
A

SPERRY UNIVAC
11 00 Sieries

Execut.i'le System

Volume 3
System Processors
For EXEC Level 35 R 1
Programmer Re1ference

UP-4144.31

This document contains the latest information available at the
time of publication. However, Sperry Univac reserves the right
to modify or revise its contents. To ensure that you have the
most recent information, contact your local Sperry Univac
representative.

Sperry Univac is a division of Sperry Rand Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and
UNIVAC are registered trademarks of the Sperry Rand
Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS, are
additional trademarks of Sperry Rand Corporation.

The software levels ref~cted in this manual for the various
system processors are listed below. The software level shown
in parenthesis for each processor is the level documented in
the previous version of the manual (UP-4144.3).

Collector (MAP) Level 29R 1
DATA Level 8R 1
ED Level 15R2
ELT Level 7
FURPUR Level 27R2
PDP Level 12R 1
PMD Level 32R1
SECURE Level 20R1
SSG Level 17R 1

© 1966,1968,1971,1973,1974,1975,1977,1978
SPERRY RAND CORPORATION

(27)
(7)
(14.02)
(7)
(26)
(10)
(30.1)
(18)
(16)

PRINTED IN U.S.A.

414t31 L
UP-NUMBER

__ ._ .. H. ______ _

Section Pages

Gover/Disclaimer

PSS ,.
_.
Preface 1, 2

Contents 1 thru 3

4

5

6,7

8

9

1 1 thru 9

10

11 thru 14

2 1 thru 3

4 thru 16

1'l. 18

19 thru 22

22a

2:~. 24

2!; thru 28

20a

29 thru 41

42. 43

4;1 thru 61

62 thru 64

3 1 thru 31

4 1 thru 35

5 1 thru 4

6 1 thru 3

7 1 thru 36

8 1 thru 4

9 1. 2

3 thru 10

SPt:;,RY UNIVAC 1 100 Series ExecutivQ
Volume 3 System Processors

Page Status Summary

Issue: UP--4 144.31 Update A

Update Section Pages Update

9 (Cont.) 10a A

11 thru 22 Odg

A

10 1 thru 67 Orig

A

11 1 thru 21 Orig

A

Orig Appendix A 1 thru 12 Orig

A

Orig User Comment

A Sheet

Orig

Total: 330 pages

Orig and cover

A

Orig

Orig

A

Orig

A

A

Orig

A

A

Orig

A

Orig

A

Orig

Orig

Orig

Orig

Orig

Orig

Orio

A

I

~~:'LEVEl

Section Pages

Jrechnical changes are indicated by a vertical bat (I) in the outer margin of the updated pages.

Update

j

4144.a1
UP-NUMBER ~ SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors ---- I UPD.:' LEVEL
I Preface-1

PAGE

Preface

The SPEI~RY UNIVAC 1100 Series Executive System Programmer Reference manual has been divided
into four volumes. These volumes are titled as follows:

1. SPERRY UNIVAC 1100 Series Executive System, Volume 1, Index, Programmer Reference.

Volume 1 references terms and subjects covered in the other three volumes.

a. UP-4144.1 provides a consolidated index for UP-4144.2, UP-4144.3, and UP-4144.4, the
three volumes intended for use with EXEC level 32R 1 and associated system processors
and system utility programs.

b. UP-4144.11 provides a consolidated index for UP-4144.21, UP-4144.31, and
UP-4144.41, the three volumes intended for use with EXEC level 33R 1 and associated
system processors and system utility program.

c. The Index for the three volumes intended for use with EXEC level 35R 1 will be included
in each of the three volumes and released as an update package for each volume. It will
not be a consolidated index.

2. SPERRY UNIVAC 1100 Series Executive System, Volume 2, EXEC, Programmer Reference.

Volume 2 describes the overall control of SPERRY UNIVAC 1100 Series Systems by the
Executive System.

a. UP-4144.2 is the programmer reference for EXEC level 32R 1.

b. UP-4144.21 is the programmer refer<ence for EXEC level 33R 1.

c. UP-4144.21-A provides corrections for UP-4144.21.

d. UP-4144.21-8 updates UP-4144.21 to correspond to EXEC level 33R2.

e. UP-4144.22 is the programmer refen9nce for EXEC level 35R1.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE LEVEL
Preface-2

PAGE

3. SPERRY UNIVAC 1100 Series Executive System, Volume 3, System Processors, Programmer
Reference.

Volume 3 describes the basic system processors.

a. UP-4144.3 describes the system processors associated with EXEC level 32R 1.

b. UP-4144.31 describes the system processors associated with EXEC level 33R 1.

c. The addition of Update Package A (UP-4144.31-A) to UP-4144.31 produces a manual
which describes the system processors associated with EXEC level 35R 1.

4. SPERRY UNIVAC 1100 Series Executive System, Volume 4, System Utility Programs,
Programmer Reference.

Volume 4 describes the System Relocatable Library, system common banks, and utility
processors.

a. UP-4144.4 describes the system utility programs associated with EXEC level 32R1.

b. UP-4144.41 describes the system utility programs associated with EXEC levels 33R 1 and
35R1.

Cross references to subjects in other volumes are by volume, number, dash subsection number, e.g.,
2-3.7.4 references volume 2, subsection 3.7.4.

• 4144·U3·~
UP-HUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors ------,---------------------

Page Status Summary

Prefa<:e

Contents

1. Introduction

1. 1. SCOPE OF MAN UAL

1.2~. MODIFYING SYMBOLIC ELEMENTS
1.2.1. Line Correction Statement
1.2.2. RedE~finition of the Correction Indicator
1.2.3. Partial Line Corrections
1.2.4. Ran~Je Correction Statement
1.2.5. Change Correction Statements
1.2.6. Line Correction Diagnostics

1.31. CON1'ROL STATEMENT SYNTAX

1.4,. FILENAME, ELEMENT NAME NOTATIONS

1.6,. SOUFlCE INPUT/OUTPUT ROUTINE CONTROL OPTIONS

1.6;. PROCESSOR CONTROL STATEMIENTS

2. Prc)gram Construction and EXEtCution

2. 1. INTRODUCTION

2.2.. THE COLLECTOR
2.2. 1. Collector Initiation (@MAP)
2.2.2. Collector Directives
2.2.2.1. Element Inclusion (IN)
2.2.2.2. Element Exclusion (NOT)
2.2.2.3. Filo Search Sequencing (UB)
2.2.2.4. External Definition Retention (DEIF)
2.2.2.5. Ext.ernal Reference Retention (REF)
2.2.2.6. SHIrting Address Redefinition (ENT)

I Contents--'
PAGE

Contents

1-1

1-1

1-2
1-3
1-4
1-4
1-4
1-5
1-6

1-7

1-8

1-9

1-10

2-1

2-1

2-1
2-2
2-5
2-6
2-7
2-8
2-9
2-10
2-11

4144.31
UP-NUMBEA

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

2.2.2.7. External Reference Definition (EQU)
2.2.2.8. Element Selection Determination (CLASS)
2.2.2.9. Corrections for a Relocatable Element (COR)
2.2.2.10. Adding Snapshot Dumps (SNAP)
2.2.2.11. End of Input (END)
2.2.2.12. Absolute Element Optimization (MINGAP, MINSIZ)
2.2.2.13. Program Parameter Specification (TYPE)
2.2.2.13.1. Absolute Element Arithmetic Fault Mode Determination

A

UPDATE lEVEL

2.2.2.13.2. EXEC Action Produced by Absolute Element Arithmetic Fault Mode
2.2.2.13.3. Blocksize
2.2.2.14. Program Segmentation (SEG)
2.2.2.15. Relocatable Segments (RSEG)
2.2.2.16. Dynamic Segments (DSEG)
2.2.2.17. Executive Function Arrangement (XSEG)
2.2.2.18. Bank Structuring (IBANK and DBANK)
2.2.2.19. Location Counter Set Specification ($Ics)
2.2.2.20. Source Language Structure Duplication (FORM)
2.2.3. Functional Aspects of the Collector
2.2.3.1. Collector-Produced Relocatable Elements
2.2.3.2. Element Inclusion
2.2.3.3. Processing Element Preambles
2.2.3.4. Instruction and Data Area
2.2.3.5. Collecting Reentrant Processors
2.2.4. Program Segmentation
2.2.4.1. Segmentation Directives
2.2.4.2. SEG Directive Considerations
2.2.4.3. RSEG Directive Considerations
2.2.4.4. DSEG Directive Considerations
2.2.4.5. Loading Program Segments
2.2.4.5.1. Direct Method (L$OAD and LOAD$)
2.2.4.5.2. Indirect Method
2.2.4.5.3. Reloading the Main Segment
2.2.4.5.4. Loading Dynamic Segments (D$LOAD and DLOAD$)
2.2.4.5.5. Releasing a Segment's Program Area (D$REL and DREL$)
2.2.4.6. Use of Common Blocks
2.2.5. Bank-Named Collections
2.2.5. 1. General
2.2.5.2. Bank Address Assignments
2.2.5.3. Initially-Based Banks
2.2.5.4. The Control Bank
2.2.5.5. Segmentation within Bank-Named Collections
2.2.5.6. Element Inclusion
2.2.5.6.1. Global Element Inclusion
2.2.5.6.2. Local Element Inclusion
2.2.5.7. Element Placement
2.2.5.8. Loading Program Segments
2.2.5.8.1. Direct Method (L$OAD and LOAD$)
2.2.5.8.2. Indirect Method
2.2.5.8.3. Reloading the Main Segment in Bank-Named Programs
2.2.6. Segmentation Example
2.2.7. Bank-Named Segmentation Example
2.2.8. Collector Generated Tables
2.2.9. Collector Defined Tags

l:

Contents-2
PAGE

2-11
2-12
2-14
2-16
2-18
2-18
2-19
2-21
2-21
2-21
2-22
2-22a
2-22a
2-23
2-25
2-28
2-28a
2-30
2-30
2-30
2-32
2-32
2-33
2-33
2-34
2-34
2-37
2-37
2-37
2-38
2-39
2-40
2-40
2-41
2-42
2-43
2-43
2-43
2-44
2-44
2-44
2-44
2-44
2-45
2-46
2-46
2-47
2-47
2-47
2-48
2-52
2-58
2-61

'tL 4144.31 SPERRY UNIVAC 1100 Serie's Executive Contents-3
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

A

-----,---------- ,--~------------~---------

~!.2.9. 1. BDICALL$ and IBJ $ Subroutine Calls

2.3. PROGRAM EXECUTION
~L3.1. Initiating Execution (@XQT)

~L4. REE:NTRANT PROCESSOR EXECUTION
~~.4. 1. GEmeral

3. [)ebug~~ing Aids

~L 1. INTRODUCTION

2-62

2-64
2-64

2-64
2-64

3-1

3-1

~1.2. POSTMORTEM DUMP PROCESSOR (PMD) 3-2
31.2. 1. @PMD Control Statement 3-2

~1.3. DYNAMIC DUMPS 3-8
3.3.1. Dump Calling Procedures 3-9
3:.3.1.1. Main Storage Dump (XCORE$) 3-9
3:.3.1.2. Control Register and Main Storage Dump (XDUMP$) 3-10
3,.3.1.3. Changed Word Dump (XCW$) 3-12
3.3.1.4. Tape Block Dump (XTAPE$) 3-13
3.3.1.5. Mass Storage Dump (XDRUM $,) 3-14
3.3.1.6. File Dump (X$FILE) 3-15
3.3.1.7. Control Register (User Set) Dump (XCREG $) 3-16
3.3.1.8. Editing Formats for Dynamic Dumps 3-17
3.3. 1.8. 1. Standard Editing Formats for Dumps 3-17
3.3. 1.8.2. User-Defined Editing Formats (XFRMT$) 3-19
3.3.2. Conditional Control Procedures 3-21
3.3.2.1. Logical IF Control of Dumps (X$IF) 3-21
3.3.2.2. Logical OR Control of Dumps (X$OR) 3-23
3.3.2.3. L.ogical AND Control of Dumps (X$AND) 3-23
3.3.2.4. Controlling the Conditional Dump Switch (X$TALY) 3-24
3.3.3. Specification Procedures 3-25
3.3.3.1. Initializing Buffer (XBUFR$) 3-25
3.3.3.2. Allowing and Ignoring Dump Procedure Calls (X$ON and X$OFF) 3-25
3.3.3.3. Saving and Deleting Dynamic Dumps (XMARK$ and XBACK$) 3-26
3.3.3.4. Placing a Message in the Dump (XMESG$) 3-27
3.3.3.5. Changing Length of Dump File (X$SIZE) 3-28
3.3.4. Examples of Dynamic Dumping 3-29

4. File Utility Routines (FURPUR:) 4-1

4. 1. INTRODUCTION 4-1
4.1.1. Common Information 4-1
4. 1.2. Simultaneous Use of Files 4-3
4. 1.3. Multireel Files 4-4
4. 1.4. Basic File Formats 4-4

4.2. FURPUR CONTROL STATEMEN·rS 4-6
4.2.1. Fil49 Copying (@COPY) 4-6
4.2.2. Copying from Tape to Program Files (@COPIN) 4-10
4.2.3. Copying Program Files to Tape (@COPOUT) 4-13

4144.31
UP-HUMBEfI

SPERRY UNIVAC 1100 Serle. Executive
Volume 3 System Processors

4.2.4. Positioning Tape Files (@MOVE)
4.2.5. listing Files, Elements, and Master File Directory (@PRT)
4.2.6. Emptying a File (@ERS)
4.2.7. Deleting Files and Elements (@DELETE)
4.2.8. Rewinding Tape Files (@REWIND)

'4.2.9. Marking an EOF on Tape (@MARK)
4.2.10. Ciosing Tape Fi:es (@CLOSE)

. 4.2.11. Entry Point Table Creation (@PREP)
4.2.12. Punching Program File Elements (@PCH)

, 4.2.13. Positioning within Element Files (@FIND)
4.2. 14. Removal of Deleted Elements (@PACK)
4.2.15. Changing Element and Version Names, File Keys and Modes
4.2.15. 1. Changing Catalogued Files, Keys and Modes
4.2.15.2. Changing Program File Element and Version Names
4.2.15.3. @CHG Control Statement Examples
4.2.16. Altering Cycle Retention limit (@CYCLE)
4.2.17. Enabling Files Disabled Due to Malfunctions (@ENABLE)

4.3. FURPUR FILE FORMAT COPY,G

5. EL T Processor

5.1. INTRODUCTION

6.2. @ELT FORMAT
5.2. 1. Input Termination Sentinel (@END)

6. Data Processor

6. 1. INTRODUCTION

6.2. @DATA FORMAT

7. Text Editor (ED) Processor

7. 1. INTRODUCTION

7.2. @ED PROCESSOR CALL STATEMENT FORMAT

7.3. EDIT MODE COMMANDS

7.4. LOOP OPERATIONS
7.4.1. LOOP Command
7.4.2. LPSUB Command
7.4.3. LPTST Command
7.4.4. XTI Command
7.4.5. LPEND Command
7.4.6. LPX Command

7.5. MACRO Command

7.6. USAGE CONSIDERATIONS

I uPDATE LML
I Contents-4

PAGE

4-15
4-16
4-22
4-22
4-24
4-24
4-25
4-25
4-26
4-27
4-28
4-29
4-29
4-31
4-31
4-32
4-33

4-34

5-1

5-1

5-1
5-4

6-1

6-1

6-1

7-1

7-1

7-1

7-3

7-20
7-20
7-21
7-24
7-26
7-26
7-27

7-27

7-29

SPERRY UNIVAC 1100 Series Executive I A I Contents-5
Volume 3 System ProcIBsso_rs _________ ...L._UPO_A_TE_l_EVE_L __ P_AG_E __

I' .6.1. Searching Commands
7.6.2. Interrupts With the ED Processor
7'.6.3. Filename Caution
7'.6.4. Integer Expressions Instead of Integers
7'.6.5. Column Limits Immediate Specifications
7'.6.5.1. LOCATE With Column Limits
7.6.5.2. CHANGE With Column Limits
7.6.5.3. Printing Commands with Column Limits
7.6.6. De,fault for F, FC, L, LC, and C Commands
7.6.7. LN, IL, and NI Feature
7.6.8. Names for ASCII Control Characters
7.6.9. Print File Operations
7.6.10. Edit Mode Commands in Input Mode
7.6.11. Character Command Processin!~
7.6.12. Reusability
7.6.13. Restrictions and Limitations
7.6.14. The ED$TC File
7.6.15. Obsolete Commands

8. Procedure Definition Process;or (PDP)

8. 1. INTRODUCTION

8.2. @PI)P FORMAT

9. File Administration Processolr (SECURE)

9.1. INTBODUCTION

9.2. MA .. JOR FUNCTION DEFINITIONS

9.3. @SIECURE CONTROL STATEMENT

9.4. INPUT AND OUTPUT BACKUP TAPE ASSIGNMENTS

9.5. CATALOGUED FILE ASSIGNMEINTS

9.6. PRIVILEGED MODE OPERATION

9.7. SECURE SOURCE LANGUAGE
9.7.1. Stcmdard Commands
9.7.2. Namelist and Limiters
9.7.3. Exclusions
9.7.4. Direction
9.7.5. Examples of Source Language

9.8. SELECTION OF FILES FOR UNLOAD

9.9. OWN-PROJECT APPLICATIONS

9.10. CATALOGUED FILE RECOVERY APPLICATIONS

7-29
7-29
7-30
7-30
7-30
7-31
7-31
7-32
7-32
7-32
7-33
7-33
7-33
7-34
7-34
7-34
7-34
7-35

8-1

8-1

8-1

9-1

9-1

9-2

9-2

9-4

9-6

9-6

9-6
9-6
9-9
9-10
9-10
9-10a

9-10a

9-11

9-12

4144.31
UP-NUM8£R

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

9.11. SUMMARY OF SECURE PROCESSOR COMMANDS

9.12. EXAMPLES OF USE OF THE SECURE PROCESSOR

9. 13. MULTIPLE ACTIVITY OPERATION AND EXAMPLES

9.14. SPECIAL FEATURES AND PROCEDURES
. 9.14.1. Checksum

9.14.2. Text Block Sequence Check
9.14.3. 'Special Void' Message
9.14.4. Tape Handling Procedures
9.14.5. SYS$*ARCHIVE$

10. Symbolic Stream Generator (SSG)

10. 1. INTRODUCTION

10.2. SSG INPUT AND OUTPUT
10.2. 1. @SSG Control Statement
10.2.2. Input from Runstream
10.2.3. SSG Input
10.2.4. SSG Output
10.2.5. SSG Margins and Headings

10.3. STREAM GENERATION STATEMENTS
10.3.1. SGS Input Formats
10.3.2. Referencing SGSs
10.3.3. SGS Examples

10.4. PERMANENT AND TEMPORARY STREAMS
10.4.1. Element Entry
10.4.2. Permanent Stream (PC F)
10.4.3. Temporary Stream
10.4.4. Set References
10.4.5. Revised Temporary Stream

10.5. SKELETON AND SYMSTREAM
10.5.1. SYMSTREAM Primitives
10.5.2. Nondirective Images
10.5.3. Directive Images
10.5.3. 1. Defining Skeleton Image Sequences (Closed Subroutines)
10.5.3.1.1. *DEFINE - *END
10.5.3.1.2. *PROCESS
10.5.3.1.3. Process Parameter References
10.5.3.2. Symstream Variables
10.5.3.2.1. Skeleton Image Loops (Local Variables)
10.5.3.2.2. Creating and Changing Global Variables (*CLEAR)
10.5.3.2.3. Creating and Changing Global Variables (*SET)
10.5.3.2.4. Variable Multiplication (*MULTIPLY)
10.5.3.2.5. Variable Division (*DIVIDE)
10.5.3.2.6. Variable Dump (*DUMP)
10.5.3.3. Internal Chains

UPDATE LEVEL
Contents~6

PAGE

9-12

9-14

9-16

9-18
9-18
9-19
9-19
9-19
9-20

10-1

10-1

10-1
10-1
10-4
10-4
10-5
10-5

10-6
10-6
10-7
10-9

10-10
10-11
10-11
10-12
10-14
10-15

10-16
10-16
10-17
10-18
10-19
10-19
10-20
10-20
10-23
10-24
'0-26
10-27
10-28
10-29
10-30
10-31

4144.31 SPERRY UNIVAC 1100 Series Executive
Volume 3 System Pr()cessors UPDATE LEVEL

Contents-7
PAGE

." L
__ U~--NUM8ER __ ____________________ ~ __________ J_ ________ __

10.5.3.3..1. Dynamic Expansion of Internal Chains (*CREATE)
10.5.3.3..2. Deleting Entries from Internal Chains (*REMOVE)
10.5.3.4. *EJECT
10.5.3..5. Concatenating Nondirective Images (*EDIT)
10.5.3.6. Directing the Generated Output Stream
10.5.3.6.1. Breakpointing Images(*BHKPT)
10.5.3.6.2. PRTOFF
10.5.3.7. Skipping Skeleton Images (*IF),(*ELSE),(*END)
10.5.3.7.1. *IF Variable Conditional
10.5.3.7.2. *IF Existence Conditional
10.5.3.7.3. *IF Test for Zero Conditional
10.5.3.7.4. *IF Relational T~sts
10.5.3.7.5. *IF Row or Column Search Conditional
10.5.3.7.6. *IF CORRECTION ENTRY EXISTENCE
10.5.3.7.7. Compound *IF Statements Using Boolean Operators
10.5.3.8. Merging Permanent and Temporary Streams
10.5.3.8.1. Merging PCF and Primary TCF Element Entries (*CORRECT)
10.5.3.8.2. Merging TCF Element Entries (*MERGE)
10.5.3.8.3. Change Control Characters

10.6. DIAGNOSTIC MESSAGES

11. File Structure and Maintenance

11. 1. INTRODUCTION

11.2. FILE FORMATS
11.2.1. Program File Format
11.2.1.1. Element Table
11.2.1.2. Procedure Tables
11.2.1.3. Entry Point Table
11.2.2. Element File Format
11.2.3. System Data Format (SDF)
11.2.3.1. Control Word Format for Control Images
11.2.3.2. Control Word Format fur Data Images
11.2.3.3. Control and Data Image Formats

11.3. FfLE MAINTENANCE
11.3.1. Program File Maintenance EX€lcutive Requests
11.3.1.1. Updating the Element Table (PFI$)
11.3.1.2. Table of Contents Search (PFS$)
11.3.1.3. Mark Element for Deletion (PFD$)
11.3.1.4. Updating Next Write Location (PFUWL$)
11.3.1.5. Retrieving Next Write Location Address (PFWL$)
11.3.1.6. Program File Package Statw; Conditions

Appendix A. Collector Diagnostic Messages

User Comment Sheet

10-31
10-33
10-34
10-35
10-37
10-37
10-39
10-39
10-42
10-43
10-45
10-46
10-48
10-51
10-53
10-54
10-57
10-59
10-64

10-65

11-1

11-1

11-1
11-1
11-4
11-7
11-8
11-9
11-11
11-12
11-14
11-14

11-17
11-17
11-17
11-18
11-19
11-20
11-20
11-21

A-1

4144.31
UP-NUMBER

A SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

FIGURES

Figure 2-1. Instruction Area (I-Bank) Main Storage Map Segmented MAPABS
Figure 2-2. Data Area (D-Bank) Main Storage Map Segmented MAPABS
Figure 2-3. Bank Structure of ~rogram and Segment Structure Within Each Bank
Figure 2-4. BANK 1
Figure 2-5. BANK2 (Control Bank)
Figure 2-6. BANK3
Figure 2-7. BANK4
Figure 2-8.' BANK5
Figure 2-9. BANKS
Figure 3-1. Standard Editing Format for Integer and Octal Dumps, Sample Printout
Figure 4-1. FURPUR Control Statements Used to Alter File Formats
Figure 11-1. Program File Format
Figure 11-2. File Table Index Format
Figure 11-3. Element Table Format
Figure 11-4. Assembler or FORTRAN Procedure Table Item
Figure 11-5. COBOL Procedure Table Item
Figure 11-6. Entry Point Table Item
Figure 11-7. Element File Format
Figure 11-8. Element in Element File Format

TABLES

Table 1-1. Partial Coding Line Correction Diagnostics
Table 1-2. Source Input Routine Options
Table 1-3. Processors That Use the SI, SO, and RO Parameters
Table 1-4. Processors That Use the SI and SO Parameters
Table 2-1. @MAP Control Statement, Options
Table 2-2. IBANK and DBANK Directive, Optjons
Table 3-1. @PMD Control Statement, General Options
Table 3-2. @PMD Control Statement, Special Options
Table 3-3. Standard Editing Formats for Dump Printouts
Table 4-1. Summary of FURPUR Control Statements
Table 4-2. @COPV Control Statement, Options Filenames Specified
Table 4-3. @COPV Control Statement, Options Element Names Specified
Table 4-4. @COPIN Control Statement, Options Filenames Only Specified
Table 4-5. @COPIN Control Statement, Options Element Names Specified
Table 4-6. @COPOUT Control Statement, Filenames Specified
Table 4-7. @COPOUT Control Statement, Options Element Names Specified
Table 4-8. @PRT Control Options
Table 4-9. @PRT Control Statement, Options with Elements Specified
Table 4-10. @PACK Control Options
Table 5-1. @ELT Control Statement, Options
Table 6-1. @DATA Control Statement With Options
Table 7-1. @ ED Control Statement, Options
Table 7-2. ED Processor Commands
Table 7-3. LPSUB Specifications
Table 7-4. LPTST Conditions
Table 7-5. LPTST Values
Table 7-6. Immediate Column Limits Syntax
Table 7-7. Obsolete ED Processor Commands
Table 8-1. @PDP Control Statement, Options

Contents-8
PAGE

2-51
2-51
2-56
2-56
2-56
2-57
2-57
2-57
2-57
3-18
4-5
11-2
11-3
11-5
11-8
11-8
11-9
11-10
11-11

1-7
1-9
1-13
1-14
2-3
2-27
3-5
3-5
3-19
4-2
4-7
4-9
4-11
4-12
4-13
4-14
4-17
4-19
4-29
5-2
6-2
7-2
7-4
7-22
7-24
7-25
7-31
7-35
8-2

4'144.31
UP~UM8EA L SPERRY UNIVAC 11 00 Se~1et Executive

Volume 3 System Prolcessors

1. 1. SCOPE OF MANUAL

I u_" LEVEL I 1-1 PAGE

1. I ntrod uction

The SPERRY UNIVAC 1100 Series Operating System comprises the Sperry Univac-supplied software
for thel SPERRY UNIVAC 1100 Series Computer Systems. This volume and Volumes 2 and 4 discuss
the base portion of the operating system; that is, the SPERRY UNIVAC 1100 Series Executive System
(EXEC 8) and the associated software needed to construct, execute, and maintain user programs.

Information that is primarily of interest only to an operator, installation manager, or systems analyst
is described only briefly if at all (for example, operating procedures, system generation procedures,
internal system logic, and so forth). Such m,aterial is covered in other Sperry Univac publications.

The purpose of this manual is to provide information for the user programmer so that full use of the
wide range of capabilities provided by the SPERRY UNiVAC 1100 Series Executive can be made. Any
differe!nces between the operating system de~scribed in this manual and the latest released software
are de'scribed in the Software Release Documentation that accompanies each release.

A basic knowledge of the SPERRY UNIVAC 1100 Series system architecture is assumed. For some
relatively specialized topics a knowledge of a 1100 assembly language programming may be helpful.
However, this is not required for full use of this manual by the users of higher level languages.

This is Volume 3 of the four-volume SPERRY UNIVAC 1100 Series Executive System Programmer
Refere'nce. To use this volume it is assumed the reader is familiar with Volumes 2 and 4.

Volume 1 contains the index for all volumes. Volume 2 describes the basic Executive (EXEC), which
includes the following:

• Concepts and Definitions

• Executive Control Statements

• Executive Service Requests (ER)

• Symbiont Interface Requests

• Input/Output Device Interfaces

• File Control

4144.31
UP~UM.ER

•
•
•
•
•

SPERRY UNIVAC 1100 Seriea Executive
Volume 3 System Processors

Demand Processing

Communications Handler

Real-Time Processing

Checkpoint/Restart

Internal Executive Design

Volume 4 describes the following:

• Flow Analysis Program (FLAP)

• System Relocatable Library and System Common Banks

• Document Processor (DOC)

• SNOOPY

• CULL Processor

• LIST Processor

UPDATE LEVEL
1-2

PAGE

This volume describes the SPERRY UNIVAC 1100 Series System Processors. These are general
system programs which are used to construct and modify programs, maintain and modify files, and
provide diagnostic information upon program termination. System processors are a logical extension
of the Executive system. They normally reside in the file SYS $ *LlB $.

In addition to the System Processors, file formats and file maintenance software, which are normally
transparent to the user, are discussed. This information is provided to:

• give insight into the file structure used by the FURPUR processor, the language and system
processors, and the symbiont complex and;

• enable the user to write application software to build, insert, and retrieve data from files.

1.2. MODIFYING SYMBOLIC ELEMENTS

This information applies only to processors which obtain their input from the System Relocatable
Library processor interface routine SIR$, (see Volume 4-2.1.4). The source input/output routine is
used by a processor to obtain the source language images from the runstream or from a symbolic
element in a program or element file (see 2.2.6) or a SDF file. The routine can automatically merge
corrections, list the corrections, and produce an updated symbolic element which is inserted into a
program file. The symbolic element which contains the source input may be cycled; the desired cycle
is specified in the processor control statement. The source input routine automatically passes to the
processor only those images that pertain to the cycle requested.

4144.31 L
-~--... ---

SPERRY UNIVAC 1100 S.r. ExecutN'. I I 1 3
Volume 3 System Pra,eess_o_rs __________ --I'-U_PO_A_Tt_lEVE_L __ .L._'A_G_E_- "" __ •• ~~

1.2.1. Line Correction Statement

The lines of text in a file may be considered 1to be numbered sequentially starting with line one and
incrementing by one. When altering the symb()lic element, these numbers are used on the line
correction stat,ement to indicate where the correction lines are to be inserted. The format of the line
correction statement is:

--n,m

The minus sign in column one is the correctioh indicator which specifies that symuolic lines n through
m are to be replaced by correction lines. The lines immediately following the -n,m construction are
insertled until another correction statement is read. If no lines follow the -n,m correction statement,
lines 11 through m are deleted.

The construction -n with the correction indicator appearing in column one specifies that the
succeleding lines are to be inserted in the symbolic element after line n.

If correction lines are to be inserted before the first line in the symbolic element, the correction lines
are placed immediately after the processor control statement without specifying any insertion line
numblers, or bV using -0 (negative zero) as the line indicator.

The tE~rms in succeeding correction stateme!nts must form a non-decreasing sequence since the
corrections are applied by means of a one-pass merge of the symbolic file and the corrections. Thus,
if -n 1 ,m 1 follows -nO,mO, n 1 must be greatEtr than mO. If -n 1,m 1 follows -nO, n 1 must be greater
than nO. If -n 1 follows -nO,mO, n 1 must be greater than or equal to mO. The exclamation point (I)
is used to indicate the last line in the input element. -m,I would delete all lines of the element from
line m through the last line and allow insertions after the last line. -I would allow line insertion after
the last line of the element. -U is not allowE~d.

Examples:

@ASM,U DF3.WINDUP, .WINDUP
-30,31
CORRECTION LINE A
-100, 115
-120
CORRECTION LINE B
CORRECTION LINE C
CORRECTION LINE D
- 150, 150
@MAP, IL

The U option on the (0) AS M control statement specifies that the next higher cycle of symbolic element
WINDUP is to be produced. lines 30 and 31 are replaced by correction line A. lines 100 through
115 alre to be deleted. Correction lines B, C, land D are inserted after line 120. line 150 is deleted.
'Encountering the (ii'MAP control statement indicates that there are no more correction lines to the
symbolic elemf3nt.

4144.31
UP-NUMBER

SPERRY UNfVAC 1100 Seri .. Executive
Volume 3 System Processors

1.2.2. Redefinition of the Correction Indicator

UPOATt lEVEL
1-4

PAGE

It is possible to redefine the correction indicator so that a symbol other than the minus sign may
indicate the insertion of correction lines. Redefinition of the correction indicator makes it possible
to insert correction "lines which contain a minus sign in column one. The format for redefinition is:

-=x

x may be from one to three nonblank characters in length. The correction indicator may be redefined
any number of times at any position within the correction stream but only one symbol is recognized
as the correction indicator at any time. If x is blank, the statement is ignored.

Examples:

1 . @DATA FILE1,FILE2
2. -2
3. CORRECTION LINES
4. -=*
5. *11,13
6. CORRECTION LINE A
7. CORRECTION LINE B
8. *=+++
9. +++22
10. CORRECTION LINE
1 1 . @END

Line 2 indicates correction lines are to follow line 2 in the source program. Line 4 redefines the
correction indicator to an asterisk (*). Line 5 inuicates lines 11, 12, and 13 are replaced with
correction lines. Line 8 redefines the identifier to + + +. Line 9 indicates correction line follows
line 22 of the source program.

1.2.3. Partial Line Corrections

In addition to inserting entire symbolic correction lines, partial line corrections are also permitted.
This is accomplished by using a range correction statement to define the number of code lines to
be partially corrected followed by change correction statements which define the correction to be
made.

In the formats given in 1.2.5 and 1.2.6 the slash (I) is used as a separator character. The separator
character may be any character other than a digit, a comma if the change statement is Format 1, a
blank, or a correction indicator for Format 3 or 4 (see 1.2.5). The first separator may be preceded
by any number of blanks. The character chosen as a separator must not appear as a character in
the old-data and new-data parameters of the change correction statement.

1.2.4. Range Correction Statement

The range correction statement formats are:

Format 1: -x,y-

Format 2: -x-

The minus character immediately following the y is an edit indicator which must always be coded
as a minus character. (The minus character that immediately precedes the x is a correction indicator

4144.31 L
~~---

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors I UPOA TE LEVEl

I 1-5
PAGE

that may be redefined by the user, see 1.2.2). The range correction statement must be followed by
one or more change correction statements and there must be one change correction statement for
each statement in the range -x,y-. For example, if the range correction statement is:

--2,7-

then 1there must be six change correction statements immediately following the range correction
staternent. If the number of change correction statements following the range correction statement
does not equal the number given on the range correction statement, a diagnostic is given.

If forrnat 2 is used, the following corrections are all applied to line x. The first correction is to line
x and the following corrections are to the last corrected form of x. The corrections are applied until
another range or line correction statement is 1found, or an error occurs (see 1.2.6). If an error occurs,
the last corrected image is returned and all other change statements are skipped.

The nlUmber specified in the x parameter must be greater than that given on any previous range, delete
or inslBrt correction statement. The number specified in the y parameter must be equal to or greater
than the x parameter.

1.2.5. Change Correction Statements

The change correction statements may be specified in anyone of the following four formats.

Format 1: c/new-data

Format 2: c,d/new-datal

Format 3: lold-data/new-data

Format 4: lold-data/new-datal

Formtllt 1 is used to replace the characters of an image from a specified column to the end of the
image!. The column number is specified in parameter c. Parameter new-data must contain the
replacement characters. All of the data following the separator (except trailing blanks) is taken to be
replacement characters.

FormCllt 2 is used to replace a specified number of characters in an image. The column numbers
enterEtd in the c,d parameters specify the range of characters to be replaced. Parameter new-data
contaiins the rlaplacement characters. If th~ number of characters in the new-data parameter is
greatE~r than the range specified in the c,d parameters, then the characters following the column
number specified in the d parameter are right shiftE~d to make room; if it is less, the image is left shifted
to close the image.

Form';lt 3 oper,ates similarly to format 1 eXC€ipt that the old-data parameter specifies one or more
characters to be replaced. The coding line is scanned and when a find is made, the characters
speciHed by the old-data parameter through the end of the image are replaced by the characters
specified in th'B new-data parameter.

Form~lt 4 operates similarly to format 2 eXC€ipt that the old-data parameter specifies one or more
characters that are to be replaced by the characters specified in the neW-data parameter.

For Formats 3 and 4, if the line is corrected in)~SCII, the character comparison is first done with upper
and lower case characters considered uneqw31. If this test fails, the comparison is done with upper
and lower case characters considered equal. When a match is found, the new-data parameter is
placed in the line exactly as it was received with no case transformations.

4144.31
UP-NUMBER

Examples:

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

@ASM,U PF3.WINDUP, .WINDUP
-30,33-
73/SUBTbT6
42,48/SUBTOT71
IOVHEAD/CHARG7
IREFUND3/RETURNDI
@MAP, IL

UPDATE LEVEL
1-6

PAGE

The U option on the @ASM control statement specifies an update to symbolic element WINDUP.
Lines 30 through 33 are to be partially corrected. The characters in columns 73-80 in line 30 are
replaced by SUBTOT6. The characters in columns 42-48 in line 31 are replaced by SUBTOT7. The
characters OVHEAD in line 32 through the end of the line are replaced by CHARG7. The characters
REFUND3 in line 33 are replaced by RETURND. Encountering the @MAP control statement indicates
that there are no more corrections to the symbolic element.

1.2.6. Line Correction Diagnostics

When an error occurs, SIR$ passes a print control word in AO back to the calling processor. The
standard action by the processor is to do an ER PRINT$ to inform the user of the error. No other
image is returned to the processor on an error return. The formats of the error messages are:

Format 1: SIR EDIT ERR c I

Format 2: c I

where:

c Indicates the cause of the error. Table 1-1 lists the possible errors.

The line number of the last image retrieved from the input element before the error
occurred.

Format 1 is returned when a partial line correction error occurred and format 2 is returned when
some error occurred within a range or line correction statement.

4144.31
UP\~UMBER L

Error

SEPABATOR

COLUMN

NO FIND

CARD COUNT <

CARD COUNT>

OUT OF SEa

INPUT ELEMENT

ENDS AT n

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Proc~essors

Table 1-1. Partial Co/ding Line Correction Diagnostics

Description

I UPOATE LEVEL

The separator used in the ch,ange correction statement is invalid or nonexistent.

1-7
PAGE

The column number specified in a format 1 or 2 change correction statement is out of range;

or c > d for a format 2 change correction statement.

The characters given in the old-data parameter of a format 3 or 4 change correction

statement could not be found in the line being corrected.

NOTE:

Whenever one of the above orrors occurs, the change correction statement is ignored and

the line remains unchanged oxcept Format -x- where the last corrected image is returned.

Not enough change correction statements were provided. Those lines for which no change

correction statement was provided! remain unchanged.

Too many change correction statements were provided. The excess change correction

statements are ignored.

The range or line correction statement is illegal.

No cards follow -n where n=:1. I is the line number of the last image retrieved from the

input element before the errCtr occurred.

To reference a line after the IIa5t line of the input element. Line number n being the last line

of the element.

1.3. CONTROL STATEMENT SYNTAX

Control statemf~nt syntax is described in detail in Volume 2-3.2, for convenience it is described briefly
here.

The g~eneral EXEC 8 control statement format is as follows:

LABEL
FIELD

OPERATION
FIELD

OPERAND
FIELDS

@ [label:] command[,options] parameters[. comment]

Brackc3ts are used to indicate optional fields or subfields.

The operation field is terminated by one or more spaces.

The c~::>mment 'field must be preceded by spCllce period space.

The operand fields specify parameters associated with the command fields. These are separated by
commas and are specified by the user as dictated by requirements. The content of each operand

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

1-8
PAGE

field, the number of operand fields, and whether each is required or optional varies with the command
selected. Operand fields, in turn, may contain parameter subfields that are separated by various
delimiters. For the most part, these subfields are optional within a field. Thus, it is possible to specify
parts of a field without specifying the entire field.

When parameter fields and subfields are optional, the following rules apply, where an empty field
is. defined as one that contains no nonspace characters:

1. Parameter field separators must be specified, left to right, through the last parameter given;
fields preceding the last parameter may be empty; trailing field separators need not be specified.

2. The same holds true of parameter subfield specifications within a field.

Leading spaces within a statement are permissible in the following cases:

• Following the master space or at (@) character

• Following a colon (:) when a label is specified

• Following a parameter field (,)

• Following a parameter subfield separator (/)

A space, placed at any position in the coding other than those listed, is interpreted as the termination
of the image.

In both batch and demand processing, data images and control statements in a runstream are
normally processed sequentially and only upon request by the Executive or by a program operating
in that run.

However, a special mode of processing control statements is available during demand processing.
This mode directs the Executive to process a control statement immediately after it has been input
from a remote terminal. The processing called for by the control statement is also done independently
of any current program execution or control statement processing in the runstream. This mode of
executing a control statement is specified by a special character, a second @ in column 2 on the
control statement. This mode of operation is called transparent mode, and such control statements
are called transparent control statements.

Transparent control statements are a subset of the control statement set. The syntax rules for normal
control statements, with the following exceptions, also apply to transparent control statements. The
exceptions are as follows:

1. The identification of a transparent control statement consists of a @ @ versus a @ for a normal
control statement.

2. The use of a label on a transparent control statement, while not prohibited, is meaningless.

1.4. FILENAME, ELEMENT NAME NOTATIONS

Filename and element name notations are described in detail in Volume 2-2.6.1 and 2-2.6.4;
respectively, for convenience they are described briefly here.

__ ~_~;~~_'~_~A ______ ~ SPERRY UNIVAC 1100 Serin Executive I I 1-9
Volume3Sy~emPro~"o_r_S __________ ~_U_~_A_n_L_M_L_~~P_A_~ ______ _

Although the d,istinction between filenames ,lind element names is often evident from the context,
·there are many cases where a period must follow a filename or it will be either not accepted, or
incorrEtctly trealted as an element name. Ther·efore, it is best to always specify the period as shown
below:

a filename is indicated by: [[qualifier]'"]file[(F-cycle)) [/[read-key] [/write-key]].

an eltnaml3 is indicated by: [filename.]elemf~nt[/version] [(element-cycle)]

aualifi~er, file, element, and version names Blre 1-12 alphanumeric Fi~ldata characters ($ and -
charac!ters are also allowed). Keys have 1-6 characters from the entire Fieldata char~cter set,
excluding only space, comma, slash, period, c)nd semicolon. F-cycles are numbered upward from
'1 to 9!~9; elem4ent cycles are numbered upwcud from 0 to 63.

When the qualifier is omitted, the project-id fr~:>m the @ RUN control statement is used, except in the
special case where a leading asterisk appears before the filename and a qualifier has been previously
furnish,ed on a @QUAL statement. When the IF-cycle or element-cycle number is omitted, the most
recently created cycle is used.

When Ithe filename portion of an eltname is omitted, the processor usually assumes an implicit
reference to the run's temporary program file, TPf$.

F-cycles may be absolute, indicated by a number, or relative indicated by a -number. A relative
F-cycle of (+ 1) must be used to distinguish a newly assigned 'to be catalogued' file (see @ASG,C
and U ()ptions) from an existing catalogued fil19 of the same name. A relative F-cycle of (-3) would
designate the fourth oldest file that was catalogued under the specified filename. Element cycles
art~ refE~renced by their actual number, such als (0) or (6), or by relative number such as (-2).

1.5. SOURCE INPUT/OUTPUT ROUTINE CONTROL OPTIONS

Source input/output routine (SIR$) options are described in detail in Volume 4-2.1.4. For
convenlience, the table of control options is rEtproduced here.

Table 1-2 contains a list of those options used by the source input/output routine to control the input
and output of tho souce language elements. Most Sperry Univac supplied language processors (FTN,
MASM, ACOB, NUALG, and so forth) use thf~ source input/output routine to obtain their input.
Therefore, the listed options are generally applicable to these language processors.

Table 1-2. Source Input Routine Options

~ .. --------~----------------------------
Option

Character
Description

Input is compressed symbolic in columns 1-80 of the card deck.

Input contains sequence numbers in columnt 73-80 of the symbolic images.

Insert a new symbolic element into the program file. I is not permitted when applying corrections

to an element.

.. I Input contains compressed symbolic images in columns 1-72 of the cards and sequence numbers

in columns 73-80. These sequence numbers are not checked by the K option.

~.-------------~------------------------

4144.31

UP-NUMBER

Option
Character

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 1-2. Source Input Routine Options (continued)

Description

I UPDA:' LEVEL
I 1-10

PAGE

K Check sequence numbers in columns 73-80 of the symbolic images (valid only with H option).

P Output symbolic element in Fieldata. (Cumpare with a.)

a Output symbolic element in ASCII. (If neither P or a is specified, code type of input element. if

any, is used; otherwise, the code type is based on the type of call to SIR$, ASCII if GETAS$ and

Fieldata if GETSR$.) If both P and a are specified, output symbolic element with mixed images can

be in Fieldata and ASCII.

U Update and produce a new cycle of the symbolic element.

W List correction lines.

1.6. PROCESSOR CONTROL STATEMENTS

Two separate system library files are available during the processing of a user run; the absolute library
file (SYS$*LlB$) and the relocatable library file (SYS$*RLlB$).

The absolute library file (LlB$) contains the absolute elements of each standard processor included
with the operating system. LlB$ may contain any other processor and executable program added
by the installation.

The relocatable library file (RUBS) contains the system-supplied relocatable elements and procedure
elements which may be needed to assemble, compile, or collect the user program.

A temporary program file (TPF$) is created by the Executive for each run that is initiated. The qualifier
for the filename is taken from the project-id field of the @RUN control statement. The file may be
used as a scratch file for the user program's symbolic, relocatable, and absolute elements. Note,
however, that since this is a temporary file it is discarded at run termination. Demand mode u:sers
will find that it is safer to keep 'work in progress' in a catalogued file so that this work will not be
lost in case of unplanned run termination.

The general format of the processor control statement is:

@Iabel:processor,options param-1,param-2,param-3, ... ,param-n

The label field is as described in Volume 2-3.2.1. The processor field is the name and file location
(see Volume 2-3.2.2) of the absolute element desired. The following is an example of a generalized
processor control statement where the processor is located in a user-specified file rather than in the
system library file LlB$:

@USER*FILE.PROG/ABS,P FILE. IN, ELTOUT, FILE.OUT

All of the standard processors must be called using the above call form (rather than @XOT) since
they expect to retrieve the parameters on the call line. Such parameters cannot be retrieved on an
@XOT call (see 2.3).

SPERRY UNIVAC 1100 Seriela Executive I I 1 11
V~ume3Sy~emProoouor_s~~~~~~~~~~~_U_~_A_n_~~_L~~~'_~_E_-~~~_

The rulE~s for loc,ating the element in the proces.sor field are slightly different from the standard rules
for locating an EJlement specified on an @xar control statement. The processor call rules are:

1. If ia filename is specified, then that file is searched for the absolute element.

2. If cl filename is not specified but there is a Ileading period, then TPF$ is searched for the element;
if 1there is no find, LIB $ is searched.

3. If a filename is not specified and there! is no leading period, then the system library file
SYS$*LlB~1 is searched for the element if there is no find, then TPF$ is searched. The
abbreviations for the standard processors (ACOB for COBOL, FTN for FORTRAN, and so forth)
arE~ the names of the respective absolute elements.

In general the option field has meaning only for the particular processor, though there are some
options that have the same meaning for all processors. The format of the options parameter is
describled in Volume 2-3.2.2.

The param-l, param-2, ... param-n parameters contain information supplied to the processor. With
the exc~~ption of the DATA processor (see Section 6), which works only with SDF files and, therefore
assumes filenames, the parameter fields are assumed to be in element name form although they need
not represent element names. The meaning of the parameter fields is determined by the processor.
The following rules are followed by the processors supplied by Sperry Univac:

1. If a field in'tended to contain the name of a program file is not specified, TPF$ is assumed.

2. If CI field is to contain an element name and the element name is specified but not the filename
and there is. no leading period, TPF$ is assumed. If there is a leading period, then the filename
is taken from previous field provided that 1the field exists and was intended to name an element
or a program file.

The source lan!~uage processors (MASM, ACOB, FTN, NUALG, and so forth) have a common
interpretation of several options as well as the lrirst three parameters. The typical standard language
processor control statement take's the form:

@A.COB 5 I, RO, SO

where SI, RO, and SO represent eltname-1, elitname-2, and eltname-3.

The meanings of these parameters are:

SI (Source Input) If no new ~~Iement is being introduced this paramete:' specifies
the source of input for the processor.

If a new :symbolic element is being introduced from the
runstream (I-option set), this parameter specifies the file into
which the new element is placed and the name which it is given.
If an update is being performed (U-option set), then this
parameter specifies the element and the cycle of the element
being updated.

It is possible to specify a symbolic element from a tape file for
this paraml~ter. The tape file must be in element file format (see
11.2.2) and the file must be positioned (@FIND) so that the
element label is read in. Corrections to a symbolic element from
a tape are permitted provided that the output is a symbolic
element in a program file.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 S.ri .. Executive
Volume 3 System Processors UPOA T£ LEVEL

1-12
PAGE

AO (Aelocatable Output)

SO (Source Output)

This parameter specifies the name and the program file into
which the element produced by the processor is placed. There
is no restriction on the type of element being produced. For
example, most of the processors produce relocatable binary
elements: the collector produces either absolute or relocatable
binary elements.

This parameter specifies the name and the file for the updated
symbolic element if no U-option.

The System Aelocatable Library routine PAEPRO examines the facility description of each file
specified in the 51, RO, and SO fields and assigns those files which do not meet the minimum
assignment requirements.

51 - assigned

AD - exclusively assigned

SO - exclusively assigned

The AD and SO fields are assigned exclusively because the language processor will modify the table
of contents of the file(s) and write in the text portion of the file(s). If another run has any of the files
assigned in such a way as to prevent PRE PRO from obtaining the minimum assignment the processing
will be aborted if the run is in demand mode or held until the file is available if the run is in batch
mode. Availability of required files may be checked by assigning the files, with the minimum
assignment required, before calling the processor.

The source language processors do not interpret the 51, RO and SO fields to determine uniqueness
or duplication of names. If an element name in the 51, AO or SO field matches an already existing
element in name/version and type, and the field is an output field the old element will be replaced
with the new element.

If no element name is specified for RO and SO or the parameter is left blank the following rules apply:

1. If there is no file information and the parameter does not have a preceding period or if the
parameter is void. then the file specified in the 51 parameter is assumed.

2. The element name from the 51 parameter is assumed.

3. If there is no version specified, then the version from the 51 parameter is used.

Tables 1-3 and 1-4 describe the valid possibilities. The I and U options along with the 51 parameters
determine the interpretation of the processor control statement. An error message is printed if there
is any deviation from these rules. Table 1-3 is valid for the MA5M, ACOB, FTN, NUALG, MAP, and
CFOA language processors (require 51, AO, and SO): Table 1-4 is valid for the PDP and EL T processors
(require only 51 and SO).

41'4l4.31
UP· UM8EA L SPERRY UNIVAC 1100 Seri" Executive I I 1 13

_______ V_o_'_u_m_8 __ 3 __ S_V_s_t_8_m __ P_r_o_c.:_8_s_s0 ___ rs ______________________ ~_u_~_A_n_UN! ___ L ____ ._PA_G_E_-_· ___

lor U
Option

Neither
·or I Olnly

Neith,sr

I Only

U Onlly

r6ble 1-3. Processors Th~'t Use the SI, SO, 6nd RO P6r6meters

51 Notes

Not 3pecified

ParalTteter is

comJ)letely specified.

Paralneter is

completely specified

but without a cycle.

Pararneter must be

completely specified.

RO N01t es 50 Notes
I

Element
Produced

This parameter n lay or may Illegal to use this New relocatable

element. not be specified. If it is not parameter.

specified. NAME~. is

assumed. It is in, valid to

specify a cycle.

If this par~meter is not

completely specilf ied. then

rom the 51

:t It is

the information fl

parameter is usel

invalid to specify a cycle.

If not completely

the information fir

specified.

om 51

parameter is usel :J. It i:s

invalid to specify a cycle.

If this parameter is not

completely speci1f ied. then

om the 51

:J. It is

the information fir

parameter is usee

invalid to specify a cycle.

If void. no source output is New relocatable

produced. If this parameter element. Also

is not completely specified new symbolic

then information from the element if 50 was

51 parameter is used. specified.

Illegal to use this Relocatable and

parameter. symbolic

Not required. information

from the 51 parameter is

used. When 50 is not

specified. the 51 element is

updated to produce the

next higher element cycle

from the 51 cycle specified.

or the latest cycle if no

cycle was specified. If SO

is specified. the next higher

element cycle is created

and transferred along with

all previous cycles up to the

cycle maximum to the new

50 element; 51 element

remaining unchanged. In

either case. it is invalid to

specify a cycle for 50.

elements.

New relocatable

element and

updated symbolic

element if 50 was

specified.

4144.31
UP-NUMBER

lor U
Option

Neither

Neither

I Only

I Only

U Only

Not specified.

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 1-4. Processors That Use the 51 and 50 Parameters

51 Notes 50 Notes

Illegal to use this parameter.

Parameter is completely specified. If If this parameter is void, no source

SO is void the l option is assumed. output is produced. If it is not

completely specified, then the

information from the 51 parameter is

used. Invalid to specify a cycle.

Not specified. Illegal to use this parameter.

Parameter is completely specified but Illegal to use this parameter.

without the cycle.

This parameter must be completely

specified.

If this parameter is not completely

specified, then the information from

the 51 parameter is used. When 50

is not specified, the 51 element is

updated to produce the next higher

element cycle from the 51 cycle

specified, or the latest cycle if no

cycle was specified. If 50 is

specified, the next higher element

cycle is created and transferred

along with all previous cycles up to

the cycle maximum to the new 50

element; 51 element remaining

unchanged. In either case, it is

invalid to specify a cycle for SO.

UPDATE LEVEL
1-14

PAGE

Element Type
Produced

The runstream input is

processed and listed but

no element is produced.

Update (no cycling).

No element is produced.

New element.

Update (with cycling) if

SO was specified.

4144.31 L
~~---

SPERRY UNIVAC 1100 Seril!S Executive
Volume 3 System Proc:essors I UPD, TE LEVEl

I 2-1
PAGE

2. Program Construction and Execution

2. 1. INTRODUCTION

The SPERRY UNIVAC 1100 Series Executive SystE~m provides the ability to combine the relocatable
elements generated by a language processor into an executable (absolute) element. This combination
or collection of relocatable elements is done by a system processor, the Collector. The absolute
element produc:ed by the Collector is structured such that the Executive program loader can place
it in execution. Once the absolute program has been created (that is, collected), it may be saved and
reexecuted many times. The program need only be recollected when a modification to it is desired.

An absolute element (program) is placed in execution through use of a program execution control
statement (@X()T or processor call) within the control stream. When an @XQT or processor call
control statement is encountered by the Executive, the program is retrieved from its mass storage
file, loaded into main storage, and execution is initialed. If the statement was a processor call the
EXEC presents (in table form) the parameter fiE:ld from the call when the first symbiont input (READ$)
request is madEl. If @XOT is used the first READ$ obtains the first data image following the @XOT.

During execution, a program can control which parts of the absolute elements are in main storage
by requesting the Executive to load previously-defined program overlay segments or by linking to
program banks. In addition, the program has the capability of attaching to or linking to other
previolJsly defined absolute elements. This program structure supports the dynamic sharing of both
code (!Usually mentrant) program banks and banks containing data between multiple users. Such
shared banks are termed common banks.

2.2. THE COL.LECTOR

The Collector is called by the @MAP procesiior control statement (see 2.2.1). It provides a direct
means of collecting and interconnecting relocatable elements to produce a program in an executable
form. This form is called an absolute element. Optionally, the Collector can be used to create a single
reloca1table element from a collection of several relocatable el€.ments. The three basic inputs to the
Collec1tor are:

• The parameters supplied on the @ MAP control statement

• The information supplied by the collector directives

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

• Relocatable elements taken from various sources, such as:

the Temporary Program File (TPF$)

user-created program files

the System Relocatable Library (SYS$*RLlB$)

The three basic outputs of the Collector are:

• An absolute or relocatable element

• A symbolic element

• A program listing

UPDATE LEVEL
2-2

PAGE

The primary output of the Collector is the relocatable or absolute element which results from the
collecting and linking of the various relocatable elements. This element is given a name and placed
within a program file for subsequent use. Both the element name and the file in which the element
is placed may be dictated by the user.

Usually the Collector includes within an absolute element a set of tables for use by the diagnostic
system. This output can be suppressed by the user (see Table 2-1).

The Collector normally divides the absolute element into two logical structures called banks. The
first bank, called the I-bank, is comprised of information which is contained under the odd location
counters of the relocatable elements to be included in the collection; the second bank, called the
O-bank, contains information contained under the even location counters of the included relocatable
elements. By convention, but not necessity, the instructions of a program are placed under odd
location counters, while the data portions are placed under even counters. This allows a separation
of instructions and data to be achieved, with instructions directed to the I-bank and data to the
O-bank.

There are times when the user may wish to structure a program into logical entities or banks which
are different from the single I-bank, O-bank normally produc-ed. To do this, the user must explicitly
name the bank or banks comprising the program and then direct the Collector as to the program
portions to be contained in each bank. This method of collection, in which a program's banks are
explicitly named, will generally be called a 'bank-named collection'.

When no banks are explicitly named, the Collector will generate one I-bank of odd location counters
and one O-bank of even location counters, and the collection will be referred to as a 'bank-implied
collection'.

2.2.1. Collector Initiation (@MAP)

Purpose:

Specifies that the Collector is to combine a set of relocatable elements into one absolute or
relocatable element. All parameters in the @ MAP control statement are optional. See Volume 2-3.9
for additional information regarding processor control statements.

UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Pr01cessors

4'144.31 L
- ,----, I UPDATE LEVEL

I 2-3
PAGE

FormBIt:

@label:MAP,options eltname-1,eltname-2,eltname-3

Parameters:

options

eltname-1

eltname-2

eltname-3

Option
Character*

A

See Table 2-1 and source input routines options (see Table 1-2),

Specifies the input symbolic element which contains the Collector source
language (see Volume 2--3.9~.

Specifies the absolute output element. When the R option is specified,
eltname-2 names the relocatable output element (see Volume 2-3.9).

Specifies the output sOUirce language element (see Volume 2-3.9),

Table 2-1. @MAP Control Statement, Options

Description

Under no circumstances is the error exit (ERR$) to be taken during the collection, even if the collection

is destroyed.

B Mark the absolute element so that the program area is not cleared to zero prior to loading the program

and any indirectly loaded segments (see 2,2,4,S,2),

o Print a diagnostic message for all possible addresses over 6SK (0177777). Check for certain possible

instruction format violations.

E

F

L

Allow program addresses to exceed EiSK (0177777). If this option is omitted and the program's D-bank

exceeds 6SK, the D-bank starting address is moved downward so that all (or as many as possible) of

the over-6SK addresses are forced bl310w 6SK. In bank-named collections, all possible D-bank starting

addresses are moved downward.

Mark the output absolute or relocatclble element as quarter-word sensitive. (Also see T option.)

Produce a complete listing which contains the following information concerning the program area:

main storage allocated to each element and segment

program address of all extern,al definitions

the symbol'?' following any undefined entry point

the scale drawing of program segmentation and bank structure

the external references of each element

N Produce the most abbreviated print :listin~1 available.

R Generate a relocatable element instEtad of an absolute element.

4144.31

UP-NUMBER

Option
Character*

S

T

v

x

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 2-1. @MAP Control Statement, Options (continued)

Description

A

UPDATE LEVEL
2-4

PAGE

Produce a summary listing which includes a scale drawing of program segmentation and bank structure.

Do not mark the output element as quarter-word sensitive. If neither the T nor F options are specified,

the program sensitivity is determined as follows:

- if only third word sensitive elements and elements with neither T nor F sensitivity are ;:>resent.

T is used.

- if only quarter-word sensitive elements and elements with neither T nor F sensitivity are present.

F is used.

- if both third- and quarter-word sensitive elements are present, the sensitivity of the element

containing the program starting address is used.

- if both third- and quarter-word sensitive elements are present, the sensitivity of the element

containing the program starting address as specified on the ENT directive is used. If the ENT

directive is not used, the absolute element is marked insensitive.

Assign all addresses but strip off all O-bank code (can be used to create a reentrant processor - see

2.2.3.5). Compare with Y option.

If an error is detected, terminate the collection and exit via ERR$. When the X option is omitted, the

results of the collection are accepted, even though there mfly be minor errors, as long as an absolute

element is produced.

This option is assumed when collector is automatically called by @XOT.

Y Assign all addresses but strip off all I-bank code. Compare with V option.

Z Suppress generation of diagnostic tables in the absolute element which are used by diagnostic system.

* Also see source input routine (SIRS) options, Table 1-2.

Examples:

1. @MAP
2. @MAP
3. @MAP
4. @MAP, I
5. @MAP, U
6. @MAP, IRXLD

OLDFILE.OLDELEMENT,A,NEWFILE.NEW/ELEMENT
SYMIN/C,BACKUP.ABSOUT
BACKUP.SYMOUT, .ABSOUT
SYMIN(3) ,ABSOUT/REVISED
ARB,ARB

1. This @MAP control statement produces the same results as the @MAP,I control statement. The
names for the symbolic and absolute elements are automatically assigned by the Collector (see
Volume 2-3.9). The printed output and internal table entries would appear as if the control
statement had been: @ MAP,I TPF$.NAME$. If no directives follow, the directive IN TPF$. is
assumed.

4144.31 L SPERRY UNIVAC 1100 Seroes Executive
___ U_P.~_vM_B_ER______ __ _____ V_o __ lu_m __ e_3 __ S_y_s_t_e_m __ P_r __ ocessors I UPD.:' LEVEl

2-5
PAGE

2. Element OLDELEMENT from file OLDFILE is updated by any source language statements
following the @MAP control statement. The output source language goes into file NEWFILE,
element NEW/ELEMENT. The absolute element A goes into TPF$.

3. Version C (latest cycle) of element SYMINI from TPF$ is the input symbolic element. The absolute
output element ABSOUT is written in file BACKUP. No source language output is produced; any
successive correction lines are applied but not saved.

4. The sourCI~ language statements (Collector directives) following the @MAP control statement are
inserted as the symbolic output element SYMOUT in file BACKUP. The absolute element
ABSOUT is also put inta file BACKUP.

5. Cycle 3 of element SYMiN is updated to produce cycle 4 of element SYMIN which is located
in TPF$. Any correction lines are saved. Version REVISED of absolute output element ABSOUT
is. also put in TPF$.

6. The source language statements following the control statement become the symbolic element
ARB in the TPF$. file. The output element goes into TPF$ as relocatable element ARB. If errors
are encountered during the collection,. the run is terminated. A full listing is produced.
Diagnostics are printed for addresses over 65K.

2.2.2. Collector Directives

The Collector directives enable the programmer to control the collection of his program. These
directives:

III are free-form; hence, they may begin in any column of the source language image. For rules
regarding the presence of blanks, see Volume 2-3.2.6.

III may contain comments preceded by the blank-period-blank construction.

• follow the standard dropout rules (see 1.4 and Volume 2-2.6.6) pertaining to filenames, element
names, and so forth.

For the collection of complex programs which require relocatable input from many sources,
construction of overlay segments, the use of mUltiple libraries, or the construction of mUltiple banks,
the user must prepare a set of Collector directives. These statements may follow the @MAP control
statement or be contained in an element in a program file which is specified as input on the @MAP
statement. The user has the same access and updating facilities for the (@MAP) symbolic element
as for any other type of symbolic element.

Certain Collector directives can be used only in bank-named collections. These are IBANK, DBANK,
FORM, and $Ics (location counter set). The second format specified for the IN and the second, third
and fourth formats of the LIB directives can !be used only in bank-named collections.

On all Collector directives, in all fields and sUlbfields, a parameter consisting of a set of characters
contained within quote's, e.g., 'XYZ-CAT', will be treated as an alphanumeric name. Any normal
termination characters will simply be considered characters within the name.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors I UPD.:' LEVEL I 2-6

PAGE

2.2.2.1. Element Inclusion (IN)

Purpose:

Allows the user to specifically include an element or all relocatable elements of a file in the collection
of a program. An element may be preceded by a filename. The elements indicated on an IN directive
are placed in the segment named by the preceding SEG directive (see 2.2.2.14).

All parameters in the IN directive are optional. If all parameters are omitted, IN TPF$. is assumed.

Format:

IN name-1,name-2,name-3, ... ,name-n
IN(bank-list) name-1 ($lcs),name-2($lcs), ... ,name-n($lcs)

Parameters:

name

bank-list

$Ics

Description:

Specifies the element or entire file to be included in the collection.
See 1.3, 1.4 for standard file and element notation.

A list of bank-names to be used with local element inclusion.

Specifies which location counters of name-1 are to be included in this
part of the program.

Bank-list and $Ics are used only with bank-named collections (see 2.2.5).

By stating FILENAME without a following element name, the user can specify the inclusion of all
relocatable elements in a program file. In bank-implied collections if some elements of a file have
been explicitly named, these are included as specified and the 'IN' filename serves to bring in only
the remaining elements in the file. When specifying an entire file for inclusion, a period must follow
the filename.

When name consists of an element name only with no version specified, any RB element with that
name irrespective of version, is eligible for inclusion. If RB elements with the same element name
but different version names exist in the same file, ambiguities may arise. The CLASS directive (see
2.2.2.8) may be used to overcome the ambiguity. Alternatively, the ambiguity will not be present
if the version name is explicitly stated as part of name on the IN statement.

IN name/

must be used to specifically select an RB element with a version name consisting of 12-space
characters, which is the default version.

Elements named, but not directly associated with CI filename, are searched for first in TPF$, then in
any files named on LIB directives (see 2.2.2.3) and finally in the System Relocatable Library (RLlB$).

In bank-implied collections, an element name may appear on only one IN directive and only once
during a collection. A version may be present, but the element name itself may still appear only once.
The version is necessary only if needed to distinguish between elements with the same basic name
but different versions. See 2.2.5.6.2 for including an element more than once in a bank-named
collection.

UP';'NUM8ER

SPERRY UNIVAC 1100 SIHies Executive
Volume 3 System Procl9ss0rs

4144.31 L
.----- ,------------- I UPD.:' LEVEL

I 2-7
~AGE

Common blocks may be named on IN directives, but must not have an associated implicit or explicit
filename because they are imbedded within other elements. For inclusion of a common block in the
collection, see 2.2.4.6.

For the order of elements explicitly and impl!icitly included in the collection, see 2.2.3.2 and 2.2.5.7.

For either format FRSTIN may be used instead of IN, as the first element inclusion statement in a
.bank-implied collection or after a BANK or SEG statement. When used it specifies that the first named
element is to be positioned at the beginning of the segment it is collected in.

Examples:

1 .
2.

3.

IN
SEG
IN
SEG
IN

FILEA.,FILEB.
ADAY1

FILEB.BB, .CC,DD
BDAY2

COLLECTOR*F8 (1) . I NIT /REV

1. All relocatable elements in FILEA end FILEB are included in the collection.

2. Elements BB and CC from file FILEB and element DD, whose filename is not indicated, are
included in the collection of segment ADA Y 1.

3. The relocatable element INIT version HEV in file COLLECTOR*F8 F-cycle 1 is included in the
collection of segment BDAY2.

2.2.2.2. Element Exclusion (NOT)

Purpose:

Names the elements which are to be excluded from the entire collection.

All parameters in the NOT directive are optional. If a" parameters are omitted, NOT TPF$. is assumed.

Format:

NOT name-1,name-2, ... ,name-n

Parameters:

name

Description:

Specifies the element, with or without filename, or file to be excluded
from the collection. If the version name or filename is omitted, all
elements of 1the specified name are bypassed.

When ,a" elements of a file are to be excluded, the entire file may be designated for exclusion with
a NOT directive. The effect of NOTing a whole file is to make the file inaccessible for searching as
a library file. A period must follow the filename to ensure that it is not interpreted as an element
namiB.

If a tHename with no following element names appear in a NOT directive, elements within the named
file can be explicitly included during the coUection. This is useful only with TPF$ and SYS$*RLlB$,
since these are the only two files which are normally automatically searched.

4144.31
UP-NUMBER

Examples:

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

1. @MAP , I A, A
NOT CWW,LRR

2. MAP, I A, A
IN FILEA.
NOT FILEA.CL, .AB

3 . @MAP , I A, A
IN FL1.,f-L2.
NOT FL1.XXX, .XX2,FL2.CAT, .CAT2

4 . @MAP , I A, A
IN FIL1.
NOT SYS$*RL I B$.
NOT TPF$.

A

UPDATE LEVEL
2-8

PAGE

1. All elements named CWW and LRR are excluded from the collection; all other relocatable
elements in TPFS are included.

2. All elements named CL and AB from FILEA, are excluded from the collection; all other relocatable
elements in the file FILEA are included.

3. Elements XXX and XX2 from file FL 1 and elements CAT and CAT2 from file FL2 a're excluded
from the collection; all other relocatable elements from files FL 1 and FL2 are included.

4. Relocatable elements from SYSS*RLlB$ and TPF$ are excluded from the collection. All
elements from FIL 1 are included.

2.2.2.3. File Search Sequencing (LIB)

Purpose:

Specifies which files (libraries) are to be searched by the Collector prior to searching the System
Relocatable Library SYS$*RLlB$. Each file named on a LIB statement must have an entry point table
created by the @PREP FURPUR function (see 4.2.11), if the file contains elements which will be
implicitly included to satisfy external references.

All parameters in the LIB directive are optional, except filename-1.

Format:

LIB filename-1,filename-2, .. .filename-n
LIB filename-1 (bankname/$lcs,bankname/$lcs, ...).filename-2 ...
LIB (bankname/$Ics,bankname/$Ics ...)
LIB filename-1 (),filename-2(" ... filename-n()

Parameters:

filename

bankname

Specifies the files to be searched, named in the order in which they
are to be searched. Those files containing elements not explicitly
included in the collection but which define symbols required to satisfy
external references, must have been prepped (@PREP).

Specifies a bank in which implicitly included elements are to be
placed.

UP-NUMBER

5PERRY UNIVAC 1100 SElries Executive
Volume 3 System Processors

, 4144.31 L
-------- -------------

A

UPDATE LEVEL
2-9

PAGE

$Ics

()

Description:

Specifies which location counters of the implicit elements go to
correspondin!g banks.

The parameters specified on the last preceding LIB (bankname/$Ics, ...)
directive are to be applied for the filename specified.

The second, third and fourth formats abOVE! and parameters bankname and $Ics are used only in
bank--named collections (see 2.2.5.7).

The specified files are searched for elements named for inclusion from that file or from an unspecified
file, and when all explicitly included elements have been found, or searched for and not found, the
files are searched in the order in which they appear in the directive for satisfying external references.
A file may be searched more than once if the filename appears more than once on a LIB directive.
A file is searched only once for each time it is specified on a LIB directive.

When several LIB directives are given they have a cumulative effect. For example, assume file A has
external referEmces satisfied by elements in file B which in turn have external references satisfied
by elements in file A. If the elements are not explicitly included by IN directives, the following
directive is necessary to ensure the inclusion of all referenced elements:

LIB AB,A

RLiB may be used instead of LIB in all formats. However, the effect in format 3 is lost. Any element
from a file on such a statement is marked as being from SYS$*RLlB$. The result is that these
elements will not be dumped by @PMD unless the 'L' option is used with the PMD request, nor will
they be traced by SNOOPY.

ExamlPles:

1. LIB
2. LIB

CHR1
USE1,USE2,USE3,USE1

1. File CHR'I is searched after TPF$, and before files USE 1, USE2, USE3, USE 1 (a second time)
and the System Relocatab!e Library.

2. Files USE 1, USE2, USE3, and USE 1 (a second time) are searched in that order after TPF$ and
CHR 1 and before the System Relocatable Library is searched.

2.2.2.4. External Definition Retention (OEF)

Purpose:

Specifies entries in the ENTRY$ table. This table contains all the locations and names of the external
definitions retained after the collection of the absolute or relocatable element.

NOTE

The DEF and REF (see 2.2.2.5) directives are primarily useful in the collection of reentrant processors
and with R option collections.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

All parameters in the DEF directive are optional.

Format:

DEF def-1,def-2,def-3, ... ,def-n

Parameters:

A

UPDATE LEVEL

defs Specifies the external definitions to be retained.

Description:

2-10
PAGE

The DEF directive causes the Collector to build an external definition table and a COMMN$ table which
defines the common blocks in a program. The user can address the two tables by the
Collector-defined names ENTRY$ and COMMN$, respectively (see 2.2.8). The COMMN$ table will
also be built if the DEF directive is present with no parameters.

If the R option was given on the @ MAP control statement, the DEF directive must be used to specify
those externalized labels which are to remain externalized in the merged relocatable output.

If no element explicitly named in an IN directive contains the named external definition, a search of
the library files (see 2.2.2.3) is made to find an element in which the symbol is defined.

Example:

DEF SIN,COS,SORT

The listed external definitions, SIN, COS, and SORT and their locations are retained after the
collection in the ENTRY$ table of the resultant element.

2.2.2.5. External Reference Retention (REF)

Purpose:

Creates a list of external references to be retained by the resulting absolute or relocatable element.
No attempt is made to satisfy any references made to names indicated on REF directives. The table
of retained external references is program addressable by the Collector-defined name XREF$.

All parameters in the REF directive are optional.

Format:

REF ref-1,ref-2,ref-3, ... ,ref-n

Parameters:

refs Specifies the external references to be retained.

Description:

If an external definition that is identical to a REF name is encountered, a diagnostic is printed and
the external definition is ignored.

The REF directive causes the Collector to build the COMMN$ table in the same manner as the DEF
directive (see 2.2.2.4).

SPERRY UNIVAC 1100 Serlles Executive I A I 2-11
Volume 3 System Process_o_rs~~~~~~~~~~~~_U_PD_A_T_E_U_V_EL~~~._P_AG_E~~_~~~

Example:

REF VALUE1,VALUE2,SUBROUTINE4

The listed external references (VALUE 1, VALUlE2, and SUBROUTINE4) are retained after the collection
in the XREF$ table of the resultant element. Any references to these symbols are satisfied with the
address of word 3 of the appropriate entry in the XREF$ table (see 2.2.8).

2.2.2.6. Starting Address Redefinition (ENT)

Purpose:

ProvidtBs the user with the capability of oVEHriding any start addresses provided by relocatable
elements. Upon program initialization, control is transferred to the absolute address of the named
symbol.

1F0rmat

EINT name

Paraml;}ter:

name

Description:

Must be an externally defined symbol which is the newly defined
starting point.

In the absence of an ENT directive, the first start address encountered in processing the relocatable
elements becomes the program start address. The start address must be contained in the main
segment as this is the only segment initially loaded at execution time. In a bank-named collection,
the start address must be contained in the main segment of an initially-based bank (see 2.2.5.2).

Example:

EI'JT GGYP

Control is passed to the absolute address of the symbol GGYP in the main segment.

2.2.2.7. External Reference Definition (EOU)

Purpose:

ProvidHs the means to assign, during the collection, a value to an undefined symbol or to change the
value of an external definition.

All parameters in the EQU directive are optional except name-1/value-1.

Format:

EOU name-l Ivalue-l ,name-2/value-2,oo.,name-n/value-n

4144.31
UP-NUMBER

Parameters:

names

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Specifies the symbols to be defined

I 2-12
PAGE

values The values to be assigned to the preceding name parameters.

Description:

The assigned values may be as follows:

octal integers (indicated by a leading zero)
decimal integers
a symbol
a symbol with an offset (for example, BOB + 4)

Any symbol used in the value parameter must be externally defined in one of the elements specified
for inclusion in the collection. If an external definition which duplicates an EOU name is found, the
external. definition is ignored and a diagnostic is printed. In bank-named collections, only global
symbols may be used on the EOU directive (see 2.2.5.6.2).

Examples:

1. EOU
2. EOU
3. EOU

JOE/0200
AL/BOB+4
JOE/0200, ABE/SAM+10

1. The external reference JOE is defined as 0200.

2. The external reference AL is defined as the value BOB + 4 10,

3. The external references JOE and ABE are defined as 0200 and SAM + 10 10, respectively.

2.2.2.8. Element Selection Determination (CLASS)

Purpose:

Uniquely specifies one element version in a program file when more than one element has the same
basic name but different version names. In the collection this occurs when:

• The version of the element was not specified on an IN directive and more than one relocatable
element has that name.

• More than one relocatable element defines an external reference.

• A filename was not specified with the element on an IN directive and the element with different
version names is present in more than one file.

Format:

CLASS

Parameter:

string

string

Consists of 12 alphanumeric characters, asterisks, $, -, and blanks
representing the versions of the elements. The string begins with the

4144.31 L SPERRY UNIVAC 1100 Series Executive A k-13
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE __ .______ _ ____________ , _____________ ---1.____ _ __

Description:

first non blank character following CLASS, and is terminated after 12
characters, or by the space-period-space comment delimiter. If fewer
than 12 characters have been processed upon termination of the
string, significant blanks are filled in on the right to make a 12
character string.

SUcc€!ssive CLASS directives have a cumulative effect and different ordering of CLASS directives may
give different results.

Asterisks in a string represent character positions in the version name to be ignored. Blanks in a
string are valid.

When several elements qualify to be included in the collection, the Collector co'mpares the string
parameter in the CLASS directive with the version names of the available elements. If the element
version name is not identical to the string parameter, it is not included in the collection.

If, after the first comparison, more than one element qualifies, the string in the next CLASS directive
is used in eliminating the remaining versions.

If all the CLASS directives have been used and there still remain more than one qualifying element,
none of the remaining elements is used in the collection; a diagnostic message is given.

Example:

1. @MAP, I
SEG AARD
INS I ZE
CLASS
CLASS
CLASS

2. @MAP, I
IN ELT1
CLASS

SAMP,ALPHA

0***********
B*****
*****4******
SA

D*LA********

,. The IN direc~ive does not specify which version of the element SIZE is to be used in the
collection. The three CLASS directives specify that the version DCOB 14 be used in the
collection. Graphically this can be shown as follows:

lIN SIZE

dlirective selects
the following
€,Iements:

SIZE/BCON21
SIZE/BCON22
SIZE/DCON 12
SIZE/DCON 13
SIZE/COB23
SIZE/COB24
SIZE/DCOB 14
SIZE/DCOB 15

CLASS D***********

directive selects the
following elements:

CLASS ***B******

directive selects
the following
elements:

directive makes the
final element
selection:

SIZE/DCON 1 2 '>-
SIZE/DCON 13 ,_~) SIZE/DCOB 14)>--~) SIZE/OCOB 14
SIZE/DCOB 14 SIZE/DCOB 15
SIZE/OCOB 15 I

4 t44.31

UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE LEVEL
2-14

PAGE

2. The CLASS D*LA******** directive specifies that version D2LARGE of ELT1 element be
used in the collection. Graphically this can be shown as follows:

The IN EL T 1 directive
selects the following
elements:

The CLASS D*LA********
directive makes the final
element selection:

ELT1/A2SMALL~
EL T 1/B3LARGE
ELT1/D3SMALL ELT1/D2LARGE

ELT1/D2LARGE

2.2.2.9. Corrections for a Relocatable Element (COR)

Purpose:

Specifies that a correction to a relocatable element is to be incorporated into the absolute element
produced with the original relocatable remaining unchanged. A COR directive may replace any text
word with one of the following:

• an instruction word

• a data word

• a data word containing up to two symbols or values representing the upper and lower halves
of the word

Format:

COR eltname

The correction data images which follow the COR directive may be in anyone of the following formats:

address,lc-1
address,lc-1
address,lc-1

f j a x h i u,lc-2,eltname-1
dctaword
data,lc-2 data,lc-3

Parameter for the COR directive:

eltname Specifies the element to which the corrections are to be made.

Parameters for the correction data images:

address,lc-1

fjaxhiu

Specifies the relative address and location counter of the relocatable
element to which the corrections are being made.

Specifies field values in instruction word format that are to be
inserted. Blanks are used to separate each part of the instruction
correction. The u-field may be a:

symbol
symbol and offset
octal number (a zero must precede the number)
decimal number (no preceding zero)

.< L 4144.31

~:~---
SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE lEVEL
2-15

PAGE

dataword

data

Ic-2
Ic-3

eltname-1

Specifies a numeric value.

Specifies a symbol, symbol and offset, octal, or decimal correction.

Specifies that the u- or data fields are relative to the value of the
specified location counter. If omitted, the fields contain absolute
values.

Specifies element to which the location counter (lc-2,lc-3) belongs; if
omitted, the element being corrected is assumed.

Data fields, including the u-field in format 1 I may be specified as negative by the presence of a leading
minus (-) sign.

Description:

The corrections contained in a COR directive are ignored if the R option was specified on the @MAP
control statement.

Any number of correction statements may follow the COR directive.

COR statements cannot contain instructions which are jumps to any indirectly-loaded segment.

A symbol must be an externalized entry point.

In bank-named collections, a COR directive and its parameters may apply only to global elements
(see 2:.2.5.6.2).

Examples:

1. COR
2 . 00000 1 , 01
3. 000004,01
4. 000007,01
5 . 00001 1 I 01
6. 000006,02
7. 000011,02
8. 000014 , 02
9. 000016,03

ELT1
05100 00 00 0 0 000011,01 ,ELT2
006 00 015 00 0 0 DUMMYt1
0000000000114
00000111 DUMMYt1
0000112,01 0000013
DUMMYt2
02,02 DUMMYt2
027 00 017 00 0 0 01176,02

1. Corrections to the relocatable element EL T 1 are to be applied to the final absolute element.

2. The word being collected under element EL T 1 at relative address 01, location counter 1, is
modified to set function code to 051, and the j-, a-, x-, h-, and i-fields to zero. The u- field
is given the value of 011 relative to location counter 1 of element EL T2.

3. The word appearing at relative address 04 under location counter 1 of EL T ~ is modified to set
function code to 06; a field to 015 and u- field to DUMMY + 1. The j-, x-, h-, and i- fields are
set to zero.

4. The word appearing at rell:ltive address 07 under location counter 1 is being changed to contain
0114.

5. The word at relative address 011 under location counter 1 is changed to contain 0111 in H 1
and DUMMY + 1 in H2.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors I 2-16

PAGE

6. The data at relative address 06 under location counter 2 contains 0112, relative to location
counter 1 of ELT1, in H1, and 013 in H2.

7. The data at relative address 011 under location counter 2 receives the value of symbol and
offset, DUMMY + 2.

8. The data at relativf: address 014 under location counter 2 receives the data 02 relative to
location counter 2 in H 1, and the value of symbol DUMMY + 2 in H2.

'9. The instruction word appearing at relative address 016 under location counter 3 receives the
function code 027; the a-field 017 and u- field of 01176, relative to location counter 2 of EL T 1.
The j-, x-, h-, and i- fields are set to zero.

2.2.2.10. Adding Snapshot Dumps (SNAP)

Purpose:

Specifies the elements in which a snapshot dump is to be taken. The snap data images immediately
following the SNAP directive specify the address within the element where the SNAP is to be taken,
length of the dump, and the frequency of the dump.

SNAP Directive Format:

SNAP eltname

Parameter:

eltname Specifies the element name where the dump is taken.

SNAP Data Image Format:

address-1,lc-1 address-2 length,registers times,frequency

All parameters are optional except address-1, Ic-1, address-2, and length.

Parameters:

address-1,lc-1

address-2

length

registers

Specifies the address and the location counter within the relocatable
element of the instruction at which the dump is to be executed. This
field may not contain a symbol.

Specifies the starting address of the program area to be dumped. This
field may be in the form address, location-counter, element-name or
symbol + offset.

Specifies the length in words of the program area to be dumped.

Specifies which registers are to be dumped. The following codes are
used:

00 - No registers dumped

01 - Only R registers dumped

4144.31 L
~~---

times

frequency

Description:

SPERRY UNIVAC 1100 Series Executive I I 2-17
Volume 3 System Proc:esso_r_s __________ ...I._U_PD_A_TE_l_EV_E_l _---L._P_AG_E __

02 - Only A registers dumped

03 - B()th A and R registers dumped

04 - Only X registers dumped

05 - B()th X and R registers dumped

06 - B()th X and A registers dumped

07 - A, X, clnd R registers dumped

Specifies the maximum number of times the snapshot dump is to be
taken. If omitted, the value of 10010 is assumed.

Specifies at what frequency of reference the dump is to be taken. If
omitted, the value 1 (which dumps every time the SNAP is
encountered) is assumed.

No more than 16 snapshot dumps may be requested in anyone collection. If more than one snapshot
of the same elE~ment is to be taken, multiple data images may follow the SNAP directive.

When the dump request instruction SLJ SNAPS is inserted at a specified address, the instruction
appealring therE. is placed in a table in element SNAPS. After the dump is taken, the saved instruction
is executed from within SNAPS as if it had not been moved. If the saved instruction is a jump
instruc:tion, control transfers immediately to the location specified in the jump instruction; otherwise,
control is transferred to the location following the location from which SNAPS was called. Because
the replaced instruction is executed from within SNAPS, the replaced instruction:

• Must not be altered during program execution.

• Must not be referenced as data or by indirect addressing.

• Must not be an SLJ instruction which specifies indirect addressing or indexing.

• Must not be an LMJ instruction which specifies indirect addressing or indexing.

• Must not be an LlJ or an LDJ instruction.

• Must not be an EX instruction which references an LMJ or SLJ instruction.

• Must not be a test and skip instruction.

• Must not be used in reentrant code.

In a bank-name'd collection, the SNAP directiv4~ and its parclmeters may apply only to global elements
and entry points (see 2.2.5.6.2).

4144.31
UP-NUMBER

Example 1:

1. SNAP
2. 010,1

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

LARK
012,1 020,07 0200,010

UPDATE LEVEL
2-18

PAGE

A snapshot dump is taken in element LARK. Line 2 gives the parameters for the dump. The instruction
at address 010, under location counter 1 is the location where the snapshot request is placed. '(he
aadress 012, under location counter 1 is the starting address of the dump. Sixteen locations in main
storage are dumped along with the contents of the A, X and R registers. The dump is to be taken
a maximum of 128 times, but only once every eighth reference.

Example 2:

1. SNAP
2. 0132,02

JACK
HAH+2 0256,4

A snapshot is to be taken in element JACK. Line 2 specifies that the instruction at location 0132
under location counter 2 is the location where the snapshot request is placed. The address HAH+2
(where HAH must be externally defined) is the starting address of the dump. 256 or 0400 main
storage locations and the contents of the X registers are to be dumped. Since the times and frequency
parameters are not specified, the system assumes a value of 100 for times and 1 for frequency.

2.2.2. 11. End of Input (END)

Purpose:

Specifies the end of the source language input for the Collector. The END statement is optional. If
not given, the end of Collector source language is indicated by the next control statement.

Format:

END

Example:

@MAP, I L
SERIES OF
COLLECTOR DIRECTIVES

END

2.2.2.12. Absolute Element Optimization (MINGAP, MINSIZ)

Purpose:

Enables the user to modify the resultant absolute element so as to minimize the liD transfer time when
the program is loaded for execution.

Format:

MINGAP value
MINSIZ value

144.31 L SPERRY UNIVAC 1100 Serios Executive
__ UP_-~U_M_B_ER____ _ ___ V_o_1 u_m_e_3_S_y_s_t_em __ P_ro_cessors I UPD.:' LEVEL I 2-19

PAGE

Param~~ter:

value Specifies any positive integer.

Description:

The program ar,eas created by an assembier R:ES directive or compiler array declarations are unique
in- that at collection these areas do not contain meaningful data or instructions. The Collector then
has two alternatives when defining these RES areas within the generated absolute element:

'I. The area could be zero filled. This has the effect of increasing the size of the absolute element
which affects the mass storage space rE~quirements of the element as well as the number of
words which must be transferred when tlhe element is brought into main storage for execution.

2. The area could be left void. This alternative decreases the size of the absolute element at the
e>:pense of increasing the number of access control words (ACWs) and hence the number of
1/10 operations needed to transfer the element to main storage for execution.

The Collector uses a combination of these two alternatives depending upon the size of the area. Any
area within the absolute element greater than or equal to MINGAP words is left void while those less
than MINGAP words are zero filled. Each individual ACW required to transfer the element to main
storagE~ also controls a minimum of MINSIZ words. Both MINGAP and MINSIZ are initially set equal
to 10.

While the value 10 is felt to be optimum in most cases and it generally does not need to be changed,
there may be instances, depending upon type of mass storage and program application, where it is
desirable to modify the parameters, For instance, increasing the number of words controlled by each
ACW, and decrHasing (he number of I/O operations needed to transfer the program to main storage
may reduce the time required to load the program.

2.2.2. '13. Program Parameter Specification (TYPE)

Enables the user to specify certain program applicable conditions.

Format:

TYPE parameter-1,parameter-2, ...

ParamElter:

paramElter-n may be any of the following:

SETAFCM

CLRAFCM

INSAFCM

EXTDIAG

Set Arithmetic Fault Compatibility mode for the absolute or relocatable
element.

Set Arithmetic Fault Non--interrupt mode for the absolute or relocatable
element.

Set the absolute or relocatable element insensitive to the above Arithmetic
Fault modes.

Produce extended diannostic tables for the absolute element.

4144.31

UP-NUMBER

REALTIME

BLOCKSIZE64

COMSEG

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE LEVEL
I 2-20

PAGE

All initial loads and reloads of absolute elements of type REALTIME are done
at real-time request priority with real-time positioning. This does not affect
processor switching priority.

Set bank sizes into the absolute element in 64 word blocks.

Include all text for a common block in the segment the common block is
attached to.

IBJLNK <eltname>,<address>

<eltname> is the name of an element included in the collection, explicitly or
implicitly.

NOTE:

Filename may not be used.

<address> is a symbol or numeric value representing an address in the
absolute element.

Extend use of BDICALL$/IBJ$ feature to allow collection time definition of
parameters to be passed to a routine (see 2.2.9.1).

These parameters may appear in any order on the TYPE directive.

Description:

Within the absolute element's diagnostic tables, the normal entry point name table contains only
referenced entry points. The absolute value table contains only referenced absolute entry points and
does not include any absolute entry points defined in an element named ERU$ or CERU$. The
specification of EXTDIAG prevents any of these exclusions so that all entry points in the element are
included in these diagnostic tables.

Parameters SETAFCM, CLRAFCM, and INSAFCM override any related indicators present in the
individual relocatable elements included in the collection.

SETAFCM, CLRAFCM, and INSAFCM are only meaningful in collections which produce elements to
be executed on an 1110 or 1100/40 System.

The parameter, REALTIME, is used to designate an absolute element as real-time for storage request
purposes. All storage requests for programs so designated will be processed at real-time storage
priority. The switching level and real-time activity count of the program are not affected until the
program does an ER RT$. The storage priority of in-core banks of the program will always be
real-time unless all of the program's activities are non-real-time and in a long-wait state, in which
case the in-storage banks will be marked long-wait and will be swapable.

Location counters from many elements may define text IO be included in a common block. These
location counters may be placed, due to rules of element inclusion, in different segments. The
segment at the common point of the others contains the actual area to be occupied by the common
block. The loading of one of the segments containing text for the common block will cause
reinitialization of part of the common block. The presence of the COMSEG parameter will cause all
location counters defining text for a common block to be included in the same segment as the
common block area, thus avoiding any reinitinlization of the common block unless that segment is
reloaded.

• 4144.31 L SPERRY UNIVAC 11 00 Serjl~s Executive
~NUM8ER ____ ___ V_o_' u_m_e_3_S_y_st_e __ m_P_r_o_c,essors I UPO.: LEVEl

I 2-21
PAGE

.2.2.2.13.1. Absolute Element Arithmetic Fault Mode Determination

The Collector ·willmark the Arithmetic Fault mode of an absolute element or Collector produced
relocatable element in the following order of precedence:

1. If explicit sensitivity is given on the TYPE statement, the output element is marked accordingly,
regardless of the sensitivities of the input relocatable elements.

2. If all input relocatable elements have the same sensitivity, the output element is marked with
the sensitivity.

3. If both SETAFCM and CLRAFCM relocatable elements are present, the output element is marked
with the sensitivity of the relocatable e~ement containing the program start address; if that
element is marked INSAFCM or if no starting address exists, then the output element is marked
UNKNOWN. In this case (both SETAFCM and CLRAFCM relocatable elements present), the
presence or absence of INSAFCM or sensitivity UNKNOWN relocatable elements is irrelevant.

4. If only SETAFCM relocatable elements are present in addition to INSAFCM and/or sensitivity
UNKNOWN relocatable elements, the output element is marked SETAFCM.

5. If only CLRAFCM relocatable elements are present in addition to INSAFCM and/or sensitivity
UNKNOWN relocatable elements, the output element is marked CLRAFCM.

6. If INSAFCM and sensitivity UNKNO'NN relocatable elements only are present, the output
element is marked UNKNOWN.

2.2.2.13.2. EXEC Action Produced by Absolute Element Arithmetic Fault Mode

The Arithmetic Fault mode sensitivity of the absolute element is used by the Executive in determining
the initial setting of PSR bit 020. See SPEFtRY UNIVAC 1110, 1100/40 System Processor and
Storage Programmer Reference, UP-7970 (curl~ent version). The following describes the action taken
by the Executive:

1. If 1the absolute element's sensitivity is UNKNOWN, the system standard set at system generation
is used.

2. If the absolute element's sensitivity is SETAFCM, 020 is initially set.

3. If the absolute element's sensitivity is CLRAFCM, 020 is initially cleared.

4. If the absolute element's sensitivity is INSAFCM ,020 is initially cleared.

For standard contingency action related to Arithmetic Faults, see Volume 2-Table 4-2.

2.2.2.13.3. Blocksize

When BLOCKSIZE64 is specified on the TYPE statement, all banks of the program will have their sizes
stored in the Bank Load Table of the absolute element in 64-word blocks. In the absence of the
BLOCKSIZE64 specification, sizes will be stored in 512-word blocks. The operating system will
correctly handle either case for any 1100 Seriies machine, but in the case of the 1100/80 System
the presence of BLOCKSIZE64 will improve main storage usage.

4144.31

UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors I UPD.:' LEVEL

I 2-22
PAGE

2.2.2.14. Program Segmentation (SEG)

Purpose:

Informs the Collector of the beginning of a program segment. All parameters on the SEG directive
are optional, except name-1.

Format:

SEG name-1,seg-list

Parameters:

name-1

seg-list

Description:

Specifies the name of the segment, name-1.

Specifies the address relationship between the segment named in
name-1 and the other program segments named in seg-list.

When name-1 is followed by an asterisk (*), the named segment is automatically loaded when
referenced. The asterisk is allowed on all SEG directives, but is ignored if the directive defines the
main segment.

The seg-list parameter has several formats which determine the addresses of the segment named
in name-1 as follows:

When seg-list is void, the starting address of the name-1 segment
immediately follows the last address of the segment named on last
preceding SEG directive.

name-2 Specifies that the starting address of the name-1 segment is the same
as the starting address of the name-2 segment. These two segments
can never exist in main storage at the same time.

(name-2) Specifies that the starting address of the name-1 segment
immediately follows the last address of the name-2 segment
specified.

(name-2,name-3, ... , name-n) Specifies that the starting address of the name-1 segment
immediately follows the highest last I-bank and D-bank address of the
seyments specified in name-2, name-3, name-4, etc. Note that the
highest last I-bank address may be contained in a segment different
than the one containing the highest last D-bank address.

() Specifies that the starting address of name-1 segment immediately
follows the highest last address of all segments previously named.

For additional information of the SEG directive, see 2.2.4.2.

4144.31 L SPE;RRY UNIVAC 1100 Series EXlBcutive I A 2-22a
____ up_-~J_M_BE_R______ __ _____ V_o_'_u_m_e __ 3 __ S_y_s_t_e_m __ P_r_o_c_e_s_so ___ rs ______________________ ~_U_PD._A_TE_L_E_VE_L ____ ~PA_G_E ________ ___

2.2.2.15. Relocatable Segments (RSEG)

Purpose:

Specifies the named segment as a relocatable segment. A relocatable segment (RSEG) is one whose
location within the program is determined dynamically by the program during execution rather than
at collection. An RSEG may reference entry points within the program, but the RSEG itself may not
contain definitions for references elsewhere in the program (unless the reference is of the form J
TAG,x where x contains the address at which the RSEG was loaded) since only internal RSEG
addressing is relocated during segment loading.

Format:

RSEG name

ParamHter:

name Specifies the relocatable segment.

Description:

For further information on relocatable segments, see 2.2.4.3.

2.2.2.16. Dynamic Segments (DSEG)

Purpose:

Provides a mechanism by which the program area occupied by a segment will not be included in the
initial program requirement for main storage.

Format

DSEG name-1,seg-list

414431 I SPERRY UNIVAC 1100 Series Executive I I 2 23
UP-NU~~J, ____ , ___ V_o_lu_m_e_3_S_y_s_t_e_m_P_ro_c_e_s_s_o_rs ___________ -'-U_P_D_AT_E_LEV_EL __ J...P_A_G_E-_~_. ____ _

Parametors:

name-1

seg-list

Description:

Specifies the name of the segment.

Specifies the address relationship between the segment named in
name-1 and the other program segments (see 2.2.2.14).

Dynamic segments are identical to normal overlay segments (defined by the SEG directives - see
2.2.2.1411 in all aspects except one: the program area assigned exclusively to dynamic segments is
not included when determining initial program size. It is the programmer's responsibility to guarantee
that the program area is available by us.ing the MCORE$ request (see Volume 2-4.7.1) prior to
requesting segment loading or to request segment loading via the SYS$*RLlB$ routine DLOAD$,
which wiill obtain the necessary program area prior to initiating the segment load (see 2.2.4.5.4).

2.2.2.17. Executive Function Arrangement (XSEG)

Purpose:

Allows the Collector to place segments contiguous to one another within main storage blocks, without
wasted storage gaps between them. This statement is primarily intended for use in collections of
the EXEC system.

All parameters on the XSEG statement are optional, except name-1.

Format:

XSEG name-1,seg-list

Paramet~~rs:

name-1

seg-list

Descri ptilon:

Specifies the name of the segment.

Specifies the address relationship between the segment named in
name-1 and the other program segments. (See 2.2.2.14 for seg-list
formats.)

An XSEG directive functions the same as a SEG directive, except that the initial relative starting
address is reduced, if possible, by multiples of 01000. The resulting final starting address is equal
to the starting address of the bank which the segment is in, plus the number of words by which the
initial rellative starting address exceeds a multiple of 01000.

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Serle. executive
Volume 3 System Processors

Example:

1 ..

2.

3.

4.

5.

@MAP, I
I-BANK
SEG

TEST,TEST
XS1,02000

MAIN
ELl

A
IN

XSEG
IN

XSEG
EL2

IN
SEa

IN
XSEG

IN

B
EL3

C,B
EL4

0, (B,C)
EL5

Assume the following segment lengths:

Segment

MAIN
A
B
C
o

Octal Length

01143
02054
02712
04364
0115

The following shows the assigned addresses for the segments:

Segment

MAIN
A
B
C
o

Assigned Address Range

02000 - 03142
02143 - 04216
02217 - 05130
02217 - 06602
02603 - 02717

UPOA TE LEVEL
2-24

PAGE

1. Segment MAIN is assigned a start address of 02000 (see 2.2.2.14 for bank start address
assignment), and a last address of 03142.

'4144.31 L SPERRY UNIVAC 1100 Series E)l.6cuti"e I A I 225
___ U_P-~_U_M_BE_R______ __ _____ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_s_s.o __ rs ______________________ LU_P_DA_T_E_LE_V_EL ____ ~_P_AG_E_-________ _

2. Segment A, an XSEG which follows segment MAIN, starts at address 02143 and ends at address
04216. Segment A is initially assigned a start address of 03143, immediately following
s4~gment MAIN. However, si.lce segment A is an XSEG, its start address of 02143 is formed
by adding 0143 (the number of words which 03143 is over a multiple of 01000) to 02000 (the
start address of bank XS 1).

3. Segment 13, an XSEG which follows segment A, starts at address 02217 and ends at address
05130. Segment B is initially assigned a start address of 04217, immediately following
segment A. Since segment B like segment A is an XSEG, its actual start address is 02217 (0217
+ 02000).

4. Segment C starts at the same address as segment B with a start address of 02217 and last
address of 06602.

5. Segment [) is an XSEG which follows the highest address assigned to segment Band C. The
initial start address is 06603 immediately following segment C. The actual start address for
segment D is 02603 (0603 + 02000), since it is also an XSEG.

2.2.2.18. Bank Structuring (IBANK and DBANK)

Purpose:

Speciflies the beginning of a program bank within a bank-named collection.

All parameters on the IBANK and DBANK directives are optional, except name 1.

Format:

I BAN K,options
DBAN K,options

Param43ters:

options

name-1

bank-list

Description:

name-1,bank-list
name-1,bank-list

See Table 2-2.

Specifies the name of the bank.

Specifies the address relationship between the bank named in
name-l and other program banks.

Names present in a bank-list may be I-bank and/or D-bank names. The bank-list parameter has
several formats which determine the location of the bank named in name-l as follows:

name-2

When bank-list is void, thb starting address of the name-l bank is the
next address which is a multiple of 01000 following the most recently
defined IBANK (if name-1 is an IBANK) or DBANK (if name-1 is a
DBANK).

The starting address of the name-1 bank is the same as that of the
name-2 parameter. Name-2 may be either a bank name, a numeric
value (octal or decimal), or a bank name ± offset, where offset is an
octal or decimal numeric value which is added to or subtracted from
the start address of the bank name.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors IA

UPDATE LEVEL
I 2-26

PAGE

(name-2) The starting address of the name-1 bank is the next address which
is a multiple of 01000 following the name-2 bank. Name-2 may be
a bank name or a bank name ± offset, where offset is applied to the
bank's last address.

(name-2,
name-n)

name-3, ... , The starting address of the name-1 bank is the next address which
is a multiple of 01000 following the highest of the name-2, ... ,name-n
banks. Each of the name-2, ... ,name-n parameters may be a bank
name, a bank name ± offset, or an octal or decimal value.

For additional information on bank-named collections, see 2.2.5.

Example:

1. I BANK
2. I BANK
3. OBANK
4. I BANK
5. OBANK
6. DBANK
7. OBANK
8. I BANK
9. OBANK

I 1
12
01
13,12
D2,036000
D3, (12 , D 1)
D4, (13)
14,12+03000
D5, (D3+02000,D4,D2)

The program is divided into four I-banks and five O-banks.

,. 11 starts at address 01000.

2. 12 starts at the next 01000 following 11.

3. 01 starts at 040000 or at the next 01000 following the longest I-bank, whichever address is
higher.

4. 13 starts at the same address as 12.

5. 02 starts at address 036000.

6. 03 starts at the next 01000 following the higher last address of 12 and 01.

7. 04 starts at the next 01000 following 13.

8. 14 starts at the address obtained by aoding 03000 to the start address of 12.

9. 05 starts at the next 01000 following the highest last address of 04, 02, and start address of
03+02000.

414~.31 L
~~---

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 2-2. IBANK and DBANK Directive, Options

Option Description
Character

I UPD.:' LEVEL
I 2-27

PAGE

C This bank is to be the control bank. This option may only be specified once in a
collection. If no C option appears in a collection, the control bank will be selected
from the existing Main D-, Utility D-, Main 1-, and Utility I-banks, in that order.

[) This bank is a dynamic bank. If the D option is not specified, the bank is assumed
to be a static bank.

E: This bank prefers to be loaded into extended storage (on 1110, 1100/40 only).

SE This bank must be loaded into extended storage.

H This bank requires common data bank contingency handling.

L References to BDICALLS and IBJ$, where the associated reference is defined in this
bank, are to be satisfied by 0 and LMJ, respectively. This option is only allowed on
static initially based banks, and is assumed for the control bank (see 2.2.9.1).

M This bank is to be initially based on the Main PSR. This option may be used only once
with an IBANK directive and once with a DBANK directive. If unspecified, the M is
assumed for the first IBANK and first DBANK directives. Once the M option is
specified, no assumptions are made regarding the M or U option.

P This bank prefers to be loaded into primary storage (on 1110, 1100/40 only).

SP This bank must be loaded into primary storage (on 1110, 1100/40 only).

o This bank will use TS queueing.

R: This bank is to be read only (write-protected).

S This bank, while included in the absolute code, is treated by the system similarly to
a common bank. The bank is treated by the Collector like a dynamic un based bClnk
(i.e. D option with no M or U option). This option can be used to test common banks
without the need to load the bank into the system library. Segmentation is not allowed
in banks with the'S' option, and if the S option is used on the control bank, no
segmentation is allowed in the program.

U This bank is to be initially based on the Utility PSR. This option may be used only
once with an IBANK directive and once with a DBANK directive. The U option is never
assumed on an IBANK or DBANK directive (on 1110, 1100/40 only).

4144.31
UP-NUMBER

Option
Character

V
-

X

SPERRY UNIVAC 1100 Series Executive
Volume '3 System Processors

A

UPDATE LEVEL
2-28

PAGE

Table 2-2. IBANK and DBANK Directive, Options (continued)

Description

Assign all addresses, but strip off this bank's code. Can be used to strip individual
bank's code rather than alii-bank or all D-bank code as is done by the V and Yoptions
on the @ MAP control statement.

This is a common bank (used only for initial basing). This option must be used in
conjunction with the M or U options only. No SEG, IN or FORM directives may follow
this BANK directive.

2.2.2.19. Location Counter Set Specification ($Ics)

Purpose:

Specifies the set of location counters to be included in the current bank from elements named, or
present in all relocatable elements in whole files named for inclusion.

Format:

$Ics

Parameter:

$Ics

Description:

Specifies the set of location counters either via a keyword or explicit naming
as follows:

$ALL

$NONE

SOOO

$EVEN

$ALLBUT,n 1,n2, ... ,nm

include all location counters.

include no location counters (used to create dummy
or skeleton structures).

include only odd location counters.

include only even location counters.

include only those location counters specified.

include all location counters except those specified.

The location counter set specification is used only in conjunction with a bank-named collection. The
specified set remains in effect until the next $Ics or IBANK or OBANK directive is encountered. A
bank statement automatically sets the location counter set to $000 for IBANK and $EVEN for OBANK.
The location counter set specified for a bank may be individually overridden for individual elements
or files by using the optional $Ics field on the IN directive (see 2.2.2.1).

I I I 4144.31 ~ SPE::\RY UNIVAC 1100 Series Executive A 2 -28a
~~MBER ______________ V_o __ lu_m __ e __ 3 __ S_y_s_te_m ___ P_ro_c_e_s_s_o __ r_s ______________________ LU_P_D_AT_E_L_EV_E_L ____ L. P_A_G_E ____ _

2.2.2.20. Source Language Structure Duplication (FORM)

Purposo:

Allows the duplications of a portion of a program structure previously defined within a map without
requiring repetition of the source language used to define that structure.

Fqrmat:

FORM
FORM

Parameter:

bank-name

bank-name
bank-name*seg-name

Specifies the bank whose structure is to be duplicated.

41,44.31
UP~UMBER L SPERRY UNIVAC 1100 Serle. Executive I I 2 29

_______ V_o_'u_m __ e_3 __ S_y_s_te_m __ P_r_o_c_e_ss_o._r_s ____________________ ~_U_PD_A_TE_L_~_E_L __ ~_PA_G_E_-__ _

seg-name

Oescrliption:

Specifies the segment within the bank whose element inclusion
structure is to be duplicated.

The FORM is useful where a bank or segment structure is to be duplicated and only a location counter
change is desired.

When placed following an I-BANK or O-BANK statement a 'FORM bank-name' directive causes the
full segment tr,ee of the named bank to be regenerated for the bank being defined, except that the
location countE~r set presently in control must differ from the one which was in control for the bank
named on the FORM directive. If an explicit location counter set is specified, it must precede the
FORM statement. Since 'FORM bank-name' creates an exact duplication of a previous bank structure,
no additional SEG, DSEG, RSEG, or IN directives may be specified for the bank being generated.

A 'FOHM bank-·name*seg-name' directive causes the IN directives within the specified segment to
be re~lenerated.

Only SEG, DSEG, and IN directives within a structure are duplicated when a FORM on that structure
is specified.

Examples:

I-BANK
SEG
IN
SEG
IN
[I-BANK
SEG
IN
SEG
IN

I 1
MAIN
A,B

SG
FILE.ELT, .ELT1

01
MAIN

A,B
SG

FILE.ELT, .ELT1

The wse of the 'FORM bank-name' directive can be used as follows to produce the same results as
the above example:

I-BANK
SEG
IN
SEG
IN
D-BANK
FORM

I 1
MAIN

A,B
SG

FILE.ELT, .ELT1
01

I 1

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

2-30
PAGE

As shown below, the 'FORM bank-name*seg-name' directive can be used to produce the same
results as the two preceding examples:

I-BANK
SEG
IN
SEG
IN
O-BANK
SEG
FORM
SEG
FORM

I 1
MAIN

A,B
SG

FILE.ELT, .ELT1
01

MAIN
11*MAI N

SG
11*SG

2.2.3. Functional Aspects of the Collector

After the Collector has interpreted the parameters of the @MAP control statement (see 2.2.1) and
the parameters of the Collector directives (see 2.2.2), there remains the combining of the relocatable
elements into a relocatable or absolute element and the insertion of the final element into the program
file to complete the collection process.

2.2.3. 1. Collector-Produced Relocatable Elements

Although the Collector is generally used to produce an absolute element, a relocatable element can
be produced by specifying the R option on the @MAP control statement. All indicated relocatable
elements are merged into a single element and only the external definitions specified in the DEF
directive are retained. All other external definitions are submerged in the new relocatable element.

The R option is used most often when the user wants to include a relocatable element more than
once in an absolute element. Initially, an R option collection is performed. This combines the desired
element with a specified set of relocatable elements. As long as no external definitions within the
element are specified on the DEF directive, the desired element is submerged into the newly-created
relocatable element. The original relocatable element and the newly-created relocatable element in
which it has been submerged can both be collected in a single absolute element. Relocatable
elements in SYS$*RLlB$ are not implicitly included in an R option collection. Location counter
specifiction is preserved, I.e., information contained in location counter n for all input RB's is placed
under location counter n of the output RB.

Only the following directives may be specified with an R option collection. All others produce a
diagnostic message and the collection continues.

TYPE
ENT
LIB
REF
END

DEF
IN
NOT
CLASS
EaU

2.2.3.2. Element Inclusion

Adding elements to a collection is a two-part process:

4 144 31 I SPERRY UNIVAC 1100 Series Executive I I 2 31
up~u~~ __ ~ ____________ V_o_l_u_m_e __ 3_S_y_s_t_e_m __ P_ro_c_e_s_s_o_r_s ______________________ L_UP_D_AT_E_L~ ___ EL ____ ~_AA_G_E_-_____ _

1. Finding the files that were specified in the Collector directives (see 2.2.2).

2. Finding within these files the elements that have been specifically named on IN directives
(seEt 2.2.2.1) or that contain entry points which satisfy the undefined symbols.

Element~t to be in(~luded in the collection may have been specified on IN directives (see 2.2.2.1) either
with or without the filenames in which those elements appear. For those elements with a filename
present Ion the IN directive, the Collector immediately references that file, finds the element, and
proceSSEIS the pr,eamble of the element. After the preamble of a relocatable element has been
processed, the te)Ct (instructions and data) of the relocatable element becomes part of the final output
eh~rnent.

If a @PREP (see 4.2.11) of TPF$. has not occurred, all relocatable elements in TPF$. are tentatively
included in the c()lIection unless specifically excluded via the NOT directive (see 2.2.2.2). After all
elements for a collection have been found, any nonreferenced element that was tentatively included
from TPF$ is eliminated from the collection.

If a @PREP of TPF$. did occur, an element from TPF$, is included only if it is named on an IN directive
or if one of its external definitions satisfies an undefined reference from another element included
in the collection. When a @PREP of TPF$. has occurred, TPF$. is always the first file searched when
attempting to locate elements named without a filename and elements with external definitions
satisfyin~~ undefined references.

The situcltion ma" arise where the user wants to implicitly include elements from a file other than
TPF$, having entry point names or element names which duplicate entry point or element names in
TPF$. Since TPF$ is searched prior to searching other files, the elements from TPF$. are included
instead ()f the desired elements which are in other files.

Thereforle, if duplicates of element names and external definitions are present and those in TPF$. are
not wanted in the collection, a @PREP of TPF$. is needed to prevent automatic inclusion of the TPF$.
elements;. It is also necessary to specifically IN by filename and element name any elements from
other filEtS which have element names or external dlefinitions duplicated by TPF$. elements.

For thosiB elements without a filename on the IN directive, the Collector searches files for these
elements; in the following order:

1. The Tempor,ary Program File (TPF$)

2. Use'r-defined files that were indicated by the LIB directive (see 2.2.2.3)

3. The System Relocatable Library (SYS$*RLlB$)

In an attEtmpt to satisfy all undefined references in the collection, the Collector searches the specified
files for E~lements that have entry point names that c()rrespond to the symbol names appearing in the
Collector created UNDE table (see 2.2.3.3). The UNDE table contains all the symbols that are present
in the undefined symbol tables of the processed element preambles. When an element is found with
an entry point name corresponding to a symbol name in the UNDE table, the preamble of that element
is proce!ised and the now defined symbol is removed from the UNDE table. The order of search for
undefined symbols is:

1. The' Temporary Program File (TPF$)

2. USEtr-defined files defined by the LIB directive (see 2.2.2.3) and which were previously @ PREPed

3. ThEI System Relocatable Library (SYS$*RLlB$)

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

2-32
PAGE

In a bank-implied collection, the included elements are placed in the instruction and data areas of
the final absolute element. Odd numbered location counters of an element ar~ assigned to the
instruction area. Even numbered location counters and common blocks are assigned to the data area.
See 2.2.2.1 and 2.2.4.6 for information on specific placement of common blocks.

See 2.2.5.6 and 2.2.5.7 for determining element inclusion and placement in a bank-named
colle.ction.

The most efficient collection results when every element desired in the collection is explicitly named,
including filenames; this eliminates @PREP requirements and library searches.

2.2.3.3. Processing Element Preambles

An element preamble is attached to every relocatable element created by the language processors
and the Collector. The element preamble provides information which is needed when collecting
relocatable elements to form an absolute or relocatable element. This information includes:

• The definition and location of each externally-defined name (entry point) in the element

• The length in words, under each location counter in the element

• The table of the undefined symbols appearing in the element

• Common blocks in the element

When the preamble is processed:

• The entry points in the element are added to the Collector entry point table (EP table).

• Undefined symbols appearing in the element which have no corresponding entry in the EP table
are listed in the UNDE table.

• Undefined symbols in the element which have a corresponding name to an entry point in another
element are linked to the EP table.

Symbols are removed from the UNDE table as corresponding entry point names are found. Newly
encountered undefined symbol names are added at the end of the UNDE table.

2.2.3.4. Instruction a:nd Data Area

This section applies primarily to bank-implied collections. See 2.2.5 for bank-named collection
considerations.

Every program containing segments in addition to the main segment always has a D-bank. If there
is no program data in the D-bank, then it contains at least a segment load table. The segment load
table contains an entry with information describing every segment of the program. It is located
preceding the user's main segment D-bank. Since the segment load table has no main storage
protection, special care has to be taken not to destroy its information.

The program's data, when it exists, is located after the segment load table and any other
Collector-produced tables, such as the ENTRY$, COMMN$, XREF$, and indirect load table.

The first address of the I-bank (instruction area) is assigned 01000. The starting address of the
D-bank (data area) is dependent upon the size of the I-bank, the possible use of the assembler SETMIN
directive, the total program size, and the options specified on the @MAP control statement. The first

4144,,31 I SPERRY UNIVAC 1100 Series Executive I I 2 33
UP-NUMBER ~, _______ V_o_l_u_m_e_3_S_y_st_e_m_P_r_o_c_e_s_s_o_rs ___________ --L_U_PD_A_TE_l_EV_E_l __ L.P_A_G_E -__ _

address of the O-bank, however, is always a multiple of 0 1 000 and is usually given the value 040000.

Odld numbered location counters are assigned to the I-bank; even numbered location counters and
common blocks are assigned to the D-bank.

The user program can reference the first and last I-bank and the first and last D-bank addresses by
the symbols: FRSTI$, LASTI$, FRSTD$, and LASTD$, respectively. The Collector replaces these
symbols with the actual assigned address values.

An unnamed common block (Le., blank common), if required in the program, is attached to the main
segment under the name BLANK$COMMON. It may be positioned in another segment by an IN
BLANK$COMMON directive.

Named common blocks (if not named in an IN directive) are attached to the segment which is located
at the common point in the paths to the main segment of all segments referencing it.

2.2.3.5. Collecting Reentrant Processors

In creating reentrant processors it is not only more efficient to explicitly name all elements including
their filenames but it is also extremely ~dvisable. The nature of reentrant processors dictates that from
one colle!ction to another all elements be located in the same relative position within the absolute
element. This can only be ensured by explicitly including all elements in every collection of the
absolute element. (See 2.4 for reentrant processor preparation.)

2.2.4. Program Segmentation

When an absoluto program is being executed, it must reside in main storage. However, there may
not be enough available are'a in main storage to contain the complete program. Therefore, the
program must be subdivided or segmented so that the various parts or segments can be loaded into
main storage as the program is being executed.

Even when the total program size may fit into main storage, many times it is advantageous to
subdivid~~ the program into functionally independent units (segments) which are loaded into main
storage only when needed. This reduction in the program's main storage requirements reduces main
storage impact while allowing increased storage utilization.

Another way of dividing a program is by specifying banks as logical units. Banks may be used in
conjunction with or independent of program segmentation (see 2.2.5).

A segmented program consists of:

• one main segment which resides in main storage throughout the execution of the program, and

• subordinate segments which are loaded into main storage as they are needed.

As each subordinate segment is loaded into main storage, it may overlay all or part of a previously
loaded segment. The area overlayed is equal in size to the size of the new segment. The main
segment is never allowed to be overlayed except by a relocatable segment (RSEG).

The absolute element resulting from the collecting of various relocatable elements mayor may not
be segmented. However, a nonsegmented program can be functionally considered a segmented
program with only a main segment.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

2.2.4. 1. Segmentation Directives

The directives needed to specify program segmentation are as follows:

UPDATE LEVEL

• SEG - Informs the Collector of the beginning of a segment (see 2.2.2.14).

• RESG - Informs the Collector of the beginning of a relocatable segment (see 2.2.2.15).

• DSEG - Informs the Collector of the beginning of a dynamic segment (see 2.2.2.16).

• IN - Specifies the elements to be included in the segment (see 2.2.2.1).

• NOT - Specifies which elements are to be excluded (see 2.2.2.2).

2-34
PAGE

Segments may be loaded and executed independently; however, elements common to several
segments must be in main storage when the referencing segments are executed.

Since each segment has a path leading back to the main segment (defined by the relationships
specified on the segmentation directives), elements which are implicitly included and which are
referenced by two or more segments are attached to the segment which is located at the common
point in the paths to the main segment of all referencing segments. Elements specified on IN
directives are never moved from the segment in which they were specifically placed.

2.2.4.2. SEG Directive Considerations

The IN directive specifies the files and elements to be included in a segment. If no SEG directive
is encountered prior to the first IN directive following the @MAP control statement, a SEG $MAIN$
directive is assumed by the Collector and it applies to all following directives until a SEG, RSEG, or
DSEG directive is encountered.

The segment name contains 1 to 12 alphanumeric characters (with the $ and - allowed) in length.
The segment name must not be the same as any entry point flame in the collection, and must contain
at least one alpha character.

Within a segment, any elements included to satisfy undefined symbols are located at the beginning
of the segment in the inverse order of their inclusion; that is, the last included element is the first
element in the segment. Following any implicitly included elements are those named on IN directives
in the exact order they were named. When all elements within a file are included in a segment, by
specifying only the filename on the IN directive, the ordering of the file's elements is random.

Example 1:

1. SEG A
2. SEG B
3. SEG C, (A)

UP~UM8ER

SPERRY UNIVAC 1100 S.rl •• Executiv.
Volume 3 System Processors UII'DA TE LEVEL

2-36
PAGE

4144.31 ~
- ,---------'----'----

Th.~ proglram is to be divided into three segments.

1. Spel::ifies ses;;,ment A as the main segment.

2. Spec:ifies that the starting address of segment B is immediately after the last address of main
segment A.

SEG B

I MAIN SEG A

3. Spec:ifies that the starting address of segment C is immediately after the last address of main
segment A. Segments Band C can never eXist in main storage at the same time.

SEG B

I MAIN SEG A

SEG C

Example :2:

1 . SEG A
2. SEG B
3. SEG C
4. SEG 0, (c:)
5. SEG E, c:
6. SEG F, (E:)
7. SEG G, F=

8. SEG M, B
9. SEG H, (M)
10. SEG I, H
11 . SEG J, H
12. SEG K, (H, I , J)
13. SEG L, ()

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

The program is to be divided into thirteen segments.

SEG C

SEG B

MAIN SEG A SEG F

SEG E

I
SEG G

I
SEG H I SEG K I I

I I
SEG M I

I
I

SEG I I
I

SEG J I
~I

I

1. Specifies segment A as the main segment.

UPDATE LEVEL
2-36

PAGE

2. Specifies that the starting address of segment B is immediately after the last address of main
segment A.

3. Specifies that the starting address of segment C is immediately after the last address of
s~gment B.

4. Specifies that the starting address of segment 0 is immediately after the last address of
segment C.

5. Specifies that the starting address of segment E is the same as the starting address of
segment C.

6. Specifies that the starting address of segment F is immediately after the last address of
segment E.

7. Specifies that the starting address of segment G is the same as the starting address of
segment F.

8. Specifies that the starting address of segment M is the same as the starting address of
segment B.

9. Specifies that the starting address of segment H is immediately after the last address of
segment M.

10. Specifies that the starting address of segment I is the same as the starting address of
segment H.

11. Specifies that the starting address of segment J is the same as the starting address of
segment H.

12. Specifies that the starting address of segment K is immediately after the last address of either
segment H, I, or J, whichever segment is longest.

4144.31 I SPERRY UNIVAC 1100 Series Executive I I 2 37
UP~UM!E_R ___ ~ ___________ V_O_I_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s ____________________ ~_U_PD_A_TE_L_N_EL ____ ~_AA_G_E_-____ __

13. Specifies that the starting address of segment l is immediately after the highest last address
of all segments in the set: A, a, C, 0, E, F, G, H, I, J, K, and M.

2.2.4.3. RSEG Directive Considerations

The elemlents included in the relocatable segment should be explicitly named on IN directives (see
2.2.2.1). When an element which is referenced by more than one segment is implicitly included it
is placed in a segment other than the RSEG. Generally, it is advisable if an element is referenced
by more than one segment (one of which is an RSEG), that the element be explicitly included in the
main segment.

Relocatable segmEmts may not be indirectly loaded. See 2.2.4.5.1 for the direct method of loading
segments.

The starting address of a relocatable segment has no relationship to other segments in the collection.
An RSEG may be I()aded at whatever starting address is given in register A2 during the LOAD$ calling
sequence (see 2.2.4.5.1). The LOAD$ request adds the value in register A2 to all relative address
references internal to the named relocatable segment. Any references to RSEG labels from outside
the relocatable segment must be user-modified by ~he value in register A2.

All instruc:tions and data in a relocatable segment are collected together with all odd location counters
followed by all even location counters.

A relocatiable segment may be loaded into either an 1- or D-bank of the program.

An element within an RSEG can define a common b~ock which is located outside that RSEG only if
the common block of the RSEG element contains no text. This should be especially noted by users
who employ highE~r level languages such as FORTRAN, JOVIAL, etc.

Example:

1 .
2.

RSEG
IN

ORS()N
ORS()N

Element ORSON is specified for inclusion in the rel()catable segment ORSON.

2.2.4.4. DSEG [)irective Considerations

Dynamic segments may be defined as requiring indirect load, and may be placed anywhere within
the segment structure of a program.

The program addresses assigned to DSEGs are not considered when determining the initial 1- and
D...;lbank limits for a program. However, in assigning the values in LASTO$ and LASTI$ (see 2.2.9),
DSEG addresses are used.

2.2.4.5. loadin~;J Program Segments

When a segmentE~d program is called for execution (see 2.3.1), only the main segment is initially
loaded. The subordinate segments are loaded by either

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Serlel Executive
Volume 3 System Processors UPDATE LEVEL

2-38
PAGE

• the direct method, or

• the indirect method.

Whenever a segment is loaded, an initial copy of the segment is loaded. Once loaded, a segment
will remain marked as loaded until all or part of its main storage space is overlayed by another
segment or released via ER LCORE$ (see Volume 2-4.7.2).

See 2.2.5.8 for additional information on loading program segments in bank-named collections.

2.2.4.5. 1. Direct Method (L$OAD and LOAD$)

When using the direct method of loading, use either

• the L$OAD procedure, or

• the Executive Request LOAD$.

Format of the L$OAD procedure:

L$OAD name,jump,clear,rseg-addr,bank-name

Parameters:

name

jump

clear

rseg-addr

bank-name

Specifies the name of the segment to be loaded.

Specifies the location where control is to be transferred after the
segment is loaded; if omitted, control passes to the location following
the LOAD$ request.

If greater than zero, the program area containing the segment to be
loaded is not zero filled prior to segment load. If zero, the area to be
occupied by the segment is .zero filled prior to segment load.

If the segment was defined by an RSEG directive, this parameter
specifies the starting address for the relocatable segment. If omitted
when loading a relocatable segment, the address must be in register
A2 before the call is made:

L,U A2,rseg-address

The address may be defined as an octal value or a tag not contained
in an RSEG.

Used only for loading an RSEG within a bank-named collection.
Specifies the bank into which the RSEG is to be loaded. If omitted,
the bank-name must be in register A2 along with the RSEG starting
address:

LXI,U A2,bank-name

414431 I SPERRY UNIVAC 1100 Series Executive I' 2 39
_~~~~BfR ~, _______ V_o_lu_m_e_3_S_y_s_te_m_P_r_o_c_e_s_so_rs __________ -'--U_PD_A_TE __ L_EV_E_L_----lL-P_AG_ E_-__ _

Descrip1tion:

The L$ CIAO procl3dure produces a sequence of code which loads: register AO with the segment name,
register A 1 with jump address, register A2 with bank name and address for RSEG, and generates
the .LOAO$ request. The LOAO$ request takes the form:

L,U AO,seg-name or L AO,(0400000,seg-name)
L,U A1,jump
L,UI A2,rseg-addr or L A2,(bank-name,rseg-addr)
ER LOAO~;

Seg-name is the same as the contents of the name-1 parameter in the SEG directive (see 2.2.2.14).

When bit 35 of Iregister AO is set, the segment loader does not clear the main storage area to be
occupied by the segment. This decreases the time required to load the segment, but as a result, any
areas wiithin the segment that are not initialized with data and instructions cannot be assumed to be
zero.

ExamplEts:

1 .
2.

L$OAO
L$OAO

NEW,ORG1
CAP,YELL,0,01350

1. After segment NEW is loaded, transfer control to location ORG 1. The area occupied by segment
NE1W is zero filled prior to loading. The L$OAD procedure produces the same effect as the code:

L, U A 1 , ORG 1
L,U AO,NEW
ER LOAO$

2. Tht~ area to be occupied by relocatable segment CAP is zero filled prior to loading. The starting
address for segment CAP is 1350s, After the segment is loaded, control is passed to YELL. The
L$OAO procedure produces the same effect as the code:

L , U A2 ,01350
L,U A1,YELL
L, U AO, CAP
ER LOAO$

2.2.4.5.2. Indirect Method

Whenever a segment that is marked for indirect loading is referenced by any jump instruction that
passes control to the segment's I-bank area, the segment is automatically loaded if it is not already
in main storage. Segments to be loaded by the indirect method must be so marked on the SEG
directivE~. The mf~chanics for such loading are set up by the Collector and carried out by the segment
loader. The Collector replaces the address portion of the jump command with the address of an
indirect load table entry. The indirect load table performs an SLJ instruction to the indirect load
routine which, in turn, performs an ER to the segment loader (if the segment is not already loaded)
and jumps to the location of the externally defined symbol. All registers are preserved by the process.
The indiirect loael table is assigned to the data area of the main segment.

If indirect loading is used, the reference may not be made to an external symbol with an offset.

If the B ,option was specified on the @MAP control statement, the indirect load routine indicates that
the segment's main storage area need not be zero filled.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

Segments marked for indirect loading may also be loaded by the direct method.

2-40
PAGE

No instruction interpretation is done to ensure that a referencing instruction is in fact a jump
instruction.

The indirect load routine is nonreentrant.

Example:

SEG EAP*
SEG NINE*, (FR,SX)
SEG SAL*,(PEN)

Segments EAP,NINE, and SAL are automatically loaded when any externalized I-bank entry point is
referenced.

2.2.4.5.3. Reloading the Main Segment

It may be desirable to re-establish the main segment of a program for either error recovery or
reinitialization. This is done by the LOAD$ request. The LOAD$ request reloads the entire main
segment including all initially-produced collector tables. The main storage requirements remain
unchanged.

The calling sequence is:

L AO,(clear,0400000)
L,U A 1 ,reentry-addr
ER LOAD$

The first coding line loads register AO with the segment-id of 0400000. The clear parameter
functions as follows:

• If clear is less than 0, the main segment area is not cleared before loading.

• If clear is greater than or equal to 0, the main segment area is cleared.

The second coding line loads register A 1 with the reentry-address according to the following:

• If the reentry-addr is equal to 0, control is returned to the instruction following the LOAD$
request.

• If the reentry-addr is not zero, control is passed to that address.

See 2.2.5.8.3 for additional information regarding main segment reload in bank-named programs.

2.2.4.5.4. Loading Dynamic Segments (D$LOAD and DLOAD$)

Dynamic segments may be loaded by referencing the dynamic load routine contained in
SYS$*RLlB$. This routine may be referenced explicitly by the user or may be referenced implicitly
by the indirect load routine when a DSEG is marked for indirect load. The dynamic load routine may
be called for loading either DSEG's or normal segments.

The dynamic load routine will determine whether the segment to be loaded is in fact a dynamic
segment. If it is not, an ER LOAD$ is executed for the segment. If the segment is a dynamic segment,

UP·--NI)MBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

2-41
PAGE

4144.31 L
_ , _____ ----L.--"---__

the routine will acquire the necessary DSEG areas via ER MeORE$ and then execute an ER LOAD$
to load the DSIEG.

The uSler may reference the dynamic load routine by using the D$LOAD procedure or by a jump to
DLOA[)$.

Forma1t:

D$LOAD segname,jump,clear

Param~aters:

segnarne

jump

clear

[)escription:

Specifies the name of the segment to be loaded.

Specifies the location where control is to be transferred after the
segment is loaded; if control is to be passed to the location following
the jump to DLOAD$, a *0 must be placed in the jump parameter field
or a tag must be placed following the procedure call and must be
specified in the jump parameter field.

If greater than zero, the program area containing the segment to be
loaded is not zero filled prior to segment load. If zero, the area to be
occupi~d by the segment is zero filled prior to segment load.

The D$'LOAD procedure generates the following sequence of code:

L,U AO,segname or L AO,(0400000,segname)
L,U A 1 ,jump
J DLOAO$

When bit 35 of register AO is set, the segment loader does not clear the main storage area to be
occupi.3d by the segment.

2.2.4.~).5. Rel'easing a Segment's Program Area (D$REL and DREL$)

When the main storage area occupied by a segment is no longer required by the program, the space
may be' released by referencing the dynamic release routine in SYS$*RLlB$. This routine may be
referenced by either the D$REL procedure or by a jump to DREL$.

Format::

D~~REL segname,jump

ParamElters:

segname

jump

Specifies the name of the segment area to be released.

Specifies the location where control is to be transferred after the
segment's area is released; if omitted, control passes to the location
following the J DREL$ call.

4144.31
UP-NUMBER

Description:

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

The D$REL procedure generates the following sequence of code:

LXI,U
LXM,U
J

A 1 ,segname
A 1,jump
DREL$

or
LXI,U
LMJ

A 1 ,segname
A 1 ,DREL$

A

UPDATE LEVEL
2-42

PAGE

The dynamic release routine will determine the program I-bank start address of the named segment.
This segment may be either a DSEG or overlay segment. This address minus one is placed in AO
and an ER LCORE$ is executed. The D-bank start address minus one is then used for an ER LCORE$.
Following the release of the program area, the segment is marked as a dynamic segment. Its area
may then be reacquired by referencing DLOAD$.

If the released program areas are occupied by more segments than that specified on the D$REL call,
these other segments will not be marked as DSEG's. Therefore, it is the user's responsibility to call
DRELS for each segment actually released or to assure the necessary program areas are reacquired
prior to a subsequent reload of any such segment.

2.2.4.6. Use of Common Blocks

The Collector produces, in the absolute element, load control specifications for the LOADS routine.
These specifications indicate which text words (data and instructions) are to be put at which locations
in main storage when the segment is loaded.

If a common block is given initial values (filled with text, rather than simply set aside as a reserved
area), the Collector produces specifications to put in these values when the segment containing the
element which defines the initial values is loaded.

For example, if five different elements define five different initial values for the same common block
and each of these five elements was in a different segment, the same common block located in a
segment common to all referencing segments would be reinitialized each time one of the five different
segments was loaded. This occurs regardless of where the referenced common block is located
within the user's program area.

Any areas of the common blocks in which text is not loaded upon reinitialization are not changed
as long as the reinitialization is caused by the loading of a segment other than the one in which the
common block resides.

On IN directives (see 2.2.2.1), common blocks are always specified without a filename. A cor. .wn
block name must not be identical to an element name.

If TPF$ is not prepped, the size of any common blocks in TPF$ will be used in determining the final
size of the common block in the absolute or relocatable element, otherwise, the largest size declared
in any element is used as the size of the common block.

Bank-named collections may not contain locally included common blocks (see 2.2.5.6.2).

• 4144.31 L SPERRY UNIVAC 1100 Series Executive I A I
_U_P::..~M_8_ER____ . ____ V_o_lu_m_e_3_S_y_s_te_m __ P_ro_c_e_s_s __ o_r_s ___________ L_UP_D_AT_E_L_EV_E_L __ L_PA_G_~_-4_3_

2.2.5.. Bank-Named Collections

2.2.5.1. General

The Collector provides the capability to subdivide an absolute element into logical structures called
banks .. This is done by explicitly defining the banks with the ,Collector'S IBANK and DBANK source
language directives and then definin~ the segmentation and element inclusion structures within the
bank. In the case where there is no explicit bank directive, the Collector generates a two-bank
absolute element, with odd location counters of relocatable elements to the IBANK and even location
counters to thE~ DBANK. This is the bank-implied collection.

The definition of a bank is that entity of a program which may be specified by a single EXEC system
bank descriptor word.

2.2.5.2. Bank Address Assignments

The relative starting address of a bank may be explicitly specified on the IBANK or DBANK directive
(see 2.2.2.18) as a numeric value or as an address to be determined in relation to the size of other
banks. When no such address specification exists, the following is applied:

a. The I-bank specified via the first IBANK directive starts at program address 01000.

b. The D-bank specified via the first DBANK directive starts at the higher of:

1. 040000

2. The next address which is a multiple of 01000 following the highest IBANK address

c. I-banks follow I-banks and D-banks follow D-banks; i.e., an I-bank (D-bank) which has no
explicit address assignment is assigned a starting address which is the next multiple of 01000
following the last address assigned to the previous I-bank (D-bank) defined in the Collector
source language.

No I-bank address can be greater than 0177777 (65K) and no D-bank address can be greater than
0777777 (262K). The total size of a" I-banks (D·-banks) can be greater than 0177777 (0777777)
provided there is some overlap of program address assignments within banks, so that the total
address space does not exceed 0177777 for I-banks or 0777777 for D-banks.

Overlap of bank address assignments may be achieved by using the IBANK and DBANK directives
in a fashion similar to that of the SEG directives. However, whereas overlay segments having the
same logical (program) address space also occupy the same physical space, banks of the same
address space do not overlay each other and may occupy different areas of physical space
si m u Ita neously.

In addition to the collector-defined tags FRSTI$, LASTI$, FRSTD$, and LASTD$ (see 2.2.9), the tags
FIRST$, LAST$ and 801$ are defined for the bank-named collections. These tags are defined to be
the first assigned address, last assigned address, and bank descriptor index value for the bank in
which the reference is contained.

The SPERRY UNIVAC 1100 Series Assembler SETMIN directive and MASM's $INFO 3 directive allow
the user to specify the minimum D-bank address of the element which contains the directive.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

2.2.5.3. Initially-Based Banks

UPDATE LEVEL
2-44

PAGE

An initially-based bank is a bank which is referenceable at the start of execlltion of a program. This
means that the bank is described in one of the bases (B 1 or Bo of either the Main or Utility PSR. A
bank may be specified for initial basing via the M or U option on the I-BANK and O-BANK directives
(see 2.2.2.18). Each option may be used with a maximum of one I-BANK and one D-BANK directive.
When there is no initial basing specified for any banks, then the first I-bank and the first D-bank
defin.ed in the Collector source language are initially based on the B, and Bo, respectively, of the Main
PSR. A bank is never assigned to be based on the B, or Bo of the Utility PSR by default. Thus, if
a bank is to be initially based on the Utility PSR, it must have the U option specified on the I-BANK
and D-BANK directives. Note that a bank specified for initial basing on the Utility PSR can be
executed only on an 1110 or 1100/40 System. If a bank is not initially based, it can be based
dynamically via the LBJ, LlJ or LDJ instructions (see 2.3.3.2).

2.2.5.4. The Control Bank

Since any bank may have its basing removed during program execution, it is necessary to designate
one bank which, except in unusual circumstances, will not have its basing removed via an LlJ or LOJ
to another bank. This bank, known as the control bank, is assumed to be the normal place in which
to collect such should-always-be present components of a program as permanent flags, central
control routines for sets of dependent relocatable library subroutines, Test and Set cells, and locations
designed to capture interrupts (such as guard mode contingency) which can result at varied or
unpredictable locations throughout the program. Certain Collector-produced tables, including the
segment load table (SL T), are located at the beginning of the control bank. The C option on an I-BANK
or D-BANK directive specifies that bank as the control bank. The control bank normally is defined
as an initial/y-based D-BANK. If the C option is not present on any I-BANK or D-BANK directive, the
Collector selects the first initially-based bank in the order of D-bank based on the Main PSR, D-bank
based on the Utility PSR, I-bank based on the Main PSR, and I-bank based on the Utility PSR, to be
the control bank.

2.2.5.5. Segmentation within Bank-Named Collections

A segmentation structure may be specified within each user-defined bank. If a bank has no segments,
the bank is considered to be composed of one main segment. When segmentation does exist within
banks, the same name must be used for the main segment of each bank. The segmentation structure
within a bank may be entirely different from, or entirely the same as, the segmentation structure of
another bank. A segment may be entirely contained within one bank, or it may span (be named and
contained in) several banks. When a spanning segment is to be loaded, each portion of the segment
is loaded into its respective bank. A bank-implied program, which has segments defined, may be
thought of as a two-bank program (one I-bank and one D-bank) with each bank having the same
segment structure, and each segment spanning the two banks.

Relocatable segments cannot span banks and must be included in their entirety in one bank.

2.2.5.6. Element Inclusion

2.2.5.6. 1. Global Element Inclusion

All of the information on element inclusion and file searching for a bank-implied collection (see
2.2.3.2) is applicable to bank-named collections with a few important additions. When banks are
not named in the map, any element to be included is split, with its odd location counters going to
the I-bank (instruction area) and its even counters to the O-bank (data area). However, in a

4 144 31 I SPERRY UNIVAC 1100 Series Executive I I 2 45
up~u~~~~ ___________ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s _____________________ ~_U_PD_A_TE_L_~_E_L __ ~_P_AG_E_-____ __

bank-named collection, in addition to naming an element' for inclusion, the user may also designate
which location counters of the element are to be included within a bank. Normally, the selected
location c:ounters of an element are determined by the location counter set which is active at the time
the elemEtnt is named for inclusion (see 2.2.2. 19). The selection can be overriden on an individual
basisby lJIsing the $Ics field for the element named on the IN directive (see 2.2.2.1). Thus, the element
name can appear on several IN directives, so long as different location counters are included each
time the lalement os named.

Alliocaticln counters of an element are included in a collection. Therefore, if an element has a location
counter which wa~s not specified for inclusion, that location counter is placed in the main segment
of the control bank.

Example:

I-Bl~NK 11
$1 , !5
IN ELTA
O-BANK 01
IN ELTA,ELTB
I-BANK 12
$7,!9,3
IN ELTB($OOO),ELTA
$AlIL
IN ELTC:,ELTO

The following shows which location counters of each element are placed in the various banks:

11 l2. IU

ELTA 1,5 7,9,3 EVEN,11
ELTB 000 EVEN
ELTC ALL
ELTD ALL

Note that the even counters of EL TA and ELTB are placed in 01 ($000 assumed for I-BANKs, $EVEN
for O-BAINKs, unless otherwise specified). Also note that the odd counters for EL TB go to 12,
overridin" the active location counter set of $ 7 ,9,3. location counter 11 in EL TA was placed in the
control bank because no direction had been given as to its placement.

2.2.5.6.2~. Local Element Inclusion

Local element inclusion is a feature to allow the use of multiple copies of elements within a given
collection. The locality of these elements is determined by the specification of a local bank set list
on the IN directive (see 2.2.2.1). The 'Iocalness' of the elements named on such an IN directive is
accomplished by allowing its undefined references to be satisfied and its external tags to satisfy
external references only from elements contained within the set of banks defined in the local bank
set. This set of banks consists of those banks named in the local bank list of the IN directive, plus
the bank named in the preceding I-BANK or O-BANK directive.

The entry points o'f a local element satisfy only references made by other elements within the banks
to which ilt is local. No other banks have access to these entry points. Within a given bank, elements
and locatijon counters can be included once and only once. If a version name is used with an element
name and the element is included more than once, the same version name must be used for all
inclusions of the E~lement.

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

2-46
PAGE

The purpose of this feature is to allow duplication of heavily-used routines without causing entry point
conflicts and without forcing unduly repetitive switching of PSR bank bases to base very short pieces
of heavily- used code.

Entry points can thus appear many times locally (satisfying references from within the local bank set),
but can appear only once globally (satisfying references from all elements not named locally). Entry
points named on the COR, SNAP, EaU, ENT, and DEF collector directives apply to the global
specification of that entry point.

Any element desired for local inclusion must be named on the IN directive along with the local bank
set list. No implicitly included element can be included locally.

2.2.5.7. Element Placement

Elements (or location counters of elements) which are named on IN directives, are placed within the
bank which is named on the preceding I-BANK or D-BANK directive.

Although elements may be split by location counters between banks, the entire element; i.e., all its
location counters, will be included somewhere in the absolute element. If not all of the location
counters are specified on IN directives or on the $Ics directives, then the remaining location counters
are placed in the main segment of the control bank (see 2.2.5.4).

Another method of element placement is defined for those elements which are included in the
collection because their entry points satisfy external references from another element to be included
in the collection. The placement of these implicitly included elements is dependent upon the
placement of the referencing elements.

For bank-implied collections, the implicitly included elements are split with odd location counters to
the I-bank and even location counters to the D-bank. For bank-named collections, the following rules
apply:

1. In the case where there are at most two banks, based only on the Main PSR and no dynamic
banks (see Volume 2-3.4.4.4.3), then the implicit element is split by odd and even location
counters if there are two banks, or else included in its entirety in the one defined bank.

2. If the conditions of 1. are not satisfied and the implicitly included element is referenced only
from within one bank; i.e., the referencing elements are contained in their entirety in this one
bank, then the implicit element is split with the odd counters going to the referencing bank, and
the even counters going to the main s~gment of the control bank.

3. If the conditions of 2. are not satisfied and the implicitly included element is referenced from
an element or elements which are not entirely contained in one bank, then the implicitly included
element is placed in its entirety into the main segment of the control bank.

The user may wish to override the Collector's placement of implicitly included elements. This can
be done by specifying on the LIB directive the bank or banks in which elements implicitly included
from this file are to be placed (see 2.2.2.3).

2.2.5.8. Loading Program Segments

When a segmented program produced by a bank-named collection is called by an @XaT control
statement, only the main segment of each static and initially based dynamic bank (see Volume
2-3.4.4.4.3) is loaded. The main segment of any other dynamic bank is automaticCilly loaded upon
execution of an LlJ or LDJ to that bank.

4144.31 I SPERRY UNIVAC 1100 Series Executive I I 2 47
___ U_P_~_U_MB_E_R ___ ~ ___________ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s _____________________ ~_U_PD_A_TE_l_~_E_l __ ~_PA_G_E_-____ ___

As in bank-implied collections, all subordinate segments are loaded by either:

• the direct method, or

• the indirect method.

2.2.5.8.1. Direct Method (L$OAD and LOAD$)

Segment~~ within bank-named collections are directly loaded in the same manner as segments within
a bank-implied collection (see 2.2.4.5. 1). However, a consideration in bank-named collections is that
eac:h portion of that segment will be loaded into its respective bank. Thus, all banks which contain
por1ions of that segment must be either static or currently based on the Main or Utility PSR at the
time the !;egment is directly or indirectly loaded.

2.2.5.8.:2~. Indirect Method

Paragraph 2.2.4.5.2 describes the manner in which segments are indirectly loaded. The same
considerations for directly loading segments in bank-named collections (see 2.2.5.8.1) are applicable
when indirectly loading segments.

When referenced, any globally and locally defined entry points within the I-bank portions of an
indirectly loaded segment will cause that segment to be automatically loaded (if it is not already
loaded).

The referonce to an entry point, which will cause the indirect load of a segment cannot be from the
same elernent that contains that entry point even if that portion of the element making the reference
is in another segment of the program.

2.2.5.8.31. Reloading the Main Segment in Bank-Named Programs

In both blank-implied and bank-named programs, the same calling sequence is used to reload the
main segment (se.3 2.2.4.5.3).

However, the following apply to the main segment reload in bank-named programs:

• Main segment is reloaded for all static banks and any dynamic banks which were initially based.

• Any initially based dynamic banks must be based at the time of the main segment reload. If
this is not true, the program will error terminate.

• Any currently based dynamic banks which were not initially based will not have their main
segrnents reloaded.

• At the time of the reload, the current main storage requirements for all banks in which the main
segrnent is rt310aded cannot be less than the banks' initial main storage requirements.

• All banks which are based at the time of a main segment reload are still based after the reload
has been performed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Serle. executiye
Volume 3 System Processors

2.2.6. Segmentation Example

UPDATE LEVEL
2-48

PAGE

The following is an example of a segmented program. The elements in the file FILEA and their
required outside references are shown below:

FILEA

MAIN
ALPHA1/A
ALPHA2/A

ALPHA3/A

BETA 1/B

BETA2/B
BETA3/B

CHI1/C
CHI2/C
CHI3/C

DELTA1/D
DELTA2/D

EPS01/E
'EPS02/E

PHI1
PHI2

GAMMA1/G

GAMMA2/G

, ,

)

, ,
, ,

, ,

-,
/

-, ,

, ,
, ,

ELEMENTS IN WHICH FILEA
REFERENCES ARE DEFINED

FILEA.ALPHA 1 ,BETA 1 ,PHI1

LIB 1.SIN/X 1

L1B2.COS/X2

LIB l.S0RT IX 1

LIB 1.S0RT IX 1

L1B2.CAT IY5

L1B2.CAT IY5

LIB 1.SIN/X 1

L1B2.COS/X2

414431 I SPERRY UNIVAC 1100 Series Executive I I 2 49
UP-HU~8;~~ ____ , __ V_o_lu_m_e_3_S_y_st_e_m_P_ro_c_e_s_s_o_rs __________ -.J._U_PD_AT_E_LEV_EL ___ L-P_AG_E_-__ _

The following coding is used to produce the segmented program:

1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
11 .
12.
13.
14.
15.
16.
17.
18.
19.
20.
21 .

@PREP
@PREP
@MAP', IL

L I B1 .
LIB2.
MAPSYM,MAPABS

SEG MAIN
IN F I LEA. MA IN
~EG ALPHA*, (MAIN)
IN FILEA.ALPHA1/A, .ALPHA2/A, .ALPHA3/A
SEG BETA*, (ALPHA)
IN FILEA.BETA1/B, .BETA2/B, .BETA3/B
SEG CHI*,BETA
IN FILEA.CHI l/C, .CHI2/C
SEG DELTA*, (BETA,CHI)
IN FILEA.DELTA1/D, .DELTA2/D
SEG EPSO*, DELTA
IN FILEA.EPS01/E, . EPS02/E
SEG GAMMA*, (MAIN)
IN FILEA.GAMMA1/G, .GAMMA2/G
SEG PHI*, (DELTA,GAMMA)
IN FILEA.PHI 1, .PHI2
LIB LIB1,LIB2
END

1,2. Entry point tables are prepared for files LIB 1 and lIB2.

3. Calls the ColIEtctor. The I option specifies that symbolic element MAPSYM is introduced from
the runstream. The L option specifies that a complete listing is to be produced. The absolute
output element is called MAPABS. Both MAPSYM and MAPABS are placed in TPF$.

4. Segment MAIN is the program's main segment.

5. Elemlent MAIN is found in FILEA file.

6. Segment ALPHA is marked for indirect loading. The starting address of ALPHA follows the last
addross of segment MAIN.

7. Elemlents ALPHA 1 I A, ALPHA21 A, and ALPHA31 A are found in FILEA file and are included in the
collection of ALPHA segment.

8. Segment BETA is marked for indirect loading. The starting address of BETA follows the last
addmss of segment ALPHA.

9. Elements BETA 1/B, BETA2/B, and BETA3/B are found in FILEA file and are included in the
collection of BETA segment.

10. Segment CHI is marked for indirect loading. The starting address of CHI segment is the same
as the startin!~ address of segment BETA.

11. Elements CHI 'tiC and CHI2/C are in FILEA and ar-e included in the collection of the CHI segment.

12. Segment DELTA is marked for indirect loading. The starting address of DELTA segment follows
the I,ast addrEtss of either segment BETA or segment CHI, whichever is longer.

13. Elements DELTA 1 10 and DELTA2/D are in FILEA file and are included in the collection of
segment DELTA.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

2-50
PAGE

14. Segment EPSO is marked for indirect loading. The starting address of EPSO segment is the
same as the starting address of segment DELTA.

15. Elements EPSO 1 IE and EPS02/E are iN FILEA file and are included in the collection for segment
EPSO.

16. GAMMA segment is marked for indirect loading. The starting address of GAMMA segment
·follows the last address of segment MAIN.

17. Elements GAMMA 1/G and GAMMA2/G are in FILEA file and are included in

18. Segment PHI is marked for indirect loading. The starting address of PHI segment follows the
last address of either segment DELTA or segment GAMMA, whichever is longer.

19. Elements PHI1 and PHI2 in FILEA file are included in the collection of PHI segment. the collection
of segment GAMMA.

20. Files LIB 1 and LlB2 are searched prior to searching the system library for the collection
elements.

21. End of the Collector directives.

Figures 2-1 and 2-2 show the instruction and data areas of main storage for the preceding example.

4144,31
UP-NUM8ER

I SPERRY UNIVAC 1100 Series Executive I I 2 61
~ ______________ V_o_l_u_m_e __ 3 __ S_y_s_te __ m ___ P_r_o_c_e_ss_o_r_s. ________________________ ~U_p_D_An __ L_~_E_L ____ LP_A_G_E-____ ___

I
I

IThe first address of the I-bank

Implicitly referenced elements and subroutines

01000~ I

« « « BETA lIB IBET A2/BIBET A3/BI ~ -... M

« a: « « «
u d J: J: J:

(f) Q. Q. Q.
...J ...J ...J

(f) 2: « « « I DELTA1/D I DELTA2/D z
0 US ~: u :!:

I EPS01/E I EPS02/E

I CHll/C I CHI2/C]

[

I GAMMA1/G I GAMMA2IG

Figure 2-1. Instruction Area (I-Bank) Main Storage Map Segmented MAPABS

The 1'irst address of the data area is always a mu Itiple of 10008 + Segment load table and indirect load table (generated by the Collectorl

Indirect load routine (always resides in main segment)

~ BETA 1/BIBETA2IB!BETA3/B! « «
r- r- N M

0:: « « « « a :c :c :c u U) c.. c.. c..
-l

I
I

I PHil

I

« -ll-l

«\« I DELTA1/D I DELTA2/D I
1 -, I I

EPSO'I/E

CHI2/C

I GAMMA 1/G I GAMMA2/G I

Figure 2-2. Data Area (O-Bank) Main Storage Map Segmented MAPABS

I PHI2 I

1

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Serle. Executive
Volume 3 System Processors

2.2.7. Bank-Named Segmentation Example

UPDATE LEVEL
2-52

PAGE

The following is an example of a bank-named segmented program. The elements in file FILEA and
their required outside references are shown below:

FILEA

MAIN
ALPHA 1/A
ALPHA2/A

ALPHA3/A

BETA1/B

BETA2/B
BETA3/B

CHI1/C
CHI2/C
CHI3/C

DELTA1/0
DELTA2/0

EPS01/E
EPS02/E

PHI1
PHI2

GAMMA1/G

GAMMA2/G

-"-,

" ,

" "
" "

" ,

" ,

" "

,
"
,
"

ELEMENTS IN WHICH FILEA
REFERENCES ARE DEFINED

FILEA.ALPHA 1 ,BETA 1 ,PHI1

LIB 1.SIN/X 1

LlB2.COS/X2

LIB 1.S0RT IX 1

LIB 1.S0RT IX 1

LlB2.CAT IY5

LlB2.CAT IY5

LIB 1.SIN/X 1

LlB2.COS/X2

4144.31 I SPERRY UNIVAC 1100 Series Executive 2-53
up~u~~~ ______ . ____ V_o_'u_m_e __ 3_S_y_s_te_m __ P_ro_c_e_s_so_r_s ________________ ~_UP_D_AT_E_l~_E_L __ ~P_AG_E ____ __

The following coding is used to produce the bank-named segmented program:

1 . @PA:EP LIB1.
2. @PA.EP LIB2.
3. @MA.P, I L MAPSYM,MAPABS
4. I-BANK,MD BANKl
5. SEG MAIN
6. o IN FILEA.MAIN
7. SEG ALPHA
8. IN FILEA.ALPHA1/A, .ALPHA2/A
9. SEG BETA*
10. IN FILEA.BETA1/B
11 . D-BANK,MC BANK2
12. SEG MAIN
13. IN FILEA.MAIN
14. SEG ALPHA
15. IN FILEA.ALPHA1/A, .ALPHA2/A
16. SEG BETA*
17. IN FILEA.BETA1/B
18. IN FILEA.BETA2/B($ALL)
19. I-BANK BANK5, (BANK 1)
20. $ALL
21 . SEG MAIN
22. IN FILEA.CHI3/C
23. SEG EPSO
24. IN FILEA.EPS01/E, .EPS02/E
25. SEG PHI
26. IN FILEA.PHI1, .PHI2
27. I-BANK,U BANK3,BANK5-02000
28. SEG MAIN
29. IN FILEA.BETA3/B
30. SEG CHI
31 . IN FILEA.CHI1/C, .CHI2/C
32. SEG DELTA,CHI
33. IN FILEA.DELTA1/D, .DELTA2/D
34. D-BANK,U BANK4
35. FOR:M BANK3
36. D-BANK BANK6,BANK4
37. $AL.L
38. SEGi MAIN
39. IN FILEA.GAMMA1/G
40. SEGi GAMMA
41 . IN FILEA.ALPHA3/A, .GAMMA2/G

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

1,2. Entry point tables are prepared for files LIB 1 and LlB2.

UPDATE LEVEL
2-54

PAGE

3. Calls the Collector. The I option specifies that symbolic element MAPSYM is introduced from
the runstream. The L option specifies that a complete listing is to be produced. The absolute
output element is called MAPABS. Both MAPSYM and MAPABS are placed in TPF$.

4. I-bank BANK 1 is a dynamic bank which is based on the Main PSR.

5. Segment MAIN is the main segment for BANK 1.

6. The odd location counters from element MAIN in FILEA are to be included.

7. Segment ALPHA follows segment MAIN.

8. The odd location counters from elements ALPHA llA and ALPHA2/A in FILEA are to be included.

9. Segment BETA follows segment ALPHA and is indirectly loaded.

10. The odd location counters from element BETA 1 IB in FILEA are to be included.

11. O-bank BANK2 is the control bank and is based on the main PSR.

12. Segment MAIN is the main segment in BANK2.

13. The even location counters from element MAIN in FILEA are to be included.

14. Segment ALPHA follows segment MAIN.

15. The even location counters from elements ALPHA llA and ALPHA2/A in FILEA are to be
included.

16. Segment BETA is indirectly loaded and follows segment ALPHA.

17. The even location counters from element BETA 1 IB ;'n FILEA are to be included.

18. All location counters from element BETA2/B in FILEA are to be included.

19. I-bank BANK5 is a static bank and follows BANK 1.

20. The $Ics specification is for the inclusion of all location counters of an element.

21. Segment MAIN is the main segment of BANK5.

22. All location counters from element CHI3/C in FILEA are to be included.

23. Segment EPSO follows segment MAIN.

24. All location counters from elements EPSO 1 IE and EPS02/E in FILEA are to be included.

25. Segment PHI follows segment EPSO.

26. All location counters from elements PHI1 and PHI2 in FILEA are to be included.

4144.31
UP-NUMBER

I SPERRY UNIVAC 1100 Series Executive I I 2 66
~, ____________ V_o_l_u_m_e __ 3_S __ ys_t_e_m __ P_ro_c_e_s_s_o_r_s ________________________ ~_UP_D_AT_E_L~ __ EL ____ LP_A~GE~-_________ ~

27. I-bank BANK3 is a static bank based on the Utility PSR. Its starting address is equal to the
stclrting address of BANKS minus 02000.

28. Segment MAIN is the main segment of BANK3.

29. The odd 101::ation counters from element BETA3/B in FILEA are to be included.

30. Segment CHI follows segment MAIN.

31. The odd location counters from elements CHI1/C and CHI2/C in FILEA are to be included.

32. Segment DELTA starts at the same address as segment CHI.

33. Th,e odd location counters from elements DELTA 1 10 and DEL TA2/0 in FILEA are to be included.

34. D-bank BANK4 is a static bank based on the Utility PSR. It follows D-bank BANK2.

35. Th'B same sl~gmentation structure and element inclusions for BANK3 are to be placed in BANK4,
except that the even location counters of the elements are to be included rather than the odd
location counters as in BANK3.

36. D-bank BANK6 is a static bank which starts at the same address as BANK4.

37. ThlB $Ics specification is for the inclusion of all location counters for the following included
ele'ments.

38. Segment MAIN is the main segment of BANK6.

39. All location counters of element GAMMA 1 IG in FILEA are to be included.

40. Segment GAMMA follows segment MAIN.

41. All location counters from elements ALPHA31 A and GAMMA2/G in FILEA are to be included.

Figures 2-3 through 2-9 show the bank structure of the program, the segment structure within each
bank, and the element inclusion within the segments and banks.

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPOA TE LEVEL

01000

I-bank
BANKl

I-bank
BANK3

I-bank
BANK5 040000

CONTROL
D-bank
BANK2

D-bank
BANK4

D-bank
BANK6

Figure 2-3. Bank Structure of Program and Segment Structure Within Each Bank

IMPLICITLY REFERENCED ELEMENTS

I
I I I I I

t t + t _t

o~ 'iii N'E L!)'iii' x'E - 'iii
.- VI (.)

~..J
*.2 x- >-.2 -- X.2 z-
...1...1 -z -...I ~..J -...I -z

Oa:l 0...1
en w ~..J D:..J z..J ~w

..J~ -~ 0> 5~ d~ Ci5~ :!:> ~-~ U w en - w ;:::.§ - ~z
::Cw
0.> ..J w
~-

Figure 2-4. BANK 1 Figure 2-5. BANK2 (Control Bank)

~-N.§
~z
::Cw
0.> ..J w
~-

a:l'iii _.2
.-
~z
~w
w>
a:lW

2-56
PAGE

a:l--r> N-
~..J
~..J
w~
a:l_

4144.31
UP-NUMBER Volume 3 System Processors UPDATE LEVEL

2-57
PAGE ~ SPERRY UNIVAC 1100 Series Executive

,----------'--~

r--'

,
.
I

-i
I

:::l_ 0-
...... VI VI ,,... U NU r:x:- «-
-0 .-0
-10 -10
.1.10 wo
:::l- o-

CDCii' u
M-
«0
'-0 Wo
CD_

I---. Il) en U Cii'
U U '-- -,= 0 ~O

'J: 0 :co
0Q UQ

~'"

Figure 2,'-6. BANK,']

CD Cii'~_..&..._,s:? r-
M
« z 1--.,....-'" I-w
w>
CD~

Figure 2-7. BANK4

IMPLICITLY REFERENCED ELEMENT .
t

U
NCii'
x..s:? :;(Cii' u (nO ~..s:? «- --00 ~-I VI N VI M U «..s:? UQ «-I «-

c.!)5 :c-l :2:-1
c..-I ::2!-I
-1« «« «- (!)-

Figure 2-9, BANK6

-

Figure 2-8. BANK5

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

2.2.8. Collector Generated Tables

Entry Point Table (ENTRY$):

UPDATE LEVEL
2-58

PAGE

VVord ~ __________________________________ .-____ ~ __________________________ ~

000000 nbr-of-entries

en try-point-name

2

3 value-of-entry-point-program-addr

The value of the entry point is the address of the reference vector entry of the entry point if in a
. segment designated for indirect loading.

The Entry Point Table includes only those entry points specified on the DEF statement.

Common Block Table (COMMN$):

VVord

o 000000 nbr-of-entries

common-block-name (BLANK $ COMMON for-blank-common)

2

3 length-of-common-block addr-of-common-block

VVhen the DEF statement is present, the Common Block Table is included in the absolute program.

4144.31 I SPERRY UNIVAC 1100 Series Executive 2-59
up~u~~~ _____________ V_o_'_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s ____________________ ~U_PD_A_TE_L_~_E_L __ ~_PA_G_E ___

E)'ternal Reference Table (XREF$):

VVord r------------------------------------~--------------------------------~

o 000000 nbr-of-entries

. 1
external-reference-name

2

3 ER ERR$

The external reference is assigned the address of the third word of its entry in the External Reference
Table entry.

NOTE

The first addresses of the Entry Point Table, Common Block Table, and External Reference Table are
assigned, respectively, to the following external definitions (which may be directly referenced in a
user program): ENTRY$, COMMN$, and XREF$. If no table exists, this value is zero.

Sogment Load Table (SL r$)

Two formats of the Collector-produced Segment Load Table exist.

Type 1 format is produced for bank-implied collections.

Segment Load Table Format - Type 1
Word

o A type 0 forward link to active segment

last I-bank address first I-bank address

2 last O-bank address first O-bank address

I
sector address of first

0 load control group 3

where:

A Bit 35 set if segment is not loaded.

4144.31
UP-NUMBER

Type

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

000
010
027
024

Main segment for type 1 SL T format
Dynamic segment
Relocatable segment
Overlay segment

UPDATE LEVEL
2-60

PAGE

If the S2 value of word 0 of the first SL T entry (SL T$) is equal to zero, the table only contains four-word
entries as formatted above.

If S2 of word 0 = 022 in the first SL T entry, the table format contains extension entries, in addition
to four-word entries.

Type 2 format is produced for all bank-named collections.

Word

o A

2

3

where:

A

TYPE

BDI

Segment Load Table Format - Type 2

type 0 forward link to active segment

last bank address first bank address

801 0 extension index

sector address of first
0 load control group

Bit 35 set if segment is not loaded.

022
011
027
024

Main segment for type 2 SL T format
Dynamic segment
Relocatable segment
Overlay segment

BDI value for bank into which segment part is loaded.

When H2 of word 2 is nonzero, it contains a link to the next SL T extension for the segment.

NOTE:

The extension index points to the word immediately preceding the first word of the extension entry.

Word ~ ___ ~ __ --.

o last bank address first bank address

801 o extension index

414431 L SPERRY UNIVAC 1100 Series Executive I I 2 61
~:NU~BER_____ _ ______ V_o __ lu_m __ e_3 __ S_y_s_t_e_m __ P_ro_c_e_s_s._o_r_s ____________________ ~U_P_D_AT_E_LE_V_EL ____ ~_PA_G_E_-________ _

Each 4-word Emtry and its extensions are linked in order of ascending BOI value.

The SL T 4-word entry for the main segment never contains an extension index as no extension entries
are built for the main segment.

For RSEG SL T entries, the format is the same in both the type 1 and type 2 segment load tables. The
format is as follows:

Word

o A 027 0 forward link to active segment

last rseg address 0

2 0 nbr of relocation words

I

sector address of first
0 load control group 3

2.2.9. Collector Defined Tags

References to the following tags are satisfied by the Collector during collection:

ENTRY$ - First address of the Entry Point Table.

COMMN$ - First address of the Common Block Table.

X:REF$ - First address of the External Reference Table.

SL T$ - First address of the Segment Load Table.

FRSTI $ - Lowest I-bank address assigned to the program.

FRSTO$ - Lowest O-bank address assigned to the program.

LASTI$ - Highest I-bank address assigned to the program, including dynamic segments.

LASTO$ - Highest O-bank address assigned to the program, including dynamic segments.

FIRST$ - Lowest address assigned to the bank in which the reference is made.

LAST$ - Highest address assigned to the bank in which the reference is made.

B 01 $ - Bank descriptor index for the bank in which the reference is made.

BOIREF$ - Bank descriptor index for the bank in which the associated tag is defined.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE LEVEL
2-62

PAGE

BDICALLS - As BDIREF$, unless the collection is bank-implied or the reference is in the same
bank in which the tag is defined. In these cases, the value is zero. If the value
of the associated tag is an absolute 36-bit number, then the top 18 bits are used.

IBJ$ - Used in the f-field of an instruction. LlJ operation code if the tag in the u-field
of the instruction is an absolute value, or is defined in a bank other than that in
which the reference is made, except for bank-implied collections. LMJ operation
code if the collection is bank-implied, or the tag in the u-field is defined in the
same bank as that in which the reference is made.

DBJ$ - Same as IBJ$ except that LDJ is generated in place of LlJ.

D$ATE - Satisfied with the date, in TDATE$ format. that th absolute element was created.

TSIME - Satisfied with the time, in TDATE$ format, that the absolute element was created.

D$ATE and T$IME provide 18-bit values for the date and time of the absolute element creation which
may be edited using the EDIT$T or AEDIT$T packages to provide a means of verifying which version
of a program is being executed.

2.2.9.1. Use of BDICALL$/IBJ$ Feature

BDICALL$ and IBJ$, together with the TYPE IBJLNK parameters, provide a powerful means of coding
subroutines and their calls in such a way that the correct linkages and parameters may be generated
by the Collector. This relieves the programmer of having to know when coding calls to subroutines,
especially for library routines used in high level languages; whether the subroutine is to be collected
in the same bank as the call. in a different bank in the program, or resides in a common bank. Also
using TYPE IBJLNK, linkages may be set up to a common routine, where parameters to be passed
are specified at collection time.

BDICALLS and IBJ$ are used in the following format, where the instructions must be in the given order
but not necessarily sequential. IBJ is assumed to be a proc that generates a word in instruction format
with bits 26-35, the f-j fields relocated by the XREF IBJ$. X 11 is used for convenience in the
examples, however, any index register could be used.

LXI,U
IBJ

X 11 ,BDICALL$+ TAG
X 11 ,TAG

Load Parameter
Call Subroutine

The following cases, used to determine how BDICALL$ and IBJ$ are satisfied, are defined.

• The calling sequence and TAG are both defined in the same bank, the collection is a bank implied
collection, or the bank in which TAG is uefined in is specified with the 'L' option or is the control
bank.

In this case BDICALL$+ TAG is satisfied as 0 and IBJ$ is satisfied as LMJ, such that the calling
sequence is generated as if it were:

LXI,U
. LMJ

X 11,0
X 11 ,TAG

• TAG is defined as an entry point, in a bank named collection, in a bank other than that in which
the calling sequence is defined.

• 1144.3. 1 ~ SPERRY UNIVAC 1100 Series Executive I A I 2-63
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE --------- --~~-----------~--------------

In this case BOICALL$+ TAG is satisfied as the Bank Descriptor Index of the bank defining TAG
- e.g., BOil, and IBJ$ is satisfied as LlJ, such that the sequence is generated as if it were:

LXI,U
LlJ

X11,B011
X 11 ,TAG

LOAD BANK BOI
ENTER NEW BANK

• TAG is defined as a 36-bit value in an element not specified on a TYPE IBJLNK statement.

• In this case the reference is assumed to be to a common bank, where bits 18-35 are the BOI
and bits 0-17 are the entry point for the common bank, e.g., TAG was defined as:

EQU 0400231002010 . BOIC,BNKENTRY

BOICALLS is satisfied as the BOI value from the 36-bit value. IBJ$ is satisfied as LlJ, and TAG
is truncated to 18 bits. The sequence is generated as if it were:

LXI,U
LlJ

X11,0400231
X11,002010

BOIC
BNK ENTRY

• TAG is defined as an absolute value in an element which was specified on a TYPE IBJLNK
statement in the collector source, e.g.,

TYPE IBJLNK SUBPARAM,SUBENTRY

TAG is defined in SUBPARAM and SUBENTRY is the name of an entry point in the collection.

In this case BOICALL$ is satisfied with the value of TAG, IBJ$ is satisfied as LMJ, and the address
field relocated by TAG on the IBJ instruction is satisfied by SUB ENTRY. The sequence is
generated as if it were:

LXI,U X 11 ,TAG LOAD PARAMETER

LMJ X 11 ,SUBENTRY CALL SUBROUTINE

In this way many calls to SUBENTRY may be coded, specifying that different parameters are to
be used on entry, but the parameters may be defined in a separate element, and may be changed
without having to recompile the elements containing the subroutine calls.

When BDICALL$ and IBJ$ are satisfied in one of the first three ways, i.e., without the use of a TYPE
IBJLNK specification, the called subroutine may easily determine the type of call and return
appropriately. This is done by examining the value passed in the increment portion (H 1) of X 11, as
follows:

TAG.
S

•
•
•
L
TZ,H 1
LlJ
J

X 11 ,RETURN

X 11,RETURN
RETURN
X 1 1,O,X 1 1
O,X 11

Save return address.

Process subroutine.

Restore return address.
Call by LlJ or JUMP
LlJ, LlJ back
LMJ, JUMP back

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

2.3. PROGRAM EXECUTION

2.3.1. Initiating Execution (@XOT)

A

UPDATE LEVEL

2-64
PAGE

The @XQT statement (see Volume 2-3.4.4) is used to initiate the execution of an absolute element
prepared by the Collector. The absolute program will be loaded into main storage.

See Volume 2-3.4.4 for a discussion on the following:

• Initial execution

• Initial execution status

Initial PSR and storage limits

1. Overlapped addresses
2. Lowest bank address
3. Initially-based common banks
4. Common bank access

• Program data separation

• Bank referencing

Visible banks
Switching between banks
Static versus dynamic banks
Initial load
PCT referencing

• Program termination

2.4. REENTRANT PROCESSOR EXECUTION

2.4.1. General

Reentrant processors are provided only to be compatible with earlier Executive systems. The
functions provided by reentrant processors can better be provided by common or dynamic banks.

A reentrant processor (REP) is an executable reentrant routine referenced from a user's program by
the LINKS or RLlNK$ Executive Requests. A reentrant processor consists of only I-bank addresses
and resides as an absolute element in the system library (SYS$*LlB$) or a user file. A REP may be
referenced many times during a user run without being reloaded and may access other banks of the
calling program. For purposes of debugging, a reentrant processor may reside on mass storage in
a user specified file. There are two types of reentrant processors:

• ,System standard reentrant processors listed in system generation

• User-specified reentrant processors listed by the RLlST$ Executive Request

See Volume 2-4.8.5 for further discussion of reentrant processor Executive Requests.

4144.31 I SPERRY UNIVAC 1100 Series Executive 3-1
UP~U~~~ ____________ V_o_lu_m __ e_3 __ S_y_s_te_m ___ P_ro_c_e_s_s_o_rs ____________________ ~U_P_DA_T_E_L~_E_L ____ ~P_A_GE ________ ___

3. Debugging Aids

3. 'I. INTRODUCTION

The openHing system provides a comprehensive set of diagnostic routines to aid in the checkout and
debugging of user programs. The routines provided are:

• Postmortem Dump (PMD) Processor

• Dyn.amic Dump Routines

• Pro~tram Trace Routine (SNOOPY)

• Flow Analysis Program (FLAP)

Another diagnostic capability, the production of snapshot dumps, is provided by the SNAPS request
(see Volume 2-4.10.3) and the Collector's SNAP directive (see 2.2.2.10). Snapshot dump output, like
program trace (SNOOPY) output, is placed in the user's print file at the point at which the request
was madlB. The output of the dynamic dump routines is handled by the PMD processor; the output
of the PMD processor is listed after the print output generated by the user's program. SNOOPY and
FLAP are described in Volume 4.

A diagnostic file ([)IAG'$), which is used for recording diagnostic information for the PMD processor,
is automcltically al~signed to each run by the system. This file is divided into two functional parts:
a dynamilc dump portion and PMD portion. The dynamic dump portion always starts at the beginning
of the diagnostic file and it is followed by the PMD portion.

The dynamic dumps consists of dumps of:

• main storage,

• con1trol registers,

• maglnetic tape files, and

• mass storagE! files.

The postmortem dump consists of the final contents of a program's main storage area at termination.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

3-2
PAGE

3.2. POSTMORTEM DUMP PROCESSOR (PMD)

The Postmortem Dump Processor (PMD) is called by the @PMD control statement. At program
termination the final contents of the program's main storage areas are written into the diagnostic file
by the system. The information can then be edited and printed by the PMD processor. Postmortem
dumps may be taken of

• . overlay segments,

• elements,

• banks, or

• any portion of the terminated program as long as those segments, elements, banks, and/or
portions are active when the program terminates.

See Volume 2-3.4.4.4.5 for the description of which program banks are considered active. Within
a program bank, a portion of the terminated program is considered active if it is either the main
segment or an overlay segment which is loaded as described in 2.2.4.5.1. or 2.2.4.5.2.

3.2. 1. @ PMD Control Statement

Purpose:

Calls the PMD processor to dump all or specified portions of a program that was in main storage at
program termination. Any number of PMD control statements may follow the execution of a program
so that different parts of a program's storage area may be dumped in different formats, if desired.

Format:

@PMD,options operand fields

Parameters:

options

general

special

Applies to all types of PMD control statements. The presence of A,
I, or 0 options indicate a format 3 PMD control statement. The
absence of operand fields indicates a format 4 PMD control statement.

Applies to format 3 or 4 PMD control statements. PMD control
statements without A, I, or 0 options and having operand fields are
either format 1 or 2. Format 1 PMD control statements are used to
dump all or part of a specific location counter of a specific element.
Format 2 PMD control statements are used to dump areas starting at
specified externally defined entry points.

If no parameters are specified in the operand fields, all elements residing in main storage at program
termination are dumped in accordance with the specified options.

Format 1:

@ label:PM D ,options eltname/ba nkna me,address/lc,length,format

4144,31
UP-NUMBER

Format 2:

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

3-3
PAGE

@label:PM[),options epname/bankname,length,format

Format 3:

@label:PM[),options part-1,part-2, ... ,part-n

where part-n may be of the following forms:

eltname
se~~ment

bankname
eltname/segname
eltname/bankname
se~~ me nt/bel n k n a me
eltlname/segname/bankname

Format 4:

@PMD,options

NOTE:

The pre'sence of' an A, /, or D options indicates a format 3 PMD.

options

eltname

epname

segname

banknallle

The general options in Table 3-1 apply to any format PMD control
statement. All of the special options in Table 3-2 apply to format 3
PMD control statements. On format 4 PMD control statements the
following special options may be used: I, D, L, F, G, N, 0, Q, and S.
If more than one of the format options (F, G, N, 0, Q, and S) are used
on format 3 or 4 PMD control statements, then each location counter
of each element dumped is repeated, once for each type of format
requested. If no format options are specified on format 3 or 4 PMD
control statements, then octal format is used.

Specifies the element to be dumped. The names of labeled common
blocks or BLANK$COMMON may also be used. Common blocks can
be considered to have one location counter (location counter zero).

Specifies the entry point name from which the dump is to start. This
name must be externally defined and referenced by another element
in the program. If any externally defined name is to be referenced in
a format 2 PMD, then the user program must be MAPped to produce
extended diagnostic tables using the TYPE EXTDIAG directive (see
2.2.2.13).

Specifies the segment to be dumped.

Specifies the bank to be dumped. If used as subfield containing other
names, it defines which bank of the multibank program to consider for
dumping.

4144.31
'JP-NUMBER

part

address

Ic

length

format

NOTE:

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

3-4
PAGE

Specifies the element, segment or bank to be dumped. For multibank
programs with localized elements or segments which span banks,
subfields may be used to define the specific portion of the element or
segment to be dumped. The subfield names must maintain the same
relative sequence (i.e., bank name last, segment name preceding bank
name, etc.) although each of the subfields is optional and any type of
name can appear in any subfield.

The address, relative to the beginning of the location counter (I c), at
which the dump should begin. This field applies only to format 1. If
this field is omitted, an address of zero is assumed.

Specifies which location counter of the element to be dumped. If this
parameter is omitted, a location counter of zero is assumed.

Specifies the number of words to be dumped. If this parameter is
omitted, the word length in the location counter being dumped is
assumed.

The single letter which references one of the standard editing formats
(see 3.3.1.8.1) to be used. Optionally, a FORTRAN format expression
enclosed in parentheses may be defined by the user in this field to be
used as the editing format.

Any format statement acceptable to FORTRAN V for output editing
may be used, with the exception of one using the R editing code. See
1100 Series FORTRAN V, UP-4060 (current version). In addition, N·
and S may be used as editing codes in format statements for
mnemonic and octal instruction formats, respectively. When N is used
as an editing code in a FORTRAN format statement, at lease 26 spaces
must be provided for each word edited. When S is used as an editing
code, at least 21 spaces must be provided for each word edited. Note
that the 0 standard format and user-supplied formats are not
applicable to changed word dumps. If the parameter is omitted, an
octal dump is produced.

The address, location counter and length may be specified in octal or
decimal number notation. (Numbers with a leading zero are assumed
to be octal.)

Since element names need not be unique to the program, care must be taken in requesting PMD
processing. The element name may be the same as the entry point name, segment name or bank
name. The order of search within the PMD porcessor is as follows:

1. Bank Name
2. Segment Name
3. Element Name
4. Entry Point Name

Therefore, if unique element names are not used, care must be taken in requesting dumps to ensure
that the proper information is obtained. In order to prevent possible conflicts, it is recommended
that unique element names be used whenever possible.

4144.31 I SPERRY UNIVAC 1100 Series Executive 3-5
~~~~ ______________ V __ O_I_u_rn_e __ 3 __ S_y_s_t_e_rn __ P __ ro_c_e_s_s_o_._rs ______________________ ~~U_P_D_AT_E_L_~_E_L ____ ~P_AG_E ____ ___ 

Table 3-1. @PMD Control Statement, General Options 

Opti1on Description 
Character 

C Dumps the words which were changed during the execution or loading of the allocated 'program area of 

main storage specified in the @PMD control statement. 

E Processes @PMD control statement only if the pre,vious routine terminates in error. 

M Print only diagnostic dumps that have not been printed. This applies to demand runs only. 

P Causes an octal dump of the PCT blocks used by the run to be printed preceding the dump of the program. 

Also the segment load tables and any other collector generated table, if any, are dumped in octal. 

B Dumps information about a program's banks. Information dumped: bank's name, BDI, base address, bank 

type, and storage preference. 

T Formats the output of PMD so that no print line is longer than 80 characters. This option is intended for 

USEI with output devices such as the UNISCOPE 100, but use is not limited to demand runs. When the T 

option is used on the first PMD control statement following the execution of a program, it also controls 

the editing of any Dynamic Dumps produced. 

W Debug only - Turns on snap dumps in PMD. 

Y Debug only - Turns on snap dumps in PMD. 

Table 3-2. @PMD Control Statement, Special Options 

Option [)escription 
Character 

A Produces a dump of the specified main storage area of each named element or segment or bank. 

o Produces a dump of the D-bank portion of oach named element, segment or bank. If no names are 

spEtcified, then all of the D-bank portion of the program is considered for dumping. 

Produces a dump of the I-bank portion of each named element. segment or bank. If no names are specified, 

then all of the I-bank portions of the program is considered for dumping. 

L Dumps the active library elements. When the A, I or 0 options are used. the L option is necessary if any 

of the elements named in the specification fields are system library elements. @PMD.L dumps all active 

elements including those from the system library. 

X US.3d in conjunction with the A, I or 0 options. Dumps all active elements except those named in the control 

statement and those belonging to the segments named in the control statement. 

F Prclduces a dump in Fieldata alphanumeric format (see Table 3-3). 

G Pwduces a dump in G format (see Table 3-3). 

N PrClduces a dump in mnemonic instruction fOl'mat (see Table 3-3). 



4144.31 
UP-NUMBER 

Option 
Character 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

Table 3-2. @PMD Control Statement, Special Options (continued) 

Description 

UPDATE LEVEL 
3-6 

PAGE 

0 Produces a dump in octal format. This option is used only when any of the F, G, N, 0, and S options are 

used. Produces an octal dump in addition to the other formats requested. 

0 Produces a dump in ASCII alphanumeric format (see Table 3-3). 

S Produces a dump in ASCII octal instruction format (see Table 3-3). 

Description: 

For the A, I, D, and X options, the names of labeled common blocks or BLANK$COMMON may be 
used as element names. 

5ee Volume 2-3.4.1 for the effect of the @RUN control statement on postmorten dumps. 

If no information was saved by the system when the previous execution terminated, no dumps are 
possible. This condition is caused by an N option on the @RUN control statement. A PMD is not 
possible for a program if the Z option was specified to the Collector on the @ MAP control statement 
when that program was mapped. If no dump is available, a message is produced. 

In demand or batch mode, all control statements are allowed between the normal termination of an 
@XaT or processor call and the @PMD request for the @XaT or processor call. Additionally, all 
control statements will be allowed to intervene between @ PMD requests. If another @XaT or 
processor call is encountered, it will be honored and DIAG $ will be rewritten when the @XaT or 
processor call terminates. The above also applies to all types of termination in demand mode. 

When in batch mode, if an @XaT or processor call terminates in error, the @PMD control statement 
will be honored only if it follows the @XaT or processor call. Only data statements, @EOF control 
statements and the conditional control statements (@SETC, @JUMP, @TEST and @ADD) may 
intervene. @PMD control statements are not honored for batch runs that terminate in abort mode. 

The standard 5YS$*LlB$ version of the PMD processor is never written to DIAG$. 

Example: 

@XQT 
data 

• 
• 
• 
• 

data 
@TEST 
@JUMP 
@SETC 
@PMO,A 
@XQT 

PROGX 

TE/6/S3 
3 
6/54 
ELEMENT1, ELEMENT2 
PROGY 

If PROGX terminates before processing all of the data statements that follow the first @XaT control 
statement, and 53 of the condition word has a value of 6,54 of the condition word is set to 6, and 
the @PMD and @XaT PROGY control statements are processed. 



UP-NUMBER 

SPERRY UNIVAC 1100 Serie. Executive 
Volume 3 System Processors UPDATE LEVEL 

3-7 
PAGE 

4144.31 L 
,-, ____ --L---------L---_ 

Any @PMD control statement following the execution of a program from SYS$*LlB$ (that is, @FOR, 
@COB, @MAP, and so forth) is honored only if the Y option appears on the @RUN statement. 

Howev~er, if the W option was specified on the @RUN control statement when in batch mode, any 
program from SYS$*LlB$ that error terminates will be automatically written to DIAG$ and the PMD 
proces!)or will automatically be loaded to print the erroring program. The PMD processor is called 
with P and l options specified. 

E:xamples: 

1. @PMD 
2. @PMD,EAXL 
3. @PMD,D 
4. @PMD,ECD 
5. @PMD 
6. @PMD 
7. @PMD, I 
8. @PMD, I LNO 
9. @PMD,DLOFG 
10. @PMD, I LNO 
11. @PMD,AOFG 

PETER, BOB 
FLYBY 
REPORT 
ALPHA,100/3,56,A 
TOP/CAT,10,A 

BETA/SEGA,GAMMA/SEGB/BANKA,SEGC 
BLANK$COMMON,DELTA 

1. An octal dump of all active (allocated in main storage and loaded) segments of a user's program 
re~~ults. Active elements in the program which were from SYS$*RLlB$ are not included in the 
dump. 

2. An octal dump of all active elements, except PETER, BOB, and active system library element 
results. The dump occurs only if the previous routine terminated because of an error. 

3. Re'sults in un octal dump of the D-bank of segment FLYBY (if active). 

4. Caluses an octal dump of changed words in the D-bank portion of element REPORT (if active). 
The dump occurs only if the previous program terminated because of an error. 

5. The result ()f this @PMD control statement is a 56-word dump of location counter 3 of element 
Al.PHA in the standard alphanumeric editing format. The dump begins with relative address 100 
under location counter 3. 

6. The dump begins at external entry point TOP in bank CAT. Ten words are dumped in the 
standard alphanumeric editing format. 

7. Dump the I-bank portion of all active elements except those included in the program from the 
System Library. 

8. Dump the I-bank portion of all active elements including those within the program from the 
System Library. Each location counter of each element is dumped twice: once in octal format, 
and once in mnemonic instruction format. 

9. Dump the D-bank portion of all active elements. Each location counter of each element is 
dUimped thlree times: once in Fieldata alphanlUmeric format, once in octal format, and once in 
G format. 

10. Dump the I·-bank portion of element BETA in segment SEGA, element GAMMA in SEGB in bank 
BJ~NKA, and the I-bank portion of all elements in segment SEGC including those from the 
System Library. Each location counter of each element dumped is repeated twice: once in octal 
format, and once in mnemonic instruction format. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Serle. executive 
Volume 3 System Processors UPDATE LEVEL 

3-8 
PAGE 

11. Dump BLANK COMMON and all portions of element DELTA, BLANK COMMON and each location 
counter of element DELTA are dumped three times: once in octal format, once in Fieldata 
alphanumeric format, and once in G format. 

3.3. DYNAMIC DUMPS 

The dynamic dumps are discussed from the viewpoint of the SPERRY UNIVAC 1100 Series Assembler 
user. There is no inherent restriction on the employment of this facility with any other processor. 
All that is needed is that the proper information be written to the diagnostic file. Library routines 
are provided to assist in the process. The use of the dynamic dump facility by a high level language 
processor fails outside the scope of this manual. 

Dynamic diagnostic requests are generated by procedure-calls from within the user program. These 
procedure calls collect the dynamic diagnostic library subroutines in to the user object program. The 
requested dynamic diagnostic information is written into the diagnostic file by the library subroutines 
while the object program is being executed. When called on during program execution, these 
subroutines preserve the complete program environment and perform the requested dynamic 
diagnostic request. If the user's program has multiple activities, only one activity at a time may 
execute dynamic dump calls since the dynamic dump routines are non-reentrant. 

The amount of information which can be written into the dynamic diagnostic portion of diagnostic 
file can be set dynamically through the use of the X$SIZE procedure (see 3.3.3.5). If this procedure 
is not used, the length will automatically be limited by the value specified in the system's generation. 

When the dynamic diagnostic portion of diagnostic file is filled, a message is supplied indicating that 
no more dynamic diagnostics can be transferred to the diagnostic file. All subsequent dynamic 
diagnostic requests for this program are ignored. After program termination in batch mode, the dump 
information is retrieved from the diagnostic file, edited and printed. When in demand mode, a 
message will be displayed informing the user that diagnostic dumps are available and the name of 
the program that produced the dumps. The user may then call the PMD processor with an M option 
to retrieve, edit, and print the dynamic dumps only; or without the M option to retrieve, edit, and print 
both the diagnostic dumps and a dump of the program. 

There are 19 different library subroutines associated with the dynamic diagnostic procedures. These 
routines can be divided into three functional classifications: 

1. Dump Procedures: X$MESG, X$CW, X$CQRE, X$DUMP, X$TAPE, X$DRUM, X$FILE, and 
X$CREG which are used to record data in the diagnostic file. 

2. Conditional Control Procedures: X$IF, X$AND, X$OR, and X$TALY which are used to determine 
when a given dump or series of dumps should occur. 

3. Specification Procedures: X$FRMT, X$BUFR, X$MARK, X$BACK, X$SIZE, X$ON, and X$OFF 
which are used to specify the condition switch and other global diagnostic parameters. 



4144;31 I SPERRY UNIVAC 1100 Series Executive 3-9 
up~~~~. ______________ V_o_'u_m __ e_3 __ S_y_s_te_m ___ p_ro_c_e_s_s_o_rs ____________________ -LU_P_DA_T_E_L~_E_L __ ~~P_A_GE ____ ___ 

3.3. 1. Dump Calling Procedures 

The procedures available for obtaining dynamic dumps are: 

XC:ORE$ (sE~e 3.3.1.1) 
XCIUMP$ (see 3.3.1.2) 
XC:W$ (see 3.3.1.3) 

. XTAPE$ (see 3.3. 1.4) 
XDRUM$ (see 3.3.1.5) 
X$FILE (see 3.3.1.6) 
XCREG $ (sE~e 3.3. 1.7) 

All dynBllnic dump procedures are executed only if the switch XSTAT$ (see 3.3.3.2) is on. 

The dynamic dump procedures save and restore all control registers as well as the carry and overflow 
conditions. The dynamic dump routines contained in SYS$*RLlBS are not reentrant. Therefore, only 
one activity of a program should reference these procedures at a time. 

3.3. 1. 1.. Main Storage Dump (XCORE$) 

Purpose: 

Produces a dump of the specified main storage area. 

Format: 

N$ 
SLJ 
FORM 
N$ 
+ 

XCORE$ 
4,14,18 
index-reg,word-count,starting-addr 
'format',O 

This linkage may be generated by the procedure call: 

X$CORE starting-addr,word-count,'format',index-reg 

Parameters: 

starting--addr 

word-count 

'format' 

index-rEtg 

Specifies the main storage starting location of the dump. 

Specifies the number of locations to be dumped (037777 maximum). 

Specifies a single letter, enclosed in quotes, which references either 
a standard (see 3.3.1.8.1) or a user-defined (see 3.3.1.8.2) editing 
format. If omitted, an octal dump is produced. 

Specifies the index register used to modify the address specified by 
the starting-addr parameter. This parameter, which may be omitted 
or left zero, can be set to values from 1 to 15 to specify an index 
register from X 1 through A3. The value in the index register is added 
to the starting-addr value to get the actual dump starting address. 



4144.31 
UP-NUMBER 

Description: 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

3-10 
PAGE 

The main storage dump printout is preceded by the heading: **CORE DUMP** 

Examples: 

1. X$CORE 
2. ·X$CORE 
3. SLJ 

N$ 
N$ 

+ 

TASLEX, 100, '0' ,X5 
TASLEY, 150 
XCORE$ 
FORM 4,14,18 
X10,250,WN3X 
'A' ,0 

1. The main storage dump begins at address TASLEX as modified by index register X5. The dump 
is 100 words in length and is presented in standard octal format. 

2. The main storage dump begins at address TASLEY, has a word length of 150, and is presented 
in standard octal format. 

3. The main storage dump begins at address WW3X as modified by index register X 1 O. The dump 
is 250 words in length and is presented in alphanumeric format. 

3.3.1.2. Control Register and Main Storage Dump (XDUMP$) 

Purpose: 

Produces a dump of the program environment, A, X, and R registers, and main storage. 

Format: 

N$ 
SLJ 
FORM 
N$ 
+ 

XOUMP$ 
4,14,18 
index-reg,word-count,starting-addr 
'format' ,register-code 

This linkage may be generated by the procedure call: 

X$OUMP starting-addr,word-count,'format','AXR',index-reg 

Parameters: 

starting-addr 

word-count 

'format' 

'AXR' 

Specifies the main storage starting location. If omitted, a starting 
location of zero is assumed. 

Specifies the number of locations to be dumped (037777 maximum). 
If omitted, a length of zero is assumed and no main storage dump is 
produced. 

Specifies a single letter, enclosed in quotes, which references either 
a standard (see 3.3.31.8.1) or a user-defined (see 3.3.1.8.2) editing 
format. If omitted, an octal dump is produced. 

Specifies, enclosed in quotes, one or more letters representing the A, 
X, and R registers. The contents of these registers are printed in octal. 



4144.31 
UP-HUMBER 

index-neg 

rngister·-code 

Descrip1tion: 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

3-11 
PAGE 

Specifies the index register used to modify the address specified by 
the starting-addr parameter. This parameter, which may be omitted 
or left zero, can be set to values from 1 to 15 to specify an index 
register from X 1 through A3. The value in the index register is added 
to the starting-addr value to get the actual dump starting address. 

Register codes for XDUMP$ are: 

No registers 
R only 
A only 
R and A 
X only 
X and R 
X and A 
A,X, and R 

0 8 
200401 8 
200202 8 
4006038 
200104 8 
400505 8 
4003068 
600707 8 

The printout resulting from XDUMP$ is preceded by the heading: **DUMP** 

The following additional information is provided following the **DUMP** heading: 

• element name 

• location counter 

• relative program address 

• hardware fault indicators 

ExamplEI: 

1. X$IDUMP 
2. X$IDUMP 
3. X$IDUMP 
4. SLJ 

N$ 
N$ 
+ 

TABLEY,200,' I', 'XA' ,X10 
TABLEZ,500, 'A', 'R' 
", 'R' 
XDUMP$ 
FORM 4,14,18 
X9,500,BSS6 
'0' , 0200104 

1. Th«~ main st()rage dump begins at address TABLEY as modified by index register X 1 O. The dump 
is :~OO words in length. The contents of all X and A control registers are also dumped. The 
dump is presented in the standard integer format. 

2. Th«~ main storage dump begins at address TABLEZ and has a length of 500 words. The contents 
of .all R control registers (except RO) are also dumped. The dump is presented in the standard 
alphanumeric format. 

3. Th«~ contents of all R control registers (except RO) are dumped in octal format. 

4. Th43 main storage dump begins at address BSS6 as modified by index register X9. The dump 
is ~iOO words in length. The contents of the X registers are also dumped. The dump is prese..nted 
in octal format. 



4144.31 
UP~UM8ER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

3.3.1.3. Changed Word Dump (XCW$) 

Purpose: 

UPDATE LEVEL 
. 3-12 

PAGE 

Produces a changed word dump of specific locations within main storage. On the first X$CW call 
referencing a given main storage area, a complete dump of that area is produced. On subsequent 
X$CW calls specifying the same area, only those words which were changed since the last X$CW 
procedure call specifing that area are dumped showing the previous contents and the current 
contents. The number of separate areas that may be dumped is restricted to five. The starting-addr 
and length determine the uniqueness of one area from the next. 

Format: 

SLJ XCW$ 
+ word-Iength,starting-addr 
+ 'format',O 

This linkage may be generated by the procedure call: 

X$CW starting-addr,word-Iength,'format' 

Parameters: 

starting-addr 

word-length 

'format' 

Description: 

Specifies the main storage starting location of the dump. 

Specifies the number of locations to be dumped (037777 maximum). 

Specifies a single letter, enclosed in quotes, which references one of 
the following standard editing formats: A, E, F, G, I, N, 0, a, and S (see 
3.3.1.8.1). Standard format D and user-defined formats cannot be 
specified. If omitted, an octal dump is produced. 

The number of calls on X$CW is not limited, but only five separate areas may be dumped. 

Changed word dumps, whether or not any words were changed are preceded by the following 
heading plus the appropriate changed-word status word message: 

**CHANGED WORD CORE DUMP** 

Examples: 

1. X$CW 
2. X$CW 
3. SLJ 

+ 
+ 

4. X$CW 

INS E RT , 1 0, . I . 
REWORD, 50 
XCW$ 
750, HTR5 
. F', 0 
I NS E RT , 10, , I ' 

1. The changed word dump begins at address INSERT. The dump is 10 words in length and is 
presented in standard integer format. Since this is the first call specifying an area starting at 
INSERT, all of the area is dumped. 

2. The changed word dump begins at address REWORD. The dump is 50 words in length and is 
presented in standard octal format. Since this is the call specifying an area starting at REWORD, 
all of the area is dumped. 



4144.31 
UP-NUMBER 

I SPERRY UNIVAC 1100 Series Executive I I 3 13 
~, ____________ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s ______________________ ~~U_PD_A_TE_L_~_EL ____ ~_PA~G~E_-_____ _ 

3. Tho changed word dump begins at address HTR5. The dump is 750 words in length and is 
presented in fixed-point decimal format. 

4. ThE~ changed word dump begins at address INSERT. Any words in the 10-word area starti.1g 
at clddress INSERT which were changed since dump number 1 occured are printed showing the 

. previous and current contents. 

3.3.1.4. Tape Block Dump (XTAPE$) 

Purpose:: 

Dumps the block of magnetic tape data located just prior to the current tape position by making 
temporary use of a previously defined buffer initialized by the X$BUFR procedure (see 3.3.3.1). The 
magnetic tape is moved backward one block, the block is read, and the number of words specified 
in the XSBUFR procedure are dumped. 

Format: 

SLJI XTAPE$ 
+ word-count,buffer-addr 
+ 'f()rmat',I/O-pktaddr 

This linkage may be generated by the procedure call: 

X$TAPE I/O-pktaddr,'format' 

Paramet~ers: 

I/O-pktaddr 

'format' 

Descriptiion: 

Specifies the address of the I/O request packet (see Volume 2-6.2) for 
the device handler. This parameter may be the address of a file control 
table (FCT) as is used by block buffering and other routines, since the 
first six words of an FCT is an I/O packet. 

Specifies a single letter, enclosed in quotes, which references either 
a standard (see 3.3.1.8.1) or user-defined (see 3.3.1.8.2) editing 
format. If omitted, an octal dump is produced. 

Interbloc:k gaps separate the blocks that are recorded on magnetic tape each time an 1/0 write of 
any size word count is done. These interblock gaps, which serve as block separators, are not to be 
confused with end-of-file (EOF) marks, which are a special kind of block surrounded by interblock 
gaps. The X$TAPE procedure causes a move backward to the preceding interrecord gap, then a read 
of everything which follows (could be one word or tens of thousands of words) into the buffer 
initialized by an X $ BUFR procedure (see 3.3.3.1) until the next interrecord gap is encountered. When 
the buffor is filled, the remaining words are lost. 

The X$TAPE procedure is useful for dumping a block that was just read or written. No dump occurs 
if the magnetic tape is positioned at the load point (beginning-of-tape marker). 

No magnetic tape' dump occurs if a main storage buffer is not reserved and initialized for the X$TAPE 
procedure. 

The same buffer area can be used for both X$DRUM (see 3.3.1.5) and X$TAPE procedure calls. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series executive 
Volume 3 System Processors UPDATE LEVEL 

3-14 
PAGE 

The word count and buffer address are returned by the X$TAPE procedure to the first parameter word. 

The tape drum printout is preceded by the heading: 

*TAPE DUMP 

**FILE filename 

Example: 

1. X$BUFR 
2. X$TAPE 
3. X$BUFR 
4. SLJ 

+ 
+ 

ALPHA, 150 
F I LEA, . O' 
BUFS,SOO 
XTAPE$ 
SOO, BUFS 
. 0', NP16 

1. The block of data prior to the present magnetic tape position is read into the main storage 
location ALPHA (previously initialized by the X$BUFR procedure call) and is printed in standard 
octal format. FILEA specifies the I/O packet address. If the block is longer than 150 words, 
the first 150 words are dumped. 

2. The block of data prior to the present magnetic tape position is read into the main storage 
location BUFS and is printed in standard octal format. NP 16 specifies the 1/0 packet address. 

3.3. 1.5. Mass Storage Dump (XDRUM $) 

Purpose: 

Dumps portions of FASTRAND drum-formatted mass storage by making temporary use of a previouly 
defined buffer initialized by the X$BUFR procedure (see 3.3.3.1). Portions of mass storage to be 
dumped and read into the buffer, then the contents of the buffer is written into the diagnostic file. 

Format: 

SLJ XDRUM$ 
+ word-count,location-addr 
+ 'format' ,I/O-pktaddr 

This linkage may be generated by the procedure call: 

X$ORUM 1/0-pktaddr,location-addr,word-count,format 

Parameters: 

I/O-pktaddr 

location-addr 

Specifies the address of the I/O packet containing the internal 
filename (see Volume 2-6.2). 

Specifies the address of a word which contains the relative starting 
sector address or a word address of the file to be dumped. (In some 
cases, this address may be I/O-pktaddr+ 5, which contains a sector 
address or a word address.) The manner in which the file was 
assigned determines whether the address specified is a word address 
or a sector address (see Volume 2-3.7.1.1 and 2-3.7.1.3). 



4144.31 I SPERRY UNIVAC 1100 Series Executive 3-16 
up~u~~ _____________ V_o_lu_m __ e_3 __ S_y_s_te_m __ P_r_o_c_e_ss_o_r_s ____________________ ~U_P_DA_TE_L_~_E_L __ ~_PA_G_E ____ ___ 

word-cclunt 

'format' 

Description: 

Specifies the number of locations to be dumped. 

Specifies a single letter, enclosed in quotes, which references either 
a standard (see 3.3.1.8.1) or a user-defined (see 3.3.1.8.2) editing 
format. If omitted, an octal dump is produced. 

The mass storag1e dump printout is preceded by the heading: 

**DRUM DUMP** FILE filename AT RELATIVE SECTOR sector-number 

Use of the X$DRUM procedure requires a main storage buffer into which the mass storage dump 
can be read. The mass storage area to be dumped is read into the buffer. When it is filled, the 
contentsi of the buffer is written into the diagnostic file. For FASTRAND drum-formatted files, it is 
recomm,ended that the buffer be some multiple of 28, the length of a FASTRAND drum mass storage 
sector. While a portion of mass storage that is larger than the size of the buffer may be dumped, 
greater 43fficiency results by providing a buffer that is sufficiently large to hold all the mass storage 
to be dUlmped at one time. 

If a main storage buffer is not reserved and initialized for the X$DRUM procedure, no mass storage 
dump occurs. 

The same buffer area can be used for both X$DRUM and X$TAPE (see 3.3.1.5 and 3.3.1.4) procedure 
calls. 

Example: 

1. X$I3UFR 
X$J)RUM 

2. X$13UFR 
SL.J 
+ 
+ 

DUMPB,112 
FILED,DRDUMP,112, 'A' 
AREA1 ,450 
XDRUM$ 
450, LWA1 
'D', ADDR1 

1. Beninning at the relative address value specified by DRDUMP, 112 words of data from mass 
storage are read into the buffer starting at main storage location DUMPB that was initialized by 
the X$BUFR procedure call. The data is edited in standard alphanumeric format. FILED specifies 
the I/O packet address. 

2. Be~Jinning at the relative address value specified by LWA 1,450 words of data from mass storage 
are read into the buffer starting at main storage location AREA 1. The data is edited in 
double-prec:ision, floating-point format. ADDR 1 specifies the I/O packet address. 

3.3.1.6" File Dump (X$FILE) 

Purpose: 

Provides for dumps in connection with the item handler package. Dynamic dumps of items can be 
taken whenever an item is read from or written into a particular file. 



4144.31 
UP-HUMBER 

Format: 

SPERRY UNIVAC 1100 Serle. executive 
Volume 3 System Processors 

x $ FI LE fct,option, 'format' 

Parameters: 

fct Specifies the address of the file control table. 

option The available options are: 

UPDATE lEVEL 
3-16 

PAGE 

'ON' - Causes subsequent items read from or written into the 
file to be dumped. 

'format' 

Description: 

'OFF' - Terminates dumping of items from the file. 

Specifies a single letter, enclosed in quotes, which references either 
a standard (see 3.3.1.8.1) or a user-defined (see 3.3.1.8.2) editing 
format. This parameter can be specified only when the ON option is 
specified. If omited, an octal dump is produced. 

This procedure cannot be used for an item that spans multiple blocks. 

Examples: 

1. X$FILE 
2. X$FILE 

BETA, 'ON' , '0' 
BETA,'OFF' 

1. The file whose file control table is located at BETA is conditioned to record in the diagnostic 
file all subsequent activity at the item level. That is, every time a request is made to an item, 
the item to which the item handler points is recorded in the diagnostic file and is printed in 
standard octal format. 

2. The file whose file control block is located at BETA is conditioned not to dump any subsequent 
activity at the item level. 

3.3. 1.7. Control Register (User Set) Dump (XCREG$) 

Purpose: 

Dumps specified user control registers. (The A, X, and R registers and the unassigned registers at 
addresses 034 and 035). 

Format: 

SLJ XCREG$ 
+ register-count,starting-reg 
+ 'format',O 

This linkage may be generated by the procedure call: 

X$CREG starting-reg,reg-count,'format' 



4144.31 I SPERRY UNIVAC 1100 Series Executive I I 3 17 
up~u~ ____________ V_o_lu_m __ e_3 __ S_y_s_te_m __ p_r_o_c_es_s_o_r_s ___________________ ~_U_PD_A_TE_L_~_E_L __ ~_PA_G_E_-__ ___ 

Parametlsrs: 

starting-reg 

reg-count 

'format' 

Description: 

Specifies the address of the first control register to be dumped. 

Specifies the number of control registers to be dumped. 

Specifies a single letter, enclosed in quotes, which references either 
a standard (see 3.3. 1.S. 1) or a user-defined (see 3.3.1.S.2) editing 
format. If omitted, an octal dump is produced. 

The register dump printout is preceded by the heading: **CREG DUMP** 

Examples: 

1. X$CREG 
2. X$CREG 
3. X$CREG 

X1, 12, '0' 
X11,10,'A' 
A14, 10, '0' 

1. Registers X 1 through X 11 and AO are dumped into the diagnostic file to be edited and printed 
in standard octal format. 

2. Control registers X 11 and AO through AS are dumped into the diagnostic file to be edited and 
printed as a string of 60 alphanumeric (Fieldata) characters. 

3. Control registers A 14 and A 15, the unassigned registers 034 and 035, and RO through R5 are 
dumped into the diagnostic file to be edited and printed in standard octal format. 

3.3.1.S. Editing Formats for Dynamic Dumps 

Each procedure for calling dynamic dumps speci'fies an editing format for printing the dump. 
Standard editing formats (see 3.3. 1.S.1) are available to the user for this purpose. If, however, the 
user desilres to define the editing format, X$ FRMT procedures must be used (see 3.3.1.S.2). 

3.3.1.S.1. Standard Editing Formats for Dumps 

A number of standard editing formats are available to the user when specifying dump procedures. 
These formats provide the majority of printing formats desired. Table 3-3 lists the standard formats, 
which arie specifiE~d by a single letter enclosed in quotation marks in the dump procedure calls (see 
3.3.1.1 through 3.3.1. 7). Figure 3-1 is an example of printouts of integer and octal dumps in standard 
editing format. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Serle. Executive 
Volume 3 System Processors 

a. Integer Format Dump 

INSTRUCTION: 

X$DUMP B 1 ,32,'1' 

PRINTOUT: 

CALLING ELEMENT NAME. .c 00) RELATIVE LOCATION OF CALL 000011 

PANEL CARRY OFF OVERFLOW OFF 

REGISTERS 

DUMP OF ELEMENT NAME. ., 00) AT MAP ADDRESS 040820 CREATED ON: 

000035 040820 3 8 11 20 37 

000046 040830 521 1034 2059 4108 8205 

000055 040840 131089 282182 524307 1048598 2097173 

000085 040850 33554457 87108890 134217765 288435484 538870941 

b. Octal Format Dump 

INSTRUCTION: 

X$DUMP B1,32,'0' 

PRINTOUT: 

CALLING ELEMENT NAME. ., 00) RELATIVE LOCATION OF CALL 000011 

PANEL CARRY OFF OVERFLOW OFF 

REGISTERS 

UPDATE LEVEL 

20 JUL 75 AT 13:53:29 

70 135 

18398 32783 

4194328 8388831 

1073741854 2147483879 

DUMP OF ELEMENT NAME. ., 00) AT MAP ADDRESS. 040820 CREATED ON: 20 JUL 75 AT 13:53:29 

3-18 
PAGE 

284 

85652 

18777240 

4294987328 

000035 040820 000000000003 000000000008 oooooooooo 13 000000000024 000000000046 ooooooooo 1 08 000000000207 000000000410 

000045 040830 

000055 040840 

000085 040850 

oooooooo 1011 000000002012 000000004013 00000oo 1 00 14 0000000200 15 0000000400 18 00000o 100017 000002000020 

000000400021 00000 1000022 000002000023 000004000024 0000 1 0000026 000020000028 000040000027 000 1 00000030 

000200000031 000400000032 00 1000000033 002000000034 004000000034 010000000038 020000000037 040000000040 

Figure 3-1. Stsndsrd Editing Formst for Integer snd Octsl Dumps, Ssmple Printout 



414431 I SPERRY UNI\lAC 1100 Series Executive I I 3 19 
~~~BER ~ ________ . ______ V_o_l_u_m_e __ 3 __ S_y_s_t_e_m __ P_r_o_c_e_s_s_o_r_s ______________________ ._U_pO_A_TE __ L~_E_L ____ ~_P_AG_E_-____ __ 

Table 3-3. Standard Editing Formats for Dump Printouts

r--'-r Number of Items Number of Number of
Format Definition Per Line Print Positions Decimal

Paramt~ter T Option NO T Per Item Places

io-._-_ Option

A Alphanumeric editing of Fieldata data 8 16 6 -
t-------f--

0 Floating decimal editing of double 2 4 26 18
precision floating point data

1---

E Floating decimal editing of single 4 8 14 8
precision floating point data

F Fixed point decimal editing of single 4 8 14 8
precision floating point data

--
G Fixed point or floating decimal editing 4 8 14 Variable

of single precision floating point data

-------f--

I Decimal integer editing of 36-bit 4 8 14 -
signEtd computer words

--
N Mnemonic editing of 1100 Series 2 4 27 -

instruction words

r--

Q Alphanumeric editing of ASCII data 8 16 4 -

S Octal editing of 1100 Series 2 4 20 -
Instruction - 6 fields per word

_.

3.3.1.8.2. User-·Defined Editing Formats (XFRMT$)

Purpose:

Specifies a nonstandard editing format for use by the diagnostic dump procedure calls as an
alternative to the standard editing formats described in 3.3.1.8.1, or redefinEs the standard editing
formats. New format labels (such as 'U', 'V', or 'W' for example) may be specified, or existing standard
format labels may be redefined.

4144.31
UP~UM8ER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

3-20
PAGE

Format:

SlJ XFRMT$
+ format-specification-word-Iength,'format-Iabel'
'(format - specification),

This linkage may be generated by the procedure call:

X$FRMT format-specification-word-Iength,'format-Iabel'
'(format - specification)'

Parameters:

format-specification­
word-length

'format-label'

'(format-specification)'

Description:

Specifies the number of words comprising the format specification.

Specifies a single letter enclosed in quotation marks. If one of the
following standard editing formats: A, 0, E, F, G, I, N, 0 or S
(see 3.3. 1.B. 1) is referenced, this action is used to redefine the
standard editing formats. To specify a user-defined editing format,
any letter (enclosed in quotes) except A, 0, E, G, I, N, 0, or S may be

. used.

Specifies a string of alphanumeric characters which represent an
encoding of the format to be applied to the information printed. The
string of alphanumeric characters may not contain intervening blanks.
The first nonblank character of the string must be a left parenthesis
(preceded by a quotation mark); the last nonblank character must be
a right parenthesis (followed by a quotation mark).

The format of the string of characters that comprise this parameter is
specified exactly as in FORTRAN V FORMAT statements. For example,
specifying '(1 OF3.3)' indicates that the dump information printed on
one line consists of 10 words of fixed-point decimal data and that
each word is eight characters long with the decimal point at the left
of the third least significant character.

Any standard or user-specified editing format may be redefined; the most recent definition prevails.

Multiple line formats are allowable.

Except for the 'R' conversion code, any format that can be given in a FORTRAN V FORMAT statement
can be specified. See SPERRY UNIVAC 1100 Series FORTRAN V, UP-4060 (current version).

In addition, Nand S may be used as editing codes in format statements for mnemonic and octal
instruction formats, respectively. When N is used as an editing code in a FORTRAN format statement,
at least 26 spaces must be provided for each word edited. When S is used an an editing code, at
least 21 spaces must be provided for each word edited. Note that the 0 standard format and
user-supplied formats are not applicable to changed word dumps.

Also, the'S' and 'N' formats are available which edit each word in SPERRY UNIVAC 1100 Series
mnemonic instruction format.

4144 31 I SPERRY UNIVAC 1100 S Executive I I 3 21
UP~U~~~ ____________ V_O_lu_m __ e_3 __ S~y_s_te_m __ P_r_o_c_e_ss_o_r_I _____________________ ~U_P_DA_T_EL_~_E_L __ ~_P_AG_E_-__ ___

E)(smples:

1 . X$IFRMT 1 , , 0'
, (~60 14) ,

2 . X$IFRMT 2, , F'
. , (10F8.3)'

3. SL.J XFRMT$

+ 1 , 'A'
, ('12A4) ,

1. ThEI standard octal editing format is redefined to print six octal words per line instead of eight.
ThE~ appropriate data is written into the diagnostic file· so that the redefined format is effective
whlEm the diagnostic editor processes the recorded dynamic data.

2. ThEl standard fixed decimal format is redefined to print 10 fixed decimal words instead of eight.
ThEI number of characters per word is changed to eight instead of 14, and the number of decimal
places is three instead of eight.

3. ThEl standard alphanumeric editing format is rEldefined to 12 words per line instead of 16 and
four characters per word instead of six.

3.3.2. Conditional Control Procedures

The dynamic dumps can be controlled by an internal conditional dump switch. When the switch is
turned off by a c()nditional control procedure, a dynamic dump procedure which follows is ignored.
Note that all dump procedures are executed except when preceding conditional dump procedures
cause th,em to be overridden. A number of miscellaneous control procedures are available to the user
in addition to the conditional control procedures.

The available conditional control procedures are:

X$IF (see 3.3.2.1)
X$OR (see 3.3.2.2)
X$AND (see 3.3.2.3)
X$TALY (see 3.3.2.4)

3.3.2.1. Logical IF Control of Dumps (X$IF)

Purpose::

Turns on or off the conditional dump switch depending on the value of the relational expression. Only
a dynamic dump call, which immediately follows an XIF, XAND, or an X$OR call is affected by the
setting olf the conditional dump switch. Such a dump request is not executed if the conditional dump
switch is off.

Format:

X$IIF addr[,index-reg] [,j-desg] 'reI' addr[,index-reg] [j,-desig]

4144.31
UP-NUM8ER

Parameters:

addr

index-reg

j-desig

'reI'

Examples:

1. X$IF
2. X$IF
3. X$I F

SPERRY UNIVAC 1100 Serle. executive
Volume 3 System Processors UPDATE LEVEL

3-22
PAGE

Specifies a main storage location or a control register; indirect
addressing and literals are allowed.

Specifies an index register (X 1 through X 11, AO through A3); index
register incrementation is not allowed.

Specifies any desired partial word.

Specifies the relation between the parameters specified before and
after 'reI'. Allowable codes for 'rei' are as follows:

Code Meaning

'EO' Equal to
'GE' Greater than or equal
'GT Greater than
'LE' Less than or equal
'L T Less than
'NE' Not equal

If the relation between the tested parameters is true, the conditional
dump switch is turned on; if the relation is false, the conditional dump
switch is turned off.

ALPHA ' EQ' TAG
ALPHA,X1,H1 'LT' TAG,X~,H1

ALPHA, ,H1 'NE' TAG, ,H1

1. If the contents of ALPHA equals ('EO') the contents of TAG, the conditional dump switch is turned
on. If the contents of ALPHA does not equal the contents of TAG, the conditional dump switch
is turned off.

2. If the contents of H 1 of ALPHA, as modified by index register X 1, is less than ('L T) the contents
of the H 1 of TAG, as modified by index register X 1, the dump switch is turned on. If the modified
contents of ALPHA is equal to or greater than the modified contents of TAG, the dump switch
is turned off.

3. If the relationship of the contents of the H 1 portions of ALPHA and TAG is not equal ('NE'), the
dump switch is turned on; if the contents of the H 1 portions of ALPHA and TAG are equal, the
dump switch is turned off.

4144.31 I SPERRY UNIVAC 1100 Series Executive 3-23
UP~~~~, ____________ V_o_'_um __ e_3 __ S_v_s_te_m __ P_r_o_c_e_s_so_r_s ____________________ ~U_P_DA_T_EL_~_E_L __ ~_P_AG_E ____ __

3.3.2.2. logicEal OR Control of Dumps (X$OR)

Purpose:

Turns on the conditional dump switch if it is not already on and the current value of the relational
e){pression is true. If the switch is initially on, it will remain on even if the relational expression is
false.

F()rmat:

X$OR addr[,index-reg] [,j-desig] 'reI' addr[,index-reg] [,j-desig]

Parameters:

Same as X$IF procedure (see 3.3.2.1)

Examples:

1. X$OR
2. X$OR

ALPHA 'EO' TAG
ALPHA,X5,H2 'GT' TAG, ,H2

1. In this example, the conditional dump switch is set when the contents of ALPHA equals ('EQ')
the contents of TAG.

2. ThEI conditions for setting the conditional dump switch on are similar to those described in
example 1. The condition being tested is greater than (,GT); to turn the switch on, H2 of ALPHA
as modified by index register X5 must be greater than H2 of TAG.

3.3.2.3. logical AND Control of Dumps (X$AND)

Purpose::

Causes the conditional dump switch to remain on if, and only if, it is already on, and the current value
of the rEllational expression is true.

Format:

X $AND addr[,index-reg] [,j-desig] 'reI' addr[,index-reg] [,j-desig]

Parameters:

Same as X$IF procedure (see 3.3.2.1).

1. X$/"ND ALPHA 'EO' TAG
2. X$/"ND ALPHA, ,T1 'LE' TAG,X10,T1

1. ThE~ conditi()nal dump switch remains on if it is already on and the contents of ALPHA equals
the contents of TAG.

2., ThE~ conditions for the conditional dump switch remaining on are similar to those described in
example 1; the difference is that to remain on, T 1 of ALPHA must be less than or equal to ('LE')
T 1 of TAG as modified by index register X 1 O.

4144.31
UP..,.UMIER

SPERRY UNIVAC 1100 S becutive
Volume 3 System Processors UPOA 1'£ lEVEL

3-24
PAGE

3.3.2.4. Controlling the Conditional Dump Switch (X$TALY)

Purpose:

Allows a dynamic dump procedure that is embedded in a loop to be executed only when conditions
specified by the user are met. The conditional dump switch remains on when these conditions are
met (if it is already on), and is turned off when they are not met.

Format:

X$TALY start,until,every

Parameters:

start

until

every

Description:

Specifies the initial or starting value of the loop.

Specifies the maximum number of times the loop is to be executed.

Specifies a value which indicates the number of times the loop is to
be executed before the conditional dump switch is turned on. For
example, if the user specifies a value of 100, the conditional dump
switch remains on every 100th time through the loop; all subsequent
dynamic dump procedures in the loop are executed.

The X $ TAL Y procedure is used to set the conditional dump switch by testing a counter. The counter
is set to the value of the start parameter the first time the X $ TAL Y procedure is executed. Thereafter,
each time the procedure is entered for execution, the counter is incremented by one following all
tests by the procedure. The tests performed on the counter (represented by the symbol Z) are:

if start ~ (Z) < until; and

if [(Z) - start [yields a zero remainder
every

If the conditional dump switch is already on, it remains on if the tests are successful. If any of the
tests fail, the switch is turned off.

The user should ensure that the conditional dump switch is on when an X$TALY procedure is entered;
otherwise, the counter is not incremented and control is returned to the user program.

Example:

X$TALY 0,4000,100

In this example, a indicates the start of the loop, which is to be executed 4000 times. Every 100th
time through the loop, up to 3999, the conditional dump switch remains on, provided it is on prior
to execution of the X$TALY procedure. All other times the dump switch is turned off. Thus, the user
obtains any specified dumps each 100th time through the loop.

414~~ 31 ,I SPERRY UNIVAC 1100 Series Executive I I 3 25
UP~U~8ER ~, ____________ V __ o_'u_m_e __ 3 __ S_y_st_e_m __ P_ro_c_e_s_s_o_r_s _____________________ ~_U_PO_AT_E_L_N_EL ____ ~_PA_G_E-__ ___

3.3.3. Specific:ation Procedures

A number of procedures in addition to conditional control procedures (see 3.3.2) are available to allow
user control of dumps. These procedures are:

X$BUFR
X$; ON and X $ OFF

. X$;MARK and X$BACK
X$,MESG
X$SIZE

(see 3.3.3.1)
(see 3.3.3.2)
(see 3.3.3.3)
(see 3.3.3.4)
(see 3.3.3.5)

3.3.3. 1. Initializing Buffer (XBUFR$)

PurpOSEt:

InitializEls an area of main storage for use as a buffer by the X$TAPE or X$DRUM procedures (see
3.3.1.4 and 3.3.1.5, respectively).

Format:

SLJ XBUFR$
+ word-count,starting-addr

This linkage may be generated by the procedure call:

X$BUFR starting-addr,word-count

P,BlI'metElrs:

starting·-addr Specifies the starting main storage address of the buffer.

word-count Specifies the number of locations in the buffer to be initialized.

Descrip1tion:

X$BUFFI does not reserve a buffer area in main storage; it only initialzes the area. The buffer must
be defined and initialized prior to executing any X$TAPE or X$DRUM procedure.

For dumps of FASTRAND drum-formatted file, it is recommended that the buffer be some multiple
of 28, tlhe length of a FASTRAND formatted mass storage sector.

ExamplE.:

X$BUFR TDUMP,56

rOUMP is the mClin storage buffer area, 56 word in length, which is initialized for use by an X$TAPE
or X$OnUM proc::edure.

3.3.3.2. Allowing and Ignoring Dump Procedure Calls (X$ON and X$OFF)

Purpose:

Allows ~Dvera" control of the execution of dynamic dump procedure calls.

4144.31
UP-NUMBER

Format 1:

S
TNZ
SN,H2

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

AO,XSTAT$
XSTAT$
AO,XSTAT$

This linkage may be generated by the procedure call:

X$ON

Format 2:

SZ XSTAT$

This linkage may be generated by the procedure call:

X$OFF

Description:

UPDATE LEVEL
3-26

PAGE

The word XSTAT$, which is in the XCOMN$ data area, is initially set to nonzero. If it should become
desirable for all dynamic dump subroutines to return control immediately without processing any
dumps, XSTAT$ may be cleared to zero by either the X$OFF procedure or the SZ instruction. To
return XSTAT$ to its original nonzero status, the X$ON procedure or any equivalent instructions may
be used.

The X$OFF procedure turns off the conditional dump switch until an X$ON procedure is executed.
When the X$OFF procedure is executed, the setting of the conditional dump switch cannot be
changed until the X$ON procedure is encountered. Thus the X$OFF procedure causes dynamic dump
and conditional procedure call to bp. ignored, and the X$ON procedure allows the calls to be executed.

Care must be taken if dynamic dump procedures are used in programs consisting of independent
activities and in I/O completion routines.

A series of dynamic dump procedure calls will not be interrupted by one of the other subprograms.

Examples:

1. X$OFF
2. X$I F
3. X$CORE
4. X$ON
5. X$CORE

ALPHA 'EQ' TAG
ALPHA, 200, . E '

TAG, 150, . I '

The X$OFF procedure indicates that all diagnostic system dump procedures which follow, except the
X$ON procedure, are to be ignored; therefore, the X$IF and X$CORE procedures (line 3) are not
executed. The X$ON procedure indicates that all subsequent diagnostic system dump procedures
are allowed; therefore, the X$CORE procedure (line 5) which follows is executed.

3.3.3.3. Saving and Deleting Dynamic Dumps (XMARK$ and XBACK$)

Purpose:

Marks the points in program execution between which dynamic dumps are saved and then deleted
at the user's discretion. The X$MARK and X$BACK procedures permit a user program under

4144.31
UP-HUMBER Volume 3 System Processors UPDATE LEVEL

3-27
PAGE ~ SPERRY UNIVAC 1100 Series Executive

, ______ --J...-----...L.--_

checkout to include dynamic dump procedures which the user may want to execute only when a
routine does not terminate normally.

Format 1:

SLJ XMARK$

Th~s ins.truction may be generated by the procedure call:

X$MARK

Format 2:

SLJ XBACK$

This instruction may be generated by the procedure call:

X$BACK

Description:

The $MARK and X$BACK procedures behave much as left and right parentheses surrounding
portions of a program which are to be dumped only if termination occurs between them.

X$MARK and X$BACK pairs may be nested to a depth of five. The total number of occurrences of
X$MARK and XSBACK is unrestricted.

Examplns:

X$MARK
X$CORE
X$BACK

ALPHA, 200, , A'

X$MARK saves the current location where the next write is to be made in the diagnostic file (by
X$CORE). X$BACK resets the current location pointer to the value saved by the most recent X$MARK
reference. The result is that all intervening dump information is overwritten by the next dump that
is. taken; that is, the data recorded by X$CORE is deleted.

3.3.3.4. Placing a Message in the Dump (XMESG$)

PurposE~:

Permits the user to place any desirable message into the dynamic dump.

Format:

SLJ XMESG$
+ VIIord-length-of-msg,'A'
'diagnostic--msg'

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

This linkage may be generated by the procedure call:

X$MESG word-Iength-of-msg
'diagnostic-msg'

Parameters:

UPDATE LEVEL
3-28

PAGE

worCl-length-of-msg Specifies a number equal to the number of computer words in the
meRsage (one computer word hold six characters).

'diagnostic·-msg'

'A'

Description:

Any string of Fieldata alphanumeric characters enclosed in quotes and
printed exactly as assembled.

Generated by the procedure call. It is of no significance to the user,
but it must be coded when the instruction form of the format is used.

The X$MESG procedure produces a line on the output listing of up to 120 alphanumeric characters.
The printed line immediately follows the procedure reference.

The X$MESG procedure is executed only when the conditional dump switch is on.

Example:

X$MESG 5
'BEGIN TEST OF DIAGNOSTICS'

The five-word message is printed on the dynamic dump output.

3.3.3.5. Changing Length of Dump File (X$SIZE)

Purpose:

Changes the length of the area of the diagnostic file reserved for dynamic dumps.

Format:

SLJ XSIZE$
+ length

This linkage may be generated by the procedure call:

X$SIZE length

Parameters:

length Specifies the length (in sectors) of the diagnostic file to be reserved
for dynamic dumps. .

414431 I SPERRY UNIVAC 1100 Series Executive I I 3 29
~~~BEA ~ ____________ V __ o_lu_m_e __ 3 __ S_y_s_te_m __ P_r_o_c_e_s_so_r __ s ____________________ ~_U_PD_A_TE_L_~_E_L __ ~~P_AG_E_-____ _ 

Descrip1tion: 

Using this procedure, a user program can dynamically expand or contract the length of the dynamic 
dump portion of the diagnostic file. If this is not used, a system standard value is assumed for the 
length Clf the dynamc dump portion of the file. If this procedure is used, it should be used before 
executing dynamic dumps to ensure enough space for those dumps taken. 

ExamplEI: 

X$:SIZE 2000 

The lenuth of tho dynamic dump portion of the diagnostic file is changed to 2000 sectors. 

3,3.4. Examples of Dynamic Dumping 

The following example indicates the effect of conditional control procedures upon dump procedures. 
Note that if dump procedures are interspersed with conditional control procedures, they are effective 
only if the conditional dump switch is on at the time they are entered. Dump procedures have no 
effect on the setting of the conditional dump switch. 

Assume that a program contains the variables X, Y, and Z (which have values 78, 80, and 88, 
respectively), and the constants A, S, and C (which have values of Fieldata characters A, 180, and 
408' respectively). Also assume that the procedures in the following example are executed 
sequentially, and that they are, the first group of procedures encountered. 



4144.31 
UP-NUMBER 

Example: 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

3-30 
PAGE 

Coding Conditional Dump 
Dump Taken 
Switch 

1. $( 1) 
X$MESG 5 ON 
'BEGIN TEST OF DIAGNOSTIC' 
X$IF X 'EO' A OFF 

2. X$MESG 4 OFF 
'TEST DATA GROUP A' 
X$BUFR DUMPB, 150 . INITIALIZE BUFFER 
X$IF X 'EO' A OFF 
X$OR X 'LT' Z ON 

3. X$CORE TABLEX, 100,'0' ON YES 
4. X$DUMP TABLEY,200,'I','XA' ON YES 
5. X$TAPE FILEA,'O' ON YES 

X$IF Y 'GT' B OFF 
6. X$TAPE FILEB,'O' OFF NO 

X$BUFR ALPHA,200 . INITIALIZE BUFFER 
X$OR Y 'NE' Z ON 

7. X$TAPE FILEC,'O' ON YES 
X$BUFR ALPHA,112 . INITIALIZE BUFFER 

8. X$DRUM FILED,DRDUMP,112,'A' ON 
9. X$FILE BETA,'ON' ON 

10. X$FILE BETA,'OFF' ON 
11. X$CREG 1,12,'0' ON YES 

$(2, . 
DRDUMP + 0 . VALUE SET DYNAMICALLY BY USER 
ALPHA RES 200 
BETA (FILE CONTROL TABLE) 
TABLEY RES 200 
TABLEX RES 100 

DUMPB RES 150 . BUFFER FOR DUMPING FROM TAPE AND DRUM 
FILEA (EXEC I/O PACKET) 
FILEB (EXEC I/O PACKET) 
FILEC (EXEC I/O PACKET) 
FILED (EXEC I/O PACKET) 

Explanation: 

1. The message BEGIN TEST OF DIAGNOSTIC is recorded in the diagnostic file because the 
conditional dump switch is on. 

2. The message TEST DATA GROUP A is not recorded in the diagnostic file because the conditional 
dump switch is off. 

3. Starting with location TABLEX, 100 words of main storage are dumped in the diagnostic file. 
If printed, the standared octal format is presented. 



4144.31 L SPERRY UNIVAC 1100 Series Executive I I 331 
___ U_P~,_UM_B_ER______ __ ____ V_o __ lu_m_e __ 3 __ S_y_s_te_m __ P_r_o_c_e_ss_o __ r_s ____________________ ~_U_PD_A_TE_L_~_E_L __ ~_P_AG_E_-__ __ 

4. Tlhe envir()nment data, control registers X and A, and main storage locations starting with 
TABLEY through TABLEY + 199 are recorded in the diagnostic file. If printed, the environment 
d.ata is printed as to status, control registers are printed always in octal format, and the 200 
words of main storage, as specified by '1', are printd in integer format. Since this dump call does 
not immedliately follow an X$IF, X$AND, or X$OR call, the conditional dump switch does not 
have an effect on it. 

5.. The block of data just prior to the present magnetic tape position and having an internal filename 
of FILEA is.read into buffer DUMPB (initialized in (2) by the X$BUFR procedure), and is then 
re!corded in the diagnostic file. If printed, the standard octal format as specified by '0' is 
presented. 

6. No dump is recorded; the conditional dump switch is turned off. 

7. The magnE~tic tape block, whose internal filename is FILEC, is moved backward one block, and 
then read forward one block. The block of data is read into the main storage location ALPHA, 
that is initialized by the X$BUFR procedure in (6). The data is then recorded in the diagnostic 
file and edited in standard octal format. 

8. Assume that the current contents of DRDUMP has a value of 500. Beginning at relative word 
address 500 of mass storage file FILED, 112 words of data are read into the main storage 
location ALPHA (initialized by the X$BUFR procedure). 

9. The file, whose file control table is at BETA, is conditioned to record all subsequent activity at 
the item level in the diagnostic file. That is, every time a request is made to read an item, the 
it~~m to which the item handler points is recorded in the diagnostic file. 

10. The file control table BETA is conditioned not to record any subsequent activity at the item level. 

11. R~~gisters >( 1 through X 11 and AO are recorded in the diagnostic file and are edited in standard 
octal format for printing. 



414431 I SPERRY UNIVAC 1100 Series Executive I I 4 1 
~~BER ~ ____________ V __ o_lu_m_e __ 3 __ S_y_s_te_m __ P_r_o_c_e_s_so_r __ s ____________________ ~_U_PD_A_TE_L_~_E_L __ ~~P_A_GE_-____ _ 

4. File Utility Routines (FURPUR) 

4 .. 1. INTRODUCTION 

In addition to the Executive control statements, there is a set of control statements that call for the 
file utility routines (FURPUR). When the Executive encounters a FURPUR control statement, it loads 
the FURPUR processor. FURPUR continues to process control statements until signaled by the 
Executive that the next statement is not a FURPUR control statement. 

4. 1. 1. Common Information 

The operand fields may contain a filename (see Volume 2-2.6.1), an element name (see Volume 
2--2.6.4), or a parameter value, depending on the control statement and its use. 

If the filEmame in any parameter is identical to that specified in the immediately preceding parameter, 
coding a period in the parameter indicates to the FURPUR processor that the same filename is 
intended. Omitting the filename completely, including the period, indicates to the FURPUR processor 
that TPIF$ is intended (only valid if the parameter normally specifies a file that resides on 
sector-formatted mass storage). 

As with most other system processors, the FURPUR processor automatically assigns any catalogued 
file that was not assigned when the FURPUR control statement is encountered. In many cases, the 
FlJRPUR processor requires exclusive use of a file, and it places user files in the exclusive-use state 
as necessary to carry out the specified operation. After use, the FURPUR processor automatically 
returns all files to the assigned status the file had except when the function of the FURPUR control 
statement was to alter the file status. Temporary files, when specified, must have been assigned by 
the user. 

Table 4--1 summarizes the name and function of each FURPUR control statement. 



4144.31 
UP-NUMBER 

Control 
Statements 

@CHG 

@CLOSE 

@COPIN 

@COPOUT 

@COPY 

@CYCLE 

@DELETE 

@ENABLE 

@ERS 

@FIND 

@MARK 

@MOVE 

@PACK 

@PCH 

@PREP 

@PRT 

@REWIND 

SPERRY UNIVAC 1100 Serlel executive 
Volume 3 System Processors 

Table 4-1. Summary of FURPUR Control Statements 

Description 

I UPDATE l£VEL 

Changes element name, version name, read key, write key, and mode of a file. (See 4.2.15.) 

Writes two hardware EOF marks on a magnetic tape file and rewinds the tape. (See 4.2.10.) 

Copies elements from an element fila located on magnetic tape into a program file on 

sector-formatted mass storage. (See 4.2.2.) 

I 4-2 
~AGE 

Copies a program file, or selected elements from a program file, located on sector-formatted mass 

storage onto a magnetic tape file in element file format. (See 4.2.3.) 

Copies a file or element from one file to another. (See 4.2.1.) 

Sets the maximum range of absolute F-cycle numbers to be retained for specified files which are 

listed in the master file directory or sets the maximum number of element cycles to be retained for 

the specified symbolic element. (See 4.2.16.) 

Drops catalogued files or marks elements in a program file as deleted. (See 4.2.7.) 

Clears the disable flags for catalogued files. (See 4.2.17.) 

Returns to the system all sector-formatted mass storage granules allocated to a file. (See 4.2.6.) 

Locates an element in a magnetic tape file (file must be in element file format) and positions the 

file before the element's label block. (See 4.2.13.) 

Writes two hardware EOF marks on a magnetic tape file and positions the tape between the EOF 

marks. (See 4.2.9.) 

Moves a magnetic tape file forward or backward over a specified number of EOF marks. 

(See 4.2.4.) 

Rewrites an entire program file, removing specified types of elements (depending on the options 

specified) and all elements marked as deleted. (See 4.2.14.) 

Punches program file elements into SO-column cards. (See 4.2.12.) 

Creates an entry point table from the preambles of the nondeleted relocatable elements of a 

program file. (See 4.2.11.) 

Provides a listing of the master file directory items for catalogued files, information regarding 

temporary files, the table of contents of a program file, or the text of symbolic element (see 4.2.5). 

Listings of absolute or relocatable elements may be obtained using the LIST processor (see Volume 

4-Section 5). 

Rewinds magnetic tape files back to the load point of the first reel. (See 4.2.S.) 



4144.31 
UP~UM8ER Volume 3 System Processors UPOATE LEVEL 

4-3 
PAGE ~ SPERRY UNIVAC 1100 Seri .. executive 

,-------'------'---

In most instanC1es, the meanings of options used in FURPUR control statements vary with the 
s~B1tement. The meanings, however, of the following options are the same for all FURPUR control 
statements: 

Option 

c: 

Description 

Process absolute elements 

100 not exit through ERR. if an error il encountered. The FURPUR processor would go on to process 

Ilhe next command or parameter field if more than two parameter fields are permitted as in the case 

of the @DELETE,C control Itatement. The C option can always be used, even when the discussion of 

the options specifies 'no options'. This option is assumed for demand usage. 

01 Process omnibus elements 

R Process relocatable elements 

5 I;)roc'lss symbolic elements 

The FUAPUR control statements are device dependent as well as file-type dependent. Program files 
exist onlly on sector-formatted mass storage, and element files exist only on magnetic tape. Thus, 
the statetment, "the @ PCH control statement is used to punch program file elements into SO-column 
cards" nlecessarily implies a mass-storage-to-card transfer. If the program file has been copied onto 
magnetic tape, the Ceil PCH control statement cannot be used to punch elements into cards. The 
program file elements must be returned to sector-formatted mass storage prior to the attempt to 
execute the (g1~ PCH control statement. 

4.1.2. Simultaneous Use of Files 

The FURPUR processor, in common with other system processors, such as the Collector, can directly 
access catalogued program files, even though they have not been assigned to the user's run. The 
mechanism which the FURPUR processor and the other processors use is the same; that is, a dynamic 
(0) ASG (see Volume 2-3.7.1), with the appropriate options, is done using a CSF$ request (see Volume 
2-4.1 O.l. 1). These processors return each catalogued file to its original assignment status, using a 
dynamic (i1~ FREE control statement (see Volume 2-3.7.4) with the appropriate options. 

FURPUR, like other processors uses the X option (execlusive use) before any file update operation. 
This is done to make certain that no other runs currently in the system will add or delete elements, 
or otherwise tamper with the file, while the processor is attempting to carry out its updating function. 

If a dynamic @-'ASG,AX is attempted, from a batch-mode run and another run already has the 
requested program file assigned, the CSF$ request is held until the file is available. If the user wishes 
to avoid this condition he should assign the file with AXZ options prior to the FURPUR call. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

4. 1.3. Multireel Files 

UPDATE LEVEL 

The FURPUR processor automatically generates and checks for end-of-reel sentinels. 

4-4 
PAGE 

Commands that write on tape, @COPOUT, @COPV, @MARK, generate an end-of-reel sentinel when 
the hardware returns an end-of-tape status. TSWAP$ is used to mount the next reel of the file or 
a blank if none was specified. The end-of-reel sentinel has the form: EOF mark, end-of-reel (14 
words with 054 in S 1 of the first word), EOF mark, EOF mark. 

Commands that read tape, @COPIN, @COPV, @FIND, @MOVE, check the block following each EOF 
mark for the end-of-reel sentinel. If it is end-of-reel, TSWAP$ is used to allow processing to continue 
on the next reel. If it is not end-of-reel, the tape is positioned after the EOF mark. 

@MOVE and @FIND are restricted with multireel files in that they have no knowledge of reels 
preceding the one presently in use. They will, however, continue on succeeding reels. @ REWIND 
returns the first reel of the file to the user when it returns control. 

4.1.4. Basic File Formats 

Figure 4-1 illustrates the relationships of files to each other. The exact formats have been simplified 
for clarity. The control statements illustrated are control statements that change the format of the 
files. 



BASiC FORMAiS RECOGNiZED BY FURPUR 

~ 
(ED processor) 

Makes an element into 
an SDF file. ma .. storage 

to mass storage only. 

SDF FILE (Tape or Mass Stroage) 
Sequential File - Symbolic only 

05001 

*SDFF* 

~ 
f-

~ 

~ 

Initial Control Word 
(See 11.2.3.1.) 

~ Each group of words 
~ is a data image. 

An SDF file would typically 
be a runstream as created 
by the DATA processor. 

PROGRAM FILE (Mass Storage) 
Random File 

;; 

* P Table of Contents (TOC) Program file elements 
usually originate from 
processors (MASM. 

F Points to location of specific elements 
• 
* 

Element 

Element 

I 
I 
I Element 

I Element 

I I Element '--__ --'I I Element I 

I I Element 

ED. FTN. etc.) or from the 
@COPY.I control statement. 

ELEMENTS 

Element I I Element 

'------'I~ T_ 

I~ 
(a) Symbolic (SDF) 
(bl Relocatable 
(c) Absolute 

/// 
@COPVI / 

Inserts an SDF file 
into a program file 

as an element. 

Converts element file 
to program file format. 

The main purpose of an 
element file is to save a 
program file on tape 
future use. 

for 

! 
ELEMENTS / / 

Types: ~~ 
(a) Symbolic (SDF) ~ 
(bl Relocatable ~ 
(c) Absolute 
(d) Omnibus -----., 

.*EF*. 

@COPOUT 
Converts p.·ogram file 
to element file format. 

ELEMENT FILE (Tape Onlyt 
Sequential File (No TOC) 

(d) Omnibus 

TAPE FILE - - - - - - -,-------, 
File 1 of this 

tape 

0 

An element file may 
be one of many files 

n a tape file. I J---------l~ EOF mark 
File 2 of this 

I 
I 

II 

I 

I 
I 

I 

I 
I 

I 

I tape 
I----------l~ EOF mark 

~--------I~ EOF mark 
File n of this 

tape 

EOT Two EOF marks­
Normally indicates 
end of writing on 
this tape (EOn. 

Figure 4-1. FURPUR Control Statements Used to Alter File Formats 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE lEVEL 

4-6 
PAGE 

4.2. FURPUR CONTROL STATEMENTS 

Paragraphs 4.2.1 through 4.2.17 describe the various FURPUR control statements. The most 
frequently used control statements are presented first and the infrequently used control statements 
are presented last. 

4.2'.1. File Copying (@COPV) 

Purpose: 

Copies a fife or element to another file. 

All parameters of the @COPY control statement are optional. 

Format: 

@label:COPY,options name-1,name-2,no.-of-files 

Parameters: 

options 

name-1 

name-2 

nbr-of-files 

Description: 

See Table 4-2 for file options and Table 4-3 for element options. See 
4.1.1 for additional information on the A, C, 0, R, and S options. 

Specifies the input file or element to be copied. 

Specifies the output file into which the input file or element is to be 
copied. 

Specifies the number of files to copy; if omitted, one is assumed. 

When used for tape-to-tape copying of entire files, it specifies the 
number of input files to copy onto the output tape. When an attempt 
is made to copy an empty file (two hardware EOFs), the copy operation 
is immediately terminated regardless of the contents of the 
nbr-of-files parameter. The input tape remains positioned between 
the two EOF marks. The number of blocks in each file copied and the 
number of files copied are indicated in the output listing. 

When used in conjunction with the B option it specifies the number 
of 1100 Series FORTRAN files to copy from one file to another. The 
number of files copied is indicated in the output listing. 

See Volume 2-2.6.1 for additional information on specifying filenames. 

When a procedure element is copied the procedure name entries are automatically added to the 
output file's procedure name table. If a relocatable element is copied, the output file's entry point 
table is destroyed and the @PREP control statement (see 4.2.11) must be used to recreate it. 



4144.31 

UP~UM8EA ~ SPERRY UNIVAC 1100 Series Executive I I 4 7 
Volume 3 System Processors UPOATE lEVEL , GE -

-------------------------~----~~---

Tsble 4-2. @COPY Control Ststem6nt. Options Filensmes Specified 

Option Description 
Character 

No opti1on malls-storage-t~mass-storage copying - Overwrite one mass storage file (name-2) with the contents of 

Specifil&d another mass storage file (name-1). without regard to the file's format. 

A.O.R.S 

B 

Tape-t~tape copying - Copies one or more files (depending on no.-of-files parameter) from the input tape 

to the output tape without regard to the file's format. No hardware EOF marks are written (see M option). 

Copy the elements of the type specified from one program file and add them to another. Both program 

files must be located on sector-formatted mass storage. Only non-deleted elements are copied. 

All non-deleted elements of the type specified by the selected options are copied into the output file. Any 

combination of A. 0, R. and S can be used. When the S option is specified. all element cycles are copied. 

Used with 1100 Series FORTRAN-formatted data files only. Copy the number-of-files 

(FOfnRAN)-specified from the input file to the output file. The input and output files cannot both be on 

mass storage or both be tape files. 

WhIm the input file is on mass storage, each software EOF encountered designates the end of a FORTRAN 

file, and is followed by a hardware EOF when written on tape. 

Whun the input file is on tape, each hardware EOF encountered designates the end of a FORTRAN file, and 

is not maintained when written on mass storage. 

F Copy the contents of one file into another file. Program and element files must not be copied using this 

option. The input file must be in SOF. Reading of the input file is terminated by the SDF EOF mark. Block 

size~5 for tape files must be 224 words. When the output file is a magnetic tape file. two hardware EOF 

marks are writte.l following the file and the tape is positioned between the two EOF marks. 

G The G option provides an efficient method of saving and recreating sector-formatted files. Since track size 

blocks of data are transferred on a @COPV.G operation without regard to format of th~ conte •. ts. the 

transfer is done relatively quickly and the file's contents are not changed. See 4.3 for format. 

mass-storage-t~tape copying - The M option may be used to write two EOF marks and position the tape 

between them after a @COPV,GM operation. Each allocated track of the file. beginning with relative track 

0, is written to tape in a 1794 word block. Each 1792 word track is prefixed with two words containing 

the relative track address, block sequence number and checksum. The @COPV operation is terminated after 

the highest ~rack written in the file has been written to tape. The first block in the output file is a 28 word 

label block that contains the file format indicator (COPVG), checksum flag, filename. qualifier, f-cycle, 

subnystem. unit, highest track written for mass storage, and time and date of the @COPV operations. 

Tapl&-t~mass-storage copying - The first two words of each tape block provide the track address into 

whic:h the block (minus the first two words) is to be written. checksum and block sequence data. If the 

checksum was present. it is validated. Copying continues until an EOF is encountered. If the tape was 

created with file information saved in the label, the information will be displayed as follows: 

QUALIFIER*FILENAME (f-cycle) COPIED ON MM/DDIYV AT HH:MM:SS 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

Table 4-2. @COPY Control Statement, Options Filenames Specified (continued) 

4-8 
PAGE 

Option Description 
Character 

I U8ed to add an SDF file to a program file as a symbolic element. 

nama-1 - Specifies the input file in SDF. 

nama-2 - Specifies the output file and element name. 

The SDF file being copied is entereod into the program file (located on sector-formatted mass storage) as 

a symbolic element with an element cycle of O. Reading of the input file (which may be either tape or 

sector-formatted mass storage) is terminated by an SDF EOF image. An element created by @COPY,I will 

retain the image control words (see Volume 2-2.1.4, 2.2.1.2) of the SDF file from which it was created. 

When the new element is referenced, S3, S4, S5, S6 in the data image control words, may be treated as 

cycle information by many system processors. 

M The option can be specified only when the output file is a magnetic tape file. 

mass-storage-to-tape copying - Used with the G option to copy a FASTRAND drum-formatted mass 

storage file to magnetic tape. Two hardware EOF marks are written on the tape following the file copied, 

and the tape is positioned between the two EOF marks. (Also applies to no option case). 

Tape-to-tape copying - Used without other options or with the N option for tape-to-tape copying of one 

or more files (depending on no.-of-files parameter). If more than one file is being copied, a hardware EOF 

mark is written on the tape following each file copied except the last, where two hardware EOF marks are 

written and the tape is positioned between the two. 

N Copy a magnetic tape file containing an abnormal frame count to another magnetic tape file or to a 

sector-formatted mass storage file. When the output. file is tape, the M option may be used along with 

the N option to write hardware EOF marks. 

P Used to copy all nondeleted elements from one program file and add them to another. Both program files 

must be located on sector-formatted mass storage. Can be used in conjunction with the A, 0, R, or 5 

options. 

V Co..,.,.' one file into another file. The input and output file must not both be on magnetic tape or 

sector-formatted mass storage. 

mass-storage-to-tape copying - Variable block size is assumed. The first word of the block (containing 

the block size) is stripped from the block before it is written into the tape file. 

Tape-to-mass-storage copying - A word containing the block size is prefixed to the block before it is 

written on sector-formatted mass storage. The input tape file must be terminated by a hardware EOF mark. 

A copy to or from sector-formatted mass storage always begins in sector 0 and each block starts in a new 

sector. If the block size is not divisible by 28, the excess words of the last sector contain random data. 

When used in conjunction with the A, 0, P, R, and S options, see Table 4-3. 



4144.31 I SPERRY UNIVAC 1100 Series Executive 4-9 
~~~, _______________ V_o_l_u_m_e ___ 3 __ S_y_s_t_e_m __ p_r_o_c_e_s_so __ rs _____________________ ~L-UP_D_AT_E_L_EV_E_L ____ LP_A~G~E~ ____ _ 

Table 4-3. @COPY Control Statement, Options Element Names Specified

Description
Character

-O-P-t-ic~n

---~
A,O,R,S I Copy the specified element in the input program file and add it to the output program file. The options

represent the types of elements to be copied (one or more is needed). The element name can be changed

by renaming it in name-2. Both input and output files must be on sector-formatted mass storage. When

a symbolic element is being copied, only the element cycle specified or implied in name-1 is transferred

to the output file, creating cycle 0 of the element.

V When used with the A, 0, P, R, and S options, copy the specified types of elements in the input program

file with the same version name as specified in name-1 to the output program file specified in name-2.

When the version name is omitted from name-1, only those elements having a blank version name are

copied into the output file. When a version name is given in name-2, it replaces the original version name.

When the version name is omitted from name-2, the elements written into the output file retain the version

names they had in the input file.

The version mask capability is available when the V option is specified (see Table 4-7).

Before doing any copy operation from tape, it may be necessary to execute a @ MOVE control
statement (see 4.2.4) to position the tape beyond some EOF mark. No @COPV operation will move
backward or forward over an EOF mark prior to the' start of the copy.

Examples:

In the foillowing examples, tape filenames start with a T, and sector-formatted mass storage filenames
start with an F.

1. @COPV
2. @COPV,M
3. @COPV,GM
4. @COPV, P
5. @COPV, I
6. @COPV,RS
7. @COPV,RS
8. @COPV,NM
9. @COPV,F
10. @COPV,B
1 1. @COPV, RS
12. @COPV,O
13. @COPV, AOV
14. @COPV,ARSV
15. @COPV,SRV

FLAP4. ,FLAP5.
TRAP3. , TRAP6. , 9
FILLUP. ,TANK.
FLVBV. , FL I GHT.
FLIP. ,FORK.UPT3/INOUT
FOR6. , FOR9
FIRM.C,FIREUP.A
TAP1. ,TAP2.
F 1 . , F2.
FORT. ,TAP2.,3
F I L ~ . , F I L2 .
F 1 . , F2.
FI./VERS,FO.
FILE1./V***********,FILE2./NEWVERSION
F.ELT/VERS,FF.ELTNEW/VERSNEW

1. Th.~ contents of sector-formatted mass storage files FLAP4 is copied into sector-formatted mass
storage file FLAP5 over-writing any previous contents of the FLAP5 file.

2. Th.~ nine filE~s which form magnetic tape file TRAP3 are copied into magnetic tape file TRAP6.
Each file in output file TRAP6 is separated by EOF marks as directed by the M option. The last
file copied into the output file is followed by two EOF marks and the output file is positioned
be1tween th~9 two final EOF marks.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

4-10
PAGE

3. Copy the contents of sector-formatted mass storage file FILLUP into magnetic tape file TANK.
Two EOF marks are written at the end of the output file (TANK) and the tape i~ positioned
between the two [OF marks (M option). Since file TANK is in @COPY,G format, the @FIND and
@COPIN control statements cannot be used to access the file; however, @COPY,G format makes
more economical use of time and space. The entire file, as it was before this operation was
initiated, including all tables of contents and deleted elements, is reproduced when the file is
returned to sector-formatted mass storage using a @COPY,G control statement. Do not attempt

-to merge two program files, each of which were saved on tape using the @COPY,GM control
statement because the second file would overlay the first.

4. The nondeleted elements of program file FLYBY are copied into program file FLIGHT.

5. The contents of input file FLIP, which is in SOF, is copied into output file FORK in program file
format. Input file FLIP is entered in FORK as an element having UPT3 as its element name and
INOUT as its version name. It is set at element cycle O.

6. The nondeleted relocatable and symbolic elements (R and S options) located in program file
FOR6 are copied into program file FOR9.

7. The nondeleted relocatable and symbolic elements with element name C (version name of
spaces) in program file FIRM are copied into program file FIREUP as elements with element name
A (version name of spaces).

8. One file of magnetic tape file TAP 1 is copied onto magnetic tape TAP2. Two EOF marks are
written on TAP2 and the tape is positioned between the two. File TAP 1 may contain abnormal
frame counts.

9. The contents of file F 1 is copied onto file F2. File F 1 must be an SDF file.

10. The first three FORTRAN files in the file FORT are copied onto tape file TAP2. File FORT must
contain at least three FORTRAN files. A hardware EOF mark will follow each of the three files
written on TAP2.

11. The nondeleted symbolic and relocatable elements of program file FIL 1 are copied into program
file FIL2.

12. The nondeleted omnibus elements in program file F 1 are copied into program file F2.

13. All nondeleted absolute and omnibus elements in program file F 1 having a version namp. of VERS
are copied into program file FO. Element and version names remain unchanged.

14. All nondeleted absolute, relocatable, and symbolic elements in program file FILE 1 having a
version name beginning with V are copied into program file FILE2 and given a version name
of NEWVERSION.

15. The hondeleted relocatable and symbolic elements named EL T in program file F having VERS
as a version name are copied into program file FF and given an element name of EL TNEW and
version name of VERSNEW.

4.2.2. Copying from Tape to Program Files (@COPIN)

Purpose:

Copies one or more elements from an element file located on magnetic tape into a program file
located on sector-formatted mass storage.

4144.31
UP-NUMBER L SPERRY UNIVAC 1100 Series Executive I I

_______ V_o_'u __ m_e __ 3 __ S_v_s_t_e_m __ P_r_o_c_e_s_s-o.-rs------------__________ ~_u~ __ A_n_UNl ___ L ____ ~_PA_G_:_-_1_1 __ _

All parameters of the @COPIN control statement are optional.

Format::

@label:COPIN,options name-1,name-2

options

name-11

name-2

Description:

See Table 4-4 for file options and Table 4-5 for element options. See
4.1.1 for additional information on the A, C, 0, A, and S options.

Specifies the input element file or input element to be copied.

Specifies the output program file or output program file and element
name. If name-1 is an element name and name-2 is a filename, the
element will retain its name in the new file.

See Volume 2-2.6.1 for additional information on specifying file and element names.

Procedure names are saved, but the entry points were discarded when the program file was converted
to an ellement file with a @COPOUT control statement (see 4.2.3). When a relocatable element is
added to a program file, any entry point table that may have existed for the file prior to the execution
of the @COPIN control statement is destroyed. The @PAEP control statement (see 4.2.11) may be
used to recreate the entry point table. If a tape error occurs, only those elements transferred before
the erro!" occurred are entered in the program file's table of contents.

Table 4-4. @COPIN Control Statement, Options Filenames Only Specified

Option Description
Character

No option Copies elements from the input magnetic tape file (in element file format) into the program file located on

specified sector-formatted mass storage. The tape file must be positioned at the label block of the first element being

copied (use @FIND control statement - see 4.2.13) and continues until a hardware EOF mark is

encountered. The element retain the element name they had in the element file.

A.O.Ft,S Same operation as if no options were specified except that the A. 0, R, and S options can be used to

designate the type of elements to be copied. Any combination of A, 0, R, and S can be used. All elements

of the types specified are transferred. The elements retain the names they had in the element file.

V Same as for elements (see Table 4-5).

4144.31
UP-NUMBEA

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

Table 4-5. @COPIN Control Statement, Options Element Names Specified

Option Description
Character

4-12
PAGE

A,O,R,S One element is copied and inserted into the output program file. The element name remains the same

unless renamed in name-2.

V Used to copy elements having the same version name from an element file on magnetic tape into a program

file on sector-formatted mass storage. The input file must be positioned at the label block of the first

element to be copied and copying continues until a hardware EOF mark is encountered.

name-1 - Specifies an input file, or input file and element version name.

name-2 - Specifies an output file, or output file and elerrent version name.

When the version name is omitted from name-1, only those elements having a blank version name are

copied into the output file. When the version is omitted from name-2, the elements retain the version

names they had in the input file.

The V option may be used with the A, 0, A, and 5 options to select particular types of elements within

version names for copying.

The version mask capability is available when the V option is specified on the @COPIN control statement

(see Table 4-7).

Examples:

1. @COPIN
2. @COP IN, R
3. @COPIN,RV
4. @COPIN,SV
5. @COPIN,R
6. @COPIN,O
7. @COPIN,SV
8. @COPIN,AV

HOLDPROG. ,PROGRAM.
TEMP. EL TA, PF 1 .
A./B,C.
A. ,C.
PET.ELT3,REPET.VERSG.
T. , F.
TAPE. IV***********, FAST.
TAP.OLDABS/VERS********,FAS.

1. Element file HOLDPROG located on magnetic tape is copied and re-formatted into program file
format and added to program file PROGRAM on sector-formatted mass storage.

2. Relocatable element EL TA in element file TEMP is copied into program file PF 1. The entry point
table of file PF 1 is not updated (a @PREP control statement is needed to update the entry point
table - see 4.2.11).

3. All relocatable elements in element file A with the version name B are copied into program file C.
They retain the version name B in the program file.

4. All symbolic elements in element file A with a blank version name are copied into program file C.
These elements added to the program file have a blank version name.

5. The relocatable element in element file PET with the element name EL T3 and a blank version
name is copied into program file REPEl' and given the element name VERSG with a blank version
name.

414431 L SPERRY UNIVAC 1100 Series Executive I I
~U~BER ______ ______ V_o_l_u_m_e __ 3 __ S_y_s_t_e_m __ P_r_o_c_e_s_s_o._r_s ______________________ ~_U_PD_A_T_E_LE_V_EL ____ ~_P_AG_:_-_1_3 ___ ,

6. Alii omnibus elements in element file T are copied into program file F.

']. Alii symbolic elements in element file TAPE having a version name beginning with V are copied
into program file FAST.

8. Alii absolute elements named OLDABS having a version name beginning with VERS are copied
into program file FAS. The element and version names remain the same.

4.2.3. Copying Program Files to Tape (@COPOUT)

Purpose:

Copies a program file, or selected elements from a program file, located on sector-formatted mass
storagE~ into a rnagnetic tape file in element file format.

All parameters of the @COPOUT control statement are optional except name-2.

f:ormat:

@label:COPOUT,options name-1,name-2

Paramoters:

options

name-1

name-:2

See Table 4-6 for file options and Table 4-7 for element options. See
4.1.1 for additional information on the A, C, 0, R, and S options.

Specifies the input program file or element to be copied.

Specifies the output element file, or output element file and element
name.

Table 4-6. @COPOUT Control Statement, Filenames Specified

Option Description
Character

No option All nondeleted elements are written onto the magnetic tape output file in element file format. Two EOF

speciified marks are written at the end of the file and the tape is backspaced one EOF mark. Elements retain the

element name they had in the program file.

A.O.R.S All nondeleted elements of the types specified by the options are written onto the magnetic tape output

file in element file format. The elements retain the names they had in the program file. Any combination

of: A. O. R. and S can be used. No EOF mark is written.

V Same as for elements (see Table 4-7).

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

Table 4-7. @COPOUT Control Statement, Options Element Names Specified

4-14
PAGE

Option Description
Character

A,O,R,S All specified element types for the element names given are written into the output magnetic tape file in

the element file format. Only nondeleted elements are transferred. If the name-2 element name is different

than the name-1 element name, all elements copied have the new name. One or more options must be

specified. No EOF mark is written.

V All non deleted elements, .. elected by version name and type. are written onto the magnetic tape output

file in element file format. The V option may be used in combination with the A, O. R. and S options. When

it is used alone. all element types are considered.

Description:

name-1 - Specifies an input file, or an input file and element version name. The file must be on

sector-formatted mass storage and be in program file format.

I name-2 - Specifies an output file, or an output file and element version name.

If the version name is omitted from name-1, only those elements with a blank version name are considered

for copying into the output file.

When a version name is given in name-2. it replaces the original version name. When the version name

is omitted from name-2. the elements written into the output file retain the names they had in the input

file.

Version Mask - An * in the version name in name-1 causes the character in the corresponding position

in the version names of the elements in the input file to be ignored. For example:

TAB.I**D*********

in name-1 would write all nondeleted elements in file TAB with a D as the third character in their version

name into the output filA. The V option must be speci#ied when the version mask is used. No EOF mark

is written.

See 4.1.1 for additional information on specifying filenames.

Procedure name entries are saved but relocatable entry points are discarded. Tape files must be in
element file format in order to use the @FIND and @COPIN control statements (see 4.2.13 and 4.2.2,
respectively).

If either the A, 0, R, 5, or V option is specified on the @COPOUT control statement, an EOF mark
is not written automatically and a final @MARK control statement (see 4.2.9) may, therefore, be
necessary.

4144.31
UP-NUMBER

I SPERRY UNIVAC 1100 Series Executive I I
~ _____________ V_o_'u_m __ e_3 __ S_y_s_t_e_m __ P_ro_c_e_s_s_o_r_s ____________________ ~U_P_OA_T_E_LE_V_EL ____ LP_A_G:_-_l_5 __ _

1. @COPOUT
2. @COPOUT,ARS
3. @COPOUT,R
4 .. @COPOUT,S
5. @COPOUT,SV
6.' @COPOUT, AV
7 . @COPOUT , V

PROGRAM. ,HOLDPROG.
C. ,0.
A. ,B.
A.B,C.D
A./B,C.
A. ,C.
A.I*B**********,C.

1. The contents of program file PROGRAM located on sector-formatted mass storage is copied into
magnetic tape file HOLDPROG and reformatted as an element file. Since no options are
spl9cified, two EOF marks are written following the output file, and the tape is positioned
between the EOF marks.

2. The nondeleted absolute, symbolic, and relocatable elements of program file C located on
sector-formatted mass storage are copied into magnetic tape file 0 and reformatted as an
ele!ment filEI. No EOF marks are written following the file (option having been specified).

3. All nondeleted relocatable elements in program file A located on sector-formatted mass storage
am copied into magnetic tape file B and reformatted as an element file. No EOF marks are
written following the file.

4. Symbolic element B in program file A is copied into magnetic tape file C in element file format
and given Ellement name D.

5. All nondeleted symbolic elements in program file A with a version name of B are copied into
magnetic tape file C and retain the version name B. Fiie C is in element file format.

6. All nondeleted abs01ute elements in program file A with a blank version name are copied into
magnetic tape file C. File C is in element file format.

7. All nondeleted elements in program file A with a version name containing a B as the second
character are copied to magnetic tape file C. The version names are unchanged.

4.2.4. Positioning Tape Files (@MOVE)

Purpose!:

Moves a magnetic tape file forward or backward over a specified number of EOF marks.

All parameters in the @ MOVE control statement are optional.

Format:

@ label:MOVE,option filename,n

Parame1ters:

option The only valid option is B. If specified, tape movement is backward;
if omitted, tape movement is forward.

Specifies the name of the tape file.

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

4-16
PAGE

n Specifies the number of EOF marks to be skipped. If not specified, 1
will be assumed.

Description:

Tape movement in the forward direction leaves the tape positioned at the start of the file on a multifile
reel.

Care must be exercised when moving tape in the backward direction. Assume that tape file BOB is
positioned at file 6:

tape
file

BOB

) ,

)

E
0
F

desired
tape position

,:"

E
file 1 0 filo 2

F
/1'

position A

E
0
F

E E
file 3 0 file 4 0

F F

current
tape position

,l/

E
file 5 0 file 6

F

E
0 file 7
F

To position the tape to the start of file 2, the following sequence must be executed:

@MOVE,B BOB,5

@MOVE BOB,1

Step 1 moves the tape to position A, and step 2 moves the tape to the start of file 2.

) ,

~

If a @MOVE,B control statement for a multireel tape file encounters the load point of the file it is
currently on, a diagnostic message is given and the ERR$ exit is taken.

4.2.5. Listing Files, Elements, and Master File Directory (@PRT)

Purpose:

Obtains a listing of the text of a symbolic element, the table of contents of a program file, information
regarding temporary files, or the master file directory items of catalogued files. The control statement
does not list absolute or relocatable elements, as this may be done by the LIST processor (see
Volume 4 - Section 5).

All parameters in the @ PRT control statement are optional.

Format:

@label:PRT,options name-l,name-2 ... ,name-n

Parameters:

options See Table 4-8 for options applicable to files, project-ids, and account
numbers and Table 4-9 for element options.

4144 31 I SPERRY UNIVAC 1100 Series Executive I I
~~BER ~ ______________ V __ o_lu_rn __ e __ 3 __ S_y_s_t_e_m __ P_r_o_c_e_s_s_o_r._s ______________________ ~_U_P_DA_T_E_L_EV_E_L ____ L_PA_G_:_-_1_7 __ __

names Specifies any of the following depending on options indicated:

the name of a catalogued file in any format
the name of a program file
the name of a symbolic element
the name of a temporary file
an account number
a project-id
removable disk pack-id/disk equipment type
the number of elements to print

Table 4-8. @PRT Control Options

OPti(~
Chara~ __ . ____________ ~

Description

No option When no name fields are specified and the requesting run is privileged, the entire master file directory is

speciflied displayed alphanumerically by project-id. When the requesting run is nonprivileged, all public files in the

master file directory are listed, followed by all files catalogued with the requesting run's project-id.

(Read/write keys are not displayed.) The items are sorted first by project-id, then by account number, and

then by qualifier and filename. If name fields are specified, elements must be indicated (see Table 4-9).

A,Q,R.S When used in conjunction with the T option, list the table of contents entry for the type(s) of elements

specified by the options. The A, 0, R. S options may be used with the B, L, and V options, but must be

accompanied by the T option.

B When used in conjunction with the T option, list the table of contents in descending sequence order; i.e.,

list the most recently inserted elements first. The B option may be used with any combination of A, 0, R.
S, nnd V options, but must be accompanied by the T option. Only two names are allowed if the B option

is used, and all other names are ignored. The number of elements printed is limited to the number given

as name-2. There is no number limit if name-2 is not given.

D Display the names of all catalogued files currently residing wholly or partially on the named removable disk

pack(s). When the requesting run is nonprivileged, all read/write keys and project-ids not matching the

run's project-id are replaced by slashes. The files are sorted alphanumerically by project-id, unless the

N option is also specified, in which case the files are sorted alphanumerically by account number.

Completion of a @PRT,D will require the pack(s) to be mounted.

Thf3 NAME parameter must specify a pack-id and the disk equipment separated by a slash e.g.,

PACKID/F 14.

F Display the information from the master file directory for each catalogued file specified.

Display the information pertinent to each temporary file specified.

4144.31
UP-NUMBER

Option
Character

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 4-8. @PRT Control Options (continued)

Description

UPDATE LEVEL I
4-18

PAGE

Display the names of all catalogued and temporary files currently assigned to the run. (The files

SYS$*LlB$, SYS$*RLlB$ and DIAG$ will be excluded from the list.) Because this feature is primarily for

demand runs, the output is displayed in an abbreviated format. No name fields are necessary. Information

such as external filenames, internal filenames attached via @USE, and equipment type are displayed for

each file in the form:

QUAL * FILE(F/C),equipment,assign-options use names

The assign-options possible are defined as:

A - assigned with the A option

C - assigned with C or U options

0- assigned with the 0 or K options

T - assigned as a temporary file

X - assigned exclusively

If a usename exists but the file is not assigned, the word DUMMY is printed in the equipment field.

L Used in conjunction with 0, N, P, T, or no options or @PRT command (in a demand run) to obtain a complete

rather than the abbreviated listing normally produced for demand runs.

N Display by account number. When the requesting run is privileged, the lack of a name field causes the

entire master file directory to be displayed and sorted alphanumerically by account number. When name

fields are specified, only the files catalogued with the sp'ecified account numbers are displayed. They are

displayed in the order specified in the name fields.

In nonprivileged mode a name field is unnecessary and if specified, is ignored. In this mode all catalogued

files with the requesting run's account number are displayed. They are sorted alphanumerically by

project-id. (Read/write keys are not displayed.)

P Display by project-id. When the requesting run is privileged, the lack of a name field causes the entire

master file directory to be displayed and sorted alphanumerically by project-id. When name fields are

specified, only the files catalogued with the specified project-id are displayed. They are sorted in the order

specified in the name fields.

In nonprivileged mode a name field is unnecessary and if specified, is ignored. In this mode all catalogued

files with the requesting run's project-id are displayed and sorted alphanumerically by account number.

(Read/write keys are not displayed.)

T Display the table of contents for each specified program file or program file element.

U Display the current usage of the removable disk pack specified. The name fields are the same as the

@PRT,D command. The output consists of the first line of the @PRT,D output, which displays pack-id,

tracks available, positions available, and current number of assigns.

4144.31 I SPERRY UNIVAC 1100 Series Executive 4-19
~~~--.l Volume 3 System Processors UPDATE LEVEL PAGE 

,---------------------------------------------------------------------~---------____ L_ ______ __ 

Table 4-8. @PRT Control Options (continued) 

Option Description 
Charalcter 

V When used in conjunction with the T option, list the table of contents for elements with the same version 

narne as specified in the name field. When the version name is omitted from the name field, only those 

elements having a blank version name are listed. The V option may be used with any combination of A. 
B, 0, R, and S options, but must be accompanied by the T option. 

~ C~:r~:;~er 
No option 

specified 

A,O,R,S 

B 

S 

T 

V 

Descrip1tion: 

Tho version mask capability is available when the V option is specified on the @PRT,T control statement 

(see Table 4-7). 

Table 4-9. @PRT Control Statement, Options with Elements Specified 

Description 

List the text of the specified symbolic elements. 

Sarne as for files (see Table 4-8). 

Sarne as for files (see Table 4-8). 

Sarne as if no options were specified. 

List the table of contents entry for each element specified. 

Same as for files (see Table 4-8). 

When the @ PRT control statement is used to obtain a display of the master file directory and the 
requesting run is nonprivileged, all read/write keys are replaced by slashes. All project-ids not 
matching the requesting run's project-id are also replaced by slashes. 

The tabl~e of contents information output from the execution of a @ PRT,T control statement contains 
heading information describing the contents of the table of contents. The next write location is 
always printed. The procedure tables and entry point tables are printed only if no restrictions are 
placed on the @PRT,T control statement, such as an element name, or the B, A, 0, R, S, or V options. 
Some of the heading information is not self-explanatory. This includes: 

E~emen1: Table: 

DELETE FLAG An asterisk means entry deleted. No other symbol is used. 



4144.31 
UP-NUMBER 

TYPE 

DATE AND TIME 

. SEOUENCE NO. 

SIZE-PRE,TEXT 

CYCLE WORD 

PSRMODE 

LOCATION 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

4-20 
PAGE 

If the element is symbolic, the processor which created the element is 
indicated. '-0' indicates that the ASCII code bit is set in the element 
table. 

Time that element was created or, in some cases, when it was added to 
this file . 

The element sequence number is the position of the element in this file 
(this i~ sequentially issued) as elements are added to the file. 

TEXT is the text size in sectors (a sector is 28 words). PRE is the preamble 
size in sectors (relocatable elements only). 

The first field is the maximum number of cycles (cycle limit) to be 
maintained for the element (see Volume 2~2.6.5). The second field is the 
most current cycle (absolute). The third field is the number of cycles 
currently being maintained. 

OTR if element is quarter-word sensitive. 

THR if element is third-word sensitive. 

BOTH if element is both quarter and third-word sensitive. 

SET if element has Arithmetic Fault Compatibility mode bit set. 

CLR if element has Arithmetic Fault Noninterrupt mode bit set. 

INS if element is insensitive to Arithmetic Fault handling. 

Specifies the sector position of the start of the text. 
(Relative Sector Nbr) 

Procedure Table (Assembler, COBOL, FORTRAN): 

DELETE FLAG An asterisk means entry deleted. No other symbol is used. 

LOCATION Refers to the word position relative to the start of the file. 

LINK The sequence number of the element that contains this procedure name. 

Entry Point Table: 

NAME Name of externally defined symbol. 

LINK The sequence number of the element that contains this entry point. 

The @PRT,TL control statement from a demand terminal results in the listing at the demand terminal 
of the table of contents in the format described above. When using the TL options, if an element 
name is given in addition to the filename, the table of contents is listed for the specified element only. 



414431 I SPERRY UNIVAC 1100 Series Executive I I 
~~~~, ____________ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s _____________________ ~_UP_D_AT_E_L_EV_EL ____ ~_PA~G_:_-2_1 __ __ 

When the L option is omitted, the @PRT,T control statement from a demand terminal results in the
followinlg shortened table of contents format:

type element-name/version(cycle)

where:

type

cycles

Examples:

1. @PI~T, T
2. @PI~T

3. @PHT, P
4. @PHT,TL
5. @PHT, I
6. @PHT,D
7 . @PHT, F
8. @PI~T,TB

9. @PI~T,TS

10. @PI~T, TO
1 'I. @PHT, TV
12. @PHT,TSV

Indicates the type of element. (See 11.2.1.1.)

Omnibus subtypes are prefixed with '0-'.

Indicates the latest element cycle.

PROGFILE.
PROGFILE.SAM/XYZ
MERCURY
ELEY

PAC1/F14
BASE.
F 1
F1
F2
FILE./VERS
FAST./V****.******

1. The table of contents for program file PROGFILE is listed following the format given in
Description. The period must follow the filename; otherwise, the specified name is considered
to be an element name in TPF$.

2. The most recent cycle of symbolic element SAM, version XYZ, in program file PROGFILE is listed.

3. Information from the master file directory items for all catalogued files whose project-id is
MERCURY is listed subject to current system security restrictions. This information is completely
labeled to prevent any ambiguities as to the meaning of any entry in the listing. The project-id
MERCURY must be tne same as the run's project-id. If not, no listing is generated, unless the
run is privilE~ged.

4. A complete table of contents is to be given for element ELEY in TPF$.

5. All files currently assigned to the run are displayed:

6. All catalogued files residing on removable disk pack PAC 1 are displayed. PAC 1 is an F 14 disk
pack.

7. Information describing the file BASE is displayed. BASE may be either temporary or catalogued.

8, ThH element table of contents for program file F 1 is listed beginning with the most recently
inserted elements. .

9. All symbolic elements in the table of contents of program file F 1 are listed.

10. All omnibus elements in the table of contents of program file F2 are listed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

4-22
PAGE

11. The table of contents for all elements having a version name of VERS is listed for program file
FILE.

12. All symbolic elements with a version name beginning with a V in the table of contents of program
file FAST are listed.

4.2.6. Emptying a File (@ERS)

Purpose:

Makes a file available for use as either a program file or an SDF file, with or without releasing allocated
sector-formatted mass storage granules. If granule zero is to remain allocated, the first sector will
be zero filled.

All parameters in the @ ERS control statement are optional.

Format:

@ label:ERS,options filename-1,filename-2, ... ,filename-n

Parameters:

filenames

no-option

options

Specifies the files to empty.

Release all granules except those initially reserved.

Release all granules including initial reserve.

N - Do not release any granules. If granule zero is allocated, the first
sector will be zero filled.

4.2.7. Deleting Files and Elements (@DELETE)

Purpose:

Drops catalogued files or marks elements in program files as deleted.

All parameters in the @DELETE control statement are optional except name-·1.

Format:

@label:DELETE,options name-1,name-2, ... ,name-n

Parameters:

names Specifies the catalogued file or the element to be deleted.

options See 4.1.1 for additional information on the A, C, 0, R, and S options.

4144.31 ~
UP-NUMBER
-'-

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

4-23
PAGE

• No options apply when deleting a catalogued file.

• Deleting Files

Each catalogued file specified is marked as dropped. The filename specified may be external
or internal.

. When an external filename is specified, the F-cycle must be specified if it is not the latest
F-c:ycle. If the file has read/write keys and is to be assigned to the run by the FURPUR processor,
the read/write keys must be specified. The keys may be omitted if the file was assigned prior
to calling the FURPUR processor.

If an internal filename is used, it must have been attached to an external filename by means of
an @USE control statement (see Volume 2-3.7.5).

ThE~ file is not actually dropped until all other runs that have the file assigned to them have freed
the file. When the file is dropped, the master file directory items are updated. The older F-cycles
have their relative F-cycle number increased.

Seo Volume 2-2.6.3 for a discussion of file cycles.

Packs m~st be mounted for removable disk files being deleted.

• Deleting Elements

When the A, 0, R, and S options are specified, an element of that type in a program file is marked
deleted. Each entry in the operand field names the element and the program file that contains
it. Any combination of A, 0, R, and S options may be used, but at least one must be specified.

Including a cycle number for a symbolic element is illegal. All cycles of the element must be
deleted. All procedure names associated with a deleted procedure element are marked as
deleted. The entry point table is destroyed if a relocatable element is deleted. An @ PACK
control statoment (see 4.2.14) may be used to reclaim the physical space occupied by deleted
elements.

When the V option is specified, all elements with the same version name as that specified in
the name fif~ld are deleted. The V option may be used with one or more of the A, 0, R, and S
options to s,elect types of elements for deletion.

ThE~ version mask capability is available when the V option is specified on the @ DELETE control
statement (see Table 4-7).

Description:

The effeict of a @DELETE control statement on a catalogued file is the same as the sequence:

@t\SG,AYD
@FREE,D

FILEA
FILEA

4144.31
UP-NUMBER

Examples:

1. @DELETE,S
2. @DELETE
3. @DELETE, OV
4. @DELETE,RSV
5. @DELETE,V

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

F.ELT1/VERS,F1.ELTY
FLAP. ,TARE5. ,ZEBRA4. ,BAKER.

F1.1************
F2./VERS

FAST./V***********

UPDATE LEVEL
4-24

PAGE

1. The symbolic elements EL T 1 IVERS in program file F and EL TY in program F 1 are marked as
deleted. Any associated procedure names are also marked as deleted.

2. Relative F-cycle -0 of catalogued files FLAP, TARE5, ZEBRA4, and BAKER is dropped from the
master file directory (the files are decatalogued).

3. All omnibus elements in program file F 1 are marked as deleted.

4. All relocatable and symbolic elements having a version name of VERS in program file F2 are
marked as deleted.

5. All elements having a version name beginning with V in program file FAST are marked as
deleted.

4.2.8. Rewinding Tape Files (@REWIND)

Purpose:

Rewinds magnetic tape files back to the load point of the first reel.

All parameters in the @ REWIND control statement are optional.

Format:

@label:REWIND,options filename-1,filename-2, ... ,filename-n

Parameters:

options

filenames

The C (see 4.1.1) and I options are the only valid options. If the I option
is specified, the tape file is rewound with interlock; if omitted, the tape
file is rewound without interlock.

Specifies the tape files to be rewound.

4.2.9. Marking an EOF on Tape (@MARK)

Purpose:

Writes two hardware EOF marks on a magnetic file and leaves the tape positioned between them.
Some FURPUR control statements do an automatic @MARK or can be made to do a @MARK by
specifying the M option.

All parameters in the @ MARK control statement are optional.

Format:

@label:MARK filenal"1e-1,filename-2, ... ,filename-n

4144.31 I SPERRY UNIVAC 1100 Series Executive 4-25
~~~~ _____________ V_o_lu_m __ e_3 __ S_y_s_te_m ___ P_ro_c_e_s_s_o_rs ____________________ ~U_P_DA_T_E_LE_VE_L __ ~LP_AG_E ____ ___ 

Parameters: 

filenaml9s Specifies the tape files on which hardware EOF marks are to be 
written. 

4.2.10. ClosinlQ Tape Files (@CLOSE) 

PurpOSEt: 

Writes two hardware end-of-file (EOF) marks on a magnetic tape file and then rewinds it. 

All parameters in the @CLOSE control statement are optional except filename-1. 

Format: 

@ label:CLOSE,options filename-1,filename-2, ... ,filename-n 

Parameters: 

options 

filenam~~s 

The C (see 4.1.1) and I options are the only valid options. If the I option 
is specified, the tape is rewound with interlock; if omitted, the tape is 
rewound without interlock. 

Specifies the tape files to be closed. 

4.2.11. Entry Point Table Creation (@PREP) 

Creates an entry point table from the preambles of the nondeleted relocatable elements of a program 
file. 

All parameters in the @ PREP control statement are optional. 

Format: 

@label:PREP filename-1,filename-2, ... ,filename-n 

Parame1ters: 

filenam~:=Js 

Description: 

Specifies the program files for which entry point tables are to be 
created. 

If a previous entry point table existed, it is destroyed prior to creating a new one. Note that whenever 
a relocClltable element is added to or deleted from a file, any existing entry point table is destroyed. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

4-26 
PAGE 

4.2.12. Punching Program File Elements (@PCH) 

Purpose: 

Punches program file elements into 80-column cards. 

All parameters in the @ PCH control statement are optional except eltname. 

Format: 

@label:PCH,options eltname,seq-char 

Parameters: 

options 

eltname 

seq-char 

Description: 

See 4.1.1 for additional information on the A, C, 0, R, and S options. 
The function of the A, 0, R, and S options is as follows: 

A,O,R,S - Specifies the type of element to be punched. Any 
combination of A, 0, R, or S may be used, but at 
least one must be given. 

The following options may be used only in conjunction with the S 
option (see Volume 4-2.1.4.1 and 4-2.1.4.2): 

G Produce punched card output containing 
compressed symbolic images 

H - Punch sequence number into columns 73-80 of 
each image. Seq-char must contain an alphabetic 
sequence of from one to three characters. The 
characters are left-adjusted and overlay columns 
73-75. 

J - Compress input images and sequence output cards 
in columns 73-80. 

The G and J options may not both be specified in the same control 
statement. 

Specifies element to be punched. 

Specifies alphabetic sequencing characters when the H option is 
selected. 

See 1.4 for information on how to specify element names. 

The FURPUR processor ensures that the elements punched contain the control carris needed to 
reinsert them into the same program file, or a program file with the same name in a later run. The 
first card of a procedure element is a @PDP,I control card (see Section 8). For all other elements, 
it is an @ELT,I card (see Section 5). The filename on the control card is the name of the file from 
which the element was punched. 

Relocatable and ab!;olute elements are automatically (without special option) seque~ced in columns 
79-80. Sequencing starts with AA and ends with ZZ (starts over with AA if necessary). If tile H option 



4144.31 
UP-NUMBER 

Ii SPERRY UNIVAC 1100 Series Executive I I 4-27 
~, _____________ V_o_l_u_m_e __ 3_S_y_s_t_e_m __ P_ro_c_e_s_s_o_r __ s ____________________ ~~_P_D_AT_E_LE_V_EL ____ ~._PA_G_E ____ _ 

is specified, symbolic images are sequenced in columns 76-80. The card sequence will be 100 apart 
and is preceded by the designated alphabetic string given in the seq-char field on the @PCH control 
statemEmt. 

The punched output is either preceded by a properly formatted @ELT,I card or a @PDP,I card. These 
cards produced by @PCH have the same element name as the @PCH control statement. Thus, if the 
file containfng the element that was punched is assigned to a subsequent run, all that is necessary 
to .reintroduce the element is to include the @PCH-produced cards in the run stream. 

Exampl~as: 

1. @P'CH,S 
2. @P'CH,SRJH 

UPDATE. RUNPROG 
A.B,XYZ 

1. Symbolic element RUNPROG in program file UPDATE is punched onto 80-column cards, one 
image per card. 

2. Symbolic element B of program file A is punched in 80-column cards. The input images are 
sequenced in columns 76-80. The identification sequence is punched in columns 73-75. The 
input imagE~s are also compressed. 

Relocatable element B of program file A is also punched. The text has been previously 
sequenced, and the FURPUR processor sequences the preamble. 

See VolumH 4-2.1.4.2 for a discussion of compressed symbolic elements. 

4.2.13. Positioning within Element Files (@FINO) 

PurposEI: 

Locates an elemont in a magnetic tape file (file must be in element file format) and positions the tape 
immediately preceding the element's label block. 

All parameters in the @FIND control statements are required except label and options. 

Format: 

@label:FIND,options eltname 

Parame1ters: 

options 

ettname 

Description: 

One and only one of the options A, O. R, or S must be used to specify 
the type of element. See 4.1.1 for additional information on these 
options. 

Specifies the file and the element to be located. 

The search is made forward until either the element is found or an EOF mark is encountered. When 
the EOF: mark is encountered, the tape is backspaced to the previous EOF mark (or load point, 
whichever is encountered first) and the search is repeated. If no find is made, the error exit is taken 
when the EOF mark is encountered. 



4144.31 
UP-NUMBEA 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

4-28 
PAGE 

Normally, the @FIND control statement is used just prior to a @COPIN control statement (see 4.2.2) 
requesting that the element just located (or all elements up to the EOF mark) be inserted into a 
program file located on sector-formatted mass storage. It is also required before calling a language 
or systems processor which is to use SIR$ to read the element from tape (specified as the SI field). 

Care must be exercised when doing a @FIND operation on other than the first reel of a multireel file. 
If an EOF is encountered prior to locating the desired element the reel is backspaced only to the load 
point, not to the EOF which is located on a previous reel. 

4.2.14. Removal of Deleted Elements (@PACK) 

Purpose: 

Rewrites an entire program file, removing specified types of elements (depending on the options 
specified) and all elements marked as deleted. @COPOUT and @COPY,P control statements (see 4.2.3 
and 4.2.1, respectively) have the same effect on output files since they do not copy deleted elements. 
Mass storage space which is no longer needed is returned to the system. 

All parameters in the @PACK control statement are optional. 

Format: 

@label:PACK,options filename-1,filename-2, ... ,filename-n 

Parameters: 

filenames 

options 

Description: 

Specifies the program files to be written. 

See Table 4-10. See 4.1.1 for additional information on the A, C, 0, 
R, and S options. 

Any combination of A, 0, R, and S options may be specified. If no options are specified, then all 
deleted elements are removed. 

Normal Tarmination: 

If the file is position granularity, 'FILE SIZE' is the number of positions required to contain the program 
file. 

If the file is track granularity, 'TEXT is the number of tracks required to contain the element text, and 
'TOC' is the number of tracks required to contain the table of contents. 

The number and type of each element is printed at termination. 

Abnormal Termination: 

If the termination was not caused by an error (Le., system crash, or @ @X T), the @PACK can most 
likely be completed by repeating the @ PACK command with the same options. 



414431 L SPERRY UNIVAC 1100 Series Executive I I 4 29 
___ U_P~_U_~_B_ER______ __ ______ V_o_'_u_m_e __ 3 __ S_y_s_t_e_m __ P __ ro_c_e_s_s_o. __ rs ______________________ ~_U_P_DA_T_E_L_EV_E_L ____ ~_PA_G_E_-__ ___ 

Option I Character 

no option 

A 

0 

I 

M 

Table 4-10. @PACK Control Options 

Description 

Remove all deleted elements and release all unused granules except those granules initially reserved. 

(see l-option) 

Remove all elements except nondeleted absolute elements. 

Used in conjunction with M option to inhibit creation of an entry point table. Ignored if no M option 

is specified. 

Release all unused granules including initial reserve. 

Creates a minimum size table of contents by starting each program file table in the sector following the 

previous not empty program file table. The element text is started in the first track not used for the table 

of contents (see Section 6). An entry point table is created unless the 0 option is specified. In most 

cases, this entry point table can be larger than if a @PREP fOllowed a @PACK without the M option. 

After a @PACK,M, there is no room to expand the table of contents, and new elements cannot be added. 

To expand the table of contents, by adding or updating an element or creating an entry point table, it 

will be necessary to transfer the elements to another file. @COPV,P or @COPOUT may be used for the 

transfer. Alternatively, existing elements can be deleted followed by a @PACK without the M option. 

N Do not release any granules. If granule zero is allocated and there are no non deleted elements, the first 

sector will be zero filled. 

o Remove all elements except nondeleted omnibus elements. 

P Cause an entry point table to be created, as if a @PREP command immediately followed the @PACK 

command. The P option is ignored if the M option is specified. 

R Remove all elements except nondeleted relocatable elements. 

s Remove all elements except nondeleted symbolic elements. 

4.2.15. Changing Element and Version Names, File Keys and Modes 

The @CHG control statement described in 4.2.15.1, discusses how to change catalogued files, keys, 
and modes; and in 4.2.15.2, discusses how to change program file element and version names. Some 
examples of @CHG control statements are given in 4.2.15.3. 

4.2.15.1. Changing Catalogued Files, Keys and Modes 

Purpclse: 

Chanlges catalogued mass storage files, keys, and modes. 

All parameters in the @CHG control statement are optional except name-1. 



4144.31 

UP-NUMBER 

Format: 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors I UPDATE LEVEL 

@label:CHG,options name-1,name-2 

Parameters: 

options The options are: 

P - Set public mode 

o - Set private mode 

V - Set read-only mode, clear write-only mode 

W - Set write-only mode, clear read-only mode 

I 4-30 
PAGE 

Z - Clear read only and/or write-only modes (must not be used 
in conjunction with V and W options) 

name-1 Specifies the file to be changed 

name-2 Specifies the same file as name-1 with new or changed keys 

Description: 

One F-cycle series exists for each set of files with the same filenames. Each catalogued file belongs 
to only one F-cycle series. Read/write keys, if any, are the same for all members of the series. The 
master file directory contains a lead item for each F-cycle series that lists the read/write keys for the 
series and points to a main item for each member of the series. The read-only mode and write-only 
mode indicators are kept in the main item for that member. 

The @CHG control statement may be used to perform the following functions related to catalogued 
files: 

1. Change the read/write keys for all files of a given F-cycle series. 

2. Remove or set read-only or write-only modes on a file. 

3. Set public or private mode on a file. 

If an F-cycle series contains only one member, 1. is equivalent to changing the keys for a file. 

Although the functions performed by the @CHG control statement do not include reading or writing 
in text areas of the files named, read/write keys, if the files have any, are required in order for @CHG 
to modify their master file directory items. This means that the filename on the first @ASG c.:>ntrol 
statement given to the Executive must include the keys if an external name is used. If an internal 
name is used, it must be associated by an @USE control statement still in effect that includes the 
keys. FURPUR performs the initial assignment, if the user has not assigned the file. In this case, the 
same rules apply to the name furnished on the @CHG control statement as for the @ASG control 
statement furnished by the user. 

If the file being changed is assigned to another run the @CHG will be executed but the actual changes 
will not be made to the MFD item until the file is no longer assigned to another run. 



4144.31 
UP-NUMBER Volume 3 System Processors UPDATE LEVEL 

4-31 
PAGE ~ SPERRY UNIVAC 1100 Series Executive 

,-------'------'---

4.2. 15.2. Changing Program File Element and Version Names 

Purpose!: 

Changes program file element and version names. 

All parameters -tn the @CHG control statement are optional. 

Format: 

@1;abel:CHG,options eltname-1,eltname-2 

Parameters: 

options 

eltname,-1 

eltna01e,-2 

DIBscription: 

The A, C, 0, R, S, and V options are the only valid options for this 
statement (see 4. 1. 1). 

Specifies the program file element. 

Specifies the same program file and the new element and version 
names. 

One or more of the A, 0, R, and S options must be specified; only the elements of types specified 
by options will have their names changed. Element cycles may not be specified. 

This opEHation can also be performed during a @COPIN (see 4.2.2), @COPOUT (see 4.2.3), or a 
@COPY,ADRS (sE~e 4.2.1) control statement. 

The V option, when used for element version c.hanging, must be accompanied by one or more of the 
A, 0, R, and S options. This option allows the changing of element/version names for all elements 
which have the same version name as that specified in name-1. Only the element types specified 
by the options will be changed. 

The vension mask capability is available when the V option is specified on the @CHG control 
statement (see Table 4-7). 

4.2.15.:3. @CHG Control Statement Examples 

The foll()wing examples illustrate the operation of the @CHG control statement. 

1. @CHG,S 
2. @CHG,ARS 
3. @CI~G,R 

4. '@CIHG,A 
5. @CIHG, V 
6. @CIHG 
7 . @CIHG , ORS 
8. @CIf-IG,RSV 
9. @CIf-IG,AV 

A.B/F4,A.GOTO/A1 
UP.PACK,UP.PACK/VER3 
IN. PUT/A, IN.PUT/F 
OUT.PUT/G,OUT.GO/G 
FILE/KEY1/KEY2. 
FILE1/KEY1/KEY2. ,FILE1/KEYA. 
F.ELT,F.NEWELT 
F1./VERS,F1./NEWVERS 
F2./V***********,F2. 



4144.31 
UP-NUM8ER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

4-32 
PAGE 

1. Changes the element and version names of symbolic element a, version F4 of program file A 
to element name GOTO, version A 1. 

2. Assigns the version name VER3 to the absolute, relocatable and symbolic elements named PACK 
in program file UP. 

3. Changes the version name of relocatable element PUT in program file IN from A to F. 

4. Changes the element name of the absolute element PUT in program file OUT to GO. The version 
is not altered. 

5. Changes the mode of catalogued file FILE from its present mode to read-only mode. 

6. Changes the read key of catalogued file FILE 1 from KEY 1 to KEYA and deletes the write key. 

7. Change the omnibus, relocatable, and symbolic elements named EL T in program file F to element 
name NEWEL T. 

8. All relocatable and symbolic elements having a version name of VERS in program file Flare 
given the version name of NEWVERS. The element names remain unaltered. 

9. All absolute elements having a version name beginning with V in program file F2 are given the 
new version name of blanks. The element names remain unaltered. 

4.2.16. Altering Cycle Retention Limit (@CYCLE) 

Purpose: 

Sets the maximum range of absolute F-cycle numbers to be retained for a catalogued file (see Volume 
2-2.6.3) or the maximum number of element cycles for a program file symbolic element (see Volume 
2-2.6.5). When n is omitted, cycle information regarding the current F-cycle series is displayed. 

All parameters of the @CYCLE control statement are optional. 

Format: 

@label:CYCLE name,n 

FILES 

Parameters: 

name 

n 

Description: 

Specifies an F-cycle series for which the cycle range is to be changed. 

Specifies the maximum range of F-cycles to be retained. If omitted, 
cycle information is displayed regarding the current F-cycle series. 

When a catalogued file is specified, the @CYCLE control statement sets the maximum range of 
F-cycles for the filename. The file specified must be in the master file directory. If n is 0, the F-cycle 
series is deleted. If n specifies a new maximum less than the current range of F-cycles being retained, 
enough F-cycles of the file set (starting with the oldest cycle) are deleted to satisfy the new range. 



414431 I SPERRY UNIVAC 1100 Series Executive I I 4 33 
~~BER ~ ____________ V_o_l_u_m_e~3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s ______________________ ~_U_PD_A_TE_L_EV_EL ____ ~_PA_G_E_-_____ _ 

ELEMENITS 

Parameters: 

name 

n . 

Descrip1:ion: 

Specifies a program file symbolic element whose cycle limit is to be 
changed. 

Specifies the maximum number of element cycles to be retained. 

When a program file element is named, the @CYCLE control statement sets the maximum number 
of elernEmt cycles. If n specifies a new maximum less than the current number of element cycles 
being retained, a new element with the same name is created and some data image control words 
may be changed and some images may not be transferred at all. 

Any image deletetd in a cy~le number less than the lowest cycle number being retained, because of 
the new lower mclximum number of cycles, is not transferred to the new element. Any images added 
but not deleted in a cycle number less than the lowest cycle number being retained are transferred; 
but 56 of each data image control word is changed to reflect the new lowest cycle number retained. 
All other nondeleted and deleted images are transferred to the new element. 

Examples: 

1. @CYCLE 
2. @CYCLE 
3. @CYCLE 

0*A.B,2 
0*0. ,2 
0*0. 

1. Assume that symbolic element B in program file O*A consists of element cycles 5, 6, 7, and 
8. Since the new limit is two cycles, a new element B is created consisting of cycles 7 and 8. 

2. Assume that the master file directory entry for file 0*0 indicates that four absolute F-cycles 
18, 15, 14, and 12 of the file exist. Since the new limit is two, absolute F-cycles 15, 14, and 
12 are deleted. The limit is considered to be the range starting from the highest current absolute 
F-cycle number. 

3. F-cycle information is displayed regarding the catalogued file 0*0. 

4.2.17. Enabling Files Disabled Due to Malfunctions (@ENABLE) 

Purpose: 

Resets (Iremoves) the disable flag for catalogued files. 

All parameters in the @ ENABLE control statement are optional. 

F()rmat: 

@label:ENABLE filename-1,filename-2, ... ,filename-n 

Parameters: 

filenamHs Specifies the catalogued files to be enabled. 



4144.3'; 
UP-NUMBER 

Description: 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

4-34 
PAGE 

If the specified file is not disabled, a message to this effect is printed on the listing (normal exit is 
taken). Keys, if any, must be specified. 

4.3. FURPUR FILE FORMAT COPY,G 

A 28-word label block is written to tape prior to copying the file's contents giving details of the copied 
file and the time when the copy was made. 

Format: 

Word 

o COPYG6 

BLKSEQ 

2 

Qualifier (LJSF) 

3 

4 

Filename (LJSF) 

5 

6 F-cycle 

7 Date MMDDYY 

8 Time HHMMSS 

9 Equipment Code 

10 Highest Track Written 

"'v "'v 

28 



UP .... UMBIER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPOATE LML 

4-35 
PAGE 

4144~.1 
,------------------------------------------------------~----------~~-------

Subsequent blocks are 1794 words in length and consist of a mass storage track (1792 words) 
precede'd by a 2-word header containing the track address and checksum and block sequence 
number. 

Format: 

Word H1 H2 

o Track Address 

Checksum Block Seq. Nbr 

2 
1 TRACK 

1792 WORDS 

" , ,,'" 
" , 

1793 

The end-of-file and end-of-reel conditions conform to the same formats described for COPOUT. 



4144.31 I SPERRY UNIVAC 1100 Series Executive 5-1 
~~, _____________ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s ____________________ ~uP_O_~_E_L_~_EL ____ ~PA_G_E ____ __ 

5. ELT Processor 

5.1. INTRODUCTION 

This section describes the EL T processor and the @END control statement (see 5.2.1), which is used 
with the EL T and DATA (see Section 6) processors. 

The EL T processor is used to introduce an element into a particular program file or make corrections 
to a symbolic element in a program file from within the runstream. 

5.2. @ELT FOFIMAT 

Purpose:: 

Introduces an element into a particular program file or makes corrections to a symbolic element in 
a progralm file from the runstream. The @ELT control statement is used to call the EL T processor 
and it must precede the element or correction images in the runstream. With the exception of the 
@ELT,D control statement, the EL T processor is terminated by the first nontransparent control 
statement encountered in the runstream. The EL T,O processor is terminated by an @END control 
statement (see 5.2.1) whose sentinel matches the sentinel on the @ELT,O control statement. Any 
control statements, with the exception of the @ FIN and @ADD,O statements (see Volume 2-3.4.2 and 
2-3.10. 'I, respectively), appearing between the @ELT,O control statement and the @END control 
statement are treated as data. 

All parameters in the @ EL T control statement are optional except eltname-1. 

Format: 

@label:ELT,clptions eltname-1 ,eltname-2,sentinel,time-and-date,bank- information 

Parameters: 

options See Table 5-1. All of the source input/output routine (SIR$) options 
contained in Table 1-2 may be used. The A, 0, R, and S options 
(element type options) identify the element type, while the I, L, and U 
options principally outline element (image handling) options. The 0 
option is used to insert control statements into a symbolic element. 
Those elements identified as type S are considered symbolic elements 
and also may be corrected by using the correction statements 
(see 1.2). 



4144.31 
UP-NUMBER 

eltname-1 

eltname-2 

sentinel 

time-and-date 

bank-information 

Option 
Character 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE lEVEL 

5-2 
PAGE 

The S option is assumed when the element type options are not 
specified. The L option is assumed when the image handling options 
are omitted and no eltname-2 is given. 

Specifies the input element. With the I option this parameter specifies 
the new element being inserted into the program file. With the U 
option this parameter specifies both the symbolic input and output 
elements. 

Specifies the new output element to be generated. Not used with I. 
May be specified with U option to retain all element cycles up to cycle 
specified in a new SO element. 

Specifies, when the @ELT,D control statement is used, the character 
code which terminates the flow of data images into the element being 
created. This parameter may consist of one to six characters and must 
agree exactly with the sentinel code appearing on the @END control 
statement (see 5.2.1) used to terminate the EL T processor. 

Specifies time and date element was created in TDATE$ format (see 
Volume 2-4.5.2) shifted circularly 18 bits. Applies to absolute and 
relocatable elements only. This parameter is optional. 

Applies to absolute elements only and is required. Contains the same 
information as absolute element table item word 6 (see Figure 11-3). 

Table 5-1. @EL T Control Statement, Options 

Description 

Element Type Options 

A Identifies element as an absolute element; used only with the I option. 

o Images following the @ELT are inserted as they appear in the run stream into an omnibus element. The 

elemt:rnt is not formatted by EL T. Applies only with the I option. 

R Identifies element as a relocatable element, used only with the I option. 

S Identifies element as a symbolic element. This option is assumed when no element type option is specified. 

Image Handling Options 

o Indicates that the symbolic input images following the @ELT control statement may include control 

statements which are to be transferred as data. All control statements are transferred until a @FIN or @END 

(with matching sentinel) control statement is encountered (see Volume 2-3.4.2 and 5.2.1, respectively). 

L Requests a listing of the complete symbolic element. The listing provides line numbers, cycle information 

and identification of the newly added and deleted images. This option may be specified for absolute, 

omnibus or relocatable elements to furnish an unedited listing of the images as they appear in the 

runstream. This option is assumed when the I, Land U options are omitted and no eltname-2 is given. 

X Take error exit (ERR$ see Volume 2-4.3.2.2) upon occurrence of an error. 



4144 31 I SPERRY UNIVAC 1100 Series Executive I I 5 3 
up~u~~ ____________ V_o_'u_m __ e_3 __ S_y_s_te_m __ p_r_o_c_e_ss_o_r_s ___________________ ~_U_PO_A_TE_L_~_EL ____ ~_PA_G_E-____ __ 

Descript.ion: 

The EL T"O control statement allows insertion of control statements into a program file as elements 
which may repres~nt @RUN and @ADD runstreams (see Volume 2-3.4. 1 and 2-3. 10. 1, respectively) 
that can be called later by the @ADD or @START control statements (see Volume 2-3.10.1 and 
2--3.4.3, respectively). 

When an element is punched by the FURPUR processor (see Section 4), the element is always 
preceded by an @ELT control statp.ment. The filename punched into the @ EL T control statement is 
the name of the 'file from which the element was punched. These decks can simply become part 
of the input to subsequent runs. If the element is to be added to a file other that the one from which 
it was punched, the filename on the @ELT statement must be changed. 

The @El.T statement generated by FURPUR when an element is punched also contains information 
in specification fic31ds 4 and 5. Field 4 contains the time and date the element was created from word 
9 of the Program File table item (see Figure 11-3). Field 5 applies only to absolute elements and 
contains bank information from word 6 of the absolute element table item. If field 4 is not present 
the curre~nt time and date is used when the element is added to a program file. Field 5 must be present 
when an absoluto element is to be added. 

If the H, I, K, and L options are used (see Table 1-2) EL T will identify any column 73-80 sequence 
number errors by attaching a '#' (pound symbol) to the line number out of sequence. 

Example:s: 

1. @ELT,U 
2. @ELT 
3. @ELT,L 
4. @ELT 
5. @ELT, I 
6. @ELT,IA 
7. @ELT, IR 
8. @ELT, IS 
9. @ELT, 10 
10. @ELT,U 
11" @ELT, 10L 

PF1.ELEMENT1 
PF1.ELEMENT1,PF2.ELEMENT2 
PF1.ELEMENT2 
PF1.ELEMENT2 
PF1.ELEMENT3 
ESCP*TPF$.ELT" ,106256042410,004541002746 
PF1.ELEMENT5 
PF1.ELEMENT6 
PF1.ELEMENT7, ,STOP 
TPF$.A,TPF$.B 
TPF$.OMNI 

1. The' correction images following this control statement update ELEMENT 1 of program file PF 1. 
The! updated element replaces the old ELEMENT 1 in PF 1. Since the element type is not 
specified, the S option is assumed, and the element is considered to be a symbolic element. 

2. The~ correction images following this control statement are applied to ELEMENT 1 of program 
file PF 1 to produce a new symbolic element (ELEMENT2) in program file PF2. ELEMENT 1 
remains unchanged. 

3. This control statement lists ELEMENT2 of program file PF 1. 

4. The: correction images following this control statement are applied to ELEMENT2 of program 
file PF 1. The new symbolic element is listed but no new element is produced because the U 
option is omitted. ELEMENT2 remains unchanged. 

5. The~ images following this control statement are inserted as a new symbolic element (ELEMENT3) 
in program file PF 1. 

6. ThE~ images following this control statement are inserted as a new absolute element (EL T) in 
program file TPF$. The time and date of the ~Iement will be 10:00: 14 and 20 APR 72. The 



4144.31 
UP-HUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

5-4 
PAGE 

I-bank length of this element is 2401 decimal words and the D-bank length is 1510 decimal 
words. 

7. The images following this control statement are inserted as a new relocatable element 
(ELEMENT5) in program file PF 1. Since there is no time and date specified the current time and 
date is used. 

8. . The images following this control statement are inserted as a new symbolic element (ELEMENT6) 
in program file PF 1. 

9. The images following this control statement are inserted as a new data element (ELEMENT7) 
in program file PF 1. The data stream is terminated when an @END control statement having 
the matching sentinel STOP is encountered. 

10. The correction images following the control statement are applied to element A in program file 
TPF$ to produce the next higher element cycle which then becomes the new symbolic element 
B. Element A remains unchanged. Previous element cycles are retained in element B. 

11. The images following the @ EL T are inserted as a new omnibus element (OMNI) in program file 
TPF$. The images are listed as they appear in the runstream. 

5.2.1. Input Termination Sentinel (@END) 

Purpose: 

Marks the end of a data file or element. It follows the data images introduced by either an @ELT,D 
or @ DATA controls statement (see Section 6). 

The sentinel parameter is optional. 

Format: 

@END 

Parameters: 

sentinel 

Description: 

sentinel 

A one- to six-character code corresponding exactly to the sentinel 
contained in the @DATA or @ELT,D control statement introducing the 
data images. The end of the file or element is determined when the 
character string in this parameter matches the character string of the -. sentinel parameter specified in the associated @DATA or @ELT,D 
control statement. 

@END control statements cannot have labels and cannot be continued. The @END control statement 
must be coded exactly as shown (punched into first four columns of the card). 

Examples: 

@END FINISH 

When the @END control statement is encountered, it ends the data file or element introduced by the 
@DATA or @ELT,D control statement that has its sentinel parameter coded FINISH. 



4144.31 L SPERRY UNIVAC 1100 Series Executive I I 
UP~_UM_8_ER______ __ ____ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o __ r_s ____________________ ~_UP_D_AT_E_L_~_EL ____ ~_AA_G_:_-_1 __ _ 

6. Data Processor 

6.1. INTRODUCTION 

This section de!;cribes the DATA processor. The DATA processor is used to create and update 
System Data Format (SDF) files from within the runstream. 

The @END statElment (see 5.2.1) is used in conjunction with the DATA processor. 

6.2. @DATA FORMAT 

Purposte: 

Creates" updates and lists SDF files from the control stream. DATA processor operations is terminated 
by an @END control statement (see 5.2.1) whose sentinel matches the sentinel in the @DATA control 
statemEmt. 

The @DATA control statement is used to call the DATA processor and it must precede the data or 
correctiion images in the runstream. Any control statement, with the exception of the @ FIN and 
@ADD,D control statements (see Volume 2-3.4.2 and 2-3. 1 O. 1, respectively) appearing between the 
@DATA control statement and the @END control statement is treated as data. 

All parameters in the @ DATA CQntrols statement are optional except "filename-1. 

Format: 

@label:DATA,options filename-1,filename-2,sentinel 

options See Table 6-1. Symbolic input/output routine (SIR$) options 
(see Table 1-2), except the U option, also apply. 

If the I option is omitted, but both filename-1 and filename-2 
parameters are specified, the data images following the @DATA 
control statement are interpreted as corrections to filename-1. A new 
updated file identified by filename-2 is generated. 

If the options and filename-2 parameters are omitted, the L option is 
assumed. Filename-1 is listed but no new file is generated. 



4144.31 
UP-NUMBER 

filename-1 

filename-2 

sentihel 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

6-2 
PAGE 

Specifies the file to which the data images and correction images in 
the runstream apply. The file must be catalogued or assigned to the 
run. 

Specifies the updated file to be generated. The file must be 
catalo.gued or assigned to the run. 

Specifies a character code of one to six characters used for 
comparison p'urposes in determining the proper terminating @END 
control statement (see 5.2.1) for the data mode. 

Table 6-1. @DATA Control Statement With Options 

Option Description 
Character 

L Generates a complete listing of the file. This includes sequential item numbers which are used when 

making corrections to the file and identification of added and deleted images. If this option and filename-1 

are the only parameters specified, filename-1 is listed. This option is assumed when the I. L, and U options 

are omitted and no filename-2 is given. 

U The U option is used only to update from relative F-cycle 0 to relative F-cycle + 1. Only filename-1 can 

be specified. Relative F-cycle + 1 of the file must be assigned prior to implicitly referencing it by means 

of the U option on the @DATA control statement (see Volume 2-2.6.3). 

X Take error exit (ERR$ - see 4.3.2.2) upon occurrence of an error. 

Description: 

The difference betvveen the operation of the DATA processor and the @FILE control statement (see 
Volume 2-3.8.1) is that the DATA processor handles data as it is presented in the runstream at run 
time, whereas the @FILE control statement builds the file as the data is being initially input into the 
system. In short, the DATA processor operates identically to a language processor control statement. 
The file built by the DATA processor is in System Data Format (SDF) (see 11.2.3). 

The DATA processor allows the user to build data files which are an entire or partial runstream. These 
files can then be called on by the @START control statement (see Volume 2-3.4.3) to start an 
independent run or by the @ADD control statement (see Volume 2-3.10.1) for inclusion in a current 
or subsequent run. The DATA processor enables the user to make corrections to an independent 
runstream and then start it using the @START control statement, or make corrections to a partial 
runstream and add it to the run using the @ADD control statement. The data processor can also be 
used as a convenient means of generating and maintaining a user's data file rather than a control 
stream type file. 

@DATA does not write a hardware tape mark after writing a file out to tape. The user should do a 
@MARK after @DATA has completed (see 4.2.9). 



4144.31 I SPERRY UNIVAC 1100 Series Executive 6-3 
up~u~~~ _____________ V_o_l_u_m_e __ 3_S __ ys_t_e_m __ P_r_o_ce_s_s_o_r_s ____________________ ~UP_O_AT_E_L~ __ EL ____ ~PA_G_E ____ __ 

Examples: 

1. @DI~TA 

2. @DI~TA, I 
3. @DATA,L 
4. @DATA 
5. @DATA, I L 
6 ... @ABG,C 

@DJ~TA, UW 

FILEA,FILEX 
FILEB 
FILED 
FILEY 
FILEZ 
FN(+1) 
FN 

1. ThEI images following this control statement provide the corrections for FILEA. The updated 
version of this file is stored into the newly created file FILEX. 

2. ThEl images following this control statement are inserted into FILEB. 

3. ThEl images 'following this control statement are applied as corrections to FILED. FILED is listed, 
but a new file is not created. 

4. Because the options and filename-2 parameters are omitted, the L option is assumed, and a 
complete listing is provided for FILEY. 

5. ThE~ images following this control statement are inserted into FILEZ and listed. 

6. ThE~ correction images following the data statement are applied to file FN to create relative 
F-cycle + 1 of file FN. The correction images are listed. 



4144.31 L SPERRY UNIVAC 1100 Se ..... Executive 7-1 
~~_____ _ _____ V_o_'_u_m_8 __ 3 __ S_v_st_8_m __ P_r_o_c_8_SS_o_r_s ____________________ ~u_~_A_n_~ ___ L __ ~_'_AG_E ____ _ 

7. Text Editor (ED) Processor 

7.1. INTRODUCTION 

This section describes the ED processor which permits the user to manipulate the text of a symbolic 
file or 4~lement. 

1.2. @ED PROCESSOR CALL STATEMENT FORMAT 

PurpoS49: 

To invoke the Text Editor (ED processor) and specify its input, output, and operation modes. 

All parameters of the ,eel> ED control statement are optional. 

Format:: 

eci' label:ED,optionsname-1 ,name-2 

Paramtl9rs: 

options See Table 7-1. 

names Specifies input or output files or elements (see Table 7-1). 

D8scriJJltion: 

Table j' -1 lists the available options, the input/output files as specified by name-1/name-2, and 
functions. Unless otherwise f)pecified, name-1 and name-2 may be either files or elements. 

If namEI-1 is omitted, the name of an element in TPF$ will be solicited. If no options of the set C, 
l. A, Uare giv~n, the C option will be assumed. 



4144.31 
UP-HUM8ER 

Option 
Character 

Not I, R or U 

Not I, R or U 

A 

B 

C 

0 

E 

I 

L 

N 

P 

a 

R 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

Table 7-1. @ED Control Statement, Options 

UPDATE LEVEL 
7-2 

PAGE 

Name-l Name-2 Description 

Input Output Input is taken from name-1 and the resultant text is placed in name-2. 

Input None R option assumed for symbolic element. 

U option assumed for data file. 

Input Output Attempt auto recovery - see AUTO command (Table 7-2). 

'-
Input Output Batch m'ode when using a demand terminal - the ED processor run will not 

solicit input from user (see ON/OFF TRDINP). 

I 

Input or Ignored Enter input mode if element does not exist. Otherwise, assume U option. 

Output 

Input Output Demand mode when using a batch terminal - output listing of the ED 

processor run will contain solicitation messages. 

Input Output Set EOF mode on at start of edit (see ON/OFF commands). 

Output Ignored Initial insertion of symbolic input from the runstream which causes the ED 

processor to enter the input mode. The images following the @ ED control 

statement are inserted into the file named in name-1. The I option takes 

precedence over the R or U option. 

If the I option is specified or if two fields are specified, then on entry to the 

text editor a check is made on the output file (Le., field 1 if I option; field 2 

if two fields specified). 

If the output is a data file and the user specified an element in that file, then 

the ED processor errors off after printing the error: 

FILE NOT PROGRAM FILE FORMAT 

If the output file is a program file and the user did not specify en ar- element 

in that file, then the ED processor prints a warning message: 

WARNING: ON EXIT OUTPUT FILE WILL BECOME A DATA FILE 

Input Output Print all lines following the @ED control statement. The lines printed are 

indented and preceded by four asterisks. 
--

Input Output Suppresses printing of changed, found, or relocated lines. This option serves 

the same purpose as the ON BRIEF command (see Table 7-2). 

Input Output Output file will be Fieldata 

Input Output Output file will be ASCII. 

Input Ignored Input is taken from name-1 of the @ED control statement; no output text :.; 

produced (read-only mode). The UP command should be used it the user 

wishes to apply changes. 



4144.31 
UP-NUMBER Volume 3 System Processors UPDATE LEVEL 

7-3 
PAGE ~ SPERRY UNIVAC 1100 Series Executive 

, _____ -----i.-------L..-_ 

:ion Op1 
Char iElcter 

l , 

: 

Name-1 

Input 

(and 

Output if 

no 

Name-2) 

Input 

Table 7-1. @ED Control Statement, Options (continued) 

Name-2 Description 

Output Update the symbolic element by applying corrections and create a new 

symbolic element cycle. ForSDF-formatted files the original images will be 

replaced with the updated ones. 

The U option functions exactly AS it does for SIR$ usage. In particular, an 

output element name may be specified which need not be the same as the 

input element; the output element will have the same cycle information as 

would the updated input element if there were no second element specified. 

The T option letter is reserved for internal use to facilitate this feature. In the 

case that the current cycle is 62 and the number of cycles in existence is less 

than the maximum permitted for the element being updated, the output cycle 

number will be the smaller of nand m-1, where n is the number of cycles in 

existence and m is the maximum number of cycles permitted. 

Output Take an ERR$ exit (see Volume 2-4.3.2.2) upon a fatal or nonfatal error (batch 

mode only). 

The ED processor operates in two modes: input and edit. In input mode, all lines entered are directly 
inserted into the text. In edit mode, various commands may be used to modify existing text. Changing 
between modes is accomplished by entering a blank line. Most editing commands implicitly 
reference a particular part of the text. This is accomplished by an internal cursor maintained by the 
ED processor. This cursor may be positioned directly by some commands (number, +number, 
-number) and indirectly by others (LOCATE,FIND,CHANGE). 

If the P lOr Q options are not specified, the output file will be the same character set as the input file. 
If the input file is mixed, the type of the output file will be the same as the type of the label image 
of the input file. This means that print files will almost always be Fieldata, so the Q option will be 
required for ASCII editing. If a new element is being created by the explicit or implicit use of the I 
option, the modE~ will be Fieldata unless the Q option is specified. 

The editor will allow editing of print files without destroying line spacing. Any new lines which are 
inserted have a default spacing of one. An edited file may be @SYMed as a normal print file after 
any editing is performed on it. 

7.3. EDIT MO[)E COMMANDS 

Table 7--2 lists alphabetically the commands available to the ED processor while in edit mode (permits 
manipulation of images in an element or file). Some of these commands may be abbreviated to one 
or two characters as specified. All may be abbreviated to three characters. All commands should 
start in column 'I of the input line. 

When liIsing CHANGE, INSERT, RETYPE, and the corresponding abbreviated commands, only one 
blank should be left between the command and the parameter image. In all other commands of more 
than one param1eter, at least one blank must be left between each parameter. When errors are 
detected in a command, the command is not executed (some commands may be partially executed), 
an errol' message is given, and the next command in the runstream is executed, except in the case 
of the )( option in batch mode. 



4144.31 
UP~UMBER 

Commend 

ADD name 

ADD name num 1 num2 

ADD+ name 

ADD+ name num 1 num2 

APPEND 

ASCII keyword 

AUTO num1 

AUTO 

AUTO* 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

Table 7-2. ED Processor Commands 

Description 

UPDATE LEVEL 
7-4 

PAGE 

This command is used to add all or portions of a file to the current file. The 

first form adds the whole file. and the second form adds lines 'num l' through 

'num2' to the current file. The lines to be added are inserted at the end of 

the file unless a + immediately follows the command in which case the lines 

are inserted following the current position within the edit file. The 'name' is 

the element or filename (see Volume 2-2.6). If num2 is omitted. the single 

line at line num 1 is added. 

Go to the end of the element or file and enter input mode thereby allowing 

new images to be inserted. This command may be abbreviated to A. 

This command is used to specify that the character set of the output file or 

element should be ASCII (if keyword == 'ON') or Fieldata (if keyword == 'OFF'). 

If this command is not used. the character set of the output is determined from 

the P and a options or the character set of the input. 

This command specifies that an automatic save of the current file is to be 

performed as protection against processor or system failure. The "num 1" 

specifies that the auto save is to be performed for every "num 1" input 

transactions which alter the file being edited. When the auto save occurs. the 

ED processor will type "AUTO". Entering "AUTO" with no parameter wilJ 

perform an immediate auto save and reset the input transaction counter; it wi" 

also set the auto mode on. with a frequency (of input transactions which alter 

the file) of 131070. The effect of "AUTO*" wi" be the same as "AUTO". except 

the frequency will be left at 0 (that is. "AUTO*" is the same as "AUTO" followed 

by "AUTO 0"). An auto save is always performed when the ED processor goes 

to the top of the file. and in this case. "AUTO" will be printed if the frequency 

is nonzero. "AUTO 0" will terminate auto mode. Note that even if AUTO was 

never used. an auto recovery may be possible because of the implicit auto save 

each time the top of the file is reached. (Some commands. such as MOVE. 

may pass the top of the file more than once and wi" thus print "AUTO" more 

than once.) 

To recover the contents of the auto save- file after a run has terminated 

abnormally (i.e .• by system crash. terminal timeout. loss of carrier. etc.). the ED 

processor should be called with the A option set. If the A option is omitted 

and an auto file exists, the user will be asked, "DO YOU WANT AUTO 

RECOVERY?" An answer beginning with the letter Y will be assumed to be 

YES. and the effect will be the same as if the A option had been used. If an 

ED command. data, or the word "NO" is entered. the auto file information will 

be overwritten and lost. The name of the file and element (or just file) being 

edited will be printed before the "DO YOU WANT AUTO RECOVERY?" question 

is asked, to aid the user in deciding how to answer the question. If auto 

recovery is selected. the tables of the ED processor will be adjusted so that 

the output file and element will have the name of the file and element in the 

auto file. The tab character and tab stops wi" be set to the standard for the 

element subtype (if any) or to the default standards. Under some 

circumstances, the file which was in use at the time of the auto save cannot 

be retrieved or cannot be restored to the same status. This is the case if the 

file has read or write keys and the file is not assigned at the time auto recovery 

is attempted; it will be impossible to exit normally from the edit. and the user 



4144.31 
UP-HIlJMBER ~ SPERRY UNIVAC 1100 Series Executive 7-5 

Volume 3 System Processors UPDATE LEVEL PAGE ,-____ ~-----L--_ 

Table 7-2. EO Processor Commands (continued) 

~'------'--------'----------------~,------------------------------------------------------~ 
Command Description 

-.------,--------------------------~--------------.--------------------------------------------~ 
should free and reassign the file with the proper keys, followed by a second 

attempt at auto recovery. (Keys are not saved for reasons of security.) In either 

of these cases, the user will be informed by a diagnostic message. In some 

of these cases, such as when the R option was used, recovery will be 

impossible; the usual indication of this will be an I/O error status 5 and an 

empty file. 

The A option can be used to initiate an auto recovery at any time, not just after 

an abnormal termination of a run. This may be useful in other cases of 

abnormal functioning, such as overflow of a temporary file (which cannot be 

expanded) or the simple error of entering OMIT instead of EXIT. 

NOTE: 

This command should be used sparingly as it involves extra I/O and 

computation. Some sites may choose to set a minimum for the line 

count(larger than the standard of five) for this reason. An AUTO 0 terminates 

the auto save mode. Entering the AUTO command with no operand causes 

an immediate auto to be performed without affecting the auto counter. 

--.------.--------------------------~--------------.--------------------------------------------~ 

CASE UPPER 

CASE U 

CASE NORMAL 

CASE N 

CASE UPPER causes all input lines to be translated to upper case. In CASE 

NORMAL mode no translation takes place. CASE UPPER is assumed for 

Fieldata files or elements, and when the I option is specified without the 0 

option (see SHCHAR). 

~.------.--------------------------~--------------.-------------------------------.---------------~ 

CCHAR char This command sets the continuation character. When an input line to the 

editor has this character in it, the editor assumes that the next line or input 

is a continuation of this current line. This next line will be solicited in the 

normal manner except that a + will precede the solicitation. The character 

is initially set to a character which cannot be typed in. The character can be 

reset to this non-enterable character by using this command with no 'char'. 

--.------.--------------------------~--------------.-------------------------------.--------------~ 

CHANGE: Istring-1/string-2/m G 

C Istrin~,-1 Istring-:2/m G 

CHANGE: Istring-1/string-2I> m G 

C 
C? 

This command searches a specified number of text lines for (as with LOCATE 

command except that CHANGE staMs with the current line and LOCATE staMs 

with the following line). When and if the desired string, 'string ", is found, 

'string 2' is substituted for it. The number of lines to be scanned is indicated 

by 'm'. The global indicator, 'G' tells whether to change all occurrences of 

'string l' in the range of lines or just the first occurrence in each line. A 'G' 

means all occurrences and no character means just the first. The 'I' may be 

any character which does not occur in 'string l' or 'string2' except a blank. The 

'm' may be omitted in which case 1 is assumed. Instead of using 'm' and 'G', 

a user may change all subsequent occurrences in the file by using the word 

'ALL' (which may be abbreviated A) where 'm' is usually specified. Instead of 

using a large value for m, the user may specify the word REP (which may be 

abbreviated R) to indicate that the first occurence on each line of the rest of 

the file is to be changed. A special option allows the erasure of all characters 

following a given string in a text line. This is accomplished by placing a > 

immediately following the last string delimiter in the CHANGE image. If all 

specifications are omitted, the last CHANGE command will be executed again. 

The contents of the last CHANGE command can be printed by "C?". 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

7-6 
PAGE 

COMP e 

COMP* e 

COMPI e 

COMP:ve 

CPT 

Command 

CPUNCH num 1 num2 device 

CPUNCH num 1 device 

CPUNCH device 

CPUNCH 

CSF Executive control statement 

DELETE num 1 num2 

o num1 num2 

DELETE num1 

o num1 

DELETE+ etc. 

0+ etc. 

Table 7-2. ED Processor Commands (continued) 

Description 

This command computes the value of an integer expression. It the command 

is entered with a trailing asterisk, the computed valu9 will be printed in 

decimal; if the command has a trailing exclamation point, the value will be 

printed in octal; otherwise, nothing will be printed. The computed value is 

always retained for later use with either the LPSUB or the LPTST command 

"V" specification. If the command is followed by a colon, the colon must be 

followed by a variable V, which may be any of the 27 possibilities X, XA, XB, ... , 

XZ. The value computed by the expression will be saved as the value of the 

designated variable as well as for the V specification. The expression e may 

use the operators +, -, *, and I, as well as parentheses for grouping. The 

only operands allowed are integers, the variables (X, XA, etc.), and the 

specifications I, L, N, V, LC, CC, and LG, which have the same meanings as 

they do for the LPSUB command. Integers used in the expression are 

interpreted as octal (base eight) if they have a leading lero (standard 1100 

Series convention); otherwise, they are assumed to be decimal (base ten). For 

example, the numbers 015 and 13 represent the same value. 

This command prints out the SUPs used so far in the present run. The form 

of the message is (hours)H (minutes)M (seconds)S. The seconds field is given 

to four decimal places. 

This command is used to punch parts Qr all of a file at an onsite card punch. 

The syntax has the same meaning as with then SITE comma:1d. After the 

command is entered, a message MSG? will be typed out. The line typed in 

will be sent to the system console before the cards are punched. 

A "CO option is assumed for the @SYM command by CPUNCH so that a remote 

site may be designated for the output as well as an onsite printer. If no device 

is specified, a default of "CP" is used. 

If the @SYM operation requested by the (LN)SITE or CPUNCH command fails 

due to an invalid symbiont name, the lIser will be given one additional chance 

to enter a valid name. For a second invalid name or for any other error, the 

ED processor will print the name of the file for which the e,ror occurred, 

thereby making it possible for the user to select an appropriate dis~osit;on of 

the file. At the time the error message is issued, the file created has been freed 

and is catalogued. Therefore, the user should either SYM it for 

printing/punching using a valid sito-id or symbiont name or els. delet. it from I 
the directory. 

This command is used to submit a control statement via CSF~ (see 

Volume 2-4.10.1.1). Only statements valid for CSF$ may be submitted. The 

control statement must start in column 5. 

This command is used to delete lines from the text.The first form deletes lines 

'num l' through 'num2'. The second form deletes the next 'num l' line~ starting 

with the current one. A' +' following the command name will cause the editor 

to be positioned after the lines deleted; this saves one entire pa~s over the file. 



4 144.31 I SPERRY UNIVAC 1100 Series Executive 7-7 
uP~~~~ ______________ V_o __ lu_m __ e __ 3 __ S_y_s_t_e_m __ P_r_o_c_e_s_s_o_r_s ______________________ ~_U_PD_A_T_E_LE_V_EL ____ _LP_A_G_E ____ ___ 

Command 

DITTO num1 

DITTO nlum 1 numZ 

DOC linl~S column IP 

IEXCH char octal number 

IEXIT 

IFC mas~ 

IFC*n mask 

IFC,n mask 

FIND mllsk 

F mask 

F,n masllt 

F? 

Table 7-2, ED Processor Commands (continued) 

Description 

This command allows duplication of other lines in the file, The duplicated 

lines are inserted at the present position in the file, The first form results in 

the one line at 'num l' being inserted in the present position. The second form 

results in all lines 'num l' through 'num2' being duplicated at the present 

position. Care must be exercised to be sure the most current line numbers 

are used. At the completion of the DITTO, the pointer is positioned at the last 

line inserted; this saves one entire pass over the file. 

This command is used to add documentation to existing images. 'Unes' is an 

integer indicating the number of lines to be documented starting at the current 

line. 'column' indicates the column at which the comment is to be inserted. 

P, if specified, indicates that '. ' (period-space) is to be automatically inserted 

before the comment. When this command is entered, each image will be 

printed out to the proper column via ATREAD$. The user may then enter his 

comment or one of the following: 

@EOF 

@EOF n 

@EOF x 

no comment for this line. 

the line will be retyped to the specified column plus 

n is one through nine. This is used for lineS of code 

which extend beyond the normal comment column. 

discontinue documentation. 

After completion of this command, the editor is positioned following the last 

line read by the command. 

This command is used to allow input of characters not represented in the 

keyboard character set. 'char' is the character which is to be used to stand 

for the number whose internal ASCII representation is 'octal number'. When 

'char' occurs any IPlace in an input line it will be replaced by this character. 

An EXCH with no parameters disables this feature. As an alternative to the 

'octal number' for ASCII control characters, the character name (e.g., NUL, 

BEL, HT, etc.) may be used. 

This is the command used to take a normal exit from the ED processor. All 

the corrections will be applied to the designated fila and a normal exit will be 

taken. When an overflow occurs on EXIT, the editor will automatically expand 

a cataloged file until it is large enough to hold the output; for temporary files, 

a message is generated, and the user may recover editing using the A option. 

The FC command behaves in the same way as the FIND command except that 

all occurrences are flagged in the remainder of the file. By immediately 

appending an asterisk followed by a number onto the command word, the 

search will stop after that number of occurrences of the target are found. (See 

7.6.5.4.) If 'mask' is omitted, the mask from the last F/FC is used. A comma 

followed by a number indicates the number of lines to search. 

FIND searches for an image which corresponds exactly column for column 

starting at column 1 with the 'mask'. Transparent characters may be used in 

the mask which will test successfully with any character in the column. The 

normal transparent character is a blank, but an alternate may be designated 

with the TCHAR command. The search begins with the line following the 



41114.31 i SPERRY UNIVAC 1100 Series Executive 7-8 _ J ___________ V_o_lu_m_e_3_S_y_s_t_e_m_P_r_o_c_e_s_s_o_r_s ___________ --L._U_PD_A_T_E _LEV_EL __ ....LP_A_G_E _____ _ 

Table 7-2. ED Processor Commands (continued) 

Command Description 
----.. -----------------r----------------------------------------------------------4 

current one and proceeds until a match or end-of-file is detected. The 

command may be abbreviated to F. By immediately appending a comma 

followed by a number onto the command word, the search will be limited to 

that number of lines. To allow searching only the current line in LOOP mode, 

a test can be made for FIND or NOFIND condition. This option is invoked by 

following the command name immediately by a period. Note that without this 

option, FIND begins with the following line and not the current line and 

I 

repeats. If 'mask' is omitted, the mask from the last FIFC command is used. 

"F?" will pri~t the default mask. 

Both F and Fe recognize the TAB character. When a TAB character is 

encountered, all characters are assumed to match up to the next tab stop, and 

matching resumes at that point. This can save much typing and counting. 

-.-.. ---., .. - --------------+---------------------------.------1 
This command position the editor at a line (specified by number) in the input 

text, even after the input file has been edited with insertions, deletions and 

other modifications. If the desired line has been deleted or altered in some 

way, the message: 

REQUESTED LINE DELETED OR ALTERED 

will be printed, and the editor will be positioned at the next existing line. This 

command is useful when a user is editing text while working from a listing. 

This command cannot be used with print files. 

-.. - .. ----.-------------+---------------------------------l 

This command behaves exactly the same as the INSERT command except that 

the line is inserted before instead of after the current line. 
, .. _-_ .. _._-... _-------_._--------+--------------------------------; 
II !LlI·)l number term-sub 

~ 'J '1 :.:m tK t t€fm--sub 

This command allows inline editing of a given line. If 'number' is blank, the 

current line is assumed to be the one to be edited, unless the command is 

followed by a +, in which case the next line will be the one to be edited. 

Otherwise the editor proceeds to line 'number'. The line will be printed out. 

The user can then enter editing information directly below the line to modify 

it. The "term-sub" field is optional; the normal termination character for 

editing c()mmands is the exclamation point ("I"), but this field can be used to 

specify a different character if the information to be edited contains 

exclamation points. (Note that if the "number" field is to be omitted, the 

"term-sub" field must not be interpretable as an expression.) The editing 

characters to be used are: 

R 

o 

The string following this command is inserted following 

the character immediately above the I. The string is 

delimited on the right by the termination character '1'. 

The characters following the R will replace the 

characters immediately above them. A I is required to 

terminate replacement. 

The characters in the line above are deleted between 0 

and the I. 



4144.31 I SPERRY UNIVAC 1100 Series Executive 7-9 
~~~ ________ . _______ V_o_l_u_nn __ e __ 3 __ S_y_s_t_e_m __ P __ ro_c __ e_s_s_o_rs ________________________ ~U_P_D_AT_E_L_E_VE_L ____ _LP_A_G_E ______ _ 

INPUT

INSERT s:ring

I string

LAST

Command

Table 7-,2. ED Processor Commands (continued)

Description

More than one of the insert, delete, and replace operations may be requested

in a single INLINE edit. The letters I, R, and 0 may be entered in either upper­

or lower-case. Before using this command in @@CaUE mode on a TTY-like

terminal, the user is advised to enter the command 'OFF U"; otherwise, the

alignment of the editing line will be incorrect.

The alternate character specified by "term-sub" remains in effect for only a

single command. Because of alignment problems, the entry of the editing

commands following a MCCHAR character should be done with caution.

This command directs the editor to enter input mode. In this mode everything

which is typed in is inserted in the file until an exit from the mode is taken.

This is especially useful when large volumes of input are to be entered. Exiting

from this mode is accomplished by typing an @EOF when in EOF mode (see

ON and OFF commands), a carriage return, or blank line when not in EOF

mode, or by @EDIT with no command. Tabs are recognized in this mode.

This command is used to insert a line following the line presently pointed at

by the editor. The new line will then be the point at which the editor is

positioned. The string to be inserted starts after the first blank following

INSERT. If a '+' immediately follows the command, the string may be input

on the next line (this provides more room, as a full input solicitation will not

occur, and the command itself is not present. If the command is entered

without a "string" when not in EOF mode (see 'ON' command) the editor will

switch to input mode. In EOF mode this simply results in the insertion of a

blank line.

This command directs the editor to move to the last line in the file and stay

in edit mode.

The last line cannot be altered after this command has been used until the file

position is changed. There are six commands which are illegal after the LAST

command has been used (until a line has been added or the file position is

changed); these are CHANGE, DELETE, ~OC, IB, INLlNE, and RETYPE. An

attempt tl) use any of these immediately after entering the LAST command will

produce a diagnostic (and error termination in batch mode if the X option was

set).

In most cases, any command (such as GO or entering a number) which

attempts to move to the current line number will simply cause the current line

to be typed out. Because of the special situation which exists after the LAST

command has been used, the ED processor will actually do the move if a

transfer to the current line number is attempted after a LAST. This will permit

the above six commands to be performed.

4144.31

UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

7-10
PAGE

Table 7-2. EO Processor Commands (continued)

Command

LC string

LC quote-char string quote-char

LC*n string

LC,n string

LCHAR char

LIMIT keyword num 1 num2

LOCATE string

LOCATE quote-char string quote-char

LOCATE,n string

LOCATE. string

L string

Description

LC behaves as LOCATE except that all occurrences of the string in the

remaining text are located. Just before each line containing an occurrence

is typed out, the line number is typed out. By immediately appending an

asterisk followed by a number onto the command word, the search will stop

after that number of occurences of the target are found. A comma followed

by a number indicates the number of lines to search. If 'string' is omitted, the

string from the last LlLC command is used.

This command sets the quote character for the LOCATE command. The

default character is quote n. A non-input charactGr will be assumed if 'char' I
is a blank. By immediately appending an asterisk followed by a number onto

the command word, the search will stop after that number of occurrences of

the target are found.

This command allows setting of left and right column limits for CHANGE,

LOCATE, and PRINT. keyword is CHANGE, LOCATE, or PRINT (each of which

I

;::~: ::~?:::~:::.:~::~=:·:~~~:~I:~~i~;'i:~;~:i~::~::S~~::: ::: II

specified, the column limits are set to the default values (1,132). If byword

is CHANGE, then this command sets limits on the columns which w:tl be I
searched by the CHANGE command. This is useful for protecting areas of text

lines in a file. If keyword is LOCATE, then this command sets limits on the

columns which will be searched by the LOCATE and LC commands. If

keyword is PRINT, then this command sets limits on the columns whicl. Will

be printed by the output commands (PRINT, LNPRINT, QUICK, LNQUICK,

PUNCH, CPUNCH, SITE and ·SITE and LNSITE) as well as by other commands

which print lines of text. As before (using the LIMIT command), print column

limits specified by the user are rounded to the nearest ASCII word boundary,

e.g., LIMIT PRINT 8 9 will cause columns 5 to 12 (words 2 and 3) to be printed

by the PRINT command.

I

I

Limits specified by this command may be overridden on any single command "
by the use of immediate column limits specifications (see 7.6.5). .

This command is used to search the text for a given string of characters. The

search begins at the line following the current line and proceeds sequentially

through the text until a find is made or the end of file is encountered. The i
first form ignores multiple blanks in the images. The second form requires that

the text image be exactly the same as the string within the two . :uote

characters. This command may be abbreviated to L. By immediately

appending a comma followed by a number onto the command ',Nord, the

search will be limited to that number of lines. To allow searching the current

line only in LOOP mode, a test can be made for FIND or NOFIND condition.

This option is invoked by following the command name imii,edietely by a

period. Note that without this option, LOCATE begins with the following line

and not the current line. If 'string' is omitted, the string from the last ULC

command is used. If the LC variable is to be referenced .'Jfter ~ LOCATE, the

quoted form should be used; otherwise, the position indicated may inclur 1

leading blanks before the string located.

I

I

i

4144.31
UP-NUMBEA

I SPERRY UNIVAC 1100 Series Executive I I 7 11
~, ________ . _____ V_o __ lu_m __ e __ 3_S __ y_s_te_m ___ P_ro_c_e_s_s_o_r_s ______________________ ~~U_P_DA_T_E_L_~_E_L ____ L_PA_G_E_-____ __

Command

L.OOP n I~tart increment

L.OOP n

L.ooP?

L.OOP+

L.OOP*
L.OOPI n start incrernent

LPJUMP x

MACRO n

MACRO"~ n

MACRO? n, n, n, ... ,

MACRO?

MACROn

Table 7-2. ED Processor Commands (continued)

Description

This command allows repetitive execution of a group of statements, n is the

number of times the statements are executed (the default value is 0), start

specifies the value of the counter (the default value is 1), increment indicates

that the current line number is incremented by this amount on each iteration

(the default value is 1). The commands to be executed will then be solicited

with an LP**. (See LOOP Operations 7.4.)

The following commands are often used with the LOOP command:

LPSUB (See 7.6.2)

LPTST,n, (See 7.4.3)

XTI . (See 7.4.4)

LPEND (See 7.4.5)

LPJUMP (See LPJUMP)

LPX (See 7.4.6)

This command is used to perform an unconditional transfer of control to a

labeled point in a loop, a macro, or in the input stream. The "x" denotes a label;

a label may contain any ASCII characters except blank or comma, but lower

case characters are treated as equal to the corresponding upper case

characters. Transfers within a loop or a macro may be backwards or forwards,

but transfers within the input stream may only be forwards. The specified

transfer point is a line whose format is one of the following:

:x

@EDIT :x

where the colon must appear in column 1 (column 7) and must be immediately

followed by the label with no intervening blanks. Such a labeled line may not

contain any other editor commands, and has no effect if executed rather than

used as a LPJUMP target. The search for a label within a macro or loop is

downward to the bottom of the outermost loop and then downward from the

top of the currently active loop. If the label cannot be found within the loop,

an error message is printed and the loop is terminated. Labels should be

unique within any individual macro and within a loop entered from the

runstream; this restriction is not absolute, but the search algorithm should be

understood thoroughly before using non-unique labels. It is inadvisable to

transfer out of the currently active loop. The label on the LPJUMP command

may be generated by LPSUB substitution, but it is not permitted to generate

any part of a label line itself by use of LPSUB. When LPJUMP is used in the

input stream, the name of the jump target will be printed, and input solicitation

will indicate that a jump is in progress. The "@@X C" command may be used

to stop a jump as for stopping a LPTST skip.

For each of the first three forms, "n" denotes the name of a macro. Macro

names are unique by the first three characters only. The first character must

be alphabetic, but the other characters may be alphanumeric; the dollar sign

may also be used. If a macro name duplicates the name of an existing ED

command, the definition will be accepted, but the macro will never be callable.

The first form specifies the entry of a macro definition. Macro definitions are

entered exactly like LOOP definitions (including the use of @EOF and @ EOF L),

4144.31

UP-NUMBER

Command

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 7-2. EO Processor Commands (continued)

Description

UPDATE LEVEL
7-12

PAGE

except that they are solicited by the typeout "MAC*". A macro definition

operation will destroy any stored loop, so that "LOOPl" will be invalid. The

second form specifies the deletion of the definition of the specified macro. It

is not necessary to delete a definition before redefining a macro; this is done

automatically. The third form will list the text of one or more defined macros,

the fourth form will list the names of all defined macros, and the fifth form will

list the text of all defined macros. (See 7.6.) (For purposes of listing macros,

the set of defined macros contains only those known to the ED processor;

those contained in program files as elements named "mac-EO-MACRO" but

which have not been called will not be listed.)

----------.-------------------------+--~

MAIL user-id

MAXLINE number

This command allows messages to be sent and received in communication

with other users. The editor will then solicit 100 lines of input with:

MAIL**

If the desired message is to be less than 100 lines the mode can be terminated

by entering an @EOF. After the message is received by the designated person

it will be deleted.

The ED processor will never search for mail in batch mode; therefore, there

will never be a solicitation "~O YOU WANT YOUR MAIL?".

In demand mode, the ED processor will search for mail on entry (after the

sign-on line) in either edit or input mode.

If the user's response to the solicitation "~O YOU WANT YOUR MAIL?" comes

from an add file, does not begin with My", and is not "NO", then it will be treated

as a command (if edit mode) or the first input line (if input mode).

NOTE:

The ED processor will look for mail only the first time it is called in a run, rather

than each time the ED processor is invoked. The LOOK mode has been

deleted. The system generation parameter MAILINIT controls whether the ED

processor will look for mail each time it is called: As released, the value is

0; setting it to 1 will restore the previous mode of operation. A system

generation parameter MAXMAIL is provided to control the size of mail files;

to encourage larger (and thus fewer) files, the ED processor is released with

this parameter set to 100 instead of the previous value of 10.

This sets the maximum length (1 - 132) to which a line may increase. If it is

exceeded, the line will be truncated. The default is 132. The largest

acceptable line length is configurable in the ED processor but also depends

on what is permitte~ by the Operating System.

UP-NUMIBER
SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

7-13
PAGE

4144.3~
--------.--~------------~-----------

Command

MCCHAR chaf

MOVE num1

MOVE num 1 num2

MSCHAR char

number

+flumbelr

-number

Table 7-2. ED Processor Commands (continued)

Description

This command specifies a character which is used to separate multiple

commands given on a single line. Each occurrence of the multiple command

separator character terminates a command or input line and begins a new

one. For example, the user may enter:

MCC #
GI 453#C IABC/XYZI

to make changes on input line 453. If the last non-blank character on a line

is the MCCHAR character, the effect is that of a blank line following the last

command on a line.

When using the LPTST command with this feature, the skip count is

decremented by 1 for each line (NOT command) scanned, including the

remainder of the line containing the LPSUB command, if there were additional

commands on that line. The LPSUB command substitution count applies to

commands rather than lines. Care is required, however, if the substituent

contains the MCCHAR character. In order to be recognized, labels r:xxxx")

must appear as the first command on a line.

This feature is normally disabled, and it may be discontinued by entering

MCCHAR with no character present. This character is also recognized in input

mode and allows entry of several text lines in one line of input. In input mode,

each command entered using the @EDIT feature must begin with @EDIT if

more than one command appears on a single line through use of the MCCHAR

character. Since the @EOF image is a system image rather than an ED image,

it must always appear by itself on a single line.

This command performs the same operation as the Dino command except

the original lines are deleted after the duplication has taken place. The syntax

is the same as for the DlnO command. Care must be exercised to be sure

the most current line numbers are used. At the completion of the MOVE, the

pointer is positioned at the original line number.

This command sets a character which will be translated to a master space

(more commonly known as the "at" symbol, @) when it is input in column one

of input lines in input mode. If 'char' is a blank, no master space translation

is available.

These commands are used to pOsition the editor at a desired line in the text.

The first form directs the editor to line 'number'. The second form directs the

editor to move to the position current line plus number. The third form directs

the editor to move to the position current line minus 'number'. When the

specified line is located, it is typed out (if not in BRIEF mode), and

modifications may. be made to it. If it is desired to insert lines before line 1,

o may be typed in. This will position the editor immediately before the first

line.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

7-14
PAGE

Command

OMIT

ON special mode special mode

OFF special modo special mode

OPR string

OPR*string

Table 7-2. ED Processor Commands (continued)

Description

This is the command to be used if the user does not want his corrections to

be applied to the file on exit. The input file will remain as it was at the

beginning of the editing session. and the output file. if any. will not be

produced. In read-only mode. EXIT is synonymous with OMIT.

This command is used to define some special modes within the editor. ON

turns the mode on. and OFF turns it off. The special modes are:

BRIEF

DSPLIT

EOF

do not echo corrected images for CHANGE and

DlnO.

delete lines transferred by SPLIT command.

special mode where blank lines may be entered.

INP command enters input mode and @EOF exits

from input mode to edit mode. While;/1 input mode

blank lines may be entered. Also the INSERT

command with no image following will enter a blank

line.

INPSEQ - When on. input solicitation (if active) will include the

input line number in parentheses. (This is the line

number referenced by the GI command.)

lSTINP - When on. input lines and commands to the ED

processor will be printed in the run listing. When

off. input will not be listed. This mode is also

controlled by the l option on the ED processor call I
statement. This mode may be turned on to trace the

statements executed by a lOOP or MACRO call.

MEMORY -

NUMBER -

remember modes on successive executions.

pr~cede each line printed out with its number.

Print control images will be printed if this mode is

on.

PCNTRl

QUICK

TRDINP

UNISCP

XBRIEF

compress extra blanks out of all output to device

When on. demand input is via TREAD$. When off.

demand input is via READ$. There is no effect in

batch mode. This may be turned Off in @@CQUE

mode to permit the fastest possible typing speed.

allow correct character placement on UNISCOPE I
terminal with the INLINE command.

do not echo lines transferred by SPLIT or ADD.

All of the modes may be abbreviated to one letter.

This command is used to send a message to the system console. The first form

sends the message ·string·. The second form does the same, but also solicits

an answer. The string may not be more than 50 characters or it will be

truncated.

4144.31
UP-HUMBER

I SPERRY UNIVAC 1100 Series Executive I I 7 16
~ ________ . ____ V_O_I_u_m_e __ 3 __ S_y_s_t_e_m __ P_r_o_c_e_s_s_o_r_s ______________________ ~_UP_D_A_TE_L_E_VE_L ____ ~_P_AG_E_-______ __

pce n m

pce n

PCC'+

Command

Table 7-2. ED Processor Commands (continued)

Description

This command behaves like the PRINT command, including the use of the form

PCC+. Any ASCII control characters on a line will be mapped into the

character whose code is 0100 larger, and any lower case characters on a line

will be mapped into the character whose code is 040 smaller. The line will

then be printed, followed by a second line which will contain spaces below

any characters which were in the 64-character ASCII set, "L" below any

characters which welre lower-case, and "CO below any characters which were

control characters. Thus, if a line consists of the characters upper-case a,

lower-case n, and BEL, PCC would print that line as:

ANG

LC

-.----------------------~--~
PRINT num 1 num2

PRINT num 1

PRINT!

PUNCH num 1 num2

PUNCH nUITI1

PUNCH

QUICK nUll n1 num2

QUICK nul'! n1

QUICKI

REMARK U txt

REMARK*t :ext

REMARKtte lxt

REMARK?t I!xt

This command is used to print out lines of text.The first form prints lines

'num l' through 'num2'. The second form prints the next 'num l' lines. If the

command is immediately followed with a + the printing starts with the next

line instead of the current one (example: PRINT + 3). The third form prints the

entire file from the top. If no number or recognizable symbol follows the

command, a 1 is assumed; that is, the present line will be printed out. This

command may be abbreviated to P.

See also PCC command.

This command is used to punch paper tape for form II paper tape input (see

Volume 2-8.2.1.2.2) at a terminal which has punch and read hardware. The

syntax for this command is the same as that for the PRINT command. When

the command is entered, the following response will be given:

DEPRESS PUNCH ON

The processor will then pause to allow the user to push the punch on button

on the paper tape punch hardware. After pausing, the designated lines will

be typed out which will cause the paper tape to be punched at the same time.

Rubouts will be punched at the start and end of the tape. The tape so

produced can be used as normal form \I input.

This command prints lines with all nonsignificant blanks omitted. This

provides a fast method of examining areas of the file. 'num l' and 'num2' are

the same as on the PRINT command. Plus (+) may also be used on the second

form with the same meaning. This command may be abbreviated with a Q.

This command is intended primarily to incude commentary in loops, although

it may also be useful in an @ADD file. The "text" may consist of any comment

the ED user may wish to include. If the form REMARK * is used, the text will

be printed. prefixed by "REM*:", which may be useful in conjunction with the

XTI command. The form REMARKI has the same effect as REMARK*, except

that the prefix will not be printed. The form REMARK? is used to solicit a

response; this response may be accessed later via the LPSUB and LPTST QU

specification. The LPSUB command can make substitutions into the text field

of a REMARK command.

4144.31
UP-NUMBER

RETYPE string

R string

RP number

SCALE

SCALE n1

Command

SCALE n1 n2

SCALE n 1 n2 n3

SCALEI etc.

SHCHAR char

SEO.id i,j

SEO.id col i,j

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 7-2. ED Processor Commands (continued)

Description

UPDATE LEVEL
7-16

PAGE

This command is used to completely replace the current line with the string

following the first blank after the command. A + may be used after the

command with the same moaning as with the INSERT command.

This command is used to set a repeat counter for the INSERT command. Any

insertion will be repeated 'number' times. The counter remains in effect until

explicity reset to 1.

This command causes a line to be printed which can be used as a measuring

scale for column sensitive operations. It consists of the digits 0 through 9

repeated with the digit 0 falling in a column whose number is congruent to

o modulo 10. If n2 is omitted, 72 is assumed; if n 1 is omitted, 1 is assumed.

If the command is entered in the form "SCALE!", a second line will be printed,

consisting of the tens (and possibly hundreds) digits. If both n 1 and n2 are

present, there may be a third parameter, n3, which indicates an offset value

to be added to the digit printed in each column. This may be of use in lining

up columns for input with the "I" command, as by entering "SCALE 8 80 3",

where the actual values used will depend on how many digits are printed by

input solicitation. If n3 is omitted, a value of zero is assumed.

This command specifies a character for case shifting for use with devices

(teletypewriters, card readers) which do not have lower-case capabilities.

When the specified character is encountered on any line processed by the ED

processor, all following upper-case alphabetic characters will be translated to

the corresponding lower-case characters until another shift character is

encountertJd. The user should always specify "CASE NORMAL" before

enabling this feature. If no character is specified, the shift feature is disabled,

and shift mode is turned off. The printout from the STATUS command will

indicate whether shifting is active or not. The shift character itself will be

deleted from any lines in which it appears.

This command causes sequence numbering to be inserted into a specified set

of columns on each image in the file. The value of i is the starting number,

and j is the increment. Omitted values are given a default of 100; if i is

omitted,i will be ignored.

The id field may contain any ASCII alphanumeric characters. If it is omitted,

the sequence field will contain only the sequence number. Sequence

numbers are printed with leading zeros. If the sequence number is or

becomes too large to fit in the field, it will be reduced modulo the appropriate

power of ten. If the id field is the same size as the sequence field, no sequence

numbers will appear, just the id. If the id field is larger than the sequence field,

an error will result.

The col specification defines the column limits of the sequence field in the

format for immediate column limits specifications as on the CHANGE

command ([m,n], etc.). If the col specification is omitted, columns 73 through

80 are assumed. The use of a column specification may be particularly helpful

when editing COBOL or BASIC elements, to create required sequencing or line

numbering.

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

7-17
PAGE

4144.31 I
UP-NUMB:_R __ ~

--~--------__ ~L_ ________ __

Command

SET tab 1 tab2 tab3 ... tabn

SET + tab 11 tab2 tab3 ... tabn

SITE num 11 num2 device

SITE num 11 device

SITE device

SPLIT name

SPLIT name num 1 num2

Table 7-2. ED Processor Commands (contil1ued)

Description

This command is used to set the tabs for the commands which allow them as

explained above. As many tabs as desired may be designated. Each SET

command redefines all previous tabs, and so a SET with no tabs clears the

tabs.

If no SET has been performed, the tabs are set as follows:

5,7,73

8,12,73

if the input element is type FORTRAN or FORTRAN

PROC,

if the input element type is COBOL or COBOL PROC,

6,11,16,21,26 if the input element is type ALGOL, PLUS or PUI,

11,21,39,73 otherwise.

If the command is entered as 'SET +', the indicated tabs will be added to the

set of tabs already in use. In this case, the first tab specified must be larger

than the largest existing tab. This feature can be used in a loop to set up a

.number of evenly spaced tab stops as follows:

SET

LOOP 15 6 5

LPSUB L,$

SET+ $

@EOF

The first SET is necessary to clear any existing stops. The loop given will set

tab stops at columns 6, 11, 16, 2.1, ... ,76.

This command is used to direct output to an onsite printer. The meanings for

num l' and 'num2' are the same as for PRINT except that if no numbers are

given, the third form is assumed 'device' specifies the symbiont name to which

output is sent. If the field is not specified, PR is assumed. After this command

is entered, a message as follows will be typed out:

HOG?

The line typed in here will be used to head the onsite output. Periods must

not be used in this header as anything beyond the period will not be printed.

After the output is done, the following will be typed:

MSG?

The user should enter here the information necessary to indicate where and

to whom the output should be returned.

This command is used to build new elements or files from portions of a current

file. Note that the default for the ON command OSPLIT is on and data lines

tranferred by SPLIT will be deleted. The first form caused all lines preceding

the line currently pointed at to be reproduced as the designated file. The

second form causes lines 'num l' through 'num2' to be reproduced. An 'I'

4144.31
UP-NUMBER

SSP n

SSP?

Command

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 7-2. EO Processor Commands (continued)

Description

UPDATE LEVEL
7-18

PAGE

immediately after the SPLIT command causes the whole file to be copied. The

character set (ASCII or Fieldata) of the new file is the same as the character

set of the output file.

When used in read-only mode, the SPLIT command will always function as

if DSPLIT mode is off. If DSPLIT is on, a diagnostic message will be printed.

The SSP command has two formats. The form "SSP?" prints out tl-.e line

spacing value for the current line. The form "SSP n" sets the line spacing value

for the current line to n; if n is omitted, a value of 1 is used. This command

may be used to override the automatic value of 1 for line spacing for newly

inserted lines. This command may only be used when editing print files. In

read-only mode, only the "SSP?" form is valid.

STATUS special mode , ... , special mode

STA*

This command is used to request the status of special modes set by the ON

and OFF commands. If no special modes are specified, the status of all will

be listed, along with other status information.

STK x

TAB tab-char

TAB

TCCHAR char

The form "STATUS*" with no specifications will not list the mode values, but

will give the other status information.

The STK command provides a way of remembering the set of ON/OFF modes

and is intended primarily for use in macros. The stack depth limit is five. If

x is omitted or is UP, the modes will be saved. If x is ON or DOWN, the modes

will be restored. Other specifications are erroneous. No checks are made for

the number of "UP" operations exceeding five or the number of "ON"

operations exceeding the number of "UP" operations.

This command is used to spe6ify which character is to be used as a tabulator

character. This character is recognized on the INSERT, IB, and RETYPE strings

and is recognized on all input when in the input mode. The charac!er is not

transmitted to the file and behaves just as a tab on a typewriter. If no character

has been spAcified, a semicolon (;) is the tab character. If no TAB has been

performed, the tab character is set as follows:

. # ' (number sign) if the input element is type ALGOL, BASIC,

PLUS or PL 1.

- (underline) if the input element is type DOC.

(semicolon) default.

A blank may also be used as a tab character, by specifying the tab character

as "SP". ASCII control characters may be specified by name (NUL, SOH, etc.)

as well as by direct entry. Entering this command with no character specified

disables the tab character.

This command allows setting a transparent character for the CHANGE and

LOCATE/LC commands.

If specified in string 1 of the CHANGE command or string of LOC".TE/LC, the

character char will match any character in the text. There mc.iY be any number

of occurrences of char in string 1 of a CHANGE command. If the tr:':'lsparent

4144.31 I SPERRY UNIVAC 1100 Series Executive 7-19
UP~UM!~~ _____________ V_o_l_u_rn_e __ 3 __ S __ y_st_e_rn ___ P_ro __ c_e_s_s_o_rs _________________________ ~U_P_D_AT_E_L_~_E_L ____ ~P_A_GE ______ ___

Table 7-2. ED Processor Commands (continued)

~.------.------------------------~---,

Command Description
r--.------.-------------------------~--_4

character occurs in string 2 of the CHANGE command, each occurrence of the

character will stand for the character in the original image matched by the

corresponding occurrence of the transparent character in string 1. If the

number of transparent characters in string 2 exceeds the number in string 1,

the excess transparent characters in string 2 will stand for themselves.

For example, the command sequence:

TCCHAR %

C /%/% / G

will place a space after each character of the current line.

No char field disables the feature.

TCCHAR SP sets the transparent change character to blank.

The feature is initially disabled. The TCCHAR will also be recognized as a

"match anything" character for the LOCATE and LC commands.

r--.------.-------------------------+---~

TIME This command prints out the date, time and cycle information and the name

and type of the output element or file.

---.------.-------------------------+----------------.--~

TYPE processor-mnemonic

TYPE* pmcessor-mnemonic

Sets the processor type for symbolic element output. The processor

mnemonics are: ALG, APL, ASM, ASMP, BAS, COB, COBP, DOC, ELT, FOR,

FORP, FLT, LSP, MAP, PLS, PL 1, PNC, SSG, SEC, TCL. Octal numbers may also

be used instead of the mnemonic.

If the TYPE command is entered as tlTYPE* xxx", then the tab character and

tab settings appropriate to the type xxx will be established, replacing any tab

character snd settings currently in effect.

r-----------------------------------4--1
UNDO This command causes all changes made since the last return to the top of the

file to be ignored, and the editor is positioned At the top of the file. If no

changes have been made, a diagnostic message is printed, and the file

position remains unchanged. Since some commands (for example, DELETE,

MOVE, and DITTO) implicitly go to the top of the file, it will not be possible

to recover from their effects in all cases. Caution should be exercised when

using the UNDO command.

---.------.------------------------~---~

UP This command is used to cause the editor to behave as if the U option had

been specified on the control statement. This is used if the entry to the editor

was made with an IR option.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

7-20
PAGE

Command

WAIT n

XPC print control image

7.4. LOOP OPERATIONS

7.4.1. LOOP Command

Purpose:

Table 7-2. ED Processor Commands (continued)

Description

This command allows invocation of a voluntary wait.

If @ @X C is used to interrupt the waiting, the interruptwill occur after at most

a 30 second delay. The time may be specified as a decimal number of

seconds or by parameters of the form nH, nM, and nS, where any combination

is permitted, n is a decimal integer of six digits or fewer, and values of n need

not be less than 60. The keyword UNTil specifies a time of day to be waited

for, and AM or PM may be used, as well the 24 hour clock.

This command is used to submit a print control image via APRTCN$. (see

Volume 2-5.4.2 for description.) The print control image must start in column

5 and may contain one or more print control functions, limited only by the

length of the line. See Table 5-2 of Volume 2 for the list of valid print control

functions.

Allows repetitive execution of a group of statements.

Format:

LOOP n start increment
LOOPI n start increment
LOOP?
LOOP n
LOOP+
LOOP*

Parameter:

n

start

increment

Description:

Specifies the number of times commands are executed (default value
is 0).

Specifies the initial value of the counter (default value is 1).

Indicates that the current line number is to be compared if it is N
(default value is 1).

When the desired number of commands has been entered, the user should enter the command
LOOP n where n is the number of times the commands are executed. The commands to be executed
will then be solicited with an LP* *.

4144.31 I SPERRY UNIVAC 11C'O Series Executive I I 7 21
__ U_P~_U_M_B_eR ___ ~ ___________ V_o_l_u_m_e __ 3_S __ ys_t_e_m __ P_r_o_ce_s_s_o_r_s _____________________ ~_up_D_An __ L~ __ EL ____ ~_AA_G_E-______ _

The LOOP command is ended with an @ EOF (with a nested Loop, only the outer most loop is ended
with @ EOF; LPENC~ will end inner loops). If an @EOF in the loop is desired, this may be accomplished
by @EOF L. The sentinel character L will allow the LOOP entry to continue. An erroneous loop may
be aborteld before execution begins by @@X C followed by @EOF. The execution will stop after 'n'
executions, when the bottom of the file or element is reached, or if @ @X C is entered.

The formiat "LOOP?" (no parameters) will print out the currently stored loop. The format "LOOP+" (no
par'ameters) will e>tpand the space available for storage of loops and macros by 512 words; this may
be needed for exc.~ptionally large loops. LOOP + may be used more than once. The format "LOOP*"
may be used to contract the space used for loop and macro storage when it is no longer needed.
An attemlPt to contract to less than the initial size will be ignored. In order to release space, there
must be no information stored in the area to be released, or else the command will be ignored. This
IT.eans that macros no longer in use must be deleted with "MAC*" before attempting to release
storage. LOOPI causes the currently stored loop to be executed again with new parameters. LOOP?
will print out the Gurrently stored loop.

Loops may be nested up to ten deep. All nested loops must be terminated by a corresponding LPEND
command. The LOOP command is identical for nested loops, except that the exclamation point in
'LOOP!' will be ignored, as it is meaningless. Macro calls are treated as nested loops.

Note that any command which causes the editor to pass the start of the file, such as one which causes
it to back up its position in the file (for example, -n, 0, or FC) will terminate a loop which did not request
non-stop operation (by specifying the iteration count with a trailing exclamation point). The DELETE,
MOVE, and DITTO commands are 'treated as special cases and will not terminate a loop. The LAST
command goes to the end of file, but does not pass the start of the file, and thus will not stop a loop.
The SPLIT command will stop a loop, as will unsuccessful FIND and LOCATE commands which reach
the end of file.

Example:

0:1> L.OOP 99B99
LP* *1> LOCATE ABC =
LP**I> i PRINT ABC
LP**I>@EOF

This loop will loca,te all assignments to the variable ABC and insert a print statement following the
assignme!nt statement.

7.4.2. l.PSUB Command

Purpose:

Allows the replacEtment of characters in one or more following command or data lines with variable
information.

Format:

ParametEtrs:

k Number of lines (default value is 1 that is, the next line only).

4144.31
UP-NUMBER

Spec. Format

I I,c

L L,c

Ln Ln,c

LD LD,c

-;;-~
LC LC,c

CC CC,c

LG LG,c

V V,c

T T,c

0 D,c

T1 T1,c

01 D1,c

5P SP,c

TX TX,c,x,y

QU QU,c,x,y

MA MA,c,n,x,y

U U,c

R R.c

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors I

UPDATE LEVEL

One or two characters indicating the value to be subsituted.

7-22
PAGE

One or more parameters denoting the character to be subsituted for
and other specification as specified in Table 7-3.

Table 7-3. LPSUB Specifications

Description

Input line counter.

Loop counter for currently executing loop of a nest.

Loop counter for loop at depth n of loop nest (0 is outermost loop).

Loop nesting depth.

Line counter.

Column in which last string found by the LOCATE or LC command starts.

Column in which last string changed by the CHANGE command starts.

Length of current text line (note that blank lines have a length of 1).

Value computed by most recent COMP command.

Time of day.

Date.

Time of day (all numeric, format hhmmss).

Date (all numeric, ISO forn,at yymmc..d).

Spacing value for current line (1 for non print files).

Portion of current line of text. The character c is replaced in the following lines by th~ Y characters

beginning at character position x. If y is omitted, a value of 1 is assumed; if both x and yare

omitted, the entire line is assumed. If y has an asterisk (*) suffixed, trailing blanks will be removed

from the substituted string. A value of zero for x will be treated as 1.

Portion of response to most recent 'REM?' command. The x and y parameters have the same

meaning as for TX.

Parameter submitted on most recent call to the macro specified by the name n. The meaning

of x and y is the same as for TX. If x is explicitly entered as zero, the string will begin with the

delimiter which followed the macro name on the macro call line. That is, the delimiter is treated

as the zeroth character of the parameter. If x is omitted, it is treated as 1. The asterisk may be

used following y as for the TX subsitution.

User-id (as determined by the ED processor).

-

Run-id (original).

4144.31 I SPERRY UNIVAC 1100 Serle. executive 7-23
_~~~~ ____________ V_o_'_u_m_e __ 3 __ S_y_s_te_m ___ P_ro_c_e_s_s_o_rs ____________________ ~_U_PD_A_n __ L~_E_L ____ ~~_G_E ____ ___

Table 7-3. LPSUB Specifications (continued)

Spec. Format: Description

RIG RG,c Generated run-id (guaranteed unique by the EXEC).

81 SI,c Site-id of input device.

~IN NN,c String whose value is null, LN, IL, or NI, depending on what prefixed the most recent uncompleted
LOOP command or macro call. This allows a macro, for example, to be called as "LNxxx· and
substitute the characters before printing commands in the body of the macro.

Descriptiion:

LPSUB allows the replacement of characters in one or more following command lines of a loop with
variable information. Each vi is one or two characters indicating the value to be substituted, and si
is ono or' more parameters denoting the character to be substituted for and other specifications as
given.

Each si indicates the character for which the indicated substitution is to be made, and other
paramet4Hs for substring selection and macro name specification. The specification k indicates how
many linles are to be affected by the LPSUB command; if k is omitted, 1 is assumed (that is, the next
line onIY]I. An LPSUB overrides any previous LPSUB still in effect. All occurrences of each character
specified in each si on the following n images will be replaced. An example of the use of LPSUB
is as follows:

LOOP 6
LPSUB L,$
I ;L,S$;AO,IMAGE,X7;.
@EOF

which will insert the six lines

L,S 1
L,S:2
etc.

into the file.

AO,IMAGE,X7
AO,IMAGE,X7

Note the semi-colon used as tab character.

Only on4~ substitution of each type may be active at a time. (Each Ln is considered different for
different values of n.) This means that MA and au substitution may be used simultaneously, but it
is not possible to substitute parameters from two different macros at the same time.

LPSUB rnay be used outside of loops in the same way and for the same reasons as LPTST. The
substitution will ~Iffect the specified number of input lines.

The LPSUB counter is not decremented for lines skipped by LPTST or LPJUMP. Therefore, if the
number of lines to be substituted is different on dif'ferent loop iterations, the command "LPSUB,O"
may be necessary to turn off substitution. If this is not done, there is the possibility that an LPSUB
command could modify itself on a subsequent iteration of the loop, producing unexpected and
mystifying results.

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

7.4.3. LPTST Command

Purpose:

Allows conditional execution of statements in a loop.

Format:

LPTST,n condition

Parameter:

condition See Tables 7-4 and 7-5.

Description:

UPOA TE LEVEL
7-24

PAGE

LPTST is provided to allow conditional execution of statements in a loop. If the condition specified
is true, the next n statements will be skipped. If it is not true, the next statement in sequence will
be executed. If no n is specified, a default of one is assumed; that is, the next statement is skipped
in true conditions. If n is 0, all the loops of a nest will be terminated not just the current one.

The FIND and NOFIND indicators are also set by the CSF command, depending on whether the request
was successful or not (as indicated by the setting of bit 35), respectively. If no condition is specified
on an LPTST command, the skip (or loop exit) will take place unconditionally.

Tests may be made for specified conditions. These conditions are described in Table 7-4.

Table 7-4. LPTST Conditions

Spec Description

FIND True if the last FIND, LOCATE, CHANGE, LC, or FC command matched a string, or if the last CSF

command received a positive status.

NOFIND True if FIND condition is false.

NEW True if the current line is a newly inserted or altered image on this edit. Note that MOVEd and

DITTOed lines are NEW, as are lines modified by INLINE and DOC, even if no changes were made

to the line.

OLD True if NEW is false.

ADD True if the last image read by the ED processor came from an @ADD file.

NOTADD True if ADD is false.

Tests may also be made for relational conditions on numeric or string values. The allowabl~ values
are described in Table 7-5.

4144.31
UP-NUMBER Volume 3 System Processors UPDATE LEVEL

7-25
PAGE ~ SPERRY UNIVAC 1100 Series Executive

,------"'------'---

Table 7-5. LPTST Values

Spe IC 'Type Format Description

L numeric L Loop counter for currently active innermost loop.

Lr1I numeric Ln Loop counter for loop nested at depth n, where n is a single digit 0-9. 0
denotes the outermost loop, and a macro call counts as a loop level.

LD numeric LD Loop nesting delPth.

N numeric N Current line number.

numeric I Current value of input line counter (as referenced by the GI command).

SP numeric SP Line spacing for current line (value of 1 if the file being edited is not a print

file).

LC numeric LC Column number in which last string found by LOCATE or LC command

starts.

cc numeric CC Column number in which last string changed by CHANGE command starts.

LG numeric LG Length of current text line (note that blank lines have a length of 1).

V numeric V Value computed by most recent COMP command.

numeric Xa Value of variable set by COMP command, where a is void or is any

alphabetic character.

au sU'ing aU,x,y Value is y characters starting at character x of the reply to the last "REM?"

command. If y is omitted, 1 is assumed. If x and yare both omitted, the

whole string is assumed. A value of zero for x will be treated as 1.

T>(string TX,x,y Value is a portion of the current line. The meaning of x and y is the same

as for the au specification.

MA string MA.n,x,y Value is the parameter from the most recent call to the macro n. The

meaning of x and yare as for au. If x is explicitly entered as zero, the string

will begin with the delimiter which followed the macro name on the macro

call line. That is, the delimiter is treated as the the zeroth character of the

parameter. An omitted value of x is treated as 1.

NN string NN If the most recent uncompleted LOOP or macro call had a prefix (one of

LN, IL, or NI), the value is a two-character string corresponding to that

prefix (in upper case). Otherwise, the value is the null string.

The allowable numeric relationals are EO, NEO, LSS·, LEO, GEO, and GTR. They represent equality,
inequalitv, less thein, less than or equal, greater than or equal, and greater than, respectively. If EO
or NEO is specified, an additional clause of the form "MOD <m>" may be added following <n>,
where <m> is a nonzero integer. This form tests the remainder on division of <counter>-<n>
by <m> for zero or nonzero for EO and NEO respectively.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

7-26
PAGE

The only operators which are valid for string testing are EQ and NEQ. The value following the operator
is a literal string. This literal string may begin with a quote n character" in which case the string may
include blanks and must be terminated with a quote (or by the end of the line). A quote may be
included within a quoted string by writing two single quotes. If the string does not begin with a quote,
it is terminated by the first blank encountered (or by the end of the command). The literal string may,
of course, be computed with the LPSUB command.

LPTST may be used outside of a loop, with the result that the specified number of input lines will
be skipped. This is most likely to be useful in batch mode editing or in an @ADD file. A message
will be produced indicating the number of lines to be skipped, and, if in demand mode and not in
an @ADD file, the skipped lines will be solicited with "SKP*" preceding the line number. The break
keyin (@@X C) may be used to stop a skip; however, the next line will still be solicited with the 'SKP*'
typeout, evan though the line will not be s~ipped.

7.4.4. XTI Command

Purpose:

Allows a command to be typed in at a specific point in a loop.

Format:

XTI
XTII
XTI*

Description:

This command is intended for use in loops. It allows a command to be typed in at a specified point
in a loop. When XTI is encountered while executing a loop, a single command will be solicited from
the user and executed, following which the next command of the loop will be executed. This can
be used if a number of similar but not identical changes are to be made to lines which are located
by some complex sequence of commands. The locate operations may be done in the loop, with an
XTI used at the point where the change is to be made, allowing the user to choose between the
CHANGE, INLlNE, or REPLACE commands. '

The form" XTII " may be used instead. This form causes an unlimited number of commands to be
read from the input stream. Reading of commands is terminated by a command of the fCJrm " XTI* ".
If a loop contains a simple XTI command and it is desired to enter more than one commar.d at this
point, the XTII form may be used. Similarly, if it is desired to do nothing when an XTI or XTII is reached,
XTI* may be entered.

7.4.5. LPEND Command

Purpose:

Indicates the end of the scope of a nested loop.

Format:

LPEND

UP-HUM8ER

SPERRY UNIVAC 1100 Serle. executive
Volume 3 System Processors UPOA TE LEVEL

7-27
PAGE

41'44.31 ~
- ,---------'------'----

Descriptiion:

The effelct of LPEND when executed is to terminate the current loop iteration and return control to
the statement following the corresponding LOOP command, or, if the iteration count is satisfied, give
control to the statement following the LPEND. There must be one LPEND for each LOOP command
with the exception of the outermost. It is not recommended that LPEND be executed conditionally
or ~nterE.d via the XTI sequence, as the results may not be what the user intended to achieve.

7.,4.6. LPX Conlmand

Purpose:

Sets the remaining iteration count for the current loop of a nest.

Format:

LPX n

ParametEtrs:

n Iteration count for the current loop.

Descripti,on:

The LPX command sets the remaining iteration count for the current loop of a nest to the value
specified by "n". The default value assumed if n is omitted is 1. The count includes the current
iteration. A value of 0 will have the same effect as " LPT,O ". A value of 1 will cause the current loop
to be terminated after the current iteration is completed. Therefore, a loop may be terminated with
control going to the next outer loop by executing "LPX" and then a skip to the corresponding "LPEND".

Loops wlhich do not stop on passing the end of file are identified by negative iteration counts.
ThereforE~, if n has a negative value, the loop will be placed in non-stop mode. In particular, the
command "LPX -1" may be used as the first command in a macro definition to indicate that the macro
is not to be terminated if the end of file is passed; macros normally will stop if the end of file is passed.

7.S. MACRO Command

PUlrpose:

Defines 21 Macro.

Format:

MACRO n
MACRO* n
MACRO? n, fl, n, ... ,
MACRO?
MACRO??

ParametEl~rs:

n Macro name.

4144.31
UP-NUMBER

Description:

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPOA TE LEVEL

7-28
PAGE

For each of the first three forms, "n" denotes the name of a macro. Macro names are unique by the
first three characters only. The first character must be alphabetic, but the other characters may be
alphanumeric; the dollar sign may also be used. If a macro name duplicates the name of an existing
ED command, the definition will be accepted, but the macro will never be callable. The first form
specifies the entry of a macro definition. Macro definitions are entered exactly like LOOP definitions
(including the use of @EOF and @EOF L), except that they are solicited by the typeout" MAC* ". A
macro definition operation will de~troy any stored loop, so that "LOOPI" will be invalid. The second
form specifies the deletion of the definition of the specified macro. It is not necessary to delete a
definition before redefining a macro; this is done automatically. This deletes only the in-core
definition; a definition (as a n-ED-MACRO element) in a file is unaffected. The third form will list the
text of one or more defined macros, the fourth form will list the names of all defined macros, and
the fifth form will list the text of all defined macros.

Once a macro has been defined, it may be called by specifying its name as if it were an ED command.
The remainder of the command line will be stored as the macro parameter, which may be retrieved
by the LPSUB and LPTST commands. Macros may be. thought of as loops which have an implied
iteration count of 1. Macros may use loops and loops and macros may call macros, subject only to
the limitation on loop nesting. Each macro call is an additional loop nesting level.

. In addition to direct entry of a macro command followed by the text of the macro, a macro may be
defined by implicit reference. If the ED processor encounters a command which it does not recognize,
the input file, TPF$, and ED$PF' (if assigned) will be searched for an element whose name is
"n-ED-MACRO", where n denotes the command (up to three characters). If such an elem.ent is found,
its text is loaded as the text of a macro with the name given as the command. The macro is then
called. In this case, the @EOF L feature is not available. This mechanism allows the user to construct
a library of ED macros to perform whatever functions are frequently required. This feature cannot
be invoked while a loop or a macro is already active, just as it is impossible to define a macro or input
a loop while executing a loop or macro. Macros defined in this manner which have not been called
will not be listed by either the "MAC?" or "MAC??" command; these commands can only list macros
which have been stored internally by the ED processor.

A useful example of a macro is the following "delete until locate" macro:

MACRO DUL
STK UP
BRIEF
LPT N NEQ 0

+
LOOP 99999
LPS MA,$,DUL,O, 1 00*
l. $

LPT FIND
LPJ NOF
LPX
LPJ LPE
:NOF
0+
:LPE
LPE
STK ON
LPS NN,$
$(N)
@EOF

4144.31 I SPERRY UNIVAC 1100 Series Executive 7-29
UP~UM~~ ____________ V_o_l_u_m_e __ 3_S __ YS_t_e_m __ P_r_o_ce_s_s_o_r_s ____________________ ~u~ __ An __ L~ __ EL ____ ~AA_G_E ______ _

With this definition, the user may then enter "OUL ABC" and all lines will be deleted until a line
containinl9 ABC is reached.

Note that a macro with a void body may be thought of as a string variable. A new value is given
to it by specifying the desired value on a call to the the macro, and the value may be retrieved with
either the LPTST ()r the LPSUB command.

Because of the use of the prefixes LN, IL, and NI, a macro name may not begin with any of these
pairs of characters. These prefixes may be used when invoking a macro; however, see the LPSUB
substitution NN for application.

Saving M.ACROs in EO$MAC

The internal name EO$MAC is checked when the ED processor is called, when it terminates, and
whenever a MACRO or LOOP is created or deleted. If this file is assigned when the ED processor
is called, it will attempt to load a set of saved macro definitions in internal form from EO$MAC. At
the other times mentioned, the ED processor will save all the known MACRO definitions, the current
LOOP defiinition and the variables X, XA, XB, ... , XZ in ED$MAC, if it is assigned to the run. Definitions
saved in this format can be loaded much more rapidly than via the runstream or by the implicit
definition method. By this means, it is possible to achieve continuity of MACRO definitions across
several EO operations, irrespective of the nature of the intervening operations, so long as the
assignment of EO$MAC is unchanged. If EO$MAC is not assigned to the run, even if it is an attached
name, none of the above actions is taken. In other words, the ED processor will not create or assign
this file; that is thE~ user's responsibility.

7.6. USAGE CONSIDERATIONS

7.6. 1. Searchin{J Commands

The ED processor proceeds sequentially through the text. It is therefore more efficient to perform
editing operations in a more or less sequential manner starting at the beginning of the text. Searching
commands such as LOCATE and CHANGE require much computation and should be used sparingly;
column limits may be used to speed the search.

7.6.2. Interrupts With the ED Processor

There are certain processes within the editor which if indiscriminately interrupted can cause the
processor to fail. To protect against this, the processor is designed to stop only at specified points
when it is safe to clo so. If the user wishes to interrupt the processor, he may depress the the break
key (or "MESSAGE WAITING" key) at any time. (This step is necessary only if the ED processor is
printing at the time.) The system will respond with:

OUTPUT INTERRUPT

The user should answer with @ @X C or @ @X CO if he wishes to escape the current command. In
the first case backed-up printout may follow before the interrupt takes place. If for some reason the
editor's escape method is not satisfactory the user may enter @ @X CIO twice. In this case the editor
will return to edit mode, but integrity is not guaranteed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

The interrupt sequence will also have the following effects:

UPDATE LEVEL
7-30

PAGE

1. Backed-up commands on the same line as the one interrupted (when MCCHAR is in use) will
be ignored.

2. If a LOOP or MACRO is in operation, it will be. terminated.

3. If a LOOP is being entered, it will not be executed (but loop entry mode continu'es until an @EOF
is encountered).

4. If an LPTST skip operation is occurring, it is terminated.

5. If an LPJUMP jump operation is occurring, it is terminated.

7.6.3. Filename Caution

Files with names of the form EO$xx (where x is any character) should be avoided since the ED
processor uses such files internally.

7.6.4. Integer Expressions Instead of Integers

With the exception of the WAIT command and file/element cycle specifications, it is possible to use
an integer expression anywhere an integer is permitted, such as for line numbers, column
specifcations, et cetera. The expression must be one which would be acceptable to the COMP
command and must in addition contain no embedded blanks. Note that this means that numbers
entered with leading zeros are treated as octal.

As an example, the command

P N-3,N+3

would print the seven lines surrounding and including the current line.

If an integer expression is the first thing encountered on a line, it must begin with a sign, left
parenthesis, or number in order to be recognized as an implied GO or NEXT command. (That is, L+ 3
is a call on the LOCATE command, not a GO to the third line after the line whose number is the current
loop counter value.) If the expression begins with a sign, a NEXT is implied: if it begins with a digit
or a parenthesis, a GO is implied.

7.6.5. Column Limits Immediate Specifications

In addition to the use of the LIMIT command, it is also possible to specify column limits for immadiate
use of a single command only, overriding the limits specified by default or by the LIMIT command.
This applies only to the SEQ, LOCATE, CHANGE, and explicit printing commands, but not to
commands which print a line implicitly because of alteration or transfer of file position. The syntax
for specification of column limits may be any of those specified in Table 7-6.

4144.31
UP-HUMI8ER Volume 3 System Processors UPDATE lEVEL

7-31
PAGE ~ SPERRY UNIVAC 1100 Series Executive

,-,--------..._-'----

Table 7-6. Immediate Column Limits Syntax

Format Left Limit Right
Limit

[n,m] n m

[m] 1 m

[n,] n 132

[,m] 1 m

[,] 1 132

[] 1 132

NOTE:

If the ED processor is locally reconfigured
for 160 character lines, the values of 132
in the above table should be changed to
160.

Although the syntax of the immediate column limits specification is common to all commands which
accept it .. the position in which it must be specified differs. This will be described separately for each
of the three classes of commands which allow immediate column limits.

7.6.5.1. LOCAT'E With Column Limits

For the LOCATE (or L) and LC commands, if immediate oolumn limits are specified, they must
immediately follow the command and any count specification, with no intervening blanks. At least
one blank must s«~parate the column limits from the LOCATE target string. For example, any of the
foliowin~1 are acc,eptable:

L[3,5] ...
L.[3,5] .. ,
L, 1 00[8, 18] .. .
LC""3[10,21] .. .

Immediate column limits are not saved for later use on a LOCATE command with no target; they must
be enterfed each time.

7.6.5.2. CHANGE With Column Limits

For the CHANGE (or C) command, immediate column limits must, if used, be the first specification
after the string alteration pair, preceding the number of lines to be changed and any specifcation such
as 'G', 'A:, 'R', 'Al.L', or 'REP'. For example, the following are acceptable:

C I .. .! .. .! [5, '1 0]
C 1 1 ... 1 [38] 5
C I .. .! .. .! [39,] G
C I" . .! .. .! [1 ,!50] ALL

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Seriel Exec:utive
Volume 3 System Processors UPDATE LEVEL

7-32
PAGE

Immediate column limits, if given, are retained for later use with a CHANGE command with no
specifications.

7.6.5.3. Printing Commands with Column limits

Column limits may be used with the following printing commands: PRINT, P, PCC, QUICK, Q, OUTPUT,
0, SITE, PUNCH, and CPUNCH. the immediate column limits, if specified, must be separated from
the command (and its trailing delimiter, if any) by at least one space and must precede any line number
specifications. For example, the following are all acceptable (the P command will be used for
purposes of illustration, but any of the commands mentioned above may be used):

P [5,10]
P+[11,21]
PI [38]
P[15,35] 10
P [39,] 11,20

Note that as for the LIMIT P case, column limits for printing will be adjusted to word boundaries. That
is, a left limit is reduced to the next smaller number congruent to 1 modulo 4, and a right limit is
increased to the next larger multiple of 4. For example, the limits pair [12,22] would have the same
effect as the pair [9,24].

7.6.6. Default for F, FC, L, LC, and C Commands

For each of the F, FC, L, LC, and C commands, the previous target specification is saved and retrieved
if the command is entered without any specification. F, FIND, and FC reference one saved string, L,
LOCATE, and LC another, and C and CHANGE a third. For the C (and CHANGE) command, the saved
string contains the number of lines, global, "REP", and "ALL" specifications (if any), as well as the old
and new strings. For the F and L type commands, the saved string contains only the search argument,
and different restrictions (such as number of lines scanned, column limits, or number of occurrences)
may be used each time.

The commands may be entered in the form "Fr, "L?", and "C?". Each of these will print out the current
default value to be used for the associated command. Other specifications on the command will be
ignored. If no command of the associated type has been given, nothing will be printed.

7 .6.7. LN, IL, and NI Feature

The characters "LN", "IL", or "NI" may be used to prefix all commands. If this is done, any lines of the
file printed by the command will be prefixed with the associated line number, input cycle line number,
or both, respectively. None of the three prefixes is considered to be part of the command for purposes
of abbreviation (that is, "LNDITTO" may be abbreviated to "LNOIT" but not to "LNO", since "LNO" would
be an abbreviation for "LNOELETE"). There are two special cases: "LNS" is an abbreviation for "LNSITE"
(although "5" is not a valid command), and "LN" (rest of line blank) will print out the current and input
line numbers and remain in edit mode. "LNn", "LN+n", "LN-n", "ILn", "IL+n", "IL-n", "Nln", "NI+n", and
"NI-n", where n is an integer (expression) are all permitted. If "LN", "IL", or "NI" is used to precede
the name of a macro, the macro will be called, and the LN, IL, or NI will be ignored. These pairs of
letters cannot be used to begin the name of a macro.

4144.31 I SPERRY UNIVAC 1100 Series Executive 7-3,3
UP~UM~~~ ___________ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_es_s_o_r_s ____________________ ~UP_D_AT_E_l_~_EL ____ ~PA_G_E ______ _

7.6.8. Names for ASCII Control Characters

There ar,e a number of commands which accept a single character as a parameter (TAB, CCHAR,
LCHAR, MSCHAR, TCHAR, TCCHAR, and SHCHAR). For any of these, it is permissible to specify the
name of an ASCII control character (such as ACK, BEL, DC3, DEL) instead of typing the character itself.
Either Bl. or SP may be used to stand for the blank. The use of a name is also permissible instead
of the octal code 'for the EXCH command. The STATUS command will type the name instead of the
actoal character if a control character is in use as a special character for the ED processor; this avoids
adverse leffects on the terminal in use, such as activating a paper tape reader.

7.6.9. Print File Operations

The ED processor performs certain special actions when editing a print file which do not occur when
editing elements or general data files. These actions include:

• The new line created by the CHANGE, INLlNE, or RETYPE commands will be given the spacing
count of the replaced line, rather than a spacing count of 1.

• Line!s transferred by the DITTO and MOVE commands will retain their previous spacing counts.
Print control images included in the range to be transferred will be moved as well.

• If the ADD command is used to add a print file to a print file, the lines added will retain their
spacing counts, and any print control images will also be added.

• If a new file (not element) is written by the SPLIT command, it will be created as a print file, with
the appropriate label information, spacing counts will be preserved, and print control images
will be written. The resulting file can be printed with @SYM just as if it had been created by
the symbiont complex.

• Print files croated by the ED processor (whether by processor call specification (as in @ ED,U)
or by the SPLIT command will have Fieldata/ASCII information in each image and each 224
word block will begin with an SDF image control word. These files will be compatible with all
symbiont operations.

7 .S. 10. Edit Mode Commands in Input Mode

The ED plrocessor allows any editing commands to be submitted while in-input mode through the use
of the CUST$ mechanism. The format is ClS follows:

@EDIT command

where "command" denotes any command which is valid in edit mode. The letters "EDIT" must be in
columns 2 through 5, and the command must begin in column 7. If the command is omitted, the
ED processor will return to edit mode. This feature is convenient for setting up tab characters, AUTO
counts, and so on when inserting a new element using the I option.

This format is accf!ptable in edit mode as well as in input mode, but it is superfluous. When the LOOP
command is used and all or part of the loop is to be executed in input mode, @EDIT format may be
used for any commands which are to be executed in input mode, such as LPSUB or LPTST.

This feature may be used when typing ahead (as in @ @CaUE mode) to guarantee being in a particular
mode. To force operation to edit mode, the user should enter "@EDIT"; to force operation to input
mode, thle user should enter "@EDIT INPUT". The desired mode will be entered regardless of which
mode WilS previously active.

4144.31
UP-fIIUM8EA

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

7-34
PAGE

If the MCCHAR command is being used in input mode to indicate multiple lines on a single input line,
each line which is to be interpreted as a command must have its own @EDIT following the MCCHAR
character; without it, the command would be treated as input.

7.6. 11. Character Command Processing

The commands CCHAR, MCCHAR, and SHCHAR define characters for which special action is to be
taken on input. These characters are processed before the command on a line is analyzed, and then
the character designated is deleted from the line. Thus, if the same character is specified twice in
succession on any of these commands, the second time, the effect will not be what is intended. Since
the character is deleted from the line, the command will appear to have no specification, which will
deactivate the feature, and, if the MCCHAR character is involved, a blank line will appebr to be present.
switching the Editor's mode (unless in EOF mode) of the ED processor.

7.6. 12. Reusability

The ED processor is reusable. Successive uses of the ED processor will not require an initial program
load, which will conserve system resources. Note, however, that this means that the system log
contains fewer entries for the ED processor than the number of actual distinct edits performed.

One consequence of the interaction between reusability and the command feature in input mode is
that if a demand user attempts to terminate the ED processor with a transparent control statement
(@MSG, @LOG, etc.), the editor sign-off message will be delayed until a nontransparent control
statement (including @ED) is entered.

7.6.13. Restrictions and Limitations

The following restrictions and limitations apply:

1. If a FORTRAN data file is updated by the ED processor, the links used to hold backspacing
information will be lost. Hence, the FORTRAN BACKSPACE statement should not be used on
an updated FORTRAN file. Use of the R option with the ED processor will avoid accidental
modification of the file.

2. Due to the internal structure of the ED processor, it is not possible to edit print files containing
lines with spacing counts in excess of 63. Such lines will appear to be deleted.

3. The GI command may not be used when editing print files, since the necessary information is
not available, due to the presence of print spacing information.

7.6. 14. The EO$TC File

The ED processor attaches the internal name ED$TC to a file whose name is project-id*ED$TCrun-id.
For demand users, this file will normally be a catalogued file; if another run with the same original
run-id is active and using the ED processor or for a batch run, this file will be a temporarY file. ED$TC
(if catalogued and not temporary) is assigned with the 0 option. This allows the implementation of
the AUTO RECOVERY feature. If a run terminates normally, ED$TC will be deleted, and there will be
no auto recovery. If a (demand) run terminates abnormally, such as by system crash, line drop,
terminal timeout. @ @TERM statement. or operator keyin (SM site-id T), the EO$TC file will be
retained. This permits auto recovery when a new run is initiated and the ED processor is executed.

4144.31 I SPERRY UNIVAC 1100 Series Executive 7-36
up~u~~ ______________ V_o_'u_m ___ e_3 ___ S_y_s_t_e_m ___ P_r_o_ce_s_s_o_r_s _________________________ -Lu_~ __ An __ L~ __ EL ____ ~~_G_E _____ ___

NOTE:

The new run must have the same project-id and run-id as the run which terminated abnormally.

If auselr fails to ~jtart such a run and use the ED processor in it, the ED$TC file will remain catalogued
indefinitely. Therefore, a user should be aware of this situation and delete a file which is no longer
re~uired.

The intEtrnal structure of the ED$TC file is not of importance to most users; however, since it contains
certain link addresses which depend on the internal structure of the ED processor, the data in ED$TC
must be verified to be correct. This is done through the use of a validity constant (VAlCON). The
value 01f VAlCON will be different for different levels of the ED processor, so ED$TC cannot be used
betwtten levels of the ED processor. V ~lCON may also be used to detect possible corruption of
EO$TC due to hnrdware errors, and a change in this value is also possible if the ED processor itself
has a sc)ftware failure. If a VAlCON error occurs, it is necessary to erase ED$TC before calling the
ED processor again.

7.6. 15. Obsoh3te Commands

A number of commands are still defined in the ED processor ·which are now considered obsolete and
are thus not doc:umented. These are listed in Table 7-7.

BOT

B

BRIEF
BR

CLiMIT

END

GO n

HEAD

H

NEXT n
Nn

ON n

Command

Table 7-7. Obsolete ED Processor Commands

Description

Same as APPEND.

Same as "ON B",

Same as "LIMIT C",

Same as OMIT,

Goes to line n of file, where n is an expression,

Same as "1" (goes to first line of file),

Moves forward n lines in the file (backward if n is negative),

Same as "P+ n",

4144.31
UP-NUMBER

PLIMIT

PL·

SAVE

TOP

T

VERIFY

V

SPERRY UNIVAC 1100 Se,le. executive
Volume 3 System Processors

Table 7-7. Obsolete EO Processor Commands (continued)

Command Description

Same a8 "LIMIT P".

Same as "LIMIT C·.

Same as "0" (goes to top of file).

Same as ·OFF B".

UPDATE LEVEL
7-36

PAGE

4144.31
UP-HUMBER ~ SPERRY UNIVAC 1100 Series Executive 8-1

Volume 3 System Processors UPDATE lEVEL PAGE . _____ -----'----L...--_

8. Procedure Definition Processor (PDP)

8. 1. INTRODUCTION

The Procedure Definition Processor (PDP) accepts symbolic input defining Assembler, MASM,
FORTRAN, or COBOL procedures and builds an element in the user-defined program file. These
procedures may subsequently be referenced in an assembly or compilation without definition.

8.2. @PDP FOFtMAT

Purpose:

Places entries in the Assembler, FORTRAN or COBOL procedure table in a program file table of
contents (see 11.2.1.2 for a description of these tables). The entries are put into the table of contents
of the symbolic output file specified by the user. If no symbolic output is produced during the
execution of PDP, no procedure table items are generated. These entries contain labels in Assembler
or MASM procedures defined as PROe entry points and names which are used to call FORTRAN or
COBOL IPROes. When a call is made for a PROe in a source program, the language processor
automatically retrieves the PROe using the System Relocatable Library routine (BSP$) to search the
table of Icontents for the PROe name. If more than one PROe of the same type and the same name
are contained in a program file, the search by BSP$ will point to the last PROe entered with that name.

PDP is called by the @PDP control statement.

All parameters in the @PDP control statement are optional except eltname-1.

Format:

@lclbel:PDP,options eltname-1,eltname-2

Parametl9rs:

options

eltname·-1

eltname·-2

See Table 8-1.

Normally specifies the input element. However, when the I option is
specified, eltname-1 specifies the new program file element.

Specifies the output element.

4144.31
UP-NUMBER

Option
Character

A

e

F

I

L

M

N

S

U

W

X

NOTE:

SPERRY UNIVAC 1100 Serle. Executive
Volume 3 System Processors

Table 8-1. @PDP Control Statement, Options

Description

Accept the results as correct even if errors are detected.

Indicates a COBOL procedure element.

Indicates a FORTRAN procedure element.

Insert a symbolic element into program file from the control stream.

Produce a complete listing of the output element with ;me numbers.

UPDATE LEVEL

Indicates an 1100 Series Meta-Assembler (MASM) Procedure element.

Suppress all listings.

Generate a single-spaced listing of the output element.

Generate a new cycle of the symbolic element.

List correction lines if corrections are provided.

Take ERR$ exit from PDP if errors are detected.

The source input routine options (see Table 1-2) also apply.

8-2
PAGE

In the absence of the F, C or M options, PDP assumes that it is inserting or updating an Assembler
procedure element.

Cycling of procedure elements is permitted. The cycle number may be increased if the U option is
specified. When a procedure is included in an assembly or compliation, the procedure from the latest
cycle of the procedure element is supplied.

Examples:

1. @PDP,L
2. @PDP, L
3. @PDP,L
4. @PDP, I
5. @PDP,U
6. @PDP
7. @PDP,ULF

A.B,C
A.B, .C
A.B
AFILE.PROS/AB
BFILE.PAT/DE
AF.PR1,BF.PR2
D.FORPROC,E.FORPROC

1. Generates a procedure element from file A, element B and places the new element C in TPF$.
Generates a complete listing.

2. Generates a procedure element from program file A, element B, calls it element C, and places
it in program file A. Generates a complete listing. Eltname-2 must not nam0 a tape file.

4144.31
UP-NUMBER Volume 3 System Processors UPDATE LEVEL

8-3
PAGE ~ SPERRY UNIVAC 1100 Series Executive

,--------'-------.1.--_

3. G43nerates a complete listing of element B from file A. No procedure entries are made.

4. Procedure definitions following this @PDP control statement are placed in file AFILE as element
pnos, version AB, cycle O.

5. C()rrections are made to element PAT, version DE, latest cycle of file BFILE to generate an
updated cycle of the same element in the same file.

6. C()rrection!; following the @PDP control statement are merged with the most recent cycle of
element PFt 1 in file AF to generate cycle 0 of element PR2 in file BF.

7. Produces an updated cycle of the FORTRAN PAOC element FORPROC in the file E using as input
th,e element FORPROC in file D. All element cycles are retained in element FORPROC up to the
cycle maximum.

PDP generates (:ertain flags on the output listing when it detects error or other conditions. These
flags appear on the output listing between the line number and the text of a line. Table 8-2 describes
the fla~,s.

If PDP dletects any errors, entries are not made in the assembler, FORTRAN or COBOL. procedure tables
unless 1the A option is specified. If errors are detected, and neither the W nor A option was specified,
no symbolic output is created. Except for the errors shown in Table 8-2, PDP does not detect
language proce!;sor syntax errors within PROCs.

When iEl PDP symbolic is transferred to an element file (on tape) using the FURPUR statement
@COP()UT, the procedure table entries are carried along with the element. On the @COPIN of a PDP
symbolic, FURPlJR puts the procedure table items of that element into the table of contents of the
program file.

When ell PDP symbolic is transferred from one program file to another program file using the FURPUR
statem~~nt @COPY,P, the procedure table entries are carried along with the element. Therefore, it
is not necessary to reprocess a PDP symbolic element using PDP if the element has been brought
into a program 'file using the FURPUR statements @COPIN or @COPY,P.

When CI single procedure element is transferred from one program file to another program file using
the FUnpUR statement @COPY,S, FURPUR transfers only the latest cycle of an element having more
than one element cycle. The procedure table entries belonging to this element are put into the
destination file's table of contents. However, these entries will be incorrect if the element in the file
of origlin contained deleted images. Therefore, ot is preferable to use PDP to transfer a single
procedure elemtmt from one program file to another program file. See 11.2.3.3 for more information
on the structure of a symbolic element.

If a symbolic PROC element is updated with the symbolic output in the same file as the symbolic input,
PROC names which appear in the symbolic input but not in the symbolic output will not be marked
as deleted in the procedure table in the program file table of contents, even though the element in
which they appear is marked as deleted in the element table. A @PACK of the file following the PDP
proces!;ing will remove the deleted element along with the corresponding PROCs.

4144.31
UP-NUMBER

Flag

E

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 8-2. PDP Flags

Meaning

UPDATE LEVEL
8-4

PAGE

This symbolic is not an error flag. It indicates that the line on which this flag appears is a continuation of the

previous line by virtue of a semicolon appearing on the previous line. Assembler and MASM procedures only.

This flag implies the existence of an expression error within the label field of the current line. This is set as a

result of an illegal label symbol or sequence of symbols. Due to the complexity of the form which the operation

field may assume, no attempt is made to detect expression errors within this field. No entry point will be

established for a line whose label field contains an expression error.

I An illegal operator in an assembler procedure is indicated by this flag. This can only occur when a DEF directive

has been encountered and anything other than EOU, EOUF or FORM directives or FUNC definitions occur between

the DEF line and a PROC directive. In addition, a message is printed indicating that the previous DEF directive

was ignored. Assembler procedures only.

L This flag indicates that an error has occurred in the procedure level sequence. This is caused by an excessive

number of END cards such that one is encountered when the procedure level is zero. The level is left at zero,

but the L flag is set.

T This flag is generated when a label or operation field exceeds 12 characters in assembler or MASM procedures,

or the label on a PROC statement in FORTRAN or COBOL PROCs exceeds 12 or 30 characters respectively.

4144.31
UP-NUM8ER ~ SPERRY UNIVAC 1100 Series executive 9-1

Volume 3 System Processors UPDATE LEVEL PAGE
,--------'-------L----L-.:....-_

9. File Administration Processor (SECURE)

9.1. INTRODUCTION

The SECURE processor protects the physical security of catalogued files, which reside on mass
storage, by producing tape backups.

The text of files on mass storage may be destroyed either inadvertently through system failure or user
error, or purposely to reduce overcrowding of facilities or to remove certain mass storage units from
the available facilities pool. In any case of purposeful destruction, the presence of a current backup
must fimt have been assured. Because a file may be inadvertently destroyed and the latest backup
may not be current, a record must be kept of the file's memory lapse. Memory lapse is defined as
the time period that starts at the first updating after the latest backup was created, and ends with
the recovery of the file from the backup copy. This is the period of time during which any additions
or deletions wem not retained.

When a file's text on mass storage has been destroyed and the backup is the only available copy,
the file must be marked unloaded, so that an automatically initiated load of text back to mass storage
occurs when the next attempted assignment of the file is made. The run which makes the @ASG
request that forces this load may be held in a wait status until the load is completed.

The process of selecting files as potential candidates for unload when some number of currently used
tracks must be vBlcated and made available for new allocation, selects those files which will probably
be the last to be reassigned, in order that the files actually unloaded can be left dormant for as long
as possible before they have to be reloaded. There is sufficient flexibility in the formulation of the
unload mechanism to permit qualified onsite personnel to make dynamic adjustments to the individual
weight attached to each of the variables which go into this unload eligibility factor determination.

An unload inhibit option is defined for use by certain files which cannot be removed from mass
storage due to real-time or other needs. There is also an even more restrictive guard option which
inhibits even the privileged read necessary to make backup copies. The guard option is required for
certain lspecial files which are internal to the system, highly transient, or highly classified.

In additiion to thH basic SAVE, UNLOAD, and LOAD commands, there are supporting commands to
register unknown files recorded on backup tapes made at another SPERRY UNIVAC 1100 Series
Systems site, and to list the memory lapses that have occurred for a file. It is also possible to allow
all commands to be selectively directed, when desired, toward only certain named files, projects,
accounts, qualifiers, tapes, or mass storage units.

Finally, it is possible for the SECURE processor to assist in a catalogued file recovery process. This
depends on a tape copy checkpoint of the master file directory (MFD) and the entire set of file backup

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPOATt LEVEL

tapes to restore the set of catalogued files to a state at least as current as the time the MFD checkpoint
was made. A file is considered restored when MFD items can be retrieved from mass storage and
its text can be retrieved from mass storage or tape.

9.2. MAJOR FUNCTION DEFINITIONS

The SECURE language contains six major commands:

1. SAVE creates a duplicate copy on tape of both the MFD information and the text of specified
catalogued mass storage files.

SAVE, and a" other actions of the SECURE processor are not performed on files which were
catalogued with a G (guard) option on the @ASG or @CAT control (see Volume 2-3.7.1 and
2-3.7.3) statement. The purpose of the G option is to override the privileged mode capabilities
of the SECURE processor for particular files. Several of the Executive's internal files, including
the scheduling file, the accounting file, and the symbiont files use the G option.

2. UNLOAD implies SAVE unless there already exists a tape backup copy of the file that was made
by SAVE after the last write was done on the file. UNLOAD then releases the space occupied
by the text of the file on mass storage and updates the MFD to mark the file unloaded. UNLOAD,
or any other action dependent upon unloading the file, is not performed if the file was catalogued
with a V (unload inhibit) option. This command is not meaningful for removable disk files as
their text is never marked as unloaded.

3. REMOVE implies UNLOAD, unless the file is already unloaded. REMOVE thel' causes the tile to
be decatalogued from the MFD.

4. REGISTER scans the tape reels named in source language which contain SECURE-produced
backup copies of mass stnrage files, and catalogues as unloaded those files that are not currently
catalogued. This command can also be used to restore the MFD items for an entire set of
catalogued files by using the 'MFD snapshot' tape.

5. LOAD operates on currently catalogued files that are marked unloaded or on currently
non-catalogued files if a tape is designated as the source of input. LOAD copies the text of the
file back to mass storage and turns off the unloaded indicator in the file's MFD entry.

6. LIST produces information based on the contents of the MFD.

9.3. @SECURE CONTROL STATEMENT

All parameters on the @ SECURE control statement are optional.

The format of the @SECURE control statement is:

@label:SECURE,options eltname-1,eltname-2

options See Table 9-1.

The eltname-1 and eltname-2 parameters name the symbolic input and output elements,
respectively; see Volume 2-3.9 for rules governing their use.

Table 9-1 describes the options that can be specified on a @SECURE control statement. In addition
to these options, the source input routine (SIR$) options (see Table 1-2) may also te used.

• 4144,3 t L SPERRY UNIVAC 1100 Series Executive I A I 9 3
~~_____ _ ________ V_o_'_u_m __ e __ 3 __ S_y_s_t_e_m __ P __ ro_c_e __ s_s __ o_r_s ________________________ ~_U_PD_A_T_E_lE_V_E_l ____ ~_P_A_G_E_-________ _

Option
Chalracter

A

B

Table 9-1, @SECURE Control Statement Options

Description

Do not take error exit even if errors are detected,

Do not do exclusive assignments of files to be acted upon.

This option should be used with care.

C Enable the checksum feature in the SECURE processor to compute and write to tape a checksum total for

oach text block written by a SAVE command or use this value as a check when data is transferred from

tape during a LOAD command or from tape to tape during a SAVE ALL operation (see 9.14.1).

D Include the text and directory of removable disk files on SAVE operations whether system-wide or by

project, account, or qualifier. Removable disk files may be copied to a tape set unique from that of mass

storage files. See SPERRY UNIVAC 1100 Series Executive System Operators Reference, UP-7928 (current

version).

E Display directory error diagnostics for all files that cannot be processed. Error diagnostics will be displayed

for all files encountered by SECURE that have directory errors or inconsistencies that would prevent the

files from being processed. The format of these diagnostics is:

MFD-ERROR-nn ON FILE qualifier*filename(fcycj

where nn refers to the following error types:

() - Main item extension chain is incomplete.

'I - Main item identifier bits incorrect.

2 - Invalid character as Qualifier, File name, Project or Account.

:~ - Main item extension identifier bits incorrect.

4 - Main item extension Qualifier*Filename does not match that in the Main item.

~) - Sequence identifier in Main item extension is invalid.

E3 - Lead item identifier bits incorrect.

7 - Lead item Qualifier*Filename does not match that in the Main item.

B - Lead item sector 1 identifier bits incorrect.

9 - Excessive DAD items.

'10 - No valid look-up entry for this Main Item.

'I 1 - Missing Search Item for this Main Item.

'12 - Main item extension linkage corruption.

'13 - Lead item linkage corruption.

'14 - Lead item extension linkage corruption.

'15 - DAD item linkage corruption.

'16 - Qualifier*Filename does not match that returned by DREAD.

'17 - Incomplete pack information on a Register of a removable disk.

'18 - Incomplete reel information on a Re!)ister of a cataloged tape.

'19 - Incomplete lapse information.

20 - Incomplete Backup Reel information.

F Signifies user is operating on 'filename only' !evel. Allows SECURE to avoid doing a full-system directory

~;narshot when processing only files specified by name. This option may not be used when referring to

catalogued tape files or removable disk files in source language, nor may it be used when limiters other

than FILE(S) are used in source language. This option should not be used with large numbers of named

files.
L-____ . ______ ~. __________________________________ . ______________________________ . __________________ _

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Table 9-1. @SECURE Control Statement Options (continued)

Option Description
Character

l Produce the most comprehensive printed listing.

N Suppress all listing except error diagnostics.

A

UPDATE LEVEL
9-4

PAGE

o Scan all files, and print a summary listing including only files marked 'SECURE' or 'hardware' disabled.

R Scan all files marked disabled and print summarized results. Do not process any source language.

@SECURE,R is called from within the Executive following a recovery bootstrap, or may be called by the

normal user from within a non-privileged run. In non-privileged mode, no projects or accounts are printed

in the summary listing.

S Produce a summary printed listing.

T Specifies that directory items for catalogued tape files are to be copied to beth the SAVE created backup

tape and the 'MFD snapshot' tape. Without this option, a REGISTER of the directory tape is always

necessary when performing a REGISTER of catalogued tape files. It should be noted that the text of a

catalogued tape file is never saved by SECURE.

x

z

Take error exit if all specified tasks ca nnot be processed.

I

Designates that directory information for files being decatalogued by REMOVE operations will be retained

in a catalogued file, ARCHIVE$, to be used in the future by SECURE to recreate the REMOVEd files (see

i 9.14.5).

9.4. INPUT AND OUTPUT BACKUP TAPE ASSIGNMENTS

Users calling the SECURE processor for tape operations should first assign tape units for input and
output of backup tapes by means of control statements with the following format:

@ASG,NTF
@ASG,NT

OBACKUPnn,T
IBACKUPnn,T

The @ASG,NT control statement c.auses the tape unit to be assigned temporarily and with the initial
tape load message suppressed. nn is an optional one- or two-digit number from 1 to 63 used to
disfng uish between multiple OBACKUP or IBACKUP names. If nn is omitted, 1 is assumed. The F
option on the OBACKUP assignment is necessary to avoid a filename check when a read is attempred
on the tape if labeled tapes are in use.

All SECURE processor operations involving either tape readiny or writing can be performed on tape
units assigned as output backup (OBACKUP[nn]). As a safety feature to help protect the contents
of existing backup tape reels, only reads are performed by the SECURE processor on tape units that
are assigned as input backup (IBACKUP[nn]).

414!1.31
UP-flIUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE LEVEL

Some examples of these assignments as they might appear in a single run are as follows:

@RUN
@ASG,NTF
@ASG,NT
@ASG,NT

OBACKUP24,T
IBACKUP7,T
IBACKUP8,T,4832A/4432C/4162A

9-5
PAGE

If the operations to be processed do not require the predefinition of specific tape reel numbers that
would otherwise be unknown to the SECURE processor, the user need not be concerned with
identifying them. For example, the SECURE processor dynamically requests as many new blank tape
reels as necessary when creating new backups and records the reel numbers used in both the MFD
item of the backed-up file and in the user's printed output listing. As another example, the SECURE
processor automatically consults the MFD item to get the correct reels necessary to load the text of
an unload~d file back to mass storage.

There are instances, however, when a specific sequence of numbered reels should be associated with
a particular OBACKUP or IBACKUP tape unit. These associations are specified by giving a reel list
on the @ASG card or by source language statements of the format IBACKUPnn = reel list or
OBACIKUPnn =: reel list, as follows:

@SECURE , IS
IBACKUP7 = 95
IBACKUP8 = 4458, 4461, 4462
OBACKUP24 = 701, 702, 703

As an example, the SECURE processor allows a set of reels in backup format to be registered with
the EXlecutive, so that any files previously saved to these reels, but which are not currently catalogued,
are recataloguE~d as unloaded mass storage files. Following a reel number association like that done
above for IBACKUP8, the REGISTER command could be invoked by the single control statement:
REGISTER FROM IBACKUP8.

When a particular SECURE operation involves the transfer of many text blocks to and from tape, it
is possible for SECURE processor to initiate mUltiple, concurrent 1/0 operations to optimize efficiency
by assigning several output tape units. The multi-activity operational procedures are described in
detail in 9.13.

If no lJIsable backup tape units are assigned at the time that the SECURE processor determines that
tape I/O must be done, the SECURE processor will assign a single unit using the system standard
type and density.

If an ilBACKUP tape unit is not assigned prior to a REGISTER DIRECTORY TAPE FROM IBACKUP
opera1tion, SECURE will dynamically assign it. Then, immediately after the tape has been read,
IBACK.UP will be dynamically freed (@FREE).

The most common cases where the SECURE processor will need tapes are the periodic SAVE
commands needed to generate a set of new backups and the LOAD of an unloaded file which some
run is attempting to assi,gn. It is not necessary for a site to keep a tape unit available at all times
just to enable SECURE to handle these two common cases. The SECURE run is placed in a facility
wait state until the tape unit becomes available.

System-initiated UNLOADs to relieve overcrowding of mass storage can normally be accomplished
without creating new backups (or requiring tape unit assi,gns). However, if tape assigns are necessary
and no tape units are available, the SECURE processor initiates a console message informing the
operator that a tape unit must be made available. If system conditions warrant the operator may make
a tape unit available by either restoring a tape unit that is in a reserved or downed state or by
terminating another run (by using a checkpoint, E, or X keyin) that has a tape unit assigned.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

9.5. CATALOGUED FILE ASSIGNMENTS

A

UPDATE LEVEL
9-6

PAGE

The SECURE processor performs no actions on files which are actively assigned to another run at
the time that SECURE is executing, unless those files were catalogued as read only. Files to be
operated on by the SECURE processor are dynamically assigned with an exclusive-use option to
prevent other runs from writing on current write-enabled files.

If the number of runs in the system is temporarily reduced at the time a SECURE processor SAVE
run is'called, the problem of files not getting backed up, due to use by other runs, is minimized. To
further reduce this problem, SECURE attempts a se.cond or third dynamic @ASG,AX of those files
that were busy during the first pass. The SECURE listing reports any files which could not be saved.

9.6. PRIVILEGED MODE OPERATION

A run in privileged mode indicates that a program within the run (such as the SECURE processor) can
access the text and full MFD information for all files catalogued in the system that do not have a G
(guard) option inhibit on them, without supplying any of the keys and without regard to whether the
file might be catalogued as private or read only or write only. This permits the SECURE processor
to initiate I/O and other operations on a file that are necessary to create backups, or to delete or
restore text.

One of the Executive interfaces which checks to see if a run is privileged is the MSCON$ request.
This request allows direct reading and altering of MFD items. The MSCON$ request which gets a
copy of the entire MFD and writes it into a user-specified file, provides an example of the distinction
between privileged and non privileged runs; if the run is privileged, the MFD is copied unchanged;
if the run is not privileged, MSCON$ obscures all project-ids, account numbers, (other than those of
the calling run), and (ill keys.

The operations which a user can direct SECURE to perform when the run is not privileged are
summarized in 9.9.

9.7. SECURE SOURCE LANGUAGE

SECURE employs a source language structure for input which gives the user a simple, but flexible,
format for calling on the processor to perform any or all of the allowed functions. Basic source
language components are ordered as follows:

command ALL limiters name-list EXCEPT name-list;
FROM equipment-name TO equipment-name

All parameters are optional except command. Spaces are required between fields on the source line,
/). . /). allows comments and a ; specifies continuation.

9.7.1. Standard Commands

The commands recognized for the SECURE processor are:

SAVE
UNLOAD
REMOVE
REGISTER
LOAD

4144 31 I SPERRY UNIVAC 1100 Series Executive I A I 9 7
~ ~,:,~u~BER ___ ~, ____ V_o_'u_m_e_3_S_y_st_e_m_P_r_o_c_e_s_s_o_rs ___________ ----.l_U._P_DA_T_E_LE_VE_L __ ..L_PA_G_E_-____ _

lUST REELS namelist
lUST FILES namelist
lUST UNLOADED FILES
UEF + nn namelist
UEF -nn namelist
IREVERT filename
/LIST LAPSES namelist
CLEAR LAPSES namelist
CONSOLE
INO-MFD
DELETE
I~RCHIVE

MERGE ARCHIVE
lEND

Unless the word ALL is used, the SAVE command causes saves to be done only on those files which
do not have a current backup. A backup is current depending on whether any write operations have
been performHd on the file since the time the last backup was made. However, when the word ALL
is used, the SAVE command causes all files in the namelist to be saved regardless of whether a current
backup exists. Because the SAVE ALL command causes a tape to tape copy if a file is unloaded, an
@ASG,TN IBACKUP,T is necessary in addition to the normal OBACKUP assignments for complete
execution. However, the IBACKUP assignment should not be included if it is intended only to save
the currently loaded files. When the word DIRECTORY is stated after the SAVE, only a copy of the
current 'MFD snapshot' tape will be produced.

If PACK or PACKS is specified after SAVE, text as well as directory information of the files residing
on the removable disk pack(s) specified in the following namelist will be copied to tape. If the word
ALL is used instead of a pack-id namelist, all removable disk files currently catalogued in the MFD
will be included. A backup of the text of removable disk files is created when its filename or the
pack--id on which it resides is specified in source language.

The SAVE ALL WITH RECOVERY command is used to finish an incomplete SAVE ALL operation,
starting at its point of abnormal termination. Any file subset designators on the initial SAVE ALL
statement must be duplicated on this statement also. On any output operation requiring a SAVE ALL
(i.e., SAVE ALL, UNLOAD ALL, REMOVE ALL), SECURE will catalogue a file, SYS$*RECOVERY, at the
outset. If the operation terminates normally, this file will be decatalogued. The file remains
catalogued if the operation terminates abnormally. If a subsequent SAVE ALL WITH RECOVERY
operation is done, only files from the subsets specified that have not had backups created since the
catalogue time of SYS$*RECOVERY will be saved (SAVE).

,A file's disabled status does not prevent its being maintained by SECURE. Any 'disabled' bits set in
a file"s main directory item will be preserved by REGISTER. The LOAD action will be attempted on
any unloaded file, regardless of disabled status. Failure to complete the leading of text normally will
result in the file's being marked disabled (FAC reject status bit 6). SAVE will copy the text of a
hardware disabled file only if no backup exists. SAVE ALL, operating on a hardware disabled file,
will copy the text from the backup tape, if one exists. All other SECURE actions will ignore a file's
disabled status.

Unless a namE~list is given or the word ALL is used, the UNLOAD command does not cause more files
to be unloaded than is necessary to free 3000 tracks on mass storage. The particular files chosen
for unload, in this case, are selected using procedures explained in 9.8. To change the preset limit
of 3000 tracks to some other value, the UNLOAD specification may be stated as UNLOAD TRACKS
= nnnnnn. If a namelist is given all files so specified are unloaded, regardless of how much or how
little space they occupy on mass storage. If the word ALL is used, all catalogued files are unloaded.
If unloading only position granular files is desired, the command UNLOAD POS = nnnnnn is used,
where nnnnnn is the number of positions.

4144.31
OP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE LEVEL
9-8

PAGE

The REMOVE command deletes from the MFD the files indicated by selection specification (or all
catalogued files if no specification is given) after the presence of a current backup copy for eClch has
been assumed. The keyword ALL causes SECURE to create a new backup copy even if a current
backup exsits.

The REGISTER command requires the addition of a FROM IBACKUP to which reel numbers have been
associated. Unless a namelist is given, the REGISTER command operates on all files found on the
equip.ment associated with IBACKUPnn. REGISTER causes cataloguing of the found files using the
attributes of the file as found on the backup tapes. Such files are marked UNLOADED. No SECURE
operations except another REGISTER FROM IBACKUP may be used if this command is stated in source
language.

The LOAD command causes the text of unloaded files given in a namelist (or if ALL is specified, every
catalC'gued file) to be copied from backup tape to mass storage. Use of UNTIL UEF = nn or UNTIL
PERCENT = nn with this command enables the loading of some subset of all the catalogued files.
Files are sorted in ascending order by unload eligibility factors (UEF's) and are loaded until either the
desired UEF cutoff value is reached or until the desired percentage of available mass storage has been
filled. The command LOAD ... FROM IBACKUPnn combines the REGISTER and LOAD actions in one
operation. If the file is found to be already catalogued, but marked as unloaded, the file's text is loaded
if its MFD designates this tape as its backup copy.

The LIST REELS command produces a summary listing of the current set of backup tapes sorted in
ascending order by reel number. This command must be in a separate SECURE execution with no
other source language present.

The LIST FILES command displays the same information as the LIST REELS, but entries are sorted
alphabetically by qualifier and filename. This command must also be specified individually in a
SECURE execution.

LIST UNLOADED FILES creates the same-formatted listing as LIST FILES, but includes in its summary
only those files whose text is currently marked as unloaded. This command must be in a separate
SECURE execution as well.

The UEF +nn or UEF -nn commands may be used to selectively add or subtract a number nn from
the computed unload eligibility factor (UEF) for the named files, projects, qualifiers or accounts. This
factor determines the order in which files are unloaded when mass storage space becomes crowded.
The UEF bias remains in effect only for the current execution of SECURE. The larger the UEF is for
a given file, the more eligible the file is for unloading. See 9.8 for selection of files for UNLOAD.

REVERT filename means revert to a previous backup copy of the named file. This can be used when
a user accidentally overwrites the latest copy of the file on mass storage and wants the text in the
existing backup to be retained instead of the more recent text now residing on mass storage. When
the text of files on mass storage is inadvertently destroyed, the backup tape becomes ,the primary
copy. If, however, the backup tape is not current. a record is kept of the time period during which
any addition or deletions to the mass storage file were not retained. This record represents a file's
memory lapse. Any number of these may possibly occur over the life of the file.

The LIST LAPSES command provides a printed listing of the memory lapse entries for all files or for
the set of files specified by the namelist. This command must be in a separate SECURE execution,

The CLEAR LAPSES command requires a namelist and erases the record of any existing lapse entries
in the set of files specified by the namelist.

The CONSOLE command allows the user to change source language input modes horn card images
to console keyins when desired. V\lhen this command is encountered in source language, 'ENTER
SECURE COMMAND' appears on tht~ onsite console, and the user t1IClY key in the action desired, Ii

4144J.31 L SPERRY UNIVAC 1100 Series Executive A 9-9
~~______ ______ V_o_l_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_s_s_o_rs ____________________ ~_U_P_DA_T_E_LE_V_EL ____ ~PA_G_E __ __

an 'END' directive is received while in this mode, all remaining SECURE source language from the
runstrE~am is processed.

The NO-MFD command suppresses the creation of a directory tape by a privileged run.

The DELETE command removes files without ensuring a current backup exists.

The AHCHIVE command is an extension of the REMOVE command. In addition to deleting the file,
SelectHd information is retained in SYS$*ARCHIVE$ so that the the file may be subsequently restored.

The MERGE ARCHIVE command consolidates a set of backup tapes holding Archived files. If a tape
list is ~~iven files which are wholly contained on the specified tapes wi" be copied, without a list all
Archived files wi" be merged to a single tape set.

END is an optional terminator to mark the end of source language statements.

9.7.2. Namelist and Limiters

Namelists are strings of file, project, qualifier or account names which designate particular file sets.
Unless otherwise specified, a" commands allow any of the namelists below. They are preceded by
an appropriate identifier as follows:

FILE(S) filename-namelist

PROJECT(S) project-namelist

ACCOUNT(S) account-namelist

OUALIFIEH(S) qualifier-namelist

Names in the list are separated by commas. Actions specified in source language are limited to the
set of files specified in a namelist. If no namelist is used with a particular command, a distinction
must be made. If the run is not privileged, it is assumed that the action is to be applied only to those
files under the user's project-id. Exceptions to this general rule are given in the description of each
command (see 9.7.1). A limiter may be specified to restrict the file set described in the specified
or implied namelist to files within the named category.

A limiter may be used to restrict the file set described in the specified or implied namelist to files
within the named category. The self-explanatory limiters are: PUBLIC, PRIVATE, READ-ONLY,
WRITE-ONLY. Several other limiters are only meaningful when used in conjunction with specific
commands:

• BEFORE (In DAY(S) or MONTH(S) and AFTER nn DAY(S) or MONTH(S) refer to the time since a
file has been referenced, and should only be used with the SAVE and REMOVE commands.
These allow separation of a file set into current and dormant categories based on the time
spanned since the last reference to the file. The statement, SAVE ALL AFTER 30 DAYS, would
only include files in the SAVE ALL which were referenced within the last 30 days. By substituting
BEFORE for the AFTER, a SAVE ALL would be only done on files with reference times 31 days
or older.

• TAPES is a limiter to be used only with the SAVE and REMOVE commands. When this is used,
only files marked as unloaded and backed up on the tape(s) specified will be included in the
SAVE or REMOVE. An example of its usage is: SAVE (or REMOVE) TAPES 1, 2, 3.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A

UPDATE LEVEL
I 9-10

PAGE

• The PACKS limiter denotes that only files catalogued on the removable disk pack-id(s) specified
are to be included. This limiter may be used in conjunction with all commands except the LOAD,
UNLOAD and REGISTER.

• ARCHIVE is a limiter to be used only on the LIST FILES (or REELS), REMOVE and LOAD FROM
IBACKUP commands, and designates that the contents of the file SYS$*ARCHIVE$ are to be
processed.

9.7.3. Exclusions

EXCEPT preceding a namelist, causes those files, projects, qualifiers or accounts in the list to be
excluded from the particular action.

9.7.4. Direction

When an action is to be directed to or from particular tape files or mass storage devices, a FROM
or TO designator is used from the following set, where sss/uu are mass storage subsystem/unit
numbers:

FROM IBACKUPnn

FROM OBACKUPnn

FROM UNIT(S) ss/uu-list 1, ss/uu-list-2, ... , ss/uu-list n

TO UNITS(S) ss/uu-list 1, ss/uu-list 2, ... , ss/uu list n

TO PACK pack-id-1, pack-id-2 ... , pack-id-n

TO FIXED

Note that it is not possible to move files from one mass storage unit directly to another using FROM
and TO.

For files stored on dual subsystem devices, only the primary subsystem number is recorded in the
master file directory for such files. Therefore, any subsystem references made in SECURE source
language must refer to the primary subsystem number of a dual subsystem. References to the
alternate subsystem of a dual subsystem will not be successful.

With the introduction of EXEC level 35 I/O configurations, subsystem/unit specifications will be
replaced by a list of device mnemonic names.

Example:

FROM UNIT D30TU4,D30TU5

The two directives TO PACK and TO FIXED, can only be associated with the REGISTER (or LOAD)
FROM IBACKUP commands when they are used to catalogue removable disk files from a backup tape.
If TO PACK is specified, any removable disk files found on the backup tape will be catalogued with
the specified pack-id. If TO FIXED is used, the files will become fixed disk files. In either case, the
equipment type of the files will not change.

4144<;31 SPEf;RY UNIVAC 1100 Series Executive A 9-10a
___ U_~_N~~M_BE_R ______ ~ _____________ V_o_l_u_m_e __ 3 __ S_y_s_te_m ___ P_ro_c_e_s_s_o_r_s ____________________ ~_UP_D_AT_E_L_EV_E_L __ ~_P_AG_E __

9.7.5. Examples of Source Language

The following are examples of source language specifications:

IBACKUP = 2350, 2351, 2352
OBACKUP = 4451, 4452, 4453
SAVE ACCOUNT 399125 EXCEPT FILE MY*FILE
SAVE ALL PROJECT MERCURY TO OBACKUP
UNLOAD TRACKS = 1500 FROM UNIT 12/3
REMOVE PROJECT SATURN TO OBACKUP
l.OAD FILES FILE1, FILE2, FILE3
REGISTER EXCEPT ACCOUNT 399126 FROM IBACKUP
l.OAD PROJECT VENUS FROM IBACKUP
UEF - 10 FILE FREQUENTLY*USED
REVERT FILE MY*ERROR
LIST LAPSES
CLEAR LAPSES PROJECT MERCURY, SATURN
l.IST REELS
REVERT FILE MYFILE
SAVE ALL AFTER 20 DAYS
SAVE ALL TAPES " 2, 3
SAVE ALL PROJECT MARS WITH RECOVERY
LOAD PACK REMOO' FROM IBACKUP TO PACK REM002
REGISTER FROM IBACKUP TO FIXED
LIST FILES ARCHIVE
END

9.8. SELECTION OF FILES FOR UNLOAD

If an UINLOAD command is given without naming any particular files, projects, accounts, qualifiers
or mass storage units, it is assumed that the SECURE processor has the responsibility to scan the
entire set of catalogued files and to select the subset that must be unloaded to acquire the additional
assignable mass storage space that is needed.

This differs from the action of the SECURE processor when particular fi les, projects. accounts or
qualifiers are named for unload, in which case all eligible candidates in the named set are unloaded,
This is also in contrast to the action of UNLOAD ALL, where all eligible files in the system are loaded,

When the SECURE processor is called to do saves to backup tape, drum-ta-tape I/O is unavoidable,
When the SECURE processor is called to do only an unloading operation, however, it is sometimes
possible to avoid tape I/O. This situation results when there exists an adequa te reservoir of current
backups of unload-eligible files already out on tape to rneet the requirements of a Jeneral UNLO;,\D
command.

Often, at the same time that mass storage facilities become overcrowded, other system resources
become inadequate, making it necessary to temporarily postpone saves. For this reason, those files
with current backups are considered first in computing unload eligibility. Note that a SAVE command
can be included, prior to the UNLOAD command, if it is intended that all backups be immediately
current, prior to unload eligibility factor determination.

The criterion should then be to ~;<,Iect a set of files for unlQad which satisfies the request for space
to ensure a maximum amount of time before anyone of the files selected is referenced again.

4144.31 I SPERRY UNIVAC 1100 Seri .. ExecU1tve 9-11
UP~UM8EA ~ ________ ~_V_O_I_u_m_e __ 3 __ S_y_st_e_m __ p_r_o_c_es_s_o_r_s ____________________ ~U~ __ An __ ~ __ L ____ ~PA_G_E ______ _

SECURE defines a file's unload eligibility factor or 'UEF' as follows:

• The UEF can take on decimal values from 0 to 63.

• A UEF of 0 is reserved for files which are already unloaded. A UEF of 1 is reserved for catalogued
tape files and removable disk files. A UEF of 2 is reserved for files which are marked 'unload
inhibit' (V option). The higher the UEF, the greater is the chance that the file will be unloaded.

Factors c()nsidered in computing the UEF are:

1. Time of last reference.

2. Aver,age time between references.

3. Size as given by the total number of granules.

4. Equipment type on which the file resides.

5. Do more recent F-cycles exist?

6. Is th4~ file public or private?

All of these factors are included in the UEF formula.

9,9. OWN-PROJECT APPLICATIONS

The SECURE processor is used in privileged-mode runs to guarantee the security and availability of
catalogued files. It is also available to non-privileged users for operations on their own files, or files
to which they hav4~ the required access rights. Commands available to non-privileged users are:
SAVE, LO,a.O, REVERT, LIST LAPSES and CLEAR LAPSES.

The only restrictions placed on the user in referencing SECURE commands from the previously
described set are:

1. files named in source language namelists must be public or catalogued under the user's own
project-id; and

2. both the read key and the write key, if they exist. must be included with the filename in source
language statements.

The SAVE command, when referenced from within a non-privileged run produces a backup tape.
The reel numbers however, are not recorded on the file's MFD item. This is necessary to maintain
control over SECURE backup tapes created by a privileged-run, system-wide SAVE. With the
modified or unrecorded SAVE, a user can produce backup tapes at will without destroying the record
of the current backup tapes under the site manager's control.

The REVEI~T command may be called by the individual user after inadvertently destroying the text
of the file ()n mass storage. If a backup copy exists, the SECURE processor marks the file as unloaded.
An automatically initiated LOAD of the previous backup copy occurs when the file is next assigned.
A non-privileged REVERT cannot be made on a read-only file. The user must first make the file
read-write! (@CHG) so that the REVERT process may release the file's granules.

The LIST LAPSES command is normally used by the individual user, following the assignment of a
file, to see! if any new lapses have occurred. The CLEAR LAPSES command may be used when the
user is satisfied with the current state of the file and no longer cares to keep information about the
file's previious hist()ry.

4144.31
UP-NUMBEA

SPERRY UNIVAC 1100 Serle, Executive
Volume 3 System Processors UPDATE LEVEL

9-12
PAGE

The LOAD commands and LOAD ... FROM IBACKUP command may be used by the individual user
to load any files, provided the complete filename and all required keys are specified in source
language.

9.10. CATALOGUED FILE RECOVERY APPLICATIONS
.

No catalogued file should be considered disabled or destroyed as long as a valid SECURE-produced
backup copy exists on tape. With this in mind, three modes of file recovery are possible under
SECURE:

1. REVERT to the backup copy

2. REGISTER individual files from tape

3. REGISTER the directory tape

The REVERT command may be called by any user when it is necessary or desirable to make a tape
backup copy become the primary copy. An automatically initiated LOAD of the designated backup
copy's text to mass storage occurs when the file is next assigned.

Warning messages at assignment time signal when a file has been marked disabled. The user can
then call @PRT,F (see 4.2.5) to get the status of the mass storage copy and time of backup creation.
The a option or an @ENABLE control statement (see 4.2. 17) allows the user to probe the mass storage
copy and determine whether a REVERT to a previous copy is required. Until the user makes the
decision of which copy of the file to retain as the primary copy, the SECURE processor guarantees
to preserve all the information it can to give the user the greatest possible choice of alternatives.

The most general mode of catalogued file recovery under SECURE involves using the MFD tape to
recover all catalogued files, including catalogued tape files. To initiate this process, perform a
REGISTER of the MFD tape. The SECURE processor copies this tape into a temporary mass storage
file, catalogues all files not already catalogued, and marks all files except removable disk files and
catalogued tape files as unloaded to backup tape. As a result, the system is restored to a condition
at least as current as the time the MFD tape was created. This avoids doing REGISTERs of the separate
backup tape&. As users attempt to assign files, an Executive function initiates an automatic LOAD
of text back to mass storage. If it is possible that removable pack files were referenced since the
time of MFD copy creation these packs should be removed and re-registered using the appropriate
console operation keyins in order to insure directory consistency.

9.11. SUMMARY OF SECURE PROCESSOR COMMANDS

Table 9-2 lists the name and function of each SECURE processor command.

4144.31 I SPERRY UNIVAC 1100 Series Executive 9-13
UP~UM~~~ _____________ V_o_l_u_m_e __ 3 __ S_y_s_t_e_m ___ P_ro_c_e __ ss_o __ rs ______________________ ~~u_fO __ An __ L_~_E_L ____ ~P_AG_E ______ ___

Command

CLEAR U~PSES

CONSOLI:

LIST FilES

LIST LAPSES

LIST REELS

LIST UNLOADED FIl.ES

LOAD

LOAD ... FFIOM IBACKUP

REGISTEH DIRECTOIW FROM

IBACKUP

REGISTEH FROM IBACKUP

REMOVE

REMOVE ALL

REVERT

SAVE

Table 9-2. Summary of SECURE Processor Commands

Description

This command erases existing memory lapse entries for the set of files specified by the
namelist.

This r.ommand designates the SECURE processor to accept source input Images from

the onsite console until an 'END' directive is received.

Reserved for privileged runs, this command produces a summary listing, sorted

alphabetically by qualifier and filename, of the backup status for all files specified in

a namelist. If none is specified, all catalogued files are included.

This command produces a listing of the memory lapse entries for all files or for the files

specified by a namelist.

Reserved for privileged runs, this command produces a summary listing of the current

set of backups for all files in the specified namelist sorted in ascending reel number

order.

Reserved' for privileged runs, this command produces the same summary listing as LIST

FILES, but includes only those files whose text is currently unloaded.

Reserved for privileged runs, this command causes the text of unloaded files given in

a namelist to be retrieved from backup tape and written on mass storage.

This command allows the user to REGISTER files (see REGISTER commands) and to

LOAD their text from tape all in one operation.

Reserved for privileged runs, this command allows the user to REGISTER an entire

system set of catalogued files using only the 'MFD tape' snapshot of the MFD.

This command scans the set of backup tapes associated via source language with the

particular IBACKUP unit and restores the MFD items of filos found there which are not

currently catalogued and whose complete backup copies reside on this reel set. Since

only the directory items are restored with this command, files must be marked as

unloaded to the backup tape.

This command is reserved fOIr privileged runs and causes all files specified in a namelist

to be deleted from the system after first ensuring that a current backup exists.

This command is identical to the REMOVE command except that a new backup copy

is produced for each file to be deleted, whether one already existed or not.

This command causes a file's backup copy on tape to become the primary copy by

releasing its granules on mass storage and marking the file as unloaded.

Without further qualification, this command applies to all files in the system not

catalogued with a G option if the run is privileged, or to only those files with a project-id

matching that of the calling run if the run is not privileged. With the above noted, the

SAVE command causes new backups to be made only for those files which do not have

a current backup. Whether or not a backup is current depends on whether any write

operations have been performed on the file since the time the last backup was made.

In the case of privileged runs, the location of the new backup copy is recorded in the

4144.31
UP-NUMBER

Command

SAVE ALL

SPERRY UNIVAC 1100 Serle. Executive
Volume 3 System Processors

Table 9-2. Summary of SECURE Processor Commands (continued)

Description

file's MFD items.

UPOA TE LEVEL
9-14

PAGE

This is identical to the SAVE command except that a new backup copy is made

regardless of whether a current backup exists. This allows the user to merge all backup

copies on a new, self-contained set of backup tapes. In the case of an unloaded file,

SAVE ALL retrieves the text of the file from tape instead of mass storage.

SAVE ALL WITH RECOVERY This command is essentially the same as the SAVE ALL with the exception that files in

the namelist specified are SAVEd only if their time of last backup creation is before the

cataloguing time of SYS$*RECOVERY. (See 9.7.1)

UNLOAD This command is reserved for privileged runs and without further qualification will not

cause more files to be unloaded than is necessary to free up to 3000 tracks on mass

storage. Files are chosen for unloading on the basis of their UEF (unload eligibility

factor), which is computed by the SECURE processor. Files catalogued with a V option

are not unloaded in any case. The UNLOAD command automatically implies SAVE; that

is, a new backup copy is automatically produced, if required, before a file is marked as

unloaded and its granules on mass storage are released.

UNLOAD TRACKS = nnnnnn This command is identical to UNLOAD except that the preset limit of 3000 tracks is

changed to the value specified.

UNLOAD POS = nnnnnn

UNLOAD specific files,

projects, or accounts

This command allows the user to unload only position granular files up to only the

number of positions specified.

This command differs from the previous unload commands in that all files, projects, or

accounts specified in the namelist are unloaded regardless of the UEF.

9. 12. EXAMPLES OF USE OF THE SECURE PROCESSOR

Example 1:

To make the set of backup tapes current (privileged):

@RUN
@ASG,A
@ASG,TNF
@SECURE, IL

SAVE
END

SYS$*DLOC$/read key/write key
OBACKUP,T

4144.31
UP-NUMBIER Volume 3 System Processors UPDATE LEVEL

9-16
PAGE ~ SPERRY UNIVAC 1100 Serlel executive

_____ ----a------'--_

Example 2:

To produce backups of user's own files (non privileged):

@RUN
@ASG,TNF OBACKUP,T
@SECURE, ISF

SAVE ALL FILES MY*FILE1, MY*FILE2
END

Example 3:

To margo all backup copies on a single set of tapes (privileged):

@RUN
@ASG,A
@ASG,TN
@ASG,TNF
@SECURE, Il

SAVE ALL
END

Example 4:

SYS$*DLOC$/read key/write key
IBACKUP,T
OBACKUP,T

To revert to the backup copy (non privileged):

@RUN
@SECURE, IlF

REVERT FILE ABC*XYZ
END

Example 5:

To load the text (.f certain files (privileged):

@RUlN
@ASiG,A
@ASiG,TN
@SECURE,IL

SYS$*DLOC$/read key/write key
IHACKUP,T

LOAD PROJECTS SATURN, JUPITER
EXCEPT ACCOUNT 423055

END

Example 6:

To register a number of files from a particular backup tape set (nonprivileged):

@RUN
@ASG,TN IBACKUP,T
@SECURE, IL

IBACKUP = 1201, 1202, 1203
REGISTER PROJECT MY-OWN FROM IBACKUP

EN[)

4144.31
UP-HUMBER

Example 7:

SPERRY UNIVAC 1100 Serle. executive
Volume 3 System Processors UPDATE LEVEL

9-16
PAGE

To register an entire system set of files from the 'directory tape' following an initial boot (privileged):

@RUN
@ASG,A
@ASG,TN
@SECURE, IL

SYS$*DLOC$/read key/write key
IBACKUP,T

IBACKUP = 1625G
REGISTER DIRECTORY TAPE FROM IBACKUP

END

Example 8:

. DIRECTORY TAPE

To register and load the text for a number of files from a particular backup tape set (privileged):

@RUN
@ASG,A
@ASG,TN
@SECURE, IL

IBACKUP =
LOAD FROM

END

SYS$*DLOC$/read key/write key
IBACKUP,T

1551, 1552, 1553
I BACKUP

9.13. MULTIPLE ACTIVITY OPERATION AND EXAMPLES

SECURE places all routines involving tape I/O in a reentrant ACTION segment which may be executed
simultaneously by several activities. This is more efficient during massive, system-wide SAVE and
LOAD runs.

Another essential aspect of optimizing multiple activity efficiency is the processor's ability to direct
the allocation of files to specific mass storage units during the REGISTER and LOAD processes. The
ability to direct allocation to an absolute subsystem and unit on a file-by-file basis is a feature of
SECURE.

In describing the operational characteristics of multiple activities in SECURE, two points should be
made clear at the outset. First, the number of activities generated by the processor for any SECURE
action will be determined by the number of IBACKUP or OBACKUP tapes assigned to the calling run.
SECURE can only do tape actions in one of two possible 'modes'. Any REGISTER or LOAD FROM
IBACKUP command is defined as the 'register mode'. The other 'action' mode is signified by
commands such as SAVE, UNLOAD, LOAD, REMOVE, etc. Therefore, the commands "REGISTER FROM
IBACKUP 1" and "SAVE TO OBACKUP 1" are incompatible in the same execution.

A series of examples to illustrate proper use of source language in generating multiple activities is
given below. All runs are assumed to be privileged.

UP-HUMBIER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

9-17
PAGE

4144.31 ~
- ------~--L..--

Example 1:

@RUN
@ASG,TNF
@ASG,TNF
@SECURE, IS

SAVE
END

OBACKUP1,T/2
OBACKUP2,T

In example 1, the processor uses an internal algorithm to generate two activities, each handling a
unique file set and producing backup tapes of approximately equal size. The directory tape will be
produced by the 1:irst activity, after both have terminated the SAVE action.

The assi~Jnment of OBACKUP 1 illustrates the use of the two-unit tape assignment capability. By
utilizing two tape drives, the SAVE operation continues even though a complete OBACKUP 1 tape may
have just been written. In this case, a second tape is mounted on an alternate drive and may be
accessed while the first is rewinding.

Example 2:

@RUN
@ASG,TN
@ASG,TNF
@ASG,TNF
@SECURE, IS

I BACKUP1 , T
OBACKUP1,T
OBACKUP2,T

SAVE ALL FROM
SAVE ALL FROM

END

UNITS 4/0,5/0 TO OBACKUP1
UNITS 6/9/1/2 TO OBACKUP2

In example 2, SECURE is directed to allocate files between the two activities based on their hardware
location, because it has been determined that such a split offers the most efficient use of available
I/O paths;. Files which reside in part or both sets of mass storage units will be resolved and allocated
to a singlle activity, normally on the basis of where the main directory item resides. All loaded files
will be dumped first from drum to tape and then tape-to-tape copies of any unloaded files will be
handled by a single activity using the IBACKUP 1 tape unit for input and one OBACKUP tape unit for
output.

Example 3:

@RUN
@ASG,TN
@ASG,TNF
@ASG,TNF
@ASG,TNF
@SECURE, IS

IBACKUP1,T
OBACKUP'I , T
OBACKUP2,T
OBACKUP3,T

SAVE ALL FROM UNITS 4/0,5/0 TO OBACKUP1
SAVE ALL FROM UNITS 6/0/1/2 TO OBACKUP2
SAVE ALL UNLOADED FILES TO OBACKUP3

EN[)

Example 3 is similar to example 2, except that SECURE is directed to process unloaded files via
tape-to-·tape copies simultaneously under control of a third activity. Again, IBACKUP 1 is
automatically used as the input tape unit.

4144.31
UP-NUMBER

Example 4:

@RUN
@ASG,TN
@ASG,TN
@SECURE, IS

SPERRY UNIVAC 1100 Serle. Executive
Volume 3 System Processors

IBACKUP1,T
IBACKUP2,T

IBACKUP1 =1,2,3
IBACKUP2 =4,5,6
LOAD FROM IBACKUP1
LOAD FROM IBACKUP2

END

UPDATE LEVEL
9-18

PAGE

In example 4, SECURE is in 'register mode' and is directed to generate two activities to accomplish
the REGISTER and LOAD. Allocation of the files on mass storage is done according to the normal
system algorithm. The above example is suggested as the most efficient means to ensure proper
allocation when restoring mass storage files.

Example 5:

@RUN
@ASG,TN
@ASG,TN
@SECURE, IS

LOAD UNTIL
END

I BACKUP1 , T
IBACKUP2,T

UEF = 40

Following a directory tape REGISTER, the above method may be used to load file text up to the cutoff
UEF value in a fast, efficient manner. Input tape numbers are known to SECURE through the directory
items and are distributed evenly between the two activities, assuming approximately the same amount
of information on each backup tape.

Although the above examples illustrate no more than three activities in one execution, as many as
10 will be allowed. However, the user should note that 4000 decimal words of storage are required
for each additional activity and that there is a point of diminishing returns in generating too many
activities for optimum 110 path selection. Note also that all the logic to successfully handle 110 errors
and contingency processing has been preserved for each actiyity. A serious contingency occurrence,
e.g., IGDM, causes the processor to do an ER ABORT$, terminating all activities, and then allows
processing of the contingency.

9.14. SPECIAL FEATURES AND PROCEDURES

9. 14. 1. Checksum

The checksum feature is a means the SECURE processor uses to verify that data transfer in liD
operations is completed successfully. For each block of data transferred from mass storage to tape,
tape to mass storage or tape to tape operations, a summation of the total bits is kept prior to and
after the data transfer. If these summations are not equal, a checksum error has occurred.

These messages appear when this condition exists:

qual*file(cycle) ** CHECKSUM ERROR** nnnnnnnnnnnn nnnnnnnnnnnn

This line appears in the output listing once per track when an error is detected. The values printed
after the message are, first, the actual checksum value after the transfer and second, the expected
checksum prior to the I/O operation.

4144.31 I SPERRY UNIVAC 1100 Series Executive I I 9 19
___ U_P_~_U_MB_E_R ___ ~ ___________ V_O_I_U_m_e __ 3_S_y_s_t_e_m __ p_ro_c_e_s_s_o_r_s ____________________ ~U_p_D_An __ lN __ EL ____ L_PA_G_E-______ _

CHKSM IERROR qual*file(cycle) DISABLED

appears Ion the onsite console once per file when a checksum error has occurred. The file is left in
the disabled state after SECURE has finished its operation.

This feature is in(:luded any time the C option is used on the SECURE control statement.

9. 14.2. Text Blc)ck Sequence Check

The SECURE processor verifies that each text block of a file is transferred from tape by checking that
the relative block numbers of all text blocks read are in sequential order. If a text block is not read,
the user is notified of an error by the foll~wing messages:

qual*file(cycle) ** TEXT BLOCK SEQUENCE ERROR** nnn nnn

This line appears in the output listing each time a sequence error is detected. The values printed
after the message are, first, the text block number of the previous block read and, second, the text
block number of the last block read. Comparison of the two values enables quick determination of
the number of blocks missed.

BlK SEQ. ERR qUClI*file(cycle) DISABLED

appears Ion the onsite console once per file in which a sequence error occurs, and notifies the user
that the jfile is left in the disabled state after SECURE has finished its operation.

9.14.3. 'Special Void' Message

When no projects, accounts, qualifiers or filenames are specified in a privileged mode REGISTER, the
words 'SPECIAL VOID' are inserted as a dummy project name to indicate that the reference applies
to all files, regardless of project.

This message appears in the summary listing if no legitimate files could be found on the tape or
removable disk pack being registered.

9.14.4. Tape Handling Procedures

SECURE maintains its position on tape by checking the current file position number which is written
in the filc~ label block. If loss of position is suspected, a B keyin to an onsite console message will
cause thle tape to be rewound and the file search to be repeated from the beginning of the tape. A
. D keyin ()r the unsolicited downing of a tape unit will cause the particular activity to terminate via
ER ERR$ without affecting other activities.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

9-20
PAGE

If a tape is mounted whose reel number in SECURE's tape label is not equal to the requested, SECURE
will allow various actions by doing an answerable ER COM$. Based on the response, SECURE will
react as follows:

A - Repeat the mount message as the wrong tape was mounted in error .

. E - The wrong tape was mounted because the requested tape is currently unavailable. The
files on this tape will be bypassed for this SECURE execution.

G - This is the requested tape, but the tape label has been destroyed. SECURE will proceed as
if it had been correct, and attempt to recover the desired files.

9.14.5. SYS$*ARCHIVE$

SYS$*ARCHIVE$ is a V option file catalogued and used by SECURE as a storage area for selected
directory information of files decatalogued on a REMOVE operation if the Z option is specified on the
@SECURE control statement. By utilizing ARCHIVE$, a site may decatalogue seldom-used files from
the Master File Directory, but still retain enough information to restore these files if the need arises.
It must be assumed that files entered into ARCHIVE$ have a valid tape backup copy from which the
text may be recovered.

Any namelist or limiter valid with the REMOVE or REMOVE ALL commands may be used to designate
the set of files to be entered into ARCHIVE$.

A series of examples follow to illustrate the proper use of source language in conjunction with the
creation, interrogation and purge of the file ARCHIVE$. All runs accessing ARCHIVE$ must be
privileged.

Example 1:

To create entries in ARCHIVE$ for files with last reference times older than 30 days ago, and insure
that these files are on a consolidated backup tape set:

@RUN
@ASG,A
@ASG,TN
@ASG,TNF
@SECURE, ILZ

REMOVE ALL
END

Example 2:

SYS$*DLOC$/read key/write key
IBACKUP,U
O~ACKUP,U

BEFORE 30 DAYS

To create entries in ARCHIVE$ for a particular project:

@RUN
@ASG,A
@ASG,TNF
@SECURE, ILZ

SYS$*DLOC$/read key/write key
OBACKUP,U

REMOVE PROJECT MYPROJ
END

4144.31 I SPERRY UNIVAC 1'100 Series Executive I I
__ U~_~_U_M_DE_A ___ ~ __________ V_o_lu_m __ e_3 __ S_y_st_e_m __ p_ro_c_e_s_s_o_rs ___________________ ~_u_~_A_n_L_~_L ____ ~P_AG_:_-_2_1 __ ___

Example :3:

To recreate a file with an entry in ARCHIVE$:

@RUI~

@ASG,A
@ASG,TN
@SECURE, Il.

SYS$*DLOC$/read key/write key
IBACKUP,U

LOAD ARCHIVE FILE MYFILE
END

FROM IBACKUP

Note in the above example that no IBACKUP = NNN tape number source statement is necessary.
SECURE scans ARCHIVE$ and retrieves MYFILE's tape number automatically.

Because a file is deleted from the MFD when it is entered into ARCHIVE$, several entries with the
same qualifier, filename and f-cycle may exist in ARCHIVE$. To insure recreation of the desired file,
an additkmal specification, namely the time of cataloguing, may be stated in SECURE source
language. Time of cataloguing may be obtained while the file is still in the MFD by many of the
FURPUR @PRT commands (see 4.2.5). It must be stated in the format: 'CATALOGUED
MM/DD/YY /HH/MM/SS' with leading zeros removed.

Example 4:

To recreate MYFILE catalogued on 04/18/73 at a time of 08:36:43:

@RUN
@ASG,TN IBACKUP,U
@SECURE, IL
LO)~D ARCHIVE FILE MYFILE CATALOGUED 4/18/73/8/36/42 FROM IBACKUP

END

Periodically, ARCHIVE$ may be purged if retention of entries for specific files is no longer necessary.
Files may be purged from ARCHIVE$ by 1) specifying filename(s), 2) specifying qualifier(s), or 3) based
on the time spanned since files have been entered in ARCHIVE $.

Example !5:

To remov,e a specific file from ARCHIVE$:

@RUN
@SECURE, IL

REMOVE ARCHIVE FILE MYFILE
END

Note that the cataloguing time and date of MYFILE (see Example 3) may be used on the REMOVE
operation as well as the LOAD FROM IBACKUP, to insure that the correct file is purged from
ARCHIVE~~.

4144.31
UP-NUMIER

Example 6:

SPERRY UNIVAC 1100 Serio Executive
Volume 3 System Processors UPDATE LEVEL

To remove a specific qualifier from ARCHIVE$:

@RUN
@SECURE, IL

REMOVE ARCHIVE QUALIFIER MYQUAL
END

Example 7:

To remove files from ARCHIVE$ which were entered more than 30 days ago:

@RUN
@SECURE, IL

REMOVE ARCHIVE BEFORE 30 DAYS
END

9-22
PAGE

414431 I SPERRY UNIVAC 1100 Series Executive I I 10-1
up~u~~~ ____________ V_o_lu_m __ e_3 __ S_y_st_e_m __ P_r_o_cG_S_S_0_rs ________________________ ~_U~ __ An __ L_~_L ____ ~P_A_GE ____ ___

10. Symbolic Stream Generator (SSG)

10. 1. INTRODUCTION

The Symbolic Stream Generator (SSG) processor provides a programmer with a means to create and
control a variety of symbolic streams. With the use of a program or skeleton written in the
SYMSTREAM language (see 10.5), directions and models may be used to manipulate symbolic input
and create symbolic output.

10.2. SSG INPUT AND OUTPUT

10.2.1.. @SSG Control Statement

Format:

@SSG,options param-1 ,param-2,param-3,param-4,param-5,param-6,param-7 , ... ,param-n

AU paralmeters are optional. All input and output streams defined by the @SSG control statement
are DATA files or symbolic elements in program files, unless otherwise stated. SSG accepts mixed
ASCII-Fieldata input. The only required input is the skeleton specified either on the SSG call, on a
file-id statement, or in the input runstream.

Parameters:

options

param-1

param-2

See Table 10-1.

Specifies the source of the skeleton stream (may be ASCII, Fieldata, or mixed
ASCII-Fieldata mode).

Specifies the source of SGSs; may be one of two types of input: first type is a
DATA file or a symbolic element specified, which contains SGSs; second type
has the format:

filename'/label

where the filename specified is a program file. SSG takes the element names
from the program file and attaches the spe~ified label to each, creating one SGS
for each element present. See 10.3 for the format of these SSG created SGSs.
Both types of SGS input may also be used after param-6.

4144.31
UP-NUMBER

param-3

param-4

param-S

param-6

param-7

Option

A

B

C

0

SPERRY UNIVAC 1100 Seriel Executive
Volume 3 System Processors UPDATE LEVEL

10-2
PAGE

Specifies the destination of the generated output stream (must be a DATA file
if *BRKPT directive is used). See V and W options, Table 10-1.

Specifies the destination of the revised temporary stream. Images will be the
same mode (ASCII, Fieldata, or mixed ASCII-Fieldata) as the temporary images
they are derived from.

Specifies the destination of the revised skeleton stream. These images will be
in the same mode (ASCII, Fieldata, or mixed ASCII-Fieldata) as the skeleton and
skeleton corrections are on input.

Specifies the source of the corrections to be applied to the skeleton stream (may
be ASCII, Fieldata, or mixed ASCII-Fieldata). The control character for the line
corrections to the skeleton is a plus sign (+).

The first of a variable number of fields specifying inputs; the formats are as
follows (must always start at param-7):

PCF/number,name-1, ... ,name-n perman~nt corrections

TCF/number,name-1 , ... , name-n primary tempo(ary corrections

SGS/number,name-1 , ... , name-n stream generation statements

tcf-set-name/number,
name-1 , ... , name-n

number

name-1 , ... ,
name-n

secondary temporary corrections
sent to the tcf-set defined.

Specifies the number of DATA files or symbolic
elements to be supplied for the specified input
(PCF, TCF, ...).

The DATA files or symbolic elements that are the
source' for the specified input.

This format may be repeated any number of times by placing a comma (,)
between name-n and the next input type. The source input may be in ASCII,
Fieldata, or mixed ASCII-Fieldata mode.

If the P or T options are present for PCF and TCF sets, respectively, number
must always be 1 and name-1 must be a program file. (See 10.4.2 and
10.4.3, respectively).

Table 10-1. @SSG Control Statement Options

Description

Continue SSG execution regardless of no find references.

Do not dynamically @ADD the generated output stream. Without the B option the generated output stream

is automatically added by the EXEC after SSG termination. (See 10.2.4 SSG OUTPUT).

Double space all printing.

Used with E option to eliminate indentation and preliminary error checking.

414431 I SPERRY UNIVAC 1100 Series Executive I I 10-3
UP~U~B~ ________ . ____ V_O __ IU_m __ e __ 3_S __ y_st_e_m ___ P_ro_c_e_s_s_o_r_s ______________________ ~_U_~_A_n __ L~ __ EL ____ ~~P_A_GE ______ ___

Option

E

F

G

H

Table 10-1. @SSG Control Statement Options (continued)

Description

Prints revised skeleton stream in an indented form and causes SSG to do preliminary error checking on

the revised skelet.:>n (see D option).

Prints permanent input streams (PCF set).

Print.s temporary input streams (all TCF sets).

Prints revised temporary stream.

Prints stream generation statement streams in the order they are input.

J Prints only the contents of the PCF element entries for which there are primary temporary element entries

at the conclusion of skeleton processing. (The presence of *elementlversion in the primary TCF is

sufficient to cause a printout of that element's PCF.) The page is ejected for each element printed out. The

P option must be used. The R option is not necessary when the J option is used.

K Prints generated output stream.

M Debug. Prints trace of images in the skeleton as they are processed.

N Debug. Prints values of variables and expressions of the directives being processed.

o Order PCF set element entries in ascending alphabetical order. Any duplicate PCF element entries will be

noted and the second entry discarded. (Sorted according to ASCII collating sequence.)

P PCF set entries are to be composed of the symbolic element entries from a program file specified after

param-6 on the @SSG call. When PCF entries are defined in this manner, other sources of PCF entries

(excnpt *CREATE PERM) are not allowed. (See 10.4.2)

a OrdEtr entries within each TCF set in ascending alphabetic order. Any duplicate entries within a TCF set

will be noted and the second ~ntry discarded. (Sorted according to ASCII collating sequence.)

R Print updated or revised PCF set entries from the specified program file as they exist at the end of skeleton

processing. A program file must have been used in conjunction with the P option.

S OrdElr SGSs with the same label in ascending alphabetical order according to the first subfield of each

statEtment. (Sorted according to the ASCII collating sequence.)

T TCF set entries are to be composed of the elemont entries from a program file specified after param-6 on

the @SSG call (one program file per TCF set). When TCF entries are defined in this manner, other sources

of TeF entries (except *CREATE TEMP) are not allowed. (See 10.4.3)

V Generated output stream is to be Fieldata. *

W Generated output stream is to be ASCII.*

X Used in conjunction with any combination of the 0, a or S options; causes the sort to collate numbers in

ascEtnding order.

* If neithelr the V nor W option is used, the generated output stream is in ASCII if at least one revised skeleton image is in

ASCII; othl9rwise, it iSi in Fieldata.

4144.31
UP-MUMBER

SPERRY UNIVAC 1100 Serle. executive
Volume 3 System Processors I UPDATE LEVEl

10-4
PAGE

10.2.2. Input from Runstream

Another means of input to SSG is from the runstream (card input) where the file identification (file-id)
statements define the type of input.

Format:

File-id Statement Type of Input

SGS,options filename stream generation statements

SKEL,options filename skeleton stream

SKEL COR,options filename corrections to skeleton stream

PERM COR,options filename permanent corrections

TEMP COR,options filename primary temporary corrections

TEMP COR,options filename: tcf-set-name secondary temporary corrections sent to the
tcf-set specified

Parameters:

options

filename

Description:

W indicates that the card input should be read by ER AREAD$ (ASCII
read). If file input, all images read are converted to ASCII. If W option
is absent, card input is assumed Fieldata and all images in file input
remain their original mode.

The name of a data file or symbolic element that is the source for the
specified type of input. Element notation is used to interpret the
specification (a filename without an element must have a trailing
period). The filename is not necessary, 'and if omitted, card input
following the file-id statement is assumed.

If the filename is specified on the file-id statement, the images for the specified type of input are taken
from that file. If the filename is omitted, SSG reads all card images following the file-id statement
until an @EOF control statement is encountered and associates those images with the type of input
specified. A matching @EOF is required for each file-id statement that uses cards as input.

Any number of file-id statements are allowed and may be in any order. A space period space on
a file-id statement terminates the scan of that image. Space colon space on a TEMP COR filt:;-id
statement indicates that a tcf-set-name follows.

With two exceptions, any combination of input from the @SSG control statement and the file-id
statement is permitted. (See P and T options in Table 10-1 for exceptions.)

10.2.3. SSG Input

The SSG skeleton is a collection of SYMTREAM statements interpreted by SSG ir. order to generate
a symbolic output stream. Skeleton corrections are line corrections to be applied to the input skeleton
before SSG interprets it. The control character for the skeleton corrections is always a plus (+).

4144.31
UP-ftUMBER UPOAT£ LEVEL

10-5
PAGE L SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors
,------'-----'----

The skeleton and skeleton corrections (if any) may be supplied by a parameter on the @SSG call, on
a file-lid statement, or as cards following a file-id statement. However, only one skeleton source and
one skeleton correction source is allowed. Only the skeleton is required as input for an SSG call.

See 10.3 for description of SGSs, and 10.4 for description of PCF and TCF sets.

10.2.4. SSG Output

All output is optional. The generated output stream is symbolic images output as a direct result of
the ex,ecution of the skeleton. With the skeleton, symbolic input and created symbolic images can
be din9cted to the generated output stream.

The revised skeleton is the result of the input skeleton corrections being applied to the input skeleton
stream. If there are no skeleton corrections, the revised skeleton is exactly like the input skeleton.

The ge1nerated output stream is automatically added by SSG before termination (for EXEC execution)
unless the B option is on the @SSG call statement. SSG does an @ADD of the DATA file SGR$2
(containing the generated output stream) unless there is a user specified output file in param-3 on
the @SSG call statement or on the *BRKPT directive that is the intended destination of the user output
'file to be added. In such a case the user's file is added and file SGR$2 is freed.

The revised temporary stream is discussed in 10.4.5.

The revised PCF set entries are those symbolic elements in the PCF program file (P option on @SSG
call mllst be usud - see 10.4.2) after a skeleton execution where *CORRECT,P was used. The mode
(ASCII or Fieldata) of the correction images is not altered from input.

SKE COR

SGS---+)I GENERATED OUTPUT STREAM

PCF---+)I SSG REVISED PCF

TCF----7)~ ______ ~----------j-_? REVISED TCF

REVISED SKEL

Oiagram of SSG Input and Output

10.2.51. SSG Margins and Headings

After SSG prints the identification line, the output margins are reset. The user may determine the
page margins by inputting a margin card with the following format:

MARGIN I,t,b

immediately afttH the @SSG call statement. I is the number of lines per page, t is the number of blank
lines for the top margin, and b is the number of blank lines for the bottom margin. If there is no margin
card present, SSG assumes 66, 6, and 3 for I,t, and b, respectively.

All of SSGs headings are printed by ER APRINT$ to ensure that any user heading (@HDG) is retained.

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 S.rl •• executive
Volume 3 System Processors UPOAT£ LEVEL

10-6
PAGE

10.3. STREAM GENERATION STATEMENTS

Tables or lists of data may be provided for skeleton use through stream generation statements (SGS).
An SGS stream may be input from the processor call statement, input from the runstream (cards), or
created during skeleton processing.

10.3.1. SGS Input Formats

Format:

label subf-11 ,subf-12, ... subf-1 n subf-21 ,subf-22, ... subf-2n ... subf-m 1 ,subf-m2, ... ,subf-mn

Parameters:

label

subf

Description:

String of 20 or fewer characters beginning with an alphabetic and not
containing a space, period, semicolon, comma, left bracket, slash,
plus, minus, or right bracket.

Subfield: a string of 20 or fewer characters not containing a space,
period, semicolon, comma, left bracket, or slash unless those
characters are enclosed in apostrophes. Any character, including a
space, is allowed in a given string by enclosing that string in pairs of
apostrophes (" ... ") which designate the string, excluding the
apostrophes. Single apostrophes r .. :) designate a string including the
apostrophes.

Each SGS has one label and any number of fields

In an SGS, a set of subfields separated by commas is called a field. Each of these fields are separated
by blanks. Each field may have from one to any number of subfields. A null subfield is a subfield
that contains no characters. Any number of SGS images with the same label and any number of
differently labeled SGSs may exist.

The SGS is free form and the label need not start in the first character position (column 1). A period
in any position on the SGS terminates the scan of that image; a semicolon continues the scan to the
first nonblank character of the next image. The scan of an SGS ignores all leading blanks, but
interprets the first trailing blank as a field separator and the first trailing comma as a subfield
separator.

For input and referencing, an SGS label may be in upper or lower case alphabetics. Label LAB is
the same as label lab, Lab, etc. However, the subfields in an SGS are maintained as they are received
on input (Fieldata always converts to upper case in ASCII). This condition need not concern the
Fieldata user.

When filename.llabel is supplied on the @SSG call (see 10.2.1, param-2), SSG automatically creates
SGSs based on the nondeleted elements found in the specified program file's element table. The
label specified becomes the label for the SSG created SGSs, and the format of those SGSs is as
follows:

label element-name version-name element-type, element-subtype

UP-NlJIMBER

SPERRY UNIVAC 1100 Serle. Executive
Volume 3 System Processors UPDATE LEVEL

10-7
PAGE

4144.31 ~
- ,------~---l...---

If there is no ven;ion-name for an element, that field is left blank (12 blank characters are returned
on reference or test to the field). If there is no element-subtype, that subfield is omitted. However,
the element-name is always in field 1, subfield 1; the version-name is always in field 2, subfield 1;
and the element·-type is always in field 3, subfield 1.

10.3.2. Referencing SGSs

An SGS may be referenced in the skeleton according to label, statement number with that label, field,
and subfield. V"hen such a reference is encountered, the value returned is substituted for the
reference. ThoSEI references below marked NUMERIC return a numeric value when SGS statement,
field or subfield referenced exists, and in that case are considered numeric expressions.

With a label I, a statement number n, a field number f, and a subfield number s, the following
references may be made on SGSs:

SGS Reference

[I]

[I,n]

[I,n,f]

[I,n,f,s]

Value Returned

Number of SGSs with the label I. (NUMERIC) If none, a 0 value is
returned.

Number of fields on the nth SGS with the label I. (NUMERIC) If the
referenced statement does not exist, a 'no find' message is given.

Number of subfields in the fth field on the nth SGS with the label I.
(NUMERIC) If the referenced statement or field does not exist, a 'no find'
message is given.

Contents of the sth subfield in the fth field on the nth SGS with the label
I. (SYMBOLl(;) If the referenced statement, field, or subfield does not
exist, a 'no find' message is given.

In addition to thE~ above references, information may be obtained about a particular subfield using
the string descriptor numbers 1 through 5. All references are for the sth subfield, in the fth field on
the nth SGS with the label I. If the subfield referenced does not exist a 'no find' message is given.

SGS Reference

1[I,n,f,s, 1]

1[I,n,f,s,2]

[1,n,f,s,3]

[1,n,f,s,4]

[1,n,f,s,5]

Value Returned

Number of characters in the subfield if eyery character is alphabetic;
otherwise, O. (NUMERIC)

Number of characters in the subfield if it is enclosed in single
apostrophes roo.'); otherwise, O. (NUMERIC)

Number of characters in the subfield, if it is enclosed in pairs of
apostrophes (" .. .") otherwise, O. (NUMERIC)

Number of characters in the subfield if it is numeric, otherwise, O.
(NUMERIC)

Number of characters in the subfield. (NUMERIC)

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPOA TE LEVEL

10-8
PAGE

If SGSs are created by SSG as a result of filename./label being specified on the @SSG call, the
external filename supplied is also saved and is associated with the specified label. In the case that
more than one program file is associated· with a label for this particular type of SGS input, any
reference will return the last filename given with that label (from left to right on the @SSG statement).
If a reference is made on a label that has no external filename associated with it, a 'no find' message
is given. The following references may be made:

SGS Reference

[1,0,0]

[I,O,F]

[I,O,C]

[I,O,R]

[I,O,W]

Value Returned

Oualifier associated with label; blanks, if none specified. (SYMBOLIC)

Filename associated with label I; blanks, if none specified. (SYMBOLIC)

F-cycle associated with the label I; blanks, if none specified. (SYMBOLIC)

Read key associated with the label I; blanks, if none specified.
(SYMBOLIC)

Write key associated with the label I; blanks, if none specified.
(SYMBOLIC)

See Volume 2-2.6.1 for explanation of file notation.

The fields in an SGS reference may be composed, as follows:

label

statement-number

field-number

subfield-number

string
number

descriptor

O,F,C,R,W (on third field
of external filename
reference)

May be a string as described under label in 10.3.1, or an SGS
reference, SET reference or a process parameter reference that
returns such a string.

May be an integer expression or numeric expression (see 10.5.1).

May be an integer expression or numeric expression (see 10.5.1).

May be an integer expression or numeric expression (see 10.5.1).

May be an integer expression or numeric expression (see 10.5.1).

Explicit character only.

Any SGS references or set references used to supply the label, statement number, field number,
subfield number, or string descriptor number may not contain another SGS reference or set reference.
That is, SGS reference or set references may be nested to one level only.

4144.31 I SPERRY UNIVAC 1100 Serle. executive 10-9
~~~ ____________ V_O_'U_m_e __ 3_S_y_s_te_m __ P_r_o_ce_s_s_o_rs __________________ ~u_~_A_n_L_~_L ____ ~P_AG_E ____ ___ 

10.3.3. SGS Ell(amples 

Given the following SGS s: 

WHI:RE 
WHEN 
WH() 
WHERE 
WH() 
WHI:N 

183,ADOMAIN MPLS MINN 56634 
21,OCTOBER,1954 +12465 
CABLE,ABLE WHERE, 1 WHEN,2 
154,ROBERT STPAUL MINN 55127 
BRAN,JULIET WHERE,2 WHEN,l 
12,APRIL,1926 564Z 

Also, given the variable Z (see 10.5.3.2) which has the value 1, and the process parameter references 
[# 1] and [#2] which have the values WHO and 2, respectively (see 10.5.3.1.3). 

The following references would return the values shown: 

Referenc:e Value 

[WHERE] 2 

[ [# 1],1:1 3 

[WHEN,Z,2] 

[WHO,2, 1 ,[#2] ] JULIET 

[WHEN, '1,2,[*Z].4] o 

[WHEN,[#2],2,1,5] 4 

[[WHO,:Z,[#2], 1],[ [#1],Z,[#2],2] [*Z],[#2]] ADOMAIN 

Comment 

Number of SGSs with the label 
WHERE. 

Number of fields on the first SGS 
with the label WHO. 

Number of subfields in the second 
field of th first SGS with the label 
WHEN. 

Contents of the second subfield in 
the first field of the second SGS 
with the label WHO. 

Returns the number 0 because not 
all characters in the first subfield 
of the second field on the first 
SGS with the label WHEN are 
numeric. 

Number of characters in first 
subfield of second field on second 
SGS with the label WHEN. 

Examples of how SGSs may be 
nested to one level. The label is 
taken from [WHO,Z. [#2],1] and is 
WHERE. The statement number is 
taken from [ [# 1],Z,[#2],2] and is 
1. The field number is from the 
variable Z and is 1, and the 
subfield number is from [#2] and 
is 2. 



4144.31 
UP-NUMBER 

Example 2: 

SPERRY UNIVAC 1100 Serie. Executive 
Volume 3 System Processors 

Given the following SSG call and runstream: 

UPDATE LEVEL 

@SSG ,PF./NEWL", "SGS/2,BETA/RO/WRIT./NEWL,ELL*DELTA(2).IOLDL 
SKEL 

. QUAL FOR NEWL IS [NEWL,O,Q]. 
FILENAME FOR NEWL IS [NEWL,O,F]. 
QUAL FOR OLDL IS [OLDL,O,Q]. 
F-CYCLE FOR OLDL IS [OLDL,O,C]. 
@EOF 
@EOF 

The generated output stream would look like: 

QUAL FOR NEWL IS . 
FILENAME FOR NEWL IS BETA. 
QUAL FOR OLDL IS ELL. 
F-CYCLE FOR OLDL IS 2. 

10-10 
PAGE 

1. Note that only the last program file associated with the label NEWL, from left to right on the 
call statement, can be referenced by the external filename reference. 

2. Note that when a reference was made on the qualifier associated with NEWL, and there was 
none specified, nothing was returned (blanks). (See 10.5.2 for bracketed references returning 
blanks.) 

10.4. PERMANENT AND TEMPORARY STREAMS 

In the EXEC 8 control language there is a facility for applying a group of correction images to a 
symbolic element and producing a new symbolic. 

For example: 

@FOR,U FILE.SYMBOLIC 

[ = = = = = = l} correction images 

In the skeleton, there is often a need to direct or generate a symbolic stream (generated output stream) 
which contains correction images such as in the above example. 

To faciliate handling the program corrections separately from the skeleton they are input as 
permanent and temporary streams (also called PCF and TCF, respectively). Then, by changing the 
permanent and temporary streams, groups of corrections can be changed each time a skeleton is used 
without actually changing the skeleton. 

The permanent stream may contain many entries or 'groups of corrections to be applied to different 
symbolic elements. These groups of corrections are called element entries. The temporary stream, 
which is also mpde up of element entries, is provided as a means to input any necessary changes 
or additions to the permanent stream. 

With the use of skeleton directives, permanent and temporary corrections may be merged and 
directed to the generated output stream (see 10.5.3.8). 



4144.31 I SPERRY UNIVAC 1100 Series executive 10-11 
UP~UM~~~ ___________ V_o_lu_m __ e_3 __ S_y_s_te_m __ p_r_o_c_e_ss_o_r_s __________________ ~_u_~_A_n_L_~_L ____ ~AA_G_E ____ ___ 

10.4. 1. Element Entry 

An ima~Je madEt up of an asterisk (*) in the first character position followed by an 
element-·name/version-name defines an element entry. All images that follow such an * card, until 
the next entry is defined, are attached to that element entry. The element name and version name 
may be up to 12 clharacters each, the characters being alphabetic, numeric, $ or -. The/version-name 
is ~ptional, and the format of the entry is, as follows: 

*eI4:tment-n~lme/version-name 

[ = = = = = = l} corrections associated with above defined element entry. 

Element-name/version-name are case independent (for ASCII users). That is, ABC/DEF is the same 
as abc/def. This condition need not concern the Fieldata user. 

For alternate methods of defining element entries, see P and T options, Table 10-1, and below. 

10.4.2. Permanent Stream (PCF) 

The permanent stream or PCF is a set or collection of element entries. Images making up these entries 
may come from any combination of DATA files or symbolic elements specified on the @SSG call, on 
a file-id Eltatement in the runstream, or cards from the runstream (see 10.2). Any number of element 
entries alnd the corresponding images may be in the PCF set as long as each entry name within the 
set is uniique. 

Another method for defining input to a PCF set is by specifying the P option (Table 10-1) along with 
a program file on the @SSG call (see 10.1, param-7). With this type of input, the name and contents 
of each Ellement entry for the PCF set are taken from each nondeleted symbolic element in the one 
specified program file. With the use of the P option, no other type of input for the PCF set is accepted. 
Note that since the element entries are getting their names and contents from the symbolic elements 
in a program file, the * card should not be used to head the symbolic corrections within the element. 

The PCF set is always defined, even when empty. 

Example 1: 

@SSG ",,,,PCF/1,DATA.,PCF/2,PF.ELEA,OATA3. 
PERM COR INT 4 
SKEL 

@EOF 
PER:M COR 
*ENT2 

*ENT3NER1 

@EOF 
@EOF 



4144.31 
UP-NUMBEA 

SPERRY UNIVAC 1100 Serle. Executive 
Volume 3 System Processors UPOATlLMl 

10-12 
PAGE 

Since the P option is not on the @ SSG call many files and the run stream may be used to supply 
PCF set input. The DATA files, DATA.,DATA3., and INT4. and the symbolic element PF.ELEA each look 
something like the following: 

*elementlversion 

*elementlversion 

*elementlversion 

Those files' element entries along with the element entries defined in the runstream between PERM 
COR and @EOF make up the PCF set. 

Example 2: 

@SSG,P """PCF/l ,PF. 

Because of the P option, the PCF element entry names are taken from the element table of the program 
file, PF. All nondeleted symbolic elements are included. If the file PF,had three nondeleted symbolic 
elements A,B, and C, there would be three PCF element entries, A,B, and C. The contents of the 
symbolic element PF.A would be the corrections associated with the element entry A; the contents 
of PF.B associated with B; and the contents of PF.C associated with C. Since the element entry names 
are defined from PF's element table, * cards should not be used in the correction symbolics. 

10.4.3. Temporary Stream 

A TCF set is a set or collection of element entries. Images making up these entries may come from 
any combination of DATA files or symbolic elements specified on the @SSG call, on a file-id 
statement in the runstream, or cards from the runstream (see 10.2). 

Any number of element entries and the corresponding images may be in a particular TC;: set as long 
as each entry name within that set is unique. SSG recognizes one primary TCF set and anY' number 
of secondary TCF sets. Common entry names between sets are permitted. 

Input to be included in the primary TCF set is defined on the @SSG call as TCF (see 10.2.1, param-7) 
and on a file-id statement as: 

TEMP COR filename 

or 

TEMP COR filename: TCF 

See 10.2 for further description. 



4144.31 
UP-NUMBER Volume 3 System Processors UPDATE LEVEL 

10-13 
PAGE ~ SPERRY UNIVAC 1100 Series Executive 

, _____ ----1------1..--_ 

Seeond~lry TCF sets must be defined on the @SSG call by their set name or on a file-id statement, 
as follows: 

TEMP COR filename : tef-set-name 

See 10.:2 for further description. 

A tef-set-name is a maximum of six alphabetic characters, and the first three characters must be TCF 
(the characters TCF with no additional characters refers to the primary TCF set). 

A secondary TCF set name must be defined in at le,ast one of the two methods described above in 
order to be used in the skeleton. The primary TCF set is always defined (even when empty). 

The purpose of having many TCF sets is to allow temporary corrections to be input from more than 
one source with the ability to merge them all together or just merge certain select groups of them. 
See 10.!i.3.S.2 fc)r further explanation. 

Another means of defining a TCF set is by specifying the T option (see Table 10-1) on the @SSG 
call. Under this condition one program file may be s,upplied for each define TCF set. The name and 
contents of each element entry in a particular TCF set is taken from each nondeleted symbolic element 
in the prc)gram fih~ specified for that set. With the T option, each TCF set must have its input supplied 
by a program file, and no other type of temporary input is accepted. Note that since the element 
entries are gettinn their names and contents from the symbolic elements in a program file, the * card 
should not be used to head the sy.mbolic corrections. 

Example 1: 

@SSG """TCFA/1 ,DATAX.,TCFONE/2,PF 1.EA,PF2.EB 
TEMP COR INTT. 
TEMP COR INTB. : TCFONE 
TEMP COR: TCFX 
*ENT1NER1 

*ENT4NER$ 

@EOF 
SKEL 

@EOF 
@EOF 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Serf" executive 
Volume 3 System Processors UPDATE LEVEL 

10-14 
PAGE 

The ·element entries for the TCFA set are taken from the DATA file, DATAX. The element entries for 
the TCFONE set are taken from the symbolic elements PF1.EA,PF2.EB and the DATA file, INTB. The 
element entries for the primary TCF set are taken from the DATA file, INTT. The contents of the data 
files and symbolic elements mentioned above look something like the following: 

*elementlversion 

*elementlversion 

*elementlversion 

The element entries for the TCFX set are taken from the images in the runstream between TEMP COR 
: TCFX and the next @EOF. 

Example 2: 

@SSG,T """TCFR/1 ,PFX.,TCF/ 1 ,PFP.,TCFU 1 ,PF. 

Because of the T option, the TCF sets defined must each have one program file specified. All TCF 
set's element entries are taken from the element table of the program file specified for that set. All 
nondeleted symbolic elements are included in a set. The symbolic elements in PFX. and their contents 
are the element entries in the secondary set TCFR. The symbolic elements in PFP. and their contents 
are the element entries in the primary set TCF. The symbolic elements in PF. and their contents are 
the element entries in the secondary set TCFL. The presence of the T option restricts all TCF set input 
to program files only. 

10.4.4. Set References 

A special mechanism, similar to the SGS referencing mechanism (see 10.3.2), may be used to access 
element entries. SSG has reserved certain labels for this purpose (these labels may not be used for 
SGS labels). The reserved label P is used for the PCF set, the reserved labels T or TCF are used for 
the primary TCF set, and each defined tcf-set-name (specified on the @SSG call or on a runstream 
file-id statement) is used as the reserved label for that set. The allowed references are as follows 
(those references below marked NUMERIC return numeric values when the entries referenced exist 
and in that case are considered numeric expressions): 

Reference 

[reserved-label] 

[reserved-Iabel,n] 

Value Returned 

Number of element entries included in the set with this reserved label. 
(NUMERIC) If a referenced set is empty or not defined, the value 
returned is O. 

1, if the nth element in the set with this reserved label has only an 
element name; 2, if it has both an element name and a version name. 
(NUMERIC) If the referenced set is not defined, or there is not an nt ... 

entry in the set, a 'no find' message is returned. 



4144.31 
UP-NUMIltER Volume 3 System Processors UPDATE LEVEL 

10-15 
PAGE ~ SPERRY UNIVAC 1100 Series executive 

, _____ _...i___--L--_ 

[rese!rved-Iabel,n,f] 

[reserved-Iabel,n, 1 , 1] 

(reserved-label,n,2, 1] 

0, without exception. (NUMERIC) If the referenced set is not defined 
or there is not an nth entry in the set, a 'no find' message is given. 

Element name for the nth element entry in the set with this reserved 
label. (SYMBOLIC) If the set referenced is not defined or there is no 
nth entry in the set, a 'no find' message is given. 

Version name for the nth element entry in the set with this reserved 
label. (SYMBOLIC) If the set referenced is not defined or there is no 
nth entry in the set, a 'no find' message is given. 

The field~) on a set reference may be supplied, as follows: 

reserved-lab.~1 

rest of the fi«~lds 

may be a string or an SGS reference, a process parameter reference 
or set reference that returns such a string. 

may be integer or numeric expressions. 

Any SGS referencos or set references used to supply fields on a set reference may not contain another 
SGS reference or set reference. 

The order of the element entries in a PCF or TCF set, unless controlled by the 0 and a options, 
respectivlely, is determined by the order they are encountered on input. SSG reads across the SSG 
call statement, from left to right, and then down the runstream. 

10.4.5. Revised Ten1porary Stream 

A revised temporary element entry is a copy of an updated primary temporary element entry that could 
later be alpplied against an updated symbolic element, provided that the updated symbolic element 
was corructed by the same permanent element entry as was used to create the revised temporary 
element entry. That is, when a PCF set entry is applied to a symbolic element creating a revised 
symbolic element, a primary TCF entry whose line numbers were based on the old symbolic element 
could be revised to have its line numbers based on that revised symbolic element. 

When a PCF entry and a primary TCF entry are merged via a *CORRECT (see 1 0.5.3.S. 1) a revised 
temporary stream is generated. 

A copy of the revised temporary stream is saved if the name of a data file or symbolic element is 
specified in param-4 of the @SSG call. A printing of the revised temporary stream is generated if 
the H op1tion is on the @SSG call. 

The revised temp()rary corrections will be in the same mode (ASCII or Fieldata) as the primary TCF 
stream they are derived from. 

Example: 

Primary TCF Entry: PCF Entry: 

-6,9 -1,2 
-12,12 -10,10 



4144.31 
UP~UMBER 

SPERRY UNIVAC 1100 Serie. Executive 
Volume 3 System Processors 

A revised temporary would look like: 

-4,7 
-9,9 

UPDATl lEVEL 
10-16 

PAGE 

If the PCF entry were applied to some symbolic element, lines 1 and 2 and 10 would be removed 
from that element. Then, what was originally lines 6 through 9 are now lines 4 through 7 and what 
wa·s line 12 is now line 9. The revised temporary is created to reflect the new line numbers. 

10.5. SKELETON AND SYMSTREAM 

A call on the SSG processor causes the interpretive execution of a program (commonly called a 
skeleton) which is written In a language called SYMSTREAM. 

10.5. 1. SYMSTREAM Primitives 

The following terms are used by SYMSTREAM: 

• numeric characters 

• alphabetic characters 

• special characters 

• character 

• string 

• number 

• integer expression 

• numeric expression 

Examples: 

Expression 

12 

VAR3 

0,1,2,3,4,5,6,7,8,9 

A,8,C,O,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z (upper and 
lower case for ASCII) 

#,6,),&,$,*,(,%,:,1,1,\,',0, I,@,[,],-,+,<,=,>,comma,.,t,: 

alphabetic character, numeric character, special character, blank 

collection of characters 

-99999,-99998, ... ,-1,0,1, ... ,999999 

string of numeric characters 
a number (string of explicit numbers) 
variable name 
set reference that returns a variable name (string, 
SGS reference that returns a string that is an explicit number or 
variable name 
process parameter that returns explicit number or varieble name 
integer expression :t integer expression 

:t integer expression 
bracketed variable reference 
SGS references that return numeric values (see lists under 10.3.2) 
set references that return numeric values (see lists under 10.4.4) 
numeric expression :t numeric expression 

Type of Expression 

Integer (string of numeric characters or explicit number) 

Integer, where VAR3 is a variable 



4144.31 
UP-NUMBER UPDATE LEVEL 

10-17 
PAGE L SPERRY UNIVAC 1100 Series Executive 

Volume 3 System Processors 
----~~ 

[XX, 1 ,2,.3] 

[#6] 

-146 

[LABL] 

[*VAR3] 

[TCF] 

j~+B-[#:Z] 

+[R,2,6, 1]-C 

Integer, where string returned is a variable name or explicit number 

Integer, where string returned is a variable name or explicit number 

Integer (explicit number) or numeric expression 

Numeric expression (numeric SGS reference) 

Numeric expression, where VAR3 is a variable 

Numeric expression (numeric set reference) 

Integer expression, where A and B are variables and where [#2] 
returns an explicit number or variable name 

Numeric expression, where SGS reference returns explicit number or 
variable name and C is a variable 

10.5.2. Nondirective Images 

Any image in a skeleton that does not have an asterisk in the first character position (column 1) is 
a nonclirective image. All nondirective images encountered in a skeleton are sent to the generated 
output stream, which may be printed later (K option,. Table 10-1); or dynamically @ADDed by the EXEC 
after SSG terminates (B option, Table 10-1); or is output to a file whose filename is specified in 
Param·-3 on tho @SSG call (see 10.2.1). 

Nondirective images may be created using any combination of characters (or strings), SGS references, 
proces.s paramEtter references, variable references, and set references. The above listed references 
are distinguishEld from simple characters or strings (that are intended to go to the generated output 
stream directly as they are) by the brackets around them. All references are satisfied before SSG 
outputs the image. If a string returned from a bracketed reference is blanks (that are not enclosed 
in pairs of apostrophes), those blanks are not present in the output image. 

Example: 

Assume that thl3 variable X has been defined and has the value 10, the process parameter [# 1] has 
the syrnbolic value AUGUST, and the 1st PCF set element entry is AAA. Also assume that the following 
SGS is given as input: 

ALPHA LEVEL 9 IN JUNE 

Nondirective images in a skeleton, such as: 

THE OLD lEVEL OF [P, 1, 1, 1] FOR [ALPHA, 1,4, 1] WAS [ALPHA, 1,2, 1]. 

VIlE HOPE TO REACH LEVEL [* X] BY [# 1]. 

would be place,d in the desired output stream as: 

THE OLD lEVEL OF AAA FOR JUNE WAS 9. 

VI/E HOPE TO REACH LEVEL 10 BY AUGUST. 

If a tl is explicit in the first character position of a nondirective image and the SSG reserved variable 
PILO$ is equal to zero, the tl is converted to an *. If PILO$ is nonzero, the conversion is not done. 



4144.31 
UP-HUMBER 

SPERRY UNIVAC 1100 Serle. executive 
Volume 3 System Processors UPDATE LEVEL 

10-18 
PAGE 

If a # is explicit in the first character position of a nondirective image and the SSG reserved variable 
NSIGN$ is equal to zero, the # is converted to a @. If NSIGN$ is nonzero, the conversion is not done. 
PILO$ and NSIGN$ are initially set to zero and may be changed by the *SET or *CLEAR directives. 
(See 10.5.3.2.3 and 10.5.3.2.2, respectively). The c is encoded in ASCII as " (double apostrophe). 

Example: 

If PILO$ is zero, the following nondirective image in the skeleton: 

c THIS IS THE ANSWER* 

would appear in the generated output stream as: 

*THIS IS THE ANSWER·le· 

If PILO$ is nonzero, the image would appear in the generated output stream exactly as it was in the 
skeleton. 

If NSIGN $ is zero, the following nondirective image in the skeleton: 

#ASG,T TEMP,F 

would appear in the generated output stream as: 

@ASG,T TEMP,F 

If NSIGN$ is nonzero, the image would appear in the generated output stream exactly as it was in 
the skeleton. 

Further means of manipulating nondirective images are discussed in 10.5.3.5 on *EDIT 

10.5.3. Directive Images 

The logical operations needed to determine if a nondirective image is to be sent to the generated 
output stream, or whir.h nondirective images are to be sent, or in general, what paths will be taken 
in the skeleton, are performed by directive images. An asterisk in the first character position 
(column 1) of an image defines that image as a directive. The following are the symstream directives: 

*BRKPT *DIVIDE *END *MULTIPLY 

*CLEAR *DUMP *PROCESS 

*CORRECT *EDIT *INCREMENT *REMOVE 

*CREATE *EJECT *LOOP *SET 

*DEFINE *MERGE 

Blanks may be placed on the image between the asterisk and directives for ease of readability. 
However, every image in the skeleton that has an asterisk in the first character position must be one 
of the above directives or have a period immediately following the asterisk (allows such images as 
comments). A period anywhere on a directive image causes SSG to terminate the scan of that image. 
(See 10.5.3.6.1, *BRKPT statement, for exception.) 



4144.31 I SPERRY UNIVAC 1100 Series Executive 10-19 
up~u~~~ ____________ V_o_lu_m __ e_3 __ S_y_s_te_m ___ p_ro_c_e_s_s_o_rs ____________________ ~U_PD_A_TE_L_~_E_L __ ~~P_AG_E ______ _ 

The following conventions ae used in the syntax descriptions of the directives: 

1, 6. Siignifies one or more mandatory blanks. 

2. Items enclosed in [ ] brackets are optional (not to be confused with bracketed references). 

3. Capitalized letters represent themselves and must be coded as shown. 

4, Lower case parameters are filled in by the user. 

5. Bralces ( ), designate a choice of terms. 

10.5.3. 1. Defining Skeleton Image Sequences (Closed Subroutines) 

The SYMSTREAM skeleton is broken down into two parts, the define section and the contiol section. 
The define section, which must be first in all skeletons, contains sequences of skeleton images that 
are placf9d in blocks between *DEFINE and *END directives. Each group of images with a define-end 
block is treated as a closed subroutine and stored for later reference. Any skeleton image 
encount,ered that is not between a matched *DEFINE and *END directive, defines the beginning of 
the control section. Once the control section begins no more define-end blocks are allowed. From 
the control section the define packets may be referenced (by *PROCESS) and provided with 
parameters. To reduce referencing time, the use of define packets should be reserved for larger 
groups of skeleton images. There is no limit on the number of define packets allowed. 

10.5.3.1.1. *DEFINE - *END 

Format: 

*DEFINE 6. define-name 

[ = = = = = = = = 1 skeleton images 

*END 

Parameter: 

define-name 

Description: 

20 or fewer characters supplied by a string, process parameter 
reference, SGS reference, or set reference 

All imagles betwoen the matched *DEFINE and *END directives are considered part of the define 
packet. None of the images in a define packet are executed until a call for that packet is made by 
the *PROCESS directive. From within a define packet, nested process calls on other define packets 
and reclUrsive calls upon the same define packet are allowed to any depth. 



4144.31 
UP-HUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

10-20 
PAGE 

10.5.3. 1.2. *PROCESS 

Format: 

*PROCESS t::. define-name t::. [proc-para-1 t::. proc-para-2 t::., ••• t::. proc-para-n t::.] 

Parameters: 

define-name 

proc-para 

Description: 

See 10.5.3. 1. 1 for description. 

Process-parameters are optional; 20 or fewer characters supplied by 
a string, process parameter reference, SGS reference, set reference, 
or numeric expression. If the string used contains a blank, period, 
semicolon, comma, left bracket, slash, plus, minus, or right bracket, 
and evaluation of that string is not intended, pairs of apostrophes 
should be used around it (" ... "). For a string where the apostrophes are 
to be included, single apostrophes should be used roo:). Double 
asterisks (**) can be used in front of an integer expression and it will 
be taken as a numeric expression to be evaluated. A sklgle asterisk 
(*) followed by an SGS reference or process parameter reference 
directs the evaluation of the string that satisfies that reference. 

The *PROCESS directive causes a define packet to be called for execution and passes pare-meters 
to that define packet. SSG examines all the parameters of the process directive, evaluates all numeric 
expressions and references made, and then converts any resulting numeric values to their symbolic 
representations. Therefore, only symbolic strings are passed to a define packet and :;Jny process 
parameter reference returns a symbolic string. 

10.5.3.1.3. Process Parameter References 

A reference to a process parameter within a define packet has one of the following formats (where 
n is some explicit number): 

[#n] 

[#n,define-name] 

Refers to the nth process parameter specified on the lost process call 
(which would be the process call on the define packet where this 
reference occurs). 

Refers to the nth process parameter specified on the last process cali 
for the given define-name (see 10.5.3.1.1 for description of 
define-name). Note that this reference must be in the define packet 
specified or in nested code (that is, this reference may be made in any 
define packet called by the define packet referenced). See E)~~mple 
3. 

All references return symbolic strings (not numeric values). See 10.5.3.1.2 under description. 



UP-NUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPOATE lEVEL 

10-21 
PAGE 

4144.31 ~ 
- ,------'---------'---

Example 1: 

With the following skeleton: 

SKE:L 
*DI:FINE ASM 
#ASM,SU [ #1 ],[ #2 ] 
*END 
*PHOCESS ASM ELTA ELTB 
*PHOCESS ASM EL TC EL TD 
*PHOCESS ASM EL TE ELTF 
@EOF 

The genorated output stream would look like: 

@ASM,SU ELTA,ELTB 
@ASM,SU EL TC,EL TO 
@ASM,SU ELTE,ELTF 

Example 2: 

With the following SGSs and skeleton: 

SGS 
INOIR " [LABL, 1,1,1] ",Y 
@EOF 
SKEL 

1. *OEFINE SUBR 
2. [ #4 ] [ #7 ] [ # 1 ] + [ #2 ] - [ #3 ] [ #6 ] [ #5 ]. 
3. *END 
4. *DEFINE INIT 
5. *SET X TO 5 
6. *SET Y TO 6 
7. *SET Z TO :3 
8. *END 
9. *PHOCESS iNIT 
10. *PHOCESS SUBR [*X] **[INDIR,1,1,2] **Z *[INDIR,1,1,1]; 
11. +X+ Y-Z IS [LABL, 1,2,1] 

@EOF 

The genlHated output stream looks like: 

RESULT OF 5+6-3 IS 8. 

1. Sta1tements numbered 1 through 3 are part of the define packet SUBR. 

2. Statements numbered 4 through 8 are part of the define packet INIT. 

3. Statements numbered 9 through 11 are the control.section. 

4. Statement 9 causes the images in the INIT define packet to be executed. Thus, the global 
variables X, Y, and Z are defined. 



4144.31 
UP-HUMBER 

SPERRY UNIVAC 1100 Series executive 
Volume 3 System Processors UPDATE LEVEL 

10-22 
PAGE 

5. Statements number 10 and 11 cause the image in the SUBR define packet to be executed and 
pass seven process parameters to it. The seven symbolic strings passed look like the following: 

5 
6 
3 

RESULT 
8 
IS 
OF 

after evaluation of numeric expression,[ * X] 
after evaluation of **integer-expression, **[INDIR,1, 1 ,2] 
after evaluation of **integer-expression, **Z 
after evaluation of *SGS-reference, *[INDIR,1, 1,1] 
after evaluation of numeric expression, +X+ Y-Z 
string, IS 
after return from SGS reference, [LABL,1 ,2, 1] 

Note that the semicolon on statement 10 signals a continuation image. 

6. Statement 2 has all the process parameter references satisfied and outputs the resulting image 
to the generated output stream. 

Example 3: 

With the following skeleton: 

SKEL 
1. *DEFINE LAST 
2. THIS IS LAST [# 1 ,INIT] [# 1 ,SECOND] 
3. *END 
4. *DEFINE INIT 
5. THIS IS INIT [# 1] 
6. *PROCESS SECOND AXY [# 1 ,INIT] 
7. *END 
8. *DEFINE SECOND 
9. THIS IS SECOND [# 1 ],[#2] 
10. *PROCESS LAST 
11. END SECOND 
12. *END 
13. TEST ON PROC-PARA 
14. *PROCESS INIT 2 
15. DONE 

@EOF 

The generated output stream would look like: 

TEST ON PROC-PARA 
THIS IS INIT2 
THIS IS SECOND AXY,2 
THIS IS LAST 2 AXY 
END SECOND 
DONE 

1. Statement 13 (the first statement in the control section) is executed. Since it is nondirective, 
it is output to the desired output stream. 

2. Statement 14 is executed and the define packet INIT is called and the parameter (2) is passed 
to it. 

3. Statement 5 is executed (in the INIT packet) and 2 is substituted for [# 1] before it is output. 



4144.3 t I SPERRY UNIVAC 1100 Series Executive 10-23 
UP~UM~_A ___ ~ ___________ V_o_lu_m __ e_3 __ S_y_s_te_m __ P_r_o_c_e_s_s_o_rs ______________ ~ ____ ~U_PD_A_n_L_~ __ L __ ~_P_AG_E ______ __ 

4. Stat~Etment 6 ~s executed and the define packet SECOND is called and the parameters AXY and 
2 (which is parameter 1 from the INIT call) are passed to SECOND. 

5. Statletment 9 is executed (in SECOND packet) and AXY and 2 are substituted for [#1] and [#2], 
respectively, since [# 1] and [#2] refer to the last process call made. The image is output. 

6. Statement 1 () is executed and a call is made on the define packet LAST. No parameters are 
passed. 

7. Statement 2 is executed (in LAST packet). The first parameter on the last call to INIT is 
referenced, which is 2 (call made at Statement 13). Also, the first parameter on the last call to 
SECOND is n~ferenced, which is AXY (call made at Statement 6). 

8. Since there are no more images in the LAST packet, SSG returns to the SECOND packet. 
Statement 11 is then executed (output). Since there are no more images in the SECOND packet, 
SSG returns to the INIT packet. There are no more images in the INIT packet so SSG returns 
to the control section of the skeleton and executes (outputs) Statement 15; SSG then terminates. 

10.5.3.2. Symst.ream Variables 

A variable! name is a string of eight or less characters, not containing a space, period, semicolon, slash, 
plus, minlUs, left bracket, or right bracket. 

Since SSG does its internal processing in ASCII, upper and lower case alphabetics are recognized. 
All references on variable names are, therefore, case dependent. The name XYZ is not the same as 
xyz. This condition need not concern the Fieldata user. 

There are' three ways in which a variable may be referenced (evaluated) in a directive image: 

1. [*variclble-name] · bracket reference 

2. ·+variable-namf~ · numeric reference 

3. VALUE OF variable-name · only in *IF directives 

In ,8 nondirective image, only [*varia~le-name] is recognized as a variable reference. 

Values of variables may be numeric only. 

There arEI two types of variables described below, local and global. When a variable reference is 
made, thn last created local variable of that name is searched for; if none exists, all global variables 
are searched for that name. Then, if none exists a no-find message is printed by SSG. In such a 
case, unl~Etss the A option is on the @SSG call (see Table 10-1), the processor terminates. 

SSG has nine global variable names that are automatically defined when SSG is called and these 
variables are reserved for use by SSG and the user. The following are the reserved variables and a 
description of their use: 

Reserved Variables 

CARlO 

FLO 

Description 

When an *IF COLUMN SEARCH is true, CARD equals the statpment 
number where the match was made (see 10.5.3.7.5). 

When an *IF ROW SEARCH is true, FLO equals the field number where 
the match was made (see 10.5.3.7.5). 



4144.31 
UP-NUMBER 

SFLD 

MFLAG 

NFLAG 

PRTOFF 

PILO$ 

NSIGN$ 

COLEO$ 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

10-24 
PAGE 

When an *IF ROW SEARCH is true, SFLD equals the subfield number 
where the match was made (see 10.5.3.7.5). 

Corresponds to M option on @ SSG call; is zero when there is no M 
option, nonzero with the M option. By setting the value of MFLAG to 
zero or nonzero, the M option can be turned off or on, respectively, 
from the skeleton (see Table 10-1). 

Corresponds to N option on @SSG call: is zero when there is no N 
option, nonzero with the N option. By setting the value of NFLAG to 
zero or nonzero, the N option can be turned off 'or on, respectively, 
from the skeleton (see Table 10-1). 

Initially set to zero (see 10.5.3.6.2) 

Initially set to zero (see 10.5.2). 

Initially set to zero (see 10.5.2). 

Is equal to the column number of the next character to be output when 
edit mode is on (see 10.5.3.5). 

10.5.3.2. 1. Skeleton Image Loops (Local Variables) 

Purpose: 

Local variables are created by the increment directive, and exist as long as incrementing is needed. 
Local variables may be created in this way even though a global variable with the same name exists. 

Format: 

INCREMENT IJ. variable-name IJ. [FROM IJ. number] IJ. [TO IJ. number] IJ. 

[BY IJ. number} IJ. [ \lVHILE IJ. variable-name IJ. IS IJ. { ~~~AR } 1 

[ ::::::::: 
*LOOP 

Parameters: 

variable-name 

number 

skeleton images 

See 10.5.3.2 for description; the variable-name may be supplied by 
a string, or an SGS reference, process parameter reference, or set 
reference that returns such a string. 

Integer expression or numeric expression (see 10.5.1). 



SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE lEVEL 

10-25 
PAGE 

4144.31 ~ 
UP-NUMBER _ , ______ -'------L---

Description: 

The FROM, TO, BY or WHILE phrases may be in any order, or absent. When absent, the FROM, TO, 
and BY values are assumed to be 1. 

The increment directive creates a local variable of the name specified and initially sets its value equal 
to the FBOM numeric (or 1). The first execution through the increment-loop packet is done if the FROM 
vafue has not exceeded the TO value limit, and the WHILE phrase is true, or absent. After the first 
execution through the increment-loop packet, the variable value is incremented by the BY numeric 
(or 1). Then, if the new variable value has not exceeded the TO value limit, and the WHILE phrase 
is true, c~r absent, the increment-loop is executed again. This increment-test process is repeated after 
every in,crement-·loop execution. All images between the *INCREMENT and matching *LOOP are part 
of the increment-loop packet. 

The variiable vallie has exceeded the TO limit if: 

( (TO-value) - (present-value-of-variable) ) X (BY - value) < 0 

Note that with the above test, the BY value could be set negative and a decrementation process 
allowed. The WHILE phrase tests the specified variable (may be local or global) in that phrase to see 
if its value is zero (CLEAR) or nonzero (SET). If the test fails or the WHILE phrase is false, the 
increment-loop is over and the local variable created for that increment is destroyed. Loops may be 
nested to any level. 

ExamplEt 1: 

SKEL 
1. *DEFINE X 
2. *INCREMENT A FROM -2 TO [#2] BY [BY, 1,1,1] 
3. *INCREMENT [VAR2,1, 1,1] FROM 0 TO -3 BY -2 WHILE [#3] IS SET 
4. *INCREMENT [#1] FROM 0 
5. *SETCTO[#1] 
6. [*I~] [*B] [;M-C] 
7. *LOOP 
8. *LOOP 
9. *LOOP 
10. *END 
11. *PROCESS X VAR () A 

@EOF 
SGS 
VAR2 B 
BY 2 
@EOF 

The generated ouput stream would look like: 

-200 
-201 
-2--20 
-2--21 



4144.31 
UP~UMBEA 

SPERRY UNIVAC 1100 Serie. executive 
Volume 3 System Processors 

10.5.3.2.2. Creating and Changing Global Variables (*CLEAR) 

Format: 

*CLEAR 6 variable-name 

Parameter: 

UPDATE LEVEL 
10-26 

PAGE 

variable-name See 10.5.3.2 for description; it may be supplied by a string, or SGS 
reference, process parameter reference, or set reference that returns 
such a string. 

Description: 

The value of the last local variable with the given name is set to zero. If no local variable of that name 
exists, the global variables are searched for one with that name, and it is set to zero. If no global 
variable is found, one with that name is created and given the value of zero. Once created, this global 
variable exists for the remainder of the skeleton processing. 

Example: 

SKEL 
1. *DEFINE X 
2. [*A] INSIDE X 
3. *CLEAR [# 1] 
4. *END 
5. *CLEAR [VARCLR,1,1,1] 
6. *INCREMENT A FROM -2 TO -1 BY 1 
7. *PROCESS X A 
8. [*A] INSIDE INC LOOP 
9. *LOOP 
10. *CLEAR A 

@EOF 
SGS 
VARCLR PP 
@EOF 

The generated output stream would look like: 

-2 INSIDE X 
o INSIDE INC LOOP 

1. Statement 5 creates a global variable called PP with the value 0 since no local or global variables 
of that name are found. 

2. Statement 3 clears the variable A (passed as parameter one on the process call at statement 
7). Since a local variable is found with that name it is set to 0 and no more searching is done. 
Since the *PROCESS call is within the increment loop, the define packet called is also in that 
loop and thus, the local variable A is defined in the define packet X. 

3. Upon return from the define packet X, the local variable A is now 0 and fails the TO limit test 
so the increment loop is destroyed and the local variable A is destroyed also. 

4. Statement 10 creates a global variable called A since no local or global variables of that name 
are found (local variable A was destroyed when the increment loop terminated). 



414431 I SPERRY UNIVAC 1100 Series Executive I I 10-27 
UP~U~~_A ___ ~ __________ V_o_l_u_m_e __ 3_S_y_s_t_e_m __ p_ro_c_e_s_s_o_rs _________________________ ~~_~_A_n ___ L~ __ L ___ ~_P_AG_E _______ __ 

10.5.3.2.3. Cre21ting and Changing Global Variables (*SET) 

Format: 

*SET 6 varialble-name6 [TO 6 number 6] 

Parameters: 

variable-name 

number 

Descripti()n: 

See 10.5.3.2 for description; may be supplied by a string, or SGS 
reference, process parameter reference, or set reference that returns 
such a string. 

Integer expression or numeric expression (see 10.5. 1). 

If the TO phrase is omitted, TO value is assumed 1. The value of the last local variable with the 
specified name is set to the TO value. If no local va1riable with that name exists, a global variable 
with that name is searched for and set to the TO value. If no global variable with that name exists, 
one is crElated with the given TO value. Once created, this global variable exists for the remainder 
of skeleton processing. 

Example: 

Given the following SGSs and skeleton: 

SGS 
VARSET VAR2,8 
@EOF 
SKEIL 

1. *DEFINE X 
2. [*AJI 
3. *SET [#1] TO [#1] +2 
4. *END 
5. *SET A TO E) 
6. *INCREMENT A TO 3 
7. *PROCESS)( A 
8. [*AJI 
9. *LOOP 
10. [*AJI 
11. *SET [VARSET, 1, 1, 1] TO [VARSET, 1, 1,2] 

@EOF 

The generated output stream would look like: 

1 
3 
6 

1. Statement 5 creates a global variable A with the value of 6 since no variable with that name 
already existed. 

2. Statement 6 creates a local variable A with the initial value of 1. 

3. The define packet X is called at Statement 7 and the string A is passed as parameter 1. 



4144.31 
UP-HUMBER 

SPERRY UNIVAC 1100 Serie. Executive 
Volume 3 System Processors UPOATl lEVEL 

10-28 
PAGE 

4. Statement 2 references the variable A and the value 1 is returned since the local variable A was 
found first. 

5. Statement 3 does a *SET A to A + 2 since the string in [#1] was passed as A. SSG looks for 
a variable A (and finds a local variable of that name) and sets A equal to itself + 2 which is 3. 

6. Statement 8 references the variable A and the value 3 is returned since the local variable A is 
'found first. 

7. The increment loop terminates since A (equal to 3) + BY value (assumed 1) is greater than the 
TO value (which is 3). 

8. Statement 10 references the variable A and returns the value 6 after finding the global variable 
A. The local variable A no longer exists since the increment loop is destroyed. 

9. Statement 11 creates a variable VAR2 with the value of 8. 

10.5.3.2.4. Variable Multiplication (*MUL TIPL Y) 

- Format: 

*MUL TIPL Y !::. number!::. BY !::. number!::. GIVING!::. variable-name 

Parameters: 

va ria ble-na me 

number 

Oescri ption: 

See 10.5.3.2 for description; may be supplied by a string, or SGS 
reference, process parameter reference, or set reference that returns 
such a string. 

Integer expression or numeric expression (see 10.5.1) 

The product of the first number multiplied by the second number is set as the value of the given 
variable-name. The variable specified must already exist (be defined) and may be either a local or 
global variable. In satisfying the search for the variable-name, the local variables are searched first 
(from most recently defined backwards), then the global variables are searched. 



4144.31 I SPERRY UNIVAC 1100 Series Executive 10-29 
UP~UM!~ ___________ V_O_lu_m __ e_3 __ S_y_s_te_m __ P_r_o_c_e_ss_o_r_s __________________ ~~U_~_A_TE_l_~_E_l __ ~_PA_G_E ____ ___ 

Example: 

Given th~e following skeleton and SGSs: 

SKEL 
1. *DEFINE MUL TP 
2. *MULTIPLY [#1] +5 BY [VARSUP,.1, 1, 1] GIVING VAR3 
3. *END 
4. *CLEAR VAB3 
5. [*VAR3] 
6. *PFtOCESS MULTP 4 
7. [*VAR3] 

EOF 
SGS 
VAFtSUP 4 
@EOF 

The genorated output stream would look like: 

o 
36 

1. Sta1tement 4 creates the global variable VAR3 with the value of 0 and statement 5 when 
refe-rencing that variable ret,urns the value O. 

2. Statement 6 calls the define packet MUL TP and passes the first parameter as 4. 

3. Sta1tement 2 multiplies [# 1]+ 5, which is 9, by [VARSUP, 1,1,1] which is 4 and sets the global 
variable VAFt3 to the product, 36. 

4. Sta1tement 7 references the variable VAR3 and returns with the value 36. 

10.5.3.2.5. Variable Division (*DIVIDE) 

Format: 

*DIIVIDE t:. number t:. BY t:. number t:. GIVING t:. variable-name [,variable-name] t:. 

Peramet.,rs: 

number 

variable-·name 

Description: 

Integer expression or numeric expression (see 10.5.1). 

See 10.5.3.2 for description; may be supplied by string, or SGS 
reference, process parameter reference, or set reference that returns 
such a string. 

Divides the first number by the second number and sets the first variable specified equal to the 
quotient. The second variable-name specified is optional, and if present, is set equal to the value 
of the re~mainder. The variable-names specified must already exist (be defined) and may be either 
local or global v,ariables. In satisfying the search for the variable-names, the local variables are 
searched first (frc)m the most recently defined backwards), then the global variables are searched. 



4144.31 
UP-NUMBER 

Example: 

SPERRY UNIVAC 1100 Serle. executive 
Volume 3 System Processors 

Given the fotlowing SGSs and skeleton: 

SGS 
CONST 3 
.@EOF 
SKEL 

1. *DEFINE DIV 
2. *DIVIDE [# 1] BY + [CONST,1, 1,1] GIVING QUO,REM 
3. *END 
4. *CLEAR QUO 
5. *CLEAR REM 
6. *PROCESS DIV 8 
7. QUOTIENT IS [*QUO], REMAINDER IS [*REM] 
8. *DIVIDE REM BY 2 GIVING QUO 
9. [*REM] DIVIDED BY 2 IS [*QUO] 

@EOF 

The generated output stream looks like: 

QUOTIENT IS 2, REMAINDER IS 2 
2 DIVIDED BY 2 IS 1 

UPDATE LEVEL 

1. Statements 4 and 5 create QUO and REM as global variables with the value O. 

2. Statement 6 calls the define packet DIV and passes 8 as parameter 1. 

10-30 
PAGE 

3. Statement 2 divides [# 1], which is 8, by +[CONST,1, 1,1], which is 3 and sets QUO equal to 
the quotient of 2 and REM equal to the remainder 2. 

4. Statement 7 is output with the values for QUO and REM substituted. 

5. Statement 8 divides REM, which is equal to 2 by 2· and set QUO equal to the quotient of 1. 

6. Statement 9 is output with the values for REM and QUO substituted. 

10.5.3.2.6. Variable Dump (*DUMP) 

Formats: 

1. *DUMP A 1 LOCAL t A 

Ll GLOBAL)Ll 

2. *DUMP t:. [ 1 ~~g:~L} t:.] variable-name-1 [, ... ,variable-name-10] 

Parameters: 

variable-name See 10.5.3.2 for description; may be supplied by a string or a process 
parameter reference that returns such a string. 

The *DUMP directive is intended as a debug aid printing values of variables in the SSG run log. 



4144.31 I SPERRY UNIVAC 1100 Series Executive 10-31 
UP~UM8~ ____ ~, __________ V_o_l_um __ e_3 __ S_y_s_te_m ___ pr_o_c_e_s_so_r_s ____________________ ~u_~_A_n __ L~_E_L ____ ~P_AG_E ______ __ 

*DUMP GLOBAL 

*DUMP LOCAL 

*DUMP LOCAL; 

Prints in SSGs run log values of all global variables (the 
global variable list includes the SSG reserved variables). 

Prints in SSGs run log the values of all local variables. 

variable-name-1 , ... ,variable-name-1 0 Prints in SSGs run log the values of from one to ten 
specified local variables. 

*DUMP GLOBAL; 
val iable-name-1 , ... ,variable-name-1 0 Prints in SSGs run log the values of from one to ten 

specified global variables. 

*DUMP; 
variable-name-1 , ... ,variable-name-1 0 

Prints in SSGs run log the values of from one to ten variables 
searching first the local variables for the name specified, 
then the global variables. 

If the varinble reference is not found, the words NO FIND are substituted for the value of the variable 
in the run log print. 

10.5.3.3. InterneJI Chains 

SSG maintains three major internal chains; the PERM chain, the TEMP chain, and the SGS chain. They 
consist of the PCF set entries, the primary TCF set entries (each secondary TCF set also has a chain 
but it cannot be altfHed), and stream generation statements, respectively. Entries in these three chains 
can be cr,eated and removed internally (only for the duration of the SSG execution). 

10.5.3.3.1. Dynamic Expansion of Internal Chains (*CREATE) 

Formats: 

1. *CREATE t::. SGS: t::. sgs-image t::. 

2. *CREATE t::. {~~~~~ } t::. element-name [/version-name t::.] 

Parametelrs: 

element-name 1 
version-name ) 

Descriptic)n: 

See 10.3. 1 for the ccmstruction of an SGS image. Any bracketed 
references may be used to supply the strings for the label or subfields 
on the first card image only (not on any continuation images). 

See 10.4.1 for allowable element entry names; the format may be 
element or element/version where the version name is optional. The 
element name or the version name may be supplied by a string, SGS 
reference, process parameter reference, or set reference. 

1. Cre21tes an SGS with the sgs-image after all references have been satisfied and adds it to the 
bottom of the SGS chain (unless the S option is used - see Table 10-1). In the SGS chain, SGSs 
are ,~rouped according to label. Once created, the new SGS is treated and may be referenced 
like any othelr input SGS. An *CREATE SGS: image may be edited by use of the *EDIT on 
directive (seEI 10.5.3.5); however, the created SGS must not exceed 80 characters. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Serle. Executive 
Volume 3 System Processors UPDATE lEVEL 

10-32 
PAGE 

2. An element entry with the name element-name/version-name or just element- name is inserted 
at the bottom of the PERM (PCF set) or TEMP (primary TCF set) chain (unless the 0 or a options, 
respectively, are used - see Table 10-1). Such created entries may be referenced via the set 
references and may be used when merging correction entries (treated as empty entries). 
However, an *IF test on correction entry existence (see 10.5.3.7.6) on a created entry always 
yields a Boolean False since no input streams are attached to it. 

Even though the CREATE image can be longer than one card image each (by use of the semicolon 
(;) and continuation images), hracketed references will be recognized on the first card image only. 

Example: 

Given the following SGSs and skeleton: 

SGS 
OLDSGS XYZ 
@EOF 
SKEL 

1. *DEFINE CRT 
2. *CREATE SGS: NEWSGS [# 1 ],[OLDSGS, 1,1,1] [OLDSGS, 1,1,1,5],[ *A] 
3. *END 
4. *SET A TO 40 
5. *PROCESS CRT PROCP 
6. [NEWSGS],[NEWSGS,1, 1,1 ],[NEWSGS, 1 ,2] 
7. *CREATE PERM: ELEM 1 
8. *CREATE TEMP: ELEM2/[OLDSGS, 1, 1, 1] 
9. [P,1,1,1] IS PCF ENTRY 
10. [T, 1,1,1 ]/[T, 1 ,2, 1] IS PRIMARY TCF ENTRY 
11. *IF ELEM 1 HAS CORRECTIONS 
12. PCF CORR 
13. *ELSE 
14. NO PCF CORR 
15. *END 

@EOF 

The generated output stream looks like: 

1,PROCP,2 
ELEM 1 is PCF ENTRY 
ELEM2/XYZ IS PRIMARY TCF ENTRY 
NO PCF CORR 

1. The SGS created at Statement 2 and put in the SGS chain looks like: 

NEWSGS PROCP,XYZ 3,40 

2. The entry ELEM 1 is created in the PCF chain in Statement 7. 

3. The entry ELEM2/XYZ is created in the primary TCF chain in Statement 8. 

4. Output from statements 9 and 10 show that entries have been made on the PCF and PRIMARY 
TeF chains. 

5. The *IF test on correction entry existense still shows no corrections as existing. 



4144.31 I SPERRY UNIVAC 1100 Series executive I I ·,0-33 
UP~UM~ ____________ V_o_l_u_m_e __ 3_S __ YS_t_e_m __ P_r_o_ce_s_s_o_r_s _____________________ ~_u~ __ An __ L_~_EL ____ ~._AA_G_E ____ __ 

10.5.3.3.2. Deleting Entries from Internal Chains (*REMOVE) 

1. *AIEMOVE t::. SGS ~ sgs-Iabel [,sgs-start-stmt [,number-to-remove] I ~ 
2. *AlEMOVE t::. { ~~: } ~ element-name [/version-name] 

Parame1ters: 

sgs-lab4~1 

sg s-sta r1-stmt 

number·-to-remove 

element-name l 
version--name ) 

Descrip1tion: 

Certain SGSs with this label are to be removed. See 10.3.1 for 
description of an SGS label; it may be supplied by a string, SGS 
reference, process parameter reference, or set reference that returns 
such a string. 

The statement number with the given sgs-Iabel where the remove will 
start; may be an integer expression or a numeric expression (see 
10.5.1). This number is optional, and if omitted 1 is assumed. 

The number of SGSs to remove; may be an integer expression or a 
numeric expression (see 10.5.1). This number is optional, and if 
omitted, 1 is assumed. 

See description under 10.5.3.3.1 

1. Removes a specified number (or 1) of SGSs with the specified label starting at the specified start 
number (or 1). 

2. Removes the element entry with the specified name from the PERM (PCF) chain or TEMP (primary 
TCF) chain. Once removed, the entry and any corrections associated with it are destroyed during 
thEl SSG execution. 



4144.31 
UP-NUMBER 

Example: 

SPERRY UNIVAC 1100 Serle. Executive 
Volume 3 System Processors 

Given the following skeleton and SGSs: 

SKEL 
1. *DEFINE REM 
2. *REMOVE SGS [# 1 ],2 
3. *REMOVE PERM [#2V[VERS,1, 1,1] 
4. *END 
5. *PROCESS REM LABL [ELE,1, 1, 1] 
6. *REMOVE TEMP A2 

@EOF 
SGS 
ELE A1 
VERS B1 
LABL X 
LABL Y 
LABL Z 
@EOF 

I UPOA T£ UV£L 

1. Statement 2 removes one SGS with the label LABL starting at statement number 2. 

2. Statement 3 removes the entry A 1 /B 1 from the PCF chain. 

3. Statement 6 removes the entry A2 from the primary TCF chain. 

10.5.3.4. *EJECT 

Format: 

*EJECT 

Description: 

I 10-34 
PAGE 

The *EJECT directive may appear anywhere in the revised skeleton and is transparent to any skeleton 
processing. When the revised skeleton is being printed using the E option without the 0 option, and 
this directive is encountered, a page eject is done. 

If the 0 option is present with the E option, the *EJECT is ignored. This directive is intended to make 
the revised skeleton easier to read. 



414431 I SPERRY UNIVAC 1100 Series Executive I I 10-35 
UP~U~~ ____________ V_O_I_u_m_e __ 3 __ S_y_st_e_m __ P_r_o_c_e_ss_o_r_s ____________________ ~_U_~_A_1E_L_~_E_L __ ~_P_AG_E ____ __ 

10.5.3,,5. Con1catenating Nondirective Images (*EDIT) 

Format: 

*E:OIT 6 ON 6 [edit-symbol] 6 

r ---------

l 
*E:OIT 6 OFF 6 

Parame'ters: 

edit-symbol 

Description: 

SKELETON images 

One character which may be alphabetic, numeric, or special character 
(see 10.5. 1), or an SGS reference which, when satisfied, is one of the 
above characters. The edit symbol is optional and when omitted, & 
(ampersand) is assumed. 

Edit-mc~de may be used to build a non-directive or a *CREATE image from more than one symbolic 
image. 

The edit-mode is turned on by the *EOIT ON directive. When the edit mode is on, all nondirective 
or *CFIEATE images which are term,inated by the chosen edit symbol are joined together 
(concatlenated) and output to the generated output stream. If a nondirective edit image that SSG is 
creatino gets larger than a card image (80 characters), a semicolon is automatically inserted and the 
image is continued on the next line. An *CREATE edit image cannot exceed 80 characters. 

If a nondirective is being edited any directive image may be executed while the edit mode is on but 
the occurrence of any nondirective image that does not have the chosen edit symbol on it, causes 
the edi1t mode to terminate. Otherwise, the edit mode is normally terminated by the *EOIT OFF 
directive, and the final created image is output. 

If a *CBEATE directive is being editted it must immediately follow the *EOIT ON directive. Any other 
dlirective image may be executed while edit mode is on but the occurrence of any portion of the 
*CREATE imago that does not have the edit symbol on it causes the edit mode to terminate. 
Otherwise, the edit mode is normally terminated by the *EOIT OFF directive and the final created 
image lidded to the list of *CREATE images. 

Further control of an edit image is provided by the reserved variable COLEO$. Based on an 80 
character image, COLEO$ reflects the next character position to be written in the created edit image. 
If the edit mode is off, COLEO$ is zero. Any variable directive may be used to control COLEO$ and 
thus control the construction of an image while in edit mode. However, any change to that variable 
is not recognized until the next nondirective image is processed for editing. 



4144.31 
UP-HUMBER 

SPERRY UNIVAC 1100 Series executive 
Volume 3 System Processors 

Example 1: 

Given the following SGSs and skeleton: 

SGS 
MONTH JUNE 30,42,15 
MONTH JULY 24,7,94 

. MONTH AUGUST 1,171,463 
TAB 10 
TESTS 3 
@EOF 
SKEL 
*EDIT ON 
MONTH & 
*CLEAR INDEX 
*SET TAB TO [TAB, 1, 1, 1] 
*INCREMENT A TO [TESTS, 1,1,1] 
*MULTIPLY [*TAB] BY [*A] GIVING COLED$ 
TEST [*A] & 
*LOOP 
*EDIT OFF 
*INCREMENT DATE TO [MONTH] 
*EDIT ON I 
[MONTH,DATE,1,1] I 
*INCREMENT VAL TO [TESTS, 1, 1,1] 
*MULTIPLY [*TAB] BY [*VAL] GIVING COLED$ 
[MONTH,DATE,2,VAL] I 
*LOOP 
*EDIT OFF 
*LOOP 
@EOF 

The generated output stream would look like: 

MONTH 
JUNE 
JULY 
AUGUST 

Example 2: 

TEST1 
30 
24 
1 

TEST2 
42 
7 
171 

Given the following skeleton: 

SKEL 
*EDIT ON , 

TEST3 
15 
94 
463 

*CREATE SGS : FILE [TAPE,1, 1, 1]' 
[FAST, 1, 1,1] 
*HDG **TABLE of CONTENTS ** 
@EOF 
SGS 
TAPE TEST1 
FAST TEST2 
@EOF 

UPDATE LEVEL 
10-36 

PAGE 



4144.31 I 
UP-NUMBER . I _______ ---L ________________________________________ ~ ________ ~ ____ __ 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors UPDATE LEVEL 

10-37 
PAGE 

The foillowing SGS would be created: 

FILE TEST1 TEST2 

10.5.3,,6. Directing the Generated Output Stream 

Normailly, SSG maintains an internal SDF file (SGR$2) where all generated output images are sent. 
This can be suppressed by the use of the B option (Table 10-1) without specifying either the K option 
(Table 10-1) or a filename in parameter 3 of the @SSG call (see 10.2). By use of the *BRKPT directive, 
the generated output stream can be broken apart and' sent to different SDF files. The K option can 
be used to control printing parts or all of the generated output. When the generated output stream 
is sent to user-specified files, it is copied from SGR$2 to the user file after it is created. This makes 
nested @SSG calls impossible since SGR$2 will only contain the latest output stream. 

10.5.3.6.1. Br1eakpointing Images(*BRKPn 

Format: 

*8IRKPT,[options] I::. [filename 1::.] 

Parame1ters: 

file-name 

options: 

K 

Description: 

The name of a SDF file. The filename must be in element notation. 
Therefore, for this particular SSG directive statement, only a space 
period space will terminate the scan of the image (see 10.5.3). It 
specifies the destination of all generated output images after the 
*BRKPT until the next *BRKPT or the end of the skeleton. The 
filename may be supplied by a string, SGS reference, set reference or 
process parameter reference. If omitted, the SSG internal file is 
assumed. 

Print the generated output images following this *BRKPT until the next 
*BRKPT or the end of the skeleton. 

All geneirated output images that are encountered before the first *BRKPT in a skeleton are directed 
by the K option ()r the absence of it) on the @SSG call, and are sent to the file specified in parameter 
3 of thEt @ SSG call (if one was specified). The B option on the @SSG call controls only the last 
generat1ed output stream. That is, only the generated output images that are encountered between 
the last *BRKPT executed in the skeleton and the end of the skeleton, are controlled by the B option. 
If the *BRKPT directive is not used in the skeleton, the Band K options control the entire generated 
output ~~tream. 



4144.31 
UP-NUMBER 

Example: 

SPERRY UNIVAC 1100 Serle. executive 
Volume 3 System Processors 

Given the following SSG call: 

@SSG,K "FILEA. 
SKEL 
IMAGE A1 

. IMAGE A2 
*BRKPT FILEB. 
IMAGE B1 
IMAGE B2 
*BRKPT,K FILEC. 
IMAGE C1 
IMAGE C2 
*BRKPT 
#ASG,T TEMP,F 
#MSG,N TEMP WAS ASSIGNED 
@EOF 
@EOF 

The generated output stream printings would look like: 

Generated output stream part 1 

IMAGE A1 
IMAGE A2 

Generated output stream part 3 

IMAGE C1 
IMAGE C2 

UPDATE LEVEL 

The part of the generated output stream that would be dynamically added by SSG is: 

@ASG,T TEMP,F 
@MSG,N TEMP WAS ASSIGNED 

The contents of FILEA would be 

IMAGE A1 
IMAGE A2 

The contents of FILEB would be 

IMAGE B1 
IMAGE B2 

The contents of FILEC would be 

IMAGE C1 
IMAGE C2 

10-38 
PAGE 



4144.31 L SPERRY UNIVAC 1100 Series Executive I I 10-39 
___ U_P~_U._M_B_ER_______ , ______ V_o_'u_m __ e_3 __ S_y_st_e_m __ P_ro_c_e_s_s_o_rs __________________ ~~U_PO_A_n_L_N_EL ____ ~~_A_GE ____ _ 

1 O.5.:~.6.2. PRTOFF 

The printout of the generated output stream can be dynamically controlled by the use of the SSG 
reservlad variable PRTOFF. Initially, PRTOFF is set to zero. When PRTOFF is set to a nonzero value, 
the printout is ~.uppressed. The *SET and *CLEAR directives may be used to control PRTOFF. The 
printout of generated output images may be turned on and off any number of times. Even though 
the priint of generated output images is suppressed, the images are still in the generated output 
stream. 

Given the following SSG call: 

@SSG,K 
SKEL 
:#~EL T,I .ELEA 
*SET PRTOFF TO 3 
AA1 
AA2 
*CLEAR PRTOFF 
-#:EL T,I .ELEB 
*SET PRTOFF 
B.B1 
BiB2 
-#:EOF 
@EOF 
@EOF 

The print of the generated output stream would look like: 

@ELT,I .ElEA 
@ELT,I .ElEB 

However, the generated output stream would actually be: 

@ELT,I .ElEA 
AlA 1 
Al~.2 

@ELT,I .ElEB 
BIB1 
BIB2 
@EOF 

and thle immediately above would be dynamically added by SSG. 

10.5.~1.7. Skipping Skeleton Images (*IF),(*ELSE),(*END) 

*IF is a decision making directive designed to conditionally test, and choose logical paths in the 
skeletc~n, by either executing or skipping a sequence of skeleton images. There are two general 
formats of IF packets, as follows: 



4144.31 
UP~UMBER 

*IF (Conditional) 

SPERRY UNIVAC 1100 Serle. Executive 
Volume 3 System Processors 

[ ~ ~ ~ ~ ~ ] skeleton images 

*END 

UPDATE LEVEL 
10-40 

PAGE 

Where any directive or nondirective skeleton image (except *DEFINE) may be between the matching 
*IF and *END. If the condition is true, the skeleton images between the *IF and *END are executed; 
if the condition is false, they are skipped. 

*IF (Conditional) 

[ ~ ~ ~ ~ ~] skeleton images . 

*ELSE 

[ ~ ~ ~ ~ ~] skeleton images 

*END 

Where any directive or nondirective skeleton image (except *DEFINE) may be between the matching 
*IF and *ELSE and the matching *ELSE and *END. If the condition is true, the skeleton images 
between the *IF and *ELSE are executed and the images between the *ELSE and *END are skipped. 
If the condition is false, the skeleton images between the *IF and *ELSE are skipped and the images 
between the *ELSE and *END are executed. 

IF packets may be nested to any level, but no overlap of IF packets with other IF packets or with 
increment-loops is allowed. Each increment loop or IF packet must be entirely nested within another 
IF packet or increment-loop. 

Example: allowed 

*IF (Conditional) 

*ELSE 



4144.31 . I SPERRY UNIVAC 1100 Series Executive 10-41 
up~u~~~, ____________ V_o_l_u_m_e __ 3 __ S_y_s_te_m __ P_r_o_c_e_s_so_r_s ____________________ ~U_~_A_~_L_~_E_L __ ~LP_AG~E ____ __ 

*INCREMENT A TO 3 

[
-------'--
-------,-­_ ... _---,--
*LOOP 

*IF (Conditional) 

Exampl19: not allowed 

'*IF (Conditional) 

*IF (Conditional) 

*ELSE 

*ELSE 

'*END 

*END 

An *ELSE encolJnte,red in the skeleton is assumed to be matching the last *IF statement processed 
that has not alroady been matched with an *END, or, *ELSE and *END. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Serle, Executive 
Volume 3 System Processors 

10.5.3.7.1. *IF Variable Conditional 

Format: 

*IF ~ variable-name ~ IS ~ { ~~~AR ! ~ 
Parameter: 

UPDATE LEVEL 
10-42 

PAGE 

variable-name See 10.5.3.2 for description; may be supplied by a string, SGS 
reference, process parameter reference, or set reference that returns 
such a string. 

Description: 

Either a local or global variable may be tested for nonzero value (SET) or a zero value (CLEAR). When 
a search for the variable name is made, the local variable list is searched first from the most recently 
created backwards, then the global variable list is searched. The first variable found with the given 
name is tested. 

Example: 

Given the following skeleton and SGS: 

SKEL 
1. *DEFINE CHK 
2. *IF [# 1] IS SET 
3. NONZERO VAUE FOR [#1] 
4. *ELSE 
5. ZERO VALUE FOR [#1] 
6. *END 
7. *END 
8. *CLEAR A 
9. *PROCESS CHK A 
10. *INCREMENT A TO [VARSGS, 1, 1,2] 
11. *IF [VARSGS,1, 1,1] IS CLEAR 
12. [VARSGS,1,1,1] = 0 
13. *END 
14. *LOOP 
15. *IF A IS CLEAR 
16. A IS ZERO 
17. *END 

@EOF 
SGS 
VARSGS A,1 
@EOF 

The generated output stream would look like: 

ZERO VALUE FOR A 
A IS ZERO 

1. Statement 2 is false (the global variable A is 0), so Statement 3 between the *IF and *ELSE 
is skipped and Statement 5 between the *ELSE and *END is executed. 



4144.31 
UP-NUMI8ER Volume 3 System Processors UPDATE LEVEL 

10-43 
PAGE ~ SPERRY UNIVAC 1100 Series Executive 

,---_~------J------L.-_ 

2. Statement 111 is false (the local variable A is 1), so Statement 12 between the *IF and *END 
is skipped. 

3. Staltement 15 is true (the global variable A is 0), so Statement 16 between the *IF and *END 
is Etxecuted. 

10.5.3.'7.2. *IF Existence Conditional 

Format: 

*IF ~ expression ~ 

Parameter: 

expression 

Description: 

May be a string (20 or fewer characters), an SGS reference, a process 
parameter reference, or a set reference. 

The IF tEtSt checks to see if the given expression exists. If a string is supplied, the *IF statement is 
always true; since the string is there, it exists. 

If the expression supplied is a process parameter reference, the test for existence is done to see if 
there WetS a process parameter of that number. Also, if that process parameter was supplied by an 
SGS ref~erence, the test for existence is on the SGS reference. 

If the expression supplied is an SGS reference, the following tests for existence are done: 

*IF [I,n] 

*IF [I,n,f] 

*IF [1,n,f,S] 

tests if there is an nth statement with the label I. 

tests if there are at least f fields on an nth statement with the label I. 

tests if there is at least an sth subfield in an tth field on an nth statement with 
the label I. 

Note thslt the IF test *IF [I] is not in the test for existence category. Since the reference [I] (which 
returns the number of SGSs with the label [I] ) returns a numeric a rather than a 'no find' when there 
are no SGSs with that label, the *IF [I] is in the IF test for zero category (see 10.5.3.7.3). 

If the expression supplied is a set reference, the existence test checks if the set referenced is defined 
and the nth element entry in the set exists for the following expressions: 

*IF [reserved-Iabel,n] 
*IF [reserved-Iabel,n,f] 
*IF [reserved-Iabel,n, 1,1] 
*IF [reserved-label,n,2, 1] 

See 10.4.4 for description of set references. 

Note thC!lt the IF test *IF [reserved-label] is not in the text for existence category since it returns a 
o rather than a 'no find' if there is no defined set with the name specified or no entries in that set. 
The *IF [reserved-label] is in the test for zero category (10.5.3.7.3). 



4144.31 
UP-NUMBER 

Example: 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

Given the following SGSs and skeleton: 

. SGS 
A 1,2,3 5,6 
@EOF 

. SKEL 
1. *DEFINE TST 
2. *IF [#2] 
3. PROC PARA #2 
4. *ELSE 
5. NO PROe PARA #2 
6. *END 
7. *IF [#1] 
8. PROC PARA [# 1] 
9. *END 
10. *END 
11. *IF [A,1 ,2,3] 
12. SGS REF 
13. *ELSE 
14. NO SGS REF 
15. *END 
16. *PROCESS TST [A, 1 ,3, 1] 
17. *PROCESS TST X [A,1, 1] 

@EOF 

The generated output stream would look like: 

NO SGS REF 
NO PROe PARA #2 
PROC PARA #2 
PROC PARA X 

UPOA TE LEVEL 
10-44 

PAGE 

1. Statement 11 is false since there is no third subfield on field 2 of statement 1 with the label 
A. Therefore only statement 14 is executed. 

2. Statement 16 processes TST. 

3. Statement 2 is false since no process parameter 2 exists. Therefore, only statcme'1t 5 is 
executed. 

4. Statement 7 is false since process parameter 1 was supplied by an SGS reference ( [A, 1 ,3, 1] ) 
that does not exist. Therefore, no statements between the *IF and *END are executed. 

5. Statement 17 processes TST. 

6. Statement 2 is true since process parameter 2 exists and the SGS reference supplied there 
exists. Therefore, only statement 3 is executed. 

7. Statement 7 is true since process parameter 1 exists. Therefore, statement 8 is executed. 



4144.31 I SPERRY UNIVAC 1100 Series Executive 10-45 
up~u~~~ ____________ V_o_lu_m_e __ 3_S_y_s_t_e_m __ P_ro_c_e_s_so_r_s __________________ ~_UP_D_~_E_l~_E_l __ ~_P_AG_E ____ __ 

10.5.3,.7.3. *IF Test for Zero Conditional 

Format: 

* I F ~ expn3ssion ~ 

Parameter: 

expression 

Description: 

May be VALUE OF numeric-expression, VALUE OF integer­
expression, or a numeric expression (see 10.5.1). 

If the numeric expression is zero. the test is false, otherwise the test is true. 

Examplt:t: 

Given the following SGS and skeleton: 

SGS 
NUM 4,6 9,12 
@EOF 
SK.EL 

1. *DEFINE TST 
2. *11: +[# 1] 
3. 1 IS NONZERO 
4. *ELSE 
5. 1 IS ZERO 
6. "END 
7. *END 
8. *11;: [NUM] 
9. [NUM] t () 
10. *E:ND 
11. *SET A TO [NUM,1 ,2, 1] 
12. *IIF [*A]+4-12 
13. NUMBER 7: 0 
14. *E:ND 
15. *PROCESS TST A 
16. *PROCESS TST 0 

@EOF 

The generated output stream would look like: 

1 t 0 
NUMBER t 0 
1 liS NONZERO 
1 liS ZERO 

1. St.atement 8 is true because the numeric SGS reference, [NUM], is t O. Therefore, Statement 
9 iis executed. 

2. St.atement 12 is true because [*A]+4-12 which is is t O. Therefore, Statement 13 is 
ex,ecuted. 

3. Statement 15 processes TST and passes A as parameter 1. 



4144.31 
U'-NUMIER 

SPERRY UNIVAC 1100 Serle. executive 
Volume 3 System Processors UPDATE LEVEL 

10-46 
PAGE 

4. Statement 2 is true because +[# 1] which is the same as +A causes the variable A to be 
evaluated and the value is 9(9 to). Therefore, Statement 3 is executed. 

5. Statement 16 processes TST and passes 0 as parameter 1. 

6. Statement 2 is false because +[# 1] is the same as +0 (or a numeric 0). Therefore, Statement 
5 is executed. 

10.5.3.7.4. *IF Relational Tests 

Format: 

*IF 6 operand relation operand 6 

Parameters: 

operand 

relation 

Description: 

May be 20 or fewer characters supplied by a string, process parameter 
reference, SGS reference, set reference, or numeric expression. If the 
string used contains a blank, period, semicolon, comma, left bracket, 
slash, plus, or minus, and evaluation of that string is not intended, pairs 
of apostrophes should be used around it ( ....... ). For a string where the 
apostrophes are to be included, single apostrophes should be used 
(' .. .'). 

May be =, >, or <. 

The first operand specified is compared to the second operand specified according to the relation: 
= tests for equality, > tests if the first operand is greater than the second operand; < tests if the 
first operand is less than the second operand. 

There are two kinds of relational tests, symbolic and numeric. First both operands are evaluated (all 
numeric expressions and bracketed references satisfied). Then the condition of the first operand 
specified determines the kind of test done. If the first operand is a numeric expression, a numeric 
comparison is done. The second operand is always converted to be in the same condition as the 
firstoperand before the test is made. Since SSG operates internally in ASCII all symbolic comparisons 
are based on the ASCII collating sequence. 



4144.,31-
UP-NUMBER 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

Example: 

Goven the following skeleton and SGS: 

1. 
2. 
3 .. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
1'1. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21, 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
30. 
3'1. 
32. 
33. 
34. 
35. 
36. 

SKIEL 
*OEFINE TE:STRS 
*IF [#1] > [#2] 
SYMBOLIC [# 1] > [#2] 
*ELSE 
SYMBOLIC [# 1] NOT> [#2] 
*EI\lO 
*ENO 
*OEFINE TESTRN 
*IF + [#1] > +[#2] 
NUMERIC [# 1] > [#2] 
*ELSE 
NUMERIC [# 1] NOT>, [#2] 
*END 
*ENO 
*SIET VAR TO [SGS2,1] 
*IF [SGSREL, 1, 1, 1] > VAR 
SYMBOLIC [SGSREL, 1,1, 1] > VAR 
*ELSE 
SYMBOLIC [SGSREL,l, 1 ,] NOT> VAR 
*ENO 
*IF +[SGSHEL,l,l,l] > VAR 
NUMERIC [SGSREL, 1,1,1] > VAR 
*ELSE 
NUMERIC [SGSREL,l, 1,1] NOT> VAR 
*ENO 
*IF [*VAR] = 2 
*ELSE 
[*VAR] NOT 2 
*IF 2 < [SGS2,1] 
SYMBOLIC :2 < [SGS2, 1] 
*ENO 
*SIET F TO ,-4 
*SIET E TO + 1 
*PIROCE.SS TESTRS F E 
*PIROCESS TESTRN F E 
@EOF 
SGS 
SGSREL 666 
SGS2 ABC 
@fOF 

I UPDATE LEVEl 
I 10-47 

PAGE 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series executive 
Volume 3 System Processors 

The generated output stream would look like: 

SYMBOLIC 666 NOT> VAR 
NUMERIC 666 > VAR 
3 NOT 2 
SYMBOLIC 2 < 3 
SYMBOLIC F > E 

. NUMERIC F NOT> E 

UPDATE lEVEL 
I 10-48 

PAGE 

1. Statement 16 is false because the symbolic string 666 left justified is not greater than (according 
to the ASCII collating sequence) the symbolic string VAR. Therefore, statement 19 is executed. 

2. Statement 21 is true because the numeric value 666 is greater than the numeric value for VAR, 
which is 3 (see statement 15). Therefore, statement 22 is executed. 

3. Statement 26 is false because the numeric value of VAR, which is 3, does not equal 2. Therefore, 
statement 28 is executed. 

4. Statement 30 is true because the symbolic string 2 is less than (according to the ASCII collating 
sequence), the symbolic string 3. Therefore, statement 31 is executed. 

5. Statement 35 processes TESTRS and passes two strings, F and E. 

6. Statement 2 is true because the symbolic string F is greater than (according to the ASCII collating 
sequence) the symbolic string E. Therefore, statement 3 is executed. 

7. Statement 36 processes TESTRN and passes two strings, F and E. 

8. Statement 9 is false because the numeric value of F (which is -4) is not greater than the numeric 
value of E (which is + 1). Therefore, statement 12 is executed. 

10.5.3.7.5. *IF Row or Column Search Conditional 

SGSs of a given label can be regarded as two dimensional tables. A row in the table corresponds 
to one particular statement. A column corresponds to one particular field and subfield in all the 
statements. 

The following SGSs: 

LABL A,a Z,L,P R6 
LABL B S,T Y 
LABL 0 

would look like the following, in a two dimensional table. See Table 10-2. 



4144.31 
UP-HUMBER Volume 3 System Processors UPDATE LEVEL 

10-49 
PAGE ~ SPERRY UNIVAC 1100 Series Executive 

, ______ .....I.---~ 

Table 10-2. Search Table Row/Column 

Column 

Row field 1 field 1 field 2 field 2 field 2 field 3 

subfield 1 subfield 2 subfield 1 subfield 2 subfield 3 subfield 1 

stmt 1 A a z L P R6 

stmt 2 B S T Y 

stmt 3 0 

SGSs with the 5iame label may be searched by row or column for a given image. 

Format: 

*IF 11 { ~gr0MN } 11 SEARCH 11 FROM 11 label [.start-stmt [.start-field 

[.start-subfieldl 1]11 FOR 11 expression 11 

Parameters: 

label 

start-stmt 

start-fiold 

start-sLlbfield 

expression 

Description: 

See 10.3.1 for description of an SGS label; this label may be supplied 
by a string, SGS reference, process parameter reference, or set 
reference. 

The ~tatement number with the above given label where the search is 
to begin; may be supplied by a numeric expression or integer 
expression (see 10.5.1). 

The field number on the above given statement with the given label 
where the search is to begin; may be supplied by a numeric expression 
or integer expression (see 10.5.1). 

The subfield number in the above given field on the given statement 
with the given label where the search is to begin; may bb supplied by, 
a numeric expression or integer expression (see 10.5.1). 

The image thttt is to be searched for in the SGS tables; the images may 
be a string of 20 or fewer characters or the following references 
producing such a string: an SGS reference, process parameter 
reference, set reference, VALUE OF numeric expression reference 
(where the numeric value of the expression is taken), VALUE OF 
integer-expression, or a numeric expression. All numeric expressions 
are satisfied and the result is converted to a symbolic string for the 
search. If the string used contains a blank, period, semicolon, comma, 
left bracket, slash, plus, or minus, and evaluation of that string is not 
intended, pairs of apostrophes should be used around it (" ... "). For a 
string where the apostrophes are to be included, single apostrophes 
should be used (' .. .'). 

The stalrt-stmt, !.tart-field, and start-subfield may be omitted, and if absent are assumed to have the 
value olf one. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Series 8tecutiv8 
Volume 3 System Processors UPDATE LEVEL 

10-50 
PAGE 

A row search starts from a particular statement, field, and subfield for a given label of SGS. The search 
goes from that point on the SGS to the end of the statement (row), comparing each subfield to the 
specified expression. If a match is found, the *IF statement is true and SSG sets the reserved global 
variables FLO and SFLD to the field and subfield values respectively, where the match is made. If 
no match is found, the *IF statement is false and the FLO and SFLD values remain unchanged. 

A column search starts from a particular statement, field, and subfield for a given label of SGS. The 
search goes from that point on the SGS through the specified field and subfield of all the SGSs with 
the given label that follow. If a match is found, the *IF statement is true and SSG sets the reserved 
global variable CARD to the statement number where the match is made. If no match is found, the 
*IF statement is false and the CARD value remains unchanged. 

The IF column (or row) search is more efficient than incrementing through lists of SGSs and doing 
an IF test for a match. 

Example 1: 

Given the following skeleton and SGSs: 

SKEL 
1. *SET VAR TO 1 
2. *SET GO 
3. *INCREMENT A TO [MIX] WHILE GO IS SET 
4. *IF COLUMN SEARCH FROM MIX,VAR FOR ASSIGN 
5. #ASG,T [MIX,CARD,2, 1] 
6. *SET VAR TO CARD+ 1 
7. *ELSE 
8. *CLEAR GO 
9. *END 
10. *LOOP 

@EOF 
SGS 
MIX HOLD ALPHS 
MIX ASSIGN TEMP 1 
MIX PROCESS FILE3 
MIX ASSIGN PF3 
M1X ASSIGN TEMP2 
@EOF 

The generated output stream would look like: 

@ASG,T TEMP1 
@ASG,T PF3 
@ASG,T TEM~2 

The above IF column search, statement 4, searched through field one, subfield one of all the SGSs 
with the label MIX, starting with statement 1 the first time (initially VAR had the value 1). After a match 
was made, the value of CARD was set to the statement number where the match was found and the 
*IF was true, so statement 5 and 6 were executed. An assign card was generated and VAR was set 
to the next statement after the match statement (for the next loop through the IF column search). 
When no more assign images were found, the IF column was false and statement 8 was executed 
and the global variable GO was cleared. Thus, the WHILE phrase of the increment loop became false 
and incrementing was stopped. The increment, statement 3, merely insured that the IF column search 
was done' at least as ~any times as there were MIX cards for the case where every MIX card had 
an ASSIGN in field one, subfield one. The WHILE phrase on the increment allowed early termination 
of the loop for the case where the entire list was searched before the variable A had the value [MIX]. 



UP-NUMBER 

SPERRY UNIVAC 1100 Series 8<eclJItive 
Volume 3 System Processors UPDATE LEVEL 

10-51 
PAGE 

4144.3~~ 
, ____________________________________ ~ ______________ ~ __________ _L ______ ___ 

Given the following SGSs and skeleton: 

SGS 
ALL AVAIL FILES T3,P4,XR2,PF$,TEMP4 
FlUES ARE FOUND ON ALL 

. @EOF 
SKIEL 

1. *IF ROW SEARCH FROM [FILES,1 ,4,'],1,3,1 FOR PF$ 
2. PF~~ WAS FOUND ON THE SGS [FILES, ',4, 1] 
3. STI~TEMENT 1,FIELD [*FLD] AND SUBFIELD [*SFLD] 
4. *EIND 

@EOF 

The generated output stream would look like: 

PFE, WAS FOUND ON THE SGS ALL 
STJ~TEMENT 1,FIELD 3 and SUBFIELD 4 

Statement 1 does an IF row search on the first SGS with the label ALL starting at field 3, subfield 
1 and sE~arches to the end of that SGS until a match is found with the image PF$. The *IF is true 
and statements 2 and 3 are executed. Also the variables FLO and SFLD are set to 3 and 4, 
respectively. 

10.5.3.'7.6. *IF: CORRECTION ENTRY EXISTENCE 

Fc)rmat: 

*IF 6 elemEmt-name [/version-name] D HAS I:, [ 1 ~~~~ 11:, [ CORRECTIONS I:, 

Pltrameters: 

element·-name ( 
version-name ) 

Description: 

See 10.5.3.3.1 for description 
Refers to an element-entry name. 

The search may be made on the PERM (PCF set) or TEMP (primary TCF set) or both sets (by omitting 
PERM Olr TEMP) to see if the specified element entry exists. If PERM or TEMP is omitted, a search 
of both !>ets occurs and the existence of the specified element entry in either set is sufficient for the 
statement to be true. PCF or primary TCF entries found cause the *IF to have a true value. Just a 
*card in an input stream (or the existence of a program file element when using P or T options) causes 
an element entry to be created. However, if an element entry is created via the *CREATE directive, 
the *IF test for that entry's existence would be false since SSG flags that entry as a special case 
having no input associated with it. 



4144.31 
'JP-NUMBER 

Example: 

SPERRY UNIVAC 1100 S.rl •• Exe:utlve 
Volume 3 System Processors UPDATE lEVEL 

10-52 
PAGE 

Given the following primary temporary corrections, permanent corrections, SGS, and skeleton: 

TEMP COR 
*ELEA 
-212 

. *ELEBNER1 
*ELEC 
-6,12 
@EOF 
PERM COR 
*ELEBNER1 
-1,3 
*ELED 
-45,61 
@EOF 
SGS 
E ELEC 
@EOF 
SKEL 

1. *IF ELEA HAS CORRECTIONS 
2. ELEA PRESENT 
3. *ELSE 
4. ELEA NOT PRESENT 
5. *END 
6. *IF [P,1,1,1V[P,1,2,1] HAS TEMP CORRECTIONS 
7. [P, 1 , 1 , 1 ]/[P, 1 ,2, 1] HAS TE M P 
8. *END 
9. *CREATE PERM: ELEC 
10. * IF [E,1, 1,1] HAS PERM CORRECTIONS 
11. [E,1, 1 ,1] HAS PERM 
12. *END 

@EOF 

The generated output stream would look like: 

ELEA PRESENT 
ELEBNER 1 HAS TEMP 

1. Statement 1 searched both the PCF and primary TCF set for the element entry ELEA and found 
it in the primary TCF. Therefore, the *IF was true and statement 2 was executed. 

2. Statement 6 searched the primary TCF set for the element entry ELEBNER 1 and found it (note: 
only *ELEBNER 1 was necessary in the run stream to cause an element entry to be created). 
Therefore, the *IF was true and statement 7 was executed. 

3. Statement 10 searched the PCF set for the element entry ELEC and found that that entry had 
been created by the *CREATE directive. Therefore, the *IF was false and statement 11 was 
skipped. 



4144.31 
UP-NUIM8ER Volume 3 System Proc~ssors UPDATE LEVEL 

10-53 
PAGE ~ SPERRY UNIVAC 1100 Series Executive 

, _____ ---L-----J...-_ 

10.5.3.7.7. Compound *IF Statements Using Boolean Operators 

The conditional tests on *IF statements may be compounded to create Boolean expressions. A 
Boolean expression is made up of Boolean-operand Boolean- operator Boo/ean-operand, and gives 
a true or false result. The Boolean operators are AND, OR, XOR. Boolean operands are any of the 
conditiolnals described under 10.5.3.7 or Boolean expressions made up of those conditionals. All 
boolean expressions are evaluated left to right taking two operands at a time and applying the result 
to'the next operand found. 

The Boolean operator, NOT, may also be used in *IF statements and applies only to the conditional 
immediately foll()wing it. A logical NOT is done on the results of the conditional. 

The reslUlts of the logical operations done using AND, OR, XOR are shown in Table 10-3. 

Table 10-3. Logical Operations Using AND, OR, XOR 

1 st Boolean 2nd Boolean Result Result Result 
Operand Operand of AND of OR of XOR 

true true true true false 

true false false true true 

false true false true true 

false false false false false 

ExamplE~: 

The IF sitatement: 

*11= B IS SET AND VALUE OF A = -1 OR NOT [X, 1, 1, 1] = STOP 

does th'e following operations, in order: 

1. test if variable B > 0 
2. test if variable A = -1 
3. result of (1) AND result of (2) 
4. test if [X,1, 1,1] = STOP 
5. NOT the result of (4) 
6. result of (3) OR result of (5) 

The result of (6) is the value of the *IF test. 

The IF ~)tatement: 

*IF NOT ELEA HAS CORRECTIONS AND COLUMN SEARCH FROM; 
LAB,6,3,4 I:OR ELEA 



4144.31 
UP-NUMIER 

SPERRY UNIVAC 1100 Serle. becutive 
Volume 3 System Processors 

does the following operations, in order: 

1. test if the PCF set or primary TCF set has the element entry ELEA 
2. NOT the result of (1) 

I UPOA T£ lEVEL 
I 10-54 

PAGE 

3. . do a column search beginning with the sixth SGS with the label LAB, field 3, subfield 4 for the 
image ELEA 

4. result of (2) AND result of (3) 

The result of (4) is the value of the *IF test 

NOTE: 

The *IF statement may be continued using the standard continuation character, a semicolon. 

10.5.3.8. Merging Permanent and Temporary Streams 

See 10.4 for description of permanent and temporary streams. The Permanent Correction File (PCF) 
set is designed as a means of maintaining groups of correction images (element entries) to some 
group of base symbolic elements. See 1.2 on modifying symbolic elements and the description of 
format for line correction statements. The Temporary Correction File (TCF) sets are designed as a 
means of changing or adding corrections to an existing PCF set element entry. A TCF set entry may 
contain two types of line corrections, those relative to the base symbolic elements being modified 
(additions to the PCF set element entry) or those relative to an already existing line correction in the 
PCF set element entry. Both correction types can be intermixed in a TCF set element entry. 

Those TCF set corrections that are relative to the base symbolic elements follow the format described 
in 1.2. Those TCF set corrections relative to an already existing PCF set line corrections may have 
the following formats: 

-perm-line-nos/relative-line-nos 

or 

-perm-line-nos/relative-line-nos/new-line-nos. 

where the perm-line-nos matches (is the same as) the line correction in the PCF set element entry 
being altered; the relative-line-nos are the line numbers where a change is to be made to the PCF 
,line correction. 

For relative referencing purposes, the PCF line correction (as specified) is relative line zero and all 
images following that line correction until the next line correction in that element entry are relative 
lines 1,2, ... etc. Relative line numbers may be of two forms: 

-n 
-n,m 



4144.31 I SPERRY UNIVAC 1100 Series Executive I I 10-55 
_UP_~_U_M_8_ER ___ ~ ____________ V_o_lu_m __ e_3 __ S_y_s_te_m ___ P_ro_c_e_s_s_o_rs _____________________ ~U_P_DA_T_E __ L~ __ EL ____ ~_PA_G_E ____ __ 

where -11 indicat43s that the data following that relative correction is to be inserted after relative line 
number n in the PCF element entry. -n,m indicates that relative lines n through m (where m > n) 
inclusivEI, are to be removed and any data following that relative correction is to be inserted in the 
PCF element entry at that point. Relative line corrections to the PCF may not be partial line corrections. 
New-lim:l-nos mcay be of three forms: 

p 
. p,q 

p,q.-

These line corrections cause -p, -pq, or -pq-, respectively, to be inserted at the point that the relative 
line correction is being made in the PCF element entry before any associated data following the 
relative Iline correction is inserted. 

Example 1: 

The following shows how line corrections in a PCF element entry are numbered for relative 
referencing: 

Corrections 

-·2,3 
A 
B 

-·10 
)(YZ 

-·14,16 

Relative line numbers 

o 
1 
2 
3 
o 
1 
o 

Therefore, any line in a PCF element entry may be referenced first according to the line correction 
number associatod with it, and then according to its relative position to that correction line. 

Example 2: 

Given the following PCF set and primary rCF set input: 

PEBM COR 
*A 
-4,6 
X 
yyy 

-10 
B 
-2!),25-
IABC/OEFI 
-3:l,33-
ILlSI 
IAO/A21 
-4:~,44 

-72,76 
@E:OF 
TEMP COR 
*A. 
-4,6/2,2 
LJI( 



4144.31 
UP-NUMBER 

-10/0,0/12,12 
NEW 

SPERRY UNIVAC 1100 Series Executive 
Volume 3 System Processors 

-25,25-/1,1 
/ABC/EFJ/ 
-32,33-/0,0/32,32-
-32,33-/1/35,35-
-54 

. ORS 
@EOF 

The corrections in the primary TCF set would reference, as follows: 

1. -4,6/2,2 
LJK 

UPDATE LEVEL 
10-56 

PAGE 

Deletes line 2 relative to the correction line -4,6 in the PCF, which is YYY, and inserts the line 
LJK at that position. 

2. -10/0,0/12,12 
NEW 

Deletes line ° relative to the co,rrection line -10 in the PCF, which is -10, and inserts the image 
-12,12 followed by the line NEW. 

3. -25,25-/1,1 
/ABC/EFJ/ 

Deletes line 1 relative to the correction line -25,25- in the PCF, which is /ABC/DEF/, and inserts 
the line / ABC/EFJ/ at that position. 

4. -32,33-/0,0/32,32-

Deletes line ° relative to the correction line -32,33- in the PCF, which is -32,33-, and inserts 
the image -32,32-. 

5. -32,33-/1/35,35-

Inserts the image -35,35- following line 1 relative to the correction line -32,33- in the PCF, 
which is /US/. 

6. -54 
ORS 

Since this is not a relative line correction, it must be a correction to be added to the PCF. 
Therefore, -54 and QRS are inserted between -43,44 and -72,76 in the PCF. 



4144.31 L SPERRY UNIVAC 1100 Series Executive 10-67 
~~_____ _ ______ V_o_'_u_m_e __ 3_S_y_s_t_e_m __ P_ro_c_e_s_s_o_r_s ____________________ ~u~ __ An __ L_~_EL ____ ~PA_G_E ____ . ____ __ 

10.5,3.8.1. Merging PCF and Primary rCF Element Entries (*CORRECT) 

FOrmiEtt: 

·*CORRECT [,options] ~ element-name [/version-name] ~ [ { ~~~~ } ~ 1 

r -- -- .. - -- -] 
L ~ ~ ~ ~ :: ~ ~ ~ ~ corrections-from-skel 

'M-END 

Parameters: 

options 

elemE~nt-name l 
version-name } 

Description: 

none The images resulting from the merge are sent to the generated output 
stream. 

P The images resulting from the merge are sent to a program file's 
symbolic element with the same name as the element entry. This 
option may only be used when the P option is used on the @SSG call 
and the PCF had its input defined by symbolic elements in a program 
file (see 10.4.2, second paragraph). The program file updated when 
doing a *CORRECT,P is the same one that is specified for the PCF set 
input. This is the only case where SSG alters an input file (PFI$ is used 
to perform the insert). 

K Used in conjunction with the P option to cause the images resulting 
from the merge to be also sent to the generated output stream. 

See 10.5.3.3.1 for description: specifies the name of the element entry from 
which the corrections are to be taken. May be supplied by a string, set 
reference, SGS reference, or process parameter reference. 

If PEFtM is spE!cified, SSG takes only the element entry corrections from the PCF set. If TEMP is 
speci1fied, SSG takes only the element entry corections from the primary TCF set. If neither PERM 
or TEMP are specified, SSG takes both the PCF set and primary TCF element entries or whichever 
exist. The specified element entry corrections desired are merged along with corrections from the 
skeleton (if any). Corrections from the skeleton are those images between the *CORRECT and the 
matching *END. Regardless of the other source of corrections, any corrections from the skeleton 
are always use~d in the merge. If any element entry or corrections that are specified or assumed, are 
not plresent for the *CORRECT, the merge consists of the remaining specified or assumed entries. 

When using the P option on the @SSG call (a program file is specified on the @SSG call as the source 
for the PCF set), a *CORRECT,P is ignored for an element entry that does not exist in the PCF set 
(there is no symbolic element with that name in the specified program file). An *CREATE PERM must 
first be done for that element entry to indicate to SSG that a new symbolic element is to be created 
in the! specified program file when doing the *CORRECT,P. The normal case is where an element 
entry in the PCF set (existing symbolic element in the given program file) is corrected and re-inserted 
into the given program file, simulating an update process. The P option is also ignored if TEMP is 
specified on the *CORRECT,P statement too. 



4144.31 
UP-NUMBER 

SPERRY UNIVAC 1100 Serlel Executive 
Volume 3 System Processors UPDATE LEVEL 

10-58 
PAGE 

When a *CORRECT is done with PERM specified, revised temporary corrections are not created since 
no primary TCF corrections are used. 

Conflicts in line numbers are flagged (see 10.6 for diagnostic messages). TCF set corrections override 
PCF set corrections which override corrections from the skeleton, if a conflict occurs. Since conflicts 
that cause overrides are not fatal errors, such a feature may be used to cause desirable changes in 
the resulting output. When a co.,flict does occur the corrections from the set with the highest priority 
are" saved as part of the resulting output and the corrections with the lowest priority are printed in 
the override message and are ignored. 

Example: 

Given the following runstream: 

@ASG,T PF 
@ EL T,I PF.ELEA 
-2,2 
XYZ 
-4,7 
@EOF 
@ELT,I PF.ELEC 
-10 
RST 
-12 
PQR 
@EOF 
@SSG,KBP """PCF/1 ,PF. 
TEMP COR 
*ELEA 
-2,2/1 
LMN 
*ELEB/ONE 
-6,10 
*ELEC 
-10/1,1 
• .IKL 
RVW 
@EOF 
SKEL 

1. ONEXXX 
2. *CORRECT ELEA PERM 
3. -10,10 
4. *END 
5. *CREATE PERM: ELEB/ONE 
6. *CORRECT,P ELEB/ONE 
7. -42,42-
8. IAA/BSI 
9. *END 
10. TWO XXX 
11. *CORRECT,PK ELEC 
12. *END 

@EOF 
@EOF 



4144.31 I SPERRY UNIVAC 1100 Series Executive 10-59 
~~~ ____________ V_o_l_u_m_e __ 3_S __ ys_t_e_m __ p_ro_c_e_s_s_o_rs ____________________ ~up_D_An __ L~ __ EL ____ ~P_A_GE __________ _ 

The generated output stream would look like:

DINE XXX
-2,2
LMN
XYZ
-t1~, 7
-10,10
nNO XXX
-10
JKL
RVW
-12
PClR

At the Emd of tho SSG execution the program file, PF., has three symbolic elements, ELEA.,ELEB/ONE,
and ELEC., and their contents are:

El.EA ELEB/ONE ELEC

-2~,2 --6,10 -10
XYZ --42,42- JKL
-4,7 fAA/BBI RVW

-12
PQR

'I. Statement 2 causes the PCF set element entry, ELEA, to be merged with the corrections from
the skeleton (those between the *CORRECT and *END), and the resulting ima~es were sent to
the generated output stream. PF.ELEA is not updated (changed) because a *CORRECT,P was
not done.

2. Statement 6 caused the primary TCF set element entry, ELEB/ONE, to be merged with the PCF
se!t element entry ELEBfONE, (since it is a created entry, same as merging with nothing) and the
corrections from the skeleton. Since the P option is on the *CORRECT, the resulting images
from the merge are inserted as a symbolic element, ELEBfONE in the PCF set program file, PF.
Note that since there was no element entry in the PCF set existing (on input) with the name
El.EB/ONE, a *CREATE PERM (statement 5) was necessary before SSG would recognize the
*CORRECT,P. Since the P option was present and the K option was not (on the *CORRECT)
the resulting images were not sent to the generated output stream.

:3. Statement 11 caused the PCF set element entry, ELEC, to be merge with the primary TCF element
entry, ELEC. There are no corrections from the skeleton (nothing between the *CORRECT and
*IEND). Since the P and K options are on the *CORRECT, the resulting images from the merge
are inserted as a symbolic element, ELEC in the PCF set program file, PF, and are sent to the
gEmerated output stream. When the new symbolic element, ELEC, is inserted into PF the old
ELEC is deleted.

'10.5.3:.8.2. Merging TCF Element Entries (*MERGE)

Format:

*MERGE [,options] l:J. element-name [/version-name] l:J. tcf-set-name l:J. WITH l:J.

tcf-set-name l:J. [GIVING l:J. tcf-set-name l:J.]

4144.31
UP~UMBER

Parameters:

options

element-name ~
version-name }

tcf-set-name

Desc ri ption:

SPERRY UNIVAC 1100 Serie. executive
Volume 3 System Processors UPDATE LEVEL

I 10-60
PAGE

R

K

See below for description.

Used when the GIVING phrase is on the *MERGE, to cause the
resulting images to be sent to the generated output stream.

See 10.5.3.3. 1 for description of element entry names. May be
supplied by a string, set reference, SGS reference, or process
parameter reference.

Specifies the TCF sets where the element entries are to be taken from
for the merge, and, in the GIVING phrase, specifies the TCF set
destination of the resulting element entry, (may be the primary or any
secondary TCF set).

See 10.4.3 for description of the TCF set names. May be supplied by
a string, set reference, SGS reference or process parameter reference.
(The rCF set name for the primary TCF set is TCF.)

*MERGE merges the specified element entry from the first TCF set given with the elment entry of
the same name from the second TCF set given. The GIVING phrase is optional. If it is omitted, the
resulting images from the merge are automatically sent to the generated output stream. If the GIVING
phrase is present, the resulting images from the' merge are inserted as an element entry (of the same
name specified) into the TCF set given in the GIVING phrase. When the GIVING phrase is present
the K option must be used on the *MERGE if the merge images are also to be sent to the generated
output stream.

When the GIVING phrase is present on the *MERGE directive, SSG creates an internal element entry,
associates the resulting merge images with it, and attaches it to the TCF set specified in that phrase.
If an element entry of the name already exists in that TCF set, the old entry is lost and all references
apply to the newly created element entry. The original TCF input files are never altered, and any
internal element entries that SSG creates are lost when SSG terminates.

R OPTION

With no R option on the *MERGE directive, SSG combines the two TCF sets' element en'i.ries. Both
entries' line corrections are based on the same PCF and base symbolic element. The corrections, both
to PCF (relative corrections) and in addition to a PCF (base symbolics corrections) are put in sequential
order. (Each entry correction must be in sequential order before the merge.) All sequence errors are
flagged and the line corrections discarded. The first TCF set entry specified on the *MERGE takes
precedence over the second TCF set entry in the case of line number conflicts. One TCF sP.t entry
may not do relative correction to another. All relative corrections are assumed to be based on a PCF
set entry.

With the R option on the *MERGE directive, a special type of merge is done between the two TCF
set element entries specified. SSG assumes that the second TCF set element entry (from second TCF
set specified) was merged with a PCF set element entry and a revised PCF set element entry was
created. SSG also assumes that the line numbers in the first TCF set element entry (from first TCF
set specified) are based on the created revised PCF set element entry. SSG does the merge, changing
the line numbers from the first TCF set element entry and merging them with the second TCF set
element entry so that all line numbers in the resultant merge are relative to the original PCF- set
element entry.

4144.3 'I
UP-NUMOER Volume 3 System Processors UPDATE lEVEL

10-61
PAGE ~ SPERRY UNIVAC 1100 Series Executive

,-____ ---.L-.--------J-_

With the *MERGE directive, element entries with the same name from any number of TCF sets may
be mergEtd, two at a time. By allowing the results of the final merge to end up in the primary TCF
set, a *CORRECT may be done to merge PCF corrections with the TCF set corrections.

Example 1:

Given thE! following runstream:

PERM COR
* AlVA
-2,5
A
B
C
-10
o
E
@EOF
TEMP COR
*A/VA
-2,5/1,1
A1
L1
-2,5/3,3
C1
-10/0,0/12
@EOF
TEMP COR: TCFNEW
*A/VA
-1,1
R
-10/2,2
E1
F
@EOF
SKEIL

1. STEP 1
2. *MERGE,K ANA TCFNEW WITH TCF GIVING TCF
3. STEP 2
4. *CQiRRECT ANA
5. *END

@EOF

Both A/VA in the primary TCF set input and A/VA in the second TCF set input, TCFNEW, have their
line corrections bCllsed on ANA in the PCF set and some base symbolic element (which the PCF set
entry, A/VA, is also based on).

4144.31
UP-HUMBEA

SPERRY UNIVAC 1100 S.ri •• executive
Volume 3 System Processors

The generated output stream would look like:

STEP 1
-1,1
R
-2,5/1,1
A1
L1
-2,5/3,3
C1
-10/0,0/12
-10/2,2
El
F
STEP 2
-1,1
R
-2,5
Al
L1
B
C1
-12
o
E1
F

UPDATE LEVEL
10-62

PAGE

1. After statement 2, and while SSG is still processing, the primary TCF set entry ANA contains
the same images as those seen between STEP 1 and STEP 2, exclusively, in the generated output
stream. The K option was necessary on the *MERGE to cause the images to go to the generated
output stream, since the GIVING phrase was present.

2. When statement 4 was executed, element entry ANA was taken from both the PCF set and the
primary TCF set (getting the internally created entry) for the merge.

3. Thus the final result was to merge all existing corrections for ANA to later apply to some base
symbolic element.

Example 2:

Given the following input runstream:

SKEL
*CORRECT B/XVERSION
*END
@EOF
PERM COR
*B/XVERSION
-6,8
XXXX
-12
R
S
@EOF
TEMP COR

4144.31
UP-NUMBER

*B/)(VERSION
-6,8/1,1
yyy
ZZZ
-12/0,0/13
@EOF

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

The -genel'ated output stream would look like:

-6,8
yyy
ZZZ
-13
R
S

UPDATE LEVEL
I 10-63

PAGE

The above~ corrections in the generated output stream could be called revised PCF corrections since,
they are tlhe result of TCF corrections applied to PCF corrections. Assume that the above listing of
revised PCF corrections was the only available list and additional changes were necessary. A rCF
set entry could be created that had its line numbers based on the above revised PCF listing, as follows:

-6,8/1,2
NEWXXX
-13/1,1
-20,:21

Then a new SSG call could be made using the same PERM COR and TEMP COR input as before plus
the new liine numbers in a TCF set, TCFCOR, and a slightly revised skeleton, as follows:

SKEL
1. *MERGE,R B/XVERSION TCFCOR WITH TCF GIVING TCF
2. *CORRECT B/XVERSION
3. *ENID

@EOF
PERM COR
*B/)(VERSION
-6,8
XXXX
-12
R
S
@EOF
TEMP COR
*Bn(VERSION
-6,8/1,1
yyy
ZZZ
-12/0,0/13
@EOF
TEMP COR: 'TCFCOR
*B/)(VERSION
-6,8/1,2
NEv\fXXX
-13/1,1
-20,21
@EOF

4144.31
UP-NUM8ER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

The generated output stream would look like:

-6,8
NEWXXX
-13
S
-20,21

UPDATE LEVEL
10-64

PAGE

1. Statement 1 causes the element entry B/XVERSION in TCFCOR to be merged Vvith the entry of
the same name in TCF (the primary TCF set) knowing that TCFCOR's line corrections are based
on revised PCF corrections that TCF's corrections helped to create. Thus, the line corrections
in the TCFCOR entry are modified to be relative to the orginal PCF entry and are merged with
the TCF entry corrections. The new element entry created and attached to the prirnary TeF set
looked like the following:

-6,8/1,1
NEWXXX
-12/0,0/13
-12/1,1
-20,21

2. Statement 2 caused the new element entry attached to the primary TCF set to be merged with
the PCF set entry of the same name. Thus, the above corrections in 1. were applied to the
correction that came in with PERM COR and the desired result is seen in the generated output
stream.

10.5.3.8.3. Change Control Characters

The standard control character for the *CORRECT and *MERGE merges is the minus (-). Thi~ standard
may be changed to another control image (up to three characters long), according to the following
format:

- = new-control-characters

No control characters may be numeric and an indirect reference is not allowed.

When doing a *CORRECT type merge, the change of control character image may appear as the first
image of a PCF entry, as the first image of a primary TCF entry or immediately after t:le .Ji.CORRECT
in the skeleton. Any other such images elsewhere in the entries or between the *CORRECT and
*END, that look like change control character images are treated simply as nondirective images and
do not affect the control character.

When the change control character image is the first one in the PCF entry it triggers the change, and
the image is passed to the revised PCF entry (if one) but does not appear in the output sti ~am. If
the change control character image is from the primary TCF entry, it triggers the change, :3nd the
image is passed to the revised TCF entry, but is not passed to the revised PCF entry (if one) nor the
output stream. If the change control character image appears after the *CORRECT in the skeleton,
it triggers the change but does not appear in the revised PCF, revised TCF or output stream.

When a change control character image for a *CORRECT comes from more than one source the
destination for each image is still as described above. However, the new control characters for that
merge are determined according to the following priority: TCF overrides PC ... and skeleton; PCF
overrides skeleton. After each *CORRECT is done (the *END is encountered) th~ control cha:-acter
is reset to -.

4144.31 I SPERRY UNIVAC 1100 Series Executive 10-65
UP~UM~_A ___ ~ __________ V __ o_lu_m_e __ 3 __ S_y_st_e_m __ P_r_oc_e_s_s_o_rs ____________________ ~U_PD_A_n_L_~_EL ____ L_AA_G_E ____ ___

When doing a *MERGE type of merge, the change control character image may appear as the first
image of a TCF SElt entry. If an image appears in both entries, the one from the first specified set
is used. This image triggers the change of control chracters and is sent to the third specified TCF
set (if on,e) but does not appear in the output stream. When the merge is complete, the control
character is reset to -.

10.8. DIAGNOSTIC MESSAGES

The following is a list of only those processor messages that are not self-explanatory.

***** ... ** tcfsE~t STREAM TOTAL IMAGES: n ********

This message is printed immediately following each TCFset-G option printing (is printed only if the
G option is present on the SSG call). tcfset is the setname and n is the total number of correction
images for that set. (*element/version cards not included).

SPECn message

Where 'n' is the parameter field number on the processor call statement (0 if from runstream) and
'message' may be any of the following:

NOT PCF,TCF,SGS

/VEH NOT NUMERIC

NOT PROGRAM FILE

FILE EMPTY

BAD LABEL IMAGE

PF ELE NOT FOUND

PF CYCLE EFIROR

PF ELE DELETED

USE: OR ASG ERROR

SSG expected PCF, TCF (or TCF set name), or SGS and did not find
it.

Following PCF, TCF, tef-set-name or SGS a / <numeric>is expected
and not found.

SSG expected the specified file to be a program file and it was not.

SSG expected input from a file and it was empty.

The label image of the specified file is bad.

The specified element was not found in the given program file.

The cycle given for the specified program file is in error.

The specified element has been deleted from the given program file.

An error occurred trying to do an @USE or @ASG on the specified file.

INTERNAL SSG FILE COULD NOT BE ASSIGNED

An internal file SSG uses for processing could not be assigned.

{
PCF }

DUPLlCA.TE n IN TCF
tcf-set-name

When ordering the input element/version entry, 'n', a duplicate name was found in the specified set
(PCF, TCIF or TCF set). The second entry is discarded.

POSSIBl.E ERROR ON FOLLOWING * CARD-ASSUMED TO BE DATA

4144.31
UP-HUM8ER

SPERRY UNIVAC 1100 Series executive
Volume 3 System Processors

When SSG is reading input, temporary and permanent element/version entries and an * card is
encountered which has characters other than alphabetics, numerics, - or $ this message is printed.
The * card image is then assumed to be part of the last * card data.

ADDR NOT FOUND FOR WRITE TO REV SKEL FILE

This message is printed when a program file element is specified as the output elment for the revised
skeleton (param-5) and an error is returned from ER PFWL$.

ERROR IN REVISED SKELETON - SGS CANNOT PROCESS IT

This message is printed at the end of the revised skeleton listing when the E option is used (no 0
option) and an error in the skeleton is detected. Another message explaining the error is printed in
the revised skeleton listing where the error occurs.

TRUNCATED IMAGE EXCEEDED 80 CHAR MAX

This message is printed when an image that is greater than 80 characters is read from an input file.
The image is truncated at 80 characters and SSG continues to process it.

FILE IDENTIFICATION STATEMENT ERROR

When the file identification statement, which specified input streams, has a format error or specifies
an illegal input type, the above message is printed.

SKELETON IS ABSENT

The skeleton is the only mandatory input stream since it directs the processor. Its absence is noted
by the above message.

ERROR IN FORMATION OF OUTPUT RUNSTREAM - SSG WILL NOT PERFORM DYNAMIC @ADD

The absence of the B option signals the generation and execution of an output runstream. If an error
is detected during a non-B option generation, the above message is printed and the generated
runstream will not be dynamically @ADDed. The programmer may perform his own execution
mechanism for the generated runstream. Usually, sequence errors found during merging operations
causes this condition.

ERROR IN BREAKPOINT n AT SKEL LINE x

If a format error exists on the BRKPT directive, the above message results where 'n' is the part number
of the last generated output stream and x is the SKEL line number of the *BRKPT.

NO-FIND ON FOLLOWING IMAGE

The above message indicates a reference by the following image which couldn't be satisfied.

HAVE ENCOUNTERED 100 NO-FIND RETURNS - NO-FIND MESSAGES TO BE SUPPRESSED

Upon the occurrence of 100 unsatisfied references, the above message is printed and no further
unsatisfied reference messages will be printed.

FORMAT ERROR IN FOLLOWING CARD

THE FOLLOWING CARD IS OUT OF SE~UENCE

4144"31 I SPERRY UNIVAC 1100 Series Executive 10-67
up~u~~~, ___________ V __ o_'u_m_e __ 3 __ S_ys_t_e_m __ p_ro_c_e_s_s_o_rs ____________________ ~UP_D_A~ __ L~ __ EL ____ L_PA_GE __ __

SEQUENCE OR FORMAT ERROR ON FOLLOWING CARD

Above messages are printed when the specified conditions occur.
Sequenc:e messages refer to a merge being done at the time (*CORRECT or *MERGE).

CONFLICT IN REl CORR:n MERGE WITH p q

Du'ring the merging of streams with *MERGE, internal conflicts in the correction numbers may occur.
S/Ome c()nflicts alre of such a nature that they cannot be resolved (due to ignorance of the PCF entry
involved). As a rEtsult SSG prints one of the above messages and discards the correction from the
first TCF set, 'n'. 'q' is the element/version entry and 'p' is the second TCF set.

I/O ERROR p AT LOCATION n

The above message signals an 1/0 error of the type 'p'. (n is in decimal.)

INCORRIECT ATTIEMPT TO MAKE REL.COR.n

During 1the merging and modifying of the input streams, with *CORRECT, the occurrence of a
modifying image (relative correction to permanent stream) in the temporary stream which is badly
formattEtd or has bad line correction numbers results in the above message where 'n' is the
element/version entry being merged.

FOlLOv\IING REt TEMP COR TRUNCATED

If during the merging and modifying of TCF streams with *MERGE, a relative correction or image that
must be modified exceeds 80 characters, it is truncated and the above message printed.

a { PERMANENT t CORRECTIONS IN
TEMPOFtARY CORRECTIONS OVERRIDE SKELETON GENERATED) ELEMENT n

***PEBMANENT CORRECTIONS OVERRIDE SKELETON GENERATED CORRECTIONS IN
ELEMENT n***

During the merging of the input streams, conflicts in the line correction numbers may result. The
c()nflicts are settled by the priority, temporary overrides permanent which overrides skeleton. Upon
a conflict, the appropriate message is printed where 'n' is the elementlversion entry being merged.
The overridden c:orrection images are also printed out. The programmer should take note of any
c()nflicts between permanent and skeleton streams.

ADDR NOT FOUND FOR WRITE TO PERM COR PF

SSG prints the above r:nessage if the PCF input is from a program file (P option) and if a *CORRECT,P
is done, and an error is returned trying to obtain the PCF program file's next write address.

BAD IMAGE CONTROL WORD n:INTERNAL FILENAME p

The abolve message is printed if, while reading input streams, SSG receives an image control word,
'n', that appears incorrect. The internal filename where the error is detected is printed, 'p'. See
Volume 4-2.6.4.2 for explanation of image control words.

SPERRY UNIVAC 1100 Series Executi"e
Volume 3 System Processors UPDATE LEVEL

11-1
PAGE

4144.3'1 I
UP-NUMB:~

--~----------~~---------

11. File Structure and Maintenance

11. 1. INTRODUCTION

This section describes the file table formats and file table maintenance software, both of which are
normally transparent to the user. The information is provided:

• To give insight into the file structure used by the FURPUR processor, the language and system
processors, and the symbiont complex;

• To enable the user to write additional software to build, insert, and retrieve data from the files.

The operc:lting system generates three major types of files:

1. Program File

2. Element File

3. System Data Format (SDF) File

The format of each of these files and the manner in which they are manipulated are described in the
following paragraphs:

11.2. FILE FORMATS

11.2. 1. Progranl File Format

A program file can be defined as a partitioned random access file consisting of a group of elements
residing on mass storage. A program file may contain symbolic, relocatable, omnibus, or absolute
elements or a comoination of elements. It may be either a temporary or a catalogued file. Since the
elements are named, they may be manipulated on an individual basis. Thus, the elements needed
to produce an executable program may be collected from one program file or from several program
files.

It must be emphasized that while the program file is logically structured as shown in Figure 11-1,
physically the elements that make up the file are not necessarily contiguous. Linkages are
automatically generated by the Executive to logically structure the file as a separate continuous entity.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Relative Sector (standard values)

00
file table index

01
element table

UPDATE lEVEL

01700~ __ ~

assembler procedure table
02100~ __ ~

COBOL procedure table
02300~ __ ~

FORTRAN procedure table
02500~ __ ~

entry point table
03400~ __ ~

element texts

n

Figure 11-1. Program File Format

The program file (see Figure 11-1) has (hree major secti6ns:

}

11-2
PAGE

File
Table
Index

Table
of

Contents

Text

1. File Table Index - Contains pointers and links (relative to the beginning of the file) to the tables
which comprise the file's table of contents (see Figure 11-2).

2. Table of Contents - Provides pointers to the elements (element table), procedures (procedures
tables), and entry points for relocatable binary elements (entry point table). These tables are
illustrated and described in the following paragraphs. Each table, except for the element table
which always starts at sector 1, begins at its system standard sector, or at a greater sector if
a table has extended over the standard starting sector, or at a lesser sector if the file has been
@PACKed with the M option.

3. Text - The elements.

4144.31
UP-NUMB:ER

o

2

3

4

5

6-8

9-11

12-14

15-17

18

19

20

26

27

*

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

24 18 17

* P F

next sector available for writing text

run-id (used by CTS)

I UPDATE lEVEl

* *

I 11-3
PAGE

o

sector address of segment change starting sector address of
in Inain storage indicator table on mass storage

length of table in words starting address of buffer

pointer table
length -1 item size end address + 1 of buffer

similar information for assembler procedure table

similar information for COBOL procedure table

similar information for FORTRAN procedure table

similar information for entry point table

new
0 relocatable

element

sequence number of latest absolute element in file

0

0

TIME$ value (used by CTS)

NOTE:

The File Table Index is initially zero filled.

Figure 11-2. File Table Index Format

4144.31
UP-NUMBEA

Word 0

Word 1

Word 2

Word 3-5

Word 6-8

Word 9-11

Word 12-14

Word 15-17

Word 18 (S6)

Word 19

Word 27

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors I UPOA 1£ LEVtL

I 11-4
PAGE

This word, when as indicated, is used to identify the file as a program file.

Next available sector at which text may be written.

Run-id (used by CTS, see Volume 2-1.4.10).

Element Table information.

Change Indicator - Set nonzero to indicate that the table segment presently in
the buffer has been modified and should be written back to mass storage.

Assembler procedure table information.

COBOL procedure table information.

FORTR~.N procedure table information.

Entry point procedure table information.

1 - Relocatable. element added to program file

o - Absolute element added to program file

Allows automatic remapping of TPF$ for @XaT when new relocatable elements
have been added.

Sequence number of last absolute element added to the program file. This will
be zero if there are no absolute elements in the program file or if the last absolute
element added has been deleted.

TIME$ (used by CTS, see Volume 2-4.5.3).

11.2.1.1. Element Table

The element table (see Figure 11-3) contains the Fieldata element and version name of each element,
its type (symbolic, relocatable, omnibus, or absolute), and pointers to its text within the program file.
It also provides information concerning

• the size of the element,

• the time and date the element was created,

• the sequence number of the element in the file which is used for linking entries within th­
element table (the sequence number specifies the order in which the element texts are enterea
in the file), and

• the address of the text.

The element table has the first 140 words (5 sectors) reserved as a pointer table and control word.
The first 139 words are used to hold pointers that start chains. The elements that belong to a
particular chain are determined by dividing the element's name by the length of the pointer table (139)
and using the remainder as an index into the pointer table. Actually 278 chains may exist as each
word contains two pointers; the pointer in H 1 is used if the quotient was odd, and the pointer in H2
is used if it was even. The control word contains the item size in H 1 and the total number of entries
in H2.

4144.31
UP-NUMBEA

Pointer

Table

Control

Word!

Element

Table

Item

(Symbolic)

Element

Table

Item

(RelocatabIEt)

Element

Table

Item

(Absolute)

Element

Table

Item
Omnibus)

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors I UPDA" LML

I 11-5
PAGE

Word 35 30 24 18 12 0

~f' ------{;~:;:~ ~ ----------------~;:~~:; 5 -------
2 _. - - - - - - -p;'nte7;;' "0 - - - - - - - - - - - - - - - - -';;nte-; ;; "0 - - - - - - -
3 --

r~

136

137

138

r- _. - - - - -- - -.---- - -- ------- -- - - - - -- - - -- - - - ______
pOinter or 0 pointer or 0

r---------~----------------------------------pOinter or 0 pointer or 0

139 length of item number of table items

0 element name*
1

2 version link pointer link

3 flag-bits I element type type link

4
version name*

5
6 cycle limit I latest cycle number I current no. of cycles

7 processor code I zeros length of element text

8 location of element text

9 time element added to system date element added to system

0 element name *
1

2 version link pointer link

3 flag-bits I element type type link

4 version name*
5
6 location of prfJamble

7 length of preamble length of relocatable text

8 location of element text

9 time element added to system I date element added to system

0 element name*
1

2 version link pointer link

3 flag-bits I element type type link

4 version name*
5
6 bank information

7 zeros length of element text

8 location of element text

9 time element added to system I date element added to system

0 element name*
1

2 version link pointer link

3 flag-bits I element type type link

4 version name*
5
6
7 processor code I length of element text

8 location of element text -
9 time element added to system date element added to system

Figure 11-3. Element Table Format

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 5 Ex.c:utive
Volume 3 System Processors UPOA Tt LEVEL

11-6
PAGE

The element table items follow the pointer table and appear in the order the elements were added
to the program file.

Element chains are formed and linked by the use of pointers within the table entries themselves when
two or more elements need to be pointed to from the same pointer half-word.

Version link

Pointer link

Flag Bits

Element Type

Sequence number of another element item with the same element name
and type, but a different version.

Sequence number of another element item with the same hash code, but
a different name.

Bit 35 - Marked for deletion
31 - CTS flag (SYM)
30 - Arithmetic fault non-in'terrupt mode (AB~)
29 - Arithmetic fault compatibility mode (ABS)
28 - ASCII Code (SYM) or real-time (ABS)
26 - Third-Word sensitive (ABS or REL)
25 - Quarter-Word sensitive (ABS or REL)
24 - Marked in error (ABS or REL)

The element types are:

SYM - Symbolic element
ASMP- ASSEMBLER procedure element
COBP - COBOL procedure element
FORP - FORTRAN procedure element

(type 01)
(type 02)
(type 03)
(type 04)

Types 2, 3, and 4 are also symbolic elements in structure and content. Their
corresponding table items are identical to the Symbolic element table item
(type 0').

REL - Relocatable element
ABS - Absolute element
OMN - Omnibus element

(type 05)
(type 06)

, (type 07)

Element Subtype See Volume 4-2.1.6 (SSTYP$) for the presently defined Omnibus and
Symbolic element subtypes.

Type Link Sequence number of another element item with the same element name,
but with a different type.

Bank Information Element Table Item Absolute word 6 contains the following information:

Word 9: Time and date information is in reversed TDATE $ format:

H 1 = Time element created in seconds from midnight
H2 = Month/day/year element created

4144.3"
UP-NUM8IER

Word 6

Absolute Element

wOrd[
.6

S1

flag
bits

Flag Bits

SPERRY UNIVAC 1100 S.ries Executive
Volume 3 System Processors

S2 T2

0
number of
user banks

Bit 35 - Always set.

UPDATE L!VEL

T3

number of
common banks

33 - Requires two PSRs due to initial and utility basing.
32 - Suppress zero fill.
31 - No start address for program.

11.2. 1.2. Procedure Tables

11-7
PAGE

The procedure table has an entry for each procedure (entered in the file by the @PDP control
statement, see Sec1tion 8). Each entry consists of

• the procedure name,

• a link to the element in which it appears, and

• the procedure's relative word location within the file.

Each proce~dure table. like the element table, contains a 139-word pointer table and a control word.

All procedure table items contain an Element Link, a Pointer Link, and the location of the procedure
within the file as well as the Procedure Name.

The Pointerr Link is the sequence number of another item in the same procedure table with a different
name, but the samo hash code. It may be zero.

The Element Link is the sequence number of the element table item associated with the procedure
element containing the procedure.

The location of the procedure is relative to the beginning of the file.

Bit 35 of word 3 of each procedure table item is the delete flag. If set, that procedure has been
deleted, either by a delete request or by the insertion of a new procedure with the identical name
(replaceme·nt of the· old procedure).

Bit 34 of word threo is the continuation indicator, when set, indicates that a second four words were
necessary to contain the COBOL Procedure Name.

Bit 33 of word 3 indicates that the procedure images are in ASCII.

Bit 32 of word 3 indicates that the images contain sequence numbers in columns 73-80 which should
be ignoredl.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

The Assembler and FORTRAN procedure entries are as shown in Figure 11-4.

11-8
PAGE

The COBOL procedure table item (see Figure 11-5) is either four or eight words long. If the procedure
name is 12 alphanumeric characters or less, the item will be four words long. If the procedure name
exceeds 12 characters (the system limits the name to 30), a second four words are used to complete
the item. Bit 34 of word 3, when set, indicates that a second four words were necessary to contain
the COBOL Procedure Name. Unused spaces in the name field will be Fieldata blank filled.

Word 35
o

2

0
3 F 0 A

Word 35
o

5

18 17

procedure name

element link pointer link

location of the procedure in the file (words)

Figur8 11-4. Assembl8r or FORTRAN Procedur8 Tabl81t8m

18 17 o

COBOL procedure name
(first 12 characters)

2 element link I pointer link
First four words
always present.

3 ~I;jAls1
4

5

6

7

location of the procedure
in the file (words)

COBOL procedure name
(second 12 characters)

zeros

COBOL procedure name
(final six characters)

Second four words present
only if name exceeds 1 2
characters and bit 34,
word 3 = 1.

FIgur8 11-5. COBOL ProC8dure Tabl81t8m

11.2.1.3. Entry Point Table

o

The entry point table is the set of all entry point names and the link from each name to the relocatable
element in which it occurs. The user must request the generation of this information using the @PREP
control statement (see 4.2.11); it is not done automatically by the Executive.

The entry point table contains a 139-word pointer table and a control word, as did the element table.

The entry point table item is shown in Figure 11-6.

4144.31
UP-HUMBER J SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors UPDATE LEVEL
11-9

PAGE

VVordr3_!.5 ________ , ___________________________________ 1_8 __ 1_7 _______________________________________ 0~

o
1 entry point name

2 element link pointer link

3 ~_rr=·.F _______________________ ~ _________ __
duplicate link

--------------------------~

Figure 11-6. Entry Point Table Item

11.2.2. !Element File Format

An element file is produced from a program file by using a @COPOUT control statement (see 4.2.3).
It is a sequential file, found only on magnetic tape, and it may consist of a series of symbolic,
relocatable, absolute, and omnibus elements. It may be temporary or a catalogued file.

The elements (see Figure 11-7) are written in sequential order on the tape. Each element
(see Figure 11-8) Gontains a 28-word element label block and the element text. The element label
block is Clreated from information contained in the program file element table item and contains the
following information:

• element file identifier

• element name, version, type, and size

• time and dato the element was added to the file

The remainder of the element consists of 224-word blocks of the text of the element. This information
is identiccll to the element text in the program file from which the element file was created. The only
differencE~ is that the element text is blocked into 224-word blocks; the last block is padded to force
a 224-word block if the text does not occupy an exact multiple of 224 words.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

element label block 1

any number of element text blocks

element label block 2

any number of element text blocks

any number of elements

element label block n

any number of element text blocks

end-of-file (EOF) mark

Figure 11-7. Element File Format

UPOA TE LEVEL
11-10

PAGE

4144.31 I SPERRY UNIVAC 1100 Series Executive I I 11-11
U'~UM8~ ____ ~ ______________ V_o_lu_m ___ e __ 3_S ___ ys_t_e_m __ P_r_o_c_e_s_so ___ rs ___________________________ ~_U_PD_A_TE_L_W_E_L ____ ~.P_A_G_E ________ __

~.--~

element label block

element text block 1

element text block 2

any number of element text blocks

element text block n

--
padding to 224-word boundary

Figure 11-8. Element in Element File Format

11.2.3. System Data Format (SDF)

System Data Format (SDF) provides the system with a standard format for data handling between the
various system components and between the system and the user. SDF files are produced by the
@ DATA plrocessor, @FILE, the symbiont print and punch routines, the input symbionts, the FORTRAN
library, thf~ @ED processor, etc. SDF is also used as the format for symbolic elements in a program
file.

SDF files on mass storage are a continuous set of sequential data. SDF files on tape are normally
written in 224 wOlrd blocks. Images are allowed to span blocks except in symbiont output files.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume a System Processors I UPOATE LEV",

I 11-12
PAGE

Data is recorded in variable-length images with each image preceded by a control word containing
the length of the image. There are two general types of control words (images):

1. Control images

Control images provide special control information as needed by the system components
processing the file or element. A control image is defined as one in which bit 35 is set in the
control word. The control word contains a code in the range 040-077 in 51 of the control word.
If an image follows the control word, its length is contained in 52. If no image follows, the
content of 52 will be zero. The maximum length of a control image that may be defined with
one control word is 63 words.

2. Data images

A data image is defined as any image whose control word does not have bit 35 set. The
remaining portion of T1 of the control word contains the length of the image. A maximum image
length of 2047 words may be defined with one control word. The contents of the remaining
portion of the control word varies depending on the specific type of 5DF file or element.

11.2.3. 1. Control Word Format for Control Images

The control word format is:

51

control
code

control code

S2 53 54 55 56

image SDF BRKPT part code
length type number type

A code within the range 040-077 that provides specific information about
the 5DF file or element. The currently defined control codes (octal values)
are:

040 Bypass image

Indicates that this image is to be skipped. 52 contains the
number of words to skip. 5kip to the next control word.

041 Unique READ$ file label image

042 A5CII/Fieldata switch

Used when an 5DF file or element contains both A5CII and
Fieldata images. Indicates a switch to the code type in 56 (A5CII
= 1, Fieldata = 0) 52 is always O.

043 FORTRAN backspace

53 contains the length of the previous image.

050 5DF label

This is the initial control word of an 5DF file or element. If a label
image follows its length is in 52 and the image is always in

4144.31 I SPERRY UNIVAC 1100 Series Executive 11-13
UP~UM8E~ _____ ~ ___________ V_o_lu_m __ e_3 __ S_y_s_te_m ___ P_ro_c_e_s_s_o_rs ____________________ ~U_~_A_n __ L~ __ EL ____ L_PA_G_E ______ __

Fieldata even though the file or element may be in ASCII. S3
specifies the type of file or element. S6 specifies the code type
of the following images in the file or element as does the 042
control image.

051 Continuation

Indicates the following image is a continuation of the previous
image. S2 specifies the number of words in this section of the
image. This is used in symbiont files at the start of a 224-word
block when an image spans blocks.

052 Correction image

If H2 is nonzero, then H2 = the number of images deleted before
the next image in the last update. If H2 = 0, this is a range or
line correction statement whose character type is the same as the
current SDF input. (see 4-2.1.4)

053 H2 contains a CTS/HVTS line number, S2 and S3 are zero.

054 End-of-reel

Used for multi-reel tape files to indicate a tape swap is required
at the end of reel.

056 Skip Break

Used so that information is not ignored when skipping forward
in a print file.

060 Print Control

070 Punch Control

Used in symbiont print and punch·files. 52 contains the number
of words (image) which comprise the image submitted to the ERs
PRTCH $/PCHCN $ or their ASCII and alternate equivalents. This
image is then interpreted when the file is output to determine any
mode change required. For example, an ER PRTCN $ to change
the line width to 160 characters (2 7 ~ords) would produce the
image 6001000000008 050534270505 8,

076 Demand breakpoint EOF

The 076 end-of-file is used for intermediate EOFs such as
breakpoints.

077 End-of-file

Indicates termination of the sDF file or element.

The length in words of the 'following image.

4144.31
UP-NUMBEA

SDF type

BRKPT part number

code type

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

11-14
PAGE

A Fieldata character identifying the type or origin of the SDF file or element.
Used only in label control words (CC = 041, 050). The types currently
defined are:

00 - Unspecified SDF file/element type.

C - Symbiont card input/punch file
F FORTRAN library data file
I - Symbiont input file (created by @FILE control statf3ment)
P - Symbiont print file
S - Symbolic element. Usually created by the processor interface

routine SIR$.
Used to indicate that bits 23-0 of data image control words contain
element cycle information.

T - Symbiont paper tape input/punch file.

Used only in the label control word of symbiont files. Indicates the part
number of the file, the count of the number of breakpoints performed on
the file.

The code type of the following images in the SDF file or element
(Fieldata = 0, ASCII = 1) applies to control codes 042 and 050 only. Also
applies to symbiont data control words.

11.2.3.2. Control Word Format for Data Images

The control word format is:

35 34 24 23 o

I n

where:

I - The length in words of the following image. A maximum image length of 2047 may be
specified.

n - The information contained in bits 23-0 varies with the type of SDF file or element. For
symbolic elements this field contains element cycle information. For symbiont files this
field contains line spacing and code type information.

11.2.3.3. Control and Data Image Formats

The formats for the control and data images of Processor Common I/O System (PC lOS) files are
described in SPERRY UNIVAC 1100 Series Processor Common Input/Output System, UP-84 7 8.

4144.31
UP-NUMDF.R Volume 3 System Processors UPDATE LEVEL

11-.16
PAGE ~ SPERRY UNIVAC 1100 Series Executive

,--------'--------L-_

The label control image for 5DF files and symbolic elements generated by the processor interface
routine 51R$ is:

51 52 53 S4 55 56

[____ 0_5_0 ______ ~ ___ 0_0_1 ____ ~ ____ ~_' ____ ~ ________ ~ ___________ ~_c_o_d_e __ ~_p_e~
[*SDFF*

The symbolic element data image control word format is:

3Ei 34 24 53 54 55 56 o

~mage length numdle dc newc ac

where:

numdle
dc
newc
ac

- flag to indicate that images were deleted before this image on the last update.
- cycle at which this image was deleted
- set if image was added on this update
- cycle at which this image was added

The symbiont file label control image format is:

Word 51 52 S3 54 55 56

o 050 I 011 I 'P'or 'e' I part number I I code type

filename (output) READ$X run-id (input)

2

3 device association

4 run-id

5 date and time of file creation

6 user-id

7

8 reserved for 'SV' and 'SR' keyin use

9

Words '·-2

User defined file - filename in Fieldata code

4144.31
UP-NUMBEA

SPERRY UNIVAC 1100 Series executive
Volume 3 System Processors

~. ~'

Input file - REAO$xrunid '.
Output (print) file - PR@xxxru!",i,d
Output (punch) file - PU @xxxrunid
where 'xxx' is the part number for the file.

Word 3

UPDATE LEVEL
11-16

PAGE

·Contains the input device name in Fieldata code for input and output files except for @SYM when
it is the name of the output device specified on the @SYM statement.

Word 5

Date and time of the files creation, in binary code (TDATE$ format)

The symbiont data image control word format is:

35 34 24 T2 55 56

image length line spacing code type

The symbiont input file (@FILE) label control image format is:

050 001

Examples of SOF control images:

1. Standard print file'label block:

o - 501125000000
1 - 252700606060
2 - 060606060606
3 - 102761050500
4 - 060606060606
5 - 0 1 0 1 1 20054 1 2
6 - 050505050505 }
7 - 050505050505
8 - 050505050505
9 - 050505050505

10 - 000200010000
11 - 002732220505
12 - 060606060606

etc.

2. Switch to ASCII

420000000001

'1'

standard print file label of 118 words.
filename PA@, part number 000.
run-id 'AAAAAA'.
input device 'CR 1'.
run-id ' AAAAAA'.
Jan 1, 1974 05412 seconds since midnight (ER TDATE$
format).

four words space filled.

next SDF control for 2 word data image, space of 1.
@RUN
'AAAAAA'

the following images are ASCII until another control is
encountered.

4144.3~~
UP-HUMBEA

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE I.EV£L

11-17
'AGE ------__ L-__________ ~ ________ _

11.3. FILE MAINTENANCE

Within thE! operating system are contained various library routines, Executive service functions, and
processor!, that may be used to create and manipulate files. The file utility processor, FURPUR (see
Section 4) may be used to process, in various ways, files of the previously discussed formats. In fact,
element files are created and processed only by the FURPUR processor.

SDF files and elements are produced and processed by the FURPUR, DATA, ED, EL T, and other
processors. In addition, the symbiont and @ADD control statement (see Volume 2-3.10.1) as well
as the varlious symbiont interface Executive functions (see Volume 2-Section 5)' are used to create
and process SDF.

Program fiiles are created and processed by the language processors, FURPUR, EL T, LIST, CULL and
other prOlcessors. In addition, there are several Executive service functions (see 11.3.1) and
relocatablle library routines (see BSP$) available for processing program files.

Paragraphs 11.3.1 and Volume 4 - BSP$ describe th,e mechanism for updating a program file by a
user program. Both features were designed primarily for use by language and system processors.
The program file maintenance Executive Requests (see 11.3.1) provide a limited capabilty in that only
selected functions are available. The program file Basic Service Package BSP$ (see Volume 4) is a
system relocatable library routine that can be included with a user program to provide more capability
with less overhead if many operations are to be done.

The Executive Requests are also used by the Executive in its normal operations, such as finding an
absolute program to execute. See 11.3.1.6 for program file package status cod~.

11.3. 1. Program File Maintenance Executive Requests

The Executive Requests described in the following paragraphs are used to maintain the table of
contents E'ntries fol' a program file. As a group, the requests are called the program file package (PFP).
The formalts of the program file table of contents entries are described in 11.2.

For each of the requests described, upon return from the requests, register A2 contains the status
of the opE~ration performed. Entries can be found in 1 1.2.1.

PFP packE~ts cannot be in write protected banks.

11.3.1.1. Updating the Element Table (PFI$)

Purpose:

InsE~rts an entry in the pr.ogram file's element table.

Formats:

L,U AO,pktaddr
ER PFI $

or

L A 1,next write location
LN,U AO,pktaddr
ER PFI$

4144.31
UP-NUMBER

SPERRY lINIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

The second calling sequence combines functions of ER PFI$ and ER PFUWL$.

Pktaddr is the address of a packet whose format is:

Word T1 S3 H1

o
internal filename

2
element-name

3

4 version-/ink-sequence-nbr pointer-/ink-sequence-nbr

5 flag-bits I element-type type-/ink-sequence-nbr

6
element-version-name

7

8

9

10 text-address

11 date-and-time-of-creation

11-18
PAGE

Words 2-11 are the same as the contents of the Element ,Table Items. (See Figure 11-3 and the
associated description.) Note that the contents of words 8 and 9 vary with the type of element.

Description:

The element version can be present, zero, or blank. When the version is zero, blanks are substituted.

When an absolute element is being inserted, its sequence number is rec.orded in the file table index.

For the relocatable elements, the file table index pointers to the entry point table are cleared and a
new entry point table may have to be created.

If the date-and-time-of-creation field is zero, the PFI $ request inserts the current data and time.
When this field is nonzero, the contents are used for the date and time:

The link sequence numbers are supplied by the PFI $ request.

11.3.1.2. Table of Contents Search (PFS$)

Purpose:

Searches program file's table of contents for a given item.

4144.31
UP-NUMB,ER

Format:

L,U AO,pktaddr
ER PFS$

SPERRY UNIVAC 1100 Series executive
Volume 3 System Processors UPDATE LEVEL

11-19
PAGE

Pktaddr is; the address of a packet whose format is identical to that of the PFI$ request (see 11.3.1.1).

Words 8 and 9 of the packet are suppled by the Executive.

Descripticm:

When the delete flag (bit 35 of word 5) is set, a find can be made on an element marked for deletion.

When thEt element name is left blank and the element desired is an absolute element, the PFS $
request supplies the last absolute element added to the file.

If the version name is zero, a find is made on element name only. When a version name other than
zero is splBcified, it is used along with the element name in the search. When a version name is blank,
a find is jlustified on the element name and blanks, for the version.

When thE! element is found, the packet is filled with information from the element table entry, and
the sequence number of the element is returned in A 1. This information is used to access the element
text.

11.3.1.3. Mark Element for Deletion (PFD$)

Purpose:

Sets delete flag in element table item for requested element.

Format:

L,U AO,pktaddr
ER PFO$

Pktaddr is the address of a packet whose format is:

Word T1 S3

o
internal filename

2
element-name

3

4 version-link-sequence-nbr

5 flag-bits I element-type

6
element-version

7

H1

pointer-/ink-sequence-nbr

type-Hnk-sequence-nbr

4144.31
UP-HUMBER

Word 5

element-type

Description:

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Same as PFI$ (see 11.3.1.1).

UPDATE lEVEL
11-20

PAGE

Wh~n the element being deleted is the most recently added absolute element in this file, the file table
index entry containing the element sequence number of the most recently added absolute element
is cleared to zero.

11.3. 1.4. Updating Next Write Location (PFUWL$)

Purpose:

Updates the next write location in a program file. The task of the PFUWL$ request may also be
performed by using PFI $ (see 11.3. 1. 1). This is accomplished by complementing register AO on the
call to PFI $ and loading register A 1 with the new address.

Formats:

L,U AO,pktaddr
L A 1 ,(new-address-in-program-file)
ER PFUWL$

or

LN,U AO,pktaddr-for-PFI $
L A 1 ,(new-addr-in-program-file)
ER PFI$

P,ktaddr is the address of. a packet whose format is:

vvor~l~ _____________________________ in_te_r_n_a_l_f_ile_n_a_m __ e __________________________ ~
The next write location is the next available sector at which the text portion of the element can be
written without destroying other text words.

11.3.1.5. Retrieving Next Write Location Address (PFWL$)

Purpose:

Obtains the next write location in the program file.

4144.31 I SPERRY UNIVAC 1100 Seriel executive 11-21
UP~UM~_A ___ ~, ___________ V_o_lu_m __ e_3 __ S_-y_s_t_em ___ P_ro_c_e_s_s_o_rs ____________________ ~U_~_A_T_E_l~ __ El ____ ~PA_G_E ______ _

Format:

L,U AO,pktaddr
ER PFWL$

Pktaddr h) the address of a packet whose format is:

internal filename wor~1[_______________ _____l

The next write location is stored in register A 1 upon normal return. The next write location is as
defined for PFUWl$ (see 11.3.1.4).

11.3. 1.6. Program File Package Status Conditions

The statu~. conditions are stored in register A2 on the return from the program file package ERs. The
possible values an3:

00 -

01

02

03 -

04

05

06 -

07

Normal status (oper:ation completed)

No find

I/O error, or file not assigned

Program file not defined as program file

PFI$ request reject due to packet address wholly or partially outside the I-bank or
D-bank limits.

Pac:ket wholly or partially outside 1- or D-bank limits

Sequence number greater than 5001 encountered

4144.31 I SPERRY UNIVAC 1100 Series Executive A-1
UP~UM8~ ____ ~ __________ V_o_lu_m_e __ 3 __ S_ys_t_e_m __ P_ro_c_e_s_s_or_s __________________ ~_u_PO_An __ L~ __ EL ____ LP_A_GE ______ ___

Appendix A. Collector Diagnostic Messages

ABOVE F-CYCLE SUBFIELD NOT PROPERLY FORMATIED

The F-cycle subfield in the immediately preceding source statement is improperly formatted.

ABOVE FIILE IS READ ONLY - COLLECTOR CANNOT OUTPUT INTO IT

ABOVE READ KEY SUBFIELD NOT PROPERLY FORMATTED

The read key subfield in the immediately preceding source statement is improperly formatted.

ABOVE STATEMENT NOT PROCESSED DUE TO FORMAT ERROR

ABOVE STATEMENT NOT PROCESSED. IF BANKS ARE DESIRED THE FIRST SOURCE IMAGE MUST
BE A BANIK STMT

An I-BAN K, D-BANK, or FORM statement was encountered after a SEG, RESG, DSEG, XSEG or IN
statement has been processed.

ABOVE STMT NOT ALLOWED FOLLOWING A COMMON BANK

Following an I-BANK or D-BANK statement specifying a common bank, another I-BANK or D-BANK
statement must precede any SEG, DSEG, RSEG, XSEG or IN statement.

A COMMON BANK CAN HAVE NO RELATIONSHIPS

An I-BANK or D-BANK statement with an X option has a bank-list subfield specified.

I-BANK or D-BANK ALREADY BASED ON MAIN or UTIL PSR

The M or U option has been specified on more than one I-BANK or O-BANK statement.

AFCM STATUS OF OUTPUT ELEMENT = CLRAFCM

The Arithmetic Fault Compatibility Mode for the output element is set as clear. An initial load on the
1110 or 1100/40, the Arithmetic Fault compatibility mode setting will be such that no interrupt
occurs for floating point overflow, floating point underflow and divide fault. (See 2.2.2. 13)

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

AFCM STATUS OF OUTPUT ELEMENT = INSAFCM

I
UPDA T£ LEVEL

A-2
PAGE

T~e Arithmetic Fault Compatibility Mode for the output element is set as insensitive. An initial load
on the 1110 or 1100/40, the Arithmetic Fault Compatibility Mode setting will be such that no
interrupt will take place in the case of floating point overflow, floating point underflow and divide
fault. (See 2.2.2.13)

AFCM STATUS OF OUTPUT ELEMENT = SETAFCM

The Arithmetic Fault Compatibility Mode for the output element is set as set. At initial load on the
1110 or 1100/40, the Arithmetic Fault CompatIbility Mode will be such that an interrupt will occur
for floating point overflow, floating point underflow, and divide fault. (See 2.2.2. 13)

AFCM STATUS OF OUTPUT ELEMENT = UNKNOWN

The Arithmetic Fault Compatibility Mode for the output element is set as unknown. At initial load on
the 1110 or 1100/40, the Arithmetic Fault Compatibility Mode will be determined by a system
generation parameter. (See 2.2.2.13)

ASSIGN ABOVE FILE LARGER MAX SIZE

Value AT ADDRESS address BITS right-most - left-most IN ELEMENT element name IS POSSIBLE
OVER-65K ADDRESS FIELD.

Instruction AT ADDRESS address IN ELEMENT element name - WILL ACTIVATE SNAP JUMP PRIOR
TO EXECUTION

A snapshot will be taken at the specified address and then the specified instruction wiU be executed.

BAD PLACEMENT OF CHARACTER x

BAD STATUS: xxxxxxxxxxxx OUTPUT BY CSF$ IN ATTEMPT TO @ASG,AX filename

A dynamic @ASG,AX of the file resulted in a bad status return (See Volume 2-C.2 for explanation
of 12 digit (x ... x) octal code.)

BAD STATUS: xxxxxxxxxxxx OUTPUT BY CSF$ IN ATTEMPT TO @FREE,A filename

A dynamic @FREE,A of the file resulted in a bad status return. (See Volume 2-C.2 for p.xplanation
of 12 digit (x ...) octal code.)

BAD STATUS: xxxxxxxxxxxx OUTPUT BY CSF$ IN ATTEMPT TO @USE filename

A dynamic @USE of the file resulted in a bad status return. (See Volume 2-C.2 for explanation of
12 digit (x ... x) octal code.)

BANK INDIRECTLY DEFINES ITSELF

Some bank in the bank structure is related to a bank that is directly or indirectly related to the first
bank. For example, bank A follows bank B and bank B follows bank A.

BANK IS NOT PROPERLY DEFINED: bank name

The bank has not been specified in the name-1 subfield on an I-BANK or D-BANK statemen~.

4144.3~~
UP-HUM8IEA

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

A-3
PAGE

--------------------.------------------------------~----------~---------

BANK, SEGMENT OR SEG WITHIN BANK NOT PREVIOUSLY DEFINED

A FORM Ihas been done or an undefined segment or bank, or on a segment that is not contained in
the specified bank.

BANK ST'MTS NOT ALLOWED IN R-OPTION COLLECTION

BOTH M AND U OPTIONS ON BANK STATEMENT - option IGNORED

Both the 1M and U options are specified on the immediately preceding I-BANK or D-BANK statement.
The second option is ignored.

BOTH T AND F OPTIONS GIVEN - BOTH IGNORED

The @ M~'P control statement contained both the T and F options.

CLRAFCM = SENSITIVITY OF ABSOLUTE ELEMENT/SETAFCM = SENSITIVITY OF START ADDR
ELEMENT

When the! program is loaded for execution on the 1110 or 1100/40, the arithmetic fault compatibility
mode willi be set such that no interrupt is taken when a floating point overflow, floating point
underflow or divide fault occurs. However, when execution is initialized, the program's code expects
interrupts. to be taken. This is a logical conflict.

COLLECTOR DIAGNOSTIC MESSAGES

CONTROL BANK AMBIGUITY - C OPTION IGNORED

The C option may be specified once only in a collector on either an I-BANK or D-BANK source
statement. The C option had already been specified once.

COMBINED LC Ic no. LENGTH EXCEEDS 65K - NON FATAL ERROR

This message occurs with an R option collection when the combined lengths of all location counters
of the specified number in the included relocatable elements exceeds 65K.

CONTROL BANK HAS S OPTION - SEGMENTATION NOT ALLOWED

A program whose control bank has the S option specified contains segments.

COMMON BANK CANNOT BE CONTROL BANK

Both C and X options have been specified on the same I-BANK or D-BANK source statement. The
C option (control bank) is ignored.

CORRECTION CAnD SEQUENCE ERROR

COR: patch REPLACED original text AT ADDRESS address IN ELEMENT element name

COR CALLS ON UNDEFINED LC Ic no. IN ELEMENT element name

The specified LC no. is not present in the named relocatable element.

COR OF NON-EXISTENT ELEMENT

4144.31
UP-NUM8ER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

COR NOT USED WITH R-OPTION

D-BANK bankname ASSIGNED SUCH THAT SETMIN value IS SATISFIED

UPDATE lMl
A-4

PAGE

The start address of the named bank has been adjusted so that the specified SETMIN value has been
satisfied. The start addresses of all other banks related to this bank are determined by the adjusted
start address.

DEF AND *REF* CANNOT BOTH HAVE NAME: entry point

The same entry point name has been specified on both a DEF and REF source statement. The first
source statement with the name is the only one processed. All others are ignored.

DEF and *REF* NOT USED WITH V-OPT

A DEF or REF statement has been specified with a V option @MAP. The statements are ignored
because the tables generated by these statements are placed in the program's D-bank which will be
non-existent in the absolute element.

DIRECTED LIB FOR FILE filename ILLEGAL - NON DIRECTED ASSUMED

A directed LIB statement has been found in a bank-implied collection. The statement is processed
as simply LIB filename.

bank name DOES NOT EXIST AS A COMMON BANK

The name common bank specified for initial basing is not defined to the Executive System as a
common bank.

bank name DUPLICATELY DEFINED

The specified bank name has already been encountered on an I-BANK or D-BANK statement. This
results in a fatal error, Le., no absolute element is produced.

element name ELEMENT AMBIGUITY IN FILL filename

The specified element name is found for more than one relocatable element in the file. The list
following the message contains the element name and version name for each such element in the
file. None of the listed elements is included in the collection.

ELEMENT element name HAS MAP SPECIFIED LCS GREATER THAN MAX LC no. CONTAINED IN RB

A location counter number has been specified on an IN statement or an $Ics statement which is
greater than the largest LC no. contained in the element.

ENT ENTRY POINT name NOT GLOBAL - NOT USED

The named entry point which was specified on an ENT statement is not global.

ENT SPECIFIED ENTRY POINT IS NOT IN ANY INCLUDED ELEMENT - NOT USED: entry point name

ENT SPECIFIED ENTRY POINT IS NOT IN INITIALLY BASED BANK - NOT USED: entry point name

Tho program start address must be in an initially based bank.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

A-5
PAGE

ENT SPECIFIED ENTRY POINT IS NOT IN THE MAIN SEGMENT - NOT USED: entry point name

The program start address must be in the main segment.

ENT STATEMENT CANNOT HAVE A NUMERIC FIELD

The parameter field of the ENT statement must contain an externalized entry point name

element name ENTRY POINT entry point name ALREADY DEFINED

The speci1fied entrv point found in the named element has already been defined in another element.
The ontry point in the named element is not used.

element name ENTRY POINT entry point name ALREADY DEFINED BANK STATEMENT

element name ENTRY POINT entry point name ALREADY DEFINED BY EaU STATEMENT

element name ENTRY POINT entry point name ALREADY DEFINED BY REF STATEMENT

element name ENTRY POINT entry point name ALREADY DEFINED BY SEG STATEMENT

entry point name ENTRY POINT AMBIGUITY IN FILE filename

entry point name ENTRY POINT NOT FOUND FOR COR

entry point name ENTRY POINT NOT FOUND FOR SWAP _

ENTRY POINT entry point name - USED TO ACTIVATE INDIRECT SEGMENT LOAD - IS ILLEGALLY
REFERENCED WITH A PLUS OR MINUS OFFSET FROM OUTSIDE OF ITS SEGMENT FROM ELEMENT
element name

An entry !point in the I-BANK of an indirectly loaded segment cannot be referenced with a plus or
minus offset unless the reference is made from within the segment containing the entry point. If the
reference is from outside the segment containing the entry point, the offset is ignored.

EP entry point name NOT GLOBAL - 0 USED IN COR

A value o'f zero has been used for an entry point specified in a COR source statement as no global
value was found for the entry point.

EP entry point name NOT GLOBAL - 0 USED IN SNAP

A value olf zero has been used for an entry point specified in a SNAP source statement as no global
value was found for the entry point.

ERf~OR INI ELEMENT: element name

ThE~ speciified element was marked in error by the processor that generated it.

**FATAL. ERRORifo*

ELEM element name FOR RSEG seg name CANNOT LOAD DATA INTO COMMON BLOCK common
block name LOCATED IN SEG seg name

4144.31 SPERRY UNIVAC 1100 Serle. executive I I A 6
___ U_P~_U_M_8_ER ______ ~ __________ V __ o_lu_m_e __ 3_S_y_s_t_e_m __ P_ro_c_e_s_so_r_s ________________ ~E_L __ ~_~_G_E_-________ _

**FATAL ERROR: I-BANK ADDRESS EXCEEDS 0177777 (65K DECIMAL)

The I-BANK address in a bank-implied collection exceeds 65K decimal.

**FATAL ERROR: I-BANK bank name ADDRESS EXCEEDS 0177777 (65K DECIMAL) .

The. specified bank in a bank-named collection has addresses exceeding 65K decimaL

**FATAL ERROR - NO OUTPUT ELEMENT PRODUCED BY COLLECTOR

A fatal error in the collection has prevented the output of an absolute element. The preceding
diagnostic messages will specify the error or errors.

FATAL ERROR NO RB ELEMENT PRODUCED

Due to a fatal error, no relocatable element was produced in an R option collection. The preceding
messages will specify the error or errors.

FATAL ERROR - NO RB ELEMENT PRODUCED - HIGHEST LC no. ALLOWED IS 077 - HIGHEST LC
no. NEEDED IS Ie no.

In an R option collection, all common blocks are assigned location counter numbers greater than the
highest location counter number found in any of the included relocatable elements. This message
occurs when there are not enough location counter numbers available for assignment to all common
blocks.

**FATAL ERROR: PROGRAM IS TOO BIG - ADDRESSES OVER 0777777 ARE TRUNCATED

In a bank-implied collection, the assigned D-bank addresses exceed 262K decimal.

**FATAL ERROR: PROGRAM IS TOO BIG - ADDRESSES OVER 0777777 ARE TRUNCATED FOR
D-BANK bank name

In a bank-named collection, the assigned addresses for the named D-bank exceed 262K decimal.

FILE filename NEEDS A PREP IN ORDER TO BE SEARCHED

The named file specified on a LIB statement has not been @PREPed. The file is not searched.

FIRST SEGMENT IS MAIN SEGMENT - MAY NOT BE DSEG

The first segment named in a bank-implied collection and the first segment named following a bank
statement in a bank-named collection cannot be a dynamic segment.

FIRST SEGMENT IS MAIN SEGMENT - MAY NOT BE RSEG

The first segment named in a bank-implied collection and the first segment named following a bank
statement in a bank-named collection cannot be a relocatable segment.

FORM ON BANK-NAME NOT ALLOWED AFTER SEG OR IN STMT

bank name HAS ALREADY BEEN USED AS NON-BANKNAME

A bank name must be unique from all segment names and entry points in the collection.

4144.31
UP-NUMI!IER Volume 3 System Processors UPDATE lEVEL

A-7
PAGE ~ SPERRY UNIVAC 1100 Series Executive

,-----~----L--_

type parslmeter IGNORED - FORMAT OR TERMINATOR ERROR

The TYPE statement has an illegal terminator following the specified parameter or the parameter is
illegal.

type paralmeter IGNORED - TYPE PARAMETER CONFLICT

The ·nam4~d parameter directly contradicts a parameter already processed on the TYPE parameter.

ILLEGAL GROUP NO no. IN INFO DIRECTIVE IN ELEMENT element name IS IGNORED

If the INFO directive had an entry point attached to it, group no 2 specifying a named common block
is assume!d. If no entry point was attached to the INFO directive, group no 4 specifying blank common
is assumE~d.

ILLEGAL OPTION option IGNORED

The namod illegal option was specified on an I-BANK or D-BANK source statement. The option is
ignored alnd the collection is continued.

element/version IN filename BYPASSED - DUPLICATED ELEMENT NAME ALREADY SPECIFIED

In processing a whole file IN (IN FILENAME.), an element in FILENAME is found which duplicates the
name of ian element IN'd from another file.

value IS ILLEGAL LENGTH FOR LOCATION COUNTER no. IN ELEMENT element name

The relocatable element's preamble specifies a length of greater than 65K decimal for the given LC
no. This indicates thatthe RB was incorrectly generated or that the file containing the RB has been
wholly or partially destroyed.

entry point name IS NOT DEFINED - REFERENCED IN ELEMENT element name

LC no. UNKNOWN TO LC no. El.EMENT element name BANK bank name

Due to local inclusion of the element, the reference made to the first LC no. cannot be satisfied as
it is not in any bank-set specified for the second LC no.

LIB filenalme () IGNORED - NO PREVIOUS LIB DIRECTION GIVEN

The naml~d file is not searched as no LIB (BANK/$Ics, ...) was given.

LIMIT = 16 SNAPS/COLLECTION

The imm~ediately preceding SNAP statement is ignored as 16 snaps have already been made.

LOCAL-GLOBAL CONFLICT FOR EP entry point - REFERENCED BY LC no. ELEM element name BANK
bank name

Due to local inclusion of the location counter under which the entry point is named, more than one
value for that entry point can be referenced from the named bank. A value of zero is used to satisfy
the refenEtnce to the entry point.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE lEVEL

I A-a
PAGE

LOCAL-GLOBAL CONFLICT FOR LC no. - REFERENCED BY LC no. ELEM element name BANK bank
name

The first location counter has been locally included such that the named bank can access the location
counter in more than one bank. A value of zero is used for the LC's assigned value as it is impossible
to determine which of the available values should be used.

MAIN SEG NAME MUST BE SAME FOR ALL BANKS

In a bank-named collection, the main segment of each bank must have the same name as the main
segments of all other banks.

MAP TERMINATED DUE TO IMPROPER FORMAT OF BANK STMT

The immediately preceding I-BANK or D-BANK statement is improperly formatted.

element name MINIMUM ADDRESS IGNORED
BANK HAS USER SPECIFIED STARTING ADDRESS

LC 0 in the element is contained in a bank that has numeric start address specified by the user. The
SETMIN for the element is ignored.

element name MINIMUM ADDRESS IGNORED - LC 0 NOT IN D-BANK

The SETMIN value for the element applies to LC O. LC 0 must be contained in a D-BANK or else
the SETMIN value is ignored.

MINIMUM GAP SIZE IN ERROR

SYSTEM VALUE 10 IS USED

A format error was detected on the MINGAP source statement. The statement is ignored and the
system value is assumed.

MINIMUM LOAD SIZE IN ERROR
SYSTEM VALUE 10 IS USED

A format error was detected on the MINSIZ source statement. The statement is ignored and the
system value is assumed.

MORE THAN ONE GLOBAL COpy OF A LOCATION COUNTER IS SPECIFIED FOR ELEMENT element
name

In a bank named collection, the element or part of the element has been included more than once
without a local bank-set list. An element or part of an element may be included locally many times
but can only be included globally once.

MORE THAN 63 SEGMENTS NAMED ON SEG STMT

A maximum of 63 segments can be specified, either: explicitly or implicitly, in the relationship list on
a SEG statement. This causes a fatal error.

NO CONTINUATION STATEMENT FOUND

No further statement was found following the continuation character (;).

4144.31 I SPERRY UNIVAC 1100 Series executive A-9
up~uM8~ ____ ~ __________ V_o_lu_m __ e_3 __ S_y_st_e_m __ P_ro_c_e_s_s_o_rs __________________ ~_U_PD_A_TE_L_N_EL ____ ~P_A_GE ______ ___

NO ELEMIENTS IN SEGMENT: segment name

NO ELEMIENTS IN SEGMENT: segment name, BANK; bank name

This message is produced in bank-named collections when a segment is found to have no elements
included in it.

NO ~LEMIENT WITH *DEF* ENTRY POINT: entry point name

No element was found which contained the specified DEF entry point.

NO GLOBAL LC no IN ELEMENT element name - COR IGNORED

A COR source statoment specified an LC that was not included globally in a bank-named collection.

NO GLOBAL LC no. IN ELEMENT element name - SNAP IGNORED

A SNAP sc)urce statement specified an LC that was not included globally in a bank-named collection.

element name NOT FOUND IN FILE filename

*NOT NEEDED - MAIN SEGMENT STAYS LOADED

The indirElct load indicator (*) was used in specifying the main segment. The asterisk is ignored.

NO START ADDRESS

No ENT statement was used in the collection and none of the preambles of the included relocatable
elements indicated a start address.

NUMBER IN COR ADDR~SS FIELD IS OVER 0177777 (65K)

OFFSET NOT NUMERIC ON EaU STATEMENT

instruction POSSIBLE BAD INSTRUCTION AT address IN ELEMENT element name

$PBEFIXED TO COMMON BLOCK NAME TO AVOID DUPLICATING ELEMENT NAME element name

PREVIOUS ENT STATEMENT OVERRIDES THIS ONE

PREVIOUS FORM ON BANK PRECLUDES DEFINING ANOTHER SEG FOR THIS BANK

Since a FORM on a bank-name creates an exact duplication of a previous bank structure, no additional
SEG .• DSEG, or RSEG statements may be specified for the bank being generated.

PREVIOUS IN OVERRIDES THIS ONE FOR FILE: filename

In a bank-implied collection, an IN of a whole file can occur once only. Only the first IN FILENAME
is proces:sed.

PREVIOUS IN OVERRIDES THIS ONE FOR THE ELEMENT NAME: element name

In a bank-implied collection, an element can be included once only in a collection. Only the first
inclusion is proce:ssed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Serle. executive
Volume 3 System Processors UPDATE lEVEL

PROG OVERFLOWS TABLE SPACE - ERROR IN COLLECTOR AT ADDR: address

A-10
PAGE

The collector has used all of its available table space in an attempt to collect the program. An analysis
of the dump is necessary to determine the reason for the table overflow.

RB ELEMENT NOT FOUND: element name

RB lNPUT ELEMENT ERROR: element name - K VALUE value

A badly formatted relocatable element has been found. This usually indicates that either the
relocatable was badly formatted when it was produced or that all or part of the file containing the
element has been destroyed.

READ KEY NECESSARY WITH FILE: filena'me

The Collector cannot dynamically assign the file because no read key was specified with the filename.

entry point name REFERENCED IN ELEMENT element name NOT DEFINED FOR BANK bank ilame

Because of local element inclusion, the specified entry point cannot be referenced from the named
bank.

RSEG CANNOT BE USED TO DEFINE A SEG

A relocatable segment cannot be present in the relationship field of a SEG statement. The RSEG is
ignored in the relationship list.

RSEG STATEMENT USES NO FIELDS OR CHARACTERS OTHER THAN NAME

RSEG TOO LARGE - CANNOT EXCEED 65K

SAME LOCATION COUNTER USED FOR DIFFERENT COMMON BLOCKS IN ELEMENT element nama

S OPTION BANKS DO NOT ALLOW SEGMENTS TREATED AS DYNAMIC

A SEG statement has appeared for a bank which was specified with an S option.

SEG CANNOT OVERLAY MAIN SEG. HAS BEEN CHANGED TO FOLLOW MAIN SEG

SEG NOT USED WITH R-OPTION

SEG NOT USED WITH V-OPTION

SEG NOT .USED WITH Y-OPTION

SEGMENT INDIRECTLY DEFINES ITSELF

Some segment in the segment structure is related to a segment that is directly or indirectly related
to the first segment. For example, segment A follows segment B and segment B follows segment
A.

SEGMENT NAME DUPLICATED segment name

The specified name has been used to define more than one segment in the collection. This ral)ults
in a fatal error.

4144.3~

UP-NUMDE:A
I SPERRY UNIVAC 1100 Series Execut.ve I I A 11
~ ___________ V_O_lu_m_e __ 3 __ S_ys_t_e_m __ pr_o_c_e_ss_o_r_s~ ___________________ ~_U_~_~_E_L~_E_L __ ~_P_AG_E_-____ ____

SEGMENT NOT PBOPERLY DEFINED: segment name

The segment name has not been specified in the name-1 subfield on a SEG or DSEG statement.

SETAFCM = SENSITIVITY OF ABSOLUTE ELEMENT/CLRAFCM = SENSITIVITY OF START ADDR
ELEMENT

When thet program is loaded for execution on the 1110 or 1100/40, the arithmetic fault compatibility
mode willi be set such that an interrupt is taken when a floating point overflow, floating point
underflow, or divide fault occurs. However, when execution is initialized, the program's code does
not expeGt an intEtrrupt to occur.

SNAP CALLS ON UNDEFINED LC no. IN ELEMENT element name

The LC no. on a SNAP statement does not exist for the element.

SNAPS ELEMENT NOT FOUND - NO SNAPSHOTS TAKEN

The SNAPS element which produces the requested snaps has not been found, thus preventing any
snapshots.

SNAP OF NON-EXISTENT ELEMENT

SNAP NOT USED WITH R-OPTION

START ADDR ALFtEADY FOUND - ONE NOT USED IN ELEMENT element name

START OF D-BANK SET ABOVE CURRENT STANDARD 040000 IN ORDER TO MEET MINIMUM
ADDRESS REQUInEMENT value - COM BLOCK common block name

START OF D-BANK SET ABOVE CURRENT STANDARD 040000 IN ORDER TO MEET MINIMUM
ADDRESS REQUInEMENT value OF ELEMENT element name

START OF D-BANK SET AS FAR AS NECESSARY OR POSSIBLE BELOW CURRENT STANDARD
040000 to MINIMIZE USING ADDRESSES OVER 0177777 - PROGRAM MAY NOT L1NK$
SUCCESSFULLY TO REENTRANT PROCESSORS - ALTERNATIVE IS TO USE E OPTION

START A,DDR OF ELEMEI~T NOT IN MAIN SEGMENT - NOT USED: element name

SYMBOL NAME symbol DUPLICATION ERROR

The specified name, present on an RSEG, SEG, DSEG, I-BANK or D-BANK statement, has already been
found a non-segment or non-bank name. This produces a fatal error.

SYSTEM NOTE: STANDARD REENTRANT PROCESSOR MAY NOT EXCEED ADDRESS 037777

**THE TRUNCATION CHECK IS TURNED OFF AFTER 500 WARNINGS

More than 500 instructions have been found in which the address portion of the word has had to
be truncated.

THIS FILE NOT CORRECTLY CATALOGUED OR ASSIGNED-NOT FOUND: filename

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Serl8. executive
Volume 3 System Processors

THIS SEGMENT IS USED TO DEFINE ITSELF

I UPO.,.. lEVEL
I "'-12

PAGE

The segment being defined in the immediately preceding SEG or DSEG statement has its own name
present in the relationship list. The name in the relationship list is ignored.

TOO MANY CHARACTERS IN A SUB-FIELD

A sub-field in the immediately preceding source statement has too many characters. The source
statement is bypassed.

TPF$ TREATED AS AN ELEMENT

As IN TPF$ was encountered. As no period followed the name, the n"me is assumed to be that of
an element. On the IN statement, all files must have a period immediately following the filename.

USER MAX TIME (PAGES) MET IN COLLECTION

V-OPTION NOT USED WITH R-OPTION

WARNING: EP entry point name UNDER VOID LC no. ASSIGNED VALUE value

An entry point which is assigned under a location counter with no length has been given the specified
value.

WARNING: REFERENCE TO VOID LC no. IN RB ELEMENT element name SATISFIED WITH VALUE value

In an R option collection, a reference' has been found to a location counter with no length. The
specified value was used to satisfy the reference.

WARNING-TRUNCATION OF FIELD value AT ADDRESS address BITS right-most - left-most IN
ELEMENT element name

The value to be placed in the specified field size is too large and was truncated. The left portion of
the value is truncated. This occurs, for instance, when an over 65K address is supposed to be placed
in the U portion of an instruction which is only 16 bits long.

WRONG PROJECT 10 TO ACCESS PRIVATE FILE: filename

Y-OPTION NOT USED WITH R-OPT

... 0

=>:
(.)"

USER COMMENT SHEET

Comments cf:mcerning the content, style, .and usefulness of this manual may be made in the space provided below.
PIEiase fill in the requested information.

Requests for copies of manuals, lists of manuals, pricing information, etc. should be made through your 1100 Series
sitta manager to your Sperry Univac representative or the Sperry Univac office serving your locality.

Sy:stem:

Malnual Title: _______________________________________ ,

UP No: __________ _ Revision No: ______ _ Update: __________ ,

NameofUser: __ __

Adldress of User: ______________________________________ _

Comments:

FOLD ._------------------------------------

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNlTEO STATES

POSTAGE WILL BE PAID BY

SI=>Er:«Y 1~ UNIVAC
SYSTEMS SUPPORT

FIRST CLASS

PEFtv1IT NO. 21

BLUE BaL, PA,

ATTN: INFORMATION SERVICES M.S. 4533
PD. BOX 3942
ST. PAUL. MINNESOTA 55165 .

(')
c
I~

I
I
I
I
I
I
I
I
I "-;;L-;;----- - - - - - - - - - - - - - - -- - - - - - - - - - - - --.

	00001
	00002
	00003
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-22a
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-28a
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-10a
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	10-62
	10-63
	10-64
	10-65
	10-66
	10-67
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	replyA
	replyB

