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Error Detecting and Error Correcting Codes
By R. W. HAMMING

1. INTRODUCTION

HE author was led to the study given in this paper from a considera-
tion of large scale computing machines in which a large number of

. operations must be performed without a single error in the end result. This

problem of “doing things right”” on a large scale is not essentially new; in a
telephone central office, for example, a very large number of operations are
performed while the errors leading to wrong numbers are kept well under
control, though they have not been completely eliminated. This has been:
achieved, in part, through the use of self-checking circuits. The occasional
failure that escapes routine checking is still detected by the customer and
will, if it persists, result in customer complaint, while if it is transient it ‘will
produce only occasional wrong numbers. At the same time the rest of the
central office functions satisfactorily. In a digital computer, on the other
hand, a single failure usually means the complete failure, in the sense that
i it i detected no more computing can be done until the failure is located
and corrected, while if it escapes detection then it invalidates all subsequent
operations of the machine. Put in other words, in a telephone central office
there are a number of parallel paths which are more or less independent of
each other; in a digital machine there is usually a single long path which
passes through the same piece of equipment many, many times before the
answer is obtained. ’

In transmitting information from one place to another digital machines
use codes which are simply sets of symbols to which meanings or values are
attached. Examples of codes which were designed to detect isolted errors
are numerous; among them are the highly develgped 2 out of 5 codes used
extensively in common control switching systems and in the Bell Relay
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Computers,! the 3 out of 7 code used for radio telegraphy,? and the word
count sent at the end of telegrams.

In some situations self checking is not enough. For example, in the Model
5 Relay Computers built by Bell Telephone Laboratories for the Aberdeen
Proving Grounds,! observations in the early period indicated about two
or three relay failures per day in the 8900 relays of the two cogputers, repre-
senting about one failure per two to three million relay operafions. The seli-
checking feature meant that these failures did not introduce undetected
errors. Since the machines were run on an unattended basis over nights and
week-ends, however, the errors meant that frequently the computations
came to a halt although often the machines took up new problems. The
present trend is toward electronic speeds in digital computers where the
basic elements are somewhat more reliable per operation than relays. How-
ever, the incidence of isolated failures, even when detected, may seriously
interfere with the normal use of such machines. Thus it appears desirable
to examine the next step beyond error detection, namely error correction.

We shall assume that the transmitting equipment handles information
in the binary form of a sequence of 0’s and 1’s. This assumption is made
both for mathematical convenience and because the binary system is the
natural form for representmg the open and closed relays, flip-flop cu'cmts,F
dots and dashes, and perforated tapes that are used in many forms of com-
munication. Thus each code symbol will be represented by a sequence of
0’s and 1’s.

The codes used in this paper are called systematic codes. Systematic codes
may be defined® as codes in which each code symbol has exactly » binary
digits, where m digits are associated with the information while the other
k = n — m digits are used for error detection and correction. This produces
a redundancy R defined as the ratio of the number of binary digits used to
the minimum number necessary to convey the same information, that is,

R = n/m.

This serves to measure the efficiency of the code as far as the transmission
of information is concerned, and is the only aspect of the problem discussed
in any detail here. The redundancy may be said to lower the effective channel
capacity for sending information.
The need for error correction having assumed importance only recently,
very little is known about the economics of the matter. It is clear that in
! Franz Alt, “A Bell Telephone Laboratories’ Computing Machine”—I, II. Mathe-
Rnatxcalz;gablm and Other Aids to Computation, Vol. 3, pp. 1-13 and 60—84 Jan. and
pPr
1S. Sparks, and R. G. Kreer, “Tape Relay System for Radio Telegraph Operation,”

RCA. ,.Vol. 8, pp. 393-426, (espec mlly p. 417), 1947,
3 In Section 7 this is mwn to be eq\uvalent to 8 much weaker appearing definition.
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using such codes there will be extra equipment for encoding and correcting
errors as well as the lowered effective channel capacity referred to above.
Because of these considerations applications of these codes may be expected
to occur first only under extreme conditions. Some typical situations seem
to be:

a. unattended operation over long periods of time with the minimum of

standby equipment.

b. extremely large and tightly interrelated systems where a single failure -

incapacitates the entire installation.

c. signaling in the presence of noise where it is either impossible or un-

economical to reduce the effect of the noise on the signal.
These situations are occurring more and more often. The first two are par-
ticularly true of large scale digital computing machines, while the third
occurs, among other places, in “jamming” situations. -

The principles for designing error detecting and correcting codes in the
cases most likely to be applied first are given in this paper. Circuits for
implementing these principles may be designed by the application of well-
known techniques, but the problem is not discussed here. Part I of the paper
shows how to construct special minimum redundancy codes in the follow- ~
ing cases:

a. single error detecting codes

b. single error correcting codes

c. single error correcting plus double error detecting codes.

Part II discusses the general theory of such codes and proves that under
the assumptions made the codes of Part I are the “best” possible.

PART I
SPECIAL CODES

2. SineLe Exror DETECTING CODES

We may construct a single error detecting code having » binary digits
in the following manner: In the first » — 1 positions we put » — 1 digits of
information. In the n-th position we place either O or 1, so that the entire n
positions have an even number of 1’s. This is clearly a single error detecting
code since any single error in transmission would leave an odd number of
1’s in a code symbol.

The redundancy of these codes is, since m = » — 1,

LIRS
n—1 ”n —

R =

It might appear that to gain a low redundancy we should let » become very
_large. However, by increasing m, the probability of at least one error in a
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symbol increases; and the risk of a double error, which woufi pass unde-
tected, also increases. For example, if p << 1 is thé probability of any error,
then for n so large as 1/p, the probability of a correct symbol is approxi-
mately 1/e = 0.3679..., while a double error has probability 1/2¢ =
0.1839. ...

The type of check used above to determine whether or not the symbol
has any single error will be used throughout the paper and will be called
a parily check. The above was an even parity check; had we used an odd
number of 1’s to determine the setting of the check position it would have
been an odd parity check. Furthermore, a parity check need not always
involve all the positions of the symbol but may be a check over selected posi-
tions only.

3. SINGLE ErrOR CoRRECTING CODES

To construct a single error correcting code we first assign m of the n avail-
able positions as information positions. We shall regard the m as fixed, but
the specific positions are left to a later determination. We next assign the &
remaining positions as check positions. The values in these & positions are
to be determined in the encoding process by even parity checks over selected
information positions. :

Let us imagine for the moment that we have received a code symbol, with
or without an error. Let us apply the k parity checks, in order, and for each
time the parity check assigns the value observed in its check position we
write a 0, while for each time the assigned and observed values disagree
we write a 1. When written from right to left in a line this sequence of & 0’s
and 1’s (to be distinguished from the values assigned by the parity checks:
may be regarded as a binary number and will be called the checking uwmber
We shall require that this checking number give the position of any single
error, with the zero value meaning no error in the symbol. Thus the check
number must describe m + £ + 1 different things, so that

>m+ b+ 1

is a condition on k. Writing n = m -+ % we find

m 2*
< b
Using this inequality we may calculate Table I, which gives the maximum
m for a given n, or, what is the same thing, the minimum #» for a given m.
We now determine the positions over which each of the various parity
checks is to be applied. The checking number is obtained digit by digit,
from right to left, by applying the parity checks in order and writing down:
the corresponding O or 1 as the case may be. Since the checking number is
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to give the position of any error in a code symbol, any position which has
a 1 on the right of its binary representation must cause the first check to
fail. Examining the binary form of the various integers we find

1= 1
3= 11
5= 101
7= 111
9 = 1001
Etc.

have a 1 on the extreme right. Thus the first parity check must use positions
1,3,57,9, .

In an exactly similar fashion we find that the second parity check must
use those positions which have 1’s for the second digit from the right of their‘
hinary representation, '

2= 10
3= 11
6= 110
7= 111
10 = 1010
11 = 1011
Etc.,

b
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the third parity check

4= 100

5= 101 :
6= 110 -
7= 111

12 = 1100

13 = 1101,

14 = 1110

15 = 1111

20 = 10100

Etc.

It remains to decide for each parity check which positions are to contain
information and which the check. The choice of the positions 1, 2, 4, 8, - - -
for check positions, as given in the following table, has the advantage of
making the setting of the check positions independent of each other. All
other positions are information positions. Thus we obtain Table II.

TasLe II
Check Number | Check Positions ’ Positions Checked
- i I —
1 1 1,3,5,7,9, 11,13, 15,17, - -
2 2 2,367, 10, 11, 14, 15, 18, - - -
3 4 456712 13 14, 15, 20,- - -
4 R 89,10, 11, 12, 13, 14, 15, 24, - -
i

As an illustration of the above theory we apply it to the case of a seven
position code. From Table I we find forn = 7, m = 4 and k£ = 3. From
Table IT we find that the first parity check involves positions 1, 3, 3, 7 and
is used to determine the value in the first position; the second parity check,
positions 2, 3, 6, 7, and determines the value in the second position; and
the third parity check, positions 4, 5, 6, 7, and determines the value in posi-
tion four. This leaves positions 3, 5, 6, 7 as information positions. The results
of writing down all possible binary numbers using positions 3, 5, 6, 7, and
then calculating the values in the check positions 1, 2, 4, are shown
in Table III.

Thus a seven-position single error correcting code admits of 16 code sym-
bols. There are, of course, 27 — 16 = 112 meaningless symbols. In some ap-
plicationé it may be desirable to drop the first symbol from.the code to
avoid the all zero combination as either a code symbol or a code symbol plus
a single error, since this might be confused with no message. This would still
leave 15 useful code symbols.

{f/f/‘f{
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R TasLe III
Position | Decimal Value of.
: Symbol !
1 2 3 4 3 6 7 :
0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1
0 1 0 1 0 1 0 2
1 0 0 0 0 1 1 3
1 0 0 1 1 0 0 ‘
0 1 0 0 1 0 1 s
1 1 0 0 1 1 0 6
0 0 0 1 1 1 1 7
1 1 1 0 0 0 0 8
0 0 1 1 0 0 1 9
1 0 1 1 0 1 0 10
0 1 1 0 0 1 1 18
0 1 1 1 1 0 o 4 12
1 0 1 0 1 0 1 13
0 0 1 0 1 1 0 14
1 1 1 1 1 1 1 15

_As an illustration of how this code ‘“‘works” let us takﬂthe symbol
ge the 1 in
the fifth position to a 0. We now examine the new symbol ‘
' 0111000 = -

by thie methods of this section to see how the error is located. From Table II

the first parity check is over positions 1, 3, 5, 7 and predicts a 1 for the first
posmon while we find a 0 there; hence we write a :

1.

‘The second parity check is over bosi_tions 2, 3,6, 7, and predicts the second
puuuon correctly; hence we write a 0 to the left of the 1, obtaining

01.

The third parity check is over positions 4, 5 6, 7and predxcts gly; hence
we write a. 1 to the left of the 0 1, obtaining : ’ :

101.
This sequence of 0’s’ and 1’s regarded as a binary number is the number 5,

L -~ hence the error is in the fifth position. The correct symbeol is therefore ob-
‘2.4 tained by changmg the 0 in the fifth position to a 1. !

4‘ Smcm Error Conxnc'mm Pms Douste Enxox Dr:‘n:c:m CopEs

To construct a single ermt cotrectmg plus donble error detectmg code we
begm thh a smgle error conectmgoode To tlus oodewqaddone morgposx
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tion for checking all the previous positions, using an even parity check. Te
see the operation of this code we have to examine a number of cases:

1. No errors. All parity checks, including the last, are satisfied,

2. Single error. The last parity check fails in all such situations whether
the error be in the information, the original check positions, or the last
check position. The original checking number gives the pasition of the
error, where now the zero value mesns the last check position.

3. Two errors. In all such situations the last parity check is satisfied, and
the checking number indicates some kind of error.

As an illustration let us construct an eight-pgsition code from the previous
seven-position code. To do this we add an eighth position which is chosen
80 that there are an even number of 1’s in the eight positions. Thus we add
an eighth column to Table ITI which has:

Tamzz IV

PART IT
GENERAL THEORY

5. A GeomerRicar Mopzi

When examining various problems comnected with error detecting and
cofrecting codes it is often conveniemt to introduce s geometric model.
The model used here consists in identifying the various sequences of 0’s and
1's which are the symbols of & code with vertices of a unit s-dimensional
cube. The code points, labelled 2, 5, 5, « - , form a subset of the set of all
vertices of the cube.

Into this space of 2" points we introduce s disionce, or, as it is usually
called, & metric, D(s, ¥). The definition of the metric is based on the observa-
nmhtnﬁdemhnadt"tdtmaemﬁnm
two coordinates, and in general d errors produce a difference in d coordinates.

\
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Thus we define the distance D(x, y) between two points x and y as the num-
ber of coordinates for which x and y are different. This is the same as the
least number of edges which must be traversed in going from x to y. This
distance function satisfies the usual three conditions for a metric, namely,

D(x,y) =0 ifandonlyifx = y
D(x,y) = D(y,x) >0 ifx =y
D(z, ¥) + D(y, z2) 2 D(x, z) (triangle inequality).

As an example we note that each of the following code points in the three-
dimensional cube is two units away fropm the others,

/
001 )
010 .
100
111.

To continue the geometric lakuage, a sphere of radius r about a point x
is defined as all points which are at a distance r from the point x. Thus, in
the above example, the first three code points are on a sphere -of radius 2
about the point (1, 1, 1). In fact, in this example any one code point may be
chosen as the center and the other three will lie on the surface of a sphere
of radius 2. s )

If all the code points are at a distance of at least 2 from each other, then it
follows that any single error will carry a code point over to a point that is
not a code point, and hence is a meaningless symbol. This in turn means that
any single error is detectable. If the minimum distance between code points
is at least three units then any single error will leave the point nearer to the
correct code point than to any other code point, and this means that any
~ingle error will be.correctable. This type of information is summarized in
the following table:

TaBLE V

Meaning

1 uniqueness
2 single error detection
3 single error correction
4 single error correction plus double error detection
5 double error correction
Etc.

Conversely, it is evident that, if we are to effect the detection and correc-
tion listed, then all the distances between code points must equal or exceed
the nimmum distance listed. Thus the problem of finding suitable codes is
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the same as that of finding subsets of points in the space which maintain at
least the minimum distance condition. The special codes in sections 2, 3,
and 4 were merely descriptions of how to choose a particular subset of points
for minimum distances 2, 3, and 4 respectively.

It should perhaps be noted that, at a given minimum distance, some of
the correctability may be exchanged for more detectability. For example, a
subset with minimum distance 5 may be used for:

a. double error correction, (with, of course, double error detection).

b. single error correction plus triple error detection.

c. quadruple error detection.

Returning for the moment to the particular codes constructed in Part I
we note that any interchanges of positions in a code do not change the code
in any essential way. Neither does interchanging the 0’s and 1’s in any posi-
tion, a process usually called complementing. This idea is made more precise
in the following definition:

Definition. Two codes are said to be eguivalent to each other if, by a finite
number of the following operations, one can be transformed into the other:

1. The interchange of any two positions in the code symbols.

2. The complementing of the values in any position in the code symbols.
This is a formal equivalence relation (~) since 4 ~ 4; 4 ~ B implies
B~ A;and A ~ B, B~ C implies A ~ C. Thus we can reduce the study
of a class of codes to the study of typical members of each equivalence class.

In terms of the geometric model, equivalence transformations amount to
rotations and reflections of the unit cube.

6. SINGLE ErrOR DrTECTING CODES

The problem studied in this section is that of packing the maximum num-
ber of points in a unit n-dimensional cube such that no two points are closer
than 2 units from each other. We shall show that, as in section 2, 2" points
can be so packed, and, further, that any such optimal packing is equivalent

" to that used in section 2.

To prove these statements we first observe that the vertices of the n-
dimensional cube are composed of those of two (» — 1)-dimensional cubes.
Let A be the maximum number of points packed in the z)riginal cube. Then
one of the two (n — 1)-dimensional cubes has at least 4/2 points. This cube
being again decomposed into two lower dimensional cubes, we find that one
of them has at least 4/2? points. Continuing in this way we come to a two-
dimensional cube having 4/2"* points. We now observe that a square can
have at most two points separated by at least two units; hence the original
n-dimensional cube had at most 2*~! points not less than two units apart.

L-f)
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To prove the eqmvalence of any two optimal packings we note that, if
the packing is optimal, then each of the two sub-cubes has half the points.
Calling this the first coordinate we see that half the points have a 0 and half
~ have a 1. The next subdivision will again divide these into two equal groups
" having 0’s and 1’s respectively. After (# — 1) such stages we have, upon re-
ordering the assigned values if there be any, exactly the first # — 1 positions
of the code devised in section 2. To each sequence of the first # — 1 coordi-

- pates there exist # — 1 other sequences which differ from it by one co-

ordinate. Once we fix the n-th coordinate of some one point, say the origin
which has all 0’s, then to maintain the known minimum distance of two
units between code points the n-th coordinate is uniquely determined for all
other code points. Thus the last coordinate is determined within a comple-
mentation so that any optimal code is equivalent to that given in section 2.

"It is interesting to note that in these two proofs we have used only the -

assumption that the code symbols are all of length n.

7. Svcre Ezror CORRECTING CODES
It has pi'obably been noted by the reader that, in the ular codes of

wlnle, m the geometric model, there is no real dxstmctnon betw \the various

1. The positions checked are mdependent of the information
" in the symbol. -

2. The checks are independent of each other.

3. We use parity checks.

This is equivalent to the earlier déﬁnmon To show this we form a matrix

" whose i-th row has 1’s in the positions of the i-th parity check and 0’s else-

where. By assumption 1 the matrix is fixed and does not change from code -

symbol to code symbol. From 2 the rank of the matrix is & This in turn
means thatthesystmmgbesolvedforbofthepomwnsexpressedm

terms of the other # — k' positions. Assumption 3 indicates t.hat in this -

- golving we use the arithmetic in which 1 + 1 = 0.

" There exist non-systematic codes, but so far none have been found which
for a given » and minimum distance d have more code symbols than a sys-
tematic code. Section 9 gives an example of a non-systematic code.

Turning to the main problem of this section we find from Table V
single error correcting code has code points at least three units from eo.ch
other. Thus each point may be surrounded by a sphere of radius 1 with no

twonplxemhamgupomgmq)mmon Each sphere has a center point and
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n points on its surface, a total of # 4 1 points. Thus the space of 2» poinfS
can have at most: ,
2”
n+1
spheres. This is exactly the bound we found before in section 3.

While we have shown that the special single error correcting code con-
structed in section 3 is of minimum redundancy, we cannot show that all
optimal codes are equivalent, since the following trivial example shows that
this is not so. For » = 4 we find from Table I that m = 1and 2 = 3. Thus
there are at most two code symbols in a four-position code. The following
two optimal codes are clearly not equivalent:

0000 0000

1111 2™ 99191,

8. SINGLE ERROR CORRECTING Prus DousLE ErRrROR DETECTING CODES

In this section we shall prove that the codes constructed in section 4 are
of minimum redundancy. We have already shown in section 4 how, for a
minimum redundancy code of n — 1 dimensions with a minimum distance
of 3, we can construct an # dimensional code having the same number of
code symbols but with a minimum distance of 4. If this were not of minimum
redundancy there would exist a code having more code symbols but with
the same 7 and the same minimum distance 4 between them. Taking this
‘code we remove the last coordinate. This reduces the dimension from n to
n — 1 and the minimum distance between code symbols by, at most, one
unit, while leaging the number of code symbols the same. This contradicts
the assumption that the code we began our construction with was of mini-
mum reduncancy. Thus the codes of section 4 are of minimum redundancy.

This is a special case of the following general theorem: To any minimum
redundancy code of N points in » — 1 dimensions and having a minimum
distance of 2¢ — 1 there corresponds a minimum redundancy code of .V
points in # dimensions having a minimum distance of 2k, and conversely.
To construct the # dimensional code from the » — 1 dimensional code we
simply add a single n-th coordinate which is fixed by an even parity check
over the n positions. This also increases the minimum distance by -1 for
the following reason: Any two points which, in the » — 1 dimensional code,
were at a distance 2k — 1 from each other had an odd number of differences
between their coordinates. Thus the parity check was set oppositely for the
two points, ancreasing the distance between them to 2&. The additional co-
ordinate could not decrease any distances, so that all points in the code are
now at a minimum distance of 2k. To go in the reverse direction we simply

-
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drop one coordinate from the » dimensional code. This reduces the minimum
distance of 2k to 2k — 1 while leaving NV the same. It is clear that if one
code is of minimum redundancy then the other is, too.

9. MISCELLANEOUS OBSERVATIONS

For the next case, minimum distance of five units, one can surround each
code point by a sphere of radius 2. Each sphere will contain

1+ C, 1) + Cn, 2)

points, where C(n, k) is the binomial coefficient, so that an wpper bound on
the number of code points in a systematic code is
n 1
2 * - 2‘+ > 2,.‘
14+C(n,1) +C(»,2) n+4+n+27
This bound is too high. For example, in the case of # = 7, we find that
m = 2 so that there should be a code with four code points. The maximum
possible, as can be easily found by trial and error, is two.

In a similar fashion a bound on the number of code points may be found
whenever the minimum distance between code points is an odd number.
A bound on the even cases can then be found by use of the general theorem
of the preceding section. These bounds are, in general, too high, as the above
example shows.

If we write the bound on the number of code points in a unit cube of dimen-
sion # and with minimum distance d between them as B(n, d), then the
information of this type in the present paper may be summarized as follows:

B(n, 1) = 2"
B(n, 2) = 2™}
.- 2
B(»,3) = 2" < i T
) n=l
B(n,4) = 2" < 2
n .

B(s — 1,2k — 1) = B(n, 2k)
. 2"
1+C(”71)+ e +C(ﬂ,k_ 1) )
While these bounds have been attained for certain cases, no general
methods have yet been found for contructing optimal codes when the mini-

mum distance between code points exceeds four units, nor is it known
whether the bound is or is not attainable by systematic codes.

B(n, 2k — 1) = 2" <
\
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We have dealt mainly with systematic codes. The existence of non-sys-
tematic codes is proved by the following example of a single error correctmg

/

code withn =

T D = OO
—_O e Qe O
e OO O
—_—0 0 = O
_— O OO
OO O

The all 0 symbol indicates that any parity check must be an even one.
The all 1 symbol indicates that each parity check must involve an even num-
ber of pesitions. A direct comparison indicates that since no two columns
are the same the even parity checks must involve four or six positions. An
examination of the second symbol, which has three 1’s in it, indicates that

‘no six-position parity check can exist. Trying now the four-position parity

checks we find that
’ 12 56 {
2345 )

are two independent parity checks and that no third one is independent of
these two. Two parity checks can at most locate four positions, and, since
there are six positions in the code, these two parity checks are not enough
to locate any single error. The code is, however, single error correcting since
it satisfies the minimum distance condition of three units. .

The only previous work in the field of error correction that has appeared
in print, so far as the author is aware, is that of M. J. E. Golay.*

4 M. J. E. Golay, Correspondence, Notes on Digital Coding, Proceedings of the I.R.E.,
Vol. 37, p. 657, June 1949. ’
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