SPERRY UNIVAC
1100 Series
Executive System

Volume 3
System Processors
For EXEC Level 35R1

Programmer Reference

SF’EWQY%%UNlVAC UP-4144.31

COMPUTER SYSTEMS

This document contains the latest information available at the
time of publication. However, Sperry Univac reserves the right
to modify or revise its contents. To ensure that you have the
most recent information, contact your local Sperry Univac
representative.

Sperry Univac is a division of Sperry Rand Corporation.

FASTRAND, SPERRY UNIVAC, UNISCOPE, UNISERVO, and
UNIVAC are registered trademarks of the Sperry Rand
Corporation. ESCORT, PAGEWRITER, PIXIE, and UNIS, are
additional trademarks of Sperry Rand Corporation.

The software levels reftected in this manual for the various
system processors are listed below. The software level shown
in parenthesis for each processor is the level documented in
the previous version of the manual (UP-4144.3).

Collector (MAP) Level 29R1 (27)

DATA Level 8R1 (7)
ED Level 15R2 (14.02)
ELT Level 7 (7)
FURPUR Level 27R2 (26)
PDP Level 12R1 (10)
PMD Level 32R1 (30.1)
SECURE Level 20R1 (18)
SSG Level 17R1 (16)
© 1966, 1968, 1971, 1973, 1974, 1975, 1977, 1978 PRINTED IN U.S.A.

SPERRY RAND CORPORATION

4144 31

A

SFERRY UNIVAC 1100 Series Executive PSS-1
UP-NUMBER Volume 3 Svstem Processors UPDATE LEVEL PAGE
Page Status Summary
Issue: UP-4144.31 Update A
Section Pages |Update Section Pages |Update Section Pages |Update
Govaer/Disclaimer 9 (Cont) 10a A
11 thru 22 Orig
PSS 1 A
10 1 thru 67 Orig
Preface 1,2 A
11 1 thru 21 Orig
Contents 1 thru 3 A
4 Orig Appendix A 1 thru 12 Orig
5 A
6,7 Orig User Comment
8 A Sheet
9 Orig
Total: 330 pages
1 1 thru 9 Orig and cover
10 A
11 thru 14 Orig
2 1 thru 3 Orig
4 thru 16 A
17, 18 Orig
19 thru 22 A
22a A
23, 24 Orig
25 thru 28 A
28a A
29 thru 41 Orig
42, 43 A
44 thru 61 Orig
62 thru 64 A
3 1 thru 31 Orig
4 1 thru 35 Orig
5 1 thru 4 Orig
6 1 thru 3 Orig
7 1 thru 36 Orig
8 1 thru 4 Orig
] 1,2 Orig
3 thru 10 A

Technical changes are indicated by a vertical bar (|) in the outer margin of the updated pages.

. 1
414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

A
Preface-1
UPDATE LEVEL PAGE

Preface

The SPERRY UNIVAC 1100 Series Executive System Programmer Reference manual has been divided
into four volumes. These volumes are titled as follows:

1.

SPERRY UNIVAC 1100 Series Executive System, Volume 1, Index, Programmer Reference.

Volume 1 reterences terms and subjects covered in the other three volumes.

a.

UP-4144.1 provides a consolidated index for UP-4144.2, UP-4144.3, and UP-4144.4, the
three volumes intended for use with EXEC level 32R1 and associated system processors
and system utility programs.

UP-4144.11 provides a consolidated index for UP-4144.21, UP-4144.31, and
UP-4144.41, the three volumes intended for use with EXEC level 33R1 and associated
system processors and system utility program.

The Index for the three volumes intended for use with EXEC level 35R1 will be included
in each of the three volumes and released as an update package for each volume. It will
not be a consolidated index.

SPERRY UNIVAC 1100 Series Executive System, Volume 2, EXEC, Programmer Reference.

Volume 2 describes the overall control of SPERRY UNIVAC 1100 Series Systems by the
Executive System.

a.

b.

UP-4144.2 is the programmer reference for EXEC level 32R1.
UP-4144.21 is the programmer reference for EXEC level 33R1.
UP-4144.21-A provides corrections for UP-4144.21.

UP-4144.21-B updates UP-4144.21 to correspond to EXEC level 33R2.

UP-4144.22 is the programmer reference for EXEC level 35R1.

A
UPDATE LEVEL

414431 SPERRY UNIVAC 1100 Series Executive

Preface-2
UP-NUMBER Volume 3 System Processors

PAGE

3. SPERRY UNIVAC 1100 Series Executive System, Volume 3, System Processors, Programmer
Reference.

Volume 3 describes the basic system processors.
a. UP-4144.3 describes the system processors associated with EXEC level 32R1.
b. UP-4144.31 describes the system processors associated with EXEC leve! 33R1.

c. The addition of Update Package A (UP-4144.31-A) to UP-4144.31 produces a manual
which describes the system processors associated with EXEC level 35R1.

4. SPERRY UNIVAC 1100 Series Executive System, Volume 4, System Utility Programs,
Programmer Reference.

Volume 4 describes the System Relocatable Library, system common banks, and utility
processors.

a. UP-4144.4 describes the system utility programs associated with EXEC level 32R1.

b. UP-4144.41 describes the system utility programs associated with EXEC levels 33R1 and
35R1.

Cross references to subjects in other volumes are by volume, number, dash subsection number, e.g.,
2-3.7.4 references volume 2, subsection 3.7.4.

» b %
414431 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

A
} Contents--1

Contents
Page Status Summary
Preface
Contents
1. Introduction | 1-1
1.1. SCOPE OF MANUAL 1-1

2. MODIFYING SYMBOLIC ELEMENTS
1. Line Correction Statement

2. Redefinition of the Correction Indicator
3. Partial Line Corrections

.4. Range Correction Statement

5

6

- b b b b b b
|
DADDDEWN

. Change Correction Statements
.6. Line Correction Diagnostics

1.3. CONTROL STATEMENT SYNTAX 1-7
1.4. FILENAME, ELEMENT NAME NOTATIONS 1-8
1.56. SOURCE INPUT/OUTPUT ROUTINE CONTROL OPTIONS 1-9
1.6. PROCESSOR CONTROL STATEMENTS 1-10
2. Program Construction and Execution 2-1
2.1. INTRODUCTION 2-1

2.2. THE COLLECTOR

2.2.1. Collector Initiation (@ MAP)

2.2.2. Coliector Directives

2.2.2.1. Element Inclusion (IN)

2.2.2.2. Element Exclusion (NOT)

2.2.2.3. File Search Sequencing (LIB)
2.2.2.4. External Definition Retention (DEF)
2.2.2.6. External Reference Retention (REF)
2.2.2.6. Starting Address Redefinition (ENT)

NNNNII\)NNI\)N
- =2 O ONOAN =

- O

414431
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

Y
Contents-2
PAGE

2.2.2.7. External Reference Definition (EQU)

2.2.2.8. Element Selection Determination (CLASS)

2.2.2.9. Corrections for a Relocatable Element (COR)
2.2.2.10. Adding Snapshot Dumps (SNAP)

2.2.2.11. End of Input (END)

2.2.2.12. Absolute Element Optimization (MINGAP, MINSIZ)
2.2.2.13. Program Parameter Specification (TYPE)

. 2.2.2.13.1. Absolute Element Arithmetic Fault Mode Determination

2.2.2.13.2. EXEC Action Produced by Absolute Element Arithmetic Fault Mode
2.2.2.13.3. Blocksize

2.2.2.14. Program Segmentation (SEG)

2.2.2.15. Relocatable Segments (RSEG)

2.2.2.16. Dynamic Segments {DSEG)

2.2.2.17. Executive Function Arrangement (XSEG)
2.2.2.18. Bank Structuring (IBANK and DBANK)

2.2.2.19. Location Counter Set Specification ($lcs)
2.2.2.20. Source Language Structure Duplication (FORM)
2.2.3. Functional Aspects of the Collector

2.2.3.1. Collector-Produced Relocatable Elements

2.2.3.2. Element Inclusion

2.2.3.3. Processing Element Preambles

2.2.3.4. Instruction and Data Area

2.2.3.5. Collecting Reentrant Processors

2.2.4. Program Segmentation

2.2.4.1. Segmentation Directives

2.2.4.2. SEG Directive Considerations

2.2.4.3. RSEG Directive Considerations

2.2.4.4. DSEG Directive Considerations

2.2.4.5. lLoading Program Segments

2.2.4.5.1. Direct Method (L$OAD and LOADS)

2.2.4.5.2. Indirect Method

2.2.4.5.3. Reloading the Main Segment

2.2.45.4. Loading Dynamic Segments (D$LOAD and DLOADS)
2.2.4.5.5. Releasing a Segment’'s Program Area (D$REL and DRELS$)
2.2.46. Use of Common Blocks

2.2.5. Bank-Named Collections

2.2.5.1. General

2.2.5.2. Bank Address Assignments

2.2.5.3. Initially-Based Banks

2.2.5.4. The Control Bank

2.2.5.5. Segmentation within Bank-Named Collections
2.2.5.6. Element Inclusion

2.2.5.6.1. Global Element Inclusion

2.2.5.6.2. Local Element Inclusion

2.2.5.7. Element Placement

2.2.5.8. Loading Program Segments

2.2.5.8.1. Direct Method (L$OAD and LOADS)

2.2.5.8.2. Indirect Method

2.2.5.8.3. Reloading the Main Segment in Bank-Named Programs
2.2.6. Segmentation Example)
2.2.7. Bank-Named Segmentation Example

2.2.8. Collector Generated Tables

2.2.9. Collector Defined Tags

2-11
2-12
2-14
2-16
2-18
2-18
2-19
2-21
2-21
2-21
2-22
2-22a
2-22a
2-23
2-25
2-28
2-28a
2-30
2-30
2-30
2-32
2-32
2-33
2-33
2-34
2-34
2-37
2-37
2-37
2-38
2-39
2-40
2-40
2-41
2-42
2-43
2-43
2-43
2-44
2-44
2-44
2-44
2-44
2-45
2-46
2-46
2-47
2-47
2-47
2-48
2-52
2-58
2-61

4144;-131 SPERRY UNIVAC 1100 Series Executive A Contents—3
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

2.2.9.1. BDICALLS and I1BJ$ Subroutine Calls , 2-62
2.3. PROGRAM EXECUTION 2-64
2.3.1. Initiating Execution (@XQT) 2-64
2.4. REENTRANT PROCESSOR EXECUTION 2-64
2.4.1. General 2-64

3. Debugging Aids 3-1
3.1. INTRODUCTION . 31
3.2. POSTMORTEM DUMP PROCESSOR (PMD) 3-2
3.2.1. @PMD Control Statement 3-2
3.3. DYNAMIC DUMPS 3-8
3.3.1. Dump Calling Procedures 3-9
3.3.1.1. Main Storage Dump (XCORES$) 3-9
3.3.1.2. Control Register and Main Storage Dump (XDUMP$) 3-10
3.3.1.3. Changed Word Dump (XCW$) 3-12
3.3.1.4. Tape Block Dump (XTAPES$) 3-13
3.3.1.5. Mass Storage Dump (XDRUMS$) 3-14
3.3.1.6. File Dump (X$FILE) 3-15
3.3.1.7. Control Register (User Set) Dump (XCREGS$) 3-16
3.3.1.8. Editing Formats for Dynamic Dumps 3-17
3.3.1.8.1. Standard Editing Formats for Dumps 3-17
3.3.1.8.2. User-Defined Editing Formats (XFRMTS) 3-19
3.3.2. Conditional Contro! Procedures 3-21
3.3.2.1. Logical IF Control of Dumps (X$IF) 3-21
3.3.2.2. logical OR Control of Dumps (X$OR) 3-23
3.3.2.3. Logical AND Control of Dumps (X$AND) 3-23
3.3.2.4. Controlling the Conditional Dump Switch (X$TALY) 3-24
3.3.3. Specification Procedures 3-25
3.3.3.1. Initializing Buffer (XBUFRS$) 3-25
3.3.3.2. Allowing and Ignoring Dump Procedure Calls (X$ON and X$OFF) 3-25
3.3.3.3. Saving and Deleting Dynamic Dumps (XMARK$ and XBACKS$) 3-26
3.3.3.4. Placing a Message in the Dump (XMESGS$) 3-27
3.3.3.5. Changing Length of Dump File (X$SIZE) 3-28
3.3.4. Examples of Dynamic Dumping 3-29

4. File Utility Routines (FURPUR) 4-1

4.1. INTRODUCTION 4-1
4.1.1. Common Information 4-1
4.1.2. Simultaneous Use of Files 4-3
4.1.3. Multireel Files 4-4
4.1.4. Basic File Formats 4-4
4.2. FURPUR CONTROL STATEMENTS 4-6
4.2.1. File Copying (@COPY) 4-6
4.2.2. Copying from Tape to Program Files (@ COPIN) 4-1
4.2.3. Copying Program Files to Tape (2COPOUT) 4-1

wo

4144.31 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGgomems-4
4.2.4, Positioning Tape Files (@ MOVE) 4-15
4.2.5. Listing Files, Elements, and Master File Directory (@PRT) 4-16
4.2.6. Emptying a File (@ERS) 4-22
4.2.7. Deleting Files and Elements (@ DELETE) 4-22
4.2.8. Rewinding Tape Files (@ REWIND) 4-24
'4.2.9. Marking an EOF on Tape (@ MARK) 4-24
4.2.10. Ciosing Tape Fiies (@ CLOSE) 4-25

- 4,2.11. Entry Point Table Creation (@ PREP) 4-25
4.2.12. Punching Program File Elements (@ PCH) 4-26
4.2.13. Positioning within Element Files (@FIND) 4-27
4.2.14. Removal of Deleted Elements (@ PACK) 4-28
4.2.15. Changing Element and Version Names, File Keys and Modes 4-29
4.2.15.1. Changing Catalogued Files, Keys and Modes 4-29
4.2.15.2. Changing Program File Element and Version Names 4-31
4.2.15.3. @CHG Control Statement Examples 4-31
4.2.16. Altering Cycle Retention Limit (@ CYCLE) 4-32
4.2.17. Enabling Files Disabled Due to Malfunctions (@ ENABLE) 4-33
4.3. FURPUR FILE FORMAT COPY.,G 4-34

5. ELT Processor 5-1
5.1. INTRODUCTION 5-1
65.2. @ELT FORMAT 5-1
5.2.1. Input Termination Sentinel (2END) 5-4
6. Data Processor 6-1
6.1. INTRODUCTION 6-1
6.2. @DATA FORMAT 6-1
7. Text Editor (ED) Processor 7-1
7.1. INTRODUCTION -7
7.2. @ED PROCESSOR CALL STATEMENT FORMAT 7-1
7.3. EDIT MODE COMMANDS 7-3

7.4. LOOP OPERATIONS 7-20
7.4.1. LOOP Command 7-20
7.4.2. LPSUB Command 7-21
7.4.3. LPTST Command 7-24
7.4.4. XTI Command 7-26
7.4.5. LPEND Command 7-26
7.4.6. LPX Command 7-27

7.5. MACRO Command 7-27
7.6. USAGE CONSIDERATIONS 7-29

4144}31 SPERRY UNIVAC 1100 Series Executive A Contents-5

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
7.6.1. Searching Commands 7-29
7.6.2. Interrupts With the ED Processor 7-29
7.6.3. Filename Caution 7-30
7.6.4. Integer Expressions Instead of Integers 7-30
7.6.5. Column Limits Immediate Specifications 7-30
7.6.5.1. LOCATE With Column Limits 7-31
7.6.5.2. CHANGE With Column Limits 7-31
7.6.5.3. Printing Commands with Column Limits 7-32
7.6.6. Default for F, FC, L, LC, and C Commands 7-32
7.6.7. LN, IL, and NI Feature 7-32
7.6.8. Names for ASCIl Control Characters 7-33
7.6.9. Print File Operations 7-33
7.6.10. Edit Mode Commands in Input Mode 7-33
7.6.11. Character Command Processing 7-34
7.6.12. Reusability 7-34
7.6.13. Restrictions and Limitations 7-34
7.6.14. The EDSTC File 7-34
7.6.15. Obsolete Commands 7-35
Procedure Definition Processor (PDP) 8-1
8.1. INTRODUCTION 8-1
8.2. @PDP FORMAT 8-1
File Administration Processor (SECURE) 9-1
9.1. INTRODUCTION 9-1
9.2. MAJOR FUNCTION DEFINITIONS 9-2
9.3. @SECURE CONTROL STATEMENT 9-2
9.4. INPUT AND OUTPUT BACKUP TAPE ASSIGNMENTS 9-4
9.5. CATALOGUED FILE ASSIGNMENTS 9-6
9.6. PRIVILEGED MODE OPERATION 9-6
9.7. SECURE SOURCE LANGUAGE 9-6
9.7.1. Standard Commands 9-6
9.7.2. Namelist and Limiters 9-9
9.7.3. Exclusions 9-10
9.7.4. Direction 9-10
9.7.5. Examples of Source Language 9-10a
9.8. SELECTION OF FILES FOR UNLOAD 9-10a
9.9. OWN-PROJECT APPLICATIONS 9-11
9.10. CATALOGUED FILE RECOVERY AFPPLICATIONS 9-12

4144.31 SPERRY UNIVAC 1100 Series Executive Contents-6
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
9.11. SUMMARY OF SECURE PROCESSOR COMMANDS 9-12
9.12. EXAMPLES OF USE OF THE SECURE PROCESSOR 9-14
9.13. MULTIPLE ACTIVITY OPERATION AND EXAMPLES 9-16
9.14. SPECIAL FEATURES AND PROCEDURES 9-18
. 9.14.1. Checksum 9-18
9.14.2. Text Block Sequence Check 9-19
9.14.3. ‘Special Void' Message 9-19
9.14.4. Tape Handling Procedures 9-19
9.14.5. SYS$*ARCHIVES 9-20
10. Symbolic Stream Generator (SSG) 10-1
10.1. INTRODUCTION 10-1
10.2. SSG INPUT AND OUTPUT 10-1
10.2.1. @SSG Control Statement 10-1
10.2.2. Input from Runstream 10-4
10.2.3. SSG Input : 10-4
10.2.4. SSG Output 10-5
10.2.6. SSG Margins and Headings 10-5
10.3. STREAM GENERATION STATEMENTS 10-6
10.3.1. SGS Input Formats 10-6
10.3.2. Referencing SGSs 10-7
10.3.3. SGS Examples 10-9
10.4. PERMANENT AND TEMPORARY STREAMS 10-10
10.4.1. Element Entry 10-11
10.4.2. Permanent Stream (PCF) 10-11
10.4.3. Temporary Stream v 10-12
10.4.4. Set References v ' 10-14
10.4.5. Revised Temporary Stream 10-15
10.6. SKELETON AND SYMSTREAM 10-16
10.5.1. SYMSTREAM Primitives 10-16
10.5.2. Nondirective Images 10-17
10.5.3. Directive Images 10-18
10.5.3.1. Defining Skeleton Image Sequences (Closed Subroutines) 10-19
10.5.3.1.1. #DEFINE - #END 10-19
10.5.3.1.2. *PROCESS 10-20
10.5.3.1.3. Process Parameter References 10-20
10.5.3.2. Symstream Variables 10-23
10.5.3.2.1. Skeleton Image Loops (Local Variables) 10-24
10.6.3.2.2. Creating and Changing Global Variables (#CLEAR) 10-26
10.5.3.2.3. Creating and Changing Global Variables (#SET) 10-27
10.5.3.2.4. Variable Multiplication (* MULTIPLY) 10-28
10.5.3.2.5. Variable Division (#DIVIDE) 10-29
10.5.3.2.6. Variable Dump (¥*DUMP) ' 10-30

10.5.3.3. Internal Chains 10-31

‘l
4144.31

SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL paglonents=7
10.5.3.3.1. Dynamic Expansion of Internal Chains (#*CREATE) 10-31
10.5.3.3.2. Deleting Entries from Internal Chains (#*REMOVE) 10-33
10.5.3.4. *EJECT 10-34
10.6.3.5. Concatenating Nondirective Images (*#EDIT) 10-35
10.5.3.6. Directing the Generated Output Stream 10-37
10.56.3.6.1. Breakpointing Images(#*BRKPT) 10-37
10.6.3.6.2. PRTOFF 10-39
10.5.3.7. Skipping Skeleton Images (*IF),(#ELSE),(*END) 10-39
10.5.3.7.1. *IF Variable Conditional 10-42
10.5.3.7.2. #IF Existence Conditional 10-43
10.5.3.7.3. #*IF Test for Zero Conditional 10-45
10.5.3.7.4. *IF Relational Tests 10-46
10.6.3.7.6. #*IF Row or Column Search Conditional 10-48
10.6.3.7.6. *IF CORRECTION ENTRY EXISTENCE 10-51
10.6.3.7.7. Compound *IF Statements Using Boolean Operators 10-53
10.5.3.8. Merging Permanent and Temporary Streams 10-54
10.5.3.8.1. Merging PCF and Primary TCF Element Entries (¥ CORRECT) 10-57
10.5.3.8.2. Merging TCF Element Entries (* MERGE) 10-59
10.5.3.8.3. Change Control Characters 10-64
10.6. DIAGNOSTIC MESSAGES 10-65

11. File Structure and Maintenance 11-1
11.1. INTRODUCTION 11-1
11.2. FILE FORMATS 11-1
11.2.1. Program File Format 11-1
11.2.1.1. Element Table 11-4
11.2.1.2. Procedure Tables 11-7
11.2.1.3. Entry Point Table 11-8
11.2.2. Element File Format 11-9
11.2.3. System Data Format (SDF) 11-11
11.2.3.1. Control Word Format for Control Images 11-12
11.2.3.2. Control Word Format for Data Images 11-14
11.2.3.3. Control and Data Image Formats 11-14
11.3. FILE MAINTENANCE 11-17
11 3.1. Program File Maintenance Executive Requests 11-17

1.3.1.1. Updating the Element Table (PFI$) 11-17
1 1.3.1.2. Table of Contents Search (PFS$) 11-18
11.3.1.3. Mark Element for Deletion (PFD$) 11-19
11.3.1.4. Updating Next Write Location (PFUWLS$) 11-20
11.3.1.5. Retrieving Next Write Location Address (PFWLS$) 11-20
11.3.1.6. Program File Package Status Conditions 11-21

Appendix A. Collector Diagnostic Messages

User Comment Sheet

4144.31

A

SPERRY UNIVAC 1100 Series Executive Contents-8
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
FIGURES
Figure 2-1. Instruction Area (I-Bank) Main Storage Map Segmented MAPABS 2-51
Figure 2-2. Data Area (D-Bank) Main Storage Map Segmented MAPABS 2-51
Figure 2-3. Bank Structure of Program and Segment Structure Within Each Bank 2-56
Figure 2-4. BANKI1 2-56
Figure 2-5. BANK2 (Control Bank) 2-56
Figure 2-6. BANK3 2-57
Figure 2-7. BANK4 2-57
Figure 2-8." BANKS 2-57
Figure 2-9. BANKG6 2-57
Figure 3-1. Standard Editing Format for Integer and Octal Dumps, Sample Printout 3-18
Figure 4-1. FURPUR Control Statements Used to Alter File Formats 4-5
Figure 11-1. Program File Format : 11-2
Figure 11-2. File Table Index Format 11-3
Figure 11-3. Element Table Format 11-5
Figure 11-4. Assembler or FORTRAN Procedure Table item 11-8
Figure 11-6. COBOL Procedure Table item 11-8
Figure 11-6. Entry Point Table Item 11-9
Figure 11-7. Element File Format 11-10
Figure 11-8. Element in Element File Format 11-11
TABLES
Table 1-1. Partial Coding Line Correction Diagnostics 1-7
Table 1-2. Source Input Routine Options 1-9
Table 1-3. Processors That Use the Sl, SO, and RO Parameters 1-13
Table 1-4. Processors That Use the S| and SO Parameters 1-14
Table 2-1. @MAP Control Statement, Options 2-3
Table 2-2. IBANK and DBANK Directive, Options 2-27
Table 3-1. @PMD Control Statement, General Options 3-56
Table 3-2. @PMD Control Statement, Special Options 3-5
Table 3-3. Standard Editing Formats for Dump Printouts 3-19
Table 4-1. Summary of FURPUR Control Statements 4-2
Table 4-2. @COPY Control Statement, Options Filenames Specified 4-7
Table 4-3. @COPY Control Statement, Options Element Names Specified 4-9
Table 4-4. @COPIN Control Statement, Options Filenames Only Specified 4-11
Table 4-5. @COPIN Control Statement, Options Element Names Specified 4-12
Table 4-6. @COPOUT Control Statement, Filenames Specified 4-13
Table 4-7. @COPOUT Control Statement, Options Element Names Specified 4-14
Table 4-8. @PRT Control Options 4-17
Table 4-9. @PRT Control Statement, Options with Elements Specified 4-19
Table 4-10. @PACK Control Options 4-29
Table 5-1. @ELT Control Statement, Options 5-2
Table 6-1. @DATA Control Statement With Options 6-2
Table 7-1. @ED Control Statement, Options 7-2
Table 7-2. ED Processor Commands 7-4
Table 7-3. LPSUB Specifications 7-22
Table 7-4. LPTST Conditions 7-24
Table 7-5. LPTST Values 7-25
Table 7-6. Immediate Column Limits Syntax 7-31
Table 7-7. Obsolete ED Processor Commands 7-35
Table 8-1. @PDP Control Statement, Options 8-2

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors ;!

PAGE

UPDATE LEVEL

1. Introduction

1.1. SCOPE OF MANUAL

The SPERRY UNIVAC 1100 Series Operating System comprises the Sperry Univac-supplied software
for the SPERRY UNIVAC 1100 Series Computer Systems. This volume and Volumes 2 and 4 discuss
the base portion of the operating system; that is, the SPERRY UNIVAC 1100 Series Executive System
(EXEC 8) and the associated software needed to construct, execute, and maintain user programs.

Information that is primarily of interest only to an operator, installation manager, or systems analyst
is described only briefly if at all (for example, operating procedures, system generation procedures,
internal system logic, and so forth). Such material is covered in other Sperry Univac publications.
The purpose of this manual is to provide information for the user programmer so that full use of the
wide range of capabilities provided by the SPERRY UNiVAC 1100 Series Executive can be made. Any
differences between the operating system described in this manual and the latest released software
are described in the Software Release Documentation that accompanies each release.

A basic knowledge of the SPERRY UNIVAC 1100 Series system architecture is assumed. For some
relatively specialized topics a knowledge of a 1100 assembly language programming may be helpful.
However, this is not required for full use of this manual by the users of higher level languages.

This is Volume 3 of the four-volume SPERRY UNIVAC 1100 Series Executive System Progyrammer
Reference. To use this volume it is assumed the reader is familiar with Volumes 2 and 4.

Volume 1 contains the index for all volumes. Volume 2 describes the basic Executive (EXEC), which
includes the following:

M Concepts and Definitions
Executive Control Statements
Executive Service Requests (ER)
Symbiont Interface Requests’

Input/Output Device Interfaces

File Control

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

1-2
Volume 3 System Processors

UPDATE LEVEL PAGE

Demand Processing
Communications Handler
Real-Time Processing

Checkpoint/Restart

internal Executive Design

Volume 4 describes the following:

Flow Analysis Program (FLAP)

System Relocatable Library and System Common Banks
Document Processor (DOC)

SNOOPY

CULL Processor

LIST Processor

This volume describes the SPERRY UNIVAC 1100 Series System Processors. These are general
system programs which are used to construct and modify programs, maintain and modify files, and
provide diagnostic information upon program termination. System processors are a logical extension
of the Executive system. They normally reside in the file SYS$#LIBS.

In addition to the System Processors, file formats and file maintenance software, which are normally
transparent to the user, are discussed. This information is provided to:

B give insight into the file structure used by the FURPUR processor, the language and system
processors, and the symbiont complex and;

[] enable the user to write application software to build, insert, and retrieve data from files.

1.2. MODIFYING SYMBOLIC ELEMENTS

This information applies only to processors which obtain their input from the System Relocatable
Library processor interface routine SIRS, (see Volume 4-2.1.4). The source input/output routine is
used by a processor to obtain the source language images from the runstream or from a symbolic
element in a program or element file (see 2.2.6) or a SDF file. The routine can automatically merge
corrections, list the corrections, and produce an updated symbolic element which is inserted into a .
program file. The symbolic element which contains the source input may be cycled; the desired cycle
is specified in the processor control statement. The source input routine automatically passes to the
processor only those images that pertain to the cycle requested.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 1-3
Volume 3 System Processors UPDATE LEVEL PAGE

1.2.1. Line Correction Statement

The lines of text.in a file may be considered to be numbered sequentially starting with line one and
incrementing by one. When altering the symbolic element, these numbers are used on the line
correction statement to indicate where the correction lines are to be inserted. The format of the line
correction statement is:

-n,m

The minus sign in column one is the correction indicator which specifies that symbolic lines n through
m are to be replaced by correction lines. The lines immediately following the -n,m construction are
inserted until another correction statement is read. If no lines follow the -n,m correction statement,
lines n through m are deleted.

The construction -n with the correction indicator appearing in column one specifies that the
succeeding lings are to be inserted in the symbolic element after line n.

If correction lines are to be inserted before the first line in the symbolic element, the correction lines
are placed immediately after the processor control statement without specifying any insertion line
numbers, or by using -0 (negative zero) as the line indicator.

The terms in succeeding correction statements must form a non-decreasing sequence since the
corrections are applied by means of a one-pass merge of the symbolic file and the corrections. Thus,
if -n1,m1 follows -n0,m0O, n1 must be greater than m0. If -n1,m1 follows -n0, n1 must be greater
than nO. If -n1 follows -n0O,mO, n1 must be greater than or equal to mO. The exclamation point (i)
is used to indicate the last line in the input element. -m.| would delete all lines of the element from
line m through the last line and allow insertions after the last line. - would allow line insertion after
the last line of the element. ! is not allowed.

Examples:

@ASM .U DF3 .WINDUP, .WINDUP
-30,31

CORRECTION LINE A

-100,115

-120

CORRECTION LINE B

CORRECTION LINE C

CORRECTION LINE D

-150,150

@MAP ., IL

The U option on the @ ASM control statement specifies that the next higher cycle of symbolic element
WINDUP is to be produced. Lines 30 and 31 are replaced by correction line A. Lines 100 through
115 are to be deleted. Correction lines B, C, and D are inserted after line 120. Line 150 is deleted.
Encountering the @MAP control statement indicates that there are no more correction lines to the
symbolic element.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

1-4
Volume 3 System Processors

UPDATE LEVEL PAGE

1.2.2. Redefinition of the Correction Indicator

It is possible to redefine the correction indicator so that a symbol other than the minus sign may
indicate the insertion of correction lines. Redefinition of the correction indicator makes it possible
to insert correction lines which contain a minus sign in column one. The format for redefinition is:

-
x may be from one to three nonblank characters in length. The correction indicator may be redefined

any number of times at any position within the correction stream but only one symbol is recognized
as the correction indicator. at any time. If x is blank, the statement is ignored.

Examples:

1. @DATA FILE1, FILE2
2. -2

3. CORRECTION LINES
4. —-=%

5. #11,13

6. CORRECTION LINE A
7. CORRECTION LINE B
8. =444

9. ++422

10. CORRECTION LINE
11. @END

Line 2 indicates correction lines are to follow line 2 in the source program. Line 4 redefines the
correction indicator to an asterisk (*). Line 5 indicates lines 11, 12, and 13 are replaced with
correction lines. Line 8 redefines the identifier to 4+ 4. Line 9 indicates correction line follows
line 22 of the source program.

1.2.3. Partial Line Corrections
In addition to inserting entire symbolic correction lines, partial line corrections are also permitted.
This is accomplished by using a range correction statement to define the number of code lines to
be partially corrected followed by change correction statements which define the correction to be
made.
In the formats given in 1.2.5 and 1.2.6 the slash (/) is used as a separator character. The separator
character may be any character other than a digit, a comma if the change statement is Format 1, a
blank, or a correction indicator for Format 3 or 4 (see 1.2.5). The first separator may be preceded
by any number of blanks. The character chosen as a separator must not appear as a character in
the old-data and new-data parameters of the change correction statement.
1.2.4. Range Correction Statement
The range correction statement formats are:

Format 1: -xy-

Format 2: -x-

The minus character immediately following the y is an edit indicator which must always be coded
as a minus character. (The minus character that immediately precedes the x is a correction indicator

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 1-5
Volume 3 System Processors UPDATE LEVEL PAGE

that may be redefined by the user, see 1.2.2). The range correction statement must be followed by
one or more change correction statements and there must be one change correction statement for
each statement in the range -x,y-. For example, if the range correction statement is:

-2,7-

then there must be six change correction statements immediately following the range correction
staternent. If the number of change correction statements following the range correction statement
does not equal the number given on the range correction statement, a diagnostic is given.

If format 2 is used, the following corrections are all applied to line x. The first correction is to line
x and the following corrections are to the last corrected form of x. The corrections are applied until
another range or line correction statement is found, or an error occurs (see 1.2.6). If an error occurs,
the last corrected image is returned and all other change statements are skipped.

The number specified in the x parameter must be greater than that given on any previous range, delete
or insert correction statement. The number specified in the y parameter must be equal to or greater
than the x parameter.

1.2.5. Change Correction Statements
The change correction statements may be specified in any one of the following four formats.
Format 1: c/new-data
Format 2: c¢,d/new-data/
Format 3: /old-data/new-data
Format 4: /old-data/new-data/

Format 1 is used to replace the characters of an image from a specified column to the end of the
image. The column number is specified in parameter c. Parameter new~data must contain the
replacement characters. All of the data following the separator (except trailing blanks) is taken to be
replacement characters.

Format 2 is used to replace a specified number of characters in an image. The column numbers
entered in the ¢, d parameters specify the range of characters to be replaced. Parameter new-data
contains the replacement characters. If the number of characters in the new-data parameter is
greater than the range specified in the ¢,d parameters, then the characters following the column
number specified in the d parameter are right shifted to make room; if it is less, the image is left shifted
to close the image.

Format 3 operates similarly to format 1 except that the old-data parameter specifies one or more
characters to be replaced. The coding line is scanned and when a find is made, the characters
specified by the old-data parameter through the end of the image are replaced by the characters
specified in the new-data parameter.

Format 4 operates similarly to format 2 except that the old—data parameter specifies one or more
characters that are to be replaced by the characters specified in the new-data parameter.

For Formats 3 and 4, if the line is corrected in ASCII, the character comparison is first done with upper
and lower case characters considered unequal. If this test fails, the comparison is done with upper
and lower case characters considered equal. When a match is found, the new~data parameter is
placed in the line exactly as it was received with no case transformations.

414431 SPERRY UNIVAC 1100 Series Executive 1-6

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Examples:
@ASM, U PF3.WINDUP, .WINDUP
-30,33-
- 73/SUBTOT6
42,48/SUBTOT7/
/OVHEAD/CHARG7
" /REFUND3/RETURND/
@MAP, I L

The U option on the @ASM control statement specifies an update to symbolic element WINDUP.
Lines 30 through 33 are to be partially corrected. The characters in columns 73-80 in line 30 are
replaced by SUBTOT6. The characters in columns 42-48 in line 31 are replaced by SUBTOT7. The
characters OVHEAD in line 32 through the end of the line are replaced by CHARG7. The characters
REFUND3 in line 33 are replaced by RETURND. Encountering the @ MAP control statement indicates
that there are no more corrections to the symbolic element.

1.2.6. Line Correction Diagnostics
When an error occurs, SIR$ passes a print control word in AO back to the calling processor. The
standard action by the processor is to do an ER PRINT$ to inform the user of the error. No other
image is returned to the processor on an error return. The formats of the error messages are:
Format 1: SIREDITERRc |
Format 2: c |
where:

c Indicates the cause of the error. Table 1-1 lists the possibile errors.

| The line number of the last image retrieved from the input element before the error
occurred.

Format 1 is returned when a partial line correction error occurred and format 2 is returned when
some error occurred within a range or line correction statement.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 1-7
Volume 3 System Processors UPDATE LEVEL PAGE

Table 1-1. Partial Coding Line Correction Diagnostics

CARD COUNT <

CARD COUNT >

OUT OF SEQ

NO CARDS FOLLOW

INPUT ELEMENT
ENDS AT n

Error Description
SEPARATOR The separator used in the change correction statement is invalid or nonexistent.
"COLUMN The column number specified in 8 format 1 or 2 change correction statement is out of range;
or ¢ > d for a format 2 change correction statement.
NO FIND The characters given in thevolld—data parameter of a format 3 or 4 change correction

statement could not be found in the line being corrected.
NOTE:

Whenever one of the above arrors occurs, the change correction statement is ignored and
the line remains unchanged except Format -x- where the last corrected image is returned.

Not enough change correction statements were provided. Those lines for which no change
correction statement was provided remain unchanged.

Too many change correction statements were provided. The excess change correction
statements are ignored.

The range or line correction statement is illegal.

No cards follow -n where n=:l. | is the line number of the last image retrieved from the
input element before the error occurred.

To reference a line after the last line of the input element. Line number n being the last line
of the element.

1.3. CONTROL STATEMENT SYNTAX

Control statement syntax is described in detail in Volume 2-3.2, for convenience it is described briefly

here.

The general EXEC 8 control statement format is as follows:

LABEL
FIELD

OPERATION OPERAND

FIELD FIELDS

— — A N

@ [label:] command[,options] parameters[. comment]

Brackets are used to indicate optional fields or subfields.

The operation field is terminated by one or more spaces.

The comment field must be preceded by space period space.

The operand fields specify parameters associated with the command fields. These are separated by
commas and are specified by the user as dictated by requirements. The content of each operand

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive ! 1-8
Volume 3 System Processors UPDATE LEVEL PAGE

field, the number of operand fields, and whether each is required or optional varies with the command
selected. Operand fields, in turn, may contain parameter subfields that are separated by various
delimiters. For the most part, these subfields are optional within a field. Thus, itis possible to specify
parts of a field without specifying the entire field.

When parameter fields and subfields are optional, the following rules apply, where an empty field
is_defined as one that contains no nonspace characters:

i. Parameter field separators must be specified, left to right, through the last parameter given;
fields preceding the last parameter may be empty; trailing field separators need not be specified.

2. The same holds true of parameter subfield specifications within a field.
Leading spaces within a statement are permissible in the following cases:
@ Following the master space or at (@) character

B Following a colon () when a label is specified

B Following a parameter field (,)

B Following a parameter subfield separator (/)

A space, placed at any position in the coding other than those listed, is interpreted as the termination
of the image.

In both batch and demand processing, data images and control statements in a runstream are
normally processed sequentially and only upon request by the Executive or by a program operating
in that run.

However, a special mode of processing control statements is available during demand processing.
This mode directs the Executive to process a control statement immediately after it has been input
from a remote terminal. The processing called for by the control statement is also done independently
of any current program execution or control statement processing in the runstream. This mode of
executing a control statement is specified by a special character, a second @ in column 2 on the
control statement. This mode of operation is called transparent mode, and such control statements
are called transparent control statements.

Transparent control statements are a subset of the control statement set. The syntax rules for normal
control statements, with the following exceptions, also apply to transparent control statements. The
exceptions are as follows:

1. The identification of a transparent control statement consists of a @ @ versus a @ for a normal
control statement.

2. The use of a label on a transparent control statement, while not prohibited, is meaningless.

1.4. FILENAME, ELEMENT NAME NOTATIONS

Filename and element name notations are described in detail in Volume 2-2.6.1 and 2-2.6.4;
respectively, for convenience they are described briefly here.

.

4144.31
UP-HUMBER

SPERRY UNIVAC 1100 Seriss Executive

1-9
Volume 3 System Processors

UPDATE LEVEL PAGE

Although the distinction between filenames and element names is often evident from the context,
there are many cases where a period must follow a filename or it will be either not accepted, or
incorrectly treated as an element name. Therefore, it is best to always specify the period as shown
below:

a filename is indicated by: [[qualifier] #Jfile[(F-cycle)] [/[read-key] [/write-key]].
an eltname is indicated by: [filename.]Jelement[/version] [(element-cycle)]

Qualifier, file, element, and version names are 1-12 alphanumeric Fizidata characters ($ and -
characters are also allowed). Keys have 1-6 characters from the entire Fieldata character set,
excluding only space, comma, slash, period, and semicolon. F-cycles are numbered upward from
1 to 999; element cycles are numbered upward from O to 63.

When the qualifier is omitted, the project-id from the @RUN control statement is used, except in the
special case whare a leading asterisk appears before the filename and a qualifier has been previously
furnished on a @QUAL statement. When the F-cycle or element-cycle number is omitted, the most
recently createc cycle is used.

When the filename portion of an eltname is omitted, the processor usually assumes an implicit
reference to the run’'s temporary program file, TPF$.

F-cycles may be absolute, indicated by a number, or relative indicated by a -number. A relative
F-cycle of (+ 1) must be used to distinguish a newly assigned ‘to be catalogued’ file (see @ASG,C
and U options) from an existing catalogued file of the same name. A relative F-cycle of (-3) would
designate the fourth oldest file that was catalogued under the specified filename. Element cycles
are referenced by their actual number, such as (0) or (6), or by relative number such as (-2).

1.5. SOURCE INPUT/OUTPUT ROUTINE CONTROL OPTIONS

Source input/output routine (SIR$) options are described in detail in Volume 4-2.1.4. For
convenience, the table of control options is reproduced here.

Table 1-2 contains a list of those options used by the source input/output routine to control the input
and output of the souce language elements. Most Sperry Univac supplied language processors (FTN,
MASM, ACOB, NUALG, and so forth) use the source input/output routine to obtain their input.
Therefore, the listed options are generally applicable to these language processors.

Table 1-2. Source Input Routine Options

Option Description
Character
G Input is compressed symbolic in columns 1-80 of the card deck.
H Input contains sequence numbers in columne 73-80 of the symbolic images.

I Insert a new symbolic element into the program file. | is not permitted when applying corrections
to an element.

J Input contains compressed symbolic images in columns 1-72 of the cards and sequence numbers
in columns 73-80. These sequence humbers are not checked by the K option.

A

UPDATE LEVEL

4144.31 SPERRY UNIVAC 1100 Series Executive

1-10
UP-NUMBER Volume 3 System Processors

PAGE

Table 1-2. Source Input Routine Options (continued)

Option Description
Character
K Check sequence numbers in columns 73-80 of the symbolic images (valid only with H option).
. P Qutput symbolic element in Fieldata. (Compare with Q.)
Q Output symbolic element in ASCHl. (If neither P or Q is specified, code type of input element, if

any, is used; otherwise, the code type is based on the type of call to SIR$, ASCIl if GETASS and
Fieldata if GETSR$.) If both P and Q are specified, output symbolic element with mixed images can
be in Fieldata and ASCIl.

U Update and produce a new cycle of the symbolic element.

w List correction lines.

1.6. PROCESSOR CONTROL STATEMENTS

Two separate system library files are available during the processing of a user run; the absolute library
file (SYS$*LIBS) and the relocatable library file (SYS$*RLIBS).

The absolute library file (LIB$) contains the absolute elements of each standard processor included
with the operating system. LIB$ may contain any other processor and executable program added
by the installation.

The relocatable library file (RLIB$) contains the system-supplied relocatable elements and procedure
elements which may be needed to assemble, compile, or collect the user program.

A temporary program file (TPF$) is created by the Executive for each run that is initiated. The qualifier
for the filename is taken from the project-id field of the @ RUN control statement. The file may be
used as a scratch file for the user program’s symbolic, relocatable, and absolute elements. Note,
however, that since this is a temporary file it is discarded at run termination. Demand mode users
will find that it is safer to keep ‘work in progress’ in a catalogued file so that this work will not be
lost in case of unplanned run termination.

The general format of the processor control statement is:

@label:processor,options param-1,param-2,param-3,...,param-n
The label field is as described in Volume 2-3.2.1. The processor field is the name and file location
(see Volume 2-3.2.2) of the absolute element desired. The following is an example of a generalized
processor control statement where the processor is located in a user-specified file rather than in the
system library file LIB$:

@USER*FILE.PROG/ABS,P FILE.IN, ELTOUT, FILE.OUT
All of the standard processors must be called using the above call form (rather than @XQT) since

they expect to retrieve the parameters on the call line. Such parameters cannot be retrieved on an
@XQT call (see 2.3).

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

1-11
Volume 3 System Processors

PAGE

UPDATE LEVEL

The rules for locating the element in the processor field are slightly different from the standard rules
for locating an element specified on an @XQT control statement. The processor call rules are:

1. If a filename is specified, then that fiie is searched for the absolute element.

2. If afilename is not specified but there is a leading period, then TPF$ is searched for the element;
if there is no find, LIB$ is searched.

3. If a filename is not specified and there is no leading period, then the system library file
SYS$#LIBS$ is searched for the element; if there is no find, then TPF$ is searched. The
abbreviations for the standard processors (ACOB for COBOL, FTN for FORTRAN, and so forth)
are the names of the respective absolute elements. :

In general the option field has meaning only for the particular processor, though there are some
options that have the same meaning for all processors. The format of the options parameter is
described in Volume 2-3.2.2.

The param-1, param-2,...param-n parameters contain information supplied to the processor. With
the exception of the DATA processor (see Section 6), which works only with SDF files and, therefore
assumes filenames, the parameter fields are assumed to be in element name form although they need
not represent element names. The meaning of the parameter fields is determined by the processor.
The following rules are followed by the processors supplied by Sperry Univac:

1. If a field intended to contain the name of a program file is not specified, TPF$ is assumed.

2. If afield is to contain an element name and the element name is specified but not the filename
and there is no leading period, TPF$ is assumed. If there is a leading period, then the filename
is taken from previous field provided that the field exists and was intended to name an element
or a program file.

The source language processors (MASM, ACOB, FTN, NUALG, and so forth) have a common
interpretation of several options as well as the first three parameters. The typical standard language
processor control statement takes the form:

@ACOB S1.RO,SO
where SI, RO, and SO represent eltname-1, eltname-2, and eltname-3.
The meanings of these parameters are:

Sl (Source Input) If no new element is being introduced this paramete: specifies
the source of input for the processor.

If a new symbolic element is being introduced from the
runstream (l-option set), this parameter specifies the file into
which the new element is placed and the name which it is given.
If an update is being performed (U-option set), then this
parameter specifies the element and the cycle of the element
being updated.

It is possible to specify a symbolic element from a tape file for
this parameter. The tape file must be in element file format (see
11.2.2) and the file must be positioned (@FIND) so that the
element label is read in. Corrections to a symbolic element from
a tape are permitted provided that the output is a symbolic
element in a program file.

414431 SPERRY UNIVAC 1100 Series Executive

1-12
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

RO (Relocatable Output) This parameter specifies the name and the program file into
which the element produced by the processor is placed. There
is no restriction on the type of element being produced. For
example, most of the processors produce relocatable binary
elements; the collector produces either absolute or relocatable
binary elements.

SO (Source Output) This parameter specifies the name and the file for the updated
symbolic element if no U-option.

The System Relocatable Library routine PREPRO examines the facility description of each file
specified in the S, RO, and SO fields and assigns those files which do not meet the minimum
assignment requirements.

S| - assigned
RO - exclusively assigned
SO - exclusively assigned

The RO and SO fields are assigned exclusively because the language processor will modify the table
of contents of the file(s} and write in the text portion of the file(s). If another run has any of the files
assigned in such a way as to prevent PREPRO from obtaining the minimum assignment the processing
will be aborted if the run is in demand mode or held until the file is available if the run is in batch
mode. Availability of required files may be checked by assigning the files, with the minimum
assignment required, before calling the processor. ~

The source language processors do not interpret the S, RO and SO fields to determine uniqueness
or duplication of names. If an element name in the SI, RO or SO field matches an already existing
element in name/version and type, and the field is an output field the old element will be replaced
with the new element.

If no element name is specified for RO and SO or the parameter is left blank the following rules apply:

1. If there is no file information and the parameter does not have a preceding period or if the
parameter is void, then the file specified in the S| parameter is assumed.

2. The element name from the S| parameter is assumed.
3. If there is no version specified, then the version from the S| parameter is used.

Tables 1-3 and 1-4 describe the valid possibilities. The | and U options along with the S| parameters
determine the interpretation of the processor control statement. An error message is printed if there
is any deviation from these rules. Table 1-3 is valid for the MASM, ACOB, FTN, NUALG, MAP, and
CFOR language processors (require Sl, RO, and SO); Table 1-4 is valid for the PDP and ELT processors
(require only Sl and SO).

41 4‘4,31 SPERRY UNIVAC 1100 Series Executive 1-13
UP-MUMBER Volume 3 System Processors UPDATE LEVEL PAGE -
Table 1-3. Processors That Uso the SI, SO, and RO Parameters
lorU S| Notes RO Notes SO Notes Element
Option Produced
Neither Not specified This parameter may or may llegal to use this New relocatable
or | Only not be specified. If it is not | parameter. element.
specified, NAMES$ is
assumed. It is invalid to
specify a cycle.
Neither Parameter is If this parameter is not If void, no source output is New relocatable
completely specified. completely specified, then produced. If this parameter | element. Also
the information from the Si| is not completely specified new symbolic
parameter is used. It is then information from the element if SO was
invalid to specify a cycle. S| parameter is used. specified.
| Only Parameter is If not completely specified, lilegal to use this Relocatable and
completely specified the information from Si parameter. symbolic
but without a cycle. parameter is used. It is elements.
invalid to specify a cycle.
U Only Parameter must be If this parameter is not Not required, information New relocatable

completely specified.

completely specified, then
the information from the Sl
parameter is used. It is
invalid to specify a cycle.

from the S| parameter is
used. When SO is not
specified, the S| element is
updated to produce the
next higher element cycle
from the Sl cycle specified,
or the latest cycle if no
cycle was speciﬁed. It SO
is specified, the next higher
element cycle is created
and transferred along with
all previous cycles up to the
cycle maximum to the new
SO element; S| element
remaining unchanged. In
either case, it is invalid to
specify a cycle for SO.

element and
updated symbolic
element if SO was
specified.

4144.31 SPERRY UNIVAC 1100 Series Executive 1-14
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 1-4. Processors That Use the S/ and SO Parameters
forU S| Notes SO Notes Element Type
Option Produced
I}leither Not specified. Hllegal to use this parameter. The runstream input is
processed and listed but
no element is produced.
Neither Parameter is completely specified. If | If this parameter is void, no source Update (no cycling).
SO is void the L option is assumed. output is produced. If it is not
completely specified, then the
information from the S| parameter is
used. Invalid to specify a cycle.
i Only Not specified. lllegal to use this parameter. No element is produced.
| Only Parameter is completely specified but | lllegal to use this parameter. New element.‘
without the cycle.
7 U Only This parameter must be completely If this parameter is not completely Update (with cycling) if

specified.

specified, then the information from
the S| parameter is used. When SO
is not specified, the Sl element is
updated to produce the next higher
element cycle from the Sl cycle
specified, or the latest cycle if no
cycle was specified. If SO is
specified, the next higher element
cycle is created and transferred
along with all previous cycles up to
the cycle maximum to the new SO
element; S| element remaining
unchanged. In either case, it is
invalid to specify a cycle for SO.

SO was specified.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Seriss Executive

Volume 3 System Processors 2-1

PAGE

UPDATE LEVEL

2. Program Construction and Execution

2.1. INTRODUCTION

The SPERRY UNIVAC 1100 Series Executive System provides the ability to combine the relocatable
elements generated by a language processor into an executable (absolute) element. This combination
or collection of relocatable elements is done by a system processor, the Coliector. The absolute
element produced by the Collector is structured such that the Executive program loader can place
it in execution. Once the absolute program has been created (that is, collected), it may be saved and
reexecuted many times. The program need only be recollected when a modification to it is desired.

An absolute element (program) is placed in execution through use of a program execution control
statement (@XQT or processor call) within the control stream. When an @XQT or processor call
control statement is encountered by the Executive, the program is retrieved from its mass storage
file, loaded into main storage, and execution is initialed. If the statement was a processor call the
EXEC presents (in table form) the parameter field from the call when the first symbiont input (READ $)
request is made. If @XQT is used the first READ$ obtains the first data image following the @XQT.

During execution, a program can control which parts of the absolute elements are in main storage
by requesting the Executive to load previously-defined program overlay segments or by linking to
program banks. In addition, the program has the capability of attaching to or linking to other
previously defined absolute elements. This program structure supports the dynamic sharing of both
code (usually reentrant) program banks and banks containing data between multiple users. Such
shared banks are termed common banks.

2.2. THE COLLECTOR

The Collector is called by the @MAP procesisor control statement (see 2.2.1). It provides a direct
means of collecting and interconnecting relocatable elements to produce a program in an executable
form. This form is called an absolute element. Optionally, the Collector can be used to create a single
relocatable element from a collection of several relocatable elements. The three basic inputs to the
Coliector are:

® The parameters supplied on the @MAP control statement

B The information supplied by the collector directives

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 2-2
Volume 3 System Processors UPDATE LEVEL PAGE

B Relocatable elements taken from various sources, such as:
- the Temporary Program File (TPF$)
- user—created program files
- the System Relocatable Library (SYS$*RLIB$S)
The three basic outputs of the Collector are:
B An absolute or relocatable element
B A symbolic element
B A program listing

The primary output of the Collector is the relocatable or absolute element which results from the
collecting and linking of the various relocatable elements. This element is given a name and placed
within a program file for subsequent use. Both the element name and the file in which the element
is placed may be dictated by the user.

Usually the Collector includes within an absolute element a set of tables for use by the diagnostic
system. This output can be suppressed by the user (see Table 2-1).

The Collector normally divides the absolute element into two logical structures called banks. The
first bank, called the I-bank, is comprised of information which is contained under the odd location
counters of the relocatable elements to be included in the collection; the second bank, called the
D-bank, contains information contained under the even location counters of the included relocatable
elements. By convention, but not necessity, the instructions of a program are placed under odd
location counters, while the data portions are placed under even counters. This allows a separation
of instructions and data to be achieved, with instructions directed to the I-bank and data to the
D-bank.

There are times when the user may wish to structure a program into logical entities or banks which
are different from the single I-bank, D-bank normally produced. To do this, the user must explicitly
name the bank or banks comprising the program and then direct the Collector as to the program
portions to be contained in each bank. This method of collection, in which a program’s banks are
explicitly named, will generally be called a 'bank-named collection’.

When no banks are explicitly named, the Collector will generate one I-bank of odd location counters
and one D-bank of even location counters, and the collection will be referred to as a '‘bank-implied
collection’.

2.2.1. Collector Initiation (@ MAP)

Purpose:

Specifies that the Collector is to combine a set of relocatable elements into one absolute or

relocatable element. All parameters in the @ MAP control statement are optional. See Volume 2-3.9
for additional information regarding processor control statements.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 2-3
Volume 3 System Processors UPDATE LEVEL PAGE

Format:

@label:MAP,options eltname-1,elthame-2,elthname-3

Parameters:

options See Table 2-1 and source input routines options (see Table 1-2).

eltname-1 Specifies the input symbolic element which contains the Collector source
language (see Volume 2--3.9).

eltname-2 Specifies the absolute output element. When the R option is specified,
eltname-2 names the relocatable output element (see Volume 2-3.9).

eltname-3 Specifies the output source language element (see Volume 2-3.9).

Table 2-1. @MAP Control Statement, Options
Option Description
Character*

A Under no circumstances is the error exit (ERR$) to be taken during the collection, even if the collection
is destroyed.

B Mark the absolute element so that the program area is not cleared to zero prior to loading the program
and any indirectly loaded segments (see 2.2.4.5.2).

D Print a diagnostic message for all possible addresses over 66K (0177777). Check for certain possible
instruction format violations.

E Allow program addresses to exceed 65K (0177777). if this option is omitted and the program’s D-bank
exceeds 65K, the D-bank starting address is moved downward so that all (or as many as possible) of
the over-65K addresses are forced below 65K. In bank-named coliections, all possible D-bank starting
addresses are moved downward.

F Mark the output absolute or relocatable element as quarter-word sensitive. (Also see T option.)

L Produce a complete listing which contains the folowing information concerning the program area:
- main storage allocated to each element and segment
- program address of all external definitions
- the symbol '?’ following any undefined entry point
- the scale drawing of program segmentation and bank structure
- the external references of each element

N Produce the most abbreviated print listing available.

R Generate a relocatable element instead of an absolute element.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive A 2-4
Volume 3 System Processors UPDATE LEVEL PAGE

Table 2-1. @MAP Control Statement, Options (continued)

Option Description
Character#

S Produce a summary listing which includes a scale drawing of program segmentation and bank structure.

T Do not mark the output element as quarter-word sensitive. If neither the T nor F options are specified,
the program sensitivity is determined as follows:

- if only third word sensitive elements and elements with neither T nor F sensitivity are present,
T is used.

- if only quarter-word sensitive elements and elements with neither T nor F sensitivity are present,
F is used.

- if both third- and quarter-word sensitive elements are present, the sensitivity of the element
containing the program starting address is used.

- if both third- and quarter-word sensitive elements are present, the sensitivity of the element
containing the program starting address as specified on the ENT directive is used. If the ENT
directive is not used, the absolute element is marked insensitive.

v Assign all addresses but strip off all D-bank code (can be used to create a reentrant processor - see
2.2.3.5). Compare with Y option.

X If an error is detected, terminate the collection and exit via ERR$. When the X option is omitted, the
results of the collection are accepted, even though there may be minor errors, as long as an absolute
element is produced.

This option is assumed when collector is automatically called by @XQT.

Y Assign all addresses but strip off all I-bank code. Compare with V option.

z Suppress generation of diagnostic tables in the absolute element which are used by diagnostic system.

#* Also see source input routine (SIR$) options, Table 1-2.

Examples:

-—

DDA D WN -

@MAP
@MAP
@MAP
@MAP , |
@MAP .U

OLDF!LE.OLDELEMENT , A NEWFILE. NEW/ELEMENT
SYMIN/C,BACKUP . ABSOUT

BACKUP.SYMOUT, . ABSOUT

SYMIN(3) ,ABSOUT/REVISED

@MAP , IRXLD ARB, ARB

This @ MAP control statement produces the same results as the @ MMAP,I control statement. The
names for the symbolic and absolute elements are automatically assigned by the Collector (see
Volume 2-3.9). The printed output and internal table entries would appear as if the control
statement had been: @MAP,| TPFS.NAMES. If no directives follow, the directive IN TPF$. is

assumed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive A 2.5

Volume 3 System Processors UPDATE LEVEL PAGE

2. Element OLDELEMENT from file OLDFILE is updated by any source language statements
following the @ MAP control statement. The output source language goes into file NEWFILE,
element NEW/ELEMENT. The absolute element A goes into TPF$.

3. Version C (latest cycle) of element SYMIN from TPF$ is the input symbolic element. The absolute
output element ABSOUT is written in file BACKUP. No source language output is produced; any
successive correction lines are applied but not saved.

4. The source language statements (Collector directives) following the @ MAP control statement are
inserted as the symbolic output element SYMOUT in file BACKUP. The absolute element
ABSOQUT is also put into file BACKUP.

5. Cycle 3 of element SYMIN is updated to produce cycle 4 of element SYMIN which is located
in TPF$. Any correction lines are saved. Version REVISED of absolute output element ABSOQUT
is also put in TPFS.

6. The source language statements following the control statement become the symbolic element
ARB in the TPF$ file. The output element goes into TPF$ as relocatable element ARB. If errors
are encountered during the collection, the run is terminated. A full listing is produced.
Diagnostics are printed for addresses over 65K.

2.2.2. Collector Directives

The Collector directives enable the programmer to control the collection of his program. These
directives:

[] are free-form; hence, they may begin in any column of the source language image. For rules
regarding the presence of blanks, see Volume 2-3.2.6.

| may contain comments preceded by the blank-period-blank construction.

M follow the standard dropout rules {see 1.4 and Volume 2-2.6.6) pertaining to filenames, element

names, and so forth.

For the collection of complex programs which require relocatable input from many sources,
construction of overlay segments, the use of multiple libraries, or the construction of multiple banks,
the user must prepare a set of Collector directives. These statements may follow the @ MAP control
statement or be contained in an element in a program file which is specified as input on the @ MAP
statement. The user has the same access and updating facilities for the (@ MAP) symbolic element
as for any other type of symbolic element.

Certain Collector directives can be used only in bank-named collections. These are IBANK, DBANK,
FORM, and $lcs (location counter set). The second format specified for the IN and the second, third
and fourth formats of the LIB directives can be used only in bank-named collections.

On all Collector directives, in all fields and subfields, a parameter consisting of a set of characters
contained within quotes, e.g., 'XYZ-CAT', will be treated as an alphanumeric name. Any normal
termination characters will simply be considered characters within the name.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive A 2.6

Volume 3 System Processors UPDATE LEVEL PAGE

2.2.2.1. Element Inclusion (IN)

Purpose:

Allows the user to specifically inciude an element or all relocatable elements of a file in the collection
of a program. An element may be preceded by a filename. The elements indicated on an IN directive
are placed in the segment named by the preceding SEG directive (see 2.2.2.14).

All parameters in the IN directive are optional. If all parameters are omitted, IN TPF$. is assumed.

Format:

IN name-1,name-2,name-3,...,name-n
IN(bank-list) name-1($ics),name-2($ics).....name-n($ics)

Parameters:

name Specifies the element or entire file to be included in the collection.
See 1.3, 1.4 for standard file and element notation.

bank-list A list of bank-names to be used with local element inclusion.

$lcs Specifies which location counters of name-1 are to be included in this
part of the program.

Description:

Bank-list and $Ics are used only with bank-named collections (see 2.2.5).

By stating FILENAME without a following element name, the user can specify the inclusion of all
relocatable elements in a program file. In bank-implied collections if some elements of a file have
been explicitly named, these are included as specified and the "IN’ filename serves to bring in only
the remaining elements in the file. When specifying an entire file for inclusion, a period must follow
the filename.

When name consists of an element name only with no version specified, any RB element with that
name irrespective of version, is eligible for inclusion. If RB elements with the same element name
but different version names exist in the same file, ambiguities may arise. The CLASS directive (see
2.2.2.8) may be used to overcome the ambiguity. Alternatively, the ambiguity will not be present
if the version name is explicitly stated as part of name on the IN statement.

IN name/

must be used to specifically select an RB element with a version name consisting of 12-space
characters, which is the default version.

Elements named, but not directly associated with a filename, are searched for first in TPF$, then in
any files named on LIB directives (see 2.2.2.3) and finally in the System Relocatable Library (RLIBS).

In bank-implied collections, an element name may appear on only one IN directive and only once
during a collection. A version may be present, but the element name itself may still appear only once.
The version is necessary only if needed to distinguish between elements with the same basic name
but different versions. See 2.2.5.6.2 for including an element more than once in a bank-named
collection.

4144.31
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Sories Executive

2-7
Volume 3 System Processors

PAGE

Common blocks may be named on IN directives, but must not have an associated implicit or explicit
filename because they are imbedded within other elements. For inclusion of a common block in the
colliection, see 2.2.4.6.

For the order of elements explicitly and implicitly included in the collection, see 2.2.3.2 and 2.2.5.7.

For either format FRSTIN may be used instead of IN, as the first element inclusion statement in a

Jbank-implied collection or after a BANK or SEG statement. When used it specifies that the first named

element is to be positioned at the beginning of the segment it is collected in.
Examples:

1. IN FILEA. FILEB.

2. SEG ADAY1
IN FiLEB.BB,.CC,DD
3. SEG BDAY?2

IN COLLECTOR*F8(1).INIT/REV
1. All relocatable elements in FILEA and FILEB are included in the collection.

2. Elements BB and CC from file FILEB and element DD, whose filename is not indicated, are
included in the collection of segment ADAY 1.

3. The relocatable element INIT version REV in file COLLECTOR*F8 F-cycle 1 is included in the
collection of segment BDAY2.
2.2.2.2. Etement Exclusion (NOT)
Purpose:
Names the elements which are to be excluded from the entire collection.
All parameters in the NOT directive are optional. If all parameters are omitted, NOT TPF$. is assumed.
Format:
NOT name-1,name-2,....,name-n
Parameters:
name Specifies the element, with or without filename, or file to be excluded
from the collection. If the version name or filename is omitted, all
elements of the specified name are bypassed.
Description:
When all elements of a file are to be excluded, the entire file may be designated for exclusion with
a NOT directive. The effect of NOTing a whole file is to make the file inaccessible for searching as
a library file. A period must follow the filename to ensure that it is not interpreted as an element
name.
If a filename with no following element names appear in a NOT directive, elements within the named

file can be explicitly included during the collection. This is useful only with TPF$ and SYS$*RLIBS,
since these are the only two files which are normally automatically searched.

4144.31
UP-NUMBER

A

UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

PAGE

Examples:
1. @MAP, | ALA
NOT CWW, LRR
2. MAP, I AA
IN FILEA.
NOT FILEA.CL, .AB
3. @MAP, | A A

IN FL1.,FLZ2.
NOT FL1.XXX, XX2,FL2.CAT, CAT2

4. G@MAP,I ALA
IN FiL1.
NOT SYS$*RLIBS.
NOT TPFS.

1. All elements named CWW and LRR are excluded from the collection; all other relocatable
elements in TPF$ are included.

2. Allelements named CL and AB from FILEA, are excluded from the collection; all other relocatable
elements in the file FILEA are included.

3. Elements XXX and XX2 from file FL1 and elements CAT and CAT2 from file FL2 are excluded
from the collection; all other relocatable elements from files FL1 and FL2 are included.

4. Relocatable elements from SYS$*RLIB$ and TPF$ are excluded from the collection. All
elements from FIL1 are included. :

2.2.2.3. File Search Sequencing (LIB)

Purpose:

Specifies which files (libraries) are to be searched by the Collector prior to searching the System
Relocatable Library SYS$*RLIBS. Each file named on a LIB statement must have an entry point table
created by the @PREP FURPUR function (see 4.2.11), if the file contains elements which will be
implicitly included to satisfy external references.

All parameters in the LIB directive are optional, except filename-1.

Format:
LIB
LIB
LIB
LIB

Parameters:

filename

bankname

filename-1 filename-2,...filename-n
filename-1(bankname/$lcs,bankname/$lics,...).filename-2...
(bankname/$lcs,bankname/$lIcs...)

filename-1(),filename-2{(),...filename-n()

Specifies the files to be searched, named in the order in which they
are to be searched. Those files containing elements not explicitly
included in the collection but which define symbols required to satisfy
external references, must have been prepped (@PREP).

Specifies a bank in which implicitly included elements are to be
placed.)

4144.31

A

SPERRY UNIVAC 1100 Series Executive 2-9

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
$lcs Specifies which location counters of the implicit elements go to
corresponding banks.
() The parameters specified on the last preceding LIB (bankname/$lcs,...)
directive are to be applied for the filename specified.
Description:

The second, third and fourth formats above and parameters bankname and $ics are used only in
bank-named collections (see 2.2.5.7).

The specified files are searched for elements named for inclusion from that file or from an unspecified
file, and when all explicitly included elements have been found, or searched for and not found, the
files are searched in the order in which they appear in the directive for satisfying external references.
A file may be searched more than once if the filename appears more than once on a LIB directive.
A file is searched only once for each time it is specified on a LIB directive.

When several LIB directives are given they have a cumulative effect. For example, assume file A has
external references satisfied by elements in file B which in turn have external references satisfied
by elements in file A. If the elements are not explicitly included by IN directives, the following
directive is necessary to ensure the inclusion of all referenced elements:

1B ABA

RLIB may be used instead of LIB in all formats. However, the effect in format 3 is lost. Any element
from a file on such a statement is marked as being from SYS$*RLIB$S. The result is that these
elements will not be dumped by @PMD unless the ‘L' option is used with the PMD request, nor will
they be traced by SNOOPY.

Examples:
1. LIB CHR1
2. LIB USE1 USEZ2, USE3, USE"

1. File CHR 1 is searched after TPF$, and before files USE1, USE2, USE3, USE1 (a second time)
and the System Relocatable Library.

2. Files USE1, USE2, USE3, and USE1 (a second time) are searched in that order after TPF$ and
CHR1 and before the System Relocatable Library is searched.

2.2.2.4. External Definition Retention (DEF)

Purpose:

Specifies entries in the ENTRYS table. This table contains all the locations and names of the external

definitions retained after the collection of the absolute or relocatable element.

NOTE:

The DEF and REF (see 2.2.2.5} directives are primarily useful in the collection of reentrant processors
and with R option collections.

414431
UP-NUMBER

A

UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

2-10
Volume 3 System Processors

PAGE

All parameters in the DEF directive are optional.
Format:
DEF def-1,def-2,def-3....def-n
Parameters:
defs Specifies the external definitions to be retained.
Description:
The DEF directive causes the Collector to build an external definition table and a COMMNS$ table which
defines the common blocks in a program. The user can address the two tables by the
Collector-defined names ENTRY$ and COMMNS, respectively (see 2.2.8). The COMMNS table will

also be built if the DEF directive is present with no parameters.

if the R option was given on the @ MAP control statement, the DEF directive must be used to specify
those externalized labels which are to remain externalized in the merged relocatable output.

If no element explicitly named in an IN directive contains the named external definition, a search of
the library files (see 2.2.2.3) is made to find an element in which the symbol is defined.

Example:
DEF SIN,COS, SORT
The listed external definitions, SIN, COS, and SORT and their locations are retained after the
collection in the ENTRY$ table of the resultant element.
2.2.2.5. External Reference Retention (REF)
Purpose:
Creates a list of external references to be retained by the resulting absolute or relocatable element.
No attempt is made to satisfy any references made to names indicated on REF directives. The table
of retained external references is program addressable by the Collector-defined name XREFS$.
All parameters in the REF directive are optional.
Format:
REF ref-1,ref-2,ref-3,... ref-n
Parameters:
refs Specifies the external references to be retained.
Description:

If an external definition that is identica! to a REF name is encountered, a diagnostic is printed and
the external definition is ignored.

The REF directive causes the Collector to build the COMMNS table in the same manner as the DEF
directive (see 2.2.2.4).

4144.31
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

2-11
Volume 3 System Processors

PAGE

Example:

REF VALUE1,VALUE2,SUBROUTINEA4
The listed external references (VALUE1, VALUE2, and SUBROUTINEA4) are retained after the collection
in the XREF$ table of the resultant element. Any references to these symbols are satisfied with the
address of word 3 of the appropriate entry in the XREF$ table (see 2.2.8).
2.2.2.6. Starting Address Redefinition (ENT)
Purpose:
Provides the user with the capability of overriding any start addresses provided by relocatable
elements. Upon program initialization, control is transferred to the absolute address of the named
symbol.
Format:

ENT name

Parameter:

name Must be an externally defined symbol which is the newly defined
starting point.

Description:

In the absence of an ENT directive, the first start address encountered in processing the relocatable
elements becomes the program start address. The start address must be contained in the main
segment as this is the only segment initially loaded at execution time. In a bank-named collection,
the start address must be contained in the main segment of an initially-based bank (see 2.2.5.2).
Example:

ENT GGYP

Control is passed to the absolute address of the symbol GGYP in the main segment.

2.2.2.7. External Reference Definition (EQU)
Purpose:

Provides the means to assign, during the collection, a value to an undefined symbol or to change the
value of an external definition.

All parameters in the EQU directive are optional except name-1/value-1.
Format:

EQU name-1/value-1,name-2/value-2,...,name-n/value-n

414431 SPERRY UNIVAC 1100 Series Executive A 2-12
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Parameters:
names Specifies the symbols to be defined
values The values to be assigned to the preceding name parameters.

The assigned values may be as follows:

- octal integers (indicated by a leading zero)

- decimal integers

- a symbol

- a symbol with an offset (for example, BOB+ 4)

Description:

Any symbol used in the value parameter must be externally defined in one of the elements specified
for inclusion in the collection. If an external definition which duplicates an EQU name is found, the
external. definition is ignored and a diagnostic is printed. In bank-named collections, only global
symbols may be used on the EQU directive (see 2.2.5.6.2).

Examples:

1. EQU JOE/0200

2. EQU AL/BOB+4

3 EQU JOE/0200, ABE/SAM+10

1. The external reference JOE is defined as 0200.
2. The external reference AL is defined as the value BOB+4 .

3. The external references JOE and ABE are defined as 0200 and SAM+ 10, respectively.

2.2.2.8. Element Selection Determination (CLASS)
Purpose:

Uniquely specifies one element version in a program file when more than one element has the same
basic name but different version names. In the collection this occurs when:

B The version of the element was not specified on an IN directive and more than one relocatable
element has that name.

] More than one relocatable element defines an external reference.

B Afilename was not specified with the element on an IN directive and the element with different
version names is present in more than one file.

Format:
CLASS string
Parameter:

string Consists of 12 alphanumeric characters, asterisks, $, -, and blanks
representing the versions of the elements. The string begins with the

A
UPDATE LEVEL

4144.31 SPERRY UNIVAC 1100 Series Executive

2-13
UP-NUMBER Volume 3 System Processors

PAGE

first nonblank character following CLASS, and is terminated after 12
characters, or by the space-period-space comment delimiter. If fewer
than 12 characters have been processed upon termination of the
string, significant blanks are filled in on the right to make a 12
character string.

Description:
Successive CLASS directives have a cumulative effect and different ordering of CLASS directives may
give different results.

Asterisks in a string represent character positions in the version name to be ignored. Blanks in a
string are valid.

When several elements qualify to be included in the collection, the Collector compares the string
parameter in the CLASS directive with the version names of the available elements. If the element
version name is not identical to the string parameter, it is not included in the collection.

If, after the first comparison, more than one element qualifies, the string in the next CLASS directive
is used in eliminating the remaining versions.

If all the CLASS directives have been used and there still remain more than one qualifying element,
none of the remaining elements is used in the collection; a diagnostic message is given.

Example:
1. @MAP, | SAMP , ALPHA
SEG AARD
IN SIZE
CLASS HETT T T TR TR
CLASS FREBHEHERRRH
CLASS EHREERLHERRRHN
2. @MAP,I SA
IN ELT?
CLASS D¥LA® ¥ ¥ %¥¥x%

1. The IN directive does not specify which version of the element SIZE is to be used in the
collection. The three CLASS directives specify that the version DCOB14 be used in the
collection. Graphically this can be shown as follows:

IN SIZE CLASS Dxxwxxnnxnxxx CLASS w#x%Brxxwrx CLASS*# %% %4 % %% %%
directive selects directive selects the directive selects directive makes the
the following following elements: the following final element
elements: elements: selection:

SIZE/BCON21
SIZE/BCON22

SIZE/DCON12 SIZE/DCON12"

SIZE/DCON13 SIZE/DCON13 ___ SIZE/DCOB14 >____> SIZE/DCOB 14
SIZE/COB23 SIZE/DCOB14 SIZE/DCOB15

SIZE/COB24 SIZE/DCOB15 /

SIZE/DCOB14
SIZE/DCOB15

4144.31 SPERRY UNIVAC 1100 Series Executive A

UP-NUMBER Volume 3 System Processors

2-14
PAGE

UPDATE LEVEL

2. The CLASS D*LAx***x %% %% directive specifies that version D2LARGE of ELT1 element be
used in the collection. Graphically this can be shown as follows:

The IN ELT1 directive The CLASS D*LAX®H %% %% %%
selects the following directive makes the final
elements: element selection:
ELT1/A2SMALL
ELT1/B3LARGE _
ELT1/D3SMALL ELT1/D2LARGE
ELT1/D2LARGE

2.2.2.9. Corrections for a Relocatable Element (COR)

Purpose:

Specifies that a correction to a relocatable element is to be incorporated into the absolute element
produced with the origina! relocatable remaining unchanged. A COR directive may replace any text
word with one of the following:

B an instruction word

| a data word

B a data word containing up to two symbols or values representing the upper and lower halves
of the word

Format:
COR eltname
The correction data images which follow the COR directive may be in any one of the following formats:
address,lc-1 fjax hiulc-2elthame-1
address,lc-1 detaword
address,lc-1 data,lc-2 data,lc-3
Parameter for the COR directive:
eltname Specifies the element to which the corrections are to be made.

Parameters for the correction data images:

address,lc-1 Specifies the relative address and location counter of the relocatable
element to which the corrections are being made.

fjaxhiu Specifies field values in instruction word format that are to be
inserted. Blanks are used to separate each part of the instruction
correction. The u-field may be a:

- symbol

- symbol and offset

- octal number (a zero must precede the number)
- decimal number (no preceding zero)

414431 SPERRY UNIVAC 1100 Series Executive A 2-15
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
dataword Specifies a numeric value.
data Specifies a symbol, symbol and offset, octai, or decimal correction.
lc-2 Specifies that the u- or data fields are relative to the value of the
Ic-3 specified location counter. If omitted, the fields contain absolute
values.
eltname-1 Specifies element to which the location counter (lc-2,Ic-3) belongs; if

omitted, the element being corrected is assumed.

Data fields, including the u-field in format 1, may be specified as negative by the presence of a leading
minus (-) sign.

Description:

The corrections contained in a COR directive are ignored if the R option was specified on the @MAP
_ control statement.

Any number of correction statements may follow the COR directive.
COR statements cannot contain instructions which are jumps to any indirectly-loaded segment.
A symbol must be an externalized entry point.

In bank-named collections, a COR directive and its parameters may apply only to global elements

(see 2.2.5.6.2).

Examples:

1. COR ELT1

2. 000001,01 051 00 00 00 O O 000011,01,ELT2
3. 000004,01 006 00 015 00 O O DUMMY+1
4. 000007,01 0000000000114

5. 000011,01 00000111 DUMMY+1

6. 000006,02 0000112,01 0000013

7. 000011,02 DUMMY 42

8. 000014,02 02,02 DUMMY 42

9. 000016,03 027 00 017 00 O O 01176,02

—_

Corrections to the relocatable element ELT1 are to be applied to the final absolute element.

o

The word being collected under element ELT1 at relative address O1, tocation counter 1, is
modified to set function code to 051, and the j—, a-, x—, h—, and i-fields to zero. The u- field
is given the value of 011 relative to location counter 1 of element ELT2.

3. The word appearing at relative address 04 under location counter 1 of ELT 1 is modified to set
function code to 06; a field to 015 and u- field to DUMMY 4 1. The j-, x~, h-, and i- fields are
set to zero. ’

4. The word appearing at relative address 07 under location counter 1 is being changed to contain
0114,

5. The word at relative address 011 under location counter 1 is changed to contain 0111 in H1
and DUMMY 41 in H2.

414431
UP-NUMBER

A

UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

2-16
Volume 3 System Processors

PAGE

6. The data at relative address 06 under location counter 2 contains 0112, relative to location
counter 1 of ELT1, in H1, and 013 in H2.

7. The data at relative address 011 under location counter 2 receives the value of symbol and
offset, DUMMY + 2.

8. The data at relative address 014 under location counter 2 receives the data 02 relative to
location counter 2 in H1, and the value of symbol DUMMY 42 in H2.

9. The instruction word appearing at relative address 016 under location counter 3 receives the
function code 027; the a-field 017 and u-field of 01176, relative to location counter 2 of ELT1.
The j-, x-, h-, and i-fields are set to zero.

2.2.2.10. Adding Snapshot Dumps (SNAP)

Purpose:

Specifies the elements in which a snapshot dump is to be taken. The snap data images immediately
following the SNAP directive specify the address within the element where the SNAP is to be taken,

_length of the dump, and the frequency of the dump.

SNAP Directive Format:
SNAP eltname
Parameter:
eltname Specifies the element name where the dump is taken.
SNAP Data Image Format:
address—1,Ic-1 address-2 length,registers times,frequency

All parameters are optional except address-1, lc-1, address-2, and length.

Parameters:

address-1,Ic-1 Specifies the address and the location counter within the relocatable
element of the instruction at which the dump is to be executed. This
field may not contain a symbol.

address-2 Specifies the starting address of the program area to be dumped. This
field may be in the form address, location-counter, element-name or
symbol 4 offset.

length Specifies the length in words of the program area to be dumped.

registers Specifies which registers are to be dumped. The following codes are

used:
00 - No registers dumped

01 - Only R registers dumped

4144.31 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL e |

02 - Only A registers dumped
03 - Both A and R registers dumped
04 - Only X registers dumped
05 -~ Both X and R registers dumped
06 - Both X and A registers dumped
07 - A, X, and R registers dumped

times Specifies the maximum number of times the snapshot dump is to be

taken. If omitted, the value of 100, is assumed.
frequency Specifies at what frequency of reference the dump is to be taken. If

omitted, the value 1 (which dumps every time the SNAP is
encountered) is assumed.

Description:

No more than 16 snapshot dumps may be requested in any one collection. if more than one snapshot
of the same element is to be taken, multiple data images may follow the SNAP directive.

When the dump request instruction SLJ SNAPS is inserted at a specified address, the instruction
appearing there is placed in a table in element SNAP$. After the dump is taken, the saved instruction
is executed from within SNAP$ as if it had not been moved. If the saved instruction is a jump
instruction, control transfers immediately to the location specified in the jump instruction; otherwise,
control is transferred to the location following the location from which SNAP$ was called. Because
the replaced instruction is executed from within SNAPS$, the replaced instruction:

Must not be altered during program execution.

Must not be referenced as data or by indirect addressing.

Must not be an SLJ instruction which specifies indirect addressing or indexing.

Must not be an LMJ instruction which specifies indirect addressing or indexing.

Must not be an LIJ or an LDJ instruction.

Must not be an EX instruction which references an LMJ or SLJ instruction.

Must not be a test and skip instruction.
W Must not be used in reentrant code.

in a bank-named collection, the SNAP directive and its parameters may apply only to global elements
and entry points (see 2.2.5.6.2).

414431

SPERRY UNIVAC 1100 Series Executive

2-18
Volume 3 System Processors

UP-NUMBER UPDATE LEVEL PAGE
Example 1:
1. SNAP LARK
2. 010,1 012,1 020,07 0200,010

A snapshotdump is taken in element LARK. Line 2 gives the parameters for the dump. The instruction
at address 010, under location counter 1 is the location where the snapshot request is placed. he
address 012, under location counter 1 is the starting address of the dump. Sixteen locations in main
storage are dumped along with the contents of the A, X and R registers. The dump is to be taken
a maximum of 128 times, but only once every eighth reference.

Example 2:
1. SNAP JACK
2. 0132,02 HAH+2 0256,4

A snapshot is to be taken in element JACK. Line 2 specifies that the instruction at location 0132
under location counter 2 is the location where the snapshot request is placed. The address HAH4 2
(where HAH must be externally defined) is the starting address of the dump. 256 or 0400 main
storage locations and the contents of the X registers are to be dumped. Since the times and frequency
parameters are not specified, the system assumes a value of 100 for times and 1 for frequency.

2.2.2.11. End of Input (END)
Purpose:

Specifies the end of the source language input for the Collector. The END statement is optional. If
not given, the end of Collector source language is indicated by the next control statement.

Format:
END
Example:
@MAP, I L
SERIES OF
COLLECTOR DIRECTIVES
END

/

2.2.2.12. Absolute Element Optimization (MINGAP, MINSIZ)
Purpose:

Enables the user to modify the resultant absolute element so as to minimize the 1/0 transfer time when
the program is loaded for execution.

Format:

MINGAP value
MINSIZ value

(44.31 SPERRY UNIVAC 1100 Series Executive A 2-19
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Parameter:
value Specifies any positive integer.

Description:

The program areas created by an assembier RES directive or compiler array declarations are unique
in that at collection these areas do not contain meaningful data or instructions. The Collector then
has two alternatives when defining these RES areas within the generated absolute element:

1. The area could be zero filled. This has the effect of increasing the size of the absolute element
which affects the mass storage space requirements of the element as well as the number of
words which must be transferred when the element is brought into main storage for execution.

2. The area could be left void. This alternative decreases the size of the absolute element at the
expense of increasing the number of access control words (ACWSs) and hence the number of
1/0 operations needed to transfer the element to main storage for execution.
The Collector uses a combination of these two alternatives depending upon the size of the area. Any
area within the absolute element greater than or equal to MINGAP words is left void while those less
than MINGAP words are zero filled. Each individual ACW required to transfer the element to main
storage also controls a minimum of MINSIZ words. Both MINGAP and MINSIZ are initially set equal
to 10.
While the value 10 is felt to be optimum in most cases and it generally does not need to be changed,
there may be instances, depending upon type of mass storage and program application, where it is
desirable to modify the parameters. Forinstance, increasing the number of words controlled by each
ACW, and decreasing the number of |/0 operations needed to transfer the program to main storage
may reduce the time required to load the program.
2.2.2.13. Program Parameter Specification (TYPE)
Purpose:
Enables the user to specify certain program applicable conditions.
Format:
TYPE parameter—1,parameter-2,...

Parameter:

parameter-n may be any of the following:

SETAFCM Set Arithmetic Fault Compatibility mode for the absolute or relocatable
element.

CLRAFCM Set Arithmetic Fault Non-interrupt mode for the absolute or relocatable
element.

INSAFCM Set the absolute or relocatable element insensitive to the above Arithmetic

Fault modes.

EXTDIAG Produce extended diagnostic tables for the absolute element.

A

4144.31 SPERRY UNIVAC 1100 Series Executive 2-20
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
REALTIME All initial loads and reloads of absolute elements of type REALTIME are done

at real-time request priority with real-time positioning. This does not affect
processor switching priority.

BLOCKSIZE64 Set bank sizes into the absolute element in 64 word blocks.

COMSEG Include all text for a common block in the segment the common block is
. attached to.

IBJLNK <eltname>,<address>

<eltname> is the name of an element included in the collection, explicitly or
implicitly.

NOTE:
Filename may not be used.

<address> is a symbol or numeric value representing an address in the
absolute element.

Extend use of BDICALLS$/IBJS feature 1o allow collection time definition of
parameters to be passed to a routine (see 2.2.9.1).

These parameters may appear in any order on the TYPE directive.
Description:

Within the absolute element’'s diagnostic tables, the normal entry point name table contains only
referenced entry points. The absolute value table contains only referenced absolute entry points and
does not include any absolute entry points defined in an element named ERU$ or CERU$. The
specification of EXTDIAG prevents any of these exclusions so that all entry points in the element are
included in these diagnostic tables.

Parameters SETAFCM, CLRAFCM, and INSAFCM override any related indicators present in the
individual relocatable elements included in the collection.

SETAFCM, CLRAFCM, and INSAFCM are only meaningful in collections which produce elements to
be executed on an 1110 or 1100/40 System.

The parameter, REALTIME, is used to designate an absolute element as real-time for storage request
purposes. All storage requests for programs so designated will be processed at real-time storage
priority. The switching leve! and real-time activity count of the program are not affected until the
program does an ER RT$. The storage priority of in—core banks of the program will always be
real-time unless all of the program’s activities are non-real-time and in a long-wait state, in which
case the in-storage banks will be marked long-wait and will be swapable.

Location counters from many elements may define text 1o be included in a common block. These
location counters may be placed, due to rules of element inclusion, in different segments. The
segment at the common point of the others contains the actual area to be occupied by the common
block. The loading of one of the segments containing text for the common block will cause
reinitialization of part of the common block. The presence of the COMSEG parameter will cause all
location counters defining text for a common block to be included in the same segment as the
common block area, thus avoiding any reinitialization of the common block unless that segment is
reloaded.

4144.31
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

2-21
Volume 3 System Processors

PAGE

2.2.2.13.1. Absolute Element Arithmetic Fault Mode Determination

The Collector will mark the Arithmetic Fault mode of an absolute element or Collector produced
relocatable element in the following order of precedence:

1. If explicit sensitivity is given on the TYPE statement, the output element is marked accordingly,
regardless of the sensitivities of the input relocatable elements.

2. If all input relocatable elements have the same sensitivity, the output efement is marked with
the sensitivity.

3. I both SETAFCM and CLRAFCM relocatable elements are present, the output element is marked
with the sensitivity of the relocatable element containing the program start address; if that
element is marked INSAFCM or if no starting address exists, then the output element is marked
UNKNOWN. In this case (both SETAFCM and CLRAFCM relocatable elements present), the
presence or absence of INSAFCM or sensitivity UNKNOWN relocatable elements is irrelevant.

4. If only SETAFCM relocatable elements are present in addition to INSAFCM and/or sensitivity
UNKNOWN relocatable elements, the output element is marked SETAFCM.

If only CLRAFCM relocatable elements are present in addition to INSAFCM and/or sensitivity
UNKNOWN relocatable elements, the output element is marked CLRAFCM.

(8]

6. If INSAFCM and sensitivity UNKNOWN relocatable elements only are present, the output
element is marked UNKNOWN.

2.2.2.13.2. EXEC Action Produced by Absolute Element Arithmetic Fault Mode

The Arithmetic Fault mode sensitivity of the absolute element is used by the Executive in determining

the initial setting of PSR bit D20. See SPERRY UNIVAC 1110, 1100/40 System Processor and

Storage Programmer Reference, UP-7970 (current version). The following describes the action taken

by the Executive:

1. If the absolute element’s sensitivity is UNKNOWN, the system standard set at system generation
is used.

2. If the absolute element’s sensitivity is SETAFCM, D2Q is initially set.
3. If the absolute element’s sensitivity is CLRAFCM, D20 is initially cleared.
4. If the absolute element’s sensitivity is INSAFCM ,D20 is initially cleared.

For standard contingency action related to Arithmetic Faults, see Volume 2-Table 4-2.

2.2.2.13.3. Blocksize

When BLOCKSIZEG64 is specified on the TYPE statement, all banks of the program will have their sizes
stored in the Bank Load Table of the absolute element in 64-word blocks. In the absence of the
BLOCKSIZE64 specification, sizes will be stored in 512-word blocks. The operating system will
correctly handle either case for any 1100 Series machine, but in the case of the 1100/80 System
the presence of BLOCKSIZE64 will improve main storage usage.

A
UPDATE LEVEL

414431 SPERRY UNIVAC 1100 Series Executive

2-22
UP-NUMBER Volume 3 System Processors

PAGE

2.2.2.14. Program Segmentation (SEG)
Purpose:

Informs the Collector of the beginning of a program segment. All parameters on the SEG directive
are optional, except name-1.

Format:

SEG name-1,seg-list

Parameters:

name-1 Specifies the name of the segment, name-1.

seg-list Specifies the address relationship between the segment named in
name-1 and the other program segments named in seg-list.

Description:

When name-1 is followed by an asterisk (*), the named segment is automatically loaded when
referenced. The asterisk is allowed on all SEG directives, but is ignored if the directive defines the
main segment.

The seg-list parameter has several formats which determine the addresses of the segment named
in name-1 as follows:

When seg-list is void, the starting address of the name-1 segment
immediately follows the last address of the segment named on last
preceding SEG directive.

name-2 Specifies that the starting address of the name-1 segment is the same
as the starting address of the name-2 segment. These two segments
can never exist in main storage at the same time.

(name-2) Specifies that the starting address of the name-1 segment
immediately follows the last address of the name-2 segment
specified.

{(name-2,name-3,..., name-n) Specifies that the starting address of the name~1 segment
immediately follows the highest last I-bank and D-bank address of the
segments specified in name-2, name-3, name-4, etc. Note that the
highest last I-bank address may be contained in a segment different
than the one containing the highest last D-bank address.

() Specifies that the starting address of name-1 segment immediately
follows the highest last address of all segments previously named.

For additional information of the SEG directive, see 2.2.4.2.

A

UPDATE LEVEL

4144.31 SPERRY UNIVAC 1100 Series Exacutive

2-22a
UP-NUMBER Volume 3 System Processors

PAGE

2.2.2.15. Relocatable Segments (RSEG)
Purpose:
Specifies the named segment as a relocatable segment. A relocatable segment (RSEG) is one whose
location within the program is determined dynamically by the program during execution rather than
at collection. An RSEG may reference entry points within the program, but the RSEG itself may not
contain definitions for references elsewhere in the program (unless the reference is of the form J
TAG,x where x contains the address at which the RSEG was loaded) since only internal RSEG
addressing is relocated during segment loading.
Format:

RSEG name
Parameter:
name Specifies the relocatable segment.

Description:

For further information on relocatable segments, see 2.2.4.3.

2.2.2.16. Dynamic Segments (DSEG)
Purpose:

Provides a mechanism by which the program area occupied by a segment will not be included in the
initial program requirement for main storage.

Format:

DSEG name-1,seg-list

414431 SPERRY UNIVAC 1100 Series Executive 2-23
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Parameters:
name-1 Specifies the name of the segment.
seg-list Specifies the address relationship between the segment named in

name-1 and the other program segments (see 2.2.2.14).
Description:

‘ Dynamic segments are identical to normal overlay segments (defined by the SEG directives - see
2.2.2.14) in all aspects except one: the program area assigned exclusively to dynamic segments is
not included when determining initial program size. It is the programmer’s responsibility to guarantee
that the program area is available by using the MCORE$ request (see Volume 2-4.7.1) prior to
requesting segment loading or to request segment loading via the SYS$#RLIB$ routine DLOADS,
which will obtain the necessary program area prior to initiating the segment load (see 2.2.4.5.4).
2.2.2.17. Executive Function Arrangement (XSEG)

Purpose:

Allows the Collector to place segments contiguous to one another within main storage blocks, without
wasted storage gaps between them. This statement is primarily intended for use in collections of
the EXEC system.

All parameters on the XSEG statement are optional, except name-1.

Format:

XSEG name-1,seg-list

Parameters:

name-1 Specifies the name of the segment.

seg-list Specifies the address relationship between the segment named in
name-1 and the other program segments. (See 2.2.2.14 for seg-list
formats.)

Description:

An XSEG directive functions the same as a SEG directive, except that the initial relative starting
address is reduced, if possible, by multiples of 01000. The resulting final starting address is equal
to the starting address of the bank which the segment is in, plus the number of words by which the
initial relative starting address exceeds a multiple of 01000.

414431 SPERRY UNIVAC 1100 Series Executive 2-24
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Example:
@MAP, | TEST,TEST
| =BANK XS$1,02000
1. SEG MAIN
IN EL1
2. XSEG
’ IN EL2
3. XSEG B
IN EL3
4. SEG C,B
IN EL4
5. XSEG D, (B,C)
IN ELS

Assume the following segment lengths:

Segment

MAIN

OO w>»

The following shows the assigned addresses for the segments:

Segment

MAIN

oOw>

Octal Length

01143
02054
02712
04364
01156

Assigned Address Range

02000 - 03142
02143 - 04216
02217 - 05130
02217 - 06602
02603 - 02717

1. Segment MAIN is assigned a start address of 02000 (see 2.2.2.14 for bank start address

assignment), and a last address of 03142.

414431
UP-NUMBER

A

UPDATE LEVEL

SPERRY UNIVAC 1100 Series Execulive

2-25
Volume 3 System Processors

PAGE

Segment A, an XSEG which follows segment MAIN, starts at address 02143 and ends at address
04216. Segment A is initially assigned a start address of 03143, immediately following
segment MAIN. However, since segment A is an XSEG, its start address of 02143 is formed
by adding 0143 (the number of words which 03143 is over a multiple of 01000) to 02000 (the
start address of bank XS1).

Segment B, an XSEG which follows segment A, starts at address 02217 and ends at address
05130. Segment B is initially assigned a start address of 04217, immediately following
segment A. Since segment B like segment A is an XSEG, its actual start address is 02217 (0217
+ 02000).

Segment C starts at the same address as segment B with a start address of 02217 and last
address of 06602.

Segment D is an XSEG which follows the highest address assigned to segment B and C. The
initial start address is 06603 immediately following segment C. The actual start address for

segment D is 02603 (0603 + 02000), since it is also an XSEG.

2.2.2.18. Bank Structuring (IBANK and DBANK)

Purpose:

Specifies the beginning of a program bank within a bank-named collection.

All parameters on the IBANK and DBANK directives are optional, except name1.

Format:

IBANK,options
DBANK,options

Parameters:
options
name-1

bank-list

Description:

name-1,bank-list
name-1,bank-list

See Table 2-2.
Specifies the name of the bank.

Specifies the address relationship between the bank named in
name-1 and other program banks.

Names present in a bank-list may be I-bank and/or D-bank names. The bank-list parameter has
several formats which determine the location of the bank named in name-1 as follows:

name-2

When bank-list is void, the starting address of the name-1 bank is the
next address which is a multiple of 01000 following the most recently
defined IBANK (if name-1 is an IBANK) or DBANK (if name-1 is a
DBANK).

The starting address of the name-1 bank is the same as that of the
name-2 parameter. Name-2 may be either a bank name, a numeric
value (octal or decimal), or a bank name % offset, where offset is an
octal or decimal numeric value which is added to or subtracted from
the start address of the bank name.

414431
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

2-26
Volume 3 System Processors

PAGE

(name-2)

(name-2,

name-n)

The starting address of the name-1 bank is the next address which
is a multiple of 01000 following the name-2 bank. Name-2 may be
a bank name or a bank name % offset, where offset is applied to the
bank’'s last address.

name-3,..., The starting address of the name-1 bank is the next address which

is a multiple of 01000 following the highest of the name-2,...,name-n
banks. Each of the name-2,..,name-n parameters may be a bank
name, a bank name X offset, or an octal or decimal value.

For additional information on bank-named collections, see 2.2.5.

Example:

QOB WN =

| BANK
| BANK
DBANK
| BANK
DBANK
DBANK
DBANK
I BANK
DBANK

11

12

D1

13,12
D2,036000
D3, (12,D1)
D4, (13)
14,12403000

D5, (D3+02000,D4,D2)

The program is divided into four I-banks and five D-banks.

1.

2.

11 starts at address 01000.

12 starts at the next 01000 following 11.

D1 starts at 040000 or at the next 01000 following the longest i-bank, whichever address is

higher.

I3 starts at the same address as [2.

D2 starts at address 036000.

D3 starts at the next 01000 following the higher last address of 12 and D1.

D4 starts at the next 01000 following 13.

14 starts at the address obtained by aading 03000 to the start address of 12.

D5 starts at the next 01000 following the highest last address of D4, D2, and start address of

D3+02000.

4143.31 SPERRY UNIVAC 1100 Series Executive A 2-27
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 2-2. IBANK and DBANK Directive, Options
Option Description
Character
C This bank is to be the control bank. This option may only be specified once in a

collection. If no C option appears in a collection, the control bank will be selected
from the existing Main D-, Utility D-, Main |-, and Utility |-banks, in that order.

D This bank is a dynamic bank. If the D option is not specified, the bank is assumed
to be a static bank.

E This bank prefers to be loaded into extended storage (on 1110, 1100/40 only).
SE This bank must be loaded into extended storage.

H This bank requires common data bank contingency handling.

L References to BDICALLS and IBJS$, where the associated reference is defined in this

bank, are to be satisfied by O and LMJ, respectively. This option is only allowed on
static initially based banks, and is assumed for the control bank (see 2.2.9.1).

M This bank is to be initially based on the Main PSR. This option may be used only once
with an IBANK directive and once with a DBANK directive. If unspecified, the M is
assumed for the first IBANK and first DBANK directives. Once the M option is
specified, no assumptions are made regarding the M or U option.

F This bank prefers to be loaded into primary storage (on 1110, 1100/40 only).

SP This bank must be loaded into primary storage (on 1110, 1100/40 only).

0} This bank will use TS queueing.

R This bank is to be read only (write-protected).

S This bank, while included in the absolute code, is treated by the system similarly to

a common bank. The bank is treated by the Collector like a dynamic unbased bank
(i.e. D option with no M or U option). This option can be used to test common banks
without the need to load the bank into the system library. Segmentation is not allowed
in banks with the 'S’ option, and if the S option is used on the control bark, no
segmentation is allowed in the program.

U This bank is to be initially based on the Utility PSR. This option may be used only
once with an IBANK directive and once with a DBANK directive. The U option is never
assumed on an IBANK or DBANK directive (on 1110, 1100/40 only).

414431 SPERRY UNIVAC 1100 Series Executive A 2-28

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 2-2. IBANK and DBANK Directive, Options (continued)

Option Description
Character
\ Assign all addresses, but strip off this bank’s code. Can be used to strip individual

- bank's code rather than all I-bank or all D-bank code as is done by the V and Y options
on the @MAP control statement.

X This is a common bank (used only for initial basing). This option must be used in
conjunction with the M or U options only. No SEG, IN or FORM directives may follow
this BANK directive.

2.2.2.19. Location Counter Set Specification ($lcs)
Purpose:

Specifies the set of location counters to be included in the current bank from elements named, or
present in all relocatable elements in whole files named for inclusion.

Format:
$lcs
Parameter:
$lcs Specifies the set of location counters either via a keyword or explicit naming
as follows:
SALL include all location counters.
SNONE include no location counters (used to create dummy
or skeleton structures).
SODD include only odd location counters.
$FEVEN include only even Iocati‘on counters.
$nq1.ng..ufip, include only those focation counters specified.
$ALLBUT.ny,ny,...0 include all location counters except those specified.
Description:

The location counter set specification is used only in conjunction with a bank-named collection. The
specified set remains in effect until the next $lcs or IBANK or DBANK directive is encountered. A
bank statement automatically sets the location counter set to $ODD for IBANK and $EVEN for DBANK.
The location counter set specified for a bank may be individually overridden for individual elements
or files by using the optional $ics field on the IN directive (see 2.2.2.1).

414431
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

2-28a
PAGE

2.2.2.20. Source Language Structure Duplication (FORM)

Purpose:

Altows the duplications of a portion of a program structure previously defined within a map without
requiring repetition of the source language used to define that structure.

Format:

FORM bank-name
FORM bank-name¥*seg-name

Parameter:

bank-name Specifies the bank whose structure is to be duplicated.

4144.31 SPERRY UNIVAC 1100 Series Executive 2-29
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
seg-name Specifies the segment within the bank whose element inclusion
structure is to be duplicated.
Description:

The FORM is useful where a bank or segment structure is to be duplicated and only a location counter
change is desired.

When placed following an I-BANK or D-BANK statement a ‘'FORM bank-name’ directive causes the
full segment tree of the named bank to be regenerated for the bank being defined, except that the
location counter set presently in control must differ from the one which was in control for the bank
named on the FORM directive. If an explicit location counter set is specified, it must precede the
FORM statement. Since ‘'FORM bank-name’ creates an exact duplication of a previous bank structure,
no additional SEG, DSEG, RSEG, or IN directives may be specified for the bank being generated.

A ‘FORM bank-name#*seg-name’ directive causes the IN directives within the specified segment to
be regenerated.

Only SEG, DSEG, and IN directives within a structure are duplicated when a FORM on that structure
is specified.

Examples:
I -BANK 11
SEG MAIN
IN A,B
SEG SG
IN FILE.ELT, .ELT
D-BANK D1
SEG MAIN
IN A,B
SEG SG

IN FILE.ELT, .ELT1

The use of the 'FORM bank-name’ directive can be used as follows to produce the same results as
the above example:

| -BANK [

SEG MAIN

IN A.B

SEG SG

IN FILE.ELT, .ELT1
D-BANK D1

FORM 11

414431 SPERRY UNIVAC 1100 Series Executive

2-30
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

As shown below, the 'FORM bank-name#¥*seg-name’ directive can be used to produce the same
results as the two preceding examples:

| -BANK 1

SEG MAIN

IN A.B

SEG SG

IN - FILE.ELT, .ELT1
D-BANK D1

SEG MAIN

FORM I 1#MAIN

SEG 5G

FORM 1 1%SG

2.2.3. Functional Aspects of the Collector

After the Collector has interpreted the parameters of the @ MAP control statement (see 2.2.1) and
the parameters of the Collector directives (see 2.2.2), there remains the combining of the relocatable
elements into a relocatable or absolute element and the insertion of the final element into the program
file to complete the collection process.

2.2.3.1. Collector-Produced Relocatable Elements

Although the Collector is generally used to produce an absolute element, a relocatable element can
be produced by specifying the R option on the @ MAP control statement. All indicated relocatable
elements are merged into a single element and only the external definitions specified in the DEF
directive are retained. All other external definitions are submerged in the new relocatable element.

The R option is used most often when the user wants to include a relocatable element more than
once in an absolute element. Initially, an R option collection is performed. This combines the desired
element with a specified set of relocatable elements. As long as no external definitions within the
element are specified on the DEF directive, the desired element is submerged into the newly-created
relocatable element. The original relocatable element and the newly-created relocatable element in
which it has been submerged can both be collected in a single absolute element. Relocatable
elements in SYS$#RLIB$ are not implicitly included in an R option collection. Location counter
specifiction is preserved, 1.e., information contained in location counter n for all input RB’s is placed
under location counter n of the output RB.

Only the following directives may be specified with an R option collection. All others produce a
diagnostic message and the collection continues.

TYPE DEF
ENT IN

LIB NOT
REF CLASS
END EQU

2.2.3.2. Element Inclusion

Adding elements to a collection is a two-part process:

414431 SPERRY UNIVAC 1100 Series Executive

2-31
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

1. Finding the files that were specified in the Collector directives (see 2.2.2).

2. Finding within these files the elements that have been specifically named on IN directives
(see 2.2.2.1) or that contain entry points which satisfy the undefined symbols.

Elements to be included in the collection may have been specified on IN directives (see 2.2.2.1) either
with or without the filenames in which those elements appear. For those elements with a filename
present on the IN directive, the Collector immediately references that file, finds the element, and
processes the preamble of the element. After the preamble of a relocatable element has been
processed, the text {instructions and data) of the relocatable element becomes part of the final output
element.

if a @PREP (see 4.2.11) of TPF$. has not occurred, all relocatable elements in TPF$. are tentatively
included in the collection unless specifically excluded via the NOT directive (see 2.2.2.2). After all
elements for a collection have been found, any nonreferenced element that was tentatively included
from TPF$ is eliminated from the collection.

If a @PREP of TPF$. did occur, an element from TPF$, is included only if it is named on an IN directive
or if one of its external definitions satisfies an undefined reference from another element included
in the collection. When a @PREP of TPF$. has occurred, TPF$. is always the first file searched when
attempting to locate elements named without a filename and elements with external definitions
satisfying undefined references.

The situation may arise where the user wants to implicitly include elements from a file other than
TPF$, having entry point names or element names which duplicate entry point or element names in
TPF$. Since TPF$ is searched prior to searching other files, the elements from TPF$. are included
instead of the desired elements which are in other files.

Therefore, if duplicates of element names and external definitions are present and those in TPF$. are
not wanted in the collection, a @ PREP of TPF$. is needed to prevent automatic inclusion of the TPF$.
elements. It is also necessary to specifically IN by filename and element name any elements from
other files which have element names or external definitions duplicated by TPF$. elements.

For those elements without a filename on the IN directive, the Coliector searches files for these
elements in the following order:

1. The Temporary Program File (TPF$)

2. User-defined files that were indicated by the LIB directive (see 2.2.2.3)

3. The System Relocatable Library (SYS$*RLIBS)

In an attempt to satisfy all undefined references in the collection, the Collector searches the specified
files for elements that have entry point names that correspond to the symbol names appearing in the
Coliector created UNDE table (see 2.2.3.3). The UNDE table contains all the symbols that are present
in the undefined symbol tables of the processed element preambles. When an element is found with
an entry point name corresponding to a symbol name in the UNDE table, the preamble of that element
is processed and the now defined symbol is removed from the UNDE table. The order of search for
undefined symbols is:

1. The Temporary Program File (TPF$)

2. User-defined files defined by the LIB directive (see 2.2.2.3) and which were previously @PREPed

3. The System Relocatable Library (SYS$#RLIBS)

414431 SPERRY UNIVAC 1100 Series Executive

2-32
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

In a bank-implied collection, the included elements are placed in the instruction and data areas of
the final absolute element. Odd numbered location counters of an element are assigned to the
instruction area. Even numbered location counters and common blocks are assigned to the data area.
See 2.2.2.1 and 2.2.4.6 for information on specific placement of common blocks.

See 2.2.5.6 and 2.2.5.7 for determining element inclusion and placement in a bank-named
collection.

The most efficient collection results when every element desired in the collection is explicitly named,
including filenames; this eliminates @PREP requirements and library searches.

2.2.3.3. Processing Element Preambles

An element preamble is attached to every relocatable element created by the language processors
and the Collector. The element preamble provides information which is needed when collecting
relocatable elements to form an absolute or relocatable element. This information includes:

B The definition and location of each externally-defined name (entry point) in the element

B The length in words, under each location counter in the element

B The table of the undefined symbols appearing in the element

B Common blocks in the element

When the preamble is processed:

@ The entry points in the element are added to the Collector entry point table (EP table).

B Undefined symbols appearing in the element which have no corresponding entry in the EP table
are listed in the UNDE table. ’

B Undefined symbols in the element which have a corresponding name to an entry point in another
element are linked to the EP table.

Symbols are removed from the UNDE table as corresponding entry point names are found. Newly
encountered undefined symbol names are added at the end of the UNDE table.

2.2.3.4. Instruction and Data Area

This section applies primarily to bank-implied collections. See 2.2.5 for bank-named collection
considerations.

Every program containing segments in addition to the main segment always has a D-bank. If there
is no program data in the D-bank, then it contains at least a segment load table. The segment load
table contains an entry with information describing every segment of the program. It is located
preceding the user’'s main segment D-bank. Since the segment load table has no main storage
protection, special care has to be taken not to destroy its information.

The program’s data, when it exists, is located after the segment load table and any other
Collector-produced tables, such as the ENTRY$, COMMNS$, XREF$, and indirect load table.

The first address of the I-bank (instruction area) is assigned 01000. The starting address of the
D-bank (data area) is dependent upon the size of the I-bank, the possible use of the assembler SETMIN
directive, the total program size, and the options specified on the @ MAP control statement. The first

41441 SPERRY UNIVAC 1100 Series Executive 2-33
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

address of the D-bank, however, is always a multiple of 01000 and is usually given the value 040000.

Odd numbered location counters are assigned to the |-bank; even numbered location counters and
common blocks are assigned to the D-bank.

The user program can reference the first and last I-bank and the first and last D-bank addresses by
the symbols: FRSTIS, LASTI$, FRSTDS$, and LASTDS, respectively. The Collector replaces these
symbols with the actual assigned address values.

An unnamed common block (i.e., blank common), if required in the program, is attached to the main
segment under the name BLANK$SCOMMON. It may be positioned in another segment by an IN
BLANKS$COMMON directive.

Named common blocks (if not named in an IN directive) are attached to the segment which is located
at the common point in the paths to the main segment of all segments referencing it.

2.2.3.6. Collecting Reentrant Processors

In creating reentrant processors it is not only more efficient to explicitly name all elements including
their filemnames but it is also extremely advisable. The nature of reentrant processors dictates that from
one collection to another all elements be located in the same relative position within the absolute
element. This can only be ensured by explicitly including all elements in every collection of the
absolute element. (See 2.4 for reentrant processor preparation.)

2.2.4. Program Segmentation

When an absolute program is being executed, it must reside in main storage. However, there may
not be enough available area in main storage to contain the complete program. Therefore, the
program must be subdivided or segmented so that the various parts or segments can be loaded into
main storage as the program is being executed.

Even when the total program size may fit into main storage, many times it is advantageous to
subdivide the program into functionally independent units (segments) which are loaded into main
storage only when needed. This reduction in the program’s main storage requirements reduces main
storage impact while allowing increased storage utilization.

Another way of dividing a program is by specifying banks as logical units. Banks may be used in
conjunction with or independent of program segmentation (see 2.2.5).

A segmented program consists of:

B one main segment which resides in main storage throughout the execution of the program, and
B subordinate segments which are loaded into main storage as they are needed.

As each subordinate segment is loaded into main storage, it may overlay all or part of a previously
loaded segment. The area overlayed is equal in size to the size of the new segment. The main
segment is never allowed to be overlayed except by a relocatable segment (RSEG).

The absolute element resulting from the collecting of various relocatable elements may or may not

be segmented. However, a nonsegmented program can be functionally considered a segmented
program with only a main segment.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

2-34
Volume 3 System Processors

UPDATE LEVEL PAGE

2.2.4.1. Segmentation Directives
The directives needed to specify program segmentation are as follows:
SEG - Informs the Collector of the beginning of a segment (see 2.2.2.14).

RESG - Informs the Collector of the beginning of a relocatable segment (see 2.2.2.15).

n
|
B DSEG - Informs the Collector of the beginning of a dynamic segment (see 2.2.2.16).
B IN - Specifies the elements to be included in the segment (see 2.2.2.1).

]

NOT - Specifies which elements are to be excluded (see 2.2.2.2).

Segments may be loaded and executed independently; however, elements common to several
segments must be in main storage when the referencing segments are executed.

Since each segment has a path leading back to the main segment (defined by the relationships
specified on the segmentation directives), elements which are implicitly included and which are
referenced by two or more segments are attached to the segment which is located at the common
point in the paths to the main segment of all referencing segments. Elements specified on IN
directives are never moved from the segment in which they were specifically placed.

2.2.4.2. SEG Directive Considerations

The IN directive specifies the files and elements to be included in a segment. If no SEG directive
is encountered prior to the first IN directive following the @ MAP contro! statement, a SEG $MAINS
directive is assumed by the Collector and it applies to all following directives until a SEG, RSEG, or
DSEG directive is encountered.

The segment name contains 1 to 12 alphanumeric characters (with the $ and - allowed) in length.
The segment name must not be the same as any entry point name in the collection, and must contain
at least one alpha character.

Within a segment, any elements included to satisfy undefined symbols are located at the beginning
of the segment in the inverse order of their inclusion; that is, the last included element is the first
element in the segment. Following any implicitly included elements are those named on IN directives
in the exact order they were named. When all elements within a file are included in a segment, by
specifying only the filename on the IN directive, the ordering of the file’'s elements is random.

Example 1:
1. SEG A
2. SEG B

3. SEG C, (A)

4144.31 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors 2-36

UPDATE LEVEL PAGE

The program is to be divided into three segments.

1. Specifies segment A as the main segment.

| MAIN SEG A |

2. Specifies that the starting address of segment B is immediately after the last address of main

segment A.
SEG B '

| MAIN SEG A

3. Specifies that the starting address of segment C is immediately after the last address of main
segment A. Segments B and C can never exist in main storage at the same time.

SEG B'
SEG C

| MAIN SEG A

Example 2:

SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
. SEG
. SEG
. SEG
. SEG

(C)
C
(E)
3

B
(M)

H

H
(H,1.J)
()

QONOAEWN —

- -
- O -

-—
N
rXc-—-—IO0TMOO>»

P T

-
w

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

2-36

PAGE

The program is to be divided into thirteen segments.

SEG C | SEGD
SEG B
| MAIN SEG A SEG F
SEG E
SEG G
SEG H | SEG K
SEG M E
SEG | E > SEG L
| SEGJ |
I/

10.

1.

12.

Specifies segment A as the main segment.

Specifies that the starting address of segment B is immediately after the last address of main

segment A.

Specifies that the starting address of segment C is immediately after the last address
segment B.

Specifies that the starting address of segment D is immediately after the last address
segment C.

Specifies that the starting address of segment E is the same as the starting address
segment C.

Specifies that the starting address of segment F is immediately after the last address
segment E.

Specifies that the starting address of segment G is the same as the starting address
segment F.

Specifies that the starting address of segment M is the same as the starting address
segment B.

Specifies that the starting address of segment H is immediately after the last address
segment M.

Specifies that the starting address of segment | is the same as the starting address
segment H.

Specifies that the starting address of segment J is the same as the starting address
segment H.

of

of

of

of

of

of

of

of

of

Specifies that the starting address of segment K is immediately after the last address of either

segment H, |, or J, whichever segment is longest.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

2-37
Volume 3 System Processors

PAGE

UPDATE LEVEL

13. Specifies that the starting address of segment L is immediately after the highest last address
of all segments in the set: A, B, C, D, E,F, G, H, |, J, K, and M.

2.2.4.3. RSEG Directive Considerations

The elements included in the relocatable segment should be explicitly named on IN directives (see
2.2.2.1). When an element which is referenced by more than one segment is implicitly included it
is placed in a segment other than the RSEG. Generally, it is advisable if an element is referenced
by more than one segment (one of which is an RSEG), that the element be explicitly included in the
main segment.

Relocatable segments may not be indirectly loaded. See 2.2.4.5.1 for the direct method of loading
segments.

The starting address of a relocatable segment has no relationship to other segments in the collection.
An RSEG may be loaded at whatever starting address is given in register A2 during the LOADS$ calling
sequence (see 2.2.4.5.1). The LOADS request adds the value in register A2 to all relative address
references internal to the named relocatable segment. Any references to RSEG labels from outside
the relocatable segment must be user-modified by the value in register A2.

All instructions and data in a relocatable segment are collected together with all odd location counters
followed by all even location counters.

A relocatable segment may be Ioadea into either an |- or D-bank of the program.

An element within an RSEG can define a common block which is located outside that RSEG only if
the common block of the RSEG element contains no text. This should be especially noted by users
who employ higher level languages such as FORTRAN, JOVIAL, etc.

Example:

1. RSEG ORSON
2. IN ORSON

Element ORSON is specified for inclusion in the relocatable segment ORSON.

2.2.4.4. DSEG Directive Considerations

Dynamic segments may be defined as requiring indirect load, and may be placed anywhere within
the segment structure of a program.

The program addresses assigned to DSEGs are not considered when determining the initial |- and
D-bank limits for a program. However, in assigning the values in LASTD$ and LASTI$ (see 2.2.9),
DSEG addresses are used.

2.2.4.5. Loading Program Segments

When a segmented program is called for execution (see 2.3.1), only the main segment is initially
lnaded. The subordinate segments are loaded by either

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume

2-38
PAGE

3 System Processors UPDATE LEVEL

B the direct method, or

B the indirect method.

Whenever a segment is loaded, an initial copy of the segment is loaded. Once loaded, a segment

will remain marked as loaded

until all or part of its main storage space is overlayed by another

segment or released via ER LCORE$ (see Volume 2-4.7.2).

See 2.2.5.8 for additional information on loading program segments in bank-named collections.

2.2.4.5.1. Direct Method (L$OAD and LOADS)

When using the direct method of loading, use either

B the L$OAD procedure, or

B the Executive Request LOADS.

Format of the L$OAD procedu

re.

LSOAD name,jump,clear,rseg-addr.bank-name

Parameters:

name

jump

clear

rseg-addr

bank-name

Specifies the name of the segment to be loaded.

Specifies the location where control is to be transferred after the
segment is loaded; if omitted, control passes to the location following
the LOADS request.

If greater than zero, the program area containing the segment to be
loaded is not zero filled prior to segment load. If zero, the area to be
occupied by the segment is .zero filled prior to segment load.

If the segment was defined by an RSEG directive, this parameter
specifies the starting address for the relocatable segment. If omitted
when loading a relocatable segment, the address must be in register
A2 before the call is made:

LU A2,rseg-address

The address may be defined as an octal value or a tag not contained
in an RSEG.

Used only for loading an RSEG within a bank-named collection.
Specifies the bank into which the RSEG is to be loaded. If omitted,
the bank-name must be in register A2 along with the RSEG starting
address:

LXLU A2,bank-name

4144.31 SPERRY UNIVAC 1100 Series Executive

2-39
UP-NUMBER : Volume 3 System Processors

PAGE

UPDATE LEVEL

Description:

The L$OAD procedure produces a sequence of code which loads: register AO with the segment name,
register A1 with jump address, register A2 with bank name and address for RSEG, and generates
the LOADS$ request. The LOADS$ request takes the form:

L.U AO,seg-name or L AO,(0400000,seg-name)
LU Afjump

LU A2,rseg-addr or L A2 (bank-name,rseg-addr)
ER LOADS

Seg-name is the same as the contents of the name-1 parameter in the SEG directive (see 2.2.2.14).

When bit 35 of register AO is set, the segment loader does not clear the main storage area to be
occupied by the segment. This decreases the time required to load the segment, but as a result, any
areas within the segment that are not initialized with data and instructions cannot be assumed to be
zero.

Examples:

1. L$OAD NEW,ORG1
2. L$OAD CAP,YELL,0,01350

1. After segment NEW is loaded, transfer control to location ORG 1. The area occupied by segment
NEW is zero filled prior to loading. The L$OAD procedure produces the same effect as the code:

L.,U A1,0RG1

L,U AO,NEW

ER LOADS

2. The area to be occupied by relocatable segment CAP is zero filled prior to loading. The starting
address for segment CAP is 13504. After the segment is loaded, control is passed to YELL. The
L$OAD procedure produces the same effect as the code:

L.U A2,01350
L.U A1, YELL
L.U AO,CAP
ER LOADS

2.2.4.5.2. Indirect Method

Whenever a segment that is marked for indirect loading is referenced by any jump instruction that
passes control to the segment’s I-bank area, the segment is automatically loaded if it is not already
in main storage. Segments to be loaded by the indirect method must be so marked on the SEG
directive. The mechanics for such loading are set up by the Collector and carried out by the segment
loader. The Collector replaces the address portion of the jump command with the address of an
indirect load table entry. The indirect load table performs an SLJ instruction to the indirect load
routine which, in turn, performs an ER to the segment loader (if the segment is not already loaded)
and jumps to the location of the externally defined symbol. All registers are preserved by the process.
The indirect load table is assigned to the data area of the main segment.

If indirect loading is used, the reference ma'y not be made to an external symbol with an offset.

If the B option was specified on the @ MAP control statement, the indirect load routine indicates that
the segment’'s main storage area need not be zero filled.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

2-40
Volume 3 System Processors

UPDATE LEVEL PAGE

Segments marked for indirect loading may also be loaded by the direct method.

No instruction interpretation is done to ensure that a referencing instruction is in fact a jump
instruction.

The indirect load routine is nonreentrant.
Exarﬁple:

SEG EAP#*

SEG NINE*, (FR, SX)

SEG SAL#*, (PEN)
Segments EAP,NINE, and SAL are automatically loaded when any externalized I-bank entry point is
referenced.
2.2.4.5.3. Reloading the Main Segment
It may be desirable to re-establish the main segment of a program for either error recovery or
reinitialization. This is done by the LOADS$ request. The LOADS$ request reloads the entire main
segment including all initially-produced collector tables. The main storage requirements remain
unchanged.
The calling sequence is:

L AO,clear,0400000)

L.U A1 reentry-addr

ER LOADS

The first coding line loads register AQO with the segment-id of 0400000. The clear parameter
functions as follows:

B If clear is less than O, the main segment area is not cleared before loading.
n If clear is greater than or equal to O, the main segment area is cleared.
The second coding line loads register A1 with the reentry-address according to the following:

B If the reentry-addr is equal to O, control is returned to the instruction following the LOADS$
request.

B If the reentry-addr is not zero, control is passed to that address.

See 2.2.5.8.3 for additional information regarding main segment reload in bank-named programs.

2.2.4.5.4. Loading Dynamic Segments (D$LOAD and DLOADS)

Dynamic segments may be loaded by referencing the dynamic load routine contained in
SYS$#RLIBS. This routine may be referenced explicitly by the user or may be referenced implicitly
by the indirect load routine when a DSEG is marked for indirect load. The dynamic load routine may
be called for loading either DSEG’s or normal segments.

The dynamic load routine will determine whether the segment to be loaded is in fact a dynamic
segment. If itis not, an ER LOADS is executed for the segment. If the segment is a dynamic segment,

4144.31 SPERRY UNIVAC 1100 Series Executive

2-41
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

the routine will acquire the necessary DSEG areas via ER MCORES$ and then execute an ER LOADS$
to load the DSEG.

The user may reference the dynamic load routine by using the D$LOAD procedure or by a jump to
DLOADS.

Format:

D$LOAD segname,jump,clear

Parameters:

segnarne Specifies the name of the segment to be loaded.

jump Specifies the location where control is to be transferred after the
segment is loaded; if control is to be passed to the location following
the jump to DLOADS$, a #0 must be placed in the jump parameter field
or a tag must be placed following the procedure call and must be
specified in the jump parameter field.

clear If greater than zero, the program area containing the segment to be

loaded is not zero filled prior to segment load. If zero, the area to be
occupied by the segment is zero filled prior to segment load.

Description:
The D$LOAD procedure generates the following sequence of code:

LU AO,segname or L A0,(0400000,segname)

LU A1l,jump

J DLOADS .
When bit 35 of register AO is set, the segment loader does not clear the main storage area to be
occupied by the segment.
2.2.4.5.5. Releasing a Segment’'s Program Area (D$REL and DRELS$)
When the main storage area occupied by a segment is no longer required by the program, the space
may be released by referencing the dynamic release routine in SYS$*RLIB$. This routine may be
referenced by either the D$REL procedure or by a jump to DRELS.

Format:

D$REL segname,jump

Parameters:
segname Specifies the name of the segment area to be released.
jump Specifies the location where control is to be transferred after the

segment’'s area is released; if omitted, control passes to the location
following the J DRELS$ call.

4144.31 SPERRY UNIVAC 1100 Series Executive A 2-42

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Description:

The DSREL procedure generates the following sequence of code:

LXILU A1l,segname LXILU A1l,segname
LXM,U At jump or LMJ A1,DRELS
J DRELS

The dynamic release routine will determine the program I-bank start address of the named segment.
This segment may be either a DSEG or overlay segment. This address minus one is placed in AO
and an ER LCORES is executed. The D-bank start address minus one is then used for an ER LCORES.
Following the release of the program area, the segment is marked as a dynamic segment. Its area
may then be reacquired by referencing DLOADS.

If the released program areas are occupied by more segments than that specified on the D$SREL call,
these other segments will not be marked as DSEG's. Therefore, it is the user’s responsibility to call
DRELS for each segment actually released or to assure the necessary program areas are reacquired
prior to a subsequent reload of any such segment.

2.2.4.6. Use of Common Blocks

The Collector produces, in the absolute element, load control specifications for the LOADS routine.
These specifications indicate which text words (data and instructions) are to be put at which locations
in main storage when the segment is loaded.

If a common block is given initial values (filled with text, rather than simply set aside as a reserved
area), the Collector produces specifications to put in these values when the segment containing the
element which defines the initial values is loaded.

For example, if five different elements define five different initial vatues for the same common block
and each of these five elements was in a different segment, the same common block located in a
segment common to all referencing segments would be reinitialized each time one of the five different
segments was loaded. This occurs regardless of where the referenced common block is located
within the user’'s program area.

Any areas of the common blocks in which text is not loaded upon reinitialization are not changed
as long as the reinitialization is caused by the loading of a segment other than the one in which the
common block resides.

On IN directives (see 2.2.2.1), common blocks are always specified without a filename. A con. aon
block name must not be identical to an element name.

If TPF$ is not prepped, the size of any common blocks in TPF$ will be used in determining the final
size of the common block in the absolute or relocatable element, otherwise, the largest size declared
in any element is used as the size of the common block.

Bank-named collections may not contain locally included common blocks (see 2.2.5.6.2).

A
UPDATE LEVEL

4144.31 SPERRY UNIVAC 1100 Series Executive

2-43
UP-NUMBER Volume 3 System Processors

PAGE

2.2.5. Bank-Named Collections

2.2.5.1. General

The Collector provides the capability to subdivide an absolute element into logical structures called
banks. This is done by explicitly defining the banks with the Collector's IBANK and DBANK source
language directives and then defining the segmentation and element inclusion structures within the
bank. In the case where there is no explicit bank directive, the Collector generates a two-bank
absolute element, with odd location counters of relocatable elements to the IBANK and even location
counters to the DBANK. This is the bank-implied collection.

The definition of a bank is that entity of a program which may be specified by a single EXEC system
bank descriptor word.

2.2.5.2. Bank Address Assignments

The relative starting address of a bank may be explicitly specified on the IBANK or DBANK directive
(see 2.2.2.18) as a numeric value or as an address to be determined in relation to the size of other
banks. When no such address specification exists, the following is applied:

a. The I-bank specified via the first IBANK directive starts at program address 01000.
b. The D-bank specified via the first DBANK directive starts at the higher of:
1. 040000
2. The next address which is a multiple of 01000 following the highest IBANK address

o I-banks follow I-banks and D-banks follow D-banks; i.e., an I-bank (D-bank) which has no
explicit address assignment is assigned a starting address which is the next multipie of 01000
following the last address assigned to the previous I-bank (D-bank) defined in the Collector
source language.

No I-bank address can be greater than 0177777 (65K) and no D-bank address can be greater than
0777777 (262K). The total size of all I-banks (D-banks) can be greater than 0177777 (0777777)
provided there is some overlap of program address assignments within banks, so that the total
address space does not exceed 0177777 for I-banks or 0777777 for D-banks.

Overlap of bank address assignments may be achieved by using the. IBANK and DBANK directives
in a fashion similar to that of the SEG directives. However, whereas overlay segments having the
same logical (program) address space also occupy the same physical space, banks of the same
address space do not overlay each other and may occupy different areas of physical space
simultaneously.

In addition to the collector-defined tags FRSTI$, LASTI$, FRSTDS, and LASTDS (see 2.2.9), the tags
FIRSTS, LASTS and BDI$ are defined for the bank-named collections. These tags are defined to be
the first assigned address, last assigned address, and bank descriptor index value for the bank in
which the reference is contained.

The SPERRY UNIVAC 1100 Series Assembler SETMIN directive and MASM’'s $INFO 3 directive allow
the user to specify the minimum D-bank address of the element which contains the directive.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

2-44
Volume 3 System Processors

PAGE

UPDATE LEVEL

2.2.5.3. Initially-Based Banks

An initially-based bank is a bank which is referenceable at the start of execution of a program. This
means that the bank is described in one of the bases (B, or Bp of either the Main or Utility PSR. A
bank may be specified for initial basing via the M or U option on the I-BANK and D-BANK directives
(see 2.2.2.18). Each option may be used with a maximum of one I-BANK and one D-BANK directive.
When there is no initial basing specified for any banks, then the first I-bank and the first D-bank
defined in the Collector source language are initially based on the B, and Bp, respectively, of the Main
PSR. A bank is never assigned to be based on the B, or Bp of the Utility PSR by default. Thus, if
a bank is to be initially based on the Utility PSR, it must have the U option specified on the I-BANK
and D-BANK directives. Note that a bank specified for initial basing on the Utility PSR can be
executed only on an 1110 or 1100/40 System. If a bank is not initially based, it can be based
dynamically via the LBJ, LIJ or LDJ instructions (see 2.3.3.2).

2.2.5.4. The Control Bank

Since any bank may have its basing removed during program execution, it is necessary to designate
one bank which, except in unusual circumstances, will not have its basing removed via an LiJ or LDJ
to another bank. This bank, known as the control bank, is assumed to be the normal place in which
to collect such should-always-be present components of a program as permanent flags, central
control routines for sets of dependent relocatable library subroutines, Test and Set cells, and locations
designed to capture interrupts (such as guard mode contingency) which can result at varied or
unpredictable locations throughout the program. Certain Collector-produced tables, including the
segment load table (SLT), are located at the beginning of the control bank. The C option on an I-BANK
or D-BANK directive specifies that bank as the control bank. The control bank normally is defined
as an initially-based D-BANK. If the C option is not present on any I-BANK or D-BANK directive, the
Collector selects the first initially-based bank in the order of D-bank based on the Main PSR, D-bank
based on the Utility PSR, I-bank based on the Main PSR, and |-bank based on the Utility PSR, to be
the control bank.

2.2.5.5. Segmentation within Bank-Named Coliections

A segmentation structure may be specified within each user-defined bank. If a bank has no segments,
the bank is considered to be composed of one main segment. When segmentation does exist within
banks, the same name must be used for the main segment of each bank. The segmentation structure
within a bank may be entirely different from, or entirely the same as, the segmentation structure of
another bank. A segment may be entirely contained within one bank, or it may span (be named and
contained in) several banks. When a spanning segment is to be loaded, each portion of the segment
is loaded into its respective bank. A bank-implied program, which has segments defined, may be
thought of as a two-bank program (one |-bank and one D-bank) with each bank having the same
segment structure, and each segment spanning the two banks.

Relocatable segments cannot span banks and must be included in their entirety in one bank.
2.2.5.6. Element Inclusion

2.2.5.6.1. Global Element Inclusion

All of the information on element inclusion and file searching for a bank-implied collection (see
2.2.3.2) is applicable to bank-named collections with a few important additions. When banks are
not named in the map, any element to be included is split, with its odd location counters going to
the I-bank (instruction area) and its even counters to the D-bank (data area). However, in a

4144.31 SPERRY UNIVAC 1100 Series Executive

2-45
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

bank-named collection, in addition to naming an element for inclusion, the user may also designate
which location counters of the element are to be included within a bank. Normally, the selected
location counters of an element are determined by the location counter set which is active at the time
the element is named for inclusion (see 2.2.2.19). The selection can be overriden on an individual
basis by using the $lcs field for the element named on the IN directive (see 2.2.2.1). Thus, the element
name can appear on several IN directives, so long as different location counters are included each
time the element is named.

All location counters of an element are included in a collection. Therefore, if an element has a location
counter which was not specified for inclusion, that location counter is placed in the main segment
of the control bank.

Example:

| -BANK I
$1.5

IN ELTA
D-BANK D1

IN ELTA,ELTB

| -BANK 12

$7,9.3

IN ELTB($0ODD) ,ELTA
$ALL

IN ELTC,ELTD

The following shows which location counters of each element are placed in the various banks:

u 12 D1
ELTA 1.5 79,3 EVEN, 11
ELTB -- oDD EVEN
ELTC - - ALL --
ELTD - - ALL --

Note that the even counters of ELTA and ELTB are placed in D1 ($ODD assumed for I-BANKs, $EVEN
for D-BANKSs, unless otherwise specified). Also note that the odd counters for ELTB go to 12,
overriding the active location counter set of $7,9,3. Location counter 11 in ELTA was placed in the
control bank because no direction had been given as to its placement.

2.2.5.6.2. Local Element Inclusion

Local element inclusion is a feature to allow the use of muitiple copies of elements within a given
collection. The locality of these elements is determined by the specification of a local bank set list
on the IN directive (see 2.2.2.1). The ‘localness’ of the elements named on such an IN directive is
accomplished by allowing its undefined references to be satisfied and its external tags to satisfy
external references only from elements contained within the set of banks defined in the local bank
set. This set of banks consists of those banks named in the local bank list of the IN directive, plus
the bank named in the preceding I-BANK or D-BANK directive.

The entry points of a local element satisfy only references made by other elements within the banks
to which it is local. No other banks have access to these entry points. Within a given bank, elements
and location counters can be included once and only once. if a version name is used with an element
name and the element is included more than once, the same version name must be used for all
inclusions of the element.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

2-46
Volume 3 System Processors

PAGE

UPDATE LEVEL

The purpose of this feature is to-allow duplication of heavily-used routines without causing entry point
conflicts and without forcing unduly repetitive switching of PSR bank bases to base very short pieces
of heavily- used code.

Entry points can thus appear many times locally (satisfying references from within the local bank set),
but can appear only once globally (satisfying references from all elements not named locally). Entry
points named on the COR, SNAP, EQU, ENT, and DEF collector directives apply to the global
specification of that entry point.

Any element desired for local inclusion must be named on the IN directive along with the local bank
set list. No implicitly included element can be included locally.

2.2.5.7. Element Placement

Elements (or location counters of elements) which are named on IN directives, are placed within the
bank which is named on the preceding I-BANK or D-BANK directive.

Although elements may be split by location counters between banks, the entire element; i.e., all its
location counters, will be included somewhere in the absolute element. If not all of the location
counters are specified on IN directives or on the $lcs directives, then the remaining location counters
are placed in the main segment of the control bank (see 2.2.5.4).

Another method of element placement is defined for those elements which are included in the
collection because their entry points satisfy external references from another element to be included
in the collection. The placement of these implicitly included elements is dependent upon the
placement of the referencing elements.

For bank-implied collections, the implicitly included elements are split with odd location counters to
the I-bank and even location counters to the D-bank. For bank-named collections, the following rules
apply:

1. In the case where there are at most two banks, based only on the Main PSR and no dynamic
banks (see Volume 2-3.4.4.4.3), then the implicit element is split by odd and even location
counters if there are two banks, or else included in its entirety in the one defined bank.

2. If the conditions of 1. are not satisfied and the implicitly included element is referenced only
from within one bank; i.e., the referencing elements are contained in their entirety in this one
bank, then the implicit element is split with the odd counters going to the referencing bank and
the even counters going to the main segment of the control bank.

3. If the conditions of 2. are not satisfied and the implicitly included element is referenced from
an element or elements which are not entirely contained in one bank, then the implicitly included
element is placed in its entirety into the main segment of the control bank.

The user may wish to override the Collector’'s placement of implicitly included elements. This can
be done by specifying on the LIB directive the bank or banks in which elements implicitly included
from this file are to be placed (see 2.2.2.3).

2.2.5.8. Loading Program Segments

When a segmented program produced by a bank-named collection is called by an @XQT control
statement, only the main segment of each static and initially based dynamic bank (see Volume
2-3.4.4.4.3) is loaded. The main segment of any other dynamic bank is automatically loaded upon
execution of an LIJ or LDJ to that bank.

4144.31 SPERRY UNIVAC 1100 Series Executive

2-47
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

As in bank-implied collections, all subordinate segments are loaded by either:
B the direct method, or

B the indirect method.

2.2.5.8.1. Direct Method (L$OAD and LOADS)

Segments within bank-named collections are directly loaded in the same manner as segments within
a bank-implied collection (see 2.2.4.5.1). However, a consideration in bank-named collections is that
each portion of that segment will be loaded into its respective bank. Thus, all banks which contain
portions of that segment must be either static or currently based on the Main or Utility PSR at the
time the segment is directly or indirectly loaded.

2.2.5.8.2. Indirect Method

Paragraph 2.2.4.5.2 describes the manner in which segments are indirectly loaded. The same
considerations for directly loading segments in bank-named collections (see 2.2.5.8.1) are applicable
when indirectly loading segments.

When referenced, any globally and locally defined entry points within the I-bank portions of an
indirectly loaded segment will cause that segment to be automatically loaded (if it is not already
loaded).

The reference to an entry peoint, which will cause the indirect load of a segment cannot be from the
same element that contains that entry point even if that portion of the element making the reference
is in another segment of the program.

2.2.5.8.3. Reloading the Main Segment in Bank-Named Programs

In both bank-implied and bank-named programs, the same calling sequence is used to reload the
main segment (see 2.2.4.5.3).

However, the following apply to the main segment reload in bank-named programs:
B Main segment is reloaded for all static banks and any dynamic banks which were initially based.

B Any initially based dynamic banks must be based at the time of the main segment reload. If
this is not true, the program will error terminate.

B Any currently based dynamic banks which were not initially based will not have their main
segments reloaded.

B Atthe time of the reload, the current main storage requirements for all banks in which the main
segment is reloaded cannot be less than the banks’ initial main storage requirements.

B All banks which are based at the time of a main segment reload are still based after the reload
has been performed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

2-48
PAGE

2.2.6. Segmentation Example

FILEA

MAIN
ALPHA1/A
ALPHA2/A

ALPHA3/A

BETA1/B

BETA2/B
BETA3/B

CHI1/C
CHi2/C
CHI3/C

DELTA1/D
DELTA2/D

EPSO1/E
"‘EPS02/E

PHI
PHI2

GAMMA1/G

GAMMA2/G

v

A\

A\ 4

Vv

v

WV

A 4

A4

Vv

ELEMENTS IN WHICH FILEA
REFERENCES ARE DEFINED

FILEA.ALPHA 1,BETA1,PHI1
LIB1.SIN/X1
LIB2.COS/X2

LIB1.SORT/X1

LIB1.SORT/X1

LIB2.CAT/Y5

LIB2.CAT/Y5

LIB1.SIN/X1

LIB2.COS/X2

The following is an example of a segmented program. The elements in the file FILEA and their
required outside references are shown below:

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 2-49

PAGE

UPDATE LEVEL

The following coding is used to produce the segmented program:

1. @PREP LiIB1.

2. .@PREP LiB2.

3. @MAP,IL MAPSYM, MAPABS

4. SEG MAIN

5. IN FILEA.MAIN

6. SEG ALPHA%*, (MAIN)

7. IN FILEA.ALPHA1/A, .ALLPHA2/A, .ALPHA3/A
8. SEG BETA%*, (ALPHA)

9. IN FILEA.BETA1/B, .BETA2/B, .BETA3/B
10. SEG CHI* BETA

11. IN FILEA.CHI1/C, .CHI2/C

12. SEG DELTA*, (BETA,CHI)
13. IN FILEA.DELTA1/D, .DELTA2/D

14. SEG EPSO*, DELTA

16. IN FILEA.EPSO1/E, .EPSO2/E

16. SEG GAMMA#*, (MAIN)

17. IN FILEA.GAMMA1/G, . GAMMA2/G

18. SEG PHI#, (DELTA,GAMMA)
19. IN FILEA.PHI1, . PHI2

20. LIB LiB1,LIB2

21. END

1,2. Entry point tables are prepared for files LIB1 and LIB2.

3. Calis the Collector. The | option specifies that symbolic element MAPSYM is introduced from
the runstream. The L option specifies that a complete listing is to be produced. The absolute
output element is called MAPABS. Both MAPSYM and MAPABS are placed in TPFS$.

4. Segment MAIN is the program’s main segment.
5. Element MAIN is found in FILEA file.

6. Segment ALPHA is marked for indirect loading. The starting address of ALPHA follows the last
address of segment MAIN.

7. Elements ALPHA1/A, ALPHA2/A, and ALPHA3/A are found in FILEA file and are included in the
collection of ALPHA segment.

8. Segment BETA is marked for indirect loading. The starting address of BETA follows the last
address of segment ALPHA.

9. Elements BETA1/B, BETA2/8, and BETA3/B are found in FILEA file and are included in the
collection of BETA segment.

10. Segment CHI is marked for indirect loading. The starting address of CHI segment is the same
as the starting address of segment BETA.

11. Elements CHI1/C and CHI2/C are in FILEA and are included in the collection of the CHI segment.

12. Segment DELTA is marked for indirect loading. The starting address of DELTA segment follows
the last address of either segment BETA or segment CHI, whichever is longer.

13. Elements DELTA1/D and DELTA2/D are in FILEA file and are included in the collection of
segment DELTA.

4144.31 SPERRY UNIVAC 1100 Series Executive

2-50
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

14. Segment EPSO is marked for indirect loading. The starting address of EPSO segment is the
same as the starting address of segment DELTA.

15. Elements EPSO1/E and EPSO2/E are iN FILEA file and are included in the collection for segment
EPSO.

16. .GAMMA segment is marked for indirect loading. The starting address of GAMMA segment
follows the last address of segment MAIN.

17. Elements GAMMA1/G and GAMMAZ2/G are in FILEA file and are included in

18. Segment PH! is marked for indirect loading. The starting address of PHI segment follows the
last address of either segment DELTA or segment GAMMA, whichever is longer.

19. Elements PHI1 and PHI2 in FILEA file are included in the collection of PHI segment. the collection
of segment GAMMA.

20. Files LIB1 and LIB2 are searched prior to searching the system library for the collection
clements.

- 21. End of the Collector directives.

Figures 2-1 and 2-2 show the instruction and data areas of main storage for the preceding example.

4144.31

SPERRY UNIVAC 1100 Series Executive

2-51

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
The first address of the I-bank
Implicitly referenced elements anc subroutines
01000,
Y ¥
« | < | «|BETA1/B|BETA2/B[BETA3/B
eS8 a
Y Rlel<| g| &
Sloglz| x| T
alala| o
dJ1 3| 3
2| z| 2 I DELTA1/D | DELTA2/D
o| 3| g
EPSO1/E EPSO2/E
CHI1/C | CHI2/C
PHI1 PHI2
GAMMAT1/G GAMMA2/G

Figure 2-1. Instruction Area (I-Bank) Main Storage Map Segmented MAPABS

The first address of the data area is always a multiple of 10008

Segment load table and indirect load table (generated by the Collector)

Indirect load routine (always resides in main segment)

J

LOAD

TABI_LES

IDLS
Ccos
SIN
MAIN

<| < | < [BETAV/BBETABBETA3/B
ElE|x| 2| €
IS g| | IT| X
[75] o. [« a
- | P}
< < < DELTA1/D | DELTA2/D

EPSOTE | EPSO2/E |

[CHM/C l CHI2/C

[GaMmA1/G | GavMA2/G I

EHEE

Figure 2-2. Data Area (D-Bank) Main Storage Map Segmented MAPABS

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

2-562
PAGE

2.2.7. Bank-Named Segmentation Example

FILEA

MAIN
ALPHA1/A
ALPHA2/A

ALPHA3/A

BETA1/B

BETA2/B
BETA3/B

CHI1/C
CHI2/C
CHI3/C

DELTA1/D
DELTA2/D

EPSO1/E
EPSO2/E

PHI1
PHI2

GAMMA1/G

GAMMA2/G

A4

v

A4

A4

WV

N4

WV

ELEMENTS IN WHICH FILEA
REFERENCES ARE DEFINED

FILEA.ALPHA1,BETA1,PHI1
LIB1.SIN/X1
LIB2.COS/X2

LIB1.SORT/X1

LIB1.SORT/X1

LIB2.CAT/Y5

LIB2.CAT/Y5

LIB1.SIN/X1

LIB2.COS/X2

The following is an example of a bank-named segmented program. The elements in file FILEA and
their required outside references are shown below:

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

2-53
PAGE

The following coding is used to produce the bank-named segmented program:

OCONOOOTHLEWN =

@PREP
@PREP
eMAP, IL

| -BANK,MD
SEG

- IN

SEG
IN
SEG
IN

. D-BANK,MC
. SEG

IN

. SEG

IN

. SEG

IN
IN
{ ~-BANK

. SALL
. SEG

IN

. SEG

IN

. SEG

IN
| -BANK, U

. SEG

IN

. SEG

IN

. SEG

IN

. D~-BANK,U
. FORM

. D-BANK

. SALL

. SEG

IN

. SEG

IN

LIB1.

LiIB2.

MAPSYM,KMAPABS

BANK 1

MAIN

FILEA.MAIN

ALPHA

FILEA.ALPHA1/A, .ALPHA2/A
BETA+*

FILEA.BETA1/B

BANK2

MAIN

FILEA.MAIN

ALPHA

FILEA.ALPHA1/A, .ALPHA2/A
BETA#*

FILEA.BETA1/B
FILEA.BETA2/B($ALL)
BANKS, (BANK1)

MAIN

FILEA.CHI3/C

EPSO ‘
FILEA.EPSO1/E, .EPSO2/E
PHI

FILEA.PHI1, .PHI2
BANK3 , BANK5-02000

MAIN

FILEA.BETA3/8B

CHI

FILEA.CHI1/C, .CHI2/C
DELTA,CHI
FILEA.DELTA1/D, .DELTA2/D
BANK4

BANK3

BANK6 , BANK4

MAIN

FILEA.GAMMA1/G

GAMMA

FILEA . ALPHA3/A, .GAMMA2/G

414431
UP-NUMBER

SPERRY UNIVAC 110C Series Executive

2-54
Volume 3 System Processors

UPDATE LEVEL PAGE

1,2. Entry point tables are prepared for files LIB1 and LIB2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Calils the Collector. The | option specifies that symbolic element MAPSYM is introduced from
the runstream. The L option specifies that a complete listing is to be produced. The absolute
output element is called MAPABS. Both MAPSYM and MAPABS are placed in TPF$,

I-bank BANK1 is a dynamic bank which is based on the Main PSR.

Segment MAIN is the main segment for BANK1.

The odd location counters from element MAIN in FILEA are to be included.

Segment ALPHA follows segment MAIN.

The odd location counters from elements ALPHA1/A and ALPHA2/A in FILEA are to be included.
Segment BETA follows segment ALPHA and is indirectly loaded.

The odd location counters from element BETA1/B in FILEA are to be included.

D-bank BANK2 is the control bank and is based on the main PSR.

Segment MAIN is the main segment in BANK2.

The even location counters from element MAIN in FILEA are to be included.

Segment ALPHA follows segment MAIN.

The even location counters from elements ALPHA1/A and ALPHA2/A in FILEA are to be
included.

Segment BETA is indirectly loaded and follows segment ALPHA,

The even location counters from element BETA1/B in FILEA are to be included.

All location counters from element BETA2/B in FILEA are to be included.

I-bank BANKS is a static bank and follows BANK 1.

The $lcs specification is for the inclusion of all location counters of an element.
Segment MAIN is the main segment of BANKS5.

All location counters from element CHI3/C in FILEA are to be included.

Segment EPSO follows segment MAIN.

All location counters from elements EPSO1/E and EPSO2/E in FILEA are to be included.
Segment PHI follows segment EPSO.

All location counters from elements PHI1 and PHI2 in FILEA are to be included.

414431

SPERRY UNIVAC 1100 Series Executive

2-556
Volume 3 System Processors

UP-NUMBER UPDATE LEVEL PAGE

27. l-bank BANK3 is a static bank based on the Utility PSR. Its starting address is equal to the
starting address of BANK5 minus 02000.

28. Segment MAIN is the main segment of BANKS3.

29. The odd location counters from element BETA3/B in FILEA are to be included.

3C. Segment CHI follows segment MAIN.

31. The odd location counters from elements CHI1/C and CHI2/C in FILEA are to be included.

32. Segment DELTA starts at the same address as segment CHI.

33. The odd location counters from elements DELTA1/D and DELTA2/D in FILEA are to be included.

34. D-bank BANK4 is a static bank based on the Utility PSR. It follows D-bank BANK2.

35. The same segmentation structure and element inclusions for BANK3 are to be placed in BANK4,
except that the even location counters of the elements are to be included rather than the odd
location counters as in BANK3.

36. D-bank BANKG6 is a static bank which starts at the same address as BANK4.

37. The $lcs specification is for the inclusion of all location counters for the following included
elements.

38. Segment MAIN is the main segment of BANKG.

39. All location counters of element GAMMA1/G in FILEA are to be included.

40. Segment GAMMA follows segment MAIN.

41. All location counters from elements ALPHA3/A and GAMMA2/G in FILEA are to be included.

Figures 2-3 through 2-9 show the bank structure of the program, the segment structure within each
bank, and the element inclusion within the segments and banks.

4144.31 SPERRY UNIVAC 1100 Series Executive 2-56

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
01000
I-bank
BANK1
I-bank
BANK3
I-bank
BANKS 040000
CONTROL
D-bank
BANK?2
D-bank
BANK4
D-bank
BANK®6
Figure 2-3. Bank Structure of Program and Segment Structure Within Each Bank
IMPLICITLY REFERENCED ELEMENTS
B
z 2 o1 O R e e o PR
< X2z <
3 3222|858z 3|z 22228
ol« [« IS] A I Lt] R3] R
= 3|9 § <z|<=
falTo] s
O) —
5oy 8 ZL|ZLSETT
<2< a7 <Z|<
< w > jw <
-8 o Wwjo =
@S

Figure 2-4. BANK1 Figure 2-5. BANKZ2 (Control Bank)

2-57

PAGE

414431

UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UP-NUMBER

(s31 1Iv)
ZIHd
(s31 1V)
LiHd

(s31 1IV)

3/20d3

(31 1IVY)

3/10Sd3

(sat 1v)
J/EIHD
{59 NIAT) {s31 NIA3I)
a/zv113a D/TIHD
(s91 NIA3) (531 N3A3)
a/lv.i13da O/LIHD
{s3t N3A3)
ga/ev13g

(so1 @Qo) (s?1 aqQo)
a/zvliiaa D/CIHD
{s21 @Qo) {s21 @go)
a/lvli3a D/LIHO

{21 @A0)

. g/evliasa

Figure 2-8. BANKS

Figure 2-7. BANK4

Figure 2-6. BANK3

(s31 17Vv)
J/CVIWINVO

(s91 717V)
V/EVHdV

{31 1V)
J/LYIWWVYD

{31 aao)
ZX/S09Q

IMPLICITLY REFERENCED ELEMENT

Figure 2-9. BANK6

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

2-58
PAGE

2.2.8. Collector Generated Tables

Entry Point Table (ENTRY$):

Word

LY

000000

nbr-of-entries

entry-point-name

value-of-entry-point-program-addr

The value of the entry point is the address of the reference vector entry of the entry point if in a
‘'segment designated for indirect loading.

The Entry Point Table includes only those entry points specified on the DEF statement.

Common Block Table (COMMNS):

Word

0

000000

nbr-of-entries

common-block-name (BLANK S COMMON for-blank-common)

length-of-common-block

addr-of-common-block

When the DEF statement is present, the Common Block Table is included in the absolute program.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System

Processors UPDATE LEVEL

2-59
PAGE

External Reference Table (XREF$):

Word

0

000000

nbr-of-entries

external-reference-name

ER ERRS

The external reference is assigned the address of the third word of its entry in the External Reference

Table entry.

NOTE:

The first addresses of the Entry Point Table, Common Block Table, and External Reference Table are
assigned, respectively, to the following external definitions (which may be directly referenced in a
user program): ENTRYS, COMMNS, and XREF$. If no table exists, this value is zero.

Segment Load Table (SLTS$)

Two formats of the Collector-produced Segment Load Table exist.

Type 1 format is produced for bank-implied collections.

Word

where:

Segment Load Table Format - Type 1

type

o forward link to active segment

last I-bank address

first I-bank address

last D-bank address

first D-bank address

sector address of first
load control group

Bit 35 set if segment is not loaded.

4144.31

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

2-60

UP-NUMBER UPDATE LEVEL PAGE
Type 000 Main segment for type | SLT format
010 Dynamic segment
027 Relocatable segment
024 Overlay segment

If the S2 value of word O of the first SLT entry (SLT$) is equal to zero, the table only contains four-word

entrigs as formatted above.

If S2 of word O = 022 in the first SLT entry, the table format contains extension entries, in addition

to four-word entries.

Type 2 format is produced for all bank-named collections.

Segment Load Table Format — Type 2

Word
0 A type (4] forward link to active segment
1 last bank address first bank address
2 BD/ 0 extension index
sector address of first
3 0 load control group
where:
A Bit 35 set if segment is not loaded.
TYPE 022 Main segment for type 2 SLT format
011 Dynamic segment
027 Relocatable segment
024 Overlay segment
BDI BDI value for bank into which segment part is loaded.

When H2 of word 2 is nonzero, it contains a link to the next SLT extension for the segment.

NOTE:

The extension index points to the word immediately preceding the first word of the extension entry.

Word
0 last bank address first bank address
1 8D/ 0 extension index

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

2-61
Volume 3 System Processors

UPDATE LEVEL PAGE

Each 4-word entry and its extensions are linked in order of ascending BDI value.

The SLT 4-word entry for the main segment never contains an extension index as no extension entries
are built for the main segment.

For RSEG SLT entries, the format is the same in both the type 1 and type 2 segment load tables. The
format is as follows:

Word
¢ 027 0 forward link to active segment
1 last rseg address 0
2 0 nbr of relocation words
sector address of first
3 0 load control group

2.2.9. Collector Defined Tags

References to the following tags are satisfied by the Collector during collection:

ENTRY$

COMMNS$

XREF$

SLTS$

FRSTIS

FRSTDS

LASTIS

LASTDS

FIRSTS

LASTS

BDIS

BDIREF$

i

First address of the Entry Point Téble.

First address of the Comimon Block Table.

First address of the External Reference Table.

First address of the Segment Load Table.

Lowest I-bank address assigned to the program.

Lowest D-bank address assigned to the program.

Highest I-bank addréss assigned to the program, including dynamic segments.
Highest D-bank address assigned to the program, including dynamic segments.
Lowest address assigned to the bank in which the reference is made.
Highest address assigned to the bank in which the reference is made.

Bank descriptor index for the bank in which the reference is made.

Bank descriptor index for the bank in which the associated tag is defined.

414431
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

2-62
Volume 3 System Processors

PAGE

BDICALLS - As BDIREFS, unless the collection is bank-implied or the reference is in the same
bank in which the tag is defined. In these cases, the value is zero. If the value
of the associated tag is an absolute 36-bit number, then the top 18 bits are used.

1BJ$ - Used in the f-field of an instruction. LIJ operation code if the tag in the u-field
of the instruction is an absolute value, or is defined in a bank other than that in
which the reference is made, except for bank-implied collections. LMJ operation
code if the collection is bank-implied, or the tag in the u-field is defined in the
same bank as that in which the reference is made.

DBJS - Same as |BJS except'that LDJ is generated in place of LIJ.

DSATE - Satisfied with the date, in TDATES format, that th absolute element was created.

TSIME - Satisfied with the time, in TDATES format, that the absolute element was created.

DSATE and T$IME provide 18-bit values for the date and time of the absolute element creation which
may be edited using the EDIT$T or AEDITS$T packages to provide a means of verifying which version
of a program is being executed.

2.2.9.1. Use of BDICALLS/IBJS Feature

BDICALLS and IBJS, together with the TYPE IBJLNK parameters, provide a powerful means of coding
subroutines and their calls in such a way that the correct linkages and parameters may be generated
by the Collector. This relieves the programmer of having to know when coding calls to subroutines,
especially for library routines used in high level languages; whether the subroutine is to be collected
in the same bank as the call, in a different bank in the program, or resides in a common bank. Also
using TYPE IBJLNK, linkages may be set up to a common routine, where parameters to be passed
are specified at collection time.

BDICALLS and IBJ$ are used in the following format, where the instructions must be in the given order
but not necessarily sequential. IBJis assumed to be a proc that generates a word in instruction format
with bits 26-35, the f-j fields relocated by the XREF IBJS. X11 is used for convenience in the
examples, however, any index register could be used.

LXLU X11,BDICALLS4+TAG . Load Parameter
1BJ X11.TAG . Call Subroutine

The following cases, used to determine how BDICALLS and IBJ$ are satisfied, are defined.
B Thecalling sequence and TAG are both defined in the same bank, the collection is a bank implied
collection, or the bank in which TAG is uefined in is specified with the 'L’ option or is the control

bank.

In this case BDICALL$+TAG is satisfied as O and |BJS is satisfied as LMJ, such that the calling
sequence is generated as if it were:

XU X110
LMJ X11,TAG

B TAG is defined as an entry point, in a bank named collection, in a bank other than that in which
the calling sequence is defined.

14431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive A
Volume 3 System Processors UPDATE LEVEL

PAGE

In this case BDICALLS+TAG is satisfied as the Bank Descriptor Index of the bank defining TAG
- e.g., BDI1, and IBJS is satisfied as LIJ, such that the sequence is generated as if it were:

LXLU X11,8DI . LOAD BANK BDI
LIy X11,TAG . ENTER NEW BANK

"TAG is defined as a 36-bit value in an element not specified on a TYPE IBJLNK statement.

In this case the reference is assumed to be to a common bank, where bits 18-35 are the BDI
and bits O-17 are the entry point for the common bank, e.g., TAG was defined as:

TAG* EQU 0400231002010 . BDIC,BNKENTRY

BDICALLS is satisfied as the BDI value from the 36-bit value. IBJ$ is satisfied as LIJ, and TAG
is truncated to 18 bits. The sequence is generated as if it were:

LXILU X11,0400231 . BDIC
N X11,002010 . BNK ENTRY

TAG is defined as an absolute value in an element which was specified on a TYPE {BJLNK
statement in the collector source, e.g.,

TYPE IBJLNK SUBPARAM,SUBENTRY
TAG is defined in SUBPARAM and SUBENTRY is the name of an entry point in the collection.
In this case BDICALLS is satisfied with the value of TAG, IBJ$ is satisfied as LMJ, and the address
field relocated by TAG on the IBJ instruction is satisfied by SUB ENTRY. The sequence is
generated as if it were:

LXLU X11,TAG . LOAD PARAMETER

LMJ X11,SUBENTRY . CALL SUBRQUTINE
In this way many calls to SUBENTRY may be coded, specifying that different parameters are to

be used on entry, but the parameters may be defined in a separate element, and may be changed
without having to recompile the elements containing the subroutine calls.

When BDICALLS and IBJ$ are satisfied in one of the first three ways, i.e., without the use of a TYPE
IBJLNK specification, the called subroutine may easily determine the type of call and return
appropriately. This is done by examining the value passed in the increment portion (H1) of X11, as

follows:
TAG .
S X11,RETURN . Save return address.
.
° Process subroutine.
[]
L X11,RETURN . Restore return address.
TZ,H1 RETURN . Call by LIJ or JUMP
LiJ X11,0,X11 . LIJ, LIJ back

J 0.X11 . LMJ, JUMP back

2-63

4144.31
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

2-64
Volume 3 System Processors

PAGE

2.3. PROGRAM EXECUTION

2.3.1. Initiating Execution (@XQT)

The @XQT statement (see Volume 2-3.4.4) is used to initiate the execution of an absolute eltement
prepared by the Collector. The absolute program will be loaded into main storage.

See \}olume 2-3.4.4 for a discussion on the following:
] Initial execution
B Initial execution status
Initial PSR and storage limits
1 Overlapped addresses
2 Lowest bank address
3. Initially-based common banks
4 Common bank access
] Program data separation
B Bank referencing
Visible banks
Switching between banks
Static versus dynamic banks
Initial load

PCT referencing

W Program termination
2.4. REENTRANT PROCESSOR EXECUTION

2.4.1. General

Reentrant processors are provided only to be compatible with earlier Executive systems. The
functions provided by reentrant processors can better be provided by common or dynamic banks.

A reentrant processor (REP) is an executable reentrant routine referenced from a user’'s program by
the LINKS or RLINKS Executive Requests. A reentrant processor consists of only |-bank addresses -
and resides as an absolute element in the system library (SYS$*LIBS$) or a user file. A REP may be
referenced many times during a user run without being reloaded and may access other banks of the
calling program. For purposes of debugging, a reentrant processor may reside on mass storage in
a user specified file. There are two types of reentrant processors:

B . System standard reentrant processors listed in system generation
n User-specified reentrant processors listed by the RLIST$ Executive Request

See Volume 2-4.8.5 for further discussion of reentrant processor Executive Requests.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

3-1
Volume 3 System Processors

UPDATE LEVEL PAGE

3. Debugging Aids

3.1. INTRODUCTION

The operating system provides a comprehensive set of diagnostic routines to aid in the checkout and
debugging of user programs. The routines provided are:

B Postmortem Dump (PMD) Processor

B Dynamic Dump Routines

B Program Trace Routine (SNOOPY)

B Flow Analysis Program (FLAP)

Another diagnostic capability, the production of snapshot dumps, is provided by the SNAP$ request
(see Volume 2-4.10.3) and the Collector's SNAP directive (see 2.2.2.10). Snapshot dump output, like
program trace (SNOOPY) output, is placed in the user’'s print file at the point at which the request
was made. The output of the dynamic dump routines is handled by the PMD processor; the output
of the PMD processor is listed after the print output generated by the user’s program. SNOOPY and
FLAP are described in Volume 4.

A diagnostic file (DIAG$), which is used for recording diagnostic information for the PMD processor,
is automatically assigned to each run by the system. This file is divided into two functional parts:
a dynamic dump portion and PMD portion. The dynamic dump portion always starts at the beginning
of the diagnostic file and it is followed by the PMD portion.

The dynamic dumps consists of dumps of:

B main storage,

B control registers,

B magnetic tape files, and

@ mass storage files.

The postmortem dump consists of the final contents of a program’s main storage area at termination.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

3-2
Volume 3 System Processors

PAGE

UPDATE LEVEL

3.2. POSTMORTEM DUMP PROCESSOR (PMD)
The Postmortem Dump Processor (PMD) is called by the @PMD control statement. At program
termination the final contents of the program’s main storage areas are written into the diagnostic file
by the system. The information can then be edited and printed by the PMD processor. Postmortem
dumps may be taken of
B overlay segments,

elements,

|
| banks, or
B

any portion of the terminated program as long as those segments, elements, banks, and/or
portions are active when the program terminates.

See Volume 2-3.4.4.4.5 for the description of which program banks are considered active. Within
a program bank, a portion of the terminated program is considered active if it is either the main
segment or an overlay segment which is loaded as described in 2.2.4.5.1. or 2.2.4.5.2.

3.2.1. @PMD Control Statement

Purpose:

Calls the PMD processor to dump all or specified portions of a program that was in main storage at
program termination. Any number of PMD control statements may follow the execution of a program
so that different parts of a program’s storage area may be dumped in different formats, if desired.

Format:

@PMD,options operand fields

Parameters:

options

general Applies to all types of PMD control statements. The presence of A,
I, or D options indicate a format 3 PMD control statement. The
absence of operand fields indicates a format 4 PMD control statement.

special Applies to format 3 or 4 PMD control statements. PMD control

statements without A, |, or D options and having operand fields are
either format 1 or 2. Format 1 PMD control statements are used to
dump all or part of a specific location counter of a specific element.
Format 2 PMD control statements are used to dump areas starting at
specified externally defined entry points.

If no parameters are specified in the operand fields, all elements residing in main storage at program
termination are dumped in accordance with the specified options.

Format 1:

@label:PMD,options eltname/bankname,address/Ic,length,format

414431

SPERRY UNIVAC 1100 Series Executive

3-3

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Format 2:
@iabel:PMD,options epname/bankname,length,format
Format 3:

@label:PMD,options

part-1,part-2,...,part-n

where part-n may be of the following forms:

eltname
segment
bankname

eltname/segname
eltname/bankname
segment/bankname

eltname/segname/bankname

Format 4:
@PMD,options

NOTE:

The presence of an A, I, or D options indicates a format 3 PMD.

Parameters:

options

eltname

epname

segname

bankname

The general options in Table 3-1 apply to any format PMD control
statement. All of the special options in Table 3-2 apply to format 3
PMD control statements. On format 4 PMD control statements the
following special options may be used: I, D, L, F, G, N, O, Q, and S.
If more than one of the format options (F, G, N, O, Q, and S) are used
on format 3 or 4 PMD control statements, then each location counter
of each element dumped is repeated, once for each type of format
requested. If no format options are specified on format 3 or 4 PMD
control statements, then octal format is used.

Specifies the element to be dumped. The names of labeled common
blocks or BLANK$COMMON may also be used. Common blocks can
be considered to have one location counter (location counter zero).

Specifies the entry point name from which the dump is to start. This
name must be externally defined and referenced by another element
in the program. If any externally defined name is to be referenced in
a format 2 PMD, then the user program must be MAPped to produce
extended diagnostic tables using the TYPE EXTDIAG directive (see
2.2.2.13).

Specifies the segment to be dumped.
Specifies the bank to be dumped. If used as subfield containing other

names, it defines which bank of the multibank program to consider for
dumping.

414431
‘JP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

3-4

UPDATE LEVEL PAGE

part

address

length

format

NOTE:

Specifies the element, segment or bank to be dumped. For multibank
programs with localized elements or segments which span banks,
subfields may be used to define the specific portion of the element or
segment to be dumped. The subfield names must maintain the same
relative sequence (i.e., bank name last, segment name preceding bank
name, etc.) although each of the subfields is optional and any type of
name can appear in any subfield.

The address, relative to the beginning of the location counter (ic), at
which the dump should begin. This field applies only to format 1. If
this field is omitted, an address of zero is assumed.

Specifies which location counter of the element to be dumped. if this
parameter is omitted, a location counter of zero is assumed.

Specifies the number of words to be dumped. If this parameter is
omitted, the word length in the location counter being dumped is
assumed.

The single letter which references one of the standard editing formats
(see 3.3.1.8.1) to be used. Optionally, a FORTRAN format expression
enclosed in parentheses may be defined by the user in this field to be
used as the editing format.

Any format statement acceptable to FORTRAN V for output editing
may be used, with the exception of one using the R editing code. See
1100 Series FORTRAN V, UP-4060 (current version). In addition, N
and S may be used as editing codes in format statements for
mnemonic and octal instruction formats, respectively. When N is used
as an editing code in a FORTRAN format statement, at lease 26 spaces
must be provided for each word edited. When S is used as an editing
code, at least 21 spaces must be provided for each word edited. Note
that the D standard format and user-supplied formats are not
applicable to changed word dumps. If the parameter is omitted, an
octal dump is produced.

The address, location counter and length may be specified in octal or
decimal number notation. (Numbers with a leading zero are assumed
to be octal.) '

Since element names need not be unique to the program, care must be taken in requesting PMD
processing. The element name may be the same as the entry point name, segment name or bank
name. The order of search within the PMD porcessor is as follows:

AWh~

Bank Name
Segment Name
Element Name
Entry Point Name

Therefore, if unique element names are not used, care must be taken in requesting dumps to ensure
that the proper information is obtained. In order to prevent possible conflicts, it is recommended
that unique element names be used whenever possible.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 3-6
Volume 3 System Processors UPDATE LEVEL PAGE

Table 3-1. @PMD Control Statement, General Options

Option Description
Character

[Dumps the words which were changed during the execution or loading of the allocated 'program area of
main storage specified in the @PMD contro! statement.

E Processes @PMD control statement only if the previous routine terminates in error.

M Print only diagnostic dumps that have not been printed. This applies to demand runs only.

P Causes an octal dump of the PCT blocks used by the run to be printed preceding the dump of the program.
Also the segment load tables and any other collector generated table, if any, are dumped in octal.

B Dumps information about a program’s banks. Information dumped: bank’s name, BDI, base address, bank
type, and storage preference.

T Formats the output of PMD so that no print line is longer than 80 characters. This option is intended for
use with output devices such as the UNISCOPE 100, but use is not limited to demand runs. When the T
option is used on the first PMD control statement following the execution of a program, it also controls
the editing of any Dynamic Dumps produced.

w Debug only - Turns on snap dumps in PMD.

Y Debug only - Turns on snap dumps in PMD.

Table 3-2. @PMD Control Statement, Special Options
Option Description
Character

A Produces a dump of the specified main storage area of each named element or segment or bank.

D Produces a dump of the D-bank portion of each named element, segment or bank. If no names are
specified, then all of the D-bank portion of the program is considered for dumping.

| Produces a dump of the I-bank portion of each named element, segment or bank. If no names are specified,
then all of the I-bank portions of the program is considered for dumping.

L Dumps the active library elements. When the A, | or D options are used, the L option is necessary if any
of the elements named in the specification fields are system library elements. @PMD,L dumps all active
elements including those from the system library.

X Used in conjunction with the A, | or D options. Dumps all active elements except those named in the control
statement and those belonging to the segments named in the control statement.

F Produces a dump in Fieldata aiphanumeric fdrmat (see Table 3-3).

G Produces a dump in G format (see Table 3-3).

N Produces a dump in mnemonic instruction format (see Table 3-3).

4144.31 SPERRY UNIVAC 1100 Series Executive 3-6
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 3-2. @PMD Control Statement, Special Options (continued)
Option Description
Character
(o] Produces a dump in octal format. This option is used only when any of the F, G, N, Q, and S options are
used. Produces an octal dump in addition to the other formats requested.
Q Produces a dump in ASCII alphanumeric format (see Table 3-3).
S Produces a dump in ASCHl octal instruction format (see Table 3-3).
Description:

For the A, |, D, and X options, the names of labeled common blocks or BLANK$ COMMON may be
used as element names.

See Volume 2-3.4.1 for the effect of the @RUN control statement on postmorten dumps.

If no information was saved by the system when the previous execution terminated, no dumps are
possible. This condition is caused by an N option on the @RUN control statement. A PMD is not
possible for a program if the Z option was specified to the Collector on the @ MAP control statement
when that program was mapped. If no dump is available, a message is produced.

In demand or batch mode, all control statements are allowed between the normal termination of an
@XQT or processor call and the @PMD request for the @XQT or processor call. Additionally, all
control statements will be allowed to intervene between @PMD requests. If another @XQT or
processor call is encountered, it will be honored and DIAG$ will be rewritten when the @XQT or
processor call terminates. The above also applies to all types of termination in demand mode.

When in batch mode, if an @XQT or processor call terminates in error, the @PMD control statement
will be honored only if it follows the @XQT or processor call. Only data statements, @EQF control
statements ‘and the conditional control statements (@SETC, @JUMP, @TEST and @ADD) may
intervene. @PMD control statements are not honored for batch runs that terminate in abort mode.

The standard SYS$*LIB$ version of the PMD processor is never written to DIAGS.

Example:

@xaT PROGX
data

[]

[]

[]

®
data
@TEST TE/6/S3
@JUMP 3
@SETC 6/54
@PMD,A ELEMENT1, ELEMENT2
@exaT PROGY

If PROGX terminates before processing all of the data statements that follow the first @XQT control
statement, and S3 of the condition word has a value of 6,54 of the condition word is set to 6, and
the @PMD and @XQT PROGY control statements are processed.

4144.31 SPERRY UNIVAC 1100 Series Executive

3-7
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Any @PMD control statement following the execution of a program from SYS$*LIB$ (that is, @FOR,
@COB, @MAP, and so forth) is honored only if the Y option appears on the @RUN statement.

However, if the W option was specified on the @RUN control statement when in batch mode, any
program from SYS$#LIB$ that error terminates will be automatically written to DIAG$ and the PMD
processor will automatically be loaded to print the erroring program. The PMD processor is called
with P and L options specified.

Examples:

1. @PMD

2. @PMD,EAXL PETER,BOB

3. E€PMD,D FLYBY

4. @PMD,ECD REPORT

5. @PMD ALPHA,100/3,56,A
6. @PMD TOP/CAT,10,A

7. @PMD,I

8. @PMD,ILNO

9. @PMD,DLOFG)

10. @PMD, ILNO BETA/SEGA, GAMMA/SEGB/BANKA, SEGC
11. @PMD,AOFG BLANK$COMMON ,DELTA

—

An octal dump of all active (allocated in main storage and loaded) segments of a user's program
results. Active elements in the program which were from SYS$#RLIB$ are not included in the
dump.

2. An octal dump of all active elements, except PETER, BOB, and active system library element
results. The dump occurs only if the previous routine terminated because of an error.

3. Results in an octal dump of the D-bank of segment FLYBY (if active).

4. Causes an octal dump of changed words in the D-bank portion of element REPORT (if active).
The dump occurs only if the previous program terminated because of an error.

5. The result of this @PMD control statement is a 56-word dump of location counter 3 of element
ALPHA in the standard alphanumeric editing format. The dump begins with relative address 100
under location counter 3.

6. The dump begins at external entry point TOP in bank CAT. Ten words are dumped in the
standard alphanumeric editing format.

7. Dump the I-bank portion of all active elements except those included in the program from the
System Library.

8. Dump the I-bank portion of ail active elements including those within the program from the
System Library. Each location counter of each element is dumped twice: once in octal format,
and once in mnemonic instruction format.

9. Dump the D-bank portion of all active elements. Each location counter of each element is
dumped three times: once in Fieldata alphanumeric format, once in octal format, and once in
G format.

10. Dump the l-bank portion of element BETA in segment SEGA, element GAMMA in SEGB in bank
BANKA, and the |-bank portion of all elements in segment SEGC including those from the
System Library. Each location counter of each element dumped is repeated twice: once in octal
format, and once in mnemonic instruction format.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 3-8

UPDATE LEVEL PAGE

11. Dump BLANK COMMON and all portions of element DELTA, BLANK COMMON and each location
counter of element DELTA are dumped three times: once in octal format, once in Fieldata
alphanumeric format, and once in G format.

3.3. DYNAMIC DUMPS

The dynamic dumps are discussed from the viewpoint of the SPERRY UNIVAC 1100 Series Assembler
user. There is no inherent restriction on the employment of this facility with any other processor.
All that is needed is that the proper information be written to the diagnostic file. Library routines
are provided to assist in the process. The use of the dynamic dump facility by a high level language
processor fails outside the scope of this manual.

Dynamic diagnostic requests are generated by procedure—calls from within the user program. These
procedure calls collect the dynamic diagnostic library subroutines in to the user object program. The
requested dynamic diagnostic information is written into the diagnostic file by the library subroutines
while the object program is being executed. When called on during program execution, these
subroutines preserve the complete program environment and perform the requested dynamic
diagnostic request. [f the user’'s program has multiple activities, only one activity at a time may
execute dynamic dump calls since the dynamic dump routines are non-reentrant.

The amount of information which can be written into the dynamic diagnostic portion of diagnostic
file can be set dynamically through the use of the X$SIZE procedure (see 3.3.3.5). If this procedure
is not used, the length will automatically be limited by the value specified in the system’s generation.

When the dynamic diagnostic portion of diagnostic file is filled, a message is supplied indicating that
no more dynamic diagnostics can be transferred to the diagnostic file. All subsequent dynamic
diagnostic requests for this program are ignored. After program termination in batch mode, the dump
information is retrieved from the diagnostic file, edited and printed. When in demand mode, a
message will be displayed informing the user that diagnostic dumps are available and the name of
the program that produced the dumps. The user may then call the PMD processor with an M option
to retrieve, edit, and print the dynamic dumps only; or without the M option to retrieve, edit, and print
both the diagnostic dumps and a dump of the program.

There are 19 different library subroutines associated with the dynamic diagnostic procedures. These
routines can be divided into three functional classifications:

1. Dump Procedures: X$MESG, X$CW, X$CORE, X$DUMP, X$TAPE, X$DRUM, XS$FILE, and
X$CREG which are used to record data in the diagnostic file.

2. Conditional Control Procedures: XIF, XAND, X$0OR, and X$TALY which are used to determine
when a given dump or series of dumps should occur.

3. Specification Procedures: X$FRMT, X$BUFR, X$MARK, X$BACK, X$SIZE, X$ON, and X$OFF
which are used to specify the condition switch and other global diagnostic parameters.

414431 SPERRY UNIVAC 1100 Series Executive

3-9
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

3.3.1. Dump Calling Procedures
The procedures available for obtaining dynamic dumps are:

XCORES$ (see 3.3.1.1)
- XDUMP$ (see 3.3.1.2)
XCW$ (see 3.3.1.3)
XTAPES$ (see 3.3.1.4)
XDRUMS (see 3.3.1.5)
XS$FILE (see 3.3.1.6)
XCREGS$ (see 3.3.1.7)

All dynamic dump procedures are executed only if the switch XSTATS$ (see 3.3.3.2) is on.

The dynamic dump procedures save and restore all control registers as well as the carry and overflow
conditions. The dynamic dump routines contained in SYS$ *RLIBS are not reentrant. Therefore, only
one activity of a program should reference these procedures at a time.

3.3.1.1. Main Storage Dump (XCORES$)

Purpose:

Produces a dump of the specified main storage area.

Format:
SLJ XCORE$
N$ FORM 4,14,18
N$ index-reg,word-count,starting-addr
+ ‘format’,0

This linkage may be generated by the procedure call:

X$CORE starting-addr,word-count,'format’,index-reg

Parameters:

starting--addr Specifies the main storage starting location of the dump.

word-count Specifies the number of locations to be dumped (037777 maximum).

‘format’ Specifies a single letter, enclosed in quotes, which references either
a standard (see 3.3.1.8.1) or a user-defined (see 3.3.1.8.2) editing
format. |f omitted, an octal dump is produced.

index-reg Specifies the index register used to modify the address specified by

the starting-addr parameter. This parameter, which may be omitted
or left zero, can be set to values from 1 to 15 to specify an index
register from X1 through A3. The value in the index register is added
to the starting-addr value to get the actual dump starting address.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

3-10
Volume 3 System Processors

PAGE

UPDATE LEVEL

Description:

The main storage dump printout is preceded by the heading: #%CORE DUMP#* %

Examples:
1. X$CORE TABLEX, 100, 0’ ,X5
2. X$CORE TABLEY, 150
3. SuJ XCORES$
N$ FORM 4,14,18
N$ X10,250 ,WwW3X
+ "A,0

1. The main storage dump begins at address TABLEX as modified by index register X6. The dump
is 100 words in length and is presented in standard octal format.

2. The main storage dump begins at address TABLEY, has a word length of 150, and is presented
in standard octal format.

3. The main storage dump begins at address WW3X as modified by index register X10. The dump
is 250 words in length and is presented in alphanumeric format.

3.3.1.2. Control Register and Main Storage Dump (XDUMPS$)

Purpose:

Produces a dump of the program environment, A, X, and R registers, and main storage.

Format:
SLJ XDUMPS$
N$ FORM 4,14,18
N$ index-reg,word-count,starting-addr
+ ‘format’,register-code

This linkage may be generated by the procedure call:

X$DUMP starting-addr,word-count,'format’,’AXR’,index-reg

Parameters:

starting-addr Specifies the main storage starting location. If omitted, a starting
location of zero is assumed.

word-count Specifies the number of locations to be dumped (037777 maximum).
If omitted, a length of zero is assumed and no main storage dump is
produced.

‘format’ Specifies a single letter, enclosed in quotes, which references either
a standard (see 3.3.31.8.1) or a user-defined (see 3.3.1.8.2) editing
format. If omitted, an octal dump is produced.

‘AXR’ Specifies, enclosed in quotes, one or more letters representing the A,

X, and R registers. The contents of these registers are printed in octal.

4144.31 SPERRY UNIVAC 1100 Series Executive
UP-NUMBER Volume 3 System Processors

3-11
PAGE

UPDATE LEVEL

index-reg Specifies the index register used to modify the address specified by
the starting-addr parameter. This parameter, which may be omitted
or left zero, can be set to values from 1 to 15 to specify an index
register from X1 through A3. The value in the index register is added
to the starting-addr value to get the actual dump starting address.

register-code Register codes for XDUMPS$ are:

No registers

R only

A only

R and A

X only

X and R

X and A
AX, and R

Description:

Og
2004014
200202,
400603,
200104,
400505,
4003064
6007074

The printout resulting from XDUMP$ is preceded by the heading: # #*DUMP#* %

The following additional information is provided following the ®#*#DUMP#* * heading:

B element name
n location counter
B relative program address

[] hardware fault indicators

Example:
1. X$DUMP TABLEY, 200, "1, 'XA",X10
2. X$DUMP TABLEZ,500, 'A", 'R’
3. X$DuUMP , .. R’
4. SLJ XDUMP$
N$ FORM 4,14,18
N$ X9,500,BSS6
+ ‘0", 0200104

1. The main storage dump begins at address TABLEY as modified by index register X10. The dump
is 200 words in length. The contents of all X and A control registers are also dumped. The
dump is presented in the standard integer format.

2. The main storage dump begins at address TABLEZ and has a length of 500 words. The contents
of all R control registers {(except RO) are also dumped. The dump is presented in the standard

alphanumeric format.

3. The contents of all R control registers (except RO) are dumped in octal format.

4. The main storage dump begins at address BSS6 as modified by index register X9. The dump
is 500 words in length. The contents of the X registers are also dumped. The dump is presented

in octal format.

4144.31 SPERRY UNIVAC 1100 Series Executive

- 3-12
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

3.3.1.3. Changed Word Dump (XCWS$)
Purpose:

Produces a changed word dump of specific locations within main storage. On the first X$CW call
referencing a given main storage area, a complete dump of that area is produced. On subsequent
X$CW calls specifying the same area, only those words which were changed since the last X$CW
procedure call specifing that area are dumped showing the previous contents and the current
contents. The number of separate areas that may be dumped is restricted to five. The starting-addr
and length determine the uniqueness of one area from the next.

Format:
SLJ XCW$
+ word-length,starting-addr
+ ‘format’,0

This linkage may be generated by the procedure call:

X$CW starting-addr,word-length,'format’

Parameters:

starting-addr Specifies the main storage starting location of the dump.

word-length Specifies the number of locations to be dumped (037777 maximum).

‘format’ Specifies a single letter, enclosed in quotes, which references one of
the following standard editing formats: A, E,F, G, I, N, O, Q, and S (see
3.3.1.8.1). Standard format D and user-defined formats cannot be
specified. If omitted, an octal dump is produced.

Description:

The number of calls on X$CW is not limited, but only five separate areas may be dumped.

Changed word dumps, whether or not any words were changed are preceded by the following
heading plus the appropnate changed-word status word message:

##CHANGED WORD CORE DUMP* %

Examples:
1. XsCwW INSERT, 10, "1~
2. X$Cw REWORD, 50
3 Sty XCW$
+ 750, HTR5
+ F', O
4. X$CW INSERT, 10, " |’

1. The changed word dump begins at address INSERT. The dump is 10 words in length and is
presented in standard integer format. Since this is the first call specifying an area starting at
INSERT, all of the area is dumped.

2. The changed word dump begins at address REWORD. The dump is 50 words in length and is
presented in standard octal format. Since this is the call specifying an area starting at REWORD,
all of the area is dumped.

4144.31 SPERRY UNIVAC 1100 Series Executive

3-13
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

3. The changed word dump begins at address HTR5. The dump is 750 words in length and is
presented in fixed-point decimal format.

4. The changed word dump begins at address INSERT. Any words in the 10-word area starting
at address INSERT which were changed since dump number 1 occured are printed showing the
previous and current contents.

3.3.1.4. Tape Block Dump (XTAPES$)

Purpose:

Dumps the block of magnetic tape data located just prior to the current tape position by making
temporary use of a previously defined buffer initialized by the X$BUFR procedure (see 3.3.3.1). The

magnetic tape is moved backward one block, the block is read, and the number of words specified
in the X$BUFR procedure are dumped.

Format:
SLJ XTAPES
+ word-count,buffer-addr
+ ‘format’,l/O-pktaddr

This linkage may be generated by the procedure call:

X$TAPE 1/0-pktaddr,'format’

Parameters:

1/0-pktaddr Specifies the address of the 1/0 request packet (see Volume 2-6.2) for
the device handler. This parameter may be the address of a file control
table (FCT) as is used by block buffering and other routines, since the
first six words of an FCT is an I/0O packet.

‘format’ Specifies a single letter, enclosed in quotes, which references either
a standard (see 3.3.1.8.1) or user-defined (see 3.3.1.8.2) editing
format. If omitted, an octal dump is produced.

Description:

Interblock gaps separate the blocks that are recorded on magnetic tape each time an 1/0 write of
any size word count is done. These interblock gaps, which serve as block separators, are not to be
confused with end-of-file (EOF) marks, which are a special kind of block surrounded by interblock
gaps. The X$TAPE procedure causes a move backward to the preceding interrecord gap, then a read
of everything which follows (could be one word or tens of thousands of words) into the buffer
initialized by an X$BUFR procedure (see 3.3.3.1) until the next interrecord gap is encountered. When
the buffer is filled, the remaining words are lost.

The X$TAPE procedure is useful for dumping a block that was just read or written. No dump occurs
if the magnetic tape is positioned at the load point (beginning-of-tape marker).

No magnetic tape dump occurs if a main storage buffer is not reserved and initialized for the X$TAPE
procedure.

The same buffer area can be used for both X$DRUM (see 3.3.1.5) and X$TAPE procedure calls.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

3-14
Volume 3 System Processors

UPDATE LEVEL PAGE

The word count and buffer address are returned by the X$TAPE procedure to the first parameter word.
The tape drum printout is preceded by the heading:
*TAPE DUMP

**FILE filename

Example:
1. X$BUFR ALPHA, 150
2. X$TAPE FILEA, 'O’
3. X$BUFR BUF8, 800
4. SLJ XTAPES$
+ 800, BUF8
+ "0’, NP16

1. The block of data prior to the present magnetic tape position is read into the main storage
location ALPHA (previously initialized by the X$BUFR procedure call) and is printed in standard
octal format. FILEA specifies the 1/0 packet address. If the block is longer than 150 words,
the first 150 words are dumped.

2. The block of data prior to the present magnetic tape position is read into the main storage
location BUF8 and is printed in standard octal format. NP 16 specifies the 1/0 packet address.

3.3.1.6. Mass Storage Dump (XDRUMS)

Purpose:

Dumps portions of FASTRAND drum-formatted mass storage by making temporary use of a previouly

defined buffer initialized by the X$BUFR procedure (see 3.{3.3.1). Portions of mass storage to be
dumped and read into the buffer, then the contents of the buffer is written into the diagnostic file.

Format:
SLJ XDRUMS
+ word-count, location-addr
+ ‘format’,l/0-pktaddr

This linkage may be generated by the procedure call:

X$DRUM 1/0-pktaddr,location-addr,word-count, format

Parameters:

i/0-pktaddr Specifies the address of the I/0 packet containing the internal
filename (see Volume 2-6.2).

location-addr Specifies the address of a word which contains the relative starting

sector address or a word address of the file to be dumped. (In some
cases, this address may be I/0-pktaddr+5, which contains a sector
address or a word address.) The manner in which the file was
assigned determines whether the address specified is a word address
or a sector address (see Volume 2-3.7.1.1 and 2-3.7.1.3).

4144.31 SPERRY UNIVAC 1100 Series Executive

3-15
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
word-count Specifies the number of locations to be dumped.
‘format’ Specifies a single letter, enclosed in quotes, which references either

a standard (see 3.3.1.8.1) or a user-defined (see 3.3.1.8.2) editing
format. |f omitted, an octal dump is produced.

Description:
The mass storage dump printout is preceded by the heading:
#*%#DRUM DUMP** FILE filename AT RELATIVE SECTOR sector-number

Use of the X$DRUM procedure requires a main storage buffer into which the mass storage dump
can be read. The mass storage area to be dumped is read into the buffer. When it is filled, the
contents of the buffer is written into the diagnostic file. For FASTRAND drum-formatted files, it is
recommended that the buffer be some multiple of 28, the length of a FASTRAND drum mass storage
sector. While a portion of mass storage that is larger than the size of the buffer may be dumped,
greater efficiency results by providing a buffer that is sufficiently large to hold all the mass storage
to be dumped at one time.

If a main storage buffer is not reserved and initialized for the X$DRUM procedure, no mass storage
dump occurs.

The same buffer area can be used for both X$DRUM and X$TAPE (see 3.3.1.5 and 3.3.1.4) procedure

calls.
Example:
1. X$BUFR DUMPB, 112
X$DRUM FILED,DRDUMP, 112, A’
2. X$BUFR AREA1,450
SLJ XDRUMS$
+ 450, LWA1
+ ‘D', ADDR1

1. Beginning at the relative address value specified by DRDUMP, 112 words of data from mass
storage are read into the buffer starting at main storage location DUMPB that was initialized by
the X$BUFR procedure call. The data is edited in standard alphanumeric format. FILED specifies
the 1/0 packet address.

2. Beginning at the relative address value specified by LWA1, 450 words of data from mass storage
are read into the buffer starting at main storage location AREA1. The data is edited in
double-precision, floating-point format. ADDR1 specifies the I/0 packet address.

3.3.1.6. File Dump (X$FILE)

Purpose:

Provides for dumps in connection with the item handler package. Dynamic dumps of items can be
taken whenever an item is read from or written into a particular file.

4144.31 SPERRY UNIVAC 1100 Series Executive

3-16
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

Format:

XS$FILE fct,option, format’

Parameters:

fct Specifies the address of the file control table.

option The available options are:

'ON’ - Causes subsequent items read from or written into the
file to be dumped.
'OFF’ - Terminates dumping of items from the file.

'format’ Specifies a single letter, enclosed in quotes, which references either
a standard {see 3.3.1.8.1) or a user—defined (see 3.3.1.8.2) editing
format. This parameter can be specified only when the ON option is
specified. If omited, an octal dump is produced.

Description:

This procedure cannot be used for an item that spans multiple blocks.

Examples:
1. XSFILE BETA, 'ON", "0’
2. XS$FILE BETA, 'OFF’

1. The file whose file control table is located at BETA is conditioned to record in the diagnostic
file all subsequent activity at the item level. That is, every time a request is made to an item,
the item to which the item handler points is recorded in the diagnostic file and is printed in
standard octal format.

2. The file whose file control block is located at BETA is conditioned not to dump any subsequent
activity at the item level.

3.3.1.7. Control Register (User Set) Dump (XCREGS$)

Purpose:

Dumps specified user control registers. (The A, X, and R registers and the unassigned registers at
addresses 034 and 035).

Format:
SLJ XCREGS$
+ register-count,starting-reg
+ ‘format’,0

This linkage may be generated by the procedure call:

X$CREG starting-reg,reg—-count,’'format’

4144.31 SPERRY UNIVAC 1100 Series Executive

3-17
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Parameters:
starting-reg Specifies the address of the first control register to be dumped.
reg-count Specifies the number of control registers to be dumped.
‘format’ Specifies a single letter, enclosed in quotes, which references either

a standard (see 3.3.1.8.1) or a user-defined (see 3.3.1.8.2) editing
format. If omitted, an octal dump is produced.

Description:

The register dump printout is preceded by the heading: # #*CREG DUMP* %

Examples:

1. X$CREG X1,12,°0°
2. XS$CREG X11,10, A’
3. XSCREG A14,10,°0"’

1. Registers X1 through X11 and AO are dumped into the diagnostic file to be edited and printed
in standard octal format.

2. Control registers X11 and AO through A8 are dumped into the diagnostic file to be edited and
printed as a string of 60 alphanumeric (Fieldata) characters.

3. Control registers A14 and A15, the unassigned registers 034 and 035, and RO through RS are
dumped into the diagnostic file to be edited and printed in standard octal format.

3.3.1.8. Editing Formats for Dynamic Dumps

Each procedure for calling dynamic dumps specifies an editing format for printing the dump.
Standard editing formats (see 3.3.1.8.1) are available to the user for this purpose. {f, however, the
user desires to define the editing format, X$FRMT procedures must be used (see 3.3.1.8.2).

3.3.1.8.1. Standard Editing Formats for Dumps

A number of standard editing formats are available to the user when specifying dump procedures.
These formats provide the majority of printing formats desired. Table 3-3 lists the standard formats,
which are specified by a single letter enclosed in quotation marks in the dump procedure calls (see
3.3.1.1 through 3.3.1.7). Figure 3-1 is an example of printouts of integer and octal dumps in standard
editing format.

4144.31 SPERRY UNIVAC 1100 Series Executive 3-18
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
a. Integer Format Dump
INSTRUCTION:
X$DUMP B1,32,T
PRINTOUT:
*8DUMP &
CALLING ELEMENT NAMES ¢(00) RELATIVE LOCATION OF CALL 000011
PANEL CARRY OFF OVERFLOW OFF
REGISTERS
ODUMP OF ELEMENT NAMES $(00) AT MAP ADDRESS 040620 CREATED ON: 20 JUL 75 AT 13:63:29
000036 040620 3 [} 11 20 37 70 136 264
000045 040630 521 1034 2089 4108 8206 16398 32783 68562
000055 040640 131089 262162 624307 1048696 2097173 4194326 8388631 16777240
000066 040650 33564457 67108890 134217768 268435484 536870941 1073741854 2147483679 4294967328
b. Octal Format Dump
INSTRUCTION:
X$DUMP B1,32,0’
PRINTOUT:
+8DUMP e
CALLING ELEMENT NAMES $(00) RELATIVE LOCATION OF CALL 000011
PANEL CARRY OFF OVERFLOW OFF
REGISTERS
DUMP OF ELEMENT NAMES $(00) AT MAP ADDRESS, 040620 CREATED ON: 20 JUL 75 AT 13:63:28
000035 040620 000000000003 000000000008 000000000013 000000000024 000000000045 000000000106 000000000207 0000000004 10
000045 040630 000000001011 000000002012 000000004013 000000010014 000000020015 0000000400168 000000100017 000002000020
000056 040640 000000400021 000001000022 000002000023 000004000024 0000100000268 000020000026 000040000027 000100000030
000085 040850 000200000031 000400000032 001000000033 002000000034 004000000034 010000000038 020000000037 040000000040

Figure 3-1. Standard Editing Format for Integer and Octal Dumps, Sample Printout

4144.31

SPERRY UNIVAC 1100 Series Executive 3-19
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 3-3. Standard Editing Formats for Dump Printouts
Number of Items Number of [Number of
Format Definition Per Line Print Positions| Decimal
Parameter T Option NOT Per item Places
Option
A Alphanumeric editing of Fieldata data 8 16 6 -
L

D Floating decimal editing of double 2 4 26 18
precision floating point data

E Floating decimal editing of single 4 8 14 8
precision floating point data

F Fixed point decimal editing of single 4 8 14 8
precision floating point data

G Fixed point or floating decimal editing 4 8 14 Variable
of single precision floating point data

| Decimal integer editing of 36-bit 4 8 14 -
signed computer words

N Mnemonic editing of 1100 Series 2 4 27 -
instruction words

Q Alphanumeric editing of ASCIi data 8 16 4 -

S Octal editing of 1100 Series 2 4 20 -
Instruction ~ 6 fields per word

3.3.1.8.2. User-Defined Editing Formats (XFRMT$)

Purpose:

Specifies a nonstandard editing format for use by the diagnostic dump procedure calls as an
alternative to the standard editing formats described in 3.3.1.8.1, or redefines the standard editing
formats. New format labels (such as ‘U’, 'V’, or ‘W’ for example) may be specified, or existing standard
format labels may be redefined.

414431

SPERRY UNIVAC 1100 Series Executive 3-20
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Format:
suJ XFRMTS$
+ format-specification-word-length, format-label’

'(format - specification)’

This linkage may be generated by the procedure call:

X$FRMT format-specification-word-length,’format-label’

‘(format - specification)’

Parameters:

format-specification—
word-length

‘format-label’

‘(format-specification)

Description:

Specifies the number of words comprising the format specification.

Specifies a single letter enclosed in quotation marks. If one of the
following standard editing formats: A, D, E, F, G, I, N, Q or S
(see 3.3.1.8.1) is referenced, this action is used to redefine the
standard editing formats. To specify a user-defined editing format,
any letter (enclosed in quotes) except A, D, E, G, |, N, Q, or S may be

_used.

Specifies a string of alphanumeric characters which represent an
encoding of the format to be applied to the information printed. The
string of alphanumeric characters may not contain intervening blanks.
The first nonblank character of the string must be a left parenthesis
(preceded by a quotation mark); the last nonblank character must be
a right parenthesis (followed by a quotation mark).

The format of the string of characters that comprise this parameter is
specified exactly as in FORTRAN V FORMAT statements. For example,
specifying (10F3.3)" indicates that the dump information printed on
one line consists of 10 words of fixed-point decimal data and that
each word is eight characters long with the decimal point at the left
of the third least significant character.

Any standard or user-specified editing format may be redefined; the most recent definition prevails.

Multiple line formats are allowable.

Except for the ‘R’ conversion code, any format that can be given in a FORTRAN V FORMAT statement
can be specified. See SPERRY UNIVAC 1100 Series FORTRAN V, UP-4060 (current version).

In addition, N and S may be used as editing codes in format statements for mnemonic and octal
instruction formats, respectively. When N is used as an editing code in a FORTRAN format statement,
at least 26 spaces must be provided for each word edited. When S is used an an editing code, at
least 21 spaces must be provided for each word edited. Note that the D standard format and
user-supplied formats are not applicable to changed word dumps.

Also, the 'S’ and ‘N’ formats are available which edit each word in SPERRY UNIVAC 1100 Series

mnemonic instruction format.

4144.31 SPERRY UNIVAC 1100 Series Executive 3-21

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Examples:
1. X$FRMT 1.°0°
‘(6014) "
2. XS$FRMT 2,'F’
""(10F8.3)"
3. SLJ XFRMTS
-+ 1, 'A’
*(12A4) "

1. The standard octal editing format is redefined to print six octal words per line instead of eight.
The appropriate data is written into the diagnostic file so that the redefined format is effective
when the diagnostic editor processes the recorded dynamic data.

2. The standard fixed decimal format is redefined to print 10 fixed decimal words instead of eight.
The number of characters per word is changed to eight instead of 14, and the number of decimal
places is three instead of eight.

3. The standard alphanumeric editing format is redefined to 12 words per line instead of 16 and
four characters per word instead of six.

3.3.2. Conditional Contrql Procedures

The dynamic dumps can be controlied by an internal conditional dump switch. When the switch is
turned off by a conditional control procedure, a dynamic dump procedure which follows is ignored.
Note that all dump procedures are executed except when preceding conditional dump procedures
cause them to be overridden. A number of miscellaneous control procedures are available to the user
in addition to the conditional control procedures.

The availabie conditional control procedures are:

XSIF (see 3.3.2.1)

X$0R (see 3.3.2.2)

X$AND (see 3.3.2.3)

X$TALY (see 3.3.2.4)
3.3.2.1. Logical IF Control of Dumps (X$IF)
Purpose:
Turns on or off the conditional dump switch depending on the value of the relational expression. Only
a dynamic dump call, which immediately follows an XIF, XAND, or an X$OR call is affected by the
setting of the conditional dump switch. Such a dump request is not executed if the conditional dump
switch is off.

Format:

X$IF addr[,index-reg] [,j-desg] ‘rel’ addr[,index-reg] [j.-desig]

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

3-22
Volume 3 System Processors

PAGE

UPDATE LEVEL

Parameters:

addr Specifies a main storage location or a control register; indirect
addressing and literals are allowed.

index-reg Specifies an index register (X1 through X11, AO through A3); index
register incrementation is not allowed.

j-desig Specifies any desired partial word.

‘rel’ Specifies the relation between the parameters specified before and
after ‘rel’. Allowable codes for ‘rel’ are as follows:

Code Meaning

‘EQ’ Equal to

‘GE’ Greater than or equal
‘GT Greater than

‘LE’ Less than or equal
LT Less than

‘NE’ Not equal

If the relation between the tested parameters is true, the conditional
dump switch is turned on; if the relation is false, the conditional dump
switch is turned off.

Examples:

1. XS$IF ALPHA "EQ' TAG
2. XS$IF ALPHA ,X1,H1 LT’ TAG,6 X1, H1
3. X$IF ALPHA, ,H1 'NE' TAG, 6 H1

1. Ifthe contents of ALPHA equals (EQ’) the contents of TAG, the conditional dump switch is turned
on. If the contents of ALPHA does not equal the contents of TAG, the conditional dump switch
is turned off.

2. If the contents of H1 of ALPHA, as modified by index register X1, is less than ('LT’) the contents
of the H1 of TAG, as modified by index register X1, the dump switch is turned on. If the modified
contents of ALPHA is equal to or greater than the modified contents of TAG, the dump switch
is turned off.

3. If the relationship of the contents of the H1 portions of ALPHA and TAG is not equal {'NE’), the
dump switch is turned on; if the contents of the H1 portions of ALPHA and TAG are equal, the
dump switch is turned off.

4144.31 SPERRY UNIVAC 1100 Series Executive

3-23
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

3.3.2.2. Logical OR Control of Dumps (X$OR)
Purpose:
Turns on the conditional dump switch if it is not already on and the current value of the relational
expression is true. If the switch is initially on, it will remain on even if the relational expression is
false.
Format:

X$OR addr{,index-reg] [j-desig] ‘rel’ addr[index~reg] [.j-desig]

Parameters:

Same as X$IF procedure (see 3.3.2.1)

Examples:

1. X$OR ALPHA "EQ° TAG

2. X$O0OR ALPHA X5 ,H2 'GT" TAG, ,H2

1. In this example, the conditional dump switch is set when the contents of ALPHA equals ('EQ’)

the contents of TAG.

2. The conditions for setting the conditional dump switch on are similar to those described in
example 1. The condition being tested is greater than ('GT’); to turn the switch on, H2 of ALPHA
as modified by index register X5 must be greater than H2 of TAG.

3.3.2.3. Logical AND Control of Dumps (X$AND)

Purpose:

Causes the conditional dump switch to remain on if, and only if, it is already on, and the current value
of the relational expression is true.

Format:
X$AND addr[,index-reg] [,j~desig] ‘rel’ addr[,index-reg] [.j-desig]
Parameters:

Same as X$IF procedure (see 3.3.2.1).

Examples:
1. X$AND ALPHA "EQ’ TAG
2. X$AND ALPHA, ,T1 'LE’ TAG,X10,T1

1. The conditiohal dump switch remains on if it is already on and the contents of ALPHA equals
the contents of TAG.

2. The conditions for the conditional dump switch remaining on are similar to those described in
example 1; the difference is that to remain on, T1 of ALPHA must be less than or equal to ('LE’)
T1 of TAG as modified by index register X10.

414431 SPERRY UNIVAC 1100 Series Executive

, 3-24
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

3.3.2.4. Controlling the Conditional Dump Switch (X$TALY)

Purpose:

Allows a dynamic dump procedure that is embedded in a loop to be executed only when conditions
specified by the user are met. The conditional dump switch remains on when these conditions are
met (if it is already on), and is turned off when they are not met.

Format:

X$TALY start,until.every

Parameters:

start Specifies the initial or starting value of the loop.

until Specifies the maximum number of times the loop is to be executed.

every , Specifies a value which indicates the number of times the loop is to-
be executed before the conditional dump switch is turned on. For
example, if the user specifies a value of 100, the conditional dump
switch remains on every 100th time through the loop:; all subsequent
dynamic dump procedures in the loop are executed.

Description:

The X$TALY procedure is used to set the conditional dump switch by testing a counter. The counter
is set to the value of the start parameter the first time the X$TALY procedure is executed. Thereafter,
each time the procedure is entered for execution, the counter is incremented by one following all
tests by the procedure. The tests performed on the counter (represented by the symbol Z) are:

if start < (2Z) < until; and

if yields a zero remainder

(2) - start

every

If the conditional dump switch is already on, it remains on if the tests are successful. If any of the
tests fail, the switch is turned off.

The user should ensure that the conditional dump switch is on when an X$TALY procedure is entered;
otherwise, the counter is not incremented and control is returned to the user program.

Example:

X$TALY 0,4000, 100
In this example, O indicates the start of the loop, which is to be executed 4000 times. Every 100th
time through the loop, up to 3999, the conditional dump switch remains on, provided it is on prior

to execution of the X$TALY procedure. All other times the dump switch is turned off. Thus, the user
obtains any specified dumps each 100th time through the loop.

414431 SPERRY UNIVAC 1100 Series Executive

3-25
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

3.3.3. Specification Procedures

A number of procedures in addition to conditional control procedures (see 3.3.2) are available to allow
user control of dumps. These procedures are:

X$BUFR (see 3.3.3.1)
X$ON and X$OFF (see 3.3.3.2)
X$MARK and X$BACK (see 3.3.3.3)
X$MESG (see 3.3.3.4)
X$SIZE (see 3.3.3.5)

3.3.3.1. Initializing Buffer (XBUFRS$)
Purpose:

Initializes an area of main storage for use as a buffer by the X$TAPE or X$DRUM procedures (see
3.3.1.4 and 3.3.1.5, respectively).

Format:
SLJ XBUFR$
+ word-count,starting—addr

This linkage may be generated by the procedure call:

X$BUFR starting-addr,word-count

Parmeters:

starting-addr Specifies the starting main storage address of the buffer.
word-count Specifies the number of locations in the buffer to be initialized.
Description:

X$BUFF does not reserve a buffer area in main storage; it only initialzes the area. The buffer must
be defined and initialized prior to executing any X$TAPE or X$DRUM procedure.

For dumps of FASTRAND drum-formatted file, it is recommended that the buffer be some multiple
of 28, the length of a FASTRAND formatted mass storage sector.

Example:
X$BUFR TDUMP ,56
TDUMP is the main storage buffer area, 56 word in length, which is initialized for use by an X$TAPE
or X$DRUM procedure.
3.3.3.2. Allowing and Ignoring Dump Procedure Calls (X$ON and X$OFF)
Purpose:

Allows overall control of the execution of dynamic dump procedure calls.

414431 SPERRY UNIVAC 1100 Series Executive

3-26
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Format 1:
S AO XSTATS
TNZ XSTATS

SN,H2 AQ,XSTATS
This linkage may be generated by the procedure call:

X$ON
Format 2:

SZ XSTATS
This linkage may be generated by the procedure call:

X$OFF
Description:
The word XSTATS$, which is in the XCOMNS$ data area, is initially set to nonzero. If it should become
desirable for all dynamic dump subroutines to return control immediately without processing any
dumps, XSTAT$ may be cleared to zero by either the X$OFF procedure or the SZ instruction. To
return XSTATS to its original nonzero status, the X$ON procedure or any equivalent instructions may
be used.
The X$OFF procedure turns off the conditional dump switch until an X$ON procedure is executed.
When the X$OFF procedure is executed, the setting of the conditional dump switch cannot be
changed until the X$ON procedure is encountered. Thus the X$OFF procedure causes dynamic dump

and conditional procedure call to be ignored, and the X$ON procedure allows the calls to be executed.

Care must be taken if dynamic dump procedures are used in programs consisting of independent
activities and in I/0 completion routines.

A series of dynamic dump procedure calls will not be interrupted by one of the other subprograms.

Examples:

1. X$OFF

2. XS$IF ALPHA "EQ’ TAG
3. X$CORE ALPHA, 200, 'E’
4. XSON

5. X$CORE TAG, 150, " 1"’

The X$OFF procedure indicates that all diagnostic system dump procedures which follow, except the
X$ON procedure, are to be ignored; therefore, the X$IF and X$CORE procedures (line 3) are not
executed. The X$ON procedure indicates that all subsequent diagnostic system dump procedures
are allowed; therefore, the X$CORE procedure (line 5) which follows is executed.

3.3.3.3. Saving and Deleting Dynamic Dumps (XMARK$ and XBACKS$)
Purpose:

Marks the points in program execution between which dynamic dumps are saved and then deleted
at the user's discretion. The X$MARK and X$BACK procedures permit a user program under

4144.31 SPERRY UNIVAC 1100 Series Executive

3-27
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

checkout to include dynamic dump procedures which the user may want to execute only when a
routine does not terminate normally.

Format 1:
SLJ XMARKS$

This instruction may be generated by the procedure call:
X$MARK

Format 2:
SLJ XBACKS$

This instruction may be generated by the procedure call:
X$BACK

Description:

The $MARK and X$BACK procedures behave much as left and right parentheses surrounding
portions of a program which are to be dumped only if termination occurs between them.

X$MARK and X$BACK pairs may be nested to a depth of five. The total number of occurrences of
X$MARK and X$BACK is unrestricted.

Examples:

X$MARK

X$CORE ALPHA, 200, 'A’

X$BACK
X$MARK saves the current location where the next write is to be made in the diagnostic file (by
X$CORE). X$BACK resets the current location pointer to the value saved by the most recent X$ MARK
reference. The result is that all intervening dump information is overwritten by the next dump that
is taken; that is, the data recorded by X$CORE is deleted.
3.3.3.4. Placing a Message in the Dump (XMESG$)

Purpose:

Permits the user to place any desirable message into the dynamic dump.

Format:
SLJ XMESG$
+ word-length-of-msg,’A’

‘diagnostic-msg’

414431

SPERRY UNIVAC 1100 Series Executive 3-28
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
This linkage may be generated by the procedure cail:
X$MESG word-length-of-msg
‘diagnostic-msg’
Parameters:
word-length-of-msg Specifies a number equal to the number of computer words in the
message (one computer word hold six characters).
‘diagnostic-msg’ Any string of Fieldata alphanumeric characters enclosed in quotes and
printed exactly as assembled.
A Generated by the procedure call. It is of no significance to the user,
but it must be coded when the instruction form of the format is used.
Description:

The X$MESG procedure produces a line on the output listing of up to 120 alphanumeric characters.

The printed line immediately follows the procedure reference.

The X$MESG procedure is executed only when the conditional dump switch is on.

Example:

X$MESG 5
"BEGIN TEST OF DIAGNOSTICS’

The five-word message is printed on the dynamic dump output.

3.3.3.6. Changing Length of Dump File (X$SIZE)

Purpose:

Changes the length of the area of the diagnostic file reserved for dynamic dumps.

Format:
SLJ XSIZES
+ length

This linkage may be generated by the procedure call:
X$SIZE length

Parameters:

length Specifies the length (in sectors) of the diagnostic file to be reserved

for dynamic dumps.

4144.31 SPERRY UNIVAC 1100 Series Executive

3-29
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Description:

Using this procedure, a user program can dynamically expand or contract the length of the dynamic
dump portion of the diagnostic file. If this is not used, a system standard value is assumed for the
length of the dynamc dump portion of the file. If this procedure is used, it should be used before
executing dynamic dumps to ensure enough space for those dumps taken.

Example:
X$S1ZE 2000

The length of the dynamic dump portion of the diagnostic file is changed to 2000 sectors.

3.3.4. Examples of Dynamic Dumping

The following example indicates the effect of conditional control procedures upon dump procedures.
Note that if dump procedures are interspersed with conditional control procedures, they are effective
only if the conditional dump switch is on at the time they are entered. Dump procedures have no
effect on the setting of the conditional dump switch.

Assume that a program contains the variables X, Y, and Z (which have values 78, 80, and 88,
respectively), and the constants A, B, and C (which have values of Fieldata characters A, 180, and
404, respectively). Also assume that the procedures in the following example are executed
sequentially, and that they are the first group of procedures encountered.

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors UPDATE LEVEL PAG?~30
Example:
Coding Conditional Dump
Dump Taken
Switch
1. $(1)
X$MESG 5 ON
‘BEGIN TEST OF DIAGNOSTIC’ —_
X$IF X 'EQ" A OFF
2. X$MESG 4 ' OFF
‘TEST DATA GROUP A’ —_
X$BUFR DUMPB, 150 . INITIALIZE BUFFER —
X$IF X 'EQ" A OFF
X$OR X LT Z ON
3. X$CORE TABLEX, 100,0 ON YES
4. X$DUMP TABLEY,200,'I',/XA’ ON YES
5. XS$STAPE FILEA, O’ ON YES
X$IF Y'GT' B OFF
6. XSTAPE FILEB,'O’ OFF NO
X$BUFR ALPHA,200 . INITIALIZE BUFFER —
X$OR Y 'NE Z ON
7. XS$TAPE FILEC,'O’ ON YES
X$BUFR ALPHA, 112 . INITIALIZE BUFFER —_
8. X$DRUM FILED,DRDUMP,112/ A’ ON
9. XS$FILE BETA,'ON’ ON
10. XSFILE BETA,'OFF ON
11. X$CREG 1,12,0° ON YES
$(2) .
DRDUMP + O . VALUE SET DYNAMICALLY BY USER

ALPHA RES 200

BETA (FILE CONTROL TABLE)

TABLEY RES 200

TABLEX RES 100

DUMPB RES 150 . BUFFER FOR DUMPING FROM TAPE AND DRUM

FILEA (EXEC I/0 PACKET)

FILEB (EXEC I/0 PACKET)

FILEC (EXEC 1I/0 PACKET)

FILED (EXEC 1/0 PACKET)

Explanation:

1. The message BEGIN TEST OF DIAGNOSTIC is recorded in the diagnostic file because the

conditional dump switch is on.

2. The message TEST DATA GROUP A is not recorded in the diagnostic file because the conditional

dump switch is off.

3. Starting with location TABLEX, 100 words of main storage are dumped in the diagnostic file.

If printed, the standared octal format is presented.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

3-31
Volume 3 System Processors

PAGE

UPDATE LEVEL

[$)]

10.

11.

The environment data, control registers X and A, and main storage locations starting with
TABLEY through TABLEY + 199 are recorded in the diagnostic file. If printed, the environment
data is printed as to status, control registers are printed always in octal format, and the 200
words of main storage, as specified by ‘I, are printd in integer format. Since this dump call does
not immediately follow an XIF, XAND, or X$OR call, the conditional dump switch does not
have an effect on it.

The block of data just prior to the present magnetic tape position and having an internal filename
of FILEA is .read into buffer DUMPB (initialized in (2) by the X$BUFR procedure), and is then
recorded in the diagnostic file. If printed, the standard octal format as specified by 'O’ is
presented.

No dump is recorded; the conditional dump switch is turned off.

The magnetic tape block, whose internal filename is FILEC, is moved backward one block, and
then read forward one block. The block of data is read into the main storage location ALPHA,
that is initialized by the X$BUFR procedure in (6). The data is then recorded in the diagnostic
file and edited in standard octal format.

Assume that the current contents of DRDUMP has a value of 500. Beginning at relative word
address 500 of mass storage file FILED, 112 words of data are read into the main storage
location ALPHA (initialized by the X$BUFR procedure).

The file, whose file control table is at BETA, is conditioned to record all subsequent activity at
the item level in the diagnostic file. That is, every time a request is made to read an item, the
item to which the item handler points is recorded in the diagnostic file.

The file control table BETA is conditioned not to record any subsequent activity at the item level.

Registers X1 through X11 and AO are recorded in the diagnostic file and are edited in standard
octal format for printing.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

4-1
Volume 3 System Processors

UPDATE LEVEL PAGE

4. File Utility Routines (FURPUR)

4.1. INTRODUCTION

In addition to the Executive control statements, there is a set of control statements that call for the
file utility routines (FURPUR). When the Executive encounters a FURPUR control statement, it loads
the FURPUR processor. FURPUR continues to process control statements until signaled by the
Executive that the next statement is not a FURPUR control statement.

4.1.1. Common Information

The operand fields may contain a filename (see Volume 2-2.6.1), an element name (see Volume
2--2.6.4), or a parameter value, depending on the control statement and its use.

If the filename in any parameter is identical to that specified in the immediately preceding parameter,
coding a period in the parameter indicates to the FURPUR processor that the same filename is
intended. Omitting the filename completely, including the period, indicates to the FURPUR processor
that TPF$ is intended (only valid if the parameter normally specifies a file that resides on
sector-formatted mass storage).

As with most other system processors, the FURPUR processor automatically assigns any catalogued
file that was not assigned when the FURPUR control statement is encountered. In many cases, the
FURPUR processor requires exclusive use of a file, and it places user files in the exclusive-use state
as necessary to carry out the specified operation. After use, the FURPUR processor automatically
returns all files to the assigned status the file had except when the function of the FURPUR control
statement was to alter the file status. Temporary files, when specified, must have been assigned by
the user.

Table 4--1 summarizes the name and function of each FURPUR control statement.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 4-2

Volume 3 System Processors UPDATE LEVEL PAGE

Table 4-1. Summary of FURPUR Control Statements

Control Description

Statements

@CHG Changes element name, version name, read key, write key, and mode of a file. (See 4.2.15)

@CLOSE Writes two hardware EOF marks on a magnetic tape file and rewinds the tape. (See 4.2.10)

@COPIN Copies elements from an element file located on magnetic tape into a program file on
sector-formatted mass storage. (See 4.2.2) i

@COPOUT Copies a program file, or selected elements from a program file, located on sector-formatted mass
storage onto a magnetic tape file in element file format. (See 4.2.3.)

@COPY Copies a file or element from one file to another. (See 4.2.1))

@CYCLE Sets the maximum range of absolute F-cycle numbers to be retained for specified files which are
listed in the master file directory or sets the maximum number of element cycles to be retained for
the specified symbolic element. (See 4.2.16.)

@DELETE Drops catalogued files or marks elements in a program file as deleted. (See 4.2.7.)

@ENABLE Clears the disable flags for catalogued files. (See 4.2.17.)

@ERS Returns to the system all sector-formatted mass storage granules allocated to a file. (See 4.2.6))

@FIND Locates an element in a magnetic tape file (file must be in element file format) and positions the
file before the element’s label block. (See 4.2.13))

@MARK Writes two hardware EOF marks on a magnetic tape file and positions the tape between the EOF
marks. (See 4.2.9))

@MOVE Moves a magnetic tape file forward or backward over a specified number of EOF marks.
(See 4.2.4))

@PACK Rewrites an entire program file, removing specified types of elements (depending on the options
specified) and all elements marked as deleted. (See 4.2.14)

@PCH Punches program file elements into 80-column cards. (See 4.2.12)

@PREP Creates an entry point table from the preambles of the nondeleted relocatable elements of a
program file. (See 4.2.11)

@PRT Provides a listing of the master file directory items for catalogued files, information regarding
temporary files, the table of contents of a program file, or the text of symbolic element (see 4.2.5).
Listings of absolute or relocatable elements may be obtained using the LIST processor (see Volume
4-Section 5).

@REWIND Rewinds magnetic tape files back to the load point of the first reel. (See 4.2.8.)

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 4-3
Volume 3 System Processors . UPDATE LEVEL PAGE

In most instances, the meanings of options used in FURPUR control statements vary with the
statement. The meanings, however, of the following options are the same for all FURPUR control
statements:

Option Description
A Process absolute elements
[Do not exit through ERRS$ if an error is encountered. The FURPUR processor would go on to process

the next command or parameter field if more than two parameter fields are permitted as in the case
of the @DELETE,C control statement. The C option can aslways be used, even when the discussion of
the options specifies ‘no options’. This option is assumed for demand usage.

(o] Process omnibus elements
R Process relocatable elements
S Process symbolic elements

The FURPUR control statements are device dependent as well as file-type dependent. Program files
exist only on sector-formatted mass storage, and element files exist only on magnetic tape. Thus,
the statement, "the @PCH control statement is used to punch program file elements into 80-column
cards” necessarily implies a mass-storage-to—card transfer. If the program file has been copied onto
magnetic tape, the @PCH control statement cannot be used to punch elements into cards. The
program file elements must be returned to sector-formatted mass storage prior to the attempt to
execute the @PCH control statement.

4.1.2. Simultaneous Use of Files

The FURPUR processor, in common with other system processors, such as the Collector, can directly
access catalogued program files, even though they have not been assigned to the user’'s run. The
mechanism which the FURPUR processor and the other processors use is the same; that is, a dynamic
@ASG (see Volume 2-3.7.1), with the appropriate options, is done using a CSF$ request (see Volume
2-4.10.1.1). These processors return each catalogued file to its original assignment status, using a
dynamic @FREE control statement (see Volume 2-3.7.4) with the appropriate options.

FURPUR, like other processors uses the X option (execlusive use) before any file update operation.
This is done to make certain that no other runs currently in the system will add or delete elements,
or otherwise tamper with the file, while the processor is attempting to carry out its updating function.

If a dynamic @ASG,AX is attempted, from a batch-mode run and another run already has the
requested program file assigned, the CSF$ request is held until the file is available. If the user wishes
to avoid this condition he should assign the file with AXZ options prior to the FURPUR call.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

4-4
Volume 3 System Processors

PAGE

UPDATE LEVEL

4.1.3. Multireel Files
The FURPUR processor automatically generates and checks for end-of-reel sentinels.

Commands that write on tape, @COPOUT, @COPY, @MARK, generate an end-of-reel sentinel when
the hardware returns an end-of-tape status. TSWAPS$ is used to mount the next reel of the file or
a blank if none was specified. The end-of-reel sentinel has the form: EOF mark, end-of-reel (14
words with 054 in S1 of the first word), EOF mark, EOF mark.

Commands that read tape, @ COPIN, @COPY, @FIND, @MOVE, check the block following each EOF
mark for the end-of-reel sentinel. If itis end-of-reel, TSWAPS$ is used to allow processing to continue
on the next reel. If it is not end-of-reel, the tape is positioned after the EOF mark.

@MOVE and @FIND are restricted with muitireel files in that they have no knowledge of reels
preceding the one presently in use. They will, however, continue on succeeding reels. @REWIND
returns the first reel of the file to the user when it returns control.

4.1.4. Basic File Formats
Figure 4-1 illustrates the relationships of files to each other. The exact formats have been simplified

for clarity. The control statements illustrated are control statements that change the format of the
files.

Y3GINNN-dN

LEPPLY

\
BASIC FORMATS RECOGNIZED BY FURPUR
A - ! eEY B 1T a PROGRAM FiLE (Mass Storage) :
Random File

el "

l" Table of Contents (TOC) Program f.‘ '. elements

F Points to location of specific elements usually originate from

: processors (MASM,
ED, FTN, etc) or from the
@COPY.| control statement.

I Element] l Element] I Element l L Elcmonrl

[Etoment | [& | Lo | ELEMENTS
Types: (s) Symbolic {SDF)

~7[“clement | [Etement]e\\ (b) Relocatable
- s (c) Absolute

- ya {d) Omnibus

P
- Vd
3 prad « /,’
ecopy) 7

(ED processor) -~
Makes an elsment into
an SDF file, mass storage
to mass storage only.

@COPIN
Converts element file
to program file format.

ecopPoyT
Converts pcrogram file
to element file format.

\

Inserts an SDF file
into a program file
as an element.

SOF FILE (Tape or Mass Stroage) 7
Sequential File - Symbolic only

ELEMENT FILE (Tape Only)
Sequential File (No TOC)

initial Control Word The main purposs of an

05001 (See 11.2.3.1) slement file is to save a TAPE FILE
fil for [sufeae 1.~~~ —°
SDFF fote uve, 19pofor | wsEF#% |4, gloment file may| File 1 of this
be one of many files, tape <~ EOF mark
- " € mai
—) on a tape file. 7] Fite 2 of this
Each group of words / tape
— is a data image. / €~ EOF mark
ELEMENT , 74 4
— Types: / r N
/ &—
An SDF file would typically (a) Symbolic (SDF) /7 p P €— EOF mark
-~ - be a runstream as created {b) Relocatable //) / o “:. s
— by the DATA processor. {c) Absolute /
= (@ Omnibus > ,/ EOT Two EOF marks -
= 4 Normsily indicates
07777 end of writing on
this tape (EOT).

Figure 4-1. FURPUR Control Statements Used to Alter File Formats

$J0$8820.d WOISAS £ WN|OA
oAINDOX] S80S 001 L IVAINN AHUIIS

AT UvedN

I9vd

L 4

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

4-6

UPDATE LEVEL PAGE

4.2. FURPUR CONTROL STATEMENTS

Paragraphs 4.2.1 through 4.2.17 describe the various FURPUR control statements. The most
frequently used control statements are presented first and the infrequently used control statements

are presented last.

4.2.1. File Copying (@COPY)

Purpose:

Copies a file or element to another file.

All parameters of the @COPY control statement are optional.

Format:

@label:COPY,options name-1,name-2,no.—-of-files

Parameters:

options

name-1

name-2

nbr-of-files

Description:

See Table 4-2 for file options and Table 4-3 for element options. See
4.1.1 for additional information on the A, C, O, R, and S options.

Specifies the input file or element to be copied.

Specifies the output file into which the input file or element is to be
copied.

Specifies the number of files to copy; if omitted, one is assumed.

When used for tape-to-tape copying of entire files, it specifies the
number of input files to copy onto the output tape. When an attempt
is made to copy an empty file (two hardware EOFs), the copy operation
is immediately terminated regardless of the contents of the
nbr-of-files parameter. The input tape remains positioned between
the two EQF marks. The number of blocks in each file copied and the
number of files copied are indicated in the output listing.

When used in conjunction with the B option it specifies the number
of 1100 Series FORTRAN files to copy from one file to another. The
number of files copied is indicated in the output listing.

See Volume 2-2.6.1 for additional information on specifying filenames.

When a procedure element is copied the procedure name entries are automatically added to the
output file's procedure name table. If a relocatable element is copied, the output file's entry point
table is destroyed and the @PREP control statement (see 4.2.11) must be used to recreate it.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive a-7
Volume 3 System Processors UPDATE LEVEL PAGE

Table 4-2. @COPY Control Statement, Options Filenames Specified

Option
Character

Description

No option
specifiad

AORS

mass-storage—to—mass-storage copying - Overwrite one mass storage file (name-2) with the contents of
another mass storage file (name-1), without regard to the file’'s format.

Tape-to-tape copying - Copies one or more files (dJepending on no.-of-files parameter) from the input tape
to the output tape without regard to the file's format. No hardware EOF marks are written (see M option).

Copy the elements of the type specified from one program file and add them to another. Both program
files must be located on sector-formatted mass storage. Only non-deleted elements are copied.

All non-deleted elements of the type specified by the selected options are copied into the output file. Any
combination of A, O, R, and S can be used. When the S option is specified, all element cycles are copied.

Used with 1100 Series FORTRAN-formatted data files only. Copy the number-of-files
(FORTRAN)-specified from the input file to the output file. The input and output files cannot both be on
mass storage or both be tape files.

When the input file is on mass storage, each software EOF encountered designates the end of a FORTRAN
file, and is followed by a hardware EOF when written on tape.

When the input file is on tape, each hardware EOF encountered designates the end of a FORTRAN file, and
is not maintained when written on mass storage.

Copy the contents of one file into another file. Program and element files must not be copied using this
option. The input file must be in SDF. Reading of the input file is terminated by the SDF EOF mark. Block
sizes for tape files must be 224 words. When the output file is 8 magnetic tape file, two hardware EQF
marks are written following the file and the tape is positioned between the two EOF marks.

The G option provides an efficient method of saving and recreating sector-formatted files. Since track size
blocks of data are transferred on a @COPY,G operation without regard to format of the contei.ts, the
transfer is done relatively quickly and the file’s contents are not changed. See 4.3 for format.

mass-storage-to-tape copying - The M option may be used to write two EOF marks and position the tape
between them after a @ COPY,GM operation. Each allocated track of the file, beginning with relative track
0, is written to tape in a 1794 word block. Each 1792 word track is prefixed with two words containing
the relative track address, block sequence number and checksum. The @ COPY operation is terminated after
the highest track written in the file has been written to tape. The first block in the output file is a 28 word
label block that contains the file format indicator (COPYG), checksum flag, filename, qualifier, f-cycle,
subsystem, unit, highest track written for mass storage, and time and date of the @COPY operations.

Tape-to-mass-storage copying - The first two words of each tape block provide the track address into
which the block (minus the first two words) is to be written, checksum and block sequence data. If the
checksum was present, it is validated. Copying continues until an EOF is encountered. If the tape was
created with file information saved in the label, the information will be displayed as follows:

QUALIFIER*FILENAME (f-cycle) COPIED ON MM/DD/YY AT HH:MM:SS

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 4-8
Volume 3 System Processors UPDATE LEVEL PAGE

Table 4-2. @COPY Control Statement, Options Filenames Specified (continued)

Option
Character

Description

Used to add an SDF file to a program file as a symbolic element.

name-1 - Specifies the input file in SDF.
name-2 - Specifies the output file and element name.

The SDF file being copied is entered into the program file (located on sector-formatted mass storage) as
a symbolic element with an element cycle of 0. Reading of the input file (which may be either tape or
sector-formatted mass storage) is terminated by an SDF EOF image. An element created by @COPY | will
retain the image control words (see Volume 2-2.1.4, 2.2.1.2) of the SDF file from which it was created.
When the new element is referenced, S3, S4, S5, $6 in the data image control words, may be treated as
cycle information by many system processors.

The option can be specified only when the output file is a magnetic tape file.

mass-storage-to-tape copying - Used with the G option to copy a FASTRAND drum-formatted mass
storage file to magnetic tape. Two hardware EOF marks are written on the tape following the file copied,
and the tape is positioned between the two EOF marks. (Also applies to no option case).

Tape-to-tape copying - Used without other options or with the N option for tape-to-tape copying of one
or more files (depending on no.-of-files parameter). If more than one file is being copied, a hardware EOF
mark is written on the tape following each file copied except the last, where two hardware EQF marks are
written and the tape is positioned between the two.

Copy a magnetic tape file containing an abnormal frame count to another magnetic tape file or to a
sector-formatted mass storage file. When the output.file is tape, the M option may be used along with
the N option to write hardware EOF marks.

Used to copy all nondeleted elements from one program file and add them to another. Both program files
must be located on sector-formatted mass storage. Can be used in conjunction with the A, O, R, or §
options.

Copy one file into another file. The input and output file must not both be on magnetic tape or
sector-formatted mass storage.

mass-storage-to-tape copying - Variable block size is assumed. The first word of the block {containing
the block size) is stripped from the block before it is written into the tape file.

Tape-to-mass-storage copying - A word containing the block size is prefixed to the block before it is
written on sector-formatted mass storage. The input tape file must be terminated by a hardware EQF mark.

A copy to or from sector-formatted mass storage always begins in sector O and each block starts in a new
sector. !If the block size is not divisible by 28, the excess words of the last sector contain random data.
When used in conjunction with the A, O, P, R, and S options, see Table 4-3.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive.

Volume 3 System Processors e-°

PAGE

UPDATE LEVEL

Table 4-3. @COPY Control Statement, Options Element Names Specified

Option Description
Character

AORS Copy the specified element in the input program file and add it to the output program file. The options
represent the types of elements to be copied (one or more is needed). The element name can be changed
by renaming it in name-2. Both input and output files must be on sector-formatted mass storage. When
a symbolic element is being copied, only the element cycle specified or implied in name-1 is transferred
to the output file, creating cycle O of the element.

\"

Whan used with the A, O, P, R, and S options, copy the specified types of elements in the input program
file with the same version name as specified in name-1 to the output program file specified in name-2.
Whean the version name is omitted from name-1, only those elements having a blank version name are
copied into the output file. When a version name is given in name-2, it replaces the original version name.
When the version name is omitted from name-2, the elements written into the output file retain the version
names they had in the input file.

The version mask capability is available when the V option is specified (see Table 4-7).

Before doing any copy operation from tape, it may be necessary to execute a @MOVE control
statement (see 4.2.4) to position the tape beyond some EOF mark. No @COPY operation will move
backward or forward over an EQOF mark prior to the start of the copy.

Examples:

In the following examples, tape filenames start with a T, and sector-formatted mass storage filenames
start with an F.

CONOUDWN -

—_ A d ek - =
T adawN =0 -

-

@CoPY
@COPY M
@COPY,GM
@COPY ,P
@COPY, |
@COPY ,RS
@COPY ,RS
@COPY ,NM
@COPY . F

. @COPY,B
. @COPY RS
. @COPY,0
. @COPY, AQV
. @COPY, ARSV
. @COPY, SRV

FLAP4 . FLAPS.

TRAP3. ,TRAP6.,9

FILLUP. TANK.

FLYBY. , FLIGHT.
FLIP.,FORK.UPT3/INOUT
FOR6. , FOR9

FIRM.C,FIREUP.A

TAP1. ,TAP2.

F1.,F2.

FORT., TAP2.,3

FILY. FIL2.

F1.,F2.

Fl./VERS,FO.
FILET./V**xx*x*xx%% FILE2./NEWVERSION
F.ELT/VERS,FF.ELTNEW/VERSNEW

The contents of sector-formatted mass storage files FLAP4 is copied into sector-formatted mass
storage file FLAP5 over-writing any previous contents of the FLAPS file.

The nine files which form magnetic tape file TRAP3 are copied into magnetic tape file TRAP®6.
Each file in output file TRAPG is separated by EOF marks as directed by the M option. The last
file copied into the output file is followed by two EOF marks and the output file is positioned
between the two final EOF marks.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

4-10
Volume 3 System Processors

UPDATE LEVEL PAGE

10.

11

12.

13.

14.

15.

Copy the contents of sector-formatted mass storage file FILLUP into magnetic tape file TANK.
Two EOF marks are written at the end of the output file (TANK) and the tape ic positioned
between the two EOF marks (M option). Since file TANK is in @ COPY,G format, the @FIND and
@COPIN control statements cannot be used to access the file; however, @ COPY,G format makes
more economical use of time and space. The entire file, as it was before this operation was
initiated, including all tables of contents and deleted elements, is reproduced when the file is
returned to sector-formatted mass storage using a @ COPY,G control statement. Do not attempt

-to merge two program files, each of which were saved on tape using the @COPY,GM control
“statement because the second file would overlay the first.

The nondeleted elements of program file FLYBY are copied into program file FLIGHT.

The contents of input file FLIP, which is in SDF, is copied into output file FORK in program file
format. Input file FLIP is entered in FORK as an element having UPT3 as its element name and
INOUT as its version name. It is set at element cycle O.

The nondeleted relocatable and symbolic elements (R and S options) located in program file
FORG6 are copied into program file FORS.

The nondeleted relocatable and symbolic elements with element name C (version name of
spaces)in program file FIRM are copied into program file FIREUP as elements with element name
A (version name of spaces).

One file of magnetic tape file TAP1 is copied onto magnetic tape TAP2. Two EOF marks are
written on TAP2 and the tape is positioned between the two. File TAP1 may contain abnormai
frame counts.

The contents of file F1 is copied onto file F2. File F1 must be an SDF file.

The first three FORTRAN files in the file FORT are copied onto tape file TAP2. File FORT must
contain at least three FORTRAN files. A hardware EOF mark will follow each of the three files
written on TAP2,

The nondeleted symbolic and relocatable elements of program file FIL1 are copied into program
file FIL2.

The nondeleted omnibus elements in program file F1 are copied into program file F2.

All nondeleted absolute and omnibus elements in program file F1 having a version name of VERS
are copied into program file FO. Element and version names remain unchanged.

All nondeleted absolute, relocatable, and symbolic elements in program file FILE1 having a
version name beginning with V are copied into program file FILE2 and given a version name
of NEWVERSION.

The nondeleted relocatable and symbolic elements named ELT in program file F having VERS
as a version name are copied into program file FF and given an element name of ELTNEW and
version name of VERSNEW.

4.2.2. Copying from Tape to Program Files (@ COPIN)

Purpose:

Copies one or more elements from an element file located on magnetic tape into a program file
located on sector-formatted mass storage.

4144.31 SPERRY UNIVAC 1100 Series Executive 4-11
UP-HUMBER Volume 3 System Processors UPDATE LEVEL PAGE

All parameters of the @COPIN control statement are optional.
Format;

@label:COPIN,options name-1,name-2

Parameters:

options See Table 4-4 for file options and Table 4-5 for element options. See
4.1.1 for additional information on the A, C, O, R, and S options.

name-1 Specifies the input element file or input element to be copied.

name-2 Specifies the output program file or output program file and element
name. If name-1 is an element name and name-2 is a filename, the
element will retain its name in the new file.

Description:

See Voiume 2-2.6.1 for additional information on specifying file and element names.

Procedure names are saved, but the entry points were discarded when the program file was converted
to an element file with a @COPOUT control statement (see 4.2.3). When a relocatable element is
added to a program file, any entry point table that may have existed for the file prior to the execution
of the @COPIN control statement is destroyed. The @PREP control statement (see 4.2.11) may be
used to recreate the entry point table. If a tape error occurs, only those elements transferred before
the error occurred are entered in the program file's table of contents.

Table 4-4. @COPIN Control Statement, Options Filenames Only Specified

Option ' Description
Character

No option Copies elements from the input magnetic tape file (in element file format) into the program file located on
specified sector-formatted mass storage. The tape file must be positioned at the label block of the first element being
copied (use @FIND control statement - see 4.2.13) and continues until a hardware EOF mark is
encountered. The element retain the element name they had in the element file.

A ORS Same operation as if no options were specified except that the A. O, R, and S options can be used to
designate the type of elements to be copied. Any combination of A, O, R, and S can be used. All elements

of the types specified are transferred. The elements retain the names they had in the element file.

\ Same as for elements (see Table 4-5).

4144.31

SPERRY UNIVAC 1100 Series Executive

4-12
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 4-5. @COPIN Control Statement, Options Element Names Specified
Option Description
Character
AORS One element is copied and inserted into the output program file. The element name remains the same
: unless renamed in name-2.

v Used to copy elements having the same version name from an element file on magnetic tape into a program
file on sector-formatted mass storage. The input file must be positioned at the label block of the first
element to be copied and copying continues until a hardware EOF mark is encountered.

name-1 - Specifies an input file, or input file and element version name.
name-2 - Specifies an output file, or output file and element version name.
When the version name is omitted from name-1, only those elements having a blank version name are
copied into the output file. When the version is omitted from name-2, the elements retain the version
names they had in the input file.
The V option may be used with the A, O, R, and S options to select particular types of elements within
version names for copying.
The version mask capability is available when the V option is specified on the @ COPIN control statement
(see Table 4-7).
Examples:
1. G@COPIN HOLDPROG. , PROGRAM.
2. G@COPIN,R TEMP .ELTA,PF1.
3. G@COPIN,RV A./B,C.
4. @COPIN,SV A., C.
5. @COPIN,R PET.ELT3,REPET.VERSG.
6. @COPIN.,O T.,F.
7. @COPIN,SV TAPE . /V¥¥%axxanxt® FAST.
8. @COPIN,AV TAP .OLDABS/VERS#**%#%%%% FAS .

—

Element file HOLDPROG located on magnetic tape is copied and reformatted into program file

format and added to program file PROGRAM on sector-formatted mass storage.

2. Relocatable element ELTA in element file TEMP is copied into program file PF1. The entry point
table of file PF1 is not updated (a @PREP control statement is needed to update the entry point
table - see 4.2.11).

3. Allrelocatable elements in element file A with the version name B are copied into program file C.
They retain the version name B in the program file.

4. Allsymbolic elements in element file A with a blank version name are copied into program file C.
These elements added to the program file have a blank version name.

5. The relocatable element in element file PET with the element name ELT3 and a blank version
name is copied into program file REPET and given the element name VERSG with a blank version

name.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 4-13

Volume 3 System Processors UPDATE LEVEL PAGE

6. All omnibus elements in element file T are copied into program file F.

7. All symbolic elements in element file TAPE having a version name beginnihg with V are copied
into program file FAST.

8. Ali absolute elements named OLDABS having a version name beginning with VERS are copied
into program file FAS. The element and version names remain the same.

4.2.3. Copying Program Files to Tape (@ COPQOUT)

Purpose:

Copies a program file, or selected elements from a program file, located on sector-formatted mass
storage into a magnetic tape file in element file format.

All parameters of the @COPOUT control statement are optional except name-2.

Format:

@label:COPOUT,options name-1,name-2

Parameters:
options See Table 4-6 for file options and Table 4-7 for element options. See
4.1.1 for additional information on the A, C, O, R, and S options.
name-1 Specifies the input program file or element to be copied.
name-2 Specifies the output element file, or output element file and element
name.
Table 4-6. @COPOUT Control Statement, Filenames Specified
Option Description
Character
No option All nondeleted elements are written onto the magnetic tape output file in element file format. Two EOF
specified marks are written at the end of the file and the tape is backspaced one EQOF mark. Elements retain the
element name they had in the program file.

AORS All nondeleted elements of the types specified by the options are written onto the magnetic tape output
file in element file format. The elements retain the names they had in the program file. Any combination
of A, O, R, and S can be used. No EOF mark is written.

\' Same as for elements (see Table 4-7).

4144.31 SPERRY UNIVAC 1100 Series Executive 4-14
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 4-7. @COPOUT Control Statement, Options Element Names Specified

Option Description
Character
AORS All specified element types for the element names given are written into the output magnetic tape file in

the element file format. Only nondeleted elements are transferred. If the name-2 element name is different
than the name-1 element name, all elements copied have the new name. One or more options must be
specified. No EOF mark is written.

\% All nondeleted elements, selected by version name and type, are written onto the magnetic tape output
file in element file format. The V option may be used in combination with the A, O, R, and S options. When
it is used alone, all element types are considered.

name-1 - Specifies an input file, or an input file and element version name. The file must be on
sector-formatted mass storage and be in program file format.

name-2 - Specifies an output file, or an output file and element version name.

If the version name is omitted from name-1, only those elements with a blank version name are considered
for copying into the output file.

When a version name is given in name-2, it replaces the original version name. When the version name
is omitted from name-2, the elements written into the output file retain the names they had in the input
file.

Version Mask - An # in the version name in name-1 causes the character in the corresponding position
in the version names of the elements in the input file to be ignored. For example:

TAB./ % %D % % % 3 % % % %

in name-1 would write all nondeleted elements in file TAB with a D as the third character in their version
name into the output file. The V option must be specified when the version mask is used. No EOF mark
is written.

Description:
See 4.1.1 for additional information on specifying filenames.

Procedure name entries are saved but relocatable entry points are discarded. Tape files must be in
element file format in order to use the @FIND and @COPIN control statements (see 4.2.13 and 4.2.2,
respectively).

If either the A, O, R, S, or V option is specified on the @COPOUT control statement, an EOF mark
is not written automatically and a final @MARK control statement (see 4.2.9) may, therefore, be
necessary.

4144.31

SPERRY UNIVAC 1100 Series Executive

4-15
Volume 3 System Processors

UP-NUMBER UPDATE LEVEL PAGE

Example:

1. @COPOUT FROGRAM . ,HOLDPROG.

2. @COPOUT,ARS C.,D.

3. @COPOUT,R A.,B.

4. @COPOUT,S A.B,C.D

5. @COPQUT, sV A./B.C.

6. @COPOUT, AV A, C.

7. @COPOUT,V A./XBrErtx*exsn C.

1. The contents of program file PROGRAM located on sector-formatted mass storage is copied into
magnetic tape file HOLDPRQOG and reformatted as an element file. Since no options are
specified, two EOF marks are written following the output file, and the tape is positioned
between the EOF marks.

2. The nondeleted absolute, symbolic, and relocatable elements of program file C located on
sector-formatted mass storage are copied into magnetic tape file D and reformatted as an
element file. No EOF marks are written following the file (option having been specified).

3. Allnondeleted relocatable elements in program file A located on sector-formatted mass storage
are copied into magnetic tape file B and reformatted as an element file. No EOF marks are
written following the file.

4. Symbolic element B in program file A is copied into magnetic tape file C in element file format
and given element name D.

5. All nondeleted symbolic elements in program file A with a version name of B are copied into
magnetic tape file C and retain the version name B. Fiie C is in element file format.

6. All nondeleted absolute elements in program file A with a blank version name are copied into
magnetic tape file C. File C is in elemeit file format.

7. All nondeleted elements in program file A with a version name containing a B as the second

character are copied to magnetic tape file C. The version names are unchanged.

4.2.4. Positioning Tape Files (@ MOVE)

Purpose:

Moves a magnetic tape file forward or backward over a specified number of EOF marks.

All parameters in the @ MOVE control statement are optional.

Format:

@label:MOVE,option filename,n

Parameters:

option The only valid option is B. If specified, tape movement is backward;

if omitted, tape movement is forward.

filename Specifies the name of the tape file.

4144.31

SPERRY UNIVAC 1100 Series Executive

4-16
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
n Specifies the number of EOF marks to be skipped. If not specified, 1
will be assumed.
Description:

Tape movement in the forward direction leaves the tape positioned at the start of the file on a multifile
reel.

Care must be exercised when moving tape in the backward direction. Assume that tape file BOB is
positioned at file 6:

desired current
tape position tape position
> >
tape E E E E E E E
file O} file 1 |O] file 2 |O| file 3 |0O]| file 4 |O]| file 5 |O| file 6 |O] file 7
BOB E F F E F F F 2
position A

To position the tape to the start of file 2, the following sequence must be executed:

@MOVE,B BOB.,5

@MOVE BOB,1
Step 1 moves the tape to position A, and step 2 moves the tape to the start of file 2.
If a @MOVE,B control statement for a multireel tape file encounters the load point of the file it is
currently on, a diagnostic message is given and the ERR$ exit is taken.
4.2.5. Listing Files, Elements, and Master File Directory (@PRT)
Purpose:
Obtains a listing of the text of a symbolic element, the table of contents of a program file, information
regarding temporary files, or the master file directory items of catalogued files. The control statement
does not list absolute or relocatable elements, as this may be done by the LIST processor (see
Volume 4 - Section 5).
All parameters in the @PRT control statement are optional.
Format:

@label:PRT,options name-1,name-2..,name-n

Parameters:

options See Table 4-8 for options applicable to files, project-ids, and account
numbers and Table 4-9 for element options.

4144.31 SPERRY UNIVAC 1100 Series Executive 4-17
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

names Specifies any of the following depending on options indicated:

- the name of a catalogued file in any format
- the name of a program file

- the name of a symbolic element

- the name of a temporary file

- an account number

- a project-id

- removable disk pack-id/disk equipment type
- the number of elements to print

Table 4-8. @PRT Control Options

Option Description
Character

No option When no name fields are specified and the requesting run is privileged, the entire master file directory is
specified displayed alphanumerically by project-id. When the requesting run is nonprivileged, all public files in the
master file directory are listed, followed by all files catalogued with the requesting run’s project-id.
(Read/write keys are not displayed.) The items are sorted first by project-id, then by account number, and
then by qualifier and filename. If name fields are specified, elements must be indicated (see Table 4-9).

A ORS When used in conjunction with the T option, list the table of contents entry for the type(s) of elements
specified by the options. The A, O, R, S options may be used with the B, L, and V options, but must be
accompanied by the T option.

B When used in conjunction with the T option, list the table of contents in descending sequence order; i.e.,
list the most recently inserted elements first. The B option may be used with any combination of A, O, R,
S, and V options, but must be accompanied by the T option. Only two names are allowed if the B option
is used, and all other names are ignored. The number of elements printed is limited to the number given
as name-2. There is no number limit if name-2 is not given. ’

D Display the names of all catalogued files currently residing wholly or partially on the named removable disk
pack(s). When the requesting run is nonprivileged, all read/write keys and project-ids not matching the
run's project-id are replaced by slashes. The files are sorted alphanumerically by project-id, unless the
N option is also specified, in which case the files are sorted alphanumerically by account number.
Completion of a @PRT,D will require the pack(s) to be mounted.

The NAME parameter must specify a pack-id and the disk equipment separated by a slash e.g.,
PACKID/F14.

F Display the information from the master file directory for each catalogued file specified.

Display the information pertinent to each temporary file specified.

414431 SPERRY UNIVAC 1100 Series Executive

4-18
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

Table 4-8. @PRT Control Options (continued)

Option Description
Character

| Display the names of all catalogued and temporary files currently assigned to the run. (The files
SYS$#LIBS, SYS$#RLIBS and DIAG$ will be excluded from the list.) Because this feature is primarily for
demand runs, the output is displayed in an abbreviated format. No name fields are necessary. Information
such as external filenames, internal filenames attached via @USE, and equipment type are displayed for
each file in the form:

QUAL*FILE(F/C),equipment,assign-options usenames
The assign-options possible are defined as:

A - assigned with the A option

C - assigned with C or U options

D - assigned with the D or K options
T - assigned as a temporary file

X - assigned exclusively

If a usename exists but the file is not assigned, the word DUMMY is printed in the equipment fieid.

L Used in conjunction with D, N, P, T, or no options or @PRT command (in a demand run) to obtain a complete
rather than the abbreviated listing normally produced for demand runs.

N Display by account number. When the requesting run is privileged, the lack of a name field causes the
entire master file directory to be displayed and sorted alphanumerically by account number. When name
fields are specified, only the files catalogued with the specified account numbers are displayed. They are
displayed in the order specified in the name fields.

In nonprivileged mode a name field is unnecessary and if specified, is ignored. In this mode all catalogued
files with the requesting run’s account number are displayed. They are sorted alphanumerically by
project-id. (Read/write keys are not displayed.)

P Display by project-id. When the requesting run is privileged, the lack of a name field causes the entire
master file directory to be displayed and sorted alphanumerically by project-id. When name fields are
specified, only the files catalogued with the specified project-id are displayed. They are sorted in the order
specified in the name fields.

In nonprivileged mode a name field is unnecessary and if specified, is ignored. In this mode all catalogued
files with the requesting run’'s project-id are displayed and sorted alphanumerically by account number.
(Read/write keys are not displayed.)

T Display the table of contents for each specified program file or program file element.
[V} Display the current usage of the removable disk pack specified. The name fields are the same as the

@PRT,D command. The output consists of the first line of the @PRT,D output, which displays pack-id,
tracks available, positions available, and current number of assigns.

414431 SPERRY UNIVAC 1100 Series Executive 4-19
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 4-8. @PRT Control Options (continued)

Option Description
Character
v When used in conjunction with the T option, list the table of contents for elements with the same version

name as specified in the name field. When the version name is omitted from the name field, only those
elements having a blank version name are listed. The V option may be used with any combination of A,
B8, O, R, and S options, but must be accompanied by the T option.

The version mask capability is available when the V option is specified on the @PRT,T control statement
(see Table 4-7).

Table 4-9. @PRT Control Statement, Options with Elements Specified

Option Description
Character

No option List the text of the specified symbolic elements.
specified

AORS Same as for files (see Table 4-8).

B Same as for files (see Table 4-8).
S Same as if no options were specified.
T List the table of contents entry for each element specified.
\" Same as for files (see Table 4-8).
Description:

When the @PRT control statement is used to obtain a display of the master file directory and the
requesting run is nonprivileged, all read/write keys are replaced by slashes. All project-ids not
matching the requesting run’s project-id are also replaced by slashes.

The table of contents information output from the execution of a @PRT,T contro! statement contains
heading information describing the contents of the table of contents. The next write location is
always printed. The procedure tables and entry point tables are printed only if no restrictions are
placed on the @PRT,T control statement, such as an element name, or the B, A, O, R, S, or V options.
Some of the heading information is not self-explanatory. This includes:

Element Table:

DELETE FLAG An asterisk means entry deleted. No other symbol is used.

4144.31

SPERRY UNIVAC 1100 Series Executive

4-20
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

TYPE If the element is symbolic, the processor which created the element is
indicated. '-Q’ indicates that the ASCIl code bit is set in the element
table.

DATE AND TIME Time that element was created or, in some cases, when it was added to
this file.

-SEQUENCE NO. The element sequence number is the position of the element in this file
(this is sequentially issued) as elements are added to the file.

SIZE-PRE, TEXT TEXT is the text size in sectors (a sector is 28 words). PRE is the preamble
size in sectors (relocatable elements only).

CYCLE WORD The first field is the maximum number of cycles (cycle limit) to be

maintained for the element (see Volume 2-2.6.5). The second field is the
most current cycle (absolute). The third field is the number of cycles
currently being maintained.
PSRMODE QTR if element is quarter-word sensitive.
THR if element is third-word sensitive.
BOTH if element is both quarter and third-word sensitive.
SET if element has Arithmetic Fault Compatibility mode bit set.
CLR if element has Arithmetic Fault Noninterrupt mode bit set.

INS if element is insensitive to Arithmetic Fault handling.

LOCATION Specifies the sector position of the start of the text.
(Relative Sector Nbr)

Procedure Table (Assembler, COBOL, FORTRANY):

DELETE FLAG An asterisk means entry deleted. No other symbol is used.
LOCATION Refers to the word position relative to the start of the file.
LINK The sequence number of the element that contains this procedure name.

Entry Point Table:

NAME Name of externally defined symbol.

LINK The sequence number of the element that contains this entry point.
The @PRT,TL control statement from a demand terminal results in the listing at the demand terminal

of the table of contents in the format described above. When using the TL options, if an element
name is given in addition to the filename, the table of contents is listed for the specified element only.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

4-2
Volume 3 System Processors 1

UPDATE LEVEL PAGE

When the L option is omitted, the @PRT,T control statement from a demand terminal results in the
following shortened table of contents format:

type element-name/version(cycle)

where:

type Indicates the type of element. (See 11.2.1.1)
Omnibus subtypes are prefixed with 'O-".

cycles Indicates the latest element cycle.

Examples:

1. @PRT,T PROGF I LE.

2. @PRT PROGF I LE . SAM/XYZ

3. @PRT,P MERCURY

4. Q@PRT,TL ELEY

5. @PRT,|

6. @PRT,D PAC1/F14

7. @PRT,F BASE .

8. @PRT,TB F1

9. @PRT,TS F1

10. @PRT,TO F2

11. @PRT,TV FILE./VERS

12. @PRT,TSV FAST . /V*%¥ %R E%¥%H

-

9.

10.

The table of contents for program file PROGFILE is listed following the format given in
Description. The period must follow the filename; otherwise, the specified name is considered
to be an element name in TPF$.

The most recent cycle of symbolic element SAM, version XYZ, in program file PROGFILE is listed.
information from the master file directory items for all catalogued files whose project-id is
MERCURY is listed subject to current system security restrictions. This information is completely
labeled to prevent any ambiguities as to the meaning of any entry in the listing. The project-id
MERCURY must be tne same as the run’s project-id. If not, no listing is generated, unless the
run is privileged.

A complete table of contents is to be given for element ELEY in TPF$.

All files currently assigned to the run are displayed.

All catalogued files residing on removable disk pack PAC1 are displayed. PAC1 is an F14 disk
pack.

Information describing the file BASE is displayed. BASE may be either temporary or catalogued.

The element table of contents for program file F1 is listed beginning with the most recently
inserted elements.

All symbolic elements in the table of contents of program file F1 are listed.

All omnibus elements in the table of contents of program file F2 are listed.

4144.31 SPERRY UNIVAC 1100 Series Executive

4-22
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

11. The table of contents for all elements having a version name of VERS is listed for program file
FILE.

12. All symbolic elements with a version name beginning with a V in the table of contents of program
file FAST are listed.

4.2.6. Emptying a File (@ERS)

Purpose:

Makes a file available for use as either a program file or an SDF file, with or without releasing allocated

sector-formatted mass storage granules. If granule zero is to remain allocated, the first sector will

be zero filled. ‘

All parameters in the @ERS control statement are optional.

Format:

@label:ERS,options filename-1 filename-2,.... filename-n

Parameters:

filenames Specifies the files to empty.

no-option Release all granules except those initially reserved.
options I - Release all granules including initial reserve.

N - Do notrelease any granules. If granule zero is allocated, the first
sector will be zero filled.
4.2.7. Deleting Files and Elements (@ DELETE)
Purpose:
Drops catalogued files or marks elements in program files as deleted.
All parameters in the @DELETE control statement are optional except name--1.
Format:
@label:DELETE,options name-1,name-2,...,.name-n
Parameters:
names Specifies the catalogued file or the element to be deleted.

options See 4.1.1 for additional information on the A, C, O, R, and S options.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL PAGE

No options apply when deleting a catalogued file.
Deleting Files

Each catalogued file specified is marked as dropped. The filename specified may be external
or internal.

When an external filename is specified, the F-cycle must be specified if it is not the latest
F-cycle. if the file has read/write keys and is to be assigned to the run by the FURPUR processor,
the read/write keys must be specified. The keys may be omitted if the file was assigned prior
to calling the FURPUR processor.

If an internal filename is used, it must have been attached to an external filename by means of
an @USE control statement (see Volume 2-3.7.5).

The file is not actually dropped until all other runs that have the file assigned to them have freed
the file. When the file is dropped, the master file directory items are updated. The older F-cycles
have their relative F~cycle number increased.

See Volume 2-2.6.3 for a discussion of file cycles.
Packs must be mounted for removable disk files being deleted.
Deleting Elements

When the A, O, R, and S options are specified, an element of that type in a program file is marked
deleted. Each entry in the operand field names the element and the program file that contains
it. Any combination of A, O, R, and S options may be used, but at least one must be specified.

Including a cycle number for a symbolic element is illegal. All cycles of the element must be
deleted. All procedure names associated with a deleted procedure element are marked as
deleted. The entry point table is destroyed if a relocatable element is deleted. An @PACK
control statement (see 4.2.14) may be used to reclaim the physical space occupied by deleted
elements.

When the V option is specified, all elements with the same version name as that specified in
the name field are deleted. The V option may be used with one or more of the A, O, R, and §
options to select types of elements for deletion.

The version mask capability is available when the V option is specified orn the @DELETE control
statement (see Table 4-7).

Description:

The effect of a @DELETE control statement on a catalogued file is the same as the sequence:

@ASG,AYD FILEA
@FREE,D FILEA

4-23

4144.31 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAG:-24
Examples:
1. @DELETE,S F.ELT1/VERS,F1.ELTY
2. G@DELETE FLAP.,TARES. ,ZEBRA4 ., BAKER.
3. @DELETE,OV FUl./%%RRRRRERR*R
4. G@DELETE,RSV F2./VERS
5. @DELETE,V FAST. /VHEEEX R EER

i. The symbolic elements ELT1/VERS in program file F and ELTY in program F1 are marked as
deleted. Any associated procedure names are also marked as deieted.

2. Relative F-cycle -0 of catalogued files FLAP, TARE5, ZEBRA4, and BAKER is dropped from the
master file directory (the files are decatalogued).

3. All omnibus elements in program file F1 are marked as deleted.

4. All relocatable and symbolic elements having a version name of VERS in program file F2 are
marked as deleted.

5. All elements having a version name beginning with V in program file FAST are marked as
deleted.

4.2.8. Rewinding Tape Files (@ REWIND)

Purpose:

Rewinds magnetic tape files back to the load point of the first reel.

All parameters in the @REWIND control statement are optional.

Format:

@label:REWIND,options filename-1 filename-2,.... filename-n

Parameters:

options The C (see 4.1.1) and | options are the only valid options. If the | option
is specified, the tape file is rewound with interlock; if omitted, the tape
file is rewound without interlock.

filenames Specifies the tape files to be rewound.

4.2.9. Marking an EOF on Tape (@ MARK)

Purpose:

Writes two hardware EOF marks on a magnetic file and leaves the tape positioned between them.
Some FURPUR control statements do an automatic @ MARK or can be made to do a @MARK by
specifying the M option.

All parameters in the @ MMARK control statement are optional.

Format:

@label:MARK filename-1. filename-2,.. filename-n

4144.31

SPERRY'UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAG:-ZB

Parameters:

filenames Specifies the tape files on which hardware EOF marks are to be
written.

4.2.10. Closing Tape Files (2 CLOSE)

Pt;rpose»:

Writes two hardware end-of-file (EOF) marks on a magnetic tape file and then rewinds it.

All parameters in the @CLOSE control statement are optional except filename-1.

Format:

@label:CLOSE,options filename-1.filename-2,... filename-n

Parameters:

options The C (see 4.1.1) and | options are the only valid options. If the | option
is specified, the tape is rewound with interlock; if omitted, the tape is
rewound without interlock.

filenames Specifies the tape files to be closed.

4.2.11. Entry Point Table Creation (@ PREP)
Purpose:

Creates an entry point table from the preambles of the nondeleted relocatable elements of a program
file.

All parameters in the @PREP control statement are optional.
Format:

@label:PREP filename-1 filename-2,...filename-n

Parameters:

filenames Specifies the program files for which entry point tables are to be
created.

Description:

If a previous entry point table existed, it is destroyed prior to creating a new one. Note that whenever
a relocatable element is added to or deleted from a file, any existing entry point table is destroyed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

4-26
PAGE

UPDATE LEVEL

4.2.12. Punching Program File Elements (@PCH)

Purpose:

Punches program file elements into 80-column cards.

All parameters in the @PCH control statement are optional except eltname.

Format:

@label:PCH,options eltname,seq-char

Parameters:

options

eltname

seqg-char

Description:

See 4.1.1 for additional information on the A, C, O, R, and S options.
The function of the A, O, R, and S options is as follows:

A ORS - Specifies the type of element to be punched. Any
combination of A, O, R, or S may be used, but at
least one must be given.

The following options may be used only in conjunction with the S
option (see Volume 4-2.1.4.1 and 4-2.1.4.2).

G - Produce punched card output containing
compressed symbolic images

H - Punch sequence number into columns 73-80 of
each image. Seg-char must contain an alphabetic
sequence of from one to three characters. The
characters are left-adjusted and overlay columns
73-75. :

J - Compress input images and sequence output cards
in columns 73-80.

The G and J options may not both be specified in the same control
statement.

Specifies element to be punched.

Specifies alphabetic sequencing characters when the H option is
selected.

See 1.4 for information on how to specify element names.

The FURPUR processor ensures that the elements punched contain the control cards needed to
reinsert them into the same program file, or a program file with the same name in a later run. The
first card of a procedure element is a @PDP,l control card (see Section 8). For all other elements,
it is an @ELT,! card (see Section 5). The filename on the control card is the name of the file from
which the element was punched.

Relocatable and absolute elements are automatically (without special option) sequenced in columns
79-80. Sequencing starts with AA and ends with ZZ (starts over with AA if necessary). If the H option

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

4-
Volume 3 System Processors 27

UPDATE LEVEL PAGE

is specified, symbolic images are sequenced in columns 76-80. The card sequence will be 100 apart
and is preceded by the designated alphabetic string given in the seq-char field on the @PCH control
statement.

The punched output is either preceded by a properly formatted @ELT,l card or a @PDP,| card. These
cards produced by @PCH have the same element name as the @PCH control statement. Thus, if the
file containing the element that was punched is assigned to a subsequent run, all that is necessary
to.reintroduce the element is to include the @PCH-produced cards in the run stream.

Examples:

1. @PCH,S UPDATE . RUNPROG
2. @EPCH,SRJH A.B,XYZ

1. Symbolic element RUNPROG in program file UPDATE is punched onto 80-column cards, one
image per card.

2. Symbolic element B of program file A is punched in 80-column cards. The input images are
sequenced in columns 76-80. The identification sequence is punched in columns 73-75. The
input images are also compressed.

Relocatable element B of program file A is also punched. The text has been previously
sequenced, and the FURPUR processor sequences the preamble.

See Volume 4-2.1.4.2 for a discussion of compressed symbolic elements.

4.2.13. Positioning within Element Files (@FIND)
Purpose:

Locates an element in a magnetic tape file (file must be in element file format) and positions the tape
immediately preceding the element’s label block.

All parameters in the @FIND control statements are required except label and options.
Format:

@label:FIND,options eltname

Parameters:

options One and only one of the options A, O. R, or S must be used to specify
the type of element. See 4.1.1 for additional information on these
options.

eltname Specifies the file and the element to be located.

Description:

The search is made forward until either the element is found or an EOF mark is encountered. When
the EOF mark is encountered, the tape is backspaced to the previous EOF mark (or load point,
whichever is encountered first) and the search is repeated. If no find is made, the error exit is taken
when the EOF mark is encountered.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

4-28
Volume 3 System Processors

PAGE

UPDATE LEVEL

Normally, the @FIND control statement is used just prior to a @ COPIN control statement (see 4.2.2)
requesting that the element just located (or all elements up to the EOF mark) be inserted .into a
program file located on sector-formatted mass storage. It is also required before calling a language
or systems processor which is to use SIR$ to read the element from tape (specified as the Sl field).

Care must be exercised when doing a @FIND operation on other than the first reel of a multireel file.
If an EOF is encountered prior to locating the desired element the reel is backspaced only to the load
point, not to the EOF which is located on a previous reel.

4.2.14. Removal of Deleted Elements (@ PACK)

Purpose:

Rewrites an entire program file, removing specified types of elements (depending on the options
specified) and all elements marked as deleted. @ COPOUT and @ COPY,P control statements (see 4.2.3
and 4.2.1, respectively) have the same effect on output files since they do not copy deleted elements.
Mass storage space which is no longer needed is returned to the system.

All parameters in the @PACK control statement are optional.

Format:

@label:PACK,options filename-1 filename-2,...filename-n

Parameters:

filenames Specifies the program files to be written.

options See Table 4-10. See 4.1.1 for additional information on the A, C, O,
R, and S options.

Description:

Any combination of A, O, R, and S options may be specified. If no options are specified, then all
deleted elements are removed.

Normal Termination:

If the file is position granularity, ‘FILE SIZE' is the number of positions required to contain the program
file.

If the file is track granularity, 'TEXT is the number of tracks required to contain the element text, and
‘TOC’ is the number of tracks required to contain the table of contents.

The number and type of each element is printed at termination.
Abnormal Termination:

If the termination was not caused by an error (i.e., system crash, or @@X T), the @PACK can most
likely be completed by repeating the @PACK command with the same options.

4144.31 SPERRY UNIVAC 1100 Series Exacutive 4-29
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 4-10. @PACK Control Options

Option Description
Character
no option Remove all deleted elements and release all unused granules except those granules initially reserved.

{see |-option)

A Remove all elements except nondeleted absolute elements.
D Used in conjunction with M option to inhibit creation of an entry point table. ignored if no M option
is specified.

I Ralease all unused granules including initial reserve.

M Creates a minimum size table of contents by starting each program file table in the sector following the
previous not empty program file table. The element text is started in the first track not used for the table
of contents (see Section 6). An entry point table is created unless the D option is specified. In most
cases, this entry point table can be larger than if a @PREP followed a @PACK without the M option.

After a @PACK,M, there is no room to expand the table of contents, and new elements cannot be added.
To expand the table of contents, by adding or updating an element or creating an entry point table, it
will be necessary to transfer the elements to another file. @COPY,P or @COPOUT may be used for the
transfer. Alternatively, existing elements can be deleted followed by a @PACK without the M option.

N Do not release any granules. if granule zero is allocated and there are no nondeleted elements, the first
sector will be zero filled.

(0] Remove all elements except nondeleted omnibus elements.

P Cause an entry point table to be created, as if a @PREP command immediately followed the @PACK
command. The P option is ignored if the M option is specified.

R Remove all elements except nondeleted relocatable elements.

S Remove all elements except nondeleted symbolic elements.

4.2.15. Changing Element and Version Names, File Keys and Modes

The @CHG control statement described in 4.2.15.1, discusses how to change catalogued files, keys,
and modes; and in 4.2.15.2, discusses how to change program file element and version names. Some
examples of @CHG control statements are given in 4.2.156.3.

4.2.15.1. Changing Catalogued Files, Keys and Modes

Purpose:

Changes catalogued mass storage files, keys, and modes.

All parameters in the @CHG control statement are optional except name-1.

4144.31 SPERRY UNIVAC 1100 Series Executive 4-30
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Format:

@label:CHG,options name-1,name-2

Parameters:
options The options are:
P - Set public mode
Q - Set private mode
V - Set read-only mode, clear write-only mode
W - Set write-only mode, clear read-only mode
Z - Clear read only and/or write-only modes (must not be used
in conjunction with V and W options)
name-1 Specifies the file to be changed
name-2 Specifies the same file as name-1 with new or changed keys
Description:

One F-cycle series exists for each set of files with the same filenames. Each catalogued file belongs
to only one F-cycle series. Read/write keys, if any, are the same for all members of the series. The
master file directory contains a lead item for each F-cycle series that lists the read/write keys for the
series and points to a main item for each member of the series. The read-only mode and write-only
mode indicators are kept in the main item for that member.

The @CHG control statement may be used to perform the following functions related to catalogued
files:

1. Change the read/write keys for all files of a given F-cycle series.

2. Remove or set read-only or write—only modes on a file.

3. Set public or private mode on a file.

If an F-cycle series contains only one member, 1. is equivalent to changing the keys for a file.

Although the functions performed by the @CHG control statement do not include reading or writing
in text areas of the files named, read/write keys, if the files have any, are required in order for @CHG
to modify their master file directory items. This means that the filename on the first @ASG control -
statement given to the Executive must include the keys if an external name is used. If an internal
name is used, it must be associated by an @USE control statement still in effect that includes the
keys. FURPUR performs the initial assignment, if the user has not assigned the file. In this case, the
same rules apply to the name furnished on the @CHG control statement as for the @ASG control
statement furnished by the user.

If the file being changed is assigned to another run the @ CHG will be executed but the actual changes
will not be made to the MFD item until the file is no longer assigned to another run.

414431 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAG: -3

4.2.15.2. Changing Program File Element and Version Names

Purpose:

Changes program file element and version names.

All parameters in the @CHG control statement are optional.

Format:

@label:CHG,options eltname-1,elthame-2

Parameters:

options The A, C, O, R, S, and V options are the only valid options for this
statement (see 4.1.1).

eltname-1 Specifies the program file element.

eltname-2 Specifies the same program file and the new element and version
names.

Description:

One or more of the A, O, R, and S options must be specified; only the elements of types specified
by options will have their names changed. Element cycles may not be specified.

This operation can also be performed during a @COPIN (see 4.2.2), @COPOUT (see 4.2.3), or a
@COPY,ADRS (see 4.2.1) control statement.

The V option, when used for element version changing, must be accompanied by one or more of the
A, O, R, and S options. This option allows the changing of element/version names for all elements
which have the same version name as that specified in name-1. Only the element types specified
by the options will be changed.

The version mask capability is available when the V option is specified on the @CHG control
statement (see Table 4-7).

4.2.15.3. @CHG Control Statement Examples

The following examples illustrate the operation of the @CHG control statement.

1. @CHG,S A.B/F4,A.GOTO/A1

2. @CHG,ARS UP.PACK,UP.PACK/VER3

3. @CHG,R IN.PUT/A,IN.PUT/F

4. @CHG,A OUT.PUT/G,0UT.GO/G

5. @CHG,V FILE/KEY1/KEY2.

6. @CHG FILE1/KEY1/KEY2. ,FILE1/KEYA.
7. @CHG,ORS F.ELT,F.NEWELT

8. @CHG,RSV F1./VERS,F1./NEWVERS

9. @CHG,AV F2./VERaassnnsts F2.

4144.31 : SPERRY UNIVAC 1100 Series Executive

4-32
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

1. Changes the element and version names of symbolic element B, version F4 of program file A
to element name GOTO, version A1.

2. Assigns the version name VER3 to the absolute, relocatable and symbolic elements named PACK
in program file UP.

3. Changes the version name of relocatable element PUT in program file IN from A to F.

4. Changes the element name of the absolute element PUT in program file OQUT to GQ. The version
is not altered.

5. Changes the mode of catalogued file FILE from its present mode to read-only mode.
6. Changes the read key of catalogued file FILE1 from KEY1 to KEYA and deletes the write key.

7. Change the omnibus, relocatable, and symbolic elements named ELT in program file F to element
name NEWELT.

8. All relocatable and symbolic elements having a version name of VERS in program file F1 are
given the version name of NEWVERS. The element names remain unaltered.

9. All absolute elements having a version name beginning with V in program file F2 are given the
new version name of blanks. The element names remain unaltered.

4.2.16. Altering Cycle Retention Limit (@ CYCLE)

Purpose:

Sets the maximum range of absolute F-cycle numbers to be retained for a catalogued file (see Volume

2-2.6.3) or the maximum number of element cycles for a program file symbolic element (see Volume

2-2.6.5). When n is omitted, cycle information regarding the current F-cycle series is displayed.

All parameters of the @CYCLE control statement are optional.

Format:

@label:CYCLE name,n

FILES

Parameters:

name Specifies an F-cycle series for which the cycle range is to be changed.

n Specifies the maximum range of F-cycles to be retained. If omitted,
cycle information is displayed regarding the current F-cycle series.

Description:

When a catalogued file is specified, the @CYCLE control statement sets the maximum range of
F-cycles for the filename. The file specified must be in the master file directory. If n is O, the F-cycle
series is deleted. If n specifies a new maximum less than the current range of F-cycles being retained,
enough F-cycles of the file set (starting with the oldest cycle) are deleted to satisfy the new range.

414431 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAG:-33
ELEMENTS
Parameters:
name Specifies a program file symbolic element whose cycle limit is to be
changed.
n - Specifies the maximum number of element cycles to be retained.
Description:

When a program file element is named, the @ CYCLE control statement sets the maximum number
of slement cycles. If n specifies a new maximum less than the current number of element cycles
being retained, a new element with the same name is created and some data image control words
may be changed and some images may not be transferred at all.

Any image deleted in a cycle number less than the lowest cycle number being retained, because of
the new lower maximum number of cycles, is not transferred to the new element. Any images added
but not deleted in a cycle number less than the lowest cycle number being retained are transferred;
but S6 of each data image control word is changed to reflect the new lowest cycle number retained.
All other nondeleted and deleted images are transferred to the new element.

Examples:

1. @CYCLE Q*A.B, 2
2. @CYCLE a*D.,2
3. @CYCLE Q#D.

1. Assume that symbolic element B in program file Q*A consists of element cycles 5, 6, 7, and
8. Since the new limit is two cycles, a new element B is created consisting of cycles 7 and 8.

2. Assume that the master file directory entry for file Q*D indicates that four absolute F-cycles
18, 15, 14, and 12 of the file exist. Since the new limit is two, absolute F-cycles 15, 14, and
12 are deleted. The limitis considered to be the range starting from the highest current absolute
F-cycle number.

3. F-cycle information is displayed regarding the catalogued file Q*D.

4.2.17. Enabling Files Disabled Due to Malfunctions (@ ENABLE)
Purpose:
Resets (removes) the disable flag for catalogued files.
All parameters in the @ENABLE control statement are optional.
Format:

@label:ENABLE filename-1. filename-2,... filename-n
Parameters:

filenames Specifies the catalogued files to be enabled.

41443
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

4-34
PAGE

Description:

If the specified file is not disabled, a message to this effect is printed on the listing {(normal exit is

taken). Keys, if any, must be specified.

4.3. FURPUR FILE FORMAT COPY,G

A 28-word label block is written to tape prior to copying the file's contents giving details of the copied
file and the time when the copy was made.

Format:
Word
0 COPYGa
1 BLKSEQ
2
Qualifier (LJSF)
3
4
Filename (LJSF)
5
6 F-cycle
7 Date MMDDYY
8 Time HHMMSS
9 Equipment Code
10 Highest Track Written
28

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

4-35

UPDATE LEVEL PAGE

Subsequent blocks are 1794 words in length and consist of a mass storage track (1792 words)
preceded by a 2-word header containing the track address and checksum and block sequence

))
<

number.
Format:
Word H1 H2
0 Track Address
1 Checksum Block Seq. Nbr
2 1 TRACK
1792 WORDS
T
1793

The end-of-file and end-of-reel conditions conform to the same formats described for COPOUT.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

5-1
Volume 3 System Processors

UPDATE LEVEL PAGE

5. ELT Processor

5.1. INTRODUCTION

This section describes the ELT processor and the @ END control statement (see 5.2.1), which is used
with the ELT and DATA (see Section 6) processors.

The ELT processor is used to introduce an element into a particular program file or make corrections
to a symbolic element in a program file from within the runstream.

5.2. @ELT FORMAT
Purpose:

Introduces an element into a particular program file or makes corrections to a symbolic element in
a program file from the runstream. The @ELT control statement is used to call the ELT processor
and it must precede the element or correction images in the runstream. With the exception of the
@ELT,D control statement, the ELT processor is terminated by the first nontransparent control
statement encountered in the runstream. The ELT,D processor is terminated by an @END control
statement (see 5.2.1) whose sentinel matches the sentinel on the @ELT,D control statement. Any
control statements, with the exception of the @FIN and @ ADD,D statements (see Volume 2-3.4.2 and
2-3.10.1, respectively), appearing between the @ELT,D control statement and the @END control
statement are treated as data.

All parameters in the @ELT control statement are optional except eltname-1.
Format:

@label:ELT,options elthame-1,eltname-2,sentinel time-and-date,bank- information
Parameters:

options See Table 5-1. All of the source input/output routine (SIR$) options
contained in Table 1-2 may be used. The A, O, R, and S options
(element type options) identify the element type, while the |, L, and U
options principally outline element (image handling) options. The D
option is used to insert control statements into a symbolic element.
Those elements identified as type S are considered symbolic elements
and also may be corrected by using the correction statements
(see 1.2).

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive . 5-2
Volume 3 System Processors UPDATE LEVEL PAGE

eltname-1

eltname~-2

sentinel

The S option is assumed when the element type options are not
specified. The L option is assumed when the image handling options
are omitted and no eltname-2 is given.

Specifies the input element. With the | option this parameter specifies
the new element being inserted into the program file. With the U
option this parameter specifies both the symbolic input and output
elements.

Specifies the new output element to be generated. Not used with |.
May be specified with U option to retain all element cycles up to cycle
specified in a new SO element.

Specifies, when the @ELT,D control statement is used, the character
code which terminates the flow of data images into the element being
created. This parameter may consist of one to six characters and must
agree exactly with the sentinel code appearing on the @END control
statement (see 5.2.1) used to terminate the ELT processor.

time-and-date Specifies time and date element was created in TDATE$ format (see

Volume 2-4.5.2) shifted circularly 18 bits. Applies to absolute and
relocatable elements only. This parameter is optional.

bank-information Applies to absolute elements only and is required. Contains the same

information as absolute element table item word 6 (see Figure 11-3).

Table 5-1. @ELT Control Statement, Options

Option Description
Character
Element Type Options
A ldentifies element as an absolute element; used only with the | option.
(o] Images following the @ELT are inserted as they appear in the run stream into an omnibus element. The
element is not formatted by ELT. Applies only with the | option.
R Identifies element as a relocatable elament, used only with the | option.
S Identifies element as a symbolic element. This option is assumed when no element type option is specified.
Image Handling Options
D Indicates that the symbolic input images following the @ELT control statement may include control
statements which are to be transferred as.data. All control statements are transferred until a @FIN or @END
(with matching sentinel) control statement is encountered (see Volume 2-3.4.2 and 5.2.1, respectively).
L Requests a listing of the complete symbolic element. The listing provides line numbers, cycle information
and identification of the newly added and deleted images. This option may be specified for absolute,
omnibus or relocatable elements to furnish an unedited listing of the images as they appear in the
runstream. This option is assumed when the |, L and U options are omitted and no eltname-2 is given.
X Take error exit (ERR$ see Volume 2-4.3.2.2) upon occurrence of an error.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

5-3
Volume 3 System Processors

PAGE

UPDATE LEVEL

Dascription:

The ELT,D control statement allows insertion of control statements into a program file as elements
which may represent @RUN and @ADD runstreams (see Volume 2-3.4.1 and 2-3.10.1, respectively)
that can be called later by the @ ADD or @START control statements (see Volume 2-3.10.1 and
2--3.4.3, respectively).

When an element is punched by the FURPUR processor (see Section 4), the element is always
preceded by an @ELT control statement. The filename punched into the @ELT control statement is
the name of the file from which the element was punched. These decks can simply become part
of the input to subsequent runs. If the element is to be added to a file other that the one from which
it was punched, the filename on the @ELT statement must be changed.

The @ELT statement generated by FURPUR when an element is punched also contains information
in specification fields 4 and 5. Field 4 contains the time and date the element was created from word
9 of the Program File table item (see Figure 11-3). Field 5 applies only to absolute elements and
contains bank information from word 6 of the absolute element table item. If field 4 is not present
the current time and date is used when the element is added to a program file. Field 5 must be present
when an absolute element is to be added.

If the H, |, K, and L options are used (see Table 1-2) ELT will identify any column 73-80 sequence
number errors by attaching a "#’ (pound symbol) to the line number out of sequence.

Examples:

1. @ELT.,U PF1.ELEMENT1

2. @ELT PF1.ELEMENT1,PF2.ELEMENT2
3. @ELT,L PF1.ELEMENT2

4. @ELT PF1.ELEMENT2

5. @ELT,I PF1.ELEMENTS3

6. @ELT,IA ESCP*TPF$.ELT,,,106256042410,004541002746
7. @ELT,IR PF1.ELEMENTS

8. @ELT,IS PF1.ELEMENT®6

9. @ELT,ID PF1.ELEMENT?7,,STOP

10. @ELT,U TPF$.A,TPF$.B

11. @ELT, IOL TPF$.OMNI

—

The correction images following this control statement update ELEMENT 1 of program file PF1.
The updated element replaces the old ELEMENT1 in PF1. Since the element type is not
specified, the S option is assumed, and the element is considered to be a symbolic element.

2. The correction images following this control statement are applied to ELEMENT1 of program
file PF1 to produce a new symbolic element (ELEMENT2) in program file PF2. ELEMENT1
remains unchanged.

3. This control statement lists ELEMENT2 of program file PF1.
4. The correction images following this control statement are applied to ELEMENT2 of program
file PF1. The new symbolic element is listed but no new element is produced because the U

option is omitted. ELEMENT2 remains unchanged.

5. The images following this control statement are inserted as a new symbolic element (ELEMENT3)
in program file PF1.

6. The images following this control statement are inserted as a new absolute element (ELT) in
program file TPF$. The time and date of the element will be 10:00:14 and 20 APR 72. The

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

5-4
Volume 3 System Processors

PAGE

UPDATE LEVEL

10.

11.

I-bank length of this element is 2401 decimal words and the D-bank length is 1510 decimal
words.

The images following this control statement are inserted as a new relocatable element
(ELEMENTS) in program file PF1. Since there is no time and date specified the current time and
date is used.

- The images following this control statement are inserted as a new symbolic eiement (ELEMENT6)

in program file PF1.

The images following this control statement are inserted as a new data element (ELEMENT7)
in program file PF1. The data stream is terminated when an @END control statement having
the matching sentinel STOP is encountered.

The correction images following the control statement are applied to element A in program file
TPF$ to produce the next higher element cycle which then becomes the new symboiic element
B. Element A remains unchanged. Previous element cycles are retained in element B.

The images following the @ELT are inserted as a new omnibus element (OMN!) in program file
TPF$. The images are listed as they appear in the runstream.

5.2.1. Input Termination Sentinel (@END)

Purpose:

Marks the end of a data file or element. It follows the data images introduced by either an @ELT,D
or @DATA controls statement (see Section 6).

The sentinel parameter is optional.

Format:

@END sentinel

Parameters:

sentinel A one- to six-character code corresponding exactly to the sentinel
contained in the @DATA or @ELT,D control statement introducing the
data images. The end of the file or element is determined when the
character string in this parameter matches the character string of the
sentinel parameter specified in the associated @DATA or @ELT,D
control statement.

Description:

@END controf statements cannot have labels and cannot be continued. The @END control statement
must be coded exactly as shown (punched into first four columns of the card).

Examples:

@END FINISH

When the @END control statement is encountered, it ends the data file or element introduced by the
@DATA or @ELT,D control statement that has its sentinel parameter coded FINISH.

4144.31 SPERRY UNIVAC 1100 Series Executive

6-1
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

6. Data Processor

6.1. INTRODUCTION

This section describes the DATA processor. The DATA processor is used to create and update
System Data Format (SDF) files from within the runstream.

‘The @END statement (see 5.2.1) is used in conjunction with the DATA processor.

6.2. @DATA FORMAT
Purpose:
Creates, updates and lists SDF files from the control stream. DATA processor operations is terminated
by an @END control statement (see 5.2.1) whose sentinel matches the sentinel in the @DATA control
statement.
The @DATA control statement is used to call the DATA processor and it must precede the data or
correction images in the runstream. Any control statement, with the exception of the @FIN and
@ADD,D control statements (see Volume 2-3.4.2 and 2-3.10.1, respectively) appearing between the
@DATA control statement and the @END control statement is treated as data.
All parameters in the @DATA cantrols statement are optional except filename-1.
Format:

@label:DATA, options filename-1,filename-2,sentinel

Parameters:

options See Table 6-1. Symbolic input/output routine (SIR$) options
{see Table 1-2), except the U option, also apply.

If the | option is omitted, but both filename-1 and filename-2
parameters are specified, the data images following the @DATA
control statement are interpreted as corrections to filename-1. A new
updated file identified by filename-2 is generated.

If the options and filename-2 parameters are omitted, the L option is
assumed. Filename-1 is listed but no new file is generated.

4144.31 SPERRY UNIVAC 1100 Series Executive

6-2
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
filename-1 Specifies the file to which the data images and correction images in
the runstream apply. The file must be catalogued or assigned to the
run.
filename-2 Specifies the updated file to be generated. The file must be
catalogued or assigned to the run.
sentihel Specifies a character code of one to six characters used for

comparison purposes in determining the proper terminating @END
control statement (see 5.2.1) for the data mode.

Table 6-1. @DATA Control Statement With Options

Option Description
Character
L Generates a complete listing of the file. This includes sequential item numbers which are used when

making corrections to the file and identification of added and deleted images. If this option and filename-1
are the only parameters specified, filename-1 is listed. This option is assumed when the |, L, and U options
are omitted and no filename-2 is given.

U The U option is used only to update from relative F-cycle O to relative F—cycle + 1. Only filename-1 can
be specified. Relative F-cycle + 1 of the file must be assigned prior to implicitly referencing it by means

of the U option on the @DATA control statement (see Volume 2-2.6.3).

X Take error exit (ERR$ - see 4.3.2.2) upon occurrence of an error.

Description:

The difference between the operation of the DATA processor and the @FILE control statement (see
Volume 2-3.8.1) is that the DATA processor handles data as it is presented in the runstream at run
time, whereas the @FILE control statement builds the file as the data is being initially input into the
system. In short, the DATA processor operates identically to a language processor control statement.
The file built by the DATA processor is in System Data Format (SDF) (see 11.2.3).

The DATA processor allows the user to build data files which are an entire or partial runstream. These
files can then be called on by the @START control statement (see Volume 2-3.4.3) to start an
independent run or by the @ ADD control statement (see Volume 2-3.10.1) for inclusion in a current
or subsequent run. The DATA processor enables the user to make corrections to an independent
runstream and then start it using the @START control statement, or make corrections to a partial
runstream and add it to the run using the @ ADD control statement. The data processor can also be
used as a convenient means of generating and maintaining a user’s data file rather than a control
stream type file.

@DATA does not write a hardware tape mark after writing a file out to tape. The user should do a
@MARK after @DATA has completed (see 4.2.9).

4144.31

SPERRY UNIVAC 1100 Series Executive

6-3
Volume 3 System Processors

UP-NUMBER UPDATE LEVEL PAGE

Examples:

1. @DATA FILEA,FILEX

2. @DATA, I FILEB

3. @DATA,L FILED

4. @DATA FILEY

5. @DATA,IL FILEZ

6.. @ASG,C FN(+1)
@DATA, UW FN

1. The images following this control statement provide the corrections for FILEA. The updated

- version of this file is stored into the newly created file FILEX.

2. The images following this control statement are inserted into FILEB.

3. The images following this control statement are applied as corrections to FILED. FILED is listed,
but a new file is not created.

4. Because the options and filename-2 parameters are omitted, the L option is assumed, and a
complete listing is provided for FILEY.

5. The images following this control statement are inserted into FILEZ and listed.

6. The correction images following the data statement are applied to file FN to create relative

F-cycle + 1 of file FN. The correction images are listed.

4144.31 SPERRY UNIVAC 1100 Series Executive

7-1
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

7. Text Editor (ED) Processor

7.1. INTRODUCTION

This section describes the ED processor which permits the user to manipulate the text of a symbolic
file or element.

7.2. @ED PROCESSOR CALL STATEMENT FORMAT

Purpose:

To invoke the Text Editor (ED processor) and specify its input, output, and operation modes.
All parameters of the -@ED control statement are optional.

Format:

@label:ED,options name-1,name-2

Paramters:

options See Table 7-1.

names Specifies input or output files or elements (see Table 7-1).
Description:

Table 7-1 lists the available options, the input/output files as specified by name-1/name-2, and
functions. Unless otherwise specified, name-1 and name-2 may be either files or elements.

If name-1 is omitted, the name of an element in TPF$ will be solicited. If no options of the set C,
I, R, U are given, the C option will be assumed.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-1. @ED Control Statement, Options

Option Name-1 | Name-2 Description
Character
Notl,Ror U Input Output Input is taken from name-1 and the resultant text is placed in name-2.
Not i, Ror U Input None R option assumed for symbolic element.
U option assumed for data file.

A Input Output Attempt auto recovery — see AUTO command (Table 7-2).

B Input Output Batch mode when using a demand terminal - the ED processor run will not
solicit input from user (see ON/OFF TRDINP).

c input or Ignored Enter input mode if element does not exist. Otherwise, assume U option.

Output

D Input Output Demand mode when using a batch terminal - output listing of the ED
processor run will contain solicitation messages.

E Input OQutput Set EOF mode on at start of edit (see ON/OFF commands).

I Output Ignored Initial insertion of symbolic input from the runstream which causes the ED
processor to enter the input mode. The images following the @ED control
statement are inserted into the file named in name-1. The | option takes
precedence over the R or U option.
if the | option is specified or if two fields are specified, then on entry to the
text editor a check is made on the output file (i.e., field 1 if | option; field 2
if two fields specified).

If the output is a data file and the user specified an element in that file, then
the ED processor errors off after printing the error:

FILE NOT PROGRAM FILE FORMAT

If the output file is a program file and the user did not specify zn an element
in that file, then the ED processor prints a warning message:

WARNING: ON EXIT QUTPUT FILE WILL BECOME A DATA FILE

L Input Output Print all lines following the @ED control statement. The lines printed are
indented and preceded by four asterisks.

N Input Output Suppresses printing of changed, found, or relocated lines. This option serves
the same purpose as the ON BRIEF command (see Table 7-2).

P input Output Output file will be Fieldata

Q Input Output Output file will be ASCII.

R Input Ignored Input is taken from name-1 of the @ED control statement; no output text s

produced (read-only mode). The UP command should be used it the user
wishes to apply changes.

7-2

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 7-3
Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-1. @ED Control Statement, Options (continued)

Option Name-1 | Name-2 Description
Character
U Input Output Update the symbolic element by applying corrections and create a new
- {and symbolic element cycie. For SDF-formatted files the original images will be
Output if replaced with the updated ones.
no
Name-2)

The U option functions exactly as it does for SIR$ usage. In particular, an
output element name may be specified which need not be the same as the
input element; the output element will have the same cycle information as
would the updated input element if there were no second element specified.
The T option letter is reserved for internal use to facilitate this feature. In the
case that the current cycle is 62 and the number of cycles in existence is less
than the maximum permitted for the element being updated, the output cycle
number will be the smaller of n and m-1, where n is the number of cycles in
existence and m is the maximum number of cycies permitted.

X input Output Take an ERR$ exit (see Volume 2-4.3.2.2) upon a fatal or nonfatal error (batch
mode only).

The ED processor operates in two modes: input and edit. In input mode, all lines entered are directly
inserted into the text. In edit mode, various commands may be used to modify existing text. Changing
between modes is accomplished by entering a blank line. Most editing commands implicitly
reference a particular part of the text. This is accomplished by an internal cursor maintained by the
ED processor. This cursor may be positioned directly by some commands (number, +number,
-number) and indirectly by others (LOCATE,FIND,CHANGE).

If the P or Q options are not specified, the output file will be the same character set as the input file.
If the input file is mixed, the type of the output file will be the same as the type of the label image
of the input file. This means that print files will almost always be Fieldata, so the Q option will be
required for ASCIl editing. If a new element is being created by the explicit or implicit use of the |
option, the mode will be Fieldata uniess the Q option is specified.

The editor will allow editing of print files without destroying line spacing. Any new lines which are
inserted have a default spacing of one. An edited file may be @SYMed as a normal print file after
any editing is performed on it.

7.3. EDIT MODE COMMANDS

Table 7-2 lists alphabetically the commands available to the ED processor while in edit mode (permits
manipulation of images in an element or file). Some of these commands may be abbreviated to one
or two characters as specified. All may be abbreviated to three characters. All commands should
start in column 1 of the input line.

When using CHANGE, INSERT, RETYPE, and the corresponding abbreviated commands, only one
blank should be left between the command and the parameter image. In all other commands of more
than one parameter, at least one blank must be left between each parameter. When errors are
detected in a command, the command is not executed (some commands may be partially executed),
an error message is given, and the next command in the runstream is executed, except in the case
of the X option in batch mode.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors - UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands

Commend Description
ADD name This command is used to add all or portions of a file to the current file. The
ADD name num1 num2 first form adds the whole file, and the second form adds lines ‘num1’ through
ADD + name ‘num2’ to the current file. The lines to be added are inserted at the end of

ADD+ name num1 num2

the file uniess a 4+ immediately foliows the command in which case the lines
are inserted following the current position within the edit file. The ‘name’ is
the element or filename (see Volume 2-2.6). If num2 is omitted, the single
line at line num1 is added.

APPEND

Go to the end of the element or file and enter input mode thereby allowing
new images to be inserted. This command may be abbreviated to A.

ASCIl keyword

This command is used to specify that the character set of the output file or
element should be ASCIi (if keyword = ‘ON’) or Fieldata (if keyword = "OFF’).
If this command is not used, the character set of the output is determined from
the P and Q options or the character set of the input.

AUTO numi
AUTO
AUTO*

This command specifies that an automatic save of the current file is to be
performed as protection against processor or system failure. The "num1”
specifies that the auto save is to be performed for every "num1" input
transactions which alter the file being edited. When the auto save occurs, the
ED processor will type "AUTO". Entering "AUTO" with no parameter will
perform an immediate auto save and reset the input transaction counter; it will
also set the auto mode on, with a frequency (of input transactions which alter
the file) of 131070. The effect of "AUTO#*" will be the same as "AUTO", except
the frequency will be left at O (that is, "AUTO#*" is the same as "AUTO" followed
by "AUTO 0"). An auto save is always performed when the ED processor goes
to the top of the file, and in this case, "AUTO" will be printed if the frequency
is nonzero. "AUTO 0" will terminate auto mode. Note that even if AUTO was
never used, an auto recovery may be possible because of the implicit auto save
each time the top of the file is reached. (Some commands, such as MOVE,
may pass the top of the file more than once and will thus print "AUTO" more
than once.)

To recover the contents of the auto save-file after a run has terminated
abnormally (i.e., by system crash, terminal timeout, loss of carrier, etc.), the ED
processor should be called with the A option set. If the A option is omitted
and an auto file exists, the user will be asked, "DO YOU WANT AUTO
RECOVERY?" An answer beginning with the letter Y will be assumed to be
YES, and the effect will be the same as if the A option had been used. If an
ED command, data, or the word "NO" is entered, the auto file information will
be overwritten and lost. The name of the file and element (or just file) being
edited will be printed before the "DO YOU WANT AUTO RECOVERY?" question
is asked, to aid the user in deciding how to answer the question. If auto
recovery is selected, the tables of the ED processor will be adjusted so that
the output file and element will have the name of the file and element in the
auto file. The tab character and tab stops will be set to the standard for the
element subtype (if any) or to the default standards. Under some
circumstances, the file which was in use at the time of the auto save cannot
be retrieved or cannot be restored to the same status. This is the case if the
file has read or write keys and the file is not assigned at the time auto recovery
is attempted; it will be impossible to exit normally from the edit, and the user

7-4

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command

Description

should free and reassign the file with the proper keys, followed by a second
attempt at auto recovery. (Keys are not saved for reasons of security.) In either
of these cases, the user will be informed by a diagnostic message. In some
of these cases, such as when the R option was used, recovery will be
impossible; the usual indication of this will be an 1/0 error status 5 and an
empty file.

The A option can be used to initiate an auto recovery at any time, not just after
an abnormal termination of a run. This may be useful in other cases of
abnormal functioning, such as overflow of a temporary file (which cannot be
expanded) or the simple error of entering OMIT instead of EXIT.

NOTE:

This command should be used sparingly as it involves extra I/0 and
computation. Some sites may choose to set a minimum for the line
count(larger than the standard of five) for this reason. An AUTO O terminates
the auto save mode. Entering the AUTO command with no operand causes
an immediate auto to be performed without affecting the auto counter.

CASE UPPER
CASE U

CASE NORMAL
CASE N

CASE UPPER causes all input lines to be translated to upper case. In CASE
NORMAL mode no translation takes place. CASE UPPER is assumed for
Fieldata files or elements, and when the | option is specified without the Q
option (see SHCHAR,).

CCHAR char

This command sets the continuation character. When an input line to the
editor has this character in it, the editor assumes that the next line or input
is a continuation of this current line. This next line will be solicited in the
normal manner except that a + will precede the solicitation. The character
is initially set to a character which cannot be typed in. The character can be
reset to this non-enterable character by using this command with no ‘char’.

CHANGE /string-1/string-2/m G

C /string-1/string-2/m G

CHANGE /string-1/string-2/> m G
c

ce

This command searches a specified number of text lines for {as with LOCATE
command except that CHANGE starts with the current line and LOCATE starts
with the following line). When and if the desired string, ‘string1’, is found,
‘string 2’ is substituted for it. The number of lines to be scanned is indicated
by ‘m’. The global indicator, ‘G’ tells whether to change all occurrences of
‘string 1’ in the range of lines or just the first occurrence in each line. A ‘G’
means all occurrences and no character means just the first. The '/° may be
any character which does not occur in ‘string 1’ or ‘string2° except a blank. The
‘m’ may be omitted in which case 1 is assumed. Instead of using ‘m’ and 'G’,
a user may change all subsequent occurrences in the file by using the word
‘ALL’ (which may be abbreviated A) where ‘'m’ is usually specified. Instead of
using a large value for m, the user may specify the word REP (which may be
abbreviated R) to indicate that the first occurence on each line of the rest of
the file is to be changed. A special option allows the erasure of all characters
following a given string in a text line. This is accomplished by placing a >
immediately following the last string delimiter in the CHANGE image. If all
specifications are omitted, the last CHANGE command will be executed again.
The contents of the last CHANGE command can be printed by "C?".

7-5

4144.31 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command

Description

COMP e
COMPx ¢
COMPI e
COMP.v e

This command computes the value of an integer expression. |f the command
is entered with a trailing asterisk, the computed value will be printed in
decimal; if the command has a trailing exclamation point, the value will be
printed in octal; otherwise, nothing will be printed. The computed value is
always retained for later use with either the LPSUB or the LPTST command
"V" specification. If the command is followed by a colon, the colon must be
followed by a variable v, which may be any of the 27 possibilities X, XA, XB,...,
XZ. The value computed by the expression will be saved as the value of the
designated variable as well as for the V specification. The expression e may
use the operators +, —, %, and /, as well as parentheses for grouping. The
only operands allowed are integers, the variables (X, XA, etc.), and the
specifications I, L, N, V, LC, CC, and LG, which have the same meanings as
they do for the LPSUB command. Integers used in the expression are
interpreted as octal (base eight) if they have a leading zero (standard 1100
Series convention); otherwise, they are assumed to be decimal (base ten). For
example, the numbers 015 and 13 represent the same value.

CcPT

This command prints out the SUPs used so far in the present run. The form
of the message is (hours)H (minutes)M (seconds)S. The seconds field is given
to four decimal places.

CPUNCH num1 num2 device
CPUNCH num1 device
CPUNCH device

CPUNCH

This command is used to punch parts or all of a file at an onsite card punch.
The syntax has the same meaning as with then SITE command. After the
command is entered, a message MSG? will be typed out. The line typed in
will be sent to the system console before the cards are punched.

A "C" option is assumed for the @ SYM command by CPUNCH so that a remote
site may be designated for the output as well as an onsite printer. If no device
is specified, a default of "CP" is used.

If the @ SYM operation reqhested by the (LN)SITE or CPUNCH command fails
due to an invalid symbiont name, the user will be given one additional chance
to enter a valid name. For a second invalid name or for any other error, the
ED processor will print the name of the file for which the error occurred,
thereby making it possible for the user to select an appropriate disposition of
the file. At the time the error message is issued, the file created has been freed
and is catalogued. Therefore, the user should either SYM it for
printing/punching using a valid site-id or symbiont name or else delete it from
the directory.

CSF Executive control statement

This command is used to submit a control statement via CSF¢ (see
Volume 2-4.10.1.1). Only statements valid for CSF$ may be submitted. The
control statement must start in column 5.

DELETE num1 num2
D num1 num2
DELETE num1

D num?

DELETE+ etc.

D+ etc.

This command is used to delete lines from the text.The first form deletes lines
‘num 1’ through ‘num2’, The second form deletes the next ‘num 1° lines starting
with the current one. A’ <4’ following the command name will cause the editor
to be positioned after the lines deleted; this saves one entire pass over the file.

7-6

4144.31 SPERRY UNIVAC 1100 Series Executive 7-7
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 7-2. ED Processor Commands (continued)
Command Description
DITTO num1 This command allows duplication of other lines in the file. The duplicated

DITTO num1 num

lines are inserted at the present position in the file. The first form results in
the one line at 'num 1’ being inserted in the present position. The second form
results in all lines ‘num1’ through 'num2’ being duplicated at the present
position. Care must be exercised to be sure the most current line numbers
are used. At the completion of the DITTO, the pointer is positioned at the last
line inserted; this saves one entire pass over the file.

DOC lines column P

7

This command is used to add documentation to existing images. ‘Lines’ is an
integer indicating the number of lines to be documented starting at the current
line. ‘column’ indicates the column at which the comment is to be inserted.
P, if specified, indicates that ". * (period-space) is to be automatically inserted
before the comment. When this command is entered, each image will be
printed out to the proper column via ATREADS$. The user may then enter his
comment or one of the following:

@EOF - no comment for this line.

@EOF n - the line will be retyped to the specified column plus
n is one through nine. This is used for lines of code
which extend beyond the normal comment column.

@EOF x - discontinue documentation.

After completion of this command, the editor is positioned following the last
line read by the command.

EXCH char octal number

This command is used to allow input of characters not represented in the
keyboard character set. ‘char’ is the character which is to be used to stand
for the number whose internal ASCIl representation is ‘octal number’. When
‘char’ occurs any place in an input line it will be replaced by this character.
An EXCH with no parameters disables this feature. As an alternative to the
‘octal number’ for ASCIl control characters, the character name (e.g., NUL,
BEL, HT, etc.) may be used.

EXIT

This is the command used to take a normal exit from the ED processor. All
the corrections will be applied to the designated file and a normal exit will be
taken. When an overflow occurs on EXIT, the editor will automatically expand
a cataloged file until it is farge enough to hold the output; for temporary files,
a message is generated, and the user may recover editing using the A option.

FC mask
FC*n mask
FC,n mask

The FC command behaves in the same way as the FIND command except that
all occurrences are flagged in the remainder of the file. By immediately
appending an asterisk followed by a number onto the command word, the
search will stop after that number of occurrences of the target are found. (See
7.6.5.4.) If ‘'mask’ is omitted, the mask from the last F/FC is used. A comma
followed by a number indicates the number of lines to search.

FIND mask
F mask
F.n mask
F?

FIND searches for an image which corresponds exactly column for column
starting at column 1 with the ‘'mask’. Transparent characters may be used in
the mask which will test successfully with any character in the column. The
normal transparent character is a blank, but an alternate may be designated
with the TCHAR command. The search begins with the line following the

414431 ! SPERRY UNIVAC 1100 Series Executive 7-8
UF-HUMBLS; Volume 3 System Processors UPDATE LEVEL PAGE

S R S S,

Table 7-2. ED Processor Commands (continued)

Command Description

current one and proceeds until a match or end-of-file is detected. The
command may be abbreviated to F. By immediately appending a comma
- foliowed by a number onto the command word, the search will be limited to
that number of lines. To allow searching only the current line in LOOP mode,
a test can be made for FIND or NOFIND condition. This option is invoked by
foliowing the command name immediately by a period. Note that without this
option, FIND begins with the following line and not the current line and
repeats. If ‘mask’ is omitted, the mask from the last F/FC command is used.
"F?" will print the default mask.

Both F and FC recognize the TAB character. When a TAB character is
encountered, all characters are assumed to match up to the next tab stop, and
: matching resumes at that point. This can save much typing and counting.

g This command position the editor at a line (specified by number) in the input
text, even after the input file has been edited with insertions, deletions and
other modifications. [f the desired line has been deleted or altered in some
way, the message:

REQUESTED LINE DELETED OR ALTERED

will be printed, and the editor will be positioned at the next existing line. This
command is useful when a user is editing text while working from a listing.
. This command cannot be used with print files.

fomrong This command behaves exactly the same as the INSERT command except that
the line is inserted before instead of after the current line.

ML number term-sub This command allows inline editing of a given line. If 'number’ is blank, the
4 member term-sub current line is assumed to be the one to be edited, unless the command is
foliowed by a +, in which case the next line will be the one to be edited.
Otherwise the editor proceeds to line ‘number’. The line will be printed out.
The user can then enter editing information directly below the line to modify
it. The "term-sub” field is optional; the normal termination character for
editing commands is the exclamation point ("), but this field can be used to
specify a different character if the information to be edited contains
exclamation points. (Note that if the "number” field is to be omitted, the
"term-sub” field must not be interpretable as an expression.) The editing
characters to be used are:

- The string following this command is inserted following
the character immediately above the I. The string is
delimited on the right by the termination character .

R - The characters following the R will replace the
characters immediately above them. A | is required to

i terminate replacement.

D - The characters in the line above are deleted between D
and the |

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 7-9

Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command

Description

More than one of the insert, delete, and replace operations may be requested
in a single INLINE edit. The letters |, R, and D may be entered in either upper-
or lower-case. Before using this command in @ @CQUE mode on a TTY-like
terminal, the user is advised to enter the command "OFF U"; otherwise, the
alignment of the editing line will be incorrect.

The alternate character specified by "term-sub" remains in effect for only a
single command. Because of alignment problems, the entry of the editing
commands following a MCCHAR character should be done with caution.

INPUT

This command directs the editor to enter input mode. In this mode everything
which is typed in is inserted in the file until an exit from the mode is taken.
This is especially useful when large volumes of input are to be entered. Exiting
from this mode is accomplished by typing an @EOF when in EOF mode (see
ON and OFF commands), a carriage return, or blank line when not in EOF
mode, or by @EDIT with no command. Tabs are recognized in this mode.

INSERT string
I string

by the editor. The new line will then be the point at which the editor is

This command is used to insert a line following the line presently pointed at

positioned. The string to be inserted starts after the first blank following
INSERT. If a "4+’ immediately follows the command, the string may be input
on the next line (this provides more room, as a full input solicitation will not
occur, and the command itself is not present. If the command is entered
without a "string” when not in EOF mode (see ‘'ON’ command) the editor will
switch to input mode. In EOF mode this simply results in the insertion of a
blank line.

LAST

This command directs the editor to move to the last line in the file and stay
in edit mode. .

The last line cannot be altered after this command has been used until the file
position is changed. There are six commands which are illegal after the LAST
command has been used (until a line has been added or the file position is
changed); these are CHANGE, DELETE, DOC, I8, INLINE, and RETYPE. An
attempt to use any of these immediately after entering the LAST command will
produce a diagnostic (and error termination in batch mode if the X option was
set).

In most cases, any command (such as GO or entering a number) which
attempts to move to the current line number will simply cause the current line
to be typed out. Because of the special situation which exists after the LAST
command has been used, the ED processor will actually do the move if a
transfer to the current line number is attempted after a LAST. This will permit
the above six commands to be performed.

414431

SPERRY UNIVAC 1100 Series Executive

7-10
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 7-2. ED Processor Commaeands (continued)
Command Description

LC string LC behaves as LOCATE except that all occurrences of the string in the
LC quote-char string quote—char remaining text are located. Just before each line containing an occurrence
LC#*n string is typed out, the line number is typed out. By immediately appending an
LC.n string asterisk followed by a number onto the command word, the search will stop
after that number of occurences of the target are found. A comma followed
by a number indicates the number of lines to search. If ‘string’ is omitted, the

string from the last L/LC command is used.
LCHAR char This command sets the quote character for the LOCATE ‘command. The

default character is quote (). A non-input character will be assumed if ‘char’
is a blank. By immediately appending an asterisk followed by a number onto
the command word, the search will stop after that number of occurrences of
the target are found.

LIMIT keyword num1 num2

This command allows setting of left and right column limits for CHANGE,
LOCATE, and PRINT. keyword is CHANGE, LOCATE, or PRINT (each of which
may be abbreviated to its first letter). num1 and num 2 represent the left and
right column limits. if only one column number is specified, it designates the
right limit, with one assumed as the left limit. If no column numbers are
specified, the column limits are set to the default values (1,132). If kryword
is CHANGE, then this command sets limits on the columns which will be
searched by the CHANGE command. This is useful for protecting areas of text
lines in a file. If keyword is LOCATE, then this command sets limits on the
columns which will be searched by the LOCATE and LC commands. If
keyword is PRINT, then this command sets limits on the columns whicli will
be printed by the output commands (PRINT, LNPRINT, QUICK, LNQUICK,
PUNCH, CPUNCH, SITE and SITE and LNSITE) as well as by other commands
which print lines of text. As before (using the LIMIT command), print column
limits specified by the user are rounded to the nearest ASCIl word boundary,
e.g., LIMIT PRINT 8 9 will cause columns 5 to 12 (words 2 and 3) to be printed
by the PRINT command.

Limits specified by this command may be overridden on anysingle command
by the use of immediate column limits specifications (see 7.6.5).

LOCATE string .
LOCATE quote—char string quote-char
LOCATE,n string

LOCATE. string

L string

This command is used to search the text for a given string of characters. The
search begins at the line following the current line and proceeds sequentiatly
through the text until a find is made or the end of file is encountered. The
first form ignores multiple blanks in the images. The second form requires that
the text image be exactly the same as the string within the two - uote
characters. This command may be abbreviated to L. By immediately
appending a comma followed by a number onto the command word, the
search will be limited to that number of lines. To allow searching the current
line only in LOOP mode, a test can be made for FIND or NOFIND condition.
This option is invoked by following the command name imi.ediately by a
period. Note that without this option, LOCATE begins with the following line
and not the current line. If ‘string’ is omitted, the string from the last L/LC
command is used. If the LC variable is to be referenced after a LOCATE, the
quoted form should be used; otherwise, the position indicated may inciuc -
leading blanks before the string located.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

7-11
PAGE

Table 7-2. ED Processor Commands (continued)

Command

Description

LOOP n start increment
LOOP n

LOOP?

LOOP+

LCOP*

LOOPI n start increment

This command allows repetitive execution of a group of statements, n is the
number of times the statements are executed (the default value is 0), start
specifies the value of the counter (the default value is 1), increment indicates
that the current line number is incremented by this amount on each iteration
(the default value is 1). The commands to be executed will then be solicited
with an LP#*#%. (See LOOP Operations 7.4.)

The following commands are often used with the LOOP command:

LPSUB (See 7.6.2)
LPTST,n, (See 7.4.3)
XTI . (See 7.4.4)
LPEND (See 7.4.5)
LPJUMP (See LPJUMP)
LPX (See 7.4.6)

LPJUMP x

This command is used to perform an unconditional transfer of control to a
labeled pointin a loop, a macro, or in the input stream. The "x" denotes a label;
a label may contain any ASCIHl characters except blank or comma, but lower
case characters are treated as equal to the corresponding upper case
characters. Transfers within a loop or a macro may be backwards or forwards,
but transfers within the input stream may only be forwards. The specified
transfer point is a line whose format is one of the following:

X
@EDIT :x

where the colon must appear in column 1 (column 7) and must be immediately
followed by the label with no intervening blanks. Such a labeled line may not
contain any other editor commands, and has no effect if executed rather than
used as a LPJUMP target. The search for a label within a macro or loop is
downward to the bottom of the outermost loop and then downward from the
top of the currently active loop. If the label cannot be found within the loop,
an error message is printed and the loop is terminated. Labels should be
unique within any individual macro and within a loop entered from the
runstream; this restriction is not absolute, but the search algorithm should be
understood thoroughly before using non-unique labels. It is inadvisable to
transfer out of the currently active loop. The label on the LPJUMP command
may be generated by LPSUB substitution, but it is not permitted to generate
any part of a label line itself by use of LPSUB. When LPJUMP is used in the
input stream, the name of the jump target will be printed, and input solicitation
will indicate that a jump is in progress. The "@ @X C" command may be used
to stop a jump as for stopping a LPTST skip.

MACRO n
MACRO# n
MACRO? n, n, n, ...,
MACRO?

MACRO??

For each of the first three forms, "'n" denotes the name of a macro. Macro
names are unique by the first three characters only. The first character must
be alphabetic, but the other characters may be alphanumeric; the dollar sign
may also be used. If a macro name duplicates the name of an existing ED
command, the definition will be accepted, but the macro will never be callable.
The first form specifies the entry of a macro definition. Macro definitions are
entered exactly like LOOP definitions (including the use of @EOF and @EOF L),

414431 SPERRY UNIVAC 1100 Series Executive

7-12
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command Description

except that they are solicited by the typeout "MAC#*". A macro definition
operation will destroy any stored loop, so that "LOOP!I" will be invalid. The
- second form specifies the deletion of the definition of the specified macro. It
is not necessary to delete a definition before redefining a macro; this is done
automatically. The third form will list the text of one or more defined macros,
the fourth form will list the names of all defined macros, and the fifth form will
list the text of all defined macros. (See 7.5.) (For purposes of listing macros,
the set of defined macros contains only those known to the ED processor;
those contained in program files as elements named "mac-ED-MACRO" but
which have not been called will not be listed.)

MAIL user-id This command allows messages to be sent and received in communication
with other users. The editor will then solicit 100 lines of input with:

MAIL * %

If the desired message is to be less than 100 lines the mode can be terminated
by entering an @EOF. After the message is received by the designated person
it will be deleted.

The ED processor will never search for mail in batch mode; therefore, there
will never be a solicitation "DO YOU WANT YOUR MAIL?".

In demand mode, the ED processor will search for mail on entry (after the
sign-on line) in either edit or input mode.

If the user’s response to the solicitation "DO YOU WANT YOUR MAIL?" comes
from an add file, does not begin with "Y", and is not "NO", then it will be treated
as a command (if edit mode) or the first input line (if input mode).

NOTE:

The ED processor will look for mail only the first time it is called in a run, rather
than each time the ED processor is invoked. The LOOK mode has been
deleted. The system generation parameter MAILINIT controls whether the ED
processor will look for mail each time it is called: As released, the value is
O: setting it to 1 will restore the previous mode of operation. A system
generation parameter MAXMAIL is provided to control the size of mail files;
to encourage larger (and thus fewer) files, the ED processor is released with
this parameter set to 100 instead of the previous value of 10.

MAXLINE number This sets the maximum length (1 - 132) to which a line may increase. If it is
exceeded, the line will be truncated. The default is 132. The largest
acceptable line length is configurable in the ED processor but also depends
on what is permitted by the Operating System.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 7-13
Volume 3 System Processors) UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command Description

MCCHAR char This command specifies a character which is used to separate multiple
commands given on a single line. Each occurrence of the multiple command
“ separator character terminates a command or input line and begins a new
one. For example, the user may enter:

MCC #
Gl 4634C /ABC/XYZ/

to make changes on input line 453. If the last non-blank character on a line
is the MCCHAR character, the effect is that of a blank line following the last
command on a line.

When using the LPTST command with this feature, the skip count is
decremented by 1 for each line (NOT command) scanned, including the
remainder of the line containing the LPSUB command, if there were additional
commands on that line. The LPSUB command substitution count applies to
commands rather than lines. Care is required, however, if the substituent
contains the MCCHAR character. In order to be recognized, labels (":xxxx")
must appear as the first command on a line.

This feature is normally disabled, and it may be discontinued by entering
MCCHAR with no character present. This character is also recognized in input
mode and allows entry of several text lines in one line of input. In input mode,
each command entered using the @EDIT feature must begin with @EDIT if
more than one command appears on a single line through use of the MCCHAR
character. Since the @EOF image is a system image rather than an ED image,
it must always appear by itself on a single line.

MOVE numt This command performs the same operation as the DITTO command except
MOVE num1 num2 the original lines are deleted after the duplication has taken place. The syntax
is the same as for the DITTO command. Care must be exercised to be sure
the most current line numbers are used. At the completion of the MOVE, the
pointer is positioned at the original line number.

MSCHAR char This command sets a character which will be translated to a master space
(more commonly known as the "at" symbol, @) when it is input in column one
of input lines in input mode. If ‘char’ is a blank, no master space translation

is available.
number These commands are used to position the editor at a desired line in the text.
4 number . The first form directs the editor to line ‘number’. The second form directs the
-number editor to move to the position current line plus number. The third form directs

the editor to move to the position current line minus ‘number’. When the
specified line is located, it is typed out (if not in BRIEF mode), and
modifications may be made to it. If it is desired to insert lines before line 1,
0 may be typed in. This will position the editor immediately before the first
line.

4144.31 SPERRY UNIVAC 1100 Series Executive 7-14
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command Description

oMIT This is the command to be used if the user does not want his corrections to
be applied to the file on exit. The input file will remain as it was at the
beginning of the editing session, and the output file, if any, will not be
produced. In read-only mode, EXIT is synonymous with OMIT,

ON special mode ..., special mode This command is used to define some special modes within the editor. ON
OFF special mode ,..., special mode turns the mode on, and OFF turns it off. The special modes are:
" BRIEF - do not echo corrected images for CHANGE and
DITTO.
DSPLIT - delete lines transferred by SPLIT command.
EOF - special mode where blank lines may be entered.
INP command enters input mode and @EOF exits
from input mode to edit mode. While .n input mode
blank lines may be entered. Also the INSERT
command with no image following will enter a blank
line.
INPSEQ - When on, input solicitation (if active) will include the

input line number in parentheses. (This is the line
number referenced by the G| command.)

LSTINP - When on, input lines and commands to the ED
processor will be printed in the run listing. When
off, input will not be listed. This mode is also
controlled by the L option on the ED processor call
statement. This mode may be turned on to irace the
statements executed by a LOOP or MACRO call.

MEMORY - remember modes on successive executions.

NUMBER - precede each line printed out with its number.

PCNTRL - Print control images will be printed if this mode is
on.

QuICK - compress extra blanks out of all output to device

TRDINP - When on, demand input is via TREADS$. When off,
demand input is via READ$. There is no effect in
batch mode. This may be turned off in @ @CQUE
mode to permit the fastest possible typing speed.

UNISCP - allow correct character placement on UNISCOPE
terminal with the INLINE command.

XBRIEF - do not echo lines transferred by SPLIT or ADD.

All of the modes may be abbreviated to one letter.

OPR string This command is used to send a message to the system console. The first form
OPR#string sends the message 'string”. The second form does the same, but also solicits
an answer. The string may not be more than 50 characters or it will be
truncated.

414431 SPERRY UNIVAC 1100 Series Executive

7-1%5
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 7-2. ED Processor Commands (continued)
Command Description
PCCnm This command behaves like the PRINT command, including the use of the form
PCC n PCC+. Any ASCIl control characters on a line will be mapped into the
PCC+ character whose code is 0100 larger, and any lower case characters on a line

will be mapped into the character whose code is 040 smaller. The line will
then be printed, followed by a second line which will contain spaces below
any characters which were in the 64—character ASCll set, "L" below any
characters which were lower-case, and "C" below any characters which were
control characters. Thus, if a line consists of the characters upper-case a,
lower—case n, and BEL, PCC would print that line as:

ANG

LC
PRINT num1 num2 - This command is used to print out lines of text.The first form prints lines
PRINT num1 ‘num 1’ through ‘num2’. The second form prints the next ‘num1’ lines. If the
PRINTI command is immediately followed with a 4 the printing starts with the next

line instead of the current one (example: PRINT+ 3). The third form prints the
entire file from the top. If no number or recognizable symbol follows the
command, a 1 is assumed; that is, the present line will be printed out. This
command may be abbreviated to P.

See also PCC command.

PUNCH num1 num2 This command is used to punch paper tape for form |l paper tape input (see
PUNCH num1 Volume 2-8.2.1.2.2) at a terminal which has punch and read hardware. The
PUNCH syntax for this command is the same as that for the PRINT command. When

the command is entered, the following response will be given:
DEPRESS PUNCH ON

The processor will then pause to allow the user to push the punch on button
on the paper tape punch hardware. After pausing, the designated lines will
be typed out which will cause the paper tape to be punched at the same time.
Rubouts will be punched at the start and end of the tape. The tape so
produced can be used as normal form Il input.

QUICK num1 num2 This command prints lines with all nonsignificant blanks omitted. This
QUICK num1 provides a fast method of examining areas of the file. 'num1’ and ‘'num2’ are
QUICKI the same as on the PRINT command. Plus (4) may also be used on the second

form with the same meaning. This command may be abbreviated with a Q.

REMARK toxt This command is intended primarily to incude commentary in loops, although
REMARK #text it may also be useful in an @ ADD file. The "text" may consist of any comment
REMARKtext the ED user may wish to include. If the form REMARK ¥ is used, the text will
REMARK?text ' be printed, prefixed by "REM#:", which may be useful in conjunction with the

XTI command. The form REMARKI has the same effect as REMARK*, except
that the prefix will not be printed. The form REMARK? is used to solicit a
response; this response may be accessed later via the LPSUB and LPTST QU
specification. The LPSUB command can make substitutions into the text field
of a REMARK command.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command

Description

RETYPE string
R string

This command is used to completely replace the current line with the string
following the first blank after the command. A + may be used after the
command with the same meaning as with the INSERT command.

RP number

This command is used to set a repeat counter for the INSERT command. Any
insertion will be repeated ‘number’ times. The counter remains in effect until
explicity reset to 1.

SCALE

SCALE n1
SCALE n1 n2
SCALE n1 n2 n3
SCALE! etc.

This command causes a line to be printed which can be used as a measuring
scale for column sensitive operations. It consists of the digits O through 9
repeated with the digit D falling in a column whose number is congruent to
D modulo 10. If n2 is omitted, 72 is assumed; if n1 is omitted, 1 is assumed.
If the command is entered in the form "SCALE!", a second line will be printed,
consisting of the tens (and possibly hundreds) digits. If both n1 and n2 are
present, there may be a third parameter, n3, which indicates an offset value
to be added to the digit printed in each column. This may be of use in lining
up columns for input with the "I" command, as by entering "SCALE 8 80 3",
where the actual values used will depend on how many digits are printed by
input solicitation. If n3 is omitted, a value of zero is assumed.

SHCHAR char

This command specifies a character for case shifting for use with devices
(teletypewriters, card readers) which do not have lower-case capabilities.
When the specified character is encountered on any line processed by the ED
processor, all following upper-case alphabetic characters will be translated to
the corresponding lower—case characters until another shift character is
encountered. The user should always specify "CASE NORMAL" before
enabling this feature. If no character is specified, the shift feature is disabled,
and shift mode is turned off. The printout from the STATUS command will
indicate whether shifting is active or not. The shift character itself will be
deleted from any lines in which it appears.

SEQ.id ij
SEQ.id col i,j

This command causes sequence numbering to be inserted into a specified set
of columns on each image in the file. The value of i is the starting number,
and j is the increment. Omitted values are given a default of 100; if i is
omitted, i will be ignored.

The id field may contain any ASCIil alphanumeric characters. If it is omitted,
the sequence field will contain only the sequence number. Sequence
numbers are printed with leading zeros. If the sequence number is or
becomes too large to fit in the field, it will be reduced modulo the appropriate
power of ten. If the id field is the same size as the sequence field, no sequence
numbers will appear, just the id. If the id field is larger than the sequence field,
an error will result.

The col specification defines the column limits of the sequence field in the
format for immediate column limits specifications as on the CHANGE
command ([m,n], etc.). If the col specification is omitted, columns 73 through
80 are assumed. The use of a column specification may be particularly helpful
when editing COBOL or BASIC elements, to create required sequencing or line
numbering.

7-16

414431 SPERRY UNIVAC 1100 Series Executive 7-17
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command Description
SET téb1 tab2 tab3 ... tabn This command is used to set the tabs for the commands which allow them as
SET+ tab1 tab2 tab3 ... tabn explained above. As many tabs as desired may be designated. Each SET
) command redefines all previous tabs, and so a SET with no tabs clears the
tabs.

If no SET has been performed, the tabs are set as follows:

5,7,73 if the input element is type FORTRAN or FORTRAN
PROC,
8,12,73 if the input element type is COBOL or COBOL PROC,

6,11,16,21,26 if the input element is type ALGOL, PLUS or PL/I,
11,21,39,73 otherwise.

If the command is entered as ‘SET 4, the indicated tabs will be added to the
set of tabs already in use. In this case, the first tab specified must be larger
than the largest existing tab. This feature can be used in a loop to set up a
.number of evenly spaced tab stops as follows:

SET

LOOP 16 6 6
LPSUB L,$
SET+ ¢
@EOF

The first SET is necessary to clear any existing stops. The loop given will set
tab stops at columns 6, 11, 16, 21, ... ,76.

SITE num1 num2 device This command is used to direct output to an onsite printer. The meanings for
SITE num1 device ‘numt’ and 'num2’ are the same as for PRINT except that if no numbers are
SITE device given, the third form is assumed ‘device' specifies the symbiont name to which

output is sent. If the field is not specified, PR is assumed. After this command
is entered, a message as follows will be typed out:

HDG?
The line typed in here will be used to head the onsite output. Periods must
not be used in this header as anything beyond the period will not be printed.
After the output is done, the following will be typed:

MSG?

The user should enter here the information necessary to indicate where and
to whom the output should be returned.

SPLIT name This command is used to build new elements or files from portions of a current
SPLIT name num1 num2 file. Note that the default for the ON command DSPLIT is on and data lines
tranferred by SPLIT will be deleted. The first form caused all lines preceding
the line currently pointed at to be reproduced as the designated file. The
second form causes lines ‘'num1’ through ‘'num2’ to be reproduced. An I’

414431 SPERRY UNIVAC 1100 Series Executive

7-18
UP-NUMBER Volume 3 System Processors UPDATE LEVEL

PAGE

Table 7-2. ED Processor Commands (continued)

Command Description

immediately after the SPLIT command causes the whole file to be copied. The
character set (ASCIl or Fieldata) of the new file is the same as the character
set of the output file.

When used in read-only mode, the SPLIT command will atways function as
if DSPLIT mode is off. If DSPLIT is on, a diagnostic message will be printed.

SSP n The SSP command has two formats. The form "SSP?" prints out the line
SSP? spacing value for the current line. The form "SSP n" sets the line spacing value
for the current line to n; if n is omitted, a value of 1 is used. This command
may be used to override the automatic value of 1 for line spacing for newly
inserted lines. This command may only be used when editing print files. In
read-only mode, only the "SSP?" form is valid.

STATUS special mode ..., special mode This command is used to request the status of special modes set by the ON
STA* and OFF commands. If no special modes are specified, the status of all will
be listed, along with other status information.

The form "STATUS #" with no specifications will not list the mode values, but
will give the other status information.

STK x The STK command provides a way of remembering the set of ON/OFF modes
and is intended primarily for use in macros. The stack depth limit is five. If
x is omitted or is UP, the modes will be saved. If x is DN or DOWN, the modes
will be restored. Other specifications are erroneous. No checks are made for
the number of "UP" operations exceeding five or the wumber of "DN"
operations exceeding the number of "UP" operations.

TAB tab-char This command is used to spetify which character is to be used as a tabulator
TAB character. This character is recognized on the INSERT, 1B, and RETYPE strings
and is recognized on all input when in the input mode. The character is not
transmitted to the file and behaves just as a tab on a typewriter. If no character
has been specified, a semicolon (;) is the tab character. If no TAB has been
performed, the tab character is set as follows:

TH (number sign) if the input element is type ALGOL, BASIC,
PLUS or PL1.

fe {underline) if the input element is type DOC.

i (semicolon) default.

A blank may also be used as a tab character, by specifying the tab character
as "SP". ASCIlI control characters may be specified by name (NUL, SOH, etc))
as well as by direct entry. Entering this command with no character specified
disables the tab character.

TCCHAR char This command allows setting a transparent character for the CHANGE and
LOCATE/LC commands.

If specified in string 1 of the CHANGE command or string of LOCATE/LC, the
character char will match any character in the text. There may be any number
of occurrences of char in string 1 of a CHANGE command. If the transparent

414431 SPERRY UNIVAC 1100 Series Executive 7-19
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-2. ED Processor Commands (continued)

Command Description

character occurs in string 2 of the CHANGE command, each occurrence of the
character will stand for the character in the original image matched by the
corresponding occurrence of the transparent character in string 1. If the
number of transparent characters in string 2 exceeds the number in string 1,
the excess transparent characters in string 2 will stand for themselves.

For example, the command sequence:

TCCHAR %
C/%/% /G

will place a space after each character of the current line.
No char field disables the feature.
TCCHAR SP sets the transparent change character to blank.

The feature is initially disabled. The TCCHAR will also be recognized as a
"match anything" character for the LOCATE and LC commands.

TIME This command prints out the date, time and cycle information and the name
and type of the output element or file.

TYPE processor-mnemonic Sets the processor type for symbolic element output. The processor
TYPE* processor-mriemonic mnemonics are: ALG, APL, ASM, ASMP, BAS, COB, COBP, DOC, ELT, FOR,
FORP, FLT, LSP, MAP, PLS, PL1, PNC, SSG, SEC, TCL. Octal numbers may also
be used instead of the mnemonic.

if the TYPE command is entered as "TYPE#* xxx", then the tab character and
tab settings appropriate to the type xxx will be established, replacing any tab
character and settings currently in effect.

UNDO This command causes all changes made since the last return to the top of the
file to be ignored, and the editor is positioned at the top of the file. If no
changes have been made, a diagnostic messaga is printed, and the file
position remains unchanged. Since some commands (for example, DELETE,
MOVE, and DITTO) implicitly go to the top of the file, it will not be possible
to recover from their effects in all cases. Caution should be exercised when
using the UNDO command.

up This command is used to cause the editor to behave as if the U option had
‘been specified on the control statement. This is used if the entry to the editor
was made with an R option.

414431 SPERRY UNIVAC 1100 Series Executive

7-20
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Table 7-2. ED Processor Commands (continued)

Command Description

WAIT n This command allows invocation of a voluntary wait.

If @@X C is used to interrupt the waiting, the interrupt will occur after at most
a 30 second delay. The time may be specified as a decimal number of
seconds or by parameters of the form nH, nM, and nS, where any combination
is permitted, n is a decimal integer of six digits or fewer, and values of n need
not be less than 60. The keyword UNTIL specifies a time of day to be waited
for, and AM or PM may be used, as well the 24 hour clock.

XPC print control image This command is used to submit a print contro! image via APRTCNS. (see
Volume 2-5.4.2 for description.) The print control image must start in column
5 and may contain one or more print control functions, limited only by the
length of the line. See Table 5-2 of Volume 2 for the list of valid print control
functions.

7.4. LOOP OPERATIONS

7.4.1. LOOP Command

Purpose:

Allows repetitive execution of a group of statements.
Format:

LOOP n start increment
LOOP! n start increment

LOOP?
LOOP n
LOOP+
LOOP*
Parameter:
n Specifies the number of times commands are executed (default value
is 0).
start Specifies the initial value of the counter (default value is 1).
increment Indicates that the current line number is to be compared if it is N
(default value is 1).
Description:

When the desired number of commands has been entered, the user should enter the command
LOOP n where n is the number of times the commands are executed. The commands to be executed
will then be solicited with an LP* %,

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

7-21
Volume 3 System Processors

PAGE

UPDATE LEVEL

The LOOP command is ended with an @EOF (with a nested Loop, only the outer most loop is ended
with @EQF; LPEND will end inner loops). If an @EOF in the loop is desired, this may be accomplished
by @EOF L. The sentinel character L will allow the LOOP entry to continue. An erroneous loop may
be aborted before execution begins by @ @X C followed by @EQOF. The execution will stop after ‘n’
executions, when the bottom of the file or element is reached, or if @@X C is entered.

The format "LOOP?" (no parameters) will print out the currently stored loop. The format "LOOP+" (no
parameters) will expand the space available for storage of loops and macros by 512 words; this may
be needed for exceptionally large loops. LOOP 4 may be used more than once. The format "LOOP*"
may be used to contract the space used for loop and macro storage when it is no longer needed.
An attempt to contract to less than the initial size will be ignored. In order to release space, there
must be no information stored in the area to be released, or else the command will be ignored. This
means that macros no longer in use must be deleted with "MAC#*" before attempting to release
storage. LOOPI causes the currently stored loop to be executed again with new parameters. LOOP?
will print out the currently stored loop.

Loops may be nested up to ten deep. All nested loops must be terminated by a corresponding LPEND
command. The LOOP command is identical for nested loops, except that the exclamation point in
‘LOOPI will be igniored, as it is meaningless. Macro calls. are treated as nested loops.
Note that any command which causes the editor to pass the start of the file, such as one which causes
it to back up its position in the file (for example, -n, 0, or FC) will terminate a loop which did not request
non-stop operation (by specifying the iteration count with a trailing exclamation point). The DELETE,
MOVE, and DITTO commands are treated as special cases and will not terminate a loop. The LAST
command goes to the end of file, but does not pass the start of the file, and thus will not stop a loop.
The SPLIT command will stop a loop, as will unsuccessful FIND and LOCATE commands which reach
the end of file.
Example:

ODLOOP 99999

LP* %) LOCATE ABC=

LP*%D>i PRINT ABC

LP**D> @EOF

This loop will locate all assignments to the variable ABC and insert a print statement following the
assignment statement.

7.4.2. LPSUB Command

Purpose:

Allows the replacement of characters in one or more following command or data lines with variable
information.

Format:
LPSUB vy,54 V3,89 ... V8§
LPSUBk vy,54 V3,85 ... V.5
Parameters:

k Number of lines (default value is 1 that is, the next line only).

414431 SPERRY UNIVAC 1100 Series Executive 7-22
UP-NUMBER Volume 3 System Processors | UPDATE LEVEL PAGE
Vi One or two characters indicating the value to be subsituted.
S; One or more parameters denoting the character to be subsituted for
and other specification as specified in Table 7-3.
Table 7-3. LPSUB Specifications

Spec. Format Description

| le Input line counter.

L Lc Loop counter for currently executing loop of a nest.

Ln Ln,c Loop counter for loop at depth n of loop nest (O is outermost loop).

LD LD,c Loop nesting depth.

N N.c Line counter.

LC LC.c Column in which last string found by the LOCATE or LC command starts.

cc CC.c Column in which last string changed by the CHANGE command starts.

LG LG,c Length of current text line (note that blank lines have a length of 1).

\% Ve Value computed by most recent COMP command.

T T.c Time of day.

D D.c Date.

T1 Tl.c Time of day (all numeric, format hhmmss).

D1 Dic Date (all numeric, 1SO forn.at yymmoad).

SP SP.c Spacing value for current line (1 for non print files).

™ TX.c.x,y Portion of current line of text. The character ¢ is replaced in the following lines by tha y characters
beginning at character position x. If y is omitted, a value of 1 is assumed; if both x and y are
omitted, the entire line is assumed. If y has an asterisk (#) suffixed, trailing blanks will be removed
from the substituted string. A value of zero for x will be treated as 1.

au Qu,c.xy Portion of response to most recent 'REM?° command. The x and y parameters have the same
meaning as for TX.

MA MA.c.nxy Parameter submitted on most recent call to the macro specified by the name n. The meaning
of x and y is the same as for TX. If x is explicitly entered as zerc, the string will begin with the
delimiter which followed the macro name on the macro call line. That is, the delimiter is treated
as the zeroth character of the parameter. If x is omitted, it is treated as 1. The asterisk may be
used following y as for the TX subsitution.

U U.c User-id (as determined by the ED processor).

R R.c Run-id (original).

4144.31 SPERRY UNIVAC 1100 Series Executive

7-23
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 7-3. LPSUB Specifications (continued)

Spec. Format Description

RG RG.c Generated run-id (guaranteed unique by the EXEC).

si Slc Site—id of input device.

NN NN.c String whose value is null, LN, IL, or NI, depending on what prefixed the most recent uncompleted
LOOP command or macro call. This allows a macro, for example, to be called as "LNxxx" and
substitute the characters before printing commands in the body of the macro.

Description:

LPSUB allows the replacement of characters in one or more following command lines of a loop with
variable information. Each v; is one or two characters indicating the value to be substituted, and s;
is one or more parameters denoting the character to be substituted for and other specifications as
given.

Each s; indicates the character for which the indicated substitution is to be made, and other
parameters for substring selection and macro name specification. The specification k indicates how
many lines are to be affected by the LPSUB command; if k is omitted, 1 is assumed (that is, the next
line only). An LPSUB overrides any previous LPSUB still in effect. All occurrences of each character
specified in each si on the following n images will be replaced. An example of the use of LPSUB
is as follows:

LOOP 6

LPSUB L,$

1;L,S$;A0 IMAGE, X7;. Note the semi-colon used as tab character.
@EOF

which will insert the six lines

LS1 AO,IMAGE, X7
L.S2 AOQ,IMAGE, X7
etc.

into the file.

Only one substitution of each type may be active at a time. (Each Ln is considered different for
different values of n.) This means that MA and QU substitution may be used simultaneously, but it
is not possible to substitute parameters from two different macros at the same time.

LPSUB rmay be used outside of loops in the same way and for the same reasons as LPTST. The
substitution will affect the specified number of input lines.

The LPSUB counter is not decremented for lines skipped by LPTST or LPJUMP. Therefore, if the
number of lines to be substituted is different on different loop iterations, the command "LPSUB,0"
may be necessary to turn off substitution. If this is not done, there is the possibility that an LPSUB
command could modify itself on a subsequent iteration of the loop, producing unexpected and
mystifying results.

4144.31 SPERRY UNIVAC 1100 Series Executive 7-24
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

7.4.3. LPTST Command
Purpose:
Allows conditional execution of statements in a loop.
Format:

LPTST.n condition
Parameter:
condition See Tables 7-4 and 7-5.
Description:
LPTST is provided to allow conditional execution of statements in a loop. If the condition specified
is true, the next n statements will be skipped. If it is not true, the next statement in sequence will
be executed. If no n is specified, a default of one is assumed; that is, the next statement is skipped
in true conditions. If n is O, all the loops of a nest will be terminated not just the current one.
The FIND and NOFIND indicators are also set by the CSF command, depending on whether the request
was successful or not (as indicated by the setting of bit 35), respectively. If no condition is specified
on an LPTST command, the skip (or loop exit) will take place unconditionally.

Tests may be made for specified conditions. These conditions are described in Table 7-4.

Table 7-4. LPTST Conditions

Spec Description

FIND True if the last FIND, LOCATE, CHANGE, LC, or FC command matched a string, or if the last CSF
command received a positive status.

NOFIND True if FIND condition is false.

NEW True if the current line is a newly inserted or altered image on this edit. Note that MOVEd and
DITTOed lines are NEW, as are lines modified by INLINE and DOC, even if no changes were made
to the line.

oLD True if NEW is false.

ADD True if the last image read by the ED processor came from an @ADD file.

NOTADD True if ADD is false.

Tests may also be made for relational conditions on numeric or string values. The allowable values
are described in Table 7-5. ‘

414431 SPERRY UNIVAC 1100 Series Executive 7-25
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 7-5. LPTST Values

Spec Type Format Description
L numeric L Loop counter for currently active innermost loop.
tn numeric Ln Loop counter for loop nested at depth n, where n is a single digit 0-9. O

denotes the outermost loop, and a macro call counts as a loop level.

LD numeric LD Loop nesting depth.

N numeric N Current line number.

| numeric | Current value of input line counter (as referenced by the GI command).

SP numeric SP Line spacing for current line (value of 1 if the file being edited is not a print
file).

LC numeric LC Column number in which last string found by LOCATE or LC command
starts.

ccC numeric cc Column number in which last string changed by CHANGE command starts.

LG numeric LG Length of current text line (note that blank lines have a length of 1).

\" numeric \Y Value computed by most recent COMP command.

Xa numeric Xa Value of variable set by COMP command, where a is void or is any

alphabetic character.

au string Qu,x,y Value is y characters starting at character x of the reply to the last "REM?"
command. If y is omitted, 1 is assumed. If x and y are both omitted, the
whole string is assumed. A value of zero for x will be treated as 1.

™ string TX.x.y Value is a portion of the current line. The meaning of x and y is the same
as for the QU specification.

MA string MA.n,x.y Value is the parameter from the most recent cail to the macro n. The
meaning of x and y are as for QU. If x is explicitly entered as zero, the string
will begin with the delimiter which followed the macro name on the macro
call line. That is, the delimiter is treated as the the zeroth character of the
parameter. An omitted value of x is treated as 1.

NN string NN If the most recent uncompleted LOOP or macro call had a prefix (one of
LN, IL, or NI, the value is a two-character string corresponding to that
prefix (in upper case). Otherwise, the value is the null string.

The allowable numeric relationals are EQ, NEQ, LSS, LEQ, GEQ, and GTR. They represent equality,
inequality, less than, less than or equal, greater than or equal, and greater than, respectively. If EQ
or NEQ is specified, an additional clause of the form "MOD <m>" may be added following <n>,
where <m> is a nonzero integer. This form tests the remainder on division of <counter>-<n>
by <m> for zero or nonzero for EQ and NEQ respectively.

4144.31 SPERRY UNIVAC 1100 Series Executive

7-26
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

The only operators which are valid for string testing are EQ and NEQ. The value following the operator
is a literal string. This literal string may begin with a quote (') character,.in which case the string may
include blanks and must be terminated with a quote (or by the end of the line). A quote may be
included within a quoted string by writing two single quotes. If the string does not begin with a quote,
it is terminated by the first blank encountered (or by the end of the command). The literal string may,
of course, be computed with the LPSUB command.

LPTST may be used outside of a loop, with the result that the specified number of input lines will
be skipped. This is most likely to be useful in batch mode editing or in an @ADD file. A message
will be produced indicating the number of lines to be skipped, and, if in demand mode and not in
an @ADD file, the skipped lines will be solicited with "SKP#*" preceding the line number. The break
keyin (@ @X C) may be used to stop a skip; however, the next line will still be solicited with the 'SKP*’
typeout, even though the line will not be skipped. :

7.4.4. XTi Command

Purpose:

Allows a command to be typed in at a specific point in a loop.
Format:

XTI
XTi
XTi*

Description:

This command is intended for use in loops. It allows a command to be typed in at a specified point
in a loop. When XTI is encountered while executing a loop, a single command will be solicited from
the user and executed, following which the next command of the loop will be executed. This can
be used if a number of similar but not identical changes are to be made to lines which are located
by some complex sequence of commands. The locate operations may be done in the loop, with an
XTI used at the point where the change is to be made, allowing the user to choose between the
CHANGE, INLINE, or REPLACE commands. '

The form " XTIl " may be used instead. This form causes an unlimited number of commands to be
read from the input stream. Reading of commands is terminated by a command of the form “ XTI#* ",
If a loop contains a simple XTI command and it is desired to enter more than one command at this
point, the XTH form may be used. Similarly, if it is desired to do nothing when an XTl or XTllis reached,
XTi* may be entered.

7.4.5. LPEND Command

Purpose:

Indicates the end of the scope of a nested loop.

Format:

LPEND

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors -2

PAGE

UPDATE LEVEL

Description:
The effect of LPEND when executed is to terminate the current loop iteration and return control to
the statement following the corresponding LOOP command, or, if the iteration count is satisfied, give
control to the statement following the LPEND. There must be one LPEND for each LOOP command
with the exception of the outermost. It is not recommended that LPEND be executed conditionally
or entered via the XTl sequence, as the results may not be what the user intended to achieve.
7.4.6. L.LPX Command
Purpose:
Sets the remaining iteration count for the current loop of a nest.
Format:

LPX n
Parameters:
n Iteration count for the current loop.
Description:
The LPX command sets the remaining iteration count for the current loop of a nest to the value
specified by "n". The default value assumed if n is omitted is 1. The count includes the current
iteration. A value of O will have the same effect as " LPT,0 ". A value of 1 will cause the current loop
to be terminated after the current iteration is completed. Therefore, a loop may be terminated with
control going to the next outer loop by executing "LPX" and then a skip to the corresponding "LPEND".
Loops which do not stop on passing the end of file are identified by negative iteration counts.
Therefore, if n has a negative value, the loop will be placed in ncn-stop mode. In particular, the
command "LPX -1" may be used as the first command in a macro definition to indicate that the macro
is not to be terminated if the end of file is passed; macros normally will stop if the end of file is passed.
7.5. MACRO Command
Purpose:
Defines a Macro.
Format:

MACRO n

MACRO* n

MACRO? n, n, n, ...,

MACRO?

MACRO??

Parameters:

n Macro name.

4144.31 SPERRY UNIVAC 1100 Series Executive

7-28
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Description:

For each of the first three forms, "n" denotes the name of a macro. Macro names are unique by the
first three characters only. The first character must be alphabetic, but the other characters may be
alphanumeric; the dollar sign may also be used. If a macro name duplicates the name of an existing
ED command, the definition will be accepted, but the macro will never be callable. The first form
specifies the entry of a macro definition. Macro definitions are entered exactly like LOOP definitions
(including the use of @EOF and @EOF L), except that they are solicited by the typeout " MAC* ". A
macro definition operation will destroy any stored loop, so that "LOOP!" will be invalid. The second
form specifies the deletion of the definition of the specified macro. It is not necessary to delete a
definition before redefining a macro; this is done automatically. This deletes only the in-core
definition; a definition (as a n-ED-MACRO element) in a file is unaffected. The third form will list the
text of one or more defined macros, the fourth form will list the names of all defined macros, and
the fifth form will list the text of all defined macros.

Once a macro has been defined, it may be called by specifying its name as if it were an ED command.
The remainder of the command line will be stored as the macro parameter, which may be retrieved
by the LPSUB and LPTST commands. Macros may be thought of as loops which have an implied
iteration count of 1. Macros may use loops and loops and macros may call macros, subject only to
the limitation on loop nesting. Each macro call is an additional loop nesting level.

- In addition to direct entry of a macro command followed by the text of the macro, a macro may be
defined by implicit reference. If the ED processor encounters a command which it does not recognize,
the input file, TPF$, and EDS$PF (if assigned) will be searched for an element whose name is
"n-ED-MACROQ", where n denotes the command (up to three characters). If such an element is found,
its text is loaded as the text of a macro with the name given as the command. The macro is then
called. In this case, the @EQF L feature is not available. This mechanism allows the user to construct
a library of ED macros to perform whatever functions are frequently required. This feature cannot
be invoked while a loop or a macro is already active, just as it is impossible to define a macro or input
a loop while executing a loop or macro. Macros defined in this manner which have not been called
will not be listed by either the "MAC?" or "MAC??" command; these commands can only list macros
which have been stored internally by the ED processor.

A useful example of a macro is the following "delete until locate" macro:

MACRO DUL
STK UP
BRIEF

LPT N NEQ O
+

LOOP 99999
LPS MA,$,DUL,0,100%
L. $

LPT FIND
LPJ NOF
LPX

LPJ LPE
:NOF

D+

:LPE

LPE

STK DN

LPS NN,$
$(N)

@EOQF

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

7-29
Volume 3 System Processors

PAGE

UPDATE LEVEL

With this definition, the user may then enter "DUL ABC" and all lines will be deleted until a line
containing ABC is reached.

Note that a macro with a void body may be thought of as a string variable. A new value is given
to it by specifying the desired value on a call to the the macro, and the value may be retrieved with
either the LPTST or the LPSUB command.

Because of the use of the prefixes LN, IL, and NI, a macro name may not begin with any of these
pairs of characters. These prefixes may be used when invoking a macro; however, see the LPSUB
substitution NN for application.

Saving MACROs in ED$MAC

The internal name ED$MAC is checked when the ED processor is called, when it terminates, and
whenever a MACRO or LOOP is created or deleted. If this file is assigned when the ED processor
is called, it will attempt to load a set of saved macro definitions in internal form from ED$MAC. At
the other times mentioned, the ED processor will save all the known MACRO definitions, the current
LOOP definition and the variables X, XA, XB,..., XZ in ED$MAC, if it is assigned to the run. Definitions
saved in this format can be loaded much more rapidly than via the runstream or by the implicit
definition method. By this means, it is possible to achieve continuity of MACRO definitions across
several ED operations, irrespective of the nature of the intervening operations, so long as the
assignment of ED$MAC is unchanged. If ED$MAC is not assigned to the run, even if it is an attached
name, none of the above actions is taken. In other words, the ED processor will not create or assign
this file; that is the user’s responsibility.

7.6. USAGE CONSIDERATIONS

7.6.1. Searching Commands

The ED processor proceeds sequentially through the text. It is therefore more efficient to perform
editing operations in a more or less sequential manner starting at the beginning of the text. Searching
commands such as LOCATE and CHANGE require much computation and should be used sparingly;
column limits may be used to speed the search.

7.6.2. Interrupts With thé ED Processor

There are certain processes within the editor which if indiscriminately interrupted can cause the
processor to fail. To protect against this, the processor is designed to stop only at specified points
when it is safe to do so. If the user wishes to interrupt the processor, he may depress the the break
key {or "MESSAGE WAITING" key) at any time. (This step is necessary only if the ED processor is
printing at the time.) The system will respond with:

*QUTPUT INTERRUPT %

The user should answer with @@X C or @ @X CO if he wishes to escape the current command. In
the first case backed-up printout may follow before the interrupt takes place. If for some reason the
editor’s escape method is not satisfactory the user may enter @ @X CIO twice. In this case the editor
will return to edit mode, but integrity is not guaranteed.

4144.31 SPERRY UNIVAC 1100 Series Executive

7-30
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

The interrupt sequence will also have the following effects:

1. Backed-up commands on the same line as the one interrupted (when MCCHAR is in use) will
be ignored.

2. If a LOOP or MACRO is in operation, it will be terminated.

3. ifalOOPis being entered, it will not be executed (but loop entry mode continues until an @EQOF
is encountered).

4. If an LPTST skip operation is occurring, it is terminated.

5. |f an LPJUMP jump operation is occurring, it is terminated.

7.6.3. Filename Caution

Files with names of the form ED$xx (where x is any character) should be avoided since the ED
processor uses such files internally.

7.6.4. Integer Expressions Instead of Integers

With the exception of the WAIT command and file/element cycle specifications, it is possible to use
an integer expression anywhere an integer is permitted, such as for line numbers, column
specifcations, et cetera. The expression must be one which would be acceptable to the COMP
command and must in addition contain no embedded blanks. Note that this means that numbers
entered with leading zeros are treated as octal.

As an example, the command
P N-3,N+3
would print the seven lines surrounding and including the current line.

If an integer expression is the first thing encountered on a line, it must begin with a sign, left
parenthesis, or number in order to be recognized as an implied GO or NEXT command. (That is, L+ 3
is a call on the LOCATE command, not a GO to the third line after the line whose number is the current
loop counter value.) If the expression begins with a sign, a NEXT is implied: if it begins with a digit
or a parenthesis, a GO is implied.

7.6.5. Column Limits Immediate Specifications

In addition to the use of the LIMIT command, it is also possible to specify column limits for immediate
use of a single command only, overriding the limits specified by default or by the LIMIT command.
This applies only to the SEQ, LOCATE, CHANGE, and explicit printing commands, but not to
commands which print a line implicitly because of alteration or transfer of file position. The syntax
for specification of column limits may be any of those specified in Table 7-6.

4144.31 " SPERRY UNIVAC 1100 Series Executive

. 7-31
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

Table 7-6. Immediate Column Limits Syntax

Format Left Limit Right
Limit
[n.m] n m
[m] 1 Com
n] n 132
{m] 1 m
L] 1 132
[1 1 132

NOTE:

If the ED processor is locally reconfigured
for 160 character lines, the values of 132
in the above table should be changed to
160.

Although the syntax of the immediate column limits specification is common to all commands which
accept it, the position in which it must be specified differs. This will be described separately for each
of the three classes of commands which allow immediate column limits.

7.6.5.1. LOCATE With Column Limits

For the LOCATE (or L) and LC commands, if immediate column limits are specified, they must
immediately follow the command and any count specification, with no intervening blanks. At least
one blank must separate the column limits from the LOCATE target string. For example, any of the
following are acceptable:

L[3.5] ..

L[3.5] ..
L,100[8,18] ...
LC*3[10,21] ...

Immediate column limits are not saved for later use on a LOCATE command with no target; they must
be entered each time.

7.6.5.2. CHANGE With Column Limits

For the CHANGE {or C) command, immediate column limits must, if used, be the first specification
after the string alteration pair, preceding the number of lines to be changed and any specifcation such
as ‘G’, 'A’, ‘R’, 'ALL’, or ‘REP". For example, the following are acceptable:

C/./../[5,10]
C/././(38]5
C/././[39]G
C /../../ [1,50] ALL

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

7-32
Volume 3 System Processors

UPDATE LEVEL PAGE

Immediate column limits, if given, are retained for later use with a CHANGE command with no
specifications.

7.6.5.3. Printing Commands with Column Limits

Column limits may be used with the following printing commands: PRINT, P, PCC, QUICK, Q, OUTPUT,
O, SITE, PUNCH, and CPUNCH. the immediate column limits, if specified, must be separated from
the command (and its trailing delimiter, if any) by at least one space and must precede any line number
specifications. For example, the following are all acceptable (the P command will be used for
purposes of illustration, but any of the commands mentioned above may be used):

P [5,10]
P+ [11,21]
Pl [38]

P [15,35] 10
P [39,] 11,20

Note that as for the LIMIT P case, column limits for printing will be adjusted to word boundaries. That
is, a left limit is reduced to the next smaller number congruent to 1 modulo 4, and a right limit is
increased to the next larger multiple of 4. For example, the limits pair [12,22] would have the same
effect as the pair [9,24].

7.6.6. Default for F, FC, L, LC, and C Commands

For each of the F, FC, L, LC, and C commands, the previous target specification is saved and retrieved
if the command is entered without any specification. F, FIND, and FC reference one saved string, L,
LOCATE, and LC another, and C and CHANGE a third. For the C (and CHANGE) command, the saved
string contains the number of lines, global, "REP", and "ALL" specifications (if any), as well as the old
and new strings. For the F and L type commands, the saved string contains only the search argument,
and different restrictions (such as number of lines scanned, column limits, or number of occurrences)
may be used each time.

The commands may be entered in the form "F?", "L?", and "C?". Each of these will print out the current
default value to be used for the associated command. Other specifications on the command will be
ignored. If no command of the associated type has been given, nothing will be printed.

7.6.7. LN, IL, and NI Feature

The characters "LN", "IL", or "NI" may be used to prefix all commands. If this is done, any lines of the
file printed by the command will be prefixed with the associated line number, input cycle line number,
or both, respectively. None of the three prefixes is considered to be part of the command for purposes
of abbreviation (that is, "LNDITTO" may be abbreviated to "LNDIT" but not to "LND", since "LND" would
be an abbreviation for "LNDELETE"). There are two special cases: "LNS" is an abbreviation for "LNSITE"
(although "S" is not a valid command), and "LN" (rest of line blank) will print out the current and input
line numbers and remain in edit mode. "LNn", "LN+4n", "LN-n", "iLn", "IL4-n", "IL-n", "NIn", "Nl4n", and
"Nl-n", where n is an integer (expression) are all permitted. If "LN", "IL", or "NI" is used to precede
the name of a macro, the macro will be called, and the LN, IL, or NI will be ignored. These pairs of
letters cannot be used to begin the name of a macro.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 7-33

PAGE

UPDATE LEVEL

7.6.8. Names for ASCIll Control Characters

There are a number of commands which accept a single character as a parameter (TAB, CCHAR,
LCHAR, MSCHAR, TCHAR, TCCHAR, and SHCHAR). For any of these, it is permissible to specify the
name of an ASCIl control character (such as ACK, BEL, DC3, DEL) instead of typing the character itself.
Either BL or SP may be used to stand for the blank. The use of a name is also permissible instead
of the octal code for the EXCH command. The STATUS command will type the name instead of the
actual character if a control character is in use as a special character for the ED processor; this avoids
adverse effects on the terminal in use, such as activating a paper tape reader.

7.6.9. Print File Operations

The ED processor performs certain special actions when editing a print file which do not occur when
editing elements or general data files. These actions include:

B The new line created by the CHANGE, INLINE, or RETYPE commands will be given the spacing
count of the replaced line, rather than a spacing count of 1.

B Lines transferred by the DITTO and MOVE commands will retain their previous spacing counts.
Print control images included-in the range to be transferred will be moved as well.

B if the ADD command is used to add a print file to a print file, the lines added will retain their
spacing counts, and any print control images will also be added.

B If a new file (not element) is written by the SPLIT command, it will be created as a print file, with
the appropriate label information, spacing counts will be preserved, and print control images
will be written. The resulting file can be printed with @ SYM just as if it had been created by
the symbiont complex.

B Print files created by the ED processor (whether by processor call specification (as in @ED,U)
or by the SPLIT command will have Fieldata/ASCI| information in each image and each 224
word block will begin with an SDF image control word. These files will be compatible with all
symbiont operations.

7.6.10. Edit Mode Commands in Input Mode

The ED processor allows any editing commands to be submitted while in.input mode through the use
of the CLIST$ mechanism. The format is as follows:

@EDIT command

where "command” denotes any command which is valid in edit mode. The letters "EDIT" must be in
columns 2 through 5, and the command must begin in column 7. If the command is omitted, the
ED processor will return to edit mode. This feature is convenient for setting up tab characters, AUTO
counts, and so on when inserting a new element using the | option.

This format is acceptable in edit mode as well as in input mode, but it is superfluous. When the LOOP
command is used and all or part of the loop is to be executed in input mode, @EDIT format may be
used for any commands which are to be executed in input mode, such as LPSUB or LPTST.

This feature may be used when typing ahead (as in @ @CQUE mode) to guarantee being in a particular
mode. To force operation to edit mode, the user should enter "@EDIT"; to force operation to input
mode, the user should enter "@EDIT INPUT". The desired mode will be entered regardless of which
mode was previously active.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

7-34
Volume 3 System Processors

PAGE

UPDATE LEVEL

if the MCCHAR command is being used in input mode to indicate multiple lines on a single input line,
each line which is to be interpreted as a command must have its own @EDIT following the MCCHAR
character; without it, the command would be treated as input.

7.6.1 1 Character Command Processing

The commands CCHAR, MCCHAR, and SHCHAR define characters for which special action is to be
taken on input. These characters are processed before the command on a line is analyzed, and then
the character designated is deleted from the line. Thus, if the same character is specified twice in
succession on any of these commands, the second time, the effect will not be what is intended. Since
the character is deleted from the line, the command will appear to have no specification, which will
deactivate the feature, and, if the MCCHAR character is involved, a blank line will appear to be present,
switching the Editor's mode (unless in EOF mode) of the ED processor.

7.6.12. Reusability

The ED processor is reusable. Successive uses of the ED processor will not require an initial program
load, which will conserve system resources. Note, however, that this means that the system log
contains fewer entries for the ED processor than the number of actual distinct edits performed.

One consequence of the interaction between reusability and the command feature in input mode is
that if a demand user attempts to terminate the ED processor with a transparent control statement
(@MSG, @LOG, etc.). the editor sign-off message will be delayed until a nontransparent control
statement (including @ED) is entered.

7.6.13. Restrictions and Limitations
The following restrictions and limitations apply:

1. If a FORTRAN data file is updated by the ED processor, the links used to hold backspacing
information will be lost. Hence, the FORTRAN BACKSPACE statement should not be used on
an updated FORTRAN file. Use of the R option with the ED processor will avoid accidental
modification of the file.

2. Due to the internal structure of the ED processor, it is not possible to edit print files containing
lines with spacing counts in excess of 63. Such lines will appear to be deleted.

3. The Gl command may not be used when editing print files, since the necessary informaticn is
not available, due to the presence of print spacing information.

7.6.14. The EDSTC File

The ED processor attaches the internal name ED$TC to a file whose name is project-id#ED$ TCrun-id.
For demand users, this file will normally be a catalogued file; if another run with the same original
run-id is active and using the ED processor or for a batch run, this file will be a temporarv file. ED$TC
(if catalogued and not temporary) is assigned with the D option. This allows the implementation of
the AUTO RECOVERY feature. If a run terminates normally, ED$TC will be deleted, and there will be
no auto recovery. If a (demand) run terminates abnormally, such as by system crash, line drop,
terminal timeout, @ @TERM statement, or operator keyin (SM site-id T), the ED$TC file will be
retained. This permits auto recovery when a new run is initiated and the ED processor is executed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 7-38

PAGE

UPDATE LEVEL

NOTE:
The new run must have the same project-id and run-id as the run which terminated abnormally.

if a user fails to start such a run and use the ED processor in it, the ED$TC file will remain catalogued
indefinitely. Therefore, a user should be aware of this situation and delete a file which is no longer
required.

The internal structure of the ED$TC file is not of importance to most users; however, since it contains
certain link addresses which depend on the internal structure of the ED processor, the data in ED$STC
must be verified to be correct. This is done through the use of a validity constant (VALCON). The
value of VALCON will be different for different levels of the ED processor, so ED$TC cannot be used
between levels of the ED processor. VALCON may also be used to detect possible corruption of
EDS$TC due to hardware errors, and a change in this value is also possible if the ED processor itself
has a software failure. If a VALCON error occurs, it is necessary to erase ED$TC before calling the
ED processor again.

7.6.15. Obsolete Commands
A number of commands are still defined in the ED processor which are now considered obsolete and

are thus not documented. These are listed in Table 7-7.

Table 7-7. Obsolete ED Processor Commands

Command Description
BOT Same as APPEND.
B
BRIEF Same as "ON B".
BR
CLIMIT Same as "LIMIT C".
END Same as OMIT.
GO n Goes to line n of file, where n is an expression.
HEAD Same as "1" (goes to first line of file).
H
NEXT n Moves forward n lines in the file (backward if n is negative).
Nn
ONn Same as "P+ n".

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors UPDATE LEVEL

7-36
PAGE

Table 7-7. Obsolete ED Processor Commands (continued)

Command

Description

PLIMIT
PL-

Same as "LIMIT P,

SAVE

Same as "LIMIT C",

TOP
T

Same as "0" (goes to top of file).

VERIFY
v

Same as "OFF B".

414431 SPERRY UNIVAC 1100 Series Executive

8-1
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

8. Procedure Definition Processor (PDP)

8.1. INTRODUCTION

The Procedure Definition Processor (PDP) accepts symbolic input defining Assembler, MASM,
FORTRAN, or COBOL procedures and builds an element in the user-defined program file. These
procedures may subsequently be referenced in an assembly or compilation without definition.

8.2. @PDP FORMAT
Purpose:

Places entries in the Assembler, FORTRAN or COBOL procedure table in a program file table of
contents (see 11.2.1.2 for a description of these tables). The entries are put into the table of contents
of the symbolic output file specified by the user. If no symbolic output is produced during the
execution of PDP, no procedure table items are generated. These entries contain labels in Assembler
or MASM procedures defined as PROC entry points and names which are used to call FORTRAN or
COBOL PROCs. When a call is made for a PROC in a source program, the language processor
automatically retrieves the PROC using the System Relocatable Library routine (BSP$) to search the
table of contents for the PROC name. If more than one PROC of the same type and the same name
are contained in a program file, the search by BSP$ will point to the last PROC entered with that name.

PDP is called by the @PDP control statement.
All parameters in the @PDP controi statement are optional except eltname-1.
Format:

@label:PDP,options eltname-1,elthame-2

Parameters:
options See Table 8-1.
eltname--1 Normally specifies the input element. However, when the | option is

specified, eltrame-1 specifies the new program file element.

elthame-2 Specifies the output element.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

8-2
PAGE

Table 8-1. @PDP Control Statement, Options

Option
Character

Description

. A

c

Accept the results as correct even if errors are detected.

Indicates a COBOL procedure element.

Indicates a FORTRAN procedure element.

Insert a symbolic element into program file from the control stream.
Produce a complete listing of the output element with iine numbers.
Indicates an 1100 Series Meta—Assembler (MASM) Procedure element.
Suppress all listings.

Generate a single-spaced listing of the output element.

Generate a new cycle of the symbolic element.

List correction lines if corrections are provided.

Take ERR$ exit from PDP if errors are detected.

NOTE:

The source input routine options (see Table 1-2) also apply.

In the absence of the F, C or M options, PDP assumes that it is inserting or updating an Assembler

procedure element.

Cycling of procedure elements is permitted. The cycle number may be increased if the U option is
specified. When a procedure is included in an assembly or compliation, the procedure from the latest
cycle of the procedure element is supplied.

Examples:

@PDP,L
@PDP, L
@PDP, L
ePDP, |
@PDP,U
@PDP
@PDP,ULF

NOOTHE WN -

b

A.B,C
A.B,.C
A.B
AFILE.PROS/AB
BFILE.PAT/DE
AF.PR1,BF.PR2

D.FORPROC, E. FORPROC

Generates a complete listing.

Generates a procedure element from file A, element B and places the new element C in TPF$.

2. Generates a procedure element from program file A, element B, calls it element C, and places
it in program file A. Generates a complete listing. Eltname-2 must not namc a tape file.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 8-3

PAGE

UPDATE LEVEL

3. Generates a complete listing of element B from file A. No procedure entries are made.

4. Procedure definitions following this @PDP control statement are placed in file AFILE as element
PROS, version AB, cycle O.

6. Corrections are made to element PAT, version DE, latest cycle of file BFILE to generate an
updated cycle of the same element in the same file.

6. Corrections following the @PDP control statement are merged with the most recent cycle of
element PR1 in file AF to generate cycle O of element PR2 in file BF.

7. Produces an updated cycle of the FORTRAN PROC element FORPROC in the file E using as input
the element FORPROC in file D. All element cycles are retained in element FORPROC up to the
cycle maximum.

PDP generates certain flags on the output listing when it detects error or other conditions. These
flags appear on the output listing between the line number and the text of a line. Table 8-2 describes
the flags. ‘

if PDP detects any errors, entries are not made in the assembler, FORTRAN or COBOL procedure tables
unless the A option is specified. If errors are detected, and neither the W nor A option was specified,
no symbolic output is created. Except for the errors shown in Table 8-2, PDP does not detect
language processor syntax errors within PROCs.

When a PDP symbolic is transferred to an element file (on tape) using the FURPUR statement
@COPOUT, the procedure table entries are carried along with the element. On the @COPIN of a PDP
symbolic, FURPUR puts the procedure table items of that element into the table of contents of the
program file.

. When a PDP symbolic is transferred from one program file to another program file using the FURPUR

statement @COPY,P, the procedure table entries are carried along with the element. Therefore, it
is not necessary to reprocess a PDP symbolic element using PDP if the element has been brought
into a program file using the FURPUR statements @ COPIN or @ COPY,P.

When a single procedure element is transferred from one program file to another program file using
the FURPUR statement @ COPY,S, FURPUR transfers only the latest cycle of an element having more
than one element cycle. The procedure table entries belonging to this element are put into the
destination file's table of contents. However, these entries will be incorrect if the element in the file
of origin contained deleted images. Therefore, it is preferable to use PDP to transfer a single
procedure element from one program file to another program file. See 11.2.3.3 for more information
on the structure of a symbolic element.

If a symbolic PROC element is updated with the symbolic output in the same file as the symbolic input,
PROC names which appear in the symbolic input but not in the symbolic output will not be marked
as deleted in the procedure table in the program file table of contents, even though the element in
which they appear is marked as deleted in the element table. A @PACK of the file following the PDP
processing will remove the deleted element along with the corresponding PROCs.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive 8-4
Volume 3 System Processors UPDATE LEVEL PAGE

Table 8-2. PDP Flsgs

Flag

Meaning

This symbolic is not an error flag. It indicates that the line on which this flag appears is a continuation of the
previous line by virtue of a semicolon appearing on the previous line. Assembler and MASM procedures only.

This flag implies the existence of an expression error within the label field of the current line. This is set as a
result of an illegal label symbol or sequence of symbols. Due to the complexity of the form which the operation
field may assume, no attempt is made to detect expression errors within this field. No entry point will be
established for a line whose lahel field contains an expression error.

An illegal operator in an assembler procedure is indicated by this flag. This can only occur when a DEF directive
has been encountered and anything other than EQU, EQUF or FORM directives or FUNC definitions occur between
the DEF line and a PROC directive. In addition, 8 message is printed indicating that the previous DEF directive
was ignored. Assembler procedures only.

This flag indicates that an error has occurred in the procedure level sequence. This is caused by an excessive
number of END cards such that one is encountered when the procedure level is zero. The level is left at zero,
but the L flag is set.

This flag is generated when a label or operation field exceeds 12 characters in assembler or MASM procedures,
or the iabel on a PROC statement in FORTRAN or COBOL PROCs exceeds 12 or 30 characters respectively.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors -1

PAGE

UPDATE LEVEL

9. File Administration Processor (SECURE)

9.1. INTRODUCTION

The SECURE processor protects the physical security of catalogued files, which reside on mass
storage, by producing tape backups.

The text of files on mass storage may be destroyed either inadvertently through system failure or user
error, or purposely to reduce overcrowding of facilities or to remove certain mass storage units from
the available facilities pool. In any case of purposeful destruction, the presence of a current backup
must first have been assured. Because a file may be inadvertently destroyed and the latest backup
may not be current, a record must be kept of the file's memory lapse. Memory lapse is defined as
the time period that starts at the first updating after the latest backup was created, and ends with
the recovery of the file from the backup copy. This is the period of time during which any additions
or deletions were not retained.

When a file's text on mass storage has been destroyed and the backup is the only available copy,
the file must be marked unloaded, so that an automatically initiated load of text back to mass storage
occurs when the next attempted assignment of the file is made. The run which makes the @ASG
request that forces this load may be held in a wait status until the load is completed.

The process of selecting files as potential candidates for unload when some number of currently used
tracks must be vacated and made available for new allocation, selects those files which will probably
be the last to be reassigned, in order that the files actually unloaded can be left dormant for as long
as possible before they have to be reloaded. There is sufficient flexibility in the formulation of the
unload mechanism to permit qualified onsite personnel to make dynamic adjustments to the individual
weight attached to each of the variables which go into this unload eligibility factor determination.

An unload inhibit option is defined for use by certain files which cannot be removed from mass
storage due to real-time or other needs. There is also an even more restrictive guard option which
inhibits even the privileged read necessary to make backup copies. The guard option is required for
certain special files which are internal to the system, highly transient, or highly classified.

In addition to the basic SAVE, UNLOAD, and LOAD commands, there are supporting commands to
register unknown files recorded on backup tapes made at another SPERRY UNIVAC 1100 Series
Systems site, and to list the memory lapses that have occurred for a file. It is also possible to allow
all commands to be selectively directed, when desired, toward only certain named files, projects,
accounts, qualifiers, tapes, or mass storage units.

Finally, it is possible for the SECURE processor to assist in a catalogued file recovery process. This
depends on a tape copy checkpoint of the master file directory (MFD) and the entire set of file backup

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 2

UPDATE LEVEL PAGE

tapes to restore the set of catalogued files to a state at least as current as the time the MFD checkpoint
was made. A file is considered restored when MFD items can be retrieved from mass storage and
its text can be retrieved from mass storage or tape.

9.2. MAJOR FUNCTION DEFINITIONS

The SECURE language contains six major commands:

1.

SAVE creates a duplicate copy on tape of both the MFD information and the text of specified
catalogued mass storage files.

SAVE, and all other actions of the SECURE processor are not performed on files which were
catalogued with a G (guard) option on the @ASG or @CAT control (see Volume 2-3.7.1 and
2-3.7.3) statement. The purpose of the G option is to override the privileged mode capabilities
of the SECURE processor for particular files. Several of the Executive’s internal files, including
the scheduling file, the accounting file, and the symbiont files use the G option.

UNLOAD implies SAVE unless there already exists a tape backup copy of the file that was made
by SAVE after the last write was done on the file. UNLOAD then releases the space occupied
by the text of the file on mass storage and updates the MFD to mark the file unloaded. UNLOAD,
or any other action dependent upon unloading the file, is not performed if the file was catalogued
with a V (unload inhibit) option. This command is not meaningful for removable disk files as
their text is never marked as unloaded.

REMOVE implies UNLOAD, unless the file is already unloaded. REMOVE then causes the tile to
be decatalogued from the MFD.

REGISTER scans the tape reels named in source language which contain SECURE-produced
backup copies of mass storage files, and catalogues as unloaded those files that are not currently
catalogued. This command can also be used to restore the MFD items for an entire set of
catalogued files by using the ‘MFD snapshot’ tape.

LOAD operates on currently catalogued files that are marked unloaded or on currently
non-catalogued files if a tape is designated as the source of input. LOAD copies the text of the
file back to mass storage and turns off the unloaded indicator in the file's MFD entry.

LIST produces information based on the contents of the MFD.

9.3. @SECURE CONTROL STATEMENT

All parameters on the @ SECURE contro! statement are optional.

The format of the @ SECURE control statement is:

@label:SECURE.options eltname-1,elthame-2

options See Table 9-1.

The eltname-1 and eltname-2 parameters name the symbolic input and output elements,
respectively; see Volume 2-3.9 for rules governing their use.

Table 9-1 describes the options that can be specified on a @ SECURE control statement. In addition
to these options, the source input routine (SIR$) options (see Table 1-2) may also te used.

. 4144.31
UP-NUMBER

A

UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

9-3
Volume 3 System Processors

PAGE

Table 9-1. @SECURE Control Statement Options

Option
Character

Description

A

Do not take error exit even if errors are detected.

Do not do exclusive assignments of files to be acted upon.
This option should be used with care.

Enable the checksum feature in the SECURE processor to compute and write to tape a checksum total for
each text block written by a SAVE command or use this value as a check when data is transferred from
tape during a LOAD command or from tape to tape during a SAVE ALL operation (see 9.14.1).

Include the text and directory of removable disk files on SAVE operations whether system-wide or by
project, account, or qualifier. Removable disk files may be copied to a tape set unique from that of mass
storage files. See SPERRY UNIVAC 1100 Series Executive System Operators Reference, UP-7928 (current
version).

Display directory error diagnostics for all files that cannot be processed. Error diagnostics will be displayed
for all files encountered by SECURE that have directory errors or inconsistencies that would prevent the
tiles from being processed. The format of these diagnostics is:

MFD-ERROR-nn ON FILE qualifier#filename(fcyc)
where nn refers to the following error types:

(O — Main item extension chain is incomplete.

1 — Main item identifier bits incorrect.

2 — Invalid character as Qualifier, File name, Project or Account.

3 — Main item extension identifier bits incorrect.

4 — Main item extension Qualifier#Filename does not match that in the Main item.
5% — Sequence identifier in Main item extension is invalid. '
6 — Lead item identifier bits incorrect.

7 — Lead item Qualifier*Filename does not match that in the Main item.
8 — Lead item sector 1 identifier bits incorrect.

9 — Excessive DAD items.

10 — No valid look-up entry for this Main Item.

11 — Missing Search ltem for this Main tem.

12 — Main item extension linkage corruption.

13 — Lead item linkage corruption.

14 — Lead item extension linkage corruption.

15 — DAD item linkage corruption.

16 — Qualifier*Filename does not match that returned by DREAD.

17 — Incomplete pack information on a Register of a removable disk.
18 — Incomplete reel information on a Register of a cataloged tape.
19 — Incomplete lapse information.

20 — Incomplete Backup Reel information.

Signifies user is operating on ‘filename only’ level. Allows SECURE to avoid doing a full-system directory
snapshot when processing only files specified by name. This option may not be used when referring to
catalogued tape files or removable disk files in source fanguage, nor may it be used when limiters other
than FILE(S) are used in source language. This option should not be used with large numbers of named
files.

4144.31 SPERRY UNIVAC 1100 Series Executive A 9-4
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 9-1. @SECURE Control Statement Options (continued)
Option Description
Character

L Produce the most comprehensive printed listing.

N Suppress all listing except error diagnostics.

6] Scan all files, and print a summary listing including only files marked ‘SECURE’ or ‘hardware’ disabled.

R Scan all files marked disabled and print summarized results. Do not process any source language.

@SECURE R is called from within the Executive following a recovery bootstrap, or may be called by the
normal user from within a non-privileged run. In non-privileged mode, no projects or accounts are printed
in the summary listing.

S Produce a summary printed listing.

T Specifies that directory items for catalogued tape files are to be copied to beth the SAVE created backup
tape and the ‘MFD snapshot’ tape. Without this option, a REGISTER of the directory tape is always
necessary when performing a REGISTER of catalogued tape files. It should be noted that the text of a
catalogued tape file is never saved by SECURE.

X Take error exit if all specified tasks cannot be processed.

z Designates that directory information for files being decatalogued by REMOVE operations will be retained
in a catalogued file, ARCHIVES, to be used in the future by SECURE to recreate the REMOVEJ files (see
9.14.5).

9.4. INPUT AND OUTPUT BACKUP TAPE ASSIGNMENTS

Users calling the SECURE processor for tape operations shoutd first assign tape units for input and
output of backup tapes by means of control statements with the following format:

@ASG,NTF OBACKUPNnn,T
@ASG,NT IBACKUPnN,T

The @ASG,NT control statement causes the tape unit to be assigned temporarily and with the initial
tape load message suppressed. nn is an optional one- or two-digit number from 1 to 63 used to
distinguish between multiple OBACKUP or IBACKUP names. If nn is omitted, 1 is assumed. The F
option on the OBACKUP assignment is necessary to avoid a filename check when a read is attempred
on the tape if labeled tapes are in use.

All SECURE processor operations involving either tape reading or writing can be performed on tape
units assigned as output backup (OBACKUP[nn]). As a safety feature to help protect the contents
of existing backup tape reels, only reads are performed by the SECURE processor on tape units that
are assigned as input backup (IBACKUP[nn}).

4144.31
UP-NUMBER

| SPERRY UNIVAC 1100 Series Executive A 9-5
Volume 3 System Processors UPDATE LEVEL PAGE

Some examples of these assignments as they might appear in a single run are as follows:

@RUN

@ASG,NTF OBACKUP24,T

@ASG,NT IBACKUP7, T

@ASG,NT IBACKUP8,T,4832A/4432C/4162A

If the operations to be processed do not require the predefinition of specific tape reel numbers that
would otherwise be unknown to the SECURE processor, the user need not be concerned with
identifying them. For example, the SECURE processor dynamically requests as many new blank tape
reels as necessary when creating new backups and records the reel numbers used in both the MFD
item of the backed-up file and in the user’s printed output listing. As another example, the SECURE
processor automatically consults the MFD item to get the correct reels necessary to load the text of
an unloaded file back to mass storage.

There are instances, however, when a specific sequence of numbered reels should be associated with
a particular OBACKUP or IBACKUP tape unit. These associations are specified by giving a reel list
on the @ASG card or by source language statements of the format IBACKUPnn = reel list or
OBACKUPNn = reel list, as follows:

@SECURE, IS

IBACKUP7 = 95

IBACKUP8 = 4458, 4461, 4462
OBACKUP24 = 701, 702, 703

As an example, the SECURE processor allows a set of reels in backup format to be registered with
the Executive, so that any files previously saved to these reels, but which are not currently catalogued,
are recatalogued as unloaded mass storage files. Following a reel number association like that done
above for IBACKUP8, the REGISTER command could be invoked by the single control statement:
REGISTER FROM IBACKUPS.

When a particular SECURE operation involves the transfer of many text blocks to and from tape, it
is possible for SECURE processor to initiate multiple, concurrent |/0 operations to optimize efficiency
by assigning several output tape units. The multi-activity operational procedures are described in
detail in 9.13.

If no usable backup tape units are assigned at the time that the SECURE processor determines that
tape 1/0 must be done, the SECURE processor will assign a single unit using the system standard
type and density.

If an IBACKUP tape unit is not assigned prior to a REGISTER DIRECTORY TAPE FROM IBACKUP
operation, SECURE will dynamically assign it. Then, immediately after the tape has been read,
IBACKUP will be dynamically freed (@2FREE).

The most common cases where the SECURE processor will need tapes are the periodic SAVE
commands needed to generate a set of new backups and the LOAD of an unloaded file which some
run is attempting to assign. It is not necessary for a site to keep a tape unit available at all times
just to enable SECURE to handle these two common cases. The SECURE run is placed in a facility
wait state until the tape unit becomes available.

System-initiated UNLOADSs to relieve overcrowding of mass storage can normally be accomplished
without creating new backups (or requiring tape unit assigns). However, if tape assigns are necessary
and no tape units are available, the SECURE processor initiates a console message informing the
operator that a tape unit must be made available. If system conditions warrant the operator may make
a tape unit available by either restoring a tape unit that is in a reserved or downed state or by
terminating another run (by using a checkpoint, E, or X keyin) that has a tape unit assigned.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive A 9-6

Volume 3 System Processors UPDATE LEVEL PAGE

9.56. CATALOGUED FILE ASSIGNMENTS

The SECURE processor performs no actions on files which are actively assigned to another run at
the time that SECURE is executing, unless those files were catalogued as read only. Files to be
operated on by the SECURE processor are dynamically assigned with an exclusive-use option to
prevent other runs from writing on current write-enabled files.

If the number of runs in the system is temporarily reduced at the time a SECURE processor SAVE
run is called, the problem of files not getting backed up, due to use by other runs, is minimized. To
further reduce this problem, SECURE attempts a second or third dynamic @ASG,AX of those files
that were busy during the first pass. The SECURE listing reports any files which could not be saved.

9.6. PRIVILEGED MODE OPERATION

A run in privileged mode indicates that a program within the run (such as the SECURE processor) can
access the text and full MFD information for all files catalogued in the system that do not have a G
(guard) option inhibit on them, without supplying any of the keys and without regard to whether the
file might be catalogued as private or read only or write only. This permits the SECURE processor
to initiate /0 and other operations on a file that are necessary to create backups, or to delete or

restore text.

One of the Executive interfaces which checks to see if a run is privileged is the MSCONS$ request.
This request allows direct reading and altering of MFD items. The MSCONS request which gets a
copy of the entire MFD and writes it into a user-specified file, provides an example of the distinction
between privileged and nonprivileged runs; if the run is privileged, the MFD is copied unchanged;
if the run is not privileged, MSCONS obscures all project-ids, account numbers, (other than those of
the calling run), and all keys.

The operations which a user can direct SECURE to perform when the run is not privileged are
summarized in 9.9.

9.7. SECURE SOURCE LANGUAGE

SECURE employs a source language structure for input which gives the user a simple, but flexible,
format for calling on the processor to perform any or all of the allowed functions. Basic source
language components are ordered as follows:

command ALL limiters name-list EXCEPT name-list;
FROM equipment-name TO equipment-name

All parameters are optional except command. Spaces are required between fields on the source line,
A . A allows comments and a ; specifies continuation.

9.7.1. Standard Commands
The commands recognized for the SECURE processor are:

SAVE
UNLOAD
REMOVE
REGISTER
LOAD

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive a 9-7
Volume 3 System Processors UPDATE LEVEL PAGE

LIST REELS namelist
LIST FILES namelist
LIST UNL.OADED FILES
UEF +nn namelist
UEF —-nn namelist
REVERT filename

LIST LAPSES namelist
CLEAR LAPSES namelist
CONSOLE

NO-MFD

DELETE

ARCHIVE

MERGE ARCHIVE

END

Unless the word ALL is used, the SAVE command causes saves to be done only on those files which
do not have a current backup. A backup is current depending on whether any write operations have
been performed on the file since the time the last backup was made. However, when the word ALL
is used, the SAVE command causes all files in the namelist to be saved regardless of whether a current
backup exists. Because the SAVE ALL command causes a tape to tape copy if a file is unloaded, an
@ASG, TN IBACKUP,T is necessary in addition to the normal OBACKUP assignments for complete
execution. However, the IBACKUP assignment should not be included if it is intended only to save
the currently loaded files. When the word DIRECTORY is stated after the SAVE, only a copy of the
current ‘MFD snapshot’ tape will be produced.

if PACK or PACKS is specified after SAVE, text as well as directory information of the files residing
on the removable disk pack(s) specified in the following namelist will be copied to tape. If the word
ALL is used instead of a pack-id namelist, all removable disk files currently catalogued in the MFD
will be included. A backup of the text of removable disk files is created when its filename or the
pack-id on which it resides is specified in source language.

The SAVE ALL WITH RECOVERY command is used to finish an incomplete SAVE ALL operation,
starting at its point of abnormal termination. Any file subset designators on the initial SAVE ALL
statement must be duplicated on this statement also. On any output operation requiring a SAVE ALL
{(i.e., SAVE ALL, UNLOAD ALL, REMOVE ALL), SECURE will catalogue a file, SYS$*RECOVERY, at the
outset. If the operation terminates normally, this file will be decatalogued. The file remains
catalogued if the operation terminates abnormally. If a subsequent SAVE ALL WITH RECOVERY
operation is done, only files from the subsets specified that have not had backups created since the
catalogue time of SYS$*RECOVERY will be saved (SAVE).

A file's disabled status does not prevent its being maintained by SECURE. Any ‘disabled’ bits set in
a file's main directory item will be preserved by REGISTER. The LOAD action will be attempted on
any unloaded file, regardless of disabled status. Failure to complete the Icading of text normally will
result in the file’'s being marked disabled (FAC reject status bit 6). SAVE will copy the text of a
hardware disabled file only if no backup exists. SAVE ALL, operating on a hardware disabled file,
will copy the text from the backup tape, if one exists. All other SECURE actions will ignore a file's
disabled status.

Unless a namelist is given or the word ALL is used, the UNLOAD command does not cause more files
to be unloaded than is necessary to free 3000 tracks on mass storage. The particular files chosen
for unload, in this case, are selected using procedures explained in 9.8. To change the preset limit
of 3000 tracks to some other value, the UNLOAD specification may be stated as UNLOAD TRACKS
= nnnnnn. If a namelist is given all files so specified are unloaded, regardless of how much or how
little space they occupy on mass storage. If the word ALL is used, all catalogued files are unloaded.
if unloading only position granular files is desired, the command UNLOAD POS = nnnnnn is used,
where nnnnnn is the number of positions.

414431
UP-NUMBER

A
UPDATE LEVEL

SPERRY UNIVAC 1100 Series Executive

9-8
Volume 3 System Processors

PAGE

*

The REMOVE command deletes from the MFD the files indicated by selection specification (or all
catalogued files if no specification is given) after the presence of a current backup copy for each has
been assumed. The keyword ALL causes SECURE to create a new backup copy even if a current
backup exsits.

The REGISTER command requires the addition of a FROM IBACKUP to which reel numbers have been
associated. Unless a namelist is given, the REGISTER command operates on all files found on the
equipment associated with IBACKUPnn. REGISTER causes cataloguing of the found files using the
attributes of the file as found on the backup tapes. Such files are marked UNLOADED. No SECURE
operations except another REGISTER FROM IBACKUP may be used if this command is stated in source
language.

The LOAD command causes the text of unloaded files given in a namelist (or if ALL is specified, every
catalcgued file) to be copied from backup tape to mass storage. Use of UNTIL UEF = nn or UNTIL
PERCENT = nn with this command enables the loading of some subset of all the catalogued files.
Files are sorted in ascending order by unload eligibility factors (UEF's) and are loaded until either the
desired UEF cutoff value is reached or until the desired percentage of available mass storage has been
filled. The command LOAD...FROM IBACKUPNnn combines the REGISTER and LOAD actions in one
operation. if the file is found to be already catalogued, but marked as unloaded, the file's text is loaded
if its MFD designates this tape as its backup copy.

The LIST REELS command produces a summary listing of the current set of backup tapes sorted in
ascending order by reel number. This command must be in a separate SECURE execution with no
other source language present.

The LIST FILES command displays the same information as the LIST REELS, but entries are sorted
alphabetically by qualifier and filename. This command must also be specified individually in a
SECURE execution.

LIST UNLOADED FILES creates the same-formatted listing as LIST FILES, but includes in its summary
only those files whose text is currently marked as unloaded. This command must be in a separate
SECURE execution as well.

The UEF +nn or UEF -nn commands may be used to selectively add or subtract a number nn from
the computed unload eligibility factor (UEF) for the named files, projects, qualifiers or accounts. This
factor determines the order in which files are unloaded when mass storage space becomes crowded.
The UEF bias remains in effect only for the current execution of SECURE. The larger the UEF is for
a given file, the more eligible the file is for unloading. See 9.8 for selection of files for UNLOAD.

REVERT filename means revert to a previous backup copy of the named file. This can be used when
a user accidentally overwrites the latest copy of the file on mass storage and wants the text in the
existing backup to be retained instead of the more recent text now residing on mass storage. When
the text of files on mass storage is inadvertently destroyed, the backup tape becomes the primary
copy. If, however, the backup tape is not current, a record is kept of the time period during which
any addition or deletions to the mass storage file were not retained. This record represents a file's
memory lapse. Any number of these may possibly occur over the life of the file.

The LIST LAPSES command provides a printed listing of the memory lapse entries for all files or for
the set of files specified by the namelist. This command must be in a separate SECURE execution.

The CLEAR LAPSES command requires a namelist and erases the record of any existing lapse entries
in the set of files specified by the namelist.

The CONSOLE command allows the user to change source language input modes from card images
to console keyins when desired. When this command is encountered in source language, 'ENTER
SECURE COMMAND' appears on the onsite console, and the user may key in the action desired. I

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive A 9-9
Volume 3 System Processors UPDATE LEVEL PAGE

an ‘END’ directive is received while in this mode, all remaining SECURE source language from the
runstream is processed.

The NO-MFD command suppresses the creation of a directory tape by a privileged run.
The DELETE command removes files without ensuring a current backup exists.

The ARCHIVE command is an extension of the REMOVE command. !n addition to deleting the file,
selected information is retained in SYS$*ARCHIVES so that the the file may be subsequently restored.

The MERGE ARCHIVE command consolidates a set of backup tapes holding Archived files. If a tape
list is given files which are wholly contained on the specified tapes will be copied, without a list all
Archived files will be merged to a single tape set.

END is an optional terminator to mark the end of source language statements.

9.7.2. Namelist and Limiters

Namelists are strings of file, project, qualifier or account names which designate particular file sets.
Unless otherwise specified, all commands allow any of the namelists below. They are preceded by
an appropriate identifier as follows:

FILE(S) filename-namelist
PROJECT(S) project-namelist
ACCOUNT(S) account-namelist
QUALIFIER(S) qualifier-namelist

Names in the list are separated by commas. Actions specified in source language are limited to the
set of files specified in a namelist. If no namelist is used with a particular command, a distinction
must be made. If the run is not privileged, it is assumed that the action is to be applied only to those
files under the user’s project-id. Exceptions to this general rule are given in the description of each
command (see 9.7.1). A limiter may be specified to restrict the file set described in the specified
or implied namelist to files within the named category.

A limiter may be used to restrict the file set described in the specified or implied namelist to files
within the named category. The self-explanatory limiters are: PUBLIC, PRIVATE, READ-ONLY,
WRITE-ONLY. Several other limiters are only meaningful when used in conjunction with specific
commands:

@ BEFORE nn DAY(S) or MONTH(S) and AFTER nn DAY(S) or MONTH(S) refer to the time since a
file has been referenced, and should only be used with the SAVE and REMOVE commands.
These allow separation of a file set into current and dormant categories based on the time
spanned since the last reference to the file. The statement, SAVE ALL AFTER 30 DAYS, would
only include files in the SAVE ALL which were referenced within the last 30 days. By substituting
BEFORE for the AFTER, a SAVE ALL would be only done on files with reference times 31 days
or older.

B TAPES is a limiter to be used only with the SAVE and REMOVE commands. When this is used,
only files marked as unloaded and backed up on the tape(s) specified will be included in the
SAVE or REMOVE. An example of its usage is: SAVE (or REMOVE) TAPES 1, 2, 3.

A
UPDATE LEVEL '

4144 31 SPERRY UNIVAC 1100 Series Executive

4 9-10
UP-NUMBER Volume 3 System Processors

PAGE

B The PACKS limiter denotes that only files catalogued on the removable disk pack-id(s) specified
are to be included. This limiter may be used in conjunction with all commands except the LOAD,
UNLOAD and REGISTER.

B ARCHIVE is a limiter to be used only on the LIST FILES (or REELS), REMOVE and LOAD FROM

IBACKUP commands, and designates that the contents of the file SYS$*ARCHIVES are to be
processed.

9.7.3. Exclusions
EXCEPT preceding a namelist, causes those files, projects, qualifiers or accounts in the list to be
excluded from the particular action.
9.7.4. Direction
When an action is to be directed to or from particular tape files or mass storage devices, a FROM
or TO designator is used from the following set, where sss/uu are mass storage subsystem/unit
numbers:

FROM IBACKUPnn

FROM OBACKUPnn

FROM UNIT(S) ss/uu-list 1, ss/uu-list-2,..., ss/uu-list n

TO UNITS(S) ss/uu-list 1, ss/uu-list 2,..., ss/uu list n

TO PACK pack-id-1, pack-id-2..., pack-id-n

TO FIXED

Note that it is not possible to move files from one mass storage unit directly to another using FROM
and TO.

For files stored on dual subsystem devices, only the primary subsystem number is recorded in the
master file directory for such files. Therefore, any subsystem references made in SECURE source
language must refer to the primary subsystem number of a dual subsystem. References to the
alternate subsystem of a dual subsystem will not be successful.

With the introduction of EXEC level 35 1/0 configurations, subsystem/unit specifications will be
replaced by a list of device mnemonic names.

Example:
FROM UNIT D30TU4,D30TUD

The two directives TO PACK and TO FIXED, can only be associated with the REGISTER (or LOAD)
FROM IBACKUP commands when they are used to catalogue removable disk files from a backup tape.
If TO PACK is specified, any removable disk files found on the backup tape will be catalogued with
the specified pack-id. If TO FIXED is used, the files will become fixed disk files. In either case, the
equipment type of the files will not change.

A
UPDATE LEVEL

4144:31 T SPERRY UNIVAC 1100 Series Executive

9-10a
UP-NUMBER Volume 3 System Processors

PAGE

9.7.5. Examples of Source Language

The following are examples of source language specifications:

I BACKUP 2350, 2351, 2352

OBACKUP = 4451, 4452, 4453

SAVE ACCOUNT 399125 EXCEPT FILE MY*FILE
SAVE ALL PROJECT MERCURY TO OBACKUP
UNLOAD TRACKS = 1500 FROM UNIT 12/3
REMOVE PROJECT SATURN TO OBACKUP

LOAD FILES FILE1, FILE2, FILE3

REGISTER EXCEPT ACCOUNT 399126 FROM IBACKUP
LOAD PROJECT VENUS FROM |IBACKUP

UEF - 10 FILE FREQUENTLY*USED

REVERT FILE MY*ERROR

I.LiST LAPSES

CLEAR LAPSES PROJECT MERCURY, SATURN
LI1ST REELS

REVERT FILE MYFILE

SAVE ALL AFTER 20 DAYS

SAVE ALL TAPES 1, 2, 3

SAVE ALL PROJECT MARS WITH RECOVERY
L.LOAD PACK REMOO1 FROM IBACKUP TO PACK REMOO0O2
REGISTER FROM IBACKUP TO FIXED

LLIST FILES ARCHIVE

END

9.8. SELECTION OF FILES FOR UNLOAD

If an UNLOAD command is given without naming any particular files, projects, accounts, qualifiers
or mass storage units, it is assumed that the SECURE processor has the responsibility to scan the
entire set of catalogued files and to select the subset that must be unloaded to acquire the additional
assignable mass storage space that is needed.

This differs from the action of the SECURE processor when particular files, projects, accounts or
qualifiers are named for unload, in which case all eligible candidates in the named set are unloaded.
This is also in contrast to the action of UNLOAD ALL, where all eligible files in the system are loaded.

When the SECURE processor is called to do saves to backup tape, drum-to~tape I/0 is unavoidable.
When the SECURE processor is calied to do only an unloading operation, however, it is sometimes
possible to avoid tape 1/0. This situation results when there exists an adequate reservoir of current
backups of unload-eligible files already out on tape to meet the requirements of a yeneral UNLOAD
command.

Often, at the same time that mass storage facilities become overcrowded, other system resources
become inadequate, making it necessary to temporarily postpone saves. For this reason, those files
with current backups are considered first in computing unload eligibility. Note that a SAVE command
can be included, prior to the UNLOAD command, if it is intended that all backups be immediately
current, prior to unload eligibility factor determination.

The criterion should then be to s«lect a set of files for unload which satisfies the request for space
to ensure a maximum amount of time before any one of the files selected is referenced again.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

9-11
Volume 3 System Processors

PAGE

UPDATE LEVEL

SECURE defines a file's unload eligibility factor or ‘UEF’' as follows:
B The UEF can take on decimal values from O to 63.

B AUEFof Oisreserved for files which are already unloaded. A UEF of 1 is reserved for catalogued
tape files and removable disk files. A UEF of 2 is reserved for files which are marked ‘unload
inhibit’ (V option). The higher the UEF, the greater is the chance that the file will be unloaded.

Fact;)rs considered in computing the UEF are:

1. Time of last reference.

2. Average time between references.

3. Size as given by the total number of granules.
4. Equipment type on which the file resides.

5. Do more recent F-cycles exist?

6. Is the file public or private?

All of these factors are included in the UEF formula.

9.9. OWN-PROJECT APPLICATIONS

The SECURE processor is used in privileged-mode runs to guarantee the security and availability of
catalogued files. It is also available to non-privileged users for operations on their own files, or files
to which they have the required access rights. Commands available to non-privileged users are:
SAVE, LOAD, REVERT, LIST LAPSES and CLEAR LAPSES.

The only restrictions placed on the user in referencing SECURE commands from the previously
described set are:

1. files named in source language namelists must be public or catalogued under the user’'s own
project-id; and

2. both the read key and the write key, if they exist, must be included with the filename in source
language statements.

The SAVE command, when referenced from within a non-privileged run produces a backup tape .
The reel numbers however, are not recorded on the file's MFD item. This is necessary to maintain
control over SECURE backup tapes created by a privileged-run, system-wide SAVE. With the
modified or unrecorded SAVE, a user can produce backup tapes at will without destroying the record
of the current backup tapes under the site manager’'s control.

The REVERT command may be called by the individual user after inadvertently destroying the text
of the file on mass storage. If a backup copy exists, the SECURE processor marks the file as unloaded.
An automatically initiated LOAD of the previous backup copy occurs when the file is next assigned.
A non-privileged REVERT cannot be made on a read-only file. The user must first make the file
read-write (@ CHG) so that the REVERT process may release the file's granules.

The LIST LAPSES command is normally used by the individual user, following the assignment of a
file, to see if any new lapses have occurred. The CLEAR LAPSES command may be used when the
user is satisfied with the current state of the file and no longer cares to keep information about the
file's previous history.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

-12
Volume 3 System Processors 3

PAGE

UPDATE LEVEL

The LOAD commands and LOAD ... FROM IBACKUP command may be used by the individual user
to load any files, provided the complete filename and all required keys are specified in source
language.

9.10. CATALOGUED FILE RECOVERY APPLICATIONS

No éatalogued file should be considered disabled or destroyed as long as a valid SECURE-produced
backup copy exists on tape. With this in mind, three modes of file recovery are possible under
SECURE:

1. REVERT to the backup copy
2. REGISTER individual files from tape
3. REGISTER the directory tape

The REVERT command may be called by any user when it is necessary or desirable to make a tape
backup copy become the primary copy. An automatically initiated LOAD of the designated backup
copy’s text to mass storage occurs when the file is next assigned.

Warning messages at assignment time signal when a file has been marked disabled. The user can
then call @PRT,F (see 4.2.5) to get the status of the mass storage copy and time of backup creation.
The Q option or an @ENABLE control statement (see 4.2.17) allows the user to probe the mass storage
copy and determine whether a REVERT to a previous copy is required. Until the user makes the
decision of which copy of the file to retain as the primary copy, the SECURE processor guarantees
to preserve all the information it can to give the user the greatest possible choice of alternatives.

The most general mode of catalogued file recovery under SECURE involves using the MFD tape to
recover all catalogued files, including catalogued tape files. To initiate this process, perform a
REGISTER of the MFD tape. The SECURE processor copies this tape into a temporary mass storage
file, catalogues all files not already catalogued, and marks all files except removable disk files and
catalogued tape files as unloaded to backup tape. As a result, the system is restored to a condition
at least as current as the time the MFD tape was created. This avoids doing REGISTERs of the separate
backup tapes. As users attempt to assign files, an Executive function initiates an automatic LOAD
of text back to mass storage. If it is possible that removable pack files were referenced since the
time of MFD copy creation these packs should be removed and re-registered using the appropriate
console operation keyins in order to insure directory consistency.

9.11. SUMMARY OF SECURE PROCESSOR COMMANDS

Table 9-2 lists the name and function of each SECURE processor command.

4144.31 SPERRY UNIVAC 1100 Series Executive 9-13
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 9-2. Summary of SECURE Processor Commands

Command Description
CLEAR LAPSES This command erases existing memory lapse entries for the set of files specified by the
i namelist.
CONSOLE This command designates the SECURE processor to accept source input images from

the onsite console until an ‘END’ directive is received.

LIST FILES Reserved for privileged runs, this command produces a summary listing, sorted
alphabetically by qualifier and filename, of the backup status for all files. specified in
a namelist. If none is specified, all catalogued files are included.

LIST LAPSES This command produces a listing of the memory lapse entries for all files or for the files
specified by a namelist.

LIST REELS Reserved for privileged runs, this command produces a summary listing of the current
set of backups for all files in the specified namelist sorted in ascending reel number
order.

LIST UNLOADED FILES Reserved for privileged runs, this command produces the same summary listing as LIST

FILES, but includes only those files whose text is currently unloaded.

LOAD Reserved for privileged runs, this command causes the text of unloaded files given in
a namelist to be retrieved from backup tape and written on mass storage.

LOAD...FROM IBACKUP This command allows the user to REGISTER files (see REGISTER commands) and to
LOAD their text from tape all in one operation.

REGISTER DIRECTORY FROM Reserved for privileged runs, this command allows the user to REGISTER an entire
IBACKUP system set of catalogued files using only the 'MFD tape’ snapshot of the MFD.

REGISTER FROM IBACKUP This command scans the set of backup tapes associated via source language with the
particular IBACKUP unit and restores the MFD items of filcs found there which are not
currently catalogued and whose complete backup copies reside on this reel set. Since
only the directory items are restored with this command, files must be marked as
unloaded to the backup tape.

REMOVE This command is reserved for privileged runs and causes all files specified in a namelist
to be deleted from the system after first ensuring that a current backup exists.

REMOVE ALL This command is identical to the REMOVE command except that a new backup copy
is produced for each file to be deleted, whether one already existed or not.

REVERT This command causes a file’s backup copy on tape to become the primary copy by
releasing its granules on mass storage and marking the file as unloaded.

SAVE Without further qualification, this command applies to all files in the system not
catalogued with a G option if the run is privileged, or to only those files with a project-id
matching that of the calling run if the run is not privileged. With the above noted, the
SAVE command causes new backups to be made only for those files which do not have
a current backup. Whether or not a backup is current depends on whether any write
operations have been performed on the file since the time the last backup was made.
In the case of privileged runs, the location of the new backup copy is recorded in the

414431 SPERRY UNIVAC 1100 Series Executive | 9-14
UP-NUMBER Volume 3 System Processors | uPDATE LEVEL PAGE

Table 9-2. Summary of SECURE Processor Commands (continued)

Command Description

file's MFD items.

SA\;E ALL This is identical to the SAVE command except that a new backup copy is made
regardless of whether a current backup exists. This allows the user to merge all backup
copies on a new, self-contained set of backup tapes. In the case of an unloaded file,
SAVE ALL retrieves the text of the file from tape instead of mass storage.

SAVE ALL WITH RECOVERY This command is essentially the same as the SAVE ALL with the exception that files in
the namelist specified are SAVEd only if their time of last backup creation is before the
cataloguing time of SYS$#RECOVERY. (See 9.7.1)

UNLOAD This command is reserved for privileged runs and without further qualification wiil not
cause more files to be unloaded than is necessary to free up to 3000 tracks on mass
storage. Files ere chosen for unioading on the basis of their UEF (unioad eligibility
factor), which is computed by the SECURE processor. Files catalogued with a V option
are not unloaded in.any case. The UNLOAD command automatically implies SAVE; that
is, a new backup copy is automatically produced, if required, before a file is marked as
unloaded and its granules on mass storage are released.

UNLOAD TRACKS = nnnnnn This command is identical to UNLOAD except that the preset limit of 3000 tracks is
changed to the value specified.

UNLOAD POS = nnnnnn This command allows the user to unload only position granular files up to only the
number of positions specified.

UNLOAD specific files, This command differs from the previous unioad commands in that all files, projects, or
projects, or accounts accounts specified in the namelist are unloaded regardless of the UEF.

9.12. EXAMPLES OF USE OF THE SECURE PROCESSOR
Example 1:

To make the set of backup tapes current (privileged):

@RUN
@ASG, A SYS$*#DLOCS/read key/write key
@ASG, TNF OBACKUP, T
@SECURE, IL
SAVE

END

4144.31 SPERRY UNIVAC 1100 Series Executive

-16
UP-NUMBER Volume 3 System Processors 6

UPDATE LEVEL PAGE

Example 2:
To produce backups of user's own files (nonprivileged):

@RUN
@ASG, TNF OBACKUP, T
@SECURE, I SF
SAVE ALL FILES MY#FILE1, MY*FILE2
END

Example 3:
To merge all backup copies on a single set of tapes (privileged):

@RUN

@ASG,A SYS$#DLOCS/read key/write key
@ASG, TN IBACKUP, T

@ASG, TNF OBACKUP , T

@SECURE, IL

SAVE ALL

END

Example 4:

To revert to the backup copy (nonprivileged):

@RUN
@SECURE, ILF
REVERT FILE ABC#XYZ
END
Example 5:

To load the text of certain files (privileged):

@RUN

@ASG, A SYS$#DLOCS$/read key/write key
@ASG, TN IBACKUP, T

@SECURE, IL

LOAD PROJECTS SATURN, JUPITER
EXCEPT ACCOUNT 423055
END

Example 6:
To register a number of files from a particular backup tape set (nonprivileged):

@RUN
@ASG, TN IBACKUP, T
@SECURE, IL
IBACKUP = 1201, 1202, 1203
REGISTER PROJECT MY-OWN FROM |BACKUP
END

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

9-16
Volume 3 System Processors

PAGE

UPDATE LEVEL

Example 7:

To register an entire system set of files from the ‘directory tape’ following an initial boot (privileged):

@RUN
@ASG,A SYS$#DLOCS$/read key/write key
. @ASG,TN IBACKUP, T
@SECURE, IL
IBACKUP = 1625G . DIRECTORY TAPE

REGISTER DIRECTORY TAPE FROM |BACKUP

END
Example 8:

To register and load the text for a number of files from a particular backup tape set (privileged):

@RUN

@ASG,A SYS$#DLOCS$/read key/write key
@ASG, TN IBACKUP, T

@SECURE, IL

IBACKUP = 1551, 1552, 1553
LOAD FROM |BACKUP
END

9.13. MULTIPLE ACTIVITY OPERATION AND EXAMPLES

SECURE places all routines involving tape I/0 in a reentrant ACTION segment which may be executed
simultaneously by several activities. This is more efficient during massive, system-wide SAVE and
LOAD runs.

Another essential aspect of optimizing multiple activity efficiency is the processor’s ability to direct
the allocation of files to specific mass storage units during the REGISTER and LOAD processes. The
ability to direct allocation to an absolute subsystem and unit on a file-by-file basis is a feature of
SECURE.

In describing the operational characteristics of multiple activities in SECURE, two points should be
made clear at the outset. First, the number of activities generated by the processor for any SECURE
action will be determined by the number of IBACKUP or OBACKUP tapes assigned to the calling run.
SECURE can only do tape actions in one of two possible ‘modes’. Any REGISTER or LOAD FROM
IBACKUP command is defined as the ‘register mode’. The other ‘action’ mode is signified by
commands such as SAVE, UNLOAD, LOAD, REMOVE, etc. Therefore, the commands "REGISTER FROM
IBACKUP1" and "SAVE TO OBACKUP1" are incompatible in the same execution.

A series of examples to illustrate proper use of source language in generating multiple activities is
given below. All runs are assumed to be privileged.

4144.31

SPERRY UNIVAC 1100 Series Executive 9-17
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Example 1:

@RUN

@ASG, TNF OBACKUP1,T/2

@ASG, TNF OBACKUP2,T

@SECURE, I8

_ SAVE
END

In example 1, the processor uses an internal algorithm to generate two activities, each handling a
unique fite set and producing backup tapes of approximately equal size. The directory tape will be
produced by the first activity, after both have terminated the SAVE action.

The assignment of OBACKUP1 illustrates the use of the two-unit tape assignment capability. By
utilizing two tape drives, the SAVE operation continues even though a complete OBACKUP 1 tape may
have just been written. In this case, a second tape is mounted on an alternate drive and may be
accessed while the first is rewinding.

Example 2:
@RUN
@ASG,TN IBACKUP1, T
@ASG, TNF OBACKUP1,T
@ASG, TNF OBACKUP2,T
@SECURE, IS

SAVE ALL FROM UNITS 4/0,5/0 TO OBACKUP1
SAVE ALL FROM UNITS 6/0/1/2 TO OBACKUP2
END

In example 2, SECURE is directed to allocate files between the two activities based on their hardware
location, because it has been determined that such a split offers the most efficient use of available
I/0 paths. Files which reside in part or both sets of mass storage units will be resolved and allocated
to a single activity, normally on the basis of where the main directory item resides. All loaded files
will be dumped first from drum to tape and then tape-to-tape copies of any unloaded files will be
handled by a single activity using the IBACKUP 1 tape unit for input and one OBACKUP tape unit for
output.

Example 3:
@RUN
@ASG, TN IBACKUP1, T
@ASG, TNF OBACKUPI, T
@ASG, TNF OBACKUP2,T
@ASG, TNF OBACKUP3, T
@SECURE, IS

SAVE ALL FROM UNITS 4/0,5/0 TO OBACKUP1
SAVE ALL FROM UNITS 6/0/1/2 TO OBACKUP2
SAVE ALL UNLOADED FILES TO OBACKUP3

END

Example 3 is similar to example 2, except that SECURE is directed to process unloaded files via
tape-to-tape copies simultaneously under control of a third activity. Again, IBACKUP1 is
automatically used as the input tape unit.

414431 SPERRY UNIVAC 1100 Series Executive 9-18
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Example 4:
@RUN
@ASG, TN IBACKUP1, T
@ASG, TN IBACKUP2, T
@SECURE, 1S

IBACKUP1 =1,2,3

IBACKUP2 =4,5,6

LOAD FROM IBACKUP1

LOAD FROM |BACKUP2
END

In example 4, SECURE is in ‘register mode’ and is directed to generate two activities to accomplish
the REGISTER and LOAD. Allocation of the files on mass storage is done according to the normal
system algorithm. The above example is suggested as the most efficient means to ensure proper
allocation when restoring mass storage files.

Example 5:
@RUN
@ASG, TN IBACKUP1, T
@ASG, TN IBACKUP2, T
@SECURE, IS
LOAD UNTIL UEF = 40
END

Following a directory tape REGISTER, the above method may be used to load file text up to the cutoff
UEF value in a fast, efficient manner. Input tape numbers are known to SECURE through the directory
items and are distributed evenly between the two activities, assuming approximately the same amount
of information on each backup tape.

Although the above examples illustrate no more than three activities in one execution, as many as
10 will be allowed. However, the user should note that 4000 decimal words of storage are required
for each additional activity and that there is a point of diminishing returns in generating too many
activities for optimum I/0 path selection. Note also that all the logic to successfuilly handle I/0 errors
and contingency processing has been preserved for each actiyity. A serious contingency occurrence,
e.g., IGDM, causes the processor to do an ER ABORTS$, terminating all activities, and then allows
processing of the contingency.

9.14. SPECIAL FEATURES AND PROCEDURES

9.14.1. Checksum

The checksum feature is a means the SECURE processor uses to verify that data transfer in 1/0
operations is completed successfully. For each block of data transferred from mass storage to tape,
tape to mass storage or tape to tape operations, a summation of the total bits is kept prior to and
after the data transfer. If these summations are not equal, a checksum error has occurred.

These messages appear when this condition exists:
qual#file(cycle) ## CHECKSUM ERROR%*% nnnnnnnnnnnn nnnnnnannnnn
This line appears in the output listing once per track when an error is detected. The values printed

after the message are, first, the actual checksum value after the transfer and second, the expected
checksum prior to the 1/0 operation.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

9-19
Volume 3 System Processors

UPDATE LEVEL PAGE

CHKSM ERROR qual#*file(cycle) DISABLED

appears on the onsite console once per file when a checksum error has occurred. The file is left in
the disabled state after SECURE has finished its operation. :

This feature is included any time the C option is used on the SECURE control statement.

9.14.2. Text Block Sequence Check

The SECURE processor verifies that each text block of a file is transferred from tape by checking that
the relative block numbers of all text blocks read are in sequential order. If a text block is not read,
the user is notified of an error by the following messages:

qual*file(cycle) #%* TEXT BLOCK SEQUENCE ERROR#%* nnn nnn

This line appears in the output listing each time a sequence error is detected. The values printed
after the message are, first, the text block number of the previous block read and, second, the text
block number of the last block read. Comparison of the two values enables quick determination of
the number of blocks missed.

BLK SEQ ERR qual#*file(cycle) DISABLED

appears on the onsite console once per file in which a sequence error occurs, and notifies the user
that the file is left in the disabled state after SECURE has finished its operation.

9.14.3. ‘Special Void’ Message

When no projects, accounts, qualifiers or filenames are specified in a privileged mode REGISTER, the
words ‘'SPECIAL VOID' are inserted as a dummy project name to indicate that the reference applies
to all files, regardless of project.

This message appears in the summary listing if no legitimate files could be found on the tape or
removable disk pack being registered.

9.14.4. Tape Handling Procedures

SECURE maintains its position on tape by checking the current file position number which is written

in the file label block. If loss of position is suspected, a B keyin to an onsite console message will
cause the tape to be rewound and the file search to be repeated from the beginning of the tape. A

‘D keyin or the unsolicited downing of a tape unit will cause the particular activity to terminate via

ER ERR$ without affecting other activities.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 3-20

PAGE

UPDATE LEVEL

If a tape is mounted whose reel number in SECURE's tape label is not equal to the requested, SECURE
will allow various actions by doing an answerable ER COM$. Based on the response, SECURE will
react as follows:

A - Repeat the mount message as the wrong tape was mounted in error.

.E - The wrong tape was mounted because the requested tape is currently unavailable. The
files on this tape will be bypassed for this SECURE execution.

G - This is the requested tape, but the tape label has been destroyed. SECURE will proceed as
if it had been correct, and attempt to recover the desired files.

9.14.5. SYS$*#ARCHIVES$

SYS$*ARCHIVES is a V option file catalogued and used by SECURE as a storage area for selected
directory information of files decatalogued on a REMOVE operation if the Z option is specified on the
@SECURE control statement. By utilizing ARCHIVES$, a site may decatalogue seldom-used files from
the Master File Directory, but still retain enough information to restore these files if the need arises.
It must be assumed that files entered into ARCHIVE$ have a valid tape backup copy from which the
text may be recovered.

Any namelist or limiter valid with the REMOVE or REMOVE ALL commands may be used to designate
the set of files to be entered into ARCHIVES.

A series of examples follow to illustrate the proper use of source language in conjunction with the
creation, interrogation and purge of the file ARCHIVE$. All runs accessing ARCHIVE$ must be
privileged.
Example 1:

To create entries in ARCHIVES$ for files with last reference times older than 30 days ago, and insure
that these files are on a consolidated backup tape set:

@RUN '
@ASG,A SYS$#DLOCS/read key/write key
@ASG, TN {BACKUP,U
@ASG, TNF OBACKUP ,U
@SECURE, ILZ
REMOVE ALL BEFORE 30 DAYS
END
Example 2:

To create entries in ARCHIVES$ for a particular project:

@RUN

@ASG, A SYS$#DLOCS/read key/write key
@ASG, TNF OBACKUP ,U

@SECURE, ILZ

REMOVE PROJECT MYPROJ
END

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 9-21

PAGE

UPDATE LEVEL

Example 3:

To recreate a file with an entry in ARCHIVES:

@RUN

@ASG,A SYS$#DLOCS$/read key/write key
@ASG,TN IBACKUP , U
" @SECURE, IL

LOAD ARCHIVE FILE MYFILE FROM 1BACKUP
END

Note in the above example that no IBACKUP = NNN tape number source statement is necessary.
SECURE scans ARCHIVES and retrieves MYFILE's tape number automatically.

Because a file is deleted from the MFD when it is entered into ARCHIVES$, several entries with the
same qualifier, filename and f-cycle may exist in ARCHIVES$. To insure recreation of the desired file,
an additional specification, namely the time of cataloguing, may be stated in SECURE source
language. Time of cataloguing may be obtained while the file is still in the MFD by many of the
FURPUR @PRT commands (see 4.2.5). It must be stated in the format: '"CATALOGUED
MM/DD/YY/HH/MM/SS’ with leading zeros removed.

Example 4:
To recreate MYFILE catalogued on 04/18/73 at a time of 08:36:43:

@RUN
@ASG, TN IBACKUP ,U
@SECURE, IL
LOAD ARCHIVE FILE MYFILE CATALOGUED 4/18/73/8/36/42 FROM |BACKUP
END

Periodically, ARCHIVE$ may be purged if retention of entries for specific files is no longer necessary.
Files may be purged from ARCHIVE$ by 1) specifying filename(s), 2) specifying qualifier(s), or 3) based
on the time spanned since files have been entered in ARCHIVES.

Example 5:
To remove a specific file from ARCHIVES:

@RUN
@SECURE, tL

REMOVE ARCHIVE FILE MYFILE
END

Note that the cataloguing time and date of MYFILE (see Example 3) may be used on the REMOVE
operation as well as the LOAD FROM IBACKUP, to insure that the correct file is purged from
ARCHIVES.

414431 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors 9-22

PAGE

UPDATE LEVEL

Example 6:

To remove a specific qualifier from ARCHIVES:

@RUN
@SECURE, IL
_ REMOVE ARCHIVE QUALIFIER MYQUAL
END
Example 7:

To remove files from ARCHIVE$ which were entered more than 30 days ago:

@RUN

@SECURE, IL

REMOVE ARCHIVE BEFORE 30 DAYS
END

4144.31 " SPERRY UNIVAC 1100 Series Executive

10-1
UP-NUMBER Volume 3 System Procaessors

UPDATE LEVEL PAGE

- 10. Symbolic Stream Generator (SSG)

10.1. INTRODUCTION
The Symbolic Stream Generator (SSG) processor provides a programmer with a means to create and
control a variety of symbolic streams. With the use of a program or skeleton written in the

SYMSTREAM language (see 10.5), directions and models may be used to manipulate symbolic input
and create symbolic output.

10.2. SSG INPUT AND OUTPUT

10.2.1. @SSG Control Statement
Format:

@5SG,options param-1,param-2,param-3,param-4,param-5,param-6,param-7,...,param-n
All parameters are optional. All input and output streams defined by the @SSG control statement
are DATA files or symbolic elements in program files, unless otherwise stated. SSG accepts mixed

ASClI-Fieldata input. The only required input is the skeleton specified either on the SSG cali, on a
file-id statement, or in the input runstream.

Parameters:

options See Table 10-1.

param-1 Specifies the source of the skeleton stream (may be ASCII, Fieldata, or mixed
ASCll-Fieldata mode).

param-2 Specifies the source of SGSs; may be one of two types of input: first type is a

DATA file or a symbolic element specified, which contains SGSs; second type
has the format:

filename./label

where the filename specified is a program file. SSG takes the element names
from the program file and attaches the speuified label to each, creating one SGS
for each element present. See 10.3 for the format of these SSG created SGSs.
Both types of SGS input may also be used after param-6.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

'
Volume 3 System Processors 0-2

UPDATE LEVEL PAGE

param-3

param-4

para'm—s

param-6

param-7

Specifies the destination of the generated output stream (must be a DATA file
if #*BRKPT directive is used). See V and W options, Table 10-1.

Specifies the destination of the revised temporary stream. Images will be the
same mode (ASCII, Fieldata, or mixed ASClI-Fieldata) as the temporary images
they are derived from.

Specifies the destination of the revised skeleton stream. These images will be
in the same mode (ASCI, Fieldata, or mixed ASCli-Fieldata) as the skeleton and
skeleton corrections are on input.

Specifies the source of the corrections to be applied to the skeleton stream (may
be ASCII, Fieldata, or mixed ASCii-Fieldata). The control character for the line
corrections to the skeleton is a plus sign (+).

The first of a variable number of fields specifying inputs; the formats are as
follows (must always start at param-7):

PCF/number,name-1,...,name-n permanent corrections
TCF/number,name-1 ,..., name-n primary temporary corrections
S$GS/number,name-1 ..., name-n stream generation statements

tcf-set-name/number, secondary temporary cofrrections
name-1 ,..., name-n sent to the tcf-set defined.

number Specifies the number of DATA files or symbolic
elements to be supplied for the specified input
(PCF, TCF, ...).

name-1 ..., The DATA files or symbolic elements that are the
name-n source’ for the specified input.

This format may be repeated any number of times by placing a comma (,)
between name-n and the next input type. The source input may be in ASCII,
Fieldata, or mixed ASClI-Fieldata mode.

If the P or T options are present for PCF and TCF sets, respectively, number
must always be 1 and name-1 must be a program file. (See 10.4.2 and
10.4.3, respectively).

Table 10-1. @8SG Control Statement Options

Option

Description

Continue SSG execution regardless of no find references.

Do not dynamically @ ADD the generated output stream. Without the B option the generated output stream
is automatically added by the EXEC after SSG termination. (See 10.2.4 SSG OUTPUT).

Double space all printing.

Used with E option to eliminate indentation and preliminary error checking.

4144.31 SPERRY UNIVAC 1100 Series Executive 10-3
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Table 10-1. @SSG Control Statement Options (continued)

Option Description

E Prints revised skeleton stream in an indented form and causes SSG to do preliminary error checking on
the revised skeleton (see D option). :

F Prints permanent input streams (PCF set).
G Prints temporary input streams (all TCF sets).
H Prints revised temporary stream.

| Prints stream generation statement streams in the order they are input.

J Prints only the contents of the PCF element entries for which there are primary temporary element entries
at the conclusion of skeleton processing. (The presence of #element/version in the primary TCF is
sufficient to cause a printout of that element’s PCF.) The page is ejected for each element printed out. The
P option must be used. The R option is not necessary when the J option is used.

K Prints generated output stream.

M Debug. Prints trace of images in the skeleton as they are processed.

N Debug. Prints values of variables and expressions of the directives being processed.

0 Order PCF set element entries in ascending alphabetical order. Any duplicate PCF element entries will be

noted and the second entry discarded. (Sorted according to ASCII collating sequence.)

P PCF set entries are to be composed of the symbolic element entries from a program file specified after
param-6 on the @SSG call. When PCF entries are defined in this manner, other sources of PCF entries
(except #*CREATE PERM) are not allowed. (See 10.4.2)

(o] Order entries within each TCF set in ascending alphabetic order. Any duplicate entries within a TCF set
will be noted and the second antry discarded. (Sorted according to ASCII collating sequence.)

R Print updated or revised PCF set entries from the specified program file as they exist at the end of skeleton
process’ing. A program file must have been used in conjunction with the P option.

S Order SGSs with the same label in ascending alphabetical order according to the first subfield of each
statoment. (Sorted according to the ASCII collating sequence.)

T TCF set entries are to be composed of the element entries from a program file specified after param-6 on
the @SSG call (one program file per TCF set). When TCF entries are defined in this manner, other sources
of TCF entries (except # CREATE TEMP) are not allowed. (See 10.4.3)

v Generated output stream is to be Fieldata.*
w Generated output stream is to be ASCIL.*
X Used in conjunction with any combination of the O, Q or S options; causes the sort to collate numbers in

ascending order.

* If neither the V nor W option is used, the generated output stream is in ASCII if at least one revised skeleton image is in
ASCIl; otherwise, it is in Fieldata.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-4
Volume 3 System Processors | UPDATE LEVEL

PAGE

10.2.2. Input from Runstream

Another means of input to SSG is from the runstream (card input) where the file identification (file~id)
statements define the type of input.

Format:
File—id Statement Type of Input
SGS,options filename stream generation statements
SKEL,options filename skeleton stream
SKEL COR,options filename corrections to skeleton stream
PERM COR,options filename permanent corrections
TEMP COR,options filename primary temporary corrections
TEMP COR,options filename : tcf-set-name secondary temporary corrections sent to the
tcf-set specified
Parameters:
options W indicates that the card input should be read by ER AREADS$ (ASCII
read). If file input, all images read are converted to ASCII. If W aption
is absent, card input is assumed Fieldata and all images in file input
remain their original mode.
filename The name of a data file or symbolic element that is the source for the
specified type of input. Element notation is used to interpret the
specification (a filename without an element must nave a trailing
period). The filename is not necessary, and if omitted, card input
following the file-id statement is assumed.
Description:

If the filename is specified on the file—id statement, the images for the specified type of input are taken
from that file. If the filename is omitted, SSG reads all card images following the file-id statement
until an @EOF control statement is encountered and associates those images with the type of input
specified. A matching @EOF is required for each file-id statement that uses cards as input.

Any number of file-id statements are allowed and may be in any order. A space period space on
a file-id statement terminates the scan of that image. Space colon space on a TEMP COR file~id
statement indicates that a tcf-set-name follows.

With two exceptions, any combination of input from the @SSG control statement and the file-id
statement is permitted. (See P and T options in Table 10-1 for exceptions.)

10.2.3. SSG Input

The SSG skeleton is a collection of SYMTREAM statements interpreted by SSG ir order to generate

a symbolic output stream. Skeleton corrections are line corrections to be applied to the input skeleton
before SSG interprets it. The control character for the skeleton corrections is always a plus (+).

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-5
Volume 3 System Processors

PAGE

UPDATE LEVEL

The skeleton and skeleton corrections (if any) may be supplied by a parameter on the @SSG call, on
a file-id statement, or as cards following a file-id statement. However, only one skeleton source and
one skeleton correction source is allowed. Only the skeleton is required as input for an SSG call.

See 10.3 for description of SGSs, and 10.4 for description of PCF and TCF sets.

10.2.4. SSG Output

All output is optional. The generated output stream is symbolic images output as a direct result of
the execution of the skeleton. With the skeleton, symbolic input and created symbolic images can
be directed to the generated output stream.

The revised skeleton is the result of the input skeleton corrections being applied to the input skeleton
stream. If there are no skeleton corrections, the revised skeleton is exactly like the input skeleton.

The generated output stream is automatically added by SSG before termination (for EXEC execution)
unless the B option is on the @SSG call statement. SSG does an @ADD of the DATA file SGR$2
(containing the generated output stream) unless there is a user specified output file in param-3 on
the @ SSG call statement or on the #*BRKPT directive thatis the intended destination of the user output
file to be added. In such a case the user’s file is added and file SGR$2 is freed.

The revised temporary stream is discussed in 10.4.5,
The revised PCF set entries are those symbolic elements in the PCF program file (P option on @SSG

call must be used - see 10.4.2) after a skeleton execution where # CORRECT,P was used. The mode
{ASCII or Fieldata) of the correction images is not altered from input.

STL SKEI:]/COR

SGS— 5 GENERATED OUTPUT STREAM
PCF —> SSG 3 REVISED PCF
TCF — , | S REVISED TCF

!

REVISED SKEL
Diagram of $SG Input and Output
10.2.5. SSG Margins and Headings

After SSG prints the identification line, the output margins are reset. The user may determine the
page margins by inputting a margin card with the following format:

MARGIN I,t.b
immediately after the @ SSG call statement. |is the number of lines per page, t is the number of blank
lines far the top margin, and b is the number of blank lines for the bottom margin. If there is no margin

card present, SSG assumes 66, 6, and 3 for I,t, and b, respectively.

All of SSGs headings are printed by ER APRINT$ to ensure that any user heading (@HDG) is retained.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-6
Volume 3 System Processors

PAGE

UPDATE LEVEL

10.3. STREAM GENERATION STATEMENTS

Tables or lists of data may be provided for skeleton use through stream generation statements (SGS).
An SGS stream may be input from the processor call statement, input from the runstream (cards), or
created during skeleton processing.

10.3.1. SGS Input Formats
Format:

label subf-11,subf-12,..subf-1n subf-21,subf-22,..subf-2n ... subf-m1,subf-m2,...,subf-mn
Parameters:

label String of 20 or fewer characters beginning with an alphabetic and not
containing a space, period, semicolon, comma, left bracket, slash,
plus, minus, or right bracket.

subf Subfield: a string of 20 or fewer characters not containing a space,
period, semicolon, comma, left bracket, or slash unless those
characters are enclosed in apostrophes. Any character, including a
space, is allowed in a given string by enclosing that string in pairs of
apostrophes (...”) which designate the string, excluding the
apostrophes. Single apostrophes ('...") designate a string including the
apostrophes.

Description:
Each SGS has one label and any number of fields

In an SGS, a set of subfields separated by commas is called a field. Each of these fields are separated
by blanks. Each field may have from one to any number of subfields. A null subfield is a subfield
that contains no characters. Any number of SGS images with the same label and any number of
differently labeled SGSs may exist.

The SGS is free form and the label need not start in the first character position (column 1). A period
in any position on the SGS terminates the scan of that image; a semicolon continues the scan to the
first nonblank character of the next image. The scan of an SGS ignores all leading blanks, but
interprets the first trailing blank as a field separator and the first trailing comma as a subfield
separator.

For input and referencing, an SGS label may be in upper or lower case alphabetics. Label LAB is
the same as label lab, Lab, etc. However, the subfields in an SGS are maintained as thay are received
on input (Fieldata always converts to upper case in ASCIl). This condition need not concern the
Fieldata user.

When filename./label is supplied on the @SSG call (see 10.2.1, param-2), SSG automatically creates
SGSs based on the nondeleted elements found in the specified program file’'s element table. The
label specified becomes the label for the SSG created SGSs, and the format of those SGSs is as
follows:

label element-name version-name element-type, element-subtype

414431 SPERRY UNIVAC 1100 Series Executive

10-7
UP-NUMBER Volume 3 System Processors o-

UPDATE LEVEL PAGE

If there is no version-name for an element, that field is left blank (12 blank characters are returned
on reference or test to the field). If there is no element-subtype, that subfield is omitted. However,
the element-name is always in field 1, subfield 1; the version-name is always in field 2, subfield 1;
and the element-type is always in field 3, subfield 1.

10.3.2. Referencing SGSs

An SGS may be referenced in the skeleton according to label, statement number with that label, field,
and subfield. When such a reference is encountered, the value returned is substituted for the
reference. Those references below marked NUMERIC return a numeric value when SGS statement,
field or subfield referenced exists, and in that case are considered numeric expressions.

With a label |, a statement number n, a field number f, and a subfield number s, the following
references may be made on SGSs:

SGS Reference Value Returned
[i]‘ Number of SGSs with the label I. (NUMERIC) If none, a O value is
returned.
[.n] Number of fields on the nth SGS with the label I. (NUMERIC) If the

referenced statement does not exist, a ‘no find’ message is given.

[.n.f] Number of subfields in the fth field on the nth SGS with the label I.
(NUMERIC) If the referenced statement or field does not exist, a ‘'no find’
message is given.

[h.n.f,s] Contents of the st subfield in the fth field on the nth SGS with the label
I. (SYMBOLIC) If the referenced statement, field, or subfield does not
exist, a ‘'no find’ message is given.
In addition to the above references, information may be obtained about a particular subfield using
the string descriptor numbers 1 through 5. All references are for the sth subfield, in the fth field on
the nth 8§GS with the label |. If the subfield referenced does not exist a ‘no find’ message is given.
SGS Reference Value Returned

[t.nfs,1] Number of characters in the subfield if every character is alphabetic;
otherwise, 0. (NUMERIC)

[i,n.f.s,2] Number of characters in the subfield if it is enclosed in single
apostrophes (..."); otherwise, 0. (NUMERIC)

[l.nf,s,3] Number of characters in the subfield, if it is enclosed in pairs of
apostrophes ("...”) otherwise, 0. (NUMERIC)

fi.nf,s,4] Number of characters in the subfield if it is numeric, otherwise, O.
(NUMERIC)

fl.nf,s,5] Number of characters in the subfield. (NUMERIC)

4144.31 SPERRY UNIVAC 1100 Series Executive |

10-8
UP-NUMBER Volume 3 System Processors | uPATE LEVEL

PAGE

If SGSs are created by SSG as a result of filename./label being specified on the @SSG call, the
external filename supplied is also saved and is associated with the specified label. In the case that
more than one program file is associated with a label for this particular type of SGS input, any
reference will return the last filename given with that label (from left to right on the @ SSG statement).
If a reference is made on a label that has no external filename associated with it, a 'no find’ message
is given. The following references may be made:

'SGS Reference Value Returned

[1,0.Q] Qualifier associated with label; blanks, if none specified. (SYMBOLIC)

[1,0.F] Filename associated with label |; blanks, if none specified. (SYMBOLIC)

[1,0,C] F-cycle associated with the label |; blanks, if none specified. (SYMBOLIC)

[1.LO.R] Read kéy associated with the label |; blanks, if none specified.
(SYMBOLIC)

[1.o.wW] Write key associated with the label I; blanks, if none specified.
{SYMBOLIC)

See Volume 2-2.6.1 for explanation of file notation.
The fields in an SGS reference may be composed, as follows:
label May be a string as described under label in 10.3.1, or an SGS

reference, SET reference or a process parameter reference that
returns such a string.

statement-number May be an integer expression or numeric expression {see 1C.5.1).
field-number May be an integer expression or numeric expression (see 10.5.1).
subfield-number May be an integer expression or numeric expression {see 10.5.1).
string descriptor May be an integer expression or numeric expression {(see 10.5.1).
number

Q.F.C.RW (on third field Explicit character only.
of external filename
reference)

Any SGS references or set references used to supply the label, statement number, field number,
subfield number, or string descriptor number may not contain another SGS reference or set reference.
That is, SGS reference or set references may be nested to one level only.

4144.31 SPERRY UNIVAC 1100 Series Executive 10-9
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
10.3.3. SGS Examples
Example 1:

Given the following SGSs:

WHERE 183 ,ADOMAIN MPLS MINN 56634

© WHEN 21,0CTOBER, 1954 +12465
WHO CABLE ,ABLE WHERE,1 WHEN,2
WHERE 154 ,ROBERT STPAUL MINN 65127
WHO BRAN,JULIET WHERE,2 WHEN,1
WHEEN 12,APRIL, 1926 564Z

Also, given the variable Z (see 10.5.3.2) which has the value 1, and the process parameter references
[# 1] and [#2] which have the values WHO and 2, respectively (see 10.5.3.1.3).

The following references would return the values shown:

Reference . Value
[WHERE]) 2

[[#11.1] -3
[WHEN,Z,2] 1
[WHO,2,1,[#2]] ‘ JULIET
[WHEN, 1,2,[#Z),4] 0
{WHEN,[#2].2,1,5] 4

[[WHO,Z[#2) 111 [#11)2[4#2).2] [#Z][#2]] ADOMAIN

Comment

Number of SGSs with the label
WHERE.

Number of fields on the first SGS
with the label WHO.

Number of subfields in the second
field of th first SGS with the label
WHEN.

Contents of the second subfield in
the first field of the second SGS
with the labe!l WHO.

Returns the number O because not
all characters in the first subfield
of the second field on the first
SGS with the label WHEN are
numeric.

Number of characters in first
subfield of second field on second
SGS with the label WHEN.

Examples of how SGSs may be
nested to one level. The label is
taken from [WHO,Z, [#2],1] and is
WHERE. The statement number is
taken from [[#£1).2[#2).2] and is
1. The field number is from the
variable Z and is 1, and the
subfield number is from [#2] and
is 2.

414431 SPERRY UNIVAC 1100 Series Executive 10-10
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Example 2:
Given the following SSG call and runstream:

@SSG ,PF./NEWL,,,,.SGS/2,BETA/RD/WRIT./NEWL,ELL*DELTA(2)./0LDL
SKEL
- QUAL FOR NEWL IS [NEWL,0,Q].

FILENAME FOR NEWL IS [NEWL,O,F].

QUAL FOR OLDL IS [OLDL,0,Q].

F-CYCLE FOR OLDL IS [OLDL,0,C].

@EOF

@EOQF

The generated output stream would look like:

QUAL FOR NEWL IS .
FILENAME FOR NEWL 1S BETA.
QUAL FOR OLDL IS ELL.
F-CYCLE FOR OLDL 1S 2.

1. Note that only the last program file associated with the label NEWL, from left to right on the
call statement, can be referenced by the external filename reference.

2. Note that when a reference was made on the qualifier associated with NEWL, and there was

none specified, nothing was returned (blanks). (See 10.5.2 for bracketed references returning
blanks.)

10.4. PERMANENT AND TEMPORARY STREAMS

In the EXEC 8 control tanguage there is a facility for applying a group of correction images to a
symbolic element and producing a new symbolic.

For example:

@FOR,U FILE.SYMBOLIC

______ } correction images

In the skeleton, there is often a need to direct or generate a symbolic stream (generated output stream)
which contains correction images such as in the above example.

To faciliate handling the program corrections separately from the skeleton they are input as
permanent and temporary streams (also called PCF and TCF, respectively). Then, by changing the
permanent and temporary streams, groups of corrections can be changed each time a skeleton is used
without actually changing the skeleton.

The permanent stream may contain many entries or groups of corrections to be applied to different
symbolic elements. These groups of corrections are called element entries. The temporary stream,
which is also made up of element entries, is provided as a means to input any necessary changes
or additions to the permanent stream.

With the use of skeleton directives, permanent and temporary corrections may be merged and
directed to the generated output stream (see 10.5.3.8).

414431 SPERRY UNIVAC 1100 Series Executive

10-11
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

10.4.1. Element Entry

An image made up of an asterisk (#) in the first character position followed by an
element-name/version-name defines an element entry. All images that follow such an #* card, until
the next entry is defined, are attached to that element entry. The element name and version name
may be up to 12 characters each, the characters being alphabetic, numeric, $ or-. The/version-name
is optional, and the format of the entry is, as follows:

*element-name/version-name

------ corrections associated with above defined element entry.

- — - - -

Element-name/version-name are case independent (for ASCIl users). That is, ABC/DEF is the same
as abc/def. This condition need not concern the Fieldata user.

For alternate methods of defining element entries, see P and T options, Table 10-1, and below.

10.4.2. Permanent Stream (PCF)

The permanent stream or PCF is a set or collection of element entries. Images making up these entries
may come from any combination of DATA files or symbolic elements specified on the @S SG cali, on
a file-id statement in the runstream, or cards from the runstream (see 10.2). Any number of element
entries and the corresponding images may be in the PCF set as long as each entry name within the
set is unique.

Another method for defining input to a PCF set is by specifying the P option (Table 10-1) along with
a program file on the @SSG call (see 10.1, param-7). With this type of input, the name and contents
of each element entry for the PCF set are taken from each nondeleted symbolic element in the one
specified program file. With the use of the P option, no other type of input for the PCF set is accepted.
Note that since the element entries are getting their names and contents from the symbolic elements
in a program file, the % card should not be used to head the symbolic corrections within the element.

The PCF set is always defined, even when empty.
Example 1:
@SSsG ,,,..PCF/1,DATA. PCF/2 PF.ELEADATA3.

PERM COR INT4
SKEL

@EOF
PERM COR
*ENT2

*ENT3/VER1

@EOF
@EOF

4144.31 SPERRY UNIVAC 1100 Series Executive

10-12
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Since the P option is not on the @SSG call many files and the run stream may be used to supply
PCF setinput. The DATA files, DATA.,DATAS3., and INT4. and the symbolic element PF.ELEA each look
something like the following:

*element/version
*eglement/version

*element/version

Those files’ element entries along with the element entries defined in the runstream between PERM
COR and @EOF make up the PCF set.

Example 2:
@SSG,P ,,..PCF/1,PF.

Because of the P option, the PCF element entry names are taken from the element table of the program
file, PF. All nondeleted symbolic elements are included. If the file PF, had three nondeleted symbolic
elements A,B, and C, there would be three PCF element entries, A,B, and C. The contents of the
symbolic element PF.A would be the corrections associated with the element entry A; the contents
of PF.B associated with.B; and the contents of PF.C associated with C. Since the element entry names
are defined from PF’'s element table, % cards should not be used in the correction symbolics.

10.4.3. Temporary Stream

A TCF set is a set or collection of element entries. Images making up these entries may come from
any combination of DATA files or symbolic elements specified on the @SSG call, on a file-id
statement in the runstream, or cards from the runstream (see 10.2).

Any number of element entries and the corresponding images may be in a particular TCr set as long
as each entry name within that set is unique. SSG recognizes one primary TCF set and any number

of secondary TCF sets. Common entry names between sets are permitted.

Input to be included in the primary TCF set is defined on the @SSG call as TCF (see 10.2.1, param-7)
and on a file-id statement as:

TEMP COR filename
or
TEMP COR filename : TCF

See 10.2 for further description.

414431 SPERRY UNIVAC 1100 Series Executive

10-13
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Sacondary TCF sets must be defined on the @SSG call by their set name or on a file-id statement,
as follows:

TEMP COR filename : tcf-set-name
See .10.:2 for further description.

A tcf-set—name is a maximum of six alphabetic characters, and the first three characters must be TCF
(the characters TCF with no additional characters refers to the primary TCF set).

A secondary TCF set name must be defined in at least one of the two methods described above in
order to be used in the skeleton. The primary TCF set is always defined (even when empty).

The purpose of having many TCF sets is to allow temporary corrections to be input from more than
one source with the ability to merge them all together or just merge certain select groups of them.
See 10.5.3.8.2 for further explanation.

Another means of defining a TCF set is by specifying the T option (see Table 10-1) on the @SSG
call. Under this condition one program file may be supplied for each define TCF set. The name and
contents of each element entry in a particular TCF set is taken from each nondeleted symbolic element
in the program file specified for that set. With the T option, each TCF set must have its input supplied
by a program file, and no other type of temporary input is accepted. Note that since the element
entries are getting their names and contents from the symbolic elements in a program file, the * card
should not be used to head the symbolic corrections.

Example 1:

@8sG ,,...,TCFA/1,DATAX., TCFONE/2 PF1.EA PF2.EB
TEMP COR INTT.

TEMP COR INTB. : TCFONE

TEMP COR : TCFX

*ENT1/VER1

*ENTA/VEKS

@EOF
SKEL

@EOF
@EOF

4144.31 SPERRY UNIVAC 1100 Series Executive

10-14
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

The element entries for the TCFA set are taken from the DATA file, DATAX. The element entries for
the TCFONE set are taken from the symbolic elements PF1.EA,PF2.EB and the DATA file, INTB. The
element entries for the primary TCF set are taken from the DATA file, INTT. The contents of the data
files and symbolic elements mentioned above look something like the following:

#eglement/version

#*element/version

*glement/version

The element entries for the TCFX set are taken from the images in the runstream between TEMP COR
: TCFX and the next @EOF.

Example 2:
@S$SG,T ... TCFR/1,PFX. TCF/1,PFP.,TCFL/1,PF.

Because of the T option, the TCF sets defined must each have one program file specified. All TCF
set’s element entries are taken from the element table of the program file specified for that set. All
nondeleted symbolic elements are included in a set. The symbolic elements in PFX. and their contents
are the element entries in the secondary set TCFR. The symbolic elements in PFP. and their contents
are the element entries in the primary set TCF. The symbolic elements in PF. and their contents are
the element entries in the secondary set TCFL. The presence of the T option restricts all TCF set input
to program files only.

10.4.4. Set References

A special mechanism, similar to the SGS referencing mechanism {see 10.3.2), may be used to access
element entries. SSG has reserved certain labels for this purpose (these labels may not be used for
SGS labels). The reserved label P is used for the PCF set, the reserved labels T or TCF are used for
the primary TCF set, and each defined tcf-set-name (specified on the @SSG call or on a runstream
file-id statement) is used as the reserved label for that set. The allowed references are as follows
(those references below marked NUMERIC return numeric values when the entries referenced exist
and in that case are considered numeric expressions):

Reference Value Returned

[reserved-label] Number of element entries included in the set with this reserved label.
(NUMERIC) If a referenced set is empty or not defined, the value
returned is O.

[reserved-label,n] 1, if the nth element in the set with this reserved label has only an
element name; 2, if it has both an element name and a version name.
(NUMERIC) If the referenced set is not defined, or there is not an nt"
entry in the set, a ‘'no find’ message is returned.

4144.31 SPERRY UNIVAC 1100 Series Executive

10-15
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

[reserved-label,n,f] 0, without exception. (NUMERIC) If the referenced set is not defined
or there is not an nth entry in the set, a ‘no find’ message is given.

{reserved-label,n,1,1] Element name for the nth element entry in the set with this reserved
label. (SYMBOLIC) If the set referenced is not defined or there is no
nth entry in the set, a ‘no find’ message is given.

[reserved-label,n,2,1] Version name for the nth element entry in the set with this reserved
label. (SYMBOLIC) Iif the set referenced is not defined or there is no
nth entry in the set, a ‘no find’ message is given.

The fields on a set reference may be supplied, as follows:

reserved-label may be a string or an SGS reference, a process parameter reference
or set reference that returns such a string.

rest of the fields may be integer or numeric expressions.

Any SGS references or set references used to supply fields on a set reference may not contain another
SGS reference or set reference.

The order of the element entries in a PCF or TCF set, unless controlled by the O and Q options,
respectively, is determined by the order they are encountered on input. SSG reads across the SSG
call statement, from left to right, and then down the runstream.

10.4.5. Revised Temporary Stream

 Arevised temporary element entry is a copy of an updated primary temporary element entry that could
later be applied against an updated symbolic element, provided that the updated symbolic element
was corrected by the same permanent element entry as was used to create the revised temporary
element entry. That is, when a PCF set entry is applied to a symbolic element creating a revised
symbolic element, a primary TCF entry whose line humbers were based on the old symbolic element
could be revised to have its line numbers based on that revised symbolic element.

When a PCF entry and a primary TCF entry are merged via a #CORRECT (see 10.5.3.8.1) a revised
temporary stream is generated.

A copy of the revised temporary stream is saved if the name of a data file or symbolic element is
specified in param-4 of the @SSG call. A printing of the revised temporary stream is generated if
the H option is on the @SSG call.

The revised temporary corrections will be in the same mode (ASCII or Fieldata) as the primary TCF
stream they are derived from.

Example:
Primary TCF Entry: PCF Entry:

-6.9 -1,2
-12,12 -10,10

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-16
Volume 3 System Processors

UPDATE LEVEL PAGE

A revised temporary would look like:

-4,7
-9,9

If the PCF entry were applied to some symbolic element, lines 1 and 2 and 10 would be removed

from that element. Then, what was originally lines 6 through 9 are now lines 4 through 7 and what
was line 12 is now line 9. The revised temporary is created to reflect the new line numbers.

10.5. SKELETON AND SYMSTREAM

A call on the SSG processor causes the interpretive execution of a program (commonly called a
skeleton) which is written in a language called SYMSTREAM.

10.6.1. SYMSTREAM Primitives

The following terms are used by SYMSTREAM:

® numeric characters 0,1,2,3,45,6,7,8,9

M alphabetic characters A.B,C,DEFGMHILJIKLMNOPQRSTUVWXYZ (upper and
lower case for ASCII)

@ special characters #.0).88%(%,:20\ 0, /.@[)-+, < =,>comma,.t

B character alphabetic character, numeric character, special character, blank

B string collection of characters

B number -99999,-99998.....-1,0,1,...,999999

B integer expression string of numeric characters
a number (string of explicit numbers)
variable name
set reference that returns a variable name (string)
SGS reference that returns a string that is an explicit number or
variable name
process parameter that returns explicit number or varieble name
integer expression * integer expression

B numeric expression + integer expression
bracketed variable reference
SGS references that return numeric values (see lists under 10.3.2)
set references that return numeric values (see lists under 10.4.4)
numeric expression * numeric expression

Examples:

Expression Type of Expression
12 Integer (string of numeric characters or explicit number)

VAR3 Integer, where VARS3 is a variable

4144.31 SPERRY UNIVAC 1100 Series Executive

UP-NUMBER Volume 3 System Processors UPDATE LEVEL ms; o7
[XX,1,2,6] Integer, where string returned is a variable name or explicit number
[#:6] Integer, where string returned is a variable name or explicit number
-146 Integer (explicit number) or numeric expression
[LABL) Numeric expression (numeric SGS reference)
[*VAR3] Numeric expression, where VAR3 is a variable
[TCF] Numeric expression (numeric set reference)
A+4+B{#2] Integer expression, where A and B are variables and where [#2]
returns an explicit number or variable name
+[R,2,6,1}-C * Numeric expression, where SGS reference returns explicit number or

variable name and C is a variable

10.56.2. Nondirective Images

Any image in a skeleton that does not have an asterisk in the first character position (column 1) is
a nondirective image. All nondirective images encountered in a skeleton are sent to the generated
output stream, which may be printed later (K option, Table 10-1); or dynamically @ ADDed by the EXEC
after SSG terminates (B option, Table 10-1); or is output to a file whose filename is specified in
Param-3 on the @SSG call (see 10.2.1).

Nondirective images may be created using any combination of characters (or strings), SGS references,
process parameter references, variable references, and set references. The above listed references
are distinguished from simple characters or strings (that are intended to go to the generated output
stream directly as they are) by the brackets around them. All references are satisfied before SSG
outputs the image. If a string returned from a bracketed reference is blanks (that are not enclosed
in pairs of apostrophes), those blanks are not present in the output image.
Example:
Assume that the variable X has been defined and has the value 10, the process parameter [# 1] has
the symbolic value AUGUST, and the 1st PCF set element entry is AAA. Also assume that the following
SGS is given as input: .

ALPHA LEVEL 9 IN JUNE
Nondirective images in a skeleton, such as:

THE OLD LEVEL OF [P,1,1,1] FOR [ALPHA,1,4,1] WAS [ALPHA,1,2,1].

WE HOPE TO REACH LEVEL [*X] BY [#1]
would be placed in the desired output stream as:

THE OLD LEVEL OF AAA FOR JUNE WAS 9.

WE HOPE TO REACH LEVEL 10 BY AUGUST.

If a o is explicit in the first character position of a nondirective image and the SSG reserved variable
PILOS is equal to zero, the o is converted to an *. If PILO$ is nonzero, the conversion is not done.

414431 SPERRY UNIVAC 1100 Series Executive

10-18
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

If a 7 is explicit in the first character position of a nondirective image and the SSG reserved variable
NSIGNS$ is equal to zero, the # is converted to a @. If NSIGN$ is nonzero, the conversion is not done.
PILOS$ and NSIGNS$ are initially set to zero and may be changed by the #SET or #CLEAR directives.
(See 10.5.3.2.3 and 10.5.3.2.2, respectively). The n is encoded in ASCIll as " (double apostrophe).
Example:
If PILO$ is zero, the following nondirective image in the skeleton:

o THIS IS THE ANSWER#*
would appear in the generated output stream as:

#THIS IS THE ANSWER~™

If PILOS is nonzero, the image would appear in the generated output stream exactly as it was in the
skeleton.

If NSIGNS$ is zero, the following nondirective image in the skeleton:
#ASG T TEMPF

would appear in the generated output stream as:
@ASG,T TEMP,F

If NSIGN$ is nonzero, the image would appear in the generated output stream exactly as it was in
the skeleton.

Further means of manipulating nondirective images are discussed in 10.5.3.5 on *EDIT

10.56.3. Directive images

The logical operations needed to determine if a nondirective image is to be sent to the generated
output stream, or which nondirective images are to be sent, or in general, what paths will be taken
in the skeleton, are performed by directive images. An asterisk in the first character position
{column 1) of an image defines that image as a directive. The following are the symstream directives:

*BRKPT *DIVIDE *+END *MULTIPLY
*CLEAR *DUMP *IF *PROCESS
#CORRECT *EDIT *#INCREMENT *REMOVE
*CREATE *EJECT *LOOP *SET
*DEFINE *#ELSE *MERGE

Blanks may be placed on the image between the asterisk and directives for ease of readability.
However, every image in the skeleton that has an asterisk in the first character position must be one
of the above directives or have a period immediately following the asterisk (allows such images as
comments). A period anywhere on a directive image causes SSG to terminate the scan of that image.
(See 10.5.3.6.1, *BRKPT statement, for exception.)

414431 SPERRY UNIVAC 1100 Series Executi‘ve

10-18
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

The following conventions ae used in the syntax descriptions of the directives:

1. A signifies one or more mandatory blanks.

2. Items enclosed in [] brackets are optional (not to be confused with bracketed references).
3. Capitalized letters represent themselves and must be coded as shown.

4. Lower case parameters are filled in by the user.

5. Braces (), designate a choice of terms.

10.5.3.1. Defining Skeleton Image Sequences (Closed Subroutines)

The SYMSTREAM skeleton is broken down into two parts, the define section and the contiol section.
The define section, which must be first in all skeletons, contains sequences of skeleton images that
are placed in blocks between *DEFINE and #END directives. Each group of images with a define-end
block is treated as a closed subroutine and stored for later reference. Any skeleton image
encountered that is not between a matched #DEFINE and #END directive, defines the beginning of
the contro!l section. Once the control section begins no more define-end blocks are allowed. From
the contro!l section the define packets may be referenced (by #PROCESS) and provided with
parameters. To reduce referencing time, the use of define packets should be reserved for larger
groups of skeleton images. There is no limit on the number of define packets allowed.

10.5.3.1.1. *DEFINE - #END

Format:

*DEFINE A define-name

_________ skeleton images

*END
Parameter:
define-name 20 or fewer characters supplied by a string, process parameter
reference, SGS reference, or set reference
Description:

All images between the matched *DEFINE and #END directives are considered part of the define
packet. None of the images in a define packet are executed until a call for that packet is made by
the #*PROCESS directive. From within a define packet, nested process calls on other define packets
and recursive calls upon the same define packet are allowed to any depth.

4144.31

UP-NUMBER \S/:)Elzl:rY‘eUgl\lsﬁ«;:stg:‘OF‘srg?;sE;;:;tlve | UPDATE LEVEL PAGE1 0-20
10.5.3.1.2. #*PROCESS
Format:
*PROCESS A define-name A [proc-para-1 A proc-para-2 A ... 5 proc-para-n A]
Parameters:

define-name

proc-para

Description:

See 10.5.3.1.1 for description.

Process—parameters are optional; 20 or fewer characters supplied by
a string, process parameter reference, SGS reference, set reference,
or numeric expression. [f the string used contains a blank, period,
semicolon, comma, left bracket, slash, plus, minus, or right bracket,
and evaluation of that string is not intended, pairs of apostrophes
should be used around it ("...”"). For a string where the apostrophes are
to be included, single apostrophes should be used ('...). Double
asterisks (##) can be used in front of an integer expression and it will
be taken as a numeric expression to be evaluated. A single asterisk
(*) followed by an SGS reference or process parameter reference
directs the evaluation of the string that satisfies that reference.

The #*PROCESS directive causes a define packet to be called for execution and passes parameters
to that define packet. SSG examines all the parameters of the process directive, evaluates ali numeric
expressions and references made, and then converts any resulting numeric values to their symbolic
representations. Therefore, only symbolic strings are passed to a define packet and any process
parameter reference returns a symbolic string.

10.5.3.1.3. Process Parameter References

A reference to a process parameter within a define packet has one of the following formats (where

n is some explicit number):

[#n]

[#n,define-name]

Refers to the nth process parameter specified on the last process call
(which would be the process call on the define packet where this
reference occurs).

Refers to the nth process parameter specified on the last process cali
for the given define-name (see 10.5.3.1.1 for description of
define-name). Note that this reference must be in the define packet
specified or in nested code (that is, this reference may be made in any
define packet called by the define packet referenced). See Excmple
3.

All references return symbolic strings (not numeric values). See 10.5.3.1.2 under description.

4144.31 SPERRY UNIVAC 1100 Series Executive

10-21
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

Example 1:
With the following skeleton:

SKEL
*#DEFINE ASM
. #ASMSU [#1 1 #2]

*END

#PROCESS ASM ELTA ELTB
*PROCESS ASM ELTC ELTD
*#PROCESS ASM ELTE ELTF
@EOF

The generated output stream would look like:

@ASM,SU ELTAELTB
@ASM,SU ELTCELTD
@ASM,SU ELTEELTF

Example 2:
With the following SGSs and skeleton:

SGS

INDIR “ [LABL,1,1,1] Y

@EOF

SKEL

*DEFINE SUBR
C#HAIO#TILHVI+ [H#2])-[#3]1[#6]1[#5]
*END

*DEFINE INIT

*SET X TO 5

*SETY TO 6

*SET Z TO 3

*END

*PROCESS INIT

#PROCESS SUBR [#X] **[INDIR,1,1,2] **Z *[INDIR,1,1,1];
+X4Y-Z IS [LABL, 1,2,1]

@EOF

= 2O0ONOADWN =

- Q

The generated output stream looks like:

RESULT OF 5+4-6-3 IS 8.
1. Statements numbered 1 through 3 are part of the define packet SUBR.
2. Statements numbered 4 through 8 are part of the define packet INIT.
3. Statements numbered 9 through 11 are the control section.

4. Statement 9 causes the images in the INIT define packet to be executed. Thus, the global
variables X, Y, and Z are defined.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

10-22
PAGE

5. Statements number 10 and 11 cause the image in the SUBR define packet to be executed and
pass seven process parameters to it. The seven symbolic strings passed look like the following:

5 after evaluation of numeric expression,[#X]
6 after evaluation of *#integer-expression, ##[INDIR,1,1,2]
3 after evaluation of #*#*integer-expression, #%Z
. RESULT after evaluation of #SGS-reference, #[INDIR,1,1,1]
8 after evaluation of numeric expression, +X+4Y-2
IS string, IS
OF after return from SGS reference, [LABL,1,2,1]

Note that the semicolon on statement 10 signals a continuation image.

6. Statement 2 has all the process parameter references satisfied and outputs the resulting image

to the generated output stream.
Example 3:
With the following skeleton:

SKEL
*DEFINE LAST
THIS IS LAST [#1,INIT] [#£1,SECOND]
*END
#*#DEFINE INIT
THIS IS INIT [#1]
*PROCESS SECOND AXY [#:1,INIT]
*END
#DEFINE SECOND
THIS IS SECOND [#11[#2]
10. #PROCESS LAST
11. END SECOND
12. #*END
13. TEST ON PROC-PARA
14. *PROCESS INIT 2
15. DONE
@EOQF

COENOIIRLON=

The generated output stream would look like:

TEST ON PROC-PARA
THIS IS INIT2

THIS IS SECOND AXY,2
THIS IS LAST 2 AXY
END SECOND

DONE

1. Statement 13 (the first statement in the control section) is executed. Since it is nondirective,

it is output to the desired output stream.

2. Statement 14 is executed and the define packet INIT is called and the parameter (2) is passed

to it.

3. Statement 5 is executed (in the INIT packet) and 2 is substituted for [# 1] before it is output.

4144.31 SPERRY UNIVAC 1100 Series Executive

10-23
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

4. Statement 6 is executed and the define packet SECOND is called and the parameters AXY and
2 (which is parameter 1 from the INIT call) are passed to SECOND.

5. Statement 9 is executed (in SECOND packet) and AXY and 2 are substituted for [#£1] and [#2],
respectively, since [# 1] and [#2] refer to the last process call made. The image is output.

6. Statement 10 is executed and a call is made on the define packet LAST. No parameters are
passed.

7. Statement 2 is executed {in LAST packet). The first parameter on the last call to INIT is
referenced, which is 2 (call made at Statement 13). Also, the first parameter on the last call to
SECOND is referenced, which is AXY (call made at Statement 6).

8. Since there are no more images in the LAST packet, SSG returns to the SECOND packet.
Statement 11 is then executed (output). Since there are no more images in the SECOND packet,
SSG returns to the INIT packet. There are no more images in the INIT packet so SSG returns
to the control section of the skeleton and executes (outputs) Statement 15; SSG then terminates.

10.5.3.2. Symstream Variables

A variable name is a string of eight or less characters, not containing a space, period, semicolon, slash,
plus, minus, left bracket, or right bracket.

Since SSG does its internal processing in ASCIl, upper and lower case alphabetics are recognized.
All references on variable names are, therefore, case dependent. The name XYZ is not the same as
xyz. This condition need not concern the Fieldata user.

There are three ways in which a variable may be referenced (evaluated) in a directive image:

1. [#*variable-name] . bracket reference
2. +4variable-name . numeric reference
3. VALUE OF variable-name . only in *#|F directives

In a nondirective image, only [*variable-name] is recognized as a variable reference.
Values of variables may be numeric only.

There are two types of variables described below, local and global. When a variable reference is
made, the last created local variable of that name is searched for; if none exists, all global variables
are searched for that name. Then, if none exists a no-find message is printed by SSG. In such a
case, unless the A option is on the @SSG call (see Table 10-1), the processor terminates.

SSG has nine global variable names that are automatically defined when SSG is called and these
variables are reserved for use by SSG and the user. The following are the reserved variables and a
description of their use:

Reserved Variables : Description

CARD When an #IF COLUMN SEARCH is true, CARD equals the statement
number where the match was made (see 10.5.3.7.5).

FLD When an *IF ROW SEARCH is true, FLD equals the field number where
the match was made (see 10.5.3.7.5).

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive I
Volume 3 System Processors | upoaTe LeveL

10-24
PAGE

SFLD

MFLAG

NFLAG

PRTOFF

PILOS

NSIGNS

COLEDS$

When an #IF ROW SEARCH is true, SFLD equals the subfield number
where the match was made (see 10.5.3.7.5).

Corresponds to M option on @SSG call; is zero when there is no M
option, nonzero with the M option. By setting the value of MFLAG to
zero or nonzero, the M option can be turned off or on, respectively,
from the skeleton (see Table 10-1).

Corresponds to N option on @SSG call: is zero when there is no N
option, nonzero with the N option. By setting the value of NFLAG to
zero or nonzero, the N option can be turned off-or on, respectively,
from the skeleton (see Table 10-1).

Initially set to zero (see 10.5.3.6.2)

Initially set to zero (see 10.5.2).

Initially set to zero (see 10.5.2).

Is equal to the column number of the next character to be output when
edit mode is on (see 10.5.3.5).

10.5.3.2.1. Skeleton Image Loops (Local Variables)

Purpose:

Local variables are created by the increment directive, and exist as long as incrementing is needed.
Local variables may be created in this way even though a global variable with the same name exists.

Format:

INCREMENT A variable-name A [FROM A number] A [TO A number] A

[BY A number) A | WHILE A variable-name A IS A{

*LOOP

Parameters:

variable-name

number

SET %
CLEAR

skeleton images

See 10.5.3.2 for description; the variable-name may be supplied by
a string, or an SGS reference, process parameter reference, or set
reference that returns such a string.

Integer expression or numeric expression (see 10.5.1).

414431 SPERRY UNIVAC 1100 Series Executive

10-25
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Description:

The FROM, TO, BY or WHILE phrases may be in any order, or absent. When absent, the FROM, TO,
and BY values are assumed to be 1.

The increment directive creates a local variable of the name specified and initially sets its value equal
to the FROM numeric (or 1). The first execution through the increment-loop packet is done if the FROM
value has not exceeded the TO value limit, and the WHILE phrase is true, or absent. After the first
execution through the increment-foop packet, the variable value is incremented by the BY numeric
(or 1). Then, if the new variable value has not exceeded the TO value limit, and the WHILE phrase
is true, or absent, the increment-loop is executed again. This increment-test process is repeated after
every increment-loop execution. All images between the #*INCREMENT and matching #LOOP are part
of the increment-loop packet.

The variable value has exceeded the TO limit if:
((TO-value) - (present-value-of-variable))' X (BY - value) < O

Note that with the above test, the BY value could be set negative and a decrementation process
allowed. The WHILE phrase tests the specified variable (may be local or global) in that phrase to see
if its value is zero (CLEAR) or nonzero (SET). If the test fails or the WHILE phrase is false, the
increment-loop is over and the local variable created for that increment is destroyed. Loops may be
nested to any level.

Example 1:

SKEL

*DEFINE X

*INCREMENT A FROM -2 TO [#2] BY [BY,1,1,1]
*INCREMENT [VAR2,1,1,1] FROM O TO -3 BY -2 WHILE [#3] IS SET
*INCREMENT [#:1] FROM O

#*#SET C TO [#1]

[*A] [#B] [*C]

*LOOP

*L.OOP

#*LOOP

*+END

*PROCESS X VAR 0 A

@EOF

SGS

VAR2 B

BY 2

@EOF

SSO0ONOO AWM

~o

The generated ouput stream would look like:

-200
-201

-2-20
-2-21

crur Volume 3 System Processors - T I
10.5.3.2.2. Creating and Changing Global Variables (#CLEAR)
Format:
#CLEAR A variable-name
Parameter:
variable-name See 10.5.3.2 for description; it may be supplied by a string, or SGS

reference, process parameter reference, or set reference that returns
such a string.

Description:

The value of the last local variable with the given name is set to zero. If no local variable of that name
exists, the global variables are searched for one with that name, and it is set to zero. If no global
variable is found, one with that name is created and given the value of zero. Once created, this global
variable exists for the remainder of the skeleton processing.

Example:

SKEL
*DEFINE X
[*A] INSIDE X
*CLEAR [#1]
*END
#CLEAR [VARCLR,1,1,1]
*INCREMENT A FROM -2 TO -1 BY 1
*PROCESS X A
[*#A] INSIDE INC LOOP
*LOOP
0. *CLEAR A
@EOF
SGS
VARCLR PP
@EOF

SOENOI AWM

The generated output stream would look like:

-2 INSIDE X
O INSIDE INC LOOP

1. Statement 5 creates a global variable called PP with the value O since no local or global variables
of that name are found.

2. Statement 3 clears the variable A (passed as parameter one on the process call at statement
7). Since a local variable is found with that name it is set to O and no more searching is done.
Since the *PROCESS call is within the increment loop, the define packet called is also in that
loop and thus, the local variable A is defined in the define packet X.

3. Upon return from the define packet X, the local variable A is now O and fails the TO limit test
so the increment loop is destroyed and the local variable A is destroyed also.

4. Statement 10 creates a global variable called A since no local or global variables of that name
are found (local variable A was destroyed when the increment loop terminated).

4144.31 SPERRY UNIVAC 1100 Series Executive 10-27
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
10.5.3.2.3. Creating and Changing Globa! Variables (#SET)
Format:
#SET A variable-namea [TO A number A]
Parameters:
variable-name See 10.5.3.2 for description; may be supplied by a string, or SGS
reference, process parameter reference, or set reference that returns
such a string.
number Integer expression or numeric expression (see 10.5.1).

Description:

If the TO phrase is omitted, TO value is assumed 1. The value of the last local variable with the
specified name is set to the TO value. If no local variable with that name exists, a global variable
with that name is searched for and set to the TO value. If no global variable with that name exists,
one is created with the given TO value. Once created, this global variable exists for the remainder
of skeleton processing.

Example:
Given the following SGSs and skeleton:

SGS

VARSET VAR2,8

@EOF

SKEL

*DEFINE X

[*A]

*SET [#1] TO [#1] 42
*END

*SETATO 6
*INCREMENT A TO 3
*PROCESS X A

[*A]

*LOOP

[*A]

*SET [VARSET,1,1,1] TO [VARSET,1,1,2]
@EOF

—SoOoNOOAQN =

=0

The generated output stream would look like:
1
3
6

1. Statement 5 creates a global variable A with the value of 6 since no variable with that name
already existed.

2. Statement 6 creates a local variable A with the initial value of 1.

3. The define packet X is called at Statement 7 and the string A is passed as parameter 1.

414431 SPERRY UNIVAC 1100 Series Executive

10-28
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

4. Statement 2 references the variable A and the value 1 is returned since the local variable A was
found first.

5. Statement 3 does a #*SET A to A + 2 since the string in [#£ 1] was passed as A. SSG looks for
a variable A (and finds a local variable of that name) and sets A equal to itself +2 which is 3.

6. Statement 8 references the variable A and the value 3 is returned since the local variable A is
found first.

7. The increment loop terminates since A (equal to 3) + BY value (assumed 1) is greater than the
TO value (which is 3).

8. Statement 10 references the variable A and returns the value 6 after finding the global variable
A. The local variable A no longer exists since the increment loop is destroyed.

9. Statement 11 creates a variable VAR2 with the value of 8.

10.5.3.2.4. Variable Multiplication (#*MULTIPLY)
- Format:

*MULTIPLY A number A BY A numberA GIVING A variable-name

Parameters:

variable-name See 10.5.3.2 for description; may be supplied by a string, or SGS
reference, process parameter reference, or set reference that returns
such a string.

number Integer expression or numeric expression (see 10.5.1)

Description:

The product of the first number multiplied by the second number is set as the value of the given
variable-name. The variable specified must already exist (be defined) and may be either a local or
global variable. In satisfying the search for the variable-name, the local variables are searched first
(from most recently defined backwards), then the global variables are searched.

4144.31 SPERRY UNIVAC 1100 Series Executive

_ 10-29
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Example:
Given the following skeleton and SGSs:

SKEL
#DEFINE MULTP

_ *MULTIPLY [#1] +5 BY [VARSUP,1,1,1] GIVING VAR3
*END
*#CLEAR VAR3
[#VAR3]
#PROCESS MULTP 4
[#VAR3]
EOF
SGS
VARSUP 4
@EOF

NoosWN =~

The generated output stream would look like:

0
36

1. Statement 4 creates the global variable VAR3 with the value of O and statement 5 when
referencing that variable returns the value O.

2. Statement 6 calls the define packet MULTP and passes the first parameter as 4.

3. Statement 2 multiplies [#£ 1]+ 5, which is 9, by [VARSUP,1,1,1] which is 4 and sets the global
variable VAR3 to the product, 36.

4. Statement 7 references the variable VAR3 and returns with the value 36.

10.5.3.2.5. Variable Division (#DIVIDE)
Format:

*DIVIDE A number A BY A number A GIVING A variable-name [,variable-name] A

Parameteors:

number Integer expression or numeric expression (see 10.5.1).

variable-name See 10.5.3.2 for description; may be supplied by string, or SGS
reference, process parameter reference, or set reference that returns
such a string.

Description:

Divides the first number by the second number and sets the first variable specified equal to the
quotient. The second variable-name specified is optional, and if present, is set equal to the value
of the remainder. The variable-names specified must already exist (be defined) and may be either
local or global variables. In satisfying the search for the variable—-names, the local variables are
searched first (from the most recently defined backwards), then the global variables are searched.

414431 SPERRY UNIVAC 1100 Serles Executive

10-30
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

Example:
Given the following SGSs and skeleton:

SGS

CONST 3

@EOF

SKEL

#*DEFINE DIV

#DIVIDE [#£1] BY 4 [CONST,1,1,1] GIVING QUO,REM
#*+END

#+CLEAR QUO

#CLEAR REM

#PROCESS DIV 8

QUOTIENT IS [#QUO]), REMAINDER IS [#REM]
*+DIVIDE REM BY 2 GIVING QUO

[*REM] DIVIDED BY 2 IS [+QUO]

@EOF

DoNDdIOHWON -

The generated output stream looks like:

QUOTIENT IS 2, REMAINDER IS 2
2 DIVIDED BY 2 1S 1

1. Statements 4 and 5 create QUO and REM as global variables with the value O.
2. Statement 6 calls the define packet DIV and passes 8 as parameter 1.

3. Statement 2 divides [#t 1], which is 8, by +[CONST,1,1,1], which is 3 and sets QUO equal to
the quotient of 2 and REM equal to the remainder 2.

4. Statement 7 is output with the values for QUO and REM substituted.
5. Statement 8 divides REM, which is equal to 2 by 2-and set QUO equal to the quotient of 1.

6. Statement 9 is output with the values for REM and QUO substituted.

10.5.3.2.6. Variable Dump (¥*DUMP)

Formats:
, LOCAL %
1. *DUMP A {GLOBAL
LOCAL . .
2. #DUMP 5 [%GLOBAL}A variable-name-1 [,...,variable-name-10]
Parameters:
variable-name See 10.5.3.2 for description; may be supplied by a string or a process

parameter reference that returns such a string.

The #*DUMP directive is intended as a debug aid printing values of variables in the SSG run log.

414431

SPERRY UNIVAC 1100 Series Executive

10-31
UP-NUMBEA Volume 3 System Processors UPDATE LEVEL PAGE
*DUMP GLOBAL Prints in SSGs run log values of all global variables (the
global variable list includes the SSG reserved variables).
#DUMP LOCAL Prints in SSGs run log the values of all local variables.

#DUMP LOCAL;
variable-name-1,... variable-name-10 Prints in SSGs run log the values of from one to ten
specified local variables.

*DUMP GLOBAL;

variable-name-1,...,variable-name-10 Prints in SS§Gs run log the values of from one to ten
specified global variables.

*DUMP; " Prints in SSGs run log the vaiues of from one to ten variables

variable-name-1,...,variable-name-10 searching first the local variables for the name specified,
then the global variables.

If the variable reference is not found, the words NO FIND are substituted for the value of the variable

in the run log print.

10.56.3.3. Internal Chains

S$SG maintains three major internal chains; the PERM chain, the TEMP chain, and the SGS chain. They

consist of the PCF set entries, the primary TCF set entries (each secondary TCF set also has a chain

but it cannot be altered), and stream generation statements, respectively. Entries in these three chains

can be created and removed internally (only for the duration of the SSG execution).

10.5.3.3.1. Dynamic Expansion of Internal Chains (¥ CREATE)

Formats:

1. *#CREATE A $GS: A sgs—-image A

2. *CREATE A { PERM:% A element-name [/version-name A]
TEMP:
Parameters:
sgs-image See 10.3.1 for the construction of an SGS image. Any bracketed
references may be used to supply the strings for the label or subfields
on the first card image only (not on any continuation images).
element-name % See 10.4.1 for allowable element entry names; the format may be
version—-name element or element/version where the version name is optional. The

element name or the version name may be supplied by a string, SGS
reference, process parameter reference, or set reference.

Description:

1. Creates an SGS with the sgs-image after all references have been satisfied and adds it to the
bottom of the SGS chain (unless the S option is used - see Table 10-1). In the SGS chain, SGSs
are grouped according to label. Once created, the new SGS is treated and may be referenced
like any other input SGS. An #CREATE SGS: image may be edited by use of the *#EDIT on
directive (see 10.5.3.5); however, the created SGS must not exceed 80 characters.

414431 SPERRY UNIVAC 1100 Series Executive I 10-32
UP-NUMBER Volume 3 System Processors IUFDATE LEVEL PAGE

2. An element entry with the name element-name/version-name or just element- name is inserted
at the bottom of the PERM (PCF set) or TEMP (primary TCF set) chain (unless the O or Q options,
respectively, are used — see Table 10-1). Such created entries may be referenced via the set
references and may be used when merging correction entries (treated as empty entries).
However, an #IF test on correction entry existence (see 10.5.3.7.6) on a created entry always
yields a Boolean False since no input streams are attached to it.

Even though the CREATE image can be longer than one card image each (by use of the semicolon
(;) and continuation images), bracketed references will be recognized on the first card image only.

Example:

Given the following SGSs and skeleton:

SGS

OLDSGS XYZ

@EOF

SKEL

*DEFINE CRT

*CREATE SGS: NEWSGS [#1)[OLDSGS,1,1,1]1 [OLDSGS,1,1,1,6][*A]
*END

*SET A TO 40

*#PROCESS CRT PROCP
[NEWSGS]INEWSGS,1,1,1][NEWSGS,1,2]
#CREATE PERM: ELEM1

*+CREATE TEMP: ELEM2/[OLDSGS,1,1,1]
[P.1.1.1] IS PCF ENTRY

10. [T,1,1,1V/[T7.1,2,1] IS PRIMARY TCF ENTRY
11. *|F ELEM1 HAS CORRECTIONS

WONDADWND =

12. PCF CORR
13. *ELSE
14. NO PCF CORR
15. #END
@EOF

The generated output stream looks like:
1,PROCP,2
ELEM1 is PCF ENTRY
ELEM2/XYZ IS PRIMARY TCF ENTRY
NO PCF CORR
1. The SGS created at Statement 2 and put in the SGS chain looks like:
NEWSGS PROCP,XYZ 3,40
2. The entry ELEM1 is created in the PCF chain in Statement 7.
3. The entry ELEM2/XYZ is created in the primary TCF chain in Statement 8.

4. Output from statements 9 and 10 show that entries have been made on the PCF and PRIMARY
TCF chains.

5. The #*IF test on correction entry existense still shows no corrections as existing.

4144.31

SPERRY UNIVAC 1100 Series Executive 10-33
UP-NUWBER Volume 3 System Processors UPDATE LEVEL PAGE

10.5.3.3.2. Deleting Entries from Internal Chains (# REMOVE)

Formats:

1. - #*REMOVE A SGS A sgs—label[,sgs—start—stmt [.number-to-remove] | A

2. %*REMOVE A{ PERM %A element-name [/version-name]

TEMP

Parameters:

sgs-label Certain SGSs with this label are to be removed. See 10.3.1 for
description of an SGS label; it may be supplied by a string, SGS
reference, process parameter reference, or set reference that returns
such a string.

sgs—-start-stmt The statement number with the given sgs-label where the remove will
start, may be an integer expression or a numeric expression (see
10.5.1). This number is optional, and if omitted 1 is assumed.

number-to-remove The number of SGSs to remove; may be an integer expression or a
numeric expression (see 10.5.1). This number is optional, and if
omitted, 1 is assumed.

element-name % See description under 10.6.3.3.1

version-name

Description:

1. Removes a specified number (or 1) of SGSs with the specified label starting at the specified start
number (or 1).

2. Removes the element entry with the specified name from the PERM (PCF) chain or TEMP (primary
TCF) chain. Once removed, the entry and any corrections associated with it are destroyed during
the SSG execution.

414431 SPERRY UNIVAC 1100 Series Executive

10-34
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Example:
Given the following skeleton and SGSs:

SKEL
#DEFINE REM
_ #REMOVE SGS [#1],2
*REMOVE PERM [#2)/[VERS,1,1,1]
*END
#PROCESS REM LABL [ELE,1,1,1]
*REMOVE TEMP A2
@EOF
SGS
ELE A1
VERS B1
LABL X
LABL Y
LABL Z
@EOF

oasrN =

1. Statement 2 removes one SGS with the label LABL starting at statement number 2.
2. Statement 3 removes the entry A1/B1 from the PCF chain.

3. Statement 6 removes the entry A2 from the primary TCF chain.

10.5.3.4. *EJECT
Format:
*EJECT
Description:
The #EJECT directive may appear anywhere in the revised skeleton and is transparent to any skeleton
processing. When the revised skeleton is being printed using the E option without the D option, and

this directive is encountered, a page eject is done.

If the D option is present with the E option, the #*EJECT is ignored. This directive is intended to make
the revised skeleton easier to read.

4144.31

SPERRY UNIVAC 1100 Series Executive 10-35

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
10.5.3.6. Concatenating Nondirective Images (*EDIT)
Format:
~ #EDIT A ON A [edit-symbol] A
SKELETON images
*EDIT A OFF A

Parameters:

edit-symbol One character which may be alphabetic, numeric, or special character
(see 10.5.1), or an SGS reference which, when satisfied, is one of the
above characters. The edit symbol is optional and when omitted, &
(ampersand) is assumed.

Description:

Edit-mode may be used to build a non-directive or a #* CREATE image from more than one symbolic
image.

The edit-mode is turned on by the #EDIT ON directive. When the edit mode is on, all nondirective
or #CREATE images which are terminated by the chosen edit symbol are joined together
(concatenated) and output to the generated output stream. If a nondirective edit image that SSG is
creating gets larger than a card image (80 characters), a semicolon is automatically inserted and the
image is continued on the next line. An #CREATE edit image cannot exceed 80 characters.

If a nondirective is being edited any directive image may be executed while the edit mode is on but
the occurrence of any nondirective image that does not have the chosen edit symbol on it, causes
the edit mode to terminate. Otherwise, the edit mode is normally terminated by the *EDIT OFF
directive, and the final created image is output.

If a #*CREATE directive is being editted it must immediately follow the #EDIT ON directive. Any other
directive image may be executed while edit mode is on but the occurrence of any portion of the
#CREATE image that does not have the edit symbol on it causes the edit mode to terminate.
Otherwise, the edit mode is normally terminated by the *EDIT OFF directive and the final created
image added to the list of * CREATE images.

Further control of an edit image is provided by the reserved variable COLED$. Based on an 80
character image, COLEDS$ reflects the next character position to be written in the created edit image.
If the edit mode is off, COLEDS$ is zero. Any variable directive may be used to control COLED$ and
thus control the construction of an image while in edit mode. However, any change to that variable
is not recognized until the next nondirective image is processed for editing.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

10-36
PAGE

Example 1:

Given the following SGSs and skeleton:

SGS
MONTH JUNE 30,42,15
MONTH JULY 24,794

" MONTH AUGUST 1,171,463

TAB 10

TESTS 3

@EOF

SKEL

*EDIT ON

MONTH &

#CLEAR INDEX

#SET TAB TO [TAB,1,1,1]
#INCREMENT A TO [TESTS,1,1,1)
#MULTIPLY [#TAB] BY [*#A] GIVING COLED$
TEST [#A] &

*LOOP

*EDIT OFF

#INCREMENT DATE TO [MONTH]
*EDIT ON |

[MONTH,DATE,1,1] |

*INCREMENT VAL TO [TESTS,1,1,1]
*MULTIPLY [*TAB] BY [#VAL] GIVING COLED$
[MONTH,DATE,2 VAL] |

*LOOP

*EDIT OFF

*LOOP

@EOF

The generated output stream would look like:

MONTH TEST1 TEST2 TEST3

JUNE 30 42 16
JULY 24 7 94
AUGUST 1 171 463

Example 2:

Given the following skeleton:

SKEL
*EDIT ON |

*CREATE SGS : FILE [TAPE,1,1,1]1
[FAST.1,1,1]

#HDG #*TABLE of CONTENTS %%
@EOF

SGS

TAPE TEST1

FAST TEST2

@EOF

4144.31 I SPERRY UNIVAC 1100 Series Executive

10-37
UP-NUMBER ‘ l Volume 3 System Processors

UPDATE LEVEL PAGE

The following SGS would be created:

FILE TEST1 TEST2

10.5.3.6. Directing the Generated Output Stream

Normally, SSG maintains an internal SDF file (SGR$2) where all generated output images are sent.
This can be suppressed by the use of the B option (Table 10-1) without specifying either the K option
(Table 10-1) or a filename in parameter 3 of the @SSG call (see 10.2). By use of the #*BRKPT directive,
the generated output stream can be broken apart and sent to different SDF files. The K option can
be used to control printing parts or all of the generated output. When the generated output stream
is sent to user-specified files, it is copied from SGR$2 to the user file after it is created. This makes
nested @SSG calls impossible since SGR$2 will anly contain the latest output stream.

10.56.3.6.1. Breakpointing Images(*BRKPT)
Format:

*BRKPT [options] A [filename A]

Parameters:

file-name The name of a SDF file. The filename must be in element notation.
Therefore, for this particular SSG directive statement, only a space
period space will terminate the scan of the image (see 10.5.3). It
specifies the destination of all generated output images after the
*BRKPT until the next #BRKPT or the end of the skeleton. The
filename may be supplied by a string, SGS reference, set reference or
process parameter reference. If omitted, the SSG internal file is
assumed.

options:

K Print the generated output images following this #BRKPT until the next

*BRKPT or the end of the skeleton.

Description:

All generated output images that are encountered before the first *BRKPT in a skeleton are directed
by the K option (or the absence of it) on the @SSG call, and are sent to the file specified in parameter
3 of the @SSG call (if one was specified). The B option on the @SSG call controls only the last
generated output stream. That is, only the generated output images that are encountered between
the last #*BRKPT executed in the skeleton and the end of the skeleton, are controlled by the B option.
If the *BRKPT directive is not used in the skeleton, the B and K options control the entire generated
output stream.

4144.31 SPERRY UNIVAC 1100 Series Executive

10-38
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Example:
Given the following SSG call:

@SSG,K ,FILEA.
SKEL
IMAGE A1

" IMAGE A2
*BRKPT FILEB.
IMAGE B1
IMAGE B2
*BRKPT,K FILEC.
IMAGE C1
IMAGE C2
#BRKPT
#ASG,T TEMPF
#MSGN TEMP WAS ASSIGNED
@EOF
@EOF

The generated output stream printings would look like:
Generated output stream part 1

IMAGE A1
IMAGE A2

Generated output stream part 3

IMAGE C1
IMAGE C2

The part of the generated output stream that would be dynamically added by SSG is:

@ASG, T TEMPF
@MSG,N TEMP WAS ASSIGNED

The contents of FILEA would be

IMAGE A1
IMAGE A2

The contents of FILEB would be

IMAGE B1
IMAGE B2

The contents of FILEC would be

IMAGE C1
IMAGE C2

414431
UP-HUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors 10-39

UPOATE LEVEL PAGE

10.5.3.6.2. PRTOFF

The printout of the generated output stream can be dynamically controiled by the use of the SSG
reserved variable PRTOFF. Initially, PRTOFF is set to zero. When PRTOFF is set to a nonzero value,
the printout is suppressed. The #SET and #CLEAR directives may be used to control PRTOFF. The
printout of generated output images may be turned on and off any number of times. Even though
the print of generated output irnages is suppressed, the images are still in the generated output
stream.

Example:
Given the following SSG call:

@SSG.K

SKEL

FELT,l .ELEA
*SET PRTOFF TO 3
AA1

AA2

*CLEAR PRTOFF
#ELT,l .ELEB
*SET PRTOFF
BB1

BB2

FEOF

@EOF

@EOQF

The print of the generated output stream would look like:

@ELT,l .ELEA
@ELT,| .ELEB

However, the generated output stream would actually be:

@ELT,l .ELEA
AA1

AA2

@ELT,| .ELEB
BB1

BB2

@EOF

and the immediately above would be dynamically added by SSG.

10.5.3.7. Skipping Skeleton Images (#IF),(#ELSE),(*END)

*#|F is a decision making directive designed to conditionally test, and choose logical paths in the
skeleton, by either executing or skipping a sequence of skeleton images. There are two general
formats of IF packets, as follows:

4144.31 SPERRY UNIVAC 1100 Series Executive

10-40
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

#|F (Conditional)

""" skeleton images

*END

Where any directive or nondirective skeleton image (except #DEFINE) may be between the matching
*{F and #*END. if the condition is true, the skeleton images between the #IF and #END are executed;
if the condition is false, they are skipped.

*|F (Conditional)

----- skeleton images

_____ skeleton images

*END

Where any directive or nondirective skeleton image (except ¥*DEFINE) may be between the matching
*|F and *ELSE and the matching #ELSE and #END. If the condition is true, the skeleton images
between the #IF and #*ELSE are executed and the images between the #ELSE and #END are skipped.
If the condition is false, the skeleton images between the #IF and #ELSE are skipped and the images
between the #ELSE and #END are executed.

IF packets may be nested to any level, but no overlap of IF packets with other IF packets or with
increment-loops is allowed. Each increment loop or IF packet must be entirely nested within another
IF packet or increment-loop.

Example: allowed

*|F (Conditional)

4144.31 SPERRY UNIVAC 1100 Series Executive

10-41
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

#INCREMENT A TO 3

- - o w— -
- - e m e

Example: not atlowed

~— *|F (Conditional)

An *#ELSE encountered in the skeleton is assumed to be matching the last #IF statement processed
that has not already been matched with an #END, or, #*ELSE and #END.

4144.31 SPERRY UNIVAC 1100 Series Executive 10-42

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
10.5.3.7.1. #*IF Variable Conditional
Format:
\ SET
#|F A variable-name A IS A { CLEAR }A

Parameter:

variable-name See 10.5.3.2 for description; may be supplied by a string, SGS
reference, process parameter reference, or set reference that returns
such a string.

Description:

Either a local or global variable may be tested for nonzero value (SET) or a zero value (CLEAR). When
a search for the variable name is made, the local variable list is searched first from the most recently
created backwards, then the global variable list is searched. The first variable found with the given
name is tested.

Example:
Given the following skeleton and SGS:

SKEL

*DEFINE CHK

*|F [#1] 1S SET

NONZERO VAUE FOR [#1]
*+ELSE

ZERO VALUE FOR [#£1]

*END

#*END

+CLEAR A

*PROCESS CHK A

10. *INCREMENT A TO [VARSGS,1,1,2]
11. *IF [VARSGS,1,1,1] IS CLEAR
12. [VARSGS,1,1,1]1 =0

CONOARWN =

13. *END
14. *LOOP
16. *IF A IS CLEAR
16. A IS ZERO
17. *END
@EQF
SGS
VARSGS A1
@EOF

The generated output stream would look like:

ZERO VALUE FOR A
A IS ZERO

1. Statement 2 is false (the global variable A is 0), so Statement 3 between the *IF and #ELSE
is skipped and Statement 5 between the #ELSE and #END is executed.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-43
Volume 3 System Processors

PAGE

UPDATE LEVEL

2. Statement 11 is false (the local variable A is 1), so Statement 12 between the *IF and *END
is skipped.

3. Statement 15 is true (the global variable A is Q), so Statement 16 between the *#IF and *END
is executed.

10.56.3.7.2. *IF Existence Conditional

Format:

*#IF A expression A

Parameter:

expression May be a string (20 or fewer characters), an SGS reference, a process
parameter reference, or a set reference.

Description:

The IF test checks to see if the given expression exists. If a string is supplied, the #*IF statement is
always true; since the string is there, it exists.

If the expression supplied is a process parameter reference, the test for existence is done to see if
there was a process parameter of that number. Also, if that process parameter was supplied by an
SGS reference, the test for existence is on the SGS reference.

If the expression supplied is an SGS reference, the following tests for existence are done:

*|F [I,n] tests if there is an nth statement with the label 1.

*|F [I,n,f] tests if there are at least f fields on an nth statement with the label |I.

*IF [I,nf,S] tests if there is at least an sth subfield in an fth field on an nth statement with
the label |I.

Note that the IF test *IF [I] is not in the test for existence category. Since the reference [I] (which
returns the number of SGSs with the label [1]) returns a numeric O rather than a ‘no find’ when there
are no SGSs with that label, the #*IF [I] is in the IF test for zero category (see 10.5.3.7.3).

If the expression supplied is a set reference, the existence test checks if the set referenced is defined
and the nth element entry in the set exists for the following expressions:

*#1F [reserved-label,n]
#|F [reserved-label,n,f]
#|F [reserved-label,n,1,1]
*|F [reserved-label,n,2,1]

See 10.4.4 for description of set references.
Note that the IF test #IF [reserved-label] is not in the text for existence category since it returns a

O rather than a 'no find' if there is no defined set with the name specified or no entries in that set.
The *IF [reserved-label] is in the test for zero category (10.5.3.7.3).

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-44
Volume 3 System Processors

PAGE

UPDATE LEVEL

Example:
Given the following SGSs and skeleton:

- SGS

A 1,23 5,6

@EOQOF

SKEL

#*#DEFINE TST

*#IF [#2]

PROC PARA #2
*ELSE

NO PROC PARA #2
*+END

*IF [#1]

PROC PARA [#1]
*END
10. *END
11. #IF [A1,2,3]
12. SGS REF
13. #*ELSE
14. NO SGS REF
15. #*END
16. #PROCESS TST [A,1,3,1]
17. #*PROCESS TST X [A,1,1]

@EOQOF

CoNOO RN~

The generated output stream would look like:
NO SGS REF
NO PROC PARA #2
PROC PARA #2
PROC PARA X

1. Statement 11 is false since there is no third subfield on field 2 of statement 1 with the label
A. Therefore only statement 14 is executed.

2. Statement 16 processes TST.

3. Statement 2 is false since no process parameter 2 exists. Therefore, only statement 5 is
executed.

4. Statement 7 is false since process parameter 1 was supplied by an SGS reference ([A,1,3,1])
that does not exist. Therefore, no statements between the #IF and #END are executed.

5. Statement 17 processes TST.

6. Statement 2 is true since process parameter 2 exists and the SGS reference supplied there
exists. Therefore, only statement 3 is executed.

7. Statement 7 is true since process parameter 1 exists. Therefore, statement 8 is executed.

4144.31 SPERRY UNIVAC 1100 Series Executive 10-45
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

10.5.3.7.3. *IF Test for Zero Conditional

Format:

- *|F A expression A
Parameter:
ex;)ression May be VALUE OF numeric-expression, VALUE OF integer-
expression, or a numeric expression (see 10.5.1).
Description:

If the numeric expression is zero. the test is false, otherwise the test is true.
Example:
Given the following SGS and skeleton:

SGS

NUM 4,6 9,12

@EOF

SKEL

*DEFINE TST

*IF +[#1]

1 1S NONZERO

*ELSE

1 1S ZERO

*END

*END

*IF [NUM]

[NUM] £ O

10. *END

11. *SET A TO [NUM,1,2,1]

12, *IF [*A]+4-12

13. NUMBER % 0

14. *END

156. *PROCESS TST A

16. *PROCESS TST O
@EOF

COENSOARWN =

The generated output stream would look like:

120
NUMBER # O
1 1S NONZERO
1 IS ZERO

1. Statement B is true because the numeric SGS reference, [NUM], is # 0. Therefore, Statement
9 is executed.

2. Statement 12 is true because [#A]+4-12 which is 1 is Z 0. Therefore, Statement 13 is
executed.

3. Statement 15 processes TST and passes A as parameter 1.

414431 SPERRY UNIVAC 1100 Series Executive

10-46
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

4. Statement 2 is true because +[# 1] which is the same as +A causes the variable A to be
evaluated and the value is 9(9 # 0). Therefore, Statement 3 is executed.

6. Statement 16 processes TST and passes O as parameter 1.

6. Statement 2 is false because +[# 1] is the same as 40 (or a numeric 0). Therefore, Statement
5 is executed.

10.5.3.7.4. *I|F Relational Tests

Format:

#|F A operand relation operand A

Parameters:

operand May be 20 or fewer characters supplied by a string, process parameter
reference, SGS reference, set reference, or numeric expression. If the
string used contains a blank, period, semicolon, comma, left bracket,
slash, plus, or minus, and evaluation of that string is not intended, pairs
of apostrophes should be used around it ("...”). For a string where the
apostrophes are to be included, single apostrophes should be used
(...").

relation May be =, >, or <.

Description:

The first operand specified is compared to the second operand specified according to the relation:
= tests for equality, > tests if the first operand is greater than the second operand; < tests if the
first operand is less than the second operand.

There are two kinds of relational tests, symbolic and numeric. First both operands are evaluated (all
numeric expressions and bracketed references satisfied). Then the condition of the first operand
specified determines the kind of test done. If the first operand is a numeric expression, a numeric
comparison is done. The second operand is always converted to be in the same condition as the
firstoperand before the test is made. Since SSG operates internally in ASCII all symbolic comparisons
are based on the ASCII collating sequence.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

10-47
PAGE

Example:
Given the following skeleton and SGS:

SKEL
#DEFINE TESTRS
*IF [#1] > [#2]
SYMBOLIC [#1] > [#2]
*ELSE
SYMBOLIC [# 1] NOT > [#2]
#*#END
*END
#DEFINE TESTRN
*IF + [#1] > +[#2]
10. NUMERIC [#1] > [#2]
11. *ELSE '
12. NUMERIC [#£1] NOT > [#2]
13. *END
14. *END
15. *SET VAR 7O [SGS2,1]
16. *IF [SGSREL,1,1,1] > VAR
17. SYMBOLIC [SGSREL,1,1,1] > VAR
18. *ELSE
19. SYMBOLIC [SGSREL,1,1,] NOT > VAR
20. *END ,
21. #IF +[SGSREL,1,1,1] > VAR
22. NUMERIC [SGSREL,1,1,1] > VAR
23. *ELSE
24. NUMERIC [SGSREL,1,1,1] NOT > VAR
25. *END
26. *IF [#*VAR] = 2
27. *ELSE
28. [#VAR] NOT 2
30. *#IF 2 < [SGS2,1]
31. SYMBOLIC 2 <« [8GS2,1]
32. *END
33. *#SETFTO -4
34. #*SETETO +1
35. *#PROCESS TESTRS F E
36. #PROCESS TESTRN F E
@EOF
SGS
SGSREL 666
SGS2 A B C
@EQF

CoNOIOAWN =

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-48
Volume 3 System Processors

PAGE

UPDATE LEVEL

The generated output stream would look like:

SYMBOLIC 666 NOT > VAR
NUMERIC 666 > VAR
3 NOT 2
SYMBOLIC 2 < 3
SYMBOLICF > E

* NUMERIC F NOT > E

1. Statement 16 is false because the symbolic string 666 left justified is not greater than (according
to the ASCII collating sequence) the symbolic string VAR. Therefore, statement 19 is executed.

2. Staternent 21 is true because the numeric value 666 is greater than the numeric value for VAR,
which is 3 (see statement 15). Therefore, statement 22 is executed.

3. Statement 26 is false because the numeric value of VAR, which is 3, does not equal 2. Therefore,
statement 28 is executed.

4. Statement 30 is true because the symbolic string 2 is less than (according to the ASCII collating
sequence), the symbolic string 3. Therefore, statement 31 is executed.

5. Statement 35 processes TESTRS and passes two strings, F and E.

6. Statement 2 istrue because the symbolic string F is greater than (according to the ASCIl collating
sequence) the symbolic string E. Therefore, statement 3 is executed.

7. Statement 36 processes TESTRN and passes two strings, F and E.
8. Statement 9 is false because the numeric value of F (which is -4) is not greater than the numeric
value of E (which is +1). Therefore, statement 12 is executed.
10.5.3.7.5. *IF Row or Column Search Conditional
SGSs of a given label can be regarded as two dimensional tables. A row in the table corresponds
to one particular statement. A column corresponds to one particular field and subfield in all the
statements.
The following SGSs:
LABL AQ ZLP R6
LABL B ST Y
LABL D

would look like the following, in a two dimensional table. See Table 10-2.

414431

SPERRY UNIVAC 1100 Series Executive

10-49
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Table 10-2. Search Table Row/Column
Column
Row field 1 | field 1 field 2 | field 2 | field 2 | field 3
subfield 1|subfield 2 |subfield 1|subfield 2|subfield 3 subfield 1
stmt 1 A Q 2 L [R6
stmt 2 B S T Y
stmt 3 D
S$GSs with the same label may be searched by row or column for a given image.
Format:
*IF A {ROW } A SEARCH A FROM A label | start-stmt |, start-field
COLUMN ! !
[.start-subfield]] A FOR A expression A
Parameters:
label See 10.3.1 for description of an SGS label; this label may be supplied
by a string, SGS reference, process parameter reference, or set
reference.
start-stmt The statement number with the above given label where the search is
to begin; may be supplied by a numeric expression or integer
expression (see 10.5.1).
start-field The field number on the above given statement with the given label
where the search is to begin; may be supplied by a numeric expression
or integer expression (see 10.5.1).
start-subfield The subfield number in the above given field on the given statement
with the given label where the search is to begin; may be supplied by.
a numeric expression or integer expression (see 10.5.1).
expression The image that is to be searched for in the SGS tables; the images may

be a string of 20 or fewer characters or the following references
producing such a string: an SGS reference, process parameter
reference, set reference, VALUE OF numeric expression reference
(where the numeric value of the expression is taken), VALUE OF
integer-expression, or a numeric expression. All numeric expressions
are satisfied and the result is converted to a symbolic string for the
search. if the string used contains a blank, period, semicolon, comma,
left bracket, slash, plus, or minus, and evaluation of that string is not
intended, pairs of apostrophes should be used around it ("...”). For a
string where the apostrophes are to be included, single apostrophes
should be used ('...").

Description:

The start-stmt, start-field, and start-subfield may be omitted, and if absent are assumed to have the
value of one.

4144.31 SPERRY UNIVAC 1100 Series Cxecutive

10-50
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

A row search starts from a particular statement, field, and subfield for a given label of SGS. The search
goes from that point on the SGS to the end of the statement (row), comparing each subfield to the
specified expression. If a match is found, the #IF statement is true and SSG sets the reserved global
variables FLD and SFLD to the field and subfield values respectively, where the match is made. |If
no match is found, the *IF statement is false and the FLD and SFLD values remain unchanged.

A column search starts from a particular statement, field, and subfield for a given label of SGS. The
search goes from that point on the SGS through the specified field and subfield of all the SGSs with
the given label that follow. If a match is found, the #IF statement is true and SSG sets the reserved
global variable CARD to the statement number where the match is made. If no match is found, the
#|F statement is false and the CARD value remains unchanged.

The IF column (or row) search is more efficient than incrementing through lists of SGSs and doing
an |F test for a match.

Example 1:
Given the following skeleton and SGSs:

SKEL
#SET VAR TO 1
*SET GO
*INCREMENT A TO [MIX] WHILE GO IS SET
*|F COLUMN SEARCH FROM MIX,VAR FOR ASSIGN
FASG,T [MIX,CARD,2,1]
#SET VAR TO CARD+ 1
*ELSE
*CLEAR GO
*END
0. *LOOP
@EOF
SGS
MIX HOLD ALPHS
MIX ASSIGN TEMP1
MiX PROCESS FILE3
MIX ASSIGN PF3
MIX ASSIGN TEMP2
@EOF

PN THRLN =

The generated output stream would look like:

@ASG,T TEMP1
@ASG,T PF3
@ASG,T TEMF2

The above IF column search, statement 4, searched through field one, subfield one of all the SGSs
with the label MIX, starting with statement 1 the first time (initially VAR had the value 1). After a match
was made, the value of CARD was set to the statement number where the match was found and the
#|F was true, so statement 5 and 6 were executed. An assign card was generated and VAR was set
to the next statement after the match statement (for the next loop through the IF column search).
When no more assign images were found, the {F column was false and statement 8 was executed
and the global variable GO was cleared. Thus, the WHILE phrase of the increment loop became false
and incrementing was stopped. The increment, statement 3, merely insured that the IF column search
was done at least as many times as there were MIX cards for the case where every MIX card had
an ASSIGN in field one, subfield one. The WHILE phrase on the increment allowed early termination
of the loop for the case where the entire list was searched before the variable A had the value [MIX].

4144.31 SPERRY UNIVAC 1100 Series Sxecutive

10-51
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Example 2:
Given the following SGSs and skeleton:

SGS

ALL AVAIL FILES T3.,P4,XR2,PF$ TEMP4

FILES ARE FOUND ON ALL

@ELOF

SKEL

*IF ROW SEARCH FROM [FILES,1,4,1],1,3.1 FOR PF$
PF$ WAS FOUND ON THE SGS [FILES,1,4,1]
STATEMENT 1,FIELD [#FLD] AND SUBFIELD [%SFLD)
*END

@EOF

PN =

The generated output stream would look like:

PF$ WAS FOUND ON THE SGS ALL
STATEMENT 1,FIELD 3 and SUBFIELD 4

Statement 1 does an IF row search on the first SGS with the label ALL starting at field 3, subfield
1 and searches to the end of that SGS until a match is found with the image PF$. The *IF is true
and statements 2 and 3 are executed. Also the variables FLD and SFLD are set to 3 and 4,
respectively.

10.5.3.7.6. *IF CORRECTION ENTRY EXISTENCE

Format:
: . PERM
*IF Ao element-name [/version-name] o HAS 4 TEMP (2 CORRECTIONS A
Parameters:
element-name } See 10.5.3.3.1 for description
version-name Refers to an element-entry name.

Description:

The search may be made on the PERM (PCF set) or TEMP (primary TCF set) or both sets (by omitting
PERM or TEMP) to see if the specified element entry exists. If PERM or TEMP is omitted, a search
of both sets occurs and the existence of the specified element entry in either set is sufficient for the
statement to be true. PCF or primary TCF entries found cause the *IF tc have a true value. Just a
#card in an input stream (or the existence of a program file element when using P or T options) causes
an element entry to be created. However, if an element entry is created via the * CREATE directive,
the *#IF test for that entry’s existence would be false since SSG flags that entry as a special case
having no input associated with it.

4144.31
JP-NUMBER

SPERRY UNIVAC 1100 Series Exezutive
Volume 3 System Processors

UPDATE LEVEL

10-52
PAGE

Example:

Given the following primary temporary corrections, permanent corrections, SGS, and skeleton:

CONDO A WN

10.
11.
12.

TEMP COR
*ELEA
-212

- #ELEB/VER1

*ELEC

-6,12

@EOF

PERM COR

#ELEB/VER1

-1,3

*ELED

-45,61

@EOQF

SGS

E ELEC

@EOF

SKEL

*|F ELEA HAS CORRECTIONS
ELEA PRESENT

*ELSE

ELEA NOT PRESENT

*END

*IF [P,1,1,1)/[P.1,2,1] HAS TEMP CORRECTIONS
[P,1,1,1)/[P.1,2,1] HAS TEMP
*END

*CREATE PERM: ELEC

*IF [E,1,1,1] HAS PERM CORRECTIONS
[E.1,1,1] HAS PERM

*END

@EOF

The generated output stream would look like:

ELEA PRESENT
ELEB/VER1 HAS TEMP

Statement 1 searched both the PCF and primary TCF set for the element entry ELEA and found

it in the primary TCF. Therefore, the #*IF was true and statement 2 was executed.

Statement 6 searched the primary TCF set for the element entry ELEB/VER1 and found it (note:
only #*ELEB/VER1 was necessary in the run stream to cause an element entry to be created).

Therefore, the *IF was true and statement 7 was executed.

Statement 10 searched the PCF set for the element entry ELEC and found that that entry had
been created by the * CREATE directive. Therefore, the #IF was false and statement 11 was

skipped.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Procassors

UPDATE LEVEL

10-63
PAGE

10.5.3.7.7. Compound *IF Statements Using Boolean Operators

The conditional tests on *IF statements may be compounded to create Boolean expressions. A
Boolean expression is made up of Boolean-operand Boolean- operator Boolean-operand, and gives
a true or false result. The Boolean operators are AND, OR, XOR. Boolean operands are any of the
conditionals described under 10.5.3.7 or Boolean expressions made up of those conditionals. All
boolean expressions are evaluated left to right taking two operands at a time and applying the result

to ‘the riext operand found.

The Boolean operator, NOT, may also be used in #IF statements and 'applies only to the conditional
immediately following it. A logical NOT is done on the results of the conditional.

The results of the logical operations done using AND, OR, XOR are shown in Table 10-3.

Table 10-3. Logical Operations Using AND, OR, XOR

1st Boolean | 2nd Boolean | Result Result Result

Operand Operand of AND | of OR | of XOR
true true true true false
true false false true true
false true false true true
false false false false false

Example:

The IF statement:

*|F B IS SET AND VALUE OF A = -1 OR NOT [X,1,1,1] = STOP

does the following operations, in order:

test if variable B > O
test if variable A = -1

NOT the result of (4)

oNhON~

result of (1) AND result of (2)
test if [X,1,1,1] = STOP

result of (3) OR result of (5)

The result of (6) is the value of the *IF test.

The IF statement:

+|F NOT ELEA HAS CORRECTIONS AND COLUMN SEARCH FROM;

LAB,6,3.4 FOR ELEA

4144.31 SPERRY UNIVAC 1100 Series Executive

10-54
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

does the following operations, in order:

1. test if the PCF set or primary TCF set has the element entry ELEA

2. NOT the result of (1)

3. .do a column search beginning with the sixth SGS with the label LAB, field 3, subfield 4 for the
image ELEA

4. result of (2) AND result of (3)

The result of (4) is the value of the #IF test
NOTE:

The *IF statement may be continued using the standard continuation character, a semicolon.

10.5.3.8. Merging Permanent and Temporary Streams

See 10.4 for description of permanent and temporary streams. The Permanent Correction File (PCF)
set is desighed as a means of maintaining groups of correction images (element entries) to some
group of base symbolic elements. See 1.2 on modifying symbolic elements and the description of
format for line correction statements. The Temporary Correction File (TCF) sets are designed as a
means of changing or adding corrections to an existing PCF set element entry. A TCF set entry may
contain two types of line corrections, those relative to the base symbolic elements being modified
(additions to the PCF set element entry) or those relative to an already existing line correction in the
PCF set element entry. Both correction types can be intermixed in a TCF set element entry.

Those TCF set corrections that are relative to the base symbolic elements follow the format described
in 1.2. Those TCF set corrections relative to an already existing PCF set line corrections may have
the following formats:

-perm-line-nos/relative-line-nos

or

-perm-line-nos/relative-line-nos/new-line-nos.
where the perm-line-nos matches (is the same as) the line correction in the PCF set element entry
being altered; the relative-line-nos are the line numbers where a change is to be made to the PCF
line correction.
For relative referencing purposes, the PCF line correction (as specified) is relative line zero and all
images following that line correction until the next line correction in that element entry are relative

lines 1,2,..etc. Relative line numbers may be of two forms:

-n
-n,m

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL PAGE

where -n indicates that the data following that relative correction is to be inserted after relative line
number n in the PCF element entry. —n,m indicates that relative lines n through m (where m > n)
inclusive, are to be removed and any data following that relative correction is to be inserted in the
PCF element entry at that point. Relative line corrections to the PCF may not be partia! line corrections.
New-linge-nos may be of three forms:

p
P.q
pP.q-

These line corrections cause —p, —pq, or —pq-, respectively, to be inserted at the point that the relative
line correction is being made in the PCF element entry before any associated data following the
relative line correction is inserted.

Example 1:

The following shows how line corrections in a PCF element entry are numbered for relative
referencing:

Corrections Relative line numbers
-2,3 0
A 1
B 2
C 3
-10 0
xXyYZ 1
-14,16 0

Therefore, any line in a PCF element entry may be referenced first according to the line correction
number associated with it, and then according to its relative position to that correction line.

Example 2:
Given the following PCF set and primary TCF set input:

PERM COR
*A

-4.6

X

YYY

-10

B

-25,25-
/ABC/DEF/
-32,33-
/L/S/
/AQ/A2/
-43,44
-72,76
@EOF
TEMP COR
*A
-4,6/2,2
LIK

10-56

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-5
Volume 3 System Processors 6

PAGE

UPDATE LEVEL

-10/0,0/12,12
NEW

-25,25-/1,1
/ABC/EFJ/
-32,33-/0,0/32,32-
-32,33-/1/35,35-

-54

QRs
@EOF

The corrections in the primary TCF set would reference, as follows:

1.

-4,6/2,2
LJK

Deletes line 2 relative to the correction line —4,6 in the PCF, which is YYY, and inserts the line
LJK at that position.

-10/0,0/12,12
NEW

Deletes line O relative to the correction line —10 in the PCF, which is -10, and inserts the image
-12,12 followed by the line NEW.

-25,25-/1,1
/ABC/EFJ/

Deletes line 1 relative to the correction line -25,25- in the PCF, which is /ABC/DEF/, and inserts
the line /ABC/EFJ/ at that position.

-32,33-/0,0/32,32-

Deletes line O relative to the correction line ~32,33- in the PCF, which is -32,33-, and inserts
the image -32,32-.

-32,33-/1/35,35-

Inserts the image -35,35- following line 1 relative to the correction line -32,33- in the PCF,
which is /L/S/.

-54
QRS

Since this is not a relative line correction, it must be a correction to be added to the PCF.
Therefore, -54 and QRS are inserted between -43,44 and -72,76 in the PCF.

4144.31 SPERRY UNIVAC 1100 Series Executive

1 7
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE -8
10.5.3.8.1. Merging PCF and Primary TCF Element Entries (# CORRECT)
Format:
n . . PERM
#CORRECT [,options] A element-name [/version-name] A TEMP A
[==mmmmm -
---------- corrections-from-skel

L=~~~ =-

*END
Parameters:
options none The images resulting from the merge are sent to the generated output

stream.

P The images resulting from the merge are sent to a program file's
symbolic element with the same name as the element entry. This
option may only be used when the P option is used on the @SSG call
and the PCF had its input defined by symbolic elements in a program
file (see 10.4.2, second paragraph). The program file updated when
doing a #*CORRECT,P is the same one that is specified for the PCF set
input. This is the only case where SSG alters an input file (PFI$ is used
to perform the insert).

K Used in conjunction with the P option to cause the images resuliting
from the merge to be also sent to the generated output stream.

element-name % See 10.5.3.3.1 for description: specifies the name of the element entry from
versian-name which the corrections are to be taken. May be supplied by a string, set

reference, SGS reference, or process parameter reference.
Description:

If PERM is specified, SSG takes only the element entry corrections from the PCF set. |f TEMP is
specified, SSG takes only the element entry corections from the primary TCF set. If neither PERM
or TEMP are specified, SSG takes both the PCF set and primary TCF element entries or whichever
exist. The specified element entry corrections desired are merged along with corrections from the
skeleton (if any). Corrections from the skeleton are those images between the *CORRECT and the
matching #*END. Regardless of the other source of corrections, any corrections from the skeleton
are always used in the merge. If any element entry or corrections that are specified or assumed, are
not present for the #* CORRECT, the merge consists of the remaining specified or assumed entries.

When using the P option on the @SSG call (a program file is specified on the @SSG call as the source
for the PCF set), a #*CORRECT,P is ignored for an element entry that does not exist in the PCF set
(there is no symbolic element with that name in the specified program file). An #*CREATE PERM must
first be done for that element entry to indicate to SSG that a new symbolic element is to be created
in the specified program file when doing the #* CORRECT,P. The normal case is where an element
entry in the PCF set (existing symbolic element in the given program file) is corrected and re-inserted
into the given program file, simulating an update process. The P option is also ignored if TEMP is
specified on the #* CORRECT,P statement too.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

10-58
PAGE

When a #*CORRECT is done with PERM specified, revised temporary corrections are not created since

no primary TCF corrections are used.

Conflicts in line numbers are flagged (see 10.6 for diagnostic messages). TCF set corrections override
PCF set corrections which override corrections from the skeleton, if a conflict occurs. Since conflicts
that cause overrides are not fatal errors, such a feature may be used to cause desirable changes in
the resulting output. When a conflict does occur the corrections from the set with the highest priority
are saved as part of the resulting output and the corrections with the lowest priority are printed in

the override message and are ignored.

Example:

Given the following runstream:

CONDPONPWN

@ASG,T PF
@ELT,| PF.ELEA
-2,2

Xyz

-4,7

@EOF

@ELT,| PF.ELEC
-10

RST

-12

PQR

@EOF
@SSG.KBP ,,,..,PCF/1,PF.
TEMP COR
*ELEA

-2,2/1

LMN
+ELEB/ONE
-6,10

*ELEC

-10/1.1

JKL

RVW

@EOF

SKEL

ONE XXX
*#CORRECT ELEA PERM
-10,10

*END

#CREATE PERM: ELEB/ONE

*CORRECT,P ELEB/ONE
-42,42-

/AA/BB/

*END

TWO XXX
#*CORRECT,PK ELEC
*END

@EOF

@EOF

4144.31 SPERRY UNIVAC 1100 Series Executive

10-59
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

The generated output stream would look like:

ONE XXX
-2,2
LMN
XYZ

-4,7

- -10,10

TWO XXX
-10

JKL

RVW
-12

PQR

At the end of the SSG execution the program file, PF., has three symbolic elements, ELEA., ELEB/ONE,
and ELEC., and their contents are:

ELEA ELEB/ONE ELEC

-2,2 -6,10 -10

XyZ -42,42- JKL

-4,7 /AA/BB/ RVW
-12
PQR

1. Statement 2 causes the PCF set element entry, ELEA, to be merged with the corrections from
the skeleton (those between the ¥ CORRECT and *#END), and the resulting imagyes were sent to
the generated output stream. PF.ELEA is not updated (changed) because a #* CORRECT,P was
not done.

2. Statement 6 caused the primary TCF set element entry, ELEB/ONE, to be merged with the PCF
set element entry ELEB/ONE, (since it is a created entry, same as merging with nothing) and the
corrections from the skeleton. Since the P option is on the # CORRECT, the resulting images
from the merge are inserted as a symbolic element, ELEB/ONE in the PCF set program file, PF.
Note that since there was no element entry in the PCF set existing (on input) with the name
ELEB/ONE, a #*CREATE PERM (statement 5) was necessary before SSG would recognize the
*CORRECT,P. Since the P option was present and the K option was not (on the #*CORRECT)
the resulting images were not sent to the generated output stream.

3. Statement 11 caused the PCF set element entry, ELEC, to be merge with the primary TCF element
entry, ELEC. There are no corrections from the skeleton (nothing between the #* CORRECT and
*#END). Since the P and K options are on the #*CORRECT, the resulting images from the merge
are inserted as a symbolic element, ELEC in the PCF set program file, PF, and are sent to the
generated output stream. When the new symbolic element, ELEC, is inserted into PF the old
ELEC is deleted.

10.56.3.8.2. Merging TCF Element Entries (#* MERGE)

Format:

*MERGE [,options] A element-name [/version-name] A tcf-set-name A WITH A

tcf-set-name A [GIVING A tcf-set-name A]

414431 SPERRY UNIVAC 1100 Series Executive

10-60
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

Parameters:
options R See below for description.

K Used when the GIVING phrase is on the #*MERGE, to cause the

resulting images to be sent to the generated output stream.

element-name } See 10.5.3.3.1 for description of element entry names. May be
version-name supplied by a string, set reference, SGS reference, or process

parameter reference.

tcf-set-name Specifies the TCF sets where the element entries are to be taken from
for the merge, and, in the GIVING phrase, specifies the TCF set
destination of the resulting element entry, (may be the primary or any
secondary TCF set).

See 10.4.3 for description of the TCF set names. May be supplied by
a string, set reference, SGS reference or process parameter reference.
(The TCF set name for the primary TCF set is TCF.)

Description:

*MERGE merges the specified element entry from the first TCF set given with the eiment entry of
the same name from the second TCF set given. The GIVING phrase is optional. If it is omitted, the
resulting images from the merge are automatically sent to the generated output stream. If the GIVING
phrase is present, the resulting images from the merge are inserted as an element entry (of the same
name specified) into the TCF set given in the GIVING phrase. When the GIVING phrase is present
the K option must be used on the *MERGE if the merge images are also to be sent to the generated
output stream.

When the GIVING phrase is present on the #* MERGE directive, SSG creates an internal element entry,
associates the resulting merge images with it, and attaches it to the TCF set specified in that phrase.
If an element entry of the name already exists in that TCF set, the old entry is lost and all references
apply to the newly created element entry. The original TCF input files are never altered, and any
internal element entries that SSG creatas are lost when SSG terminates.

R OPTION

With no R option on the *MERGE directive, SSG combines the two TCF sets’ element eniries. Both
entries’ line corrections are based on the same PCF and base symbolic element. The corrections, both
to PCF (relative corrections) and in addition to a PCF (base symbolics corrections) are put in sequential
order. (Each entry correction must be in sequential order before the merge.) All sequence errors are
flagged and the line corrections discarded. The first TCF set entry specified on the #*MERGE takes
precedence over the second TCF set entry in the case of line number conflicts. One TCF set entry
may not do relative correction to another. All relative corrections are assumed to be based on a PCF
set entry.

With the R option on the #*MERGE directive, a special type of merge is done between the two TCF
set element entries specified. SSG assumes that the second TCF set element entry (from second TCF
set specified) was merged with a PCF set element entry and a revised PCF set element entry was
created. SSG also assumes that the line numbers in the first TCF set element entry (from first TCF
set specified) are based on the created revised PCF set element entry. SSG does the merge, changing
the line numbers from the first TCF set element entry and merging them with the second TCF set
element entry so that all line numbers in the resultant merge are relative to the original PCF set
element entry.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

10-61
Volume 3 System Processors

UPDATE LEVEL PAGE

With the #*MERGE directive, element entries with the same name from any number of TCF sets may
be merged, two at a time. By allowing the results of the final merge to end up in the primary TCF
set, a *CORRECT may be done to merge PCF corrections with the TCF set corrections.

Example 1:
Given the following runstream:

PERM COR
*A/VA
-2,5

A

B

C

-10

D

E

@EOQF
TEMP COR
*A/VA
-2,5/1,1

A1

L1

-2,5/3,3

C1
-10/0,0/12
@EQF
TEMP COR : TCFNEW
*A/VA
-1.1

R

-10/2,2

E1

F

@EQF
SKEL

STEP 1
*MERGE K A/VA TCFNEW WITH TCF GIVING TCF
STEP 2
*CQRRECT A/VA
*END
@EQF

ObhWN =

Both A/VA in the primary TCF set input and A/VA in the second TCF set input, TCFNEW, have their
line corrections based on A/VA in the PCF set and some base symbolic element (which the PCF set
entry, A/VA, is also based on).

414431 SPERRY UNIVAC 1100 Series Executive

10-6
UP-NUMBER Volume 3 System Processors 0-62

PAGE

UPDATE LEVEL

The generated output stream would look like:

STEP 1
-1,1

R
-2,5/1,1
A1

L1
-2,5/3,3
Ct
-10/0,0/12 -
-10/2,2
E1

F

STEP 2
-1,1

R

-25

A1

L1

B

C1

-12

D

E1

F

1. After statement 2, and while SSG is still processing, the primary TCF set entry A/VA contains
the same images as those seen between STEP 1 and STEP 2, exclusively, in the generated output
stream. The K option was necessary on the ¥ MERGE to cause the images to go to the generated
output stream, since the GIVING phrase was present.

2. When statement 4 was executed, element entry A/VA was taken from both the PCF set and the
primary TCF set (getting the internally created entry) for the merge.

3. Thus the final result was to merge all existing corrections for A/VA to later apply to some base
symbolic element.

Example 2:
Given the following input runstream:

SKEL
#+CORRECT B/XVERSION
*END

@EOF

PERM COR
*#B/XVERSION
-6.8

XXXX

-12

R

S

@EOF

TEMP COR

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

UPDATE LEVEL

10-63
PAGE

The generated output stream would look like:

*B/XVERSION
-6,8/1,1

YYY

2zZ
-12/0,0/13
@EOF

-6.8
YYY
2zZ
-13
R
S

The above corrections in the generated output stream could be called revised PCF corrections since,
they are the result of TCF corrections applied to PCF corrections. Assume that the above listing of
revised PCF corrections was the only available list and additional changes were necessary. A TCF
set entry could be created that had its line numbers based on the above revised PCF listing, as follows:

-6,8/1,.2
NEWXXX
-13/1.1
-20,21

Then a new SSG call could be made using the same PERM COR and TEMP COR input as before plus

the new line numbers in a TCF set, TCFCOR, and a slightly revised skeleton, as follows:

wn =

SKEL

*MERGE,R B/XVERSION TCFCOR WITH TCF GIVING TCF
#CORRECT B/XVERSION

#*+END

@EOF

PERM COR
#*#B/XVERSION
-6.,8

XXXX

-12

R

S

@EQF

TEMP COR
*B/XVERSION
-6,8/1,1

YYy

2722
-12/0,0/13
@EQF

TEMP COR : TCFCOR
#*+B/XVERSION
-6,8/1,2
NEWXXX
-13/1,1
-20,21

@EOQOF

414431 SPERRY UNIVAC 1100 Series Executive

10-64
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

The generated output stream would look like:

-6.8
NEWXXX
-13

S

-20,21

1. Statement 1 causes the element entry B/XVERSION in TCFCOR to be merged with the entry of
the same name in TCF (the primary TCF set) knowing that TCFCOR'’s line corrections are based
on revised PCF corrections that TCF's corrections helped to create. Thus, the line corrections
in the TCFCOR entry are modified to be relative to the orginal PCF entry and are merged with
the TCF entry corrections. The new element entry created and attached to the pritnary TCF set
looked like the following:

-6,8/1,1
NEWXXX
-12/0,0/13
-12/11
-20,21

2. Statement 2 caused the new element entry attached to the primary TCF set to be merged with
the PCF set entry of the same name. Thus, the above corrections in 1. were applied to the
correction that came in with PERM COR and the desired result is seen in the generated output
stream.

10.5.3.8.3. Change Control Characters

The standard control character for the # CORRECT and #*MERGE merges is the minus (-). Thic standaid
may be changed to another control image (up to three characters long), according to the following
format:

- = new-control-characters
No control characters may be numeric and an indirect reference is not allowed.

When doing a #*CORRECT type merge, the change of control character image may appear as the first
image of a PCF entry, as the first image of a primary TCF entry or immediately after the *CORRECT
in the skeleton. Any other such images elsewhere in the entries or between the #*CORRECT and
*END, that look like change control character images are treated simply as nondirective images and
do not affect the control character.

When the change control character image is the first one in the PCF entry it triggers the change, and
the image is passed to the revised PCF entry (if one) but does not appear in the output sticam. |f
the change control character image is from the primary TCF entry, it triggers the change, and the
image is passed to the revised TCF entry, but is not passed to the revised PCF entry (if one) nor the
output stream. If the change control character image appears after the #* CORRECT in the skeleton,
it triggers the change but does not appear in the revised PCF, revised TCF or output stream.

When a change control character image for a #*CORRECT comes from more than one source the
destination for each image is still as described above. However, the new control characters for that
merge are determined according to the following priority: TCF overrides PC} and skeleton; PCF
overrides skeleton. After each #* CORRECT is done (the #END is encountered) tha control character
is reset to —.

4144.31 SPERRY UNIVAC 1100 Series Executive

10-65
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

When doing a *MERGE type of merge, the change control character image may appear as the first
image of a TCF set entry. If an image appears in both entries, the one from the first specified set
is usad. This image triggers the change of control chracters and is sent to the third specified TCF
set (if one) but does not appear in the output stream. When the merge is complete, the control
character is reset to —.

10.6. DIAGNOSTIC MESSAGES

The following is a list of only those processor messages that are not self-explanatory.

* 9% % %% %% tcfset STREAM TOTAL IMAGES : n %33 % % % % %

This message is printed immediately following each TCFset-G option printing (is printed only if the
G option is present on the SSG call). tcfset is the setname and n is the total number of correction
images for that set. (*element/version cards not included).

SPECn message

Where ‘n’ is the parameter field number on the processor call statement (O if from runstream) and
‘message’ may be any of the following:

NOT PCF,TCF,SGS SSG expected PCF, TCF (or TCF set name), or SGS and did not find
it.

/VER NOT NUMERIC Following PCF, TCF, tcf-set-name or SGS a / <numeric>is expected
: and not found.

NOT PROGRAM FILE SSG expected the specified file to be a program file and it was not.

FILE EMPTY SSG expected input from a file and it was empty.

BAD LABEL IMAGE The label image of the specified file is bad.

PF ELE NOT FOUND The specified element was not found in the given program file.

PF CYCLE ERROR The cycle given for the specified program file is in error.

PF ELE DELETED The specified element has been deleted from the given program file.

USE OR ASG ERROR An error occurred trying to do an @ USE or @ASG on the specified file.
INTERNAL SSG FILE COULD NOT BE ASSIGNED
An internal file SSG uses for processing could not be assigned.

% PCF %
DUPLICATE n IN§ TCF
tcf-set-name

When ordering the input element/version entry, 'n’, a duplicate name was found in the specified set
(PCF, TCF or TCF set). The second entry is discarded.

POSSIBLE ERROR ON FOLLOWING # CARD-ASSUMED TO BE DATA

414431 SPERRY UNIVAC 1100 Series Executive

1
UP-NUMBER Volume 3 System Processors 0-66

PAGE

UPODATE LEVEL

When SSG is reading input, temporary and permanent element/version entries and an # card is
encountered which has characters other than alphabetics, numerics, - or $ this message is printed.
The #* card image is then assumed to be part of the last # card data.

ADDR NOT FOUND FOR WRITE TO REV SKEL FILE

This message is printed when a program file element is specified as the output elment for the revised
skeleton (param-5) and an error is returned from ER PFWLS$.

ERROR IN REVISED SKELETON -~ SGS CANNOT PROCESS IT

This message is printed at the end of the revised skeleton listing when the E option is used (no D
option) and an error in the skeleton is detected. Another message explaining the error is printed in
the revised skeleton listing where the error occurs.

TRUNCATED IMAGE EXCEEDED 80 CHAR MAX

This message is printed when an image that is greater than 80 characters is read from an input file.
The image is truncated at 80 characters and SSG continues to process it.

FILE IDENTIFICATION STATEMENT ERROR

When the file identification statement, which specified input streams, has a format error or specifies
an illegal input type, the above message is printed.

SKELETON IS ABSENT

The skeleton is the only mandatory input stream since it directs the processor. Its absence is noted
by the above message.

ERROR IN FORMATION OF QUTPUT RUNSTREAM - SSG WILL NOT PERFORM DYNAMIC @ADD
The absence of the B option signals the generation and execution ¢f an output runstream. !f an error
is detected during a non-B option generation, the above message is printed and the generated
runstream will not be dynamically @ ADDed. The programmer may perform his own execution
mechanism for the generated runstream. Usually, sequence errors found during merging operations
causes this condition.

ERROR IN BREAKPOINT n AT SKEL LINE x

If a format error exists on the BRKPT directive, the above message results where 'n’ is the part number
of the last generated output stream and x is the SKEL line number of the #BRKPT.

NO-FIND ON FOLLOWING IMAGE
The above message indicates a reference by the following image which couldn’t be satisfied.
HAVE ENCOUNTERED 100 NO-FIND RETURNS - NO-FIND MESSAGES TO BE SUPPRESSED

Upon the occurrence of 100 unsatisfied references, the above message is printed and no further
unsatisfied reference messages will be printed.

FORMAT ERROR IN FOLLOWING CARD

THE FOLLOWING CARD iS OUT OF SEQUENCE

4144.31 SPERRY UNIVAC 1100 Series Executive

10-67
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

SEQUENCE OR FORMAT ERROR ON FOLLOWING CARD

Above messages are printed when the specified conditions occur.
Sequence messages refer to a merge being done at the time (* CORRECT or #*MERGE).

CONFLICT IN REL CORR:n MERGE WITH p q

During the merging of streams with #* MERGE, internal conflicts in the correction numbers may occur.
Some conflicts are of such a nature that they cannot be resolved (due to ignorance of the PCF entry
involved). As a result SSG prints one of the above messages and discards the correction from the
first TCF set, 'n’. 'q’ is the element/version entry and ‘p’ is the second TCF set.

170 ERROR p AT LOCATION n
The above message signals an 1/0 error of the type 'p’. (n is in decimal.)
INCORRECT ATTEMPT TO MAKE REL.COR.n

During the merging and modifying of the input streams, with #CORRECT, the occurrence of a
modifying image (relative correction to permanent stream) in the temporary stream which is badly
formatted or has bad line correction numbers results in the above message where 'n’ is the
element/version entry being merged.

FOLLOWING REL TEMP COR TRUNCATED

If during the merging and modifying of TCF streams with #MERGE, a relative correction or image that
must be modified exceeds 80 characters, it is truncated and the above message printed.

- PERMANENT CORRECTIONS IN
TEMPORARY CORRECTIONS OVERRIDE% SKELETON GENERATED§ ELEMENT n
*+#*PERMANENT CORRECTIONS OVERRIDE SKELETON GENERATED CORRECTIONS |IN
ELEMENT n* %%

During the merging of the input streams, conflicts in the line correction numbers may result. The
conflicts are settied by the priority, temporary overrides permanent which overrides skeleton. Upon
a conflict, the appropriate message is printed where ‘'n’ is the element/version entry being merged.
The overridden correction images are also printed out. The programmer should take note of any
conflicts between permanent and skeleton streams. :

ADDR NOT FOUND FOR WRITE TO PERM COR PF

SSG prints the above message if the PCF input is from a program file (P option) and if a * CORRECT,P
is done, and an error is returned trying to obtain the PCF program file’s next write address.

BAD IMAGE CONTROL WORD n:INTERNAL FILENAME p
The above message is printed if, while reading input streams, SSG receives an image control word,

‘'n’, that appears incorrect. The internal filename where the error is detected is printed, ‘p’. See
Volume 4-2.6.4.2 for explanation of image control words.

4144.31 SPERRY UNIVAC 1100 Series Executive

11-1
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

11. File Structure and Maintenance

11.1. INTRODUCTION

This section describes the file table formats and file table maintenance software, both of which are
normally transparent to the user. The information is provided:

B To give insight into the file structure used by the FURPUR processor, the language and system
processors, and the symbiont complex;

B To enable the user to write additional software to build, insert, and retrieve data from the files.
The operating system generates three major types of files:

1. Program File

2. Element File

3. System Data Format (SDF) File

The format of each of these files and the manner in which they are manipulated are described in the
following paragraphs:

11.2. FILE FORMATS

11.2.1. Program File Format

A program file can be defined as a partitioned random access file consisting of a group of elements
residing on mass storage. A program file may contain symbolic, relocatable, omnibus, or absolute
elements or a compination of elements. It may be either a temporary or a catalogued file. Since the
elements are named, they may be manipulated on an individual basis. Thus, the elements needed
to produce an executable program may be collected from one program file or from several program
files.

It must be emphasized that while the program file is logically structured as shown in Figure 11-1,
physically the elements that make up the file are not necessarily contiguous. Linkages are
automatically generated by the Executive to logically structure the file as a separate continuous entity.

4144.31 SPERRY UNIVAC 1100 Series Executive

11-2
UP-NUMBER Voiume 3 System Processors

PAGE

UPDATE LEVEL

Relative Sector (standard values)

00 File
file table index Table
Index
01
element table
01700
assembler procedure table
02100
Table
COBOL procedure table > of
02300 Contents
FORTRAN procedure table
02500
entry point table
03400 J
N
> Text
element texts
N\
n ol J

Figure 11-1. Program File Format

The program file (see Figure 11-1) has three major sectidns:

1. File Table Index - Contains pointers and links (relative to the beginning of the file) to the tables
which comprise the file’s table of contents (see Figure 11-2).

2. Table of Contents - Provides pointers to the elements (element table), procedures (procedures
tables), and entry points for relocatable binary elements (entry point table). These tables are
illustrated and described in the following paragraphs. Each table, except for the element table
which always starts at sector 1, begins at its system standard sector, or at a greater sector if
a table has extended over the standard starting sector, or at a lesser sector if the file has been
@PACKed with the M option.

3. Text - The elements.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive
Volume 3 System Processors

11-3

UPDATE LEVEL PAGE

Word

12-14

16-17

18

19

20

26

27

35

24

18 17

next sector available for writing text

run-id (used by CTS)

sector address of segment
in main storage

change
indicator

starting sector address of
table on mass storage

length of table in words

starting address of buffer

pointer table
length -1

item size

end address + 1 of buffer

similar information for assembler procedure table

similar information for COBOL procedure table

similar information for FORTRAN procedure table

similar information for entry point table

new
relocatable

element

sequence number of latest absolute element in file

TIMES value (used by CTS)

NOTE:

The File Table index 'is initially zero filled.

Figure 11-2. File Tabie Index Format

Da eV Y

4144.31

SPERRY UNIVAC 1100 Series Executive 11-4

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Word O This word, when as indicated, is used to identify the file as a program file.
Word 1 Next available sector at which text may be written.

Word 2 Run-id (used by CTS, see Volume 2-1.4.10).

Word 3-5 Element Table information.
Change Indicator — Set nonzero to indicate that the table segment presently in
the buffer has been modified and should be written back to mass storage.

Word 6-8 Assembler procedure table information.

Word 9-11 COBOL procedure table information.

Word 12-14 FORTRAN procedure table information.

Word 15-17 Entry point procedure table information.

Word 18 (S6)

1 - Relocatable element added to program file
0 - Absolute element added to program file

Allows automatic remapping of TPF$ for @ XQT when new relocatable elements
have been added.

Word 19 Sequence number of last absolute element added to the program file. This will
be zero if there are no absolute elements in the program file or if the last absolute
element added has been deleted.

Word 27 TIME$ (used by CTS, see Volume 2-4.5.3).

11.2.1.1. Element Table

The element table (see Figure 11-3) contains the Fieldata element and version name of each element,
its type (symbolic, relocatable, omnibus, or absolute), and pointers to its text within the program file.
It also provides information concerning

B the size of the element,

B the time and date the element was created,

B the sequence number of the element in the file which is used for linking entries within th~
element table (the sequence number specifies the order in which the element texts are entered

in the file), and
B the address of the text.

The element table has the first 140 words (5 sectors) reserved as a pointer table and control word.
The first 139 words are used to hold pointers that start chains. The elements that belong to a
particular chain are determined by dividing the element’s name by the length of the pointer table (139)
and using the remainder as an index into the pointer table. Actually 278 chains may exist as each
word contains two pointers; the pointer in H1 is used if the quotient was odd, and the pointer in H2
is used if it was even. The control word contains the item size in H1 and the total number of entries
in H2.

414431 SPERRY UNIVAC 1100 Series Executive

11-6
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Word 35 30 24 18 12 (o]
(T ool __ pointeroro | pointer or O
W pointeror0 _ _ _ _ __ _ | _______ pointeror0 _
2l o _ pointeroro _ _ __ _|____ pointer or 0
3
o ’ L
ointer < ~ A
Table
136
fm = - —— —— o e e e e e et e e = - ——— ——— i ——— — — —]
137 pointer or 0 pointer or 0
138 pointer or 0 T T T T T T pointeror0 T~ T~ T T T T 7]
Control _ 139 length of item number of table items
Word 0 element name*
1
2 version link pointer link
Element 3 flag-bits] element type type link
Table < 4 version name*
Item 5
(Symbolic) 6 cycle limit | latest cycle number | current no. of cycles
7| processor code zeros | length of element text
8 location of element text
.9 time element added to system [date element added to system
(o
element name*
1
2(version link pointer link
Element 3 flag-bits | element type type link
Table < 4 version name¥
Item 5
(Relocatable) | 6 location of preamble
7 length of preamble I length of relocatable text
8 location of element text
.9 time element added to system | date element added to system
(o element name*
1
2 version link pointer link
Element 3 flag-bits element type type link
Table 4 version name*
Item 5
(Absolute) 6 bank information
7 zeros | length of element text
8 location of element text
.9 time element added to system [date element added to system
(o element name¥*
1
2 version link pointer link
Elernent 3 flag-bits element type type link
Table < 4 version name*
ltem 5
Omnibus) 6
7| processor code l length of element text
8 location of element text
.9 time element added to system l date element added to system

Figure 11-3. Element Table Format

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive I

11-6
Volume 3 System Processors | upoaTE LEveL

PAGE .

The element table items follow the pointer table and appear in the order the elements were added

to the program file.

Element chains are formed and linked by the use of pointers within the table entries themselves when
two or more elements need to be pointed to from the same pointer half-word.

Version Link
Pointer Link

Flag Bits

Element Type

Element Subtype
Type Link

Bank Information

Word 9:

- Sequence number of another element item with the same element name
and type, but a different version.

- Sequence number of another element item with the same hash code, but
a different name.

- Bit 35 - Marked for deletion
31 - CTS flag (SYM)
30 - Arithmetic fault non-interrupt mode (ABS)
29 - Arithmetic fault compatibility mode (ABS)
28 - ASCIl Code (SYM) or real-time (ABS)
26 - Third-Word sensitive (ABS or REL)
25 - Quarter-Word sensitive (ABS or REL)
24 - Marked in error (ABS or REL)

- The element types are:

SYM - Symbolic element (type O1)
ASMP- ASSEMBLER procedure element (type 02)
COBP - COBOL procedure element (type 03)
FORP - FORTRAN procedure element (type 04)

Types 2, 3, and 4 are also symbolic elements in structure and content. Their
corresponding table items are identical to the Symbolic element table item

{type 01).

REL - Relocatable element (type 05)
ABS - Absolute element (type 06)
OMN - Omnibus element " (type 07)

- See Volume 4-2.1.6 (SSTYPS) for the presently defined Omnibus and
Symbolic element subtypes.

- Sequence number of another element item with the same element name,
but with a different type.

- Element Table Item Absolute word 6 contains the following information:
Time and date information is in reversed TDATE$ format:

H1
H2

Time element created in seconds from midnight
Month/day/year element created

414431

SPERRY UNIVAC 1100 Series Executive

11-7
Volume 3 System Processors

UPDATE LEVEL

UP-NUMBER PAGE
Word 6
Absolute Element
6 flag 0 number of number of
) bits user banks common banks
Flag Bits - Bit 35 - Always set.

33 - Requires two PSRs due to initial and utility basing.
32 - Suppress zero fill.
31 - No start address for program.

11.2.1.2. Procedure Tables

The procedure table has an entry for each procedure (entered in the file by the @PDP control
statement, see Section 8). Each entry consists of

B the procedure name,

B a link to the element in which it appears, and

B the procedure’s relative word location within the file.

Each procedure table, like the element table, contains a 139-word pointer table and a control word.

All procedure table items contain an Element Link, a Pointer Link, and the location of the procedure
within the file as well as the Procedure Name.

The Pointer Link is the sequence number of another item in the same procedure table with a different
name, but the same hash code. It may be zero.

The Element Link is the sequence number of the element table item associated with the procedure
element containing the procedure.

The location of the procedure is relative to the beginning of the file.
Bit 35 of word 3 of each procedure table item is the delete flag. If set, that procedure has been
deleted, either by a delete request or by the insertion of a new procedure with the identical name

(replacement of the old procedure).

Bit 34 of word three is the continuation indicator, when set, indicates that a second four words were
necessary to contain the COBOL Procedure Name.

Bit 33 of word 3 indicates that the procedure images are in ASCII.

Bit 32 of word 3 indicates that the images contain sequence numbers in columns 73-80 which should
be ignored.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

11-8
Volume 3 System Processors

PAGE

UPDATE LEVEL

The Assembler and FORTRAN procedure entries are as shown in Figure 11-4.

The COBOL procedure table item (see Figure 11-5) is either four or eight words long. If the procedure
name is 12 alphanumeric characters or less, the item will be four words long. If the procedure name
exceeds 12 characters (the system limits the name to 30), a second four words are used to complete
the item. Bit 34 of word 3, when set, indicates that a second four words were necessary to contain
the COBOL Procedure Name. Unused spaces in the name field will be Fieldata blank filled.

Word 35 18 17 0
0

procedure name
1

2 element link pointer link

Ol|A|S location of the procedure in the file (words)

Figure 11-4. Assembler or FORTRAN Procedure Table Item

Word 35 18 17 0

COBOL procedure name
(first 12 characters)

First four words

2 element link pointer link a|ways present.
3|0iC location of the procedure
FlI1AIS in_the file (words) J
3
4 COBOL procedure name
5 (second 12 characters) Second four words present
> only if name exceeds 12
6 zeros characters and bit 34,
word 3 = 1.
7 COBOL procedure name
(final six characters) J

Figure 11-5. COBOL Procedure Table Item

11.2.1.3. Entry Point Table

The entry point table is the set of all entry point names and the link from each name to the relocatable
element in which it occurs. The user must request the generation of this information using the @PREP
control statement (see 4.2.11); it is not done automatically by the Executive.

The entry point table contains a 139-word pointer table and a control word, as did the element table.

The entry point table item is shown in Figure 11-6.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

11-9
Volume 3 System Processors

UPDATE LEVEL PAGE

Word 35 18 17 0
0
1 entry point name
2 element link pointer link
D . .
3 £ duplicate link

Figure 11-6. Entry Point Table Item

11.2.2. Element File Format

An element file is produced from a program file by using a @ COPQOUT control statement (see 4.2.3).
It is a sequential file, found only on magnetic tape, and it may consist of a series of symbolic,
relocatable, absolute, and omnibus elements. It may be temporary or a catalogued file.

The elements (see Figure 11-7) are written in sequential order on the tape. Each element
(see Figure 11-8) contains a 28-word element label block and the element text. The element label
block is created from information contained in the program file element table item and contains the
following information:

B element file identifier

B element name, version, type, and size

B time and date the element was added to the file

The remainder of the element consists of 224-word blocks of the text of the element. This information
is identical to the element text in the program file from which the element file was created. The only

difference is that the element text is blocked into 224-word blocks; the last block is padded to force
a 224-word block if the text does not occupy an exact multiple of 224 words.

4144.31 SPERRY UNIVAC 1100 Series Executive 11-10

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE

element label block 1

A any number of element text blocks AL
element label block 2

A any number of element text blocks A

,L any number of elements A
element label block n

A any number of element text blocks iy

?, a4
end-of-file (EOF) mark

Figure 11-7. Element File Format

414431 SPERRY UNIVAC 1100 Series Executive
UP-NUMBER Volume 3 System Processors

11-1

UPDATE LEVEL PAGE

element label block

element text block 1

element text block 2

any number of element text blocks A

element text block n

padding to 224-word boundary

Figure 11-8. Element in Element File Format

11.2.3. System Data Format (SDF)

System Data Format (SDF) provides the system with a standard format for data handling between the
various system components and between the system and the user. SDF files are produced by the
@DATA processor, @FILE, the symbiont print and punch routines, the input symbionts, the FORTRAN
library, the @ED processor, etc. SDF is also used as the format for symbolic elements in a program

file.

SDF files on mass storage are a continuous set of sequential data. SDF files on tape are normally
written in 224 word blocks. Images are allowed to span blocks except in symbiont output files.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

11-12
Volume 3 System Processors

UPDATE LEVEL PAGE

Data is recorded in variable-length images with each image preceded by a control word containing
the length of the image. There are two general types of control words (images):

1. Control images

Control images provide special control information as needed by the system components
processing the file or element. A control image is defined as one in which bit 35 is set in the

" control word. The control word contains a code in the range 040-077 in S 1 of the control word.
If an image follows the control word, its length is contained in $2. If no image follows, the
content of S2 will be zero. The maximum length of a control image that may be defined with
one control word is 63 words.

2. Data images
A data image is defined as any image whose control word does not have bit 35 set. The
remaining portion of T1 of the control word contains the length of the image. A maximum image
length of 2047 words may be defined with one control word. The contents of the remaining
portion of the control word varies depending on the specific type of SDF file or element.

11.2.3.1. Control Word Format for Control Images

The control word format is:

S1 S2 S3 S4 S5 S6
control image SDF BRKPT part code
code length type number type
control code A code within the range 040-077 that provides specific information about
the SDF file or element. The currently defined control codes (octal values)
are:
040 - Bypass image

Indicates that this image is to be skipped. S2 contains the
number of words to skip. Skip to the next control word.

041 - Unique READS file label image

042 - ASCli/Fieldata switch
Used when an SDF file or element contains both ASCH and
Fieldata images. Indicates a switch to the code type in S6 (ASCI|
= 1, Fieldata = 0) S2 is always O.

043 - FORTRAN backspace
S§3 contains the length of the previous image.

050 - SDF label

This is the initial control word of an SDF file or element. If a label
image follows its length is in S2 and the image is always in

4144.31 SPERRY UNIVAC 1100 Series Executive

11-13
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Fieldata even though the file or element may be in ASCIl. S3
specifies the type of file or element. S6 specifies the code type
of the following images in the file or element as does the 042
control image.

051 - Continuation
Indicates the following image is a continuation of the previous
image. S2 specifies the number of words in this section of the
image. This is used in symbiont files at the start of a 224-word
block when an image spans blocks.

052 -~ Correction image
if H2 is nonzero, then H2 = the number of images deleted before
the next image in the last update. If H2 = O, this is a range or
line correction statement whose character type is the same as the
current SDF input. (see 4-2.1.4)

053 - H2 contains a CTS/HVTS line number, S2 and S3 are zero.

054 - End-of-reel

Used for multi-reel tape files to indicate a tape swap is required
at the end of reel.

056 - Skip Break

Used so that information is not ignored when skipping forward
in a print file.

060 - Print Control

070 - Punch Control
Used in symbiont print and punch files. S2 contains the number
of words (image) which comprise the image submitted to the ERs
PRTCHS$/PCHCNS$ or their ASCH and alternate equivalents. This
image is then interpreted when the file is output to determine any
mode change required. For example, an ER PRTCN$ to change
the line width to 160 characters (27 words) would produce the
image 600100000000 050534270505g.

076 - Demand breakpoint EOF

The 076 end-of-file is used for intermediate EQOFs such as
breakpoints.

077 -~ End-of-file
Indicates termination of the SDF file or element.

image length The length in words of the following image.

4144.31 SPERRY UNIVAC 1100 Series Executive 11-14

UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
SDF type A Fieldata character identifying the type or origin of the SDF file or element.
Used only in label control words (CC = 041, 050). The types currently
defined are:

00 - Unspecified SDF file/element type.

- Symbiont card input/punch file

- FORTRAN library data file

Symbiont input file (created by @FILE contro! statement)

—~ Symbiont print file

- Symbolic element. Usually created by the processor interface
routine SIRS.
Used to indicate that bits 23-0 of data image control words contain
element cycle information.

T - Symbiont paper tape input/punch file.

Mmoo —T 1o
|

BRKPT part number Used only in the labe! control word of symbiont files. Indicates the part
number of the file, the count of the number of breakpoints performed on
the file.

code type The code type of the following images in the SDF file or element

(Fieldata = 0, ASCIl = 1) applies to control codes 042 and 050 only. Also
applies to symbiont data control words.

11.2.3.2. Control Word Format for Data Images

The control word format is:

35 34 24 23 0

0 / . n

where:

| - The length in words of the following image. A maximum image length of 2047 may be
specified.

n - The information contained in bits 23-0 varies with the type of SDF file or element. For
symbolic elements this field contains element cycle information. For symbiont files this
field contains line spacing and code type information.

11.2.3.3. Control and Data Image Formats

The formats for the control and data images of Processor Common I/0O System (PCIOS) files are
described in SPERRY UNIVAC 1100 Series Processor Common Input/Output System, UP-8478.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors

UPDATE LEVEL

11-16
PAGE

The label control image for SDF files and symbolic elements generated by the processor interface
routine SIR$ is:

S1 S2 S3 S4 S5 S6
050 oo1 ‘s’ code type
SDFF
The symbolic element data image control word format is:
35 34 24 S3 S4 S5 S6 0
(] image length numdle dec newc ac
where:
numdle - flag to indicate that images were deleted before this image on the last update.
dc - cycle at which this image was deleted
newc - set if image was added on this update
ac - cycle at which this image was added

The symbiont file label control image format is:

Word S1 S2 S3 S4 S5 S6

0] 050 or1 P orC’ part number code type
! filename (output) READSX run—id (input)
2
3 device association
4 run-id
5 date and time of file creation
6 user-id
7
8 reserved for 'SV’ and 'SR’ keyin use
9

Words 1-2

User defined file

- filename in Fieldata code

414431 SPERRY UNIVAC 1100 Series Executive
UP-NUMBER Volume 3 System Processors

11-16
PAGE

UPDATE LEVEL

o
Input file - READS$xrunid
Output (print) file - PR@xxxrunid
Output (punch) file - PU@xxxrunid
where ‘xxx’ is the part number for the file.

Word 3

‘Contains the input device name in Fieldata code for input and output files except for @SYM when

it is the name of the output device specified on the @SYM statement.
Word 5
Date and time of the files creation, iq binary code (TDATE$ format)

The symbiont data image control word format is:

35 34 24 T2 S5 S6
0 image length line spacing code type
The symbiont input file (@FILE) label control image format is:
050 o001 1
SDFF
Examples of SDF control images:
1. Standard print file label block:
0 - 501125000000 - standard print file label of 115 words.
1 -252700606060 - filename PR@, part number 000.
2 -060606060606 - run-id ‘AAAAAA’,
3 -102761050505 - input device ‘CR1".,
4 - 060606060606 - run—id ‘AAAAAA’,
5-010112005412 - Jan 1, 1974 05412 seconds since midnight (ER TDATES$
6 - 050505050505 format).
7 - 050505050505 - four words space filled
8 - 050505050505 P '
9 - 050505050505
10 - 000200010000 - next SDF control for 2 word data image, space of 1.
11 -002732220505 - @RUN
12 - 060606060606 - "AAAAAA’
etc.
2. Switch to ASCII
420000000001 - the following images are ASCH until another control is

encountered.

4144 .31 SPERRY UNIVAC 1100 Series Executive

11-17
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

11.3. FILE MAINTENANCE

Within the operating system are contained various library routines, Executive service functions, and
processors that may be used to create and manipulate files. The file utility processor, FURPUR (see
Section 4) may be used to process, in various ways, files of the previously discussed formats. in fact,
element files are created and processed only by the FURPUR processor.

SDF files and elements are produced and processed by the FURPUR, DATA, ED, ELT, and other
processors. In addition, the symbiont and @ ADD control statement (see Volume 2-3.10.1) as well
as the various symbiont interface Executive functions (see Volume 2-Section 5) are used to create
and process SDF.

Program files are created and processed by the language processors, FURPUR, ELT, LIST, CULL and
other processors. In addition, there are several Executive service functions (see 11.3.1) and
relocatable library routines (see BSP$) available for processing program files.

Paragraphs 11.3.1 and Volume 4 - BSP$ describe the mechanism for updating a program file by a
user program. Both features were designed primarily for use by language and system processors.
The program file maintenance Executive Requests (see 11.3.1) provide a limited capabilty in that only
selected functions are available. The program file Basic Service Package BSP$ (see Volume 4) is a
system relocatable library routine that can be included with a user program to provide more capability
with less overhead if many operations are to be done.

The Executive Requests are also used by the Executive in its normal operations, such as finding an
absolute program to execute. See 11.3.1.6 for program file package status code,.

11.3.1. Program File Maintenance Executive Requests

The Executive Requests described in the following paragraphs are used to maintain the table of
contents entries for a program file. As a group, the requests are called the program file package (PFP).

The formats of the program file table of contents entries are described in 11.2.

For each of the requests described, upon return from the requests, register A2 contains the status
of the operation performed. Entries can be found in 11.2.1.

PFP packets cannot be in write protected banks.

11.3.1.1. Updating the Element Table (PFI$)
Purpose:

Inserts an entry in the program file's element table.
Formats:

LU AO,pktaddr
ER PFI$

or
L A1.next write location

LN,U AO,pktaddr
ER PFI$

414431 SPERRY LINIVAC 1100 Series Executive

11-18
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

The second calling sequence combines functions of ER PFI$ and ER PFUWLS$.

Pktaddr is the address of a packet whose format is:

Word T1 S3 H1
0 . !
- internal filename
1
2
element-name
3
4 version-link-sequence-nbr pointer-link-sequence-nbr
5 flag-bits element-type type-link-sequence-nbr
6 .
element-version-name

7
8
9

10 ‘ text-address

1 date—and-time-of-creation

Words 2-11 are the same as the contents of the Element Table Items. (See Figure 11-3 and the
associated description.) Note that the contents of words 8 and € vary with the type of element.

Description:
The element version can be present, zero, or blank. When the version is zero, blanks are substituted.
When an absolute element is being inserted, its sequence number is recorded in the file table index.

For the relocatable elements, the file table index pointers to the entry point table are cleared and a
new entry point table may have to be created.

If the date-and-time-of-creation field is zero, the PFI$ request inserts the current data and time.
When this field is nonzero, the contents are used for the date and time.

The link sequence numbers are supplied by the PFI$ request.

11.3.1.2. Table of Contents Search (PFS$)
Purpose:

Searches program file's table of contents for a given item.

414431 SPERRY UNIVAC 1100 Series Executive

11-19
UP-NUMBER Volume 3 System Processors

PAGE

UPDATE LEVEL

Format:

LU AO,pktaddr
ER PFS$

Pktaddr is the address of a packet whose format is identical to that of the PFI$ request (see 11.3.1.1).
Words 8 and 9 of the packet are suppled by the Executive.

Description:

When the delete flag (bit 35 of word 5) is set, a find can be made on an element marked for deletion.

When the element name is left blank and the element desired is an absolute element, the PFS$
request supplies the last absolute element added to the file.

If the version name is zero, a find is made on element name only. When a version name other than
zero is specified, it is used along with the element name in the search. When a version name is blank,
a find is justified on the element name and blanks, for the version.

When the element is found, the packet is filled with information from the element table entry, and
the sequence number of the element is returned in A1. This information is used to access the element
text.

11.3.1.3. Mark Element for Deletion (PFD$)

Purpose:

Sets delete flag in element table item for requested element.

Format:

LU AO,pktaddr
ER PFD$

Pktaddr is the address of a packet whose format is:

Word T1 S3 H1
0

internal filename
1

2

element-name
3
4 version-link-sequence—-nbr pointer-link-sequence-nbr
5 flag-bits element-type type-link-sequence-nbr
6

element-version

4144.31 SPERRY UNIVAC 1100 Series Executive

11-20
UP-NUMBER Volume 3 System Processors UPDATE LEVEL PAGE
Word 5
element-type Same as PFI$ (see 11.3.1.1).
Description:

When the element being deleted is the most recently added absolute element in this file, the file table
index entry containing the element sequence number of the most recently added absclute element
is cleared to zero.

11.3.1.4. Updating Next Write Location (PFUWLS$)
Purpose:
Updates the next write location in a program file. The task of the PFUWL$ request may also be
performed by using PFI$ (see 11.3.1.1). This is accomplished by complementing register AO on the
call to PFI$ and loading register A1 with the new address.
Formats:
L.U AO,pktaddr
L A1,(new-address—in—-program-file)
ER PFUWLS
or
LN,UAO,pktaddr-for-PFi$

L A1/(new-addr-in-program-file)
ER PFI$

Pktaddr is the address of a packet whose format is:

Word
0
1

internal filename

The next write location is the next available sector at which the text portion of the element can be
written without destroying other text words.

11.3.1.5. Retrieving Next Write Location Address (PFWLS$)
Purpose:

Obtains the next write location in the program file.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

11—
Volume 3 System Processors 21

PAGE

UPDATE LEVEL

Format:

LU AO,pktaddr
ER PFWLS

Pktaddr is the address of a packet whose format is:

Word

0
1

internal filename

The next write location is stored in register A1 upon normal return. The next write location is as
defined for PFUWLS$ (see 11.3.1.4).

11.3.1.6. Program File Package Status Conditions

" The status conditions are stored in register A2 on the return from the program file package ERs. The
possible values are:

00

01

02

03

04

05

06

07

Normal status (operation completed)

No find

iI/0 error, or file not assigned

Program file not defined as program file
reserved

PFI$ request reject due to packet address wholly or partially outside the |I-bank or
D-bank limits.

Packet wholly or partially outside |- or D-bank limits

Sequence number greater than 5001 encountered

414431 SPERRY UNIVAC 1100 Series Executive

A-1
UP-NUMBER Volume 3 System Processors

UPDATE LEVEL PAGE

Appéndix A. Collector Diagnostic Messages

ABOQVE F-CYCLE SUBFIELD NOT PROPERLY FORMATTED

The F-cycle subfield in the immediately preceding source statement is improperly formatted.
ABOVE. FILE 1S READ ONLY - COLLECTOR CANNOT OUTPUT INTO IT

ABQVE READ KEY SUBFIELD NOT PROPERLY FORMATTED

The read key subfield in the immediately preceding source statement is improperly formatted.
ABOVE STATEMENT NOT PROCESSED DUE TO FORMAT ERROR

ABOVE STATEMENT NOT PROCESSED. IF BANKS ARE DESIRED THE FIRST SOURCE IMAGE MUST
BE A BANK STMT

An {-BANK, D-BANK, or FORM statement was encountered after a SEG, RESG, DSEG, XSEG or IN
statement has been processed.

ABOVE STMT NOT ALLOWED FOLLOWING A COMMON BANK

Following an I-BANK or D-BANK statement specifying a common bank, another I-BANK or D-BANK
statement must precede any SEG, DSEG, RSEG, XSEG or IN statement.

A COMMON BANK CAN HAVE NO RELATIONSHIPS

An 1-BANK or D-BANK statement with an X option has a bank-list subfield specified.

i-BANK or D-BANK ALREADY BASED ON MAIN or UTIL PSR

The M or U option has been specified on more than one I-BANK or D-BANK statement.

AFCM STATUS OF OUTPUT ELEMENT = CLRAFCM

The Arithmetic Fault Compatibility Mode for the output element is set as clear. An initial load on the

1110 or 1100/40, the Arithmetic Fault compatibility mode setting will be such that no interrupt
occurs for floating point overflow, floating point underflow and divide fault. (See 2.2.2.13)

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive l | A-2
Volume 3 System Processors | UPDATE LEVEL PAGE

AFCM STATUS OF OUTPUT ELEMENT = INSAFCM

The Arithmetic Fault Compatibility Mode for the output element is set as insensitive. An initial load
on the 1110 or 1100/40, the Arithmetic Fault Compatibility Mode setting will be such that no
interrupt will take place in the case of floating point overflow, floating point underflow and divide
fault. (See 2.2.2.13)

AFCM STATUS OF OUTPUT ELEMENT = SETAFCM

The Arithmetic Fault Compatibility Mode for the output element is set as set. At initial load on the
1110 or 1100/40, the Arithmetic Fault Compatibility Mode will be such that an interrupt will occur
for floating point overflow, floating point underflow, and divide fault. (See 2.2.2.13)

AFCM STATUS OF OUTPUT ELEMENT = UNKNOWN

The Arithmetic Fault Compatibility Mode for the output element is set as unknown. At initial load on
the 1110 or 1100/40, the Arithmetic Fault Compatibility Mode will be determined by a system
generation parameter. (See 2.2.2.13)

ASSIGN ABOVE FILE LARGER MAX SIZE

Value AT ADDRESS address BITS right-most - left-most IN ELEMENT element name IS POSSIBLE
OVER-65K ADDRESS FIELD.

Instruction AT ADDRESS address IN ELEMENT element name - WILL ACTIVATE SNAP JUMP PRIOR
TO EXECUTION

A snapshot will be taken at the specified address and then the specified instruction will be executed.
BAD PLACEMENT OF CHARACTER x
BAD STATUS: xxxxxxxxxxxx OQOUTPUT BY CSF$ IN ATTEMPT TO @ASG, AX filename

A dynamic @ASG,AX of the file resulted in a bad status return (See Volume 2-C.2 for explanation
of 12 digit (x...x) octal code.)

BAD STATUS: xxxxxxxxxxxx OUTPUT BY CSF$ IN ATTEMPT TO @FREE,A filename

A dynamic @FREE,A of the file resulted in a bad status return. (See Volume 2-C.2 for explanation
of 12 digit (x...) octal code.)

BAD STATUS: xxxxxxxxxxxx OUTPUT BY CSF$ IN ATTEMPT TO @USE filename

A dynamic @USE of the file resulted in a bad status return. (See Volume 2-C.2 for explanation of
12 digit (x...x) octal code.)

BANK INDIRECTLY DEFINES ITSELF

Some bank in the bank structure is related to a bank that is directly or indirectly related to the first
bank. For example, bank A follows bank B and bank B follows bank A.

BANK IS NOT PROPERLY DEFINED: bank name

The bank has not been specified in the name-1 subfield on an I-BANK or D-BANK statement.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors £

PAGE

UPDATE LEVEL

BANK, SEGMENT OR SEG WITHIN BANK NOT PREVIOUSLY DEFINED

A FORM has been dcne or an undefined segment or bank, or on a segment that is not contained in
the specified bank.

BANK STMTS NOT ALLOWED IN R-OPTION COLLECTION
BOTH M AND U OPTIONS ON BANK STATEMENT - option IGNORED

Both the M and U options are specified on the immediately preceding I-BANK or D-BANK statement.
The second option is ignored.

BOTH T AND F OPTIONS GIVEN - BOTH IGNORED
The @MAP control statement contained both the T and F options.

CLRAFCM = SENSITIVITY OF ABSOLUTE ELEMENT/SETAFCM = SENSITIVITY OF START ADDR
ELEMENT

When the program is loaded for execution on the 1110 or 1100/40, the arithmetic fault compatibility
mode will be set such that no interrupt is taken when a floating point overflow, floating point
underflow or divide fault occurs. However, when execution is initialized, the program’s code expects
interrupts to be taken. This is a logical conflict.

COLLECTOR DIAGNOSTIC MESSAGES

CONTROL BANK AMBIGUITY - C OPTION IGNORED

The C option may be specified once only in a collector on either an I-BANK or D-BANK source
statement. The C option had already been specified once.

COMBINED LC Ic no. LENGTH EXCEEDS 65K - NON FATAL ERROR

This message cccurs with an R option collection when the combined lengths of all location counters
of the specified number in the included relocatable elements exceeds 65K.

CONTROL BANK HAS S OPTION - SEGMENTATION NOT ALLOWED
A program whose control bank has the S option specified contains segments.
COMMON BANK CANNOT BE CONTROL BANK

Both C and X options have been specified on the same |-BANK or D-BANK source statement. The
C option (control bank) is ignored.

CORRECTION CARD SEQUENCE ERROR

COR: patch REPLACED original text AT ADDRESS address IN ELEMENT element name
#+COR%* CALLS ON UNDEFINED LC ic no. IN ELEMENT element name

The specified LC no. is not present in the named relocatable element.

+COR% OF NON-EXISTENT ELEMENT

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors o4

UPDATE LEVEL PAGE

%COR%* NOT USED WITH R-OPTION

D-BANK bankname ASSIGNED SUCH THAT SETMIN value IS SATISFIED

The start address of the named bank has been adjusted so that the specified SETMIN value has been
satisfied. The start addresses of all other banks related to this bank are determined by the adjusted
start address.

#*DEF* AND #REF* CANNOT BOTH HAVE NAME: entry point

The same entry point name has been specified on both a DEF and REF source statement. The first
source statement with the name is the only one processed. All others are ignored.

#+DEF#* and #REF* NOT USED WITH V-0OPT

A DEF or REF statement has been specified with a V option @MAP. The statements are ignored
because the tables generated by these statements are placed in the program’s D-bank which will be
non-existent in the absolute element.

DIRECTED LIB FOR FILE filename ILLEGAL — NONDIRECTED ASSUMED

A directed LIB statement has been found in a bank-implied collection. The statement is processed
as simply LIB filename.

bank name DOES NOT EXIST AS A COMMON BANK

The name common bank specified for initial basing is not defined to the Executive System as a
common bank.

bank name DUPLICATELY DEFINED

The specified bank name has already been encountered on an I-BANK or D-BANK statement. This
results in a fatal error, i.e., no absolute element is produced.

element name ELEMENT AMBIGUITY IN FILE filename

The specified element name is found for more than one relocatable element in the file. The list
following the message contains the element name and version name for each such element in the
file. None of the listed elements is included in the collection.

ELEMENT element name HAS MAP SPECIFIED LCS GREATER THAN MAX LC no. CONTAINED IN RB

A location counter number has been specified on an IN statement or an $ics statement which is
greater than the largest LC no. contained in the element.

ENT ENTRY POINT name NOT GLOBAL - NOT USED

The named entry point which was specified on an ENT statement is not global.

ENT SPECIFIED ENTRY POINT 1S NOT IN ANY INCLUDED ELEMENT - NOT USED: entry point name
ENT SPECIFIED ENTRY POINT IS NOT IN INITIALLY BASED BANK - NOT USED: entry point name

The program start address must be in an initially based bank.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors a8

UPDATE LEVEL PAGE

ENT SPECIFIED ENTRY POINT IS NOT IN THE MAIN SEGMENT - NOT USED: entry point name
The program start address must be in the main segment.

ENT STATEMENT CANNOT HAVE A NUMERIC FIELD

The parameter field of the ENT statefr.ent must contain an externalized entry point name
element name ENTRY POINT entry point name ALREADY DEFINED

The specified entry point found in the named element has already been defined in another element.
The entry point in the named element is not used.

element name ENTRY POINT entry point name ALREADY DEFINED BANK STATEMENT

element name ENTRY POINT entry point name ALREADY DEFINED BY EQU STATEMENT

element name ENTRY POINT entry point name ALREADY DEFINED BY REF STATEMENT

element name ENTRY POINT entry point name ALREADY DEFINED BY SEG STATEMENT

entry point name ENTRY POINT AMBIGUITY IN FILE filename

entry point name ENTRY POINT NOT FOUND FOR COR

entry point name ENTRY POINT NOT FOUND FOR SWAP _

ENTRY POINT entry point name - USED TO ACTIVATE INDIRECT SEGMENT LOAD - IS ILLEGALLY
REFERENCED WITH A PLUS OR MINUS OFFSET FROM OUTSIDE OF ITS SEGMENT FROM ELEMENT
element name

An entry point in the I-BANK of an indirectly loaded segment cannot be referenced with a plus or
minus offset unless the reference is made from within the segment containing the entry point. If the
reference is from outside the segment containing the entry point, the offset is ignored.

EP entry point name NOT GLOBAL - O USED IN COR

A value of zero has been used for an entry point specified in a COR source statement as no global
value was found for the entry point.

EP entry point name NOT GLOBAL - O USED IN SNAP

A value of zero has been used for an entry point specified in a SNAP source statement as no global
value was found for the entry point.

ERROR IN ELEMENT: element name
The specified element was marked in error by the processor that generated it.
*#FATAL ERROR:##

ELEM element name FOR RSEG seg name CANNOT LOAD DATA INTO COMMON BLOCK common
block name LOCATED IN SEG seg name

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors A-6

UPDATE LEVEL PAGE

*+#FATAL ERROR: I-BANK ADDRESS EXCEEDS 0177777 (65K DECIMAL)

The I-BANK address in a bank-implied collection exceeds 65K decimal.

*+#FATAL ERROR: I-BANK bank name ADDRESS EXCEEDS 0177777 (65K DECIMAL) -
The _specified bank in a bank-named collection has addresses exceeding 65K decimai.
#+#FATAL ERROR - NO QUTPUT ELEMENT PRODUCED BY COLLECTOR

A fatal error in the collection has prevented the output of an absolute element. The preceding
diagnostic messages will specify the error or errors.

##FATAL ERROR# %% NO RB ELEMENT PRODUCED

Due to a fatal error, no relocatable element was produced in an R option collection. The preceding
messages will specify the error or errors.

FATAL ERROR - NO RB ELEMENT PRODUCED - HIGHEST LC no. ALLOWED IS 077 ~ HIGHEST LC
no. NEEDED IS lc no.

In an R option collection, all common blocks are assigned location counter numbers greater than the
highest location counter number found in any of the included relocatable elements. This message
occurs when there are not enough location counter numbers available for assignment to ali common
blocks.

**%FATAL ERROR: PROGRAM IS TOO BIG - ADDRESSES OVER 0777777 ARE TRUNCATED

In a bank-implied collection, the assigned D-bank addresses exceed 262K decimal.

#*#FATAL ERROR: PROGRAM IS TOO BIG - ADDRESSES OVER 0777777 ARE TRUNCATED FOR
D-BANK bank name

In a bank-named collection, the assigned addresses for the named D-bank exceed 262K decimal.
FILE filename NEEDS A PREP IN ORDER TO BE SEARCHED

The named file specified on a LIB statement has not been @PREPed. The file is not searched.
FIRST SEGMENT IS MAIN SEGMENT - MAY NOT BE DSEG

The first segment named in a bank-implied collection and the first segment named following a bank
statement in a bank-named collection cannot be a dynamic segment.

FIRST SEGMENT IS MAIN SEGMENT - MAY NOT BE RSEG

The first segment named in a bank-implied collection and the first segment named following a bank
statement in a bank-named collection cannot be a relocatable segment.

FORM ON BANK-NAME NOT ALLOWED AFTER SEG OR IN STMT
bank name HAS ALREADY BEEN USED AS NON-BANKNAME

A bank name must be unique from all segment names and entry points in the collection.

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

A-7
Volume 3 System Processors

UPDATE LEVEL PAGE

type parameter IGNORED - FORMAT OR TERMINATOR ERROR

The TYPE statement has an illegal terminator following the specified parameter or the parameter is
illegal.

type parameter IGNORED - TYPE PARAMETER CONFLICT

The named parameter directly contradicts a parameter already processed on the TYPE parameter.
ILLEGAL GROUP NO no. IN INFO DIRECTIVE IN ELEMENT element name IS IGNORED

if the INFO directive had an entry point attached to it, group no 2 specifying a named common block
is assumed. If no entry point was attached to the INFO directive, group no 4 specifying blank common
is assumed.

ILLEGAL OPTION option IGNORED

The named illegal option was specified on an I-BANK or D-BANK source statement. The option is
ignored and the collection is continued.

element/version IN filename BYPASSED - DUPLICATED ELEMENT NAME ALREADY SPECIFIED

In processing a whole file IN (IN FILENAME.), an element in FILENAME is found which duplicates the
name of an element IN'd from another file.

value IS ILLEGAL LENGTH FOR LOCATION COUNTER no. IN ELEMENT element name

The relocatable element’s preamble specifies a length of greater than 65K decimal for the given LC
no. This indicates that the RB was incorrectly generated or that the file containing the RB has been
wholly or partially destroyed.

entry point name IS NOT DEFINED - REFERENCED IN ELEMENT element name

LC no. UNKNOWN TO LC no. ELEMENT element name BANK bank name

Due to local inclusion of the element, the reference made to the first LC no. cannot be satisfied as
it is not in any bank-set specified for the second LC no.

LIB filename () IGNORED - NO PREVIOUS LIB DIRECTION GIVEN

The named file is not searched as no LIB (BANK/$ics,...) was given.

LIMIT = 16 SNAPS/COLLECTION

The immediately preceding SNAP statement is ignored as 16 snaps have already been made.

LOCAL-GLOBAL CONFLICT FOR EP entry point - REFERENCED BY LC no. ELEM element name BANK
bank name

Due to local inclusion of the location counter under which the entry point is named, more than one
value for that entry point can be referenced from the named bank. A value of zero is used to satisfy
the reference to the entry point.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

A-8
Volume 3 System Processors

UPDATE LEVEL PAGE

LOCAL-GLOBAL CONFLICT FOR LC no. - REFERENCED BY LC no. ELEM element name BANK bank
name

The first location counter has been locally included such that the named bank can access the location
counter in more than one bank. A value of zero is used for the LC's assigned value as it is impossible
to determine which of the available values should be used.

MAIN SEG NAME MUST BE SAME FOR ALL BANKS

In a bank-named collection, the main segment of each bank must have the same name as the main
seyments of all other banks.

MAP TERMINATED DUE TO IMPROPER FORMAT OF BANK STMT
The immediately preceding I-BANK or D-BANK statement is improperly formatted.

element name MINIMUM ADDRESS IGNORED
BANK HAS USER SPECIFIED STARTING ADDRESS

LC O in the element is contained in a bank that has numeric start address specified by the user. The
SETMIN for the element is ignored.

element name MINIMUM ADDRESS IGNORED - LLC O NOT IN D~-BANK

The SETMIN value for the element applies to LC O. LC O must be contained in a D-BANK or else
the SETMIN value is ignored. :

MINIMUM GAP SIZE IN ERROR
SYSTEM VALUE 10 IS USED

A format error was detected on the MINGAP source statement. The statement is ignored and the
system value is assumed.

MINIMUM LOAD SIZE IN ERROR
SYSTEM VALUE 10 IS USED

A format error was detected on the MINSIZ source statement. The statement is ignored and the
system value is assumed.

MORE THAN ONE GLOBAL COPY OF A LOCATION COUNTER IS SPECIFIED FOR ELEMENT element
name

In a bank named collection, the element or part of the element has been included mare than once
without a local bank-set list. An element or part of an element may be included locally many times
but can only be included globally once.

MORE THAN 63 SEGMENTS NAMED ON SEG STMT

A maximum of 63 segments can be specified, either explicitly or implicitly, in the relationship list on
a SEG statement. This causes a fatal error.

NO CONTINUATION STATEMENT FOUND

No further statement was found following the continuation character (;).

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors A-9

PAGE

UPDATE LEVEL

NO ELEMENTS IN SEGMENT: segment name
NO ELEMENTS IN SEGMENT: segment name, BANK; bank name

This message is produced in bank-named collections when a segment is found to have no elements
included in it.

NO ELEMENT WITH #DEF+ ENTRY POINT: entry point name

No element was found which contained the specified DEF entry point.

NO GLOBAL LC no IN ELEMENT element name - COR IGNORED

A COR source statement specified an LC that wasbnot included globally in a bank-named collection.
NO GLOBAL LC no. IN ELEMENT element name — SNAP IGNORED

A SNAP source statement specified an LC that was not included globally in a bank-named collection.
element name NOT FOUND IN FILE filename

*+NOT NEEDED - MAIN SEGMENT STAYS LOADED

The indirect load indicator (*) was used in specifying the main segment. The asterisk is ignored.
NO START ADDRESS

No ENT statement was used in the collection and none of the preambles of the included relocatable
elements indicated a start address.

NUMBER IN COR ADDRESS FIELD IS OVER 0177777 (65K)

OFFSET NOT NUMERIC ON EQU STATEMENT

instruction POSSIBLE BAD INSTRUCTION AT address IN ELEMENT element name

$PREFIXED TO COMMON BLOCK NAME TO AVOID DUPLICATING ELEMENT NAME element name
PREVIOUS ENT STATEMENT OVERRIDES THIS ONE

PREVIOUS FORM ON BANK PRECLUDES DEFINING ANOTHER SEG FOR THIS BANK

Since a FORM on a bank-name creates an exact duplication of a previous bank structure, no additional
SEG, DSEG, or RSEG statements may be specified for the bank being generated.

PREVIOUS IN OVERRIDES THIS ONE FOR FILE: filename

in a bank-implied colliection, an IN of a whole file can occur once only. Only the first IN FILENAME
is processed.

PREVIOUS IN OVERRIDES THIS ONE FOR THE ELEMENT NAME: element name

In a bank-implied collection, an element can be included once only in a collection. Only the first
inclusion is processed.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

A-10
Volume 3 System Processors

UPDATE LEVEL PAGE

PROG OVERFLOWS TABLE SPACE - ERROR IN COLLECTOR AT ADDR: address

The collector has used all of its available table space in an attempt to collect the program. An analysis
of the dump is necessary to determine the reason for the table overflow.

RB ELEMENT NOT FOUND: element name

RB INPUT ELEMENT ERROR: element name - K VALUE value

A badly formatted relocatable element has been found. This usually indicates that either the
relocatable was badly formatted when it was produced or that all or part of the file containing the
element has been destroyed.

READ KEY NECESSARY WITH FILE: filename

The Collector cannot dynamically assign the file because no read key was specified with the filename.

entry point name REFERENCED IN ELEMENT element name NOT DEFINED FOR BANK bank name

Because of local element inclusion, the specified entry point cannot be referenced from the named
bank.

RSEG CANNOT BE USED TO DEFINE A SEG

A relocatable segment cannot be present in the relationship field of a SEG statement. The RSEG is
ignored in the relationship list.

RSEG STATEMENT USES NO FIELDS OR CHARACTERS OTHER THAN NAME

RSEG TOO LARGE - CANNOT EXCEED 65K

SAME LOCATION COUNTER USED FOR DIFFERENT COMMON BLOCKS IN ELEMENT element name
S OPTION BANKS DO NOT ALLOW SEGMENTS TREATED AS DYNAMIC

A SEG statement has appeared for a bank which was specified with an S option.

SEG CANNOT OVERLAY MAIN SEG. HAS BEEN CHANGED TO FOLLOW MAIN SEG

SEG NOT USED WITH R-OPTION

SEG NOT USED WITH V-OPTION

#SEG* NOT USED WITH Y-OPTION

SEGMENT INDIRECTLY DEFINES ITSELF

Some segment in the segment structure is related to a segment that is directly or indirectly related
2) the first segment. For example, segment A follows segment B and segment B follows segment

SEGMENT NAME DUPLICATED segment name

The specified name has been used to define more than one segment in the collection. This results
in a fatal error.

414431
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

A-11
Volume 3 System Processors

PAGE

UPDATE LEVEL

SEGMENT NOT PROPERLY DEFINED: segment name
The segment name has not been specified in the name-1 subfield on a SEG or DSEG statement.

SETAFCM = SENSITIVITY OF ABSOLUTE ELEMENT/CLRAFCM = SENSITIVITY OF START ADDR
ELEMENT

When the program is loaded for execution on the 1110 or 1100/40, the arithmetic fault compatibility
mode will be set such that an interrupt is taken when a floating point overflow, floating point
underflow, or divide fault occurs. However, when execution is initialized, the program’s code does
not expect an interrupt to occur.

#*SNAP+ CALLS ON UNDEFINED LC no. IN ELEMENT element name

The LC no. on a SNAP statement does not exist for the element.

SNAP$ ELEMENT NOT FOUND - NO SNAPSHOTS TAKEN

The SNAP$ element which produces the requested snaps has not been found, thus preventing any
snapshots.

SNAP+ OF NON-EXISTENT ELEMENT
SNAP NOT USED WITH R-OPTION
START ADDR ALREADY FOUND - ONE NOT USED IN ELEMENT element name

START OF D-BANK SET ABOVE CURRENT STANDARD 040000 IN ORDER TO MEET MINIMUM
ADDRESS REQUIREMENT value - COM BLOCK common block name

START OF D-BANK SET ABOVE CURRENT STANDARD 040000 IN ORDER TO MEET MINIMUM
ADDRESS REQUIREMENT value OF ELEMENT element name

START OF D-BANK SET AS FAR AS NECESSARY OR POSSIBLE BELOW CURRENT STANDARD
040000 to MINIMIZE USING ADDRESSES OVER 0177777 - PROGRAM MAY NOT LINKS$
SUCCESSFULLY TO REENTRANT PROCESSORS - ALTERNATIVE IS TO USE E OPTION

START ADDR OF ELEMENT NOT IN MAIN SEGMENT - NOT USED: element name

SYMBOL NAME symbol DUPLICATION ERROR

The specified name, present on an RSEG, SEG, DSEG, I-BANK or D-BANK statement, has already been
found a non-segment or non-bank name. This produces a fatal error.

SYSTEM NOTE: STANDARD REENTRANT PROCESSOR MAY NOT EXCEED ADDRESS 037777
*+#THE TRUNCATION CHECK IS TURNED OFF AFTER 500 WARNINGS

More than 500 instructions have been found in which the address portion of the word has had to
be truncated.

THIS FILE NOT CORRECTLY CATALOGUED OR ASSIGNED-NOT FOUND: filename

4144.31
UP-NUMBER

SPERRY UNIVAC 1100 Series Executive

Volume 3 System Processors A-12

PAGE

UPDATE LEVEL

THIS SEGMENT IS USED TO DEFINE ITSELF

The segment being defined in the immediately preceding SEG or DSEG statement has its own name
present in the relationship list. The name in the relationship list is ignored.

TOO MANY CHARACTERS IN A SUB-FIELD

A sub-field in the immediately preceding source statement has too many characters. The source
statement is bypassed.

TPF$ TREATED AS AN ELEMENT

As IN TPF$ was encountered. As no period followed the name, the name is assumed to be that of
an element. On the IN statement, all files must have a period immediately following the filename.

USER MAX TIME (PAGES) MET IN COLLECTION
V-OPTION NOT USED WITH R-OPTION
WARNING: EP entry point name UNDER VOID LC no. ASSIGNED VALUE value

An entry point which is assigned under a location counter with no length has been given the specified
value.

WARNING: REFERENCE TO VOID LC no. IN RB ELEMENT element name SATISFIED WiTH VALUE value

In an R option collection, a reference has been found to a location counter with no length. The
specified value was used to satisfy the reference.

WARNING-TRUNCATION OF FIELD value AT ADDRESS address BITS right-most - left-most IN
ELEMENT element name

The value to be placed in the specified field size is too large and was truncated. The left portion of
the value is truncated. This occurs, for instance, when an over 65K address is supposed to be placed
in the U portion of an instruction which is only 16 bits long.

WRONG PROJECT ID TO ACCESS PRIVATE FILE: filename

Y-OPTION NOT USED WITH R-OPT

CcuT

@ s & scececsceacemactoe s eSS S eSS4 s S as 2o 52S s =85 CCcSccEeSSSEccS0cceco0csc5050838CCS0cCCEeFToonEanTeSEoC @ »
- =

USER COMMENT SHEET
Comments concerning the content, style, and usefulness of this manual may be made in the space provided below.
Please fill in the requested information.

Requests for copies of manuals, lists of manuals, pricing information, etc. should be made through your 1100 Series
site manager to your Sperry Univac representative or the Sperry Univac office serving your locality.

System:

Manual Title:

UP No: Revision No: Update:

Name of User:

Address of User:

Comments:

FOLD

FIRST CLASS

BUSINESS REPLY MAIL PERMIT NO. 21

BLUE BELL, PA.

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
POSTAGE WILL BE PAID BY

JL
SPERRY==UNIVAC

SYSTEMS SUPPORT

ATTN: INFORMATION SERVICES M.S. 4533
PO. BOX 3942 '

ST. PAUL, MINNESOTA 55185

L

c—————————— e e

FOLD

1nd

	00001
	00002
	00003
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-22a
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-28a
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-10a
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	10-62
	10-63
	10-64
	10-65
	10-66
	10-67
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	replyA
	replyB

