
I

PROGRAMMERS

I

I

EXEC B
INDEXED
SEBUENTIAL FILE
MANAGEMENT
SYSTEM

CISFMSl

U P·7780

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC @ Systems developments. The infor­
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent­
ative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIV AC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are:

FASTRAND

© 1970 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

UP·7780
UNIVAC 1106/1108

EXEC 8 ISFMS
Contents

SECTION:

CONTENTS

CONTENTS

1. INTRODUCTION

1.1. INDEXED SEQUENTIAL FILE MANAGEMENT SYSTEM (ISFMS)

1.20 USER RESPONSIBILITY

1.3. ISFMS TERMINOLOGY

1.40 FUNCTIONAL DESCRIPTION OF ISFMS
1.4.1. Data Fi les
1.4.2. Index Files
1.4.3. Block Organization
1,4.3.1. Data Block
1.4.3.2. Index Block
1.4.3.3. Overflow Blocks
1.4.3.4. Information Block
1,4.4. Indexing Technique

2. ISFMS COMMAND REP ERTOI RE

2.1. GEN ERAL

2.2. OUTPUT FILES
2.2.10 Open Output
2.2.20 Write Random Output
2.2.3. Close Output

2.3. INPUT FILES
2.3.1. Open Input
2.3.20 Read Sequential Input
2.3.3. Read Random Input
2.304. Close Input

2.4. INPUT/OUTPUT FILES
2.4.1. Open Input/Output
2.4.2. Read Sequential Input/Output
2.4.3. Read Random Input/Output
2,4.4. Write Sequential Input/Output
2.4.5. Write Random Input/Output
2.4.6. Write Random Delete Input/Output
2,4.7, Close Input/Output

2.5. INFORM COMMAND

1 to 3

1-1 to 1-11

1-1

1-1

1-2

1-3
1-3
1-5
1-6
1-6
1-7
1-9
1-9
1-10

2-1 to 2-29

2-1

2-1
2-1
2-3
2-5

2-8
2-8
2-10
2-12
2-14

2-15
2-15
2-17
2-19
2-21
2-23
2-25
2-26

2-28

1
PAGE:

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

APPENDIXES

A. COBOL INTERFACE

A.l. IDENTIFICATION DIVISION

A.2. ENVIRONMENT ,DIVISION

A.3. DATA DIVISION

A.4. PROCEDURE DIVISION

B. ASSEMBLER INTERFACE

B.l. GENERAL

B.2. FUN CTION CONTROL TABLE (FCT)

B.3. EQUF STATEMENTS

B.4. RESERVE WORDS

B.5. ADDITIONAL RESERVE WORDS

C. OPTIMIZATION PROCEDURES

C.l. GENERAL

C.2. BLOCKS

C.3. FILE

D. SAMPLE PROGRAMS

0.1. COBOL

0.2. ASSEMBLER

E. ISFMS ERRORS

E.l. GENERAL

[,2. FATAL ERRORS

E.3. NONFATAL ERRORS

F. SUMMARY OF COMMANDS

F.l. COBOL COMMANDS

F.2. ASSEMBLER COMMANDS

Contents 2
SECTION, PAGE"

A-I to A-2 0
A-I

A-I

A-I

A-2

B-1 to B-2

B-1

B-1

B-1

B-2

B-2

C-l to C-4

C-l

C-l

C-3

0 0-1 to 0-4

0-1

0-3

E-l to E-2

E-l

E-l

E-l

F-l to F-4

F-l

F-3

c

UP-7780

FIGURES

(-
I-I.

1-2.

1-3.

1-4.

1-5.

1-6.

1-7.

TABLES

E-l.

(

ISFMS File

UNIVAC 1106/1108
EXEC 8 ISFMS

Data File With Associated Separate Index File

Data Block

Index Block

Multi-Level Indexing

Hierarchical Data Files

Cross-Referenced Fi Ie s

ISFMS Nonfatal Errors

Contents 3

SECTION: PAGE:

1-4

1-5

1-6

1-8

1-8

1-10

1-11

E.-2

0,,,' . ,

C)

o

('"'"
./

UNIVAC 1106/1108
EXEC 8 ISFMS SECTION:

1

1. INTRODUCTION

1.1. INDEXED SEQUENTIAL FILE MANAGEMENT SYSTEM (ISFMS)

The Univac Indexed Sequential File Management System (ISFMS) is a UNIVAC 1106/
1108 service routine which enables the user:

• to establish an ordered (indexed sequential) file on random storage so that each
record within the file may be located directly by the user;

• to locate records, within an established file, either sequentially or randomly;

• to modify or delete old records and store new records within an established file.

PAGE:

ISFMS is collected and executed as part of user programs operating under the UNIVAC
1106/1108 EXEC 8 Operating System (see UNIVAC 1108 Multi-Processor System Opera­
ting System, EXEC 8 Programmers Reference, UP-4144 (current version». ISFMS requires
approximately 50008 words of main storage, exclusive of buffer requirements, which are
user-selected. Many of the indexed sequential concepts employed by ISFMS are similar
to those contained in the UNIVAC manual Direct Access Storage Device Concepts,
U E-604 (current version).

1.2. USER RESPONSIBILITY

The user's interface with ISFMS is outlined here. This interface provides for the
user complete flexibility in the specification, design, and usage of his files. Each
user program must provide the following:

• File assignment control cards (@ASG) for each file created and maintained by
ISFMS. These control cards register the files with the operating system and
assign areas on the storage device for the file.

• COBOL Environment and Data Division entries appropriate to the file, when a
COBOL interface routine is used (see Appendix A).

• File control tables (FCT's) and buffers appropriate to the file, when an assembler
interface routine is used (see Appendix B).

• Error recovery in the event ISFMS encounters a nonfatal error. ISFMS returns an
error status code after each unsuccessful request. The user must interpret this
code and take whatever action he deems necessary. In the event of a fatal error,
ISFMS automatically terminates the run.

• Loading and saving of the file through the use of @COPIN and @COPOUT control
control cards.

• Parameters necessary to service requests. These include such things as file name,
record key, function code, and so forth .

1

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

1.3. ISFMS TERMINOLOGY

SECTION:

1
PAGE:

The terminology given here reflects its current usage within ISFMS only. Whenever
possible, however, ISFMS terminology does conform to the meanings commonly attached
to these words in file .management/data management literature.

• Block

A grouping of records. into a size more suitable for mass storage I/O transfers in
order to minimize mass storage accesses and shorten the range index.

- Data Block

A grouping or collection of data records. Data blocks contain the infor~ation or
data the user has supplied to ISFMS for storage.

- Index Block

A grouping or collection of record keys and associated data block pointers. Only
the highest record key per data block is entered into the index block, thereby
creating a range index.

Overflow Block

A collection of data records which are added after the file has been created and
for which no space is available in the proper data block.

• Control Word

Any ISFMS supplied words. These words are attached to blocks and records to
indicate starting positions, lengths, words available, and so forth.

• File

A physical area on a storage device assigned, using an @ASG control card, to a file.
ISFMS operates only on files contained on mass storage devices. A file contains a
set of records grouped into blocks.

- Data File

A file which contains data records combined into data blocks. It also contains
index blocks and overflow blocks. A data file is a complete ISFMS file.

Index File

A file which contains only index records (in blocks). This file has been built
from the data file for the purpose of highspeed index access.

- Input File

A data file which has been selected for input processing. Only read commands
may be issued to an input file. The file must have been created previously.

Input/Outpu t F He

A data file which has been selected for input/output processing, that is, updating.
Read, write, insert, and delete commands may be issued to an input/output file.
The file must have been previously created.

2

o

o

(

(/.

UNIVAC 1106/1108
EXEC 8 ISFMS

- Output File

1
SECTION:

A data file which has been selected for output processing. The file did not exist
before and is being created. Only write commands are allowed.

• Indexed Sequential

A method of file organization in which records are stored in sequential order and
are accessed by means of a range index, within which each entry points to a block
or records.

• Item

A unit of data within a record (see UNIVAC Fundamentals of COBOL-Language,
UP-7503.1 (current version).

11 Mass Storage

Storage, other than main storage, which can be accessed on a direct or random
basis (which implies that it be a F ASTRAND or other magnetic drum).

11 Range Index

An index in which each entry points to a block of data records.

II Record

The basic unit of data being accessed through ISFMS. A record is a group of
related words or items, the contents of which are determined by the user.

• ,Record Key

The user-supplied words by which a data record in a file is identified, sequenced,
and controlled.

1.4. FUNCTIONAL DESCRIPTION OF ISFMS

ISFMS utilizes two types of files: data files and index files. These files are sub­
divided into blocks. Each block contains record keys and data records related to
the other blocks by means of the indexed sequential technique. While this is
provided automatically by ISFMS, the user must be aware that ISFMS is a routine
which must be collected in his program and that he must pass to ISFMS certain
parameters which aid ISFMS in establishing the needed files and blocks, and the
relationships between their contents. These parameters are passed to ISFMS through
either a COBOL or an assembler interface program.

1.4.1. Data Files

Any file that has been made known to ISFMS (the file has been opened) can be
referenced by the user. The user can reference up to 10 completely independent
data files (each data file mayor may not have a separate index file associated
with it - see 1.4.2) at any given time.

3
PAGE:

UP-7780

COBOL
label
Block

UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:
1

PAGE:

There are three types of data files: output, input, and input/output. The manner
in which ISFMS manipulates these files corresponds to that described in U N1V AC
Fundamentals of COBOL-Language, UP-7S03.1 (current version). The user must
be familiar with COBOL because ISFMS, when referenced in the COBOL or assembly
language user programs, utilizes some of the COBOL-provided input/output routines
to access a data file. To initially create a data file, the file must be declared to be
an output file, and only output commands cari be used to create the file. Once created,
the file may be declared an input file, and input commands are used to read the file.
Finally, the file may be declared to be an input,/.output file and input/output commands
can be used to read, write, modify, or delete, that is, update, the file. A data file may
be closed during a run and then reopened during the same run as a different type of
data file. It is also possible to have up to 10 different data files open simultaneously
during a run.

A data file is defined as a collection of blocks, each of which is a collection of
records. There are three basic types of blocks: data, index, and overflow. These
blocks are described in detail in 1.4.3. In addition, there are COBOL-provided
label and sentinel blocks and an ISFMS-provided information block. The latter
contains a description of the positions of the data, index, and overflow blocks.
A schematic overview of an ISFMS-prepared file is provided in Figure 1-1.

I III
Unused ISFMS ISFMS
COBOl Informa- Index
Block tion Blocks

Block

III

III
,

ISFMS ISFMS

Overflow Data

Blocks Blocks

~
III I

Figure 1-7. ISFMS File

COBOL
Sentinel
Block

III~-~

The relationships between the blocks are provided by ISFMS. Based upon block
numbers retained within the information block, ISFMS can determine the location
and number of index blocks. The index blocks, in turn, point to the data blocks.
When necessary, the data blocks point to the overflow blocks. The overflow blocks
are used to contain records which will not fit in their respective data blocks. This
is discussed in detail in 1.4.3. The ISFMS information block is read during the
open and close commands. Other than requiring consideration when allocating file
size, information blocks are not of concern to the user of ISFMS.

Through the use of the @ASG and @CA T control cards, a data file may be made
simultaneously available to more than one user. ISFMS, however, is separately
collected with each user and no copy is cognizant of any other copy accessing
that data file. To prevent situations occurring where one user is referencing data
records which another user is updating, data files being accessed simultaneously by
more than one user should be open for input only. Updating runs, opening the file
for input/output, should be made only when no other user is accessing the file.

4

C"', "

c

UP-7780

1.4.2. Index Files

UNIVAC 1106/1108
EXEC 8 ISFMS

1
SECTION:

A separate index file mayor may not be generated for a d.ata file. If not, the index
blocks maintained within the data file are referenced when a command is issued to
the data file. If an index file is generated, it is considered to be a run temporary
file, that is, created by the open command, and released by the close command. If
used, the index file is internally assigned by ISFMS by means of the @ASG control
card. This is done based upon parameters supplied by the user in his open data
file command (see Section 2).

PAGE:

The index file is a copy of the index blocks contained within the data file. Assuming
that an index file is specified by the open command (input or input/output only),
ISFMS copies the index blocks from the data file to the index file. This is a straight
block-for-block transfer to the index file, which is always considered empty when the
open command is issued. When a reference to the data file is made (read or write),
the index file is first consulted and the proper data block is then read. The index
blocks within the dfita file are never consulted. Upon receiving a close command,
the index file becomes extraneous and is deassigned. The next open command will
recreate the index file from the data file. Index blocks are never modified when
opened for input or input/output.

The procedure is somewhat different if the data file does not exist, that is, opening
the file for output. At this point, there are no index blocks to transfer. The number
of index blocks required is calculated and the index file is initialized. As the data
blocks are filled and placed in the data file through the write command, the index
blocks are filled and placed in the index file. Upon receiving the close command,
the index blocks are copied from the index file to the data file where they are found
when the file is opened for input or input/output.

There are distinct advantages to having separate index and data files:

• The index file, which is usually small relative to the data file, may be placed
on high speed drum or Fastband; the data file, on slower but larger F ASTRAND
devices.

• The index file may be placed on different mass storage devices to minimize
queueing and head positioning on anyone channel/device.

Obviously, more mass storage is required when separate index and data files are
maintained; however, this is only for the duration of the run and is always optional.
The user may elect to have ISFMS reference the index blocks within the data file
and no separate index file is established.

Figure 1-2 shows a data file with its associated index file. The unlabeled areas
within the data file correspond to those in Figure 1-2.

Data File

Index Index Index Index

Block Block Block Block
1 2 3 4

I , , , t

IllIllli

II I"~
Index Index Index Index

In dex File Block Block Block Block
1 2 3 4

Figure 1-2. Data File With Associated Separate Index File

5

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:

1
PAGE:

1.4.3. Block Organization

Three basic types of blocks are set up by ISFMS: data blocks, index blocks, and
overflow blocks. The following paragraphs discuss the relationships existing
between blocks and also examine relationships existing within blocks. A fourth
type of block, the information block, is also examined.

1.4.3.1. Data Block

C B B
c c c
W W W

A data block consists of:

• data records

• record keys

• ISFMS control words

The data records and their associated record keys are copies of the user-supplied
records and keys. The ISFMS-supplied control words locate the start of the records,
record length, and number of words available within the block.

Assume that a file has been opened as an output file. This indicates that the file
is to be created (no data existed in it before) and that the records are being sub­
mitted sequentially. As the data records are submitted, they are placed in the
data block in inverse order from the rear of the data block. The corresponding
record keys are inserted (along with ISFMS-supplied control words) in ascending
order 'from the start of the block. When the unused area in the center of the block
diminishes to the point at which not enough space is available for another data
record and record key, or when the limit (to allow for later additions) specified
in the file description of the open command is reached, ISFMS writes that block
to mass storage, reads the current index block, and inserts the last record key
and data block number into it, that is, the highest record key of that block.

This process is illustrated in Figure 1-3. The first two words are ISFMS control
words pertaining to the block. Following these two words are the two ISFMS­
supplied control words pertaining to the first data record, and then the record
key. This sequence, two control words plus record key, is repeated for each data
record. An end of key sentinel follows. The area between this sentinel and the end
of record sentinel is available for additional records. Immediately following the
end of record sentinel is the last data record received, the next to the last, and
so forth. Data records are not separated by control words or sentinels.

E l I E
III

R R Record R R Record Data Oat 1
10 c C Key C C Key 0 1 Unused Record Rec

W W W W K I I 0

HI III I

"'
I III I

I I I

III III III 111J
ord

II

Figure 7-3. Data Block (Part 1 of 2)

6

o

o

o

UP-7780

(-

{-

NOTES:

UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:

1
PAGE:

(1) CCW indicates a COBOL control word which contains the ACTUAL KEY of that block.

(2) BCW indicates block control words:

• Word 1 of the BCW contains the block type, the number of words of data records, and
record keys.

• Word 2 of the BCW contains the relative block number and relative address of the first
record key.

(3) RCW indicates record control words:

• Word 1 of the RCW contains the relative block number, record key length, relative address
of the next record key, and a delete flag.

• Word 2 of the RCW contains the data record length and relative address of the data record,
or time and date of deletion if the delete flag is set.

(4) EOK indicates end of keys sentinel.

(5) EOD indicates end of data sentinel.

Figure 1-3. Data Block (Part 2 of 2)

If, at a later date, the file is reopened for input/output, additional records may be
inserted into the unused area within the block. Assuming that this is the correct
block and sufficient room exists, the data record is inserted before the other data
records and the end of data sentinel is moved forward. The record keys are searched
for the proper position; when found, all higher record keys, record control words, and
the end of keys sentinel are moved backward the necessary number of words to allow
insertion of the new record key and record control words.

Making the same assumptions as previously except that there is insufficient room
within the data block, a somewhat different procedure is followed. Upon finding
the logical insert point and determining that insufficient space exists for the new
record, the record control word (RCW) of the record logically preceding the insert point
is altered to point to the current overflow block (assuming the existence of records
4 and 6 and the insertion of record 5, the RCW of 4 is changed to point to record
5). The new record (record 5) is placed in the overflow block, as is the RCW of
the next logical record (record 6). The same procedure is followed when inserting
a new record logically between two existing overflow records. Thus, every record
in the data file is implicitly linked together and a sequential search is never re­
quired, even if the record is in an overflow block.

Variable-length records are always treated as overflow records when the file is
open for input/output. That is, they are always inserted into an overflow block
regardless of the status of the logical data block. Note that this is only on
insertion of new records on input/output. When the data file is being created
(open for output), variable-length records are inserted in physically sequential
order in the data blocks.

1.4.3.2. Index Block

An index block contains:

• the record keys of the highest ascending, that is, last entered, data record
within each data block;

• ISFMS-supplied control information.

7

UP-7780

C B
C C
W W

UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:

1 8
PAGE:

Entries are made to index blocks only when the file is being created (output
file). Each entry is made when the data block is full and must be written on mass 0
storage. The record key of the last data record entered in the data block is retained,
the current index block is read, the record key is placed following the record key
associated with the previous data block, and the index block is returned to mass
storage.

Figure 1-4 illustrates the contents of an index block. Note that each record key
entry points back to its own data block, which may contain many data records;
hence, it is called a range index.

III
B R R Record R R Record R R Record
C C C Key C C Key C C Key
W W W W W W W

III

NOTES:

(1) CCW indicates a COBOL control word which contains the ACTUAL KEY of that block.

(2) BCW indicates block control words:

• Word 1 contains block type and the number of words used for record keys.

• Word 2 is not used.

(3) RCW indicates record key control words:

• Word 1 contains the data block number, record key length, and relative address of the record
key.

• Word 2 is not used.

Figure 7 -4. Index Block

When the number of record keys (the highest of each data block) becomes large
enough to fill the initial index block, fSFMS automatically generates a new level
of index blocks. The block at level 2 is then used to index into the level 1 blocks.
When the initial block of level 2 is full, a third level is started and the remaining
possible level 2 blocks are filled out, also pointing into level 1 (see Figure 1-5).
Control words are implied by arrows.

•••

o

o
(to data blocks containing one data record per block)

Figure 1-5. Multilevel Indexing

(

UNIVAC 1106/1108
EXEC 8 ISFMS SECTION:

1

ISFMS is capable of handling up to seven such levels. To minimize access time,
however, use as few levels as possible. This may be accomplished by using a
small record key and a large block size. The latter implies more data records per
block which reduces the absolute number of index entries (in the form of record
keys) as well as providing for additional index entries per index block. Each
additional level of index blocks implies one additional mass storage access, in
addition to the access for the data block. Thus, a 2-level index requires three
mass storage accesses to randomly obtain a data record, a 3-level index requires
four accesses, and so forth. One additional access is required if the desired record
is in an overflow block. ISFMS, however, always attempts to minimize the number

PAGE:

of accesses by first examining the block presently in main storage and only accesses
mass storage when necessary.

1.4.3.3. Overflow Blocks

An overflow block is similar to a data block. It consists of:

• data records

• record keys

• ISFMS-supplied pointers and parameters

The major difference between a data block and an overflow block is that within
an overflow block no attempt is made to maintain the record keys in ascending
sequence; instead, they are stored on a first arrived, first stored basis. Over­
flow records, however, while being randomly stored, are not randomly accessed.
When a record is not found in its data block, a link directly into the proper over­
flow block is picked up and followed. If more than one overflow record is placed
logically between two physically sequential records in the data block, all are
linked together. Thus, any overflow record may be located in a minimum number
of accesses.

The excessive use of overflow blocks is the best indication of the need to reform
the data file, that is, use this file as input to create a new file. Overflow block
usage may be monitored by means of the Inform command described in 2.5.

1.4.3.4. Information Block

The information block, generated and maintained by ISFMS, provides various
summary information on:

• the starting and ending positions of the various types of blocks;

• information taken from the open command as to lengths and number of records;

• the name and qualifier of the internally assigned index file;

• statistics collected for printout by the Inform command.

Other than allocating space (one block) within the file, the user need not make
special allowances for the information block. He may not reference it directly.

9

UP·7780
UNIVAC 1106/1108

EXEC 8 ISFMS

1.4.4. Indexing Technique

1
SECTION:

ISFMS uses the indexed sequential method. The term indexed implies that a separ­
ate index is built through which the data records are accessed. The term sequential

. implies that the record keys within the index are arranged in ascending order and
that the data records are logically sequenced within the data block. This form of
indexed sequential uses a range index; that is, an index entry is made only for
that data record having the highest record key within its block. This imposes an
ordering of data records from block to block, where each block must contain data
records which fall within its low-high record key range, and a particular block
cannot overlap the range of any other data block. The exception to this rule is the
possible use of overflow blocks.

The major advantages of indexed sequential are its speed and simplicity. Each
data record within the file is equally accessible with a maximum access equal to
the number of index levels plus the read of the data block plus the read of an
overflow block, if necessary. A limitation is that it is impossible to build multiple
indexes automatically into the same data records, and file updating can become
costly if overflow blocks are used excessively.

It is possible to build hierarchical data relationships and multiple indexes; however,
it becomes the user's responsibility to establish and maintain such structures. If
a hierarchy is to exist, there must be some logical relationship existing between
different types of data records. For example, a payroll record and a personnel
record have a logical relationship in that both refer to the same employee. The
payroll records may be placed within the first data file, using Social Security
number as the record key (ISFMS will automatically generate an index based upon
Social Security number and the user may always reference this file accordingly).
The personnel records may then be placed within a second data file using, for
example, employee number as the record key on which the file is to be indexed.
Again, the user may reference this file independently by using employee number.
The user may now develop a cross-reference between these two files by placing
their record keys within a data record and storing this into a third file. This data
record has its own record key, for example, employee name, upon which ISFMS will
also automatically generate an index. This example is illustrated in Figure 1-6. R
indicates a data record within the data portion of the file.

Cross-Reference File

Data

Index R: Data Index R Data

Personnel File Payroll File

Figure 1-6. Hierarchical Data Files

10
PAGE:

UP-7780

(

UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:
1

If the cross-reference file index is searched on the record key SMITH, ISFMS
produces the data record of SMITH. Within the data record are two items, each
containing a record key. The first is SMITH's Social Security number; the second
is SMITH's employee number. The user may choose either record key (or both) and
use it to find the payroll and/or personnel data record. Thus, the user could choose
the employee number of SMITH,1t13450, and use this as the record key for a read
request of the personnel file. The index of the personnel file would be searched
for record key #13450 and SMITH's personnel record would be presented. SMITH's
Social Security number could be used in a similar manner. Note that if the proper
record key had been known in advance, the cross-reference file search could have
been avoided, and the personnel and/or payroll files entered directly.

A similar example may be developed in which one of the items of the personnel
or payroll data record (or perhaps both) contains the record key of the other data
record. This eliminates the need for a third file. For example, if the payroll file
data records contain the employee number and the personnel file data records
contain the Social Security number, complete cross-referencing is possible.
Figure 1-7 illustrates this possibility.

Employee No.

Data Data

Social Security No.

Personnel File Payroll File

Figure 1-7. Cross-Referenced Files

The user can enter the personnel file index, searching for employee number 1t13450,
and ISFMS will present the associated data record. The user may extract the item
containing SMITH's Social Security number and enter the payroll file index with
this as the record key of the payroll data record. SMITH's payroll record is also
presented.

The above examples are purely hypothetical; the user could just as well have
indexed and searched both files on employee name, that is, SMITH. The user could
have combined the payroll and personnel records into a joint record called employee
record. The area of file structure and definition must be determined based upon the
user's requirements and operating environment.

11
PAGE:

o

o

o

UP-7780

(

UNIVAC 1106/1108
EXEC 8 ISFMS SECTION:

2

2. ISFMS COMMAND
REPERTOIRE

2.1. GENERAL

There are three types of files, each distinguished by its use: input, output, and input/
output. For each of these files, ISFMS provides a basic set of open, do'se, read, and
write commands. There is also a special command, Inform.

These commands, if used through the assembly language, are used in the context of
the file control table described in Appendix B. If used through COBOL, they are used
in the context of the Environment Division. In the first case, they are called using
PROCs; in the second, they are called by the COBOL command ENTER.

There are no functions provided for transferring of data from media; therefore, the
normal utility routine of EXEC 8, that is, @COPY, is used for this purpose. Nor are
there functions for reorganization of the file; therefore, the following procedure is
recommended:

(1) Read the file sequentially from F ASTRAND mass storage, using ISFMS, and write
it on a tape.

(2) Read the tape and, using ISFMS, write the file on F ASTRAND mass storage.

Small files may be reorganized directly on F ASTRAND mass storage; read the file
sequentially and then write the new file. Naturally, the necessary changes to improve
efficiency must have been made to the Environment Division of the new file.

2.2. OUTPUT FILES

2.2.1. Open Output

Appl i cation:

The Open Output command is used to open an output file.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

20 file-name status~word file~description.

where:

20 is the function code for the Open Ouip~t command.

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Status-word is a word which has a special meaning during the entire time a program
is processing a file. After each function is performed, the status-word will contain
information about the success or failure of the function (see E.2).

1
PAGE:

UP-7780

UNIVAC 1106:1108

EXEC 8 ISFMS SECTION:

2

File-description is a fixed-length area (six words) and contains the following infor­
mation:

• Number of records (estimate)

• Record length

Fixed-length format: length in characters

Variable-length format: average (estimate) record length in characters

• Maximum record length

Fixed-length format: 0

Variable-length format: maximum record length in characters

• Record key length in characters

• Number of additional records per block to be inserted in the data area

• Independent overflow area - IOF (number of overflow records for the whole file)

Format 2 (Assem bier):

OPO FCT -address, status-word, file-description.

where:

OPO is the call to a PROC which generates the function code (20) for the Open
Output command. The PROC also generates the address and character length of
each parameter.

FCT -address is the address of the user-built file control table for the file. For a
detailed layout of the file control table, see Appendix B.

Status-word and file-description are as described in format 1.

P rerequ i site Fun ction 5:

There are no prerequisite commands for the Open Output command. Open Output
is the first command that must be issued to ISFMS and failure to do so results in
an error message and termination of the run. Nevertheless, there is one prerequisite
condition, that the file must be assigned to the run using an EXEC 8 control card
as follows:

@ASG,CP file-name, F2/number/TRK or POS/number

where fiie-name must be the file-name SELECTed and ASSIGNed in the INPUT­
OUTPUT SECTION (see A.1) if COBOL is used, or the name which occupies words
1 and 2 of the file control table (see Appendix B) if the assembler is used. The
options CP stand for a catalogued public file; the user may replace them with a T
for a temporary file. The number of tracks or positions is discussed in Appendix
C.

2
PAGE:

UP·7780

(

UNIVAC 1106/1108

EXEC 8 ISFMS

Entry Conditions:

2
SECTION:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the
INPUT-OUTPUT SECTION; status-word must be defined as 01 level)n the WORK­
ING-STORAGE SECTION with PICTURE x(6); file-description must be defined as

PAGE:

01 level in the WORKING-STORAGE SECTION with 02 level-numbers for the number
of records, record length, maximum record length, record key length, addition records
per data block, and independent overflow area (IOF), all with PICTURE H9(10) and
VALUE as indicated in Appendix C.

If the assembler is used, the file control table must be set up by the user, together
with the necessary buffer areas (see Appendix B). The six words of the file descrip­
tion must be given, as indicated in Appendix C, plus one word (Fieldata zeros) for
the status-word.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.2).

Error Conditions:

The run is aborted if errors (a), (c), (d), (e), or (f) occur (see E.2). For nonfatal
errors, the codes 101, 102, 210, 213, or 240 through 247 may appear in the status­
word. For an explanation of the error codes, see E.3.

Operation:

The user supplies the Open Output command with the status-word, the file-name,
or the address of the file control table, depending on the format chosen, and the
file description. The command:

(1) Checks the parameters.

(2) Registers the file and internally assigns an index file on drum if there is
enough drum available.

(3) Sets up an internal file control table with entries for the internally assigned
index file.

(4) Opens the files.

(5) Initializes the index blocks and the data blocks.

(6) Returns control to the user program with the status in the status-word.

2.2.2. Write Random Output

Appl i cation:

The Write Random Output command is used to write a record and its record key into
an output file.

3

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

24 file-name record-area record-key-area.

where:

24 is the function code for Write Random Output command.

2
SECTION:

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area in which the record to be written is located.

Record-key-area is the user program area in which the key of the record to be
written is located.

Format 2 (Assembler):

WRRO FCT-address, record-area, record-key-area.

where:

WRRO is the call to a PROC which generates the function code (24) for Write
Random Output. The PROC also generates the address and character length of
each parameter.

FCT -address is the address of the user-built file control table for the file. For a
detailed layout of the file control table, see Appendix B.

Record-area and record-key-area are as described in format 1.

Prerequisite Function:

The file must have been opened for output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the
INPUT-OUTPUT SECTION, and record-area must be defined as 01 level in the
WORKING-STORAGE SECTION with PICTURE X (number of characters in the
record).

Record-key-area must also be defined as 01 level in the same section with
PICTURE X (number of characters in the record key). Note that if the key consists
of numeric characters, 9 may be used in place of X in the PICTURE clause. If
the number of characters in the record or record key is not a multiple of six (word
boundaries), FILLER must be used appropriately.

If the assembler is used, the address of the file control table is given and the
appropriate areas reserved (number of words) for the record and the record key.
In both cases, the key of the records to be written must be ascending.

4
PAGE:

o

o

(-

UNIVAC 1106/1108
EXEC 8 ISFMS

Exit Condition s:

2
SECTION:

Upon return to the user program, the status-word contains one of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area and record-key-area still contain the record and record key just
written.

Error Conditions:

The run is aborted if error (b) or (c) occurs (see E.2). For nonfatal errors, the codes
101, 102, 210, 211, 230, 240, 248, or 362 appear in the status-word. For an explana­
tion of the error codes, see E.3.

Operation:

The user supplies the Write Random Output command with the file-name or the
address of the file control table, depending on the format chosen, and the areas
which contain the record to be written and its associated record key. The command:

(1) Checks the parameters.

(2) Transfers the record and the record key into the data block.

(3) Increments the number of records written in the file by one (for the statistics
stored in the information block).

(4) Writes the data block, when filled, on F ASTRAND mass storage and initializes
a new data block.

(5) Reads the index block from magnetic drum or F ASTRAND mass storage and
updates it after checking for the seventh and maximum index level which, if
occurring, causes an error code to be stored in the status word.

(6) Writes back on magnetic drum or F ASTRAND mass storage the index block
and initializes a new index block when the previous one is filled.

(7) Returns control to the user program with the status in the status-word.

2.2.3. Close Output

Application:

The Close Output command is used to close an output file. It also adds a sentinel
record to the file so that the user can process this file sequentially without en­
countering a fatal COBOL end of file condition.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

27 file-name inform-area record-key-area.

5
PAGE:

UP·7780

where:

UNIVAC 1106/1108

EXEC 8 ISFMS

27 is the function code for Close Output command.

2
SECTroN:

File-name is the name of the file, SELECTed in the INPUT-OUTPUT SECTION.

Inform-area is the area into which information will be placed as to what has been
done to the file. This area is required on all Close commands be they on input,
output, or input/output files or the special command, Inform. The inform-area is
of fixed length and must be nine words. It contains the following information
pertaining to the status of the file as a whole; all information is relative to the
time the file was initially opened for output:

• Number of blocks

• Number of index blocks

• Number of overflow blocks (IOF)

• Number of records

• Number of records in independent overflow area (IOF)

• Number of records deleted

• Number of records read

• Number of records read from IOF

• Number of records written

Record-key-area must be defined, but need not be initialized; it enables ISFMS to
write the sentinel record.

Format 2 (Assembler):

CLO FCT-address, inform-area, record-key-area.

where:

CLO is the call to a PROC which generates the function code (27) for the Close
Output command. The PROC also generates the address and character length of
each parameter.

Inform-area and' record-key-area are as described in format 1.

Prerequisite Functions:"

The file must have been opened for output.

6
PAGE:

o

o

o

(

UNIVAC 1106,'1108

EXEC 8 ISFMS

Entry Conditions:

2
SECTION:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the
INPUT -OUTPUT SECTION, and inform-area must be defined as 01 level in the
WORKING-STORAGE SECTION with 02 level-numbers for the nine words of infor­
mation described above (each with PICTURE H9 (10)). Record-key-area must be
defined as 01 level in the same section with PICTURE X (number of characters
in the record-key) and FILLER with the appropriate PICTURE to make the number
of characters a multiple of six (word boundaries).

If the assembler is used, the address of the file control table is given and the
appropriate areas reserved (number of words) for the inform-area and the record­
key-area.

Exit Condition s:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The inform-area contains statistics, as described under format 1.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For nonfatal errors,
the codes 101, 102, 230, 240, or 248 may appear in the status-word. For an explana­
tion of the error codes, see E.3.

Operation:

The user supplies the Close Output command with the file-name or the address of
the file control table, depending on the format chosen, the area which will contain
the statistics, and the area for the record key. The command:

(1) Checks the parameters.

(2) Writes a sentinel record.

(3) Writes the data block on F ASTRAND mass storage.

(4) Transfers the index blocks from magnetic drum to F ASTRAND mass storage.

(5) Initializes all IOF blocks.

(6) Creates and writes the information block.

(7) Closes the magnetic drum.

(8) Closes FASTRAND mass storage.

(9) Returns control to the user program with the status in the status-word.

7
PAGE:

UP-7780

2.3. INPUT FILES

2.3.1. Open Input

Application:

UNIVAC 1106/1108

EXEC 8 ISFMS

The Open Input command is used to open input files.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

10 file-name status-word.

where:

10 is the function code for Open Input command.

2
SECTION:

File-name is the name of the file which had been created as an output file and
which has been SELECTed in the INPUT-OUTPUT SECTION.

Status-word is the word which contains information about the success or failure
of the function (se~E.3).

Format 2 (Assembler):

OPI FCT-address, status-word.

where:

OPI is the call to a PROC which generates the function code (10) for the Open
Input command. The PROC also generates the address and the character length of
each parameter.

FCT -address is the address of the user-built file control table for the file. For a
detailed layout of the file control table, see Appendix B.

Status-word is as described in format 1.

Prerequisite Functions:

There is no prerequisite command for the Open Input command. Open Input is the
first command that must be issued to ISFMS and failure to do so results in an error
message and termination of the run. Nevertheless, there are the prerequisite con­
ditions that the file has been created as an output, file; it mayor may not be cata­
logued, and it must have been assigned to the run using an EXEC 8 control card
as follows:

@ASG,A file-name, F2/number/TRK or POS/number

The A option represents an already catalogued file (it could be replaced by T -
for temporary file). File-name is the same name as the one on the @ASG control
card used to create the output file, and which will appear in the INPUT-OUTPUT
SECTION, to which the SELECTed file-name is ASSIGNed (see A.I) if COBOL
is used, or the name which occupies words 1 and 2 of the file control table (see
Appendix B) if the assembler is used ..

8
PAG 10:

c

o

UP-7780

«--

(~:

UNIVAC 1106/1108
EXEC 8 ISFMS SECTION:

2

Status-word must contain a right-justified Fieldata value with the following meaning:

o - The user is asking for the index blocks to be moved from F ASTRAND mass
storage to magnetic drum (FH-432); but, if there is not enough space, they are
left on F ASTRAND mass storage. ISFMS automatically determines the number
of tracks required and internally submits an @ASG.

1 - The user is asking for the index blocks to be moved from F ASTRAND mass
storage to magnetic drum (FH-432); however, if there is not enough space,
control is returned to the user's program and status-word contains an error
code.

2 - The user is asking for the index blocks to be left on F ASTRAND mass storage.

Finally, the number of tracks, or positions, specifies the length of the file.

Entry Conditions:

PAGE:

If COBOL is used, file-name must have been SELECTed and. ASSIGNed in the INPUT­
OUTPUT SECTION and status-word must be defined as 01 level in the WORKING­
STORAGE SECTION with PICTURE X(6).

If the assembler is used, the file control table must be set up by the user, together
with the necessary buffer areas (see Appendix B), plus one word for the status-word,
as explained in format 1.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The first record is not read by this command.

Error Conditions:

The run is aborted if the errors (a), (c), (d), (e), or (f) occur (see E.2). For nonfatal
errors, the codes 101 or 102 may appear in the status word. For an explanation of the
error codes, see E.3.

Operation:

The user supplies the Open Input command with the status-word and the file-name or
the address of the file control table, depending on the format chosen. The command:

(1) Checks the parameters.

(2) Opens the file.

(3) Reads the information block from F ASTRAND mass storage and transfers the
information to an internally set up file control table.

(4) Assigns and opens the index file based on the information contained in the
status-word.

9

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

(5) Reads the first data block from F ASTRAND mass storage.

SECTION:

(6) Returns control to the user program with the status in the status-word.

2.3.2. Read Sequential Input

Appl ication:

2

The Read Sequential Input command is used to read the file sequentially; that is,
according to the ordering of the record keys.

Format,l (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

11 file-name record-area record-key-area.

where:

11 is the function code for Read Sequential Input command. File-name is the name
of the file, SELECTed in the INPUT-OUTPUT SECTION. Record-area is the user
program area in which the record is stored by the Read Sequential Input command.

Record-key-area is the user program area in which the key of the record just read
is stored by the Read Sequential Input command.

Format 2 (Assembler):

RDSI FCT-address, record-area, record-key-area.

where:

RDSI is the call to a PROC which generates the function code (11) for the Read
Sequential Input command. The PROC also generates the address and cltaract&r
length of each parameter.

FCT -address is the address of the user-built file control table for the file. For a
detailed layout of the ·file control table, see Appendix B.

Record-area and record-key-area ate as- described in format 1.

Prerequisite Functions:

The fIle must have been opened for input.

Entry Conditions:

If COBOL is used, file'oname must have been SELECTed and ASSIGNed in the IN'PUT­
OUTPUT SECTION , and record .. area must be defined as 01 level in the wbRKIfol'G­
STORAGE SECTION with PICTURE X (number of characters in the record). Record­
key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). If the number of characters in the record or
in the record key is not a multiple of six (word boundaries), FILLER must be used
appropriately .

.
If the assembler is used, the address of the file control table must be given and the
appropriate areas reserved (number of words) for the record and the record key.

10

o

I,.; .

o

UP-7780

(

UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:

2
PAGE:

Regardless of the format used, a Read Sequential Input command following the Open
Input command automatically releases the first record of the file to the user program.
The user does not have to initialize the key in order to obtain the first record. Before
issuing a Read Sequential Input command at any other point in the user program, the
record-key-area must contain the key of the previous logical record. For example, to
begin sequential processing with a data record having a record key of 100, the record­
key-area must be set to the previous logical record key (assume it is 99), if known,
and a Read Sequential Input command must be issued. If the key of the previous logi­
cal record is not known, then record 100 must be read with a Read Random Input
command and sequential processing may proceed from then on. On a Read Sequential
Input command, the record key of the newly read record is placed in the record-key­
area which automatically prepares the way for the user to issue the Read' Sequential
Input command to read the next record.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contains the record read and record-key-area contains its key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For nonfatal errors, the
codes 101, 230, 248, 350, or 360 may appear in the status-word. For an explanation
of the error codes, see E.3.

Operation:

The user supplies the Read Sequential Input command with the file-name or the address
of the file control table, depending on the format chosen and the areas which contain
the record and its key after the command is executed. The command:

(1) Checks the parameters.

(2) Checks for the sentinel block and reads the data block from F ASTRAND mass
storage.

(3) Checks whether the record exists or has been deleted.

(4) Transfers the record to the user-specified area.

(5) Checks if the record is an overflow record and, if it is, the number of records
read from the IOF area is incremented by one (for statistics stored in the
information block).

(6) Increments the number of records read by 1.

(7) Returns control to the user program with the status in the status-word.

11

UP·7780
UNIVAC 1106/1108

EX EC 8 ISFMS

2.3.3. Read Random Input

Application:

2
SECTION:

The Read Random Input command presents the requested record, as specified by the
record ,key, to the user program.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

12 file-nam e record-area record-key-area.

where:

12 is the function code for the Read Random Input command. File-name is the name
of the file SELECTed in the INPUT-OUTPUT SECTION. Record-area is the user
program area in which the record is stored by the Read Random Input command.

Record-key-area is the user program area in which the user has placed the key of
the record to be read.

Format 2 (Assembler):

RDRI FCT-address, record-area, record-key-area.

where:

RDRI is the call to a PROC which generates the function code (12) for the Read
Random Input command. The PROC also generates the address and character length
of each parameter.

FCT-address is the address of the user-built file control table for the file. For a
detailed layout of the file control table, see Appendix B. Record-area and record­
key-area are as described in format 1.

Prerequisite Functions:

The file must have been opened for input.

Entry Conditions:

PAGE:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT­
OUTPUT SECTION, and record-area must be defined as 01 level in the WORKING­
STORAGE SECTION with PICTURE X (number of characters in the record). Record­
key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). If the number of characters in the record or
in the record key is not multiple of six (word boundaries), FILLER must be used
appropriately.

If the assembler is used, the address of the file control table must be given and the
appropriate areas reserved (number of words) for the record and the record key.

Before issuing a Read Random Input command, the record-key-area must contain the
proper key.

12

c

c

UNIVAC 1106/1108
EXEC 8 ISFMS SECTION:

2
PAGE:

A Read Random Input command may follow a Read Sequential Input command and vice
versa. A Read Sequential Input command following a Read Random Input command
reads the next logical record that follows the last previous record, that is, the one
obtained by a Read Random Input command.

Exit Conditions:

Upon return to the user program, the status word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contains the record read and the record-key-area still contains the
given record key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For the nonfatal errors,
the codes 101, 102, 230, 240, 248, or 361 may appear in the status-word. For an
explanation of the error codes, see E.3.

Operation:

The user supplies the Rea1 Random Input command with the file-name or the address
of the file control table, depending on the format chosen, the area which will con­
tain the record after the function is performed, and the area which contains the
specified key. The command:

(1) Checks the parameters.

(2) Finds the index block in which the given record key exists (range index).

(3) Reads this index block from magnetic drum.

(4) Matches the record key with a key in the index block, which then points to a
data block.

(5) Reads this data block from F ASTRAND m ass storage.

(6) Searches for the record in this data block and, if not found, continues the
search in the overflow block.

(7) Transfers the record, if found, into the user-specified record-area.

(8) Increments the number of records read by 1.

(9) Returns control to the user program with the status in the status-word.

13

UP-7780

2.3.4. Close Input

App I i cation:

UNIVAC 1106:1108

EX EC 8 ISFMS
2

SECTION:

The Close Input command is used to close an input file. In the case of sequential
processing, it is not necessary to have processed the file to the end.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

17 file-name inform-area.

where:

17 is the function code for the Close Input command. file-name is the name of the
file, SELECTed in the INPUT-OUTPUT SECTION. Inform-area is the area which
will contain information on what has been done to the file.

For a description of this area, see 2.2.3.

Format 2 (Assembler):

CLI FCT-address, inform-area.

where:

PAGE:

CLI is the call to a PROC which will generate the function code (17) for the Close
Input command. The PROC also generates the address and character length of each
parameter.

FCT-address is the address of the user-built file control table for the file.

Inform-area is the area which will contain information on what has been done to
the file (see 2.2.3).

Prerequi site Functions:

The file must have been opened for input.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT­
OUTPUT SECTION, and inform-area must be defined as 01 level in the WORKING­
STORAGE SECTION, with 02 level-numbers for the nine words of information des­
cribed in 2.2.3, each with PICTURE H9(10).

If the assembler is used, the address of the file control table is given and the appro­
priate nine-word area reserved for the inform-area.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

14

c

(

UNIVAC 1106/1108
EXEC 8 ISFMS

The inform-area contains statistics as described in 2.2.3.

Error Conditions:

2
SECTION:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error
codes 230, 248 may appear in the status-word. For an explanation of the error codes,
see E.3.

Operation:

The user supplies the Close Input command with the file-name or the address of the
file control table, depending on the format chosen, and the area which will contain
the statistics. The command:

(1) Checks the parameters.

(2) Transfers the statistics to the user-specified inform-area.

(3) Closes and frees the magnetic drum, if it was used for the index file.

(4) Closes FAST RAND mass storage file.

(5) Returns control to the user program with the status in the status-word.

2.4. INPUT/OUTPUT FILES

2.4.1. Open Input/Output

Application:

The Open Input/Output command opens an input/output file.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

30 file-name status-word.

where:

30 is the function code for the Open Input/Output command. File-name is the name
of the file which has been created as output before and which has been SELECTed
in the INPUT-OUTPUT SECTION.

Status-word is the word which contains information about the success or failure of
the function (see E.3).

Format 2 (Assembler):

OPIO FCT-address, status-word.

where:

OPIO is the call to a PROC which generates the function code (30) for the Open
Input/Output command. The PROC also generates the address and the character
length of each parameter.

15
PAGE:

UP·7780
UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:

2

FCT-address is the address of the user-built file control table for the file. For a
detailed layout of the file control table see Appendix B. Status-word is as described
in format L

Prerequisite Functions:

There are no prerequisite command for the Open Input/Output command. Open Input/
Output is the first command that must be issued to ISFMS and failure to do so results

PAGE:

in an error message and termination of the run. Nevertheless, there are the prerequi­
site conditions that the file has been created as output and mayor may not be cata­
logued and that it will be assigned to the run using an EXEC 8 control card as follows:

@ASG,A file-name, F2/number/TRK or POS/number

The A option represents an already catalogued file (it could be replaced by T - for
temporary file). File-name is the same name as the one on the @ASG control card
used to create the output file, and which will appear in the INPUT-OUTPUT SECTION,
to which the SELECTed file-name is ASSIGNed (see A.1) if COBOL is used, or the
name which occupies words 1 and 2 of the file control table (see Appendix B) if the
Assembler is used.

Status-word must contain a right-justified Fieldata value, with the following meaning:

o - The user is asking for the index blocks to be moved from F ASTRAND mass
storage to magnetic drum (FH-432); but if there is not enough space, they are
left on FASTRAND mass storage. ISFMS automatically determines the number
of tracks required and internally submits an @ASG.

1 - The user is asking for the index blocks to be moved from F ASTRAND mass
storage to magnetic drum (FH-432); however, if there is not enough space,
control is returned to the user's program and status-word contains an error code.

2 - The user is asking for the index blocks to be left on F ASTRAND mass storage.

Finally, the number of tracks, or positions, specifies the length of the file.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT­
OUTPUT SECTION and status-word must be defined as 01 level in the WORKING­
STORAGE SECTION with PICTURE X (6).

If the assembler is used, the file control table must be set up by the user, together
with the necessary buffer areas (see Appendix B), plus one word for the status-word,
as explained in format 1.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The first record is not read by this command.

16

C"
./

c

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

Error Conditions:

2
SECTION:

The run is aborted if any of the errors (a), (c), (d), (e), or (f) occurs (see E.2). For
the nonfatal errors, the codes 101 or 102 may appear in the status-word. For an
explanation of the error codes, see E.3.

Operation:

The user supplies the Open Input/Output command with the status-word and the file­
name or the address of the file control table, depending on the format chosen. The
command:

(1) Checks the parameters.

(2) Opens the file.

(3) Reads the information block from F ASTRAND mass storage and transfers the
information to an internally set up file control table.

(4) May assign and open the index file, based on the information contained in the
status-word.

(5) Reads the first data block from F ASTRAND mass storage.

(6) Returns control to the user program with the status in the status-word.

2.4.2. Read Sequential Input/Output

Application:

PAGE:

The Read Sequential Input/Output command is used to read the file sequentially, that
is, according to the ordering of the record keys.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

31 file-name record-area record-key-area.

where:

31 is the function code for Read Sequential Input/Output command. File-name is the
name of the file, SELECTed in the INPUT-OUTPUT SECTION. Record-area is the
user program area in which the record is stored by the Read Sequential Input/Output
command.

Record-key-area is the user program area in which the key of the record just read
is stored by the Read Sequential Input/Output command.

Format 2 (Assembler):

RDSIO FCT-address, record-area, record-key-area ..

where:

RDSIO is the call to a PROC which generates the function code (31) for the Read
Sequential Input/Output command. The PROC also generates the address and char­
acter length of each parameter.

17

UP-7780

I.

UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:

FCT-address is the address of the user-built file control table for the file.

Record-area and record-key-area are as described in Format 1.

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

2
PAGE:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT­
OUTPUT SECTION, and record-area must be defined as 01 level in the WORKING­
STORAGE SECTION with PICTURE X (number of characters in the record). Record­
key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). If the number of characters in the record or
in the record key is not a multiple of six (word boundaries), FILLER must be used
appropriately.

If the assembler is used, the address of the file control table must be given and the
appropriate areas reserved (number of words) for the record and the record key.

Regardless of the format used, a Read Sequential Input/Output command following
the Open Input/Output command automatically releases the first record of the file
to the user program. The user does not have to initialize the key in order to obtain
the first record. Before issuing a Read Sequential Input/Output command at any
other point in the user program, the record-key-area must contain the key of the pre­
vious logical record. For example, to begin sequential processing with a data record
having a record key of 100, the record-key-area must be set to the previous logical
record key (assume it is 99), if known, and a Read Sequential Input/Output command
must be issued. If the key of the previous logical record is not known, then record
100 must be read with a Read Random Input/Output command and sequential processing
may proceed from then on. On a Read Sequential Input/Output command, the record
key of the newly read record is placed in the record-key-area which automatically
prepares the way for the user to issue the Read Sequential Input/Output command
to read the next record.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contains the record read and record-key-area contains its key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For the nonfatal errors,
the codes 101, 230, 240, 248, 350, or 360 may appear in the status-word. For an
explanation of the error codes, see E.3.

18

~
(~, '

o

UP-7780

('
Operation:

UNIVAC 1106/1108

EX EC 8 ISFMS
2

SECTION:

The user supplies the Read Sequential Input/Output command with the file-name or

PAGE:

the address of the file control table, depending on the format chosen, and the areas
which will contain the record and its corresponding key after the command is executed.
The command:

(1) Checks the parameters.

(2) Checks for the sentinel block and reads the data block from F ASTRAND mass
storage.

(3) Checks whether the record exists or has been deleted, in which case it continues
to the next record.

(4) Transfers the record to the user-specified area.

(5) Checks if the record is an overflow record and, if it is, the number of records
read from the IOF area is incremented by 1 (for statistics stored in the infor­
mation block).

(6) Increments the number of records read by 1.

(7) Updates an entry in the internal file control table for the last function with an
R for read.

(8) Returns control to the user program with the status in the status-word.

2.4.3. Read Random Input/Output

Application:

The Read Random Input/Output command presents the requested record, as specified
by the record key, to the user program.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

32 file-name record-area record-key-area.

where:

32 is the function code for the Read Random Input/Output command. File-name is
the nam~ of the file SELECTed in the INPUT-OUTPUT SECTION. Record-area is
the user program area in which the record is stored by the Read Random Input/Output
command.

Record-key-area is the user program area in which the key of the record to be read
is located.

Format 2 (Assembler):

RDRIO FCT-address, record-area, record-key-area.

19

UP-7780

where;

UNIVAC 1106/1108

EXEC 8 ISFMS
2

SECTION:

RDRIO is the call to a PROC which generates the function code (32) for the Read
Random Input/Output command. The PROC also generates the address and char­
acter length of each parameter.

FCT-address is the address of the user-built file control table. Record-area and
record-key-area are as described in format 1. For a detailed layout of the file con­
trol table, see Appendix B.

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

PAGE:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT­
OUTPUT SECTION, and record-area must be defined as 01 level in the WORKING­
STORAGE SECTION with PICTURE X (number of characters in the record). Record­
key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). If the number of characters in the record or
in the record key is not a multiple of six (word boundaries), FILLER must be used
appropriately.

If the assembler is used, the address of the file control table must be given and the
appropriate areas reserved (number of words) for the record and the record key.

Before issuing a Read Random Input/Output command, the record-key-area must con­
tain the proper key.

A Read Random Input/Output command may follow a Read Sequential Input/Output
command and vice versa. A Read Sequential Input/Output command following a Read
Random Input/Output command reads the next logical record ·that follows the last
previous record, that is, the one obtained by a Read Random Input/Output command.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following;

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area contains the record read and the record-key-area still contains the
given record-key.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2) or the nonfatal error codes
101, 102, 230, 240, 248, or 361 may appear in the status word. For an explanation of
the error codes, see E.3.

20

c

c

(-

Operation:

UNIVAC 1106/1108
EXEC 8 ISFMS

2
SECTION:

The user supplies the Read Random Input/Output command with the file-name or the
address of the file control table, depending on the format chosen, the area which
will contain the record after the function is performed, and the area which contains
the specified key. The command:

(1) Checks the parameters.

(2) Finds the index block in which the given record key exists (range index).

(3) Reads this index block from magnetic drum.

(4) Matches the record key with a key in the index block, which then points to a
data block.

(5) Reads this data block from F ASTRAND mass storage.

(6) Searches for the record in this data block and, if not found, continues the search
in the overflow block.

(7) Transfers the record, if found, into the user-specified record-area.

(8) Inf,;rements the number of records read by 1.

(9) Updates an entry in the internal file control table for the last function with an
R for read.

(10) Returns control to the user program with the status in the status-word.

2.4.4. Write Sequential Input/Output

Application:

The Write Sequential Input/Output command rewrites the record which was accessed
with the last Read Input/Output command, either Random or Sequential.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

33 file-name record-area record-key-area.

where:

33 is the function code for Write Sequential Input/Output command. File-name is the
name of the file, SELECTed in the INPUT-OUTPUT SECTION. Record-area is the
user program area in which the record to be written is located.

Record-key-area is the user program area in which the key of the record to be written
is located.

Format 2 (Assembler):

WRSIO FCT-address, record-area, record-key-area.

21
PAGE:

UP-7780

where:

UNIVAC 1106/1108

EX EC 8 ISFMS SECTION:

2
PAGE:

WRSIO is the call to a PROC which generates the function code (33) for Write Sequen­
tial Input/Output command. The PROC also generates the address and character length
of each parameter.

FCT-address is the address of the user-built file control table. Record-area and record­
key-area are as described in format 1.

Prerequi site Functions:

The file must have been opened for input/output and the previous command must be
either a Read Random Input/Output or a Read Sequential Input/Output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT­
OUTPUT SECTION, and record-area must be defined as 01 level in the WORKING­
STORAGE SECTION with PICTURE X (number of characters in the record). Record­
key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). If the key consists of numeric characters,
9 may be used in place of X in the PICTURE. If the number of characters in the re­
cord or in the record key is not a multiple of six (word boundaries), FILLER must
be used appropriately.

If the assembler is used, the address of the file control table must be given and the
appropriate areas reserved (number of words) for the record and record key.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area and. record-key-area still contain the record and record key just
written. This key has remained unchanged since the last Read Input/Output command.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2). For the nonfatal errors,
the codes 101, 230, 240, 248, or 363 may appear in the status-word. For an explanation
of the error codes, see E.3.

Operation:

The user supplies the Write Sequential Input/Output command with the file-name or
the address of the file control table, depending on the format chosen, and the areas
which contain the record to be written and its record key. The command:

(1) Checks the parameters.

(2) Checks if the last command was Read Input/Output.

(3) Checks for a match of the key of the record previously read with the key of the
record to be written.

22

r
'~

c

(:

UNIVAC 1106/1108
EXEC 8 ISFMS SECTION:

2

(4) Checks for a match of the record length with the length of the record previously

read.

(5) Transfers the record into the proper area as determined by the key.

(6) Rewrites the current data block on F ASTRAND mass storage.

(7) Updates the entry in the internal file control table for the last function with a

W for write.

(8) Returns control to the user program with the status in the status-word.

2.4.5. Write Random Input/Output

Appl ication:

The Write Random Input/Output command adds a new record to the file. If the file
already contains a record with the same key, the existing record is not overwritten.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

34 file-name record-area record-key-area.

where:

34 is the function code for the Write Random Input/Output command.

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION.

Record-area is the user program area which contains the new record.

Record-key-area is the user program area which contains the key of the record to be
written.

Format 2 (Assembler):

WRRIO FCT-address, record-area, record-key-area.

where:

WRRIO is the call to a PROC which generates the function code (34) for the Write
Random Input/Output command. The PROC also generates the address and character
length of each parameter.

FCT-address is the address of the user-built file control table. For a detailed lay­
out of the file control table, see Appendix B.

Record-area and record-key-area are as described in format 1.

Prerequi site Functions:

The file must have been opened for input/output.

23
PAGE:

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

Entry Conditions:

SECTION:

2 24
PAGE:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT- ()
OUTPUT SECTION, and record-area must be defined as 01 level in the WORKING-
STORAGE SECTION with PICTURE X (number of characters in the record).

Record-key-area must also be defined as 01 level in the same section with PICTURE X
(number of characters in the record key). If the number of characters in the record or
in the record key is not a multiple of six (word boundaries), FILLER must be used
appropriately.

If the assembler is used, the address of the file control table must be given and the
appropriate areas reserved (number of words) for the record and the record key.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

The record-area and record-key-area still contain the record and record key just
written.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error
codes 101, 102, 212, 230, 240,248, or 364 may appear in the status-word. For an
explanation of the error codes, see E.3.

Operation:

The user supplies the Write Random Input/Output command with the file-name or the
address of the file control table, depending on the format chosen, plus the areas which
contain the new record and its key. The command:

(1) Reads this record randomly and checks if it already exists in the file. If so, error
status 364 (see Table E-1) is returned.

(2) Checks if the record is of variable length, in which case it is written in the inde­
pendent overflow area (IOF), and the number of records in IOF is incremented by
1, for statistics stored in the information block. If the record is of fixed length
and the read random in (1) required entry into an overflow block, the data block
is known to be full and the record is automatically placed in an overflow block.
If the read random in (1) did not require entry into an overflow block, an attempt
is made to place the record in its proper data block. The function determines whether
this block is already in main storage, in which case it determines if there is space
available in this data block for a subsequent transferring of the record into it and
writing of the data block on F ASTRAND mass storage, when filled. If these con­
ditions are not met, the procedure for the IOF is repeated.

(3) Updates the entry in the internal file control table for the last function with a W
for write.

(4) Increments the number of records written by 1.

(5) Returns control to the user program with the status in the status-word. c

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

2.4.6. Write Random Delete Input/Output

Application:

2
SECTION:

The Write Random Delete Input/Output command replaces a part of the record key
control words with the date of deletio,:,- (date and time of day, see UNlVAC 1108 Multi­
Processor System Operating System EXEC 8 Programmers Reference, UP-4144,
(current version». The record key and record itself are not altered.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

36 file-name record-key-area.

where:

36 is the function code for the Write Random Delete Input/Output command.

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION.

Record-key-area is the user program area which contains the key of the record to be
deleted.

Format 2 (Assembler):

WRRD FCT-address, record-key-area.

where:

WRRD is the call to a PROC which generates the function code (36) for the Write
Random Delete Input/Output command. The PROC also generates the address and
character length of each parameter.

FCT-address is the address of the user-built file control table. For a detailed layout
of the fUe control table, see Appendix B.

Record-key-area is the user program area which contains the key of the record to be
deleted.

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the
INPUT-OUTPUT SECTION, and record-key-area must be defined as 01 level in
the WORKING-STORAGE SECTION with PICTURE X (number of characters in the
record). If this number of characters is not a multiple of six (word boundaries),
FILLER must be used appropriately.

If the assembler is used, the address of the file control table is given and the
appropriate area reserved (number of words) for the record key. In both cases, the
record-key-area contains the key of the record to be deleted.

25
PAGE:

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

Exit Conditions:

2
SECTION:

Upon return to the user program, the status-word contains either of the foHowing:

• Fieldata zeros, if no error has occurred; or

• the error code (see E.3).

Key control word 1 has bit 235 set to 1; key control word 2 contains the date and
time of the data deletion.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error

PAGE:

codes 101, 102, 230, 248, or 361 may appear in the status-word. For explanation of the
the error codes, see E.3.

Operation:

The user supplies the Write Random Delete Input/Output command with the file­
name or the address of the file control table, depending on the format chosen and
the area which contains the key of the record to be deleted.

The command:

(1) Reads randomly the record to be deleted.

(2) Sets the key control words to "deleted".

(3) Writes back the data block on FASTRAND mass storage.

(4) Updates the entry for the last function in the internal file control table with

W for write.

(5) Increments the number of records deleted by 1.

(6) Returns control to the user program with the status in the status-word.

2.4.7. Close Input/Output

Application:

The Close Input/Output command is used to close an input/output file. In the case
of sequential processing, it is not necessary to have processed the file to the end.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

37 file-name inform-area.

where:

37 is the function code for the Close Input/Output command. File-name is the
name of the file SELECTed in the INPUT-OUTPUT SECTION. Inform-area is the
area which contains information on what has been done to the file. For a deSCription
of this area, see 2.2.3.

26

c

c

(---

(--'-

UNIVAC 1106/1108

EX EC 8 ISFMS

Format 2 (Assembler):

CLIO FCT-address, inform-area.

where:

2
SECTION:

CLIO is the call to a PROC which generates the function code (37) for the Close
Input/Output command. The PROC also generates the address and character length
of each parameter.

FCT-address is the address of the user-built file control table. Inform-area is the
area which contains information on what has been done to the file (see 2.2.2).

Prerequisite Functions:

The file must have been opened for input/output.

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the
INPUT-OUTPUT SECTION, and inform-area must be defined as 01 level in the
WORKING-STORAGE SECTION, with 02 level-numbers for the nine words of
information described in 2.2.3, each with PICTURE H9(10).

If the assembler is used, the address of the file control table is given and the
appropriate nine-word area reserved for the inform-area.

Exit Conditions:

Upon return to the user program, the status-word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see Eo3).

The inform-area contains statistics, as described in 2.2.3.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error
codes 101, 230, or 248 may appear in the status-word. For an explanation of the
error codes, see E.3.

Operation:

The user supplies the Close Input/Output command with the file-name or the address
of the file control table, depending on the format chosen and the area which will
contain the statistics.

The command:

(1) Checks the parameters.

(2) Reads the information block from F ASTRAND mass storage.

(3) Updates the number of records in the file.

27
PAGE:

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS

(4) Transfers the statistics to the user-specified inform-area.

SECTION:

(5) Writes the information block back on FASTRAND mass storage.

(6) Closes FASTRAND mass storage.

(7) Closes the index-file, if it had been opened.

(8) Returns control to the user program with the status in the status-word.

2.5. INFORM COMMAND

Application:

2

The Inform command provides the user with the ability to obtain information about
the status of the file during processing.

Format 1 (COBOL):

ENTER ISFMS SUBROUTINE REFERENCING

77 file-name inform-area.

where:

77 is the function code for the Inform command.

PAGE:

File-name is the name of the file SELECTed in the INPUT-OUTPUT SECTION. Inform­
area is the area which contains information on what has been done to the file. For
a description of this area, see 2.2.3.

Format 2 (Assembler):

INFORM FCT-address; inform-area.

where:

INFORM is the call to a PROC which generates the function code (77) for the Inform
command. The PROC also generates the address and character length of each
parameter.

FeT-address is the address of the user-built file control table. Inform-area is the
area which contains information on what has been done to the file (see 2.2.3).

Prerequisite Functions:

The file must be in an open stateo

Entry Conditions:

If COBOL is used, file-name must have been SELECTed and ASSIGNed in the INPUT·
OUTPUT SECTION, and inform-area must be defined as 01 level in the WORKING­
STORAGE SECTION, with 02 level-numbers for the nine words of information described
in 2.2.3, each with PICTURE H9(10).

If the assembler is used, the address of the file control table is given and the
appropriate nine-word area reserved for the inform-area.

28

c

UP-7780

(

UNIVAC 1106/1108
EXEC 8 ISFMS

Exit Conditions:

2
SECTION:

Upon return to the user program, the status~word contains either of the following:

• Fieldata zeros, if no error has occurred; or

• the error code (see E03).

The inform~area contains statistics as described in 2.2.3.

Error Conditions:

The run is aborted if either error (b) or (c) occurs (see E.2), or the nonfatal error
code 230 may appear in the status-word. For an explanation of this error code, see
E03,

Operation:

The user supplies the Inform command with the file-name or the address of the file
control table, depending on the format chosen and the area which contains the
statistics.

The command:

(1) Checks the parameters.

(2) Transfers the statistics which are stored in an internally built file control table

into the user-specified inform=area.

(3) Returns control to the user program with the status in the status-word.

29
PAGE:

C' "h
" .,i

o

o

UP-7780

(

UNIVAC 1106/1108

EXEC 8 ISFMS
Appendix A

SECTION:

APPENDIX A. COBOL INTERFACE

A.I. IDENTIFICATION DIVISION

This contains the standard information of every COBOL program.

A.2. ENVIRONMENT DIVISION

CONFIGURA TION SECTION

This section contains the standard information of every COBOL program.

INPUT-OUTPUT SECTION

In FILE-CONTROL, the user, besides assigning the card reader, printer, and so

PAGE:

forth, has to SELECT his file-name and ASSIGN it to the external MASS-STORAGE
file-name, that is, the file name which appears on the @ASG card, The user has to
specify that the ACCESS MODE is RANDOM and give a data-name to the ACTUAL
KEY. This data-name is the one with which the blocks are written on MASS STORAGE,
and has to be defined with PICTURE H9 (10) in the WORKING-STORAGE SECTION
of the Data Division. The ACTUAL KEY should not be confused with the real
record key.

A.3. DATA DIVISION

FILE SECTION

The FD for the file-name specifies:

BLOCK CONTAINS 1 RECORD 1 CONTROL WORD

LABEL RECORD IS FORMOO

DA TA RECORD is a data-name for the buffer area in which the ISFMS blocks are
read to or written from. The buffer size is either 1/4, 1/2, or 1 track.

One software control word is subtracted from each of these lengths. This makes the
lengths respectively 2682, 5370, and 10746 characters long, and it is given in the
PICTURE for the buffer data-name.

1

UNIVAC 1106/1108
EXEC 8 ISFMS

WORKING-STORAGE SECTION

Appendix A
SECTION:

The ACTUAL KEY is described in level-number 77 as having PICTURE H9(10). Next
on the 01 level are the areas, describing the record-area and the record,.key-area.
FILLER is used, when nec~ssary, to make the lengths of the above areas a multiple

PAGE:

of six (word boundaries). Following thiS, also on the 01 level, are the file-description,
the status~word, and the inform-area. The file-description contains, on 02 levels, the
following:

(1) number of records, with PICTURE H9(10) and the appropriate VALUE;

(2) record-length, with PICTURE H9(10) and VALUE the length in characters (a

multiple of six);

(3) maximum record-length, with PICTURE H9(10 and VALUE 0 for fixed length or
length in characters (a multiple of six);

(4) record-key-Iength, with PICTURE H9(10) and VALUE the length in characters
(a multiple of six);

(5) number of additional records, with PICTURE H9(10) and VALUE evaluated as in
C.2, formula (9);

(6) independent overflow area, with PICTURE H9(10) and VALUE the number of records
that are to be written in updating runs, as in C.2, formula (6).

The status-word contains, on the 02 level, the following:

(1) function code, with PICTURE X(3);

(2) error code, with PICTURE X(3) which contains, on the 03 level, the following:

(a) error-class, with PICTURE X; and

(b) error number, with PICTURE X(2).

For a description of error codes (class and number), see Appendix E •

. The inform-area contains, on the 02 level, the information passed with every Close
command as well as the special command Inform. This area will be nine words (see
2.2.3) each with PICTURE H9(10).

AA. PROCEDURE DIVISION

ISFMS is used through COBOL by the ENTER verb in the following way:

ENTER ISFMS SUBROUTINE REFERENCING

Parameter-1 Parameter-2 Parameter-3 [Parameter-4] •

where parameters are as explained in Section 2. A sample program is given in
Appendix D.

2

c

c

c

UP-7780

(-

B.l. GENERAL

UNIVAC 1106/1108

EXEC 8 ISFMS
Appendix B

SECTION:

APPENDIX B. ASSEMBLER
INTERFACE

This appendix describes the assembler/ISFMS interface. To provide the proper
interface with ISFMS, the user must include the following in his program:

(1) function control table (FCT) for the file;

(2) EQUF statements, used to specify the lengths of the parameters used in
calling the PROCs;

(3) reserve words, used to set up the buffer areas;

(4) additional reserve words, for the parameters used in calling the PROCs.

The above information corresponds to that automatically generated by the Data
Division of COBOL.

B.2. FUNCTION CONTROL TABLE (FCT)

The FCT is 1318 or 8910 words long and it provides the block buffering package
(BBP) interface for the assembler-generated program. This BBP/FCT interface is
explained in UNIVAC 1108 Multi-Processor System Operating System EXEC 8
Programmers R eference Manual, U P-4.144 (current version).

B.3. EQUF STATEMENTS

The EQUF statements provide the information used by the assembler procedures to
generate the FCT.

L1(1)
L1(2)
L1(3)
L2(1)
L2(2)
L2(3)
L3(1)
L3(2)
L3(3)
L4(1)
L4(2)

EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF

length of block in characters (see C.2, formula 12).
length of status word in characters.
length of file description in characters (see 2.2.1).
length of block in characters (see C.2, formula 12).
length of data records in characters (see Appendix C).
length of record key in characters.
length of block in characters (see C.2, formula 12).
length of inform-area in characters (see 2.2.1).
length of record key in characters.
length of block in characters (see C.2, formula 12).
length of record key in characters.

1
PAGE:

UP-7780
UNIVAC 1106/1108
EXEC 8 ISFMS

B.4. RESERVE WORDS

Appendix B
SEC TION:

These large reserves are used for working storage, I/O storage, and the I/O block
buffers.

LABEL

LABEL
LABEL

RES
+
+
+
+
RES
+

0700t working storage
0703t ,0 I/O storage
0703t I/O storage
0 I/O storage
0 I/O storage
0700t I/O block buffer
0 address of ACTUAL KEY

B.S. ADDITIONAL RESERVE WORDS

The following words are used as parameters in calling the PROCs;

• Inform-area is a reserve of nine words (see 2.2.3).

• File description is a reserve of six words (see 2.2.1).

• Status-word is a reserve of one word (six Fieldata zeros).

• Record-area and record-key-area are explained in C.2.

t The numbers 0700 and 0703 are used here as an example of a quarter-track. The extra three words

used for the I/O handler Bre control words. A half-track is 895 words and a full track is 1792 words.

The three words used for the I/O handler are needed only once. The word BCWX is needed for the

address of the ACTUAL KEY.

2
PAGE:

c

c

UP·7780
UNIVAC 11 06/11 08

EXEC 8 ISFMS
Appendix C

SECTION:

APPENDIX C. OPTIMIZATION
PROCEDURES

C.l. GENERAL

The following paragraphs give formulas used in building up a file.

C.2. BLOCKS

To calculate the number of words:

Conversion of characters to words:

number of words :: number of characters
6

(1)

NOTE: If the remainder is not zero, the quotient must be rounded to the next integer.

To calculate the number of records per block:

The number of records per block can be found by taking into consideration the record
length and the record-key length:

number of records ::
block length -2

record-key length + record length +2 (2)

The block length is a quarter-track (447 words) or a half-track (895 words) or a full
track (1791 words); the words in parentheses are one word less than the actual length.
This one word is a software-control-word.

The record key must have fixed-length format. Its length is specified in characters and
must be a multiple of six. The minimum key length is six characters. The maximum is
378 characters.

The record may have fixed-length format or variable-length format. Its length is
specified in characters and must be a multiple of 6. The minimum record length is six
characters. The maximum, which is for one record per block, varies depending on the
key length (these two together must equal the block length) from 10,344 characters,
when the key length 378 characters, to 10,716 characters when the key length
is six characters.
To claculate the number of data blocks:

The number of data blocks is given by the following formula:

number of data blocks ::
number of records in file

(number of records per block) - (number of
overflow records per block)

(3)

where number of records per block is found from (2), and number of overflow records
per block is found from (8).

1
PAGE:

UP-7780
UNIVAC 1106/1108
EXEC 8 ISFMS

To calculate the number of record keys per index block:

Appendix C'
SECT"ION: PAGE:

The number of record keys per index block is determined by using the following formula:

number of record keys per index block =
block length in words -2
key length in words +2

where the block length (in words) is given foHowing (2).

To calculate the number of index blocks:

The number of index blocks is determined by using the follow ing formula:

(4)

number of index blocks = number of data blocks +3 (5)
(number of record keys per index block) -1

where number of data blocks is given by (3), and number of record keys per index
block by (4).

Overflow records in the independent overflow area (IOF):

The processing speed of an indexed sequential file can be greatly increased by writing
all overflow records inside the data blocks. This, however, may prove impractical. Often
numerous additional records must be written in the same data block. If there is not
enough space available, some may be placed in the data block, if possible, and the
others in the independent overflow area. In general, the number of IOF records is the
same as the number of new records which can be written in updating runs, that is:

IOF records IOF blocks = -~~;"';;"'~~=~-----..,­
number of records per block

where the number of records per block is found from (2).

If the IOF area is almost filled, the file should be reorganized.

Additional records inside the data blocks:

(6)

It is advantageous, when updating, to have the new records logically as close as
possible to the already existing ones. The user should, at the time a file is created,
reserve a certain number of spare records inside each data block. This reserved area
permits the user to write new records in the data block during the updating run.

A uniform formula for determining the number of additional records inside a data block
cannot be given. It depends on how the file is built and how the run records are distributed.
However, the proportion of the number of data records to the number of records to be added
in an updating run is the same proportion used for the number of data records per block
to the number of additional records per block, that is:

2

c

(

UP-7780

(

(-

UNIVAC 1106/1108

EXEC 8 ISFMS

. number of data records
number of update records

from which is obtained:

=

Appendix C
SECTION:

number of data records/block
number of additional records/block

(7)

update records x data records per block additional records per data block =::..-____ --:,-___ ~_-=-----
data records

where update records ale known by the user, the data records per block are known
from (2), and data records are the records in the fileo This will minimize the JOF
area needed.

Additional Blocks:

Every ISFMS file contains the following additional blocks:

Label block: 1

Block number 0: 1 (In random files, block number 0 is not used by COBOL.) (9)

Information block for ISFMS; 1

Sentinel block: 1

C03. FILE

To ca !cuI ate the size of a file:

PAGE:

(8)

The size of a file is determined by the number of data blocks, index blocks, independent
overflow blocks, one label block, one unused block, one sentinel block, and one information
block which is used by ISFMS.

The total number of blocks in the file is given by the formula:

E f hI k . h f"1 - data blocks + index blocks + IOF
num er 0 oc S 111 tel e -" hI k 4 dd" 1 bi k oc s + a Ihona oc s

where data blocks are given by (3), index blocks by (5), IOF blocks by (6), and
additional blocks are as explained in (9)0

To convert to tracks:

The follOWing formula is used to convert the size of the file to tracks:

I'n~mber of tracks = number of blocks x block size in tracks

(10)

(11)

where number of blocks is given by (10) and block size in tracks is quarter-track,
half-track, or full-track as explained following (2).

3

UP-7780
UNIVAC 1106/1108
EXEC 8 ISFMS

To convert to positions:

To convert the size of the file in positions, use the following formula:

number of tracks
number of positions = --------

64

where number of tracks is given by (11).

(12)

Appendix C
SECTION:

NOTE: In all these calculations, the result must be rounded to the next highest
integer.

4
PAGE:

c

UP-7780
UNIVAC 1106/1108

EXEC 8 ISFMS
Appendix D

SECTION:

APPENDIX D. SAMPLE PROGRAMS

D.l. COBOL

IDENTIFICATION DIVISION.
PROGRAM-IO. ISFMS-TEST-O.
AUTHOR. ~ P ~ONES.
INSTALLATION. SPSP.
IJATE-COMPILEU.
REMARKS. TEST PROGRAM FOR THE ISFMS.

EXAMPLE 1. OUTPUT FILE. CREATE AN lS-FILE.
ENVIRONMENT DIVISION.
CONFIGuRATION SECTION.
SOURCE COMPUTER. UNIVAC-ll08.
OB~ECT COMPUTER. UNIVAC-llOS.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NEW-FILE,
AS~IGN TO MASS-STORAGE ASGROFLNM,
ACCESS MODE IS RANDOM,
AC1UAL KEY IS KLEIOI.
SELECT CAROS.
ASSIGN TO CARD-REAU-EIGH1Y.
SELECT RESUL1S,
ASSIGN TO PRINTER.

DATA DiVISION.
FILE SECTION.
FD NLW-FILE

LABEL REeORO IS FORMOO
BLOCK CONTAINS 1 RECORD 1 CONTROL WORD
DATA RECORD IS MASTER-RECORO.

01 MAS1ER-RECOkD PIC X(2b82).
FD CAROS

LABEL RECORDS OMITTED
DATA RECORD IS DATA-CARDS.

U1 DATA CARDS.
02 NUMBER
02 FILLER
02 CHARS
02 FILLER

FD RESULTS
LABEL RECOROS OMITTED
DATA RECORD IS PRINTOUT.

01 PRINTOUT

PIC
PIC
PIC
PIC

9(2).
X(4).
X (6) •
X (6h) •

PIC X(132).

1
PAGE:

UP-7780
UNIVAC 1106/n08
EXEC 8 ISFMS

WORKIN~-STORAGE SECTION.
77 KLEIDI
77 NOTHING
01 ACTUAL-RECORD.

02 ARL
02 FILLER

01 RECORD-KEY.
02 RKL
02 FlLLER

01 FILE DESCRIPTION.
02 NUMBER-OF-RECORDS
02 RECORD-LENGTH
02 RECORD-LENGTH-MAX
02 RECORD-KEY-LENGTH
02 OVERFLOW-AREA
02 I-O-F

01 STATOUS.
02 F-CODE
02 t:..RROR-CODE

0.3 ERROR-CLASS
0.3 ERROR-NUMBER

01 INFORM.
02 NUMBER-OF-BLOCKS
02 NUMBER-OF-INDX-BLOCKS
02 NUMBER-OF-OVERFL-BLOCKS
02 NUMBER-OF-RECORDS
02 NUMBER-OF-RECORDS-IN-IOF
02 NUMBER-OF-RECORDS-DELETD
02 NUMBER-OF-RECORDS-READ
02 NMBR-OF-REC-REO-FROM-IOF
02 NUMBER-OF-RECORDS-WRITEN

01 INFORM-FL-DATA.
02 NUMBER-OF-BLOCKS
02 NUMBER-OF-INOX-BLOCKS
02 NUMBER-OF-OVERFL-BLOCKS
02 NUMBER-OF-RECORDS
02 NUMBER-OF-RECORDS-IN-IOF
02 NUMBER-OF-RECORDS-DELETD
02 NUMBER-OF-RECORDS-READ
02 NMBR-OF-REC-RED-FROM-IOF
02 NUMBER-OF-kECORDS-WRITEN

PkOC~DUkE DIVISION.
START-lEST.

OPEN INPUT CARDS.
OPEN OUTPUT RESULTS.

PIC H9(lO).
PIC X VALUE

PIC A(SOO).
PIC X(4).

PIC 9 (56) •
PIC X(4).

PIC H9 (10)
' PIC H9(10)

PIC H9 (10)
PIC H9(10)
PIC H9<l0)
PIC H9(10)

PIC X (3) •
PIC 9 <:.5>.
PIC 9.
PIC 9 (2) •

PIC H9(10).
PIC H9 <10) •
PIC H9(10).
PIC H9(10).
PIC H9 <10) •
PIC H9 <10) •
PIC H9(10).
PIC H9(10).
PIC H9(10).

PIC 9 (6) •
PIC 9(6).
PIC 9(6).
PIC 9(6).
PIC 9(6).
PIC 9 (6) •
PIC ,9 (6) •
PIC 9(6).
PIC 9 (6) •

ENTER ISFMS SUBROUTINE REFERt:..NCING
20 NEW-FILE STATQUS FILE-DESCRIPTION.

Appendix D
SECTION:

IS SPACE.

VALUE IS 30.
VALUE IS 50~.
VALUE IS O.
VALUE IS 60.
VALUE IS 1.
VALUE IS 5.

IF STATOUS NOT EQUAL TO '000000' GO TO END-RUN.

2
PAGE:

C

r:~'

~

c

UP-7780

(

(--

Appendix D UNIVAC 1'106/1108
EXEC 8 ISFMS SECTION: PAGE:

CARD-READ.
HE~b CARDS AT END GO TO FILE-READY.
WRITE PRINT-OUT FROM DATA-CARDS.
MOVE CHARS TO ACTUAL-RECORD.
MUVE NUMBER TO RKL.
ENTlR ISFMS SUBROUTINE REFERENCING
24 NEW-FILE ACTUAL-RECORD RECORD-KEY.
IF STATOUS NOT EQUAL TO '000000' GO TO END-RUN.
ENTER ISFMS SUBROUTINE REFERENCING
77 NEw-FILE INFORM.
IF STATOUS NOT EQUAL TO '000000' GO TO END-RUN.
MOVE CORR INFORM TO INFORM-FL-DATA.
WRITE PRINTOUT FROM INFORM-FL-DATA.
GO 10 CARD READ.

FILE-RE:ADY.
WRIlE PRINT-OUT FROM NOTHING AFTER ADVANCING 10 LINES.
ENTER ISFMS SUBROUTINE REFERENCING
27 NEW-FILE INFORM RECORD-KEY.
MOVE CORR INFORM TO INFORM-FL-DATA.
WRI1E PRINT-OUT FROM NOTHING AFTER ADVANCING 2 LINES.
WRITE PRINT-OUT FROM INFORM-FL-DATA.

END-RUN.
WRIlE PRINT-OUT FROM STATOUS AFTER ADVANCING 2 LINES.
CLOSE CARDS,RESULTS.
STOP RUN.

D.2. ASSEMBLER

START
LMJ Xll, SEVENS. • LMJ SEVENS
L,U Rl,20. • LOAD R1 WITH 20
L,U A7,l. • STAHT OF RECORD
S A7,KEY. • START OF RECORD
L AB,('PAT+++'). • LOAD WITH PAT+++
OS A7,ACTREC. • OS INTO ACTRED
OPO ADO,STATUX,AODER. • OPEN FILE SAM

Tf AO, ('000000'). • TE AO=O
J EX. • JP TO EXIT

KEY
KEY

WRT wRRO AOO,ACTREC,KEY. • WRITE TO FILE SAM
TE AD, ('000000'). • TE AO=O
J EX. • JP TO EXIT

A,U A7,l. • ADD 1 TO A7
S A7,KEY. • STORE A7 TO KEY
OS A7,ACTREC. • OS INTO ACTREC
JGO Kl,WRT. • JP IF Rl>O
CLQ AOOdNFO,KEY. • CLOSE FILE SAM
J EX • JP TO EXIT

SE:..VENS L,lJ XI0,27D. • LOAD XlO WITH 270

3

L Al,(-D). • LOAD Al WITH ALL 7'S
S Al,ACTREC,XI0. • STORE INTO ACTREC
JGD XIO,$-l.
J O,Xll.

EX ER EXIT$.

UP-7780

$(0)
L1 (1)

L1(2)
L1(3)
L2(1)
L2(2)
L2(3)
L3(1)
L3(2)
L3(3)
L4(1)
L4(2)

ACTREC
KEY
ADDER

INFO
STATUX
aUFl

BUF
BCWX
ADO

EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF
EQUF

RES
+
+
+
+
+
+
+
RES
+
RES
+
+
+
+
RES
+

UNIVAC 1106/111)8

EXEC 8 ISFMS

05172
06
044
05172
48
06
05172
066
06
05172
06

48
o
0.000025
0.000360
0,0
0.000006
0.000001
0.000001
9
0606060606060
0700
0703.0
0703
o
o
0700
o

Appendix D 4
SECTION: PAGE:

• RECORD LENGTH
• STATUS LENGTH n
• FILE-DESCRIPTION IN CHARACT~
• RECORD LENGTH
• DATA RECORD IN CHARACTERS
• STATUS LENGTH
• RECORD LENGTH
• LENGTH OF INFORM-AREA
• STATUS LENGTH
• RECORD LENGTH
• STATUS LENGTH

• DATA RECORD LENGTH IN CHARACTEf
• RECORD KEY AREA
• FILE DESCRIPTION

• INFORM-AREA
• STATUS WORD
• WORKING AREA

• FIRST TWO WORDS OF THIS FCT
• CONTAIN THE FILE NAME. THE
• REST CAN BE SEEN IN APPENDIX B

o

UP-7780

(

UNIVAC 1106/1108

EXEC 8 ISFMS
Appendix E

SECTION:

APPENDIX E. ISFMS ERRORS

E.1. GENERAL

35

The status word (defined in WORKING-STORAGE SECTION in COBOL, or a reserved
word in the assembler) is F ieldata zerofilled if no error has occurred and has the
following format in Fieldata:

30 17 11 o

USER FUNCTION CODE ERROR CODE

+ FUNCTION CODE CLASS NUMBER

E.2. FATAL ERRORS

The run is aborted when one of the following fatal errors occurs:

(a) An attempt is made to open an already opened file.

(b) An attempt is made to refer to an unopened file.

(c) An invalid function code is encountered.

(d) The status-word is improperly defined.

(e) An attempt is made to have more than 10 files open at the same time.

(f) The file has not been assigned.

E.3. NONFATAL ERRORS

Table E-1 lists the nonfatal errors. If the error code, which indicates the type of
error, begins with a 1 or a 2, control is returned to the user program and recovery
from the error is usually impossible. If the error code begins with a 3, control is
is returned to the user program and recovery from the error is possible.

1
PAGE:

UP-7780

ERROR
CODE

101

102

210

211

212

213

230

240

241

243

244

245

246

247

248

350

360

361

362

363

364

Appendix E UNIVAC 1106/1108

EXEC 8 ISFMS SECTION:

ERROR

ACTUAL KEY is larger than the end of fi·le key and is not equal to next key.

A program contingency occurred that concerns either the user's manipulation of
the file or a physical malfunction has occurred on the FH-432 drum.

Insufficient space is available on FASTRAND mass storage to initialize a new index
block.

While updating the index, an attempt was made to write an index block at a level
higher than index level 7.

An attempt was made to write an IOF record and no more IOF blocks are available.

An attempt was made to assign an index file to magnetic drum or FASTRAND mass
storage and the request cannot be honored because no space is available.

One of the following may be wrong with parameter 3 of the ISFMS instruction:

(1) Incoming record is greater in size than that defined in the tables.

(2) Check if status word is equal to one.

(3) Check if inform area contains anything other than nine words.

One of the following may be wrong with parameter 4 of the ISFMS instruction:

(1) Incoming record is greater than that defined in the tables.

(2) Check if fi Ie description contains anything other than six words.

Block size is not quarter-track, half-track, or full track.

Record length (RL), record key length (RKL), or maximum record length (RLM) is
incorrect.

Number of additional records per data block is greater than the number of records
per block or is set negative.

Number of independent overflow records has not been specified.

Number of records in the file has not been specified.

File needs more FASTRAND mass storage tracks than have been assigned.

When the file mode and the function to be performed were checked, a mismatch was
found. Function codes for input files should start with 1, the mode for that file being
1; function codes for output files should start with 2, the mode for the file being 2;
function codes for input/output fi les should start with 3, the mode for that fi Ie being
3. The inform function, starting with 7, has no mode.

Sentinel record has been read.

When an attempt to read the next record is made, it is found that the sentinel record
has already been read.

Unsuccessful search for a record in the data block.

During the creation of an output file, the key of the record presented to ISFMS is not
ascending.

The record could not be rewritten because the previous command was not a Read
Random or a Read Sequential, or because the old record and the modified record
do not match.

An attempt is made to write a record that already exists into an input/output file.

Table E-l. ISFMS Nonfatal Errors

2
PAGE:

c

c

c

UNIVAC 1106/1108
EXEC 8 ISFMS

Appendix F
SECTION:

APPENDIX F. SUMMARY OF
COMMANDS

F.1. COBOL COMMANDS

OPEN INPUT

ENTER ISFMS SUBROUTINE REFERENCING

10 file-name status-word.

PAGE:

The status-word has a meaning during the whole processing of the file (see Appendix E).

READ SEQUENTIAL INPUT

ENTER ISFMS SUBROUTINE REFERENCING

11 file-name record-area record-key-area.

READ RANDOM INPUT

ENTER ISFMS SUBROUTINE REFERENCING

12 file-name record-area record-key-area.

CLOSE INPUT

ENTER ISFMS SUBROUTINE REFERENCING

17 file-name inform-area.

For Inform command, see 2.2.3.

1

UP·7780
UNIVAC 1106/1108

EXEC 8 ISFMS

OPEN OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

20 file-name status-word file-description. (6 words, all H9(10»

(1) Number of records (estimate)

(2) Record length:

Fixed: Length in characters

Variable: Average (estimate) record length in characters

(3) Maximum record length:

Fixed: 0

Varia ble: Maximum reco rd length

(4) Record-key-length in characters

(5) Number of additional records to be inserted in data area

(6) Overflow records for the whole area

WRITE RANDOM OUTPUT

ENTER'ISFMS SUBROUTINE REFERENCING

24 file-name record-area record-key-area.

For Inform command, see 2.2.3.

CLOSE OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

27 file-name inform-area record-key-area.

OPENINPUTjOUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

30 file-name status-word.

READ SEQUENTIAL INPUT jOUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

31 file-name record-area record-key-area.

READ RANDOM INPUT jOUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

32 file-name record-area record-key-area.

Appendix F 2
SECTION: PAGE:

o

o

UP-7780

('-'

/

UNIVAC 1106/1108
EXEC 8 ISFMS

WRITE SEQUENTIAL INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

33 file-name record-area record-key-area.

WRITE RANDOM INPUT OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

34 file-name record-area record-key-area.

WRITE RANDOM DELETE INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

36 file-name record-key-area.

CLOSE INPUT/OUTPUT

ENTER ISFMS SUBROUTINE REFERENCING

37 file-name inform-area.

For Inform command, see 2.2.3.

INFORM

ENTER ISFMS SUBROUTINE REFERENCING

77 file-name inform-area.

Appendix F
SECTION:

This function may be performed only when the file is open. For Inform command,
see 2.2.3.

F .2. ASSEMBLER COMMANDS

OPEN INPUT

OPI FCT-address, status-word.

PAGE:

The status-word has a meaning during the whole processing of the file (see Appendix E).

READ SEQUENTIAL INPUT

RESI FCT-address, record-area, record-key-area.

READ RANDOM INPUT

RDRI FCT-address, record-area, record-key-area.

CLOSE INPUT

CLI FCT-address, inform-area.

For Inform command, see 2.2.3.

3

UP-7780

OPEN OUTPUT

UNIVAC 1106/1108
EXEC 8 ISFMS

OPO FCT-address, status-word, file description. (6 words, all H9(lO»

• See COBOL Open Output command.

WRITE RANDOM OUTPUT

WRRO FCT-address, record-area, record-key-area.

CLOSE OUTPUT

CLO FCT-address, inform-area, record-key-area.

OPEN INPUT/OUTPUT

OPIO FCT-address, status-word.

READ SEQUENTIAL INPUT/OUTPUT

RDSIO F CT -address, record-area, record-key-area.

READ RANDOM INPUT/OUTPUT

RDRIO FCT-address, record-area, record-key-area.

WRITE SEQUENTIAL INPUT/OUTPUT

WRSIO FCT -address, record-area, record-key-area.

WRITE RANDOM INPUT/OUTPUT

WRRIO FCT-address, record-area, record-key-area.

WRITE RANDOM DELETE INPUT/OUTPUT

WRRD FCT-address, record-key-area.

CLOSE INPUT/OUTPUT

CLIO FCT-address, inform-area.

INFORM

INFORM FCT-address, inform-area.

This function may be performed only when the file is open.

Appendix F 4
SECTION: PAGE:

o

o

....•.

~. . -
... , .. - -,

, "

c

, .'

-. .-

c

up-n80

(

