).

PROCEDURE DIVISION.

COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL.
COMPUTATIONAL.

START. OPEN OUTPUT IS-FILE, PRINT-FILE. MOVE ZERO TO KEY-IS.

0-8

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

LOOP-I. ADD 10 TO KEY-IS.
IF KEY- IS > 200 GO TO CLOSE-I.
MOVE KEY-IS TO REC-NUMBER.
WRITE IS-REC FROM REC-l INVALID KEY STOP RUN.
GO TO LOOP-I.

CLOSE-I. CLOSE IS-FILE.
MOVE '000000' TO STATUS-WD.
OPEN 1-0 IS-FILE.
MOVE 210 TO KEY-IS.

LOOP-2.
SUBTRACT 10 FROM KEY-IS.
READ IS-FILE INTO REC-l INVALID KEY STOP RUN.
ADD 1000 TO REC-NUMBER.

PAGE REVISION PAGE

WRITE IS-REC FROM REC-l. NOTE ~:;~:; RECORD IS UPDATED*~:;.

SUBTRACT 10 FROM KEY-IS.
READ IS-FILE INTO REC-l INVALID KEY STOP RUN.
WRITE IS-REC FROM REC-l FOR DELETION INVALID KEY STOP RUN.
NOTE ~:;~:;RECORD IS DELETED~:;~:;.

SUBTRACT 5 FROM KEY-IS.
READ IS-FILE INTO REC-l INVALID KEY NEXT SENTENCE.
MOVE KEY-IS TO REC-NUMBER.
WRITE IS-REC FROM REC-l INVALID KEY STOP RUN.
NOTE ~:;~:;RECORD IS INSERTED~:;~:;.

SUBTRACT 5 FROM KEY-IS. IF KEY-IS> 100 GO TO LOOP-2.
MOVE ZERO TO KEY-IS. CLOSE IS-FILE.

MOVE '000002' TO STATUS-WD.
OPEN INPUT IS-FILE.

LOOP-3.
READ IS-FILE INTO REC-l AT END

CLOSE IS-FILE, PRINT-FILE, STOP RUN.
WRITE PRINT-LINE FROM REC-l.
GO TO LOOP- 3.

Results of executing sample program:

LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD

000010
000020
000030
000040
000050
000060
000070
000080
000090
000095
001110
000120
000125
001140
000150
000155

D-9

7780 Rev. 1
UP.NUMBER

LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD
LOGICAL RECORD

UNIVAC 1100 SERIES SYSTEMS

001170
000180
000185
001200

D-10
PAGE REVISION PAGE

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS E-1
PAGE REVISION PAGE

APPENDIX E. ISFMS ERRORS

E.1. GENERAL

The status word (defined in WOR KI NG-STORAGE SECTION in COBOL, or a reserved word in the assembler)
is Fieldata zero filled if no error has occurred and has the following format in Fieldata:

35 29 18 17 11 o

USER FUNCTION CODE ERROR CODE

+ FUNCTION CODE CLASS I NUMBER

E.2. FATAL ERRORS

When ISFMS encounters a fatal error condition, it will print an error message on primary output and then cause
the run to be aborted. The ISFMS generated error messages and the fatal error conditions which caused them

are as follows:

(a) "FI LE ALR EADY OPENED. FI LE-NAME ... "

cause: Attempting to open a file which is currently open.

(b) "FI LE NOT OPENED. FI LE-NAME ... "

cause: Attempting to refer to a file which is not open.

(c) "BAD ISFMS FUNCTION-CODE. CODE IS "

cause: Attempting a function which is invalid.

(d) "INCORRECT ISFMS STATUS-WORD. FILE-NAME ... "

cause: The status-word is improperly defined.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS E-2
PAGE REVISION PAGE

(e) "10 ISFMS FILES ALREADY OPEN. FILE-NAME ... "

cause: Attempting to have more than 10 ISFMS files open at the same time.

(f) "FILE NOT ASSIGNED. FILE-NAME ... "

cause: Attempting to open a file which was not assigned; i.e., the required @ASG card was missing.

The FILE-NAME ... as shown in the above messages will be the name of the ISFMS file as it was supplied by
the worker program.

E.3. NONFATAL ERRORS

Table E-l lists the ISFMS nonfatal errors. If the error code, which indicates the type of error, begins with a
1 or a 2, control is returned to the user program and recovery from the error is usually impossible. If the error
code begins with a 3, control is returned to the user program and recovery from the error is possible.

E.4. ERROR CODE 101 UNDER NON AMERICAN NATIONAL STANDARD COBOL

ISFMS, when run under non-American National Standard COBO L, interfaces with the non-American National
Standard COBOL ITEM HANDLER to create output files. This routine attempts to prevent the destruction of
germane data by testing for a meaningful ACTUAL KEY in a mass storage area prior to writing into that area
(see UNIVAC 1106/1108 COBOL EXEC /I and EXEC 8 Supplementary Reference, UP-7626 (current version)).
The ACTUAL KEY written by the non-American National Standard COBOL ITEM HANDLER contains the
first two characters of the file qualifier as specified on the @ASG card or as implied by the project ID specifica­
tion on the @RUN card. When the mass storage area containing data from the creation of an ISFMS output
file is released and a subsequent attempt is made to recreate that output file, the same physical area of mass
storage may be selected to receive output a second time. If this occurs, error number 101 occurs during the
writing and/or closing of that file.

If the first two characters of the qualifier used for the output file are changed between successive runs which
create and recreate any given output file, this problem cannot occur.

NOTE:

The above problem cannot arise when ISFMS is employed from American National Standard COBOL or through
an assembler interface.

7780 Rev. 1
UP.NUMBER

ERROR
CODE

101

102

210

211

212

213

230

240

241

243

244

245

246

247

248

350

360

UNIVAC 1100 SERIES SYSTEMS E-3
PAGE REVISION PAG E

Table E-1. ISFMS Nonfatal Errors (Part 1 of 2)

ERROR

One of two conditions can cause this error:

(1) ACTUAL KEY is larger than the end-of-file key and is not equal to next key (most probable cause
is insufficient maximum size specification on @ASG card).

(2) An attempt was made to create an output file under non American National Standard COBOL
such that the physical area of mass storage referenced corresponded to an area which contained
data from a previous attempt. See Section E.4.

A program contingency occurred that concerns either the user's manipulation of the file or a physical
malfunction has occurred on the FH-432 drum.

Insufficient space is available on FASTRAND mass storage to initialize a new index block.

While updating the index, an attempt was made to write an index block at a level higher than index
level 7.

An attempt was made to write an IOF record and no more IOF blocks are available.

An attempt was made to assign an index file to magnetic drum or FASTRAND mass storage and the
request cannot be honored because no space is available.

One of the following may be wrong with parameter 3 of the ISFMS instruction:

(1) Incoming record is greater in size than that defined in the tables.

(2) Check if status word is equal to one.

(3) Check if inform area contains anything other than nine words.

One of the following may be wrong with parameter 4 of the ISFMS instruction:

(1) Incoming record key is not equal to that defined in the tables.

(2) Check if file description contains anything other than six words.

Block size is not quarter-track, half-track, or full track.

Record length (RL), record key length (RKL), or maximum record length (RLM) is incorrect.

Number of additional records per data block is equal to or greater than the number of records per
block or is set negative.

Number of independent overflow records has not been specified.

Number of records in the file has not been specified.

File needs more FASTRAND mass storage tracks than have been assigned.

When the file mode and the function to be performed were checked, a mismatch was found. Function
codes for input files should start with 1, the mode for that file being 1; function codes for output files
should start with 2, the mode for the file being 2; function codes for input/output files should start
with 3, the mode for that file being 3. The inform function, starting with 7, has no mode. The main
storage index function, starting with 0, also has no mode.

Sentinel record has been read.

When an attempt to read the next record is made, it is found that the sentinel record has already been
read.

7780 Rev. 1
UP.NUMBER

ERROR
CODE

361

362

363

364

365

UNIVAC 1100 SERIES SYSTEMS E-4
PAGE REVISION PAGE

Table £-1. ISFMS Nonfatal Errors (Part 2 of 2)

ERROR

Unsuccessful search for a record in the data block.

During the creation of an output file, the key of the record presented to ISFMS is not ascending.

The record could not be rewritten because the previous command was not a Read Random or a Read
Sequential, or because the old record and the modified record do not match.

An attempt is made to write a record that already exists into an input/output file.

Main storage index area supplied is too small and therefore the main storage index feature is unavailable.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS F-1
PAGE REVISION PAGE

APPENDIX F. SUMMARY OF

COIVIMANDS

F.1. COBOL COMMANDS

OPEN INPUT

ENTER ISFMS SUBROUTINE REFERENCING

10 file-name status-word.

The status-word has a meaning during the whole processing of the file (see Appendix E).

READ SEOUENTIAL INPUT

ENTER ISFMS SUBROUTINE REFERENCING

11 file-name record-area record-key-area.

READ RANDOM INPUT

ENTER ISFMS SUBROUTINE REFERENCING

12 file-name record-area record-key-area.

CLOSE INPUT

ENTER ISFMS SUBROUTINE REFERENCING

17 file-name inform-area.

For I nform command, see 2.2.3.

OPEN OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

20 file-name status-word file-description. (6 words, all H9(1 0))

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS F-2
PAGE REVISION PAGE

(1) Number of records (estimate)

(2) Record length:

Fixed: Length in characters

Variable: Average (estimate) record length in characters

(3) Maximum record length:

Fixed: 0

Variable: Maximum record length in characters

(4) Record-key-Iength in characters

(5) Number of additional records to be inserted in data area

(6) Overflow records for the whole area

WRITE RANDOM OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

24 file-name record-area record-key-area.

For Inform command, see 2.2.3.

CLOSE OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

27 file-name inform-area record-key-area.

OPEN INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

30 file-name status-word.

READ SEQUENTIAL INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

31 file-name record-area record-key-area.

READ RANDOM INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

32 file-name record-area record-key-area.

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

WRITE SEQUENTIAL INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

33 file-name record-area record-key-area.

WRITE RANDOM INPUT OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

34 file-name record-area record-key-area.

WRITE RANDOM DELETE INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

36 file-name record-key-area.

CLOSE INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

37 file-name inform-area.

For I nform command, see 2.2.3.

INFORM

ENTER ISFMS SUBROUTINE REFERENCING

77 file-name inform-area.

PAGE REVISION

This function may be performed only when the file is open. For I nform command, see 2.2.3.

USE MAIN STORAGE INDEX

ENTER ISFMS SUBROUTINE REFERENCING

05 file-name status-word main-storage-index-area.

This function is described in Appendix H.

F.2. ASSEMBLER COMMANDS

OPEN INPUT
OPI FCT-address, status-word.

READ SEQUENTIAL INPUT
RDSI FCT-address, record-area, record-key-area.

F-3
PAGE

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS F-4

READ RANDOM INPUT
R D R I F CT -address, record-area, record-key-area.

CLOSE INPUT
CLI FCT-address, inform-area.

OPEN OUTPUT
OPO FCT-address, status-word, file description.

WRITE RANDOM OUTPUT
WRRO FCT-address, record-area, record-key-area.

CLOSE OUTPUT
CLO FCT-address, inform-area, record-key-area.

OPEN INPUT/OUTPUT
OPIO FCT-address, status-word.

READ SEQUENTIAL INPUT/OUTPUT
R DS I 0 F CT -address, record-area, record-key-area.

READ RANDOM INPUT/OUTPUT
RDRIO FCT-address, record-area, record-key-area.

WRITE SEQUENTIAL INPUT/OUTPUT
W R S I 0 F CT -address, record-area, record-key-area.

WRITE RANDOM INPUT/OUTPUT
WR R 10 FCT-address, record-area, record-key-area.

WRITE RANDOM DELETE INPUT/OUTPUT
WRRD FCT-address, record-key-area.

CLOSE INPUT/OUTPUT
CLIO FCT-address, inform-area.

INFORM
INFORM FCT-address, inform-area.

This function may be performed only when the file is open.

PAGE REVISION PAGE

F.3. AMERICAN NATIONAL STANDARD COBOL (FIELDATA) COMMANDS

The following is a list of- the American National Standard COBOL (Fieldata) commands and the corresponding
ISFMS function codes as used in a non-American National Standard COBOL program.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS F-5

+10 OPEN INPUT file-name-1
+11 READ file-name-1 INTO record-name-2 AT END (input file)
+12 READ file-name-1 INTO record-name-2 INVALID KEY (input file)
+17 CLOSE file-name-1 (which was an input file)
+20 OPEN OUTPUT file-name-1
+24 WRITE record-name-1 FROM record-name-2 INVALID KEY
+27 CLOSE file-name-1 (which was an output file)
+30 OPEN INPUT-OUTPUT file-name-1
+31 READ file-name-1 INTO record-name-2 AT END (1-0 file)
+32 READ file-name-1 INTO record-name-2 INVALID KEY (I-O file)
+33 WRITE record-name-1 FROM record-name-2 (1-0 file)
+34 WRITE record-name-1 FROM record-name-2 INVALID KEY (1-0 file)
+36 WRITE record-name-1 FROM record-name-2 FOR DELETION INVALID KEY
+37 CLOSE file-name-1 (which was an 1-0 file)

PAGE REVISION PAGE

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SE RI ES SYSTEMS
PAGE REVISION PAGE

APPENDIX G. ISFMS RELEASE TAPE

G.1. GENERAL

ISFMS is now available to operate under both non-American National Standard COBOL and American National

Standard COBOL (FieldataL File 1 of the ISFMS tape contains a relocatable element named ISFMS. This
relocatable element must be used whenever non-American National Standard COBOL is used because it con­

tains an interface to the COBOL I/O package L$CBIO.

Similarly, File 2 of the ISFMS tape contains a relocatable element named ISFMS. This element must be used
whenever American National Standard COBOL (Fieldata) is used because the element contains an interface to
the American National Standard COBOL (Fieldata) file handler (CFH). The American National Standard COBOL
(Fieldata) relocatable library (which contains CFH and an interface element, ISFMSC) must be available.
Because ISFMS itself is also included in the American National Standard COBOL (Fieldata) relocatable library,
American National Standard COBOL (Fieldata) may be used without reference to the ISFMS release tape.

File 2 of the ISFMS tape also contains the assembler PROC symbolics. These are assembler PROCs which
generate a CFH file control table and a COBOL-like calling sequence for ISFMS commands. To use these PROCs,

the American National Standard COBOL (Fieldata) ISFMS relocatable element (in this file) and the American

National Standard COBOL (Fieldata) relocatable library must be available at collection time. These PROCs are

not used with L$CBIO.

File 3 of the ISFMS tape contains a symbolic element of ISFMS, named ISFMS. There is only one symbolic

element of ISFMS. This element contains an assembler EOU directive which forces assembly to occur with

either an L$CBIO or a CFH interface. The symbolic is initially prepared with

CFH EOU 0

which forces assembly for a non-American National Standard COBOL L$CBIO interface. If an assembly of an
American National Standard COBOL (Fieldata) CFH interface element is necessary, the above instruction must be

replaced by:

CFH EOU 1

G-1

7780 Rev. 1
U P.NUMBER

UNIVAC 1100 SERIES SYSTEMS H-1
PAGE REVISION PAGE

APPENDIX H.MAIN STORAGE INDEX

FEATURE

H.l. GENERAL

The ISFMS has been expanded, allowing the user to maintain an index block in main storage. The input and
1/0 files will maintain the highest level index block in main storage and therefore he can access records randomly
with one less mass storage read instruction. The output file will maintain the lowest level index block in main
storage as it is being filled. Therefore, the mass storage requests will be reduced approximately 60% when the

file is initially created.

H.2. AMERICAN NATIONAL STANDARD COBOL (FIELDATA)

The American National Standard COBOL (Fieldata) user can receive the main storage index feature by modifying
the SELECT statement in the FILE-CONTROL paragraph. The modification is to change "ORGANIZATION IS
INDEXED" to read "ORGANIZATION IS INDEXED WITH INDEX-BUFFER". This change causes the
American National Standard COBOL (Fieldata) compiler to generate a buffer of the appropriate size
(14, ~, or 1 track) and store the address in the FCT. ISFMS will interrogate the COBOL FCT for the main
storage index buffer information and proceed accordingly.

H.3. NON AMERICAN NATIONAL STANDARD COBOL

The non American National Standard COBO L user can receive the main storage index feature by using a new
command and supplying ISFMS with a reserve area of the appropriate size (14, Y2, or 1 track) in working
storage. The command is USE MAIN STORAGE INDEX and it must be executed prior to opening an ISFMS
file. The function of this command is to inform ISFMS that a main storage index area and its location is being
provided by the user. Once the command has been issued, the user receives the main storage index feature,
regardless of the number of times the file is opened and closed during the execution of the task.

The format of the USE MAIN STORAGE INDEX command is as follows:

ENTER ISFMS SUBROUTINE REFERENCING
05 file-name status-word main-storage-index-area.

Where:

05 is the function code for the USE MAIN STORAGE INDEX command.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS H-2
PAGE REVISION PAGE

File-name is the name of the file which had been, or is being created as an output file and which has been
SELECTed in the INPUT-OUTPUT SECTION.

Status-word is the word which contains information concerning the success or failure of the function. A status
code of "0" signifies it was successful. A status code of "365" signifies the user supplied area was too small
and therefore the user will not receive the main storage index feature.

Main-storage-index-area is the user program area assigned by the user for ISFMS to process the file's index
blocks.

H.4. ASM

The ASM user can receive the main storage index feature by the use of an additional field on the ISFMS proc,
"FCT", and supplying ISFMS with an appropriate size buffer area. The format of the ISFMS proc "FCT" as
illustrated in Appendix D has been modified as follows:

ADO FCT 'SAM ',8UFFAD,448,ACTUAL,8UFF2,1.

The last two fields in the previous proc are optional and if values are supplied they must be as follows:

(1) The first additional field, if supplied, must contain the label of the user reserved area where ISFMS
can process index blocks. If the user supplies a reserved area for processing index blocks, it is likewise
his responsibility to reserve area equal to (or greater than) the user supplied buffer.

(2) The second additional field, if supplied, should contain a "1". A"l" in this field informs ISFMS and
CFH that this ISFMS file should start at a logical increment of 112 words. This option provides more
efficient processing for ISFMS files which reside on disc.

NOTE:

Most users will probably want their disc packs prepped at 112 words.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-1
PAGE REVISION PAG E

APPENDIX I.AMERICAN NATIONAL

STANDARD COBOL

(FIELDATAJ INTERFACE

1.1. GENERAL

This appendix describes the American National Standard COBOL (Fieldata) ISFMS interface. The American

National Standard COBOL (Fieldata) program links up with ISFMS by means of the interface element ISFMSC.
The American National Standard COBOL (Fieldata) compiler will determine if it should reference the interface
element ISFMSC while it is interrogating the FI LE-CONTROL paragraph.

The information contained in this appendix is basically a condensed version of the UNI VAC 1100 Series
American National Standard COBOL (Fieldata) Programmer Reference, UP-7845 (current version) Section 11.
This appendix is designed to provide the American National Standard COBOL (Fieldata) user a working knowledge
of the minor variations in the previously described non American National Standard COBOL ISFMS interface.

1.2. IDENTIFICATION DIVISION

This contains the standard information of every American National Standard COBOL (Fieldata) program.

1.3. ENVIRONMENT DIVISION

Within the FI LE-CONTROL paragraph, the SELECT statement for an indexed sequential file should contain:

SE LECT file-name

ASS I G N TO MASS-STO RAG E [-112] file-system-name

ACCESS MODE IS RANDOM

SYMBOLIC KEY IS data-name-1

ORGANIZATION IS INDEXED [WITH INDEX-BUFFER]

FI LE-DESCRI PTION IS data-name-2.

The file-system-name is the name appearing on the @ASG control statement. The name of the record key, which
appears in WORKING-STORAGE, is given as data-name-1. Descriptive information about the file is presented in

a WORKING-STORAGE record named data-name-2.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-2
PAGE REVISION PAGE

-112 Option

Use of the -112 option causes the first COBOL data block (i.e., the ISFMS information block) to be written
at mass storage location 112. This feature was added to American National Standard COBOL (Fieldata) since
mass storage files can reside on disc and the packs may be prepped at 28, 56 or 112 words. If a disc pack is
prepped at 112 words, this option causes the program's execution to be more efficient since all the ISFMS
generated blocks will start on a pack's prepped record boundaries.

INDEX-BUFFER Option

Use of the INDEX-BUFFER option will cause the file table for this file to be generated large enough so that it
can contain the highest level index block and hence save I/O references when using the file.

1.4. DATA DIVISION

FI LE SECTION

Each indexed sequential file is described in an FD entry as follows:

FD file-name

LABEL RECORDS ARE STANDARD
DATA R ECO R D IS data-name-1.

01 data-name-1 PICTURE X (block-size).

The block-size is either 1/4, 1/2, or 1 track. Thus, block size must be 2688, 5376, or 10752. Block-size depends
on the record size and also the degree of discrimination of indexing desired. Smaller blocks produce a fine
indexing, but they may also lead to additional index levels with a concomitant price in processing time. If the
block size is not specified correctly 1/2 track blocks will be generated.

WORKING-STORAGE SECTION

The record(s) and the record key (as named in the SELECT statement SYMBOLIC KEY clause) are given here.
The record size plus record key length may not exceed block-size minus 24. The record key must begin on a
word boundary. Also given is the file description record (named in the FILE-DESCRIPTION clause), which
contains 6 items each with PICTURE 9(10) and USAGE COMPUTATIONAL, and 2 items with PICTURE X(3).
Records are to be assigned level 01, with contained items at level 02 or a higher number. An optional record
which may also be given is the information area record (see 1.5 for CLOSE verb).

7780 Rev.1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-3

The File Description record contains the following:

01 data-name-1.

02 data-name-2 PICTURE 9(10) COMPUTATIONAL

VALUE number-of-records-maximum .

02 data-name-3 PICTURE 9(10) COMPUTATIONAL

VALUE record-length (must be a multiple of six characters).

02 data-name-4 PICTURE 9(10) COMPUTATIONAL
VALUE maximum-or-zero (must be a multiple of six characters).

02 data-name-5 PICTURE 9(10) COMPUTATIONAL
VALUE record-key-Iength (must be a multiple of six characters).

02 data-name-6 PICTURE 9(10) COMPUTATIONAL

VALUE overflow-area-size.

02 data-name-7 PICTURE 9(10) COMPUTATIONAL
VALUE overflow-area-size.

02 data-name-B.
03 data-name-9 PICTURE X(3).

03 data-name-10 PICTURE X(3).

PAGE REVISION PAGE

If only records of a specific size are to be written into a file, record-length gives the length of those records. If
variable-length records (records of different lengths) are to be written, record-length is the average (estimate)

record length. For fixed-length records, maximum-or-zero is zero; for variable-length records, maximum-or-zero

is the maximum record length.

The overflow-area-size should be computed as:

(anticipated number of update records) ((block size)/(record size +
record key length + 12))/(number of records)

The independent-overflow-area-size is a number of records sufficient to accommodate update records which

do not fit in the data block overflow area. Reorganization takes place as the number of such records becomes
significant, and before the independent overflow area (lOF) capacity is exceeded. In deciding on an independent
overflow area size, the user should consider the possibility that insertion update records are concentrated in a
small range of his file rather than being uniformly distributed over the file. In such a case, the overflow area
in the normal data block is quickly filled up, and independent overflow is used for all remaining insertions in

that area.

The last item in the File Description record is used for error analysis. Following an INVALID KEY or a USE

AFTER ERROR PROCEDURE exit from a READ or WRITE verb, data-name-10 may be interrogated for more

specific information as to the problem (see 1.6 error codes). The value in data-name-9 corresponds to the

operation which produced the error.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SE RI ES SYSTEMS 1-4
PAGE REVISION PAGE

The final record type, which may be included in WORKING-STORAGE, is the Information Area record. When
used, it is named in the USI NG clause of a CLOSE verb. The record contains nine elementary items each with
PICTURE 9(10) and USAGE COMPUTATIONAL.

The contents of these nine words are:

Number of blocks
Number of index blocks
Number of overflow blocks (lOF)
Number of records
Number of records in Independent Overflow area (lOF)
Number of records deleted

Number of records read
Number of records read from IOF
Number of records written

COMMON-STORAGE

If an indexed sequential file is to be referenced from more than one sequential, independently compiled pro­
gram, the data necessary in WORKING-STORAGE should be placed in COMMON-STORAGE. This will allow
the same key area to be used for all ISFMS references.

1.5. PROCEDURE DIVISION

The input/output verbs generally have the same significance as with non-indexed-sequential files. Specific
differences are the requirement for INTO on READ, FROM on WRITE, FOR DELETION option to the WRITE
verb, and the USING option on the CLOSE verb.

OPEN

Format:

INPUT
OPEN OUTPUT

1-0

Description:

file-name-1 [, file-name-2}

The same statement may be used to open both indexed sequential and other files. Indexed sequential files
are always on mass storage, and must not have REWIND or REVERSED options.

READ

Format 1:

READ file-name RECORD INTO record-name AT END imperative-statement.

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-5
PAGE REVISION PAGE

Format 2:

READ file-name RECORD INTO record-name INVALID KEY imperative-statement.

Description:

The INTO record-name is required. Record-name names a data area in WORKING-STORAGE, the size of which

must be as stated in the File Description record. Record-name may be qualified but not subscripted.

AT END is used for a sequential read. The record key (named data-name, in the SYMBOLIC KEY clause of

the SELECT statement) does not need to be initialized if sequential reading is to begin at the first record of

file-name. If sequential reading is to begin at some other record, a random read is given to initiate input at the

desired point. As each record is conveyed to record-name, the record key of that record is moved to data-name.

INVALID KEY is used for random input. The record key (data-name) must be initialized to the value of the key

of the desired record. If the record cannot be found, the INVALID KEY imperative statement is executed.

WRITE

Format:

WRITE record-name-1 FROM record-name-2 [FOR DELETION] [INVALID KEY

imperative-statement] .

Description:

Record-name-l is the name of the record as given in the FI LE SECTION. Record-name-2 names the record area

in WORKING-STORAGE; it may be qualified, but not subscripted.

INVALID KEY is used for a random write. The value of the record key must be initialized prior to the write.
The INVALID KEY imperative statement is executed if the key matches that of a record already in the file,

except for a write FOR DELETION; on a write FOR DELETION, the INVALID KEY imperative statement
(which must be supplied) is executed if the record key does not match that of a record in the file. The random

write is used for initial file creation in a fi Ie opened for output. The record keys for successive writes must be in

ascending sequence on a file creation. The random write is also used to insert new records in a file opened for

input-output. A random write FOR DELETION applies to input-output files, and is used to delete a record.

Random writes on input-output files are preceded by a read operation for the same record key.

A sequential write does not use the I NVALI D KEY clause. It is used on an input-output file only, and is em­
ployed to rewrite a record which has first been read in and updated. The read which precedes a sequential

write may be either sequential or random.

CLOSE

Format:

CLOSE file-name [USING record-name].

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-6
PAGE REVISION PAGE

Description:

The USI NG option is a special extension for closing indexed sequential files. If used, record-name names a
record in WOR KI NG-STORAGE which communicates certain information about the contents of the file.

1.6. ERROR CONDITIONS

AT END, INVALID KEY, and USE AFTER ERROR PROCEDURE exits are associated with error codes which

are found in the last item for the File Description record.

These error codes, which may be analyzed by the program, are as follows.

For INVALID KEY or AT END:

350 Normal AT END exit following end of sequential file reading.

361 Unsuccessful search for a record in the data block.

362 During the creation of an output file, the key of the record presented to ISFMS is not ascending.

363 The record cannot be rewritten because the previous command was not a Read Random or a

Read Sequential, or because the old record and the modified record do not match.

364 An attempt is made to write a record that already exists into an input/output file.

For USE AFTER ERROR PROCEDURE:

102 A program contingency occurred that concerns either the user's manipulation of the file or a

physical malfunction has occurred on the FH-432 drum.
230 Incoming record is greater in size than that defined in File Description record.

241 Block size is not quarter-track, half-track, or full track.
243 Record length, record key length, or maximum record length is incorrect.

The value in data-name-9 of the file description record contains a value corresponding to the operation which

produced the error code.

These values are as follows:

+10 OPEN INPUT file-name-1
+11 READ fi/e-name-1 INTO record-name-2 AT END (input file)

+12 READ file-name-1 INTO record-name-2 INVALID KEY (input file)

+17 CLOSE file-name·1 (which was an input file)

+20 OPEN OUTPUT file-name-1
+24 WRITE record-name-1 FROM record-name-2 INVALID KEY

+27 CLOSE file-name·1 (which was an output file)

+30 OPEN INPUT-OUTPUT file-name-1
+31 READ fi/e-name-1 INTO record-name-2 AT END (1-0 file)

+32 READ file-name-1 INTO record-name-2 INVALID KEY (1-0 file)

+33 WRITE record-name-1 FROM record-name-2 (1-0 file)

+34 WRITE record-name-1 FROM record-name-2 INVALID KEY (1-0 file)

+36 WRITE record-name-1 FROM record-name-2 FOR DELETION INVALID KEY

+37 CLOSE file-name-1 (which was an 1-0 file)

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

1.7. ABORT CONDITIONS

Several error conditions may arise for which there is no possible recovery. These cause the program to abort,

with a message produced on the printer to identify the problem. These fatal errors are of two types:

(1) these identified with an ISFMS message, and

(2) those identified by a COBOL-produced message.

The ISFMS messages are already enumerated in Appendix E. The fatal errors detected by ISFMSC (the
American National Standard COBOL (Fieldata) ISFMS interface element) causes the following message to be
produced:

ERROR CODE code-value FI LENAME file-system-name error-producing-operation.

Where:

The value error-producing-operation may be:

OPEN FILE
{

INPUT }
OUTPUT
1-0

SEQUENTIAL READ

RANDOM READ

SEQUENTIAL WRITE

RANDOM WRITE

CLOSE FILE

WRITE FOR DELETION

The error identifying code-value may be:

101 An ISFMS error concerned with the actual key occurred.
102 A program contingency occurred that concerns the user's manipulation of the file, or a

physical malfunction has occurred on the FH-432 drum.
210 Insufficient space is available on FASTRAND mass storage to initialize a new index block.
211 ISFMS can handle only 7 index levels. While updating the index, an attempt was made

to write an index block at an index level higher than 7.
212 An attempt was made to write an IOF record and no more 10F blocks are available.

244 Number of overflow records per data block is equal to or greater than the number of
records per block.

245 Number of 10F records has not been specified.
246 Number of records in the file has not been specified.
247 File needs more FASTRAND tracks than have been assigned.
248 File opened inconsistent with operation, for example, an attempt to write on an input

file.
360 Attempt to read beyond end of file; AT END exit was taken on previous sequential read.

1-7

7780 Rev. 1
UP.NUMBER

Term

Assembler PROCs
File Control Table

FCT

Inform Command
INFORM

Input File Commands
CLI
OPI
RORI
ROSI

A

Input/Output File Commands
CLIO
OPIO
RORIO
ROSIO
WRRO
WRRIO
WRSIO

Output Files Commands
CLO
OPO
WRRO

B

Blocks

Data Block

UNIVAC 1100 SE RIES SYSTEMS Index-l
PAGE REVISION PAGE

INDEX

Reference Page Term Reference Page

I ndex Block 1.3 1-2
1.4.1 1-4
1.4.3.2 1-8

Information Block 1.3 1-2
F.2 F-3 1.4.1 1-4

1.4.3.3 1-10
B.2 B-1 Overflow Block 1.3 1-2
0.2 0-3 1.4.1 1-4

1.4.3.3 1-10
2.5 2-30
2.3 2-8
2.3.4 2-15
2.3.1 2-8
2.3.3 2-13

C 2.3.2 2-11
2.4 2-16
2.4.7 2-28 Control Cards
2.4.1 2-16 @ASG 1.2 1-1
2.4.3 2-21 1.3 1-2
2.4.2 2-19 1.4.1 1-4
2.4.6 2-26 1.4.2 1-5
2.4.5 2-24 2.2.1 2-2
2.4.4 2-23 2.3.1 2-8
2.2 2-2 2.4.1 2-16
2.2.3 2-6 B.2 B-1
2.2.1 2-2 @CAT 1.4.1 1-4
2.2.2 2-4 @COPV 1.2 1-1

2.1 2-1

Control Words 1.3 1-2
Block Control Words 1.4.3.1 1-7

1.4.3.2 1-8
Record Control Words 1.4.3.1 1-7

1.4.3.2 1-8
1.3 1-2
1.4.1 1-4 Commands
1.3 1-2 Assembler (see Assembler PR OCs)
1.4.1 1-4
1.4.3.1 1-7

7780 Rev. 1
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS Index-2
PAGE REVISION PAGE

Term Reference Page Term Reference Page

COBOL
American National Standard

F (Fieldata) F.3 F-4
1.5 1-4

Standard UNIVAC 1100Series F .1 F-l File Control Table (FCT) B.2 8-1
I nform Command H.4 H-2

INFORM 2.5 2-30
Input File Commands 2.3 2-8 File Description 2.2.1 2-2

Close Input 2.3.4 2-15 A.3 A-l
Open Input 2.3.1 2-8
Read Random Input 2.3.3 2-13 Files 1.3 1-2
Read Sequential I nput 2.3.2 2-11 Data File 1.3 1-2

I nput/Output File Commands 2.4 2-16 1.4.1 1-4
Close Input/Output 2.4.1 2-28 Index File 1.3 1-2
Open Input/Output 2.4.1 2-16 1.4.2 1-5
Read Random Input/ Input File 1.3 1-2
Output 2.4.3 2-21 1.4.1 1-4
Read Sequential I nput/ 2.3 2-8
Output 2.4.2 2-19 I nput/ 0 utput File 1.3 1-2
Write Random Delete 1.4.1 1-4
Input/Output 2.4.6 2-26 2.4 2-16
Write Random I nput/ ISFMS File 1.3 1-2
Output 2.4.5 2-24 Figure 1-1 1-5
Write Sequential I nput/ Output File 1.3 1-2
Output 2.4.4 2-23 1.4.1 1-4

Use Command 1.4.3.1 1-1
Use Main Storage Index H.3 H-l 2.2 2-2

Function Codes
05 H.3 H-l
10 2.3.1 2-8

0 11 2.3.2 2-11
12 2.3.3 2-13
11 2.3.4 2-15

Data 20 2.2.1 2-2
Data Blocks (see Blocks) 24 2.2.2 2-4
Data File (see Files) 21 2.2.3 2-6
Data Record (see Records) 30 2.4.1 2-16

31 2.4.2 2-19
32 2.4.3 2-21
33 2.4.4 2-23
34 2.4.5 2-24

E
36 2.4.6 2-26
31 2.4.1 2-28
11 2.5 2-30

E au F Statements B.3 B-2

Errors Appendix E
Error Codes Table E-l E-3
Error Messages E.2 E-l

E.3 E-2
1.1 1-1

Fatal Errors E.2 E-l Index
1.1 1-1 Blocks (see Blocks)

Nonfatal Errors E.3 E-2 Files (see Files)
1.6 1-6

7780 Rev. 1
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Index-3

Term Reference Page

Range (see Range Index)
Record Key (see Records)

I ndexed Sequential 1.3 1-2
1.4.4 1-11

Indexing Technique (see Indexed
Sequential)

Inform
Area 2.2.3 2-6
Command (see Commands)

Item 1.3 1-2

M

Main Storage Index 1.4.2 1-5
1.4.3.2 1-8
2.1.1 2-1
A.3 A~l

Appendix H
1.3 1-1

Mass Storage 1.3 1-2

p

PROCs (see Assembler PROCs)

Term

Range Index

Records
Data Record
Record Key

Sentinel Record

Sentinel Record (see Records)

Status
Codes

Word

USE Procedures

R

s

u

PAGE REVISION PAGE

Reference

1.3

1.4.3.1
1.3
1.4.3.1
1.4.3.2
2.2.3

E.1
E.3
2.3.1
2.4.1
A.3
E.1

1.6

Page

1-2

1-7
1-2
1-7
1-8
2-6

E-1
E-2
2-8
2-16
A-1
E-1

1-6

Comments concerning this manual may be made in the space provided below. Please fill in the requested information.

System: __ __

Manual Title: __ __

UP No: _______ _ Revision No: ____________ _ Update: _______ _

NameofUser: __________ . ___ _

Addre"ofUser: __ __

Comments:

FOLD

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

UNIVAC
P.O. BOX 500

BLUE BELL, PA. 19422
ATTN: SYSTEMS PUBLICATIONS DEPT.

FOLD

()
C
-l

	0001
	0002
	0003
	001
	002
	003
	004
	_01
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	H-01
	H-02
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	Index-01
	Index-02
	Index-03
	replyA
	replyB

