
~ · · AIanud

Automdk~
Iv:& ~® s~ ~ ,4u:I-tmdMoo 8~ (jta-M)

- IS· ~~
" . "'011 0' ., ... , (0.,0,,,,.011

INTRODUCTION

UNICODE--NEW PROGRAMMING EASE

In UNICODE, automatic programming has reached a new pinnacle of development.
UN/CODE enables the engineer, the physicist, the mathematician--in fact anyone
familiar with algebra--to become a programmer ... to express his problem con­
cisely in an easy-to-Iearn form the Univac Scientific 1103-A can use to pro­
duce a processing program. UNICODE may be employed to code a program for any
mathematical problem with a numerical solution. Its best application is in
the field of "one shot" problems, that is, problems for which quick solutions
are desired and which will be run on the computer a limited number of times.
If a problem is to be run many times, the operation time on the computer may
warrant a professional programmer's coding to save computer time. But even
for such problems, the programmer can red.uce his work by having UN/CODE pre­
pare portions of the program. Problems containing sections requiring many
logical operations also can be more efficiently prepared by a professional
programmer. But in problems of this type also, these sections can be pro­
grammer-coded as subroutines and placed in the UNICODE library, with the
remainder of the problem then being coded by UNICODE. Thus the UNICODE library
of subroutines is such that it is easy to add~ subtract, or change routines,
which permits a computer installation to develop a library adjusted to its
specific needs. And compatibility with AT-3 or MATH-MATIC, the algebraic com­
piler for Univac II, enables interchange of data input tapes between Univac II
and the Univac Scientific.

UNICODE OFFERS TRUE EASE OF EXPRESSION

The UNICODE system allows for the expression of any decimal constant. And all
constants except those used for incrementing subscripts are converted to
floating point numbers with approximately nine decimal digits of significance.

With but few exceptions, any symbol of alphanumeric characters (only one of
which must be alphabetic) may be used to express a variable. The UNICODE
system includes functional notation with exactly the same meaning and notation
as that commonly used in mathematical literature except in a few instances.
This feature eliminates the necessity of restating an equation in order to use
it later in a program. A function may be expressed with as many as four
arguments. The arguments may all be subscripted variables, all nonsubscripted
variables, or a combination of nonsubscripted and sUbscriptea variables. An

argument of a function may in virtually all instances be written as an expres­
sion; an equation may be considered both in a general sense or included as a
statement. Parentheses are used in the usual way to order computation in a
mathematical expression.

UNICODE INSTRUCTIONS ARE EASY TO LEARN, EASY TO USE

To facilitate use of UNICODE, the number of instructions in the system have
been kept to a minimum consistent with providing simplicity and flexibility in
use and power in effect. The instructions are

Replace--

Compute--

Vary--

Jump--

If--

Resume--

Substitutes the value of an expression or single variable
for the value of a designated variable. Two or more Replace

instructions may be combined in a single statement by the
connecting word and.

Evaluates a variable using its defining equation. If the
variable is written in subscript or functional notation form,
all values computed to the maximum number specified by the
dimension statement are retained for future reference; if
not, only the current value is retained. Two or more
Compute instructions may be combined in a single statement
by the connecting word and (equations written in the state­
ment region perform the same function as the Compute in­
struction) .

Controls the values of a variable used in repetitions of a
certain range of .statements. It consists of three parts:
modify, range, and transfer. Both the modify and range parts
may take either of two forms. The connecting word and may
be used to combin~ several modify components into one Vary
instruction when the variables of the modify parts take on
their successive values concurrently.

Transfers control to another statement.

Transfers control to another statement when a certain con­
dition is satisfied; if the specified condition is not met,
continuation to the next statement in sequence is implied.

Returns control to a Vary instruction so the modifying pro­
cess is continued from the point at which it was last ter-

11

Write--

Type--

Print--

Start--

Stop--

minated. If transfer of control to a Vary instruction is
accomplished by any other means, the Vary sequence will
begin with initial conditions as written in the Vary in­
structions.

Records on a specifiea tape edited information to be printed
by the off-line High-Speed Printer. Any result printed will
have a fixed point representation unless the decimal point
appears outside the range of significant digits. If the
number cannot be represented in fixed point form standard
scientific notation is used. When a single, subscripted
variable appears in the Write instruction, subscripts are
written automatically. The Write instruction can be used in
two ways--with one variable, or with two to five variables.

Enables designation of variables whose values are to be
typed out on the Supervisory Control Typewriter; usually
used to type out small amounts of information. The variable
referenced by the Type instruction may be subscripted,
single-valued or a function.

Permits indication of special conditions during the running
program. Also used with the Supervisory Control Typewriter,
this instruction produces an output identical to that ap­
pearing within the parentheses following the word Print.

Indicates the point at which actual execution of a program
is to begin; sentences preceding it are not executed.

Indicates a point at which execution of the Object (Output)
program or subprogram is to be terminated; is translated
into an instruction stopping computer operations.

End of Tape--Indicates all pertinent information for the problem contained
on a tape has preceded.

Dimension-- Specified number of values of a subscripted variable and/or
function that will be retained at anyone time. When used
with a subscripted variable, this instruction also specifies
the largest value the sUbscript may assume.

Delete-- Eliminates entire Unicode lines from the program when cor­
recting errors.

iii

Change--

Insert--

Sub--

Result--

Exit--

Replaces th2' Sentence and Comment parts of a specified line
by the correct Sentence and Comment (if any), leaving the
line number unchanged.

Adds new lines at specified points in a Unicode program.
The programmer need only number the first line to be added.

Identifies a subprogram with a pseudo operation (an opera­
tion performed by a subprogram written in Unicode language)
through the pseudo operation symbol used in the program.

Names the single valued output of the subprogram.

Returns control to the sentence of the program referencing
the pseudo operation.

UNICODE PERFORMS MANY ROUTINE PROGRAMMING TASKS ITSELF

Many of the time consuming details of programming a problem are eliminated or
drastically reduced by UNICODE. The pseudo operation, for instance, enables
the writing of specialized routines for a particular problem. This makes
available as a supplement to the existing library any sequence of instructions
that will be used repeatedly in the problem both with or without different
operands. The person programming can thus expr'ess his main problem in UNICODE
language without the distraction of excessive detail. A pseudo operation may
have any number of operands and parameters so long as the SUB sentence in the
sUbprogram has the same number and is written in the same order. The same
pseudo operation symbol may appear as often as necessary in any number of
equations.

UNICODE numbers all lines not assigned a line number by the person programming
the problem. Thus, in his corrections to a UNICODE program following a trans­
lation by UNICODE I the person programming may refer to any assigned line
number--including those assigned by UNICODE. The person programming may also
use machine language in the UNICODE source program if he wishes to code a
logical portion himself. He also need not subdivide the Object program if it
istoo large for the machine on which it is to be run--UNICODE does this itself
automatically if the need arises.

UNICODE reduces the debugging task to a small fraction of what it would be
under hand programming. A big factor bringing about this reduction is the

iv

elimination by UNICODE of the "housekeeping" phase of programming--the in­
struction modifications, line designation, program subdivision, and similar
"clerical" functions. While the ease of programming with UNICODE eliminates
most errors, those which still occur are easily located with the aid of the
many error checks built into this automatic programming system. Corrections
to a UNICODE program are easy too. A tape containing the corrected information
is mounted on a separate Uniservo magnetic tape unit and correct information
merged wi th the original program to produce the updated program tape.

UNICODE PROGRAMS ARE EASILY PREPARED FOR ENTRY INTO THE COMPUTER

It is not necessary to put the UNICOng input program on punched cards and then
run them through a card-to-tape converter before compilation--the program can
be transcribed directly onto magnetic tape with the Unityper. Each line of
the Unityped copy of the UNICODE program will contain 120 characters (including
fill symbols) representing one blockette of information on magnetic tape.
Addi tional tapes may be used to handle a UNICODE program too long for one tape;
these tapes are then merged with the original program in the same manner as
correction tapes.

The edited record produced by UNICODE is also easy to understand. Printed out
on the High-Speed Printer as a side-by-sidelisting, the edited record contains
both the input program and the generated Obj ect (output) program. Each UNICODE
line of the input program is reproduced as it appeared in the Unityped copy,
with the addition of the line numbers assigned by UNICODE. Immediately follow­
ing each such line, the corresponding generated machine code is printed, with
one machine word per output line. A blank space is left in the side-by-side
listing wherever the space symbol appeared in the Unityped input program.

All of these features--and others, too--combined thus make UNICODE an extreme­
ly useful programming aid--one that not only drastically reduces computer
operating expenses but also greatly accelerates new developments in programming
research and computer applications.

v

INTRODUCTION

CHA PTER I

CHA PTER I I

CHAPTER III

C H A PT E R I V

CONTENTS

General Forms
Program ..
Subprogram
Line

Notation .
Constants
Variables
Subscripts
Functional Notation . .

Equations

. .

Hierarchy of Operations.

Instruction Repertoire .

Replace .
Compute .
Vary

Jump
If
Resume
Write.

Type
Start .

Stop

End of Tape .
Dimension .

Sub-Program Instructions
Correction Instructions ..

Pseudo Operations and Subprograms
Symbol
Heading of a Subprogram
Operands and Parameters .
Exit

Page

i

1

1

2

2

~

~

~

~

5

6

7

9

9

9

10

1~

1~

1~

15

17

17

17

17

17

19

• • .• 19

20

20

20

20

20

CHAPTER V

CHAPTER VI

CHAPTER VII

APPENDIX A

APPENDIX B

APPENDIX C

Data

Data Phase

Location of Data

Format

Line Numbering
Space Symbols .
Unicode Program
Side-by-Side Listing

Corrections and Tape Overflow

Delete

Change
Insert

Tape Overflow

Unicode Langu~ge .
Unicode Instructions

Subprogram Instructions
Correction Instructions .

Unitary Operations
Binary Operations .
Relations . . .

Sample Problems
Integration ..

Generation of Table of Integrals

Differential Equation

Details and Techniques of Compilation
Uniservo Information Content at Start and

Completion
Tape Format for Automatic Coding Program
List 1 Format . .
Op File 1 Format
Call Words

Library and Generated Subroutine Format .
Uniservo 2 Detailed Format
Uniservo 5 Detailed Format

.

Page

22

22

22

24

24

24

26
28

30

30

30

31

31

32

32

32

32

33

33

33

34

34

37

39

41

41

41

42

42

42

43

44

45

APPENDIX C

(cont i.n ued)

APPENDIX 0

APPENDIX E

APPENDIX F

Directories 1, 2, 3, ~, 5
List 1

Op Files I, IIA, lIB, III .

Code Word for Generalized Tape Handler

Magnetic Core Storage Layout During Running

Page

~7

~7

~7

49

of Object Program. 50

Control Section During Running Problem 51

The Interlude Between Segments 52

Object Program Format as Stored on Uniservo .. 5~

Allocator and Processor Description

Phase I (Allocator) ..
Phase II (Allocator)

Phase III (Allocator) .
Phase IV (Processor)

Glossary

Univac Scientific (Model 1103A) System

Characteristics and Instruction Repertoire

55

55
56

57
61

6~

66

Chapter 1

GENERAL FORlltIS

This chapter illustrates the general appearance of the UNICODE program; sub­
program, and line. Capitalization indicates those sentences which must appear.

PROGRAM Two blockettes (2~O characters) in the first block of any
program are allowed for the program title. Every UNICODE pro­
gram must be written as follows:

UNICODE Programming Sheet Page ____ ~

Line Number
(Character Positions 1-12)

Sentences and Comments
(Character Positions IQ-120)

UNICODE PROGRAM

Title

Equat ions

START

Statements

Subprograms

END OF TAPE

Figure I - General Form of a UNltODE Program

1

list blockette
f (must appear)

l Qth & 5th b lockette of
f 1st block (if present)

l Start 2nd block of tape
~ (if present)

l Indicates statements
) follow (must appear)

l STOP i nst ruct ion
f (must appear)

t In programs us ing
~ pseudo operations

I (must appear)

SUBPROGRAM A subprogram in a problem indicates use of a pseudo operation.
The general form of a subprogram is similar to that of a program
except that the first two sentences of a SUbprogram are re­
served for the heading. For clarity in the following figure,
assume the pseudo operation symbol is OPER and the operands are
A and B.

UNICODE Programming Sheet
Page __ ~

Line Number
(Character Positions 1-12)

Sentences and Comments
(Character Positions 1~-120)

LINE

SUB OPER (A, B)
RESULT C

Equations

START

Statements

Figure 2 - General Form of a Subprogram

t Heading
~ (must appear)

~ (i f present)

f (must appear)

t EX IT in st ruct ion
~ (must appear)

The line is the fundamental unit of the unicode language, con­
sisting of a line number (used to reference the line), a sen­
tence (which is interpreted by UNICODE), and comments. The
line number and comments are optional.

Line Number
(Character Positions 1-12)

Sentences and Comments
(Character Positions 1~-120)

Figure 3 - General Form of a Line

2

Line Number Sentences and Comments

VARY X 1(0.1) 100
SENTENCE 39 THEN
JUMP TO StJ.

F{O) = 13tJ. (SET
INITIAL CONDITION)

COMPUTE Y(I ,J)tJ.

Figure ~ - Examples of 3 Unrelated Lines

}

3

1\. is end of
sentence symbol

Comment in
parenthesis

CONSTANTS

VARIABLES

SUBSCRIPTS

Chapter 2

NOTATION

The UNICODE system allows for the expression of any decimal
constant. All constants, except those used for incrementing
subscripts, are converted to floating point numbers with ap­
proximately nine decimal digits of significance. This allows a
constant to have magnitude between 10-38 and 1038 , and zero.
Since the character combination space period ~. indicates the
end of a sentence, a constant which has no integral part must
be expressed as zero point 0. ___ • The characters + - * /
denote addition, subtraction, multiplication, and division,
respectively.

Examples:

123 .95
0.12395*10 POW 3
12395*10-2

Any symbol of alphanumeric characters, one of which must be
alphabetic, may be used to express a variable. Exceptions are
those character combinations which are used elsewhere in the
language, such as SIN, POW, VARY.

Examples:

X

CAT
D81958

A sequence of symbols or mathematical expressions enclosed
within parenthesis immediately following a variable is used to
denote the subscripts of a variable. To distinguish between a
subscripted variable and functional notation (see next section),
the symbol of any variable used in a subscript must have one
of the letters, I, J, K, L, or M as its first character.
Multiple subscripts on a variable, to a maximum of four, are
separated by commas. A subscript may not have a subscript and
may take only a positive integral value.

4

FUNCTIONAL
NOTATION

Examples:

Xes)
Y(I,J,)

z(I+3, J+K)

Functional notation in the UNICODE system has exactly the same
meaning and notation as that commonly used in mathematical lit­
erature, except that an argument symbol cannot have the letters
I, J, K, L, or M as its first character.

Example:

F(X,Y,Z,T)

When a subscripted variable serves as the argument of a function,
parentheses within parentheses are necessary to separate the
subscript from the argument.

Example:

F(X(I), Y(J» XCI) - TAN Y(J)

If a function has subscripted arguments, any future reference
to a computed value of the function must be made through parti­
cular values of the subscripts. In the above example the
function F is defined in terms of the subscripted arguments,
XII) and Y(J). Following computation, a reference to a parti­
cular value of the function F might be F(X(S),Y(7)). The re­
ference to a value of F could not be written as F(lO.3, 23.~).

This restriction applies only to sUbscripted arguments.

The UNICODE system allows a function to be expressed with as
many as four arguments. These arguments may be all nonsub­
scripted variables, all subscripted variables, or a combination
of nonsubscripted and subscripted variables. If a sUbscripted
variable is ~sed as the argument of a function, it may not have
more than one subscript.

5

EQUATIONS

An argument of a function may be written as an expression, ex­
cept when the function appears on the left of an equality symbol
or preceding the word "BY" in the "REPLACE" instruction. The
following are examples of incorrect usageof functional notation
in the UNICODE system:

F(X+A-B,Y,Z) =

REPLACE F(X+A-B,Y,Z) BY

The UNICODE system does not permit direct expression of a func­
tion which has another function as its argument.

When two or more functions are defined in terms of the same
argument, such as F(X) and G(X), the argument must assume the
same values and the same ,order in the evaluation of the various
functions.

Functional notation is convenient in expressing certain problems,
but may result in somewhat slower program than if subscript
notation is used. The ease of expression attributed to func­
tional notation, however, overbalances this relatively slight
time increase, which is required by the manipulation of arguments
and their associated function values.

An equation in UNICODE language is the definition of a single
variable on the left of an equality symbol by a mathematical
expression on the right. An equation may be considered in a
general sense or it may be included as a statement. When used
in the general sense the equation can be referenced many times
and is written preceding the START instruction; when included
as a statement, the equation calls for the evaluation of the ex~
pression on the right and the substitution of the resulting
value for the value of the variable defined. If an equation is
written separately from the statements, no computation occurs
until the variable is referenced by a statement.

Any variable on the left of an equation must be defined expli­
citly by the expression on the right; that is, the expression
must not contain the variable appearing on the left (unless the
subscripts or arguments have different values), nor may it con-

6

tain any other variable which is dependent upon the variable
hp; ncr r1pf; np(L ----b -------.

Examples:

Y = X POW 2 - 5 * SIN (A+B)
C(I,J) = A(I,K) + 0 * B(K,J)
F(X,Y) = x2 + COS Y
F(X) = F(X-H) + COS X

If the variable on the left is subscripted, or is functional
notation, an operation symbol may not be included within the
subscript or argument. Thus

X (1+ I) XCI) - 2

illustrates an equation which is not permissible since the sub­
script on the left contains an operation symbol (+). For an
equivalent meaning this could be expressed as

XCI) = X(I-I) - 2

with proper adjustment of I.

HIERARCHY OF Parenthesis are used in the usual way to order computation in a
OPERATIONS mathematical expression. When the order of computation is not

specified through the use of parenthesis, however, the opera­
tions are performed in the following order:

1. Exponentiation
2. Library Functions and Pseudo Operations
3. Multiplication and Division
4. Addition and Subtraction

In the equation,

Z = X + y2 /3 * SIN A - B

7

the comput at ion wi 11 be carried out as if it h ad been wri t ten

z = X + [(y2 /3) * (SIN A)] - B

If grouping parentheses are om1:tted from. a consecutive sequence
of operations which appear within the same hierarchy, the
grouping is understood to be from left to right. Thus, X/Y * Z
means ((X/Y) * Z), operating from innermost to outermost paren­
theses.

8

Chapter 3

INSTRUCTION REPERTOIRE

To facilitate the presentation and explanation of the UNICODE instruction, the
following special notation will be used:

1. The letters X, Y, and Z denote single variables.

2. The letters a, b, and c denote expressions.

3. The letters k, m, and n denote line numbers.

REPLACE The REPLACE instruction substitutes the value of an expression
or single variable for the value of a designated variable. The
previous value of the variable is not retained. When X denotes
a subscripted variable or functional notation, the subscripts or
arguments may not be expressions.

COMPUTE

The. value of any variable appearing in the expression a must be
determined prior to the execution of the REPLACE instruction.
This value may have been obtained as input data, through the
computation of an equation, or it may have been assigned a
value by a VARY instruction or another REPLACE instruction ..

Example:

REPLACE X BY a.

In the example, the value of the expression a becomes the current
value of the variable X. The previous value of X is not re­
tained for future reference.

Two or more consecutive REPLACE instructions may be combined in
a single statement with the connecting word AND.

Example:

REPLACE X BY a AND Y BY b.
REPLACE X AND Y AND Z BY a.

The COMPUTE instruction evaluates a variable using its defining
equation. If the variable is written in subscript or functional

9

VARY

notation form, all values computed, to the maximum number as
specified by the dimension statement, are retained for future
reference; if not, only the current value is retained.

Before a variable can be computed using its defining equation,
all variables which appear in the right hand member must have
been previously evaluated; that is, they must have been assigned
values as input data or by a VARY or REPLACE instruction, or,
if defined by equations, they must have been computed.

Example:

COMPUTE Z.

Two or more consecutive COMPUTE instructions may be combined
into a single statement with the connecting word AND.

Example:

COMPUTE X AND Y AND Z.

The computations are performed from left to right. In the ex­
ample, X is evaluated first, then Y, then Z.

(X = a - Equations written in the statement region perform the
same function as the COMPUTE instruction. When control reaches
such an equation, the variable is evaluated using the right
hand expression. An equation appearing with other control
statements may not be referenced by a COMPUTE statement. See
EQUATIONS section, Chapter II.)

The VARY instruction controls the values of a variable used in
repeti tions of a certain range of sta.cements. It consists of
three parts: the Modify, Range, and Transfer components.

The Modify component may be either of two types:

(1) Increment type

VARY X p(q)r

10

In this type the variable X is incremented by ~ from an initial
value of punt il I r - X I < I 01.

I I I ~I

(21, List type

VARY X r,s,t,

In this type the values r,s,t, etc. to a limit of ten values
are substituted for X intheorder stated. In the illustrations
above and following X must be a nonsubscripted variable; p,q,r,
s,t, and u are nonsubscripted variables or constants.

The Range component specifies the statements which are con­
trolled by the VARY instruction. If the range of a VARY state­
ment A includes another VARY statement B, then the complete
range of statements for B must be included in the range of A.
Reference may not be made to any statement within the range of
a VARY instruction from another statement outside the range.
This component may also take either of two forms:

SENTENCES k THRU m

This form indicates that all statements, from the statement with
line number k to and including the statement wi th line number m,
will be repeated each time the variable in the Modify component
takes on a new value.

SENTENCE k

This is a special case of the above in which the statement with
line number k is the only statement subject to repetition. In
both cases, the statement numbered k immediately follows the
VARY statement.

The Transfer component specifies the line number of the state­
ment to which control will be transferred upon termination of
the VARY se~uence; that is, when all statements of the range
have been executed for all values of the variable in the Modify
component. The Transfer component is optionally stated or not
stated; however, if it is not specified, control will be trans­
ferred to the first statement following the range of the VARY

11

instruction. The Transfer component requires the following
form:

THEN JUMP TO n.

When the ranges of two VARY statements extend to exactly the
same statement, the Transfer component on the inner VARY state­
ment takes an additional option and the unstated transfer has a
different meaning. The Transfer component on the inner VARY
statement may take one of three forms:

1. THEN JUMP TO m (as before).
2. THEN RESUME k.
3. Not stated.

The THEN RESUME k transfer continues the modifying process of
the VARY statement at k, which mus t be the preceding VARY state­
ment. The unstated transfer, instead of its usual transfer to
the statement following the range of the VARY, automatically
ca'uses a "RESUME" of the previous VARY. Thus, the optional
THEN RESUME k or the omission of a transfer component on an
inner VARY stat~ment accomplish the same thing.

If a THEN JUMP TO k transfer to the preceding (or any other)
VARY statement is used, the variable modified by the VARY state­
ment at k is reset to its initial value.

Illustration:

I. VARY X SENTENCE 2 THRU 7.
2 •

{THEN RESUME I]
3 • VARY Y SENTENCE q THRU 7. THEN JUMP TO m
q. THEN JUMP TO I
5.

6.

7.
8.

9.

The first VARY statement (at 1) follows the conventional rule
of transfer; i.e., after completion of the VARY statement con-

12

trol is transferred to the statement at 8. The transfer from the
second VARY could be:

1. Not stated- control transfers to 1, X takes next value.
2. THEN RESill1E 1- control transfers to 1, X takes next

value.
3. THEN JUMP TO m- control transfers to some statement

numbered m.
4. THEN JUMP TO 1- control transfers to 1, resetting X to

its initial value.

The connecting word WITH may be used to combine several Modify
components into one VARY instruction when the variables of the
MOdify components take on their successive values concurrently.
The variables of all Modify components take on their initial
values the first time through the range, their second values
the second time, etc. until the limiting value of any of the
variables is reached at which time the VARY sequence is termin­
ated.

VARY X p(q)r WITH Y s(t)u __ _

Following are examples of the forms which the complete VARY
instruction may take:

VARY X r(s)t SENTENCE k THRU m THEN JUMP TO n.
VARY Y p , q , r , ___ , s , t , SENTENCE k THEN JUMP TO n.
VARY X r(s)t SENTENCE k THRU m.
VARY Y p,q,r, ___ ,s,t SENTENCE k.
VARY X p(q)r WITH Y s(t)u SENTENCE k THRU m.
VARY X r(s)t WITH Y p,q, ___ ,s,t SENTENCE k.

When the starting value of a variable as written in the Modify
component is itself a variable, this variable must assume a
numerical value prior to the time control reaches the VARY in­
struction. In the last example above, rand p must have numer­
ical values priorto the execution of the VARY. Further, numer­
ical values must be established for all other variables in the
Increment type of Modify component(s) prior to or during the
first execution of the range of the VARY. If the Modify compo­
nent is of the List type, however, a numerical value must be
determined only for the next successive variable to be used.

13

JUMP

IF

RESUME

When control is returned to a VARY instruction through a RESUME
instruction, the VARY sequence will be continued from that
point in the modifying process at which it was last terminated.
If transfer of control to a VARY instruction is accomplished by
any other means, however, the VARY sequence will begin with
initial conditions as written in the VARY instruction.

The JUMP instruction transfers control to another statement.

Example:

JUMP TO SENTENCE k.

In the example control is transferred to the statement with
line number k, then proceeds in sequence from this statement
until interrupted by another transfer of control.

The IF, or conditional, instructions transfer control to another
statement when a certain condition is satisfied. If the speci­
fied condition is not met, continuation to the next statement in
sequence is implied. The following examples indicate the IF
instructions that may be used:

Examples:

IF X = Y, JUMP TO SENTENCE k.
IF X NOT = Y, JUMP TO SENTENCE k.

IF X < Y, JUMP TO SENTENCE k.
IF X > Y, JUMP TO SENTENCE k.
IF X < = Y, JUMP TO SENTENCE k.
IF X > = Y, JUMP TO SENTENCE k.

Inthe examples a transfer of control to the statement with line
number k is accomplished only if the specified relationship be­
tween X and Y exists. X and Y may be subscripted or nonsub­
scripted variables Or functions, but may not be expressions.

The RESUME instruction returns control to a VARY statement to
continue the modifying process from that point at which it was

14

last terminated. That is, the variable of the modify component
in the VARY instruction referenced takes on its next value,
rather than initial value, prior to entering the range of the
VARY. The RESUME instruction may refer only to a VARY instruc­
tion. In the example control is transferred to the VARY instruc­
tion with line number k, which contains the modifying process.

Example:

RESUME k.

The WRITE instruction records on a specified tape edited infor­
mation which is to be printed off-line by the High-Speed Printer.
Any result printed will have a fixed point representation unless
the decimal point appears outside the range of significant digits.
If the number cannot be represented in a fixed point form, stan­
dard .scientific notation is used; that is, one digit to the left
of the decimal point and a power of ten to the right of the
digits.

If a single, subscripted variable appears in the WRITE instruc­
tion, the subscripts will automatically be written.

Examples:

A. WRITE R(I,J), (INVERSE MATRIX», TAPE 3.

B. WRITE F(X,Y,Z,T), X,Y,Z,T,

«POSITION FUNCTION» () (OIR. OF FIRE)

(RIGHT-LEFT) (HORIZ.-VERT.)

(TIME), TAPE 7.

The instruction in example A produces a printed copy in the
following format:

I

[R(I,I)]

6

[R(I,6)]

2

[R(I,2)]

7

[R(I,7)]

15

R(I,J)

INVERSE MATRIX

=

3

[R(I,3)]

ij

[R(I,lq]
5

[R(I,5)]

I

[R(2,1)]

6

[R(2,6)]

2

[R(2,2)]

7

[R(2,7)]

= 2

3

[R(2,3)]

etc.

5

[R(2,5)]

where the brackets [] mean "the va lue I of" the variable enclosed,
such as, lithe value of the variable R(1,1)". In the example the
order of J is 7. The last sUbscript written as J above is in­
creased to its limi t for each value of the preceding subscript (s)
as I above regardless of the storage format wi thin the computer.

When only one subscripted variable appears in the WRITE instruc­
tion, it will always be printed in five columns unless the
order of the fastest varying sUbscript is less than 5. When more
than one variable appears in the WRITE instruction, the number
of columns is determined by the number of variables. If printed
column headings are desired when a function and its arguments
are to be printed, these headings are enclosed in parentheses
following the title, which is enclosed in double parentheses.
The headings may contain a maximum of 18 characters. Where no
column heading is desired, a bI-ank set of parentheses is used.
To illustrate, Example B would produce a format as follows:

X

DIR. OF FIRE

POSITION FUNCTION

y

RIGHT-LEFT
Z

HORIZ.-VERT.
T

TIME

Thus, there are two ways of using the WRITE instruction with
one variab12 1 or wi th 2 to :) variables. No more than five vari­
ables may be written in a single WRITE instruction. With one

16

TYPE

PRINT

variable the values of any subscripts are written automatically
and the variable printed in 5 or less columns, depending on the
order of the last written subscript. If there are two to five
variables, they are printed side by side with one column for
each variable. In this case, subscripts or arguments are not
printed unless specifically requested in the WRITE instructions.

Only one WRITE instruction may appear in the range of a VARY
statement. If the WRITE instruction does not appear in the
range of a VARY statement, all values of the specified variables·
are recorded on tape.

The TYPE instruction enables designation of variables whose
values are to be typed out on the Supervisory Control Type­
writer. This instruction is most frequently used to type out
small amounts of information rather than to point long lists of
data. The variable referenced by the TYPE instruction may be
subscripted, a function, or single-valued. If it is subscripted
or a function, however, the values of the sUbscripts or argu­
ments must be determined prior to execution of the instruction.

Example:

TYPE (A(I,J), F(X), V).

If the values of I and J were 2 and the value of X was 2.5 when
the TYPE was executed, the output would be:

A (2 .2) = [A (2 .2)]

F(2.5) = [F(2.5)]

Y = [y]

with the brackets denoting "the value of."

The PRINT instruction, also used with the Supervisory Control
Typewriter, permits indication of special conditions during the
running program. The output is always that which appears with­
in the parentheses following the word PRINT.

Example:

P R I NT (A (I , J) SIN G U LA R) •

17

START

STOP

END OF TAPE

DIMENSION

In the example the output would always be A(I,J) SINGULAR,
whether or not I and J had specific values at the time of exe­
cution.

The START instruction indicates the point at which actual exe­
cution of a program is to begin. Sentences preceding the START
instruction are not executed. These sentences usually include
the name of the program, those defining equations referred to
by a COMPUTE instruction, and the DIMENSION sentence.

The STOP instruction indicates a point at which the execution
of the Object program or sub-program is to be terminated. This
instruction may appear at several points in a program and is
translated into an instruction which stops computer operation.
The .first STOP instruction encountered terminates the program.

The END OF TAPE instruction indicates that all pertinentinfor­
mation for the problem contained on a tape has preceded. It must
appear on each tape to be used for a problem.

The DIMENSION instruction specifies the number of values of a
subscripted variable and/or function that will be retained at
any onetime. The DIMENSION instruction if required must appear
as the first sentence in the UNICODE program. When associated
with a subscripted variabl~(, the DIMENSION instruction also
specifies the largest value that the subscript may assume.
Every variable written in subscript and/or functional notation
form must appear in a DIMENSION instruction. Thus, in the
example below both the subscripted variable Z(I,J) and the
function G(X,Y) appear in the DIMENSION instruction.

Example:

DIMENSION Z(IO,8), G(5,3)

This example indicates that the subscript I takes on at most 10

different values and J assumes at most 8 different values with
the variable Z. Neither SUbscript I nor J, however, may assume

18

a value exceeding the dimensions 10 and 8 as stated for the
variable. Thus, a reference to ZI12,7} is not permissible.

The example also indicates that the argument X has a maximum of
5 different values retained at any time, and Y has at most 3
values retained. Actually, the arguments X and Y may assume
an unlimited number of different values throughout the problem,
but only the last 5 values of X and the last 3 values of Yare
available for reference. The Differential Equation problem of
Appendix B illustrates the use of the DIMENSION instruction in
this way.

Based on the DIMENSION· instruction in the example above, 80
computer storage locations are set aside for the variable Z,
and 15 for the function G.

SUB-PROGRAM The instructions SUB, RESULT, and EXIT are used only in SUB-
INSTRUCTIONS PROGRAMS (See Chapt er IV).

CORRECTION The instructions DgLETE, INSERT, and CHANGE are used to make
INSTRUCTION corrections in the UNICODE program (See Chapter VII).

19

Chapter 4

PSEUDO OPERATIONS AND SUBPROGRAMS

The pseudo operation enables writing specialized routines for a particular
problem. This feature of the UNICODE system makes available to the user, as a
supplement to the existing Library, any sequence of instructions used repeat­
edly in the problem, usually with different operands.

SYMBOL

HEADING
OF A
SUBPROGRAM

OPERANDS
AND
PARAMETERS

EXIT

The symbol denoting a pseudo operation is identical to that of
a variable (six alphanumeric characters of which one must be
alphabetic) but is distinguished from a variable in that it ap­
pears in the heading of a sUbprogram. (See below). It is
written as an operator for an equation, with its operands and
parameters enclosed wi thi·n parentheses immediately following.
The saine pseudo operation symbol may appear as often as neces­
sary in any number of equations.

The heading of a subprogram is made up of two sentences, SUB
and RESULT. Through the SUB sentence the subprogram is named
with the pseudo operation symbol used in the program. The RE­
SULT sentence names the single-valued output of the sUbprogram.

The operands and parameters, which are used only in writing the
subprogram, appear following the pseudo operation symbol in the
heading. A pseudo operation may have any number of operands
and parameters so long as the SUB sentence in the subprogram
has the same number, written in the same order.

The EXIT instruction returns control to the sentence of the pro­
gram which referenced the pseudo oper·ation.

In the following example, the heading of a subprogram corres­
ponding to a pseudo operation called DOT might be:

SUB DOT (G(J), H(J), N)

RESULT R

20

In Figure 1, G(Jl, H(Jl, N, and R are "dummy" variables in the
subprogram DOT and will be equated to variables of the problem
prior to any execution of the subprogram.

Suppose DOT is the symbol for a pseudo operation which evalu­
ates scalar products of vectors of various dimensions, and in
which the following two equations occur:

x (I)

Y(I)
B(I) N DOT (C(I), A(I),3)
E(l) * DOT (F(I), 0(1),10)

A(I) * DOT (C(l), B(I),3)
0(1) * DOT (F(I), E(I),IO)

The subprogram for DOT would then be:

LINE NUMBER SENTENCES AND COMMENTS

SUB DOT (G(J), H(J), N)
RESULT R
START
R = 0

VARY J I (I) N SENTENCE
REPLACE R BY R + G(J) * H(J)
EXIT

When the first term of the equation for X(I) is evaluated, the
"dummy variables" G and H are equated to C and A and N is set
equal to 3. When the second term is computed, G and Hare
equated to C and Band N is again set to 3. Also, when the
first term of Y is evaluated, G and H are equated to F and D
respectively and N is setto 10. In each case the single-valued
result R is a partial result for X or Y.

21

Chapter 5

DATA

All input variables to the running program which have more than one element
are stored on the magnetic drum prior to execution of the problem. Single va­
lued variables remain in high speed (magnetic core) storage throughout the
problem.

Each segment of the output program has a Preface and a Termination which trans­
fers data between drum and high speed storage during the Interlude between seg­
ments (See Appendix C).

DATA PHASE

LOCATION
OF DATA

The input data for any problem is read from magnetic tape into
high speed storage or onto the drum prior to the execution of
the first segment of the output program. To accomplish this
the programmer must provide the tape locations of data by plac­
ing a directory of information on a specified Uniservo magnetic
tape unit.

The information on this specified tape unit may be considered
as a directory of information indicating the tape unit on which
the input data is stored. The first blockette of the specified
tape will contain the heading:

LOCATIONS OF VARIABLES

Beginning in the second blockette, the variable symbols are
written, each followed by a number enclosed in parenthesis which
indicates the tape unit containing the values of the variable.
Variables are separated by commas. The remainder of the block
containing the last item of information and the entire block
following are filled out with FILL characters.

22

LOCATIONS OF VARIABLES

xes), Y(3), z{s), U(7),

I}
}

}

1st blockette

Begins 2nd blockette

Fill character for
remainder of block

) Complete block of

"'--_________________ ---'1 ~ FILL characters

In the example, the variable X will be found on Uniservo No. s.
This information is used by an automatic read routine which
operates prior to the execution of the problem. The arrange­
ment of data on the appropriate tape unit will be described at
a later date.

23

LINE
NUMBERING

SPACE
SYMBOLS

Chapter 6

FORMAT

LINE NUMBERS are used to reference, change, delete, or insert
lines in a program. The programmer must assign positive inte­

gral line numbers to those lines which he wishes to refer to in

his program. UNICODE will number all lines not assigned a line
number by the programmer. If the first line, UNICODE PROGRAM,
has not been assigned a number, UNICODE will number it .1 and
continue to number succeeding lines with .2, .3, ~, .9, .10,

.11, etc. until the first line number assigned by the programmer
is detected. UNICODE. will add .0 to this line number and conti­
nue to assign line nurnbersin succession from this point, always
increasing the number to the right of the right-most decimal
point by one. For example, if the first line number detected is
7, UNICODE will append to it .0 making it 7.0 and assign suc­
ceedinglines the numbers 7.1,7.2, ...•• , 7.9, 7.10, etc. until
the next line number assigned by the programmer is detected.
This process is continued until all lines have been assigned a
number.

A line number may be at most twelve characters tn length, tn­

eluding decimal points. This means that the integral line num­
bers assigned by the programmer may be no more than ten charac­
ters in length, since the character combination .0 added by
UNICODE will bring the total to the allowable limit of twelve.

In his corrections to a UNICODE program following a translation
by UNICODE, the programmer may refer to any assigned line num­
ber including those assigned by UNICODE.

The symbol A appearing on the Unityper keyboard is used to de­
note a space in the UNICODE program. In general, the A symbol
must be used wherever a space would appear in ordinary English
word usage, i.e., to separate a word from another word, a word
from a variable or constant, a variable from a constant, etc.
The space symbol A may be used at the option of the programmer
wherever its use does not violate any of the following restric­
tions. The use of more than one space symbol as a separator is
also optional. Although the symbol A actually appears on the
Unityped copy of the input program, only the desired blank

24

space will appear in the SIDE-BY-SIDE listing of the output pro­
gram. The following restrictions governing the use of the t.

symbol in specific cases must be strictly adhered to by the

programmer.

(1) A MUST be used to separate a standard operation symbol
(SIN, COS, LOG, etc.) from its operand(s).

Example:

x S I N/W

(2) A MUST be used to separate the exponentiation symbol POW
from its operands.

Example:

Z xf\.poWAy

NOTE- The exponent always follows the symbol POW; for instance,

the mathematical statement of the above equation would be

Z = Xy •

(3) A MUST be included wherever it appears in the list of UNI­
CODE instructions presented in Appendix A (UNICODE LAN­
GUAGE) .

Example:

VARyAXAp(q)rASENTENCEAKATHRUAMA.
IFI\X = y, JUMPA.TOAsENTENCEAK.

(~) A MUST be used together with a period, i.e., in the combi­
nation A., following the sentence part of each line in a
UNICOng. program.

Example:

COMPUTEATA. (T is temperature of liquid)

(5) A MUST NOT be used as a character in the symbol for a va­
riable, pseudo operation, or standard operation. For ex­
ample, the character combination MAX6HT could not be used
as the symbol for a variable.

25

UNICODE
PROGRAM

The UNICODE (input) program is prepared on standard UNICODE
programming sheets and then transcribed onto magnetic tape by
the Unityper.

The line number (optional) is entered in the area of the pro­
gramming sheet reserved exclusively for line numbers, the
sentence and comment in the area reserved for them. As many
lines on the Programming sheet as are necessary may be used to
include a complete sentence and its associated comment (option­
al). The comments, if included, MUST be enclosed in parentheses
and MUST appear immediately following the space-period ~. com­
bination indicating the end of the sentence. The comment may be
as long as desired but MUST NOT contain parentheses other than
those enclosing the entire comment. Commas, semicolons, and
parentheses MUST be included where they appear in the listing
of UNICODE instructions in Appendix A (UNICODE LANGUAGE).

The UNICODE program is prepared in accordance with the general
forms described in Chapter One and transcribed on magnetic
tape. The actual rules and procedures involved in the proper
preparation of a UNICODE input tape will be explained at a
later date, in a supplement intended for use by the Unityper
operator.

Each line on the Unityped copy of a UNICODE program will con­
tain 120 character positions which represent one blockette on
magnetic tape. The first 12 character positions are reserved
exclusively for line numbers. The 13th character position con­
tains the space symbol A, while the 14th thru 120th character
positions are used for sentences and comments. An example of
this Unityped input format is shown in Figure 1 of Chapter One.

26

UNICODE PROGRAM SHEET

LI N E SENTENCES AND COMMENTS H UMB ER

I 12 13 I ij

A ""'- A UNICODEAPROGRAMA.A ..
A~

A~

A .L. A DETERMINATIONAOFAFORCEAFORAVARYINGAACCELERATIONA.A
~

A~

A

A /", DIMENSIONAF(5)A.A III -
A A F(A) = M * AA.A(FORCE = MASS TIMES ACCELERATION WHERE ___)A ~

IO/'· A STARTA.A ..
1 1 2 I 3 ij 6 1 I I /'\.~ A VARYAAA2(2)AIOASENTENCEAIATHENAJUMPATOA3A.A III

1/\ __ A COMPUTEAF(A)A./\ III

3A A TYPEAF(A)1\./\ III

A A STOPA./\ III!

/\. A END f\(J F" TAP E 1\./\ III

A

/\

/\~

/\

Figure I - UNITYPED INPUT PROGRAM

.-
PAG E I

120
.-

,. /',

,. !"

,. /"

,. !"
,. !"
,. I',

,. /',

,.. !"

,. /"

a· I',

,.. /',

,. /"

., /"

,. /"

,. /"

,.. j\,

,.. 1\,

,.. /' ..
.-

,
>

)

\

I

?

I

r\

I
I~
II

I
l

FIRST
BLOC K

SECOND
BLOCK

THIRD
BLOC K

SIDE -BY -SIDE
LISTING

The information contained in the edited record produced by
UNICODE is printed out on the High-Speed Printer as a SIDE-BY­
SIDE listing of the input program and the generated output
program. Each UNICODE line of the input program is reproduced
as it appeared in the Unityped copy, with the addition of the
line numbers assigned by UNICODE. Immediately following each
such line, the corresponding generated machine code is printed,
with one machine word per output line.

A blank space is left in the SIDE-BY-SIDE listing wherever the
symbol A appeared in the Unityped input program. A SIDE-BY­
SIDE listing of the form shown in Figure 2 of Chapter One would
be produced as a result of the input program of Figure 1.

28

LINE
NUMBER

I

. I

• 2

.3

.~

10.0
11213~611'.0

I .0

3.0

3 • I

3.2

UNICODE PROGRAM SHEET

12 13 I ~

UNICODE PROGRAM •

DETERMINATION OF FORCE FOR VARYING ACCELERATION.

DIMENSION F(5)
F(A) = M * A. (FORCE = MASS TIMES ACCELERATION WHERE ••.)

OCTAL MACHINE CODE , ,

OCTAL MACHINE CODE
START
VARY A 2(2)10 SENTENCE I THEN JUMP TO 3 •

OCTAL MACHINE CODE , ,
, ,

OCTAL MACHINE CODE
COMPUTE F(A).

OCTAL MACHINE CODE , ,
, ,

OCTAL MACHINE CODE
TYPE F(A).

OCTAL MACHINE COD E , ,
, ,

OCTAL MACHINE CODE
STOP.

OCTAL MACHINE CODE
END OF TA PE.

Figure 2 - SIDE-BY-SIDE LISTING

PAGE 1

120

Chapter 7

CORRECTIONS AND TAPE OVERFLOW

Corrections to a UNICODE program are made by preparing a Unityped tape which
contains the corrected information. This tape is then mounted on a separate
Uniservo and the correct information is merged with the original program to
produce an updated program tape. The UNICODE system incorporates three in­
structions must have a line number. In the following explanations of the cor­
rection inst~uctions the letters k, m, of n will be used to designate a line
number.

DELETE

CHANGE

The DELETE instruction eliminates entire UNICODe lines from the
program. In the first example all lines between and including
the lines numbered k and m would be eliminated from the program.
In the second example only the line numbered k would be elimi­
nated.

Example:

(I) DELETE SENTENCE k THRU m

(2) DELETE SENTENCE k

The CHANGE instruction replaces the SENTENCE and COMMENT parts
of a specified line by the correct SENTENCE and COMMENT (if
any), leaving the line number unchanged. The instruction is
written in the following form, with the correct SENTENCE and
COMMENT written following the word TO:

Example:

CHANGE SENTENCE k TO

CHANGE SENTENCE k TO COMPUTE T (Temperature gradient).

In the corrected program the line whose number was k would have
COMPUTE T as its SENTENCE and TEMPERATURE GRADIENT as its COM­
MENT.

30

INSERT

TAPE
OVERFLOW

The INSERT instruction adds new lines at specified points in a
UNICO~ program. The word INSERT is written as a complete SEN­
TENCE and each line to be added is written as it is to appear
in the updated program. If the new line(s} are to be inserted
directly following the line whose nu~ber is k, then the line
number of the first line to be added must be of the form k.i
where i is any whole number. The programmer need only number
the first line to be added by a given INSERT instruction.

Example:

Line Number Sentence and Comment

(OPT I ONA L) INSERT
6. I .5 COMPUTE X

(OPTIONAL) REPLACE Y BY X

The exampl~ correction would insert the two statements COMPUTE
X and REPLACE Y BY X in the UNICODE program directly following
the line whose number is 6.1. The line containing the state­
ment REPLACE Y BY X will be numbered 6.1.6 by UNICODE.

If it is not possible to type an entire UNICODE program on a
single Uniservotape, additional tapes may be used. These addi­
tional tapes are treated as correction tapes and must be pre­
pared in the form of an INSERT correction to the preceding tape;
that is, the first line on the additional tape must be an IN­
SERT instruction. The second line must be numbered by the pro­
grammer as if it were to be inserted directly following the
last line on the preceding tape. Also, the programmer must
insure that a line number has been assigned to the last line on
the preceding tape. The two Uniservo tapes are th~n merged as
in the case of corrections to a UNICODE program.

31

UNICODE INSTRUCTIONS

1. REPLACMMBY6M.

2 . COMPUTE6X6.

3. X = M.

UNICODE __ APPENDIX A

UNICODE LANGUAGE

4. a) VARY6X6P(Q)R6SENTENCE6N6THRU6M6TIIEN6JCMP6T06K6.
b) VARY6MP(8) MSENTENCEllN6.
c) VARY6X6P, , R, ---, S, T6SENTENCE~6TIInU6M6.
d) VAnY6X6P I Q~~J. -~-;J. S, T6SEl\'TENCMN6TIIEN6JUMP6T06K6.
e) VARY6MP{ QJ liD WI HW Y6S(T) U6SENTENCMN6THRU6M6.
f) VARY6X6P,Q,R, ---, S,T6WITli6Y6R(S)T6SENTENCMK6.

5. a) JUMP6T06SENTENCMI<6.
b) IF6X = Y, JUMP6T06SENTENCE6K6.
cd) IF6X6NOT = 'i" JUMP6T06SEN. TENCE6K6.

) IF6X < Y, Ju~1P6T06SENTENcE6K6.
e) IF6X > Y, JUMP6T06SENTENCE6K6.
f) I F6X < = Y, JUMP6 T06SENTENCMM.
g) IF6X >= Y, JllMP6T06SEl\'TENCE6K6.

6. RESlJME6K6.

7. a) WRITE6X(I, J) ((Ii!:.l~», TAPE6L6~ • .
b) WRITE6F(X{Y 1Z,T),X, ---~ Z,T~«T1tl~» (~oluIDn H~ag1ng)

(C.o!._H.ggJ \Co!._Hgg) (~ol._t1ggT T{;o!._HggT, TAPE6L6.

8. TYPE6(X(I,J), Y, ---, F(X), Z)6.

9. PRI~16(--------)6.

10. START6.

11. S'IDP6.

12. END60F6TAPE6.

13. DIMENSION6X(--, --), Y(--, --) , Z(--, --)6.

SUBPROGRAM INSTRUCTIONS
1. SUMps~u.Qo_ Ope!:a~ iQn (X(I), Z(J) , Y) 6.

2. RESULT6X6.

3. EXIT6.

CORRECTION INSTRUCTIONS

1. DELETMSENTENCMN6THRU6M6.

2.

3.

CHANGMSENTENCMK6TO ------6.

INSERT

========== } Lines to be inserted written in proper form.

32

UNITARY OPERATIONS

SYMBOL OPERATION EXAMPLE

+ (optional) plus + 157.25

- minus 157.25

II abso I ute va I ue I X - Y I

BINARY OPERATIONS

SYMBOL OPERATION EXAMPLE

+ addition X+5

- subtraction Y-Z

* multipl icat ion Y*X*2.5632

/ division X/7.5

Numerical Superscri pt exponentiation (numerical exponent) Z5

POW exponentiation (numer ica I, litera) exponent) Z POW Y

RELATIONS

SYMBOl RELAT ION EXAMPLE

= is equa 1 to Z = X + Y

NOT = is not equa 1 to X6NOT = Y

< is less than X < Y

> is greater than Y > Z

<= is less than or equal to X <= Z

>= is greater than or equal to Y >= X

33

UNICODE __ APPENDIX B

SAMPLE PROBLEMS

INTEGRATION

The first problem of this section is programmed in four ways:

1. Use of functional notation with equations listed first.
2. No separation of equations but use of functional notation.
3. U&e of subscript notation.
4. Elimination of recalculation of previously determined values.

The advantages and disadvantages of these various methods are discussed follow­
ing the programs.

Problem: Evaluate the following integral by use of Simpson's one-third rule
with an interval of one-one hundreth. (Simpson's one-third rule):
(1/3) h [y (x) + Ll-Y (x + h) + y (x + 2h) 1 ; h = 0.01.

LI NE
NUMBERS

2

dx

1 -

SENTENCES AND COMMENTS

UNICODE PROGRAM

DIMENSION Y(3)

y(x) = 1/(1 - 0.5 * (SIN x)2)1/2

U = (I 1300) * (Y (X) + q * Y (X + 0.0 I) + Y (X + 0.02»

START

T = 0

VARY X 0(0.02)1.57 SENTENCE I THRU 2

COMPUTE Y(X) AND Y(X + 0.01) AND Y{X + 0.02) AND U

REPLACE T BY T + U

TYPE (T)

STOP

END OF TAPE

Figure I - FUNCTIONAL NOTATION, EQUATIONS WRITTEN FIRST (FIRST METHOD)

34

LI NE
NUMBERS

UNICODE PROGRAM

DIMENSION Y(3)

START

T = O.

SENTENCES ~ND COMMENTS

VARY A 0(0.02)1.57 WITH B O.02(O.02}i .57
SENTENCE I THRU 2.

I VARY X A(O.OI)B SENTENCE 3

3 Y(X) = 1/(1 - 0.5'* (SIN X)2)1/2

U = (1/300) * (Y(X) + IJ * Y(X + 0.01) + Y(X + 0.02»

2 REPLACE T BY T + U

TYPE (T)

STOP

END OF TA PE

Figure 2 - FUNCTIONAL NOTATION, EQUATIONS APPEARING AS STATEMENTS (SECOND METHOD)

LINE SENTENCES AND COMMENTS NUMBERS

UNICODE PROGRAM

DIMENSION Y(3)

y(I} = 1/(1 - 0.5 * (SIN (X + l»2)1/2

U = (1/300)*(Y(I) + IJ * Y(2) + Y(3»

START

T = 0

VARY X 0(0.02)1.57 SENTENCE I THRU 3

I VARY I I (I) 3 WITH Z 0(0.01)0.02 SENTENCE 2

2 COMPUTE Y(I)

COMPUTE U

3 REPLACE T BY T + U

TYPE (T)

STOP (

END OF TAPE

Figure 3 - SUBSCRIPT NOTATION, EQUATIONS FIRST (THIRD METHOD)

35

LI NE SENTENCES AND COMMENTS
NUMBERS

UNICODE PROGRAM

DIMENSION Y(3)

Y(I) = 1/(1 - 0.5 * (SIH (X + Z))2)1/2 .
U = (1/300) * (Y (1) + ~ * Y(2) + Y(3))

START

T = 0

Y (I) = I.

VARY X 0(0.02)1.57 SENTENCE I THRU 3.

1 VARY I 2(1)3 WITH Z 0.01(0.01)0.02 SENTENCE 2.

2 COMPUTE Y(I).

C OM PUT E U.

REPLACE T BY T + U.

3 REPLACE Y(I) BY Y(3).

TYPE (T).

STOP.

END OF TAPE.

Figure ~ - SUBSCRIPT NOTATION, EQUATIONS FIRST (FOURTH METHOD)

Examination of the four methods shows that Method 1 (Figure 1) is the most
straightforward. It requires the least thought on the programmer's part and
does not employ any clever techniques.

Method 2 (Figure 2) must have two VARY instructions if the rewriting of the
equation for Y is to be avoided, and thus requires more thought than Method 1.

It does not, however, require writing a COMPUTE instruction.

Method 3 (Figure 3) uses subscript notation and, in order to obtain the proper
arguments forthe SIN function, requires two"VARY instructions and considerable
thought. This method will produce a better object program, however, due to
the use of subscripts.

Method 4 (Figure 4) also uses subscript notation and two VARY statements, but
eliminates the calculation of Y(l) within the VARYloops. However, this method
requires the knowledge that Y(l) has a starting value equal to 1.

36

GENERATION OF TABLE INTEGRALS

Whereas the preceding programs compute only one value of the elliptic integral
shown, the following program goes a step further and computes an entire table
of values.

Problem: Compute a table of values of the elliptic integral

LINE
NUMBERS

F(S, Z) dx

S2 SIN X

for 0
< < < = Z = 90°, 0 = arcsin S < 90°.

SENTENCES AND COMMENTS

UN ICODE PROGRAM

V(S,X) = 1/(1 - S2 * SIN X)'/2

U = (1/3000)* (V(S,X) + ij * V(S,X + 0.001) + v(S,X + 0.002))

S = SIN A

V = 57.2957795 * A

W = 57.2957795 * Z

DIMENSIONS V(I,3)

START

VARV A 0.0872665 (0.0872665)1.570797 SENTENCE I THRU 2

I VARV Z 0.017ij533 (0.017ij533)1.570797 SENTENCE 3 THRU 2

3 F = 0

VARV X 0(0.002)Z SENTENCE 5 THRU ij

5 COMPUTE SAND V(S,X) AND Y(S,X + 0.001) AND V(S,X + 0.002) AND U

ij REPLACE F BV F + U

COMPUTE V AND W

2 WRITE F, V, W, {(ELLIPTIC INTEGRALS OF THE FIRST KIND})
(INTEGRAL) (ARCSIN S) (UPPER LIMIT).

STOP

END OF TAPE

Figure 5 - PROGRAM TO GENERATE A TABLE OF INTEGRALS

In the above program:
0.0174533 radian = 1 degree
1.570797 radian = 90 degrees

37

Since only 3 values of Yare needed at one time, and only at this time, the
dimensions on Y can be kept to a minimum. The table generated will appear as
follows (V varying in S-degree steps and W in I-degree steps; for each value
of V there will be 90 values of WI:

ELLIPTIC INTEGRALS OF THE FIRST KINO

F V W

INTEGRAL ARCSIN S UPPER LIMIT

I • 75000000(-2 } 5.0000000 1.0000000
3.ij9000000(-2} 5.00000000 2.00000000
5.2ijOOOOOO(-2) 5.00000000 3.00000000

etc. etc. etc.

d W· d e steps W goes through 900
V is incremented in S-degree steps an In 1- egre .
for every S-degree step of V.

38

DIFFERENTIAL EQUATION

Given the differential equation

dy = x3 - ~xy3 + 2, yeO) = 0
ax

find its solution in the interval [0,3] by use of the Runge~Kutta method wi th an
interval H between successive values of x.

LINE
NUMBERS

2

SENTENCES AND COMMENTS

UNICODE PROGRAM .
D(X,Y) = x3 - 3 * X * y3 + 2 .
R I = D(X,Y) * H .
R2 = D(X+H/2, Y+R I /2) * H . .
R3 = D(X+H/2, Y+R2/2) * H .
RQ. = D{X+H, Y+R3) * H .
DY = 1/6 * (RI+2 * R2+2 * R3 + RQ.)

DIMENSION D (I , I) .
START

Y = 0 • (SET INITIAL CONDITION)

H = 0.01

VARY X O{H)3 SENTENCE I THRU 2

WRITE Y, X

.

COMPUTE D(X,Y) AND RI AND D(X+H/2, Y+RI/2) AND R2 AND
D(X+H/2, Y+R2/2) AND R3 AND D(X+H, Y+R3) AND RQ. AND DY

REPLACE Y BY Y + DY

STOP

END OF TAPE

Figure 6 - PROGRAM TO SOLVE A DIFFERENTIAL EQUATION

39

Instead of using the letter H, its value, in this case 0.01 could be written in
the equations and VARY sentence. The method shown, however, facilitates the
alteration of H if required.

Note the stated dimensionsof D. Since only one value of D is needed at a time,
each new value of D can replace the previous value. This reduction of storage
allotted to the values of D is possible only through the DIMENSION statement,
and thus through program control. Also, the programmer need not be concerned
about destroying the value of X as defined by the VARY since actually two lo­
cations are kept for X; one of which will be changed only by the vary, and one
"working" location stores the value of expressions used as arguments. For
example, when computing

D(X = H/2, Y+RI/2)

the value of X as defined by the vary is added to H/2 and the re.sult is stored
in the working location for X, the equation for D referring to the working lo­
cation of the value of X. Y is handled similarly.

In this problem the WRITE sentenceis placed following the VARY so that corres­
ponding values of X and Y will be printed in two adjacent columns.

40

UNICODE __ APPENDIX C

DETAILS AND TECHNIQUES OF COMPILATION

At the START of the Allocator Phase the Uniservos hold information as follows:

Uniservo 1 UNICODE
2 Op (Operation) File I of library followed by relatively

coded library routines
3 Source program
4 Patch tape of corrections to sourc.e program (if any)
5 Op File I of generated routines; List I; relatively coded

generated routines
6 Blank
7 Blank
8 Blank

At COMPLETION of the Allocator and Processor phases, Uniservos 1 through 5 hold
the same information and

Uniservo 6 Op File III
7 Object program tape
8 Edited record (side by side listing prepared in format

ready for High-Speed Printer)

All tapes for Univac Automatic Coding program will have the following format:

Block I
I - 20 word s a II l's (1st blockette)

21 - 22 Tape label
23 - 120 a II l's

Block 2
I - 2 words Entry label

designating type of information to fo II ow
directly in block 3

3 - 120 a II l's
Block 3

I - m wo rd s Indicative information (start)

Block n

I a st wo rd of indicative information.
fill with l'S to end of block

Block n+1
I word ENOl10F End of En try La b Ie
2 l1 ENTRY
3 - 120 a II l'S

Repet/t Ion of Block 2 through Block n+1 (as necessary)
2 Final Blocks written all l's

41

LIST 1 FORMA T

List 1 consists of the call words, one per location in the u position of all
the selected library routines needed for solution of a given problem. This
list is generated during translation and stored following Op File I of the ge­
nerated routines on Uniservo s. If no library routines are required, only the
lead and final sentinels appear on Uniservo S withno indicative information of
List 1 intervening.

The count of the total length of List 1 is generated and placed in u posItIon
of the location directly following the word containing List ~l (Entry label)
on the tape. This is done during translation.

Block A 1st word LI 51 ~ I

2nd length

3-120 all Z' s

op u v

Block A + I I ca 11 word

2 ca 11 word

3 call word

(fill remainder of unfi lled block with Z'S)

OP FILE 1 FORMAT

Word Position

.
I u ca 11 word

I v number of 1 i ne s this item in this Op F i 1 e

2 v total number of 1 i nes for this routine in

runn i ng program including temporaries

3 : ! ca 11 word for cross reference (i f any)

3+j one pe r location

Hence the length of the Op File for each item is (2+n) where n is the number
of cross references.

CALL WORDS

Call Words are represented by 5 octal digits; the first always being a 7. The
second digit categorizes the type of routine; the third through fifth digits,
the assigned routine number.

42

70x x x Statements

71xxx Equations

72 xxx p seu d 0 ope ra t . Ions

73xxx Li brary routines

7l1-xxx Statements of a pseudo operation

7·5 x x x Vary statement - main program only
Unsubscripted (any 76xxx Output from equation subroutines
single-valued variable) (generated intermediate results -

1 output pe r equation).
Subseri ted variables 77xxx Multinle .. word data "rou"'s

LIBRARY AND GENERATED SUBROUTINE FORMAT

Do not appear

in running program

Prelude

Routine
in

Standard

USE
Format

I u

1 v

2

3

ll-

5

6

7

8

9

10
II

.

.

Ca 11 word (unique for each routine)
Number of 1 i nes of prelude and routine
Number of 1 i nes subject to address modification
Number of unmodifiable constants
N u m be r of temporary storage re qui red
Number of inputs

Number of outputs

}Name of routine 12 characters

MJ to START
RJ Diagnostic
MJ EXIT
Output 1 i nes as required
Input lines as required
1st instruction in main bod y

·
·

instructions

·
Relative constants (i f any)
Unmodifiable constants (if any)

43

UNISERVO 2

Block

2

3

n-I block

nth block

n+lst block

n+2nd block

n+mth block

n+m+1 block

n+m+2 block

n+m+3 block

Word

1- 20

21

22

23-120

I

2

3

4--120

I

2

3 -120

2

3-120

1

2
3-120

all Z' s
f;...fjL I Bfj

fjTAPEfj

all Z' s

fjfj[)'OpfJ

FILEfJl

leading sentinel

number of words in entire library Op File I

all Z' s

1st word of indicative information 1 ibrary OP File I

indicative information (continued)

fill remainder of block with Z's

ENOfJOF
fJENTRY
all Z' s

fJfJL I BfJ

SUBRTN
all Z' s

Library prelude

Library routine

(1st routine)

Each prelude must

start in a new block

Library prelude (last routine)

ENOfJOF

fJENTRY
all Z's

all Z· s } f i na 1 sentinel

all Z's

44

UNISERVO 5

Block

2

3

n-I block

n

n+lst block

n+2nd block

Word

1- 20

21

22

23-120

I

2

3

4-

5-120

m

a lIZ's

~~GEN~

~TAPE~

all Z' s

~~~OP~ 

FILE~I 

leading sentinel 

Number of words in subroutine Op File 
Number of I ines of data 76-----type 

all Z' s 

1st word of indicdtive information 

subroutine Op File 1 

indicative information Op File 1 (continued) 

last word of indicative information 

m through 120 all Z's 

Note: 

I 

2 

3-120 

2-120 

if m = 119 

is m = 120 

2 
3 -120 

END~OF 

~ENTRY 

all Z's 

LlST~1 

a 11 l's 

Z's appear in 120 only 

no l's in n-I block 
nth block as follows: 

END~OF 

~ENTRY 

all Z' s 

indicative information List 1 (if any) 

45 



r-I block 

rth block 

r+lst block 

r+2n.d block 

r+kth block 

r+k+lst 

r+k+2 

r+k+3 

s 

s-120 

1 

2 

3-120 

1 

2 

3-120 

I 
2 

3-120 

continuation of List 
last entry in List 1 
all l' s 

ENDlloF 
llENTRY 
all l' s 

llSUBRO 
UTINES 
all l' s 

start of prelude for first subroutine 

Each prelude must start first 
subroutine in a new block; remainder 
of block filled with l's. 

Prelude (last subroutine) 

Subroutine (last) 

ENDlloF 
llEMTRY 
a 11 l's 

all Z I S I 2 fu 11 blocks of Z's as 

all l's final sentinel 

46 



Directory 1 - Locates Op File I on magnetic drum. 

Directory 2 

2 words only 

2 "ord item - an item for each routine preceded by length of 
Directory 1 

1 u - call word 
2 v - magnetic drum address of location of first word of 

Op File I 
length 

i u 

2 V 

1 U 

2 v 
etc. 

1 U - magnetic drum address of first statement Op File I 
2 u - magnetic drum address of the Op File I of the item follow­

ing last statement Op File I 

Directory 3 - 1 word for each segment 
1 u - magnetic drum location for start of Op File III for this 

segment 
1 v - number of words in Op File III for each segment 

Directory 4 - A list of flagged jumps to other segments only 
1 u - call word 

word 2 First and second octal digits (operating position) - IP flag 
Third octal digit - blank 
Fourth and fifth octal digits - segment number 
Sixth and seventh octal digits - segment num­

ber jumping to 
Eighth - twelfth (v position) - high speed 

storage running in new segment 

jumping from 

} 

recorded during 
Phase III 

Directory 5 - magnetic drum assignments of data - 2 word items 
1 u - call word 

Lis t 1 

Op File I 

2 v - magnetic drum address assigned 

- Call words of the needed library routines for this specific 
problem 

- 1 U - call word 
1 v - number of lines this item this Op File 
2 v - total number of lines in subroutine running program 
3 u 

3+j 
cross reference call "ords, one per location (if anyl 

47 



Op Fi le IIa - Segment description (Intermeaiate Allocator results) 

Op File IIa-6}-
Reserved for ease in transforming Op File IIa to Op File III 

-5 -

Op Fi le IIa 

Op Fi le lIb 

Op Fi le III 

-4 Total number lines in statements ana routines + 1 (in v) 
-3 - Address for insertion of IP for this segment 
-2 - Call word for first statement of next segment 
-1 - IP for natural connection to next segment 

- Start of explicit information 1 u call word 
1 v 

- List of all jumps 

1 U 

1 V 

} 

~ 

2 word 
items 

1 word items {I U - call word} grouped by segment 

Op File 111-6 - Segment number 
-$ 

-Q. 

-3 
-2 

-1 

Op File III 

- Length of Op File III (in u, no j) 
Total number lines in statements and routines + 1 

- Address for insertion of Ip command 
- Call word for first statement of next segment 
- IP for natural connection 

- 1 U - call word 
2 v - high speed storage running address 
2 op - flag for cross-reference jumps (if any) 
2 u - if data: number of lines of data 

if flag: segment number jumped to and 
segment number jumped from 

48 

Start of 
explic it 

information 

Written in 
Phase III 



CODE WORD FOR GENERALIZED TAPE HANDLER 

I 2 

I '# blocks 
A II other c: 

0 .-
+' 
~ 

Write only L-
a> 
Cl. 
0 

----1- - - - Uniservo 

Type of I t/: blocks number 
Write 

-..---1 
A I B I 

2 

Octal Digit A specifies blockette spacing 
A = 1 - 0 inches blockette space 

2 - 0.1 inches blockette space 
4 - 1.0 inches blockette space 

Octal Digit B specifies block spacing and density 

5 

high 
speed 

storage 

B = 0 - 128 line/inch density, 1 inch block space 
1 - 50 line/inch density, 1 inch block space 
2 - 128 line/inch density, 2.4 inch block space 
3 - 50 line/inch density, 2~4 inch block space 

Operation Code 
o No operation - ERROR 
1 Rewind 
2 Rewind with inter-lock 
3 Move Forward 
4 Move Backward 
5 Read Forward 
6 Read Backward 
7 Write 

49 

(octal digits) 

octa I dig its 



FIGURE I - High Speed Storage Memory layout During Running of Object Program 
(illustrated for Univac Scientific (Model 1I03A) with one bank of 
magnetic core storage) 

00000 I 

~ ________________________________________ ~a 

Fixed addresses required by specific machine 
instruct ions 

N 

Q096-M 
I segment 

It--_________________ ---t
b 

Generalized Tape Handler approximately 
QOO(IO) words in length 

It---------~------------------------------~c 
Control 

Generator and operator of linkage between 
segments referenced by IP instruction. 

Includes 120 word buffer storage used by 
Generalized Tape Handler and operating 

During interlude between segment 120 
word buffer serves as Termination 

Termination operating area. 

't--------------------1 d - -- - - - - - -- -- --

/ Main Program 

Statement routines in order given 
r-------- _ -- ______ ._e 

Rout ine Area 

library routines 
Pseudo operation routines 
(called by a RJ in main program) 

Data Area 1 

for ca 11 words of 77---type 

___ f 

Preface operates as an overlay during 
interlUde between segments. 

~------------------------------------------I 9 - - - - - -- - -

Data Area 2 . 
for call words of 76---type 
reta i ned for a 11 segments 

07777 \ ~ ________________________________________ ~h 

a - b Fixed length all problems 
b - c Fixed length all problems 
c - d Fixed length all problems 
d - e Variable length as determined by Allocator 

e - f Variable length as determined by Allocator 

f - g Variable leng th as determined by Allocator 

g - h Variable for each different problem; but once set by Allocator 

is of fixed length for all segments of the same prob lem 

N Fixed length a through d for all problems 

50 



CONTROL SECTION DURING RUNNING PROBLEM 

The Control section of coding is called into operation whenever an IP command 
is encountered during the running problem. The Control section, which resides 
and operates in high-speed storage throughout the running problem, has the 
ability to recover the IP instruction and extract its coded information from 
bit positions 0 - 29. This information (segment from, segment to, and high­
speed storage of segment to) is supplied to a generator which produces neces­
sary coding for: 

1. Calling i"n the Termination routine for the appropriate segment (to 
120 buffer) 

2. Executing this Termination routine from 120 buffer 
3. Returning to the Control section for the appropriate tape movement 

to obtain the needed segment and its Preface. 
4. Reading in the segment and Preface (as a continuous unit) 
5. Executing the Preface 
6. Transferring control to desi red: high-speed storage in th~ new segmen t 

51 



THE INTERLUDE BETWEEN SEGMENTS 

The Interlude is divided into 3 natural phases--all under direction of the 
Control section. The first phase reads the appropriate Termination coding from 
tape into the 120 buffer storage and execute the Termination instructions. 
The second phase reads the instructions for the next segment to be executed and 
its Preface instructions from tape into high speed storage. The third phase 
eXE~utes the Preface instructions from the Data Area 1 where they are located. 
Their execution results in an overlay of themselves, filling Data Area 1 with 
the new information needed for the segment to be executed. 

The Preface is read into memory directly following the Routine area in ascend­
ing address locations. The last pair of Repeat Transmit (75-11) orders will 
be executed first. Their execution will transfer data from the magnetic drum 
to locations in high speed storage preceding Data Area 2. If the segment 
length is exactly ~096-N there will be no unused memory locations during 
running and hence Data Area 1 will be firmly packed between the Routine area 
and Data Area 2. If the segment length is less than 4096-N, which will be the 
usual case, the unused portion of memory will be found immediately preceding 
Data Area 2. The Repeat Transmit instructions, which operate during the 
interlu1e between segments, are exeGuted in reverse; that is from decreasing 
absolute address locations. By use of the Repeat Transmit, the first n data 
words are inserted in successively increasing memory addresses starting at 
location [Data area 2 - (n + unused storage)]. Thus no preface instructions 
can be overlaid before they have been executed. The items of Data Area 1, 77 

----type data, are always at least two words in length where as the Repeat 
Transmit for each data group is exactly two in length. 

Preface and Termination routines are called from tape whenever an IP instruc­
tion is encountered. The Termination is called first (under direction of the 
Control section) and is executed from the 120 word buffer avail .~ble wi thin the 
Control section. It is not an overlay. When all Terminallon instructions 
have been executed, machine control is returned to the Control section of 
coding which reads in the appropriate portion of tape containing Segment i and 
Preface Segment i. (See Object Program Format, Figure III) The Preface is an 
overlay of Data Area 1 and is transferred into high speed storage with the 
segment instructions for which it is designed. The Preface IS then executed 
and machine control returned to the appropriate instruction of the segment now 
residing in high speed storage. 

52 



f 

9 

FIGURE II - Preface Layout During Running of Object Program 
Kenlargement of f through g of Figure I) 

1-- -R;- - ~ ~ -- =- - - - - - - - - - - - -, 

5 TP Data inserted from execution of 5 

4 

3 

2 

RP 
TP 

RP 
TP 
RP 
TP 

5 

4 

3 

1 RP 2 

TP (MD) (HSS) 

Data inserted from execution of 4 

Data inserted from execution of 3 

Data inserted from execution of 2 

Data inserted from execution of 1 

UNASSIGNED 

r 

s 

t 

u 

v 

w 

x 

The storage area shown in Figure II has been reserved by the Allocator for the 
data required (five 77---type groups) of an illustrative segment. The execu­
tion of Preface Instruction pair 1 inserts data as shown from v to w. 
Similarly pair 2 from u to v; pair 3 from t to u; pair 4 from s to t; 
pair 5 from r to s. 

Note that the operation of any pair cannot overlay any instructions not yet 
executed. When all pairs have been executed, the data is firmly packed start­
ing at POSItIon r. The area w thru x represents unassigned storage for this 
particular segment as previously determined by the Allocator. 

53 



FIGURE III - Object Progra. For.at as Stored on Uniservo 

Read from consecutive ~ 
integral number of 1 
~~;::;al nURlber { 
of blocks 

Integral number 
of blocks 

Integral number 
of blocks 

2 fu11 blocks 

I 

1 

lead ing Sent i ne I Identification Block 

Initial ize 

Executed preceding Segment I on only the first 
use of Segment I. This essentially reads Con-
trol into high speed storage. 

Segment I I nst ruct i ona 
Preface for Segment I 

Termination for Segment I 

Segment 2 Instructions 
Preface for Segment 2 

Termination for Segment 2 

Segment 3 Instructions 
Preface for Segment 3 

---
---

Termination for Segment (n-I) 

Segment n Instructions 
Preface for Segment n 

Final Sentinel Tape blocks 
Two full blocks of Z's as set by conventioti 

54 

Unit 

Unit la 

Unit 2 

Un it 2a 

Unit 3 

Unit (n-I)a 

Unit n 

End of generated 
object program 
tape 



UNICODE __ APPENDIX D 

ALLOCATOR A}~D PROCESSOR DESCRIPTION 

The main purpose of the Allocator is to determine the most effective segment 
lengths into which the object program is to be divided. When segment lengths 
have been determined, instructions for orderly handling of these coding groups 
are generated. The Processor then appropriately modifies the stretches of 
coding, collects and arranges them systematically into a meaningful object 
program tape. 

Input to Allocator 
Uniservo NO.2: 
Uniservo NO.5: 

Output from Allocator 
Uniservo No.6: 

Input to Processor 
Uniservo NO.2: 
Uniservo NO.5: 
Uniservo No.6: 

Output from Processor 
Uniservo No.7: 
Uniservo No.8: 

PHASE I. (ALLOCATOR) 

Complete Op File I for library routines 
Op File I for generated routines; List 1 

Op File III by segment 

Library routines (coded relative to 01000) 

Generated routines (coded relative to 01000) 

Op File III by segment 

Object program tape 
Edited record for High-Speed Printer 

Phase I prepares two directories using Op File I of the generated routines on 
Uniservo No. 5 and Op File I of the library routines on Uniservo NO.2. All 
items of Op File I on the generated routine tape are first read into high 
speed storage and then transferred to the magnetic drum. Directory I is then 
constructed by making an entry for each item placeo on the magnetic drum. The 
first word of this entry contains the call word for this item in the u posi­
tion; the second contains the locating magnetic drum address for this item in 
the y position. 

~hen Op File I of the generated routine tape has been completely read into 
high speed storage, List 1 (a listing of all library routines required for 
the problem prepared during translation) is read into high-speed storage. 

55 



(List 1 is stored following Op File I of the generated routine tape.) Next 
Op File I of the library tape is read from tape and checked for the occurrence 
of the items of List 1. When an item of List 1 is found in the library Op 
File I, the Op File for this item is placed on the magnetic drum and an entry 
is made in Directory 1. 

Directory 2 consists of only two wqrds. The first word holds the magnetic 
drum address of the first statement Op File; the second contains information 
relating to the magnetic drum address of the last statement Op File. This 
two-word directory is prepared concurrently with Directory 1. 

PHASE II (ALLOCATOR) 

Phase II uses Directories 1 and 2 to divide the problem into efficient runriing 
segments, producing Op File IIa and lIb on tape for each segment. 

Using the first word of Directory 2 (location of Op File I for the first 
statement) as the initial point, Op File I for each statement is processed in 
sequence. A sUb-tally of the total number of lines of coding required for each 
current statement and its necessary cross references is maintained. This in 
turn updates a master tally for the segment containing the accumulated total 
number of lines needed for all statements and their required cross reference 
routines. After processing each complete statement, the master tally is 
checked to determine if it is within the prescribed limits (4096 - N; where N 
is the length of the Control section). If it has exceeded the set limits, the 
sUb-tally is subtracted from the master tally and this becomes the length of 
the segment. If a single statement and its necessary cross references exceeds 
4096 - N further processing is required. This has not been included at the 
present stage of development of UNICODE. 

The last statement processed which exceeds the set limit, becomes the first 
entry in the following segment. Processing continues entering each item in 
turn onto_Op File IIa, using the length 4096 - N as a limit for each segment. 
Whenever cross references to other statements (open jumps) are recognized, 
these call words are entered into Op File lIb. Thus Op File lIb is a listing 
of jump cross reference call words for each segment. When sufficient state­
ments for one segment have been processed and their call words entered into 
Op File IIa and lIb (as needeo), these fi.les are wri tten on tape ready for use' 
in Phase III. The process is repeated, building Op File IIa and lIb for each 
segment, using the second word of Directory 2 to indicate when the last 
statement in Op File I has been processed. 

56 



PHASE I I I ( ALLOCA TOR) 

Purpose: 

I • 

2. 

I. 

2 • 

I. 

2. 

1. Builds Op File III for each segment and writes on tape. 

op u 
OP FILE III (2-word items) 

v 

ca I I wo rd 

or 

cdl1 word 
segment number segment number 

from jumped to 

or 

call word 

n u m be r 0 fda t a 

high speed stordge 
running location 

high speed sto.ra.ge ( if the end point of one- ) 
running location way jump is in another 
in another segment segment 

if call word is of the 
form 77xxxwhich refers 

(

to a group of data, e.g. ) 
x" X 2 ,. •• X ,0 • or if 

hi gh speed storage call word. is of the form 
running location 76xxx, which refers to 

unsubscripted data, e.g. 
as x, y, etc. 

2. Generates the necessary instructions to manipulate data between 
segments during the running program. These instructions are called: 

a) The Preface - transfers 77xxx type data to its running location 
in high speed storage. 

b) The Termination - transfers up-dated 77xxx type data to its 
designated locations on magnetic drum. 

The Preface and Termination instructions operate in high speed 
storage auring the interlude between two segments. After genera­
tion of these instructions (but during this phase) the Preface 
and Termination are put on the drum. 

57 



Input: 

Phase III receives as input (from Phase III: 

1. Op File IIa call words of routines and data in segment. 

2. Op File lIb call words of end points of all one way jumps. 

These files are on Uniservo tape by segment. 

Output: 

From Phase III then, its output consists of: 

1. Op File III by segments on tape. 

2. Preface and Termination for each segment on drum. 

Procedure: 

Read Op Files IIa and lIb into high speed storage one segment at a time. 
Then compare each call word in Op File lIb against the entire Op File IIa 
for this segment to determine if the end of the jumps {which are actually 
the words in IIbl appear in the same segment. If equality is not met, the 
call word from lIb is entered in IIa, thus increasing the length of Op 
File IIa. Each new entry into IIa at this time is accompanied with the 
flag 14 in the operation position of the next word. Thus, each new entry 
in IIa is an entry of two words. Each time an entry is made in Op File 
IIa the call word from lIb is also placed in another list, called Direc­
tory 4, which will be used only during this phase. Each entry in Direc­
tory 4 is also a 2-word entry, consisting of the call word in the first 
word and the segment number in the second word. An item in Directory 4 

at this time looks like this: 

on 

1st word 00 

2nd word 00 

u 

call word 

segment 
o number 

58 

v 

00000 

00 00000 



The above procedure is followed until all the call words in Op File lIb have 
been checked against Op File IIa for one segment. Each call word in Op File 
IIa is checked to determine the type of routine or data to which it refers: 

70XXX 

71XXX 

72XXX 

73XXX 

74XXX 

7Sxxx 
76xxx 
77xxx 

statement 
equation 
pseudo operation 
library routine 
statement of a pseudo operation 
vary statement (main program only) 
single word data items 
multiple word data groups 

The determination of the type of routines used in the segment, along with the 
number of lines in the running routine (available in Op File IIa), enable 
assignment now of the actual operating addresses according to the high speed 
storage layout: 

CONTROL 

S 
( fix ed length) 

STATEMENTS 
R 

SUBROUTINES 

I. li brary 
2. Pseudo Operation 

D 

DATA 77---type 

DATA 76---type 
(fixed length fo r a 11 segments) 

Because Control is fixed in length, S can be exactly located. A separate 
tally of statement lengths during Phase II permits exact determination of R. 
The accumulated tally of total statement and subroutine lengths plus one 
determines D. (The plus one accounts for the single generated instruction 
needed to provide continui ty between sequential segments.) With these starting 
points S, R, and D, assignment of memory locations in a forward direction can 
be made according to the category determined by the call word. 

The number of lines of data, when the call word is 76--- or 77---, is also used 
to fill in the u portion of data items in Op File IIa. At this time, Op File 
IIa is beginning to resemble the new Op File III which is actually an expanded 
and completed Op File IIa. 

59 



Upon completio~ of the foregoing process for each segment, that segment's Op 
File III (formerly Op File IIa) is wri tten on the drum and Directory 3, contain­
ing one word for each segment, is constructed in the following format: 

op u 

MD location of 1st 
word of Op File I I I 

v 

" of words in Op Fi le 
I I I for t his s e g me n t 

Thus the first word in Directory 3 refers to the first segment, the second 
word, the second segment, etc. 

When Op File III for the last segment has been wri tten on the drum, Op File III 
is in its final form for all items except those referring to jumps to other 
segments. Because Directory 4 is actually a combined listing of these call 
words for all segments, the items of Directory 4 are used to search against Op 
File III (by SEgment) and fill in Directory 4 with the segment number where the 
call word is found and the operating address of the routine during execution. 
This continues until all the entries in Directory 4 have been processed. A 
complete Directory 4 item is of the form: 

op 

I ~ 

u 

ca 11 wo rd 

segment 
from 

segment 
to 

v 

high speed storage run­
ning address in segment to 

The second word of the above item in Directory 4 is filled into Op File III 
(one segment at a time) in its appropriate place to complete Op File III. 
While each segment is in high-speed storage at this time, the instructions for 
data manipulation are generated and stored on the drum. 

The instructions for data manipulation are prepared from Op File III. Each 
multiple word data group is assigned an area on the magnetic drum starting wi th 
40001. When the call word for a data group (77xxx type) has been assigned, a 
magnetic drum location entry into Directory S, the listing of MD data assign­
ments, is made. Using Op File III information for each 77xxx type call word, 
the repeated TP's are then generated. When this listing is complete, the w's 

of Repeat orders are determined and recorded, in reverse direction for Preface 
and forward for Termination. The w's for the Preface are fixed, relative high 
speed storage running locations because they are generated at a point during 
compilation when the exact starting address of Data Area 1 (77 - - - type) is 
known. Since the length of the Preface is known when Termination w's are 
"ritten, they also are assigned fixed addresses in the 120 buffer area within 
the Control section. The completed Preface and Termination instructions for 

60 



each segment are stored on the magnetic drum and are available there during the 
Processor phase. 

Generation of instructions to read the Uniservo contaInIng input data to the 
appropriate magnetic drum regions via high speed storage buffer is also pre­
pared during Phase III. These instructions are written on tape and operate 
from high speed stDrage preceding the first read-in of the running program. 
A list of all data symbols, along wi th their 77 - - - type call word constructed 
when call words were assigned during a previous phase, is utilized for the 
generation of these instructions. 

This phase is complete when Op File III by segments has been written on tape. 

PHASE IV (PROCESSOR) 

The Processor assembles the required subroutines for each segment, using as 
input the Op File III for each segment together with the library and generated 
subroutines with their preludes. As each subroutine is processed the rela­
tively coded addresses are changed to the proper machine coded operating ad­
dresses. Cross reference call words are replaced by the necessary machine coding 
to accomplish the cross reference, depending on whether the reference is "wi th­
in a segment ll or I1from one segment to another." When all the routines for one 
segment have been processed, the segment together with its Preface and Termi­
nation is transferred to Uniservo tape. This tape, containing all the segments 
in sequence, is the Object Program tape. Following is a more detailed de­
scription of the methods used in modifying the relative coding. 

In the initial stage of the Processor the Op File III for the segment to be 
processed is read from tape into high speed storage. When this transfer has 
been completed, the first subroutine is read from the Generated tape into the 
tape image in high speed storage. Tape handling is then temporarily suspended 
and the actual processing begun. The call word for the subroutine is checked 
against those listed in Op File III to determine if the subroutine is refer­
encedin this particular segment; the word following the call word to determine 
if it has a flag indicating a cross reference to another segment. If the call 
word is listed in the Op File III and is not flagged, the subroutine will then 
be processed. If the subroutine is not to be processed at this time, the next 
subroutine will be read into the tape image and the procedure repeated. 

The first line to be processed in all cases is the entrance line of the sub­
routine. Following the modification of this line, each line subject to address 

61 



modification is processed in order, beginning with the line indicated by the 
line count of the tape image. Each relative address is processed, depending 
on the nature of the coding, to obtain the proper machine coded adaress. 

Those addresses coded relative to 01000 are modified by changing their refer­
ence from 01000 to the high speed storage operating location of the subroutine 
in which they appear. Those addresses which reference another subroutine con­
tain a call word having an octal 7 digit in the leftmost octal position of the 
address. With one exception such an address is modified by replacing the call 
word by the high speed storage running address of the referenced subroutine. 
This running address is obtained from the word following the call word in OP 
File III. The one exception to this method of modifying a cross reference is 

that in which the cross reference is to another segment. A reference to an­
other segment occurs as a one way unconditional jump and is modified by re-
placing the entire line of coding by an Interpret instruction which furnishes 
the Control section with the information necessary to accomplish the desired 
cross reference. This Interpret instruction is obtained from the word follow­
ing the call word in Op File III, and contains the segment number from which 
the jump is made, the segment number to which the jump is made, and the high 
speed storage running address in the latter segment. When a reference is made 
to a line of another subroutine other than the entrance line, the line to be 
modified contains the call word of the referenced subroutine. This line is 
followed by a special line of coding containing the location of the referenced 
line relative to the entrance line of the subroutine. In a reference of this 
type, the address is modified as is any other cross reference within the same 
segment to obtain the running address of the subroutine. The special line of 
coding is then applied to produce the running address of the referenced line 
within the subroutine. 

The lines which have been modified are transferred in groups to successive lo­
cations in the drum image until all the words subject to address modification 
have been processed. The constants for this routine are then transferred to 
consecutive locations following the last modified line in the arum image, and 
the drum image address is advanced to allow for the temporary storage locations 
required. 

Each generated subroutine and library routine required for the particular seg­
ment is processed in this manner. w'hen all the required routines for a segment 
have been assembled and processed, the entire drum image load with the proper 
Preface and Termination is transferred to the Output tape to form a segment of 
the final running program. The Library and Generated tapes are then rewound 
and the processing of the next segment is begun. 

62 



Each succeeding segment is processed in exactly the same way until all the seg-
ments have been processed and written on the Output tape. The final running 
program is then available on Uniservo tape and control is transferred to the 
Side-by-Side Listing section of the Automatic Coding Program. 

63 



UNICODE __ APPENDIX E 
GLOSSARY 

Alphabetic Character - Any of the letters of the alphabet A through Z. 

Alphanumeric Character - An alphabetic or numeric character. 

Argument - A variable which may take on any value. 

Binary Operation - An operation applied to two operands. 

Body - The statements of a program or sUbprogram colleetively. 

Character - Any of the letters of the alphabet, numeric digits, or other type-
written representations available. 

Coding - A sequence of machine instructions. 

Comments - The optional, uninterpreted part of a line. 

Equation - The definition of a variable, subscripted or not, by an expression 
to the right of the equality symbol. 

Heading of a Subprogram - The first two sentences of a subprogram. 

High Speed Storage - Rapid access magnetic core storage of the computer consist­
ing of a minimum of 4096 storage locations. 

Input Program - See UNICODE Program. 

Instruction - See UNICODE Instruction. 

Library - See UNICODE Library. 

Line - The fundamental unit of a program written in UNICODE language. 

Line Number - A number used to reference a line. 

Magnetic Drum - Medium access storage of the computer consisting of 16,384 
storage locations. 

Numeric Character - Any of the digits 0 through 9. 

Operand - A variable, constant, or expression. 

Object Program - The set of computer instructions produced by UNICODE. 

Output Program - See Object Program. 

Preface - The coding necessary to transfer data from magnetic drum to high 
speed storage prior to the execution of a segment. 

Pseudo Operation - An operation performed by a subprogram written in UNICODE 
language. 

Segment - A high speed storage load of coding and the data referenced by this 
cOding. 

64 



Segmentation - The process of separating the object program into segments. 

Sentence - That part of a line interpreted by UNICODE to produce coding, or 
to indicate special conditions. 

Source Program - See UNICODE Program. 

Statement - A sentence following the START instruction "hich controls the se-
quencing of a program. 

Subprogram - A group of sentences which perform a pseudo operation. 

Subscript - A variable which may take on positive integra] values only. 

Symbol - Any combination of six or less characters. 

Termination - The coding necessary to transfer data from high speed storage to 
magnetic drum folloNing the execution of a segment. 

Unary Operation - An operation applied to a single operand. 

UNICODE - Automatic coding system for the Univac Scientific (Model 1103A). 

UNICODE Instruction - Any command which can be interpreted by UNICODE. 

UNICODE Language - The language which can be interpreted to proDuce an object 
program. 

UNICODE Library - A collection of frequently used rou tines such as sine, cosine, 
and square root. 

UNICODE Program - A sequence of equations and instructions written in UNICODE 
language. 

65 



UNICODE--APPENDIX F 

UNIVAC SCIENTIFIC (MODEL 1103A) SYSTEM 

CHARACTERISTICS AND INSTRUCTION REPERTOIRE 

WORD CHARACTERISTICS, ADDRESSES, REGISTERS, TYPEWRITER CODE 

INSTRUcnON WORD CHARACTERlSncs 

An instruction word consists of three parts: a 6-bit operation code, a 
IS-bit first execution address (u-address), and a IS-bit second execu­
tion address (v-address). The sequence is operation code, u-address, v­
add ress . 
I n some instruct ions, u-address is replaced by jn or jk, in others v­
address is replaced by k. The functions of j, n, and k are: 

j--a one-digit octal number modifying the instruction (j=U'4' U13' 
U, 2) • 

n--a four-digit octal number designating number of times instruc­
tion is to be performed (n=ul', Ul0, ...... uo). 

k--a seven-bit binary number designating number of places word is 
to be shifted to left (k=V6, Vs, .•. Vo except in Left Transmit 
where k=U6, us, .•. uo). 

WOlD EXTENSION OIARACTERIsnc5 * 
D(u)--a 72-bit word whose right hand 36 bits are (u) and whose left­

hand 36 bits are same as left-most bit of (u). 
S(u)--same as D(u) except left-hand 36 bits are zero. 
D(Q)--a 72-bit word whose right-hand 36 bits are (Q) and the left­

hand 36 bits are same as left-most bit of (Q). 
S(Q)--same as D(Q) except left-hand 36 bits are zero. 

D(A R)--a72-bit word whose right hand 36 bits are (A R) and whose left­
hand 36 bits are same as left-most bit of (A R). 

S(AR)--same as D(A R) except left-hand 36 bits are zero. 
L(Q)(u)--a72-bit word whose left-hand 36 bits are z.ero and whose right­

hand 36 bits are bit by bit product of corresponding bits of 
(Q) and (u). 

L(Q)'(v)--same as L(Q)(u) except right-hand 36 bits are bit by bit pro­
duct of corresponding bits of (Q)' and (v). 

*Brackets denotes contents of, as (A) means contents of A. 

REGISTERS 

CONTROL REGISTERS 
PCR (Program Control Register)-Stores instruction 

during its execution, consists of: 
MCR (Main Control Register)-Stores 6-bit opera­

tion code 
UAK(U·Address Counter) -Stores 15-bit u-ad· 

dress 
VAK(V·AddressCounter) -Stores 15-bit v-ad· 

dress. 
PAK (Program Address Counter)-Additive counter to 

Jenerate successive addresses for obtaining program 
mstructions. 

SAR (Storage Address Register) -Stores address dur­
ing a reference to storage; lower seven stages serve 
IS shift counter during shifting of A or Q. 

INPUT-OUTPUT REGISTERS 
lOA - 8-bit in-out register. 
lOB -36-bit in-out register. 
TR -36-bit in-out tape register. 
TWR- 6-bit out typewriter register. 
HPR - 7-bit out high-speed"punch register. 

ARlTHMmC SECTION REGISTERS 
A -72-bit accumulator with shifting properties. 
A.-right-hand 36 bits of A. 
AL ~Ieft-hand 36 bits of A. 
Q -36-bit register with shifting properties. 
X -36-bit exchange register', 

ADDRESSES 
AUOCA TIONS A-32r1XJ-37777 

MC--OOOOO-07777 MoJ~~7fJf) 
~~tJ~rrdS) (16,384 36-bit words) 
(8,192 36-bit words) FIXED 
cxxm-27777 F 1-00000 or 40001 
(12~288 36-blt words) F 2--00001 

Q-31000-31777 F3---00002 
(136-bit word) F.--00003 

TYPEWRITER CODE (OCTAL) 
LEmRS MJIttIERS 

uc CC' No. UC LC No. UC LC No, UC LC No. 
A 30 Nn061152 6666 
B 23 0 0 03 2 2 74 7 7 72 
C 16 P p 15 3 3 70 8 8 60 
D 22 Qq 354464 9933 
E 20 R r 12 5 5 62 0 0 37 
F 26 S s 24 
G 13 T t 01 
H 05 Uu34 
I 14 V v 17 
J 32 W w 31 
K 36 Xx27 
LIB Yy25 
M m 07 Z z 21 

SIGNS 
56 ( 46 
44 ) 42 

1+54 -150 

66 

fUNCOONS 
SPACE 
BACK SPACE 
CAR. RETURN 
TABULATOR 
STOP 
SHIFT UP 
SHIFT DOWN 
COLOR SH. 
CODE DEL 

04 
61 
45 
51 
43 
47 
57 
02 
77 



REPERTOIRE OF INSTRUCTIONS 

01 
02 
03 

04 

05 
II 
12 
13 
14 
15 
16 
17 
21 
22 
23 
27 
31 
32 
33 
34 
35 
36 
37 
41 
42 
43 
44-
45 
46 
47 
51 
52 
53 
54 
55 
56 
57 
61 
63 
64 
65 
66 
67 
71 
72 
73 
74 

75 
76 
77 

POLYNOMIAL MULTIPLY (FPuv) ........ (u)(Q) + (v)~Q * 
INNER PRODUCT (Fluv) .............. (u)(v) + {Q)-Q * 
UNPACK {UPuv) ..................... (U)M-.,U' {u)c-wc, sign bits transferred 

to uc' zero transferred to VM * 
NORMALIZE PACK {NPuv) ........•.... {v)c and {U)I are normalized, rounded and 

packed into u * 
ROUND OPTION {FRj-) .............•. if j=O, round; if j=l, no round * 
TRANSMIT POSITIVE {TPuv) ...... _ .... (u)~v 
TRANSM IT MAGN ITUDE (TMuv) ......... I( u)1---+ v 
TRANSMIT NEGATIVE {TNuv) .•..•••.•• (u),~v 
INTERPRET (IPxx) .•••.•.•••.••••.•• (PAK)--7F" take (F2) 

TRANSMIT U-ADDRESS (TUuv) ..•••..•• {U,5_29)~V'5_29 
TRANSMIT V-ADDRESS (TVuv) •......•. {UO_'4)~VO_14 
EXTERNAL FUNCTION {EF-v) .....•..•. Select External Equipment and Perform (v) 
REPLACE ADD (RAuv) ..•..••.•..•.••. (u) + (v)~u 
LEFT TRANSMIT (LTt·kV) ............. Shift (A) by k; j=O, (Adf~; j=l, "(AR)f--'IY 
REPLACE SUBTRACT RSuv) .••..•••... (u) - (v)~u 
CONTROLLED COMPLEMENT (CCuv) .•..•. (u) ~ (v)--}u 
SPLIT POSITIVE ENTRY (SPuk) ••.•••. S(u)~A, shift (A) by k 
SPLIT ADD (SAuk) .................. (A) + S(u), shift (A) by k 
SPLIT NEGATIVE ENTRY (SNuk) .•.•.•. [S(u)]'--+A, shift (A) by k 
SPLIT SUBTRACT (SSuk) •.•.•..•....• (A) - S(u), shift (A) by k 
ADD AND TRANSMIT (ATuv) .••••••..•. (A) + D(u)~v 
SUBTRACT AND TRANSMIT (STuv) ...... {A) - D(u)-'>V 
RETURN JUMP (RJuv) ••.•....•••••••• (PAK)~uv, take (v) 
INDEX JUMP (IJuv) ••.•.••••••.••••• D(u) - I-loA; (A)f?O, (A)-..u and take (v) 

THRESHOLD JUMP (TJuv) .••.••••••••• (u) > (A), take (v) 
EQUALITY JUMP (EJuv) ...•••..•••.•. (u) = (A), take (v) 
Q-JUMP (QJuv) ••••••••••••••••••••• (Q) -, take (u); (Q) +, take (v); (Q) left I 
MANUALLY SELECTIVE JUMP (MJjv) .••• j = 0, take (v); j = 1,2,3 and MJS = j, take (v) 
SIGN JUMP (SJuv) .................. {A) -, take (u); (A) +, take (v) 
ZERO JUMP (ZJuv) .•................ (A) 4 0, t~ke (u); (A) = 0, take (v) 
Q-CONTROLLED TRANSMIT (QTuv) ..•... L(Q)(u)~v 
Q-CONTROLLED ADD (QAuv) .....•••... (A) + L(Q)(u)~v 
Q-CONTROLLED SUBSTITUTE (QSuv) .... L(Q)(u) + L(Q)'(v)~v 
LEFT SHIFT IN A (LAuk) .......•..•• D(u)--?A, shift (A) by k, (A)f u 
LEFT SHIFT IN Q (LQuk) ....•..•..•. (u)~, shift (Q) by k, (Q)f~ 
MANUALLY SELECTIVE STOP (MSjv) ..•. j = 0, stop; j = 1,2,3, and MSS = j, stop 
PROGRAM STOP (PS--) .•.........•... stop and Indicate 
PRINT (PR-v) .....•..•••..•.•.•.... Typewriter performs code in VO_5 
PUNCH (PUjv) ......•.••..•••..••.•. Punch (V~_5); j = I, also 7th level 
ADD (FAuv) ........................ (u) + (V}-+Q * 
SUBTRACT (FSuv) ...............•... (u) - (v)--7Q * 
MULTIPLY (FMuv) .............•...•. (u)(v)~ * 
D I V I DE (FDuv) ...................•• (u) .;. (v )~Q * 
MULT I PLY {MPuv) ................... (u )(v)~' 
MULTIPLY ADD (MAuv) ...••••.•.••.•. {A)i + (u)(v) = {A)f 
DIVIDE (DVuv) .................. · ... (A}i .;. (u) = (Q), [{A)f = + R]; (Q}~v 
SCALE FACTOR (SFuv) ............... D(u) in A, shift A by 36, 

shift Aunt i I A34 f= A3s, (SK)~vv 
REPEAT {RPjnw) ... : ................ ~~v of (F t ), Exe~ute NI n times, jump to F j 

EXTERNAL READ {ERjv) .............. j = 0, {IOA)~v; j = I, (IOB)~ 
EXTERNAL WRITE {EWjv) ............. j = 0, (v)o_7~IOA; j = I, (v)~OB 

* Floating point arithmetic 

67 



Univac II Systems. For data-automation which involves large 
volumes of input and output. 

THE UNIVAC® FAMILY 

Uni v ac Fi Ie-Computer. For instantaneous 
random access to large-scale internal 
storage---plus computation. 

Univac 60 & 120 Computers· For speeding 
and simplifying the procedures of punched­
card systems. 

OF ELECTRONIC COMPUTERS 

Univac Scientific Systems • For complex and intricate computations of engineering and research. 



U N I V A c::L. The FIRST Name in Electronic Computing Systems 

U 1451 


	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	xBackA
	xBackB

