UNISYS

OS 1100

Conversational Time
Sharing (CTS)

Programming
Guide

Copyright © 1988 Unisys Corporation

All Rights Reserved

Unisys is a trademark of Unisys Corporation

Previous Title: Time Sharing Guide For CTS Level 8R1 Users

Relative to Release January 1988
Level 8R1

Printed in U S America
Priced ltem UP-8118.2-A

The names, places, and/or events used in this publication are not intended to
correspond to any individual, group, or association existing, living, or otherwise. Any
similarity or likeness of the names, places, and/or events with the names of any
individual living or otherwise, or that of any group or association is purely coincidental
and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product
and related material disclosed herein are only furnished pursuant and subject to the
terms and conditions of a duly executed Program Product License or Agreement to
purchase or lease equipment. The only warranties made by Unisys, if any, with respect
to the products described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other responsibility that may be the
result of your use of the information in this document or software material, including
direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, rules, and regulations of the jurisdictions with respect
to which it is used.

The information contained herein is subject to change without notice. Revisions may
be issued to advise of such changes and/or additions.

FASTRAND, <+ SPERRY, SPERRY 9= UNIVAC, SPERRY, SPERRY UNIVAC, UNISCOPE,
UNISERVO, UNIS, UNIVAC, and < are registered trademarks of Unisys Corporation.
ESCORT, PAGEWRITER, PIXIE, PC/HT, PC/IT, PC/microlT, SPERRYLINK, and USERNET
are additional trademarks of Unisys Corporation. MAPPER is a registered trademark
of Unisys Corporation. CUSTOMCARE is a service mark of Unisys Corporation.

Correspondence regarding this publication should be forwarded using the remark
form in this manual, or remarks may be addressed directly to Unisys Corporation,
Large Systems Product Information, P.O. Box 64942 MS: WEI1A, St. Paul, Minnesota,
551640942, USA.

Time Sharing Guide for CTS Users

UP-8118.2-A Page Status Summary PSS-1
Page Status Summary
Issue: UP-8118.2-A
Section Pages Update section Pages Update

Front Cover A

Title Page/Disclaimer A

User Comment Form A

PSS A

Contents -8 Orig.
Section 1 -6 Orig.
Section 2 - 42 Orig.
Section 3 - 22 Orig.
section & - 16 orig.
Section 5 - 27 Orig.
Section 6 - 20 Orig.
Section 7 - 16 Orig.
Section 8 - 40 orig.
Section 9 -7 Orig.
Section 19 -5 orig.
Section 11 - &4 orig.
Section 12 - 14 orig.
Section 13 -4 Orig.
Appendix A -3 Orig.
Appendix B - 13 orig.
Index - 10 A

Back Cover A

8118.2
UP-NUMBER

i-1
PAGE

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users UPDATE LEVEL

1. Introduction

1.1. Scope of Manual

This guide teaches how to create and execute programs from remote terminals using the SPERRY
UNIVAC Series 1100 Conversational Time Sharing (CTS) System. If more detailed explanation of
a given CTS command is necessary, consult SPERRY UNIVAC Series 1100 Conversational Time
Sharing (CTS) System, Programmer Reference, UP-7940 (current version).

Sections 2 through 6 of this guide show sequentially how to create, save, display, edit, and execute
a program using CTS. These sections provide enough information to build most programs. Sections
7 through 14 discuss more complex CTS functions. Try to understand and use the concepts of the
first half of the guide before going on to these sections.

1.2. Style Conventions

Anything displayed on a terminal screen by the system will appear in this gmde in boldface type. Input
typed at the terminal will be in jtalic type. :

For most examples, verbatim copies from terminal screens have been used. Because many terminals
print only uppercase letters, the conventional symbolism for some CTS names, such as the working
area, f, and the program name, d, cannot be used.

Optional command parameters are enclosed by brackets ([]).

1.3. Calling CTS

The Conversational Time Sharing (CTS) System is a processor operating on the Series 1100 System.
This processor is activated by typing the @CTS conirol statement that has the format:

@CTS. options file-name.

8118.2

SPERRY UNIVAC Series 1100 1-2
UP-NUMBER Time Sharmg Guide for CTS Users UPDATE LEVEL PAGE
where:
opltions may be:

F This option specifies that a unique identifier is to be used instead of run-id
wherever the run-id would be used as part of a file name. This option allows
the establishment of a unique CTS$FILE and default assumed save file Fin an
environment where the actual run~id may not be known.

I This option forces initialization. All of the steps described in 1.3.1.2 are taken
even if the recovery file CTS$FILE exists and is usable.

N This option causes a faster initialization by skipping steps 4, §, and € as
described in 1.3.1.2.)

P This option specifies that the initial mode of the working area will be Fieldata.
If neither the P nor the Q option is specified, the Q option is assumed.

Q This option specifies that the initial mode of the working area will be ASCIlL.
If neither the P nor the Q option is specified, the G option is assumed.

L This option disallows the XCTS command. The user is locked into CTS.

file-name. is a file name in the operand of the control card recognized by CTS as being the
assumed file F. If no file name is specified, a file with the name of the user’s run-id,
or identifier if the F option is specified, will be created. |n either case, this file name
is recognized only when CTS initializes. If CTS does not initialize, the name of the
save file is restored {like the other operating conditions) from the recovery file.

Example:

@CTS,IN MYFILE
CTS B8Rt 12 FEB 81 AT 08:47:24
THE ASSUMED MODE IS ASCIH
The assumed save file {F} is MYFILE. If there is a system news file or if the user
has a USER$ subroutine, it is ignored because of the N option.
1.3.1. Initialization of CTS

CTS initialization can be done in two ways, depending on the F option on the processor call. If the
F option is used, the initialization procedure described in 1.3.1.1 is performed. If it is not used, the
initialization procedure described in 1.3.1.2 is performed.

1.3.1.1. Initialization With the F Option

CTS initialization begins with the following two steps:

1.

If the | option is also specified on the @CTS command, a unique identifier is requested from

the user. This identifier may be one to six characters in length, and must consist of characters

allowed in a valid run-id. Using this identifier, the file name for the save file is created. as well
as the file name for the auto recovery file CTS$FILE.

8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users |UPDATE LEVEL PAG(EZOF-lEnts—'I
Contents

Page Status Summary

Contents

1. Introduction -1
1.1. Scope of Manual 1-1
1.2. Style Conventions 1-1
1.3. Calling CTS -1
1.3.1. Initialization of CTS 1-2
1.3.1.1. Initialization With the F Option 1-2
1.3.1.2. Initialization with the | Option 1-3
1.3.1.3. Reentering CTS 1-4
1.3.1.3.1. Normal 1-4
1.3.1.3.2. After a System Crash 1-4
1.3.2. System News File 1-4
1.3.3. Initialization Subroutine — USER% 1-5
1.4. Exiting from CTS - XCTS 1-5
1.5. Changing Control Characters = 1-6
1.6. Interrupting the System - @@X CI0O 1-6

2. Creating a New Program 2-1
2.1. General Z-1
2.2. The Contents of the Working Area - f 2-3
2.2.1. Specifying Part of a Line - ASSUME COLUMN 2-4
2.2.2. Specifying Part of an Edited Line - ASSUME ECOLUMN 2-4
2.2.3. Specifying Part of the Working Area for Siting - ASSUME

OCOLUMN

. Line Pointer - p
. Line Number Specifications

4
5

.6. Line Numbers

7

8

8.1. Specifying a Sequence of Line Numbers

NRNRDNN
NP NN

. Specifying Part of the Line for Printing - ASSUME PCOLUMN
. Specifying Part of a Line to Search - ASSUME SCOLUMN

L

I

MNM?}MNN
S~ oo m

8118.2 SPERRY UNIVAC Series 1100

Coritents-2
UP-NUMBER Time Sharing Guide for CTS Users oritents

PAGE

UPDATE LEVEL

2.2.8.2. Specifying a Range of Line Numbers - L 2.7
2.2.9. Setting the Character Mode - ASSUME ASCII 2-9
©2.2.10. Protecting f from a Loss Due to System Stop - ASSUME AUTO 2-9
2.3. Creating Lines of Data in f 2-10
2.3.1. Controlling the Solicitation Sequence - ASSUME POLL 2-11
2.3.2. Automatic Line Number Generation - NUMBER 2-12
2.3.3. Termination of Automatic Line Numbering - MANUAL 2-15
2.3.4. Defining Tab Stops and Character - TAB 2-16
2.3.5. Restricting Certain CTS Commands - ASSUME EDIT 2-16
2.4. Prescan Modules 2-17
2.4.1. BASIC 2-17
2.4.1.1. Scanning for American National Standard BASIC—ANSI 2-19
2.4.2. FORTRAN 2-189
2.4.2.1. Automatic Formatting 2-21
2.4.2.2. Continuation Lines 2-22
2.4.2.3. Abbreviated Key Words 2-23
2.4.2. 4. Automatic Global Syntax Analysis (BFOR Only) 2-24
2.4.25. Global Syntax Analysis — CHECK 2-286
2.4.2.6. Controlling Automatic Glebal Syntax Analysis (BFOR Orly) 2-26
2.4.3. COBOL 2-27
2.4.3.1. Operational Description 2-27
2.4.3.2. Modes of Operation 2-31
2.4.3.2.1. Edit Mode 2-31
2.4.3.2.2. Conversational Mode 2-32
2.4.3.2.3. Program File Mode 2-37
2.4.3.3. Summary 2-37
2.4.4. APL 1100/CTS . 2-37
2.4.4.1. Access to APL 1100 2-38
2.4.4.2. Processor Options 2-38
2.4.4.3. Statements 2-39
2.4.5. Other Processors 2-40
2.4.6. Controlling Prescan Local Syntax Checking — SYNTAX 2-41
2.4.7. Terminating Prescan Control - CLEAR 2-42
3. Saving and Retrieving Programs 3-1
3.1. Specifying a Program Element or Data File 3-1

3.2. Making a Permanent Copy - SAVE 3-1
3.2.1. Saving f as a Program 3-2
3.2.2. Saving f as a Data File 3-7
3.2.3. Setting the Maximum Length of a Saved Line - ASSUME

SAVELENGTH 3-9
3.3. Updating a Copy - REPLACE 3-9
3.4. Discarding a Copy - UNSAVE 3-11
3.5. Retrieving a Copy - OLD 3-13
3.6. Combining a Copy with f - MERGE 3-17
3.6.1. Resolution of Line Number Conflicts . 3-18

3.6.2. MERGE Examples 3-20

8118.2 SPERRY UNIVAC Series 1100 Contents-3

UP-NUMBER | Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

3.7. Selecting Data Mode - DATA 3-21

4. Displaying and Printing Programs 4-1
4.1. Printing and Listing at Terminals 4-1
4.1.1. Displaying of f — PRINT 4-1
4.1.2. Compact Display of f - QUICK 4-5
4.1.3. Spacing Images in CTS Output Listing - SKIP 4-5
4.1.4. LIST 4-6
4.1.4.1. Displaying f - LIST L _ 4-6
4.1.4.2. Displaying Names of Saved Elements — LIST SAVED 4-5
4.1.4.3. Displaying the Names of Assigned Files — LIST INUSE 4-9
4.2. Sending the Qutput to Another Device 4-10
4.2.1. Sending Qutput to an Onsite Device - SITE 4-10
4.2.2. Qutput to Punched Cards — CARDS 4-11
4.2.3. Output to Paper Tape - PUNCH 4-12
4.2 3.1. Paper Tape Input - PTI 4-13
4.2.3.2. Setting the Line Length - ASSUME INPUTWIDTH 4-13
4.3. Setting Defaults for Printing 4-14
4.3.1. Defining Terminal Line Length - ASSUME PRINTWIDTH 4-14
4.3.2. Compressing Qutput - ASSUME QUICK 4-14
4.3.3. Defining an Onsite Device - ASSUME SITE 4-14
4.3.4. Specifying a Default Heading - ASSUME HEADING 4-15
4.3.5. Specifying a Default Return-to Message - ASSUME RETURN 4-15
4.3.6. Setting the Number of Copies - ASSUME COPY 4-15
4.3.7. Controlling the Line Number Display - ASSUME TYPE 4-15
4.3.8. Sending Print to an Alternate File — ASSUME BREAKPOINT 4-186

5. Editing and Modifying Programs 5-1

Locating Information in f to be Modified 5
Finding a String - LOCATE 5-
Finding a String — FIND 5
Controlling the Display of Matched Lines - ASSUME BRIEF 5
Controlling the Display of Line Numbers of Matched Lines -
ASSUME LINES

aommom
- L
DW=’

5-8
5.1.5. Reprinting of Lines Keyed into CTS - ASSUME ECHO 5-8
5.1.6. Setting the FILLER Default for LOCATE - ASSUME FILLER 5-9
5.1.7. Setting the SPACER Default for LOCATE - ASSUME SPACER 5-9
5.1.8. Setting the STRING Default - ASSUME STRING 5-9

5.1.9. Controlling the Printing of the NUMBER OF QCCURRENCES 5-10

Message — ASSUME OCCURRENCES 5-10

. Modifying Lines of f 5-11

1. Discarding Part of f — DELETE 5-11

2. Replacing Strings - CHANGE 5-14

.3. Editing a Line — INLINE 5-18

4. Inserting Strings — INSERT 5-19

Manipulation in f 5-22
1. Erasing and Naming f - NEW 5-22
.2. Reorganizing Line Numbers — RESEQUENCE 5-23
3. Nondestructive Line Copy - DITTO 5-24

8118.2

SPERRY UNIVAC Series 1100 Contants—4
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL |PAGE

5.3.4. Destructive Line Copy - MOVE 5-25
5.3.5. Changing the Name of f - RENAME 5-26
5.3.6. Resolving Line Number Conflicts — ASSUME RESEQUENCE 5-26
Execution and Creation of Object Programs 6-1
6.1. General 6-1
6.1.1. Methods Used 6-1
6.1.2. Operating System Aspects of Compilation, Collection, and Executlon 6-2
6.1.3. Compilation, Collection, and Execution Under CTS 6-3
6.2. Compiling, Collecting, and Executing in one Operation - RUN 6-4
6.2.1. Setting the Assumed Compiler - ASSUME COMPILER 6-9
6.2.2. Changing the Save and QObject File - ASSUME FILE 6-10
6.2.3. Changing the Object File - ASSUME OBJECT 6-11
6.2.4. Changing the Save File - ASSUME PROGRAM 6-11
6.2.5. Changing the Name of the Relocatable Element - ASSUME

RELOCATABLE 6-13
6.3. Executing, Naming, and Saving Absolute Elements 6-13
6.3.1. Executing an Absolute Element — XQT 6-14
6.3.2. Naming the Absolute Element — ASSUME XQT 6-15
6.4. Creating Relocatable and Absolute Elements 6-16
6.4.1. Creating Relocatable Elements — COMPILE 6-16
6.4.2. Creating an Absolute Element — MAP 6-17
6.4.2.1. Specifying the Main Program — ASSUME MAIN 6-18
6.4.2.2. Specifying Additional Libraries — ASSUME LIBRARIES 6-18
6.4.2.3. Specifying MAP Directives — ASSUME MAP 6-19
6.5. Initiating a Processor Call — PXQT 6-19
File Handling 7-1
7.1. Mass Storage Files 7-1
7.1.1. Mass Storage Files in the Series 1100 Operating System 7-1
7.1.2. Use of Mass Storage Files by CTS 7-2
7.2. Permanent and Temporary Files 7-3
7.3. Drum, Disk, and Tape Files 7-3
7.4. Security 7-7
71.5. Manipulating File Contents 77
7.5.1. CREATE 7-7
7.5.2. PURGE 7-8
7.5.3. RELEASE 7-9
7.5.4. COPY 7-10
7.5.5. USE 7-11
7.8.6. PACK 7-12
7.5.7. ADD 7-13
7.5.8. ERASE 7-14

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGé:nntents-B
7.6. Submitting Operating System Control Statements — CSF 7-14
7.7. Examples of File Usage 7-15
7.7.1. FORTRAN 7-15
7.7.2. BASIC 7-16
7.7.3. Alternate Program File 7-16

8. Subroutines g-1
8.1. General 8-1
8.2. Building a Subroutine 8-2
8.2.1. SAVE 8-3
8.2.2. SUBROUTINE 8-3
8.2.3. PROC 8-6
8.3. Programming a Subroutine 8-7
8.3.1. Variables 8-7
8.3.2. SET 8-7
8.3.3. QUERY 8-8
8.3.4. TYPE 8-9
8.3.5. JUMP 8-9
8.3.5.1. ERROR 8-11
8.3.5.2. FOUND 8-11
8.3.5.3. BRANCH 8-12
8.3.6. Variable Substitution in CTS Commands 8-13
8.3.7. Miscellaneous Commands 8-16
8.3.7.1. ENTRY B-16
8.3.7.2. RETURN 8-17
8.3.7.3. END 8-18
8.3.7.4. GENERATE 8-18
8.3.7.5. Setting the Line Pointer ~ GO §-20
8.3.7.6. Commentary Information 8-21
8.3.7.6.1. REMARK ' 8-21
8.3.7.6.2. Percent-Sign {%) §-22
8.3.7.7. Leaving CTS Mode - EXIT 8-22
8.3.8. Removing a Variable or Subroutine — DROP 8-23
8.4. Calling a Subroutine 8-24
8.4.1. CALL 8-24
8.4.1.1. ASSUME CALL FILE 8-25
8.4.2. CALL Parameter 8-25
8.4.3. Subroutine Debugging 8-27
8.4.3.1. ASSUME SBUG 8-27
8.4.3.2. Subroutine Trace 8-28
8.4.3.3. ASSUME TRACE 8-29
8.4.3.4. ASSUME JUMP 8-30
8.4.3.5. Miscellaneous Conditions 8-31
8.4.3.6. Displaying Variables B-33
8.4.3.7. Subroutine Nesting 8-33
8.5. Saving Subroutines Between CTS Sessions 8-34
B.5.1. Saving a Subroutine as an Omnibus Element — SSUB B-34
8.5.2. Replacing a Saved CTS Subroutine Eiement — RSUB 8-35

B8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVE' PAGE.UHIEMS—F)
8.6. Examples 8-36
8.6.1. Selective Execution 8-36
8.6.2. Programmable Editor 8-37
8.6.3. Starting Batch Runs 8-39

3. Operating Information and Assistance 9-1
9.1. File Information g-1
9.1.1. LIST CATALOG 9-1
9.1.2. LIST FILE 9-2
9.1.3. CTS Internal File Names 9-2
9.2. Miscellaneous Operating Information 9-3
9.2.1. NEWS File 9-3
9.2.2. Number of Lines in f - LENGTH 9-3
9.2.3. DATE a_4
9.2.4. Central Processor Time - CPTIME 9-4
§.2.6. STATUS 9-4
9.3. Online Assistance 9-5
9.3.1. Command Information — HELP 9-5
9.3.2. Error Message Information — EXPLAIN 9-6

10. User Communications 10-1
10.1. General 10-1
10.2. User/Operator Communications 10-1
10.2.1. QOperating System Message - @MSG 10-1
10.2.2. CTS Message - OPR 10-3
10.3. User/User Ccmmunications 10-4
10.3.1. MAIL 10-4
10.3.2. LOOK 10-5

11. Debugging Techniques 11-1
11.1. Program Debugging 11-1
11.1.1. Examining Processor Qutput—SCAN 11-2
11.1.2. Terminating SCAN Mode—EDIT 11-3
11.2. Debugging Source Code 11-4
11.2.1. Debug Mode - ASSUME DEBUG 11-4
11.2.2. BASIC 11-4
11.2.2.1. PAUSE 11-4
11.2.2.2. BREAK 11-7
11.2.2.3. TRACE 11-9
11.2.3. FTN 11-12
11.2.3.1. Debug Facility 11-12
11.2.3.1.1. DEBUG 11-13
11.2.3.1.2. AT 11-15
11.2.3.1.2. TRACE ON 11-16
11.2.3.1.4. TRACE OFF 11-16
11.2.3.1.5. DISPLAY 11-17
11.2.3.1.6. Debug Facility Exampie 11-17

8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAG(E:onlenls-T
11.2.3.2. Eliminating Program Coliection - ASSUME CHECKQUT 11-18
11.2.3.3. Interactive Debugging Mode in the Checkout Compiler 11-18
11.2.3.3.1. " Entering Interactive Debug Mode 11-19
11.2.3.3.2. Soliciting Input 11-20
11.2.3.4. Debug Commands 11-20
11.2.3.4.1. BREAK 11-21
11.2.3.4.2. CALL 11-22
11.2.3.4.3. CLEAR 11-23
11.2.3.4.4. DUMP 11-24
11.2.3.45. EXIT 11-25
11.2.3.4.6. GO 11-25
11.2.3.4.7. HELP 11-26
11.2.3.4.8. LINE 11-26
11.2.3.4.9. LIST 11-26
11.2.3.4.10. PROG 11-26
11.2.3.4.11. RESTORE 11-27
11.2.3.4.12. SAVE 11-28
11.2.3.4.13. SET 11-29
11.2.3.4.14. SETBP 11-30
11.2.3.4.15. SNAP 11-31
11.2.3.4.16. STEP 11-31
11.2.3.4.17. TRACE 11-31
11.2.3.4.18. WALKBACK 11-32
11.2.3.4.19. Interactive Debugging Example 11-32
11.2.3.6. Contingencies and Restrictions in Checkout Mode 11-34
11.2.3.6. Walkback and the Interactive Postmortem Dump 11-35
11.2.4. RFOR 11-35
11.2.4.1. PAUSE 11-35
11.2.4.2. BREAK 11-38
11.2.4.3. TRACE 11-39

12. Desk Calculator 12-1
12.1. Expressions 12-1
12.1.1. Integer Constants 12-1
12.1.2. Real Constants 12-1
12.1.3. String Constants 12-2
12.1.4. Functions 12-2
12.1.5. CTS Variables 12-9
12.1.6. Operators 12-10
12.2. Variable Definition — SET 12-10
12.3. Evaluating and Printing Expressions — TYPE 12-11
12.4. lterative Expression Evaluation — DISPLAY 12-12
12.5. Iterative Expression Summation - SUM 12-13
12.6. Removing a Variabie or Subroutine - DROP 12-14

8118.2 SPERRY UNIVAC Series 1100 Contents-8
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
13. Batch Mode 13-1
13.1. General 13-1
13.2. Starting a Batch Job from the Terminal 3-2
13.2.1. In Executive Mode - @START 13-2
13.2.2. In CTS Mode — CSF ‘START’ 13-2
13.2.3. In Either Mode - @ @ START 13-4
13.3. Batch/Time Sharing Compatibility 13-4
Appendix A. Transparent Control Statements A-1
Appendix B. Explanation of CTS Messages B-1
B.1. Miscellaneous Messages B-1
B.2. CTS Diagnostic Messages B-3
Index
User Comment Sheet
Tables
Table 2-1. APL 1100 Options 2-38
Table 3-1. Assumed Compiler and Options for OLD Command 3-14
Table 12-1. Numeric Functions 12-3

Table 12-2. String Functions 12-5

8118.2 SPERRAY UNIVAC Series 1100 1-3
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
For example, if the user answers:
ENTER A UNIQUE FILE IDENTIFIER > JONES
the default save file F will be JONES, regardless of the user run-id.
2. An attempt is made to restore the CTS operating environment from the recovery file CTSSFILE.
This file will exist if the previous CTS terminal session was terminated by a system crash, or if
CTS has been called at least once during this terminal session. For a system crash recovery,
CTS prints the message:
CTS RESTART
If a system crash did occur, then an F option without an | option will cause the unique identifier
to be requested so recovery can be made. If no crash occurred, and the | option is not given,
then no request for the identifier is made, if CTS$FILE already exists.
The remaining steps are the same as steps 3 through 7 in 1.3.1.2.
1.3.1.2. Initialization with the | Option
CTS initialization begins with the following sequence:
1. If a save file F exists, it is assigned. If it does not exist, it is created. If this file is not specified
in the contro! statement (see 1.3.1) then the run-ig is used.
. 2. CTS creates a recovery file, CTSSFILE. This file retains the contents of the working area { intact
after the user exits from CTS.
3. A sign-on line consisting of the CTS version, current date, and time is printed.
4. I a system news file exists, a solicitation asks whether or not the news should he printed {see
1.3.2).
5. The following reminder is printed:
IF YCU NEED ASSISTANCE TYPE #*HELP
6. If the user has a USER$ subroutine, it is automatically executed at this time {see 1.3.3).
7. The mode of f will be displayed as follows:

THE ASSUMED MODE IS ASCII
or

THE ASSUMED MODE IS FIELDATA

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

1-4

UPDATE LEVEL PAGE

1.3.1.3. Reentering CTS

1.3.1.3.1. Normal

After an exit, CTS retains the contents of the working area f until a @FIN statement is encountered,
so it is possible to recover CTS with the working area the same as it was just prior to the exit from
CTS. This is accomplished by entering the @CTS control statement (see 1.3) without any options
and without a file name, since these were specified in the initial CTS call and are still in the recovery
file.

1.3.1.3.2. After a System Crash

When a system crash occurs, the CTS recovery file may or may not have been retained intact. CTS
protects against loss of data on an abnormal CTS run termination, but it will not necessarily protect
against system crashes. For example, if a system crash occurs when a disk write is being performed
on CTS$FILE, some of the pointers set up in CTS may have been changed before the crash but some
may not. Thus, when a restart is attempted, errors may occur because some pointers arg incorrect.

1.3.2. System News File

If a news file has been established by the site, CTS will automatically solicit a response from the user
after the sign-on line is printed. The following is an example of what is received when the news is
requested:

-> @CTS,/
CTS B8R1 07 FEB 81 AT 07:53:53

THE NEWS IS DATED 07 FEB 81 AT 07:50:02

WOULD YOU LIKE THE NEWS?> YES

1

2 FOR A BRIEF QVERVIEW OF THE NEW FEATURES IN CTS, TYPE IN:

3 CALL CTS-COMMANDS '

4 PLEASE REFER TO THE APPROPRIATE DOCUMENTATION FOR A FULLER
5 DESCRIPTION OF THE NEW COMMANDS.

6

IF YOU NEED ASSISTANCE TYPE *HELP

FOR NEW FEATURES TYPE %*CALL CTS-COMMANDS

THE ASSUMED MODE IS ASCII

_> .

The time and date of the news file is given so the user can see if the news has changed. A NO
response to the solicitation:

WOULD YOU LIKE THE NEWS?

would cause the news printing to be skipped.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -5

PAGE

UPDATE LEVEL

1.3.3. Initialization Subroutine — USER$

A subroutine can be built (see Section 8) that will automatically be called during initialization. This
subroutine must be an eilement catied USER$. It must be saved in the assumed save file F. The rules
for establishing the name of the assumed save file are described in 1.3.1. The USER$ subroutine
can be used to set operating conditions different from the usual defaults, to check for mail (see 10.3.2,
LGOK command}, etc. Please note that the USERS$ subroutirie is not executed if the N option is used
during initialization.

For example, a possible USER$ element would be:

110 ASSUME AUTQ 20 P

120 ASSUME FILE JUDY*JUDY
130 LOOK

140 TAB ; 10,20,30.40

150 ASSUME SITE PR1

1.4. Exiting from CTS - XCTS

The XCTS command causes an exit from the CTS processor. This puts the system in “control mode,”
allowing the user to execute any valid Series 1100 Executive control statement. An exit from CTS
via an XCTS command does not alter the working area, f. The working area is retained until the
terminal session is terminated by a @FIN conirol statement. A reentry to CTS via the @CTS control
statement will recover the area, as described in 1.3.1.

NOTE:

The L option on the @CTS control statement disallows the XCTS command.

If the working area has been edited using any of the following commands, but not saved or replaced
prior to exiting CTS, a warning message is printed. The commands are:

CHANGE DELETE DITTO GENERATE
INLINE INSERT MERGE MOVE
NEW NUMBER RENAME RESEQUENCE

Entering a data line
For example:

-> 10 ABC

-> 20 DEF

> XCTS

WARNING - THE WORK AREA WAS NOT SAVED/REPLACED
IN EXEC MODE

-> @CTS

->SAVE ELT

->XCTS

IN EXEC MODE

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 1-6
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

1.5. Changing Control Characters =
Syntax: =A,B, C
Abbreviation: ane
Function: To change the CTS control characters.
The CTS contrel characters normally are the foilowing symbols:

* The asterisk is the command control character which is used to indicate a command when
in number mode {see 2.3.2). When so used, the "¥" will terminate number mode.

% The percent sign is the delimiter for comments and for substitution of variables (see 8.3.6).
The single quote is the string delimiter {see 5.2.2).

The character specified by A becomes the new CTS command cantrol character rather than the "*",
The character specified by B becomes the new variable delimiter rather than the "%" character. The

character specified by C becomes the new string delimiter rather than the single quote.

All characters specified for A, B, and C must be special, i.e., not alphanumeric.

Examples:
== changes the CTS command control character to "-" and the string delimiter to
semicolon, while the variable delimiter is not changed from its former definition.
-=% restores the CTS command control character to the asterisk. Notice that the current

command control character precedes the ccmmand. This s, of course, optional.

Changing the command control character allows entering data lines in number mode which have an
asterisk as the first character. Normally the asterisk would terminate number mode. The command
control character cannot be setl to "@" since this conflicts with Executive command syntax.

NOTE:

Certain CTS commands depend on the existence of prewritten CTS subroutines. These subroutines,
in turn, assume that the variable delimiter and string delimiter are "% " and " ', respectively. If these
delimiter characters are changed, the commands in question may no longer work, nor, in fact, may
other subrcutines constructed for personal use. Hence, the = command should be employed with
caution. The same variable delimiter must be used throughout a subroutine and it must be the same
variable delimiter as when the subroutine definition was made (see 8.3.6)

1.6. Interrupting the System - @ @X CIi0

Some program ersors require cancelling a current program activity. For example, an infinite loop in
a program could tie up a terminal and processer. The @ @ X CIQ statement can be used to accomplish
this.

NOTE:

Never use the T option of the @@ X statement to terminate CTS commands.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 2.1
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

2. Creating a New Program

2.1. General

Programs are built by creating a set of data images which conform to the rules of syntax and
semantics of a particular programming language. In CTS, data sets of all kinds, including those that
hapnen to be programs, are created in the working area file which is called f. CTS creates f using
a predetermined size and assigns it a use-name of CTS$FILE. It is possible to create and assign f
to your run before calling @ CTS,l. This method will override the default size used by CTS and is useful
when excessively large elements or files are to be entered.

Once a program is created in f, it may be saved as an element of a program file, usually F, so it may
be used again. {Section 3 discusses the saving and retrieving of programs.) The working area file,
f, is thus central to the creation, editing, and use of programs under CTS. This file has a format unique
to CTS, i.e., itis neither a program file nor a data file {see 7.1.1). It has several attrlbutes which make
it useful for creating, editing. and running programs. These are:

B Contents

The contents of f consist of data images, each of which is called a line, and each of which has
a unique line number. The contents may be nonexistent, in which case f is said to be empty.

M Line Pointer

This pointer is 2 nonnegative integer stored by CTS which defines the current line number. The
line pointer always exists.

y | Name

This is the name of the contents of f, although for brevity it is sometimes called by the name
of . The name may be nonexistent.

M Assumed Compiler
This is the operating system processor associated with the data in f. It also includes the options
to be used if this processor is used to compile the contents of f. The assumed compiler may

be nonexistent.

Most of the commands in CTS deal directly with f. Some of them change its contents, line numbers,
name, or assumed compiler explicitly. Others change them indirectly.

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2-2

PAGE

UPDATE LEVEL

There are different ways of getting images into f. They may be entered directly, as if they were data.
They may be entered under control of one of the prescan modules of CTS which checks the format
of each line as it is entered. The information may be retrieved from a file. The rnaterial retrieved
from the file need not have been created under CTS.

Once the purpose and method of a program are known and a language and compiler are chosen,
creating the program with the help of CTS involves several steps:

a. Enter the lines of code conforming to the chosen compiler language.

b. Remoye the obvious errors — typographical errors, formatting errors, etc.
c. Compile the program to locate global errors.

d. Remove the errors uncovered in compilation.

e. When steps ¢ and d have been repeated until no more errors are discovered during compilation,
save the program.

f. Test the program by executing it with data designed to verify that it is operating correcily.
g. Modify the program to remove any errors discoVeréd, and return to step c.

h. When steps ¢ through g have been repeated until no more errors are uncovered, the program
is considered to be error free and ready to be used. CTS is designed speciflcally 10 assist in
each of the above steps, allowing quick processuon through them.

In step a, for example, CTS makes it easy to enter lines of data formatted to the needs of any compiler.
The required column positions and tab characters may be defined to line up margins for convenience -
{in ALGOL, for example, to line up nested blocks) or of necessity (to comply with FORTRAN or COBOL
line formats). In addition, the NUMBER command (see 2.3.2) can reguest that CTS explicitly enter
the line numbers. CTS will then supply them automatically and, if desired, leave room between
successive lines for insertion of correction lines or lines which were inadvertently skipped.

Abbreviations or special symbols may be used for long names or expressions which cccur frequently,
to make keying in the program easier. To do this, use the symbol or abbreviation when typing the
program. No special definition is necessary. Then, when the entire program is entered, a single
CHANGE command {see 5.2.2) will change all occurrences of one special symbol or abbreviation into
the full name or expression throughout the program.

If the chosen compiler has a prescan module in CTS {e.g., BASIC, ASCIl FORTRAN, COBOL), the task
of entering lines initially is even easier. The formatting may be done by the prescan module. The
prescan module may also provide a convenient short form for special words of the language (in
FORTRAN; for example, D:N is expanded into DIMENSION). The prescan modules provide for
automatic or simplified implementation of a continuation line when a statement is too long for one
fine. Also, prescan modules do a noncontext syntax scan of each line as it is entered. If a discrepancy
is detected, 8 message tells what is wrong, and the module waits for the statement to be corrected
before accepting it. In this way, step b is performed as the program is built.

CTS provides a comprehensive set of commands to help locate and remove errors in the program.
Simply listing the program wili make many formatting errors obvious. Others may be detected more
readily by listing only a part of each line - those columns beyond column 72, for example. If a prescan
module is not being used, step b may be implemented by finding the obvious errors and removing
them with the editing commands designed to modify lines easily {see 5.1). If a prescan module is
being used. this step will have been performed during the keying in of the program. The corrections
would have invoived using the same editing commands. The editing commands will also be used

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 2-3
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

even more extensively in steps d and g, not only to make corrections. but also to help locate errors.

CTS makes step c (compiling) quicker and easier, not only by providing a simpier command form (it
is usually sufficient to enter COM), but by arranging for the somewhat voluminous compiler output
listing to be directed not to the terminal, as would be the normal ¢ase. but to 2 file. If requested,

CTS does a diagnostic scan of this output file after the compilation to display all the diagnostic
messages, Alternatively, the SCAN command (see 11.1.1) can be used to retrieve parts of the file
and editing commands can be used to search for key words such as ERROR. All of it can be listed
or parts can be accessed randomly while locating errors. When this file is no longer needed, control
can be returned to the program to make corrections. This technigue is also useful in step f. Prescan
modules have the advantage that they are oriented towards finding errors by doing only the
syntax-scan part of a compilation. This is especially efficient in step c, where the purpose of the
compilation is to find errors. Prescan modules produce somewhat more comprehensive and explicit
diagnostic messages than their batch compiler counterparts, which makes them particuiarly useful
in step c.

If the program is complex, it may take several sessions at the terminal before a checked-out program
exists. CTS makes it convenient 1o save the contents of f at the end of one session and restore it
at the start of the next, so work may be continued. In any case, it is a good idea to save the program
occasionally as a backup in case f is accidentally destroyed. The saving and retrieving of programs
under CTS are discussed in Section 3.

In summary, CTS facilitates every step of program creation by providing facilities such as:

M aids for entering data into f;

editing features and commands;

simplified compilation system;

prescan modules; and

saving and restoring of programs.

2.2. The Contents of the Working Area — f

The unit of information in f is the line. In turn, the unit of information in the line is the character.
Character positions in a line are numbered from the left, beginning with 1. The line length is usually
limited by the tnput device, but a longer line may be created by editing an existing line in such a way
that more characters are inserted than deleted. The longest line that can be created in this way has
132 character positions. Be careful, when using such features for creating programs, to avoid
accidently extending a line beyond the limit accepted by the processor {compiler) to be used. For
example, some processors have a limit of B0 character positions; others, 72.

The working area file is not lost due to a system stop. When CTS is called after a system stop, the
working area contains the lines that existed when the lzst automatic save was done. An automatic
working area save is done after each OLD command (see 3.5), before any program execution
command {see Section 6}, and periodically if requested by an ASSUME AUTO command (see 2.2.6).

8118.2

UP-KUMBER '?"l:rEnH: YSl[":::"mgc sGeljiiedse1f13l9 CTS Users UPDATE LEVEL. mf’"
2.2.1. Specifying Part of a Line - ASSUME COLUMN
Syntax: ASSUME COLUMN [({c1,c2)]
Abbreviation: A COL
Function: To establish a new global default column parameter, or to reestablish the

standard one.

Occasionally it may be useful to refer to a part of a line {e.g., print or change part of a line). This is
done by specifying a range of column numbers. Several of the CTS commands afford this option,
which is specified by a parameter of the form: (c1,c2) where c¢1 is the leftmost column to be
considered, and c2 the rightmost. If either is left blank, it is normally assumed to be the end of the
line in that direction. Thus, { ,20) means the part of a line from the beginning, column 1, through
column 20, inclusive. If only one number is specified in the parentheses, it is assumed to be =1, and
c2 is assumed to be the rightmost character. If this parameter is omitted, the normal defaultis (1,132).
However, the ASSUME COLUMN command is available to change this default assumption. It also
changes the default values for ¢1 or ¢2 individually.

The ASSUME COLUMN command specifies default column limits for the ASSUME ECOLUMN,
OCOLUMN, PCOLUMN, and SCOLUMN commands. This produces a global column limit for all
commands using column limits.

Parameters ¢1 or c2 may be strings. In this case a search determines the column limits for each line.
If the column limits are not found on a particular image, no operation is performed on that line. For
example, (3", '0’} would specify columns 6 through 17 for the line:

Pl = 3.1415926660
because the character "3" is positioned in column 6, and the character "0" is positioned in column
17.
2.2.2. Specifying Part of an Edited Line - ASSUME ECOLUMN

Syntax: ASSUME ECOLUMN [{c1, ¢c2)]

Abbreviation: A ECOL

Function: To establish a new default colurmn parameter {or to reestablish the standard one).

The ASSUME ECOLUMN command specifies default column limits for the following CTS commands:
INSERT, DELETE. If (c1,c2) is not specified, then the default value of (1,132} is assumed.

Example:

>0 A

-> 10 ABCDEFGHABC
->ASSUME ECOL (1,6)
-> INSERT X RJ#

10 #H##HAFXGHABC

8118.2
UP-NUMBER

S?ERRY UNl_/AC Seri'es 1100 2-5
Time Sharing Guide for CTS Users : UPDATE LEVEL PAGE

2.2.3. Specifying Part of the Working Area for Siting - ASSUME OCOLUMN

Syntax: ASSUME OCOLUMN [{c1.c2)]

Abbreviation: A OCOL

Function: To establish a new default column ;;.arameter, or to reestablish the standard one.
The ASSUME OCOLUMN command specifies default column limits for the CTS commands SITE and
CARDS. If (c1,c2) is not specified, then the default value of {1,132) is assumed.
2.2.4. Specifying Part of the Line for Printing - ASSUME PCOLUMN

Syntax: ASSUME PCOLUMN [{c1,c2)]

Abbreviation: A PCOL

Function: To establish a new default column parameter, or to reestablish the standard one.

The ASSUME PCOLUMN command specifies default column limits for the following CTS commands:
LIST, PRINT, PUNCH, QUICK. If (¢1.c2)is not specified, then the default value of {1,132} is assumed.

Example:

-> 10 ABCDEF

-> ASSUME PCOL (1,4)
- P 10

10 ABCD

2.2.5. Specifying Part of a Line to Search - ASSUME SCOLUMN
Syntax: ASSUME SCOLUMN [{c1,¢2}]
Abbreviation: A SCOL

Function: To establish a new default column parameter, or to reestablish the standard one.

The ASSUME SCOLUMN command specifies default column limits for the following CTS commands:
FIND, LOCATE, CHANGE. IF (c1,c2} is not specified, then the default of {1,132} is assumed.

Example:

-> 10 ABCDEFABC

-> ASSUME SCOL (1,3
->LOC DEF' 10

*NOT FOUND

-> ASSUME SCOL {1,10)
->LOC ‘DEF’ 10

10 ABCDEFABC

8118.2
" UP-NUMBER

SPERRY UNIVAC Series 1100 a6
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

2.2.6. Lline Numbers

Each line has a line number which is always a positive integer. This number must be specified when
a line is keyed in. CTS can enter the line numbers automatically (see 2.3.2), in which case CTS
{opticnally) displays the line number before the data is entered. The line number is not actually part
of the line, but only a tag by which it is identified.

Lines may be entered into f in any order, but they are sequenced according to ascending line numbers.
Therefore, if lines 100 and 110 existin f. and a line is entered with number 105, it is inserted between
100 and 110. If a tine is entered with a line number which already exists in f, the old line is discarded
and the new one takes its place.

The smallest allowable line number is 1. The largest is 262,141. When creating a program, space
the line numbers to permit easy insertion. Should it be necessary, however, the RESEQUENCE
command (see 5.3.2} will change the line numbers of all or a part of f, maintaining: the sequence
relationship of the changed lines to one another.

2.2.7. line Pointer - p

CTS maintains a line painter, p, wh_ich is always set to a nonnegative integer. This integer is the line
number of the current line. Many commands use p as the default specification when a line number
parameter is omitted. To take advantage of this, the value of p must be known. Any CTS command
which references a line explicitly or implicitly will change the line pointer.

Commands for saving and restoring programs usually set P to 0. When keying lines of data into 1,
p is set to the most recent line entered

When editing commands are used. p is left equal to the line number of the last line edited. (Many
lines may be edited with a single command.) However, if a line number specification in an editing
command causes the display of the message: :

TOP OF FILE
p is set to 0. If it causes the display of the message:

END OF FILE
p is set to 0. If it causes the message:

<21> LINE n DOES NOT EXIST

p is unchanged.

The line pointer, p, may be set to a specific existing line number or moved ahead or back with the
GO command (see 8.3.7.5).

To' find the value of p, use the statement
->TYPE P{)

This combination of the TYPE command and the function P} (see Table 12-1) will cause the value
of p to be displayed on the following line.

8118.2
UP-NUMEBER

2-7
PAGE

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users UPDATE LEVEL

2.2.8. Line Number Specifications

There are two kinds of line number specifications. The first specifies a sequence of line numbers.
The second, more common, specifies a range of numbers. Some editing commands use both types
in different parameter positions.

2.2.8.1. Specifying a Sequence of Line Numbers

Some of the editing commands generate a sequence of line numbers which are given to successive
new lines they have created, either by moving them from elsewhere in f (MOVE, see 5.3.4, and DITTO,
5.3.3), acquiring them from the element of a program file or from a data file (MERGE, see 3.6), or

accepting them from the terminal (NUMBER, see 2.3.2, and GENERATE, 8.3.7.4). The form of this
type of parameter is:

i,j

where i is the initial ine number and j is the increment to be added to form each successive line

_ number. Thus, if:

100,10
is specified for such a parameter, the successive line numbers generated are:
100,110,120,130....

The first subparameter, i, must be a legal line number, and the increment, j, must be a positive integer.

2.2.8.2. Specifying a Range of Line Numbers — L

This type of parameter, called L, is used to identify what part of f {or a saved program in the case
of MERGE and OLD) is to be included in the operation of a command. There are many forms of L.
It may be a single line number, two line numbers separated by a comma (defining the endpoints of
the range of line numbers), All (meaning all line numbers in f), and many others. Many of the CTS
commands permit L to specify a sequence of line numbers which are decreasing in magnitude. Others
do not. When an L parameter specification contains endpoints, the line numbers specifying the
endpoints are included in the range.

Depending on the command, the default assumption when L is omitted is either A {al! of the lines},
*+ (all following lines), or the value of p {the current line}. The various forms of L are:

n meaning line number n.

+0 or, meaning the current line.

* meaning the line following the current line.

4+ meaning the current line and all following lines.
*+ meaning alf lines following the current line.

* 4 meaning i lines following the current line.

*j meaning i lines following the current line.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 2.8
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

ni,*

n+i
n-i

A or ALL

n+

+i
-i

0+

meaning the current line and all preceding lines.

meaning all lines preceding the current line.

meaning i lines preceding the current line.

meaning al! lines of f from n1 through n2 inclusive.

meaning the line following the current line if n2 is greater than the current line
number (or the line preceding the current line if n2 is less than the current line
number) through line n2,

meaning n1 through the line preceding the current line or through the line
following the current line, depending on whether n1 is less or greater than the

current line number.

meaning line number n and the next i lines which follow (for +i) or precede (for
=i} line number n.

meaning all the lines. (This automatically turns on the R (repeat) option for those
commands that have it. 04 also means all lines but the R option is not turned
on.)

meaning line number n and all following lines {for n+) or all preceding lines {for
n-J.

meaning the current line and i lines following the current line {for +i), or i lines
preceding the current line (for -i).

denotes all lines in reverse order.

denotes the last i lines of f in reverse order.

denotes lines from the end of f through ling n.

denotes all lines from the end of f through the line following the current line.
denotes the last line.

denotes all the lines.

if a single line number is specified and this line number does not exist, an error message is printed.
However, in the case where a group of lines is specified, the beginning and ending line numbers are
bounds. Thus, if a beginning line number is specified which is not in f, the next higher existing line
number is implied. If the ending line number is not in f, the next lower existing line number than
that specified is impliad. If no lines exist within the range an error message is printed.

8118.2 SPERRY UNIVAC Series 1100

. H A 2-9
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

2.2.9. Setting the Character Mode - ASSUME ASCII

Syntax: ASSUME ASCII [ON/OFF]

Abbreviation: A ASC

Function: To set the character mode of CTS.
CTS can operate in either ASCII character mode or Fieldata character mode. Unless the P option is
specified on the processor call card, CTS will be initialized as an ASCI| processor {ASSUME ASCH
ON). if neither ON nor OFF is specified in the command, ON is assumed as the default.
Modes may be switched without converting the operating environment. Internal characteristics such
as tab characters, variables, FILLER, and SPACER are wanslated by CTS. All Fieldata alphabetics will
be converted to uppercase ASCIl characters. Special ASCII characters which do not have a Fieldata
counterpart will be converted to a Fieldata "?".

NOTE:

Fieldata code 077 |) is a special stop code for the Executive and, hence, should not be used in
source input.

The OLD command may change the mode if the mode of the element or file is different from the
current mode and a prescanner is not active. A call to a prescanner may change the mode and the

mode cannot be changed once a prescanner is active. A message will be printed if the mode is altered
by either of these methods.

2.2.10. Protecting f from a Loss Due to System Stop - ASSUME AUTO
Syntax: ASSUME AUTO [i [k]]
Abbreviation: A AUT
Function: To contro! the frequency of automatic checkpoint saves by CTS.
CTS automatically does periodic checkpoint saves to record its status as insurance against the
occurrence of an abnormal run terminaticn. Only the most recent checkpoint save is availabie, since
each one overwrites the previous one. When a new run with the same run-id and project-id is logged
on after an abnormal termination, CTS attempts a recovery. If successful, it displays the message:
CTS RESTART
When a run terminates normally, the checkpoint file is discarded,
The ASSUME AUTO command controls the frequency of these saves and directs CTS to announce
when a checkpoint save is taken. The parameter i, a positive integer greater than 4, specifies the

number of input lines which trigger a checkpoint. The lower limitation of 5 is to avoid excessive
overhead. If iis 0, an immediate save is done.

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 210

PAGE

UPDATE LEVEL

If k is not empty, the message:
AUTO
is displayed each time a checkpoint is taken.

Omitting both parameters disables the checkpointing feature, and no automatic saves are
subsequently produced.

With or without the ASSUME AUTQ feature, a checkpoint save is done after each OLD command {see
3.5), before any program execution command {see Section 8), and before any command which causes
an exit.

2.3. Creating Lines of Data in f

A program is usually created under CTS by keying lines of data into the system. CTS puts these lines
into f. If they are to be a program, they must confarm to the rules of syntax of the compiler to be
used to compile the program. Of course, if the program is to perform the intended task, the lines
must conform to the semantics of the compiler language as well. Unless these lines are entered under
the control of a prescan module, CTS does not concern itself with the contents of the lines. As far
as CTS is concerned, they are lines of data. More specifically, each line is a string of characters. For
purposes of identification and ordering, each line also has associated with it {but not part of it) a line
number, as described earlier in this section.

The most elementary way to enter a line of data is to key in the line number, followed by an optional
single space, followed by the string of characters which constitute the contents of the line.

For example, if, after the soligitation character, the following is keyed im:

> 100 ATHIS A IS A A ALINE,
->

The string of characters:
THIS A1S AA ALINE.

has been entered as line 100. Note that for better visibility of blanks, the character A is used in the
example where bianks would appear on a terminal. If the single blank after the line number was
omitted, the contents of the line would be the same. The first character is ignored if it is a blank.
This allows separating the data from the line number for readability. If, after the line number, two
blanks are used instead of one, the second biank becomes part of the contents of the line. If the
above line is followed by the line:

~> 710 AATHIS A 1S AANOTHER A LINE.
->

Line 110 contains the string:
ATHIS A 1S AANOTHER ALINE.

Note the leading blank this time.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2-1

PAGE

UPDATE LEVEL

Continuing in this fashion, one line may be entered after another, giving each a unigue line number,
until the entire program has been entered into f. If a line has been left out, simply key in the omitted
line specifying a line number which is between the two line numbers of the surrounding lines
{assuming room is left for it). No matter in what order the lines are entered, CTS sequences them
in order of increasing line numbers. If a line which has been entered has errors, it may be replaced
by simply keying in the line again (with identifying line number identical to the line number of the
incorrect line). This deletes the old line and replaces it with the new one. The replacement and
insertion of lines in a data set constitutes perhaps the most elementary form of editing.

The following example illustrates some of the above points:

~SE0ATHIS AISATHE AFIRST A LINE.
~>TO0 ATHIS A IS A THE A THE.
—>TOOATHIS A 1S ATHE 5 THIRD.

->75 ATHIS A 1S ATHE A SECOND o LINE.
-S> PRINT pALL -

50 ATHIS A!S ATHE AFIRST ALINE.

75 ATHIS A1S ATHE ASECOND ALINE.
100 ATHIS A1S ATHE ATHIRD.

END AOF AFILE

->

Line 100 was entered incorrectly and out of sequence. It was then replaced with the corrected line.
Line 75 was then inserted between lines 50 and 100. The PRINT command {4.1.1) was then used
to display the contents in their updated form.

2.3.1. Controlling the Solicitation Sequence — ASSUME POLL
Syntax: ASSUME POLL [ON/QFF]
Abbreviation: A POL

Function; To eliminate or reestablish the display of the first character of the 2-character
solicitation sequence.
The first character of the solicitation sequence normally tells what mode CTS is in. Itis a3 =" for
element mode, unless a prescan module is in effect, in which case a ">" is used. An "#" is used for
data mode. '

ASSUME POLL OFF suspends the display of this character. ASSUME POLL ON or ASSUME POLL will
reinstate the standard CTS behavior.

8118.2 SPERRY UNIVAC Series 1100 2-12
UP-NUMAER Time Sharing Guide for CTS Users UPDATE LEVEL - | PAGE
2.3.2. Automatic Line Number Generation - NUMBER
Syntax: NUMBER [i] [.i] [k]
Abbreviation. N
Function: To direct CTS tc supply a specified sequence of line numbers for lines of data

being entered into f.

To relieve the tedium of keying in line numbers when entering a program or data set, the NUMBER
command conditions CTS to supply them. The parameters i and j specify the sequence of line
numbers, and the parameter k determines whether CTS displays the line numbers or not. Lines
entered in this mode are placed in f as data lines until the mode is terminated by entering an asterisk
{ *®) as the first character after the solicitation sequence.

The sequence of line numbers produced by CTS in response to a NUMBER command is:
i, i4]. 14+2], i+3]. ...,

CTS assigns these line numbers to the lines as they are entered. As lines are entered under control
of the NUMBER command, p is always set to the most recent line entered during this process, even
though CTS has generated {and perhaps displayed) the line number for the line being keyved in. If
i is not specified, CTS uses 100. If] is not specified, CTS uses 10, unless i has been coded with
an ¥ (see following paragraph). Thus, the simplest NUMBER command {and probably the most
common) is illustrated by the following sequence: :

>N

100 >LINE 1.
110 >LINE 2.
120 >

If i is coded with an %, i is taken to be the last line number produced by a previous NUMBER command
plus the increment j from the present number command. i, in addition to coding i with an *, j is
omitted, the j from the most recent NUMBER command is used. Note the difference from the case
where i is not coded with an *, in which an omitted | parameter is assumed to be 10. This is useful
in resuminy the NUMBER command after an interruption to do some editing or to enter a line which
was omitted. Thus, if the sequence of the above exampie is terminated before generating any data
forline number 120, and the ¥ option is used on the next NUMBER statement, the following sequence
would resuit; '

>N *
120 >LINE 3.
130 >LINE 4.
140 >

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 13

UPDATE LEVEL PAGE

Here 10 is taken for j because it was the value of jin the previous NUMBER command. If this sequence
is terminated as before and the * is used for i but with an explicit j, this sequence would result:

>N ¥, 5

135 >LINE 5.
140 >LINE 6.
145 >

If an ! is coded for the i parameter, numbering begins at the highest line in the working area plus
the increment j. This will resume numbering at a different line than the * if the last use of NUMBER
was to generate lines that were not the highest in working area or if manual data input has been done.
This is useful in initiating the number mode to append new data lines to the working area.

The behavior of CTS in generating line numbers is not modified by what is done between terminating
one NUMBER command and issuing another. The contents of f may have been completely changed
or nonexistent when a NUMBER command with an asterisk is issued, but the sequence will still
continue as indicated above. If line numbers are generated which already exist in f, the old lines will
be replaced as the new ones are submitted.

If the i or | parameter is coded with a string which is not a number, the standard values of 100 and
10 are assumed, since this string is interpreted as k.

The parameter k determines whether CTS displays the line numbers it is assigning to the lines. If
k is coded with an N {or any string beginning with N), CTS does not display them. If k is coded with
a P [or any string not beginning with NJ, CTS displays them. If k is not specified (left blank), the option
is governed by the most recent NUMBER command in which k was specified. if k has never been
specified, P is assumed, and the numbers are displayed. When CTS displays the line numbers, they
become part of the solicitation sequence, as in the above examples. Notice that the character
immediately after the > is the first character of the string which constitutes the contents of the line.

The above rules are illustrated by the following example:

->N 10,6 N
>LINE |
>LINE 2
>LINE 3
>¥PRINT A
10 LINE 1
15 LINE 2
20 LINE 3
END OF FILE
>N *
SLINE 4
>LINE &5

> *#*PRINT A
10 LINE 1
15 LINE 2
20 LINE 3
25 LINE 4
30 LINE 5
END OF FILE
->N 50 P
BO >LINE €
60 >LINE 7
70 > *¥PRINT 25+

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

2-14
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

25 LINE 4
30 LINE 5
5O LINE 6
60 LINE 7
END OF FILE
->

The first NUMBER command in this example establishes the sequence and turns off the display of
line numbers. The #PRINT commands (see 4.1.1) terminate the effect of the NUMBER command
then in force (see the discussion later in this section}.)

The next NUMBER command continues the sequence because of the *. Because the parameter k
is blank, the display of line numbers is governed by the previous NUMBER command. The third

- NUMBER command establishes a new sequence and turns the display of generated line numbers back

on. Notice that this time the undefined j parameter was taken to be 10, but in the previous NUMBER
command, the omitted j {in the presence of *) was taken from the preceding NUMBER command.

When the NUMBER command is not in effect, CTS expects a command to be entered. If the first
character entered is a digit, CTS assumes that a line of data is being entered instead. The presence
of a line number beginning in the first column ogverrides the normal sequence of events - the
interpretation of a cormmand. ‘

On the other hand, when the NUMBER command is in effect, CTS expects a line of data to begin in
the first column after the solicitation sequence. If a CTS instruction is entered, CTS has no way of
determining that this string of characters is not another data line. To break into the sequence of input
established by a NUMBER command, and submit a CTS command rather than a line of data, simply
prefix the CTS command by an #. The * in the first column after the > performs the same function
when CTS is under control of a NUMBER command as the line number does when CTS is not. In
the case of the *, however, the effect of the NUMBER command is terminated. To reestablish it, a
new NUMBER command must be submitted. (However, the special situation which arises when a
prescan module is in control is explained in the text which follows.)

The previous example illustrated the termination of NUMBER commands with #PRINT commands. If
the * appears immediately following the >, the effect of the NUMBER command is terminated, as
in the following example:

_>N

100 >LINE 7

110 >LINE 2

120 > *#XYZ

<87> INVALID COMMAND
->

The return 1o the normal solicitation sequence signals the end of automatic line number generation.

If anillegat line number is generated by CTS while it is automaticaily generating line numbers, it prints
a warning at the time the line number is generated and before soliciting the input for that line. The
following example illustrates the point

>N 262130.5

262130 >LINF 1

262135 >LINE 2

262140 SLINE 3

<102> LINE NUMBER LIMIT EXCEEDED
->

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2-15

PAGE

UPDATE LEVEL

All three lines of data were entered into f. The line pointer is set to 262140 {the last line entered)
and automatic line number generation is terminated.

The number within the *<>" characters preceding the error messages in the examples identifies the
message. These numbers may be used with the EXPLAIN command {see 9.3.2) to request more
information about the cause of the error and suggested action.

The NUMBER command also operates when a prescan module is in control. In this case, however,
there are some differences. When a program line is entered while a prescan module is in effect, the
module normally checks each line as it is entered for local errors in syntax (errors which do not depend
on relationships between statements). If such an error is detected in a line which was submitted while
a NUMBER command is in effect, the prescan moedules temporarily suspend the NUMBER command,
display a diagnostic message, return the solicitation character, and wait for the line to be corrected.
The line may be corrected either by typing the line number and the correct line or by an editing
command such as CHANGE (see 5.2.2). The corrected line is accepted, entered into f, and the
NUMBER command is reinstated to generate the next line number. If the error is not corrected
immediately, but other CTS commands are entered, the NUMBER command is terminated.

The following example illustrates suspension and reinstatement of a NUMBER command:

~->BASIC

BBASIC 9R1

>>NEW ABC

>>N

100 »A=71.2

110 »8=2.3

120 > (C=A8

120 AN EXPRESSION CONTAINS AN IMPROPER [TEM BEGINNING [AB] IN 120.
>>» 120 C=A+8

130 >

After the automatic numbering was initiated under control of the BASIC prescan module, an
erroneous line was entered (line 120). The line was rejected and automatic numbering was
suspended. After the line was corrected, it was accepted, placed into f, and the automatic numbering
resumed.

2.3.3. Termination of Automatic Line Numbering - MANUAL

Syntdx: MANUAL

Abbreviation: MAN

Function: To terminate the effect of a NUMBER command.
The NUMBER command {see 2.3.2) conditions CTS to generate line numbers automatically and to
expect a line of data as the normal input from the terminal. This condition ¢can be removed by
submitting a line with an asterisk immediately following the ">", followed by a CTS command. If the
CTS command submitted in this way is a MANUAL command, the removal of the automatic numbering

is the only effect. Any other CTS command, in addition to removing the condition, performs its
function. In this sense, the MANUAL command may be thought of as a dummy CTS command.

8118.2 SPERAY UNIVAC Series 1100

! 2-16
UP-NUMBER Time Sharing Guide for CTS Users 'upom LEVEL PAGE
2.3.4. Defining Tab Stops and Character — TAB
Syntax: TAB [b1 ¢1,c2,c3...[b2 ¢1,¢2,.1b3..1]]
Abbreviation: None
Function: To define characters to be interpreted on data input as tab characters and the

columns in which tab stops are set and to disable the values established by the
previous TAB command. Tab characters are also recognized by the FIND and
GENERATE commands.

When entering data lines after a TAB command, an occurrence of the characters defined by the b
parameters will cause a skip to the next column with a tab stop defined, inserting spaces in the
columns skipped. If the tab character occurs past the last tab stop, the tab character is replaced with
a blank, and a warning message is printed. Up to four tab characters may be defined with up to twelve
tab stops distributed among them. ‘

If all parameters are omitted, the tab feature is disabled.
The following example illustrates the use of the TAB command:;

->TAB # 10,20,30

> 10 1424344

->PRINT

10 1 2 3 4
->7TAB

->20 1#2¢344

->PRINT

20 1424344

->TAB ; 5 : 1O f 15 € 201 3,5,7
<39> TAB TABLE 1S FULL

_> .

The last TAB command attempted to define too many {five) tab characters, causing the diagnostic
and disabling the TAB feature.
2.3.5. Restricting Certain CTS Commands - ASSUME EDIT

Syntax: ASSUME EDIT [ON/QFF]

Abbreviation: A EDI|

Function: To restrict CTS commands for Text Editor {@ED processor) users.
The ASSUME EDIT command can be used to aid former users of the Text Editor {2ED processor} by
restricting certain commands or syntax. (See SPERRY UNIVAC Series 1100 Text Editor {ED
Processor), Programmer Reference, UP-8723 (current version)) ASSUME EDIT ON causes the
following to occur:
1. A biank data line {a line number followed only by blanks) cannot be entered.

NOTE:

A line number followed by a tab character will result in a blank data Iine.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

F 2-17
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

2. A blank line terminates number mode. See the note in item 1,

3. The R and R#* abbreviation for RUN may not be used in command mode. The abbreviations are
still allowed in a subroutine.

ASSUME EDIT or ASSUME ED!T OFF reinstates the original condition of allowing these items.

2.4. Prescan Modules

For convenience, a prescan module should be used whenever creating a program in a language
having an associated prescan module. Currently, prescan modules are available for BASIC, FORTRAN,
and COBOL.

When a prescan module is called, it sets the assumed compiler (see 2.1) to the correct compiler and
options. It checks CTS commands to see that their results are consistent with the language which
is in effect. For example, if an OLD command attempts to bring into f an element with a type not
consistent with the language of the prescan module, it will suspend the command, explain the
situation, and ask if this element is to be loaded. An affirmative response will allow the OLD command
to continue, but will keep the assumed compiler set to its own standard.

Prescan modules offer line-by-line local syntax checking as lines are entered, globa! checking before
compiling or saving a program, and various aids to the creation of a program, such as formatting,
automatic line continuation, and abbreviation of long key words. All of the prescan modules do not
offer all of these features. Each prescan module implements features advantageous to creation of
programs in its own language.

A prescan module is invoked by the CTS statement which calls it. It is terminated by the CLEAR
command (see 2.4.8), DATA command {see 3.7), or by inveking another prescan module. Most of
the CTS commands may be used while under control of a prescan module, but the operation of some
of them may be restricted or modified by particular prescan modules.
Lines which are marked in error by a prescan module and not corrected are printed with an asterisk
preceding them. !n all other ways they are the same as other lines. The asterisk is just a reminder
that the line had a syntax error.
A prescanner may have commands which are unique to it. If one of these commands is entered when
the prescanner is not active, CTS will print the error: <87> INVALID COMMAND.
2.4.1. BASIC

Syntax: BASIC

Abbreviation: BAS

Function: To place the BASIC prescan madule, BBASIC, in control.
As a line of a BASIC program is entered, CTS performs a syntax check on that line of code. This

is @ noncontext syntax check. That is, it looks at the single line of code, and that line only, and tries
to find all possible things wrong with it.

B8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

_ 9
Time Sharing Guide for CTS Users 8

PAGE

UPDATE LEVEL

This syntax checking is invoked by informing CTS that the BASIC prescan is to be used on the current
program. This is done by the following command:

->BASIC
BBASIC 9R1
>

Notice in this example that the input solicitation following the BASIC statement has ¢changed from
the hyphen (-} to a greater than symbo! {>). This is a reminder that future lines of code are under
the control of a prescan module. Any new line of code entered will now be checked by the appropriate
syntax analyzer (in this case BBEASIC).

The BASIC command not only will invoke the syntax analysis by the BASIC syntax checker, but it will
also indicate that the BASIC compiler is to be used when this program is subsequently run.

Suppose the system is automatically numbering lines of code via the NUMBER command and a line
of code which is in error is entered to BASIC. The prescan module will respond with a diagnostic
indicating the source of the error. It will then solicit, not with the new line number, but with the greater
than (>) symbol. This is a reminder o use an editing command, say the CHANGE command, to correct
the previous error line before entering any new lines of code.

Once the line in error is corrected, CTS will contmue w1th the line number sollcltatlon in the proper
sequence.) .

For example:

120 > PANT A.B -

120 THE STATEMENT CONTAINS NO RECOGNIZABLE INSTRUCTION IN 120.
>> CHANGE "AN’RIN'

120 PRINT A,B

130 > END

This example shows the CHANGE command being used to correct a typing error. Notice that the
second line is @ diagnostic message printed by the syntax analyzer. The third line is the CHANGE
command issued .by the programmer. The fourth line is the visual check which shows to the
programmer the actual correction as it was made by the system. The fifth line shows that the system
has gone back into the number mode, picking up with the next available number.

Notice in the preceding example that on the CHANGE command no line number was specified. This
is because the default value for the line number in the CHANGE command is the current line. When
getting a diagnostic from the prescan analyzer and correcting the line in error with the CHANGE
command, the CHANGE command does not need the line number since it pertains to the error line.

There is another way to correct errors detected by the syntax analyzer.
For example:

120 >C=AB

120 AN EXPRESSION CONTAINS AN IMPROPER [TEM BEGINNING [AB] IN 120,
»» 120 C=A+B

130 >

In this example the first line was typed in error. Line two contains the diagnostic from the BASIC
syntax analyzer, and the editing command has been solicited in line three with the greater than symbol
{>). In this case, the line is so short that it is easy to retype. CTS knows this to be a line of code
because it starts with a line number. It will cause the syntax analyzer to check this line and then,
as illustrated in line four, CTS returns to the line number mode, soliciting with the next available line
number.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 2-18
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

The preceding two examples illustrate two different means of correcting errors in lines of code that
have been checked by the syntax analyzer. One is simply to retype the line, the other is to use an
editing command to effect the correction in the line. In both cases, CTS will return to the automatic
line number mode.

2.4.1.1. Scanning for American National Standard BASIC—ANSI
Syntax: ANSI [ON/OFF]

Function: Turn the scanner and corresponding compiler on for American National
Standard Minimal BASIC.

if the ANSI ON command is used, both the BASIC prescanner and the BASIC compiler will scan and
execute programs with the American National Standard Minimal BASIC standard being enforced.
This may not be completely compatible with existing BASIC programs. For differences see SPERRY
UNIVAC S=eries 1100 UBASIC/BBASIC, Programmer Reference, UP-7925 {current version).

If the ANSI OFF command is used, the prescanner and compiler remain completely compatible with
current programs and older versions of BASIC.

The default for BBASIC level 3R1 is ANSI OFF.

2.4.2. FORTRAN
Syntax: FORTRAN [ASCH/FIELDATA]
Abtreviation: FOR [A/F)
Function: To place a FORTRAN prescan module in control.

The FORTRAN command activates the ASCH FORTRAN prescanner (BFTN) or the Fieldata FORTRAN
prescanner (BFOR), changes the assumed compiler to FTN or RFOR, respectively, and, if necessary,
changes the mode of the working area to ASCIl ON or ASCIl OFF, respectively. The prescanner
performs line-by-line local syntax checking as lines are entered or edited, global checking (BFOR
only), compiling or saving a program, line formatting, automatic line continuation, and expansion of
abbreviated keywords. ASC!l images may be prescanned by BFTN. Fieldata images will be converted
to ASCII for BFTN. Only Fieldata images may be prescanned by BFOR. Because they are different
prescanners and they are checking for different syntax, they will behave differently at times.

If the keyword ASCIl or FIELDATA is omitted, the default is ASCIl. ASCH may be abbreviated A and
FIELDATA may be abbreviated F.

CTS will perform a syntax check on each line of code written in the FORTRAN language. This is a
noncontext syntax check.

FORTRAN involves continuation lines. Thus, the syntax check by the FORTRAN analyzer (BFTN) is
performed on a single statement which may actually comprise several iines of information. That is
to say, more than one line may compose a single FORTRAN statement.

The FORTRAN prescanner provides automatic formatting of source statements. It also allows
abbreviations of key words and performs an analysis on a whole program at appropriate times.

The syntax analyzer scans to find all possibie things that can be wrong with a single FORTRAN
statement.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2-20

UPDATE LEVEL PAGE

This syntax checking is accomplished by informing CTS that the FORTRAN prescan is to be used on
the current program. This is done by the following command:

-> FORTRAN ASCI/
ASCI1 | FORTRAN PRESCAN 2R1A
>>

or if the desired mode is Fieldata:

-> FORTRAN FIELDATA
FD FORTRAN PRESCAN 5R1
>>

The FORTRAN statement changes the input solicitation character from the hyphen {-} to the greater
than symbol(>>). This is a reminder that future lines of code are under the control of a prescan module.

The FORTRAN command not only will invoke the syntax analysis by the FORTAN syntax checker, but
will also indicate which FORTRAN compiler is to be used when this program is subsequsently run. This
compiler is ASCIl FORTRAN (FTN} or Reentrant FORTRAN (RFOR).

If the wrong syntax is being checked, typing ASCil or FORTRAN FIELDATA will activate the other
syntax analyzer.

-> FORTRAN FIELDATA
->ASSUME ASCII OFF

FD FORTRAN B5R1

>>ASCHI

ASSUME ASCLI ON

ASC!| FORTRAN PRESCAN ZR1A
>> FORTRAN FIELDATA

ASSUME ASCII OFF

FD FORTRAN 5R1

>>

Note that the mode of the working area was automatically changed to the mode required by the syntax
analyzer. This is indicated by the message ASSUME ASCIl ON or ASSUME ASCIl OFF.

If a mistake is made in a line of code while the system is automatically numbering lines, the prescan
module will regspond with a diagnestic indicating the source of the error. CTS will then sclicit, not
with the new line number, but with the greater than symbol (>). This is 2 reminder to use an editing
command, perhaps the CHANGE command, to correct the previous error line before entering any new
lines of code.

Once the line in error is corrected, CTS will continue with line number solicitation in the proper
sequence.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

2-21
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

For example:

-> FOR

ASSUME ASCI1 ON

ASCI| FORTRAN PRESCAN 2R1A

»>NUM 110

110 >PANT 10.A

REJECTED: STATEMENT IS OF UNRECOGNIZABLE TYPE
>»C "AN'RIN’

110 PRINT 10,A

120 >

In this example the second line is a diagnostic message printed by the syntax analyzer. The third
line is the CHANGE command {abbreviated by " C*} issued by the programmer. The fourth line is the
visual check which shows the programmer the correction made by the system. Note that automatic
formatting has occurred (see 2.4.2.1). The fifth line shows that the system has gone back into the
number mode, picking up with the next available number. "

In the preceding example, the CHANGE command has not listed a line number. This is because the
default value for the line number in the CHANGE command is the current line. When a diagnostic
from the prescan analyzer is printed and that line is being corrected with a CHANGE command, the
line number is not necessary.

The line could also be entirely retyped. The procedure for this methad of correction is explained in
241,

Either of these two methods is available to correct errors in lines of code. One method is simply to
retype the line. The other is to use an editing command to correct the line. In both cases, CTS will
return to the automatic line numbering mode.

2.4.2.1. Automatic Formatting

In batch programming, card columns 1 to & of a FORTRAN statement may contain a statement
number, column 6 is used as a continuation column, and column 7 begins the actual FORTRAN
statement. CTS retains the concept of these columns, but it aids the FORTRAN programmer by
tabbing automatically to column 7 and beginning the FORTRAN statement there. It does this if the
first character typed is not a number, or is an exclamation point (!} or an ampersand (&).

If the first character is a number, it must be a statement number, and it will be left justified in columns
1 to 5.

If it is an ampersand (&). it must be part of a continuation statement. This is discussed in 2.4.2.2,
If the first character typed is an exclamation point, the statement is taken as a comment, and the

exclamation point will be replaced by an askerisk {¥) in column 1. The exclamation point in column
1 replaces the letter C in column 1 indicating that the statement is a8 comment.

8118.2 SPERRY UNIVAC Series 1100

. 2-
UP-NUMBER Time Sharing Guide for CTS Users 22

UPDATE LEVEL PAGE

Notice the input of the following program:

-> FOR

ASCI| FORTRAN PRESCAN 2R1A
»>NEW DEF

>N

100 >A=7.2

110 >PRINT 10,A

120 > 10 FORMAT (E14.8)

130 > END

140 >

The following is a printing of the program DEF. Notice that all of the statements begin in column
7. with the statement number in line 120 appearing lett-justified in columns 1 to 5. Note also the
appearance of the line numbers, with a blank following them. Again, these are CTS line numbers,
which are not part of the line image. They have no specific relatlonshup to the FORTRAN statement
number. :

> PRINT ALl

100 o A=1.2

110 . PRINT 10,A
120 10 FORMAT {(E14.8)
130 END

END OF FILE

>>

2.4.2.2. Continuation Lines

FORTRAN allows the use of more than one line in a single statement. This is traditionally denoted
in batch processing by a nonblank punch in column & of the continuation card; that is, the second,
or succeeding card in the statement. Confinuation statements may be entered by placing an
ampersand (&) as the last character of the line to be contlnued and an ampersand as the first character
of the continuation line in input mode.

For example:

100 >A=1.238

~CONTINUE- {(REMEMBER THE "&°)
110 >&456

120 >

The prescan module will strip the ampersand from the end of the line to be continued and will place
it in column 6 of the continuation fine.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 2-23

UPDATE LEVEL PAGE

For example:

180 >[P=4&

-CONTINUE- {REMEMBER THE "&°)
180 >&5.6&

-CONTINUE- (REMEMBER THE "&7)
200 >&78

210 >*P 180,200

180 D=4

190 &5.6

200 &78

>>

After a line to be continued, CTS displays the message —~-CONTINUE- {(REMEMBER THE ‘&), and then
salicits with the next available line number. This is a reminder that the previous line is to be continued.
If each line to be continued is followed by a continuation line, the entire statement will be checked
for syntax.

Since lines do not have to be entered in order in CTS, it is not necessary to follow lines to be continued
with continuation lines. This is allowed, but the syntax analyzer gives up at that point.

For example:

210 > £=5.6&

-CONTINUE- (REMEMBER THE &)

220 »>78

CONT INUATION EXPECTED -- PREVIOUS INCOMPLETE STATEMENT NOT SCANNED
WARNING-LINE CONTAINS ONLY STATEMENT LABEL

230 >*P 210,220

210 E=5.6

220 78

>>

In this example an ampersand {&) should have preceded the 78 in line 220. Since it did not, line
220 cannot be assumed 1o be a continuation of the previous lines. Therefore, the syntax analyzer has
given the diagnostic that a continuation was expected and that it is not going to scan the previous
statement. Line 220 is taken as a separate staterment, and the 78 is regarded by the syntax analyzer
as a statement number. The syntax analyzer has also issued a warning that the line contains only
& statement label. Statement 220 is printed with 78 appearing in columns 1 and 2.

2.4.2.3. Abbreviated Key Words

Many of the key wecrds of FORTRAN can be abbreviated.

Any key word of six or more characters may be abbreviated by typing:
first letter :/ast letter

except for the following key words:
DELETE.DECODE (D:E is DEFINE)
ENDFILE, ENCODE {E:E is EQUIVALENCE)

START EDIT, STCP EDIT
DOUBLE PRECISION {D:N is DIMENSION, D:P is DOUBLE PRECISION)

8118.2 SPERRY UNIVAC Series 1100

) 2-24
UP-NUMBER Time Sharing Guide for CTS Users .-~

PAGE

UPDATE LEVEL

The following are acceptable abbreviations:

AlL = ABNORMAL* FT = FORMAT

AN = ASSIGN I.C = INTRINSIC*¥*

B:A = BLOCK DATA .E = INCLUDE

B:E = BACKSPACE R = INTEGER

C:E = CONTINUE T = IMPLICIT

CN = COMMON L:L = LOGICAL

C:R = COMPILER N:T = NAME LIST

C:X = COMPLEX P:M = PROGRAM**

D:E = DEFINE P.R = PARAMETER

D:N = DIMENSION R:D = REWIND

DY = DISPLAY** R:N = RETURN

" D:P = DOUBLE PRECISION S:E = SUBROUTINE

"E:EE = EQUIVALENCE T.F = TRACE QFF**
! EL = EXTERNAL T:N ‘= TRACE ON**

F-N = FUNCTION

* — BFOR only

*% — BFTN only
1 Expansion of the abbreviations is performed at the time of entry of the line into f.
For example:

-> FOR ASCI1
- ASCI1 FORTRAN PRESCAN 2R1A
>>N
100 >A[10} .
REJECTED : STATEMENT IS OF UNRECOGNiZABLE TYPE
>>C JA/D:N A/

100 DIMENSION A{10)

110 >D:N (10) :

<571> REJECTED : { APPEARS WHERE A VARIABLE NAME |S NEEDED
»>C /f/Bf/ :

110 DIMENSION B(10)

120 > - .

2.4.2.4. Automatic Global Syntax Analysis (BFOR Only)

Fieldata FORTRAN syntax analysis goes a step beyond the statement-by-statement checking
described in 2.4.1_ It will perform an analysis on the entire program. This is called a global syntax
analysis.)

BFOR scans the entire program for errors which may occur due to conflicts between two or more
statements, or between a statement and the entire program.

Examples of the types of errors which this scan can discover are unreferenced variables, unassigned
variables, missing or redundant END cards, and statements which cannot be reached.

This scan will be automatically activated after a SAVE, REPLACE, or RUN command.

8118.2 SPERRY UNIVAC Series 1100

2.25
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

For example:

>>FOR FIELDATA

FO FORTRAN 5R1

>>NEW DEF

>>N

100 >A=5

110 >0:N C(10)

120 >60 T0 20

130 >D=1.2

140 > 30 END

150 > S7T0P

160 > *¥SAVE

DO YOU WANT A GLOBAL SCAN? > YES

<611> ALLOWED(130) : THIS STATEMENT CANNOT BE REACHED.

<635> ALLOWED{140) : END CARD APPEARS BEFORE TRUE END OF DECK.
<615> ALLOWED(150) : MISSING END CARD.

<606> ALLOWED(100) : "B’ 1S REFERENCED BUT NEVER ASSIGNED A VALUE.
<608> REFUSED(120) : LABEL 20" 1S NOT -DEFINED.

>>FP A

100 A=B .

110 DIMENSION C(10)
120 GO T0 20

130 D=1.2

140 30 END

150 STOP

END OF FILE

>>

Note the question, DO YOU WANT A GLOBAL SCAN? A positive answer will activate the global scan.
It may be bypassed in cases where it is relatively certain there are no global errors, or in cases where
a scan is not wanted (e.g., saving a partial program).

Notice when the program is listed that no alteration to the program has been made, i.e., no statements
have been eliminated. Thus, the lines must be revised to eliminate the error conditions.

BFTN will scan the entire program, checking each line for s§/ntax errors but not for global errors. BFTN
does not do a fult program syntax check for SAVE, REPLACE, or RUN commands unless the command
GLOBAL has been entered. If it has, the query:

DO YOU WANT ALL LINES SCANNED? >

will be printed. This question is different than the one given by BFOR to emphasize that a global scan
is not done.

The special command:
>>NODIAG

turns off the local syntax scanning. The statement command:
>>DIAG

turns it on again.

B118.2
UP-HUMBER

SPERRY UNIVAC Series 1100 ' o 2-26
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

The special command:
>> ECHO

causes each statement to be displayed in its reformatted form with abbreviations expanded. The
command:

>> NOECHO
discontinues this line-by-line display.
NOTE:

These four commands - DIAG, NODIAG, ECHO and NOECHO -~ are part of the FORTRAN syntax
analyzer. They are not available to other prescan modules, or to CTS when the prescanner is not
active. ' : ‘ .-

2.4.2.5. Global Syntax Analysis - CHECK

The FORTRAN prescanner command CHECK causes a line-by-line syntax check (BFTN) or a'globa!
syntax check {BFOR). This command can be entered whenever the FORTRAN prescanner is active
and the results are identical 1o the automatic global syntax analysis described in 2.4.2.4.

2.4.2.6. Controlling Automatic Global Syntax Analysis (BFOR Only)

The BFOR prescanner commands GLOBAL and NOGLOBAL, respectively, turn on and turn off
automatic global syntax analysis.

->FORF

FD FORTRAN 5R1
>> NOGLOBAL
>> SAVE TEST
>>

The SAVE command did not result in the global scan query-since the NOGLOBAL command was
entered.

NOTE:

Whenever a prescanner is called, the DIAG, NODIAG, ECHO, NOECHO, GLOBAL, and NOGLOBAL
command modes are reset to their default values.

See 2.4.7 for a description of the SYNTAX command.

8118.2 SPERAY UNIVAC Series 1100 2-27
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
2.4.3. COBOL
Syntax: coBOL

Abbreviation: COB
Function: To place CTS under control of the COBOL prescan module, BCOB.

BCOB is the COBOL syntax prescan module. Its function is to aid the time sharing user in constructing,
editing, and syntax debugging COBOL programs from a demand terminal.

The syntax analysis is compatible as a user option with the ASCII COBOL compiler and also supports
the ASCII COBOL Data Manipulation Languages.

BCOB operates in three modes: conversational mode for development of new programs, program
file mode for syntax debugging existing programs, and edit mode for inserting or changing individuai
lines.

BCOB provides automatic line formatting which conforms to the Margin A and Margin B requirements
of COBOL, and also provides abbreviation expansion to facilitate use of a COBOL shorthand. A
system-defined shorthand is provided with the BCOB processor. In addition, the system abbreviation
set may be optionally replaced or enhanced by user-defined replacement sets. The use of these two
features greatly reduces the quantity of information the user inputs from the terminal.

2.4.3.1. Operational Description

BCOB performs two syntax scans. The first is active at the time insertions, updates or corrections
are interactively supplied to the COBOL program being developed. A limited line-by-line type analysis
is performed as each image is encountered. During this local scan, the line is examined out of context,
checking for misspelled words, keywords, improper use of reserved words, etc. The second scan,
which is entered when a total global scan of a COBOL program is requested, is a full contextual syntax
analysis providing diagnostics comparable to the ASCH COBOL compiler.

Either an ASCIl COBOL or ASCH! with DML COBOL syntax scan can be chosen by the following BCOB
commands:

ASCI1 [DML]
The assumed compiler {see 2.1} is set to ACOB,SBE. If the compiler to be used is known to the
operating system by another name, change the assumed compiler either with the CTS ASSUME
COMPILER command {see 6.2.1) or the BCOB command:

COBOL k

where & is the name of the compiler and the options.

8118.2
UP-KUMBER

SPEHHY UNIYAC Seri_es 1100 - 2-28
Time Sharlng Guide for CTS Users - UPDATE LEVEL PAGE

For example:
>> COBOL ACOB, §BE

BCOB permits the use of the NUMBER command (see 2.3.2). In the absence of this command, it will
generate line numbers starting with 100, with an increment of 10. The increment can be changed
with the BCOB command:

STEP ¢

where / is the increment. In any case, the COBOL line number will be the same as the CTS line
number. '

In addition to the CTS commands, BCOB has its own command set. These include options for COBOL
line sequencing (columns 1-6 of each image) and automatic line continuation when an inout line
extends beyond column 72. Extended input may also be optionally truncated beyond column 72.
The extent of the error list can be controlled with BCOB commands. For example, all remarks can
be suppressed on request to see only the serious and fatal errors, etc. Of primary importance are
the commands which control abbreviation expansions. There are three such commands: LOAD,
ERASE, and replace or RPL. The RPL command has the.form "*RPL pseuvdo-text-! BY
pseudo~-text-2". Pseudo-text may consist of any character string. If it does not consist of a single
COBOL word or identifier it must be bounded by the pseudo-text delimiter "==". Whenever a match
occurs between pseudo-text-7 and the text, the corresponding psevdo-text-2 is inserted into the
program replacing the text corresponding to psevdo-text-1 . The LOAD command causes BCOB to
load an element consisting entirely of BCOB commands. For purposes of defining a COBOL
shorthand, this element could consist of a series of replace {(RPL) commands. Initially, BCOB loads
the system defined shorthand. A LOAD command then adds to this standard abbreviation set. The
ERASE command is used to erase the currently effective set of replacement directives (RPL
commands), or a specified replacement command identified by pseudo-text-T.

Replacement commands have no effect in program file mode.
The following is an example of a replacement set:

>>RPL P BY PICTURE

>>APL EXAMINE BY INSPECT

>>RFL LFP BY ==LINE PLUS==

>>RPL NGNP BY ==NEXT GROUF 15 NEXT PAGE::
>>APL JUSTIFIED BY == ==

This set would affect input to BCOB as follows:
Input:
>> 100 02 ITEM-A P X{3Z2).
> 110 02 ITEM-B P 9(2) JUSTIFIED.

>» 120 EXAMINE FIL REPLACING
»>> 130 01 TYPE CF LP 3 NGNF.

8118.2 SPERRY UNIVAC Seriec 1100

. Y A 2-29
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

Resulting text:

>> LIST

100 000100 02 ITEM-A PICTURE X{132}.

110 000110 02 ITEM-B PICTURE 9(2).

120 000120 INSPECT FIL REPLACING

130 000130 01 TYPE CF LINE PLUS 3 NEXT GROUP IS NEXT PAGE.
END OF FILE :

>>

Five levels of diagnostics existin BCOB. In order of increésing severity they are REMARK, WARNING,
MINQOR, SERIOUS, and FATAL. To allow only certain levels of diagnostics, the command DIAG [k] [p]
is available, where k specifies which level of diagnostics to allow:

k = ALL All messages are printed.

k=W WARNING, MINOR, FATAL and SERIOUS errors are flagged.
k=M MINOR, FATAL, and SERIQUS errors are flagged.

k=F FATAL and SERIQUS errors are flagged.

k=S SERIOUS errors are flagged.

k = NONE No errors are displayed.

The parameter p specifies in which phase to apply the constraint. If p is not present, the constraint
applies to both phases 1 and 2.

BCOB will inhibit the compilation of any program with errors of severity MINOR or greater and print
the message:

COMPILATION REFUSED BECAUSE OF ABOVE ERRORS

The commands ECHO, ECHO 2, and NOECHO may be used to see what line BCOB is currently
scanning. NOECHO turns off this feature. ECHO and ECHO 2 turn it on for a phase 1 and phase 2
scan. .

Formatting of input in BCOB is done with the FMT and NOFMT commands. The default is FMT. If
automatic formatting is requested (with a FMT command) the general input format is:

lineno CAB text
The parameters are defined as:

lineno A number associated with both the CTS line number and the COBOL line number
{columns 1-6) of the COBOL image. 1t may be typed in directly if in the MANUAL
moade, or generated and typed by CTS if in NUMBER mode. :

C If C is nonalphabetic and not a space, the text beginning in A is placed left
justified in COBOL area A. The C characteris placed in ¢column 7. 1f C is a dollar
sign {$), it is converted to an asterisk (*) and placed in column 7. If C is
alphabetic, the text is placed left justified in COBOL area A. € must not be
numeric.

©oB118.2

SPERRY UNIVAC Series 1100

' 2-30
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
A If Cis a space and A is not a space, then text beginning in A is placed left justified
in COBOL area A {column 8).
B If a space is found in C and A, then text beginning in B is placed left justified

in area B (column 12) ..

BCOB will insert sequence numbers into the COBOL sequence-number field {columns 1-6). These
numbers will be the same as the CTS line numbers. The commands controlling this function are CSEQ
and NSEQ.

Automatic continuation is provided by the CHOP and NOCHOP commands. NOCHQP requests
automatic continuation. 1f it is specified and an image extends beyond column 72 after formatting
and/or replacement, BCOB will automatically create an additional line or lines for the remainder of
the text. Each additional line will be numbered one greater than its predecessor, unless the increment
is changed with the STEP command. Automatic continuation will be applied to all edit mode input
except lines which end with an incomplete nonnumeric literal. The default is NOCHOP.

Automatic continuation is disabled by the CHOP command. If CHOP is requested and an image
expands beyond column 72, the following message will be printed:

COLUMN 72, TEXT BEGINNING ‘word” TRUNCATED.

where word was the first complete COBOL word, delimited b{(Spaces, which did not fit on the line.
All succeeding text characters are discarded.

If, however, the image would end with an incomplete nonnumeric literal, the message: -
UNFINISHED LITERAL, CONTINUE AFTER °string’

will be printed, where string is the contents of columns 65 to 72 of the edlted image. The literal
should be continued on the next line. -

Complete control of continuation is gained by the command CHOP ASK. In this mode, right margin
overflow will cause BCOB to print:

COLUMN 72, CONTINUE TEXT AFTER ‘string’?

where string is the last B characters of the edited image (columns 65 — 72). There are three responses
to this question:

ASIS The image will be left as it is. The user must continue it

CHOFP Characters beyond the last complete COBOL word will be erased, as in CHOP
mode.)

NOCHOFP This response, or a blank return, continues the image automatically, as in

NOCHOP mode.
If an image ends with an open literal in edit mode, the following message will be printed:
LITERAL BEGINNING 'string” CLOSED BY BCOB AT END

where string is the first eight characters of the unfinished literai. BCOB appends a closing guote at
the end of the input line and performs the normal edit and overflow actions.

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2-31

PAGE

UPDATE LEVEL

If an input line contains an ampersand (&) as the last nonblank character, regardless of context, BCOB

takes this as a request to extend this line. It solicits the extension with the message:

CONTINUE:

The extension of the line just typed is the expected response. The first character of the response
will be written over the ampersand in the extended line and the remaining characters will follow it
in sequence. If the extension itself ends with an ampersand, the process will be repeated unti! a
complete line or a maximum of 400 characters has been collected. If the extended line exceeds 400
characters, a message will be printed:

MAXIMUM EXTENDED LINE - USED FIRST 400 CHARACTERS
and the first four hundred characters will be taken as 2 complete line.

If a carriage return is given as the response, the line will be complete as is.

2.4.3.2. Modes of Qperation

2.4.3.2.1. Edit Mode

BCOB is alweys initially in edit mode. This mode assumes the individual lines of a program will be
entered directly from the terminal. Automatic line continuation, line formatting and sequencing are
assumed. Each line is scanned as it is entered. This operation, known as a phase 1 scan, is a mode
in which lines are analyzed out of context with the rest of the program. Therefore, there is no
recognized syntactic order for consecutive entries. For example, procedura! statements could be
followed by the Data Division entries required to define referenced working storage data items.

The following input couid be entered into the working area:
> 210 02 INX USAGE 15 INDEX.
>>400 OPEN INPUT IN-FILE
>>50 ENVIRONMENT DIVISION.

with the resulting text:

>»>LIST

50 000050 ENVIRONMENT DIVISION.

210 000210 02 INX USAGE 1S INDEX.
400 000400 OPEN INPUT IN-FILE
END OF FILE

>>

after adding the lines:

>>1 [DENTIFICATION DIVISION.
>>200 01 WORK-A PIC X{50).
>> 450 EXIT.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 2-32

PAGE

UFDATE LEVEL

The program element would be:

>>LIST :
1 Q00001 1DENTIFICATION DIVISION.
50 000050 ENVIRONMENT DIVISION.
200 000200 01 WORK-A PIC X{(50).

210 000210 02 INX USAGE |S INDEX.
400 Q00400 ‘OPEN INPUT IN-FILE
450 000450 EXIT.

END OF FILE

>>

An entire program may be entered in this manner within edit mode or could be entered in
conversational mode.

2.4.3.2.2. Conversational Mode

In conversational mode, BCOB solicits input directly and constructs the source images itself. BCOB
treats the syntactic definition as a template, supplies the key words, and requests the blanks to be
filled in item by item. If the clause indicated by the BCOB-supplied keyword is not wanted,
transmitting a blank will send BCOB to the next space in the template. If the clause is required and
a blank line is transmitted, BCOB will respond "REQUIRE , clause?" and repeat the keywords. The
answers to the next several questions may be separated by asterisks {*), in which case BCOB will
assimilate the additional information, and proceed to the logically next question. The key to
conversational mode operation is that those portions of the COBOL program which tend te be lengthy,
mechanical in nature, and prone to error can be developed quickly with a minimum of typing.

Conversational mode is entered whenever BCOB receives a CTS NEW command for development of
the \dentification and Environment Dwusaons

The following is an example of BCOB user interaction on a NEW command:

>>NEW TEST
PROGRAM-1D? »TEST
AUTHOR? >JJJ
INSTALLATION? > (N/VAC
SECURITY? >NONE
SOURCE-COMPUTER? >
OBJECT-COMPUTER? >
MEMORY? >

COLLATING? >
SEGMENT-LIMIT? >
SPECIAL-NAMES? >
SELECT? »F/LE-1
OPTIONAL? »

ASSIGN? >PRINTER
EXTERNAL NAME? >QUT-FILE
PROCESSING MODE? >
SELECT? >F/LE-2
OPTIONAL? >

ASSIGN? »>DIsC
RESERVE? >
ORGANIZATION? >
ACCESS? >

FILE STATUS? >
SELECT? »»

NEXT LINE NUMBER 1S 000280

§118.2 SPERRY UNIVAC Series 1100

F v) 2-33
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

The result of this input would appear in the user working area as:

>>LIST

100 GO0100 IDENTIFICATION DIVISION.

110 000110 PROGRAM-I1D. TEST.

120 000120 AUTHOR. JJJ.

130 000130 INSTALLATION. UNIVAC. ‘
140 Q00140 DATE-WRITTEN. 23 JUL 80 AT 10:12:26.
150 000150 DATE-COMPILED. TODAY.

160 000160

170 000170 ENVIRONMENT DIVISION.

180 000180 CONFIGURATION SECTION.

190 Q00190 SOURCE-COMPUTER. UNIVAC-1108.
200 000200 OBJECT-COMPUTER. UNIVAC-1108.
210 000210

220 000220 INPUT-QUTPUT SECTION.

230 000230 FILE-CONTROL.

240 000240 SELECT FILE-1

250 000280 ASSIGN TO PRINTER OUT-FILE,
260 000260 SELECT FILE-2

270 000270 ASSIGN TO DISC.

END OF FILE

>>

A more experienced BCOB programmer would shorten the input;

>> NEW

NEW PROGRAM NAME? > TEST
PROGRAM-1D? >TEST*JJJ
INSTALLATION? »>UN/VAC
SECURITY? >
SOURCE-COMPUTER? >
OCBJECT-COMPUTER? >
SPECIAL-NAMES? >

SELECT? > FILE-?

OPTIONAL? >

ASSIGN? > PRINTER*¥OUT-FILEX*¥S5EQ**
SELECT? >=*

NEXT LINE NUMBER 15 000270.

The resultant program would appear:

>>LIST

100 000100 IDENTIFICATION DIVISION.

110 000110 PROGRAM-1D. TEST.

120 000120 AUTHOR. JJJ.

130 000130 INSTALLATION. UNIVAC.

140 000140 DATE-WRITTEN. 23 JUL 80 AT 10:20:19.
150 000150 DATE-COMPILED. TODAY.

160 000160

170 000170 ENVIRONMENT DIVISION.

18C 000180 CONFIGURATION SECTION.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users

2-34
PAGE

UPDATE LEVEL

asterisk {#}.

In all cases, [n] is a user specified line number.
indicated by the ¥*DATA [n] command. At this point, BCOB is in edit mode.

190 000190 SOURCE-COMPUTER. UNIVAC-1108.
200 000200 OBJECT-COMPUTER. UNIVAC-1108.

210 000210
220 000220 INPUT-OUTPUT SECTION.
230 00023C FILE-CONTROL.

240 000240 SELECT FIiLlE-1

250 000250 ASSIGN TO PRINTER OUT-FILE,
260 000260 ORGANIZATION IS SEQUENTIAL.
END OF FLLE

>>

*ID [n] position to IDENTIFICATION DIVISION.
*ENV [n] position to ENVIRONMENT DIVISION.

*#FILE [n] position to INPUT-OUTPUT SECTION FILE CONTROL.

*|0 [n] position to I-O CONTROL.
#DATA{n] position to DATA DIVISION.

The user can leave conversational mode and reenter edit mode at any time by responding with an
The program can be repositioned in conversational mode by specifying:

*+NEXT [n] position to the next of the above sections followmg the current position.

>>NEW

NEW PROGRAM NAME? > TEST3
PROGRAM-ID? > TEST3
AUTHOR? > *ENV
SOURCE-COMPUTER? >
OBJECT-COMPUTER? >
SPECIAL-NAMES? >»*NEXT
SELECT? >*NEXT

|-0 CONTROL? >*NEXT
000180 DATA DIVISION.
NEXT LINE NUMBER 1S 000200.
S>*LIST

100 000100 IDENTIFICATION DIVISION.

110 000110 PROGRAM-1D. TEST3.
120 000120

130 000130 ENVIRONMENT DIVISION.
140 000140 CONFIGURATION SECTION.

150 000150 SOURCE-COMPUTER. UNIVAC-
160 000160 OBJECT-COMPUTER. UNIVAC-1108.

170 000170

180 000180

180 Q00180 DATA DIVISION.
END OF FILE

>>

1108.

-Positioning at the beginning of the Data Division is

The following interactive sequences indicate the use of BCOB positioning commands.

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

2-35
PAGE

UPDATE LEVEL

>>NEW

NEW PROGRAM NAME? > TEST
PROGRAM-I1D? > #*ENV
SCURCE-COMPUTER? >

OBJECT COMPUTER? >

SPECIAL NAMES? »>+#DATA

000160 DATA DIVISION

NEXT LINE NUMBER IS 000170
>>#LIST

100 000100

110 000110 ENVIRONMENT DIVISION.
120 000120 CONFIGURATION SECTION.

130 000130 SOURCE-COMPUTER. UNIVAC-1108.
140 000140 OBJECT-COMPUTER. UNIVAC-1108.

150 000150

160 000160 DATA DIVISION.
END OF FILE

>>

>>NEW

NEW PROGRAM NAME? > TEST
PROGRAM-1D? » TEST

AUTHOR? > *NEXT

SOURCE-COMPUTER? >
OBJECT-COMPUTER? >

SPECIAL-NAMES? »>*NEXT v
SELECT? >*NEXT

I-0 CONTROL? »*NEXT

000190 DATA DIVISION.

MEXT LINE NUMBER 1S 000200,
>»250 FD FILE-A

DEVICE? > TAPE

BLOCK CONTAINS? >5

RECORD CONTAINS? »20

LABELS? > STANDARD

VALUE OF? >

DATA RECORDS? »>RECORD1

NEXT LINE NUMBER 1S 000300.
>>»LIST

100 00C100 IDENTIFICATION DIVISION.
110 000110 PROGRAM-ID. TEST.

120 000120

130 000130 ENVIRONMENT DIVISION.
140 000140 CONFIGURATION SECTION.

150 000150 SQURCE-COMPUTER. UNIVAC-1108.
160 000160 OBJECT-COMPUTER. UNIVAC-1108.

In addition 1o the *NEW command and the positioning commands, BCOB will enter cornversational
mode for development of SELECT statements, and also for FD, CD, SD, RD, and SA entries.

8118.2 SPERRY UNIVAC Series 1100

2-36
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

170 000170

180 000180

190 000180 DATA DIVISION.
250 000250 FD FILE-A

260 000260 BLOCK CONTAINS 5 CHARACTERS;
270 000270 RECORD CONTAINS 20;

280 000280 LABEL RECORDS ARE STANDARD:
290 000290 DATA RECORD IS RECORD1t.

END OF FILE

>>

The fotlowing lines can then be added:

>>420 REPORT SECTION.

>>430 RD REPORT1?

CODE? >A-CODE

CONTROLS? > FINAL, YEAR, MONTH

MINOR: {(WITH CODE) NOT FOLLOWED BY MNEMONIC NAME
PAGE? > 720

HEADING? > 75

FIRST DETAIL »25

LAST DETAIL? >

FOOTING? > 700

NEXT LINE NUMBER IS 000500

>>LIST

100 000100 IDENTIFICATION DIVISION.

110 000110 PROGRAM-1D. TEST.

120 000120

13C 000130 ENVIRONMEMT DIVISION.

140 000140 CONFIGURATION SECTION.

150 000150 SQURCE-COMPUTER. UNIVAC-1108.
160 000160 OBJECT-COMPUTER. UNIVAC-1108.
170 000170

180 000180

190 000190 DATA DIVISION.

250 000250 FD FILE-A

260 000260 BLOCK CONTAINS 5 CHARACTERS;
270 000270 RECORD CONTAINS 20;

280 000280 LABEL RECORDS ARE STANDARD;
280 000290 DATA RECORD 1S RECORD1.

420 000420 REPORT SECTION.
430 000430 RD REPORT1

440 000440 CODE A-CODE;

450 000450 CONTROLS ARE FINAL, YEAR, MONTH;
460 000460 PAGE LIMIT IS 120 LINES,

470 000470 HEADING 15,

480 000480 FIRST DETAIL 25,

490 0004380 FOOTENG 100,

END OF FILE

>>

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

2-37
Time Sharing Guide for CTS Users 3

PAGE

UPDATE LEVEL

2.4.3.2.3. Program File Mode

When BCOB receives a CTS OLD or MERGE command, it enters program file mode and performs a
phase 1 line-by-line scan of the specified element as it is found in the CTS working area.

Whenever the working area contains a complete COBOL program, a BCOB phase 2 scan can be
initialized with a CTS SAVE, RUN, or COMPILE command or with a BCOB CHECK command. The BCOB
#CHECK command initiates a full syntax scan but does not request a compilation or have any effect
on the status of the program element. CHECK shows errors without requiring an implied full
compilation.

2.4.3.3. Summary

The experienced CTS user with COBOL background should have no problem adopting the use of the
BCOB command set. Even for the inexperienced, BCOB can very rapidly become a convenient tocl
for developing and debugging COBOL programs. It eliminates completely the need to move from

code sheet to card deck to permanent file storage to subsequent edit and update, and provides the
demand user efficient input and immediate diagnostic results.

2.4.4. APL 1100/CTS
APL 1100 can maintain source code by using CTS as a co-routine. APL 1100 does not run under
CTS. APL 1100 runs with CTS. The distinction is that there is not the additional overhead of running
under different levels of the operating system. The following subsections describe APL 1100 level
7R1. If a later version is available, refer to current APL 1100 user documentation.
The statements and their output are presented in examples as they would be printed out under the
APL 1100 system. The input expression is indented eight spaces, and its result is printed at the left
margin. Explanation of the result or the statement is made at the right.
For example:
>2 4+ & This is input.
8 This is output.

Functions which have two arguments are called dyadic functions. The addition function is dyadic;
one argument (value) is placed on each side of the function name.

>2+ 10

g 3

g118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

‘ .
Time Sharing Guide for CTS Users 8

UPDATE LEVEL PAGE

This expression is evaluated in four steps: the quad function obtains a value, factorial uses that value
1o compute a result, the addition function adds two to that result, and the final value (8) is returned.

Functions provided by APL 1100 include a wide range of processes from simple addition to matrix
division. In addition, user-defined functions may be formed to evaluate processes not included in
the standard set. User-defined functions are named at definition 'llme, and they follow the same
syntax rules as the standard functions.

2.4.41. Access to APL 1100

The SPERRY UNIVAC APL 1100 processor runs with CTS under control of the SPERRY UNIVAC Series
1100 Operating System. Once access to CTS has been gained, the user need only enter:

->#APL[. 0] [/W]

where O is a list of processor options at log-on time, and /W is the alphanumeric key, which the
user supplied to APL 1100 at sign off, locking his library file from undesired access by other users.

Examples:
~> ®¥APL

-> *¥APL /L |BKEY

2.4.4.2. Processor Options
Options specified at log-on time can be used to assist the user in program checkout, provide

additional security or information, or direct the execution of APL 1100 programs. The valid options
are given in Table 2-1,

Table 2-1. AFL 1100 Opticns

Option Letter Purpose
B User's terminal type is a bit—paired device.
T User's terminal type is a typewriter-paired device.
N Inhibits printing of images obtained via an @ADD statement.
V' Causes printing of each image read by APL 1100.
C Assume)JCSITE at log-on time {onsite print file}
S Assume)SITE at log-on time {onsite printer}.

8118.2
UP-NUMBER

2-39

SPERRY UNIVAC Series 1100
UPDATE LEVIL PAGE

Time Sharing Guide for CTS Users

2.4.4.3. Statements

APL 1100 statements describe the processes required to evaluate an algorithm. Since many

processes are parallel rather than serial in nature, APL 1100 extends its functions to process arrays

or vectors in the same manner as scalar data. There is a set of over sixty functions available to the

APL 1100 user. Evaluation of each statement proceeds from right to left, with all operators havmg
equal precedence. Thus the result of: .

2+ 3x4

is the numeric value 14. Statements may be of any length, up to the width of an input line. The order
of evaluation may be modified by inserting parentheses to indicate groupings, e.g.

2+ 3)x4

yields a result of 20. Several statements may be entered on one line if they are separated by
semicolons:

2+3.4x6;1

Since each statement above produces a value, the result would be a set {vector) of three values: 5,
24, and 11.

Statements may be entered whenever input is solicited. APL 1100 input is requested by spacing to
the right and then pausing for the input image. Several types ¢f input may be requested, depending
on the type of results desired. Calculator input, the type shown above, is the usual mode for APL
1100. Other input modes are cailed "quad,” "quote-quad,” "prompt,” or function definition. Each mode
is easily recognized by the information printed in spacing to the right prior to input acceptance.

Calculator mode indents eight spaces when requesting input. The indentation process leaves blank
spaces to the left of the input image. In this mode, the statement is evaluated immediately, and the
results can be printed below the input line starting in column 1:
>2 + 3 x 40279365
14.0838095

If the result is a character vector or array, it is printed with no spaces between components in each
row. Other arrays or vectors are printed with at least cne space between components.

Quad input requests information to be evaluated, and may be recognized by the quad character in
column 1 of the solicitation:

a: 2x3
0:

Quote—quad input obtains the actual incoming character sequence, and may be recognized by the
overstruck quad and quote characters in column 1:

i This is input.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 __ . 2-40
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

Prompt input can be used to ask explicit questions. 1t may be recognized easily, since the input is
solicited immediately to the right of the question:

PLEASE TYPE IN YOUR NAME >MAX/NE

Function definition mode will request images by line number. A typical solicitation character would
contain the number enciosed in brackets:

[13] 2+ 3x4
Once the type of input desired is ascertained, enter the statement or expression appropriately.

APL expressions follow a very simple syntax, and can be used to indicate very powerful actions.
Expressions consist of values and functions. Spacing is not required between the primitive function
operator and its operand, but may be inserted if desired. The values may be constants. as shown
previously, or named variables. Functions may require zero, one, or two arguments (values}.

A function which requires no arguments is called a niladic function, and may be used in place of a
value as an argument to other functions. The quad function is niladic, so the following statement
1s valid:

1]

This statement will request input, then apply the evaluated result to the factorial function as a right
argument.

Functions which have a single argument are called monadic functions. The argument is always a
value located to the right of the function name. The following statement evaluates the factorial of
the factorial value of 3 and returns a final result of 720:

i+ 13

The function, i 3 is evaluated as 3x2x 1, and returns a result of 6, which is the argument of the leftmost
function. Thus, the final result 720, comes from evaluating 6x5x4x3x2x1.

2.4.5. Qther Processors

The advantages of CTS extend to any processor in the operating system. CTS is designed to make
it easy to create data sets of all kinds. The data set, which conforms to the system and semantics
associated with a processor, is a program written in the language of that processor. To CTS, however,
it is a data set. The full power of CTS is available to create, edit, test, save, retrieve, and use programs.

CTS is as useful to the experienced programmer, who can write a very tight program in assembly
language, as to the occasional programmer using BASIC. Counterparts for most of the operating
system control statements are available directly in CTS. Most of the remaining ones may be created
through the CSF statements. Through the use of the PXQT command (see 6.5) many system
processors can be accessed. For those which cannot, CTS can be left temporarily with the XCTS
statement and a statement or two can be submitted directly to the Executive. Then CTS can be
reentered via the @CTS statement.

8118.2
UP-NUMBER

2-41

PAGE

SPERRY UNIVAC Series 1100
UPDATE LEVEL

Time Sharing Guide for CTS Users

CTS may be used to create partial or complete run streams, which may be added or started from
within CTS via the ADD statement and the CSF statement. The COMPILE, RUN, MAP, and XQT
statements in their full format handle quite complex programs entirely within CTS, using the economy
of expression which CTS affords. For example, several elements from possibly different files can be
compiled with different compiiers, mapped with chosen libraries {with MAP directives if desired}, and
the resulting program executed—all with a single RUN command. This is a very substantial economy
of expression, compared with either batch or ordinary demand mode operation,

Both the novice and expert benefit from the use of the editing commands. Those editing commands
which iocate strings of text with desired properties (see 5.1) can be used to scan the output from a
processor execution as well as for finding errors directly in the source code of a program. Those
editing commands which modify f {see 5.2) can be used to make corrections to the source code of
the program.

Many of the features provided by a prescan module can be implemented directly with CTS statements.
The TAB command (see 2.3.4) permits special formats. The CHANGE command makes it possible
to expand abbreviations easily. The assumed compiler may be changed with the ASSUME COMPILER
command (see 6.2.1).

A knowledge of the language of the processor to be used is necessary. As the operations performed

increase in complexity, more knowledge is needed, not only about the language, but also about the
operation of the processor and the operating system.

2.4.6. Controlling Prescan Local Syntax Checking - SYNTAX

Syntax: SYNTAX [k]
Abbreviation: SYNTAX - SYN
ON - None
OFF - OF
TYPE - T
Function: To inhibit or reestablish local {line-by-line) syntax checking in a prescan module,

or to display the current state of syntax checking in a prescan module.

The SYNTAX command is effective only when a prescan maodule is in control. Entering a prescan
module always turns on local syntax checking. Consequently, any attemnpt to use the SYNTAX
command to change the state of local syntax checking, when not under control of a prescan module,
would be ineffectual.

When local syntax checking is turned on, the prescan module performs a line-by-line syntax check
for errors which do not depend on relationships between statements. When the prescan module
detects an error, it rejects the line and displays a diagnostic message, requesting a correction of the
difficulty at once.

In some cases this syntax checking may not be wanted. Perhaps an entire paper tape is to be read
in or an ADD command is to enter lines from an element or file. In either case, there is no chance
to correct lines on a one-by—one basis. The SYNTAX command can turn off the local syntax checking
to accommadate such situations.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2-42

PAGE

UPDATE LEVEL

BFOR, the Fieldata FORTRAN prescan module (see 2.4.2), has a pair of private commands which do
the same thing. The NODIAG and DIAG commands perform the same function, but are implemented
within the module. Either the NODIAG or SYNTAX OFF commands will inhibit local syntax checking
in BFOR. Both the DIAG and SYNTAX ON states must be established simultaneously to permit local
syntax checking in this module.

The parameter k may be coded OFF, ON, or TYPE (or their abbreviations). If k is omitted, TYPE is
assumed. When coded OFF, local syntax checking is inhibited. When coded ON, the inhibition is
removed. When coded TYPE, the prescan module and the state of syntax checking is displayed. The
following example illustrates the above points:

-> SYNTAX OFF

-5SYN T

PRESCAN MODE=NONE

->FOR

ASCI! FORTRAN PRESCAN 2R1A
S»SYN T

PRESCAN MODE=TN:ON

->8YN OFF

>>SYN

PRESCAN MODE=TN:QOFF
>»>CLEAR

-»FOR

ASCI| FORTRAN PRESCAN 2R1A
>>SYN

PRESCAN MODE=TN:ON

>>

2.4.7. Terminating Prescan Control — CLEAR

Syntax: CLEAR

Abbreviation: CLE

Function: To terminate control of a prescan module.
The CLEAR command terminates the control of the currently active prescan module {if any} without
affecting the contents of the working area f or the assumed compiler. The CLEAR command also
terminates DATA mode (see 3.7) and returns control to ELEMENT mode. It also does not affect the

operation of 38 SCAN command wtich is in effect. To terminate the SCAN mode, an EDIT command
must be used. '

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users .

UPDATE LEVEL PAGE

3. Saving and Retrieving Programs

3.1. Specifying a Program Element or Data File

Data images entered into CTS go into the temporary working area file, f. Because f is not preserved
when the run is terminated, information in f is lost between sessions. To save partially completed
work or completed programs, the contents of f can be moved into F, a cataloged file. In this way
the information is preserved between sessions.

For the commands in this section which reference F, any program file can be referenced if the
substitute file is explicitly named in the d field of the command. Such a substitution persists only
for the one command, in contrast to the substitutions made by the ASSUME PROGRAM or ASSUME
FILE commands which are valid until another ASSUME command changes them.

Normally the d field in these commands refers to an element in F or its substitute. If only a file name
rather than an element name is specified, CTS will seek a data file, not a program file. In this case,
the entire contents of the data file are used in the operation of the command. Usually, CTS operates
in ELEMENT mode. This means that, unless specifically designated as a file (by containing an asterisk
"#" or being terminated by a period). an identifier is assumed to be an element name. The DATA
command {see 3.7) reverses this assumption. It establishes CTS in the DATA mode, in which elements
are not permitted at all, and unspecified identifiers are assumed 1o be file names of data files. OLD,
MERGE, SAVE, and REPLACE are the only commands affected by DATA mode.

3.2. Making a Permanent Copy - SAVE
Syntax: SAVE [d[L]]

Abbreviation: SAV

Function: To store all or part of the contents of f into a mass storage file.

The following example:

130 > *SAVE
->

shows how SAVE is usually used. The SAVE command copies all of finto F as an element with the
name which has been specified for the working area. The contents of the fite may be used in another
terminal session. Since f is not saved by the system after logging off and F is saved, SAVE keeps
the contents of f from being lost. To continue working in another session simply retrieve the

8118.2
UP-NUMEER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 3-2

UPDATE LEVEL PAGE

information from F back into f (see 3.5).

The COMPILER, FILE, OBJECT, PROGRAM, and SAVELENGTH options of the ASSUME command affect
the operation of the SAVE command. (See 6.2 and 3.2.3)

SAVE is one of the commands which CTS interprets differently depending on whether CTS is
operating in ELEMENT or DATA mode (see 3.7). ELEMENT mode is more commonly used and is the
default mode. DATA mode is entered with the DATA command. ELEMENT mode deals with elements
in a program file, and DATA mode deals with an System Data Format (SDF) file (see Section 7).
Consequently, when in the ELEMENT mode, SAVE causes CTS to create a symbolic element, usually
in F, the contents of which are a copy of ali or a part of f. In DATA mode, SAVE causes CTS 1o create
a data file and write into it a copy of all or a part of f. The CTS responses to various situations involving
SAVE differ, depending on which mode is in effect.

3.2.1. Saving f as a Program

The first parameter, d, may specify either a file name or an element name. If it specifies an element
name, a file name may also be included. In this case, the file name specifies the program file into
which the element js to be inserted. If the parameter specifies an element, CTS creates such an
element, unless it already exists (see the following examples).

If d specifies 2 file name {and not an element name), CTS creates a file with the specified name and
writes the contents of f {or the specified portion} into it in SDF {see Section 7). CTS recognizes a
nzme as a file name (and not an element name) by the presence and location of an asterisk (*®) or
a period. Some examples of d parameter specifications and their interpretation follow:

d Interpretation

ABC Element ABCT in F {ELEMENT mode) or file ABC {DATA mode).

FA.ABC E|ement. ABC in program file ‘FA

ZZZ*FA.ABC Element ABC in program filé FA which has a qualifier of ZZZ.

D. Data file D.

*D Data file D.

22Z2%D Data file D which has a qualifier ZZZ.

ABC Eler:e)nt ABC in F (ELEMENT mode) or not an acceptable format (DATA
maodel).

If the parameter d is omitted, the name of f is substituted for it, unless f is unnamed, in which case
CTS solicits the parameter. The name of f will have been specified by the NEW {see 5.3.1), OLD (see
3.5), or RENAME (see 5.3.5) commands. It may have any of the forms illustrated. It is possible, for
example, for f to have ZA. as its name, and a SAVE command with no parameters would then create
the data file ZA and write the contents of f into it

The second parameter, L, specifies which part of f is to be saved by specifying the range of line
numbers to be included. Any of the line number specification formats given in 2.2.4.2 may be used.
If a range is specified, the endpoints serve only to define the range and need not be existing line
numbers. if L is omitted, A is the default, resulting in all of f being saved. L may be specified only
if d is present. If L is specified without d, CTS will try to interpret the L specification as d. Depending
on the nature of the specification, various situations arise, most of which result in a diagnostic
message.

8118.2
UP-NUMBERA

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users. 3-3

PAGE

UPDATE LEVEL

When CTS stores the symbolic element it associates the current assumed compiler with the saved
element. If no assumed compiler has been specified, CTS uses ELT as the type of the symbolic
element.

The assumed compilers do not always produce unique symbolic element types. This is discussed
further under the OLD command (see 3.5) which converts the symbolic element type into an assumed
compiler when retrieving a symbolic element back into f.

The following listing gives the symbolic element types which CTS uses for various assumed compilers:

Assumed Compiler Symbolic Element Type Produced
ACOB coB
ALGOL ALG
APL APL
ASM ASM
BASIC BAS
- COB COB
DOC DOC
ELT ELT
FOR FOR
FTN FOR
"MDC MAC
MAP MAP
MASM MSM
NUALGOL ALG
PLUS PLS
PL1 PL1
RFOR #OR
SECURE SEC
S$SG SSG

The SAVE command changes neither the contents of f nor its name.

The response of CTS to the SAVE command depends on what conditions it finds. Exampies of
responses to SAVE commands follow.

" B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 3-4

PAGE

UPDATE LEVEL

The normal response, when all parameters are correctly given or implied, is simply the
solicitation character.

For example:

->SAVE ABC
->

The absence of any diagnostic message means that a symbolic element named ABC has heen
created in F, the contents of which is a copy of f.

For a more elaborate example:

->100 LINE 1

->200 LINE 2

->300 LINE 3

->SAV ALT_ABC 150,250
->

In this case, the program file, ALT, already exists. An element named ABC is created in ALT.
The range specified by L includes only the second line {line 200), so this line is the entire contents
of the new element.

If d is not given, then the name of f is used as the name of the element to be created. If, in
addition, f is not named, CTS solicits a name:

-> SAVE
NEW PROGRAM NAME? >

Enter the name:

->SAVE
NEW PROGRAM NAME? >DEF
->

A symbolic element DEF containing a copy of f has been created in F.

it is also permissible to specify the L parameter, in additicn to the, preagram name in response
to the solicitation:

~->SAV
NEW PROGRAM NAME? >FA.Z 110. 140
->

Element Z in program file FA has been created containing those lines of f, the line numbers of
which are between 110 and 140 inclusive.

If d specifies a file rather than an element, the command creates a data file by that name and

saves f in it as described in the next section.

If a SAVE command is attempted when f is empty, no element is created and 2 diagnostic is
given.

->SAVE GHI
THE WORK AREA IS EMPTY
->

Now another command or line of data may be entered.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 35

PAGE

tJPDATE LEVEL

If the name of a symbolic element which is already in F is specified, the SAVE operation does
not take place, the old element is not deleted or changed, and CTS responds with a diagnostic:

->SAVE ABC :
<5> DUPLICATE NAME ABC - PROGRAM NOT SAVED
->

CTS is now ready for a new command.

This restriction applies even if the symbolic element to be created is of a different compiler type
than the existing one of the same name. Only one symbalic element of a given name is permitted
in a program file, so the current one would have to be discarded to permit inclusion of the new
one. Since CTS is not certain this is desirable, it aborts the operation rather than destroy a
potentially useful element. To destroy the contents of an element or data file and replace it with
the contents of f, use the REPLACE command {see 3.3).

If a string of characters which is not a legal file or element name is specified for d, any number
of diagnostic messages could occur, depending on the nature of the string. The offending
characters are usually repeated in the message to heslp locate what is wrong. For example, if
while saving an element called FILE, the string "FI:E" was entered, the following sequence would
occur:

->SAV FI:E ‘
<23> ILLEGAL FILE OR PROGRAM NAME SYNTAX |;E
->

The offending character is the semicolon {;) and attention is directed to it by the indicated string,
"l ; E" at the end of the message.

If f is not empty. but a specification of L is given such that none of the actual line numbers of
the data in f are included, no element is created and one of three diagnostic messages will be
given, depending on whether the line number range specified by L is before the first line number
of f, after the last line number, or between two line numbers.

For example:

> 100 LINE 1

-> 150 LINE 2

->8AV A 10,50 -

TOP OF FILE

->SAV B 200,250

END OF FILE

~->8AV € 170,120

<110> SPECIFIED LINES DO NOT EXIST
->

No elements have been created. CTS is ready for another command or line cf data. For the
three cases illustrated the line pointer, p, {see 2.2.3) is 0, 0, and unchanged, respectively.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 2.6
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

if CTS is under control of the prescan module of & compiler, as when the FOR, COBOL, or FTN
command is used {see 2.4), data lines are scanned a line at a time for syntax errors as they are
submitted. No attempt is made to detect global errors {errors which depend on the relationship
between more than one statement} until the program is either compiled by the COMPILE (see
6.4.1) or RUN (see 6.2) commands, or is referenced by certain commands which treat the entire
program as a unit. SAVE is such a command. Before performing a global scan the prescan
module asks whether it is wanted. A Y response causes a global scan and any errors are noted.

An N response stops the scan. The detection of errors by the global scan does not terminate
the SAVE.

The following example illustrates this:

-»FOR F

FD FORTRAN 5R1

>>NUMBER

100 >Xx-10

<513> REJECTED: STATEMENT UNKNOWN OR MISSPELLED.
»»C /==

100 X=10

110 > Y=25

120 >Z=X+Y

130 >Go 7O 1

140 >*L /S

100 X=10

110 Y=25

120 Z=X+Y

130 GO TO 1

END OF FILE

>>SAV A

DO YOU WANT A GLOBAL SCAN? > Y

<615> ALLOWED (130): MISSING END CARD.
<608> REFUSED (130): LABEL "1° [S NOT DEFINED.
>V

See 2.3.2 and 2.4.2 for an explanation cf the FOR and NUMBER statements used here. Notice
that the error on typing line number 100 was detected when it was submitted because it was
inherent in the statement itself. Two additional errors, however, were not detected untit the
SAVE command prompted the prescan FORTRAN syntax checker to check for global errors. The
SAVE was performed.

If d specifies only a file, rather than an element, and the file is a program file rather than a data
file, CTS responds with a message:

->SAV DA. :
<18> DA IS NOT A DATA FILE
->

The SAVE has not been performed.

If d contains both a file specification and an element specification, and the file is a data file,
rather than a program file, CTS responds with the following message:

~->SAV FiILB. A
<19> FILB IS NOT A PROGRAM FILE
->

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

The SAVE has not been performed, and CTS is ready for the next command or line of data.

B If d contains both a file specification and an element specification, and the file does not exist,
CTS prints the following error:

-»>84V FlLA. A
<68> FIiLA IS NOT CATALOGUED
->

Now another CTS command or line of data can be entered.

3.2.2. Saving f as a Data File

If d specifies only a file name, rather than an element or a file and an element, the SAVE command
will save f (or the specified portion) as the contents of a System Data Format {SDF) file (sea 7.1.1).
CTS recognizes d as being a file name rather than an element name by the presence of an asterisk
or a trailing period. CTS will also treat it as a data file if in DATA mode as described in the last section.

The second parameter, L, specifies which part of f is 1o be saved by specifying the range of line
numbers to be included. Any of the line number specification formats given in 2.2.4.2 may be used.
If L is omitted, A is the default, and all of f will be saved. L may be specified only if d is present.
The line numbers which are the endpoints of the range specified by L do not necessarily have to exist
in f, but the range should include at least one actual line.

The SAVE command changes neither the contents of f nor its name, but does change the line pointer,
p, to zero.

The response of CTS depends on what it finds as it checks for various conditions. The following
examples show responses to various SAVE commands which specify a data file name.

B The normal response, when all parameters are correctly given or implied, is a solicitation of
information to permit creating the file, followed by a message .indicating that the file is being
created, and followed in turn by the solicitation character. The file information is solicited as
if a CREATE command {see 7.5.1) had been submitted with the name of the file as the only
parameter.

For example:
->SAVE ABC.

IS THIS FILE TEMP, PUBLIC, OR PRIVATE? >7T
DEVICE CHARACTERISTICS: >F2

MAXIMUM S1ZE? > {no answer, CR)
*CRE, T ABC., F2 :
->

The responses to the information solicited on the second, third, and fourth lines, and the
message on the fifth line are described in 7.5.1. The fifth line displayed by CTS indicates that
a file has been created with the characteristics specified. The solicitation character means that
all parameters were interpreted, and that the contents of f were written to the created file.

B if d is not specified, the name of f will be used. I, in addition, f is not named, the name will
be solicited. Then the normal sequence will occur.

8118.2 SPERAY UNIVAC Series 1100 3-8
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
For example:

> SAV

NEW PROGRAM NAME? > DEF.

IS THIS FILE TEMP, PUBLIC, OR PRIVATE? >T

DEVICE CHARACTERISTICS: > {fnoe answer, CR)

*CRE,T DEF.

-

The file has been created, the save performed, and another command or data line may be
entered.

If the parameter d contains the name of an existing empty file, the file creation sequence is
skipped, as in the foilowing:

->SAV ABC.
->

The contents of f were written to file ABC in SDF (see 7.1.1).

If a file with the name specified already exists, and is not empty, CTS aborts the operation with
an explanatory message.

For example:

—>S5AV ABC.
<96> DUPLICATE DATA FILE NAME - NOT SAVED
->

Itis possible, during the sequence of solicitation messages for creating the file, to cause an error
which will abort the creation of the file. This causes the creation sequence to start over, as
illustrated by the following example:

->S5AVE 8.

IS THIS FILE TEMP, PUBLIC, OR PRIVATE? >»PUBLIC
READ AND WRITE KEYS: >A/W

DEVICE CHARACTERISTICS: »DEVICE

MAXIMUM SIZE? >

#CRE,.PU B8/R/W.DEVICE

<81> FORMAT OR OPTION ERROR IN CONTROL STATEMENT
->SAVE B.

IS THIS FILE TEMP, PUBLIC, OR PRIVATE? >PUB
READ AND WRITE KEYS: >AR/W

DEVICE CHARACTERISTICS: > {no answer, CR)
*#*CRE.PU B/R/W.
->

The identifier, DEVICE, is not a legal device type. The attempt to use it as one created an error
condition and led to the diagnostic message. The file was not created the first time so the
creation sequence started over. This time the file was created and the SAVE was done.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 3-9

UPOATE LEVEL PAGE

3.2.3. Setting the Maximum Length of a Saved Line - ASSUME SAVELENGTH
Syntax: ASSUME SAVELENGTH [i}
Abbreviation: A SAV
Function: To establish the maximum length of a saved line.

The ASSUME SAVELENGTH command specifies the maximum length, i, of an image when it is saved
via the SAVE (see 3.2} or REPLACE (see 3.3) commands. This length, normally 132 characters, should
be shortened to BO for compiled programs and files intended to he directly read by the Operating
System. If an image exceeds this length, itis reduced by truncation. For efficiency, CTS saves images
at even word intervals. If i is not an increment of six (for Fieldata characters) or four {for ASCII
characters), it is rounded up to an increment of six or four respectively by CTS. If a line which exceeds
the SAVELENGTH is encountered during a SAVE or REPLACE operation, the line is truncated and the
operation continues after printing the following message:

<53> LINE (line number) 1S TOOQO LONG

3.3. Updating a Copy - REPLACE
Syntax; REPLACE [d{L]]
Abbreviation: REP

Function: To discard the contents of a data file or a symbolic element of 2 program filg,
and to substitute in its place all or a designated part of f.

The REPLACE command is usually used to replace an element of F with an updated version. Typically,
at the start of a session an element will be moved from F to f with the OLD command {see 3.5} and
modified. Then the old version is replaced with the new, modified program.

The same end could be accomplished by doing an UNSAVE (see 3.4) followed by a SAVE (see 3.2).
However, the REPLACE is easier and safer. CTS checks all parameters and conditions before
performing the REPLACE, and performs no pari of it uniess everything is in order. Using the UNSAVE
followed by a SAVE could delete the element while nothing was in f. This would result in the loss
of the element. If the REPLACE is used, the old element is not deleted, and a warning is printed.

Another difference is that an UNSAVE deletes all elements {symbaolic, relocatable, and absolute} with
the given name, while a REPLACE deletes only a symbolic element.

The first parameter, d. may specify either an element or a file. If, as is usually the case, d specifies
an element, the element is to be replaced by all or the specified part of f. The element specification
may include a file name as wel! as the element name (see 3.2.1), in which case the file name specifies
the program file in which the element resides. In the absence of a file name, F is taken as the file.

When a file name is specified, the file must exist. If the file is cataloged, but is not assigned to the
run, CTS will assign it before proceeding with the REPLACE command.

The parameter L denotes the range cf line numbers in f which are to be included in the new element.
Any of the formats specified in 2.2.4.2 may be used. The endpoints of this range need not be existing
line numbers of f, but the range must include at least ane existing line. If the L parameter is missing,
A is assumed, and the entire contents of f will be included in the new element.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 -

' 3-10
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

REPLACE never alters the contents of f or its name, but will usually set the line pointer, p, to zero.

Most situations which arise are treated exactly as they are in the SAVE or UNSAVE commands, giving
rise to exactly the same messages and solicitations for information.

Situations for which responsss are the same as they are in the SAVE command (see 3.2) are:

The normal case when all parameters are correctly specified or implierd.

The parameter d is not given and f is named.

The parameter d is not given and f is not named.

The file f is empty.

The syniax of d is bad.

The range of L is such that no actual lines of f are included.

A prescan module is in control and a global error exists.

The parameter d contains a file specification and the file does not ex-ist.

The parameter d contains both a file and an element name and the file is a data file.

The parameter d contains an explicit file name and no element name.

In all of these cases, when no SAVE is performed, the original element is retained.

The following situation is treated exactly as in the UNSAVE command (see 3.4) with the exception
that REPLACE considers only symbolic elements while UNSAVE considers elements of any type.

The element descr.ibed by d does not exist.

The following is an example of the use of REPLACE:

~>FOR F

FD FORTRAN 5R1

>>NEW A

>>N

100 »>2 FORMAT ()

110 >READ (5,71) A.B

120 > C = SOQRT(A**%2 4 B#*¥2)
130 >WRITE(E,1) A.B,C

140 > END

150 > #SAV

DO YOU WANT A GLOBAL SCAN? >Y
<606> ALLOWED {110): "1° 1S REFERENCED BUT NEVER ASSIGNED A VALUE
>> CHANGE /2/1/100

100 1 FORMAT ()

110 > *REP

DO YOU WANT A GLOBAL SCAN? Y
>>

8i18.2
UP-NUMBER

SPERRY UNIVAC Series 1100

3-11
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

In this example, a FORTRAN program is created which has a glohal error (i.e., an error which depends
on the relationship between more than one statement) in the FORMAT statement. When the SAVE
command was issued, the FORTRAN prescan module discovered the discrepancy and produced a
diagnostic. The SAVE was performed and element A in F was created containing a copy of the
contents of f. The CHANGE command corrected the error. The REPLACE command then updated
element A in F with the new contents of f. If there had still been a global error, the FORTRAN prescan
module would have produced a diagnostic following the REPLACE.

B If the file specified by d does not exist, CTS responds as follows:
~>»REP A.
<68> A IS NOT CATALOGUED
<73> PROGRAM NOT REPLACED
->

The REFLACE operation was aborted. CTS is now ready to accept another command or line of
data.

B If the fiie specified by d is a program file, CTS responds as follows:
-> REP B.
<18> B IS NOT A DATA FILE
-

The file B has not been changed. CTS is ready for the next command or line of data.

3.4. Disé:arding a Copy - UNSAVE
Syntax: UNSAVE [d]
Abbreviation: U
Function: To delete an element from a program file or to delete a. data file.

The UNSAVE command is usually used to delete a symbolic element from F which has been previously
saved with the SAVE command.

The UNSAVE command never affects the contents of f.

The UNSAVE command usually directs CTS to look for an element of a program file (see 7.1.1), F,
unless specified otherwise, and delete the element. While UNSAVE is normally used to delete a
symbolic element previously saved in F with the SAVE command (see 3.2), it will cause an element
of any type to be deleted if it has the name specified by d. lf the file has more than one element
with the same name {possible only if they are different types) all of them will be deleted. It also deletes
from the assume object file all elements with the same name.

The parameter, d, may be any legal element or file name.

NOTE:

In the absence of a file specification with an element name, both F and the assumed object file will
be searched, and any element with the indicated name in either of the files will be deleted.

If d is an explicit file name, this command will check to see that the file is not a program file and
delete it. If the file is cataloged but not assigned, CTS will assign it before the check.

g8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

3-
Time Sharing Guide for CTS Users 12

UPDATE LEVEL PAGE

The response of CTS to the UNSAVE command depends on the situation at the time it is used. The
examples which follow illustrate responses to various situations.

B The normal response is the solicitation character, wh|ch indicates that the element has been
located and deleted from the file:

->UNSAVE A
->

All elements with the name A in the file F and the assumed object file have been deleted.
B)f the d parameter is omitted, CTS solicits the name:

-> UNSAVE
PROGRAM NAME? >

Now enter the name of the element to be deleted:
-> UNSAVE
PROGRAM NAME? 8
->

All elements with the name B in F and the assumed object have been deleted.

B If an element which is not in the file is specified, CTS explains this with a message and aborts
the UNSAVE operation:

->»U B
<4> ELEMENT .B CANNQT BE FOUND
->

B If d has a syntax error, CTS will print an appropriate message indicating the offending string:

->U fA
<23> ILLEGAL FILE OR PROGRAM NAME SYNTAX #A

The offending string is usually printed to help locate the source of the difficulty.
B If a data file name is specified and it cannot be found, CTS responds as follows:

U A
<68> A 1S NOT CATALOGUED
-2

The UNSAVE operation has been aborted and CTS is ready for the next command or line of data.

B If the file specified is a program file, it will not be deleted. A diagnostic message will result as
in the following illustration:

->U PA.
<18> PA 1S NOT A DATA FIiLE
->

8118.2

UP-NUMBER '?'rrElReR Eﬁ:'r\f:g %eﬂii?;f‘g? CTS Users UPDATE LEVEL PAGE_13
3.5. Retrieving a Copy - OLD
Syntax: oD [Lj] d [L]
Abbreviation: None
Function: To discard the contents of f and replace them with all or part of a symbolic

element of a program file or with all or pari of a data file, changing the name
of f, the assumed compiler and the character set to correspond to the new
contents.

The OLD command is usually used to retrieve from F an element previously saved with the SAVE
command {see 3.2). Some refinements, however, are useful for special tasks.

The OLD command makes five kinds of changes to f. First, it changes the contents. Second, it
changes the name. Third, if the element or data file is the opposite character set mode (ASCIl or
Fieldata) of the working area, the mode of the working area is changed (unless a prescanner is active).
{See 2.2.4.3). Fourth, when an element is specified it changes the assumed compiler {see 6.2.1) if
it is different than the current one. It may happen that aspects of f will be the same after the QLD
command as before, but the OLD command has in this case discarded the old value and established
an identical new one. Before making these changes the syntax of the OLD command is completely
checked. If an error is found, no changes are made and a diagnostic is given.

CTS interprets the OLD command as a request to discard the contents and name of f, the character
set, and the assumed compiler currently in effect if it is different than the current one. These are
replaced with values connected with the designated element or file. The contents of f are replaced
by all or the indicated part of the new element or file, the name of f by the name of the new element
or file {by d}, the assumed character set, and, if necessary, the assumed compiler by the compiler
consistent with the symbolic type of the new element. An OLD of a data file does not change the
assumed compiler.

if i is not specified, the lines from d retain their original line numbers. The i parameter specifies that
the lines of d are to be resequenced, starting with line number i with increments of j. The] parameter
may be used without i. In this case j is added to each original line number from d as it is inserted
in the working area. If i is used and j is omitted, an increment of 10 is assumed.

Table 3-1 gives the common assumed compiler and options which the OLD command will put into
effect for various element types.

In discussing the SAVE command (see 3.2) it was noted that the type of the assumed compiler at the
time an element was saved determined the symbolic type of the element. However, several assumed
compilers created symbolic elements of the same type. It is. therefore, not always possible for the
OLD command to regenerate the same assumed compiler that was in effect at the time an element
was saved. ELT, ALG, COB, and FOR elements could each have had more than one type of assumed
compiler. Before compiling such an element, a change to the assumed compiler (see 6.2.1) may be
needed to avoid problems.

8118.2 SPERRY UNIVAC Series 1100

3.1
UP-NUMBER Time Sharing Guide for CTS Users 4

UPDATE LEVEL PAGE

Table 3-1. Assumed Compiler and Options for OLD Command

Type of Symbolic

Resulting Assumed

ASCIt or Fieldata

Element Compiler Element
ALG NUALG.S either
APL APL either
ASM - ASM,S either
BAS BASIC.R Fieldata
COB ACOB.ES ASCI
cosB COB,SBE Fieldata
DOC DOC.LDR either
ELT ELT.L either
FOR FTN,C ASCH
FOR RFOR.RS Fieldata
MAC MDC.S either
MAP MAP XS either
MSM MASM.S either
PL1 PL1,S either
S5G SSG gither
SYM ELT.L egither

The parameter d may specify any legal element name (see 3.2). It may, therefore, include a file name
as part of this specification. If the file name is missing, F is assumed. If the file is cataloged but not

assigned, CTS assigns it to the run.

The parameter d may also explicitly specify a file name with no accompanying element name. CTS
recognizes d as being a a file name rather than an element name by the presence of an asterisk or

a trailing period. When in DATA mode it only allows a file name.

The parameter L may be used to specify the range of line numbers of the data file or element being

retrieved which is to be included in the final contents of f. The only forms of L allowed are:

ni
ni,n2

n1+i
nl4

OLD this line only.

Start at line n1 and OLD through and including line n2. Line n2 cannot be less

than n1.

Start at line n1 and QLD the next i lines.

Start at line n1 and OLD the rest of the data file or element.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

v ! 3-15
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

For example, an L of;

110,150

is allowed, while an L of:

150,110

is not.

The range specified by L should include at ieast ane statement. i L is not specified, A is used.

The responses of CTS to various situations involving the QLD command are illustrated by the following
examples:

The normal response, when all parameters are correctly specified or implied, takes twa forms.
If the assumed compiler in effect is the same as the one generated from the symbolic type of
the element, the following sequence occurs:

->0LD A
->

Element A from F has replaced the contents of f so the name of f is now A, and the assumed
compiler and the options are the same. If the new assumed compiler is different, a sequence
like the following may occur:

->0LD FILA. B8 120,220
COMPILER TYPE RFOR,RS
->

Lines with numbers from 120 to 220 inclusive of the element B from file FILA have replaced
the contents of f. The name of f is now FILA.B. The assumed compiler is RFOR,RS.

If d is not specified, CTS solicits it:

-»0LD
OLD PROGRAM NAME? >

- Now enter the element name. The L specification may also be appended:

->0LD
OLD PROGRAM NAME? »>8
->

Element B from F has replaced the contents of f, and B is the new name of f. The assumed
compiler has not changed.

If d is specified but the element named does not exist, CTS responds with:

->0LD FILA. B
<4> ELEMENT FILA.B CANNOT BE FOUND
->

No changes to f have been made.

" 81182
UP-NUMBER

I SPERRY UNIVAC Series 1100

| Time Sharing Guide for CTS Users 318

UPDATE LEVEL PAGE

If the d specified has syntax errors, the sequence produced by CTS is:

->0LD FPA4B
<23> ILLEGAL FILE OR PROGRAM NAME SYNTAX A+B
->

The offending string is indicated to help locate the trouble. No changes to f have been made.

If the file portion of the element specified is a data file rather than a program file {see 7.1.1),
CTS responds with a diagnostic message:

->0L0 DB A
<19> DB IS NOT A PROGRAM FILE
->

The contents of f are unchanged.

if the file portion of the element specified does not correspond to an existing file, CTS responds
with:

->0LD DD A
<68> DD IS NOT CATALOGUED
-2

The contents of f are unchanged.

If the mode of the working area is different from the mode of the element or data file, the mode
of the working area will be changed (unless a prescanner is active). For example:

->0LD A
ASSUME ASC!1 ON
->

The mode of f was Fieldata (ASCIl OFF) before the OLD of A was done. Since A is an ASCH
element, the QLD caused the mode to be changed to ASCIL

If an element or data file contains both ASCIl and Fieldata images, the mode of the working area
will be -ASCIL.

Iif a prescan module is in control when the OLD command is given, there is a modification of
the rule for changing the assumed compiler. A prescan module can only operate on the contents
of fif it contains a program written in a specific language. Therefore, it maintains an assumed
compiler compatible with that language. If the OLD command attempts to assign a differen
assumed compiler, it may be that the symbolic element requested by the OLD compiler cantains
a program written in another language. CTS warns of this situation with the message:

->FOR F

FD FORTRAN SR1

>»0LD B

COMPILER TYPE: ELT,L PROCEED? »

Although the symbolic element type is ELT, the element may contain a FORTRAN program which
is to be loaded into f. If the solicitation message is answered with a blank {or empty) response
or any response the first letter of which is ¥, CTS will load the contents of the element into f
and change its name to the name of the element {to d actually), but it will not change the assumed
compiler.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 3-17

UPDATE LEVEL PAGE

Any other response will result in the contents of f being unchanged. In either case the solicitation
character is then given and CTS is ready for the next instruction or line of data.

B If a d is specified which is the name of a program file, CTS responds with:

->0LD PA.
<18> PA IS NOT A DATA FILE
->

Once again, f is unchanged.

B When a prescanner is active, the mode (ASCIl or Fieldata} of the working area cannot be

changed. If an element or data file of the opposite mode is specified, it will be changed to the
mode of the working area. For example:

—>ASSUME ASCII! ON

->FOR

ASCI1 FORTRAN PRESCAN 2R1A

->0LD DF. :

<133> FIELDATA IMAGES WERE TRANSLATED
->

3.6. Combining a Copy with f - MERGE
Syntax: MERGE [i1[j] d [L]
Abbreviation: MER

Function: To merge with f all or part of a symbolic eiement from a program file or all or
part of a data file d.

The MERGE command may be used to append a file or element to the end of f, insert a file or element
between two lines of f, or interleave the lines of f with the lines of the file or element. The
RESEQUENCE command {see 5.3.2} is useful in conjunction with MERGE. After using the MERGE, the
tine numbers of f will often lack the uniformity that makes editing easier. The RESEQUENCE
command restores a uniform line numbering to f.

Whare these lines will be placed when merged also depends on the ASSUME RESEQUENCE ON/QFF
mode {see 5.3.6. ASSUME RESEQUENCE ON merges them as a sequential block of lines. If a line
number conflict occurs, all foilowing lines are moved down. ASSUME RESEQUENCE OFF inserts the
lines without disturbing the other working area lines unless a duplicate line number occurs. If this
happens, the merged line replaces the working area line. These rules apply whether or not the MERGE
generates new line numbers.

The MERGE may be thought of as acting in three steps: selecting an element of a program file or a
data file, extracting from the contents the lines desired, and inserting these lines into {, while resolving
line number conflicts which may occur.

The selectiocn and extraction steps work exactly the same for the MERGE command as they do for
the OLD command {see 3.5). Only the d and L parameters are used in these steps, so ignoring the
parameters i and j for the moment, the responses as seen at the terminal for various situations are
for the most part identical. Consequently, refer to 3.5 for a description of these responses, noting
first the minor differences pointed out in the following.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

3.
Time Sharing Guide for CTS Users '8

PAGE

UPDATE LEVEL

The MERGE command never causes CTS to consider the symbolic type of an element. Consequently,
the messages connected with the assumed compiler type are never displayed. These are messages
such as:

COMPILER TYPE ELT,L PROCEED? >

The restrictions on parameters d and L given in 3.5 also apply for the MERGE command. If a prescan
module is in control, the lines inserted may cause a diagnostic while the MERGE is being performed.

The similarity between the MERGE and OLD commands extends only to the selection and extraction
steps, and not the insertion. The effect of executing a MERGE command is quite different from that
of executing an OLD command. The MERGE never changes the name of f, the assumed compiler,
or the mode of the working area. The lines being merged are always translated to the mode of the
working area. A warning message is given if any lines are transtated. When an error is detected, the
MERGE operation is aborted and the contents of f are unchanged.

The program d is merged with or appended to the current working area. The lines from d are assigned
line numbers starting with i and incremented by j as they are added to f. If i and j are not specified,
the lines from d are edited into the working area with their original line numbers.

The i specification can have the following forms:

i = null Use the line numbers from d.

i=n Insert the lines starting with a line number of n.

i=<+0 Insert the lines starting with the current line number.

= % Insert the lines starting with the current line number plus |

=1 Insert the lines starting with the number of the last working area line plus j.

The j specification may be used with each of the above forms of i. If j is omitted an increment of
10is assumed. It may be included even if i is omitted. In this case j is added to each original program
line number as it is inserted into the working area.

3.6.1. Resolution of Line Number Conflicts

The MERGE command can attempt to insert into f lines with line numbers which conflict with lines
already in f. The DITTO (see 5.3.3), GENERATE (see 8.3.7.4), MOVE (see 5.3.4), and RESEQUENCE
(see 5.3.2) commands may also create the same condition. A line number conflict occurs when one
of these commands is editing lines into a specified position in the working area (i.e., between two
working area lines) and the edited line number is greater than or equa! to the next working area line
number. CTS handles this situation in one of two ways, selectable by the ASSUME RESEQUENCE
command (see 5.3.6). The two methods are the RESEQUENCE ON method, which is the standard
default case, and the RESEQUENCE OFF method.

ASSUME RES ON causes the merged lines to remain as a sequential block of lines by moving down
all lines following the point of insertion if 2 line number conflict occurs. Lines are resequenced vntil
there is no longer a line number confiict. CTS produces a warning stating how far the resequencing
was done. ASSUME RES OFF causes the merged lines to be inserted without disturbing the other
working area lines unless a duplicate line number occurs. In this case the merged line replaces the
working area line. ASSUME RESEQUENCE ON/QFF rules are fallowed for 2 MERGE which retains the
original program line pnumbers or for a MERGE which generates new line numbers for the inserted
lines.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL

3-19
PAGE

The following examples iliustrate the resolution of line number conflicts. For all of the examples of

this paragraph, assume three saved elements A, B, and C, in F with contents as foliows:

A contains:

10 LINE 1
20 LINE 2
30 LINE 3

B contains;

10 LINE
20 LINE
30 LINE

QO Wl

C contains:

1 LINE D
2 LINE E
3 LINE F

For a simple example:

->0LD A
->MER 20.5 B
->F A

10
20
25
30
356
40

LINE 1
LINE A
LINE B
LINE C
LINE 2
LINE 3

END OF FILE

->

Note that lines 20 and 30 of A were resequenced to resolve the line number conflict.

in the RESEQUENCE OFF method, the line number conflict is resolved by deleting the existing line
and replacing it with the new line. The following examples show how line number conflicts are

resolved in the DELETE method. Assuming A, B, and C as before:

->ASSUME RES OFF
->0LD A

->MER B 10,25
—>P A

10
20
30

LINE A
LINE B
LINE 3

END OF FILE

->

This time the original lines with line numbers 10 and 20 were replaced by lines from B. No additiona!
conflicts occurred. Lines from B retain the line numbers they had when they were saved because

no starting line specification { i) was given on the MERGE.

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

3-
Time Sharing Guide for CTS Users 20

PAGE

UPDATE LEVEL

3.6.2. MERGE Examples

For all of the following illustrations, assume the following three elements in F: A, B, and C which have
contents as in the preceding paragraph.

There are a number of situations with the MERGE command which have no counterpart in the QLD
command. Primarily, they are associated with the parameter i and with the insertion step in the
implementation of the MERGE command. These are illustrated by examples in the remainder of this
paragraph.

B To append the contents of element B to the contents of A:

->0LD A
->MERGE | B
~SLIST

10 LINE 1
20 LINE 2
30 LINE 3

1 LINE D

2 LINE E

3 LINE F
END OF FILE
->

B To interleave the lines of B instead of appending them, set 7/ to 15. In addition, specify L if all
of B is not wanted:

->ASSUME RES OFF
->0LD A

->MER 15 B 10,20
-»P A

10 LINE 1

15 LINE A

20 LINE 2

25 LINE B

30 LINE 3

END OF FILE

->

This interleaving can only be done if the ASSUME RESEQUENCE mode is OFF. If the ASSUME
mode is ON the lines being inserted are maintained as sequential lines and the other lines of
f are resequenced if necessary.

B If the i, | parameters are missing, the lines are inserted with the line numbers they had when
they were saved by a SAVE or REPLACE:

->0LD B

~->MERGE C
->P A

1 LINE D
2 LINE E

3 LINE F

10 LINE A
20 LINE B
30 LINE C

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2

UPDATE LEVEL PAGE

END OF FILE
->

W If the i parameter is missing and the j is specified, the lines are inserted using their old line
numbers plus the increment j:

->ASSUME RES ON
->0LD A

->MER , 10 C
->»FP A
10 LINE
11 LINE
12 LINE
13 LINE
20 LINE
30 LINE
END OF FILE
->

W TMO =

B If 2 negative value is used for i, the MERGE command is rejected:

->0LD A

->MERGE ,-5 B

<77> ILLEGAL LINE LIMIT SYNTAX, -5
->F A

10 LINE 1

20 LINE 2

30 LINE 3

END OF FILE

ol

This error occurred because -5 is not valid syntax for j.

3.7. Selecting Data Mode - DATA
Syntax: DATA
Abbreviation: None

Function: To place CTS in the DATA mode, whereby certain CTS commands are restricted
to operating on data files.

Many of the CTS commands operate on either a data file or an element of a program file. The
difference between these two formats is discussed in 7.1. The normal mode for CTS is ELEMENT
mode. In ELEMENT maode, those CTS commands sensitive to ELEMENT and DATA modes can be
coded to operate on either type of file. in DATA mode they will operate only on data files. If, while
in DATA mode, an operation on an element is requested, or if a program file is specified, a diagnostic
is given and the command is rejected.

The format of the d-field specifying the element or file name can be so coded as to expressly define
an element, expressly define a file, or define a name which could be either a file or element. The
general format of the d—field specification for any command is "FILE.ELEMENT". The period following
or preceding a name expressly defines that name as a file or element name respectively. The file
name part of the specification may contain any valid operating system file name including qualifier
and read/write keys. When a qualifier is specified, the syntax distinguishes that name from an

B118.2
UP-NUMBER

SPERRY UNIVAZ Series 1100

Time Sharing Guide for CTS Users 3-22

PAGE

UPDATE LEVEL

element name without specifying the period. See 3.1.1 for a description of the d parameter of the
SAVE command. When this parameter is coded to be deliberately ambiguous, CTS will interpret it
as the name of 2 data file when in DATA mode, and as an element of F when in ELEMENT mode.

The CLEAR command, or the initiation of a prescan module, terminates the DATA mode and
reestablishes ELEMENT mode.

Commands sensitive to DATA and ELEMENT modes are:

SAVE {3.2)
REPLACE {3.3)
oLD (3.5)

MERGE (3.6)

8118.2 SPERRY UNIVAC Series 1100

f v A 4-1
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

4. Displaying and Printing Programs

4_.1. Printing and Listing at Terminals

This section describes how 1o display programs or parts of programs on terminals.

4.1.1. Displaying of f — PRINT

Syntax: PRINT [L} [ic1.c2)] Tk]

Abbreviation: P

Function: To display on the terminal all or part of the contents of f.
The PRINT command is used most frequently to look at a few lines of f.

The PRINT command offers a great deal of flexibility which is very useful in special situations. The
first parameter, L, defines the line number range in f which the PRINT command is to use. Any of
the specifications given in 2.2.8.2 may be used. If this parameter is missing, only the current line
is selected. The "current” line is that line which has the line number equal to the value of the line
pointer, p (see 2.2.7}.

The second parameter, always enclosed in parentheses, is the range of column numbers to be
displayed. Only columns ¢1 through ¢2 inclusive will be displayed. if the entire parameter is missing,
the default value is governed by the ASSUME PCOLUMN command. Similarly, if eitherct or ¢2 is
omitted, its value is taken from the ASSUME PCOLUMN command. The value of this default parameter
before the first ASSUME PCOLUMN command is {1,132}.

The third parameter, k, controls the display of line numbers. If it is N, the line numbers are not
displayed. If it is P, the line numbers are displayed. If it is S a scale is displayed above the lines
displayed. {See SPERRY UNIVAC Series 1100 Conversational Time Sharing {CTS) System, UP-7940
(current version).} If omitted, the ASSUME TYPE command is used. The LIST, QUICK, SITE, CARDS,
and PUNCH commands use parameter k in the same way., The ASSUME TYPE command (see 4.3.7)
is used as the default. The initial default prints the line numbers,

This same parameter controls the display of line numbers by the INSERT command (see 5.2.4).

Any of the three parameters may be omitted in any combination.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 4-2
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

The PRINT command never changes the contents of f or its name. It is never concerned with any
file other than f. The PRINT command uses the line pointer p and changes its value. If the line number
specification is not giver in 2 PRINT command, only the line specified by the current value of p is
displayed. The PRINT command usually leaves p set to the fine number of the fast line displayed.
There are three special cases, ail of which CTS notes with a message:
B [f the last image displayed is:
TOP OF FILE
p is reset to 0.
B If the last image displayed is:
END OF FILE
p is reset to 0.
W If the error displayed is:
<21> LINE n DOES NOT EXIST
p is left unchanged.
The TYPE (see 4.3.4), COLUMN (see 2.2.1), PRINTWIDTH (see 4.3.1), PCOLUMN (see 2.2.4), and
QUICK (see 4.3.2) subcommands of the ASSUME command affect the gperation of the PRINT

command.

The following examples illustrate the use of the PRINT command and the response of CTS to various
situations involving its use.

In each of these examples, assume that the contents of f consist of the following lines:

10 LINE
20 LINE
30 LINE
40 LINE
50 LINE

U W=

B To display the entire contents of f, use the line specification A.

->PRINT A
10 LINE
20 LINE
30 LINE
40 LINE
50 LINE
END OF FILE
->

O s W =

The final message indicates that the line pointer p. is set to 0.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

4-3
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

To display selected lines of f, specify the limits of the line numbers. These limits need not
correspond to an existing line number, but the range must include at least one actual line.

=>PRINT 20,40
20 LINE 2

30 LINE 3

40 LINE 4

->

This time p is left set to 40.

To display a single line, L is specified as its line number.

->P 30
30 LINE 3
->

The pointer, p. is left set to 30. A PRINT command with a blank L specification will display this
line:

_>P
30 LINE 3
-2

If the range of line numbers specified by L is in reverse order, they will be displayed in reverse
order.

-»P 30,5
30 LINE 3
20 LINE 2
10 LINE 1
TOP OF FILE
->

The final message indicates that p has been set to O.

The second parameter specifies the display of only certain columns. The selected columns are
printed left justified.

->P 20,40 (4,6)
20 E 2

30 E 3

4C E 4

-2

This feature can be useful when creating a program for a compiler which ignores character
positions beyond 72. It may happen in the creating and editing of such a program, that some
lines extend beyond this limit.

If the first part of the second parameter (¢ 1) is missing, it is usually taken to be 1, and the columns
from the beginning of the line through the second parameter are displayed. The comma must
be present. See 2.2.4, ASSUME PCOLUMN.

->F 10 {,3)
10 LIN
->

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -4

UPDATE LEVEL PAGE

if the second part of the second parameter {c2) is missing, it is usually taken to be 132 or the
end of the line. The columns from the first parameter through the end of the line are displayed.
The comma is optional. Again, the ASSUME PCOLUMN command applies here.

->P 20 (3)
20 NE 2

To omit the display of line numbers, code the k parameter with N.

->P AN
LINE 1

LINE 2
LINE 3
LINE 4
LINE 5

END OF FILE
->

Specifying k does not change the ASSUME TYPE:

->FP 20,30
20 LINE 2
30 LINE 3
->

If the range of line numbers specified by L includes no actual lines of f. a message is printed
depending on whether the range is before the smallest line number, between two line numbers,
or after the largest line number of f.

-»P 5,7

TOP OF FILE

->P 60,70

END OF FILE

->P 15,17

<110> SPECIF{ED LINES DO NOT EX!ST
->

p is set to 0,0, and unchanged, respectively.
H f is empty, CTS gives the message:
->P A
THE WORK AREA 1S EMPTY
->
The value of p is unchanged.
If the parameter L specified has incorrect syntax, the response depends on the nature of the

error, but CTS usually interprets the invalid character as the end of the L specification and looks
for a valid k parameter. This resuits in the error:

-SSP Z,20
<20> |LLEGAL COMMAND SYNTAX Z,20
->

The value of p is unchanged.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -5

PAGE

UPDATE LEVEL

B An error in the syntax of the k paramater results in the same message:
->FP 10 (3,4) NQ
<20> ILLEGAL COMMAND SYNTAX NQ
-

Again, p is unchanged.

B An error in the syntax of the column specification usually results in the following response:

->P (4,2)
<126> ILLEGAL COLUMN LIMIT SYNTAX,Z)
->

Again, p is not changed.

4.1.2. Compact Display of f - QUICK
Syntax: QUICK [L] [{c1.c2)} [K]
Abbreviation: Q

Function: To display lines of f, shortening the output by compressing strings of multiple
spaces into a single space.

Except for the compression of spaces, the QUICK command works exactly like the PRINT command.
See 4.1.1 for details of the operation of the command, interpretation of parameters, etc.

The following example illustrates the difference between QUICK and PRINT:

->PRINT A
10 LINE
20 LiINE
30 LINE 3
END OF FILE

->0 A

10 LINE 1

20 LINE 2

30 LINE 3

END OF FILE

->

[o

4.1.3. Spacing Images in CTS Output Listing — SKIP
Syntax: SKIP {n]
Abbreviation: SK}
Function: To place blank lines into output listing.
The SXIP command places blank lines in the CTS output listing. The argument n specifies the number

of blank lines to produce. If 7 is equal to O or greater than 255, then a page eject is performed as
a result of the command. If 7 is omitted, then 1 is assumed for .

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users £e

UPDATE LEVEL PAGE

NOTE:
The SKIP command is output device dependent fi.e., certain devices do not perform full page ejects,
but instead skip three lines) so individual device response should be tested prior to using the SKIP
command.
4.1.4. LIST
The first parameter of the LIST ¢command is interpreted by CTS as a subcommand indicator, each
valid parameter leading to a substantially different resuit. The LIST command is, therefore, in reality
a set of commands. Three of these frequently used in program preparation are discussed here. Those
LIST commands dealing with system interrogation are discussed in Section 9.
4.1.4.1. Displaying f - LIST L

Syntax: LIST [L] [(c1.c2)] [Kk]

Abbreviation: LIS

Function: To list on the terminal all or a part of f.
This command is used to list the entire contents of f.
With a few exceptions, the LIST L command behaves exactly like the PRINT command (see 4.1.1}).
The parameters have the same significance, and the results are :dentlcal However, the following
difference exists:
B If the L parameter is missing, it is interpreted as meaning that all of f is to be displayed rather

than tke single line defined by the line number currently stored in the line number pointer, p.

In other words, the command:

->LIST
gives the same result as:
—>PRINT A

Keeping in mind this difference, refer to 4.1.1, the PRINT command, for an explanation of how the
LIST L command waorks, and an illustration of the responses and diagnostic messages.
4.1.4.2. Displaying Names of Saved Elements — LIST SAVED

Syntax: LIST SAVED [, [P1[i]11[d1 [.d2..]1]

Abbreviation: LIS S

Function: To display the names and types of selected elements in one or more program
files.

The LIST SAVED command is normally used to determine the names of the elements in the save file,
F.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

-7
Time Sharing Guide for CTS Users :

PAGE

UPDATE LEVEL

The following values of the option parameter, P, determine the type and amount of information listed
for each d in the list:

A

D

List only the absolute elements from each d.

List deleted (unsaved or replaced) elements as well as nondeleted elements in d. A deleted
element will have an asterisk {*) preceding its name.

List all elements with name d regardless of their version name.

List date and timel that the element was created and its size, type, and name.
List only the omnibus elements from each d.

List only the relocatable binary elements from each d.

List only the symbolic elements from each d.

List only those elements in d which have the same version name as specified i each of
the d parameters. An element name must be specified even though it will be ignored.

null No options defaults to the A, O, R, and S options.

The count parameter, i, limits the number of elements from d that will be listed. If i=5, for example,
only the last five elements from each d of the type specified by P are listed.

If a d parameter is missing, it will be taken to mean F, which is the most comman use of this command.
If a series of file names, separated by commas is given, CTS displays the contents of each of the files.
A blank parameter in any position except the last one is interpreted to mean F.

For each element, CTS displays the type and name. The type is ABS for absolute elements, OMN
for omnibus etements, REL for relocatable elements, and assumed (compiler} for symbolic elements.

The responses of CTS to some LIST SAVED commands follow.

H The normal response is to display the elements.

->L IS8T SAVED

RUNA. |
TYPE NAME
RFOR MAT
ELT A

->

The parameter d is missing, so the F file is assumed. The run-id of this run is RUNA, so the
standard file used for F has this name (see 7.1.2). The save file has two symbolic elements, A
and MAT.

B Since d may specify an element name, the explicit file name syntax discussed in 3.2.1 must be
used when referencing a file.

->LIST SAVED FA, MAT

RUNA.

TYPE NAME

<4> ELEMENT .FA CANNOT BE FOUND

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

v I 1-8
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

S

RUNA.
TYPE NAME
RFOR MAT

The error was caused by not including a period after the file name FA, this FA was interpreted
as an element name. If an element named FA existed in F {RUNA in this example} it would have
been listed and no errar would have been printed.

If the elements of more than one file are to be displayed, the file names are separated by
commas. If Fis to be dispiayed, it must either be named explicitly or, if it is the first parameter,
left blank. '

->Lls S5 .FA. FB
RUNA..

TYPE NAME

RFOR MAT

ELT A

FA.

TYPE NAME

ABS A

NUALG NAME

<105> FILE FB 1S EMPTY
->

The name of each file precedes the list of elements from that file and a blank line follows the
list for each file.

If a data file is specified, the error message:
<19> file name IS NOT A PROGRAM FILE

is displayed. 1f one of the files specified does not exist, the error message:
<68> FC 1S NOT CATALOGUED.

is displayed.

The date and time that elements in a file were created, as well as their size and type, are
displayed by using the L option on the LIST SAVED command.

=>LIS5T SAVED, L

HKH.

DATE TIME SIZE TYPE NAME
15 FEB 77 09:30:11 12 RFOR FFF

14 FEB 77 14:28:38 10 . BASIC DDD

14 FEB 77 09:27:27 1 BASIC ABC

-2

8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL pAG:_g
4.1.4.3. Displaying the Names of Assigned Files — LIST INUSE
Syntax: LIST INUSE
Abbreviation: LIS |
Function: To list the names of all mass storage files assigned to the run, and pertinent

information about each.

Generally, it is not necessary to know which files are assigned to the run because CTS automatically
assigns files when they are referenced. The LIST INUSE command causes CTS to list the full name
of each file assigned to the run, including its gualifier and absolute cycle. It also gives the type of
mass storage equipment requested for the file, the options used when assigning it to the run, and
any additional names d uses to simplify referencing it.

Each file is represented by cne line in the following format:
G*FN(c).e,op nqy,ny,....n;

For a complete understanding of these fields, a substantial knowledge of the assignment and use of
mass storage files under the operating system is required. See the SPERRY UNIVAC Sernes 1100
Executive System, Volume 2 EXEC, Programmer Reference, UP-4144.2 {current version), as well as
Section 7 of this manual. Briefly, the fields and their significance are:

q - qualifier. Every file has an additional name, called a qualifier. The qualifier may
be explicitly specified when the file is created. If not, the Executive uses
the project field from the @ RUN control statement which started the run.
The gquaiifier and file name together uniqueiy identify a file. No two
cataloged files may have identical file names and qualifiers, although
either file names or qualifiers of different files may be identical. A
qualifier may be given when referencing a file. If not, the project field
is again used as a default. In any case, both the qualifier and file name
must match exactly those which the Executive has registered for the file.

FN - file name. This is the basic name of the file. ltis the name explicitly given to a file
when it is created and which is used to reference it via the Executive.
{CTS provides the names of some of these files, as mentioned in 7.1.2.}

¢ - cycle. The Executive permits several versions of a cataloged mass storage file
to exist simultaneously in the system, distinguishing between them by a
number called a cycle number. When referencing such a file, unless a
particular cycle is specified, the most recent cycle is used (i.e., the highest
cycle number).

e - equipment type. When assigning a file for the first time, it is possible to specify the type
of equipment to be used for the file - high speed drums, disks,
FASTRAND drum, etc. The type of equipment is specified by a code, and
it is this code that constitutes the e-field.

op - options. The options on the CREATE command (see 7.5.1), or @ASG control
statement by which this file was assigned to the run. T means the file
is temporary, A means it was cataloged before the assignment, and C
means it was not cataloged before this run, but will be when the run
terminates normally.

" B118.2

SPERRY UNIVAC Series 1100

¥ v i 4-10

UP-NUMBER Time Sharlng Guide for CTS Usars LPDATE LEVEL PAGE
Ny, Ng, o, Ny = The Executive has a feature which permits the definition of a simple alias
attached names. for the complete name of a file (see the USE command, 7.5.6). Such

an alias is called an attached name. Attached names are useful in
simplifying references to a file the full specification of which {if qualifier
and cycle are specified) may otherwise be unwieldy. They are also useful
in cases where, in the course of a run different files are to be used for
the same function. In such cases, the attached name is simply redefined
to be an alias for the new file. Actual references to the file can always
use the attached name and, therefore, always refer to the file currently
used for the function.

An example of a LIST INUSE command is:

->LIST INUSE

FURPUR 27R2 02/1%/77 14:56:45
MKTG*TPF$(0).F4,T

MKTG*CTS$SRUNA(1) ,F4 AD CTS$F!ILE
MKTG*RUNA(1),F2,A

->

This command was executed immediately after initializing CTS during a run with a run-id of RUNA
and a project of MKTG. The three files are, in order: :

1. The object file.
2. The working area file, f.
3. The save file, F.

The first line is produced by the FURPUR processor, part of the operating system. CTS uses this
processor to retrieve the information about the files.

4.2. Sending the Qutput to Another Device

There are times when the volume of output to be printed is too large to display at the terminal. At
other times a hardcopy record of a program may be needed but the terminal has no hardcopy device,
as with many CRT terminals, for example. A program may also be needed on punched cards. To
take care of these situations, two commands (SITE and CARDS) direct output to the onsite equipment
- equipment at the same site as the central computer. Each of these commands specifies what is to
be written or punched on what device, and informs the central site operator what to do with the

output.

4.2.1. Sending Output to an Onsite Device - SITE

Syntax: SITE L] [(c1.c2)] [k]

Abbreviation: SIT

Function: To direct the output of all or the specified part of f to an onsite device.
The SITE command is used exactly like the PRINT command (see 4.1.1) except that the resulting
output goes to an onsite device rather than to the terminal. The parameters have the same

significance as they do for the PRINT command, except that the ASSUME QCOLUMN limits are used
as the defaults if no column limits are specified. If L is omitted, however, it is assumed to be A,

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users M

UPDATE LEVEL PAGE

The SITE command normally sends output to any onsite printer. The use of the ASSUME SITE
command (see 4.3.3) permits selection of a specific device or group of devices to0 which the output
of SITE commands will be limited. The output of SITE commands may be printed on a remote device,
such as a UNIVAC 9200/9300, by specifying its identification in the ASSUME SITE command or in
response to the solicitation.

The SITE command will selicit a string to use as a heading for the listing, a message for the operator
specifying what to do with the output, the number of copies to be generated, and a site identification.
Each of these parameters may be set via the ASSUME command (see 4.3.3, 4.3.4, 4.3.5, and 4.3.6).
If a parametar has been set, the SITE command will not ask for it.

The following example illustrates these responses:

->SITE

HDG? > PROGRAM ABC

RTN? >JOHN DOE. MAIL STATION 1234.
COPY? > 2

SITE? >

->

The entire contents of f was sent to an onsite printer. The indicated heading is at the top of every
page, and the message appears at the end on a separate page.

The ASSUME SITE {4.3.3}, ASSUME HEADING (4.3.4), ASSUME RETURN {4.3.5}, ASSUME COPY

(4.3.6), ASSUME QUICK {4.3.2), and ASSUME TYPE {4.3.7) commands affect the operation of the SITE
command.

4.2.2. Output to Punched Cards - CARDS

Syntax: CARDS [L] [({c1.c2}] [k]

Abbreviation: CAR

Function: To send all or part of f to a card punch.
The CARDS command is used exactly like the PRINT command (see 4.1.1), except that the resulting
output goes to an onsite card punch, rather than the terminal, and the ASSUME OCOLUMN limits are
used as the defaults if no ¢column limits are specified. The parameters have the same significance
as they do for the PRINT command. If L is omitted, it is assumed to be A.
NOTE:

Unless the k parameter is N, CTS line numbers will be punched as part of the card image.

The CARDS command solicits a string to be used as a heading card. This heading will be the first
card punched and will identify the card deck.

The CARDS command solicits a string 10 be used as a message informing the operater what to do
with the card deck produced: only if a carriage return is entered in response to the SITE? query. This
message will be displayed on the operator’s console at the central site and is meaningless if the card
punch is located elsewhere.

8118.2
UP-NUMEER

SPERRY UNIVAC Series 1100

4.12
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

The example that follows illustrates the use of the CARDS command.

->CARDS N

HDG? > FROGRAM ABC

corY? >

SITE? >

RTN? > S8END DECK TO JOHN DOE, MAIL STATION 1234.
->

One copy of the entire contents of f was punched without CTS line numbers. The message has been
displayed on the operator's console and the cards are ready to be punched when the solicitation
character appears.

—> CARDS

HDG? -> PROGRAM DEF
COPY?—>

SITE?-> CP3A

->

In this example, the RTN? query does not appear. A message displayed at the operator’s console may
be meaningless since the output is not directed to the on site card punch.

The ASSUME SITE (4.3.3), ASSUME HEADING {4.3.5), ASSUME RETURN (4.3.4), ASSUME COPY
{4.3.6), ASSUME QUICK {4.3.2), and ASSUME TYPE {4.3.7) commands affect the aperation of the
CARDS command.

4.2.3. Qutput to Paper Tape - PUNCH
Syntax: PUNCH [L][{c1.c2)] [k]
Abbreviation: PUN
Function: To send all or part of f to the paper tape punch of the terminal.

The PUNCH command is used exactly like the PRINT command (see 4.1.1), except that the output is
punched as well as displayed, and the ASSUME PCOLUMN limits are used as the defaults if no column
limits are specified. It is intended for terminals with type | paper tape equipment. The parameters
have the same significance as for the PRINT command, except that the default for a missing L
parameter is A, rather than the current line. When the command is executed, a request to turn on
the punch is printed and a pause allows time for this action,

CTS will cause a leader and trailer which consist of rubout characters to be punched. Since some
devices will not punch the rubouts that are transmitted by CTS, try punching a small sample tape and
if the leader and trailer are not punched out, manually create the leader by switching the paper tape
punch on and holding the repeat key (REPT) and the rubout key down simultaneously. This may be
done safely even while executing a run at the terminal, since rubouts are ignored.

When the command is executed, a request to turn on the punch is printed as follows:

->PUNCH
#DEPRESS PUNCH ON#

8118.2
UP-NUMBER

| 4-13
UPDATE LEVEL] PAGE

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

A pause then occurs to allow the PUNCH ON switch on the paper tape punch hardware to be pushed.
After the leader, the text will be punched followed by an @EQF, a CONTRL-S, an @ @END, and the
trailer. When the punching is finished, a pause again occurs to allow the punch to be turned off. If
a trailer was not punched, repeat the process used to create the leader. A tape so produced can be
used as normal type Il input.

4.2.3.1. Paper Tape Input - PTI

Syntax: PTE [i]]

Abbreviation: None

Function: To start input from paper tape on devices with paper tapé capability.
If the paper tape has line numbers punched on it, the i and j fields should be left blank. If there are
no line numbers, CTS will use i and j to generate line numbers in a manner similar to the NUMBER

command.

The generated line numbers will start with i and have increments of j. If i is not specified, 100 is
assumed. The default for jis 10. An "#" or " may be used for i {see 2.2.4.2).

NOTE:

If line numbers are generated by CTS, the first character of a fine must not be the command control
character {usually an asterisk), because this will terminate the numbering.

The system responds to this command with the message START PAPER TAPE INPUT. When the
input is completed the message END PAPER TAPE INPUT is printed.

It the END FAPER TAPE INPUT message does not appear after the input is finished, it means that
there are no paper tape CONTRL-S, @EQF, and @ @END control images on the paper tape. They must
then be typed in to exit from this mode. The CTS PUNCH command automatically supplies these
control images. ' '

Input lines may be up to 132 characters in length. When the paper tape input is completed the 132
character limit remains in effect. To return to the standard BQ character line use the ASSUME
INPUTWIDTH command or any ccmmanrd which causes an exit from CTS (see 4.2.3.2).
4.2.3.2. Setting the Line Length - ASSUME INPUTWIDTH

Syntax: ASSUME INPUTWIDTH [80/132]

Abbreviation: A INP

Function: To control the number of characters per line which can be entered from a
terminal via paper tape.

The parameter should be either 80 or 132. If it is less than or equal to 80, or not specified, the input
width is set to 80. If it is greater than 80, the input width is set to 132. The input width is set back
to B0 when exiting from CTS on an XCTS command to protect other processors which are not
prepared 1o read more than 80 characters of input.

8118.2
UP-NUMSER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -t

PAGE

UPDATE LEVEL

4.3. Setting Defaults for Printing

4.3.1. Defining Terminal Line Length — ASSUME PRINTWIDTH

Syntax: ASSUME PRINTWIDTH [i]

Abbreviation: A PRI

Function: To limit the number of characters displayed on one line at the terminal.
Depending on the device, the number of characters CTS will display on a line may need to be
increased or decreased. Use of the ASSUME PRINTWIDTH command will not cause truncation of
a message longer than the line length. CTS will dispiay the entire message on as many lines as it
needs.
The parameter i is an integer determining the maximum number of character positions. For eificiency,
it is rounded down, if necessary, to the largest multiple of six (for Fieldata) or four {for ASCil). Omitting

i will reinstate the system standard. 132

The effect of this command is local to CTS. -

4.3.2. Compressing Cutput - ASSUME QUICK
Syntax: ASSUME QUICK [ON/OFF]
Abbreviation: A Q

Function: To establish or discontinue the compression of output to the terminal for certain
commands by substituting a single space for any string of consecutive spaces.

This command establishes (ASSUME QUICK ON} or disables {ASSUME QUICK or ASSUME QUICK
OFF) the compression of output to the terminal for the CHANGE (see 5.2.2}, LOCATE {see 5.1.1), and
FIND (see 5.1.2) commands, and the PRINT (see 4.1} family of commands.
4.3.3. Defining an Onsite Device ~ ASSUME SITE

Syntax: ASSUME SITE[X]

Abbreviation: A SIT

Function: To define the device or device group for the SITE command.
The SITE command (see 4.2.1) c!irects an output listing to any valid device that is configured into the
EXEC. CTS normally directs such output to any onsite printer. The X parameter specifies the name
of a particular device or the name of a device group as being the target for output of subsequent SITE
commands.

->ASSUME SITE RMSUOT

will cause subsequent output to go to the device whose site-id is RMSUO1. The specific site—ids must
be obtained from the site coordinator.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 4-15
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

4.3.4. Specifying a Default Heading — ASSUME HEADING
Syntax: ASSUME HEADING [s]
Abbreviation: A HEA
Function: To set a default heading for the SITE command
The ASSUME HEADING command sets default values for the heading to be used by the SITE and
CARDS commands.
4.35. Specifying a Default Return-to Message — ASSUME RETURN
Syntax: ASSUME RETURN [s]
Abbreviation: A RET
Function: To set a default return-to message for the SITE and CARDS commands.
The ASSUME RETURN command sets default values for the return-to message to be used by the SITE
command.
4.3.6. Setting the Number of Copies - ASSUME COPY
Syntax: ASSUME COPY [i]
Abbreviation: A COP
Function: To set a default value for the number of copies
The ASSUME COPY command sets default value i for the number of copies to be generated by the
SITE and CARDS commands.
4.3.7. Controlling the Line Number Display - ASSUME TYPE
Syntax: ASSUME TYPE [ON/OFF]}
Abbreviagtion: AT

Function: To control whether line numbers are displayed with the PRINT, PUNCH, LIST,
QUICK, SITE, and CARDS commands.

The PRINT, PUNCH, LIST, QUICK, SITE, and CARDS commands use the same parameter formats and
the interpretation of the parameters is essentially identical. The PRINT command (see 4.1.1) describes
the parameters and their interpretation. The parameter in these commands is used to expiicitly
control the display of line numbers for that command only.

The ASSUME TYPE command changes this option. ASSUME TYPE QFF conditions CTS to not display
the line numbers. If it is omitted or coded ON, the option is set to display them.

g118.2 j SPERRY UNIVAC Series 1100

4-16
LP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
4.3.8. Sending Print to an Alternate File - ASSUME BREAKPOINT
Syntax: ASSUME BREAKPOINT [ON/OFF]
Abbreviation: A BRE
Function: To direct output from the COMPILE, MAP, and to either the terminal or to a print

file named SQUELCH$, which ts automatically provided by CTS.

The ASSUME BREAKPQINT OFF command directs the output to the terminal and suppresses the
DIAGNOSTIC SCAN? query. Since there is no scan file (SQUELCHS), the SCAN command will
generate an errar or will read the old scan file, if a RUN, COMPILE, or MAP command was done befare
the ASSUME BREAKPOINT OFF. The ASSUME BREAKPOINT ON or ASSUME BREAKPOINT reinstates
the default condition in which output goes to the scan file.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

5-1
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

1.

5. Editing and Modifying Programs

5.1. Locating Information in f to be Modified

Format errors are often easily detected by displaying the entire program. A refinement is to list only
a part of every line—beyond column 72 or 80, for example. This can be useful with some compilers.
CTS provides three commands for this purpose which are almost identical. They are the PRINT,
QUICK, and LIST L commands, which are described in detail in 4.1.1, 4.1.2, and 4.1.4.1, respectively.
Two commands are available which will locate and display only those lines which contain a specified
string. They are the LOCATE and FIND commands. These are described in detail here, along with
some related commands which modify their operation.

5.1.1. Finding a String - LOCATE

Syntax: LOCATE s [L] [(c1.c2)] [FILLER=b] [SPACER=a] [R[=i]]
Abbreviation: LOCATE L
FILLER F
SPACER S
Function: To search all or a specified part of the warking area, f, for the occurrence of a

specified string.

The LOCATE and FIND (see 5.1.2) commands are similar in function. The LOCATE searches for the
given string in any column position: the FIND, only in the one specified position. For this reason it
is more efficient to use FIND if the column position is known. The FIND command offers the option
of applying the relations >, <, > < {not equal}, =, > =, or <=. The LOCATE command does not.
The FIND command has no counterpart to the FILLER and SPACER parameters of the LOCATE
command.

The LOCATE command may be used in a number of ways. The various parameters permit much
flexibility. Most frequently, this command will be used to find either the next occurrence or all
occurrences of the exact literal string submiited. The operation of LOCATE can be explained by
describing each parameter.

W s - String Parameter.
This parameter specifies the string to be matched. If the string contains a space, it must be

enclosed in quotes. If it contains a quote character, two adjacent quotes must be entered for
each desired quote. For examplie, the string DON"T would match the string DON'T. Te LOCATE

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -

PAGE

. UPDATE LEVEL

a string that contains the variable delimiter character (the percent sign, %}, it is necessary to code two
adjacent variable delimiter characters to avoid variable substitution or the start of a comment. For
example, the string "% |I" would be interpreted as the start of a comment, but the string "% % 1" would
be a valid string which could be used to find a comment. The FILLER annd SPACER parameters permit
variable spacing or character positions which are not to be used in the comparison. If there is no
FILLER or SPACER, only an exact match of the given string will result in a find. A default string
character can be set via the ASSUME STRING command (see 5.1.8.).

L - Line Number Range Parameter.

Specifies the range of line numbers of f to be searched. Any of the forms given in 2.2.8.2 may
be used. If omitted, all lines following the current line are searched (equivalent to specifying
* 4}

{c1.c2) - Column Limits Parameter.

When this parameter is present, only columns ¢ 1 through c2 {inclusive) will be used during the
search. No string lying partly outside these limits will result in a find If ¢1, ¢c2 or the entire
parameter is omitted, the corresponding value will be taken from the default established by the
jast execution of an ASSUME SCOLUMN command {see 2.2.5). On initiation of CTS, this default
is set to (1.132). The value of c1 must not he greater than the value of ¢c2. The parameters
c1 or ¢2 may be strings (see 2.2.1), :

FILLER — Filler Parameter.

There may be character positions in the given string which are not to be used in the matching
process. The FILLER parameter allows these character positions to be specified in the string
submitted by the s parameter. The positions so specified are then not used in determining
whether a match has occurred. In other words, they will be considered to be equal to any
character.

Columns of the given string containing the character specified by the b in the FILLER parameter
are the positions identified to be excluded from the match.

For example:
=>1 A*x#T7 FHIFR=#

will result in a match when encountering ALOFT, ALL T, QR AB?*T, but not when encountering
ABCT, ¥*#*T, or AT.

If this parameter is omitted, the last execution of the ASSUME FILLER command (see 5.1.6)
defines the filler character. If this command has not been executed, there is no filler character.

Coding this parameter FILLER= (with no character specified) wilt cause the blank to become
the filler character. Coding it FILLER (without the = as well) defines the filler character to be
nonexistent for the current command.

SPACER - Spacer Parameter.

This parameter makes it possible to direct that strings of the spacer character (usually the biank)
of different sizes are equivalent for purposes of matching. The specification "a” is the character
for which a minimum number of ¢ontiguous character positions of this same character in the
string being matched against it which wili test equal in the matching process.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 5-3
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

For example:
-> 1L AB##C S=x

will result in a match when the text contains AB####C, ABH##C, and ABF#£ 7+ C, but not when
it contains AB#C or ABC.

The blank is the most commonly used spacer character. If the spacer parameter is omitted, the
value established by the last execution of the ASSUME SPACER command {see 5.1.6} is used.
Without this command, the spacer character will be nonexistent.

If this parameter is coded SPACER= (with no a specified), the spacer character is a blank. If
it is coded SPACER (no = or character), the spacer character does not exist for this execution.

B R - Repeat Parameter.

If this parameter is coded R, all matching lines in the range defined by L will be dispiayed. If
this parameter is omitted, the first matching line is displayed, and the line pointer, p {see 2.2.3),
is set to the line number of this matching line. If the L parameter is specified as A, R is always
implied and need not be specified.

The i parameter is an optional limit value for the R parameter, specifying the maximurn number
of matches to be made within the specified line limits.

The order specified for the first three parameters, if they exist, is mandatory. The last three parameters
may be permuted among themselves, but must follow all of the first three which exist. A vioclation
of this rule results in a diagnostic message, as in the following sequence:

->L ABC R A
< 17> KEYWORD A
-

If the string is omitted a diagnostic will be printed:

->L
<12> UNBALANCED DELIMITER.
->

However, if any parameters are present, the first parameter will be taken to be S. Other errors, as
in the syntax of L or the column parameter, give similar diagnostics.

The normal response, when a match is made, is to display the line number and contents of the
matching line. If R is in effect, matching then continues with the following lines until the end of the
line number range specified by L is reached.

For example:

->L ABC 100,150
135 LEARN YOUR ABC'S.
->

->L ABC 100 150HR
135 LEARN YOUR ABC'S.
147 THE ABC OF IT.

-

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

5-4
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

in the first example p was left set at 135; in the second, at 147. As with other commands, if L is
such that the message:

TOP OF FILE
or
END OF FILE
or
<21> LINE n DOES NOT EXIST

occurs, then p will be 0, 0, and unchanged, respectiveiy. Other errors will usually leave p unchanged
as well. An example of the R = i option is:

->L-ABC 100,150 R = 1
135 LEARN YOUR ABC'S.
->

If the search was unsuccessful, the following message appears:

->L XYZ 100,150 R
*NOT FOUND
->

The line pointer is left set to the highest numbered line between 100 and 150 inclusive.
If the ASSUME BRIEF ON command is in effect, no lines or line numbers are displayed.
For example:

" —>ASSUME BRIEF ON
->L ABC 100,150
->

Assuming the same contents of f as for the previous example with the same LOCATE command, the
only difference is the display of the matched line. The ahsence of the ¥ NOT FOUND message
indicates that a line was found. :

If the ASSUME QCCURRENCES ON command is in effect, the number of lines the string occurred in
is printed.

For example:

->ASSUME O0CC ON

->L0C ABC ALL

100 ABC

110 ABC DEF GHI

150 LEARN YOUR ABC'S

170 THE ABC OF |IT
NUMBER OF QCCURENCES: 4

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 3-5

UPDATE LEVEL j PAGE

5.1.2. Finding a String - FIND
Syntax: FIND s [L] [(c)] [RI[=il] [K]
Abbreviation: F

Function: To search all or a specified part of the working area, {, for the occurrence of a
string in the fixed column positions specified which bears the specified
relationship to the string given in the command.

The FIND command is similar in function to the LOCATE command (see 5.1.1). The FIND command
searches for a string in the fixed column position only; the LOCATE, in any column position. The FIND
command als¢ permits specifying the relations >, <, > < (not equal), =, > =, and <= in the sense
of the collating sequence. The LOCATE command does not. Both commands normally search for
strings which, in this sense, are equal. The LOCATE command permits adjusting the matching
properties of the specified string with the FILLER and SPACER parameters. The FIND command has
no such capability.

The FIND command will be used most frequently to find the next occurrence or ali occurrences of
a specific string in a specific column position. In a COBOL program, for example, the line numbers
of all file descriptions may be wanted. Searching for the string "FD" beginning in column 8 will
accomplish this. Similarly, searching for FD AaA OLD-MASTER beginning in column 8 will find the line
where the specific file description occurs.

B s - String Parameter.

This parameter defines the string to be used in the search. If the string contains spaces, it must
be enclosad in quotes. If it contains a quote character, two adjacent (single} quotes must be
entered for each desired quote. For example the string "s would match the string 's. To FIND
a string that contains the variable delimiter character (the percent sign,%), it is necessary to code
two adjacent variable delimiter characters to avoid variable substitution or the start of a
comment. For example, the string "% " would be interpreted as the start of a comment, but the
string "% % |" would be a valid string which could be used to locate a comment. A default string
character can be set via the ASSUME string command (see 5.1.8.). Tab characters will be
interpreted, and the intervening positions will be filled with blanks {see 2.3.4). The tab positions
refer to the column numbers relative to the line, not necessarily relative to the string.

In other words, if a tab is set at column 15 and the tab character is ";", then the command:
->FIND A;B 100,150 (i0)

will result in the string s being A AAAAB where a stands for a blank. The column parameter
{which follows) means that the first character of s goes into column 10. This is taken into account
when interpreting the tab character.

B L - Line Number Range Parameter.

Specifies the range of line numbers of f to be searched. Any of the forms given in 2.2.8.2 may
be used. If omitted, all the lines following the current line will be searched (equivaient to using
* 4}

B (c}) - Column Parameter.

Specifies the column in the searched lines where the string being compared is to begin. The
position in the searched line is fixed. This is similar to a column limits parameter, but since the
position of the desired string is fixed, only one value is needed, rather than the usual two. If
omitted, the value of ¢1 from the most recently ASSUME SCOLUMN command (see 2.2.5) is
used. If no such command has been executed, 1 is used. Unlike other commands that have
column limits, ¢ may not be a string.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL

R — Repeat Parameter.

Iif this parameter is coded, all lines meeting the specified criterion will be displayed. If it is
omitted. only the first such line is displayed, and the line pointer, p, is set to the line number
of that line, making it the current line for the next command. It is not necessary to specify this
parameter if the L parameter is specified with A. In that case, R is automatically assumed and
all lines meeting the criterion will be displayed.

The i parameter is an optional limit value for the R parameter, specifying the maximum number
of matches to be found within the specified line limits.

k - Relation Parameter.

Acceptable values for this parameter and the corresponding relations are:

= or null equal to s

> greater than s

< less than s

> not equal to s

<> not equal to s

>= 0 => greater than or gqual to s
<= 0r =< less than or equal to s

where s is the string specified in the string parameter. These relationships refer to the collating
sequence of the characters. If the string s is the single character D, for exampie, and k were
coded as >, a line with E as the matching string would satisfy the relationship, and the line would
be displayed. .

The normal response, when all parameters are correctly specified, is to display the line number and
contents of the line found. If R is in effect. the comparison process continues with each line until
the end of the line number range specified by L is reached. Each successful find results in the display
of the line. If the ASSUME OCCURRENCES ON command is in effect, the number of lines the string
occurred in is also printed.

For example:

=>F ABC 100,200 (6)
157 YOUR ABC'S.
>

->ASSUME 0CC ON

->F ABC 100,200 (6} R
157 YOUR ABC'S.

183 67820ABCDEFG

NUMBER OF OCCURRENCES: 2
->

in the first example only the first find was displayed. In the second, all finds within the line number
range were displayed.

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users >

UPDATE LEVEL PAGE

If the repeat option (R = i} is typed in, at most, i lines (which contain a left-justified, fixed-coiumn
substring that matches s} will be found.

If there was no successful comparison, 2 message is displayed:

->F ABC 100,200

+NOT FOUND

->
Any combination of parameters except s may be omitted, but the parameters not omitted must be
in the order indicated. If the order is violated or a parameter is badly specified, a message like the
following will occur:

->F ABC 110,120 R (11)

<17> KEYWORD (11)

->
The FIND command will leave the line .pointer, p. set to the line number of the displayed line when
R is not specified. When R is specified or if no find is made, p is left set to the iine number of the
last linc in the range specified by L. If the message:

TOP OF FILE
or

END OF FILE
or

<21> LINE n DOES NOT EXIST
appears, pis 0, 0, orunchanged, respectively. When other error messages are displayed, p is normally
left unchanged.
5.1.3. Controlling the Display of Matched Lines - ASSUME BRIEF

Syntax: ASSUME BRIEF [ON/OFF]

Abbreviation: A BRI

Function: To control whether those lines which are successfully matched during the search
performed by LOCATE, FIND, INLINE, INSERT, or CHANGE commands are
displayed.

CTS normally displays both line numbers and line contents of matched lines for successful searches.
The ASSUME BRIEF ON command conditions CTS to inhibit this display. The ASSUME BRIEF OFF
command reinstates the original condition of displaying the matched and verification lines.

The ASSUME LINES command (see 5.1.4) independently controls the display of line numbers for
successful searches. However, the line numbers are displayed only when in ASSUME BRIEF OFF
mede. Thus both line numbers and line contents, the contents only, or neither may be displayed.
These commands do not provide for listing the line numbers only.

81182 SPERRY UNIVAC Series 1100 5-3
UP-NUMBER Time Sharing Guide for CTS Users \UPDATE LEVEL | Pace
5.1.4. Controlling the Display of Line Numbers of Matched Lines - ASSUME LINES
Syntax: ASSUME LINES k
Abbreviation: A LIN
Function: To condition CTS to display or not to display {depending on k) the line numbers

of lines successfully matched during the execution of a LOCATE or FIND
command and of verification lines printed by the CHANGE, INLINE, or INSERT
command.

CTS normally displays both line number and line contents of matched lines for successful searches.
An ASSUME LINES command with the parameter k coded OFF, causes CTS to inhibit display of the
line numbers on all subsequent successful searches until it encounters an ASSUME LINES command
with the k parameter coded ON. CTS then resumes the display of line numbers for successful
searches. The display of both line numbers and line contents is inhibited by the ASSUME BRIEF ON
command (see 5.1.3). The ASSUME BRIEF OFF command (see 5.1.3) reverses the effect of an
ASSUME BRIEF ON command. Therefore, line numbers are displayed only when in ASSUME BRIEF
OFF mode and only when the last ASSUME LINES command, if any, had its k parameter set to ON,

The ON may not be abbreviated and OFF can be abbreviated OF.

5.1.5. Reprinting of Lines Keyed into CTS - ASSUME ECHO
Syntax: ASSUME ECHO [ON/OFF]
Abbreviation: A ECH
Function: To control whether CTS types out each line keyed in.

The ASSUME ECHO command either turns on or off a mode in which each line keyed into CTS is
typed back out. This mode is automatically established if CTS is called as a batch processor, so that
the input lines are displayed with the output lines in the print listing. ASSUME ECHO ON establishes
the echo print and ASSUME ECHO OFF or just ASSUME ECHO reinstates the normal condition where
the lines are not echoed.

For example:

->ASSUME ECHO ON

->BAS

BAS

BBASIC 9R1

>>0L0D ECHODEMO

OLD ECHODEMO

S>LIST

LIST

100 PRINT °~ ENTER VALUES FOR A, B, AND C °
110 INPUT A, B, C

120 LET D = A*B/C

130 PRINT ° THE VALUE OF D = °~ D
140 END

END OF FILE

>>AUN

RUN

8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE_S
ENTER VALUES FOR A, B, AND C
T > 4, 5, 10
THE VALUE OF D = 2
TIME : .054
>>
5.1.6. Setting the FILLER Default for LOCATE - ASSUME FILLER
Syntax: ASSUME FILLER [=b]
Abbreviation: A FILL
Function: To set the default FILLER character for subsequent LOCATE commands.

The form of the parameter in the ASSUME FILLER command parallels its form in the LOCATE
command The LOCATE command is the only command to which the default applies. Specifically,
it does not apply to the CHANGE command (see 5.2.2) even though it has a similar parameter.

When the parameter and accompanying equals sign are omitted, there is no FILLER default. This is
the standard state for this option.

Sec the LOCATE command {5.1.1} for details of how the FILLER parameter is used.

5.1.7. Setting the SPACER Default for LOCATE - ASSUME SPACER

Syntax: ASSUME SPACER [=a]

Abbreviation: A SP

Function: To set the default SPACER character for subsequent LOCATE commands.
The form of the parameter parallels its form in the LOCATE command. The LOCATE command is the
only command to which the default applies. Specifically, it does not apply to the CHANGE command

{see 5.2.2) even though it has a similar parameter,

When the parameter and accompanying equals sign are omitted, there is no SPACER default. This
is the standard CTS state for this option.

See the LOCATE command (5.1.1) for details of how the SPACER parameter is used.

5.1.8. Setting the STRING Default - ASSUME STRING

Syntax: ASSUME STRING X = [s]

Abbreviation: A STR

Function: To set the default STRING character.
The ASSUME STRING command sets the string character, X, equivalent to the string, s, which can:
be used by the LOCATE, FIND, and CHANGE commands. The string character, X, is set by the user
and is one character in length. Quotes are not needed as delimiters unless there are embedded blanks

in the string and two quotes must be entered for each desired quote. Tab characters are not evaluated
by the ASSUME STRING command.

5-10
PAGE

8118.2 SPERRY UNIVAC Series 1100
UP-NUMBER Time Sharing Guide for CTS Users . UPDATE LEVEL

For example:

->NEW ASTR

->1 ABCDEF

-»>2 123456ABC

-»>3 DEFDEF

->SAVE

~>ASSUME STRING #=ABC
-»LOCATE + R

1 ABCDEF

2 123456ABC

END OF FILE

->ASSUME STRING # = 123
->FIND #

2 123456ABC

5.1.9. Controlling the Printing of the NUMBER OF QCCURRENCES message - ASSUME
OCCURRENCES

Syntax; ASSUME OCCURRENCES [ON/OFF]
Abbreviation; A QOCC

Function: To control whether CTS prints the NUMBER OF OCCURRENCES message after
a LOCATE, FIND or CHANGE command has been executad.

Frequently it is helpful to know the number of occurrences of a string after a LOCATE, FIND or
CHANGE command. The ASSUME OCCURRENCES on command prints a message with this
information.

The message "NUMBER OF OCCURRENCES: m " informs the user of the number of occurrences of
the searched-for string and is printed only by the LOCATE, FIND, and CHANGE commands. ls
meaning is slightly different for the CHANGE command than it is for the LOCATE and FIND commands.

The LOCATE and FIND commands print the number of lines the string occurred in. This is because
these commands search through the line until the first occurrence of the string is encountered. There
may be many occurrences of the string but searching is stopped when the first one is encountered.
When the first string is encountered, the LOCATE and FIND commands are satisfied.

The CHANGE command prints the number of times the string actually occurred. This can be done
with the CHANGE command since it may have to check for mutiple occurrences of the string in the
same line.

If the ASSUME QCCURRENCES OFF command is in effect, the number of occurrences can still be
referenced by the OCC (} command (see Table 12-1).

To locate the actual number of occurrences of a string, the CHANGE command can be utilized. If,
on a CHANGE command, string S1 is the same as string S2 the work area will not be affected, but
since the CHANGE command was used. the actual number of occurrences will be printed rather than
the number of lines {which would be printed if a LOCATE or FIND command had been executed).

For example:

->A 0CC ON

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 511

PAGE

UPDATE LEVEL

->NEW 0CCS

1 ABCDEF

2 ABC123

3 123DEFDEFDEF

—->LOCATE ABC A

1 ABCDEF

2 ABC123

END OF FILE

NUMBER OF OCCURRENCES: 2

—>FIND 123 A (4)

2 ABC 123

END OF FILE

NUMBER OF OCCURRENCES: 1

->CHANGE /123/456/ A

2 ABC456

3 456DEFDEFDEF

END OF FILE

NUMEBER OF OCCURRENCES: 2

-> CHANGE /DEF/DEF/ A

1 ABCDEF

3 456DEFDEFDEF

END OF FILE

NUMBER OF OCCURRENCES: 4

5.2. Modifying Lines of f

The most elementary, and often easiest, way to edit a line is simply to replace it by entering a line
with the same line number as the line to be changed. CTS has four commands (DELETE, CHANGE,
INLINE, and INSERT} specifically designed to help make modifications to f. Frequently, more than one
of them will be suitable to make a particular modification. At other times one will be clearly
advantageous.

5.2.1. Discarding Part of f - DELETE

Syntax: DELETE [L] [{c1,c2}]

Abbreviation: D

Function: To delete from f selected lines or selected columns of selected lines.
The most common use of the DELETE command is to delete a set of lines from the working area. f.
This is done by omitting the column specification. In this case, the lines of f with line numbers in
the range specified by L are completely deleted from f. The line numbers no longer exist. This is
not the same as deleting the contents of a line, which can be done, for example, with a DELETE

command in which an explicit column specification is given. In this ¢case, the line number is not
deleted, and f still contains a blank line associated with this number.

B1182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users o2

PAGE

UPDATE LEVEL

| L— Line Number Range.

This parameter defines a range of line numbers of f to be operated on. Any of the formats in
2.2.8.2 is valid for L. K L is omitted, only the current line is selected.

B (cl,c2) - Column Specification.

This parameter defines a range of celumn numbers, the contents of which are to be deleted for
each line selected {by the rule provided by the L parameter). If this parameter is omitted, CTS
automatically supplies it The norma! default is {1,132). This default may be changed with the
ASSUME ECOLUMN command (see 2.2.2).

The DELETE command uses this parameter as the basis of deciding whether to remove lines from
f entirely, or to operate only on their contents. If the resulting limits are (1,132) then CTS
removes lines from f completely. The numbers of these lines no longer existin f. If the resulting
column limits are not (1,132) or either c1 or c2 is a string, then the line is never deleted, even
if the contents disappear entirely. It remains in f as a blank line.

The DELETE command is usually used to remove a line from f. Frequently, as in the foliowing example,
the line pointer, p. is already set to this line.

->PRINT 110

110 THIS IS LINE 2.
->DELETE

->

The PRINT command set p to 110. The DELETE command removed this line from f. {This assumes
that no ASSUME ECOLUMN command other than (1,132) is in effect.)

If a coiumn parameter is explicitly specified and is not (1,132), the specified columns of each line
are removed, and the trailing part of the line is shifted left to fill the vacancy.

->PRINT A

100 THIS IS LINE 1.
110 THIS 1S LINE 2.
120 THIS 1S LINE 3.
END OF FILE

->0D A (9.13)

100 THIS 1S 1.

110 THIS 1§ 2.

120 THIS IS 3.

END OF FILE

->

The word LINE has been deleted from each line. Continuing with the contents of f as left in the above
example, the next example shows what happens when the entire contents of a line are deleted, both
with the implied column specification and with an explicit one. No ASSUME ECOLUMN command
is in effect.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

13
Time Sharing Guide for CTS Users ot

PAGE

UPDATE LEVEL

->D 110

->»D 120 (1,50)
->PRINT A

100 THIS IS 1.
120

END OF FILE

->

Line 110 has been completely deleted [no longer exists}) and line 120, while empty, still exists.

if ¢1is a string, and c2 is not specified, all columns beginning with the column that matches the string
cl are removed, for each line.

~>PRINT A

100 THIS IS LINE 1.
110 THIS IS LINE 2.
120 THIS IS LINE 3.

END OF FILE
>0 A (L")
100 THIS IS
110 THIS IS
120 THIS IS
END OF FILE
->

The normal set of diagnostic messages will result from improperly specified parameters, The normal
response is simply the solicitation character. This indicates that the range specified in L contained
some lines. An end-of-file message where L specifies a range with increasing line numbers, does
not tell whether any lines were encountered or not. The diagnostics are normally self-explanatory.

For example:

>0 A

THE WORK AREA IS EMPTY

—>0LD ELTA

-»>0 A 10,15

<17> KEYWORD 10,15

D A (10,15

<11> UNBALANCED PARENTHESIS

->
The DELETE command leaves the line pointer, p, set to the line number of the last line cperated on
when the lines are not being completely removed from f. When the lines are being removed, p is

left set to the smaliest line number deleted. The current line, in this ¢case, does not exist in f.

The DELETE command is the only command which can selectively discard lines of f.

8118.2

SPERAY UNIVAC Series 1100

. " A - 5-14
UP-NUMBER Time Shar[ng Guide for CTS Users UPDATE LEVEL PAGE !
5.2.2. Replacing Strings — CHANGE

Syntax: CHANGE ‘'s1's2” [L] [(c1.c2)] [FILLER=b] [SPACEFR=a] [R[=i]][0 [=i]]
Abbreviation: CHANGE C
FILLER F
SPACER S

Function: To locate occurrences of a given string and replace them with another given

: string.)

The CHANGE command is probably the most useful single editing command. It is used to correct
errors in a line of f. A great deal of flexibility is available with judicious use of its parameters. It can
be made to scan a number of lines, searching within specified column limits for a match to the string
s1. Each time it finds a match, it replaces string s1 in the line with string s2. The search can be
specified for all occurrences of s1 on a line or for only the first.

The CHANGE command is one of the three CTS commands that search the contents of f for a string
which meets a test of comparison against a given string. The other two are the LOCATE (see 5.1.1}
and FIND {see 5.1.2} commands. The ASSUME BRIEF (see 5.1.3} and ASSUME LINES {(see 5.1.4)
commands affect the operation of the CHANGE command. CTS normally displays line numbers and
new contents for all lines changed during execution of a CHANGE command. The ASSUME BRIEF
and ASSUME LINES commands modify, eliminate, or reinstate this display of changed lines.

The searching phase of the CHANGE command is almost identical to the LOCATE command. The
string s1 is used for the search. FILLER and SPACER characters have the same meaning in s1 as they
do in the string of the LOCATE command. The ASSUME SPACER and ASSUME FILLER commands,
however, affect only LOCATE, not CHANGE. The repeat parameter, R, is interpreted differently in the
two commands.

B ‘s1's2" - String Parameter.

This parameter specifies two strings, s1 and s2. String s1 is used for the search, and s2 is used
to replace the matched string in the line. If s2 is not the same length as s1, the part of the line
following s1 will be shifted to the right to make room for 52, or to the left to pack the line. Either
s1 or s2 may be null {for example, " "AB"). The first nonblank character en¢ountered is taken to
ke the string delimiter. The quote, while often used, has no unique significance in this regard.
Obviously, the character used as the string delimiter must not be in either string. The slash {/}
is ofien used. '

The default string character, set by the ASSUME STRING command (see 5.1.8)) may be used
in place of either string $1 or 52 (but not both).

For example:

-> 0LD ASTR

-> PRINT ALL

1 ABCDEF

2 123456ABC

3 DEF

->ASSUME STRING £ = 123
-> CHANGE /#/1/ ALL

2 M456ABC

END OF FILE

-> LIST

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users o1

UPODATE LEVEL PAGE

1 ABCDEF

2 MA56ABC

3 DEFDEF

END OF FILE
->ASSUME STRING *=+ 4+ -+
> CHANGE /DEF/*/ ALL
1 ABC+++
3++++4+4+

END OF FILE

->LIST

1 ABC4+++

2 M456ABC

3 ++++++
END OF FILE

To change a string that contains the variable delimiter character {the percent sign,%), it is
necessary to code two adjacent variable delimiter characters to avoid variable substitution or
the start of a comment. For example, the command:

CHANGE /%'/1/

would result in an error since the first % would be interpreted as the start of variable substitution.
However, the command:

CHANGE /%%1/1/
would cause the % to be removed from the current line.

The FILLER and SPACER characters {b and a) have special functions which are described in the
following paragraphs. '

L - Line Number Range Parameter.

This parameter defines a range of line numbers. Any line in f, the line number of which is in
this range, is included in the search in the order (ascending or descending) indicated by the
parameter. Any of the forms of 2.2.8.2 is acceptable. If L is omitted, only the current line is
used. If L is specified as A, all lines of f are included and the R parameter is turned on whether
or not it is coded explicitly.

{c1,c2) - Column Specification Parameter.

This parameter explicitly limits the search on each line to the column limits specified. The entire
string must lie within these ¢columns to be eligible for a match. If this parameter is omitted, the
default is {1,132} unless it has been changed by an ASSUME SCOLUMN command (see 2.2.5).
Omitting either ¢1 or c2 will cause substitution of the corresponding part of the current default
cotumn parametes. Parameters ¢1 or ¢2 may be strings (see 2.2.1).

FILLER=b — Filler Parameter.

This parameter has no default. if it is not explicitly coded in the CHANGE command, no filier
character exists. Note the difference from the LOCATE command (see 5.1.1) where a default
can be set up by an ASSUME FILLER command.

The appearance of the filler character, b in s1 is taken to mean that this column position is not
to be used for matching. Saying it another way, a b in s1 successfully matches any character
at all. Thus, if s1 were:

ABH#E

8118.2
_ UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users >18

PAGE

UPDATE LEVEL

and F# is the filler character, then ABCDE, ABQE, and AB*+%*E in a line of f would all match
successfully, while A##CDE in a line of f would not.

When the filler character, b, also appears in 52, the character that matched the first filler of s1
is used in place of the first filler of s2, the character that matched the second filler of s1 is used
in place of the second filler of 52, ete. If the number of filler characters in s2 is greater than
the number of filler characters in s1, a diagnostic is given.

SPACER=a — Spacer Parameter.

Like the filler parameter, this parameter has no defauit. If it is not explicitly specified, it does
not exist. Again this is in contrast to the LOCATE command (see 5.1.1) where an ASSUME
SPACER command establishes a default.

The spacer character, a, has a special significance only in s1. In s1 it is used to establish a
minimum string of spacer characters which will match successfully with any string of similar
characters in a line of f at least as long. [f the spacer character is a blank, and 51 is:

GO ATO

then if a line in f has GO AATO, GO ATO, or GO AAAATO, a successful match is obtained. A line
containing GOTO would not be matched. See 5.1.1 for another example of how SPACER works.

R - Repeat Parameter.

If this parameter is present, all occurrences of string s1 on each line are replaced with s2. If
it is not present, only the first occurrence of s1 in each line is replaced. For exampie, all lines
of L are subject to at least one change whether R is coded or not. When the line number range
parameter, L, is coded with A, the R parameter is assumed automatically, whether or not it is
actually present. In this case, all occurrences of string s1 anywhere in f are replaced by s2.

The i option on either R or O specifies the maximum number of changed lines. For example:

~>PRINT A

100 EERDVARK
110 MENDELA
120 ESTRODOME
END OF FILE
->G0 100

->C /E/A/ 100, 120 R=2
100 AARDVARK
110 MANDALA
->L IS8T

100 AARDVARK
110 MANDALA
120 ESTRODOME
->

Each occurrence of s1 {"E") was replaced by s2 ("A") for a maximum of two lines in the range
of lines specified (100.120).

8118.2 SPERRY UNIVAC Series 1100

517
UP-NUMBER Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

B O - One Parameter

The O parameter turns off the repeat option (i.e., at most only one change will be made per line}.
If both R and O are included, the last one specified will be used.

The CHANGE command is used most frequently to correct errors in a single line, as in the following
example:

~>PRINT 150

150 HME 1S THD HUNTTER
->C /HM/HOM/

150 HOME IS THD HUNTTER
->C JD/ES

150 HOME 1S THE HUNTTER
->»C /TT/ T/

150 HOME 1S THE HUNTER
->

A misspeled word which occurs frequently in a program may also be corrected. Perhaps the identifier
MXLIM in a FORTRAN program is misspelled as MAXLIM in a few places, and may occur elsewhere

as well. Use the LOCATE command (see 5.1.1) to make certain they are in error, and the CHANGE
command to correct them:

->LOCATE MAXLIM A

120 IF (K-MAXLIM) 25,,
135 I=MAXLIM

215 © MAXLIM=MAXLIM+DELTA
—>C /MAXLIM/MXLIM, 120,215 R
120 IF (K-MXLIM) 25,,
135 | =MXLIM

215 MXLEM=MXL IM+DELTA
->

The LOCATE command assures that each occurrence of MAXLIM needs the change. The repeat
parameter need not be specified in this LOCATE command, because it is automaticaily assumed when
A is used for the line number parameter. The CHANGE command uses explicit line number limits,
since the LOCATE showed the rangs needed. In this case, R must be exglizitly specified. 1f not, the
second occurrence of MAXLIM on line 215 would not have been changed.

It is possible to simplify the creation of a program by simplifying the spelling of commonly used words
of the programming language during the input phase, and expanding them with the CHANGE

command after all input has been created. For example, using ALGOL, the following substitutions
might be made:

Symbol Meaning
#B BEGIN

A ARRAY

#P PROCEDURE
#C COMPLEX
INTEGER

This would make keying in the program easier. After completing the initial keying in, use a series
of CHANGE commands such as:

->C /#B/BEGIN/ A

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100’

5-
Time Sharing Guide for CTS Users 18

PAGE

UPDATE LEVEL

to expand the definitions to what the compiler expects. Then use:
>LOCATE % A

to find if any of the abbreviations have been missed. To find out if any of the substitutions expanded
lines beyond column 72, use: ‘

->FIND - “A (73) R ><

This will display any line with contents not equal to spaces in columns 73-87, since there are 15
spaces in the string. Refer to the FIND command (see 5.1.2) for details of this command.

The CHANGE command can give the normal set of diagnostics arising from improper specifications
or error conditions. The next example shows a few of these:

->C /ABC/123/ A

THE WORK AREA 1S EMPTY
->0LD A

->C J/ABC/123/ A

*NOT FOUND

->C /ABC/123 A

<12> UNBALANCED DELIMITER
-»C /Al Z

<17> KEYWORD Z

->

As with other editing commands, the CHANGE command leaves the line pointer set to the ling number

of the last line scanned. If the message TOP OF FILE or END OF FILE occurs, p is set to 0. If an error
message or the message <21> LINE n DOES NOT EXIST occurs, p is not changed.

5.2.3. Editing a Line - INLINE
Syntax: INLINE [L] [1]

Abbreviation: [INL

Function: To facilitate insertion, deletion, and replacement of characters in a line,
permitting the specification of the change by matching columns of the displayed
line.

The INLINE command displays the line specified by L and solicits the editing string on the next line
of the terminal. The editing function is indicated by a character (I for insert, R for replace, and D for
delete) in the character position before the one where the editing is to become effective. This
character is followed by a string terminated by the termination character (!) uniess the parameter
t is coded.

The parameter L determines which line is to be edited. If L is missing, the cutrent line is used. Any
of the forms of L given in 2.2.8.2 may be used, but if L specifies a range, only the first line in the
range is used. The rest are ignored.

The character which terminates an editing string is |. If this character is to be part of the editing
string, the termination character for this execution may be changed only by coding the t parameter.
The first character of the string coded for this parameter will be taken as the termination character.
If L is omitted the character A may not be used for it. f it were so coded, it would be taken as the
L parameter rather than the t parameter.

8113.2
UP-KUMBER

SPERAY UNIVAC Series 1100

Time Sharing Guide for CTS Users >-19

UPDATE LEVEL PAGE

The following exampies show the responses obtained when the INLINE command is used:

->PRINT 102

102 ABCDEFGHI.
- INL
+++ABCDEFGHIJ

+> R345)

102 AB345FGH!1J
> INL K
+++AB345FGH1J

+> ICDEK

102 ABCDE345FGHIJ
+> INL
+++ABCDE345FGH1J
+> D !

102 ABCDEFGH1J
->

The above example shows all three types of editing possible; replace, insert, and delete. The PRINT
command set the line pointer to 102 and none of the other commands changed it, so no coding of
L was necessary. The second INLINE command also shows the use of the optional terminator
parameter, valid only for that execution. CTS inserts @ +++ before the line image. This allows
editing the first character of the line by placing an editing character under the last 4.

Besides the usual diagnostic messages, the INLINE command can cause several unique ones:

->INL 102

+++ABCDEFGHIJ

> T

<84> BAD EDIT CHARACTER

-> INL

+++ABCDEFGH!LJ

+>

<86> NO EDIT CHARACTER

> INL D

+++ABCDEFGHIJ

+> RI1Z23 1

<82> MISSING TERMINATOR CHARACTER

->
The line pointer, p, is always displayed and feft set to the line number of the line selected for editing.
Even if the editing itself causes an error, p is still left set to this line number. If the line number

specification is such that no line is included, then p is O when the message TOP OF FILE or END OF
FILE, occurs, and unchanged when the message <21> LINE n DOES NOT EXIST occurs.

5.2.4. Inserting Strings — INSERT
Syntax; INSERT S [L] [(c1.c2}] [k]
Abbreviation: |
Function: To insert a string into a specified field in specified lines of f.

The INSERT command performs an insertion on each line of f indicated by the line number range
parameter, L. For each line, the INSERT command:

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

5-2
Time Sharing Guide for CTS Users 0

UPDATE LEVEL

PAGE

Clears columns ¢ 1 through ¢2 of the line, either by discarding the contents or by shifting these
and succeeding columns to the right.

Inserts the given string, positioning it according to the specification in the k parameter.

Either substitutes fill characters into those columns c¢1 through ¢2 which do not contain the
string, or packs the line by left-shifting the portion beyond column ¢2 to fill these unused
columns.

s — String Parameter.

This parameter provides the string to be inserted in each line (or to replace it). If the string
includes a space, it must be enclosed by quotes. If it contains a quote character, two adjacent
quotes must he entered for each desired quote. To INSERT a string that contains the variable
delimiter character (the percent sign, %), it is necessary to code two adjacent variable delimiter
characters to avoid variable-substitution or the start of a comment. The default string character
can be set by the ASSUME STRING command (see 5.1.8.).

L - Line Number Range Parameter.

This parameter defines a line number range. Any line in f within this range is included in the
INSERT operation. Any of the standard formats given in 2 28.2is perm|55|ble If omitted, the
current line is the only line used.

{c1,c2) - Column Specification.

This parameter is used a number of ways depending on the value of the k parameter. ¥ k is
not omitted entirely, then this parameter must provide enough room for the specified string. If
k is omitted, the value of c2 is not important, except that it must be at least as large as ¢1.

If this parameter is omitted, the default value, normally {1,132) unless an ASSUME ECOLUMN
command (see 2.2.6) is in effect, is used. Similarily, if either ¢1 or c2 is omitted, the
corresponding portion of the default value .is used.

If this parameter is {1,132), and k is specified, the INSERT command deletes the contents of the
line before performing the insertion. Both conditions must pertain. After deleting the contents
of the line, the insertion is made according to the k specification, using {1,132} for tiie column
parameter.

k — Positioning Parameter.
The interpretation of this parameter gives flexibility to the INSERT command. Six insertions are
availabte. In three of these, a fill character is also defined by the k parameter. The following
table shows the behavior of the INSERT command for each of the options:
Value in k Behavior
null 1. Create space for the string by right-shifting the characters in and
beyond column ¢1. The number of positions shifted is determined

by the length of the string. The value of ¢2 is not used.

2. Insertthe string in the columns vacated {starting at column c 1}. Note
that no characters of the original string are deleted.

Ca 1. Delete columns c1 through c2 of the line.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users

5-21
PAGE

UPDATE LEVEL

2. Position the string in the center of the deleted area.

3. Substitute the character a (which may be a blank) in those columns
of the line from c1 to ¢2 which do not contain the string.

RJa As with Ca, except in step 2, position the string at the right edge of the

deleted area.

LJa As with Ca, except in step 2, position the string at the left edge of the

deleted area.

PACK (or P} 1. Delete columns c¢1 through c2 of the line.

2. Position the string at the left edge of the deleted area.

3. Pack the line by left-shifting the columns beyond column ¢2 until
the character in column {c241) is adjacent to the rightmost

character of the inserted string.

w 1. Erase the whole line.

2. Insert the string starting at column ¢1. The value of ¢c2 is not used.

The fill character, a, is the character immediately following the positioning code. It may be any

character,

including a blank.

The foliowing example illustrates the difference between the various k options:

->PRINT A

100
110
120
130
140
150
END
_>,‘
100
>/
110
-/
120
_>[
130
->1
140
->1
160
=>

ABCDEFGHI JKLMNOPQRSTUVWXYZ
ABCDEFGH I JKLMNOPQRSTUVWXYZ
ABCDEFGH | JKLMNOPQRSTUVWXYZ
ABCDEFGH 1 JKLMNOPQRSTUVWXYZ
ABCDEFGH | JKLMNOPQRSTUVWXYZ
ABCDEFGH | JKLMNOPQRSTUVWXYZ
OF FILE
**¥¥¥ 100 (5, 15)
ABCD*#*%#*EFGH | JKLMKOPQRSTUVWXYZ
**¥¥¥* 110 (5,15) C+
ABCD4++# %% % %1+ +POQRSTUVWXYZ
**¥xx¥ 120 (5,15) RJ+
ABCD++4+++ %% %2 +PQRSTUVWXYZ
*¥¥¥x¥ 130 (5,15) LJ+
ABCD®%%%¥ 4444+ ++POQRSTUVWXYZ
*¥¥¥¥ 140 (5,15) P
ABCD***¥*PQRSTUVWXYZ
/%%% 150 (5,15)W

EEEXEE

Six INSERT commands are executed, each with a string of five asterisks, each with the column
parameter of (5,15) which is an 11-character field, and each with a different type of k parameter.
Where applicable, the plus sign (4) is used as the fill character. The last example demonstrates that
the column limits are not used in determining which portion of the line to erase.

8118.2 SPERRY UNIVAC Series 1100

5-2
UP-NUMBER Time Sharing Guide for CTS Users 2

UPDATE LEVYZL PAGE

The next example illustrates what happens when a line is replaced:

->ASSUME PRINTWIDTH 36

->PRINT 100

100 ABCDEFGH | JKLMNOPQRSTUVWXYZ

->»{ 123456 100 CT

100 TETTTITTITTITTTITITVITTITTITITITTITITIT
TTTTITTTITTTTTTITTTITITTITTITTITITTITT12345
6TTTTTTTTTTTEITTTITITTTTITITITTITTITTITTT
TITTTTITITTTTITTTITITTITITITITTT

->

The ASSUME PRINTWIDTH command (see 4.3.1} limits the number of characters printed per line to
36 (ASCIt OFF mode). The INSERT command has deleted the contents of the present line and then
performed the insert. It did this because no column parameter was coded and the default was (1,132).
The INSERT created a 132 character string which took four lines to display, since only 36 characters
per hine were permitted. This example shows what the result would have been if it had been coded
RJT or LJT. For either an empty k parameter, a W, or a PACK, the resulting line would have been:

100 123456
because when the insertion was made, the line was blank,

An attempt to specify a string too long for the column parameters (excepl for nuli k or W parameters),
will display a diagnostic:

-> | *kxX¥¥ J100 (5,8) C
<24> STRING EXCEEDS COLUMN LIMITS
~>

The line is not changed.

5.3. Manipulation in f

The previous paragraph described commands which generally manipulate characters within working
area lines. This section covers a number of commands which initialize f or move information from
one area of f to another. :

5.3.1. Erasing and Naming f - NEW
Syntax: NEW [d]
Abbreviation: None

Function: Discards the contents of the working area, f, and substitutes the parameter d as
the name of the new contents (not yet entered).

The NEW command sets f to begin development of a new program or data set. It discards the contents
of f, deletes the name, and substitutes the name given in parameter d. If the parameter, d, is omitted,
CTS will solicit it. The parameter may be an explicit file name, an explicit element name, or a name
which could be either. Acceptable forms include file or element, a file name, or an element name
which includes a file name. If the name is not acceptable, a diagnostic message is displayed. If d
is accepted, it becomes the name of f and the contents of f are discarded.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 5-23
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

The following example illustrates some of these points:

> NEW

NEW PROGRAM NAME? > ###

<23> ILLEGAL FILE OR PROGRAM NAME SYNTAX #i#
->NEW A

->

The working area, {, is now empty, and the name of f is now A. This could be either a file name or
an element name, and CTS will interpret it either way depending on whether it is in DATA mode or
ELEMENT mode at the time the name is used.

5.3.2. Reorganizing Line Numbers — RESEQUENCE
Syntax: RESEQUENCE [i [jl {L]]
Abbreviation: RES
Function: To systematically renumber a contiguous set of lines in f.

The RESEQUENCE command takes the portion of f the line numbers of which fall into the range
defined by L, and creates a new line number for each line in turn, according to the line number
sequence parameter i, j. The first line in the range is given the line number i; the second, i+]; the
third i4 2j; and so on. Note that if L is one of the specifications which implies a backwards sequence,
the lines will be in reverse order at the conclusion of the command. Both parts of the line number
sequence parameter must be nonnegative integers. Hence, the sequence will always be ascending.
L may be any of the forms of 2.2.8.2. If L is omitted, A is assumed for this parameter. If j is omitted,
an increment of 10 is used. If i is omitted {aliowed only if the entire parameter field is blank} 100
i< taken as a default.

When resequencing part of f, it is possible to generate line numbers which are already represented
in the nonresequenced part. When this happens, CTS resolves the line number conflict in one of two
ways — the resequence method or the delete method. The choice is controlled by an ASSUME
RESEQUENCE command. The default, if no such command has been executed, is the resequence
method. See 5.3.6 for details of the two methods of resolving line number conflicts.

The following example illustrates some of the points discussed:

->PRINT A

100 LINE 1

110 LINE 2

120 LINE 3

END OF FILE
->RES 200,50 100. 120
->PRINT A

200 LINE 1

250 LINE 2

300 LINE 3

END OF FILE
->RES 100 300-
->PRINT A

100 LINE 3

110 LINE 2

120 LINE 1

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

5-24
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

END OF FILE

->RES 200 200,100
->PRINT A

200 LINE 1

210 LINE 2

220 LINE 3

->AES

->PRINT A

100 LINE 1

110 LINE 2

120 LINE 3

END OF FILE

->RES 200,5 110+
~>PRINT A

100 LINE 1

200 LINE 2

205 LINE 2

END OF FILE

=2

Note especially the behavior for descending L specifications, the resequencing of part of f {the last
RES command), and the RES with all parameters missing. This latter was equivalent to:

->RES 100,10 A

5.3.3. Nondestructive Line Copy - DITTQO
Syntax: DITTO L i[.j]
Abbreviation: BPIT

Function: To reproduce in f with different line numbers, a contiguous group of lines which
aiready exist in f, leaving the old lines undisturbed.

The DITTO command duplicates a set of lines, giving them new line numbers. In effect, the lines are
copied elsewhere in f, but the original lines are left undisturbed. The parameter L defines a range
of line numbers. Any lines of f with line numbers within this range will be operated upon by the
command. L also determines whether the lines within this range are to be referenced in order of
ascending or descending original line numbers. Any of the forms of L given in 2.2.8.2 may be used.

The second parameter defines the sequence of line numbers to be assigned to the new lines. The
first line will be assigned line number i; the second, i+j: the third, i+2j; and so on. If j is omitted,
10 is the default.

It is possible, by this process to create lines whose line numbers conflict with lines already
represented in f. CTS handles these conflicts in one of two ways, the resequence method and the
delete method. These are discussed in 5.3.6. The choice between the two methods is controlied
by the ASSUME RESEQUENCE command. The resequence method is used before the first such
command is executed.

The DITTO command is especially usefu! in cases where successive sets of data are to be created
which differ from each other oniy slightly. The DITTG command creates a new set which is then edited
with commands such as INSERT (see 5.2.4), INLINE (see 5.2.3), or CHANGE {see 5.2.2).

8118.2 SPERARY UNIVAC Series 1100

v I 5-25
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

For example:

>N

100 »>SET 1

110 »17.5 27.3 250
120 > 10 17 23

130 >#DITTO 100,120 130, 10
>/ 2 130 (5,15) LJ
130 SET 2

->1 15 150 (1,2} ¢
150 15 17 23
~>PRINT A

100 SET 1

110 17.5 27.3 250

120 10 17 23

130 SET 2

140 17.5 27.3 250
150 15 17 23

END OF FILE

->

If L or i is omitted, a diagnostic is displayed and the command is not executed. If j is omitted, a value
of 10 is supplied as the default.

To illustrate:

->F A

100 LINE 1
110 LINE 2
120 LINE 3
END OF FILE

=>0!T 100,120

<22> REQUIRED SYNTAX IS MISSING
->0I1T 100,120 200

->p A

100 LINE 1
110 LINE 2
120 LINE 3
200 LINE 1
210 LINE 2
220 LINE 3
END OF FIL
- > .

5.3.4. Destructive Line Copy - MOVE
Syntax: MOVE L 1[j]
Abbreviation: M

Function: To move lines in by assigning them new line numbers and discarding the old
ones.

The MOVE command is identical to the DITTO command (see 5.3.3) except that it deletes the old lines
from f. The function is similar to the RESEQUENCE command (see 5.3.2), although the order of the
parameters is reversed and the defaults are different. See the DITTO command for details of operation

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users >-26

PAGE

UPDATE LEVEL

and parameter interpretation.

5.3.5. Changing the Name of f - RENAME
Syntax: RENAME [d]
Abbreviation: REN
Function: To change the name of f, without changing the contents.

The name d must be a legal name. CTS checks the syntax of this parameter, and if it finds a mistake,
aborts the operation with a suitable diagnostic message.

For example:

->RENAME &/*@
<23> ILLEGAL FILE OR PROGRAM NAME SYNTAX &/#*@
=->

No check is made to see if a file exists — only the syntax is checked.

A RENAME command with no d parameter specified clears the name of f. As when CTS is first
initiated, f is not named after such a command:

-5 REN
->T DKN()

->

The working area, f, is now unnamed, as indicated by the blank line printed as the value of the DKN(}
function {see 9.1.3).

RENAME never affects the contents of f, only the name.

5.3.6. Resolving Line Number Conflicts - ASSUME RESEQUENCE
Syntax: ASSUME RESEQUENCE [k]
Abbreviation; A RES

Function: To specify whether working area lines are to be resequenced when a line number
conflict occurs.

The MERGE, GENERATE, MOVE, DITTO, and RESEQUENCE commands either add new lines of data
to the contents of f ar madify the line numbers of a part of f. Depending on the values of parameters,
it is possible for these instructions to create a line which has a line number identical or greater than
the one which already exists in f. Since it is not possible to have two lines in f with the same line
number and not always desirable to break up the sequence of lines being edited, the conflict must
be resolved. A line number conflict occurs whenever one of these commands is editing lines into
a specified position in f (i.e., between two existing lines) and the new line number is greater than or
equal to the next working area line number. Two methods of resolution are provided by CTS, the
RESEQUENCE method and the DELETE method. The ASSUME RESEQUENCE command canditions
CTS to use the method indicated by the parameter k This method will be used until another ASSUME
RESEQUENCE command changes it. :

8118.2
UP-NUMBER

| 5-27
UPDATE LEVFL I PAGE

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

Select the RESEQUENCE method by using the parameter k as ON. If the parameter k is omitted, or
contains a string other than OFF, CTS assumes the RESEQUENCE method as a default. The default
mode for CTS is RESEQUENCE ON.

In the ASSUME RESEQUENCE ON mode the lines being edited into the working area are handled as
a continuous block of lines. If this biock of lines does not fit into the specitied position in the working
area due 1o a line number conflict, the working area lines greater than or equal to the conflicting lines
are pushed down. They are pushed down by resequencing their line numbers beginning with the
highest line number in the inserted lines plus one.

Each successive line in the working area is resequenced using an increment of one until the new line
number of the last resequenced line is less than the line number of the next working area line. A
warning message is printed to indicate that an auto resequence has occurred and to indicate which
lines were affected. The message is:

< 140> WARNING - AUTO RESEQUENCE THROUGH THE LAST LINE

Select the DELETE method by using the parameter k as OFF. In the DELETE method the old line is
discarded and replaced with the new one.

In ASSUME RESEQUENCE OFF mode the lines being edited into the working area do not necessarily
remain as a continuous block of lines. They may become interleaved with the working area lines.
If an edited line has the same line number as a working area line, the working area line is replaced
by the edited line.

See 3.6.1 and 3.6.2 for some examples of the two methods of line number conflict resolution. The
response to a correctly specified command is the solicitation sequence:

->ASSUME RESEQUENCE OFF
->

g118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users &1

UPDATE LEVEL PAGE

6. Execution and Creation of Object Programs

6.1. General

When the lines of code which constitute a program have been created in f (expressed symbolically
in a programming language), the program may be executed. Section 2 discusses the execution of
programs as part of a sequence of steps for creating a working, error-free program, and shows that
CTS has many features which make this creation process — including the execution phases — even
more convenient

CTS can be used for creating and executing complex programs by users with a wide range of
experience. The CTS commands used to execute programs are very flexible, allowing the omission
of parameters to provide flexibility. CTS automatically provides defaults for the missing parameters,
making it easier for the novice to use the system.

6.1.1. Methods Used

There are three methods of executing a program expressed in symbaolic code. An interpreter does
not create a machine language program counterpart of the source code, but performs the execution
by operating directly on the source code (or a reformatted representation of it). The interpreter,
therefore, treats each source language statement as a call 1o a subroutine, with parts of the statement
treated as parameters. APL is implemented as an interpreter.

In another method, sometimes called “compile-and-go,” a compiler analyzes the source code,
producing machine language instructions to perform the operations described by the source code.
The resulting program is immediately executed. BASIC is implemented in this way. ASCIl FORTRAN
and COBOL can also be executed in this fashion via the ASSUME CHECKOUT ON command (see
11.2.4.2).

In the third method, a compiler produces machine language instructions, but in an intermediate form
not directly executable. The intermediate form is called relocatable. The program produced may not
be complete. 1t may be only a part of a large, complex program — a subroutine, for example. Executing
such a program requires an additional step — bringing together all of the relocatable parts to produce
an executable program. This process is called collection or mapping. This method normally gives
a greater flexibility in the creation of the program. It may be subdivided into smaller parts and each
part may even be coded in a different source language. If the program is to operate in well defined
phases, segments may overlay each other in storage, 1o avoid excessive use of storage for parts of
the program which are no longer needed or which will not be needed until a later part of the execution.
This third method, involving the use of relocatable elemants, is the most common method used.
FORTRAN, COBOL, ALGOL, and MASM all produce relocatabie elements.

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 32

PAGE

UPDATE LEVEL

6.1.2. Qperating System Aspects of Compilation, Collection, and Execution

The compilation, collection, and execution processes make extensive use of program files (see 7.1.1).
A program file may contain three primary types of elements: symbolic, relocatable, and absolute. It
also contains a table of contents with the name and other essential information about each element
in the file. The compilation process in the Series 1100 Operating System involves taking symbolic
code, either from the run stream or from a symbolic element of a program file, possibly applying
corrections to it, and producing a relocatable element and, optionally, an updated symbolic element.
All three efements involved can be in the same file or different files and can have the same or different
names. Except for special cases, only one relocatable element is produced per compiiation. If a
program consists of more than one part, a compilation for each part is required. The parts do not
necessarily have to be in the same language. A single program may contain parts written in ALGOL,
FORTRAN, COBOL, and assembly language, although so extreme a case is not common. Programs
with two different languages are often encountered, however.

When all parts of the program are in relocatable form, an executable form of the entire program can
be created by the process of collection. The Collector (MAP processor) performs this function.
Directives to the MAP processor should come from a symbolic element of a program file, but may
follow in the run stream. Normally the directives indicate what relccatable element in what file is the
main program and what program files, if any, besides the standard system file are to be used as
libraries (where needed relocatable elements may be found). The MAP processor selects additional
relocatable elements (i.e., collects them) by matching undefined labels in the elements already
collected to entry points with the same name in relocatable elements in the program files used as
libraries. This process continues until no unmatched undefined labels remain. The MAP processor
then fits the elements together, modifying addresses as needed, to produce a single absolute element
in a program file. This element may be loaded and executed without further changes. Although it
is an absolute element, the addrasses are relative to the beginning of the element. By using relocation
registers, the operating system loads the element into, and executes it from, any part of storage
availabie. Execution is implemented with a single Executive control statement, which specifies the
absoiute element to be executed.

To illustrate this process, assume program file PA contains symbolic elements SUB1, SUB2, SUB3,
and PROGA, along with elements from other programs. PROGA is a main program written in
FORTRAN; SUB1 and SUB2 are subroutines written in FORTRAN; and SUB3 is a subroutine written
in assembly language. The following portion of a run stream would compile the elements and execute
the program:

@FOR,S PA.PROGA, PA_A
@FOR, S PA.SUB1, PA.SUB1
@FOR,S PA.SUBZ, PA.SUB2
@MASM. L PA.SUB3, PA_SUB3

@PREP PA.
@MAP, 15 LPAA
LIB PA.
IN PA_A
exar PA.A

The first three control statements compile the three symbolic FORTRAN elements. The first compiles
the element PROGA and produces in file PA the relocatable element A. The other two produce in
PA relocatable eiements of the same name as the symbolics from which they were compiied. The
fourth control statement calls the assembler which creates the relocatabie element SUB3 in PA from
the symbolic element SUB3. The fifth control statement prepares the file PA so it may be used as
a library. Essentially, it creates a table of entry points and places this table in the file. This must be
done before using the file as a library if any pertinent relocatable elements have been added, deleted,
or changed since the iast PREP.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 6-3
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

The next statement calls the MAP processor to collect the program and produce an absolute element
in PA with the name A. The directive which follows tells the processor that file PA is to be used as
a library. Relocatable elements with entry points matching undefined labels are taken from this file
in preference to the system library. The second directive specifies that reiocatable element A in file
PA is to be included in the collection. The MAP processor thus starts with only this element. It then
introduces other relocatable elements which match its undefined labels (and any new undefined
labels brought in with the new elements) until no more unmatched, undefined labels exist. The
absolute element is then created from the collected elements.

The final contro! statement tells the operating system to execute the absolute element A in file PA.

Each of the processor call control statements has a string of characters in the subfield immediately
following the name of the processor. These are options which the processor uses to govern its
activity. Each character is an option. A number of options have standard meanings to most of the
processors. For more information, refer to SPERRY UNIVAC Series 1100 Executive System, Volume
2 EXEC, Programmer Reference, UP-4144.2 (current version). Study both the language and the
compiler operation for each compiler used, especially if the special features and options are used.
The appropriate programmer reference manual for each compile! contains this information.

6.1.3. Compilation, Collection, and Execution Under CTS

CTS accepts a command which describes in a general way what is io be done. This usually leads
to the setup by CTS of 2 number of operations for the operating system to perform. When the entire
process has been set up, CTS directs the operating system to perform these operations. This saves
effort and reduces the possibility of mechanical errors.

Since it is designed with the interactive user in mind, CTS avoids operations which are inefficient.
For example, many of the processors (or compilers) have been written t¢ operate efficiently under
batch mode. This mode is normally used for runs submitted via the onsite card reader. Obviously,
no interaction is possible in this mode. Such compilers normally produce an output listing at the end
of the compilation. If such a compiler is used from a terminal, the volume and speed of thic output
is excessive and it either passes by so quickly that it is hard to follow or it ties up the terminal for
a2 long time. CTS solves this problem automatically by directing such output to a special file. The
SCAN command (see 11.1.1) examines any part of the output.

In addition. some compilers are not reentrant and often use large amounts of high-speed storage,
a valuable system resource. Each user of a nonreentrant compiler has a private copy ot the compiler.
It is desirable to minimize the time the compiler is in high-speed storage. If the novice using demand
mode calls such a compiler and enters the program a line at a time, a great deal of waste is incurred.
The efficient way to operate — even in demand mode — is to create the entire program first, and
then call the compiler to compile it all at once. CTS forces this situation. The programs are first
created in f and then compiled all at once.

A prescan module is even more efficient, since it finds most errors before the program is actually
compiled. Syntax checking is only a relatively small part of the compilation process, and prescan
modules are reentrant, so it is more efficient to find an error in this way than by compilation.

Theugh CTS is particularly useful for the novice, avoiding pitfalls leading to inefficiencies and
minimizing the knowledge needed to run a program, CTS is also useful to the expert. The convenience
of the CTS interface, the prescan module, and the comprehensive editing features lighten work loads
considerably. The CTS commands dealing with the compiling, mapping,. and execution of programs
are sufficiently comprehensive to permit the construction and execution of large, complex programs.

8118.2

UP-NUMBER 'sf?ri\neﬂgﬁ::'\i’r?g %et.rlii?;gg? CTS Users UPDATE LEVEL m;g -4
6.2. Compiling, Collecting, and Executing in One Operation -~ RUN
- Syntax: RUN[*] [{Ci[.P[. E 1171 [d1{.d2.]71 [(C2.)]
Abbreviation: R
Function: To produce and execute an absolute element from one or more symbolic

elements.

The operation of the RUN command varies from the very simple to the very complex. Taking the
simplest case first, the simple command:

-> RUN

will cause the compilation, mapping, and execution of the symbolic program in f, using the assumed
compiler (see 6.2.1). The following example illustrates this situation:

->0LD TRI
->L18
100 10 FORMAT ()
110 1 READ(5,10) A,B .
120 IF (A .LT. 0) GO TO 2
130 C = SQRT (A%¥2 + B*#2)
140 WRITE (6,10) A,B,C
150 GO TO 1
160 2 END
END OF FILE
-> RUN
COMPILING. ..
>3.4
3.0000 4.0000 5 .0000
>-1.1 .
NORMAL EXIT EXECUTION TIME: 20 MILLISECONDS

*DIAGNOSTIC SCAN? >»Y

1 @RFOR,RS TPF$.NAME3

2 RFOR 5.1 01/25-10:09-{0)}
23 END RFOR

25 E@PREP TPF$.

27 @MAP.S ,TPF$.NAMES

33

34 ADDRESS LIMITS: 001000 016540 7009 [BANK WORDS DECiMAL
35 040000 047433 3868 DBANK WORDS DECIMAL
*#END DIAGNOSTIC SCAN :

->

CTS implements this simple RUN command by first creating symbolic element NAMES in the cobject
file (see 7.1.2) which is a copy of the program in f. CTS then creates a partial run stream and submits
the partial run stream to the Executive for implementation. The steps in this partial run stream are:

1. Redirect all output to the scan file SQUELCH$ instead of going to the terminal.
2. Compile the symbolic element NAME$ in the object fite using the assumed compiler, producing

in the object file a relocatabie elerment with the name specified on an ASSUME REL.OCATABLE
command (if any} or the name NAMES.

21182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users &-5

PAGE

UPDATE LEVEL

3. Prepare the object file to be used as a library (@PREP control statement). The object file could
contain relocatable elements from previous compilations to be used as subroutines. If so, this
step is necessary. If not, it is superfluous.

4. Collect the program, using the MAP processor. The relocatable element, normally NAMES, from
the object file is used as the main program. The object file is used as a library. The absolute
{executable) element produced in the abject file has the name specified on an ASSUME XQT
command (if any}, or is called NAMES$.

5. Redirect subsequent output to the terminal. Qutput sent to the scan file was, therefore, the
output from the compilation, the @ PREP statement, and the output from the collection (in¢cluding
associated control statements).

6. Execute the element, NAMES from the object file. Note that output is sent to the terminal. Also,
’ since this control statement is the last image in the add file, any input to the executing program
is solicited from the terminal.

From the time the partial run stream was submitted to the Executive to the termination of the executing
program, CTS was not in control. CTS gained control when the program terminated and displayed
the message:

¥DIAGNOSTIC SCAN?>

Answering this message with Y caused a display of the essential elements in the scan file, all
pertinent control statements, and selected output lines from the compilation and collection.

In this simple case, the object file is left with three new elements, all called NAME$. One is symbolic,
one relocatable, and one absolute. Elements previously in the file are still there unless they had the
same name and type as one of the new elements, in which case the new elements replaced them.

The more complicated RUN commands may be explained as variations on the basic sequence given
above. Consider a more complicated case where the above program requires two subroutines and
a function. The main program is TRI1 and the names of the elements in the save file are SUB 1, SUB2,
and FUNC1. They are created in the following example:

->FOR FIELDATA

FD FORTRAN 5R1

S>NEW TRI1

>>N

100 > 7 CALL IN[A,B)

110 >/F (A .LT. 0) GO TO 2
120 > C = SORT (SUMSQ(A,B))
130 > CALL OUT (A.8.C)

140 »G0 70 1

150 »2 EAND

160 >#L/5

100 1 CALL IN{A,B})

110 IF (A .LT. 0) GO TO 2
120 C = SORT(SUMSO({A,B))
130 CALL QUT(A.B.C)

140 GO TO 1

150 2 END

END OF FILE

>> SAV

DO YOU WANT A GLOBAL SCAN? >Y

" B118.2
UP-NUMSBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPLCATE LEVEL

PAGE

>H>NEW SUB1T

>>N

100 >S5:E IN (X1, X2)
110 » 1 FORMAT{)

120 »READ (5, 1) X1, X2
130 > RETURN

140 > END

150 >#L/§

100 SUBROUTINE IN (X1, X2)
110 1 FORMAT [)

120 READ (5.1) X1, X2
120 _ RETURN

140 END

END QF FILE

>» SAV

DO YOU WANT A GLOBAL SCAN? >Y
>> NEW SUBZ

>»N

100 >5:£ OUT{X1, X2, X3)
110 > 1 FORMAT()

120 >WRITE (6,1) X1, X2, X3
130 >RETURN

140 > END

150 >*#F A

100 SUBROUTINE QUT(X1.X2,X3)
110 1 FORMAT({)

120 WRITE(6,1) X1,X2,X3

130 RETURN

140 END

END OF FILE

>» SAV

DO YOU WANT A GLOBAL SCAN? >V
>>NEW FUNC1

>N

100 > F:N SUMSO{XT,X2)

110 >SUMSO = X1x%2 1 XZ#+2
120 > RETURN

130 > END

140 >#1 /8

100 FUNCT ION SUMSQ(X1,X2)
110 SUMSQ = X1#%2 } X2%%2
120 RETURN

130 END

END OF FILE

>>SAV

DO YOU WANT A GLOBAL SCAN? >V
>»LIs S

RUNTST

TYPE NAME
FOR FUNC1
FOR sSuB2
FOR SuUB1
FOR TRI1
FOR TRI

>>

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 6-7

PAGE

UPDATE LEVEL i

There are now five elements in the save file, RUNTST. The original, completely self-contained
program, TRI {from the previous example}), and the new TRI1, accomplish the same thing, but TRI1
calls on two subroutines and a function to do it. These are elements SUB1, SUB2, and FUNC1. They
have entry points, IN, QUT, and SUMSQ, respectively. These entry points are undefined labels in the
main program, TRI1. For example, the statement in TRI1:

CALL IN{A,B)

creates the undefined label, IN. This is matched during collection with the entry point iN, which is

in element SUB 1. This should help to clarify the relationship between an element name, an undefined
label, and an entry point.

It is not essential to follow the logic of these program elements. What is important is that TR11 needs
SUB1, SUB2, and FUNC1 to be a complete program, and collection is effected by first selecting TRI1

and matching its undefined labels with entry points intc other relocatable elements (which are SUB1,
SUB2, and FUNC1). ’

Continuing the example, the new program is now compiled, collected and executed:

>>0LD TR
>>ARUN SUBT, SUB2, FUNC!
DO YOU WANT A GLOBAL SCAN? »Y

COMPILING. ..
>T1.1
1.0000 1.0000 1.4142
>6,8
6.0000 8.0000 10.0000
>-1,1
NORMAL EXIT EXECUTION TIME: 23 MILLISECONDS
DIAGNOSTIC SCAN? >N
>>

The first command brought TRI1 into f. This is important, because when f is not empty, the RUN
command causes CTS to assume that this is the main program unless an ASSUME MAIN has been
done. As such, it is used to start the process of matching undefined labels during collection and
contains the starting address for the program. If the collector does not start with the main program,
the generated absolute element normally will be in error. Thus, for more complex RUN commands
it is important not only to compile each part with the appropriate compiler, but also {o arrange for
CTS to use the correct element as the main program. There are three conditions to consider:

1. 1f f is not empty, its contents form a relocatable element in the object file with the ASSUME
RELOCATABLE name or the default name, NAME$. This relocatable element is selected as the
main program during collection.

2. If fis empty, the elements explicitly stated on the RUN command are compiled one at a time,
starting with the leftmost and taking each in turn. Each compilation produces a relocatable
element in the object file with the same element name as the symbolic element from which it
is created. The last relocatable element created {that is, the relocatable element created from
the rightmost symbolic element on the RUN command) is used as the main program in this case.

3. The ASSUME MAIN command establishes the name of the relocatable element which is assumed
to be the main program. This overrides selection based on the criteria mentioned above. More
information on using ASSUME MAIN is given in 6.4.2.1.

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

[
Time Sharing Guide for CTS USers ®

UPDATE LEVEL PAGE

The parameters of the RUN command have the following significance:

B The asterisk immediately following the word RUN directs CTS to use the parameters from the
most recent RUN command as if they had been coded on the present command. No other
parameters shouid be coded on a RUN command if the asterisk is used. Be sure that conditions
are compatible, A common error is to use f to fix an error and forget to restore it to a state
consistent with the RUN%* command.

B The other parameters consist of a compiler parameter and a list of symbolic elements. The
compiler parameter has the form:

CP[.E]

where C is the name of the compiler (as registered in the operating system} and P is a string
of letters {options} which the compiler uses to modify its behavior. The E parameter represents
a string of extra options to be used by the ASClII COBOL compiler only. {f there are no options,
the comma is omitted.

B The compiler parameter may be omitted. in which case the assumed compiler is used. If there
is no assumed compiier, CTS solicits one,

B The list of symbolic elements are the elements which the specified or assumed compiler is to
compile. As part of its designation an element may specify the name of the file containing it.
If the file name is missing, it is assumed to be F, the save file.

An example of a RUN command with thres clusters is:
RUN (FOR) A,B,C (MASM,S) X1.0 (FOR) E

If fis empty, this results in compilation by the FORTRAN compiler [batch version) of symbolic elements
A, B, and C which are located in F. Then the Assembler would assemble element D in file X1. Finally,
the FORTRAN compiler would compile element E in F. In each case, the relocatable elements would
go into the object file. Unless an ASSUME MAIN has been done, element E will be used as the main
proegram.

If f was not empty, its contents wculd have been transferred to the object file as a symbolic element
called NAME$. The first compilation would then have been the FORTRAN compiler compiling this
element {even if the assumed compiler were different). The remaining compilations would follow as
described above. The compiler of the first cluster, then, whether assumed or explicit, applies to the
contents of f, if any, as well as to the list of elements in the first cluster.

After the compilations, mapping and execution are performed as described previously.

As a final example, an assembler version of the function in the previous example is created and the
program is compiled and executed as before, but using this new version of the function. ASSUME
MAIN is also used.)

->NEW FUNC2
_>N

100 > AXRE .
110 > SUMSO* .

120 > L A0, *0,X11
130 > M A0, AD
140 > L AT, %1,X171
150 > FM Al,A1

§118.2
UP-NUMBER

SPERRY UNIVAC Serizs 1100

Time Sharing Guide for CTS Users &-9

UPDATE LEYEL PAGE

160 > FA A0 AT
170 > . J 3.X11
180 > *SAV

->NEW A

->A MAIN TRI1
->RUN (FOR.S) TRI1, SUB1. SUBZ (ASM.S} FUNC2
MAIN PROG: TRI1

COMPILING. ..
>3.4,
3.0000 4.0000 5.0000
>»-1,0
*DIAGNOSTIC SCAN? >N
->

Because the ASSUME MAIN command specified TRI1 as the main program, the normal rule for
determining the main program (which would have selected FUNC2) was overridden. Also, CTS
announced that this was being done by displaying a message.

It is sometimes useful to know how a RUN command changes the contents of the object file. If fis
not empty, a symbolic element called NAME$ is created and placed into the object file. This element
is then compiled, producing in the object file a relocatable element NAME$ or the ASSUMED
RELOCATABLE name. If fis empty, these two elements are not produced. Each additional compilation
produces in the object file a relocatable element which has the same name as the symbaolic element
from which it was created. The collection process creates an absolute element called NAMES in the
object file unless an ASSUME XQT has been done.

If the object file was not empty when the RUN command was submitted, any elements created as
a result of the RUN command replace corresponding elements {same name and type) which are
already there. The original elements of the object file not replaced in this way remain in the file. This
can lead to errors or to unexpected results. For example, the object file can wind up with more than
one relocatable element {different element names) with the same entry point. This would cause
confusion during collection.

Some of the ASSUME commands affect the running of programs.

€.2.1. Setting the Assumed Compiler - ASSUME COMPILER
Syntax: ASSUME COMPILER [C[.P[.E]]]
Abbreviation: A COM

Function: To establish an explicit compiler and compile options as the assumed compiler
associated with the working area, f.

The assumed compiler is the name (as it would appear on the Executive control statement) of the
compiler {or other processor} which will be used to process the information in f when a COMPILE (see
6.4.1) or RUN (see 6.2) command is encountered which does not explicitly have a compiler name in
the first parameter position. CTS sets the assumed compiler automatically, but occasionaily it has
no basis on which to make a decision and uses ELT.L. The ASSUME COMPILER command permits
replacing the present value with the needed one.

In coding the parameters, C is the name of the processor {compiler) as recognized by the operating
system. P is a string of options to be applied during compilation. The E option represents a string
of extra options to be used by the ASCII COBOL compiler only. These options are compiler dependent,
although most compilers have common definitions for some options. If P is not specified, the options
used are those shown in the list of assumed compilers in 3.5.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 510

PAGE

UPDATE LEVEC

NOTE:

Using this command requires an understanding of the processor call statement of the operating
system (see the SPERRY UNIVAC Series 1100 Executive System, Volume 2 EXEC, Programmer
Reference, UP-4144.2 (current version)).

Any of the prescan modules reset the assumed compiler to be compatible with the programs they
are prepared to handle.

6.2.2. Changing the Save and Object File - ASSUME FILE
Syntax: ASSUME FILE [FN]

Abbreviation: AF

Function; To direct CTS to use the file with the name specified in parameter FN as both
the save file, F, and the object file {see 7.1).

The ASSUME FILE command defines any existing program file {or empty file) specified by FN to be
the save file (F), exactly as the ASSUME PROGRAM command (see 6.2.4) does. It also defines this
same file to be the object file, just as the ASSUME OBJECT command (see 6.2.3) does. It has the
same effect as if these two commands were issued separately (with the sams FN, of course).

The file specified by FN must exist. [f it is cataloged but not assigned to the run, CTS will assign
it.

An ASSUME FILE command with no FN parameter will cause both the object and save files to be the
standard CTS file used for the save file. In other words, it sets the save file, F. back to its standard
file; but the object file is also set to this file, which is not its standard file.

The ASSUME FILE command never affects the contents or existence of the files concerned, but merely

conditions the system to change which files are used for F and the object file. No information is
transferred or destroyed.

Any CTS command which uses either F or the object file as a default is affected by the changes which
this command produce.

Examples of CTS responses connected with the use of an ASSUME FILE command follaw.
B The normal response, when FN is correctly specified, is the solicitation character.

->ASSUME FILE PA
->

The file, PA will now be treated as both the save fiie, F, and the object file.

B If the parameter FN is not present, it will be taken as the standard CTS-created save file, the
name of which is the run-id of the present run.

->A FILE
->

If the run—id of this run is RUNA, then the file named RUNA will be used for both F and the object
file.

g§118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users o1

PAGE

UPDATE LEVEL

B If the file designated by FN does not exist, a diagnostic message is displayed and the existing
assumed save and object file names are not changed.

->A FILE PB
<68> PB IS NOT CATALOGUED
->

B If the FN parameter is specified with incorrect syntax, a message is displayed and the existing
save and object file names are not changed.

->A FILE &*-
<23> |LLEGAL FILE OR PROGRAM NAME SYNTAX &%-
->

6.2.3. Changing the Object File - ASSUME OBJECT
Syntax: ASSUME OBJECT [FN]
Abbreviation: AQ
Function: To substitute the named file for the object file currently being used by CTS.

The object file is the file in which the COMPILE {see 6.4.1}, MAP (see 6 4.2}, and RUN (see 6.2)
commands place the elements created by compilation and collection. It is also the default file for
the XQT command (see 6.3.1).

The file name coded in parameter FN becomes the new object file. It must exist. [f it exists, but has
not been assigned, CTS will assign it. If the parameter FN is omitted, the standard object file (TPF$)
is reestablished.

6.2.4. Changing the Save File - ASSUME PROGRAM
Syntax: ASSUME PROGRAM [FN]
Abbreviation: A PRO

Function: To direct CTS to use the file with the name specified in parameter FN as the save
file, F.

When CTS is initialized it checks to see if a file exists with the name of the run under which it is being
initialized (see 7.1). If it exists, it is assigned to the run. If the file does not already exist, it is created,
cataloged, and assigned to the run. This file is known as the save file, or F. 1t is a program file. It
provides a standard repository for programs or data images which are to be used in another session
{another run). This file is the only file maintained automatically by CTS which is cataloged and,
therefore, is saved by the Executive when the run terminates normally.

A file with a name different from that of this standard F file may be used. A private file may be used
for F during part of the session. A group project may use a common file to save programs. The
ASSUME PROGRAM command defines any existing program file (or empty file) as the file to be used
as F from this point on.

The fite specified in the parameter must be an existing file. If it is cataloged but not assigned to the
run, CTS will assign it.

gt18.2
UP-NUMBER

SPERRY UNIVAC Series 1100

i , 6-12
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

No information is transferred and no files are released. All files remain as they were.

To return to the original CTS file for F, submit an ASSUME PROGRAM command with the FN parameter
omitted.

¥ CTS detects an error in the file name parameter, the save file F is not changed.

Those CTS commands which assume F as a default are also affected by the ASSUME FILE command.

Some examples of CTS responses to the ASSUME PROGRAM command follow.

The normal response is the solicitation character, indicating that the change has been
successfully made.

->ASSUME PROGRAM PB
->

PB is now the save file, F.
Using the abbreviations correctly gives the same result,

->4 PRO PA
->

To reestablish the standard file for F, submit the command with a blank FN parameter.

->A PRO
->

CTS will now use the file it originally created for this purpose as the save file.

If the file specified is a data file, it is accepted, but any attempt to use it will fail.

->A PROG DA

->SAV

<19> DA 1S NOT A PROGRAM FILE
->

The data file DA is now F, but it is not usable, because of its type. Anather ASSUME PROGRAM
command must be used befcre F can be used or the file DA can be erased.

If the file specified is nonexistent, a diagnostic message is displayed and F will be unchanged.

->A PROG FB
<68> PB 1S NOT CATALOGUED
->

if the syntax of the file name is in error, CTS displays a message and F is not changed.

->A PRO > AB
<23> ILLEGAL FILE OR PROGRAM NAME SYNTAX > AB
->

8118.2

SPERRY UNIVAC Series 1100

v ’ 6-13
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
6.2.5. Changing the Name of the Relocatable Element - ASSUME RELOCATABLE
Syntax: ASSUME RELOCATABLE [d]
Abbreviation: A REL
Function: To specify the name of the relocatable which is produced when the program in

the working area is compiled by a COMPILE or RUN command.

The d specification can be a file name and element name. If only an element name is specified, the
current assumed object file (usually TPF$) will be used. If only a file name is specified, NAME$ is
used for the element name. If d is not specified, the object file and NAME$ are assumed.

NOTE:

If the assumed object file is changed after an ASSUME REL which did not specify a file name has
been done, the old object file will be used.

This command allows the specification of unique names to save the relocatable elements produced
by a COMPILE or RUN command. To use the program again, only a MAP is necessary. This also allows
doing a series of compiles to produce a different relocatable element each time by changing the
ASSUME REL name. These relocatables may then be combined to form one executable element by
a MAP command. If the ASSUME REL is not changed, each COMPILE or RUN with a program in the
working area will produce a relocatable by the same name which replaces the last relocatable by that
name.

The ASSUME XOQT (see 6.3.2.) command can be used in the same manner as the ASSUME REL
command to specify a name for the executable element produced.

6.3. Executing, Naming, and Saving Absolute Elements

The discussion of the RUN command in 6.2 identified three kinds of operations:

1, Producing relocatable elements from symbolic elements - compilation.

2. Producing an absolute element from relocatable elements - collection.

3. Execution of an absolute element.

Although the RUN command performs ali of these operations, each of them may be performed
individually with the COMPILE (see 6.4.1), MAP (see 6.4.2}, and XQT (see 6.3.1) commands,
respectively. There are also a number of commands which affect cne or more of these steps, whether

performed individually or collectively. In particular, these are the COMPILER, FiLE, LIBRARIES, MAIN,
MAP, OBJECT, PROGRAM, XQT, and RELOCATABLE subcommands of the ASSUME command.

8118.2 SPERRY UNIVAC Series 1100

A 6-14
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

6.3.1. Executing an Absolute Eiement — XQT
Syntax: XaT [.P] [d]
Abbreviation: None
Function: To execute an absolute element.

The XQT command may be used to execute any absolute element. Normally, however, it is used to
execute the absolute element which has just been created with a MAP (see 6.4.2) or RUN (see 6.2}
command. To do this use the simplest form of the XQT command:

->X0T

Unless defaults are changed explicitly, CTS executes the absolute element NAMES in file TPF$. If
the object file has been changed with the ASSUME FILE (see 6.2.2) or ASSUME OBJECT commands
{see 6.2.3), it is used instead of TPF$. If the ASSUME XQT command (see 6.3.2) has been used, the
defaults of any of the parameters of the XQT command may be changed.

To execute a specific element in a specific file, simply code the XQT command as in :
->XAT FA.EA
In this case, CTS executes absolute element EA in file FA.

Some programs are written to look for options on the @ XQT operating system control statement
which causes them to execute. These options are submitted as a string of letters, each letter being
an option. The order of the letters is not significant. SPERRY UNIVAC Series 1100 Executive System,
Velume 2 EXEC, Programmer Reference, UP-4144.2 (current version) contains more information. Any
program compiied under RFQOR, for example, responds to an S option by printing one extra line at
the termination of the program with information about certain contingencies encountered during the
execution of the program. Options may be specified by following the XQT immediately with a comma
and the string of options.

For example:
->X0T,5 FA.EA
The most common diagnostic encountered using the XQT command is:
->Xa@r
PROGRAM NOT FOUND
->

It means that the program name, generated by default in this case, does not exist.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 6-15
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

6.3.2. Naming the Absolute Element — ASSUME XQT
Syntax: ASSUME XQT [d] [.P]
Abbreviation: A XQT
Function: To establish a default file name and elernent name, d, to be used for the absolute
element in the XQT, MAP, and RUN commands, and a default option string, P,
to be used for the XQT and RUN commands.
Most commonly, the ASSUME XQT command is used for creating an absolute element which is to
be saved, rather than used and discarded. For example, consider the following part of a CTS session

which starts with f empty and al! defauits standard:

->RUN (MASM.S) FUNC2 (FTN.S) SUB1, SuUB2, TRIT

=>Xar
>3, 4
3.0000 4.0000 5.0000
>=-1,1
#DIAGNOSTIC SCAN? >N
->

A number of relocatable elements and the single absolute element NAMES have been created. To
save this absolute element, copy it to the file wanted and change its name. Had the RUN been
preceded by:

->A XQT B. TR/

the absolute element created by the RUN command would have been called TRI and placed in file
B. The object file, TPF$, would still have been used as before, W|th the single exception that it would
not contain the absolute element.

The parameter d may be a file name only { e.g., B. }, an element name only [e.g.. TRl), or both { e.g.,
B.TRI). A RUN or MAP command supplies the missing parts with default values.

For example, if f is empty, all other defaults are standard, and we have the following sequence:

-»A XaT TR!
->RUN (FOR,S) TR
COMPILING. ..

the absolute element produced is element TRi in file TPF$. On the other hand, the sequence:

~->A XOT B.
->AUN (FOR,S) TRI
COMPILING. ..

would have created an absolute element NAMES$ in file B.
Omitting d reestablishes NAMES$ as the name of the absolute element.

The parameter, P refers to the execution step of the RUN command and to the XQT command. W
is a string of options for the program being executed {see 6.3.1). If P is empty, the comma associated
with it can also be omitted. To cancel the effect of P from a previous ASSUME XQT command the
comma is required. Since the MAP command has no execution step, the parameter P has no effect
on its operation.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

6-16
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

The RUN and MAP commands always use the defaults set up by the most recent ASSUME XQOT
command. The XQT command, however, only uses these defaults if ali parameters of the XQT
command are empty. i

For example:

->A XAT AB.
->Xar Z

would result in executing element Z from file TPF$.
On the other hand,

->A XAT AB.
-»XOT

would result in the execution of element NAMES in file AB.

6.4. Creating Relocatable and Absolute Elements

Paragraph 6.3 pointed out the three steps of the RUN command: compilation, collection, and
execution. It also showed how to perform the execution step separately with the XQT command. This
paragraph shows how the compilation {COMPILE) and collection {MAP) may be performed
independently.

6.4.1. Creating Relocatable Elements — COMPILE
Syntax: COMPILE [{C1[.P[.E}]}] [d1.d2,..] [(C2..)]
Abbreviation COM

Function: To compile symbolic elements and place the reSuIting relocatable elements
produced into the object file.

The COMPILE command performs the same function as the first step of the RUN command (see 6.2).
With the exception of the asterisk of the RUN command, the parameters have the same format and
significance. f the working area is not empty, it creates a symbolic element called NAME$ in the
object file. It then creates a partial run stream to perform the compilation. CTS then submits the
add file to the operating system for implementation. Compiler output is directed to the scan file. At
the termination of the last compilation, CTS regains control and displays the message:

#DIAGNOSTIC SCAN? >

The partial run stream created in the add file is identical to the run stream which would have been
created by a RUN command up to the control statement which prepares the file to be a library
(@PREP). In the case of the COMPILE command, this @PREP and all subsequent control statements
are omitted. :

Refer to 6.2 for more details on the format and significance of the parameters, or the implementation
of this command, keeping in mind that for the COMPILE command the process stops with the
compilations.

If a series of compilations is to produce different relocatable elements, an ASSUME RELOCATABLE
command must be used before each COMPILE to generate unique names (see 6.2.5).

8118.2 SPERRY UNIVAC Series 1100 l 6-17
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
6.4.2. Creating an Absolute Element — MAP
Syntax: MAP
Abbreviation: None
Function: To collect relocatable elements and produce an absolute (i.e., executable}

element.

The MAP command independently performs the second step of the RUN command (see 6.3). Unlike
the RUN command, however, the MAP command has no parameters. In the absence of explicit
controls set up by the relevant subcommands of the ASSUME command the MAP command chooses
its defaults by examining f and the object file.

To properly set up the collection process, the MAP command needs three types of informarion:
1. What program files {other than the system library) are to be used as libraries.

2. What element is to be used as the main element.

3. What name is to be given to the absolute element and into what file it is to be placed.

The object file is always taken as a library file. In addition, those files specified on the most recently
executed ASSUME LIBRARIES command (see 6.4.2.2) are also used as libraries. All program files
used as libraries (except the system library} are prepared to be libraries (with the @ PREP Executive
control statement).

The main program is selected in one of three ways. If an ASSUME MAIN command (see 6.4.2.1) has
designated the main program, it is taken. A message indicating this fact is displayed during the
execution of the MAP command. If no ASSUME MAIN command is in effect, the ASSUME
RELOCATABLE name is taken, if there is one. Otherwise, the object file is searched for the presence
of a relocatable element NAMES. If such an element exists, it is taken as the main program, otherwise,
the relocatable element with the same name as the name of f in the object file is taken as the main
program.

If the name of the absolute element or the file into which it is to be placed is specified on an ASSUME
XQT command (see 6.3.2), the specified portions are taken. If the file is not specified the object file
is used. If the name is not specified NAME$ is used.

As with the RUN, COMPILE, and XQT commands, CTS executes the MAP command by creating a
partial run stream in the add file and then directing the operating system to use it.

The heart of the operations performed by this partial run stream is the collection itself, caused by
"@MAP" {Executive control statement)} followed by a series of directives for the Collector (MAP
processor). These directives inform the MAP processor what libraries to use, what the main program
is, etc. The ASSUME MAP command allows these directives to be specified.

A number of CTS commands affect the operation of the coilection process as implemented in the
RUN {see 6.2) and MAP (see 6.4.2) commands. Some of them affect the process in an obvious way,
the ASSUME OBJECT command (see 6.2.3}, for example. Others involve the collection process more
closely. These are emphasized in the next few paragraphs.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

6-
Time Sharing Guide for CTS Users '8

UPDATE LEVEL PAGE

6.4.2.1. Specifying the Main Program — ASSUME MAIN
Syntax: ASSUME MAIN [d]
Abbreviation: A MAI
Function: To specify the main ﬁrogram name for the RUN and MAP commands.

Both the RUN (see 6.2) and the MAP (6.4.2) commands invalve the creation of an executable element
by the process called coliection (see 6.1.1 and 6.1.2). For collections where several relocatable
elements are involved, it is important to start with the main element. This can be accomplished by
thoroughly understanding the default mechanism which these commands use for selecting the main
program and carefully arranging for this default to be the correct element. The default is the element
produced by compiling the working area. The ASSUME MAIN command can specify the element to
be used as the main program, avoiding the risk of selecting the wrong element. The parameter may
refer to any available program file. The element need not exist at the time of the ASSUME MAIN
command, but an error results if it does not exist when the collection for a RUN or MAP command
occurs.

Omitting d restores the standard system behavior.

6.4.2.2. Specifying Additional Libraries — ASSUME LIBRARIES
Syntax: ASSUME LIBRARIES [F1 1 .F2.. 1]
Abbreviation: A LIB

Function: To cause CTS to use the named program files, in the order given, when searching
for a relocatable element during the collection process.

in the collection process an executable (absclute) element is created from a relocatable element
designated as a main program by collecting from one or more libraries additional relocatable
elements. The Executive, unless directed otherwise, uses the system library as the only such library.
CTS always specifies to the Executive that the object file {usually TPF$} is aiso a library. The ASSUME
LIBRARIES command permits the use of additiona! libraries as well. The parameters, Fn, must be
existing, nonempty program files. If any are not, the entire command is rejected. Each ASSUME
LIBRARIES command invalidates all previous ASSUME LIBRARIES commands.

The sequence in which the libraries will be searched is:
object file, F1, F2, ..., system library.

An ASSUME LIBRARIES command with no parameters eliminates from the process all special
libraries, and only the object file and system library will be used following such a command.

The RUN (see 6.2} and MAP (6.4.2) are the only commands causing CTS 1o start the collection process.
To use a file as a library, it must first be prepared. The @PREP Executive control statement performs
this function. CTS prepares each library used (except the system library) each time a collection is
performed, unless the file is read-only. Therefore, if possible, library files should be prepped
read-only files.

The ASSUME LIBRARIES command is effective even when the ASSUME MAP command (see 6.4.2.3)
is in effect.

B118.2

SPERRY UNIVAC Series 1100 6-19

UP-NUMBER Time Sharlng Guide for CTS Users UPDATE LEVEL PAGE
6.4.2.3. Specifying MAP Directives — ASSUME MAP
Syntax: ASSUME MAP [d] [P]
Abbreviation: A MAP
Function: To replace the standard MAP directives supplied by CTS with those in the

specified element of a program file.

To replace the set of MAP directives which CTS normally creates to implement a collection, use the
ASSUME MAP command. The RUN {see 6.2) and MAP {see 6.4.2) commands involve collection. They
implement it by creating a partial run stream, part of which is a MAP processor call statement (@MAP)
followed by suitable directives which depend on the nature of the collection. This partial run stream
is then submitted to the Executive for execution.

When an ASSUME MAP command with a parameter d is submitted, a subsequent collection caused
by either the RUN or MAP commands generates the usual set of control statements in the partial run
stream. It generates @PREP control statements for the object file and for any additicnal libraries {see
ASSUME LIBRARIES, see 6.4.2.2). It also generates the MAP processor call statement. The ASSUME
XQT command {see 6.3.2) or, in its absence, the normal default, still governs the name and file of
the resulting absolute eiement. However, the symbolic input field of this processor call statement
now contains the element specified in the d parameter of the ASSUME MAP command. If no extra
libraries are defined, no MAP directives are generated by CTS. If an ASSUME LIBRARIES command
is in effect, CTS generates a single MAP directive defining the additional libraries. If specified, F is
a list of options to place on the Coltector call statement (@ MAP).

An ASSUME MAP command with no d parameter disables the feature, and CTS again generates the
normal MAP directives. |f the P parameter is omitted, Collector options return to CTS-generated
defaults.

Before using this feature, a working knowledge of the Collector {see the SPERRY UNIVAC Series 1100
Collector (MAP Processor), Programmer Reference, UP-8721 (current version)} and the process of
collection as directed by CTS (see 6.1 and 6.2) are required.
6.5. Initiating a Processor Call — PXQT

Syntax: PXQT[.E] s

Abbreviation: PXQ

Function: To allow a processor call from within CTS.
The PXQT command permits a direct processor call from within CTS. The string s ¢ontains the
processor call in Executive control statement format {(minus the leading @). When the processor has
finished execution, CTS is automatically reloaded.
Please note that should CTS be interrupted with an @ @X CIO during the time that another processor
is active, CTS will never know about it. The EXEC terminates the active processor and since the EXEC
CTS reload bit is on, simply reloads CTS. Abnormal termination of a processor is also transparent

to CTS.

The E option causes an @EOF to be submitted after the PXQT command. Certain processors may
require an @EQF.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL

6-20
PAGE

Example:

->CRE, T TAPE. U9V, REEL1
*CRE, T TAPE,U9V,REEL1
=>PXQT, E MOVE TAPE. k2
FURPUR 28R1 73R1 06/05/80 12:01: 09
->PXaT,E COPY,S5 TPF§., TAPE.
=>PXQT FILE _RUNTIME,S
TODAY 1S 6/5/80 at 12:01:43
—>DATE
05 JUN 80 12:02:01
->

NOTE:

Certain processors at individual sites may not be executable with the PXQT command.

8118.2 SPERRY UNIVAC Series 1100

7-1
UP-NUMBER . Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

7. File Handling

7.1. Mass Storage Files

A large amount of information must be available to a time sharing system. Mass storage is where
this information is kept.

The genera! file handling capabilities of CTS and the operating system are described in this section.
Many hardware devices are mentioned that may not be found at all sites. An installation may also
have some specific restrictions on the use of mass storage. Some installations may not allow files
to be cataloged permanently, or may wish that these files be copied out to paper tape, magnetic tape,
or removable disk packs. Check with the system administrater about any such options or restrictions.

7.1.1. Mass Storage Files in the Series 1100 Operating System

The SPERRY UNIVAC Series 1100 Operating System recognizes two standard formatted files and
provides for the establishment of files with formats racognizable only by programs written especially
to create and use them. The operating system manipulates and handles the information in the
standard formatted files. Through utility routines it can create, modify, and copy the files, print
information about their contents, print part of the contents, etc. However, the operating system is
not concerned with the contents of files with formats peculiar to the programs using them. It provides
for their creation, keeps track of their physical location, and performs the actual reading and writing
at the request of programs to which they are assigned.

When a file is first created it is empty. An empty file has no format at all. The first information written
into it determines its format. When a CREATE command (see 7.5.1) (or its Executive counterpart, the
@ASG) creates a file for the first time, the Executive registers the name of the file and assigns space
for it. Its format is not yet established.

The first type of standard format file is calted the data file. Its format is called SDF {System Data
Format). This type of file has been designed to handle sets of data images which are to be accessed
sequentially. The operating system usually stores card images or print images in these files. The
data file is meant to be referenced in a serial fashion. Consequently, SDF does not provide a direct
or efficient way of getting to the n'" data image of a set. It is done by reading and discarding n—1
images. On the other hand, storage efficiency is provided by this format in that long strings of trailing
spaces are discarded.

The second type of standard format file is the program file. lts format is called simply, program file
format. This format provides for storing in the file any number of four basic types of elements with
descriptive and indexing information needed to locate individual elements expeditiously. The four

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -2

PAGE

UPDATE LEVEL

types of elements are symbolic, relocatable, omnibus, and absolute. Symbolic elements are data
images which may constitute source language statements for programs. Relocatable elements are -
compiled programs or subroutines in a form not yet suitable for execution, but ready to be combined
with other relocatable elements in a process called collection or mapping {see 6.1.1). This produces
programs ready for execution. The executable programs which result from the collection process are
called abscolute elements. Omnibus elements are in a nonstandard format and are used by processors
written to handle their unique format.

In addition to its format, the Executive permits files to have other properties. For example, a file may
be either temporary or cataloged. If it is a temporary file, it ceases to exist when the run to which
it is assigned terminates. lts physical storage space then becomes available for other uses after run
termination. A cataloged file, however, is retained indefinitely until the operating system is explicitly
reguested to discard it. The Executive maintains a directory of cataloged files so they may be assigned
to runs which request them.

7.1.2. Use of Mass Storage Files by CTS

CTS makes use of four mass storage files. CTS automatically assigns them, but user files may be
used in place of three of these. CTS also allows creating, deleting, and manipulating user files. The
four CTS files and their normal names are:

File : File name

working area file and add file CTS$run-id or CTS}identifier with
USE name of CTS$FILE

save file run—id or identifier
object file TPF$
scan file SQUELCHS%

The run-id portion of the save and working area file name is the name of the run appearing on the
@RUN contro! statement submitted to the operating system to start the run. This use of the word,
"run" is not to be confused with the ¥*RUN command under CTS which causes the program in the
working area to be compiled, collected, and executed. The "identifier” portion of the save and working
area file is the value obtained if the F option was specified at CTS initialization time.

The first three of these files are created when CTS has finished its initialization. They exist throughout
the session. The scan file and add file portion of CTSSFILE are created only if needed.

The working area or add file may not be reassigned or otherwise manipulated. It is used internally
by CTS and does not narmally exist after the run terminates. The working area file is set up to be
deleted when the run terminates normally. The working area file, called f in this manual, is the file
into which data images are placed when entered. The working area file is neither an SDF file nor
@ program file. its format is designed especially to facilitate the operations CTS must perform, such
as rapidly locating a line, inserting a line, etc. The add file is the first part of CTS$FILE. It also is
used by CTS to communicate with the operating system. This file is used only through CTS and is
transparent to the user.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 7-3

UFDATE LEVEL PAGE

The save file is ¢created by CTS as a cataloged file. This file is not destroyed when the run terminates.
1t is this file, therefore. where information is to be saved. If this file exists when CTS initializes itself,
it does not attempt to create it, but assigns the existing file to the run. In this way, the information
saved from the previous session is immediately avaiiable. CTS may be directed to use a different
file for the save file {see 6.2.4 and 6.2.2, ASSUME PROGRAM and ASSUME FILE). This file is also
referred to as F. It is a program file.

At the start of every run, the Executive creates a temporary file named TPF$ {Temporary Program File)
and assigns it to the run. This is the file that CTS uses as the object file. CTS may be directed to
use another file for the object file {see ASSUME OBJECT (6.2.3)and ASSUME FILE (6.2.2). The object
file and save file may be the same file. The object file is a program file. It is used to store the
relocatable, absolute, and symbolic elements created by RUN {see 6.2), COMPILE (see 6.4.1), or MAP
{see 6.4.2) commands.

The scan file enables CTS to use compilers designed for batch {noninteractive) mode of operation
in an interactive environment and to avoid some of the less desirable side effects which come from
the batch arientation. Such compilers usuvally create more voluminous output listings than desired
for direct output to a terminal. CTS directs this output to the scan file rather than the terminal. After
the operation is completed, these listings or parts of them may be inspected with the same mechanism
that is used to LIST, PRINT, or edit parts of f, the SCAN command (see 11.1.1). The scan file is a data
file in SDF. 1t can be changed by doing a "USE SQUELCHS$, fn" command where fn is the name of
the file to be used as the scan file.

7.2. Permanent and Temporary Files
When a file is created {see 7.5.1), it must be specified as one of the following three types:

Type Explanation

PRIVATE This file is to become permanently cataloged in the Master File Directory
but will be available to be assigned only by runs having the same project-id
as the run which created the file.

PUBLIC This file is to be cataloged as a PUBLIC file in the Master File Directory. Any
run may access this file as long as the qualified file name, and read/write
keys are properly specified.

TEMPORARY This file is not to be saved by the system after the run session is terminated.
A temporary file is allowed to have a name identical to that of an unassigned
cataloged file.

7.3. Drum, Disk, and Tape Files

Sperry Univac provides many kinds of hardware peripheral devices on which mass storage files may
reside. These differ in capacity, access time, transfer rate, and access techniques.

When a file is created, CTS requests the following:
DEVICE CHARACTERISTICS: >

The possible responses 1o this request are numerous. Created files will be stored on tape, drum, or
disk.

g8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

7-4
PAGE

UPDATE LEVEL

Drum or Disk Files

For drum or disk files the response consists of the drum or disk type followed by the maximum
size of the file desired. If the size is not given, an additional question is issued. If a disk file
is specified, the pack-id is also solicited.

The drum or disk type response may be any of the following for sec_:tor—addressable files:

Response

FAST
DISC
F

FCS
F4
FH4
432
F17
FH17
1782
F8
FH8
880
F2

F14
F24
F25
F30
F33
F34
F40
F50

F54

F60
Word-addressable drum

Response

D
DCS
b4
D8
Did4
D17
D24
D25
D30
D33
D40

Meaning

Sector-addressable file on fastest available drum devices
Sector-addressable file simulated on disk

Sector-addressable file on fastest available drum device

Unitized Channel Storage

Sector-addressable file simufated on UNIVAC FH-432 Drum Unit
Sector-addressable file simulated on UNIVAC FH-432 Drum Unit
Sector-addressable file simulated on UNIVAC FH-432 Drum Unit
Sector-addressable file simulated on UNIVAC FH-1732 Drum Unit
Sector-addressable file simulated on UNIVAC FH--1782 Drum Unit
Sector-addressabie file simulated on UNIVAC FH-1782 Drum Unit
Sector-addressable file simulated on UNIVAC FH-880 Drum Unit
Sector-addressable file simulated on UNIVAC FH-880 Drum Unit
Sector-addressable file simulated on UNIVAC FH-880 Drum Unit
Sector-addressable fite on FASTRAND 1l and Il Drum Unit,

and UNIVAC 8460 Disk Unit

Sector-addressable file simulated on UNIVAC 8414 Disk Unit
Sector-addressable file simulated on UNIVAC 8424 Disk Unit
Sector-addressable file simulated on SPERRY UNIVAC 8425 Disk Unit
Sector-addressable file simulated on SPERRY UNIVAC 84 30 Disk Unit
Sector-addressable file simulated on SPERRY UNIVAC 8433 Disk Unit
Sector-addressable fife simulated on SPERRY UNIVAC 8434 Disk Unit
Sector-addressable file simulated on SPERRY UNIVAC 8440 Disk Unit
Sector-addressable file simulated on SPERRY UNIVAC 8405-00 Disk
Unit

Sector-addressable file simulated on SPERRY UNIVAC B405-04 Disk
Unit

Sector-addressable file simulated on UNIVAC 8460 Disk Unit

may be obtained with the following responses:
Meaning

Word-addressable file on available device

Word-addressable file on unitized channel or extended storage
Word-addressable file on UNIVAC FH-432 Drum Unit
Word-addressable file on UNIVAC FH-880 Drum Unit
Word-addressable file, simulated on UNIVAC 8414 Disk Unit
Word-addressable file on UNIVAC FH-1782 Drum Unit
Word-addressable file, simulated on UNIVAC 8424 Disk Unit
Word-addressable file, simulated on SPERRY UNIVAC 8425 Disk Unit
Word-addressable file, simulated on SPERRY UNIVAC 8430 Disk Unit
Word-addressable file, simulated on SPERRY UNIVAC 8433 Disk Unit
Word-addressable file, simulated on UNIVAC 8440 Disk Unit

8118.2

SPERRY UNIVAC Series 1100 7-5

UP-HUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
D50 Word-addressable file, simulated on SPERRY UNIVAC 8405-00 Disk
: Unit
D54 . Word-addressable file, simulated on SPERRY UNIVAC 8405-04 Disk
: Unit

The type of device is followed by at least one space and a maximum file size as an integer. This
is followed by at least one space and a word which indicates the type of units requested. These
descriptors are as follows:

SECTORS . for 28 word units
TRACK .. for 64 sector units
POSITION for 64 track units
WORDS for word units

If none of these is given, TRACK is assumed.
The following abbreviations can be used:

TR for TRACK

WOR for WORDS

PQS for POSITION
SEC for SECTORS

If the file being ¢reated is to be used as a program file, then the minimum size of the file is 29
tracks, since 28 tracks are reserved for the directory. The default size for a created file is 128
tracks.

Tape Files

The tape type response may be any one of thé following:

Response Meaning

TAPE UNISERVO VIIIC Magnetic Tape Unit

7TR UNISERVO VIIIC (7-track) Magnetic Tape Unit

9TR UNISERVO VIIIC {9-track) Magnetic Tape Unit ..

T Tape, type independent

C UNISERVO VIINIC, VIC, or IVC Magnetic Tape Units

Cco UNISERVO VIIIC or VIC {9-track) Magnetic Tape Units
CB UNISERVO VIIIC, VIC or IVC Magnetic Tape Units

U UNISERVO VIIIC, VIC, 12, or 16 (7-track) Magnetic Tape Units
ug Density independent {9-track)

U9H 800 FP! density {9-track)

usv 1600 FPI density (9-track)

12 UNISERVO 12 (7-track) Magnetic Tape Unit

12N UNISERVO 12 (S~track) Magnetic Tape Unit

12D UNISERVO 12 (dual density 9-track) Magnetic Tape Unit
14 UNISERVO 14 (7-track) Magnetic Tape Unit

14N UNISERVO 14 (9-track) Magnetic Tape Unit

14D UNISERVO 14 {(dual density 9-track) Magnetic Tape Unit
16 UNISERVO 16 (7-track) Magnetic Tape Unit

16N UNISERVO 16 (9-track) Magnetic Tape Unit

16D UNISERVQ 16 (dual density 9-track) Magnetic Tape Unit
20N . UNISERVO 20 {9-track) Magnetic Tape Unit

u3o UNISERVO 30 (7-track) Magnetic Tape Unit

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL m;:-e
U30N - UNISERVO 30 (9-track} Magnetic Tape Unit
U30D UNISERVO 30 (dual density 9-track} Magnetic Tape Unit
U32N - UNISERVQ 32 (9-track) Magnetic Tape Unit
U34N UNISERVO 34 {9-track) Magnetic Tape Unit
U36N UNISERVO 36 (9-track} Magnetic Tape Unit
8C UNISERVO VIHIC Magnetic Tape Unit
6C UNISERVO VIC Magnetic Tape Unit
4C UNISERVO IVC Magnetic Tape Unit

The tape from the preceding list is followed by at least one space and a list of tape options, with
a blank {space) as separator between gptions. The option list is as follows:

Tape Options Meaning

6250 High density

1600 High density

800 High density

556 Medium density

200 Low density

Ht High density

LO Low density

MED Medium density

QDD 0dd parity (binary file)

EVEN . Even parity

BIN ‘ Odd parity, no hardware translate

TRANS Turns on hardware translate

DC Turns on data converter, no hardware translate
OFF Turns off data converter

REEL {reei no.) Specifies tape reel to be mounted

NUMB {reel no.) Specifies tape reel to be mounted

SAVE Specifies a blank reel to be mounted

STORE Same as SAVE

SCRATCH Specifies a scratch (temporary) reel is to be mounted

The option TRANS signals that tape translation is requested. If necessary, CTS will query for the type
of translation by asking: PROCESSOR CODE/TAPE CODE?>. Valid responses are:

Processor/Tape Trans!ations

ASCI/BCD
ASCIi/FLDATA
ASCI/XS3
EBCDIC/BCD
FLDATA/BCD
FLDATA/XS3
XS3/EBCDIC
XS83/ASCH
XS3/BCD -
ASCI/EBCDIC
FLDATA/ASCII
FLDATA/EBCDIC

If the optional reel number is not specified, then the question REEL NO? is printed and a response
of SAVE, STORE, SCRATCH, or the actual reel number is required. The question DO YOU WISH TO
WRITE? is then printed, and a response of YES or NO is required. This response is necessary in
order to inform the operator whether the tape should be mounted with a write ring for write enable.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users =

UPDATE LEVEL PAGE

The SCRATCH option indicates that the tape file is to be temporary and the reel will not be saved
at the end of the run.

The SAVE and STORE options indicate that a new permanent tape file is to be ¢reated and the reel
is to be saved far future use. In this case, the operator indicates the reel number of the newly created
file.
7.4. Security
When a file is created using the Executive, a file name is specified. A qualifier is also attached, even
if it is not specified. No one can access this file without knowing the file name. This affords a certain
measure of security for the file. However, a much greater security method is available in the ability
to specify read and write keys.
When a public file is created CTS will ask:

READ AND WRITE KEYS:>
Respond by transmitting a blank Iine‘ if no read or write keys are desired.
If read and/or write keys are desired, respond with r/w where r is the read key and w is the write
key. Either key must be from one to six characters long. Commas, slashes, and spaces may not be
used. If only w is desired then respond with /v,

These keys give additional protection against undesired use of the file.

These keys must be specified when the file is assigned in a subsequent terminal session. CTS will
query for read/write keys when they are needed.

Take care that others do not know the file names, read; or write keys.
7.5. Manipulating File Contents

7.5.1. CREATE
Syntax: CREATE [P} [s]
Abbreviation: CRE

Function: To request the characteristics of the desired file and to assign and catalog the
file.

After learning the form of the Executive control language, it is passible to provide both string 5 and
option letters P to supply all needed information to the CREATE command, and thereby avoid the
question and answer sequence for creation of the file. The form of the information regquired for [,P] [s]
is identical to that of the @ASG control statement described in SPERRY UNIVAC Series 1100
Executive System, Volume 2 EXEC, Programmer Reference, UP-4144.2 (current version}.

8118.2
UP-NMBER

SPERRY UNIVAC Series 1100

7-
Time Sharing Guide for CTS Users 8

PAGE

UPDATE LEVEL

However, the simplest form is to simply type the key word, CREATE. CTS will respond with a series
of questions as follows:

FILENAME? >

The file name must be transmitted. It must be from 1 to 12 characters long and may be preceded
by a qualifier if desired. The qualifier may be from 1to 12 characters long and must be separated
from the file name by an asterisk. For example, a response of Z indicates a file is to be created
with file name Z, while a response of QUAL*Z indicates a file should be created with file name
Z and the name is qualified by QUAL.

1S THIS FILE TEMP, PUBLIC, OR PRIVATE?>
Hespdnd with:
1. TEMP (T}, if the file is to be temporary, i.e., not to be saved after the run is completed.
2. PUBLIC (PUBJ, if others may have access to the file. This is the default if no response
was given to the guestion.
3. PRIVATE (PRI). it others are not to have access to the file. A private file is restricted
to those having the same project-id {field 3 of the @RUN statement).
READ AND WRITE KEYS:>
{(See 7.4 for appropriate response.)

DEVICE CHARACTERISTICS: >

{See 7.3 for appropriate response.)

After all of the questions have been answered, CTS will respond with the image in the full syntax form
which could have been provided to short—cut the guestions.

For example:

>>CRE DEF

IS THIS FILE TEMP, PUBLIC, OR PRIVATE? >T
DEVICE CHARACTERISTICS: >

*CRE, T DEF

>>

Notice that the last line specifies the full syntax of the information that has been provided as responses
to the questions. If the CRE were replaced with @ASG {in EXEC mode), this would be the exact image
that CTS would transmit to the Executive for the assignment of this file.

7.5.2. PURGE

Syntax: PURGE [F1 [,F2.]]
Abbreviation: PUR

Function: To decatalog (eliminate from the Master File Directory) the files specified by F1,
F2..

Prior to decataloging a file, CTS must have all the appropriate information. This includes read/write
keys, if they were specified when the file was created.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

7-9
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

NOTE:

If the current working area images were read from a file by an OLD command, CTS stilf requires access
to that file and it should not be purged or released or packed by the EXEC mode command @FPACK.

If no file name F1 has been specified in the PURGE command, CTS will solicit it with the question:
FILE NAME?>

if read or write keys have not been specified as part of the file name at the time of cataloging or if
these keys were specified at the time of ¢cataloging and have already been specified by this run in
some way, then CTS proceeds to purge the file from the Master File Directory.

If read or write keys were specified at the time of cataloging the file but have not been specified at
some time during this terminal session, then CTS will respond:

- *+ENTER KEYS qualifier*file-name/>
Answer this by typing the read or write keys in the form r/w. CTS will then purge the file.
Once CTS has purged the file, it solicits the next command.
For example: |

-> PURGE

FILE NAME? >ABC

-> PURGE A,B

*ENTER KEYS CTSDEMO#*A/>A/A
*+ENTER KEYS CTSDEMO*8/>8/8
->

Since read or write keys may be included as part of a file name, they may also be included as the
file name of the PURGE command, as in the following example:

-> PURGE A/A/AB/B/B
->

Notice that this is identical to the last PURGE command in the previous example.

7.5.3. RELEASE
Syntax: RELEA.SE [F1[F2.]1]
Abbreviation: REL
Function: To make the specified cataloged files available for exclusive use by other users.

it may appear that all that is necessary to gain access to a file is to reference it. This is not the case,
however. CTS assigns each referenced file. The Executive allows files to be shared, and resolves
any access conflicts. If, however, a file is assigned for exclusive use, others may not access the file
until it is released. CTS does not assign any files for exclusive use (except for the PURGE command),
but many other processors such as FURPUR do require exclusive use. This cannot be obtained unless
the file is released by all other runs.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

f v X 7-1
Time Sharing Guide for CTS Users °

PAGE

UPDATE LEVEL

*

If the file contains information which others need, it should be released as soon as possible so that
they may access it. Giving the file name is adequate even if read or write keys exist. This is because,
to release a file, a user must have had access to the file and, in order to gain that access, must have
specified any keys that existed.

NOTE:

Ifthe current working area images were read from a file by an OLD command, CTS still requirés access
to that file and it should not be purged or released or packed by the EXEC mode command @PACK.

If a file name is not specified, CTS solicits the name by printing:
FiLE NAME?»

After the RELEASE command, the file still exists and may be assigned by another user or it may be
referenced subsequently in the same terminal session uniess it was a temporary file. A temporary
file no longer exists when released.

75.4. COPY
Syntax: COPY [P} TF1JIE1][[F2.]1[E2]]
Abbreviation: COP
Function: To copy elements or files from one area to another.

F1 and F2 are user files, and E1 and E2 represent elements in these files. The straightforward case
where all four parameters have been specified indicates copying of the element E1 from file F1 to
file F2 with the element name E2. If an element named E2 did not exist in file F2 prior to the copy,
then that element and element name are established. i an element named E2 did already exist, then
the element is replaced. The input file and element F1 and E1 must exist and the output file F2 must
exist. Otherwise a diagnostic appears indicating that the operation has not taken place.

When an element name is specified, all elements by that name {symbolic, relocatable, omnibus, and
absolute) will be copied uniess the A, O, R, and S options are specified. If the A, O, R, or S options

are used, only the type of elements specified are copied. Any comblnatlon of these options may be
used on a COPY or TRANSFER command.

P has the following option meanings:

P=1 Copy the input data file as an element -into the output program file. This may
not be used with the A, O, R, or S options.

P=R Copy relocatable elements from the input program file to the output program file.

P=A Same as P = R except fpr absolute elements.

P=0 Same as P = R except for omnibus elements.

P=S§ Same as P = R except for symbolic elements.

If an option other than |, R, A, O, S is specified or an incorrect file type is used (i.e., A, R, S options
on a data file), the following diagnostic is given:

< 111> ILLEGAL OR CONFLICTING OPTION SYNTAX

8118.2 SPERRY UNIVAC Series 1100

v) 11
UP-NUMBER Time Sharing Guide for CTS Users !

PAGE

UPDATE LEVEL

If the file name is not specified, F is assumed.
For example:

>>»COPY A1,A A7

FURPUR 27R2 02/19/77 10:10:23
1 SYM

»COPY A A1,A2

FURPUR 0026-06/12-09:02
1 SYM

>>L1§ SAV

KMB .

TYPE NAME

BASIC A2

BASIC B1

BASIC A1

>>

The first COPY takes the program A1 from the program file and copies it into the file A. Notice the
message in the second line indicating that the file utility routine processor, FURPUR (see SPERRY
UNIVAC Series 1100 FURPUR, Programmer Reference, UP-8724 (current version)), has been
activated to perform the COPY. That processor also displays the message 1 SYM which indicates
that one symbolic element has been copied.

The second COPY shows F being used as the default file to receive the element. it is a COPY of the
same program element from file A back to F, but now renamed as element A2. Notice the LIST SAVED
command shows the existence of both the programs A1 and AZ.

If both the input and output element names are omitted from the syntax, the entire file is copied.
Notice in this case the requirement that periods must follow the file names. For example:

->COPY A, B.

FURPUR 27R2 02/15/77 17:10:01
4 SYM

->

will copy the entire contents of file A into file B.
In addition to issuing diagnostic messages, CTS may ask for read/write keys, may print CTS
assignment diagnostics, or may print FURPUR diagnostics and messages.
7.5.5. USE
Syntax: USE Ft, F2
Abbreviation: USE

Function: To associate an internal {logical) file name, F1, with an external (assigned) file
name, F2.

The USE command allows specifying an additional name for a file, which is used during the terminal
session or within programs, rather than the file name as it is known in the Master File Directory. This
may be done for several reasons. It may be desirable to shorten a long or cumbersome file name
that is ta be referenced often. It may be necessary to provide a name which has already been specified
in a program but the actual name of the file in the master directory is different. Rather than change

g8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 1-12

PAGE

UPDATE LEVEL

the program, a different name for the file is used. It may also help to resolve ambiguities in cases
where the same file name has been specified for more than one file but with different qualifiers.

F1is a file name from 1 to 12 characters in length.

F2 may be in the form of the fully expanded file specification [¢ #]1fn[/r/w] where g is a qualifier
of from 1 to 12 characters in length {this in most cases is the project-id}, fn is the file name {up to
12 characters long), and r/w are read/write keys, each of which is up to six characters in length.

The following are exampies of the USE command:

>>USE C.B

>»USE D. ,C.

>»USE E, CTSDEMO*KMB

>>USE 10.A

> USE F,CTSDEMO*G/6G/6G

<69> WARNING**FILE HAS NOT BEEN CREATED
»>CRE, U

FILE NAME? >G/G/G

DEVICE CHARACTERISTICS: »

+CRE G/G/G

>>LIS SAV F

F. :
<106> FILE F IS EMPTY
>

In this example, files A and B, as well as file CTSDEMO#KMB, already exist. The first USE command
allows the subsequent use of the name C to reference file B. The second USE statement allows the
name D to also reference file B. Note that 10 is used for one of the file names. This could be used
in a FORTRAN program as logical unit number 10. Also notice the warning diagnostic in the case
where one of the files had not been previously created. It is a warning only, and the subsequent
creation allows full reference to the file if the run’s project-id is CTSDEMO.

7.5.6. PACK
Syntax: PACK [PJ[Fi [, F2.]]
Abbreviation: PAC

Function: Ta eliminate deleted (unsaved or replaced) programs from the specified program
files.

When programs are unsaved or replaced from a program file, they are not physically removed from
the file and the space that they occupy is not reused. Thus, if programs are to be continually saved
or replaced, the used space within the program file continues to grow, and could conceivably reach
the maximum limit of that file. The PACK command allows space occupied by deleted programs to
be reused. This is done by taking the current, usable information and overwriting the previously
deleted information. .

95 .°
If specified, P is a list of options to apply to the packing process. If the file specification is omitted,
the assumed program fiie F is packed. ’

r
{ w

8118.2 SPERRY UNIVAC Series 1100 - 7-13
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
The valid options for PACK are:

no option Remove ali deleted elements

A Remove all elements except nondeleted absolute elements

t Release all unused space even if initially reserved

N Do not release any unused space

0 Remove all elements except nondeleted omnihus elements

P Create an entry point table after packing the file

R Remove all elements except nondeleted relocatable elements

S Remove all elements except nondeleted source elements Following are examples

of the PACK command:

->PACK A.B

FURPUR 27R2 02/15/77 14:25:386
END PACK. TEXT=15, TOC=1, SYM=7
->PACK

FURPUR 27R2 02/15/77 14:27:03

END PACK. TEXT=10, TOC=1, SYM=4
NOTE:
If the current working area images were read from a file by an OLD command, CTS still requires access
to that file and it should not be purged or released or packed by the EXEC mode command @PACK.
7.5.7. ADD

Syntax: ADD [FN.] [E]

Abbreviation: ADD

Function: To cause the operating system to interpret line by line the contents of the
specified file or element as though they had been typed at the terminal.

If FN is not specified, the program file F is assumed. If E is not specified, the entire file FN is interpreted
line for line. This file must be a data file, not a program file.

The ADD command is the same as a CSF command with a string S="ADD..." unless in subroutine mode
when the string S="ADD,R.." {see 7.6.).

. 81182

SPERRY UNIVAC Series 1100

) 7-14
UP_NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
7.5.8. ERASE
Syntax: ERASE F1 [, F2, ...]
Abbreviation: ERA
Function: To cause al! previously saved programs or data in files F1, F2, ... to be deleted,

without releasing or decataloging the files.

Files F1, F2, ... may be program files or data files. After they are erased, they are empty and may be
used as either program or data files. This is the same as performing an UNSAVE on each program
in a program file and then performing a PACK on the file, except the file remains a program file after
the PACK, even though it is empty. If all file specifications are omitted, CTS will solicit a file name.
Erasing and reusing a file is less costly than purging and recreating the file.

7.6. Submitting Operating System Control Statements - CSF
Syntax: CSF ‘s’
Abbreviation: None

Function: To submit to the Executive from within CTS a control statement via the CSF$
interface w_ith the Executive. '

The operating system provides an interface to programs via the command:

ER CSF3%

Whereby, a program may submit to the Executive images of certain types of contro! statements. The
Executive interprets these images as if they had been in the runstream. CT$S uses this interface to
submit the control statement specified on a CSF command.

The string s may be any one of the control statements listed below. It should be enclosed in quotes
and follow the operating system rules of syntax. The result of this command is either the performance
of the control statement or a diagnostic message. if no messages are displayed the operation was
successful. Some of the messages are printed by CTS and further description of the error can be
requested with the EXPLAIN command. These are preceded by a string in the form “<number>".
Others are printed by the Executive and are not recognized by EXPLAIN.

The string must be enclosed in quotes but need not begin with a master space (@).

The following operating system commands can be performed via the CSF command:

ADD FREE RSTRT
ASG LOG START
BRKPT MODE SYM
CAT QUAL. USE
CKPT

For an explanation of this capability and the control statements permissible, refer to SPERRY UNIVAC
Series 1100 Executive System, Volume 2 EXEC, Programmer Reference. UP-4 144.2 {current version).

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 18

PAGE

UPDATE LEVEL

7.7. Examples of File Usage

These examples show the creation of a data file D1, which has one record containing three images:
1.2, 2.3, and 3.4. A FORTRAN program is written to read this file and print the data images. Then
a BASIC program is written to do the same function. Finally, an alternate program file is produced
and the two programs are stored in this program file.

7.7.1. FORTRAN
Example;

—->NEW D1.

~> NUMBER

100 »7.2,2.3.3.4

110 > *#SAVE

IS THIS FILE TEMP, PUBLIC, OR PRIVATE? >PR/
READ AND WRITE KEYS: >

DEVICE CHARACTERISTICS: >
*CRE,U D1.

->FOR F

FO FORTRAN 5R1

S>NEW F1

>>N

100 > 10 FORMAT ()

110 >READ (11,10} A.B,C

120 >WRITE (6,10) A,B,C

130 > END

140 » *SAVE

DO YOU WANT A GLOBAL SCAN? > YES
SH>USE 11,01

>> RUN
DO YOU WANT A GLOBAL SCAN? > NQO
COMPILING. ..
1.2000 2.3000 3.4000
NORMAL EXIT. EXECUTION TIME: 10 MILLISECONDS.

*DIAGNOSTIC SCAN? > NO

8118.2 SPERRY UNIVAC Series 1100

7-1
DP_NUNBER Time Sharing Guide for CTS Users 6

PAGE

UPDATE LEVEL

7.7.2. BASIC
Example:

>>BASIC
BBASIC 8R1
>>NEW JCG
>>N
100 >OPEN D1 FOR SYMBOLI!C INPUT AS FILE 1
130 > INPUT FROM 1: A,B.C
120 >FPRINT A,B,C
130 > END
140 > *SAVE
>> RUN
1.2 2.3 3.4
TIME: .036
>>

7.7.3. Alternate Program File
Example:

>>CRE ALTPROGFILE

IS THIS FILE TEMP, PUBLIC, OR PRIVATE? PR/
READ AND WRITE KEYS: »

DEVICE CHARACTERISTICS: >

*#CRE,U ALTPROGFILE,F2

>>ASSUME PROG ALTPROGFILE

>>SAVE

>>»LI1S SAVED

ALTPROGFILE.

TYPE NAME

BASIC JCG

>>COPY KMB. F1,ALTPROGFILE.F1

FURPUR 27R2 02/18/77 14:28:01
1 SYM

>>LIST SAVED
ALTPROGFILE.

TYPE NAME
FOR F1
BASIC JCG

>>

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users &

PAGE

UPDATE LEVEL

8. Subroutines

8.1. General

CTS commands can be put together so that they will interact when executed. This is known as a
subroutine.

CTS subroutines are composed of one or more CTS commands which might be generally or frequently
used. They may be stored permanently and controlled by an individual, or they may be controlied
by an installation, and thereby available to everyone.

The CTS commands already explained have a great deal of additional flexibility. Strings of characters
may be freely substituted into the commands, and additional CTS commands will add even more
flexibility.

These commands give CTS subroutines the general appearance of a programming language. This
is not accidental. These new commands give the rudiments of a programming language, but these
capabilities are at the command level rather than at a programming language level. These commands
can read and write values, declare variables and assign values to them. Most importantly, decisions
can be programmed.

These decisions may be based on the values of the variables, or on other indicators. Making decisions
means that the next command executed is based on the decision made and is not necessarily the
next line of code. In this case, the code is not the code of a specific language, but rather the command
structure of CTS itself. Thus, any valid CTS command or any number of such commands can be
skipped. An important attribute is that looping as well as jumping is allowed. This allows repetitive
and seiective execution. This is, in essence, a dynamic run stream.

Since the commands can be any CTS commands, programs can be executed selectively with an
OLD/RUN combination. Editing commands can be skipped or executed as the program dictates,
providing a programmable editor. The working area can be built or altered, thus dynamically building
a batch run stream which might subsequently be stored and executed.

The CTS subroutines may be extremely complex, and therefore they may have bugs in them. Very
thorough debugging is needed prior to declaring them production subroutines.

This section shows how to build, program, debug, and execute a CTS subroutine.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 2

UPDATE LEVEL PAGE

w

8.2. Building a Subroutine

In order to understand CTS subroutines, think about the form of CTS commands. They are merely
strings of characters typed at a terminal. In fact, they look very much like anything else transmitted
from a terminal {for example, a line of code to a BASIC or FORTRAN program, or even input 10 a
program which is executing). To save these subroutines and manipulate them as one would a
FORTRAN or BASIC program, the lines need to be numbered. The general form of the line of a CTS
subroutine is:

CTS-line-number [subroutine-command-number] CTS-command

Whereas a command or line number must begin in column 1, the subroutine iine number or
CTS~command may begin in any column.

The maximum number of subroutine command numbers is 448. The subroutine command number
must be between 1 and 131071.

For example:

100 10 OLD ABC
110 RUN
120 JUMP 10

In this example 100 is a CTS line number. The 10 is a subroutine command number. Notice in the
third line a JUMP to statement 10. This 10 wouid always be the object of a JUMP statement and
that would be its only purpose. Notice line 110 and line 120 do not have CTS subroutine command
numbers. They are never jumped to and therefore do not need command numbers. If these three
commands were taken together as a subroutine and executed the system would be in a loop executing
the program ABC because there is nc conditional jump out of the loop.

The requested lines of the working area f or of a program in F must be declared as a CTS subroutine
before they are executed. This definition may be made explicitly by the SUBROUTINE or PROC
command {see 8.2.2 and 8.2.3) or done automatically when a program is referenced by a CALL
command {see 8.4.1).

The character mode {ASCIl or Fieldata) of the lines in a subroutine definition will be determined by
the mode of the working area if the subroutine definition was caused by a SUBROUTINE command.
Otherwise, the mode will be determined by the mode of the source element specified on the PROC
or CALL command. If this mode is not the same as the mode of the working area, each line of the

subroutine definition will be translated to conform to the mode of the working area when the line
is executed.

This translation may affect commands (JUMP, BRANCH, LOWER(), TYPE... } which are checking for
or using lowercase ASCH.

NOTE:

When in Fieldata mode, an attémpt to use a CTS subroutine with a8 command line containing the
Fieldata stop code character (077) will result in the line's rejection. This character has special
Executive meaning and should be avoided.

Subroutines execute in SYNTAX OFF mode (see 2.4.7); therefore, commands unique to a prescanner
are not allowed.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL

8.2.1. SAVE
For an explanation of the SAVE command, see 3.2.

Probably the most common way to build CTS subroutines is line-by-line in the working area, similar
to the manner in which a BASIC or FORTRAN program is built. Then simply save the working area.
Once it is saved there is nothing really unique about the CTS subroutine other than it contains CTS
commands rather than images which are BASIC, FORTRAN, or some other programming language.

An example of subroutine building and saving is as follows:

->NEW 5UB1

>N

100 >TYPE 1 AM SUBROQUTINE ONE. -
110 > *SAVE

This is a trivial 1-ling subroutine using the CTS TYPE command. Notice the naming of the working
area, SUB1, and the subsequent SAVE.

Here is the execution of the preceding subroutine:

->NEW SUB2

->CALL SUB1

I AM SUBROUTINE ONE.
->

The first line was included to clear the working area and prove that the subroutine is actually executed
from the SAVE file as opposed to being executed from the working area. Notice that the third line,
1 AM SUBROUTINE ONE. demonstrates the execution of the subroutine itself. Note also that a CALL
on a subroutine automatically executes it.

Obviously, during the establishment of a subroutine in this manner the syntax of the subroutine should
not be scanned. MNotice in these examples that the hyphen {-) has been used as the solicitation
character, indicating that no syntax prescanner was associated when the subroutine was written.

8.2.2. SUBROUTINE

Syntax: SUBROUTINE d [L]

Abbreviation: SUB

Function: To make all or part of T available as a CTS subroutine.
The SUBROUTINE command specifies that all or part of the working area is to be treated as a CTS
subroutine. This subroutine is not saved in F and, therefore, is available only for the duration of the
terminal session. The subroutine name d is, however, defined as a variable which will exist during
the entire terminai session unless the DROP command is executed. Do not confuse this with the

SUBROUTINE in FORTRAN. Notice that the SUBROUTINE command is given after CTS commands
have been placed in the working area.

8118.2
UP-NUMBER

SPERRY UNIVAC Saries 1100

Time Sharing Guide for CTS Users 3

UPDATE LEVE. PAGE

For example:

>N

100 > TYPE "1 AM SUBROUTINE TWO. -
110 > #SUBROUTINE SUBZ2

->CALL SUB2

| AM SUBROUTINE TWO.

->

After the working area has been named SUB2 by a NEW statement, the line of code 100 is entered.
into the working area and then the SUBROUTINE command is given. Notice that the asterisk directs
immediate action by CTS which declares the entire working area as a subroutine by the name SUB2.
The entire working area is only the one line 100. The calling of SUB2 results in the execution.

The subroutine will be called by the name, d, and it will comprise the lines specified by the line
specification L. If the parameter d is omitted, the name of the working area is used. If L is omitted,
all of the working area will be included in the subroutine.

Since a subroutine can be used as a variable (see CALL command, B.4.1), the name of the subroutine
is only the element name portion of the d parameter. That is, the qualifier, file name, and version
name are not used in naming the subroutine. For this reason, subroutines should have vnique element
names.

This syntax leads to some rather interesting and complicated possibilities. Notice that more than one
subroutine can be declared pertinent to the working area.

For example:

->N

100 >7 “LINE 100~
110 >7 "LINE 110"
120 >7 "LINE 120°
130 >7 "LINE 130°
140 > T "LINE 140"
150 >7 "LINE 150°
160 > *MAN

=>SUB SUBBA 100,110
->SUB SUB58B 110, 120
->SUB SUBSC 7100, 120
->8UB SUBSD 120, 150
->CALL SUB5A

LINE 100

LINE 110

->CALL SUBSEB

LINE 110

LINE 120

->

In this example notice that T is the abbreviation for the command TYPE, and that four subroutines
have been declared. Two of the subroutines have also been executed.

Notice in the preceding example that, in addition to more than one subroutine being declared some
of the subroutines actually overlap. This is allowable and the declared subroutines do not interfere
with one another.

8118.2 SPERRY UNIVAC Series 1100

UP-RUMBER Time Sharing Guide for CTS Users 8-8

PAGE

UPDATE LEVEL

-

Subroutines may call other subroutines. This is illustrated in the following example:

=>N

100 >TYPE "LINE 100°
110 >TYPE "LINE 1107
120 >CALL sUBZ

130 >TYPE 'LINE 130
140 > *SUBROUTINE SUBT 110, 130
->SUBROUTINE SUBZ2 100
->CALL SUB1

LINE 110

LINE 100

LINE 130

->

The subroutine is as it was declared at the time the SUBROUTINE command was executed. Thus,
any subsequent changes of the working area will not be reflected in the content of the subroutine
itself. If the subroutine is in error or should be altered, alter the working area. Then the subroutine
must subsequently be redeclared.

For example:

100 >TYPE 'LINE 100°
110 > *#*SUBROUTINE SUBT 100
->CALL SUB17

LINE 100

->C /100/XXX/100

100 TYPE "LINE XXX*
->CALL sUB1?

LINE 100

->NEW DEF

->CALL SUB1t

LINE 100

->FP A

THE WORK AREA 1S EMPTY
->

This example shows that a subroutine, once declared by the SUB command, is saved by the CTS
system automatically, and calied from the saved iocation rather than from f or F after a SUBROUTINE
command.

NOTE:

The text of the subroutine must be saved if it is going to be used in future terminal sessions.

8118.2

SPERRY UNIVAC Series 1100

] v I 8-6
UP-NUMBER Time Sharlng Guide for CTS Users UPDATE LEVEL PAGE
8.2.3. PROC
Syntax: PROC d
Abbreviation: PRO
Function: To make a stored program d available as a CTS subroutine without disturbing

f.
The PROC command is similar to the SUBROUTINE capability, but there is a distinct difference.
The execution of this command is equivalent to performing the following:

OLD d
SUB

except that the working area is not altered.

Since a subroutine can be used as a variable (see CALL command, 8.4.1), the name of the subroutine
is only the element name portion of the d parameter. That is, the qualifier, file name, and version
name are not used in naming the subroutine. For this reason, subroutines shculd have unique element
names.

A program need not be explicitly declared as a CTS subroutine with a SUBROUTINE or PROC
command. This will be done automatically when a stored program is referenced by a CALL command
(see B8.4).

The subroutine d is now available to be executed as a subroutine even if the original stored program
d is later destroyed by an UNSAVE command, but it is available only for the duration of the terminal
session. Replacing an element with one of the same element name as d will destroy this subroutine
definition so that the new definition will be used on a subsequent CALL command.

This is very similar to what is done by the SUBROUTINE command (see 8.2.2). The SUBROUTINE
declaration is static. Thatis, CTS takes what currently exists in the working area, stores it elsewhere,
and declares that as a callable subroutine. PROC does the same thing, except the source is not from
the working area f but rather from the element and file specified by d. If & file is not given, the SAVE
file F is used.

For example:

->NEW SUB3

_>N

100 >TYPE "1 AM SUBROUTINE THREE. '
110 > *SAVE

->NEW SUB4

->PROC SUB3

->UNSAVE SUB3

->0LD SUB3 ,

<4> ELEMENT .SuB3 CANNOT BE FOUND.
->CALL SUB3

| AM SUBROUTINE THREE.

->

Notice in this example that SUB3 has been saved and the working area destroyed. Then PROC SUB3
establishes SUB3 for the duration of the terminal session even though the next command, UNSAVE
€UB3, destroys it from the SAVE file. The diagnostic after the OLD SUB3 statement proves that it
was destroyed. The CALL SUB3 and the execution of the subroutine show that it is stilf available.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 8-

PAGE

UPDATE LEVEL

8.3. Programming a Subroutine

There are three ways to cause CTS commands to be treated as a CTS subroutine. Any CTS command
may be a line of a subroutine.

Perhaps the easiest way to think of these subroutines is to think of them as programs (which happen
to be written in the CTS language), which can stop suddenly, even in the middle of a program, to
execute some other program. Also recognize the extent of the language commands, editing
commands, file manipulation commands, etc.

8.3.1. Variables

Variables may be established and they may be given values and referenced by CTS commands. These
variables are similar in nature to the variables contained in any programming language. They are iocal
to CTS, however. The variable name consists of 1 to 12 alphanumeric characters, the first of which
must be alphabetic. A variable may be assigned an integer value, a rea! value, or a string value.

NOTE:

Some variable names are reserved for internal use. These variables always begin with the letters SYS.
Therefore, do not use a name starting with these three letters. ‘

Variables may be given values by the SET command (see B.3.2} or by the QUERY command {see 8.3.3).
Variables may be used by the TYPE command (see 8.3.4) and they may be tested by the JUMP
command (see B.3.5). Variables may also be inserted into a CTS command, using the percent sign
{%) (see 8.3.6). Variables may be dropped or "deactivated” by the DROP command (see 8.3.8). The
use of these variables will become much clearer in the following paragraphs.

8.3.2. SET
Syntax: SET v=e
Abbreviation: §
Function: To evaluate the expression e and store the result into the variable v.

The SET command evaluates the arithmetic expression which may contain other variables, numeric
constants, string constants, or functions. See 12.1 for a complete description of &.

A SET command may be abbreviated S in a subroutine but the command name must appear. When
not in a subroutine {in the desk calculator) the command name may be dropped, leaving only v=e
to define the variable.

For example:

~>SET A=43.1
->SET B='ABCDEF’
~>SET C=8 A
>TYPE C
ABCDEF43. 1

In the above example the first SET command involves a numeric variable the second, a string variable.
The third SET is used to concatenate these variables. Since the only acceptable form is a string, the
resultant variable, C, is a string variable. Notice that the concatenation is performed by placing a
space between the listed variables, B and A.

8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL msg_g
8.3.3. QUERY
- Syntax: QUERY [,O] v s
Abbreviation: QU
Function: To elicit a response from a user by typing the string s (usually a question) at the

terminal and placing the response in the variable, v.

The QUERY command serves as the input command, providing the dynamic assignment of values to
variables. Thus, QUERY allows the caller of a subroutine to assign a value to a variable. In fact, the
subroutine may be programmed such that the variable is assigned many different values during a
terminal session.

When this command is executed, the string s {usually a question) is printed at the terminal. Next,
a response places a value in the variable v.

This command will usually appear in a CTS subroutine. it may be executed directly, however, though
it is wasteful to ask a question just to have a response placed in a variable. The same thing could
be done immediately with a SET command.

itis not necessary to place quotes around the string. This is because the system can easily distinguish
that the string begins with the first nonblank character after the variable and ends with the last
nonblank character of the line. Be careful, however, to remember to put the variable name in the
command. If not, the first word of the question will become the name of a variable and only the
succeeding words would be typed as the question.

For example:

=>QUERY WHAT 1S YOUR ANSWER?
IS YOUR ANSWER? >THIS IS MY ANSWER.

~> TYPE WHAT
THIS IS MY ANSWER.
->

in this example the word WHAT looks like the name of a variable and is, therefore, assigned the
answer to the query. This is shown by the TYPE WHAT statement which does in fact type the result
of the query.

If ",0" is specified, the string s is printed on the operator console at the computer site rather than
on the terminal and the response is expected from the computer operator. Also see the OPR command
{see 10.2.2).

A variable may be assigned an integer value, a real value, or a string value. This holds true not only
for the SET command but also the QUERY command. Notice in the following exampie that this
assignment is dynamic. That is, it may be a string at one point in the session and an integer or real
value at some other point in the session. '

For example:

->8ET ANS=1

-> QUERY ANS VALUE?
VALUE? >ABCDEF
->TYPE ANS

ABCDEF

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 8-3

PAGE

UPDATE LEVEL

->SET ANS=1
“=»TYPE ANS
1

->

Notice that CTS obviously has to lock at the input value and decide whether it fits a legitimate numeric
form. If s¢, it assigns that numeric value; otherwise, it takes the value as a string.

8.3.4. TYPE
Syntax: TYPE e1 [e2 e3..]
Abbreviation: T

Function: The expressions el, e2.. are evaluated and the results are printed hy the
terminal. -

The TYPE command is analogous to an output command like PRINT in BASIC, or WRITE in FORTRAN.
Since the expressions are evaluated first, complex expressions containing constants and variables
may be specified in the TYPE command.

If the terms are not separated by an operator, concatenation is performed as the strings of characters
are typed on the terminal. To separate expression values with a blank in the print, place a blank
character string between them on the command or use the TAB function.

For example:

—>8ET A=43.1

-»8ET B="ABCDEF -

—>SET C= B A

->TYPE C

ABCDEF43.1

—>TYPE 'THE VALUES ARE ' B ~ AND ~ A
THE VALUES ARE ABCDEF AND 43.1

Severa! of the string functions which may be used in an expression are particularly useful to format
the value for output in a subroutine (see 12.1.4). For example, the TXT function will return a specified

portion of a string or ling in f and TRM will remove the trailing blanks. The FMT function provides
a flexible choice of printed forms for numeric results.

8.3.5. JUMP
Syntax; JUMP i [K]
Abbreviation: J
Function: Causes transfer of control within a CTS subroutine.

Perhaps the most important aspect of a programming language is the ability to make decisions and
thus cause transfer of control out of the straight sequential order. This is provided in CTS subroutines
by the JUMP command.

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 8-10

PAGE

UPDATE LEVEL

If the k parameter is omitted, the command is an unconditional jump. The parameter i may be either
a signed or unsigned integer or a sign. If it is unsigned, then the integer is taken to be 2 subroutine
command number. This can be seen in the command in line 160 of the following subroutine:

->F A

100 10 QUERY A WHAT NUMBER DO YOU WANT THE SQUARE ROOT OF?
110 JUMP 20 IF A=0

120 JUMP 30 IF A»O

130 TYPE '] CANNOT TAKE THE SQUARE ROOT OF A NEGATIVE NUMBER. -’
140 JUMP 10

150 30 TYPE SQR{A)

160 JUMP 10

170 20 RETURN

END OF FILE

->REP

=>CALL SUB

WHAT NUMBER DO YOU WANT THE SQUARE ROQT OF? >4

2.

WHAT NUMBER DO YOU WANT THE SQUARE ROOT OF? >-7

| CANNOT TAKE THE SQUARE ROOT OF A NEGATIVE NUMBER.

WHAT NUMBER DO YOU WANT THE SQUARE ROQT QF? »>712
3.4641016151377546

WHAT NUMBER DO YOU WANT THE SOUARE ROOT OF? >0

If the integer i is signed, then the transfer is either backward (if i is negative) i commands, or forward
(if | is positive} i commands. It might be wise to avoid this programming practice, due to the problems
it can create when maintaining CTS subroutines.

If i is a "+" sign it means the same as a RETURN. If i is a "-" sign control jumps to the first line of
the subroutine.

In the preceding example, the JUMP at line 140 or line 160 would transfer control to the command
numbered 10. This is the command appearing in line number 100. Do not confuse the command
number with the CTS line number. Two examples of command numbers in the above example are
the command number 30 in line number 150, and the command number 20 in line number 170.

The mogt _raluable aspect of the JUMP command is the conditional transfer. This is accomplished
by specifying the optional key, k. This key may be of two forms, either specific key words, or the
form, "IF e r e".

Values for k are:

END Transfer if the line pointer p is at either end of the working area, f.

NO END Transfer if the line pointer p is at neither end of f.

ERR Transfer if an error has occurred, or if the error indicator was set. {See ERROR,
8.3.5.1).

NO ERR Transfer if an error has not occurred or if the error indicator is clear. {See ERROR,
8.3.5.1)

FIND Transfer if the last LOCATE, CHANGE, or FIND command was successful, or if the

FIND indicator is set. {See FOUND, 8.3.5.2)

8118.2

SPERRY UNIVAC Series 1100

UP_NUMBER Time Sharing Guide for CTS Users UPDATE LeVEL e
NOQ FIND Transfer if the last LOCATE, CHANGE, or FIND command was not successful, or

if the FIND indicator is clear. .(See FOUND, 8.3.5.2)
IFere Transfer if the relation is true. The character e is a string or numeric expression

and r is one of the relational operators:

Operator Meaning
= equal
> greater than

>= or => Qreater than or equal
< less than

<=or =< less than or equal
<> or >< not equal

All relational operators are approximate for real operands with the single exception of zero. That is,

-the last six binary bits of an operand are used to round the number, and then these bits are set to

zero. Hence, for comparison purposes, only slightly more than 16 significant decimal digits are used.

8.3.5.1. ERROR

Syntax: ERROR [k]

Abbreviation: ERR

Function: To clear or set the error indicator.
If the parameter k is given as the single character N, the error indicator is cleared. Otherwise the
ERROR command causes the error indicator to be set. This makes it possible for a nested CTS
subroutine to return an indicator to its caller showing that some type of error has occurred. The error
indicator is also set when an error message is given (see ASSUME SBUG, 8.4.3.1.). The error indicator
is cleared by a CALL command and, also, whenever tested by the JUMP command.
8.3.6.2. FOUND

Syntax; FOUND [kK]

Abbreviation: FOU

Function: To clear or set the FIND indicator.
if the parameter k is given as the single character N, the FIND indicator is cleared. Otherwise the
FIND indicator is set. This command makes 2 CTS subroutine return a FIND/NO FIND indication to
its caller. The FIND indicator may be interrogated by the JUMP command, and it is altered by the

FIND, LOCATE, and CHANGE commands.

Unlike the error indicator, the FIND indicator is not cleared by a CALL command, nor is it altered by
a JUMP command.

8118.2 SPERRY UNIVAC Series 1100

8-12
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

For example:

->NEW SUB4

->N

100 > FOU

110 >JUMP 10 FIND
120 » TYPE "120°
130 > 10 JUMF 20 FIND
140 > TYPE "140°
150 >20 TYPE '150°
160 >RETURN

170 > *5AVE

->CALL SUB4

160

-> 100 FOoU N

->REP

->CALL SUB4

120

140

150

The first execution of the above subroutine shows that the JUMP command does not reset the FIND
indicator. The indicator is initially set in statement 100 and the JUMP in command 110 occurs, then
the subsequent JUMP in command 130 also occurs, showing that the JUMP in command 110 did
not reset the FIND indicator.

When the FIND indicator is cleared initially in the subroutine, as is done in the second execution of
the subroutine {note the aiteration of statement 100 to clear the FIND indicator and the subsequent
replacement of the subroutine), the JUMP commands do not alter the FIND indicator itself.

8.3.5.3. BRANCH
Syntax: BRANCH %V%.S,. [S2....Sn.] (i1.ig..uiip)
Abbreviation: BRA

Function: To allow conditiona! transfers of control within a subroutine like the JUMP
command but with more than one subroutine command number i.

The BRANCH command compares the character string in the first field to the strings $4,8,....5y
searching for a match. f no match is found, the next subroutine command is performed. If a match
is found, a jump to the subroutine line number corresponding to the matched key is performed.

Each of the strings S must be delimited by commas. Quote delimiters are acceptable but are only
necessary if the string contains commas or leading or trailing quotes. The quote delimiters indicate
that ali characters between the quotes are to be evaluated rather than all characters between the
commas. If a string is to contain a quote character two adjacent quotes must be entered for each
desired quote, thus ‘A”B" would be evaluated as A'B.

The BRANCH comimand format assumes that a variable reference (see 8.3.6) is always specified for
the first field %V%. The variable delimeters % cause the variable value to be placed in the field prior
to performing the character string comparison. As in any CTS command, a variable reference within
% delimiters may be used in any field, not just the first field as shown.

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

v } 8-13
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

For a successful match to occur, the value of V and string Sy must match character-for-character
for the length of V. Note that V may be shorter than Sy and a match can still occur.

Here is an example:

->QUERY N DO YOU WANT THE NEWS?
->BRANCH %N%,YES,NO, (10,20)

If the reply was Y, YE or YES the command would jump to line 10. If the reply was NO or N the
command would jump to ling 20. If anything else was specified (such as YESS), the next statement
would be performed.

Variables may be entered via the SET command or the QUERY command. The BRANCH command

. is affected by how the variable is entered since the SET command evaluates the variable while the

QUERY command does not.
For example, in the following subroutine:

SET V=1.2E2
BRANCH %V%,1.2E2,120.(10,20)

The next line executed would be line 20 since V has been evaluated as 120. by the SET command.

QUERY V ENTER A NUMBER
BRANCH %V%,1.2E2,120.,(10,20)

In this example, if 1.2E2 js entered in response to the QUERY, line 10 is executed because the QUERY
command does not evaluate the variable. 120 or 120. would have to be entered for line 20 to be
executed.

The QUERY command treats blanks and all quotes as part of the string. If A'B were entered in
response to a QUERY, it would match the string 'A’ ‘B’ or the string A’ 'B since string evaluation
changes two single quotes into a single quote. :

Notice also that the strings S are evalvated as strings and not integers or real numbers. That is, 123
will be evaluated as 123; 12.3E2 will be evaluated as 12.3E2 and not 1230.

8.3.6. Variable Substitution in CTS Commands

The value of a variable may be substituted into a command anywhere after the initial keyword simply
by enclosing the variable name between percent (%} signs. The value of the variable may be a string,
numerals, or anything allowed by the command, such as keywords, line limits, column limits, etc. This
substitution occurs as if the value of the variable had been inserted manually in place of the %V%
form.

NOTE:

The % character must be immediately adjacent to the variable name. If it is not, the % character will
be interpreted as the start of a comment.

This means virtually everything in a CTS command can be a variable. This might be thought of as
a macro capability. The only exceptions are the initial command word itself and the i parameter in
the JUMP and BRANCH commands

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

The following is an example of some variable substitutions:

->100 ABCDEFGH
->7110 DEF
->8ET A=100
->8ET B=110
->FP BA%, 3B%
100 ABCDEFGH
110 DEF

=>8ET A1=10
->P %A1%0

100 ABCDEFGH

The first two lines of this example place some data in lines 100 and 110 of the working area f. Then
A is set to 100 and B is set to 110. The PRINT statement is abbreviated P and might be thought
of as a P 100,110; and, in fact, that command types lines 100 and 110. Then the variable A1 is
set to 10, and the next PRINT command is effectively a PRINT 100. The O following the %A1% has
been concatenated by the system to the value of A1, forming 100.

This could become quite complex as is seen in the following example:

->8ET =70, 1"

=>FP BATE XCK RATH
100 ABCDEFGH

110 DEF

->

This shows the concatenation of three variables, A1, C, and A1. This is the same A1 used in the
previous example with the value 10. Thus, the PRINT command becomes PRINT 100,110. Again,
it types the two lines.

The above examples may cause some confusion as to the difference between string variables and
numeric variables. Since A,B and A1 were all numerical values, CTS takes the numeric value and
converts it to a string prior to placing that string into the command. This can be seen in the following
example:

-»SET AC=00
->T T1%A0%

10

->T 1%340%%A0%
100

->

Here AO is set to 00 which is interpreted as a simple numeric zero. Thus, the TYPE command would
display 10. The next TYPE command, as it includes two AQ's, effectively becomes the command TYPE
100. Again, this is because CTS has taken the value (in this case 0} and included it in the string.

Due to the nature of this simple string substitution, there are some rather interesting applications.
One is to specify a formula as a string of characters, and then cause the evaluation of that expression:

~>8ET EXP="{-B+SQR{B*B-4.0%A*C))/ (2*A) "’
->8ET A=5.0

=>SET B=4.0

->»8ET C=-5.0

-» TYPE %EXP%

B-14

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

6.770329614289008E-1
->

This expression is the general solution to the quadratic equation:

AX2+BX4C=0

The variabie EXP is enclosed in percent {%) signs in the above TYPE command in arder to have the
expression evaluated. Note the difference between this and the simple TYPE EXP which would type
the string of characters which represent the formula.

For example:

->TYPE EXP
{-B+SQR(B*B-4 .O%A*C))/ (2%A)

These percent (%) signs cannot be nested because there is no concept of left and right percent signs,
as there would he in the case of left and right parentheses. Notice the following example:

->8ET C="A"

~->8ET D="B"

->S8ET AB=47

~>TYPE 3CE¥%D%

47

->TYPE BCED%%

8> VARIABLE AD IS UNDEFINED
~>

The last TYPE command in the above example is an attempt to nest the %. However, notice that the
%C% is interpreted. An A, which is the value of the variable C, can be thought of as replacing the
%C%. Thus A and D are now contiguous characters and are interpreted by CTS as the variable AD.
This results in a diagnostic declaring that AD is undefined.

As indicated in 8.3.3, the QUERY is another command which can assign a value to a variable. This
is done dynamically by typing at the terminal the vaiue to be provided. This can be used.very

effectively in CTS subroutines by programming the names of programs, files, and character strings
as variables.

For example:

->BAS

BBASIC 9R1

>>NEW ABC

>>N

100 >PRINT I AM A BASIC PROGRAM. -
110 » END

120 > *SAVE

»>>FOR F

FD FORTRAN 5R1

>N

100 >PRINT 10

110 > 70 FORMAT (~ | AM A FORTRAN FPROGRAM. ')
120 > END

130 > *SAVE DEF

DO YOU WANT A GLOBAL SCAN? >YES

8-15

8118.2 SPERRY UNIVAC Series 1100

J . p -16
UP_NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL m;g 1
>>CLEAR
->NEW CTSSUB
-3 N

100 > QUERY PROG WHICH PROGRAM DO YOU WANT TO EXECUTE?
110 >0LD %PROGY

120 >ARUN

130 > *¥SAVE

->CALL CTSSUB

WHICH PROGRAM DO YOU WANT TO EXECUTE? »ABC

I AM A BASIC PROGRAM.

TIME: .027

=>CALL CTSSUB

WHICH PROGRAM DO YOU WANT TO EXECUTE? »DEF
COMPILING. . .

I AM A FORTRAN PROGRAM.

NORMAL EXIT. EXECUTION TIME: 2 MILLISECONDS
->»FP A

100 PRINT 10

110 10 FORMAT (" | AM A FORTRAN PROGRAM. ")
120 END

END OF FILE

->

This example shows the establishment of a BASIC program ABC, and a FORTRAN program DEF. Also,
a CTS subroutine called CTSSUB is written with a QUERY command to assign to the variable PROG,
the name of the program to be executed. Then the subroutine is called twice with the names ABC
and DEF provided to the QUERY and, in both cases, the programs are executed. Note that this concept
could be externded considerably to a tutorial approach with, conceivably, many different programs
being eventually executed based on the answers provided to varicus queries in the subroutine.

The example aftso shows that the changing of the compiler type by the OLD command is not displayed

unless an ASSUME SBUG ON has been done. It also shows that the DIAGNOSTIC SCAN query never
occurs in a subroutine.

8.3.7. Miscellaneous Commands

8.3.7.1. ENTRY

Syntax: ENTRY

Abbreviation: ENT

Funiction: To define the entry point of a CTS subroutine.
Generally, in a CTS subroutine the first command of the subroutine is the one to be executed first.
That is, the subroutine will start executing at the top. In this case there is no need to define the start
of the CTS subroutine. It is assumed to be at the top.
If the first staterment is not to be executed first, an entry point can be defined with the ENTRY

command. lnclusion of this command causes the next executable command to be the entry point
for execution when the subroutine is invoked by the CALL command.

8118.2
UP-HUMSBER

SPERRY UNRIVAC Series 1100

: 8-17
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

There are no parameters to the ENTRY command. In particular a name cannot be associated with
an ENTRY command. Therefore, each subroutine has only one entry point, gither the single ENTRY
command contained in it, or the top of the subroutine if there is no ENTRY command in the subroutine.

The foliowing is an example of the ENTRY command:

—>SET A=0
->0LD SUBA

SP A

100 10 SET A=1

110 TYPE "LINE 110’
120 ENTRY

130 TYPE 'LINE 130°
140 JUMP 10 IF A <>1
150 TYPE ‘LINE 150°
END OF FILE

->CALL SUBA

LINE 130

LINE 110

LiNE 130

LINE 150

->

When this subroutine is executed, the entry is at line 120 and, with A=0, the JUMP in line 140 is
effective. Notice that the ENTRY is not an executable statement and, therefore, does not affect
execution of any statements on the second time through the loop.

8.3.7.2. RETURN
Syntax: RETURN
Abbreviation: RET
Function: To cause control to exit from a CTS subroutine.

There are four different methods of exiting from execution of a CTS subroutine. One is to ensure
that the last command in the CTS subroutine is, in fact, the last command executed. Thus, control
can be thought of as dropping out of the bottom ol the subroutine. This causes a return back to the
CALL of the subroutine.

The second method is to execute a JUMP + command. Think of this as jumping beyond the limits
of the subroutine, and thus returning control.

The third is encountering an END command (see 8.3.7.3).

The fourth method is the RETURN command. It is good programming practice to use this command
to return control from a CTS subroutine. 1t is an executable statement and may appear anywhere
in the subroutine. It may appear any number of times within the subroutine. The execution of any

RETURN statement will cause control to be returned to the place where the CTS subroutine was
called.

81182 SPERRY UNIVAC Series 1100

d v . . 8-18
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

The following is an example of a RETURN command:

100 >JUMP 10

110 >20 TYPE 'LINE 110"

120 > RETURN

130 > 10 TYPE 'LINE 130"

140 >JUMP 20

180 > #SAVE

->CALL SUBB

LINE 130

LINE 110

-2
8.3.7.3. END

Syntax;: END

Abbreviation: None

Function: To indicate the last command in a CTS subroutine and to cause control to exit

from a CTS subroutine.

The END command may be the last command in a CTS subroutine butit is not needed since an implied
END command is automatically supplied by CTS. {f the END command is used it must be the last
command in the subroutine. If it is not, the lines following the END command are ignored.

When the subroutine is executed, the END command performs the same function as the RETURN
command.

For example:

->NEW SuUB1

->NUM 10,10

10 »>T7 "FIRST LINE~
20 >T "SECOND LINE®
30 >END

40 > 7T 'THIRD LINE~
50 > *5UB

->CALL SUBT

FIRST LINE

SECOND LINE

->

8.3.7.4. GENERATE
Syntax: GENERATE [h] [[11. i3 [s]

Abbreviation: GEN

Function: To generate a set of line numbers in the working area f, and to place string s
{if specified) into each generated line.

CTS subroutines can program the manipulation of the working area. Unfortunately, the CTS
subroutine concept eliminates the fundamental ability to enter lines into the working area f. The
GENERATE command retains this capability.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Yime Sharing Guide for CTS Users =19

PAGE

UPDATE LEVEL

Think of the ways that lines may be entered into f. The commands OLD and MERGE bring lines into
f from an existing file. DITTO and MOVE manipulate lines that are already in f. The only way to create
a new line is to type it directly. This cannot be done in the middie of a subroutine. The GENERATE
command will, however, generate or create any number of new lines in f.

The h parameter in the above syntax specifies how many lines are to be generated. If h is not
specified, then 1 is assumed. The i parameter is similar to the i parameter of the NUMBER command
— it specifies a starting number. If it is not given, the current line pointer value plus 1 is assumed.
The j parameter specifies the increment value for the generation of each line number. Again, this
is consistent with the concept of the NUMBER command.

The s parameter is a string of data to be placed into each line generated. The string may be enclosed
in quotes but the quotes are not needed unless the string has leading blanks. If s is not specified,
then the images will be null. Tab characters in the string s will be effective if used. The string usually
uses variable substitution.

The following subroutine includes several examples of the GENERATE command:

->0LD GENSUB

->FP A

100 NEW GENED

110 GEN 4,100,10 ABC...DEF
120 P A

130 TYPE °"LINE 130°
135 GO 130

140 GEN

150 P A

160 TYPE 'LINE 160"
170 GEN ,200,10 "LINE 200°
180 P A :
190 TYPE "LINE 190"
200 GO 200

210 GEN 2,,10 "NEW LINES”’
220 P 200+

END OF FILE

->CALL GENSUB

100 ABC...DEF

110 ABC. . _DEF

120 ABC.._DEF

130 ABC...DEF

LINE 130

100 ABC.. .DEF

110 ABC.. .DEF

120 ABC...DEF

130 ABC...DEF

131

LINE 160

100 ABC...DEF

110 ABC...DEF

120 ABC...DEF

130 ABC.. .DEF

131
200 LINE 200
LINE 1890

200 LINE 200

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 320

PAGE

UPDATE LEVEL

@

201 NEW LINES
- 211 NEW LINES
->

Notice that in the GENERATE command in line 110, the quote {’) signs have not been in¢cluded around
the string. This is because there is no ambiguity as to what the string is. In the GENERATE command
in line 140, all of the parameters are the assumed parameters, generating one null line at the next
available line number, 131. The GENERATE command in line 170 has the h parameter assumed, thus
generating one line. The GENERATE command in line 210 has the i parameter assumed, and thus
begins at the current line pointer value plus 1, or 201.

The line pointer will be set to the last line number generated by the GENERATE command. In the
above example there were GO statements in line 135 and line 200. These would not have heen
necessary except that the intervening PRINT ALL commands alter the line pointer. These were
included in order to illustrate step-by-step how the working area f has been altered. In the next
example these PRINT ALL commands are omitted. Note that the default values for the generation
of the line numbers are correct without the GO statements.

->NEW Q17

s N

100 >NEW GENED

110 >GEN 4, 100, 10 ABC. . .DEF
120 >GEN

130 >GEN ,200,10 "LINE 200°
140 >GEN 2,.,70 "NEW LINES’
150 >P A

160 > *SAVE

—>CALL Q1

100 ABC...DEF

110 ABC...DEF

120 ABC...DEF

130 ABC...DEF

131

200 LINE 200

201 NEW LINES

211 NEW LINES

8.3.7.5. Setting the Line Pointer - GO
Syntax: GO[L]
Abbreviation: None

Function: Move the line pointer to an existing line or to zero.

The current value of the line pointer, p {see 2.2.7), is used by many commands as a default line
specification. The GO command sets this pointer to any existing line in f, or sets it to zero.

The n parameter may be any of the line number specification formats given in 2.2.8.2 but the
following are the most useful:

n set p to n if line number n exists; otherwise, p is unchanged.

null set p to zero.

8118.2

SPERRY UNIVAC Series 1100

f v ! 8-21
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

+ move to the top of file; p is set to zero.

- move to the end of file; p is set to zero.

+i move forward i existing lines; p is set to this line number unless END OF FILE occurs,

in which case then p is set to zero.

—i move backwards i existing lines; p is set to this line number unless TOP OF FILE occurs,
in which case then p is set to zero.

For example, assume lines 100, 101, 102, 103, 105, 110, and 115 are in f. The following example
illustrates the three forms of GO:

->G0 103
->060 +2
->60 -4
->

The first GO command sets p to 103; the second, to 110 and the third to 101.

8.3.7.6. Commentary Information

Since the CTS subroutine provides a type of programming language, it is desirable to have comments
within the CTS subroutine. There are two methods of doing this; one is to use the REMARK command,
and the other is to use a percent sign {%) folliowed by a space.

8.3.7.6.1. REMARK

Syntax: REMARK [commentary information]

Abbreviation: REM
Function: To provide comments in a CTS subroutine.

CTS performs no function when it encounters a REMARK command. The remark command is used
to insert comments in a subroutine which will be displayed when the subroutine is listed.

-> NEW AVC

- N

100 > TYPE LINE 100"
110 > REMARK

120 » TYPE 'LINE 120
130 > REM

140 > TYPE LINE 140°
150 > REMARKTYFED'LINE 1507
160 > TYPE LINE 1507
170 > #SAVE

-> CALL AVC

LINE 100

LINE 120

LINE 140

LINE 160

8118.2 SPERRY UNIVAC Series 1100 B-22
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
B.3.7.6.2. Percent-Sign {%)
Syntax: CTS command % [commentary information]
Abbreviation: None
Function: To provide comments in a CTS subroutine after a CTS command.

Comments may also appear on subroutines if the percent sign (%]} followed by a space is used after
a CTS command. The percent sign (%) is used only when the commentary occurs on a line with a
CTS command.

Example:
->LIST
100 REM AUTHOR: BLH LOCATION: CLLK DATE: 2/14/80
110 SETC =0 % ZERO OUT COUNTER
120 80 SET C =C + 1 % INCREMENT C BY 1
130 TYPE "C = ° %C% % WHAT IS 1T°S VALUE?
140 REM NOTE THE DIFFERENT USES OF "%’
150 . JUMP 50 IF C ¢ 5 % DO THIS 5 TIMES
160 TYPE "BYE’
END OF F1LE
->8UB PCT
->CALL PCT
c=1
C=2
C=3
C =4
C=25
BYE

8.3.7.7. Leaving CTS Mode - EXIT

The EXIT command causes an exit from CTS just as the XCTS command (see 1.4.) does, except the
automatic reload bit is not cleared. The automatic reload bit forces the Executive to automatically
reenter CTS as though a @CTS control statement was given. The Executive will never solicit a control
statement when this bit is set.

This command can be used to execute from CTS these Executive control statements which are not
allowed on a'CSF command. This could be done by saving the control statements as an element and
adding this element to the runstream with an ADD command from within a CTS subroutine. An EXIT
command following the ADD command would place the user in control mode and execute these
control statements before returning to CTS through the automatic reload.

For example:

->0LD CONTROL

->LIST ALL

100 @MOVE TAPE.,2

200 @COPIN TAPE.,FI1LE1
300 @REWIND TAPE.

END OF FILE

->0LD ADDSUB

B118.2
UP-N{UMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users §-23

PAGE

UPDATE LEVEL

->LIST ALL

100 ADD CONTROL
200 EXIT

END OF FILE
—>CALL ADDSUB
IN EXEC MODE

8.3.8. Removing a Variable or Subroutine — DROP
Syntax: DROP V, L. V4, V3. ..., V]
Abbreviation: DRO
Function: To remove or drop variables and subroutines from CTS operating environment.

The DROP command drops or deactivates variables or subroutines with the names V,, ..., V. Once
dropped, these variables or subroutines can no longer be accessed unless they are reestablished by
a SET, QUERY, CALL, SUB, or PROC command.

The following procedure is performed to drop V:
1. i V, is an established variable, it is dropped immediately.

2. IFV,is the name of a currently executing subroutine, then it is not dropped and an error results
otherwise, the subroutine is removed.

3. MV, is neither a variable nor a subroutine name, then an error results.

Any erroneous variable or subroutine name V, terminates DROP command processing. Any variables
or subroutines dropped prior to the error will remain delsted.

Examples:

- SET V=1

=> DELETE ALL

->» 10 TYPE 'SUBROUTINE A’

> SUB A

->CALL A

SUBROUTINE A

->DROP V, A

->DROP V

< 8> VARIABLE V IS UNDEFINED

-»> CALL A

< 4> ELEMENT A CANNOT BE FOUND
->SET V=1

-> DROP V,.BETAZ

< 8> VARIABLE BETA# IS UNDEFNED
—>TYPEV

< 8> VARIABLE V IS UNDEFINED

8118.2
UP-NUMBER

SPERAY UNIVAC Series 1100

.8-24
Time Sharing Guide for CTS Users &2

PAGE

UPDATE LEVEI

8.4. Calling a Subroutine

8.4.1. CALL
Syntax: CALL d [s]
Abbreviation: CAL
Function: To call and execute a subroutine d.

Any subroutine which has been previously defined may be called. It may be defined by the
SUBROQUTINE command from the contents of f, the PROC command from a saved program, or it may
be defined implicitly by another CALL command. If d has not been defined as a subroutine already,
this is done automatically before it is executed.

Since a subroutine ¢an be used as a variable, the name of the subroutine is only the element name
portion of the d parameter. That is to say that the qualifier, file name, and version name are not used
in naming the subroutine. For this reason, subroutines should have unique element names.

If the subroutine has been defined by a SUBROUTINE, PROC, or previous CALL command, then d is
in an internzl format in recovery file CTS$FILE and is named as described in 8.2.2. The subroutine
d will remain defined even if the working area f or the file from which d was taken is deleted. If d
has not been defined as a subroutine, then the d parameter denotes either the name of an omnibus
subroutine element (see 8.5.1} or a symbolic element (see 8.2.2). If an omnibus element with the name
d exists, then it is copied as the subroutine definition. !f not, then symbolic element d is searched
for and used in subroutine definition. Subroutine definition is done automatically {without changing
f) before the subroutine is executed. When searching for an element d (done only if d is not already
a subroutine) and a file name is specified as part of the d parameter, CTS will only search that file.
If a file name is not specified as part of the d parameter, CTS will first search the save file F, the assume
call file secendly (see B.4.1.1), and then the system-maintained file SYS$%CLIB$. The mode of the
subroutine definition will be determined by the mode of the omnibus subroutine element or symbolic
element d.

NOTE:

The character mode {ASCIl or Fieldata) of the lines in a subroutine definition will be determined by
the mode of the working area if the subroutine definition was caused by a SUBROUTINE command.
Otherwise, the mode will be determined by the mode of the source element specified on the PROC
or CALL command. If this mode is not the same as the mode of the working area, each line of the
subroutine definition will be translated to conform to the mode of the working area when the line
is executed.

The symbol s is a string denoting a parameter to the subroutine. It is referenced within the called
subroutine as the subroutine name d (see 8.4.2.).

8118.2
UP-NUMBER

SPERRY UNIVAC Senes 1100

Time Sharing Guide for CTS Users 8-25

PAGE

UPDATE LEVEL

8.4.1.1. ASSUME CALL FILE
Syntax: | ASSUME CALL Fn
Abbreviation: A CAL
Function: To specify a file to be searched on a subroutine CALL.

This feature is useful in setting up project-wide CALL libraries and reduces the duplication of
elements.

8.4.2. CALL Parameter

A parameter may be issued to a subroutine by utilizing the string s in the CALL syntax. (See 8.4.1.)
This string is separated from d by one or more spaces. If this string is to have leading or trailing
spaces, it must be enclosed in quotes. The characters "$" and "-" are legal in subroutine names, but
they cannot be used if a parameter is to be passed.

The string may be retrieved within the subroutine by using the name of the subroutine as a variable.
The name of the subroutine is the element name from d.

For example:

-S>NEW FILE ABC
->N
100 >TYPE "LINE 100’
110 >TYPE ABC
120 »TYPE "LINE 120°
130 > *SAVE
->CALL FILE ABC 123
LINE 100
123
LINE 120
-»CALL ABC DEF
LINE 100
DEF
LINE 120
->CALL ABC” DEF”
LINE 100
DEF
LINE 120
->

In the above example, the first CALL must be FILE.ABC since the element ABC has not been defined
as a subroutine. This call also shows that the parameter can be a number and that leading blanks
are ignored. The second and third calls need not specify the file name FILE since ABC has been
defined as a subroutine. Even if the file name was used, the subroutine from CTS’s internal file would
be executed since the element name would be the same as a defined subroutine. These two calls
also show tnat to obtain leading spaces, the string must be enclosed in quotes.

Passing the single siring as a parameter is not a very complex capability. Consider, however, that
CTS is only designed to provide the rudiments of a programming language. The string parameter
can be parsed {subdivided into separate variables} within a subroutine. Notice the following
subroutine is written to do exactly that. (The TAB command was used to cause the alignment of
operations and comments as seen in the example.) It uses a comma as a separator between the

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 8-26

PAGE

UPDATE LEVEL

arguments and will allow nul! arguments within the string or, in fact, as the first or last parameter

in the string.
-> OLD PARSE
->FP A
100 SET R=0 % RIGHT COLUMN LIMIT OF PARAMETER
110 SET A=0 % INDEX OF CURRENT PARAMETER
120 10 SET L=R+1 % LEFT COLUMN LIMIT OF PARAMETER
130 20 SET R=R+1 % INCREMENT RIGHT COLUMN LIMIT
140 JUMP 30 IF R>LEN{PARSE) % 1S RIGHT LIMIT BEYOND STRING?
150 JUMP 20 IF TXT(PARSE,RR)<>",” % PARAMETER DELIMITER?
160 30 SET A=A+1 % PARAMETER FOUND. INCREMENT COUNT
170 SET P%A%=TXT(PARSE,L.R-1) % SET VARIABLE TO PARAMETER
180 JUMP 10 IF R<LEN{PARSE) % BEYOND LIMIT OF STRING?
190 40 SET B=1 % PREPARE TO TYPE VARIABLES.
200 50 JUMP 8O IF B>A % LIMIT OF PARAMETERS
210 TYPE P%B% % TYPE PARAMETER
220 SET B=B+1 % INCREMENT LOOP COUNT

230 JUMP 50
240 60 RETURN
END OF FILE

->

There are no subscripted variables in CTS. However, the subscripting of variables can be somewhat
simulated as is done in line 170 by simply concatenating a variable name (in this case P), with a
number, the number being supplied by the variable substitution capability. Thus the various
parameters will eventually be established in the variables P1, P2, P3, etc.

The following are some calls on the PARSE subroutine and the resulting print of the individual
parameters as detected by the PARSE subroutine:

->CALL PARSE ABC,LDEF
ABC

DEF
->CALL PARSE ,LABC,

ABC

->CALL PARSE ABC, K DEF
ABC

DEF

8118.2
UP-KUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 8-27

UFDATE LEVEL PAGE

The first CALL is a relatively straightforward CALL of PARSE with two parameters, ABC and DEF. The
second is intended to indicate three parameters, the first and last of which are null. The lastis a CALL
with the middle of three parameters being null.

Obviously the simple change of one character in the subroutine would allow any character other than
the comma to be a parameter delimeter.
8.4.3. Subroutine Debugging
Generally the good debugging practices associated with any programming language will pertain to
debugging CTS subroutines. Most CTS subroutines will be short compared to programs written in
programming languages.
The error messages associated with CTS commands are generally not printed when they come from
a subroutine, because errors can be caught in the subroutine by using the JUMP ERR commanrl. This
can be somewhat tricky, since a fatal error can cause the subroutine to terminate with no message
being printed. This can be circumvented, however, by the ASSUME SBUG command.
8.4.3.1. ASSUME SBUG

Syntax: ASSUME SBUG [ON/OFF]

Abbreviation: A SBU

Function: To cause error messages to be suppressed or printed during subroutine mode.
ASSUME SBUG ON will cause error messages to be printed during the execution of subroutines. In
subroutines, error messages also identify the subroutine in which the error occurred and the text of

the line in error, to help the user pinpoint the location of the error.

->NEW SBUGON

->100 SET A=1

->110 100 SET PYA%=A

->120 SET A=A+1

->130 - JUMP 100 A3

->140 TYPE 'Pi= *~ P! 'P2= °~ P2 'P3= ' P3
->150 RETURN

-> SAVE

->SUB SBUGON

->CALL SBUGON

->ASSUME S5BUG ON

->CALL SBUGON

<17> KEY WORD A<3

SBUGON :JUMP 100 A3

<8> VARIABLE P2 IS UNDEFINED

SBUGON :TYPE "P1= °~ P1 'P2= ° P2 "P3= " P3
->CHANGE /1007100 IF/ 130

130 JUMP 100 |F A«S3

->SUB SBUGON

-»CALL SBUGON

<8> VARIABLE P3 1S UNDEFINED

SBUGON :TYPE "P1= ° P1 'P2= " P2 'P3= ' P3
->CHANGE /3/4/ 130

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

8-28
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

130 JUMP 100 IF A<4
-» SUB SBUGON

~>CALL SBUGON

P1=1 P2=2 P3=3

->

Notice that when the first CALL is made, nothing is typed. Since the SBUG mode was off when an
error occurred, no error message was printed.

The SBUG mode is turned on and the subsequent CALL of the subroutine shows that an expression
A< 3 is thought to be a keyword. Since the subroutine name is given and the line in errar is printed,

“it is easy to recognize that something is wrong with the syntax of that command. The problem is

a missing /F. This is inserted with 3 CHANGE command, and the subroutine is replaced.

A subsequent CALL shows the variable P3 as being undefined. Obviously the loop has not been
through the desired number of times, so the loop terminating check is changed from a 3 to a 4 with
the CHANGE command, and a subsequent CALL of the subroutine types the desired values.

B.4.3.2. Subroutine Trace

A line-by-line trace of CTS subroutine execution may be attained by first placing the program in the
CTS working area and calling SYSTRACE ({formerly TRACE/SYS3) before defining the working area
as a subroutine with a3 SUB command. Calling SYSTRACE causes additional information to be
attached to each working area line so that when they are defined as subroutine commands and the
subroutine is called. the commands are printed out as they are being executed. The trace also prints
subroutine line numbers as they are encountered.

Example 1:

->0LD TRACE-TEST

=>LIST

100 SET A="THE VALUE IS °
110 10 JUMP 30 IF SUB1=""
120 TYPE A SUBI1

130 RETURN

140 30 TYPE "SUB1 WAS NOT SPECIFIED’
150 END

END OF FILE

-»>CAL SYSTRACE

->SUB TRACE-TEST

—>CAL TRACF-TEST

SET A="THE VALUE IS

LABEL 10
JUMP 30 IF SUB1=""
LABEL 30

TYPE 'SUB1 WAS NOT SPECIFIED’
SUB1 WAS NOT SPECIFIED
END
-2

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 8-29

PAGE

UPDATE LEVE'.

Note that the JUMP 30 was taken because the next line executed had a CTS subroutine line number
{label) of 30.

Example 2 - this time the same subroutine is called specifying a value:

~->CALL SUBT 1234

SET A="THE VALUE IS ~’
LABEL 10

JUMP 30 IF suUB1=""
TYPE A SUB1

THE VALUE 1S 1234
RETURN

->

Note that this time the jump was not taken.

In addition to the full trace, there is a partial trace which traces JUMP instructions. This trace prints
only the subroutine line numbers (labels) as they are encountered and not the subroutine commands.
This trace can be obtained by placing the program in the working area and calling SYSTRACEJP
{formerly TRACEJP/SYS$) before defining it as a subroutine.

Example 3:

->0LD TRACE-TEST
->CALL SYSTRACEJUP
->SUB SUBT
~->DELETE ALL
->CALL SUB1T

LABEL 10

LABEL 30

SUB1 WAS NOT SPECIFIED
->CALL SUB1 10000
LABEL 10

THE VALUE |S 10000
-2

Note that TRACE-TEST must be retrieved via an OLD command again because the working area is
changed when calling the trace routines. The unnecessary subroutine line number 10 was included
to show that the traced subroutine line numbers need not be the object of a jump command. Also,
the DELETE ALL command shows that the working area is no longer needed after the SUB command
has been done.

8.4.3.3. ASSUME TRACE
Syntax: ASSUME TRACE [ON/OFF]
Abbreviation: A TRA

Function: The ASSUME TRACE command notifies CTS whether or not to display each line,
either from f or from a user-specified element, when a subroutine is created.

ASSUME TRACE ON displays each line as it is converted to internal format. ASSUME TRACE OFF
or ASSUME TRACE will suppress the printing of the lines. The initial CTS state is ASSUME TRACE
OFF.

8118.2 SPERRY UNIVAC Series 1100

UP_NUMBER Time Sharing Guide for CTS Users 8-30

UPDATE LEVEL PAGE

For example:

->ASSUME TRACE ON

->NEW SUBT

-S>NUM 710,10

10 >T °“FIRST LINE’

20 >T °“SECOND LINE’

30 > END

40 > *SUB

T “FIRST LINE’

T "SECOND LINE’

END

->ASSUME TRACE OFF

->NEW SUBZ2

->NUM 100, 10

100 >T °'THIRD LINE"

110 > T "FOURTH LINE’
- 120 >END

130 > #SUB

->CALL SUBT

FIRST LINE

SECOND LiNE

~->»CALL SUBZ

THIRD LINE

FOQURTH LINE

Specifying ASSUME TRACE ON for SUB 1 resulted in the display of each line of the subroutine SUB1
upon the transmittal of the ¥*SUB command however, specifying ASSUME TRACE OFF for SUB2
resulted in no display of the lines in the subroutine SUB2 after the #SUB command. '

8.4.3.4. ASSUME JUMP
Syntax: ASSUME JUMP i
Abbreviation: A JUM

Function: To specify the maximum number i of JUMP commands which may be executed
in a subroutine. Normally i is assumed to be infinite.

The ASSUME JUMP command can be used to find infinite loops in subroutines. lt will cause an error
message to be printed during the execution of subroutines if the subroutine executes more JUMP
commands than are allowed by the ASSUME JUMP. This can be seen in the example which follows.

> NEW ABC
->N

100 >8ET A=0
110 >5 TYFE A

8118.2

UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -3

PAGE

UPDATE LEVEL

120 >SET A=A+1

130 >JUMP 10 |F A>5
140 >JUMP 5

150 > 10 RETURN

160 > #SAVE

->A JUMP 2

->CALL ABC

0

1

2

<30> ASSUME JUMP MAX. EXCEEDED - SUBRCUTINE TERMINATED
ABC :JUMP B

=->

8.4.3.56. Miscellaneous Conditions

it may be necessary for fully debugging a subroutine to program for errors, end-of-file, and end of
line. The JUMP command and the LEN function can perform these checks. The following is an
example of programming for efrors:

->NEW ERRI1

->N

100 >SET A=NUM(ERRIT, 2, 3)

110 >JUMP 10 ERR

120 > RETURN

130 > 70 TYPE '"IMPROPER PARAMETER.
140 > RETURN

160 > *SAVE

->CALL ERR! Ai2

->CALL ERR! AA2

IMPROPER PARAMETER.

->ASSUME SBUG ON

->CALL ERRT AAZ

<101> ILLEGAL NUMERIC SYNTAX A2

ERR1 :SET A=NUM(ERR1, 2. 3)
IMPROPER PARAMETER.
-2

In this case the check is for the validity of numeric form of the parameter issued to the subroutine.
The second and third column positions of the parameter should be valid numerics. The first example
of the CALL has a valid numeric, 12. The second, however, is invalid with an A2. The subroutine
detects this and prints a diagnostic. Notice, in the third CALL, the effect of SBUG ON.

The next example is a subroutine EOF 1, which programs for end-of-file. It looks for the five characters
"DATA " in the first five columns of any line in the warking area, and prints that line when it finds
it.

->P A

100 GO -

110 ASSUME BRIEF ON °
120 10 GO +1

130 JUMP 20 END
140 FIND °‘DATA ° +0
150 JUMP 10 NO FIND

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

8-32
UPDATE LEVEL PAGE

160 PRINT
170 JUMP 10
180 20 ASSUME BRIEF OQFF

190
END

RETURN
OF FILE

->REP
~>0LD DATA
->P A

100
110
120
130
END

DATA 1,2.3
A=1.23
DATA 4,5,6
B=2.345
OF FILE

->CALL EOF1T

100
120

DATA 1,2.3
DATA 4.5,6

Notice the programming for the. find/no~find condition.

The above example can be programmed somewhat better by realizing that the FIND command defauit
line numbering is to begin with the line following the current line and continue until a find is
successful. Thus, it is not really necessary to program for the find/no-find condition as that is a normal
fallout of the FIND command, as in the example which follows:

->NEW FOF2

->N

100
110
120
130
140
150
160
170
180

>60 -

>ASSUME BRIEF ON
>20 FIND "DATA
>JUMP 10 END

>PRINT

>JUMP 20

> 10 ASSUME BRIEF OFF
> RETURN

> *#SAVE

->0LD DATA
->CALL EOF2

100
120

DATA 1,2.3
DATA 4.5,6

Since the only valuable information provided by this subroutine is the printing of the fines on which
the DATA statements occur, it rezlly was unnecessary to have a subroutine at all. in fact, it can be
performed with a single statement using the ALL and REPEAT options of the FIND command.

For example:

->FIND "DATA ' ALL R

100
120

DATA 1,2,3
DATA 4.5.6

END OF FILE

->

g118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 3-33

PAGE

UPDATE LEVEL

8.4.3.6. Displaying Variables

One very convenient method of debugging subroutines is the simple displaying of variables.
Remember that a variable is defined for an entire terminal session. Having been given a value, a
variable will retain that value throughout the terminal session until it is changed. Therefore, be careful
to provide initialization values to variables in the subroutines. They are not assumed to be zero and
a diagnostic will be printed if a variable is used which has not previously been given a value:

->TYPE A
<8> VARIABLE A 1S UNDEFINED

TYPE statements can be imbedded within the subroutine to cause the various variables to be typed.
This will accomplish a form of trace within the execution of the subroutine. These can be easily
removed after the subroutine is debugged.

The variables can also be displayed after the subroutine has executed and control has returned to
the normal CTS command mode. This will be a very important capability but, again, it is important
to remember that the variables must be properly initialized in the subroutine. Simply execute the
direct TYPE command after the subroutine has finished executing.

8.4.3.7. Subroutine Nésting

CTS is very careful that subroutines which are nested are not improperly called. This can be seen
in the following example:

—>NEW SUB1

>N

100 >CALL SUBT

110 > *#SAVE

> CALL SUB1?

<32> ILLEGAL CALL NESTING TO SUB1

This subroutine calls itself. CTS detects this and gives the diagnostic:
<32> ILLEGAL CALL NESTING TO SuB1
This same diagnostic may pertain to more than one subroutine, as in the following example:

~->NEW SUBZ

-5>N

100 >CALL St/B3

110 > *SAVE

->NEW SUB3

>N

100 >»CALL SUB2

110 > *SAVE

> CALL SUB2

<32> ILLEGAL CALL NESTING TO SUB3
~>CALL SUB3

<32> ILLEGAL CALL NESTING TO SuB2

Here two subroutines call each other. Again, CTS detects this and gives a diagnostic. Once the
diagnostic is given, CTS drops out of the subroutine mode back to the command mode, soliciting a
command. CTS will detect undefined subroutine command numbers within subroutines. This can

8118.2 SPERRY UNIVAC Series 1100

UP_NUMBER Time Sharing Guide for CTS Users 8-34

PAGE

UPDATE LEVEL

=

be seen in the following example:

->NEW SUB4

->N .

100 > TYPE "LINE 100°

110 > SET A=2

120 >JUMP 10 IF A=1

130 >RETURN

140 > *SAVE

->CALL SUB4

<29> STATEMENT NUMBER 10 |S NOT DEF{MED

Notice that CTS has done a type of syntax analysis. Even though the JUMP to statement 10 would
not be taken in the logic of this subroutine, CTS has flagged as an error the fact that statement 10
is not defined. Notice also that this flagging is done prior to the execution of any of the commands,
otherwise the first line would have caused a type-out.

8.5. Savihg Subroutines Between CTS Sessions

As described in 8.4.1, when a CTS subroutine is first referenced by a CALL statement, it must first
be converted into an internal format and placed into CTS$FILE. Two CTS commands allow saving
of this internal format as an omnibus element, as later CTS sessions may use the saved CTS
subroutines without incurring the overhead of the SUB command operation.

8.5.1. Saving a Subroutine as an Omnibus Element — SSUB
Syntax: SSUBsn[d]
Abbreviation: SSU
Function: To save the internally formatted subroutine for a later CTS session.

The SSUB command saves the internal definition of a CTS subroutine sn as an omnibus CTS
subroutine element named d. The omnibus element d is saved in the assumed program fiie unless
d is specified as a file name.element name . If d is omitted. then an element named sn in the assumed
program file is created. By saving the internal definition of a subroutine, processing time to SUB or
PROC the CTS subroutine in another CTS session can be eliminated. By using an element reference
in d that is different from sn {see 8.2.2), muitiple copies of subroutine sn can be produced. Each copy
can then be referenced as a CTS subroutine by a CALL command.

Examples:

-> 15 TYPE 'SUBROUTINE A’
->S5UB A

->SSUBAB

-> CALL B

SUBROUTINE A

-> CREATE SUBS)

IS THIS FILE TEMP, PUBLIC, OR PRIVATE?> PUBLIC
READ AND WRITE KEYS: >
DEVICE CHARACTERISTICS: > FAST
+CRE,PU SUBS..

->SSUB B SUBS.X

-> CALL SUBS.X

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 8-35

PAGE

UPDATE LEVEL

SUBROUTINE A
->SS5UB B NEW.Z
<68> NEW IS NOT CATALOGUED

In this example, a new file named SUBS is created so that the CTS subroutine may be saved as the
omnibus element X in it. When the user attempted to also save the CTS subroutine as the omnibus
element Z in a file named NEW, an error message was received (because the file NEW did not xist).

Since parameters may be passed to a CTS subroutine via the subroutine-named variable {see 8.4.2),
care should be taken when saving subroutines via the SSUB command that reference CALL
parameters through the associated variable sn under a different element name (d).

Example:

-> N

100 > TYPE LINE 1007
110 > TYPE ABC

12Q > TYPE LINE 120°
130 > *MAN

-» SUB ABC

-> SSUB ABC

-> CALL ABC 123
LINE 100

123

LINE 120

~> §SUB ABC DEF

-> CALL DEF 772
LINE 100

123

LINE 120

-

When the CTS subroutine is saved as the omnibus element DEF, it cannot pass parameters via the
subroutine—-named variable ABC anymore (i.e., ABC is not the element name). The command TYPE
ABC results in the printing of the value from the execution of the omnibus element ABC. If the call
to omnibus efement ABC had not been made, no value would have been printed for the command
TYPE ABC.

8.5.2. Replacing a Saved CTS Subroutine Element — RSUB

Syntax: BSUB sn[d]

Abbreviation: RSU

Function: Tb replace a CTS subroutine omnibus element created by SSUB.
The RSUB command replaces the omnibus subroutine element d by the current internal definition
of subroutine sn. If d is omitted, then the omnibus subroutine element named sn in the ASSUME

PROGRAM file is replaced. To perform RSUB d. an internal subroutine definition must have been
previously saved with a SSUB statement as d.

8118.2 SPERRY UNIVAC Series 1100

-38
UP-NUMBER Time Sharing Guide for CTS Users . IUPDATE LEVEL 53

PAGE

Examples:

- 10 TYPE 'IN SUBROUTINE A°
->SUB A

->CAL A

IN SUBRQUTINE A
->SSUBAB

->CAL B

IN SUBROUTINE A

->C /A/8/ 10

10 TYPE "IN SUBROUTINE B’
->SUB A

->CAL A

IN SUBRQUTINE B
->RSUBAB

->CAL B

IN SUBRQUTINE A

-> DROF B

->CAL B

IN SUBROUTINE B

->

Note that when subroutine B is called the second time, it still prints the message ‘IN SUBROUTINE
A’ even though an RSUB was done. This is because internally the subroutine remains unchanged.
Subroutine B has been internally defined by the CALL command. The DROP command is used to
remove it since subroutine names are saved as variables. The final-time subroutine B is called, the
RSUB omnibus element is executed.

NOTE:

Since parameters may be passed to a CTS subroutine via the subroutine-named variable (see 8.4.2),
care should be taken when using the RSUB statement on subroutines, since later use of the omnibus
subroutine d may reference CALL parameters through the associated variable sn. See SSUB (8.5.1)
for more details.

8.56. Examples

8.6.1. Selective Execution

This subroutine allows the user to choose a program to be executed. A BASIC program and a
FORTRAN program are shown for illustrative purposes. Each program communicates with the user
by asking for a value.

1t would be very easy to extend this subroutine to make logical choices to execute any one or a
combination of runs.

—>NEW WHICH

->N :

100 > 70 QUERY ANS DO YOU WISH TO RUN A PROGRAM?
110 >JUMP 20 [F TXT(ANS,1,1)="N"

120 > QUERY PROG WHICH PROGRAM?

130 >0LD %PROG%

140 > AUN

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

8-37
PAGE

UPDATE LEVEL

150 > JUMP 10

160 »20 RETURN

170 > #SAVE

-3 BAS

BBASIC 9R1

>>NEW Bt

>>N

100 >FPRINT "INPUT A VALUF~
110 > INPUT A

120 >PRINT A

130 > EAND
140 > *SAVE
>>FOR F
FD FORTRAN BR1
>>NEW F1
>N
100 >WRITE (6,10)
110 > 10 FORMAT (° INPUT A VALUE")
120 >READ (5,20)A
130 >20 FORMAT ()
140 >WRITE (6.20) A
150 » EAD
160 > *#SAVE
DO YOU WANT A GLOBAL SCAN? >N
>>»CLEAR
> CALL WHICH
DO YOU WISH TO RUN A PROGRAM? >YES
WHICH PROGRAM? >B87
INPUT A VALUE? 3>2.3
2.3
TIME: .015
DO YOU WISH TO RUN A PROGRAM? >YES
WHICH PROGRAM? > F1
COMPILING. ..
INPUT A VALUE
»2.3
2.3000 .
NORMAL EXIT. EXECUTION TIME: 7 MILL1SECONDS.
DO YOU WISH TO RUN A PROGRAM? >NO

->

8.6.2. Programmable Editor

The SPERRY UNIVAC Series 1100 UBASIC Compiler allows an instruction for the control of transfer
in the form GO TO *+n or GO TO *-n where n is a relative number of lines. This instruction form
simplifies programming in that the line number to which control is to transfer need not be known.
However, it does make maintenance of a program considerably more difficult. For example, if a line
is inserted between the GO TO and the point to which control is to transfer, the programmer must
alter the number in the GO TO statement. Thus, this is not 3 good programming practice and the
standardization of BASIC will probably not include this instruction form.

The following is a very simple CTS subroutine which looks for this instruction form in 2 program and
alters it to GO TO n where n is an actual line number. It is over-simplified in the sense that it does

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 8-38
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

not allow for the morg complex form ON e GO TO * 4-n,%-n and requires specific spacing within the
GO TO. ltis built, however, to search for more than one GO TO statement on a single line in situations
where the nested IF.THEN..ELSE... has been used.

=>NEW ED1

>N

100 > QUERY PROG WHICH PROGRAM?
110 >0LD ¥PROGY

120 >ASSUME BRIEF ON

130 >GO -

140 > 10 GO +1

150 > JUMP 50 END

1860 »>SET D=P(}

165 >SET CO=0

170 > 15 SET E=C0+1

180 >LOC "GO TO *° 40 (%E%,L80)
180 > JUMP 10 NO FIND

200 >S8ET CO=C{)+6

210 > SET C1=C{}+7

220 >SET C2=C()+8

230 >SET C=TXT(+0,%C1%,%C2%)
240 >GO ¥C%

250 > JUMFP 30 ERROR

260 > JUMF 30 END

270 > SET P=P{()

280 »JUMP 60 iF TXT(C.1,1)="-"
290 >8ET C="-" TXT(C,2,2)
300 > JUMP 70

310 > 60 SET C="+" TXT(C.,2,2)
320 »70 GO %C%

330 SDELETE (%C0%,%C2%)

340 > INSERT "%FP%° (%CO%, %C2%)
350 >JUMP 15

360 > 50 PRINT ALL

370 >ASSUME BRIEF OFF

380 >RETURN

390 »>30 TYPE "ERROR IN %D%°
400 >P %D%

410 >6GO %D%

420 >JUMP 10

430 > *#SAVE

~->NEW D17

-5 N

100 > GO TO #+5

110 >G0 TO #4+3

120 >GO TO *#3+2 GO TO *-2
130 > 60 TO *-3 .

140 »GO TO *-7

150 >GO TO *-2

160 »*S5AVE

->CALL ED1?

WHICH PROGRAM? D7

100 GO TO 180

110 GO TO 140

120 GO TO 140 GO TO 100

8118.2
UP-NUMBER

SPERAY UNIVAC Series 1100

Time Sharing Guide for CTS Users 8-39

PAGE

UPDATE LEVE!.

130 GO TO 100

140 GO TO 130

150 GO TO 130

->NEW D2

-5 N

100 »A=7

110 > /F A=1 GO TO #4171 ELSE GO TO #+2
120 »A=2

130 > END

140 > *SAVE

->CALL ED}

WHICH PROGRAM? »D2

100 A=1

110 IF A=1 GO TG 120 ELSE GO TCO 130
120 A=2

130 END

8.6.3. Starting Batch Runs

One of the standard Executive functions is to allow the starting of a separate batch run via a CSF
interface with the Executive. This interface references a file or element within a file containing a
standard operating system batch deck.

An installation might provide a subroutine similar to the one in this section which would assuse that
the program is in an element in a prescribed file, temporarily build a batch deck in the save file, and
start it for the user. It is activated by CALL BATCH PROGNAME, where PROGNAME is the name of
the program. (That is; the program name is a parameter in the CALL) This subroutine allows placing
a program in the save file, the working area, or a separate file. It insists that a separate file be created,
because the batch run may run concurrently with the rest of the demand session that starts the batch
run, thus requiring the sharing of a file between two runs. To alleviate any exclusive-use ccnflicts
the subroutine insists on a separate file for the batch run.

The subroutine assumes the program is FORTRAN and specifies a compilation via the FORTRAN V
compiler. Any other compiler could be substituted by an installation, or the compiler name could be
a variable supplied by the user. After the compilation, of course, the program is executed. The user
is allowed the fiexibility of providing data for the execution of the program. This data is provided as
direct card images at the solicitation of a WHAT 1S IT? question. When NO is typed in response to
that question, the data images are terminated and a @FIN image is provided. The subroutine releases
the file, starts the run, and returns control for the remainder of the terminal session.

->0LD BATCH

->P A

100 SET ANS1="TXT{ANS,1,1}"

110 QUERY ANS HAVE YOU CREATED A SEPARATE FILE FOR THIS PROG?
120 JUMP 10 |F %ANS1%="Y

130 TYPE "CREATE ONE AND CALL SUBROUTINE AGAIN. "’
140 RETURN

150 10 QUERY FILE WHAT IS FILE'S NAME?

160 QUERY ANS 1S PROGRAM IN THAT FILE?

170 JUMP 20 IF %ANS1%="Y’

180 QUERY ANS |S PROGRAM IN WORKING AREA?

190 JUMP 3C |F %ANS1%="Y"’

200 QUERY ANS 1S PROGRAM IN SAVE FILE?

210 JUMP 40 IF %ANS1%="Y

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users UPDATE LEVEL

8-40
PAGE

220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

TYPE "PLEASE PUT IT IN ONE OF THOSE PLACES’
TYPE "AND CALL SUBROUTINE AGAIN. "’
RETURN

40 OLD %BATCH%

30 SAVE %FILE%.%BATCH%

20 QUERY RUNID WHAT 15 RUN-1D?

QUERY PROJI1D WHAT 1S PROJ-ID?

NEW BATCH$

GEN 1,100,110 "@RUN %RUNID%, ,%PROJID%,2"
GEN 1,110,110 "@ASG.A %FILE%. "’

SET PROG=TRM{BATCH)

GEN 1,120,110 "@FOR,S %FILE%.%PROG%,TPF3. %BATCH%"
GEN 1,130,10 "exar’

SET LN=140

QUERY ANS IS THERE ANY DATA?

JUMP 50 IF %ANS1%="N’

60 QUERY DATA WHAT IS IT?

JUMP 50 IF DATA="NO’

GEN 1.%LN%,10 "%DATA%’

SET LN=LN+10

JUMP 60

50 GEN 1,%LN%,10 ‘@MSG,N NO DECK —- LISTING TO %RUNID%’

SET LN=LN$10

GEN 1,%LN%,10 "@FIN’

SAVE

SET FILE1=APF()

RELEASE %FILE%

CSF "START %FILE1%.BATCHS$"
UNSAVE BATCH$

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 3-1

UPDATE LEVEL PAGE

9. Operating Information and Assistance

9.1. Fiie Information

Section 4 discusses some of the uses of the LIST command for editing and output functions. Here,
the emphasis is on the LIST command used for system interrogation. This interrogation can obtain
information about the options used when files were assigned, {i.e., cataloged public or private, read
only, write only, etc.).

CTS can list information concerning file names specified on the LIST commands or obtain the file

name associated with the working area. This information is mandatory for file manipulation, security,

and assignment. For additional information regarding the different mass storage files used by CTS,
refer to 7.1.2.

9.1.1. LIST CATALOG
Syntax: LIST CATALOG
Abbreviation: LIS C

Function: Lists all files cataloged under the user's project—id, which is the third field on the
@RUN contro! staternent. '

The LIST command lists files which were cataloged under the user’s project-id, even if they have not
been previously referenced or assigned in the current run.

NOTE:

These file names are found by searching the Master File Directory which is maintained by the

Executive. This search is time consuming and costly. Therefore, this command should be used with
discretion.

8118.2 SPERRY UNIVAC Series 1100 9-2
UP-NUMBER Time Sharing Guide for CTS Users | UPDATE LeveL PAGE
9.1.2. LIST FILE
Syntax: LIST FILE [F1 [[F2]1]
Abbreviation: LIS F
Function: Lists information concerning file name [F] specified. More than one file name

may be specified. If no file name is specified, the assumed program file F is used.

Here is an example of LIST FILE:

->LIST FILE

FURPUR 27R2 02/17/77 08:25:20

+# PROJ: OLSON ACCNT: /4777777777 /%%

MODES: PUBLIC, ASG-D

NO. OF GRANULES ASG-D: 2 GPG=2

HIGHEST GRANULE ASG-D: 28 TOTAL ASS|GNMENTS: 23
HIGHEST TRACK WRITTEN: 28

CAT: 02/15/77 AT 09:11:35, LAST REF: 02/17/77 AT 08:24:54
->

9.1.3. CTS Internal File Names

The names of the working area f, the assumed program file F, and the assumed object file can be
found by the values returned by the CTS functions DKN(), APF{), and OBJ(). The names are printed
by the TYPE command {see functions in 12.1.4 and TYPE in 12.3) in the following examples.

The name of the working area f, if any, is the file name or element name specified on the last OLD,
NEW, or RENAME command:

—->NEW ABC
->T DKN{}
ABC

->

The name of the assumed program file {save file F) is initially project-id*run—-id but may be changed
by an ASSUME PROGRAM or ASSUME FILE command:

->T APF{)

CTS*WEST

->
The name of the assumed object file is initially TPF$ but may be changed by an ASSUME QOBJECT
or ASSUME FiLE command:

->T 08J()
TPF$
->

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

9.2. Miscellaneous Qperating Information

In addition to the file names and file information explained previously, other information about the
operating environment can be determined by CTS functions and commands. Some of these
commands are described in other subsections such as SYNTAX {see 2.4.7), LIST SAVED and LIST
INUSE (see 4.1.4.2 and 4.1.4.3), and the functions DATE{}, LNG{), and P{) {see 12.1.4). Other useful
commands are explained in this section.

9.2.1. NEWS File

A NEWS file may be established by the site which automatically solicits a response from the user after
the @CTS command (see 1.3.2).

If a NO answer follows the file inquiry, WOULD YOU LIKE THE NEWS? the system returns to CTS
control mode.

The sending of NEWS to CTS terminal users becomes important if the status of the operating system
has been changed. it is possible for the console operator to send a message to all active terminal
users, but that ability is limited for spontaneous messages, and the broadcast message is "overlayed"
whenever another broadcast message is entered {messages may not be stored for users}. Broadcast
messages are also severely limited as to the amount of text.

9.2.2. Number of Lines in f - LENGTH
Syntax: LENGTH
Abbreviation: LEN

Function: To print the number of lines of data in f and the line number of the last line in
f.

Printing the number of lines of data in the working area may be helpful in determining if the previous
OLD, MERGE, DITTOQ, etc., command has done what was expected. LENGTH does this without having
to list all the lines. The number of lines of data can also be obtained by using the LNG(} function (see
12.1.4).)

->0LD ABC 10,100

->LEN

IMAGES = 57 LAST LINE NUMBER = 100
-2

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

-4
Time Sharing Guide for CTS Users 3

UPDATE LEVEL PAGE

@

9.2.3. DATE
Syntax: DATE

Abbreviation: None {An abbreviation for DATE would interfere with any abbreviation for
the DATA command.)

Function: To print the current date and time of day.
In 12.1.4 a date function is described which will format the printing of the current date. However,
the DATE command is available as a direct command to time-stamp an output listing. This is the
same value as the DATE() function prints. Its format is:

->DATE

29 MAR 77 11:50:21

->
9.2.4. Central Processor Time - CFTIME

Syntax: CPTIME

Abbreviation: CPT

Function: To display the amount of central processor time which has been used during the
current terminai session.

The following exampile illustrates the use ot the CPTIME command and the CTS response:
->CPT
OM 20S
->

The central processor time used so far is twenty seconds.

9.2.5. STATUS

Syntax: STATUS s

Abbreviation: STA

Function: To return the value of a previously set CTS parameter.
The STATUS command returns the current value of the ASSUME, TAB, and SYNTAX commands. This
command operates the same as the STATUS function {see Table 12-2), but the value of the =
parameters cannot be obtained since the syntax of the command would conflict with that of the

implied SET command {see 8.3.2).

The value returned is formulated as if it were part of 2 command to set the parameter specified by
the argument. If a null value is returned, then the system default is in effect.

The argument string can be either the full parameter name or their accepted abbreviations.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL pAGE_S
The following ASSUME parameters are available through STATUS:

ASCII AUTO - BREAKPOINT BRIEF
CALL CHECKOQUT COMPILER copPY
CQUE DEBUG ECHO ECOLUMN
EDIT FILE FILLER HEADING
INPUTWIDTH JUMP LIBRARIES LINES
MAIN MAP OBJECT OCCURRENCES
QCOLUMN PCOLUMN POLL PRINTWIDTH
PROGRAM QUICK RELOCATABLE RESEQUENCE
RETURN SAVELENGTH SBUG SCOLUMN
SITE -SPACER STRING TRACE
TYPE XQT

Other parameters available through STATUS() are:

= (see 1.5)
TAB
SYNTAX {ON/OFF status)

Examples:
~> STATUS ASCHI
ON
->A ASCH OFF
-> STATUS ASCil
OFF

-> STATUS TAB
;11,21,38.73

9.3. Online Assistance
Two types of online assistance are available when working at a terminal with CTS. One provides
assistance with the syntax of CTS commands. This is the HELP module. The second type of aid is
the CTS command EXPLAIN which explains the meaning of error messages.
9.3.1. Command Information — HELP

Syntax: HELP

Abbreviation: HEL

Function: To provide an explanation of CTS commands, the syntax of commands, or the
meaning of various fields in commands.

When the HELP command is entered, CTS responds with:

WHEN YOU NO LONGER NEED HELP, TYPE EXIT
TEACH? - TYPE YES OR TYPE A HELP COMMAND>

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users o6

PAGE

UPDATE LEVEL

An answer of YES will cause a description of the three most used HELP commands to be printed.
Then, after an answer of YES to another solicitation, it will describe seven additional HELP
commands. After this description or in response to TEACH?, one of the following HELP commands
can be entered: ’

EXIT - Return control to CTS.

EXPLAIN [CTS-command] Print a brief description of the specified CTS command.
SYNTAX . [CTS-command] Print the exact syntax of the specified CTS command.

FIELD i [CTS-command] Print the meaning of the ith field of the specified CTS command.

LENGTH specification ~ Print the definition of the line limit specification.

TEACH - Print a description of the HELP commands.

USE Print an explanation of some typical CTS commands.

COMMANDS Print all CTS commands, grouped by function. '

SYMBOLS Print an explanation of the symbols used by HELP in defining
syntax.

DEFINITIONS Print an explanation of the terms used by HELP in explaining CTS
commands.

If the CTS-command is omitted from the EXPLAIN, SYNTAX. or FIELD command, the last CTS
command referenced is used.

All of these commands are fully described with examples in SPERRY UNIVAC Series 1100
Introduction to Time Sharing for CTS Users, UP-B117 (current version}.
9.3.2. Error Message Information — EXPLAIN

Syntax: EXPLAIN [i]

Abbreviation: EXP

Function: To provide additional information about diagnostic messages.
The EXPLAIN command displays an explanation of error mess'age i or the last message given if i is
not specified. The i represents the number within the <> characters which precede most CTS
diagnostics.
If message i is not defined or there is no such message, the following message is printed:

<88> ERROR MESSAGE n IS NOT DEFINED

Requesting an error explanation clears the last error message indicator. If i is not specified and no
errors have occurred since the last EXPLAIN, the following diagnostic is given:

<85> NO ERRORS SINCE LAST *#EXPLAIN

8118.2 SPERRY UNIVAC Series 1100

r v h -7
UP-HUMBER Time Sharing Guide for CTS Users 2

PAGE

UPDATE LEVEL

In the following example, EXPLAIN is used without an error number to exptain the last diagnostic:

>PRINT 100

100 123456789

> INSERT "XXX* (2,.3) C

<24> STRING EXCEEDS COLUMN LIMITS

>EXPLAIN

<24> THE NUMBER OF CHARACTERS SPECIFIED IN THE

INSERT COMMAND WOULD EXCEED THE COLUMN LIMITS. THE
ACTION WAS NOT PERFORMED. THE STRING MAY BE EXPANDED
ON INSERT ONLY WITH NO KEY QR KEY=PACK.

>

8118.2 SPERRY UNIVAC Series 1100

F v \ 10-1
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

10. User Communications

10.1. General

The first part of this section deals with operator communications. The main purpose of 10.1 and 10.2
is to show how communications may be established between the central site and the user on an
individual basis, or from the central site to all terminals. The console operator at the central site can
communicate with the remote users. Entering information at the console of the SPERRY UNIVAC
Series 1100 System is similar to entering information at the remote terminal. It is not necessary to
explain the use of these keyins to the remote terminal user except that a message *TB*.text.. is
broadcast to all active terminals, whereas a #*TM#¥ text... is broadcast only to the individual user
site-id. All messages sent to and from terminals are recorded on the operator’s ¢onsole and are
included in the Executive accounting files, in addition to appearing on the screen at the console and
the terminal.

10.2. User/Operator Communications

10.2.1. Operating System Message - @MSG
Syntax: @MSG
Abbreviation: Nane

Function: To communicate to the central site any message of fifty characters or less,
spaces included.

Many active terminals may require facilities at any given moment. Therefore, messages to the central
site should be marked with a site-id as an identifier. This site-id should be included at the beginning
of the message as follows:

DCT236
ENTER USERI1D/PASSWORD
SMi TH/HAPFY

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

10-
Time Sharing Guide for CTS Users 2

UPDATE LEVEL PAGE

NOTE:

System will feed ten lines.

*DESTROY USERID/PASSWORD ENTRY

#UNIVAC 1100 OPERATING SYSTEM VER XX.XX. XX#%
>@RUN JIM, 123456, SMITH. 15,50/100

DATE: 052474 TIME: 081120

>@MSG. .DCT236 | NEED THIS TEL NUMBER ALL MORNING
> @CTS

CTS 8R1 31 OCT 80 AT 09:13:30

>

In this example, the user requests the use of a certain telephone connection {number) for the morning.
When this request is denied or approved, the central site replies. Since the site-id is in the first part
of the message, the operator can reply quickly and accurately:

->*TM% THATS OK DCT236 PLEASE DISCONNECT BY 1230PM
>

it no action is to be taken until a reply is received, use the W option on the MSG statement. For
example, this telephone line may require permission before use. The W option suspends the operation
of the terminal until a reply is received. The request for the use of the telephone connection would
then be: '

>@MSG, W [NEED THIS TEL NUMBER ALL MORNING
SORRY ONLY UNTIL 11AM
>

In the MSG command, there are two types of messages: the information type, @MSG; and the
question type, @ MSG,W. The message must be answered if the W option is used, so use the W to
make certain that the message is received by the console operator, who can respond with a very short
acknowledgment:

>0K

Another type of message that may be received is the TB mes
message sent to all active terminals and would appear as:

ge is a broadcast

ih
i
(2]
0
—
3
n
3
D
1A
\fi
1
2

#TB THE SYSTEM 1S GOING DOWN IN 15 MIN UP AT 10AM
>

This message warns all terminal users to complete their programs and terminate or not to begin. The
message also informs the users that the system will be back up at 10 a.m. Such a message requires
no response.

It is alse possible that the central site will initiate a TB message that requires action to be taken by
a user unknown to the central site. If the message:

TB RELEASE PACK JJJ. THERE IS NO SUCH PACK! |}
applies to another terminal, do not reply with a MSG, since this would fill up the operator’s screen
with unnecessary messages.

This is the method that is available to communicate directly with the console operator. Sound
reasoning and discretion should be used when communicating directly with the central site. This
process is dore only in Executive control mode, although messages may be received while in CTS,
BASIC, FORTRAN, COBOL, APL 1100, etc.

8118.2

UP-NUMBER —

SPERRY_UNIVAC Series 1100 10-3
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

If the central site must interrupt a terminal user (primarily because the specific user did not reply to
a TM message), the operator has available an alternate TM message that will place his message in
the output {or input) to a specified terminal.

It is also possible for the central site to communicate to the terminal if the run—id is known. In the
example, the run-id JIM could be common, but the site-id is always unique.

10.2.2. CTS Message - OPR
Syntax: OFR [+]
Abbreviation: OPR

Function: This command is used to send a message to the onsite Series 1100 Systern
console while in CTS mode.

There are two formats of the OPR command. Format 1 only sends a message, and Format 2 sends
a message and solicits a response. Format 2 messages will not disappear from the screen on the
Series 1100 System console until the operator responds to the message. The following examples
will iHustrate the two formats. At the end of the examples we will XCTS and FIN to illustrate that
the messages are included in the accounting at the end of the program session.

1. Description of Format 1:

> @CTS, |

CTS 8R1 31 OCT 80 AT 11:40:45

IF YOU NEED ASSISTANCE TYPE *HELP

FOR NEW FEATURES TYPE *CALL CTS—COMMANDS
THE ASSUMED MODE IS ASCI |

—>*0PR DCT236 SENDS MSG WILL RUN UNTIL 12 PM
->

2. Description of Format 2:

>@CcTs,

CTS 8R1 OCT 31, 1980 AT 07:32:02

IF YOU NEED ASSISTANCE TYPE +HELP

FOR NEW FEATURES TYPE *CALL CTS-COMMANDS
THE ASSUMED MODE 1S ASCII

->0PAR* DCT236 MSG OK TO RUN UNTIL 12 PM
OK DCT236 PLEASE FIN BY 1 PM

->XCTS

IN EXEC MODE

>BFIN

RUNID: JIM ACCT: 123456 PROJECT: SMITH

DCT 236 SENDS MSG WILL RUN UNTIL 12 PM

O0- DCT236 MSG OK TO RUN UNTIL 12 PM

0 YES ITS OK DCT236 PLEASE FIN BY 1 PM

TIME: TOTAL: 00:00:00.035 CBSUPS: 000000350
CAU: 00:00:00.000 1/0: 00:00:00:000
CC/ER: 00:00:00.035 WAIT: 00:00:37.538

SUAS USED: § 3.00 SUAS REMAINING: $200000.00

SRC: PS= 000000000 ES= 000000000

8118.2
UP-NUMBER

10-4
PAGE

Time Sharing Guide for CTS Users

SPERRY UNIVAC Series 1100
UPDATE LEVEL

*

IMAGES READ: 4 PAGES: 2
START: 07:32:02 OCT 31,1980 FIN: 07:43:21 OCT 31,1980
*TERMINAL INACTIVE#+

The messages were printed in the system accounting with the first message which did not solicit a
response, the second message which solicited a response with a"0-", and the answer to that message
with only a "0." The "Q" signifies the number of solicited messages that are unanswered (it may be
one or several), and the hyphen {-) indicates the solicitation from the user. The text of the message
may not exceed fifty characters, spaces included, per line. Any excess will be truncated.

10.3. User/User Communications

This paragraph shows how to communicate with other CTS users by use of two commands, MAIL
and LOOK. This communication may be from any user to another, since messages are established
and stored according to the user's run-id, and retrieved by a CTS command. This is done in CTS
mode.

10.3.1. MAIL
Syntax: MAIL [run-id]
Abbreviation: MAI

Function: Establish a message file up to ten lines long to be sent to another user under the
run-id specified. If the run—id is not specified it will be solicited by CTS.

>ecrs./

CTS 8R1 31 OCT BO AT 07:37:02

IF YOU NEED ASSISTANCE TYPE #*HELP

FOR NEW FEATURES TYPE +#CALL CTS-COMMANDS
THE ASSUMED MODE 1S ASCHI

=>*MAIL TOM
MAIL** > YOU ARE USING MY ACCOUNT NUMBER WHICH
MAILX* > WILL HAVE TO BE CHANGED UNLESS WE
MAILL*% > ARE ASSIGNED THE SAME ACCOUNT.
MAIL*% > MY RUN-ID IS JIM AND MY PROJECT-ID IS
MALL** > SMITH. MY TELEPHONE NUMBER 15
MAIL** > AREA CODE 120 PHONE 987-6543 CALL ME |F
MAIL*% > YOU CAN OR ELSE DO NOT tSE THE SAME
MALL*% > NUMBER AS LOGGED ON OCT 08, 80.

>

MAI L**
>

STOP

The MAIL file has been created by Jim Smith for the run-id TOM. The same procedure will have to
be performed far run-id's DICK and HARRY. The message was also sent to the operator console telling
him to contact the three run-id/project-id users to check their LOOK file. Since there are only eight
fines of input for MAIL, STOFP was typed an the ninth line and the solicitation stopped and CTS mode
returned to CTS mode solicitation.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 10-8

PAGE

UPDATE LEVEL

The following MAIL command has no run-id to illustrate how the run-id will be solicited:
S*¥MAIL
TO WHOM? > HAARRY
MAIL*¥* >

It is a convenient way for one user to leave messages for another. It is also possible that two users
may have an application that could be facilitated by use of the MAIL command.

10.3.2. LOOK
Syntax: LOOK
Abbreviation: LOO
Function: To receive any messages that may have been sent from another user-id.

After logging on and entering CTS maode, use the LOOK command to see if any messages have been
received. The following example shows what was sent by the operator console to run-id HARRY:

>@cTs

CTS 8R1 18:51:01

-> *#L00K

1 YOU ARE USING MY ACCOUNT NUMBER WHICH
2 WILL HAVE TO BE CHANGED UNLESS WE

3 ARE ASSIGNED THE SAME ACCOUNT.

4 MY RUN-ID IS JIM AND MY PROJECT-ID IS
5 SMITH. MY TELEPHONE NUMBER 15

6 AREA CODE 120 PHONE 987-6543 CALL ME IF
7 YOU CAN OR ELSE DO NOT USE THE SAME

8 NUMBER AS LOGGED ON OCT 08,79.

9 FROM: JIM 24 FEBB1 AT 09:20:30

-> *#LO0K

YOU HAVE NO MAIL

>

The output that run-id HARRY received after entering a LOOK command was left for him in his mail
by another user. All of the lines were numbered 1-8, with line number 9 giving him the information
from JIM [date and time stamped). The last LOOK command was followed by the message, YOU
HAVE NO MAIL. This means that MAIL messages may be received only once. The mail from all users
its printed whenever a LOOK is dene.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

11-1
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

11. Debugging Techniques

11.1. Program Debugging

The process of finding out why a program does not work as conceived is called debugging. The errors
causing it to malfunction are known as bugs.

A program may fail for many reasons. It may be poorly constructed to begin with. Some idiosyncrasy
of the language or compiler used, unknown to the novice, may cause unexpected results. The most
common cause of failure is a mistake in logic, but it may be something as simple as a typographical
error. The process of putting the program together may be causing difficulties.

Several CTS features have already been mentioned to help find errors. The local syntax scan of a
prescan module finds many errors in format or typing, and helps correct the lines before they are
accepted as part of the program. After the program is completely keyed in, the globa!l scan will find
additional kinds of errors. It is pointed out in 2.1 that the process by which a program’is created
is iterative, consisting of a series of tests, updates, new tests, etc. until the program performs
satisfactorily. It also mentions that many of the CTS commands are useful in detecting the existence
and isolating the causes of errors, and then in expeditiously making corrections. Besides using these
commands to examine the source code, usefu! information can be found in the object file, the add
file, and the scan file.

The LIST SAVED command (see 4.1.4.2) gives a list of each element in the object file and its type.
Unexpected elements may be found or, perhaps, expected elements may be missing. Possibly,
elements left in the object file from a previous operation interfared with the collection process of a
RUN or MAP command, or the unexpected presence of a symbolic NAME$ element may tell that f
was not empty as expected when a RUN or COMPILE command was executed.

The first part of the file, CTSSFILE, is where CTS places Executive control statements. It then turns
the file over to the Executive to process them. The RUN (see 6.2), COMPILE {see 6.4.1), and MAP {see
6.4.2) commands in particular use this file. The file cannot be examined directly with CTS, but since
it is a data file, the command:

—>0LD CTSEFILE.

will place the contents into f, where they may be examined. Of course, a knowledge of the control
language of the Executive is necessary to use this technique.

A feature of CTS which is usefui for debugging. convenient for operation from a terminal, and efficient
involves the use of the scan file {SQUELCH$). Compilations and collections frequently produce a
substantial amount of output listings, particularly if the compiler used is designed primarily for batch

g118.2
UP-NUMBER

SPERRY UNIVAC Serias 1100

I v) 11-2
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

mode operation. The partial run stream created by CTS in the add file for the implementation of a
RUN, COMPILE, or MAP command diverts the print output of all compilations and collections away
from the terminal (the normal output device) to the scan file. At the conclusion of 2 RUN command,
therefore, the scan file will contain the output from each processor in the order they were used. This
printed output always starts with the image of the control statement which called the processor. The
SCAN command canload the output resulting from each processor call into the working area, f. Once
in f, editing commands can examine it.

11.1.1. Examining Processor Qutput—SCAN
Syntax: SCAN [d][.C]
Abbreviation: SCA
Function: To move from the scan file into f the print output of one processor.

The SCAN command places CTS in the SCAN mode if it is not already in this mode. While in SCAN
mode many of the normal CTS operations cannot be performed., Programs may not be created or
changed, for example. The SCAN mode is geared to the perusal of processer output. Once in the
SCAN mode, the only way to return to the standard (EDIT) mode is with the EDIT command (see 11.1.2)
or a NEW or QLD command. Besides establishing SCAN mode, the SCAN command moves the print
output of one processor execution into f. When the SCAN mode is established, the contents (and
other properties) of f are not destroyed, but they are not available until EDIT mode is reestablished.
In SCAN mode, the output of only one processor execution may be in f at a time.

The processor chosen from the scan file depends on the parameter fieid. There are four cases:

1. Empty parameter field. CTS selects the next sequential processor output following the one
previously selected. If this is the first SCAN command — the one which establishes SCAN mode
— the first processor output in the scan file is selected.

2. Only d coded. This parameter is the name of the element {(or file, for some processors) input
to the processor. CTS selects the output of the next processor which had d as its input. If the
processor is a compiler, for example, d is the name of the element compiled. A comma may
be coded following d.

3. Only C coded. C is the name of the processor as it appears on the processor call statement.
It must be preceded by a comma. CTS selects the next processor output from the specified
processor. :

4. Both d and C coded. CTS selects the processor output in which both C and d match the
carresponding portions of the processor control statement.

A SCAN command deoes not affect the contents of the scan file. The same processor output may be
called into f more than once. A RUN, COMPILE, or MAP command deletes the contents of the scan
file and replaces them. The following example illustrates the above points:

->COM (FTN,5) A, B, C (MASM,S) D (FTN. L) E

This causes the following sequence of processor call statements. Each of these produces output in
the scan file, the first line of which is an image of the processor call statement itself.

@FTN,S RUNID.A,TPFS.
@FTN.S RUNID.B,TPF%.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users -3

UPDATE LEVEL PAGE

@FTN.S RUNID.C,TPFS%.
@MASM,S RUNID.D,TPF$.
@FTN,L RUNID.E,TPF$.

The file RUNID is the save file, F.. Continuing with the examplé:

COMPILING. ..
#*DIiAGNOSTIC SCAN? >N

Answering the above message with Y would have displayed selecie'd' lines of the scan file. Neither
f nor the scan file would be modified, and SCAN mode would not be established. Continuing:

-> SCAN

=P 7

1 @FOR,S RUNID.A, TPF%.
-> SCAN

->P 1

1 @FOR,S RUNID.B, .TPF%.
=>SCAN ,ASM

->FP 1

1 @ASM,S RUNID.D, TPF$.
->SCAN C,

-»P 1) o
1 @FOR,S RUNID.C, TPF$.
->SCAN |, FOR

->F 1

1 @FOR,L RUNID.E, TPF$%.
-> SCAN '
END OF PRINT FILE
-»SCAN

->FP 1

1 @FOR,S RUNID.A, TPF$.
->SCAN FOR

<186> PROCESSOR, FOR, CANNOT BE FOUND
> EDIT

-2

In addition to showing 2ach of the forms of the parameter field mentioned above, the example shows
an instance of moving backwards in the file {the fourth SCAN command), wrapping around the end
to the beginning (the seventh SCAN command), and two diagnostics related to the SCAN command.
11.1.2. Terminating SCAN Mode—EDIT

Syntax: EDIT

Abbreviation: EDI

Function: To terminate SCAN mode and reestablish EDIT mode.
When SCAN mode is established, the current contents of f become unavailable and many CTS
functions are ingperative. The EDIT command terminates SCAN mode, discards the processor output

in f at the time, and reestablishes EDIT mode. Access to the information in f which was suspended
by establishing SCAN mode is now restored, and f contains exactly what it did before the SCAN.

8118.2 SPERRY UNWAC Series 1100

UP-NUMBER - Time Sharing Guide for CTS Users -4

PAGE

UPDATE LEVEL

11.2. Debugging Source Code

"

CTS programs written in BASIC or FORTRAN (RFOR or FTN) can be debugged on a symbealic level
{dealing only with the symbols, variable names, and statement numbers which are used to write the
program). The contents of variables can be determined and changed during the execution of the
program. The logical sequence of steps in the execution of the program can be cbserved. Some
of this action is due to programmed statements, while other action is caused dynamically by the user
from the terminal. When the program is debugged, all of the symbolic debugging statements can
be ignored for production gxeqution of the program.
11.2.1. Debug Mode - ASSUME DEBUG

Syntax: ASSUME DEBUG [ON/QFF]

Abbreviation: A DEB

Function: To enable or disaole the execution-time trace and diagnostic features of BASIC,
RFOR, and FTN described in this section.

The appropriate compiler must be assumed. This can be done with the ASSUME COMPILER cemmand
or with a BASIC or FORTRAN command. If the compiler is called explicitly with the COMPILE
statement and trace and diagnostic features are to be enabled, then the B option must be specified
with the compiler on the COMPILE statement.

When ASSUME DEBUG OFF is keyed in, debugging features are disabled. These debugging features
may also be disabled by changing the ASSUME COMPILER or by clearing the working area or bringing
another program into the working area.

The DEBUG setting is OFF unless otherwise specified.

11.2.2. BASIC

This paragraph describes four different types-of commands:

1. The CTS command ASSUME DEBUG ON/OFF {see 11.2.1}

2. The BASIC statements PAUSE (see 11.2.2.1) and TRACE {see 11.2.2.3)
3. Answersrto the question COMMAND? (see 11.2.2.1)

4. The @@X command

11.2.2.1. PAUSE
The execution of a BASIC program may be halted at any point to examine variables with the statement:
n PAUSE

at the specified point in the program.

8118.2 SPERRY UNIVAC Series 1100

11-5
UP-NUMBER o Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

“

For example:

~->BAS
BBASIC 9R1
>>»NEW ABC
>>N

100 > PAUSE
110 > END
120 » *SAVE

With DEBUG OFF (see 11.2.1), the PAUSE statement has nc effect:
>>RUN
TIME : .012
After an ASSUME DEBUG ON, however, the following results:
>>ASSUME DEBUG ON
>> RUN
PAUSE AT LINE NO: 100
COMMAND? > RESUME
- TIME : .018

The PAUSE statement caused the message:

PAUSE AT LINE NO: 100
COMMAND? >

to be printed.

tin the preceding example the word, FESUME was typed as an answer to the question COMMAND?
One of the following may be transmitted as a response to the COMMAND? question:

PRINT vi Print the values of the listed variables.
SET v=g Set the variable v to a new value as calculated from the expression =.
VAR=ZERQ Set all algebraic variables to zero and all string variables to blanks (set current

length to zero).
DEBUG ON Turn the debug mode on.
DEBUG OFF Turn the debug mode off.

RESUME Resume execution.

STOP Terminate the executing program.

DUMP Terminate the executing program with a postmoriem dump.
TIME Print accumulated run time and resume execution.

If one of the first five of the above commands is transmitted, BASIC solicits additional commands
. until a RESUME, STQP, TIME, or DUMP is sent.

The following are examples of the preceding commands:

->BASIC

BBASIC 9R1

>>NEW ABC

>N

100 >FOR =1 TQ 10
110 >A=/»2

120 > PAUSE

8118.2 SPERRY UNIVAC Series 1100
UP-NUMBER Time Sharing Guide for CTS Users

11-8

UPDATE LEVEL PAGE

130 S NEXT |
140 > END
150 > *ASSUME DEBUG ON

>> RUN
PAUSE AT
COMMAND?
2 .
COMMAND?
PAUSE AT
COMMAND?
4
COMMAND?
COMMAND?
PAUSE AT
COMMAND?
16
COMMAND?
COMMAND?
PAUSE AT
COMMAND?
2
COMMAND?

COMMAND?
4

COMMAND?

TIME:

LINE NO: 120
>PRINT A,/

i
> RESUME
LINE NO: 120
>»PRINT A, 1

2
>SET I=7
>RESUME
LINE NO: 120
SPRINT A, !

8
> VAR=ZERQO
> RESUME
LINE NO: 120
>PRINT A,

1
> SET B=A**¥2

>PRINT B

>STOF
.073

>>» 115 PRINT A,

>>RUN

2
PAUSE AT
COMMAND?
COMMAND?

14
PAUSE AT
COMMAND?
COMMAND?

16

18

20

TIME:
»> RUN
2
PAUSE AT

COMMAND?

1
LINE NO: 120
S>SET /=6
> RESUME

7
LINE NO: 120
>SOEBUG OFF
>RESUME
8
9
10

.028

1
LINE NO: 120

>>

results of SET

results of VAR=ZERO
NOTE: Previously unused variable and more
complex expression.

NOTE: Inclusion of new statement.

results of DEBUG OFF

NOTE: DEBUG OFF as answer to COMMAND?
does not turn ASSUME DEBUG OFF for next
RUN.

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

1-7
Time Sharing Guide for CTS Users :

PAGE

UPDATE LEVEL

“

11.2.2.2. BREAK

If the DEBUG mode is on {see 11.2.1) depressing the BREAK key effects an orderly break in program
execution. Depressing this key immediately causes output to cease {even in the middle of an output
ling} and the following message to be typed:

#QUTPUT INTERRUPT

The system returns the cursor to the beginning of the next line or line-feeds the terminal without a
solicitation character. The break key does not stop the execution of the program. To interrupt the
execution of the program, enter:;

@ex ¢

If the terminal was in the process of printing a line when the break key was depressed, the system
responds by printing that line again. Since the printing of the output may be slower than the execution
of the program, other output lines, which were queued before the @ @ X C was entered, are printed.
tn fact. if the program is small it may complete before an @ X C can be entered. Assuming this
is not the case, the message:

BREAK AT LINE NUMBER: xxx
COMMAND? >>

is printed. One of the commands described in 11.2.2.1 can be entered.
If a break is desired and the output is not needed, then enter:
@ex Co

If the terminal was in the process of printing a line when the interrupt key was depressed, the system
responds by printing that line again. The O option causes all other output up to and including the
COMMAND? query to be discarded. The system will respond with a cursor. A command described
in 11.2.2.1 can be entered.

For example:

SSNEW P1
>>N

100 >PRINT 'START”

110 > FOR =1 TO 1000000

120 >A=A+7

130 >PRINT A, !

140 >NEXT |

150 > END

160 > *RUN

START

1 1

2 2 BREAK key depressed
*¥0UTPUT INTERRUPT
> @EX C

2 2

> many lines of output have been skipped
414 414

415 415

BREAK AT LINE NO: 130
COMMAND? >S8ET [=4000 SET command

81182
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

11-8

UPDATE LEVEL PAGE

a

COMMAND? > RESUME

416 4001
417 4002
418 4003

*QUTPUT INTERRUPT
eex o

419 4004
>

RESUME command

BREAK key depressed

many lines of output are discarded including
BREAK and COMMAND messages

carriage return follows >
{a command could have been entered)

INVALID COMMAND-VALID COMMANDS ARE:
PRINT,SET,RESUME,STOP,DUMP,DEBUG ON/OFF,TIME, VAR=ZERO

COMMAND? » RESUME

813 4398

814 43
#*OUTPUT INTERRUPT
eex oc

814 4399
>SEf I=A

incomplete line when BREAK depressed

carriage return follows >
misspelled command

COMMAND ERR-NOT PRINT,SET,RESUME,STOP,DUMP,DEBUG ON-OFF,TIME,6 VARZERO

COMMAND? > SET /=A
COMMAND? > RESUME

1211 1211

1212 1212

1213 1213

1214 1214

1215 1215
*QUTPUT INTERRUPT
@ex oc

1216 1216
>STOP

TIME: 4.309

note effect of SET command

STOP command

if the ASSUME DEBUG ON command is not given to CTS prior to the run of a BASIC program, the
orderly break cannot be effective. Any attempt to interrupt that program will stop execution of it.
This has essentially the same effect as the STOP command (see 11.2.2.1), except the BREAK and
COMMAND messages do not appear on the terminal.

Rather, the simple statement PROGRAM STOPPED appears:

>> ASSUME DEBUS OFF
>> AUN
START

1
2

1
2

#0UTPUT INTERRUPT
@éx C

>

3

3

PROGRAM STOPPED.

TIME:

1.076

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

11-9
Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

11.2.2.3. TRACE

The logic flow of a BASIC program can be determined by tracing the program execution. To do this,
choose the block of statements in the program to be traced and bracket them by TRACE ON/OFF
statements as follows:

ni TRACE ON

statements to be lraced

n2 TRACE OFF

These are BASIC statements which must have line numbers and which must be entered into the
working area.

When any of the statements to be traced is first executed, BASIC solicits the trace information to be
provided for subsequent statement traces. This is done with the messages as follows:

TRACE OUTPUT TO FILE? YES OR NC>
A YES answer causes trace output to go to the file BTRACE$. Otherwise, it will come to the terminal.
LINE NUMBER ONLY? YES OR NO »>
A YES answer causes execution to resumne. A NQ answer causes the message:
ALL VARIABLES? YES OR NO >>
to be typed. A NO answer is followed by the question:
WHICH VARIABLES? >>

This is answered by the names of the variables separated by commas. Having determined that these
g lcgitimate names, or if the ALL VARIABLES question is answered by YES, BASIC asks:

ONLY WHEN CHANGED? YES OR NO »>>

After a YES or NO answer, BASIC continues execution. Prior to the execution of each statement
in the specified block, BASIC prints: :

TRACE xxx

where xxx is the line number. Then all variables, specified variables, or no variables are printed
according to the user’s specifications.

For example:

»BASIC

BBASIC 9R1

>>NEW ABC

>>N

100 > PRINT °“LINE 100°
110 > TRACE ON

120 >PHRINT ‘LINE 120°
130 > THACE OFF

140 >PRINT "LINE 140"
150 > TRACE ON

g8118.2 SPERRY UNIVAC Series 1100

11-10
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

160 >PRINT "LINE 160"

170 > END

180 > *#SAVE

>>ASSUME DEBUG ON

>>ARUN

LINE 100

TRACE 120 TRACE OUTPUT TQ FILE? YES OR NO >>NO
LtNE NUMBER ONLY? YES OR NO >»YES
TRACE 120

LINE 120

LENE 140

TRACE 160

LENE 160

TRACE 170

TIME : .031

In this case, only line number tracing was selected. Notice the interspersed output and the trace
messages themselves. '

If DEBUG is turned off, TRACE statements have no effect. This can be accomplished through the
ASSUME DEBUG OFF command (see 11.2.1) or by answering DEBUG OFF to a BREAK or PAUSE
command (see 11.2.2.2 or 11.2.2.1).

For example:

>H>ASSUME DEBUG OFF
>> AUN

LINE 100

LINE 120

LINE 140

LINE 160

TIME : .035

This is another run of the previous example, and the ASSUME DEBUG OFF caused the TRACE
statements to have no effect.

The following example shows the tracing of the symbolic variables. Notice the option, ONLY WHEN
CHANGED, is used so that variables were typed only when they are changed by a previous statement.

>H»FP A

100 PRINT °“LINE 100°

105 TRACE ON

110 FOR I=1 TQO 3

120 A=A+1

130 B=A=A#}1

140 NEXT |

150 TRACE OFF

160 END

END OF FILE

>»ASSUME DEBUG ON

>> RUN

LINE 100

TRACE 110

TRACE QUTPUT TO FILE? YES OR NO >ANO
LINE NUMBER ONLY? YES OR NO >ANO
ALL VARIABLES? YES OR NO >VYES

8118.2 SPERRY UNIVAC Series 1100

H A 11-11
UP-NUMBER Time Sharlng Guide for CTS Users IUPDATE LEVEL

PAGE

ONLY WHEN CHANGED? YES OR NQ > YES
"TRACE 110
A=0 B=0 |=0

TRACE 120
I=1

TRACE 130

A=1

TRACE 140

A=2 B=2

TRACE 120
1=2

TRACE 130
A=3

TRACE 140
A=4 B=4

TRACE 120
1=3

TRACE 130
A=5

TRACE 140
A=6 B=6

TIME : .102

Any number of blocks of a program may be traced by bracketing those blocks with TRACE ON/TRACE
OFF instruction pairs. If the final TRACE OFF is omitted. then tracing is effective through the end of
the program.

To change the trace data specifications {e.g., add a variable to the list or change from line numbers
only to all variables), turn DEBUG OFF (after an interrupt or PAUSE}, and turn DEBUG ON as foliows:

PAUSE AT LINE NO: =xxx
COMMAND? >>DEBUG OFF
COMMAND? >>DEBUG ON
COMMAND? >» RESUME

This causes the next traced line to go through the trace solicitation procedure “first time through”,
at which time different answers are given. The answer SAME to the question WHICH VARIABLES?
results in the same list previously submitted in the current run.

For example:

>BASIC
BBASIC 9R1
>>NEW 83
>>N

8118.2 SPERRY_UNIVAC Series 1100
UP-NUMBER Time Sharing Guide for CTS Users

11-12
PAGE

UPDATE LEVEL

100 > TRACE ON

110 >FOR I=1 T0 3

120 >A=Az#1

130 >NEXT |

140 > END _

150 > ¥*ASSUME DEBUG ON

>>» 125 PAUSE

>> RUN

TRACE 110

TRACE QUTPUT TO FILE? YES OR NO S>NO
LINE NUMBER ONLY? YES OR NO »YES
TRACE 110

TRACE 120

TRACE 125

PAUSE AT LINE NO: 125

COMMAND? > DEBUG OFF

COMMAND? > DEBUG ON

COMMAND? > RESUME

TRACE 130

TRACE QUTPUT TO FILE? YES OR NO >»NO
LINE NUMBER ONLY? YES OR NO >AQ
ALL VARIABLES? YES OR NO >»VYES
ONLY WHEN CHANGED? YES OR NO > YES
TRACE 130

A=1 f=1

TRACE 120

1=2

TRACE 125

A=2

PAUSE AT LINE NO: 125

COMMAND? »STOF

TIME : .081

11.2.3. FTIN

Five different statements form the debug facility for FTN {see 11.2.3.1). There is a powerful interactive
debugging system in FTN while in checkout mode (see 11.2.3.2). The ASSUME DEBUG ON/OFF
command has the same effect in FTN as it has in BASIC and RFOR (see 11.2.1}).

11.2.3.1. Debug Facility

Debugging aids available are: subscript checking, label tracing, tracing of changes in values, tracing
of entry and exit for subprograms, and simple output.

The DEBUG statement sets the conditions for operation of the debug facility and designates
debugging operations that apply to the entire program unit [such as subscript checking). The debug
packet identification statement {AT) identifies the beginning of the debug packet and the point in the
program unit at which debugging is to begin. The three executable statements {TRACE ON, TRACE
OFF, and DISPLAY) designate actions to be taken at specific points in the program unit.

Several packets may appear in the program but only one DEBUG statement may exist in each program
unit. The AT, TRACE ON, TRACE OFF, and DISPLAY statements may not appear before the DEBUG
statement. Within the program unit, debug packets must be located after all regular code of the

8118.2 SPERRY UNIVAC Series 1100

J v I 11-13
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

FORTRAN main program or subprogram, but preceding the END statement. Any normal FORTRAN
executable, data, or format statement may also occur in a debug packet. The debug packet may be
terminated only by another AT statement or the END statement for that FORTRAN main program or
subprogram. -

The individual DEBUG statements are explained in detail in the following sections.

11.2.3.1.1. DEBUG

The DEBUG statement is used to indicate the existence of a debug facility for the given FORTRAN
program or subprogram and to specify the debugging environment. It has the form:

DEBUG [P.FP]..]
Where P is any of the five debugging environment specifications:
UNIT{c}, SUBCHK, TRACE, INIT, and SUBTRACE.

Zero to five of these options may appear in the option list following the DEBUG keyword. They may
be given in any order.

There must be a single DEBUG statement for each program unit to be debugged and it must
immediately precede the first debug packet.

If the UNIT option is not specified, any debugging output will be put in the standard program output
file.

If the TRACE option is omitted from the DEBUG option list, there ¢an be no display of program flow
by statement numbers within the program unit.

Examples:
DEBUG
C Indicates debugging is enabled. Debug action is
C specified in an associated AT statement. Qutput is
c put in the standard system output file.
DEBUG SUBTRACE.UNIT(4},SUBCHK{ARRAY1,BUNCH2,GROUP3) , INIT
C Subscripts are checked for arrays ARRAY1, BUNCH2,
C and GROUP3. Changes in vatues of all variables are
C noted. Debug output is put on unrit number 4.
DEBUG TRACE, INIT(C,LIST1,E),SUBCHK
C Debugging will include subscript checking on all
c variables, list of program flow by statement number
C passage, and notation of changes in value of
C C., LIST1, and E.
B UNIT

UNIT is used to designate a particular output file for debug information. It has the form:
UNIT (c}

where ¢ is an integer constant representing a file reference number.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER ; Time Sharing Guide for CTS Users 1114

PAGE

UPDATE LEVEL

All debugging output will go to the designated file.
The file number may not change within an executable program; e.qg., if the main FORTRAN
program specifies UNIT(8), a subprogram called by this main program must specify UNIT(8) if
it has a DEBUG statement.
If this option is not present, all debugging will be put in the standard output fi.le.
Faor example:

DEBUG UNIT (25}

C Sends all debug output to file numbered 25.
B SUBCHK

SUBCHK is used to check the validity of subscripts of array elements referenced in the program
unit. -

It has the form:
SUBCHK [{(n[n]..)]
Where each n is an array name.

If the list of array names is not given following the SUBCHK option, subscript checking is done
for all arrays in the program unit.

The check is made by cemparing the size of the array with the product of the subscripts. A
message will be placed in the debug output file if an out-of-range subscript expression is
encountered. The incorrect subscript will still be used in the continued program execution.
If this option is omitted, no subscript checking will be performed.

For example:

SUBCHK

SUBCHK (ARRAY1,LIST2)

@ TRACE

TRACE is used to indicate that label tracing is desired in the FORTRAN program or subprogram
in which the DEBUG statement appears.

This option only enables label tracing.

Tracing will not actually be performed until a TRACE ON statement is encountered in the program
flow. It is terminated upon encountering a TRACE OFF statement. (See 11.2.3.1.4)

TRACE ON and TRACE OFF statements have no effect on a program unit in which the TRACE
option has not been specified.

8118.2

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 11-15

UP-NUMBER UPDATE LEVEL PAGE
For example:
DEBUG TRACE
C The trace debug facility is enabled.
C It can be activated with a TRACE ON statement.
B INIT

INIT is used to trace the change in value of variables and arrays during execution.
it has the form:
INIT[(m [.m]..}]

where m is the name of a variable or array in the program unit for which a value trace is to be
performed.

If no list is given after the INIT option, a value trace is done on every variable or array in the
program unit. This includes changes in value of any particular element of that array.

The value trace consists of placing, in the debug output file, a display of the variable name or
array element name along with its new value each time it is assigned a value in an assignment
statement, a READ statement, a DECODE statement, or an ASSIGN statement.

For example:
DEBUG INIT (A,VAR1)

C Starts debug facility and initiates trace of
C array A and variable VARI.

W SUBTRACE

SUBTRACE is used to indicate entrance and exit of a subprogram during program execution.

When the SUBTRACE option is included in the DEBUG statement within a function or subroutine,
a trace on entrance to and exit from that subprogram is enabled.

The name of the subprogram will be placed in the debug output file each time it is entered and
the message "RETURN" will be put in the debug output file each time execution of that
subprogram is completed.

For example:

DEBUG SUBTRACE

11.2.3.1.2. AT

The AT statement identifies the beginning of a debug packet and indicates the point in the program
unit at which the packet is to be activated. It has the form:

AT s
where s is an executable statement number in the program or subprogram to be debugged.
There must be one AT statement for each debug packet. Each AT statement indicates the beginning

of a new debug packet. The end of the debug packet must be indicated by an END statement if various
operations are to be performed within the debug packet.

g118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

v A 11-1
Time Sharing Guide for CTS Users ®

PAGE

UPDATE LEVEL

The operations specified within the debug packet are to be performed whenever s is encountered
and prior to the execution of the statement associated with s.

For example:

DEBUG

AT 100
DISPLAY X.Y. A
END

debug packet

11.2.3.1.3. TRACE ON

The TRACE ON statement initiates display of the flow of execution by statement number.

After TRACE ON has been encountered and until the next TRACE OFF is encountered, a record of the
associated statement number is placed in the debug output file each time a labeled statement is
encountered in the program unit.

TRACE ON remains in effect through any level of subprogram call or return. if the TRACE option has
not been used on a DEBUG statement in a particular program or subprogram, label trace will not occur
during execution of that program or subprogram.

TRACE ON may occur anywhere within é debug packet.

There can be no display of program flow by statement number within this program if the TRACE option
was omitted from the DEBUG option list.

For example:

DEBUG TRACE, INIT(A,B)

AT 104

TRACE ON
c The flow of execution will be displayed starting at
C statement 104,

11.2.3.1.4. TRACE OFF
The TRACE OFF statement terminates statement label tracing.

It may occur anywhere within a debug packet. Tracing of pragram flow by statement number is
terminated in the program unit by this statement.

For example:

DEBUG TRACE, INIT(A,B)

8118.2

SPERRY UNIVAC Series 1100

11-37
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

AT 104

TRACE ON

AT 950

TRACE OFF
C The flow of execution will be displayed from the point
C 104 to the point where statement 950 is executed.

11.2.3.1.5. DISPLAY
The DISPLAY statement provides a simple debug output mechanism. It has the form:
DISPLAY list

where list is a series of variables, arrays with constant subscripts, or array names separated by
commas. A formal parameter name of a function or subroutine is not permitted. in list.

The DISPLAY staterment is equivalent to the following RFOR or FOR V statements:

NMAMELIST / name / list
WRITE {n,name}

where list is as defined above, name is a name generated for DISPLAY which is not a legal symbolic
name, and n is the debug file reference number {from the UNIT option). DISPLAY provides a simple
means of putting results of debugging operations for the program unit in the debug output file without
needing FORMAT, NAMELIST, or WRITE statements. The output to the debug output file is in
NAMELIST format. The DISPLAY statement may appear anywhere in a debug packet.

For example:

DISPLAY AB.CD (1,2} ,E

11.2.3.1.6. Debug Facility Example

The following is an example of FTN debug facility usage under CTS:

-> FOR ASCI 1

ASCI| FORTRAN PRESCAN 2R1A
>>0LD P2

>>LIST

100 10 FORMAT (° THE VALUE OF | = °,11)
110 20 i=7

120 30 WRITE (6,10} |
129 J=39

130 40 CONT!NUE

140 DEBUG TRACE

150 AT 20

160 TRACE ON

180 AT 40

8118.2 SPEARY UNIVAC Series 1100 11-18
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

190 TRACE OFF

195 DISPLAY I .J

200 END

END OF FILE

>>ASSUME CHECKOUT OFF

>>RUN

COMPILING. ..

DEBUG UNIT -1

TRACE ON

TRACE 20

TRACE 30

THE VALUE OF | = 7

TRACE OFF

¥?

I = 7.4 = L

$END

#*DIAGNOSTIC SCAN? >ANO

>>

11.2.3.2. Eliminating Program Collection - ASSUME CHECKOUT
Syntax: ASSUME CHECKOQUT [ON/OFF]
Abbreviation;: A CHE
Function: To enable -or disable the collection process for FTN programs.

When ASSUME CHECKOUT ON is keyed in, the collection of FTN programs is eliminated. Instead,
program execution begins immediately following the compilation process. The mode CTS is initialty
in is ASSUME CHECKOUT ON.

The SPERRY UNIVAC Series 1100 ASCH FORTRAN compiler can be used as a compile-and-go
processor by invoking the checkout mode of operation. ASSUME CHECKOUT ON directs the compiler
to generate code into core and immediately execute it when compilation is complete. This mode
results in increased throughput in cases where the object program is to be executed only once and
when execution is relatively short. No relocatable element is produced.

To enable checkout mode:

->ASSUME CHECKOUT ON

>
11.2.3.3. Interactive Debugging Mode in the Checkout Compiler
FORTRAN checkout mode also provides a powerful interactive debugging system which is enabled
through the use of the Z option. This allows the user to trace the execution, halt the execution, dump
variable values, and perform other debugging activities.

If the Z option is used to enable debugging. the following command should be entered:

->ASSUME DEBUG ON
->

8118.2 SPERRY UNIVAC Series 1100

11-19
UP-NUMBER Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

11.2.3.3.1. Entering Interactive Debug Mode
Interactive debug mode in the checkout compiler is entered:

B Before the first executable statement in the FORTRAN program. Debug mode is automatically
entered at this point if the Z option is specified on the checkout compiler call.

B When a contingency interrupt occurs during execution of the FORTRAN program. The
appropriate message is printed, and then the checkout contingency routine calls debug mode.

A special case of contingency handling {see 11.2.3.5) occurs if the user enters:

@eexc
during execution of the program. In this case, assuming the Z option was specified, the current
FORTRAN statement completes execution and then debug mode is entered {i.e., debug mode is
not entered in the middle of a statement).

M When the FORTRAN program executes the statement CALL PAUSE. PAUSE has no parameters.

B When execution of the FORTRAN program has reached the END statement of the main program
{i.e., just before termination of the program).

Entry into debug mode at this point allows the user to dump the final values of variables (see
11.2.3.4.3), restore execution to a previous state {see 11.2.3.4.9), or dump the final contents
of the program (see 11.2.3.4.12).
The message:
END PROGRAM EXECUTION

is printed before debug mode is entered.

B When the special RESTART processor (FNTR) is invoked to reenter a previous debugging session
{see SPERRY UNIVAC Series 1100 FORTRAN (ASCIl}, Programmer Reference UP-8244 {current

version)).

B When a step break has been set at the current statement using the STEP command (see
11.2.3.4.12). The message:

STEP BREAK AT LINE n
is printed on entry to debug mode, where n is the current line number.

B When a line number break has been set at the current statement using the BREAK command
{see 11.2.3.4.1). The message:

BREAK AT LINE n
is printed on entry to debug mode, where n is the current line number.

B When a statement label break has been set at the current statement using the BREAK command
(see 11.2.3.4.1). The message:

LABEL BREAK AT n

8118.2 SPERRY UNIVAC Series 1100

UP-NUMEER Time Sharing Guide for CTS Users 11-20

PAGE

UPDATE LEVEL

is printed on entry to debug mode, where n is the statement label associated with the current
statement. Another line follows the above message, stating which program unit in the FORTRAN
program contains the label.
E When the subprogram called by the CALL command (see 11.2.3.4.2) returns. The message:
ENTER DEBUG MODE {RETURN FROM CALL COMMAND)
is printed on entry to debug mode.
For the first five cases, the message:
ENTER DEBUG MODE AT LINE n
is printed on entry to debug mode. In the message, n is the line number of the statement where
execution in the FORTRAN program was interrupted. -

11.2.3.3.2. Soliciting Input

When the checkout compiler is in interactive debug mode, commands are solicited with the
solicitation message:

C:
To leave debug mode, the GO, EXIT,-and CALL commands are used. The debug commands are
discussed individually in 11.2.3.4.
11.2.3.4. Debug Commands
All debug command names may be abbreviated to one letter (the initial one), except for SAVE, SNAP,
CALL, and STEP, which may be abbreviated to the two-letter abbreviations CA, SA, SN, and ST,
respectively; and SET BP, which may be abbreviated to SET B.
The following syntax rules apply for all debug commands:
B No blank characters are allowed inside a field of a debug command.
The only exception to this rule occurs when a character variable s specified in the v subfield
of the first field of the SET command. In this case, blanks may appear inside quotes in the
character constant in the ¢ field.
This rule applies when a command contains a p subfield. This subfield, if specified in a
command, is part of the first field of the command. Therefore, no blanks should appear before
or after the slash (/) which separates the p subfield from the previous subfield, or before or after
the colon {:) separator in the p subfield.

8 Any number of blank characters (including zero} may appear between fields.

The only command with more than one field is the SET command, which has three. All other
commands have either one field or none.

B The v (variable name)} subfield in the DUMP, SET, and SETBP commands must be one of the
following:

- scalar variable name (including a function subprogram entry point name)

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 11-21
Time Sharing Guide for CTS Users ‘ UPDATE LEVEL PAGE

&

- array name
- array element name {with constant subscripts)
Note that a scalar or array subprogram parameter may be specified using one of these forms.

The variable v must appear in an executable statement in the designated program unit p, unless
p is the main program. I the COMPILER statement option DATA=AUTO or DATA=REUSE
appeared in the program, then v must be a variable appearing in a COMMON block.

B The p (program unit} field in the PROG command and the p subfield in the DUMP, SET, SETBF,
BREAK, CLEAR, and GO commands have the following format:

progname [;extname]

where progname represents the desired program unit in the ASCH FORTRAN program. It may
be specified as (1} "#" {to represent the main program), (2) a FORTRAN subprogram (subroutine
or function) name, or {3) an unsigned positive integer n (to represent the n'f block data program
in the FORTRAN source program). '

The parameter extname represents the program unit name of the external program unit
corresponding to the internal subprogram progname. Therefore, extname may be specified only
if progname is specified as a subprogram name which represents a FORTRAN internal
subprogram. The parameter extname may be specified as (1)*" (if the external pragram unit
is the main program) or {2} a FORTRAN subprogram name (if the external program unit is a
subprogram}.

If progname is specified as a subprogram name and extname is not specified, then the external
subprogram with name progname is taken. If no such external subprogram exists, then the first
internal subprogram with name progname is taken.

11.2.3.4.1. BREAK

The BREAK command is used to set a breakpoint at a label or internal statement number {{SN}). It
has the format:

BREAK n[L[[/plI[.n[L[/p13]...

where n is a positive integer, and p represents a program unit in the FORTRAN source program. The
p subfield is described under syntax rules {see 11.2.3.4).

This command specifies a label or a line number as a point at which execution of the FORTRAN
program is to be interrupted and interactive debug mode is entered. This point is referred to as a
breakpuoint.

If an L immadiately follows n, then the hreakpoint is the beginning of the FORTRAN statement with
statement label n. The parameter p determines in which program unit in the FORTRAN symbaoiic
element that the breakpoint is set. If p is not specified, then the breakpoint is label n in the program
unit set by the PROG command. (See 11.2.3.4.10.)

If no L follows n, then the breakpoint is the beginning of the FORTRAN statement with line number
n. Only line numbers which appear in the left column of the source listing may be used in a BREAK
command.

8118.2 SPERRY UNIVAC Saries 1100

UP-NUMBER Time Sharing Guide for CTS Users j1-22

PAGE

UPDATE LEVEL

w

For example, if the two commands BREAK 9 and GO are entered, then execution of the FORTRAN
program will resume, and debug mode will be reentered before execution of the statement with ISN
9.

A maximum of eight label breaks and eight line number breaks may be set at any one time.

Two other debug commands are used in connection with the BREAK command. The CLEAR command
is used to clear one or more breakpeoints. The LIST command is used to list all breakpoints.

11.2.3.4.2. CALL
This CALL command calls a FORTRAN subprogram with the given arguments. It has the format:
CALL s[{a [a]-)]

where s is @ subprogram entry point name, and "a" is an actual argument that is passed to the
subprogram.

This allows the user to test only a given subprogram without having to execute the entire FORTRAN
program. For example, a subprogram could be repeatedly called with different sets of arguments.

The parameter s has the following format:
ent [‘extname]

where ent is the entry point to be called; ent may be any entry point in any subprogram in the
FORTRAN program, except for an alternate entry point (i.e., an entry point specified in an ENTRY
statement) in an internal subprogram.

The parameter extname represents the program unit name of the external program unit corresponding
to the internal subprogram ent. Therefore, extname may be specified only if ent is specified as an
internal subprogram name. The parameter extname may be specified as {1)"#" (if the external
program unit is the main program) or (2) a FORTRAN subprogram name (if the external program unit
is a subprogram).

If extname is not specified, then the external subprogram entry point with name ent is taken. If no
such external subprogram entry point exists, then the first internal subprogram with name entis taken.

Each "a" is an actual argument and must match the corresponding formal parameter of s in type and
usage. (In this way, the CALL command closely resembles a subprogram reference in a FORTRAN
program.)

The parameter a must be specified in one of the following forms:
B A FORTRAN constant.

B A variable in program unit p, where p is the default program unit set by the PROG command.
It must be specified as either a scalar variable name, an array name, or an array element name
(with constant subscripts).

B Asubprogram entry point name, immediately preceded by "¥". If the entry point specified exists
as an external subprogram entry point, then that one is taken. If no such external entry point
exists, then the first internal subprogram with the specified name is taken.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

Note that a statement number may not be passed as an actual argument via the CALL command.
Therefore, a subprogram with any RETURN i statements (i.e., a subprogram with ¥ as any formal
argument) may not be called with this command.

A maximum of 20 arguments is atlowed.

When the subprogram returns {via the RETURN statement), control is transferred back to interactive
debug mode. The message:

ENTER DEBUG MODE (RETURN FROM CALL COMMAND)

is printed. In addition, if the subprogram called was a function, the message:
FUNCTION VALUE RETURNED:

is printed, followed by the actual value.

When debug mode is reentered on return from the CALL command, the user may not resume normal
execution of the program {at the ISN where the CALL command was executed} using the GO
command. Instead, the SAVE and RESTORE commands must be used for this purpose, since the CALL
command interrupts normal execution.

For example, if the user wishes to execute a portion of the program, interrupt execution 1o test
subprogram SUB (using the CALL command), and then resume normal execution of the program, the
following commands could be entered:

SAVE
CALL SuB
RESTORE

11.2.3.4.3. CLEAR

The CLEAR command is used to ciear breakpoints set by the BREAK command. It has the format:
Fs L LI/p] T}
LABEL

CLEAR LINE
BRKPT
AlLL

where n is a positive integer, and p represents a program unit in the FORTRAN source program. The
p subfield is described under syntax rules (see 11.2.3.4).

This command clears one or more breakpoints established by the BREAK command.

CLEAR N[L[/ p]]is the same as the BREAK command format. The parameter n may be immediately
followed by L. This format clears a single statement label breakpoint in program unit p {if L is
specified) or a single internal statement number break peint.

The rest of the formats are used to clear one or both break lists or the SET BP break. CLEAR LABEL
clears all label breakpoints CLEAR BRKPT clears the 1110 breakpoint register set by the SETBP
command. CLEAR LINE clears all lire number breakpoints. CLEAR and CLEAR ALL clears all label
and line number breaks and the SETBP break.

11-23

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users =24

PAGE

UPDATE LEVEL

LABEL, ISN, BRKPT, and ALL may be abbreviated to L, I, B, and A, respectively.

11.2.3.4.4. DUMP

The DUMP command is used to print the values of FORTRAN variables. It has the format:

{ vV [/p] }
BUMP [.opt] /pl

where:
opt is an option letter; A or O is allowed.

V is the name of the variable that has been declared in the FORTRAN program. It must be
specified in one of the following forms:

B scalar variable name

W array name

B array element name {with constant subscripts)
B function subprogram entry point name

(Note that a scalar or array subprogram parameter may be specified using one of the
first three forms.)

p represents a program unit in the FORTRAN source program. The p subfield is described
under syntax rules (see 11.2.3.4).

This command prints the current value of one or more FORTRAN variables.

If the O option is specified on the DUMP command, the values are printed in octal format. If the A
option is specified, they are printed in ASCIt character format. If neither O nor A is specified, they
are printed in a format corresponding to the variable’s data type (INTEGER, REAL*4, COMPLEX+ 16,
etc.).

Whenever the value of a variable is printed, it is preceded by a heading line in the format:

v /p

where v is the variable name and p is the program unit name. {See the description of the p subfield
in 11.2.3.4)

If an entire array is dumped, the values of all elements in the array are printed in column-major order.

The formats are described as follows:

B DUMP[optlvl/p]

This format prints the value of variable v in program unit p.

If v is a scalar, array element, or function entry point, then one value is printed. If v is an array
name, then the values of ail elements in the array are printed.

81182
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users H-28

PAGE

UPDATE LEVEL

If p is not specified, the variable v is taken from the default program unit set by the PROG
command.

B DUMP [opt] /p
This format prints the values of all variables in program unit p.
B DUMP [opt] !
This format prints the values of all variables in all program units in ihe FORTRAN program.

If the second or third formats are used, then the order that the variables appear in the output is as
follows:)

B In a program unit, the variables are listed in alphabetical order.

M in the FORTRAN program {format 3), the program units are listed in the order that they appear
in the source input. '

11.2.3.45. EXIT

The EXIT command terminates the SPERRY UNIVAC Series 1100 FORTRAN {ASCII) processar, with

a call to the FEXITS system routine. This routine terminates all input/output and does an ER EXITS.

11.2.3.4.6. GO

The GO command resumes execution of an ASCIH FORTRAN program. It has the format:
GO[L[/p]]

where n is an positive integer, and p represents a program unit in the FORTRAN source program. The
p subfield is described under syntax rules (see 11.2.3.4).

The GO command causes an exit from interactive debug mode; execution of the FORTRAN program
is then resumed.

If 'GQ’" is specified {i.e., no command fields), then execution of the program continues at the point
at which it was interrupted to go into debug mode.

If the n L[/p] field is specified, execution of the proagram continues at statement labe! n in program
unit p. If p is not specified, the default program unit set by the PROG command is assumed.

The user should be cautious when specifying the n L [/p] format, since registers may not be set
up correctly when jumping to a statement label. For instance, jumping to a label inside a DO loop
or jumping to a label in another program unit {i.e., not the one currently being executed) could cause
execution problems.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 I 11-26
Time Sharing Guide for CTS Users IUPDATE LEVE. | PAGE

11.2.3.4.7. HELP

The HELP command {available in level 7 of FTN} prints information about debug commands, thereby
about debug commands, thereby allowing the user to continue debugging without having to consult
a manual about command descriptions or formats. It has the format:

ALL }
cmd

HELP [[[.opt] {

where opt is an option letter (F or D is allowed), and c¢cmd is one of the checkout debug command
names. No abbreviations are allowed.

The format HELP lists all of the debug command names.
The format HELP cmd prints all available information about the designated debug command emd,
including a list of all formats, a description of the individual items specified in the formats, and a

general description of the command.

The format HELP,opt cmd prints more specific information about debug command cmd. HELP,F cmd
lists all command formats only. HELP,D emd prints a command description only.

The format HELP ALL lists all available information for all debug commands. Note that a large amount
of output is generated.

11.2.3.4.8. LINE

The LINE command prints the line number of the statement in the FORTRAN program where execution
was interrupted to go into debug mode.

Line numbers are listed in the leftmost field of an ASCIl FORTRAN source code listing.

11.2.3.4.9. LIST

The LIST command lists all breakpoints set by the BREAK command. This includes all statement label
breaks and ali line breaks. ’

The default program unit set by the PROG command is also listed.

11.2.3.4.10. PROG

The PROG command is used to set the default program unit for variables and statement labels. |t
has the format:

PROG p

where p represents a program unit in the FORTRAN source program. The parameter p is described
under syntax rules (see 11.2.3.4).

This command sets the default program unit in the FORTRAN symbolic element that is implied for
variables (in the DUMP, SETBP, and CALL commands) and statement labels {in the BREAK and CLEAR,
and GO commands) to p. The following determines the default:

if no PROG command has been entered in debug mode during execution of the FORTRAN program,
then the first program unit in the FORTRAN symbolic element is set as thé defauit.

The default program unit set by this command may be averridden in an individual command {DUMP,
SET, SETBP, GO, BREAK, or CLEAR) by specifying a program subfield p in that command.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE' 27
The LIST command wil! print the default program unit set by the PROG command.
For example:
PROG SUB1
c Set subroutine or function SUB1 as the default program
c unit.
DUMP X
C Print the value of variable X in the subprogram SUB1.
DUMP X/2
C Print the value of the variable X in the
C block data program.
BREAK 10L
C Set a break at statement label 10 in subprogram SUB1Y.
BREAK 10L/+%
C Set a break at statement label 10 in the main program.

11.2.3.4.11. RESTORE

The RESTORE command restores the state of the user's program which a previous corresponding
SAVE command preserved {see 11.2.3.4), essentially restarting his program at the state it was in at
the SAVE point. It has the format:

RESTORE[n]
where n is an integer consisting of 1 to 12 digits.

The optional version number n can be used to keep several stages of execution around when
debugging.

When reentering the user program, the following message is printed:
ENTERING USER PROGRAM prog name [VERSION version-ng]

Note the following limitation. The user is responsible for the assignment of files and their positioning.
File contents, assignments, and positioning (tapes) are not saved or restored. Only the user’s variables
and point of execution are saved and restored, along with several debug mode parameters:
breakpoints set by the BREAK and STEP commands, the default program unit set by the PROG
command, and the trace mode value set by the TRACE command. Also, the same level of ASCII
FORTRAN must have been used to do the corresponding SAVE command.

Examples:

@FTN,SCZ IN.ELT

@EQF
C State is automatically saved into omnibus element
C IN.ELT before entry to debug mode
BREAK 7
GO
C FTN responds with BREAK AT ISN 7
SAVE 2
C State saved into omnibus element IN.ELT/2
RESTORE

C State restored from omnibus element IN.ELT

8118.2 SPERRY UNIVAC Series 1100

¥ v \ 1-
UP_NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAG; 28
C . FTN responds with ENTERING USER PROGRAM ELT
BREAK 3
. GO
C User program now restarts execution from the
C original save point.
C FTN responds with BREAK AT ISN 3
RESTORE 2
c State restored from omnibus element IN.ELT/2
C FTN responds with ENTERING USER PROGRAM ELT VERSION:
5 :
GO
C User program resumes execution at ISN 7, where the
C SAVE was done.
@FTN,NCZ. IN.GAMES,SAVE.GAMES :
C The state is automatically saved in SAVE.GAMES before
C entry to debug mode.
GO
C User program executes.
@FIN
Cc Next day the user desires to do more testing on GAMES.
@RUN . ..
@FTNR SAVE.GAMES
C FTNR responds with a sign-on line and the state of
C GAMES is restored from yesterday s save.
GO
C User GAMES program now executes again.

11.2.3.4.12. SAVE

The SAVE command is used to save the present state of the user's program for later resumption. It
has the format:

SAVE [n]
where n is an integer consisting of 1 to 12 digits.
This command saves the present state of the user’'s program by writing it out to an amnibus element
in his relocatable output (RO) file. The element name used is the RO element name. The version name
used is either the user's RO version or the up-to-12-digit field on his SAVE command.
Only an all-digit field may be used on the SAVE command. Since the element created is typed as
omnibus, this command does not destroy the user’s symbolic, relocatable, or absolute elements of

the same name in his RO file.

The RESTORE command may be used to restore the FORTRAN program to the statc of execution of
the last SAVE command. (See 11.2.3.4.11)

An autaomatic SAVE command is done for the user just before initially entering debug mode after the
END FTN message,

8118.2 ' SPERRY UNIVAC Series 1100 11-29
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
Examples:

@FTN,SCZ IN.ELT

@EQF

SAVE

Cc This will save state into omnibus element IN.ELT

@FTN,NCZ IN.ELT,QUT.ELT/TEST

@EOF

SAVE

C This will save state into omnibus element OUT.ELT/TEST .

@FTN,NCZ IN.ELT,QUT.ELT/TEST

@EQF

SAVE 99 .

Cc This will save state into emnibus element OUT.ELT/99

11.2.3.4.13. SET

The SET command changes the value of a FORTRAN variable. It has the value:
SET v[/p]=c¢

where:

v s a name of a variable that has been declared in the FORTRAN program. It must be
specified in one of the following forms:

B scalar variable name
B array element name (with constant subscripts)
B function entry point name

{Note that a scalar or array subprogram parameter may be specified using one of the
first two forms.}

p represents a program unit in the FORTRAN source program. The p subfield is described
.under syntax rules (see 11.2.3.4).

c is a FORTRAN constant.
This command sets the value of variable v in the FORTRAN program to the constant e.

The parameter p determines which program unitin the FORTRAN symbolic element that v comes from.
If p is not specified, then v is from the program set by the PROG command.

The parameter e must be the same data type as v. There are no conversions between data types
for the SET command. For example, if v is declared as type complex* 16 in program p, then e must
be a double-precision complex constant.

The parameter ¢ must be the same data type as v. There are no conversions between data types for
the SET command. For example, if v is declared as type COMPLEX#* 16 in program p, then ¢ must
be a double-precision complex constant.

8118.2 SPERRY UNIVAC Series 1100 11-30

PAGE

UPDATE LEVEL

UP-NUMBER Time Sharing Guide for CTS Users

If v is a character variable, then c must be a character constant. Hollerith constants are not allowed.

11.2.3.4.14. SETBP

SETBP sets a breakpoint so that debug mode is reentered when a variable is set or referenced. It
has the format:

SETBP [.opt]v{/p]
where:
opt is an option letter; R or W is allowed. .

v is the name of a variable that has been declared in the FORTRAN program. |t must be
specified in one of the following forms:

B scalar variable name
W array element name (with constant subscripts)
B function subprogram entry point name

{Note that scalar or array subprogram parameters may be specified using one of the flrst
two forms.)

p represents a program unit in the FORTRAN SOURCE program. The p subfield is described
under syntax rules {see 11.2.3.4).

The SETBP command sets a breakpoint so that debug mode is reentered whenever the designated
FORTRAN variable in program unit p is set or referenced during execution of a FORTRAN program.
If p is not specified, v is taken from the program unit set by the PROG coemmand.

The SETBP command may be used only if execution is on the SPERRY UNIVAC 1110, since the
ER SETBP$ mechanism is used. This Executive Request sets the 1110 programmable breakpoint
register, which causes a breakpoint interrupt whenever the specified condition is met. Checkout
debug mode is reentered at the beginning of the next executable FORTRAN statement after the
specified variable has heen set or referenced.

if the R option is specified on the SETBP command, then debug mode is reentered whenever the
designated variable v is read from storage. This occurs when the variable is referenced in an
assignment statement {on the right side of the assignment "=" operator} or an I/0 write statement.

If the W option is specified, the debug mode is reentered whenever the variable v is stored into. This
occurs when the variable is set in an assignment statement {on the left side of the assignment "=’
operator) or an 1/0 read statement.

If neither the R nor the W option is specified, both are assumed, i.e., debug mode is reentered
whenever the variable is set or referenced. '

Note that a breakpoint interrupt will occur whenever the storage that the variable occupies is involved
in a load (R option) or store (W option) instruction. Therefore, the FORTRAN statement where the
breakpoint interrupt occurs (i.e., the executable statement immediately preceding the statement
where debug mode is reentered) may not actually reference the variable name specified in the SETBP
command; the interrupt may have been caused by the setting or referencing of a variable that
occupies the same storage as the variable designated in the command. Variables which may be

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

11-31
UPDATE LEVEL] PAGE

overlapped in storage in a FORTRAN program include those used in EQUIVALENCE or COMMON
statements or those passed as subprogram parameters.

The breakpoint set by the SETBP command will remain in effect during execution until it is cleared
by the CLEAR command {either CLEAR or CLEAR BRKPT format).

11.2.3.4.15. SNAP

The SNAP command dumps all or part of the FORTRAN program. The Executive routine ER SNAP$
is used to dump the contents of one location counter at a time. It has the format:

Hi

The SNAP format dumps the entire FORTRAN program. The SNAP | format dumps contents of location
counter 1 of the program. ${1) contains all program instructions not resulting from input/output lists.
The SNAP D form dumps the contents of all location counters except 1. The SNAP R format causes
all registers to be dumped.

SNAP

Since ER SNAP#$ lists absolute addresses only, an L option checkout compiler listing of the FORTRAN
program may be helpfyl if the user wishes to decode the information that is dumped. This listing
includes the location counters and relative addresses for variables and code in the program.

11.2.3.4.16. STEP

The STEP command is used to set a breakpoint at a certain point ahead in the program. It has the
format:

STEP[n]
where n is a positive integer.

The STEP command specifies a breakpoint at which execution of the FORTRAN program is to be
interrupted and interactive debug mode reentered.

After the GO command is entered, n FORTRAN statements are executed and then debug mode is
reentered. If n is omitted, one is assumed.

For example, if the two commands STEP 3 and GO are entered, then execution of the FORTRAN
program will resume. After three FORTRAN statements have been executed, debug mode will be
reentered.

11.2.3.4.17. TRACE

Either TRACE or TRACE ON turns trace mode on. TRACE OFF turns trace mode off. It has the format:

e | Gre |

SPERRY UNIVAC Seri_es 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

If trace mode is on, then a2 message in the form:
LINE n

is printed at the start of execution of each FORTRAN statement, where n is the internal statement
number of the statement. Trace mode is initially off.

11.2.3.4.18. WALKBACK

The WALKBACK command is used to trace the general flow of program execution through FORTRAN
subprograms.

It gives a step-by-step trace of FORTRAN subprogram references that have occurred during program
execution. The trace begins at the current statement in the subprogram which is executing (i.e., the
point in the user program at which execution was interrupted to go into debug mode) and ends at
the main program,

During execution of the walkback trace, one line is printed at each step indicating which FORTRAN
subprogram {subroutine or function) was referenced at a certain line number of another subprogram
{or the main program). Walkback may occur over any number of subprograms.

Any FORTRAN subprogram named in a walkback message will be a main entry point, regardless of
which entry peint in that subprogram was actually referenced.

For example:

110 1 =5
120 CALL S(I)
130 END

140 SUBROUTINE S(11)
180 J = F(I1)

160 PRINT * ,J

170 RETURN

180 END

190 FUNCTION F(12}
200 F = 12%23

210 RETURN

220 END

Assume that a break is set in the above program at internal statement number 11 during checkout
execution {using the debug command BREAK 11). When debug mode is reentered at line 11,
execution of the WALKBACK command causes the following lines to be printed:

WALKBACK INITIATED AT ADDRESS 031470 N USER PROGRAM
THIS ADDRESS 1S AT LN. 11 OF F

F REFERENCED AT LN. 5 OF S

S REFERENCED AT LN. 2 OF MAIN PROGRAM

11.2.3.4.19. Interactive Debugging Example

-»FOR ASCHI
ASSUME ASCII ON
ASCI1 FORTRAN PRESCAN 2R1iA

11-32

8118.2 SPERRY UNIVAC Series 1100

11-33
UP-NUMBER Time Sharing Guide for CTS Users

PAGE

UPDATE LEVEL

>>ASSUME DEBUG ON

»>> ASSUME CHECKOUT ON

>>0LD EXF

>>LIST

100 10 FORMAT [THIS 1S LINE ONE °)
110 20 FORMAT (" THIS IS LINE TWC ')

120 30 FORMAT (° THE VALUE OF J = .12}
122 WRITE {6,10)
124 WRITE (6.20)
130 DO 50 1=1,3
140 J=1#3

148 40 K=J%¥2

150 WRITE(6.30) J
160 50 CONT INUE

170 END

END OF FILE

>> RUN

FTN 9R1 %03/24/77-08:45(0,)

END FTN 43 IBANK 44 DBANK

ENTER DEBUG MODE AT ISN 4

C:>BREAK 40L/¥

C:i>60

THIS IS LINE ONE

THIS IS LINE TWO

LABEL BREAK AT 40L
IN MAIN PROGRAM

C:>LINE

LINE 8

C:»>L1IST

PROG:MAIN PROGRAM

LINE: NONE

LABELS:

40L
IN MAIN PROGRAM

C:>DUMFP 1

{ /¥

000000 1

C:>DUMP J

J /¥

000000 3

C:>DUMP K

K /%

000000 0

C:>G60

THE VALUE OF J = 3

LABEL BREAK AT 40L .
IN MAEN PROGRAM

C:>DUMP [
1 /¥
000000 2
C:>DUMP J
J /*
000000 6

C:>DUMP K

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

K /%

000000 9

C:>60

THE VALUE OF J = 6

LABEL BREAK AT 40L
IN MAIN PROGRAM

C:>DUMP [

| /¥ :

000000 3

C:>DUMF J

J /%

000000 9

C:>DUMP K

K /¥

000000 38

C:>60

THE VALUE OF J = 9

END PROGRAM EXECUTION

ENTER DEBUG MQDE AT ISN 11

C:>DUMF |

| /*

000000 5

C:>DUMP J

J /*

000000 12

C:>DUMP K

K /%

000000 144

C:>G0

>>

11.2.3.5. Contingencies and Restrictions in Checkout Mode

Maost contingencies are captured by the compiler even if the Z option is omitted. After an appropriate
message, the interactive debugger will solicit commands. The user may then attempt to find the
problem by dumping variables. Most contingencies are such that the user program cannot continue
execution. In debugging mode, however, a BREAK keyin (@ @X C) causes temporary suspension of
the user program. The user may continue the program execution by typing GO to the interactive
debugger. In this way, he may interrupt infinite loops in his program and probe for their cause using
interactive commands.

Due to the generation of code in core, anly simple program structure can be provided. Links cannot
be generated to subprograms that are not physically in the source program. In addition, multibanking
and segmentation are not provided (e.g., the BANK and COMPILER statements cannot be used}. The
maximum size for a user program is somewhat smaller due to the addressing space used by checkout
execution time requirements. A warning message will be printed if this maximum size is exceaded.

11-34

8118.2 SPERRY UNIVAC Series 1100 | 11-35
UP-NUMEEA . Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

11.2.3.6. Walkback and the Interactive Postmortem Dump

When a contingency interrupt occurs during execution of an ASCH FORTRAN program, the following
debugging aids will automatically be executed:

B the ASCIl FORTRAN walkback process (FTNWB)

B the ASCIlI FORTRAN interactive postmortem dump (FTNPMD)

The walkback mechanism gives a step-by-step trace of FORTRAN subprogram references that have
occurred during program execution, from the point of the error condition back to the main program.
Only subprograms in relocatable elements generated by F option ASCII FORTRAN compilations can
be traced by the walkback process.

FTNPMD allows the user to interactively dump the current values of FORTRAN variables in the
executing program. The variables which may be dumped are those which exist in elements which
were generated with F option ASCIl FORTRAN compilations. If the program is running in batch mode
{see 13.1), FTNFMD will be executed only if the F option was specified on the @XQT contro! card.

In addition to being called by the contingency routine, both FTNWB and FTNPMD may be initiated
by calls from the user program.

For more information on walkback, interactive PMD, and interactive debugging, see SPERRY UNIVAC
Series 1100 FORTRAN (ASCIHl} Programmer Reference, UP-8244 (current version).

11.2.4. RFOR

Symbolic level debugging in RFOR is very similar to that in BASIC. The syntax of the commands is
identical. There are some differences in the messages and operations, however. (For example. since
two variables can have the same name in different subroutines in RFOR, these must be distinguished

in some way.)

The ASSUME DEBUG ON/OFF command has the same effect in RFOR as it has in BASIC (see 11.2.1}.

11.2.4.1. PAUSE
The execution of a RFOR program may be halted at any point to examine variables with the statement:
n PAUSE

at the specified point. Notice that n is a CTS line number. If the ASSUME DEBUG is on when this
statement is executed, FORTRAN prints the message:

PAUSE n IN d
where n is the line number in octal and d is the program element name.

For example:

-> FORTRAN F
FD FORTRAN 5R1
>SNEW P

>>N

100 > 70 FORMAT (° LINE ONE’)
110 >WRITE (6, 10)
120 > PAUSE

B118.2 SPERRY UNIVAC Series 1100 B

UP-NUMEER — Time Sharing Guide for CTS Users 11-36

UPDATE LEVEL PAGE

130 >20 FORMAT (° LINE TWO')
140 >WRITE (6,20) '
150 » END

With ASSUME DEBUG OFF (see 11.2.1}, the PAUSE statement has no effect:

160 > *AUN
DO YOU WANT A GLOBAL SCAN? >YES
COMPILING. .. '

LINE ONE

PAUSE . TYPE S TO RESTART. >§

LINE TWO
NORMAL EXIT. EXECUTION TIME: 5 MILLISECONDS.
*DIAGNOSTIC SCAN? >ANO :

After an ASSUME DEBUG ON, however, the following results:

>>ASSUME DEBUG ON

>> RUN

DO YOU WANT A GLOBAL SCAN? > AQ

COMPILING. .. :
~ LINE ONE

PAUSE 120 IN NAMES
COMMAND? > > RESUME
LINE TWO
NORMAL EXIT. EXECUTION TIME: 5 MILLISECONDS.
*D1AGNOSTIC SCAN? > NO '

The PAUSE statement causes the following message to be printed:

-PAUSE n IN d
COMMAND? > >

in the preceding example the word AESUME was typed as an answer to the question, COMMAND?.
Any of the following may be transmitted as responses to the COMMAND? guestion.

PRINT v/ Print value of variable list vl.

SET v=x Set variable v to a new vatue where the new value x is of the same type
{REAL. INTEGER, ..) as v.

RESUME Resume execution.

STOP Stop execution of program.

DUMP Stop execution of program and provide a register contents dump to the
terminal.

CHANGE Solicit new trace options as though the first TRACE ON statement is

encountered (see 11.2.4.3).

DEBUG ON Reinstate the execution of the TRACE ON and PAUSE statements. This
command is used in conjunction with the break key following the use of the
DEBUG OFF command. Program execution trace output resumes when a
TRACE ON statement is encountered (see 11.2.4.2 and 11.2.4.3).

8118.2

SPERRY UNIVAC Series 1100 - 11-37
UP-NUMBER Time Sharmg Guide for CTS Users UPDATE LEVEL PAGE
DEBUG OFF Terminate all program execution trace output and disregard all following

TRACE ON and PAUSE statements.
If TRACE output to the file TRACES (see 11.2.4.3) is'also in effect, this information is written in the
trace file, as well as typed on the terminal. After processing all but the STOP, DUMP, CHANGE, and
RESUME commands, the executing program again solicits input with the statement:

NEXT? >

The following are examples of the acceptable commands:

»»FP A
80 DO 30 1=1,3
90 J=2*| . :
100 10 FORMAT (" LINE QNE’)
110 WRITE (6,10)
120 PAUSE .
130 20 FORMAT {° LINE TWO")
140 WRITE (6,20}
145 30 CONTINUE
150 END
END OF FILE
>>ARUN
DO YOU WANT A GLOBAL SCAN? >»YES -
COMPILING. ..
LINE ONE

PAUSE 120 IN NAME$
COMMAND? > >PRINT |
I = 1
NEXT? > >PRINT J
J = 2

NEXT? > >SET J=40
NEXT? > >PRINT J

J = 40
NEXT? > S>PRINT J. 1
J = 40 I = 1
NEXT? > >RESUME
LINE TWO
LINE ONE
PAUSE 120 IN NAME$
COMMAND? > > S7TOF

TRACE EXIT. EXECUTION TIME: 31 MILLISECONDS
*DIAGNOSTIC SCAN? A0

8118.2 SPERRY UNIVAC Series 1100

11-38
UP-NUMBER Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

11.2.4.2. BREAK

If ASSUME DEBUG is ON {see 11.2.1) depressing the BREAK key can effect an orderly break in
program execution at any time. Depressing this key immediately causes output to cease (even in the
middle of a lineg), and the following message appears:

*QUTPUT |NTERRUPT
The system returns without a solicitation character. Enter:
eex ¢

If the terminal was in the process of printing a line when the break key was depressed, the system
responds by printing that line again. Since the printing of the output may be slower than the execution
of the program, other output lines, which were queued before the @@X C was entered, are printed.
in fact, if the program is small it may complete before an @ @X C can be entered. Assuming this
is not the case, the message:

BREAK AT LINE NUMBER: xxx
COMMAND? >>

is printed. One of the commands described in 11.2.2.1 can be entered.
If a break is desired and the output is not needed, then enter:
eex co

if the terminal was in the process of printing a fine when the interrupt key was depressed, the system
responds by printing that line again. The O option causes all other output up to and including the
COMMAND? query to be discarded. The system will respond with a cursor. A command described
in 11.2.2.1 can then be entered.

For example:

>>NEW P2
>>N
100 >»D0 30 =1, 100000
110 > 10 FORMAT (° LINE 110°)
120 >WRITE (6, 10)
130 >A=A+1
140 > 30 CONTINUE
150 > END
160 > +RUN
DO YOU WANT A GLOBAL SCAN? >YES
COMPILING. ..
LINE 110
LINE 110
LINE 110
LINE 11

QUTPUT [INTERRUPT
eex oc
LINE 110

>
COMMAND? > > PRINT | | = 650

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

11-
Time Sharing Guide for CTS Users 39

UPDATE LEVEL PAGE

NEXT? > >»PRINT A
A = 649.00000
NEXT? » >PRINT A, !}
A = 649.00000 | = 650
NEXT? > >SET A=7000.
NEXT? > >RESUME
LINE 110
LINE 110
LINE 110

*QUTPUT |INTERRUPT+
eex oc
LINE 110

>
COMMAND? > >DEBUG OFF
NEXT? > >RESUME
LINE 110
LINE 110
LINE 110

#0OUTPUT INTERRUPT*
eex oc
LINE 110

>
COMMAND? > > SET 8=4
ILLEGAL VARIABLE NAME.
NEXT? > >S5TOP
TRACE EXIT. EXECUTION TIME: 2412 MILLISECONDS.
*DI1AGNOSTIC SCAN? »AQ

11.2.4.3. TRACE

The togic flow of a RFOR program may be determined by bracketing the block of statements to be
traced with TRACE ON/OFF statements as follows:

nl TRACE ON
statements to be traced

n2 TRACE OFF

Notice that n1 and n2 are CTS line numbers. These TRACE statements may have RFQR statement
numbers.

There is a minor difference between RFOR and BASIC concerning the initial execution of the TRACE.
In BASIC, all lines are numbered and, therefore, all lines may be the object of GOTO statements. This
is not true in RFOR. Thus, the TRACE ON statement is treated as an executable statement. That is,
for the TRACE to be effective, the TRACE ON statement itself must be executed, not just any statement
within the TRACE ON/OFF block. Thus, in RFOR any transfer into the TRACE block does not have
the trace effect.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 140

PAGE

UPDATE LEVEL

%

When the TRACE ON statement is executed, the following messages appear;
TRACE n IN d
OUTPUT TO FILE? > >
where nis the line number {octal) of the TRACE statement, and d is the name of the program element.

A YES answer causes subsequent trace information to be sent to the file TRACE$. A NO answer
causes the trace information to be sent back to the terminal.

This is followed by the question:
LINE NOS ONLY? > >

A YES answer causes execution to resume with only the line numbers as trace output. A N0 answer
causes the message:

ALL VARIABLES? > >

A YES answer causes execution to be resumed with a trace of all program variables. A maximum
of 100 variables may be displayed. A NO answer causes the question:

WHICH VARIABLES? > >

Answer this with the names of up to ten variables separated by commas. RFOR resumes execution
after this response.

Notice that, unlike BASIC, RFOR does not offer the question:
ONLY WHEN CHANGED?

Prior to the execution of each statement in the specified block, RFOR prints:
TRACE n IN d

where n is the line number (octal} and d is the program element name, then all variables, specified
variables, or no variables are printed according to specifications. Notice the following example:

>>FP A
100 10 FORMAT (" LINE ONE")
110 WRITE (6,10)
120 TRACE ON
130 DO 30 1=1.,3
140 20 FORMAT (" LINE TWO")
150 WRITE (6,20}
160 30 CONT INUE
170 END
END OF FILE
>>ASSUME DEBUG ON
>> RUN
DO YOU WANT A GLOBAL SCAN? >YES
COMPILING. ..
LINE ONE

R73R1Q TRACE 120 IN NAME$S

g1i8.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 1

PAGE

UPDATE LEVEL

“

OUTPUT TO FILE? > >NO
LINE NOS ONLY? > >YES

LINE TWO
LINE TWO
LINE TWO
NAMES 130 140 150 130 140 150 130 140 150 160

NORMAL EXIT. EXECUTION TIME: 15 MILLISECONDS.
*DIAGNOSTIC SCAN? »NO : :

in this case only line number tracing is selected. Notice the trace messages following the output.
If DEBUG is turned OFF, TRACE statements have no effect. This can be accomplished through the
ASSUME DEBUG OFF (see 11.2.1) or by answering DEBUG OFF to a BREAK or PAUSE command (see
11.2.2.1 0r 11.2.4.1}.

The following example shows the tracing of the symbolic variables:

>>FP A
100 10 FORMAT (° LINE ONE')
110 WRITE (6,10)
120 TRACE ON
130 DO 30 1=1,3
135 A=A}1
140 20 FORMAT (° LINE TWO")
150 WRITE (6,20)
160 30 CONTINUE
170 END
END OF FiLE
>>ASSUME DEBUG ON
>> RUN
DO YOU WANT A GLOBAL SCAN? >YES
COMPILING. . .
LINE ONE

R73R1Q TRACE 120 IN NAME$
QUTPUT TO FILE? > >NO
LINE NOS ONLY? > >NO
ALL VARIABLES? > > YES

NAME$ 190

I = 0 A = .00000000
NAMES$ 130

| = 1 A = .00000000
NAME$ 135

1 = 1 A = 1.0000000
NAMES 140

I = 1 A = 1.0000000

LINE TWO

NAMES 160

1l = 2 A = 1.0000000
NAMES$ 130

I = 2 A = 1.0000000

NAMES 135

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users)1-42

PAGE

UPDATE LEVEL

#0UTPUT INTERRUPT
eex or o

| = 2 A = 2.0000000
*BREAK

->

Any number of blocks of a program may be traced by bracketing those blocks with TRACE ON/QFF
instruction pairs. If the final TRACE OFF is omitted, then tracing is effective through the end of the
program. To change the trace data specifications (add a variable to the list or change from line
numbers only to tracing variables), use the CHANGE command (see 11.2.4.1}in response to a PAUSE
or BREAK sequence. Notice that this is somewhat different from the BASIC procedure. This may be
seen in the following example:

>»P A .
100 10 FORMAT (° LINE ONE")
110 WRITE (6,10)
120 TRACE ON -
130 DO 30 1=1,3
135 Az=A+1
137 PAUSE
140 20 FORMAT (" LINE TWO')
150 WRITE (6,20)
160 30 CONT INUE
170 END
END OF FILE
>> RUN
DO YOU WANT A GLOBAL SCAN? »NO
COMPILING. ..
LINE ONE

R73R1Q TRACE 120 IN NAMES$

OUTPUT TO FILE? > >NO
LINE NOS ONLY? > >YES

NAMES$ 130

PAUSE 137 IN NAME$
COMMAND? > >CHANGE
OUTPUT TO FILE? > >NO

LINE NOS QNLY? > >NO
ALL VARIABLES? > >YES

NAME$ 137
| = 1 A = 1.0000000
NAME$ 140
| = 1 A = 1.0000000
LINE TWO
NAMES$ 150
+OUTPUT INTERRUPT#
eex
1 = 1 A = 1.0000000

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

11-4
Time Sharing Guide for CTS Users 2

PAGE

UPDATE LEVEL

*BREAK
=>

Following program execution termination, if trace output were to file TRACES$, output file action would
be solicited via:

SEND QUTPUT TO SITE? > »
A YES answer solicits an end-of-trace cutput message to be inserted in file TRACE$ via:

MSG: >
The trace output is then directed to an onsite printer. Regardless of the answer, the file TRACES$ can
be accessed with CTS. Use the commands:

>>USE SQUELCH$, TRACE$
>>SCAN

For example:

s>P A
100 10 FORMAT (° LINE ONE'}
110 WRITE (6. 10)
120 TRACE ON
130 DO 30 I=1,3
135 A=A+1
140 20 FORMAT (' LINE TWO')
150 WRITE (6, 20)
160 30 CONTINUE
170 END
END OF FILE
>>ASSUME DEBUG ON
>> RUN
DO YOU WANT A GLOBAL SCAN? >AQ
COMP I LING
LINE ONE

R73R1Q TRACE 120 IN NAMES
QUTPUT TO FILE? » >YES
LINE NOS ONLY? > >NO

ALL VARIABLES? > >YES

LINE TWO

LINE TWO

LINE TWO

SEND OUTPUT TO SITE? > >NO

NORMAL EXIT. EXECUTICN TIME: 60 MILLISECONDS.

*DIAGNOSTIC SCAN? >NO
>>USE SQUELCHE, TRACE®

>> SCAN

<185> INCOMPLETE PRINTFILE

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 11-44

PAGE

UPDATE LEVEL

B3

>>»P 1.5
1 R73R1Q RFOR TRACE OUTPUT 02/25-16:10
2 NAMES 120

3 | = c A = .00000000
4 NAMES$ 130

5 I = 1 A = 00600000
>>T ING ()

29

>»P 25, 30

25 | = 3 A = 3.0000000
26 NAMES 150

27 I = 3 A = 3.0000000
26 NAMES 160

29 l = 3 A = 3.0000000
END OF FILE

>>

Notice that after the SCAN command any editing commands reference the TRACE information. Here
the LNG function is used to determine the length of the file. Use the EDIT command (see 11.1.2) to
reestablish the previous program from the working area.

8118.2 SPERRY UNIVAC Series 1100

12
UP-NUMBER Time Sharing Guide for CTS Users !

PAGE

UPDATE LEVEL

12. Desk Calculator

12.1. Expressions

CTS can compute the vaiue of complex expressions including most common mathematical and
trigonometric functions, CTS variables, integer, real, and string values. The resulting values can be
formatted using CTS editing functions. They are automaticaily concatenated when placed in the TYPE
command for printing, There also is a command which prints a table of expression values which are
computed by reevaluating the expression while iterating variables over a specified range of values.
Another command prints the surmmation values of this table.

The simplest way of using CTS as a desk calculator is to use the TYPE command to print an expression
value as follows:

~>TYPE 12.0+45QR(10)/152. 1
12.020790780145748

An expression is composed of a series of terms and operators.

12.1.1. Integer Constants

An integer constant is a sequence of 1 to 1B decimal digits. It must be preceded by a minus sign
in order to be a negative integer. Positive constants may be preceded by a plus sign. An integer
without a sign is assumed to be positive. Here are some examples of integer constants:

1
0

-1
$32768
-4096

12.1.2. Real Constants

Real constants are distinguished from integer constants by the decimal point and the optional power
of 10. Generally a real constant is represented by an integer constant, followed by a decimal point,
followed by the fractional part of the constant. This is sometimes followed by the letter E and the
power of ten which is represented by an integer constant. There may be up to 18 digits in the integer
and fractional parts of a number. The power of ten must be between -308 and +308.

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100 12-2
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

K

Here are some permissible rea! constants:

1.13

-.333333333333333333

+4096.

10.E50 {equivalent to 1051)
.1E-100 {equivalent to 10-19)
0.0ES50 (equivalent to Q)

12.1.3. String Constants
A string constant is a sequence of characters delimited by the single guote character. Thus:
"{~-B4+SQR{B%B-4 . 0*xA*C)}/(2*A}’

is a string constant. A variable can be set equal to a string, evaluating the string as an expression.

12.1.4. Functions

As with constants, there are two types of built-in functions in CTS. These functions operate on zero,
one, or mare arguments and produce a value. The vaive produced may be either an arithmetic value
or a string value. The functions are distinguished by the type of vaiue they produce.

A function appearing in an expression may be thought of as being reduced to its equivalent. For
example: SQR{4) appearing in an expression is equivalent to 2. Consequently, functions may be
nested. For example:

->T SOR{50R({ABS(-4)))
1.414213562373095
->

Some functions do not require an argument. Nevertheless, parentheses must appear in all function
calls. This is in order to distinguish the function from a simple variable name with the identical
spelling. For example, the LNG function, which has no argument, must be written as LNG{ } to
distinguish it from a variable LNG.

Generally arithmetic functions accept arguments of type real or integer and return a real value.
tndividual exceptions to this rule are shown in the Tables 12-1 and 12-2.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL | PAGE

Table 12-1. Numeric Functions

Function Reference

Numeric Value Returned

Examples

ABS(x)

The absolute value of x.

->T ABS(7.5)
1.5
->T ABS{-7.5)}
1.5
->

ATN(x)

*The arctangent of x in the range of
[-pi/2,pi/2]. x may be any value.

>TATN(1.2)
8.76058050598 1934E-1
->

¢()

The number of the left column of the
last find in execution of the LOCATE
command.

=5 100 ABCDEFGHIJKL
->LOC ‘DEF’ 100

100 ABCDEFGHIJKL
->T¢)

4

->LOC “GHI" 100

100 ABCDEFGHIJKL
->7cf)

7

->

coL()

The column position as an integer
within a string expression.

—> SET S1=ABCDEF
COL{) ‘DEF’

->T 81

ABCDEF7DEF

—> T 'AB’ TAB(4) 'CD’
AB CD

-> T AB° TAB(COL{)+4)
e

AB CD

->

COS{x)

*The cosine of x in the range of [-1,1].
X < 256

->T C05(1.2)
3.623577544766735E-1
->

CaT(x)

*The cotangent of x (any value).
X < 298 and not equal 0.

ST CON1Z)
3.887795693682049E-1
->

CR{)

The number of the right column limit of
the last find in execution of the
LOCATE command.

-> 100 ABCDEFGHIJKL
->LOC DEF 100

100 ABCDEFGHIJKL
->T CA()

6

-

EXP{x)

*The exponential (eX) of x (any value).
X<709.089.

-> T EXF(1.2)
3.3201169227365475
->

12-3

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

12-4
UPDATE LEVEL PAGE

*

Table 12-1. Numeric Functions (continued)

Function Reference Numeric Value Returned Examples
LEN(s) The number of characters currently in | -> SET B="AB("
string s. Zero is returned if s is null. | -> T LEN(B)
3
->
LGT(x) *The base 10 logarithm of x (any | -> T LGT(1.2)
valuel x > 0 7.918124604762483E-2
->
ENG{) The number of lines currently in the | —> T LNG()
working area f. 7
->
LOG(x) *The natural logarithm of x (any value). | => 7 LOG{1.2)
x>0 1.823215567939546E-1
->
NUM(n,c1,c2) The numeric value of the strings | -> SET C="ABC123
specified by column limits ¢1 and ¢2 | -> T NUM{(C. 4,6)
within the line of § specified by n. If n | 123
is 0. then the current line of f is implied. | ->F 7120
If nis a string, the substring denoted by | 120 JUMP 20 NO FIND
¢t and c2 is converted to a number. |->T7 4+NUM(120.5,7)
24
->
0CC{() The number of lines the string | -> 7TYPE OCCY }
occurred in after a LOCATE or FIND | 4
command or the number of
occurrences of the string after a
CHANGE command is printed.
P{) The current position of the line pointer | -> T F£f)
of the working area f. 120
->
SIN(x) *The sine of x in the range of [-1,1]. | -> T SIN(1.2)
xl< 256 9.320390859672264E-1
-
SORI(x) The square root of x. x must be greater | -> 7 SQR(7234)
than or equal to zero. 35.128336140500592
->
TAN(x) *The tangent of x (any value). [< | -> T TAN(T.Z)

256,

2.5721516221263189
-

*

For a full explanation of these functions, see SPERRY UNIVAC Series 1100 Mathematical
Function Library, Programmer Reference, UP-8007 {current version).

8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL Pt
Table 12-2. String Functions
Function Reference String Value Returned Examples
APF() The current name of the assumed | => T APF/)
program file F. This file is initially | KMB
proj-id*run-id but may be changed by | ->
an ASSUME PROGRAM or an ASSUME
FILE command.
ASC() A string which indicates if the working | -> T ASCY)
area is ASCIl or Fieldata ASCIl OFF
-> ASSUME ASCIHI ON
->TASCt)
ASCIl ON
-
COMP{) A string contzining the name and | -> ASSUME COMPILER
options for the assumed compiler, RFOR
->T COMP{)
RFOR,RS
—->
CSFe) The CSF function passes to the | => CSF(@ASG,UP BREAK)
Executive control language statements | =>
via CSF$% (see SPERRY UNIVAC Series
1100 Executive System, Vol. 2 EXEC,
Programmer Reference, UP-4144.2
{current version)).
The expression e is a string expression
representing the control statement or a
variable that has been previously set to
that string value. A status code from
the operating system is returned.
DATE{(} A string containing the date and time | -> 7 DATEf)
of day in the following form: 01 APR 77 15:43:37
-> T TXT{DATE(). 1.9)
dd mon yy hh:mm:ss 01 APR 77
-> T TXTDATE() 14,21)
ON ~ TXTDATE() 1,8)
15:48:00 ON 01 APR 74
-
DKN() The current name of the working area, | -> NEW ABC
f -> TYPE DKN(}
ARC
->

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1109
Time Sharing Guide for CTS Users

UPDATE LEVEL PAGE

-

Table 12-2. String Functions (continued}

Function Reference

String Value Returned

Examples

FILE{'s")

The fully qualified file name associated
to the internal file name provided as
the function’s string argument. If the
desired file is not currently assigned,
then a null string is returned as the
value of the function.

-> CRE.A ABC*DEF.

#CRE,A ABC*DEF.

~> USE X ABC*DEF

->TYPE FILEfX) .’
FILE{"DEF)

ABC#DEF(1),ABC*DEF(1)

-> REL X

-> TYPE

FILE (X7, FILE('DEF)

FMT(x,w,d [['s])

A string containing the numeric
expression x converted as directed by
the remaining arguments. The primary
use of FMT is for building an output
line. The arguments have the foliowing
meanings:

w - The total number of characters
(field width including nonnumerics)
returned by FMT. If w=0, the
converted number is left justified and
of variable length. If wis not O, it must
be large enough to contain the entire
field; that is, this function will not
truncate a field.

d-1fd>0, then d decimal digits to the

right of the assumed decimal point will
be converted.

If d=0, then only the integer part of x
is printed and no decimal point is
printed.

If d<0 then |d| decimal digits are
converted in scientific notation. That
is, the converted number consists of a
fractional part and a power of 10
exponent.

s—is a string consisting of from one to
three characters enclosed in quotation
marks: 'ABC’.

A is the character tc be filled in on the
left of the field (for example, the
asterisk}. The assumed value of Ais a
blank.

->

->SET A=10123.45
-> SET B=

-~ 000987654321

> T FMT{A, 15,2, % 8,7}
***¥%%%$10,123.45

-> T FMT{A,5.2)

< 24> STRING EXCEEDS
COLUMN LIMITS.

->

-> T FMT(A,0,2, %8,
$10,123.45

=> T FMT(B.0.6)

-0.000988
->

-> T FMTIA.0.0}
10123
->

-> T FMT(B,17-8)
-9.8765432E-4
->

->T FMT(A, 10.0,'*$,)
**%#$10,123
->

12-6

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

12-7

UPDATE LEVEL PAGE

1.

Table 12-2. String Functions fcamtinued)

Function Reference

String Value Returned

Examples

B is a prefix character. This character
will be printed in the prefix or sign
position unless the field is negative. If
the field is negative a minus sign will
appear in the prefix position. For
example, B could be the §.

C specifies a digit group separator. If
C is a comma, then every three digits of
the number are separated by a comma.

If C is any other character, then every
five digits are separated by that
character. If no character is specified,
no grouping will occur.

->T FMI(B. 17,127 1)
-0.00028 76543 21
->T FMT-8,17,12," 1)
10.00098 76543 21
->T FMTB, 17,12 +)
-0.00098 76543 21
->

-> T FMT{A0~7." +)
4+1.01234 5E4

1D({'s")

A string containing run-related
information as specified by the input
argument string. The valid input
arguments and their function values
are:

GRUN - The unique run-id as
generated by the operating system.
This value is usually the user-specified
run-id from the @RUN Executive
command, but it may vary under
certain conditions. For a more detailed
explanation of those conditions, see
SPERRY UNIVAC Series 1100
Executive System, Volume 2 EXEC,
Programmer Reference, UP-4144.2
{current version).

RUN - The user-specified run-id from
the @RUN command.

PRQOJ - The user—specified project—id
from the @RUN command.

IDEN ~ The user-specified run-id,
unless the F-option was specified on
the @CTS iritiation command. If the
F-option was used, then the value
returned is the unique identifier
entered by the user. In this way, a
subroutine can obtain the default
assume program file at CTS initiation
time.

(Assume the Executive
controt statement is:
@RUN JONES.555555,JAY)

-> TYPE [D{'PROJ}
JAY

—> TYPE ID{RUN)
JONES

—> TYPE ID{'GRUN)
JONES

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

12-8
PAGE

UPDATE LEVEL

a

Table 12-2. String Functions {continued)

Function Reference String Value Returned Examples
ACCT - The user-specified account | —>TYPE ID{ACCT)
number from the @ RUN command. 555555
LOWER({'s") A string with all uppercase alphabetic | ~> T LOWER (AaBh)
characters changed to lowercase. This | aabb
function is ignored in ASSUME ASCIl | —>
OFF mode.
OBJ{) The current name of the assumed | -> TYPE OBJf)
object file. The file is initially TPF$, but | TPF$
may be changed by an ASSUME | ->
OBJECT or ASSUME FILE command.
STATUS('s") The value of an ASSUME, TAB, or | -> TYPE STATUSrASCH)
SYNTAX command parameter is | ON
returned as a string. The values for the | —-> TYPE STATUS({TAB}
CTS contro!l characters (see 1.5) can | 11,21,39,73
also be requested. See 9.2.5 for a list | -> TYPE STATUS(=)
of values for s. *%,
TAB({[n]) Blanks are produced to position the | -=> 7 "AB° TAB{12) CD’
next string expression to column nifn | AB CcD
is given. If n is omitted, the string | —> T TAB(12} A8’
expression will be positioned to the AB
next column, as indicated by the last | -> TAB 10.20
TAB command. Only rightward | -> T 4B TABf) CD’
positioning is possible. AB cD
->T TABf) A8’
AB
TRM(s) A string equal to string s with all | —> SET §4="ABC
trailing blanks removed. > T LEN(S4)
6
> T LEN{TRM{S4))
3
-> T LEN{S4)
6
-> SET §5=TAM(S4)
-> T LEN(S5)
3

->

8118.2

SPERRY UNIVAC Series 1100

g v h 12-9
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
Table 12-2. String Functions {continued)}
Function Reference String Value Returned Examples
TXT{n,c1,c2} A substring from a line of f specified by | -> P 120

n. If nis zero, then the current line of
fisimplied. The string is obtained from
the line within column limits specified
by ¢1 and ¢2.

If the specified line n does not exist
ar if the column limits are illegal, then
an error message is returned.

Let k be the length of line n. If ¢c2 >
k, then k is used as the value for c2. If
c1 > k, then the null string is returned.

120 JUMP 20 NO FIND
-> T TXT(120,1,4)

JuMP

->'100 ABCDEF

-> T TXT{100,4,3)

< 125> BACKWARD
COLUMN LIMIT IS INVALID
-> T LEN(TXT{100,4,3))
<125> BACKWARD
COLUMN LIMIT IS INVALID

-> T TXT{100,5,7)

EF

=> T TXT(100,7.8)

-> T LEN(TXT{100,7.8))
2

characters changed to uppercase. This
function is ignored in ASSUME ASCII
QFF mode.

TXT(s.c1,c2) A substring from the string s as | —=> SET A="ABCDFFGHYF
specified by the column limits ¢1 and | -> T TX7{A,4.6)
c2. DEF
-> T TXT{A.8, 10}
Let k be the length of string 5. If ¢2 > | HI
k, then k is used as the value forc2. If | => T TX7{4, 10,12}
ct > k, then the null string is returned. | => T LENMTXT{A, 10, 12)}
2
-
UPPER('s") A string with all lowercase alphabetic | -> T UPPER (‘AzBb)

AABB

12.1.5. CTS Variables

A variable’s value may be set and referenced by CTS commands. The value of a variable may be
changed at any time by a CTS command. Its value remains until it is changed. A variahle name is
composed of one to twelve alphanumeric characters, the first of which must be alphabetic. No
distinction is made between upper and lower case alphabetic characters. A variable may be assigned
an integer value, a real value, or a string value. A variable is defined or changed by a SET command
{or 2 QUERY command in a subroutine).

g118.2 SPERRY UNIVAC Series 1100

12—
UP_NUMBER Time Sharing Guide for CTS Users 2-10

UPDATE LEVEL PAGE

e

12.1.6. Qperators

Numeric terms of an expression {constants, variables, or functions} may be separated by one of the
following arithmetic operators:

+ addition

- subtraction

* multiplication
/ : division

¥ exponentiation

String or numeric terms may be separated by one of the following relational operators:

< Less than

> Greater than

= Equal to

<> or >< Notequalto

<= oFr = Less than or equal to
»>= or =>» Greater than or equal to

The terms on either side of the operator must be the same type (string or numeric). The result of the
operation is either one {condition is true} or zero (condition is not true). The relational operations are
done after all arithmetic operations have been completed but before functions are evaluated. The
order of evaluation may be changed by using parentheses for grouping.

The result of an arithmetic operation is a real number if either of the terms is real. If both terms are
integer, the result is also an integer. This means that the fractional part of the result (if any) is
discarded. For example:

->T 5/2

2

->
12.2. Variable Definition - SET

Syntax: SET v=e

Abbreviation: v=e

Function: To evaluate the expression e and store the result into variable v.

The variable name v must begin with an alphabetic character and may contain from one to twelve
alphanumeric characters.

NOTE:

Some variable names are reserved for internal use. These variables always begin with the letters SYS.
Therefore, do not use a name starting with these characters.

Variables may be referenced by the TYPE command and they may be inserted into a CTS command
using the percent sign (%) {see 8.3.6).

A SET command may be abbreviated S in a subroutine, but the command must appear. When in desk
calculator mode and not in a subroutine, the command may be dropped, leaving only v=e to define
the variable v.

8118.2 SPERRY UNIVAC Series 1100

v) 12-1
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE . k
12.3. Evaluating and Printing Expressions - TYPE
Syntax: TYPE el [e2 e3...]
Abbreviation: T
Function: The expressions el, e2... are evaluated and the results are printed on one line.

The TYPE command is analogous to an output command like PRINT in BASIC or WRITE in FORTRAN.
Since the expressions are evaluated first, complex expressions containing constants and variables
may be specified in the TYPE command.

If the terms are not separated by an operator, concatenation is performed. To separate expression
values with a blank in the print, place a blank character string between them on the command.

For example:

~>A=5

_> PI=4%ATN(1)

-> C=2*P!*H

-»>T "CIRCUMFERENCE = 'C
CIRCUMFERENCE = 31.415926535897932
->T R "FMT{c,6.-2}

5 3.1E1

-

If numeric results are not printed through use of the FMT function, then numbers (N} are converted
and printed as follows:

B If N is of type integer, then N is printed as an integer.

W IfNisof type real and 1018 > |N| > 1, then the integral part of N is printed, followed by a decimal
point, possibly followed by a fractional part.

B If N is of type real and [N} > 101% or |N| < 1, then N is printed in floating point, i.e., up to 18
decimal digits, with the decimal point following the first digit, followed by the signed power of
ten exponent in the form:

E4+ddd
where ddd is the unsigned power of ten.
For real numbers, trailing zeros are automatically truncated, and in no case will more than 16

significant digits be printed. In all cases above, the number will be preceded by a minus sign
if the number is negative.

CB118.2 SPERRY UNIVAC Series 1100

f v] 12-12
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE 2
12.4. lterative Expression Evaluation — DISPLAY
Syntax: DISPLAY V(S y:Ey; [14:]) Vp(S5:iEp: [12:1) ValS4:Eq: [131) EN=EXP [;]
Abbreviation: DIS
Function: To printin table form V, V,, V5 and EN, where EN is the value of the expression

EXP for each possible combination of values for V4, V5, and V,.

When DISPLAY prints this table, each column is headed by the appropriate variable name. On normal
termination the values of V,, V,, V5 and EN are the same as the last line of the table. With the
exception of the blank between DISPLAY and V,, blanks are optional.

V. Va. V3 CTS variable names.
S1. S5. 53 Start values.

E,, Es. E3 End values.
I, 15, I3 Increment values (if not specified, one is assumed).

CTS variable name which will be defined by CTS to have an initial value of zero.
EXP A CTS expression which has a numerical result.

Since the start, end, and increment values may be any CTS expression which has a numerical resuit,
‘these values must be separated by semicolons.

The initial value of each variable is its respective start value. Each time the variable is incremented,
its value changes to its current value plus the increment. The value of a variable is always less than
or equal to its end value.

The variable V3 will be incremented over its range, before the variable V, is incremented. The variable
Vg will in turn be incremented over its range before the variable V, is incremented. For each new
value of V,, the parameters Sy, E3, I3 and V3 are reevaluated and Vg is incremented over its range
again. For each new value of V,, the parameters S,, Ey, |5, Va, 83, B3, I3 and V3 are reevaluated and
the process starts over. When V,; has been incremented over its range the command terminates.

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users

12-13
PAGE

UPDATE LEVEL

This is an example of a table printed by a DISPLAY command:

=>DISPLAY A(1;4;) B(3,5;) HYP=SQR[A*¥24B%%2)

A B HYP
1.0000000EO 3.0000000EQ 3.1822776E0
1.0000000E0 4 .0000000EO 4.1231056E0
1.0000000EQ 5.0000000E0 5.0990195E0
2.0000000E0 3.0000000EQ 3.6055512E0
2.0000000E0 4 .0000000E0 4.4721358E0
2.0000000E0D 5.0000000E0D 5.3851648E0
3.0000000EO 3.0000000EC 4.2426406E0
3.00000C0EO 4 .000000CEO 5.0000000E0O
3.0000000EO 5.0000000E0 5.800951BE0
4.0000000EO0 3.0000000E0 5.0000000€0
4 . 0000000ED 4. 0000000E0 5.6568542E0
4 .00000C0EOD 5.0000000E0 6.4031242E0

->

The DISPLAY or SUM command may cause the following diagnostic messages:

<193>
<195>

START VALUE

<194>

START VALUE

*ERROR ~ THE INCREMENT FOR [variable name]
#ERROR - THE INCREMENT FOR [variable name]
IS LESS THAN THE END VALUE

#ERROR - THE INCREMENT FOR [variable name]
IS GREATER THAN THE END VALUE

IS ZERO
1S NEGATIVE BUT THE

IS POSITIVE BUT THE

<192> *ERROR - INVALID EXPRESSION OF UNDEFINED VARIABLE FOR [variable
name or expression name]

12.5. lterative Expression Summation - SUM

Abbreviation: None

Function: To set the expression name, EN, to the sum of the values of the expression, EXP,

for each possible combination of values for V4, V, and V5.

The parameters are the same as for DISPLAY. Since the start, end, and increment values may be
any CTS expression which has a numerical result, these values must be separated by a semicolon,

For example:
=>SUM A{T1;4;) Bf3:5;) HYP=SOR{A*¥21B*%2}
HYP = 57.980825905866712
-2

On normal termination the values of V,, V,, and V3 are the same as they would be for the DISPLAY
command. See the DISPLAY command {12.4) for a list of possible error messages.

8118.2 SPERRY UNIVAC Series 1100

: ' I 12-14
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
12.6. Removing a Variable or Subroutine — DROP
Syntax: DROP V, [V,, Va. ... V]
Abbreviation;: DRO
Function: To remove or drop variables from CTS operating environment.

This command will drop or deactivate variables with the names V,, ..., V. Once dropped, these
variables can no longer be accessed unless they are reestablished by a SET or QUERY command.

If V,, is an established variable, it is dropped immediately. If V, is not a variable, an error results.”

Any erroneous variable name V|, terminates DROP command processing. Any variables dropped prior
to the error will remain deleted.

Example:

-> SET A=1

->TYPEA

1

->DROP A

-> SET B=A+2

< 8> VARIABLE A IS UNDEFINED

8118.2
UP-NUMBER

S'_’ERRY UNl_/AC Seri_es 1100 1341
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

13. Batch Mode

13.1. General

Much of this manual has discussed the entering, creating, editing, and output of programs from a
terminal. This implies that all work has been performed in demand and conversational modes. It
is important to establish that batch mode of operation is not in contrast to, but is a part of, the SPERRY
UNIVAC Series 1100 Conversational Time Sharing System. Batch processing is the technique of
executing a set of computer programs such that each is completed before the next program of the
set is started. The term "batch processing” therefore implies the serial execution of programs.
Because of this concept of running programs serially, programs performed at the central site are
considered to be batch; and are usually read to the computer in the form of punched cards or magnetic
tape; and the output produced by these same runs is contained on magnetic tape, paper tape,
punched cards, microfilm, or printed output.

Clarifying what is meant by executing programs serially will help explain how terminal input can be
treated as if it were an entire program read in through a card reader.

The Executive receives input that is acted upon when the entire program has been read in. The input
has a @FIN control statement at the end. Alil of the instructions and control statements {which may
number in the thousands) are stored until the last image has been read in. A job (or run) does not
"start” until the @FIN statement has been entered.

The batch run is designed primarily so that input devices such as card readers, magnetic tape drives,
paper tape readers, eic., reach a high speed of transfer (input).

The batch job may be few or many statements, instructions, or control commands. These programs
usually are not entered a line at a time at the terminal, but are brought into the run stream as an entire
program or group of instructions. By building program fites and having the @ RUN control statement
as the first image of the program file, the entire program is read in from the terminal in the form of
paper tape, cassette input, keyboard entry, magnetic tape, or disk or drum storage under terminal
file control. In either Executive mode or CTS mode, the option of batch input with the @START
command must be used. As stated earlier, the first statement in the file must be a @RUN with the
necessary parameters (run—id, account number, project-id, etc..) or these parameters must be supplied
with the @ START command, in which case the account number that is used in the @START name,
set. run-id, account number, project-id, run~-time statement is used. The end of the file or element
denotes a @FIN contro! statement.

To avoid confusion, the statement format as it is used in Executive mode is illustrated first, followed
by the ¥*CSF command in CTS mode. The same @RUN card is used as in Sections 9 and 10, but
notice the addition of the "B” option as @RUN,/B JIM,123456, SMITH,15,50. The following
subsection illustrates the @ START command in both Executive mode and CTS mode.

" 8118.2 SPERRY UNIVAC Series 1106

UP-NUMBER Time Sharing Guide for CTS Users 13-2

PAGE

UPDATE LEVEL

13.2. Starting a Batch Job from the Terminal

13.2.1. In Executive Mode -~ @START

The example starts as if logging-on the system with TSS (Terminal Security System). The B option
is used on the o_riginal log-on statement as follows:

DET236

ENTER USERID/PASSWORD

*SMITH/7HAPPY

#DESTROY USERID/PASSWORD ENTRY*

#UNIVAC 1100 OPERATING SYSTEM VER.xx.xx.xx#

>@RUN, /7B JIM, 123456, SMITH, 15,50, 100 (Batch mode--enter stream.)
»CASG,A FILS.

»@START FIL3. BLOOD

S@FIN

Immediately after the @RUN, the cataloged file FIL3. is assigned to the run. The first command in
BLOOD must be 2 @RUN JIM,123456,SMITH,25, statement. The output from BLOOD should be
returned to JIM SMITH.

The following exampie uses the @ START with a different format because the next element does not
have a @RUN statement as the first command. The same file, FIL3 is used, but a program contained
in element SWEAT is executed:

>8HDG HOLD SWEAT OUTPUT FOR TOM BROWN IN OUTPUT BIN
>E@START FIL3 SWEAT. TOM. 123456, BROWN, 10, 15/25

In the event that the element SWEAT contains a @RUN statement, the parameters supplied by
@START FIL3.SWEAT,. TOM,123456,BROWN would be overwritten, or have priority over the @RUN
control card in SWEAT. A message is not needed because the heading explains that the printout is
to be held for Tom Brown.

Notice the format of the @START statement where two commas were used together {.} after
FIL3.SWEAT. The second field after the file~element name (FIL3.SWEAT) is for SET which specifies
an octal number to be placed for altering the normal execution sequence of the run. SET was
eliminated by placing two consecutive commas after the first field.

13.2.2. In CTS Mode ~ CSF 'START’

Syntax: CSF 's°
s= START
Abbreviation: None
Function: To initiate dynamically an independent run and permit the user to schedule

independent batch runs where the run streams for these runs have been created
and entered previously into the system.

Runs scheduled by this control statement must be in SDF (see 7.1) and must be cataloged as either
data files or data elements. The following iflustrates the same format as in Executive centrol mode:

>@CcTSs. /|
I CTS 8R1 31 OCT 80 AT 07:37:02

B118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users 13-3

PAGE

UFBATE LEVEL

IF YOU NEED ASSISTANCE TYPE s*HELP

FOR NEW FEATURES TYPE #CALL CTS-COMMANDS
THE ASSUMED MODE 1S ASCII

->*#CSF 'START FIL3.TEAARS’

A @RUN statement was not necessary in the example just shown, assuming that the @RUN source
statement was the first control command in element TEARS of file FIL3. In the following example,
we supply the @RUN for the program in element, TEARS:

>@CcTs, !

CTS 8R1 31 OCT B8O AT 07:37:02

IF YOU NEED ASSISTANCE TYPE #HELP

FOR NEW FEATURES TYPE #CALL CTS-COMMANDS
THE ASSUMED MODE 1S ASCII

-> *CSF 'START FIL3.TEARS, ,HARRY, 123456, HORN*
->

The @RUN statement supplied with the CSF @ START command would have precedence over a @ RUN
statement if there were one present as the first source statement in element, TEARS. The double
commas voided the second field of the @RUN statement so that the execution sequence would not
be altered.

If no messages are printed, the operation is successful. The output from the program of element
TEARS in file name FIL3, goes to the primary printer at the centrai site: ‘

->@FIN

RUNID: JIM ACCT: 123456 PROJECT: SMITH

SMITH*MSG SMITH STARTING A BATCH RUN FROM SITE tD DCT236
TIME: TOTAL: 00:02:33.722

CAU: 00:00:00.403 1/0: 00:00:25.205

CC/ER: 00:02:08.113 WAIT: 00:15:27.992
SUAS USED: % 3.00 SUAS REMAINING: $200000.00
SRC: PS= 468533 ES= 0453091
IMAGES READ: 4 PAGES: 2

START: 07:40:02 Oct 31,1980 FIN: 07:46:32 O0Oct 31, 1980
#TERMINAL INACTIVE#*
>

The terminal does not return to a terminal inactive mode untit a @FIN command has been entered.
The @FIN is implied for any runs that were dynamically initiated by the START command by either
the end of file or end of element. Another @RUN statement could be entered while in batch mode,
but it is also treated as a batch run.

NOTE:

It is recommended than a @FIN command be used to terminate all batch runs that call on CTS. If
not used, unpredictable resuits may occur.

The many applications of the @START command are limited only by limitations of the program that
has been cataloged.

Debug work is also greatly enhanced by being able to perform tests and print the entire output at
the local site. It is also very easy to perform the same tests repeatedly for this same purpose.

Prestored utility routines and standard production runs are of particular benefit when used with the
START command.

g118.2
UP-NUMEER

SPERRY UNIVAC Series 1100 13-4
Time Sharing Guide for CTS Users UPDATE LEVEL PAGE

13.2.3. In Either Mode - @ @START

A special mode of processing directs the operating system to process control statements immediately
after they are received from a remote terminal. The processing called for by the control statement
is done independently of any current program execution or control statement processing in the run
stream. This mode of executing a control statement is specified by a special character, a second @
in column 2 in the control statement. This mode of operation is called transparent mode, and control
statements which can direct or specify this mode of operation are called transparent control
statements.

Transparent control statements are a subset of the control statement set. The syntax rules for normal
control statements, with the following exceptions, also apply to transparent control statements. The
exceptions are as follows:

1. The identification of a transparent control statement consists of a double @ @ versus a singie
@ for a normal control statement.

2. The use of a label on a transparent control statement, while not prohibited, is meaningless.
3. Transparent control statements may be entered only in demand run mode.

4. Transparent control statements may not be entered from any means other than the primary input
device, (i.e., at the keyboard only, not on paper tape. full screen, or cards).

5. Processing of any previous transparent control statement from the same terminal must have
been completed. :

6. Any run initiated from a demand terminal using the @START or @ @START control statement
is scheduled as a batch run with its output going to the onsite peripherals.

See Appendix A for a list of transparent control statements.

13.3. Batch/Time Sharing Compatibility

CTS maintains a compatibility with the Executive wherever possible. The files created in CTS are
created through the Executive. Consequently, these files are registered with the Executive exactly
as if they had been created outside of CTS in either demand or batch mode. Whether they are used
as data files or program files, a strict adherence to the respective formats is maintained.

Many operations are performed by the Executive itself, even when interfacing through CTS.
Compilations, collections, executions, and many file manipulations are examples. In a sense, CTS
really acts as a convenient interface between the programmer and the Executive.

This compatibility has some far-reaching implications. 1t is entirely possible, and sometimes
advantageous, to use the Executive for part of an effort and CTS for the rest. Source code may be
created via the normal batch mode operation, using either a compiler {getting the benefit of a
debugging run at the same time) or the ELT processor. This can take advantage of the skill of a
keypunch operator. For creating large programs, this may be the most efficient methed. Once the
symbolic elemant is in a program file, CTS can edit, modify, test, and update it. Depending on the
type of program, it can be executed in the future in batch mode. The fact that a file or element was
created in one mode does not prevent it from being used in another mode.

g118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users

A-1
PAGE

UPDATE LEVEL

Appendix A. Transparent Control Statements

Command Mode Terminal Meaning

@@CDi Demand DCT 1000 Turn on card input.
Remote Batch
Inactive

@@CDho Demand DCT 1000 Turn on card output.
Remote Batch

@ @CONT Demand ALL Continue. Used after a break-key
Remote Batch (interrupt of output} to signify that
Inactive no special action is desired.

@@{CQUE Bemand ALL Circumvent input sglicitation
requirement. This allows several
input images to be buffered in
main storage before the terminal
is placed in a wait condition.

@@DCT Demand TTY Changes terminal operating

Remote Batch DCT 500 characteristics. Parameters are
Inactive required.
@ @END Demand ALL Terminates any special input
Remote Batch mode; i.e.,, @ @CQUE, @ @INQ,
@ @FUL.

@@ESC Demand ALL Ailows input 1o be passed to the
requestor unaltered from the
format in which it was entered.

@@FUL Demand UNISCOPE 100/200 Puts terminal in full-screen input

Remote Batch UNISCOPE 300 mode.
Inactive

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

A-2

UPDATE LEVEL PAGE

%

Command Mode Terminal Meaning
@@FRZ n Demand UNISCOPE 300 Allows the uppermost n lines to be
Remote Batch unaffected by UNISCOPE scrolling.
Inactive
@@Hi Demand UNISCOPE 300 Sets high-speed (normal) output
Remote Batch rate.
Inactive
@@INQ Demand ALL Directs the Executive to buffer all
Remote Batch input to mass storage until an
Inactive @ @END is received. If the
@ @INQ is entered when the
terminal is inactive, the next input
should be a @RUN image. The
following input will be treated as a
remote batch input.
@@INS n Demand UNISCOPE 100/200 Set insert point at line n.
Remote Batch UNISCOPE 300
Inactive
@@Low Demand UNISCOPE 300 Sets low-speed output rate. This
Remote Batch is always assumed when a
Inactive PAGEWRITER printer is active.
@ @MED Demand UNISCOPE 300 Sets medium-speed output rate.
Remote Batch
Inactive
@ @NOPR Demand BCT 1000 Release assigned PAGEWRITER
Remote Batch UNISCOPE 300 printer or Communrications Qutput
Inactive DCT 500 S/A Printer {COP).
UNISCOPE 100/200
@@PRNT n | Demand DCT 1000 Select the printer as the output
Remote Batch UNISCOPE 100/200 device. For UNISCQOPE 100 and
Inactive UNISCOPE 300 UNISCOPE 300, turns COP or
DCT 500 PAGEWRITER printer on or off.
The COP number n must be
specified for UNISCOPE 100/200
and UNISCOPE 300.
@ @PT\ Demand TTY Select paper tape as input. {f
Remote Batch DCT 500 @@PT! is entered when the
Inactive DCT 1000 terminal is inactive, the first image
on paper tape should be 3 @RUN
image. The input will then be
treated as a batch run.
@@PT0O Demand bCT 500 Select paper tape punch as output
Remote Batch DCT 1000 device.
Inactive

8118.2

SPERRY UNIVAC Series 1100

: A A-3
UP-NUMBER Time Sharlng Guide for CTS Users UPDATE LEVEL PAGE
Command Mode Terminal Meaning
@ @PTP Pemand DCT 1000 Enter point-to-point mode.
Remote Batch Optiona!l with configuration.
Inactive
@@RLD Demand UNISCOPE 100/200 Roll screen down.
Remote Batch UNISCOPE 300
Inactive
Inactive
@ @RLU Demand UNISCOPE 100/200 Roll screen up.
Remote Batch UNISCQPE 300
Inactive
@ @RQUE Remote Batch ALL Stop printing batch output file but
save file for later.
@ @SEND Inactive ALL Print batch output files.
@@SKIP n Demand ALL Skip n lines of output {n < 64).
@@TCT Bemand UNISCOPE 100/200 Position tape cassette UNIT n 1o
n,TRACK Inactive top of TRACK {1 or 2).
@@TCM Demand UNISCOPE 100/200 Tape mark to deselect tape
cassette unit.
@@TCl Bemand UNISCOPE 100/200 Select tape cassette UNIT n to
n,NUMBER Inactive input number of blocks or until
tape mark if number is not
specified.
@@TCO Demand UNISCOPE 100/20C Select tape cassette UNIT n for
n,MARGIN Inactive output. Format one image/block
unless lines specifies the
maximum number of lines to
output/block.
@ @TERM Demand ALL Terminate site.
Remote Batch
Inactive
@@TTY Demand TTY See @@DCT.
Remote Batch BCT 500
Inactive
@@X
[param]
param = | Demand ALL Release backed—up input.
= 0 Demand ALL Releazse backed-up output.
=7 Demand ALL Terminate executing task.
=C Demand ALL Control to contingency.

B11B.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users .

UPDATE LEVEL I PAGE

“

Appendix B. Explanation of CTS Messages

This appendix lists the messages and diagnostics generated by CTS. Most of the diagnostics are
preceded by a number within <> characters. This number is the message number which may be
specified on an EXPLAIN command. The explanation is the one which weuld be given by EXPLAIN.
The miscellaneous messages do not have message numbers because they are printed by a CTS
internal subroutine or because they are not diagnostics.

B.1.

Miscellaneous Messages

ALL MAIL FILES IN USE
No additional messages may currently be sent to the run-id.

ASSUMED COMPILER?
Self explanatory.

Action: Specify an assumed compiler in response to above query and the COMPILE or
RUN will continue.

AUTO

This simply indicates that CTS has just done an auto save and that the ASSUME AUTO with
the print has been turned on.

Action: None required.

BAD SCAN FILE

CTS could not read the ASSUME SCAN file either because it did not exist or itis improperly
formatted.

Action: To see the exact reason, execute ASSUME SBUG ON, followed by a SCAN
command.

*BREAK
CTS has terminated the current command on a break contingency. (@ @X € will cause this
message 1o be printed if CTS is not finished with the command being interrupted.)

CANNOT RESTORE ENVIRONMENT - CTS REINITIALIZED
Recovery file exists. but cannot be used to restore environment because of file errors, or
because an abnormal exit was taken from CTS and an auto save had not been done.

g118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users =

PAGE

UPDATE LEVEL

CANNOT SAVE WORKAREA
Self explanatory.

Action: An attempt to list the working area will usually show the exact reason.

CTS RESTART
The recovery file exists and was used to reestablish the environment following an abnormal
run termination.

DECK NAME LOST
Self explanatory.

END OF FILE
An editing command has encountered the end (a line number greater than any existing line}
of f. The end flag is set.

END OF PRINT FILE
The end of the scan file has been detected. The next scan will start at the beginning of
the scan file.

ERROR DO YOU WANT A DUMF?
Of the large variety of potential error interrupts, CTS checks for the errors it can take action
on. The rest will cause this message.

Action: Respond YES 1o this, and CTS will query for identification of the dump and send
a diagnostic dump to the onsite printer. The dump and the interrupt can be used
by the site analyst to correct the error.

FILE IS BUSY—WAITING
Another CTS user is writing into the file, or waiting for his write operation to finish.

Action: The request has been queued. Wait for it to be performed or abort the requested
action, with a @@X C.

IN EXEC MODE
CTS has saved its environment and is exiting to execute another program. This means
control is leaving CTS.

WARNING—THE WORK AREA WAS NOT SAVED/REPLACED
If the work area has been edited but not SAVED or REPLACED before existing CTS, the user
is warned.

INCOMPLETE PRINTFILE
This is a warning only. The run producing the print file was abnormally terminated.
Information that is in the scan file SQUELCH$ is available.

NO SCANNER FOR THIS PROCESSOR
The scan file includes a listing from a processor for which there has not been developed
a diagnostic scan routine.

*%0OPERATOR INTERRUPTED PROGRAM
The operator executed an |l keyin at the console. It interrupts CTS in a manner similar to
the break contingency. '

PROCESSOR, (NAME), CAN NOT BE FOUND
The processor specified on a SCAN command was not in the scan file.

8118.2 SPERRY UNIVAC Series 1100

H ! B-3
UP-NUMBER Time Sharlng GU|dE for CTS Users

PAGE

UPDATE LEVEL

PROGRAM, (NAME), CAN NOT BE FOUND
The program specified on a SCAN command was not in the scan file.

STATEMENT NOT IN CLIST
An Executive control statement or a line preceded by an @ has been entered.

Action: If this message occurs and CTS commands are not acceptable, then type
@ENDX.

THE WORK AREA IS EMPTY
Self explanatory.

TOP OF FILE
An editing command has encountered the top {a line number smaller than any existing line)
of f. The end flag is set.

B.2. CTS Diagnostic Messages
i
The explanations for the following messages are those that are printed by the EXPLAIN command.

< 1> VARIABLE NAME LENGTH EXCEEDED (CHARACTER STRING)
A variable name greater than 12 characters has been defined.

<2> COMMAND LENGTH EXCEEDED (CHARACTER STRING)
A command has been entered which became larger than a CTS internal buffer when the
character substitution was done for a variable reference or when defining a subroutine.
Break the command into smaller commands.

< 3> STRING LENGTH EXCEEDED (CHARACTER STRING)
The characters specified in the diagnostic exceed the length of an internal buffer. This
occurs when an editing command encounters an invalid line. If an OLD or MERGE is
terminated, the invalid line, which is the last one copied, may be listed by #PRINT 1-1.

< 4> ELEMENT (FILE NAME.ELEMENT NAME) CANNOT BE FOUND
The element referenced does not exist. Check spelling.

< 5> DUPLICATE NAME {FILE NAME.ELEMENT NAME) - PROGRAM NOT SAVED
An attempt has been made to save a program but a program already exists by that name.

Either specify a different program name with the SAVE command or use the REPLACE
command,

< 6> PROGRAM NOT SAVED
A SAVE or REPLACE was interrupted by 2 *@@X C.

< 7> EXPRESSION IS TOO COMPLICATED
There are too many terms in the expression and an internal buffer has been exceeded.

< 8> VARIABLE (VARIABLE)} IS UNDEFINED
Self-explanatory — Check spelling.

<9> ILLEGAL OPERATOR (CHARACTER STRING)
A character has been entered which is not a valid operator or operand in an expression.
Check typing or expression syntax.

8118.2
UP-NUMBER

SPERAY UNIVAC Series 1100

Time Sharing Guide for CTS Users 84

UPDATE LEVEL PAGE

< 10> Not Used.

< 11> UNBALANCED PARENTHESIS
Self explanatory - Check typing.

< 12> UNBALANCED DELIMITER
The character string has ne¢ closing delimiter, usually a quote or the first character in the
string.

< 13> IO ERROR WHILE READING ADD FILE
The Executive was unable to read the add file. Check creation of the file.

< 14> ARGUMENT COUNT TO (FUNCTION NAME) IS BAD
The wrong number of arguments in the function was specified.

< 15> UNKNOWN FUNCTION {FUNCTION NAME)
Self explanatory — Check spelling or documentation for valid CTS functions.

< 16> ARGUMENT MODE TO (FUNCTION NAME]} IS BAD
A numeric or string argument has been specified when the opposite mode is required, or
when the argument exceeds the numeric range of the function.

< 17> KEYWORD (CHARACTER STRING)
A keyword expected for this command was not given {missing) or incorrectly given. Check
spelling and/or command syntax.

< 18> (FILE NAME) IS NOT A DATA FILE
Self explanatory — Check command syntax, DATA mode, or file generation.

< 19> (FILE NAME]} IS NOT A PROGRAM FILE
Self explanatory — Check file generation.

<20> ILLEGAL COMMAND SYNTAX {CHARACTER STRING)
Self explanatory — Check spelling or type HELP.

<21> LINE {LINE NUMBER) DOES NOT EXIST
Self explanatory.

< 22> REQUIRED SYNTAX IS MISSING
A required field was left off a command. See command syntax.

<23> ILLEGAL FILE OR PROGRAM NAME SYNTAX (CHARACTER STRING)
A file or program exceeds 12 characters, contains iilegal characters, or has an invalid
format.

<24> STRING EXCEEDS COLUMN LIMITS
The number of characters specified in the INSERT command exceeds the column limits.

The action was not performed. The string may be expanded on insert only with NOQ KEY
or KEY = PACK.

<25> NUMERIC CONVERS!ON ERROR
A number specified cannot be represented as floating point.

< 26> CANNOT COMPARE STRING TO NUMBER
The two expressions for a relational operator were not of the same type. If part of a JUMP
instruction, the jump was not taken.

8118.2 SPERAY UNIVAC Series 1100
UP-NUMBER Time Sharing Guide for CTS Users

UPDATE LEVEL

<27> COMMAND IS LEGAL ONLY IN EDIT MODE
This command requires the working area images which were saved by the SCAN command..
They are restored by EDIT.

<28> STATEMENT NUMBER {NUMBER) IS MULTIPLY DEFINED
Two or more statements within a subroutine have the same statement number. The
subroutine definition was not performed.

<29> STATEMENT NUMBER {NUMBER]) IS NOT DEFINED
Staternent number has been specified in a JUMP or BRANCH ¢command, but it is not defined
in the subroutine. The subroutine definition was not performed.

<30> ASSUME JUMP MAX. EXCEEDED - SUBROUTINE TERMINATED
The maximum number of allowable JUMPs specified by ASSUME JUMP has been
exceeded.

<31> COMMAND iS LEGAL ONLY IN SUBROUTINE MODE
The JUMP, BRANCH, RETURN, ENTRY, and END commands are legal only within a
subroutine. .

<32> ILLEGAL CALL NESTING TO (SUBROUTINE NAME)
A subroutine cannot call itself either directly or indirectly. The call was not perfermed and
the calling subroutine is terminated.

<33> FILE (FILE NAME) IS FULL
All of the avaiiable space in the file is used. If it is 2 program file, pack it. If not, it must
be released and created with a targer max size specification.

<34 (FILE NAME) IS TOO SMALL TO BE A PROGRAM FILE
At least 29 tracks must be specified for a program file. The default of 128 tracks is
suggested. PURGE and recreate the file.

<35> DIVIDE OVERFLOW
The result of a divide was too large.

< 36> FLOATING POINT OVERFLOW
The result of a multiply exceeded arithmetic limits of 10%*%3038.

<37> ILLEGAL READ/WRITE KEYS SYNTAX (CHARACTER STRING)
File read/write keys may each be up to six characters in length and consist of any character
except a period, comma, slash, or blank. Check typing.

< 38> AFTER LINE (LINE NUMBER) THERE IS A BAD CONTROL WORD (CHARACTER STRING)
The file is damaged or is not in SDF format. The specified line number was the [ast line
copied.

<39> TAB TABLE IS FULL
Either more than 4 tab characters or more than 12 tab stops were specified, or a
combination of the 2 specifications caused tab limits to be exceeded.

<40> A PERIOD IS NOT ALLOWED IN A HDG
Self explanatory.

< 41> FILE {FILE NAME} IS NOT FASTRAND
The file referenced is probably tape or a word addressable file.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users 8-6

PAGE

UPDATE LEVEL

<42> READ OR WRITE PERMISSION DENIED ON (FILE NAME)
The file is read inhibited or is write inhibited and the command requires the missing
permission. The file may have been created as read or write only, or the requested keys
were not specified.

<43> COMMAND IS LEGAL ONLY IN SCAN MODE
CTS was already in edit mode.

<44> END-QF-FILE ENCOUNTEHED ON (FILE NAME)
Self explanatory.

<45> TAPE (FILE NAME} IS AT LOAD POINT
Self explanatory.

<46> MISSING SENTINEL ON (FILE NAME)
A mass storage search operation has failed.

< 47> NON-INTEGRAL BLOCK WAS READ ON (FILE NAME)
A partially full tape block was read. This may be valid but quite often indicates the tape
has been damaged or was created on a noncompatible tape drive.

<48> BAD ADDRESS LINK ON (FILE NAME} -
A portion of the specified file has been lost or moved by a pack. Use PRINT to find the
line pointer position where the bad link occurs. The lines preceding and/or following any
line with a bad link may be saved by deleting the erroneous line.

<49~ CSF SYNTAX ERROR IN IMAGE...
The specified image is not a valid Executive control card. This normally denotes an
Executive error return after a CSF command. Check CSF syntax,

<50> LOSS OF POSITION ON TAPE (FILE NAME)
The console operator has entered a B response to an |/0Q error message on tape or mass
storage. The operation is terminated.

<51> FILE (FILE NAME)} REQUIRED BUT HAS BEEN FREED
CTS$FILE or the file read by the last OLD command has been freed. The file name specified
is an internal name. If the file is not CTS$FILE, either reassign the file, if possible, or delete
the working area. If the file is CTS$FILE, exit with an EX!IT command and CTS will
reinitialize. -

<52 F-CYCLE CONFLICT ON (FILE NAME)
CSF status bit 5 —
(A) cataloging of the requested f-cycle would force deietion of a currently assigned f-cycle.
{B} F-cycle generation inhibited due to existence of +1 file.
(C) F-cycle requested is not within currently acceptable range.

<53> LINE (LINE NUMBER} IS TOO LONG
(A) Aline’s length exceeds the ASSUME SAVE LENGTH limit (normally 162 characters). The
image is entered correctly but will be truncated during a save.
(B} A very large image has been encountered during an OLD or MERGE, probably due to
file damage or the file not being in SDF format. The operation is terminated.

<54> ERROR - JUMP PAST END OF SUBROUTINE
A relative jump is beyond the limits of the subroutine. This is an abnormal subroutine
termination and control is returned to command mode.

8118.2
UP-NUMBER

SPERRY UNWAC Series 1100

Time Sharing Guide for CTS Users 8-7

PAGE

UPDATE LEVEL

<55> (FILE NAME) IS DISABLED
CSF status bit 8 or 6 - The file is not accessible because the links to the master file directory
items have been destroyed or because the file has been rolied out and the backup copy
is unrecoverable.

<56> WARNING - DEVICE FOR (FILE NAME} IS DOWN
CSF status bit 8 - The site operator has downed the equipment.

< 57> WARNING - FILE {(FILE NAME)} 1S READ !NHIBITED
CSF status bit 10 ~ The file is a write-only file cataloged with a W option.

<58> WARNING - FILE (FILE NAME) IS WRITE INHIBITED
CSF status bit 11 - The file is a read-only file cataloged with an R option.

<59> WARNING - (FILE NAME) IS TAPE
CSF status bit 12 - Self explanatory. This is only a warning.

< 60> (FILE NAME) IS PRIVATELY CATALOGUED
CSF status bit 13 - File has been cataloged by a different project-id as a private file. Your
request is denied.

< 61> (FILE NAME) HAS BEEN DELETED '
CSF status bit 14 - File has been marked for deletion in the master file directory and will
be decataloged when no run has it assigned. The request is denied.

< 62> EXCLUSIVE USE OF (FILE NAME) DENIED
CSF status bit 15 - The file is assigned to another run. The reference requires exclusive
use. The command is not executed.

< 63> SOMEONE ELSE HAS EXCLUSIVE USE OF (FILE NAME)
CSF status bit 16 - Self explanatory. The request is denied.

< 64> ILLEGAL ATTEMPT TO ALTER (FILE NAME)
CSF status bit 17 - Option conflict for a cataloged file. The file was already cataloged when
the € or U option was used, either alone or in combination with P, R, or W. The request
is denied.

< 65> (FILE NAME) IS TEMPORARILY UNAVAILABLE
CSF status bit 18 - The file is not accessible because someone has assigned it for exclusive
use, the file has been rolled out, or the physical unit is not available. The action is not
gueued. Wait and try again.

< 66> (FILE NAME) HAS BEEN ROLLED QUT
CSF status bit 19 — The file has been rolled out on tape. This reference causes a request,
to roll the file in to mass storage, to be queued. Wait and try again.

< 67> WRONG REEL NUMBER FOR (FILE NAME)
CSF status bit 20 - The specified file is cataloged on a different tape ree! or removable
disk than specified on the create statement.

<68> (FILE NAME) IS NOT CATALOGUED
CSF status bit 32 - The file does not exist. Check spelling.

<69> WARNING - FILE (FILE NAME) HAS NOT BEEN CREATED
The file referenced in the second field of the USE command does not exist. Check spelling
or typing.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users B-8

PAGE

UFPDATE LEVEL

<70> ASCH IMAGES ENCOUNTERED AND IGNORED
The file being read by OLD or MERGE contains ASCI! images which were not copied. The
Fieldata images were copied.

<71> WARNING - READ KEY MISSING ON (FILE NAME)
CSF status bit 24 - This is a warning that the file was created with a read key and none
has been specified on the command.

<72> WARNING - WRITE KEY MISSING ON {FILE NAME)
CSF status bit 25 — This is a warning that the file was crested with a write key and none
has been specified on the command.

<73> PROGRAM NOT REPLACED : :
The data file name specified on a8 REPLACE command does not exist. Check DATA mode,
or speliing, or use the SAVE command.

< 74> PROGRAM HAS NO END CONTROL IMAGE
The data file or program element is damaged or incomplete. All of the lines may have been
read successfully. Use PRINT 1-1 to see the last line read.

< 75> {FILE NAMEELEMENT NAME) IS AN ASCII ELEMENT — NOT COPIED
Self explanatory - The program can be read into the CTS working area by specifying
NUMBER mode with a NUM command and keying in @ ADD (FILE NAME.ELEMENT NAME}.

< 76> WARNING - FILE NAME (FILE NAME)} IS NOT UNIQUE
CSF status hit 29 - This is only a warning that two files exist with the same name but
different qualifiers or f-cycles.

< 77> ILLEGAL LINE LIMIT SYNTAX (CHARACTER STRING}
Self explanatory for most commands. The valid line limit syntax on OLD or MERGE
commands is more restrictive than for other commands and this diagnostic is given for
those not allowed. This message is also given if a command would generate a tine number
of zero.

<78> WRONG DEVICE TYPE FOR (FILE NAME)
CSF status bit 31 - User has specified sector-addressable device or atape unit device when
referencing a cataloged file on the other type device. .

< 79> FILE {FILE NAME) IS ALREADY CATALOGUED
CSF status bit 32 — A file already exists by the name specified.

< BO> 1/0 ERROR (OCTAL NUMBER) ON (FILE NAME)
An 1/0 operation has terminated with the specified error condition. Check the description
in UP-7924 or see the Sperry Univac site analyst.

<81> FORMAT OR OPTION ERROR IN CONTROL STATEMENT
CSF status bit 34 - There is an error, other than syntax, in the control statement submitted
to the Executive. The error is an option conflict (MHL,OE, or IB}, or noise constant
specification error, or the requested hardware is not currently part of the system.

< 82> MISSING TERMINATION CHARACTER: (CHARACTER)
An INLINE editing command must be terminated by the specified character.

<83> COMMAND WOULD CAUSE ASSUME DUP RES OF A BASIC PROGRAM
The specified DITTO or GENERATE command would cause a line number conflict when
ASSUME DUPLICATE RESEQUENCE mode is set. BASIC program images can only be

8118.2 SPERRY UNIVAC Series 1100

‘ " B-9
UF-NUMBER Time Sharing Guide for CTS Users

PACE

UPDATE LEVEL

resequenced with a MOVE or RESEQUENCE command and the BASIC prescanner must be
active. Any other resequence is invalid because the program statement number references
would not get resequenced. Either specify ASSUME DUPLICATE DELETE and lose the
conflicting lines or use RES prior to the DITTO or GENERATE.

<B84> BAD EDIT CHARACTER
The only valid edit characters on an INLINE command are |, D, and R.

<85> NO ERRORS SINCE LAST EXPLAIN
No diagnostics which have explanations have been given by CTS or BFOR (FORTRAN
prescanner}in this terminal session or since the last error explanation was requested. RFOR
errors can be explained but do not set the default last error condition.

< 86> NO EDIT CHARACTER
An INLINE editing ine with no nonblank characters has been entered.

< 87> INVALID COMMAND
CTS does not recognize the initial characters of a line as a valid command or valid data
line number.

< 88> ERROR MESSAGE {DECIMAL NUMBER) IS NOT DEFINED
Either there is no error message with the specified number or its explanation has not been
entered in the system.

< 89> COMPILE INVALID FOR BASIC - USE *RUN
BASIC is an processor which does not produce object code and therefore does not require
COMPILE, MAP, and XQT to execute a program.

< 90> DEPRESS PUNCH ON
Turn the paper tape punch on at the terminal.

<91> THE ADD FILE DOES NOT EXIST
SYMB 02 - Self explanatory. Check spelling or file generation.

<92> DEBUG ONLY FOR BASIC AND RFOR
The assumed compiler must be BASIC or RFOR to specify ASSUME DEBUG ON. They are
the only processors with the run-time debug features.

<93> CARD LIMIT EXCEEDED
SYMB 42 - Self explanatory.

<94> Not Used.

<95> OUTPUT FILE IS NOT AVAILABLE
The file specified in the second field of COPY or TRANSFER command is not available. The
reason was given in the preceding messages. The command was not performed.

<96> DUPLICATE DATA FILE NAME - NOT SAVED

An attempt was made to save into a data file which already exists and already contains data.
Use REPLACE.

<97> BASIC PROGRAM MOVE REQUIRES BASIC PRESCAN MODE
The BASIC prescanner must be active to cause the BASIC program statement number

references to be changed along with the statement numbers. Execute a ¥BASIC command
before the MOVE.

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users B-10

PAGE

UPDATE LEVEL

<98> BASIC PROGRAM RESEQUENCE REQUIRES BASIC PRESCAN MODE
The BASIC prescanner must be active to cause the BASIC program statement number
references to be changed along with the statement numbers. Execute a ¥BASIC command
before the RESEQUENCE.

<99> INVALID FIELDATA STOP-CODE DETECTED IN IMAGE
The underscore is an illegal character in Fieldatz mode.

< 100> UNKNOWN DEVICE TYPE
The device specified on ASSUME SITE or in response to the SITE? query on a SITE or
CARDS command is not a valid symbiont device type. Try PR for the onsite printer and
CP for the onsite card punch.

< 101> ILLEGAL NUMERIC SYNTAX [CHARACTER STRING}
The column limits fields on a TXT function, the number field on 2 NUM function, or the
message number field on an EXPLAIN command contains nonnumeric characters.

< 102> LINE NUMBER LIMIT EXCEEDED
A CTS line number larger than 262 14 1 has either been entered or generated by a NUMBER
command or an editing command. NUMBER mode is terminated or the editing command
is terminated.

< 103> SYNTAX SCAN IF OFF
The SEND-WORK-SPACE, SWS command, is used to cause the prescanner to scan the

specified portion of the working area. The syntax scanner has been turned off. Enter
*SYNTAX ON.

< 104> Not Used.

< 105> FILE (FILE NAME} IS EMPTY
Self explanatory. The file name specified is an internal name. If the name is not familiar,
use LIST F to find the external name.

< 106> Not Used.

< 107> INTEGER OVERFLOW
Integer exponentiation has caused a number to exceed arithmetic limits.

< 108> ILLEGAL VARIABLE NAME SYNTAX (CHARACTER STRING)
A variable which has a nonalphanumeric character or a nonalphabetic first character, or
exceeds 12 characters in length has been referenced or defined. This ¢an also occur when
attempting to use the variable delimiter for command termination if the commentary
information is not preceded by a blank.

< 109> THE REQUESTED CYCLE FOR (FILE NAME.ELEMENT NAME) DOES NOT EXIST
The element referenced on the OLD or MERGE exists, but not with the cycle requested.
OLD, with no cycle specified, will read the latest cycle of the element.

< 110> SPECIFIED LINES DO NOT EXIST
There are no lines within the range of line numbers specified.

<111> ILLEGAL OR CONFLICTING OPTION SYNTAX (CHARACTER} STRING
Options other than A, R, S, |, or O have been specified or another option was used with
the 1 on a COPY or TRANSFER command. The command was not performed.

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users B-it

PAGE

UPDATE LEVEL

<112> COMMAND WOULD DELETE ASSUMED PROGRAM FILE
A TRANSFER or UNSAVE command would cause the assumed program file to be purged.
The command was not performed.

< 113> TRANSFER PARAMETERS INVALID IN (ELEMENT OR DATA) MODE
A data file nhame must be specified in both the input and output fields of the transfer
command when in DATA mode. The command was not performed.

< 114> COPY PARAMETERS INVALID IN (ELEMENT OR DATA) MODE
A data file name must be specified in both the input and output fields of the COPY command
when in DATA mode. The command was not performed.

< 115> INPUT FILE IS NOT AVAILABLE
The file specified in the first field of a COPY or TRANSFER command is not available. The
reason was given in the preceding messages. The command was not performed.

< 116> Not Used.

< 117> ILLEGAL SUBROUTINE COMMAND SYNTAX (CHARACTER STRING}
The specified line was not a valid CTS command. This error occurred whiia scanning the
subroutine lines for valid syntax, prior to defining the subroutine. The CALL, SUB, BEGIN,
or PROC was not performed.

< 118> ILLEGAL RUN-ID SYNTAX (CHARACTER STRING)
A run-id cannot exceed six alphanumeric characters. The MAIL command was not
performed.

< 119> WORKSPACE WAS NOT CHANGED
The editing command was terminated when the line limit was exceeded and the work space
was returned to the same state as before the command. Use a different command or
resequence first.

< 120> LINES EXCEEDING 262141 ARE LOST
The editing command was performed unti! completion and the resulting lines which exceed
the maximum line number are lost. If there is a backup copy of the lost lines, they ¢an be
appended to the working area by first resequencing and then using MERGE.

< 121> AN ELEMENT MAY NOT BE SPECIFIED
Only file names can be specified on this command because it is a file manipulation
command or because CTS is in DATA mode. The operation was not performed.

< 122> FILE (FILE NAME} IS ALREADY RELEASED
An attempt was made to release a file which was not assigned. Check spelling.

< 123> FILE (FILE NAME)} IS ALREADY CREATED
An attempt was made to create a file and there already was a file by that name.

< 124> BACKWARD LINE LIMIT IS INVALID
Lines must be referenced in ascending order on an OLD or MERGE. They may be referenced
in descending order on other commands. The OLD or MERGE was not performed.

< 125> BACKWARD COLUMN LIMIT 1S INVALID
Self explanatory.

<126> ILLEGAL COLUMN LIMIT SYNTAX (CHARACTER STRING)
A column limits specification contains invalid characters or references a column number
not in the range of 1 to 132.

8118.2
UP-NUMEER

SPERRY UNIVAC Series 1100
Time Sharing Guide for CTS Users

UPDATE LEVEL

B-12
PAGE

<127>

<128>

A FILE NAME MAY NOT BE SPECIFIED

TOO MANY FILLER CHARACTERS IN SECOND STRING (S2)

<129> A BLANK DATA LINE IS NOT ALLOWED

<130>
<131>
<132>
<133>
<134>
<135>
<136>
<137>
<138>
<139>
< 140>
<141>
<142>
<143>
<144>
< 145>

<146>

PRESCANNER REQUIRES ASCH ON MObE

PRESCANNER REQUIRES ASCIlI OFF MODE

ASCIi IMAGES WERE TRANSLATED

FIELDATA IMAGES WERE TRANSLATED

LINE LIMIT TOO SMALL

LINE LIMIT TOO LARGE

SUBROUTINE (SUBROUTINE NAME) IS ALREADY ACTIVE
COMMAND {(COMMAND) 1S UNDEFINED

ARGUMENT SYNTAX TC (FUNCTION NAME)} IS BAD

ZERO IS AN INVALID COLUMN LIMIT

WARNING - AUTOMATIC RESEQUENCE THROUGH THE LAST LINE
ILLEGAL TAPE TRANSLATION OR DATA CONVERTER SPECIFICATION
UNABLE TO CONVERT ASCH CHARACTER CODE ; character
END-OF-FILE CONDITION ENCOUNTERED ON QUERY
SUBROUTINE subroutine name 1S NOT DEFINED

MAXIMUM PAGE LIMIT EXCEEDED

INVALID READ/WRITE KEY COMBINATION

<147>NUMERIC ONLY, LESS THAN OR EQUAL TO 63

<170>

< 171> CTS AUTOFILE IN USE BY ANOTHER RUN — AUTO RECOVERY DISABLED

<183>

INVALID FILE NAME SYNTAX ON @CTS CONTROL CARD

ENTER A UNIQUE IDENTIFIER FOR AUTO FILE

8118.2
UP-NUMBER

SPERRY UNIVAC Series 1100

Time Sharing Guide for CTS Users e

PAGE

UPDATE LEVEL

< 184> STATEMENT NOT IN CLIST

< 185> INCOMPLETE PRINTFILE

< 186> PROCESSOR (PROCESSOR NAME)} CAN NOT BE FOUND

< 187> CANNOT SAVE WORK AREA

< 188> UNABLE TO COMPLETE MAIL

< 189> ALL MAIL FILES IN USE

< 190> CANNOT RESTORE WORK AREA

< 191> PROGRAM (PROGRAM NAME) CAN NOT BE FOUND

< 192> ¥ERROR - INVALID EXPRESSION OR UNDEFINED VARIABLE FOR {VARIABLE NAME)

< 193> #ERROR - THE INCREMENT FOR (VARIABLE NAME) 1S ZERO

< 194> #ERROR - THE INCREMENT FOR (VARIABLE NAME) IS POSITIVE BUT THE START
VALUE 1S GREATER THAN THE END VALUE

< 195> *ERROR - THE INCREMENT FOR (VARIABLE NAME) IS NEGATIVE BUT THE START
VALUE 1S LESS THAN THE END VALUE

< 196> NO SCANNER FOR THIS PROCESSOR

< 197> CTS$FILE OVERFLOWED.

Reserve CTS$FILE space is being used to allow the current command to complete without loss

of the work area. The user should save the work area, and reinitialize CTS {i. e., @CTS,l) so a
fatal CTS$FILE overflow can be avoided.

< 198> BAD SCAN FILE
< 199> CANNOT ASSIGN SPECIFIED FILE

< 200> INTERNAL ERROR AT (ADDRESS): A9 = {OCTAL NUMBER)

8118.2 SPERRY UMIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL pAG!Endex—‘
Index
Term Reference Page | Term Reference Page
ECOLUMN 2.2.2 2-4
EDIT 235 2-16
A FILE 6.2.2 6-10
FILLER 5.1.6 5-9
ABS(x) function 12.1.4 12-2 5.1.7 5-9
HEADING 4.3.4 4-15
ADD command 71.5.7 7-13 INPUTWIDTH 4.2.3.2 4-13
JUMP 8.4.3.4 8-30
Alternate print file 4.3.8 4-16 LIBRARIES 6.4.2.2 6-18
MAIN 6.4.2.1 6-18
APF function 9.1.3 9-2 MAP 6.4.2.3 6-19
OBJECT 6.2.3 6-11
APF({) function Table 12-5 OCOLUMN 223 2-5
12-2 PCOLUMN 2.2.4 2-5
POLL 2.3.1 2-11
APL PRINTWIDTH 4.3.1 4-14
access to 2.4.41 2-38 PROGRAM 6.2.4 6-11
processor options 2442 2-38 QUICK 4.3.2 4-14
running with CTS 244 2-37 RELOCATABLE 6.2.5 6-13
statements 2443 2-39 RESEQUENCE 5.3.6 5-26
RETURN 4.3.5 4-15
Arithmetic operations 12.1.6 12-10 SAVELENGTH 3.2.3 3-9
SBUG . 8.4.3.1 8-27
ASCIl command 2.4.2 2-19 SCOLUMN 225 2-5
SITE 4.3.3 4-14
ASSUME commands STRING 5.1.8 5-9
ASCl 2.2.9 2-9 TRACE 8.4.3.3 8-29
AUTO 2.2.10 2-9 TYPE 43.7 4-15
BREAKPOINT 4.3.8 4-16 XQT 6.3.2 6-15
BRIEF 5.1.3 5-7
CALL FILE 8.4.1.1 8-26 Assumed obiject file
CHECKOUT 11.2.3.2 11-18 name of 9.1.3 9-2
COLUMN 2.2.1 2-4
COMPILER 6.2.1 6-9 Assumed program file,
COPY 4.3.6 4-15 name of 9.1.3 9-2
DEBUG 11.2.1 11-4
ECHO 5.1.5 5-8 ATN(x} function 12.1.4 12-2

8118.2

SPERRY UNIVAC Series 1100

Index-2

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
Term Reference Page | Term Reference Page
Attached names 4143 4-9 Central Processor Time
accumulated 924 9-4
Automatic line numbering
generation 2.3.2 2-12 CHANGE command 5.2.2 5-14
termination 2.3.3 2-15
CHECK command 2425 2-26
B 24323 2-37
Checkpoint saves 2210 2-9
BASIC debugging
BREAK key 11.2.2.2 11-7 CHOP command 2.4.31 2-27
PALUSE statement 11.2.2.1 11-4
TRACE statements 11.2.2.3 11-9 CLEAR command 2.4.7 2-42
Batch processing 13.1 13-1 COBOL prescanner 2.4.3 2-27
BBASIC (BASIC prescan Collection 6.1.1 " B-1
module) 2.4.1 2-17 6.1.2 6-2
BCOB prescanner 243 2-27 COL{) function 12.1.4 12-2
automatic continuation 2.4.3.1 2-27
conversational mode 2.4.3.22 2-32 Combining programs 3.6 3-17
diagnostics 2.4.3.1 2-27
Edit mode 2.4.3.2.1 2-31 Comments 8.3.7.6 8-21
margins 2.4.3.1 2-27
operational Compatibility, CTS and
description 2.4.3.1 2-27 batch processing 13.3 13-4
program file mode 24323 2-37
COMPILE command 6.4.1 6-16
BCOB (COBOL prescanner) 2.4.3 2-27
Compile, collect, and
BFOR (Fieldata FORTRAN execute a program 6.2 6-4
prescan module) 242 2-19
Compile-and-go 6.1.1 6-1
BFTN {ASCII FORTRAN
prescan module) 2.4.2 2-19 Compressing terminal
output 432 4-14
8lank lines, in output listing 4.1.3 4-5
Compression of spaces 4.1.2 4-5
8RANCH command 8.353 8-12
COMP() function Table 12-5
C 12-2
Control characters 1.5 1-6
CALL command 8.4.1 8-24
Control statements
CALL FiLE 8.4.1.1 8-25 submitting via CSF§
interface 7.6 7-14
Calling CTS 1.3 1-1
Controlling the solicitation
CARDS command 4.2.2 4-11 sequence 2.3.1 2-11

8118.2 SPERRY UNIVAC Series 1100 Index-3
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
Term Reference Page | Term Raference Page
COPY command 75.4 7-10
DEBUG mode 11.2.1 11-4
Copying a line 5.3.3 5-24
Debugging source code 11.2 11-4
COS(x) function 12.1.4 12-2
Defining an onsite device 4.3.3 4-14
COT(x) function 12.1.4 12-2
_ Defining the length of a
CPTIME command 9.2.4 9-4 displayed line 431 4-14
CREATE command 7.5.1 7-7 Delete a copy 3.4 3-11
Creating a program 2.1 2-1 DELETE command 5.2.1 5-11
Creating an absolute Deleting files 7.5.2 7-8
element 6.4.2 6-17
Deleting lines 5.2.1 5-11
Creating lines of datain f 2.3 2-10
DIAG command 24256 2-26
Creating relocatable ,
elements 6.4.1 6-16 Diagnostics Appendix B
Creation of a file 3.2.2 3-7 Discarding a copy 3.4 3-11
CR() function 12.1.4 12-2 DISPLAY command 12.4 12-12
CSEQ command 2431 2-27 Displaying a program 4.11 4-1
CSF command 7.6 7-14 Displaying line numbers of
13.2.2 13-2 matched lines 5.1.4 5-8
CSF(e) function Table 12-5 Displaying matched lines 5.1.3 5-7
12-2
Displaying names of
CTS messages Appendix B saved elements 4.1.4.2 4-6
Current date and time 923 9-4 Displaying the names of
assigned files 4143 4-9
Cycle 4.1.4.3 4-9
DITTO command 5.3.3 5-24
C{ } function 12.1.4 12-2
DKN{ } function 9.1.3 9-2
Table 12-5
D 12-2
DATA command 3.2 3-1 BML COBOL 2.431 2-27
3.7 3-21
DROP command 8.3.8 8-23
Data files 31 3-1 12.86 12-14
DATE command 923 9-4
DATE() function Table 12-5
12-2

- 8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGIEndex ¢
Term Reference Page { Term Reference Page
FILLER 5.1.1 5-1
E 5.2.2 5-14
ECHO command 242586 2-26 FILLER default for LOCATE
command 5.1.6 5-9
EDIT command 11.1.2 11-3
FIND command 5.1.2 5-5
Editing a line 5.2.3 5-18
Finding a string 5.1.1 b-1
Elements 7.1.1 7-1 5.1.2 5-5
END command 8.3.7.3 8-18 FMT{x,w.d[,'s’]) function Table 12-5
12-2
Entering data images 21 2-1
Forms of L 2.2.8.2 2-7
Entering FTN interactive
debuyg mode 11.2.34.1 11-21| FORTRAN prescanner :
abbreviated key words 2.4.2.3 2-23
ENTRY command 8.3.7.1 8-16 automatic formatting 2.4.2.1 2-21
automatic global
Equipment type 4.1.4.3 4-9 syntax analysis 2424 =24
continuation lines 2422 2-22
ERASE command 7.56.8 7-14 controlling global
syntax analysis 2426 2-26
ERROR command 8.3.6.1 8-9 global syntax analysis 2.4.2.5 2-26
Examining processar output 11.1.1 11-2 FOUND command 8.35.2 8-11
Executing a program 6.1.1 6-1 FTN 2.4.2 2-19
Executing an absolute FTN CHECKQUT mode 11.2.3.2 11-18
element 6.3.1 6-14 contingencies 11.2.3.5 11-34
interactive postmortem
EXIT command 8.3.7.7 8-22 dump 11.2.3.6 11-35
restrictions 11.2.3.5 11-34
Exiting from CTS 1.4 1-5 walkback 11.2.386 11-35
Explanation of commands 9.3.1 9-5 FTN debug facility 11.2.31 11-12
AT statement 11.2.3.1.1 11-13
Expressions, evaluating and DEBUG statement 11.2.3.1.1 1113
printing 12.3 12-11 DISPLAY 11.2.3.15 11-17
example 11.2.3.16 11-17
EXP(x} function 12.1.4 12-2 INIT 11.2.3.1.1 1113
SUBCHK 11.2.3.1.1 11-13
— SUBTRACE 19.2.3.1.1 11-13
F TRACE 11.2.3.1.1 11-13
TRACE OFF statement 11.2.3.1.4 11-186
FD command 242 2-19 TRACE ON statement 11.2.3.1.3 11-186
UNIT 11.2.3.1.1 11-13
Fieldata character mode 229 2-9
File information 9.1 9-1

8118.2

SPERRY UNIVAC Series 1100 Index-5
UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAGE
Term Reference Page | Term Reference Page
FTN interactive debug SYNTAX 8.3.1 9-5
mode , TEACH 9.3.1 9-5
BREAK command 11.2.3.4.1 11-21 USE 931 9-5
CALL command 11.2.3.42 11-22
CLEAR command 11.2.3.4.2 11-23
DUMP command 11.2.3.4.4 11-24 |
EXIT command 11.2.3.45 11-26
GO command 11.2.346 11-2b Information 9.3.1 9-5
HELP command 11.2.3.47 11-26 .
ISN command 11.2348 11-26 initialization of CTS 1.31 1-2
PROG command 11.2.3.4.10 11-26 e re e .
RESTORE command 11.2.3.411 11-27 Initialization subroutine 1.3.3 1-5
SAVE command 11.2.3.4.12 11-28
SET command 11.2.3.4.13 11-29| 'NUNE command 5.2.3 5-18
SETBP command 11.2.3.4.14 11-30
SNAP command 11.2.3.4.15 11-31| 'NSERT command 5.2.4 5-19
Soliciting input 11.2.33.2 11-20 . .
STEP command 11.2.3.4.16 11-31| Inserting strings 5219 5-19
TRACE command 11.2.3.4.17 11-31 Integer constants 12.1.1 12-1
WALKBACK command 11.2.3.4.18 11-32 eger cons -
ETN interactive debug Internal file name ;?g 7:11
mode, entering 11.2.3.3.1 11-19 o
Functions Interpreter 6.1.1 6-1
general 12.1.4 12-2 lterati ion
numeric Table 12-3 erative expressio
12-1 evaluation 12.4 12-12
string Table 12-5 summation 12.5 12-13
12-2
G JUMP command 8.35 -8-9
GENERATE command 8.3.7.4 8-18
GLOBAL command 24286 2-26 K
Global Scan 2424 2-24 | Keys 7.4 -7
GO command 8.3.75 8-20 L
H LENGTH command 922 8-3
HELP command 931 9.5 LEN(s) function 12.1.4 12-2
HELP subcommands LGTix) function 1214 1222
ggl“T”MANDS g'g'} g:g Line Numbers 2.2.6 2-6
EXPLAIN 9'3'1 9-5 specifying a range 2.2.8.2 2-7
9'3'2 9-6 specifying a sequence 2.2.8.7 2-7
['EEI\';gT'H g'g:: g:g Line numbers, display of 4.3.7 4-15

8118.2

SPERRY UNIVAC Series 1100

4 v Index-6
UP-NUMBER Time Sharlng Guide for CTS Users UPDATE LEVEL PAGEn .
Term Reference Page | Term Reference Page
LIST command Maoving a line 534 5-25
CATALOG 9.1.1 9-1 :
FILE 9.1.2 9.2
LIST INUSE 4143 4-9 N
LIST L 4.1.4.1 4-6
LIST SAVED 4142 4-6 NAMES 6.2 6-4
LNG({ } function 12.1.4 12-2 Naming & program 5.3.1 5-22
LOAD command 2.431 2-27 Naming relocatable element 6.2.5 6-1
LOCATE command 5.1.1 5-1 NEW command 5.3.1 5-22
Logical file name 7.55 7-11 News File 1.3.2 1-4
LOG(x) function 12.1.4 12-2 NOCHOP command 2431 2-27
LOOK command 10.3.2 ..10-5 NODIAG command 2426 2-26
LOWER('s’} function Table 12-5 NOECHO command 2.4.2.6 2-26
12-2
NQOGLOBAL command 2.4.2.6 2-26
M NSEQ command 2431 2-27
MAIL command 10.3.1 10-4 NUMBER command 2.3.2 2-12
Making a permanent copy 3.2 3-1 Number of lines in f 9.2.2 9-3
MANUAL command 2.3.3 2-15 NUM(n,c1,c2} function 12.1.4 12-2
MAP command 6.4.2 6-17 O
MAP directives 6.4.2.3 6-19
QBJ function 9.1.3 9-2
Mapping 6.1.1 6-1 ’
0BJ{) function Tabte 12-5
Mass storage files 12-2
drum or disk 7.3 7-3
examples of file usage 7.7 7-16 OLD command
private 7.2 7-3 assumed compiler
program file 7.11 7-1 and options 3.5 3-13
Public 7.2 7-3 changes to
SDF 7.1.1 7-1 working area 3.5 3-13
tape 7.3 7-3
temporary 7.2 7-3 Omnibus element 8.5.1 8-34
use by CTS 7.1.2 7-2
Online assistance 9.3 9-5
MERGE command,
line numbers 3.6.1 3-18 Operating information 9.2 9-3
MOVE command 5.3.4 5-25 Operator communications 10.2.1 10-1

B118.2 SPERRY UNIVAC Series 1100

UP-KUMBER Time Sharing Guide for CTS Users UPDATE LEVEL PAandexJ
Term Reference Page | Term Reference Page
PXQT command 6.5 6-19
Operators
arithmetic 12.1.6 12-10] P{) function 12.1.4 12-2
relational 12.1.6 12-10
OPR command 10.2.2 10-3 O.
Output to paper tape 4.2.3 4-12 Qualifier 4.1.43 4-9
Qutput to punched cards 42.2 4-11 QUERY command 8.3.3 8-8
1215 12-9
P QUICK command 4.1.2 4-5
PACK command 7.5.6 7-12 R
Paper tape input 4231 4-13
Real constants | 12.1.2 12-1
Paper tape line length 4232 4-13 ‘
RELEASE command 71.5.3 7-9
Paper tape output 4.2.3 4-12
Relocatable elements 6.1.1 6-1
Positioning parameter,
INSERT command 5.2.4 b-19 Removal of a variable or
subroutine 8.3.8 8-23
Preparing libraries 6.4.2.2 6-18
RENAME command 5.3.5 5-26
Prescan module
controlling syntax Renumbering line numbers 5.3.2 5-23
checking 246 2-41 '
terminating control 24.7 2-42 REPLACE command 3.3 3-9
Prescan modules 2.4 2-17 Replacing strings 5.2.2 5-14
PRINT command 411 4.1 Reprinting of lines keyed
into CTS 5.1.5 5-8
PROC command 8.2.3 8-6
RESEQUENCE command 5.3.2 5-23
Processor call, from
within CTS 6.5 6-19 Resolving line number
conflicts 5.3.6 5-26
Processor options 6.1.2 6-2
Retrieving a copy 35 3-13
Program failure 111 11-3
RETURN command 8.3.7.2 8-17
Pseudo-text, in COBOL 2.4.31 2-27
RFOR 2472 9-4
PTl command 4.2.3.1 4-13
RFOR debugging
PUNCH command 4.2.3 4-12 BREAK key 11.2.4.2 11-38
PAUSE statement 11.2.4.1 11-35
PURGE command 7.5.2 7-8 TRACE statements 11.2.4.3 11-39

8118.2

SPERRY UNIVAC Series 1100

UP-NUMBER Time Sharing Guide for CTS Users UPDATE LEVEL I'MSIEm:’ex-8
Term Reference Page | Term Reference Page
Specifying the assumed
S compiler 6.2.1 6-9
Specifying the main
SAVE command 3.2 3-1 program 6.4.2.1 6-18
Save file 6.2.4 6-11 Specifying the object file 6.2.3 6-11
Saving a data file 3.2.2 3-7 Specifying the SAVE and
OBJECT file 6.2.2 6-10
Saving a program 3.2 3-2
SQR(x) function 12.1.4 12-2
SCAN command 11.1.1 11-2
SQUELCHS$ 6.2 6-4
Scan file 7.1.2 7-2 111 T1-1
11.1 11-1
SSUB command 8.5.1 8-34
Security 7.4 7-7
@ @START command 13.2.3 13-4
Send print to an
alternate file 4.3.8 4-16 @START command 131 13-1
: 13.2.1 13-2
Sending cutput to an
onsite device 4.2.1 4-10 STATUS command 9.25 9-4
SET command 8.3.2 8-7 String constants 12.1.3 12-2
12.1.5 12-9
12.2 12-10| SUBROUTINE command 8.2.2 B-3
Setting the character mode 2.2.9 2-9 Subroutines B.1 8-1
' ASSUME SBUG 8.4.3.1 8-27
Setting the maximum BRANCH command 8.3.5.3 8-12
length of a saved line 3.2.3 3-9 building 8.2 8-2
CALL command 8.4.1 8-24
SIN{x) function 12.1.4 12-2 CALL Parameter 8.4.2 8-25
comments 8.3.7.6 8-21
SITE command 4.2.1 4-10 debugging 8.4.3 8-27
defining entry point 8.3.7.1 8-16
SKIP command 4.1.3 4-5 displaying variables 8.4.3.6 8-33
END command 8.3.7.3 8-18
SPACER 5.1.1 - ENTRY command 8.3.7.1 8-16
5.2 -14 ERROR command 8§.35.1 8-11
execute 8.4.1 8-24
SPACER default for EXIT command 8.3.7.7 8-22
LOCATE command 5.1.7 5-9 exiting 8.3.7.2 B-17
FOUND command 8.3.5.2 8-11
Specifying libraries 6.4.2.2 6-18 GENERATE command 8.3.7.4 8-18
GO command 8.375 8-20
Specifying Part of a Line 2.2.1 2-4 JUMP command 8.3.5 8-9
nesting 8.4.3.7 8-33
Specifying the absoluts programmable editor 8.6.2 B-37
element 6.3.2° 6-15 programming 83 8-7
QUERY command 833 B8-8

SPERRY UNIVAC Series 1100

Appendix A

| -
Time Sharing Guide for CTS Users UPDATE LEVEL ot
Term Reference Page | Term Reference Page
RETURN command 8.3.7.2 8-17
saving 8.2.1 8-3
8.5 8-34 TRM(s) function Table 12-5
SET command 8.3.2 8-7 12-2
setting the line pointer 8.3.7.5 8-20 :
starting batch runs 8.6.3 8-39 TXTin,c1,c2) function Table 12-5
subroutines calling 12-2
other subroutines 8.2.2 8-3
subscripting variables 8.4.2 8-25 TXT{(s,c1,c2) function Table 12-5
trace 8.4.3.2 8-28 12-2
transferring control 8.35 8-9
8.3.5.3 8-12 TYPE command 8.3.4 8-9
TYPE command g.3.4 8-9 12.1 12-1
variable substitution 8.3.6 8-13 12.3 12-11
variables 8.3.1 8-7
11
Subscripting variables 8.4.2 8-25 U
Symbolic element types 3.21 3-2 UNSAVE command 3.4 3-11
SYNTAX command 246 2-41 Updating a copy 33 3-9
System stop 2.2.10 2-9 UPPER('s") function Table 12-5
12-2
T USE command 7.5.5 7-11
TAB characters 2.3.4 2-16 USER$ 1.3.3 1-5
TAB command 2.3.4 2-16 User/operator
communications
TAB stops 2.3.4 2-16 @MSG 10.2 10-1
OPR command 10.2.2 10-
TAB([n]) function Table 12-5
12-2 User/user communications
LOOK command 10.3.2 10-5
TAN(x) function 12.1.4 12-2 MAIL command 10.31 10-4
TB message 10.2.1 10-1 V
Terminating scan mode 11.1.2 11-3
Variable definition 12.2 12-10
Termination character 5.2.3 5-18
Variable delimiter character 5.2.2 5-14
TM message 10.21 10-1
Variable substitution 8.3.6 8-13
Tracing, FTN program
execution 11.2.3.1.3 11-16| Variables 12.1.5 12-9
Tracing, in BASIC program 11.2.2.3 11-9 W
Transparent control
statements 13.2.3 13-4 Working area, name of 9.1.3 9-2

8118.2 SPERRY UNIVAC Series 1100

UP-NUMBER | Time Sharing Guide for CTS Users Index-10

UPDATE LEVEL PAGE

Term Reference Page | Term Reference Page

XCTS command 1.4 1-6

XQT command 6.3.1 6-14

UNISYS

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

{Docurment Title)

{Document No.) {Revision No.) fUpdate Level)

Comments:

From:

{Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A)
' Thank you for your cooperation

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1145 ST. PAUL, MN

POSTAGE WILL BE PAID BY ADDRESSEE

Unisys Corporation

Large Systems Product Information
PO. Box 64942

St. Paul, MN 55164-0942

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

I

