
NOTES ON THE LOGIC 

OF THE 

ERA 1103 COMPUTER 

SYSTEM 

20 JULY 1953 



ERA 1103 COMPUTER LOGIC 

TABLE OF CONTENTS 

Page 
1- Foreword . . . . . . . . · · . . . 1 

2. Introduction to Characteristics · · · · 3 

2.1 Terminology . . . · · · · · 3 

2.2 The computing memory 7 

2.3 Arithmetic in the 1103 9 

2.4 Operation timing . · · 14 

3. Explanation of Instructions 18 

3.1 Method of presentation . 18 

3.2 Sequenced instructions 19 

3.3 Transmissive instructions · · · · · · · · 24 

3.4 Q-controlled instructions . · · · · · · · 27 

3.5 Replace instructions · 28 

3.6 Split instructions · · 30 

3.7 Two-way conditional Jump instructions · · · · 31 

3.8 One-way condi tional JUmp instructions 32 

3.9 One-way unconditional jump instructions · · · · 34 

3.10 Instructions for Magnetic Tape Storage, Mf 36 

3.11 Stopping and starting . · · . 37 

3.12 External equipment - Input and Output · · · · 39 

4. 1103 Instruction Execution Times . . . · · · · · · · · · · · · 43 



ERA 1103 COMPUTER LOGIC 

1. FOREWORD 

The word "logic", when applied to a large-scale digital computing system, 

means the set of rules by which the system operates. The following discussion 

will be concerned with those parts of the logic that are of importance to the 

programmer, namely, the set of instructions that he may give to the computer 

and the exact effect of these instructions on all the binary digits, or bits, 

that are stored in the computer. The more detailed parts of the logic, that 

determine how the effect of the instructions is achieved, will not be considered. 

A comparison between the logic used in two different computing systems is 

not as easily made as a comparison between other important characteristics, such 

as reliability, word length, storage capacity, access time and addition time. 

The differences in logic may at first sight appear to be a number of subtleties 

that cannot be expected to have much practical value, yet the truth of the mat­

ter is that the differences between a good logic and an average one may well 

result in a very large improvement in overall performance. 

The logic of the ERA 1103 is well balanced and flexible. Several unusual 

features combine to reduce both the number of instructions that have to be given 

to the computer by the programmer and also the number of separate operations that 

have to be performed by the computer. These features are general in nature, so 

that the improvements in performance will apply to a wide range of applications. 

Further the improvements in machine performance are not achieved at the expense 

of programming effort. On the contrary, the instructions are in many respects 

particularly convenient for the programmer, and they are not difficult to mem-

or1ze. 

The ERA 1103 computer is particularl y well sui ted for real time applications, 

1n which it is capable of acting as the central control and nerve center of a 

complex physical system. In such applications the flexible input-output system 
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ERA 1103 COMPUTER LOGIC 

will be one of the most important features of the computer. The 1103 is 

equipped wi th Magnetic Tape Storage. Mr, that can provide auxiliary storage for 

problems that involve the handling of very large quantities of information. The 

present discussion, however, is mainly concerned with the operations that are 

carried out in the arithmetic section of the machine and in the computing memory 

that is composed of electrostatic storage, ES, and magnetic drum storage, W; it 

is here that the actual computation is done. The aim is to give an account of 

the computer instructions of the 1103 in sufficient detail to answer most of the 

first round of questions that a programmer would ask. 

Before discussing the instructions it is necessary to draw attention to 

the overall logic of the computer, which differs from most other computers ~n 

two important respects. The first of these differences is the integration of 

the magnetic drum and electrostatic memories with the arithmetic registers ~n 

one system of memory box addresses; the second is the provision for the accumu­

lationof double-length numbers. In the subsequent discussion of the instructions 

the most startling feature is the "Repeat". hut there are several other important 

novelties, and almost all the instructions are of some interest to a programmer 

because they indicate the efficiency of a two-address logic. 
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ERA 1103 COMPUTER LOGIC 

2.0 INTRODUCTION TO CHARACTERISTICS 

2. 1 TERMINOLOGY 

The terminology used in discussing the characteristics of the 1103 

computing system is explained in the following notes. 

1. Word length 

36 bits (binary digits) 

2. Parallel access registers of Arithmetic Section 

A 72-bit accumulator (a 71 , a70 , ... , ao) 

Q 

X 

36-bit shifting register (q3S' Q34' 

36-bit exchange register (x 3S ' x34 , 

... , 
••• t 

AR right-hand (least significant) 36 bits of A. 

AL left-hand (most significant) 36 bits of A. 

3. Parallel access storage 

ES 1,024 words of Electrostatic Storage 

MD 16,384 words of Magnetic Drum Storage 

4. Composition of an instruction word. 

Instruction word 36 bits (i35' 

Operation code 6 bits (i3s , 

134 , 

134' 

First execution address, u, 15 bits (i29 , i 28 , 

Second execution address, v, 15 bits (i 14' i 13 , 

5. Allocation of addresses 

ES 00000 -01777 ( octal) 

Q 1---- (octal) 

A 2---- (octal) 

MD 40000 - 77777 (octal) 

6. Sections of addresses 

• •• t 

• •• t 

· .. , 
• •• t 

J one digi t octal number represented by u14u13u12' 
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ERA 110~3 COMPUTER LOGIC 

n four digit octal number represented by uu' UtO' ••• , uo • 

k number of shifts, represented by v6 ' vs ' .•. , uo• 

7. Contents of registers and memory boxes 

A prime is a complement, such as: (Q') = complement of (Q) 

Parentheses are used to d~note "contents of". Thus: 

(u) = 36-bit word at address u. 

(Q) = 36-bit word 1n Q. 

(A) = 72-bi t word 1n A. 

(A-J = 36-bi t word in AR• 

(AJ = 36-bit word 1n AL • 

8. Double-length extensions 

D(u) = 72-bit word whose right-hand 36 bits are (u) and 

whose left-hand 36 bits are all alike and equal to 

the left-most bit of (u). 

S(u) = 72-bit word whose right-hand 36 bits are (u) and 

whose left-hand 36 bits are all zero. 

D(Q) , D(X), S(Q), and S(X) are similarly defined. 

L(Q)(u) ~ 72-bit word whose left-hand 36, bits are zeros and 

each of whose right-hand 36 bits is given by the 

product of the corresponding ~its of (u) and (Q). 

L(Q' )( v) = 72-bi t word whose left-hand 36 bi ts are zeros and 

each of whose right-hand 36 bits is given by the 

product of the corresponding bits of (v) and the 

complement of (Q). 

9. Control registers 

PAK Program Address Counter 

UAK U-Address Counter 
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VAK V-Address Counter 

SAR Storage Address Register 

Note that (PAK) , (UAK) , (VAK) , (SAR) denote thp. contents of 

these registers. 

10. Arrangement of MD: Interlace 

4,096 

4,096 

4 

bits on each track 

words on a group of 36 tracks 

groups of tracks, giving 16,384 words 

Variable interlace between the Storage Address Register and 

the angular location counter permits choice of the angular 

interval between memory locations with consecutive addresses. 

11. Input-output registers 

lOA An in-out register of 8 bits. 

lOB An in-out register of 36 bits. 

HPR A high-speed punch register of 6 bits 

TWR A typewriter register of 6 bits. 

12. Sequence of instructions 

PI Previous instruction 

CI Current instruction 

NI Next instruction 

13.. Program sequence control - Jumps 

A complete computer operation consists of two parts 

Part One - the execution of CI 

Part Two - the acquisition of NI 

At the start of Part One the program control registers already con­

tain CI, as the result of the second part of the previous operation, and (PAK) 

1S x + 1, where x is the address from which CI was acquired. 
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During Part Two NI is acquired from address held 1n PAK at the end 

of Part One, and (PAK) is then increased by one. 

Thus, provided that CI does not call for a change in (PAK), NI will 

be acquired from address x + 1. In a normal program sequence, succeSS1ve 

instructions are obtained from consecutive addresses. 

A departure from the normal sequence is called a "jump", and is 

achieved by altering (PAK) during Part One of an operation. Instructions that 

call for a change in (PAK) are called "jump" instructions. 
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ERA 1103 COMPUTER LOGIC 

2.2 THE COMPUTING MEMORY 

An unusual and important feature of the 1103 is the fact that nei ther 

electrostatic storage, ES, nor the magnetic drum, MD, is the primary storage of 

the computer. Instead the two classes of storage are closely integrated to 

form a single computing memory of large capaci ty, and the association of ES wi th 

MD makes the latter class of storage far more valuable than it would be by itself. 

The programmer has considerable freedom to vary his methods of using ES and MD 

in order to suit the peculiarities of different problems. 

It will be noted in 2.1 (S) above that the left-most bit of a IS-bit 

address determines whether the address is in MD or not. When this bi t is zero, 

the first octal digit of the address distinguishes between ES, Q, and A. The 

ES and MD address ranges are treated by PAK, UAK,and VAK as closed consecutive 

sets. The control of the four classes of storage is facilitated by the use of 

an exchange register (X-register) as a switching center for most of the internal 

transmissions, including the transmission of instructions from storage to the 

control registers. This register, X, has s1gn sensing and complementing 

facilities; it serves as a buffer 1n transmissions between the several classes 

of storage, including the A and Q registers. 

The inclusion of A and Q in the address system 1S a conven1ence for 

the programmer, but a feature of far greater importance is the fact that the 

individual memory boxes of MD, as well as those of ES, have addresses. In 

other computers using MD and ES, the former is treated 1n much the same way as 

the Magnetic Tape Storage (MT) is treated in the 1103. (In the 1103, Magnetic 

Tape Storage is supplied as an integral part of the computer. Four magnetic 

tape units are provided. The tape information is arranged in blocks of 32 words 

each. Transmission of information to and from MT is by blocks, and is executed 

automatically in response to special instructions.) In these other computers, 
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access to individual memory boxes in MD can only be obtained by means of trans­

fers between MD and ES: program instructions cannot be directly acquired from 

MD, but must be transmitted to ES in blocks for execution. Because of these 

restrictions the computing memory, in which all instructions and quantities 

must be held when they are required, is limited in these other computers to ES 

and the arithmetic registers. In the 1103 the computing memory includes the 

16,384 boxes of MD as well. 

When programming for the 1103 it is possible to transfer blocks of 

instructions from MD to ES prior to execution, and, as will be seen later, there 

are particularly efficient instructions for this purpose. It is important to 

note, however, that the programmer also has the option of keeping the program 

in MD for execution, and that in many cases this gives him the equivalent of 

over 17,000 registers of fast-access storage. With this large computing memory 

at his disposal he can expect to write programs that will require relatively 

few separate computer operations, and will, therefore, give high computing speeds. 
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2.3 ARITHMETIC IN THE 1103 

An outstanding feature of the arithmetic in the 1103 is the existence 

of a single instruction, called Multiply Add (~1A), that causes the 72-bit pro­

duct of the two 36-bit numbers at addresses u and v to be added to the 72-

bit content of the accumulator. The value of this instruction in forming a 

scalar product 

alb 1 + a2 b 2 + ... + an bn 

IS evident; it is merely necessary to repeat the MA instruction n times with 

appropriate u and v-addresses, and the scalar product will be built up in the 

accumulator, A, provided that A was cleared initially. 

In the 1103 the accumulator, A, is a genuine double-length accumula­

tor, holding a 72-bit word. For arithmetic operations this word is regarded as 

an integer, the binary point being taken to be at the right-hand end. The left­

most bit, a 71 , is a sign-bit. Thus zero and the positive integers up to 271_1 

can be represented by words in A whose sign-bit is zero. When the sign-bit is 

one, (A) is taken to represent the negative of the integer that is obtained by 

complementing all the bits of (A), including the sIgn bit. In other words, 

whether (A) represents a positive or a negative number, the negative of (A) IS 

obtained by complementing all the individual bits of (A). The full range of 

numbers that can be represented in A is from 1 - 271 to 271 -1-

Numbers added or subtracted into the accumulator are always 72-bit 

numbers. Such numbers are transmitted to A from the exchange register X, 

which holds only a single-length word of 36 bits. The usual procedure amounts 

to forming the double-length extension D(X) of (X), as defined in 2.1(8) above, 

and then adding D(X) to (A). It should be not~d that the addition of D(X) to 

(A) is actually performed by subtracting the complement of D(X). On the other 

hand subtraction of D(X) from (A) is done directly, without complementing D(X) 
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The fact that the basic operation of the 1103 accumulator is sub­

traction rather than addition will not affect the programmer, except that any 

zero that may appear 1n A as the result of an arithmetic operation will be 

represented by 72 zero bits, rather than by 72 ones, as would happen if the 

accumulator were basically additive. 

Numbers stored in Q and in single memory boxes of ES and MD will be 

36-bit numbers. Again the binary point is taken to be at the right-hand end, 

the left-most bit is a sign-bit, and the one's complement representation of 

negative numbers is used. Thus, the single-length numbers are integers ranging 

from 1 - 235 to 235_ 1. 

The one's complement number system 1n an additive accumulator re­

qU1res a correction, that is usually known as "end around carry". Since the 

1103 has a subtractive accumulator, the corresponding correction takes the form 

of "end around borrowr!. Any borrow that may occur to the left of the extreme 

left-hand place, a71' is applied at the extreme right-most place, ao• 

In some situations it is necessary to handle quantities 1n A as 

single-length quantities. For this purpose, as will be seen later, special 

"split" instructions are provided. In these instructions, and in a few other 

operations, the "split extension" SeX) is used, as defined in 2.1(8) above, 

instead of theHdouble-length extension" D(X). 

All arithmetic operations involving (A) are achieved by a combination 

of the following four elementary operations, together with transmissions to or 

from X. 

a) Clearing A. 

b) Subtracting D(X) or SeX) or the complement of one of these 72-bi t 

numbers from (A). 

c) Transmitting (AR) to X without changing (A). 
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d) Shifting (A) to the left in a circular manner. 

Although the 1103 treats numbers as integers, the programmer can, of 

introduce scale factors that will enable him to handle numbers of any 

Further he can program for floating point operation where this is neces­

Many programmers will be more familiar with what may be called a "frac-

tional system of arithmetic". In a computer that uses the fractional system, 

numbers are taken to lie between -1 and +1, the binary point being immediately 

to the right of the left-most bit, which is used as a sign-bit. In such a 

computer the accumulator may be of double-length, but single length words are 

added into the left-hand end. This means that the programmer must be sure that 

the sum of two numbers 1S less than one in magni tude before he can instruct the 

computer to add them. In the 1103, on the other hand, the programmer can safely 

call for the addition of any two single-length numbers without preliminary 

scaling, since the single-length numbers are effectively added into AR and the 

whole of AL is available to hold any overflow of the capacity of AR • 

The arithmetic system of the 1103, which incidentally was also used 

1n the 1101, has several advantages over the fractional system and calls for a 

different attitude to overflow. In fractional arithmetic the accumulator will 

contain a false result if an addition or subtraction is allowed to exceed the 

single-length capacity. Consequently, computers uS1ng the fractional system 

are apt to have built in circuitry that will give an alarm signal whenever an 

overflow of the single-length capaci ty occurs. On the 1103, wi th a single-length 

capacity of 36 bits, the accumulator will not contain a false result unless the 

double-length capacity of 72 bits is exceeded. The programmer will want to take 

advantage of this feature, and hence will not have need of an alarm for a single­

length overflow. 

Suppose for example that a programmer wants to obtain the sum 
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+ a 
n 

of a set of single-length, or 36-bi t, quanti ties a1 , a2 , •••• an" In order to 

retain the greatest possible accuracy, hewill want these quantities to contain 

as many significant digits as possible, so he would like to scale them up as 

near as possible to the full capacity of a single-length number. If he were 

uS1ng a computer with a fractional system, he would have to scale down before 

adding, which means a loss of significant digits. If he is using the 1103, he 

will not need to scale down until he wants to transmit the sum to storage as a 

single-length word. He can, therefore, scale down after the summation rather 

than before, which gives greater accuracy. 

Another unusual feature of the 1103 arithmetic is the advantage one 

may take of the double-length accumulator when a summation is followed by a 

division. In the divide operation, the dividend will be the ent~re 72-bit con­

tent of the accumulator. 

When a programmer 1S working with the accumulated sum of a set of 

36-bit numbers, he is likely to need a test for overflow beyond a prescribed 

place in AL • Such a test can easily be programmed. Adifferent situation arises 

when a programmer is taking advantage of the Multiply Add instruction to form a 

72-bit scalar product. In this case he will be working with the accumulated sum 

of a set of 72-bit numbers, and he will, of course, try to ensure that the full 

72-bit capacity of A is not exceeded. As a safeguard, however, an overflow 

alarm is provided that will cause the computer to stop whenever an overflow of 

the 72-bit capacity is imminent. 

Shifting facilities in both Qand A are based on circular shifts to 

the left, in which the bit that is pushed off the left-hand end is inserted at 

the right-hand end. Open-ended shi fts and round-off are handled on a subroutine 

basis, such operations being called for by a single "Return Jump" (RJ) instruction 
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that causes the program control to "jump" to the appropriate subroutine and 

also arranges for the return jump. MOre will be said about this later. 
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2.4 OPERATION TIMING 

Each instruction is executed by a sequence of basic commands, each 

of which represents a single pulse sent out over a corresponding line. This 

sequence is generated by control pulses derived from internal clock pulses. 

The 500 kc clock pulses are derived from 125 kc timing pulses recorded on a 

channel of the magnetic drum. 

Clock pulses are fed into a Main Pulse Distributor, which distributes 

them as Main Control Pulses to eight lines in sequence. For an individual 

command, which may require less than eight successive control pulses for its 

execution, certain of the eight lines are skipped in this sequence to provide 

a correspondingly shorter pulse cycle. 

This main pulse sequence can be halted by the initiation of certain 

commands which give rise to a sequence of subsequent commands under the juris­

diction of a secondary control. The secondary controls consist of Storage 

Class Control, Arithmetic Sequence Control, Repeat Sequence Control, Magnetic 

Tape Access Control, and Input-Output Control. In general, the main sequence 

is halted until a resume pulse indicates that the secondary control has performed 

its called-for function; the Repeat Sequence, however, uses the main pulses to 

execute the repeti tion of instructions, while the Input-Output Control proceeds 

independently unless a second input-output operation is called for before a 

pr10r one has been completed. 

The Storage Class Control selects and initiates the sequence of 

commands required fOT a reference to storage, the particular sequence being 

dependent on which class of storage is referred to. Reference to the accumulator 

or to the Q-register involves fixed sets of pulses with no interruption of con­

trol pulses. On the· other hand, reference to the magnetic drum invol ves inter­

ruption of pulses until the drum has reached the proper angular position, whi Ie 
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reference to the electrostatic storage involves interruption until the proper 

point in the electrostatic storage cycle is reached. 

The electrostatic cycle is generated by a continual cyclic distribu-

tion of clock pulses to four lines 1n sequence. The commands initiated by these 

four pulses are summarized 1n the following table. 

Electrostatic 
Pulse 

o 

1 

2 

3 

Regenerate 

Position beam 
to contents 
of Regenera­
tion Counter 
(RIO; advance 
RIC 

Wait 

Probe 
Sample stored 
digit 

Restore 
digit if 
a one 

Commands For 
Read 

Posi tion beam 
to contents 
of SAR. 

Wait 

Probe 
Sample stored 
digit 

Restore 
digi t if 
a one, 
Read out 
Clear SAR 
Resume 
main pulse 

Write 

Position beam to 
contents of SAR; 

Wait 

Probe 

Write digit 

Clear SAR 
Resume ma1n 
pulse 

When a storage reference to ES is made, the next electrostatic pulse 0 is 

awaited before the cycle is put into the read or the write mode. After reading 

or writing, the cycle returns automatically to the regenerate mode. 

The Arithmetic Sequence Control selects and initiates the sequence 

of commands required for the sequenced operations within the arithmetic section. 

Some of these operations may be of variable length depending upon the contents 

of arithmetic registers (for example, Scale Factor, Multiply, and Divide). 

Because of the above indicated variable execution times of certain 

commands initiating secondary control commands, the execution times of an indi-

vidual instruction has to be specified for each of several cases. For example, 

the instruction Transmit Positive u v requires four main pulses for execution: 
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5 

6 

7 
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Commands 

Transmit (UAK) to SAR: Initiate Read 

Transmit (VAK) to SAR: Initiate Write 

Transmit (PAK) to SAR: Advance PAK: Clear X 

Clear Program Control Register; Initiate Read 

Transmit (X) to Program Control Register: Clear X 

The Main Pulse Distributor is not allowed to advance after pulses 0, 

5 and 6 until a storage resume has been ini tiated. One clock pulse period passes 

between the time that the Main Pulse Distributor was last advanced and the be­

gInnIng of a read or wri te cycle. The total times for the read and wri te cycles 

will vary according to the classes of storage to which u and v refer. Since 

one may not always begin the reading or writing at the most advantageous time, 

there may be a variation in the total time for the read or write cycle. Assuming 

that the instructions are being obtained from ES, the following reference inter-

vals (in clock pulse periods) apply for the varIOUS" address class combinations. 

u class - ES ES ES A A Q Q 

Interval v class - ES A Q ES Q ES A 

0-5 5 5 5 1 1 2 2 

5-6 7 4 2 7 2 6 4 

6-7 7 6 8 7 8 7 5 

There have been a total of three clock pulse periods (MPO, MP5 and MP6) ini ti a-

ting the reading or writing from a gi ven storage class. One clock pulse period 

is used to carry out main pulse 7 and an addi tional clock pulse is used to allow 

the output of the Main Control Translator to become established before main pulse 

o of the next instruction cycle. Thus, five pulse periods are involved in the 

maIn sequence portion of this instruction execution. The total execution time 

then becomes for the different cases of the Transmit Positive u v instruction: 

24 20 20 20 16 20 16 

- 16 -



ERA 1103 COMPUTER LOGIC 

When u and/or v refer to MD, other times can arise. For these cases, 

a storage reference to MD can require a minimum of one pulse period or a maX1.mum 

of one drum revolution time (34 msec). Consecutive storage references (read or 

> 
write) to MD can always be made at an interval of 16 + 4c pulse periods {c = 0), 

which corresponds to an interval of 4 + c drum cell periods. 

When instructions are being executed from MD, or when an instruction 

wi th one or both operands in ID is repeated by the use of the Repeat instruction, 

consecutive references to MD are made at consecutive addresses. In order that 

a drum revolution interval be avoided, it is necessary that cells having consec-

utive addresses be a sufficient number of cells apart. This is made possible 

by allowing the correspondence between the Drum Angular Position Locating Regis-

ter, and the Storage Address Register to be selectable. The standard interlaces 

are obtained by taking (SAR) 13 (SAR) 12 as the Group Selector digi ts, and wiring 

< < 
(SAR) i to the same Coincidence Detector stage as (lR) j where 0 = 1. = 11 and j = 
i + k mod 12 for some fixed k. The resulting interlace is termed a 2k -interlace 

and assigns consecutive addresses to cells 2k cell-intervals apart. The smallest 

useful value of k is 2, corresponding to a 4-interlace. For any particular 

computer program, the programmer selects that interlace which is suitable for 

the entire program. 
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3.0 EXPLANATION OF INSTRUCTIONS 

3.1 METHOD OF PRESENTATION 

The instructions can be more readily memorized if they are consider­

ed in groups. In the following description the sequenced instructions are taken 

first; these are the most complex instructions and must be memorized individu­

ally. Then the basic arithmetic and manipulation instructions are arranged in 

four groups, in accordance with the use that is made of the execution addresses 

u and v. Then the eight jump instructions are arranged in three groups. Finally, 

the instructions affecting MT, input and output are briefly described. 

Programmers who intend to do a great deal of work with the 1103 

will memorize the pairs of octal digits that represent the operation sections of 

the instructions, but a two-letter representation is easier to learn and 1S, 

therefore, more convenient for a discussion of the computer or for those who 

wish to write only a few programs. Unfortunately, a two-letter code is bound 

to suffer from the following di fficul ties: 

( a) A stands for add, address, accumulator, advance. 

(b) D stands for divide, double-length. 

(c) M stands for multiply, manual, mask. 

(d) S stands for subtract, shift, scale, split, S1gn, select, stop. 

(e) L stands for left, logical 

It is, therefore, almost inevitable that some of the abbreviations 

used for the 1103 instructions will have been used with other meanings for 

other computers. 
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3. 2 SEQUENCED INSTRUCTIONS 

control: 

The following five instructions involve complex built-in sequence 

MPuv MultiPly: Form in A the 72-bit product of (u) and (v), 

leaving in Q the multiplier, (u). 

MAuv Multiply Add: Add to (A) the 72-bit product of (u) and 

(v), leaving in Q the multiplier (u). 

DVuv DiVide: Divide the 72-bit number (A) by (u), putting the 

quotientinQ, and leaving in Aanop-negative remainder, 

B. Then replace (v) by (Q). The quotient and remainder 
< 

are defined by: (A) i = (u) • (Q) + B where 0 = B < I(u) I. 

Here (A)i denotes the initial contents of A. 

SFuv Scale Factor: Beplace (A) withD{u). Then left circular 

RPjnw 

shift (A) by 36 places. Then continue to shift (A) until 

A34 i A3S ' Then replace the right-hand 15 bits of (v) 

with the number of shifts, k, which would be necessary 

to return (A) to its original position. If (A) is all 

ones or zeros, k = 37. If u is a, (A) is left unchanged 

in the first step, instead of being replaced by D(A R). 

BePeat: This instruction calls for the next instruction. 

which will be called Nluv, to be repeated n times, its 

"un and "v" addresses being modified or not according 

to the value of j. Afterwards the program is continued 

by the execution of the instruction stored at a fixed 

address Fl' Normally Fl is the ES address (00000), but 

it can be changed to the MD address (40001) by means of 

a relatively inaccessible switch. The exact steps to be 

carried out are: 
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(1) Replace the right-hand 15 bits of (F1 ) with the 

address w. 

(2) Execute NIuv, the next instruction 1n the program, 

n times. 

(3) If j = 0 do not change u and v. 

If j = 1 add one to v after each execution. 

If j = 2 add one to u after each execution. 

Ifj = 3 add one to u and v after each execution. 

(4) On completing n executions, take (Fl) as the next 

instruction. 

(5) If the repeated instruction 1S a Jump instruction, 

the occurrence of a jump terminates the repetition. 

In addition, if NIuv is a Threshold Jump or an 

Equality Jump, and the jump to address v occurs, 

(Q) is replaced by the quantity j, (n - r), where 

r is the number of executions that have taken place. 

To illustrate the effectiveness of the RP instruction, consider the 

scalar product: 

a b + a b + a b + ... +a 1 b 1 o 0 1 1 2 2 n- n.-

and suppose that the quantities ai and b i are 36-bit numbers stored at two sets 

of consecutive memory boxes with addresses u + i and v + i, where i = 0, 1, 2, 

.. , (n-l). If A is cleared initially, the scalar product can be obtained as 

a 72-bit number in A by use of the two instructions: 

RP3nw 

MAuv 

The memory box F will contain an unconditional Jump instruction whose v-address 

will be set to w by the RP instruction, so the program goes to the instruction 
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1n address w after the scalar product has been obtained. 

The time required to obtain the 72-bit scalar product will depend 

on the number of ones in the mul tipl iers ao' al' • • • an-I. Taking an average 

of 166 clock pulses for each execution of MA, the total time requirement, in-

ciuding the execution both of the RP and of the jump to address w, is 46 + 166n 

clock pulses. 

This method of obtaining a scalar product 1S remarkable 1n three 

ways: 

(1) As it uses only two instructions it 1S extremely economical 

of storage space. 

(2) It is fast because the MA instruction is acquired by only one 

reference to storage although it is used repeatedly. 

(3) It obtains the scalar product as a double-length 72-bit number. 

(On other computers the two 36-bit halves of each product ai bi 

would have to be handled separately, which involves several 

instructions and several references to storage for each step 

of the accumulation of a 72-bit scalar product.) 

The effectiveness of the combination of RP and MA is largely re-

sponsible for the remarkable efficiency of the 1103 computer in handling matrix 

multiplications. Two 16 by 16 matrixes can be stored in ES and can be multiplied 

1n 1.7 sees. Two 64 by 64 matrixes can be stored in MD and can be multiplied 

1n 4.5 minutes. Larger matrixes can be handled by using MT. 

The above scalar product procedure may be used to perform decimal-

to-binary converS10n. Suppose that N is a positive integer not greater than 

10 3 x 10 and that a o' ai' a 2 , ••• , an- 1 are the individual decimal digits 

of the decimal form of N. Then, if bi = 10i, the two instructions RP3nwand 

MAuv will evaluate the expression: 
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2 10 a2 + a + 10 an -1 

and will, therefore, obtain N in binary form in AR• For II-digit decimal 

integers not greater than 3 x 10 10 the time taken to perform this conversion 

is about 2.8 milliseconds. 

Equally remarkable 1S the fact that the reverse converS10n, from 

binary to decimal, can also be achieved by only two instructions, namely, 

RP3nw 

DVuv 

In this case the posi ti ve integer N in binary form is placed in A and ai - IOn - i. 

The number n is the number of decimal digits required in the decimal form of N, 

and these digits are obtained successively in binary-decimal form at addresses 

v + i, where i - 0, 1, 2, ... (n-l). For n '" 10, the time required for the 

convers1on is about 5.4 milliseconds. 

It has already been pointed out that the DV instruction has the 

unusual feature of being able to handle a 72-bit dividend. An alarm 1S pro-

vided that will stop the computer if the correct quotient of a division would 

exceed the 36-bit capacity of a single-length register. 

The Scale Factor instruction is very important for floating point 

operation and for many cases of function evaluation in which preliminary 

scaling is desirable. No special comment is required here because similar 

instructions have been used in other computers. 

In the sequenced instructions the only pecularities that ar1se 

from the use of q and a as execution addresses are as follows: 

Instruction Quantity left 1n A 

MPua o (all zeros) 

MPqa o 

MPaa o 
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Instruction Quantity left in A 

MPuq (u)2 

MPaq (AR)2 

MAua (A) + (u) (A L) 

MAqa (A) + (Q) (AL) 

MAaa (A) + (AR) (AL) 

MAuq (A) + ( u)2 

MAaq (A) + (A ) 2 
R 

In the above list the address u 1S assumed to be either 1n ES or 

1n MD. 

Before leaving the sequenced instructions a further remark on the 

program sequence control associated with the RP instruction is needed. During 

the repetition that follows an RP, the normal part two of each operation is 

omitted, except that (PAlO is increased by one. The contents of PAK is initially 

the complement of the quantity jn that occupies the U-address section of the 

RP instruction, so (PAK) acts as an operations counter, containing the comple~ 

ment of j, (n - r) after r executions. In the particular case 1n which RP 

precedes a Threshold Jump or an Equality Jump, the complement of (PAK) 1S 

transmitted V1a X to the right-hand 15 places of Q if a Jump occurs. 

The Scale Factor instruction was designed to handle the case u = a, 

1n which (A) can be a 72-bit number whose most significant bit may be either 

1n AR or in AL• After the initial shift of 36 places a shift counter 1S set 

to 36 and then follows the sequence 36, 35, ... 0, 71, 70, .•. , 37 as the 

subsequent shifts are made. 
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3.3 TRANSMISSIVE INSTRUCTIONS 

In the following seven instructions u 1S an acquisition address and 

v 1S a transmission address. In other w~rds all these instructions start by 

obtaining (u) in X and end by transmitting a word from X to v. 

TPuv Transmit Positive: Replace (v) with (u). 

TNuv Transmit Negative: Replace (v) with the complement of 

(u) • 

TMuv Transmit Magnitude: Replace (v) with the absolute magn1-

tude of (u). 

TIJuv Transmit U-address: Replace the 15 bits of (v), designated 

by v15 through v29 , with the corresponding bits of (u), 

leaving the remaining 21 bits (v) undisturbed. 

TVuv Transmit V-address: Replace the right-hand 15 bits of 

( v), desi gnated by v 0 through v 14' wi th the co rresponding 

bits of (u), leaving the remaining 21 bits of (v) undis­

turbed. 

ATuv Add and Transmit: Add D(u) to (A). Then replace (v) 

wi th (AR). 

STuv Subtract and Transmit: Subtract D(u) from (A). Then 

replace (v) with (AR). 

Let us first consider the 1P instruction in some detail. It involves 

two stages, acquisi tion of (u) in X and transmission from X to v. If u and v are 

both 1n ES, the number of clock pulses required is 24. However, u and v can be 

a or q, in which case the number of clock pulses is reduced. When a TP in­

struction is repeated, the time usually required for acqu1r1ng the instruction 

is saved. For example, the time required for such a repeat applied from ES 

to ES is 15 clock pulses. 
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A repeated TP may be used to effect a block transfer from MD to ES. 

In fact the entire organization of a block transfer is accomplished by the two 

instructions. 

RP3nw 

TPuv 

The effect of these two instructions is to transfer the block of words at 

addresses u + i in MD to addresses v + i in ES. where i = O. 1. 2 ••••• (n-l), 

and then to cause the program to jump to address w. The speed of the transfer 

will depend on the interlace that is 1n use. but since each execution of the 

repeated TP requires. at maximum, only 16 clock pulses. or 32 microseconds, it 

would be possible to pick up succeSS1ve words from positions in MD that are four 

cells, or 32 microseconds, apart. This means that with four-interlace the block 

transfer can be achieved with an interval of only 32 microseconds between suc­

ceSS1ve words. Similar considerations apply to block transfers from ES to MD. 

It should be noted that the execution of TNuv does not involve A 

unless either u = a or v = a. This is the main advantage gained by using the 

one's complement number system. which allows the change of sign to be achieved 

by simply complementing (X). whereas in a two's complement system the change 

of sign would have to be achieved by subtraction from zero. The advantage is 

twofold; it allows the negative of (u) to be transmitted to v without changing 

(A), and allows the transmission to be executed in a shorter time than would be 

possible if A were involved in the change of sign. By repeating a TN order. 

block transfers with a change of sign can be achieved at the same high speed as 

the posi ti ve block transfers using TP. The same remarks apply to 1'Muv. because 

the conditional change of sign is made in X. 

The instructions TIl and TV are. of course, intended for the modi fica-
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tionofexecution addresses of stored instructions. Ithas already been remarked 

that the v-address of these instructions may not be q or a. 

The add and subtract instructions AT and ST need no special comment. 

Their behavior is straightforward in all cases in which q and a are used as 

execution addresses. 
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3.4 Q-CONTROLLED INSTRUCTIONS 

The following three instructions are transmissive in that they start 

by obtaining (u) and end by transmitting to v. Their common characteristic 

feature is the fact that (Q) is used as a mask to control the operations. 

QTuv Q-controlled Transmit: Form in A the number L (Q) (u). 

Then replace (v) by (AR). 

QAuv Q-controlled Add: Add to (A) the number L(Q) (u). Then 

replace (v) by (A R). 

QSuv Q-controlled Substitute: Form in A the quantity L(Q)(u) 

plus L(Q')(v). Then replace (v) with (AR). The effect is 

to replace selected bits of (v) with the corresponding 

bits of (u) in those places corresponding to l's in Q. 

The final (v) is the same as the final (AR). 

The following peculiarities arise from the use of q and a as execu­

execution addresses: 

QSua L(Q)(u) 1S left in A. 

QSqa S(Q) 1S left in A. 

QSaa L(Q) (A R) 1S left in A. 

QSqq -0 (all ones) 1S left in Q. 

In QSua it 1S assumed that the address u is in ES or MD. 
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3.5 REPLACE INSTRUCTIONS 

The common characteristic of the following five instructions is that 

the execution address u is used both as an acquisition address and also as a 

transmission address. Each of the instructions replaces (u) by a word that is 

derived from (u). In all cases the operation starts with the acquisition of u; 

the first three instructions involve a second execution address t while the 

rema1n1ng two involve shifts. 

RAuv Replace Add: Form in A the sum of D(u) and D(v). Then 

replace (u) with (AR). 

RSuv Replace Subtract: Form 1n A the difference D(u) - D(v). 

Then repl ace (u) wi th A If 

CCuv Controlled Complement: Replace (A R) with (u) leaving 

(AL) undisturbed. Then complement those bits of AR that 

correspond to ones in (v). Then replace (u) with (AR). 

LAuk Left shift in A: Replace (A) with D(u). Then left 

circular shift (A) by k places. Then replace (u) with 

(AW' If u = at the first step is omitted, so that the 

initial content of A is shifted. 

LQuk Left Shift in Q: Replace (Q) with (u). Then left C1r­

cular shift (Q) by k places. Then replace (u) with (Q). 

The RA and RS instructions are useful 1n cyclic programs, when the 

execution addresses of certain instructions have to be modified by prescribed 

amounts. They also provide another example of the efficiency of the Repeat (RP) 

instruction. With the notation used in 3.2 above the two instructions 

RP3nw 

RAuv (or RSuv) 

will put the n sums ai + bi (or the n differences ai - bi ) 1n the memory boxes 
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ui previously occupied by ai. This amounts to the addition (or subtraction) of 

two 1 x n matrixes, or of two n x 1 matrixes. 

Apart from its effect on A, the Controlled Complement instruction 

(CC) may be thought of as equivalent to adding (u) and (v) without carries, and 

putting the result in (u). 

The only peculiarities ar1s1ng from uS1ng q and a as execution 

addresses are as follows, the address u being in ES or MD: 

RAua Twice the number D(u) is formed in A. Then (u) 1S re­

placed by (AR). 

RAqa Twice the number D(Q) 1S formed 1n A. Then (u) 1S re-

placed by (A R). 

RAaa Twice the number (AR)i is formed 1n A. 

RSua Both (A) and (u) are replaced by zero. 

RSqu Both (A) and (Q) are replaced by zero. 

RSqq Both (A) and (Q) are replaced by zero. 

CCua 

CCqa 

CCaa 

(AJ 1S unaltered. 

(AL) 1S unaltered. 

(AL ) 1S unaltered. 

(AR) and (u) are replaced by zero. 

(AR) and (Q) are replaced by zero. 

(AR) is replaced by zero. 

Incidentally, as one would expect, the instruction RSaa clears all 

72 bits of the accumulator. 
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3.6 SPLIT INSTRUCTIONS 

The following four instructions make it possible to handle double­

precision words in A. They all start by acquiring a word from u, and then 

perform a left circular shift in A. 

SPuk Split Positive entry: Form S(u) inA. Then left CHCU­

lar shift (A) by k places. 

SNuk Split Negative entry: Form inA the complement of S(u). 

Then left circular shift (A) by k places. 

SAuk Split Add: Add S(u) to (A). Then left circular shift 

(A) by k places. 

SSuk Split Subtract: Subtract S(u) from (A). Then left 

circular shift (A) by k places. 

If a programmer wishes to clear AR without changing (AL), or to 

clear AL without changing (AR) he may do so with the instructions SSao or 

SPao of 3.6. 
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3.7 TWO-WAY CONDITIONAL JUMP INSTRUCTIONS 

In the following three instructions, u and v are two alternative 

addresses from which the next instruction, NI, may be obtained. 

SJuv Sign Jump: If A71 = 1, take (u) as NI. 

If A71 = 0, take (v) as NI. 

ZJuv Zero Jump: If (A) 1S not zero, take (u) as NI. 

QJuv 

If (A) is zero, take (v) as NI. In either case, leave 

(A) in its initial state. 

Q-Jump: If Q35 = 1, take (u) as NI. If Q35= 0, 

take (v) as NI. Then, in either case, left circular shift 

(Q) by one place. 

The distinction between addresses u and v in the above instructions 

1S easily remembered because 1n each case a program jump to v is called for by 

something, either A71 or (A) or Q35' being zero. 

The Q-Jump is an unusual feature of the ERA 1103 computer. It 

allows a programmer to make the control of a program sequence depend on the 

succeSS10n of ones and zeros in a single word. This fact enables one to appl y 

the Q-Jump in problems involving control by a random-sequence of bits. 
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3.8 ONE-WAY CONDITIONAL JUMP INSTRUCTIONS 

In the following three instructions u 1S an acquisition address and 

v 1S an address from which the next instruction NI will be obtained, if some 

condition is satisfied. 

IJuv Index Jump: Form in A the difference D(u) m1nus L 

Then, if A71 = 1, continue the present sequence of instructions; 

if A71 = o replace (u) with (AR) and take (v) a sNI. If u = a, 

the initial acquisition of (AR) is suppressed so that (A) -1 

is formed in A, rather than D(AR) - 1. 

TJuv Threshold Jump: If D(u) is greater than (A) take (v) asNI; 

if not, continue the present sequence. In either case, restore 

(A) to its initial state. 

EJuv Equality Jump: If D(u) equals (A) take (v) as NI; if not, 

continue the present sequence. In either case restore (A) 

to its initial state. 

In the description of the RP instruction special reference was made 

to the use of RP immediately before TJ or EJ. Consider the effect of the two 

instructions. 

RP2nw 

TJuv 

and suppose that quantities ai are stored in addresses u + i, where i =0, 1, 

2, ••• , n. If all the quantities a i are less than the number (A), and TJ 1n­

struction will merely be repeated n times with successive reference to the 

addresses u + i, and the program will then jump to address w. On the other 

hand as soon as a quantity ai is found that is greater than (A) the program 

Jump to address v is made, and, the value of i that gave r1se to this jump is 

indicated by the number (n - r) that is put in right-hand four octal digits 
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of Q. Here r is number of times TJ has been executed in the present repeat 

sequence. A similar remark can be applied to EJ wherein one is testing for the 

equality of D(u) and (A). 

The index jump, IJ, further illustrates the versatility of the 1103 

Computer instructions. In performing an iterative cycle it is often necessary 

to count the number of times through the cycle and, when apreassigned count is 

reached, make an exit from the cycle. The index jump accomplishes this by means 

of a single instruction. 
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3.9 ONE-WAY UNCONDITIONAL JUMP INSTRUCTIONS 

The following two jump instructions are termed "unconditional" be­

cause the execution of the program jump to address v does not depend on appl ying 

a test 'to the transient state of affairs in A. It should be noted, however, 

that the use of the V-address in MJ makes this instruction equivalent to four 

separate unconditional jump instructions, three of which can be operative or 

made inoperative at will by the use of manual switches. Thus, the term "uncon­

ditional" is not strictly correct, in that the setting of a switch is a form 

of condition. 

MJjv Manually selective Jump: If the number J 1S zero, take 

(v) as NI. If j is 1, 2 or 3, and the correspondingly 

numbered MJ selecting switch is set to "jump", take (v) 

as NI; if this switch is not set to "jump", continue 

the present sequence. 

RJuv Return Jump: Suppose that the instruction 

RJuv was acquired from address x. Then (1) (PAK) = x + 1 

is copied in the right-hand fifteen places at address u, 

without affecting the remaining bits at that address. 

(2) (PAK)is then replaced by v, so that (v) will be 

taken as NI. 

The principal purpose of the RJ instruction is to enable the pro­

grammer both to cause the program to jump to a subroutine and also to arrange 

for the program to jump back after completing the subroutine to the sequence 

that was interrupted by the first jump. Suppose for example that a subroutine 

is prepared that will obtain the square root of the 72-bit number in A and will 

leave the result in A. Suppose this subroutine starts at address s and ends at 

address e with an unconditional jump MJ (j = 0). Then the single instruction 
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RJes may be used exactly asif it were a special instruction for the purpose 

of obtaining the square root of (A) and leaving the result in A. 

The address a may not be used as the U-address of an RJ instruction. 
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3.10 INSTRUCTIONS FOR MAGNETIC TAPE STORAGE. MT 

In theMI' instructions the quantity j desi~ates one of four Mfunits. 

The quantity n denotes the number of 32-word blocks to be traversed. 

AMjn Advance Magnetic Tape: Move the magnetic tape of MT 

unit j in the forward direction by n blocks. 

EMjn Back Magnetic Tape: Move the magnetic tape of MT 

unit j in the backward direction by n blocks. 

RMjnv Read Magnetic Tape: Read n blocks from MT unit 

WMjnv 

j (running forward) to 32 n consecutive addresses in ES 

starting with v. 

Write Magnetic Tape: From 32 n consecuti ve addresses 

in ES, starting with v, write n blocks on MT unit j (run­

ning forward). 

In the execution of AM and ltd, the computer program may proceed as 

soon as the tape movement has been initiated. Should another instruction 

referring to the same tape unit occur before the tape movement is completed, the 

program would then automatically be caused to wait. 

It should be noted that further magnetic tape storage could be 

operated as external equipment, using the instructions EFt ER, EW that will be 

described below. When operating a magnetic tape unit in this fashion, a pro­

grammer would have to provide computer instructions to govern the handling of 

individual tape characters, but he would be able to make the computer do other 

things in the intervals between the acquisition or transmission of characters. 

In the case of the MT units that are controlled by the orders AM, EM, RM, WM. 

the computer is full y occupied during the execution of the block transfers called 

for by AM and WM. and can do nothing else while they are in process. 
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3.11 STOPPING AND STARTING 

Instructions that cause the computer to stop are the following: 

MSjv Manually selective Stop: If j = 0, stop the computer 

operation and provide suitable indication. If j = 1, 2, 

or 3 and the correspondingly numbered MS selecting switch 

1S set to "stop", stop the computer operation and provide 

suitable indication. Whether or not a stop occurs, pre­

pare to take (v) as the next instruction. 

FS Final Stop: Stop computer operation and 

provide suitable indication. 

In addition to programmed stops, the computer operation may be 

stopped for anyone of the following reasons, a sui table indication being given 

in each case. 

1. Imminent overflow of the full 72-bi t capacity of A (tested pnor 

to a Multiply Add instruction). 

2. Attempt to obtain a quotient that would overflow the 36-bit 

capaci ty of Q. 

3. Use of the address q (of Q) as the V-address 1n TU, TV, SF, 

or RJ. 

4. Occurrence of an 1mproper comand code that does not correspond­

to any of the computer instructions. 

5. Use of the address a (of A) for an instruction. 

The computer may be started 1n the "operate" mode in either of two 

ways, manually selected. 

Start from MD: If this option 1S selected, 

the computer takes its first instruction from Fo, a fixed 

address (40000) inMD. In order to start in this manner, a 
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10 ading operation must previously have taken place, and, 

in particular, an appropriate instruction inserted in F o' 

Start from MT: If this option is selected, 

the computer will first automatically execute the instruc­

tion Read Magnetic tape with j = 0, n = 0001, and v = 
00000, and then set PAK to take (00000) as the next 

instruction. In this way, the first block on an MT unit 

may be used to direct the loading of information from 

magnetic tape, without any preliminary loading. 
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3.12 EXTERNAL EQUIPMENT - INPUT AND OUTPUT 

The basic instructions for handling input and output and for the 

control of external equipment are as follows: 

EF-v 

ERjv 

EWjv 

External Functions: Select a unit of external 

equipment and perform the function indicated by (v) 

External Read: If j = 0, replace the right 

hand 8 bits of (v) with (lOA); if j = 1, replace (v) with 

(lOB). If a step-by-step unit is involved, advance it one 

step. 

External Write: If j = 0, replace (lOA) with 

the right hand 8 bits of (v); if j = 1, replace (lOB) with 

(v) . Cause the previously selected uni t to respond to the 

information in lOA and lOB. 

It should be noted that lOA has only 8 bits. These are associated 

with the right-hand 8 bits of (v) in ER and EW. 

The interpretation of the address v of an EF instruction can be 

arranged to suit particular applications. The varietyofpossible applications 

is very considerable, and will not be discussed fully here. For example 

EF-vl might select a rotating shaft and call for a measurement of the angular 

position to be obtained and put in lOB, whence it could subsequently be read 

into the computer by ERj1v. In such an application once the instruction 

EF has been given the computer can go on computing while the measurement 

1S being made. Another instruction EF-v 2 might select the same shaft and 

cause it to be rotated. This is a crude example of the means by which the 

1103 computer can be made to act as the central control of a physical system. 
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Another obvious application of an EF instruction would be to select 

a cathode ray tube on which a visual presentation is to be made; two EW instruc­

tions could be used to set the horizontal and vertical deflections and to 

illuminate a spot, so that a programmer could arrange to produce any desired 

visual display; another EF instruction might control a camera to obtain a photo­

graph of the display. 

An important application is the acceptance of a stream of information 

that is neither controlled by the computer in a step-by-step fashion, nor 

synchronized with the computer. Suppose for example that a particular EF 

instruction selects a photo-electric reader and causes it to read successive 

characters from punched paper tape and to insert them in lOA at its own speed 

until the tape motion is stopped by another EF instruction. Provided that the 

programmer knows the maximum speed of the tape, he can insert enough ER instruc­

tions 1n his program to make sure that no tape character is missed. If an ER 

instruction arr1 ves before the corresponding character has been transferred from 

tape to lOA, the computer waits, this being ensured by an interlock. Essentially 

what happens is that, whenever a new character is transferred from tape to lOA, 

and "indicating flip-flop" (IFF), is set to indicate the presence of new inform­

ation. When an ER instruction, that refers to lOA, finds IFF not set, the com­

puter will wait for IFF to be set before executing the ER. Further the execution 

of an ER causes IFF to be reset to indicate the absence of new information. The 

next character from tape should, therefore, find IFF in the reset state; if IFF 

still indicates the presence of new information, the tape has got ahead of the 

programmer, and an alarm signal must be given. 

The above example shows that the 1103 1S capable of handling many 

forms of input. It is possible to put information into the computer as binary 

numbers, which is convenient in many cases of on-line operation with measurements 
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of physical quantities, or 1n any coded form that may be convenient for a 

particular application. The flexible logic of the 1103, and in particular the 

instructions QT, OA, QS, ce, make it easy for a programmer to arrange for any 

necessary conversions and to get them done fast, often while input is 1n pro­

gress. Many possibilities spring to mind: Photoelectric reading from punched 

cards to lOB in standard card code; direct input of information from a teletype 

circuit, or from some other communications link; direct-on-line input of 

measurements of variable parameters in an experimented system such as a wind 

tunnel; magnetic tape or magnetic wire units; and so on. 

Similarl y there are a great variety of possible output arrangements. 

Broadly speaking the 1103 system of handling external equipment makes it pos­

sible f6r the computer to work wi th any external equipment that can be acti vated 

by signals in binary code and that can either accept information from a flip­

flop register or deposit information in a flip-flop register. Further it is 

felt that in cases in which a large scale computer is not permanently allocated 

to work of a special tYfe, it will often be far more efficient to use the 

facilities of the 1103 for code converS10n, rather than build special external 

equipment for each type of converS10n. 

In addition to the basic input-output instructions EF, ER, EW, the 

1103 has special instructions for punched paper tape output and for typewriter 

output. There are also special facilities for input from punched paper tape. 

PR-v PRint Replace (TWR) with the right­

hand bits of (v). Cause the typewriter to print the 

character corresponding to the 6-bit code. 

PUjv PUnch Replace (HPR) with the right-

hand 6 bits of (v). Cause the punch to respond to (HPR). 

If j = 0, omit seventh level hole; if j = 1 include 

seventh level hole. 
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In connection wi th the PRINT instruction, the typewri ter characters 

represented by octal code 77 will be designated as "illegal code" indicators. 

By means of a manual selecting switch, the occurrence of an illegal typewriter 

code will cause the computer (1) for PR-v to stop and indicate a fault condition, 

or (2) for PH-v to print the "illegal code" indicator and continue operation. 

In the case of PUj v, the high-speed punch will accept and punch all possibili ties, 

without restriction. 

The special facilities for input from punched paper tape utilizea 

photoelectric tape reader. Seventh level coding 1S used to control the assembly 

of S1X consecutive tape characters to form a 36-bi t word and the transmission of 

consecuti ve words to consecutive addresses in storage starting wi th a prescribed 

address that is punched on the tape. This feature allows programs of any 

length to be placed in various parts of the magnetic drum or electrostatic 

storage without making use of a pre-stored program to control the operation. 
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ERA 1103 COMPUTER LOGIC 

4.0 1103 INSTRUCTION EXECUTION TIMES (FOR ES STORAGE ONLY) 

I NSTRUC-
liON 

'IPuv 
TMuv 
'INuv 
TIJuv 
TVuv 

EF-v 

RAuv 
RSuv 

CCuv 

SPuk 
SAuk 
SNuk 
SSuk 

ATuv 
STu v 

RJuv 

IJuv 

TJuv 

EJuv 

QJuv 
MJuv 
SJuv 

ZJuv 

All entries represent the number of clock periods required to 
perform the indicated instruction. (For Normal mode from MP6 to 
MP6; for Repeat, from MP7 to MP7.) A clock period is approxi­
mately 2.0 microseconds. 

NO R MAL REP EAT E D 
OCTAL 
CODE COND IT I ON SECOND MIN. MAX. FIRST ETC. 

11 

} 12 
13 - 22 25 17 16 
15 
16 

17 - 16 19 11 12 

21 - 38 41 33 32 
23 I 

27 30 33 25 24 

31 

} 32 k2:2 18+k 21+k 13+k 11+k+Pl 
33 k= 0,1 18+k 21 +k 15 16 
34 

35 } 26 29 21 20 36 -

37 - 22 25 - -
41 Jump 30 . 33 25 24 

No Jump 24 27 19 20 

42 - 23 26 - -
No J. Term. - - 18 16 
J. Term. I 23 21 - -

43 - 29 32 - -
No J. Term. - - 24 24 
J. Term. - - 29 29 

44 } 45 - 10 13 - -
46 

47 - 16 19 - -
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ERA 1103 COMPUTER LOGIC 

4.0 1103 INSTRUCTION EXECUTION TIMES (continued) 

I NSTRUC- OCTAL NOR MAL 
COND IT I ON 

TION CODE MIN. 

QTuv 51 } 26 QAuv 52 -

QSuv 53 - 46 

LAuk 54 - 24+k+P4 

LQuk 55 - 23+ k +P3 

MSjv 56 - 10 
FS-- 57 - 9 . 

PR-v 61 } PUjv 63 - 17 
RMjnv 64 } WMjnv 65 - -
AMjn- 66 } 14 BMjn- 67 -
MPuv 71 - 60+ a 

MAuv 72 - 96 + a 

DVuv 73 - 242 + 4 a 71 
Min. -
Max. -

SFuv 74 - 63+P + P5 
RPjnw 75 - 33 
ERjnv 76 - 18 
EWjnv 77 - 16 

PI = [1-k] mod 4 

P 2 = [2-k] mod 4 

P3 = [3-k] mod 4 

P 4 = [ qo + q35 + 3] mod 4 

P5 = [3+k]inod 4 

a = 11 q 35 + 3 qo + 4 ( q 1 + q 2 + ... + q 34) 

P = [36-k] mod 72 
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MAX. 

29 

49 

27 +k+P2 

26+k+P3 

13 
12 

20 

-
17 

63 + a 

99 + a 

249 +4a 71 
-
-

66 + /3 + P5 
36 
21 
19 

REP EA TED 

FIRST SECOND 
ETC. 

21 20 

41 40 

19 +k +P2 18+k+P2 

18+ktp3 17tk+P3 

- -
- -

12 12 

- -
- -

- -

91 + a 89 + a + P4 

- -
237 +4a 71 236 +4a71 
241 +4a71 240 +4a71 

58 + P + P5 57+P+P5 - -
9 12 

11 12 


