THE REVIEW OF SCIENTIFIC INSTRUMENTS

L - 37

VOLUME 21, NUMBER 8 AUGLUST, 1950

Arithmetic Operations in a Binary Computer

Ropert F. Suaw
Eckert-Mauchly Computer Corporation, 3747 Ridge Avenue, Philaddphia, Pennsyivonia
(Received February 13, 1950)

The application of binary arithmetic in the computing circuits of a high speed digital computer is dis-
cussed in detail. The discussion covers, with numerous examples, the use of complements to represent
negative numbers, the corrections necessary in the multiplication process as a result of the use of com-
plements, and additional modifications of the process to simplify mechanization. A special division method

well-adapted to automatic computer use is described,

and round-off procedures are noted briefly. The arficle

is concluded with a discussion of the storage of negative numbers as absolute values with a sign rather

than in complement form.

INTRODUCTION

HE extensive development of large-scale digital

computers in the past few years has naturally
been accompanied by a corresponding development of
the mathematical techniques required for the most
efficient use of these tools of research. Probably the
outstanding feature of electronic circuits, insofar as
their application to digital computers is concerned, is
their binary nature. It is possible, by relatively simple
means, to use these essentially binary circuits for opera-
tion in the decimal system, provided the decimal digits
are represented in binary coded form. There is little
doubt that all significant future development of general
purpose computers, particularly for use in the com-
mercial and industrial field, will be concerned with deci-
mal operation. Nevertheless, it is also true that many
of the large-scale computers now under development
both in this country and abroad are purely binary,
at least in their arithmetic operations. The greater
simplicity of this type of device and its slightly more
efficient use of memory capacity will probably assure it
a position of continuing importance in the field of
small special-purpose computers such as those con-
templated for industrial control applications.

While the present discussion is concerned chiefly with
the arithmetic operations of the Binac, a general pur-
pose binary comptter recently completed by the Eckert-
Mauchly Computer Corporation, they apply to a large
degree to most of the other binary computers now under
construction. The mathematical developments pre-
sented are not intended to be rigorous, but are intended
more to convey as simply and clearly as possible the
principles underlying the operation of the Binac's
arithmetic circuits. For a more thorough and rigorous
analysis of these principles, the reader is referred to
the report of Burks, Goldstine, and von Neumann, on
the computer being built at the Institute for Advanced
Study.! The arithmetic operations in this computer are
similar to those in the Binac, although the latter is
serial in nature, while the Institute’s computer is of
the parallel type.

! Burks, Goldstine, and von Neumann, Preliminary Discussion
of the Logical Design of an Flectronic Compuling Instrument

(Institute for Advanced Study, Princeton, New Jersev, 1947},
second edition, Part 1, Vol 1.

I. RANGE OF NUMBERS

The arithmetic circuits and memory of a computer
are designed to handle data in units, each consisting of a
fixed number of binary digits; since these units may
represent either numbers or instructions,® they are
commonly referred to as “words.”” The choice of word
length must be a compromise among a number of
factors, such as available memory capacity, operating
speed, required accuracy of numerical data, and other
considerations. A word length of 30 binary digits,
equivalent numerically to slightly less than 10 decimal
digits, was chosen for the Binac; other binary com-
puters now in the process of construction use word
lengths varying from 16 to 44 binary digits.

Placement of the binary point must next be deter-
mined. Multiplication will be simplified if the point is
placed to the left of the first significant digit, since it
will then be possible to form the product of two factors,
each having the maximum of 30 significant digits, -
without exceeding the capacity of the computer, and
without resorting to “floating point” methods which
require the keeping of a separate record of the binary
point position. Placing of the point in this position also
leads to a convenient method of handling negative
numbers, as will be seen later. The absolute values of
numbers which the computer can represent will lie in
the range 0=x<1, and, since 30 binary digits can be
stored, the smallest increment which the computer can
represent is 2-%,

Both positive and negative numbers can be repre-
sented if one additional digit, to the left of the binary
point, is used. This digit will be a 0 for positive numbers
and a 1 for negative numbers; and the absolute value
of the latter will actually be replaced by its complement
with respect to 1; for example: 4% will be written
0.0011, but —3% will be written 1.1101. (It will be
noted that if the sign is treated as if it were simply
another digit, negative numbers are represented by

! Instructions and numerical quantities are handled interchange-
ably in both the memory and arithmetic circuits, instructions
being modified in the latter circuits by addition or subtraction of
constants where necessarv, However, an instruction differs from
a quantity in that it can be interpreted by the control circuits of
the computer and through those circuits can cause predetermined
nperations to be performed.

6R7

688 ROBERT F. SHAW
Tasie I Tasie 1L
Addends Sum Carryover Addends Sum Carryover
0 and 0 0 0 0,0, and 0 0 0
Oand 1 1 4] 0,0, and 1 1 0
land 1 0 1 0,1, and 1 0 1
1,1,and 1 1 1

their complements with respect to 2. This statement
will be further amplified in the discussion of addition
and subtraction.) The total range of numbers which
the computer can represent is then —1=x<1,

II. ADDITION

It will next be shown that the correct algebraic sum
of two quantities can be formed by an adder which will
form the correct sum of two positive numbers. The
basic rules of binary addition are illustrated in Table L.
Since the adder must be capable of forming the correct
sum even if two ones from the two addends coincide
with a carryover from the preceding digit, Table 1I,
which is developed from the basic principles in Table I,
summarizes the results which the adder must produce.
An adder satisfving these requirements, then, will form
the correct sum of two positive numbers, Since it is
not the purpose of this paper to discuss circuit details,
it is sufficient to state here that these requirements can
be met electronically by relatively simple means.

The significance of the statement, previously made,
that negative numbers are represented by their com-
plements with respect to 2, must now be examined.
This implies .that if —1=x<0, x is actually written
24 x, which obviously lies in the range between 1 and 2.
Thus, in the example previously given, =% (in binary
form —0.0011) is written 1.1101. If the digits to the
left of the sign posilion are ignored, any positive
number (l‘”.r(l is lndlstmgulqhable from 24-zx; for
example, % in binary form s 0. 0011; %+ 2 is 10.0011,
which becomes 0.0011 again if the 1 to the left of the
sign digit is ignored.

Thus, if an adder is constructed which discards
carries beyond the sign digit, it should work equally
well for positive or negative numbers. The following
examples will illustrate this.

0.0011 ,:.-,
(00111 16
0.1010 §
00011 | ';35
1.1001 - 1%
11100 -1
1.1101 —,fu
1.1001 — %
(1) 1.0110 -1

(The carryover, shown in parentheses, is discarded.)

1.1101 2
0.0111 &
(1) 0.0100 1

(Again, the carryover is discarded.)

To summarize these results, then, it is possible to use
a simple binary adder to add positive or negative
numbers, provided (a) each quantity is confined to the
range —1=x<1and a 2 is added to the quantity before
it is sent into the machine, and (b) any digits to the lefr
of the 2° position, called the sign position, are dis
carded, whether they result from the original additior
of 2 to the number or from an addition in the course ol
subsequent computation.

I1I. SUBTRACTION

Since the addition process just described works
equally well for positive and negative quantities, sub
traction can be accomplished by changing the sign ot
the subtrahend and adding. Since the sign reversal i
accomplished by determining the complement of the
quantity with respect to 2, a procedure for comple
menting is required.

First, consider the result obtained by selecting a
quantity, changing all its zeros to ones and its ones t¢
zeros, then adding the result to the original number,

0.1101001
1.0010110

IERAREE N

It is evident that the result will always be a series i
ones. For n digits to the right of the binary point, the
result will be 2—2-". The quantity obtained by inter
changing zeros and ones is therefore the complement o
the original quantity with respect to 2—2 »; that is
the new quantity m'=2—2"—m. Since the resul’
required is 2—m, it is only necessary to add 2" ta th
result obtained by interchanging ones and zeros:

m=0.110100)
— = 10010114 0000001 = 1.001 1(X).

Complementing is thus accomplished by interchang
ing ones and zeros in the quantity to be complemented
and adding a one to the result in the least significant
digit position.

A somewhat different subtraction method is dis

ARITHMETIC OPERATIONS

cussed in the section dealing with storage of absolute
values.

IV. MULTIPLICATION

Multiplication in the binary system is simplified by
the fact that any multiplier digit can be only a one or
a zero. This fact results in a process easy to mechanize,
since additions and shifts alternate, whereas in the
decimal and other number systems, the number of
additions between shifts varies in accordance with the
multiplier digits. (Of course, the case of no addition
can be treated as equivalent to the addition of zero.)
Multiplication of two positive binary quantities, then,
consists of examining the multiplier digits in succession,
starting with the least significant, adding the multi-
plicand into the partial product if the corresponding
multiplier digit is a one, but adding zero if the multiplier
_digit is zero. After every such addition, the partial
product is shifted one place to the right. The following
example illustrates the procedure:

0.1 1501 % 13
01011 v §
0.1 101 %1
01101 x-1
00000 a0
[)65 b (6% x1
00000 x-0

010001111 xy 143/256.

Note that a shift takes place after every addition except
the last. Although the above example is written as if
the multiplicand were shifted to the left, obviously this
is equivalent to shifting the partial product to the right;
the latter process is better adapted to computer
operation,

Now suppose that the multiplicand, x, is positive
and the multiplier, y, is negative. As usual, y is written
2—|y|=24y. Multiplying gives x(2+4y)=2x4xy,
which can be corrected to equal the product xy by
subtracting 2x. Although 2x is obtainable by a simple
shift, nevertheless it would be more convenient if this
shift could be avoided, and this turns out to be easily
possible. Let x be multiplied by all digits of y except the
sign digit. Since y is negative, this sign digit is 1; the
result, therefore, is to multiply x by one less than before.
This means the formation of the product x2(1+4y)
= x+xy instead of x(24y) =2x+xv. Now, a correction
of — x is sufficient, and furthermore, the process is more
systematic, since every addition is followed by a shift.

Thus, to take care of the cases of x positive and v
either positive or negative, it is only necessary to follow
the procedure outlined for both x and y pesitive, and,
f y is negative, correct the result by subtracting x
from it. The following example illustrates the pro-

IN A BINARY COMPUTER 689
cedure:
0.1 1071 x H
10101 y -
01101
00000
0.1 101
00000
001000001 xy+x
10001 1 —x

1E00101 100 000 1wy —143/256.

From symmetry it is apparent that if x is negative
and y positive, a correction of —y will give the true
product. As a preliminary assumption, let the sign digit
of x be ignored until the correction at the end is made.
This leaves only the question of how to add in the —y.
It turns out to be convenient, as far as computer design
is concerned, to examine successive digits of v by
shifting ¥ to the right a digit at a time, dropping off
each digit after it has been examined. This means that
by the end of the process y has been lost and is not
available for use in correcting the product. Therefore,
the possibility of making the correction digit by digit
as the product is built up must be examined.

Suppose the numbers being used have 30 digits and
a sign. Referring back to the basic multiplication
process, it is noted that 30 shifts are made in building
up the product ; therefore, the sign digit of x during the
first addition finally becomes the 30th or least significant
digit of the product. Similarly, the sign digit of x on
the second addition becomes the 29th digit of the
product, and so on. Mt therefore becomes apparent that
the sign digit of x during any addition occupies in the
final product a position equivalent to that of the digit
of y which controlled its addition into the product.

Next, note that the correction needed is the com-
plement of y. Thus, for every 1 in y a 0 is needed in the
correction term, but for every 0 in y a 1 should appear
in the correction term. As usual, the complement must
be corrected by adding a unit in the last place. Note
further that the correction is needed only if x is negative
—that is, if its sign digit is 1.

Putting together the above facts, the required pro-
cedure may be defined. If a digit of v is 1, x (without
its sign digit) is added into the partial product. If a
digit of y is 0, its complement, 1, must be added into
the partial product, but a 1 is available, in the correct
position, in the form of the sign digit of x. Thus, if a
digit of y is 0, the sign digit only of x is added. Of course,
this sign digit might be 0, but that would imply that x
was positive and no correction was required; thus no
harm is done by adding the zero. Since the additions
are terminated before examining the sign digit of v,
the correction term, if any, still lacks a 1 in the sign
position and a 1 in the units position. Hence, if x s

690

L4
negative, these digits must be added to the product,
as shown in the following:

10001t -4

033 B0 6 I 1 H

00011 (xwithout sign)

00011
10000 (sign only of x)
noo11

D01 100001
10001 {correction term)
1.01110001 =xy —143/256.

Taking the third term of the partial product (that is,
1.0000 shifted twice to become 0.0100) and the correc-
tion term, and adding, the result 0.0100-41.0001
=1.0101 is obtained. Thus, it is shown that the com-
plement of y has in fact been added to the product,

Finally, the case of x and y both negative will be
considered. Starting with the numerical example, and
following the procedure outlined for the preceding
cases:

10011 =z -1
10101 y —t
00011 (xwithout sign)
10000 (sign only of x)
00011
1.0000

3 g N I N

10001 (correction for sign of x)
110111111 xytx
01 2404 — x (correction for sign of v)

010001111 ay 143/256.

The correction terms added on account of the sign
of x are (1) 10000, shifted three times to hecome 0.0010;
(2) 1.0000, shifted once to become 0.1000; (3) 1.0001,
added after all shifts are completed.

Again adding these various corrections, the result is
1.1011, which appears to be wrong, because the com-
plement of y is 0.1011. Recalling that, up to the correc-
tion steps, signs were disregarded, and that therefore
the factors behaved like x4 1 and y+1, the uncorrected
product obtained must be (x+1)(y4+1)=xy+x+4y-+ 1.
Hence, it is necessary to subtract 1 as well as x and ¥ to
get the true product. Since all carryovers bevond the
sign are disregarded, subtracting 1 is the same as
adding 1. Thus, the extra 1 which appeared in the
complement of v is necessary.

The foregoing discussion covers all possible cases and
shows that a single generalized multiplication process
can be used to produce results which are correct regard-
less of the signs of the factors.

ROBERT F.

SHAW

V. DIVISION

The division process used in the binary cemputer is
the non-restoring method, analogous to that used in
desk computing machines. This method has two im-
portant advantages—it eliminates time-consuming com-
parison operations which are necessary in the restoring
method, and it requires no extra correction operations
if either dividend or divisor is negative,

In the non-restoring method of division, the signs of
the dividend and divisor are first examined. If they are
alike, the divisor is subtracted from the dividend re-
peatedly until the signs become different, a unit being
added into the corresponding quotient digit for each
subtraction. If the signs are different, the divisor is
added to the dividend repeatedly until the signs become
the same, a unit being subtracted from the correspond-
ing quotient digit each time. Thus, in the decimal
system, if the signs were alike and the divisor had to be
subtracted three times to cause a sign reversal, the
corresponding quotient digit would be 3; if the signs
were different and the divisor had to be added seven
times to cause a sign reversal, the corresponding
quotient digit would be —7. As soon as a sign reversal
occurs, the remainder is shifted one place to the left
and computation of the next quotient digit begins.

Ii the above process is carried out exactly as de-
scribed, any quotient digit may be -=n, where n is an
integer in the range 1 to 10 inclusive. It is obvious,
however, that if a sign reversal has not occurred after
nine additions or subtractions (in the decimal system),
it must surely occur on the tenth operation.” Thus, it is
sufficient to terminate the computation of each digit of
the quotient after nine operations and shift the re-
mainder without waiting for a sign reversal. The
quotient digits then may be 41, %2, --+, £9. Suppose
the quotient obtained is the sequence 1, —3, 9,5, —4, 6.
To obtain the quotient in usable form, the aggregate
of the negative digits must be subtracted from the aggre-
gate of the positive digits: 109,506 — 30,040 = 79 466. If
the quotient was built up in an accumulator (ie., &
register containing an adder so arranged that after
entry of a new quantity the register contains the sum
of the latter and the previous contents), this process
was carried out stepwise as the quotient was built up.

An accumulator must be used to hold the dividend
(which becomes the remainder, of course, after the
process has started), in order to provide means for
adding in the divisor or its complement. It is more
convenient to store the quotient digits in a simple
register, which cannot add or subtract, thus avoiding
the necessity of providing an additional accumulator
Returning for a moment to the decimal example, it is
noted that there are 18 possible quotient digit values

3 An exception to this rule occurs in the case of an impropwr
division, i.e., one in which the dividend is larger than the divisor
In this case, no sign reversal would occur on the tenth operation
in the computation of the first quotient digit; it may, in fact
be desirable to perform the tenth operation and institute an
automatic corrective procedure if no sign reversal ocours

ARITHMETIC OPERATIONS IN A BINARY COMPUTER

(+1, £2, ---, £9). By the same reasoning, it follows
that in the binary system there are only two values
(1) and that only one operation (addition or sub-
traction, as the case may be) is necessary for each
quotient digit. Thus, as in multiplication, additions
{or subtractions) can alternate with shifts, and the
result is a process easy to mechanize. There is still the
difficulty, however, that the quotient register has no
way of distinguishing —1 from 4 1. An investigation of
the possibility of entering a 0 in the quotient wherever
a —1 is called for immediately suggests itself, in order
to see if the pseudo-quotient so obtained bears some
simple relationship to the true quotient, x/y, of two
binary quantities. If such a simple relationship exists,
it will be reasonable to compute the pseudo-quotient
and make any necessary corrections to the latter to
obtain the true quotient.

Recalling that —1 should be entered in the quotient
if vis added to the remainder, and - 1 if y is subtracted,
() is used for each addition and + 1 for each subtraction.
An expression can now be written for the new remainder,
7i, in terms of the old remainder r,_;, the quotient
digit g, and y: :

ne=2r_1+(1=2p)y

which reduces to 2r, 4y if py is 0 and 2r,;—y if
pe is 1. The factor of 2 results from the fact that the
old remainder was shifted to the left before the addition
or subtraction of y. Multiplying through by 2-*

b =2y, 4 (2-R—-2-U-1p)y

gives a more convenient recursion formula. Noting
that the “zeroth” remainder is actually x itself,

2y =x4 (27 =2,)y
2‘_2'1'—" 2"?.-}- (2_'_ Z'Ip:)y
=x4+[(27427)— (20, +2'p,)]y etc,,

or, in general,

2 rra=x+ Oi z—t_Z. 2-0-1p)y.
1

1
Now
n

2 2t=0140014---=0.111.:-

1
which is evidently equal to 1—2-". Thus, making this
substitution and transposing,

x=[=14+2-"4+3 2-0-0p Yy 277,
1

and, dividing by v,

x/y=[~ 14224 2-0-0p,]4 2./,
1

The expression in square brackets, then, is the de-
sired quotient. Now if n= 30, the first 30 quotient digits
computed by the method outlined above correspond to
*he sign and the first 29 digits of the pseudo-quotient.

I'he first digit, 1, corresponds to the sign rather than

ne most significant digit because it is in the 2° position

691

(2-%D=29 for k=1.) To convert the pseudo-quotient
into the true quotient, it is necessary to add 2% and
subtract one. The first of these corrections corresponds
to putting a unit in the least significant digit position,
a step which also coincides with the round-off procedure
to be adopted. As for subtracting 1 from the result,
since carries beyond the sign position are disregarded,
subtracting 1 is the same as adding 1; the two correc-
tions can therefore be taken care of by bringing the
pseudo-quotient from the register where it was built up
into the accumulator, simultaneously clearing out the
last remainder and adding units into the sign and the
least significant digits. (It may be noted that the latter
position is still unfilled, since p3 was not computed;
the correction in this position could therefore have been
made in the register, but an adder is required for the
sign correction.)

The reader may have been troubled by the fact that
in doubling the remainder the sign digit will be lost.
Actually, this does no harm. The addition or subtrac-
tion of the divisor is always such as to decrease the
absolute value of the remainder; since x<y to begin
with, 2r—y<y and in general 2r—y<y. Since y<lI,
2r—y<1, and therefore the result of the operation is
always within the range of the machine; although the
sign digit of r was shifted out of range, it could not
have affected the result in any case. It should be noted
that the sign of r is used to determine whether y is to
be added or subtracted, however; therefore, since this
sign is lost by the shift, it must be examined and com-
pared with the sign of y before the shift takes place.

The example below illustrates the division process
just described :

1.0] 11 I(fu) - ["
0.1011 H
0.1110 2r,
0.1011 4y
1.1001 ry (p1=0)
1.0010 2r,
0.1011 +y
11101 s (ps=0)
1.1010 2r,
0.1011 +y
0.0101 ry (ps=0)
0.1010 2ry
10101 —y

-
LU rg (pe=1)
0.0010 x/y+1-—-2-4
1.0001 142
1.0011 x'v+2=x/y —}2

692 ROBERT
Tasire 111
Minuend Sulitrabend Difference Borrow
0 0 0 0
1 0 1 0
1 1 0 0
i 1 1 1

which is the exact quotient, —9 ‘11, rounded off to four
binary places. ry is discarded: the pseudo-quotient
(prtpat pat pe=0.001) and the correction term 1.0001
are added together and the result left in the accu-
mulator,

VI. ROUND-OFF PROCEDURES

Both multiplication and division give results having
more signiticant figures than the original numbers
entering into these processes: in general, multiplication
of two n-digit factors yields a product of 2u digits, and
division yields a quotient having an infinite number of
digits, Since only » digits are required for most com-
putational processes, sume round-off procedure must be
followed in order to avoid the bias which would result
if the remaining digits were simply dropped. The round-
off procedure should fulfill two requirements: the ap-
proximation should lie as close to the true product or
quotient as practical, and it should be unbiased, i.c.. its
mean should equal the true result.

Of the various possible round-off schemes, two are of
interest here. The first and most familiar consists of
adding a unit to the n+ 1st digit, allowing any resulting
carries to take place, and then keeping only the first n
digits. The other consists of replacing the nth digit with
4 1, regardless of whether that digit was originally a 1
or a 0. It can be shown that both schemes produce
results which are sufficiently unbiased in view of the
fact that products and quotients themselves are not
entirely unbissed. The latter situation is due to the
fact that the original quantities themselves are, in
general, rounded-off approximations of other quantities,
On the other hand, the variance of the second method is
twice as great as that of the first, being .58 times the
last digit as compared to 0.29 times the list digit for
the more familiar scheme.

In spite of the larger variance, however. the second
round-off scheme is used. Tt has the advantage of being
usable even after the n+1st digit has been lost as the
result of a right shift; thus, it is unnecessary to inter-
rupt the multiplication process before the last step 1o
add in the unit for round-off. Furthermore, no carries
are produced; thus, the unit pulse can be put in after
the adder, and the process carricd out concurrently
with the last complement correction. In the
division, as has already been seen, the result obtsined
alrvady conforms to this round.-off provedure withont
further moditivations: it therefore hecomes I eRsiry

Uase l"

Lo compute the 31st r{nu!it'n! thigit.

YSee referenie 1, 10 20

E. SHAW

Tasre IV
M s B D H
0 0 0 0 0
1 0 n 1 0
1 1 0] n
1 n 1 n n
1 1 1 1 1
L] 1 n 1 1
0 0 1 1 |
0 1 I] 1

When it is necessary during computation te round
off o less than 30 digits, the more precise method can
be used; in most cases the procedure will be to shift
right until all but one of the unwanted digits are lost,
add a unit in the lowest position, and then shift right
one more place.

VII. STORAGE OF ABSOLUTE VALUES

While negative quantities are stored in complement
form in the Binac and most other binary computers
now under construction, it is of interest to examine
brietly the possibility of storing the absolute values of
negative quantities, distinguishing them from positive
quantities only by the difference in the sign digit ; in this
case it is immaterial whether 0 and 1 are used for +
and —, respectively, or vice versa. There are two prin-
cipal advantages to such a procedure ; first, the prepara-
tion of input data and the interpretation of output data
are simplified; and second, the visual interpretation of
data in registers and memory is made easier, thus
expediting trouble-shooting.

The effect on multiplication and division is that of
simplification, since in these operations the signs can he
disregarded and the operations performed on absolute
vilues with no corrections necessary. A preliminary
comparison of the signs of the operands discloses im-
mediately the sign of the result; this is stored until the
operation is complete and then appended to the product
or quotient.

In the case of addition, however, the operations
hecome more complex. Before addition can take place,
the signs of the addends must be compared; if they are
alike, an addition is performed; otherwise subtraction
15 necessary, with some provision for assuring the sub-
traction of the operand having the smaller absolute
value from that having the larger, or for making a
suitable correction which will prodice the same effect.
I'he subtraction can be accomplished in a regular adeder
by complementing negative quantities before sending
them to the adder, but it is possible to avoid comple
ments completely, even in the arithmetic cireuits, hy
using a subtractor rather than an adder when such
operition is indicated. The subtractor proves to be as
simple electronically as an adder, since it must fulfill u
set of comditions differing only slightly from those
sitistied by the adder.

-t

RECORDING POLARIMETER P 693

For two binary digits, the rules for subtraction can
be summarized as in Table I11. To complete the sub-
traction, provision must be made for taking the
“borrow” pulse and subtracting it from the next
minuend digit. This is equivalent, however, to adding
it to the next subtrahend digit ; and the latter procedure
proves to be more advantageous electronically. The full
set of conditions can now be written down as in
Table TV,

The preceding discussion of the storage of absolute
vitlues has been included here partly to illustrate the
difficulties to be encountered in such a system, and

partly because of the importance of the system in
computers of the decimal type, even though the latter
are not otherwise considered in this paper. Because of
the complications involved, storage of absolute values
is not ordinarily employed in binary computers, prob-
ably because it is felt that the inconvenience of repre-
senting quantities in binary form is not materially in-
creased by the necessity of representing negative
quantities in complement form. In decimal computers
such as the Univac, however, where convenience in
handling of input and output data is of great im-
portance, the storage of complements is avoided.

e —

THE REVIEW OF SCIENTIFIC INSTRUMENTS

-

VOLUME 21, NUMBER 8 AUGLUST, 1950

A Recording Polarimeter

Ganor B. Levy, Puinie Scawen,® axp Davio Fercus
Research Department, Schenley Laboratories, Inc., Laurenceburg, Indiana
(Received March 23, 1930)

A recording polanimeter has been constructed,. The principle of operation is essentially the replacement of
an operator in conventional visual polarimetry by a photoelectric servo system. A photo-multiplier tube
is used which, in conjunction with a mechanical chopping system, delivers an alternating current signal
proportional to the unbalance. The latter is filtered and amplified and actuates a servo mechanism. The
precision of the system is =0.005° for static balance and the speed about (1.5" per minute. Hence the arrange-

INTRODUCTION

N the study of chemical or biochemical reactions,

it is of great advantage to select a method of
analysis that is non-destructive and which does not
involve sampling. Potentially, polarimetric measure-
ments are suitable, particularly in the biochemical
field, since the optical activity is frequently subject to
change in the course of the reaction. However, the
measurement of changing optical rotation by visual
methods is tedious and of limited precision. For such
applications, a recording polarimeter would be of great
value,

Instruments of this type are not available, and
furthermore, the existing literature gives no encourage-
ment for success of such a scheme. For example, W.
Heller' states: “Persons with particularly sensitive,
specially trained, and well-adapted eves can be ex-
pected, however, to surpass any photoclectric regis-
tration.. .

Considering the fact that measurement of fast
changing rotation is far from an ideal condition for
visual observation, we felt encouraged to construct a
photoelectric instrument despite the statement cited.

* Now with the National Advisory Committee for Aeronautics,
Cleveland, Ohio.

"W. Heller, in A. Weissherger, Phviical Methods of Organic
Chemistey, Vol 11 (Interscience Publishers, Inc, New York, N Y,
1461, p. 967

ment compares favorably with ordinary visual operation, The construction of the instrument is discussed
briefly and its performance is illustrated hy examples.

In addition, the potential value of such an instrument
appeared to warrant the effort.

We have chosen the most direct approach, ie.,
converting a visual instrument to photoelectric opera-
tion. The performance of the resultant instrument and
its potential value in the studv of optical activity
seems to justify its description in some detail,

PRINCIPLES OF OPERATION

Essentially monochromatic light is passed through a
conventional polarimeter. The “half-shade™ image from
its Lippich analyzer (with two fields) is projected onto
a photo-multiplier photo-cell. Interposed is a semi-
circular sector which is driven by a synchronous motor.
Thus the output of the photo-cell, at unbalance, is a
sinusoidal alternating current whose phase is shifted
by 180% when the direction of the unbalance reverses.
This signal is amplified by a battery operated untuned
preamplifier and further amplified by an amplifier
tuned to the fixed frequency of the sector and signal.
The signal, which is thus freed from noise, is fed after
further amplification to one of the two coils of a
differential relay, the coil energized depending on the
position of the sector, This arrangement provides phase
discrimination and rectification as well as further
filtering. The relay actuates a reversible 60-cycle motor
which is mechanicgll® linked to the analyvzer of the

	g 0001.tif
	g 0002.tif
	g 0003.tif
	g 0004.tif
	g 0005.tif
	g 0006.tif
	g 0007.tif

