ROGRAMMING MANUAL

E USE COMPILER P

THE USE COMPILER PROGRAMMING MANUAL

THE USE COMPILER
PROGRAMMING MANUAL

for the UNIVAC* SCIENTIFIC
1103A and 1105 Computers

Preface

The material contained in this manual is reproduced from that
written at intervals by the members of the technical staff of the
Ramo-Wooldridge Corporation under contract to Remington Rand.
Some editing and additions have been made.

10. EQUATING TAGS AND ITEM NUMBERS TO MACHINE ADDRESSES
11. PROGRAM STORAGE ON MAGNETIC TAPE
12. USE OF SUBROUTINES
13. FORM OF SUBROUTINES
14. CHANGES AND CORRECTIONS — RECOMPILING
15. USE OF CONTROL LINES
16. WARNINGS ISSUES BY THE COMPILER

Contents

1. INTRODUCTION ittt it sttt raeeteee ettt an et nees

THE USE COMPILER PROGRAMMING MANUAL FOR THE UNIYAC
SCIENTIFIC 1103A

INPUT LANGUAGE

..

..

...

A W N
P~y
~
(%)
B
=
=)
X
o)
xy
=
Xy
]
Ixy
h
o]

..

5. OPERATION CODE FIELD
5.1 11034 Instructions
5.2 Numbers
5.3 Subroutine Calling Sequences
5.4 Control LINES .iuviiiiiiiiiiiraneetieieisseanseesssssennneessonersnceesenesonansoneessanas
6. ADDRESS FIELDS ..ucreiiiieiiiiiaetetieeriinnneeetesssessennorosssnssssss sessannsssnses
6.1 1103A Instructions
6.2 Numbers
6.3 Subroutine Calling Sequences
6.4 CONIIOl LINES ivirniiieetetieneeareneunsaeaesestsnnnesessssnassssessssssasassesssonness
7. COMMENTS FIELD ..ccuvniiiiiiiiiiasstiieiiennnneeteaesssasesissasnenneessssssnnnnnnns
8. ASSIGNMENT OF MACHINE LOCATIONS
9. COMPILED REGION
9.1 Subroutine Temporary Pool
9.2 Constant Pool

9.3 Working Storage
9.4 Subroutines

...
--
...

..

--
...

--

..
...
...
...
..
...
.........
..
...
...

...

..

TABLE 1
TABLE 2
TABLE 3
TABLE 4
TABLE 5
AV 7 20 O
TECHNICAL NOTES ON OPERATING THE USE COMPILER WITH THE
UNIVAC SCIENTIFIC 1103A

..

..

..

..

..

..

Contents
(Continued)

IIl. THE USE COMPILER PROGRAMMING MANUAL FOR THE UNIVAC

LI 1T P 40
1. INTRODUCTION .coiiiiiiiiiittitiiiiiiiiinueessssiesiastettsiisieteesisiinsnersssonsnnnne 40
2, INPUT LANGUAGE .ooiiiiiiiiiiieiiieiiiaraetietestiasinitietiteeteseaniaataesscssaes 40
3. ITEM NUMBER FIELD ...cccoviiiiiiiiineeenrerniiiinnenscsionnnnees et ereietrrreereraaas 40
4. TAG FIELD ...eiiiiiiiiiiiiiiiittteteeieiirastesseseesnsssssesssncssssesasernnesnseees 42
5. OPERATION CODE FIELD ...uuuueeeiiiiiiiiiiretietetreannetacsnssesscssessnsnnseseens 42
5.1 JI05 INSEUCEIONS oivvviieiieeiiieniieeransonesssnssssesssensssesseeessessonsseensansenes 42
52 J4 B2 7Y - 43
5.3 Subroutine CalliNg SeQUENCESvvvierverieeiareerersvnesrersarasssesreereesnnassess 43
5.4 CONEITOI LINES tvvvuiverunienensseusseeeunseesssessssesessossssssssssscsssnsssssnesecnacnens 44
6. ADDRESS FIELDS ..ooiiiiiiiineittesiatiaiaretsssssseesnssessosessnnssesessnaasssessannns 44
6.1 JI05 INSHUCEIONS vueiiiiiiinniiiierisrsnissesesssuseseseesessssssssssscssssssseesennnnns 44
6.2 NUMDEIS iiviuniiieretnnneeeeereenneeeessansesesesesnssssmessssssssssssesssssnssersosanans 45
6.3 Subroutine Calling SeQUENCES ..vviieienreiirieisiinnseeessenaseetosssssnnsereeresnns 45
6.4 Control Lines .\ ... 46
7. COMMENTS FIELDuuuuutiiiiiiiiinnneaeeistessnneessesseessssesesernenssssssroneannnes 46
8. ASSIGNMENT OF MACHINE LOCATIONS «oviiiiiiiiiiiiniiineiisietnenanarereneens 46
9. COMPILED REGION ..ooiiiiiintetiieeeiaeateatttareeasnansesessesssseseesssnnanessssenns 46
9.1 Subroutine Temporary PoOlcceiiieeiiiniiiiiiiiiseciciosensssseronssannsenesenns 47
9.2 Constant Pool ...c.ccueeeiiueieiiiiiiiinneasnneennns e eereen et esaaerrraes 47
9.3 WOrking StOrage ...ccueeeiiuieeieneeeiieineeesiseeresienseesseseensemennsens ereieeienaaae 47
9.4 SUBLOULINES ...ccveveviieriiiiiaioninnns PN 47
10. EQUATING TAGS TO MACHINE ADDRESSES .ooueeiiieieeinneesvaeenearensnnenens 47
11. USE OF SUBROUTINES ..uueeeiceiiieeevieannenannnes eeerennetettiitaannatteetierenns 48
12, FORM OF SUBROUTINES .uoereieeiieiiieeetraseisinateesesinssensessrasssnsesssnssnnens 49
13. CHANGES AND CORRECTIONS — RECOMPILING reeererereeeiaeennee 51
14. USE OF CONTROL LINES ..onueeiiieiiatieeeetiieearietrretaseseassaessseeseasaeneens 52
15. WARNINGS ISSUED BY THE COMPILER ..ceeieeeieiiniieinenieeenaeinneaneesnnnens 56
TABLE 1 .ccovviiiiiiinaiininiinnnnnenns Meanstaraaaaennantaestosaenaanstan s nananasessnnanans 57
TABLE 2 .ooiiiiiiiiiiiietieeeaeieenentseestesesnnnsotsesseesnnsesessnnnssesesssosesnannees 58
TABLE 3 et e eeereearateeeeeeateeeararreeraaanan D PPt 58
TABLE 4 «oooiiiiiiiiiieeeieiiiiennanenenaeanns bt treereeeetetateateerenanaeeeeeetaaaanaraes 59
TABLE 5 i ettt it eesasraasasssseessssssesasesonasasasssssnnsnnnsens 61

1V. TECHNICAL NOTES ON OPERATING THE USE COMPILER WITH THE
UNIV AC 1105 Lttt eirreeet e eee it etrsreeaeeeneeeeareanenneenens 62

V. EXAMPLES DEMONSTRATING SUNDRY PROPERTIES OF THE
COMPILER ..o e 73

1. INTRODUCTION

The purpose of the USE Compiler is to reduce the amount of effort required to prepare a correct code for
the UNIVAC Scientific Computer, 1103A, The use of the compiler requires an understanding of the use of
the 1103A and such an understanding is assumed in this manual,

Normally, the input to the compiler consists of a program written in the symbolic language described here
and unityped on magnetic tape. In addition, a list of changes to be made to the main program may be sup-
plied either on magnetic tape or cards. The output from the compiler is a tape which when listed on the
off-line High-Speed Printer produces a side-by-side listing of the symbolic program as written by the pro-
grammer along with the translated machine language program in octal. This tape may be used to load the
program into the computer. In addition a loadable binary tape may be produced. — There are three existing
versions of the USE Compiler:

USE-1 The original version of the USE Compiler. It produced the side by side format with the symbolic on
the feft and the octal equivalents on the right. The u, v, and comments fi=lds were run together;
that is, not in fixed columns in the output positions, Also compilation stopped each time an iliegal
item number was encountered.

USE-2 The output listing is revised from that of USE-1in that the octal equivalents are on the left with
the symbolic on the right, The u and v fields are in fixed columns with possible variation in case
all or part is unusually long. The illegal item number stop no longer occurs. The letter O and the
number 0 are treated as the same character (they were treated as different characters in the USE-1
version and this caused considerable difficulty), USE-2 has provision for a mid-point recovery stop.
The standard USE interpretive operation codes are recognized and correctly translated, A special
calling sequence is generated for subroutines with two inputs both of which are stored in the
accumulator at the time of entty to the subroutine, The binary deck of this version was made avail-
able at the July, 1957 USE meeting,

USE-3 Includes the XS3-n feature which allows direct incorporation into a program of excess 3 coded
characters suitable for direct printing. This version also handles relocatable binary subroutines -
previous versions required subroutines to be in symbolic form. The binary deck of the USE-3 com-
piler was made available at the March, 1958 USE meeting,

In this section USE-3 is described.

I. The USE Compiler-Programming Manual
for the UNIVAC Scientific 1103A

2. INPUT LANGUAGE:

The language accepted by the USE Compiler consists of a series of lines of coding. Most lines of
coding produce either an instruction or a number in the final machine-language code. Some lines,
however, generate more than one word in the final code, while others are directions to the com-
piler and do not appear at all in the machine-language code.

Each line of coding is terminated by a special ‘‘end of line’’ symbol ‘“$”’ or “_1"’ which must ap-
pear nowhere except at the end of eachline. A line contains up to six fields separated by commas.
Characters to the .left of the first comma are in the item number field. The tag field follows the
first comma, the operation code field follows the second comma, the u address field follows the
third comma, the v address field follows the fourth comma, and the comments field follows the
fifth comma.

The number of characters in any field is not fixed. Spaces are not equivalent to zetos; in fact,
spaces are ignored except in the comments field. In certain cases it is permissible toleave.a
field blank. However, the correct number of commas as stated above must precede each field
which is present. Commas beyond the fifth in any line are simply characters within the comments
field and have no special significance. The code may be written either on blank paper or on forms
with the end of line symbols and certain of the commas pre-printed.

3. ITEM NUMBER FIELD:

An item number is a number greater than or equal to one, having at most six digits to the left of
the decimal point and at most four digits to the right of the point. The compiler will associate an
item number with each line of coding. Normally the item numbers will be computed in a sequential
fashion by the compiler, but a programmer may override this automatic computation of item num-
bers and explicitly assign any item number he wishes to any line of coding. The only restriction
is that the item number on any line (whether computed by the compiler or supplied by the pro-
grammer) must be greater than the item number on the preceding line., That is, the sequence of
item numbers must increase monotonically throughout the entire program.

The compiler will obey the following rules in assigning item numbers:

1. If more than one digit appears in the item number field the number as it appears is
taken as the item number of that line. If no decimal point appears the number is con-
sidered an integer. The position of the right-most digit becomes the ‘“index position”’,
Thus, the index position may be the one’s position or any one of the four fractional
digit positions permitted in an item number,

2. If exactly one digit appears in the item number field that digit is extracted into the
index position of the last item number which was written out in full, If exactly one digit
appears in the item number field of the first line of coding it is taken as the complete
item number, and rule 1, above, applies.

3. If the item number field is blank a one is added into the index position of the item num-
ber associated with the immediately preceding line of coding. If the item number field
of the first line of coding is blank item number 1 is assigned to that line and the ones
position becomes the index position.

Note that the index position is changed only when more than one digit appears in the item num-
ber field,

The programmer may adopt any one of several schemes for the assignment of item numbers. For
example:

Option 1. Write a complete item number explicitly on each line of coding. Any monotini-
cally increasing sequence of item numbers may be used.

Option 2. Leave the item number field blank throughout the code. The compiler will fol-
low rule 3 and simply assign the integral item numbers 1, 2, 3, ..., to the successive
lines of coding. If it is desired to have the compiler count up in steps of one-tenth or
one-hundredth, simply write 1.0 or 1,00 in the item number field of the first line of coding.
If it is desired to interrupt the sequence and begin again at a different number simply
write the new starting number in full in the item number field of the appropriate line,
(taking care, of course, that the item number written is larger than that which will be
computed by the compiler for the immediately preceding line).

Option 3. Write out in full every tenth item number (namely, those whose final digit is 0),
and on the nine intervening lines write the single digits 1, 2, ... 9. A pre-printed form
may be used on which the single digits are already printed in the item number fields and
it is therefore necessary to make an entry in this field only on every tenth line. Note that
it is not necessary to use every line of the pre-printed form since the typist may be
instructed to ignore a line which contains only an item number.

The use of item numbers for making changes to a code, and as symbolic addresses, will be de-
scribed later. The important points covered so far are these:

1. Each line of coding is assigned a unique item number.

2. It does not matter whether the line produces none, one, or more than one word in the
final machine-language code.

3. The item numbers will form a monotonically increasing sequence throughout the program.

If the above rules produce an item number which is not greater than all preceding item numbers
an error stop will occur and the program will not be compiled.

4. TAG FIELD:

A tag is a symbol whose principal purpose is to serve as a symbolic address for a cell in the
computer. A tag may consist of from one to six alphanumeric characters (chosen from the letters
A thru Z and the digits 0 thru 9) at least one of which is a letter.

5.

5.1

Four particular tags ate automatically equated to fixed machine addresses as follows:

TAG Machine Address
FILL Illegal machine address 30000)B
Q The quotient register 31000)B
A The accumulator 32000)B
D The first drum address 40000)B

If a tag appears in the tag field of a line of coding which produces one or more words in the final
machine language code, that tag will be equated to the machine address of the cell occupied by
the word, or first word, 'so produced. Tags may also be equated to machine addresses in other
ways which will be described later. (Sec. 10, 15.2, 15.3, 15.4, 15.5). It is neither necessary nor
desirable to have an entry in the tag field of every line. On the other hand, each line which pro-
duces a word referred to by another word probably should be tagged.

OPERATION CODE FIELD:

The operation is a symbol appearing in the operation code field and containing one to six alpha-
numeric characters. There are four main classes of symbols which may be used in this field:
Those which produce instructions in the final machine-language code, those which produce num-
bers, those which generate subroutine calling sequences, and those which pemmit the programmer
to modify and control some of the functions of the compiler.

OPERATION SYMBOLS WHICH PRODUCE 1103A INSTRUCTIONS.
Thete are four types of symbols in this class.

a, Octal operation codes.

Any two octal digits will become the operation part (bits 30 thru 35) of an 1103A word.

b. Standard letter pair operation codes.

Any of the letter pair symbolic operation codes recommended by Remington Rand will be trans-
lated to the corresponding pair of octal digits and become the operation part of an 1103A word.
These codes are listed in Table 1.

c. Certain three-character codes for 1103A j-type operations.

In each case these are formed by affixing a third character to one of the two-letter codes
listed in Table 1. The presence of the third character does not affect the translation of the
first two letters which become the operation part of an 1103A word. In addition the thitd char-
acter is translated to an octal digit and becomes the j digit (bits 27 thru 29) of the 1103A word.
The permissible three character codes of this type are listed in Table 2.

d. Standard interpretive operation codes,

Any of the standard USE interpretive operation codes are translated so that the operation code
is 14 (octal) and bits 24 thru 29 contain the pair of octal digits corresponding to the operation
which is to be interpreted. These are listed in Table 6.

5.2 OPERATION SYMBOLS WHICH PRODUCE NUMBERS

There are four operation symbols which produce numbers in the final machine language code;
“‘B”, “F”, *“X”?, and XS3-n where n represents one of the first nine integers.

a. The operation symbol ‘“B”’, (possibly followed by up to five octal digits within the operation
code field) introduces an octal integer which will become an 1103A binary integer in the ma-
chine language code.

b. The operation symbol ‘‘F’’ introduces a generalized decimal number which will be translated
to the corresponding 1103A floating point number.

c. The operation ‘“X’’ introduces a generalized decimal number which will be translated to the
corresponding 1103A binary integer,

The exact form of a generalized decimal number is described in section 6.2.

d. The operation XS3 or XS3-n introduces a series of characters (alphabetic, numeric and others),
which will be translated to n words of six excess-three characters. XS3 is equivalent to XS3-1,
The use of this operation is described more fully in section 6.2,

5.3 OPERATION SYMBOLS WHICH PRODUCE SUBROUTINE CALLING SEQUENCES

Operation symbols in this class are the names of subroutines. Two cases arise: internal sub-
routines which are directly available to the compiler as part of the machine library, and extemal
‘subroutines which must be supplied along with the program in which they are to be used. The
name of an internal subroutine may be any combination of one to six alphanumeric characters pro-
vided it is not identical to any other acceptable operation symbol. The name of an extemal sub-
routine must consist of one of the organization letter pairs listed in Table 3 followed by one to
four alphanumeric characters. The appearance of the name of a subroutine in the operation code
field will produce a calling sequence and, at a remote location, the subroutine itself, The calling
sequence will transfer the appropriate parameters and arguments to the subroutine and retum jump
to it.

Depending on the number of parameters and arguments required, the calling sequence may consist
of one, two, or three words in the final machine code. If none are required the calling sequence is
simply a return jump instruction. If one parameter. or argument is needed the return jump is pre-
ceded by a transmit positive instruction. For more than one the transmit positive instruction is
preceded by a repeat instruction.

5.4 OPERATION SYMBOLS WHICH CONTROL THE COMPILER

The following are special control symbols which may appear in the operation code field:

‘““SETLOC” ‘‘USES”’ “ALARM”
““RESERV”’ ‘““CARDS”’ “TEMPS”’
‘““EQUALS” ‘“TAPE” ‘“INouT”
“LOCATE”’ “DELETE” “Pn” where n represents
‘““COMPAT”’ ‘““NOMORE’’ 0,1,...9
“DUPx” where x represents ‘‘SUB’’ ‘““ENDSUB”’

V,U,uUv,0, 0V, ‘““END"”’

OU, or OUV

6.1

- €,

Each of these control symbols is described in detail in section 15. In general these symbols do
not produce words in the final machine code. Rather they tell the compiler how it should operate
on the other lines of coding.

. ADDRESS FIELDS

The entries which may appear in the u and v address fields are determined, for each line, by the
operation symbol on that line.

THE ADDRESS FIELDS OF A LINE WHICH PRODUCES AN 1103A INSTRUCTION

The u and/or v address fields of an 1103A instruction line may contain any of the following types
of terms:

a. Decimal address — a decimal integer translated as the corresponding binary integer.

b. Octal address — an octal integer followed by ‘“)B’’ translated as the corresponding binary
integer.

c. Tag — one to six alphanumeric characters at least one of which is a letter, translated to the

machine execution address to which it has been equated, as explained elsewhere (Sections 4 and
10).

d. Item number (complete) —a decimal number including a decimal point, translated to the machine
execution address to which it has been equated, as explained elsewhere (Section 10).

Item number (fractional part only) — A decimal point followed by one to four digits in the u or
v address field is taken to be an item number whose integer part is the same as the integer
part of the item number associated with the line of coding in which it appears.

f. Storage Address — A tag or an item number as described in paragraphs c, d, or e above followed
by ¢“)s’’ translated to the machine storage address to which it has been equated, as explained
elsewhere (Sections 8 and 10).

A constant pool address — written ‘‘L(---)’’ translated as the machine address, within the
constant pool (Sec. 9) of the number which is enclosed by the parentheses. The number is
written just as it would appear in the operation code field and the u and v address fields of
a separate line of coding, but without any commas. That is, a “B’’, “X”’, or ‘“‘F”’ followed
by the significant digits and exponents if needed. (Sec. 6.2). If no *“B’’, ““X’’, or ‘‘F’’ appears,
an ‘X’ is assumed.

g

h. Compound addresses — any series of up to seven of the types of terms described in paragraphs
a through g above, separated by ‘‘+’’ or ‘‘~'’ signs, translated as the algebraic sum of the
translations of the individual terms.

i. A completely blank field will be translated to binary zer.

j. Where the operation produces 4 octal digits as in the case of the interpretive operation codes
(described in Section 5.1d), the v address field is translated as in an ordinary instruction. The
u address field is translated in the ordinary way and then its absolute value is compared to 2°.
If the value is more than 2° a waming is given.

6.2 THE ADDRESS FIELDS OF A LINE WHICH PRODUCES A NUMBER

a, Octal integers — The octal digits in the address fields of a line containing the operation ‘sym-
bol *“B”’ are taken together with any octal digits which may have followed the ‘‘B?’ within the
operation code field as an octal integer and translated to the corresponding binary integer.

i

A generalized decimal number, which may appear in the address fields of a line containingthe
operation symbols ‘““X’’ or ‘“‘F”’, consists of a significant digits part and, if desired, a binary
and/or decimal exponent part, The significant digits part of a generalized decimal number is
simply a decimal number, preceded by a 'sign and including a decimal point if desired. The
binary and/or decimal exponent parts, if present, follow the significant digits part. They are
introduced by the letters ‘‘B’’ and ‘‘D’’ respectively and consist of decimal integers of no
more than three digits preceded by a “‘+’? or ‘‘~’’ sign if desired. The ‘‘+’’ 'sigh may be omit-
ted in both the significant digits part and also the exponent parts of the number,

c. XS3-n — Normally, the desired characters are simply written in the u and v address fields.
However, a space is represented by an asterisk and certain other special characters are repre-
sented by a character pair. The first character of such a pair is always #. The complete tist
of characters is given in Table 5. If the number of characters produced by the contents of the
u and v fields is less than 6n, the n words will be filled out with space characters (01 octal)
and a waming will be given; if greater than 6n, only the first 6n characters will be used and a
warning will be given. If the character # is followed by a character not listed in Table 5, the
is ignored and a warning is given.

The characters required in the address fields of a line which produces a number may be written
right across both the u and v fields, That is, the fourth comma of the line (which separates the
u field from the v field) may occur before, among, or following the other characters. It will
have no effect on the translation of the number.

6.3 THE ADDRESS FIELDS OF A LINE WHICH PRODUCES A

6.4

SUBROUTINE CALLING SEQUENCE

The u address field of a line which produces a subroutine calling sequence is associated with
the location of the subroutine arguments and/or parameters and may contain any of the types of
terms permitted in the address fields of a line which produces an 1103A instruction. The v ad-
dress field of a line which produces a subroutine calling sequence is associated with the location
of the subroutine itself and must be blank or contain exactly one tag. The use of subroutines will
be fully described later (Section 12).

THE ADDRESS FIELDS OF A COMPILER CONTROL LINE

The entries permitted in the address fields of a compiler control line depend on the particular
control symbol which is being used in the operation code field and is described in detail as each
control symbol is explained (Section 15). In general, they are either certain of the types of terms
permitted in the address fields of a line which produces an 1103A instruction (Section 6.1) or
symbols having special meaning in connection with a particular control function.

. COMMENTS FIELD

The comments field is essentially ignored by the compiler but is reproduced on the output listing,
The programmer may enter any comments he wishes except that the end of line symbol ‘“$*’ or

s

9.1

‘"’ must occur only at the end, and the total number of characters between the third comma of
the line (which separates the operation code field from the u address field) and the end of line
symbol is limited to fifty-nine,

ASSIGNMENT OF MACHINE LOCATIONS
Each word in the machine language program will be associated with two machine locations:
1. A storage location at which the word is to be stored at the start of the program, and

2. An execution location which the word is expected to occupy when it is used in the
program,

These two machine locations may be the same (and usually will be unless the program is large
enough to require 'segmentation). In large, segmented programs the execution location may be a
magnetic core address, while the storage location is on themagnetic drum but this is not required.

In order to associate these two machine locations with each word of themachine language program
the compiler will maintain two location counters; one for the execution location and one for the
storage location. Ordinarily both counters are set to four at the start of a compilation. As each
word of the machine language program is produced it is associated with the addresses found in
the counters, and the location counters are then advanced by one.

The programmer, however, may at any point in the program modify this sequential assignment of
machine locations. By use of the RESERV control line one or both of the counters may be ad-
vanced by an atbitrary amount. The SETLOC control line completely interrupts the sequence and
permits specification of new starting values for one or both of the location counters. It is also
possible for the programmer to specify that certain parts of the program are to be stored on mag-
netic tape. This feature and the use of these control lines is fully described later in Sections
11, 15.1 and 15.2.

. THE COMPILED REGION

In addition to instructions, numbers, and subroutine calling sequences which are produced directly
as a result of the occurrence of the corresponding types of lines of coding, there will be a region
of the final machine language code which is produced automatically by the compiler. This com-
piled region will contain, in general, four parts.

THE SUBROUTINE TEMPORARY POOL is a group of cells reserved for the use of all subroutines
in the program which require common temporary storage. Its length depends on the requirements
of the particular subroutines used in the program.

9.2 THE CONSTANT POOL is a group of cells each of which contains the binary translation of a

number whose constant pool address has been referred to by the ‘“L(. . .)’’ notation somewhere in
the program.

9.3 THE WORKING STORAGE is a group of cells each of whose addresses is equated to a tag used

in the program but not otherwise equated to a machine location.

9.4 THE SUBROUTINES which are used in the program and not specifically located el'sewhere by the

programmer will be placed in the compiled region.

10.

11.

Ordinarily the execution and storage locations of the compiled region will be the same, and 'such
that the compiled region will be located at the high numbered end of magnetic core storage. The
programmer may, however, by use of the COMPAT (compile at) control line, cause the compiled
region to be assigned arbitrary storage and execution locations., The COMPAT control line al'so
permits the equating of a tag to the machine address of the compiled region. Thus the subroutine
temporary pool may be referred to in the main program if desired. The use of the COMPAT control
line is described more fully in Section 15.5.

EQUATING TAGS AND ITEM NUMBERS TO MACHINE ADDRESSES

As has been.mentioned (Section 4), each tag which appears in the tag field of a line of coding
which produces one or more words in the machine-language code is equated to the execution and
storage locations associated with the word, ot the first word, so produced. Thus a tag may appear
on any line which produces an 1103A instruction, a numbet, or a subroutine calling sequence.

In most cases, the tag field of a control line should be left blank since control lines do not pro-
duce words in the machine-language code. There are four exceptions, however. The EQUALS con-
control line equates the -tag to arbitrary storage and execution addresses, The COMPAT control
line equates the tag to the beginning of the compiled region (i.e., the beginning of the subroutine
temporary pool). The RESERV control line equates the tag to the address of the first word of an
unfilled region. The LOCATE control line equates the tag to the beginning of a subroutine. The
use of these control lines is explained in detail in Sections 15.2, 15.3, 15.4 and 15.5. Any given
tag may appear in the tag field only once in a program.

Tags which are not equated to machine addresses as a result of their occurrence in the tag field
as explained above may appear in the u or v fields of lines which produce 1103A instructions or
subroutine calling sequences. The special tags ‘“A”, ¢‘Q”, “‘D’’, and ““FILL’’ are equated to
machine addresses as explained above (Sec. 4). Other tags are equated by the compiler to machine
addresses within the compiled region as follows: those appearing in the v field of lines which
produce subroutine calling sequences are equated to the addresses associated with the first word
of that subroutine; those which appear in the u field of lines which produce subroutine calling
sequences or in the u or v field of lines which produce 1103A instructions are equated to the ad-
dresses of cells in the working storage part of the compiled region.

Item numbers of lines of coding which could have a tag in the tag field may appear in the uor v
fields of lines which produce 1103A instructions or in the u field of lines which produce 'sub-
routine calling sequences. Such item numbers are equated to the same machine addresses as a
tag would be if it appeared in the tag field of that line.

PROGRAM STORAGE ON MAGNETIC TAPE

A program is considered to be made up of one or more segmen. _..parated by the occurrence of
each “SETLOC” and ‘“RESERV’’ control line (except ‘““RESF.RV’’ within a subroutine) (Sections
15.1 and 15.2). By means of a special tape mode symbol ‘“T(n)’’, (Where n represents a digit from
1 through 9), in the v address of a ““SETLOC’’ control line the programmer may set the tape mode
and designate a particular tape unit, n. This means that succeeding segments will be compiled
for initial storage on the designated tape unit until a tape mode symbol specifying a different tape
unit appears, or until a *‘SETLOC’’ line with something other than a tape mode symbol clears the
tape mode.

The compiler automatically numbers in 'sequence, starting with one, the segments compiled for
each tape unit as they occur in the program. When in the tape mode the storage location counter
contains a fifteen bit ‘““Tape Address’ of which the high order four bits represent the tape unit

12.

number and the remaining eleven bits, the segment number on that tape. Furthermore, when in the
tape mode, the storage location counter is not advanced by one for each machine language word
produced, but rather one for each segment. (The advancing of execution location counter is not
affected by the tape mode.) Thus, the ‘““Storage Location’’ associated with every word in a given
tape mode segment will be the same. and will be a composite fifteen bit number. This fifteen bit
number could be the same as an internal machine address and it is up to the programmer to avoid
using it incorrectly.

Normally, however, the programmer need not be concerned with the tape segment numbers. The
segments of the program stored on tape will be completely identified so that a tape reading sub-
routine when supplied with a ‘““Tape Address’’ as a parameter could locate and read in the desired
segment. The programmer would supply the ‘“‘Tape Address’’ by writing the tag associated with
any word in the segment, followed by ‘“)s’’,

If it is desired to store the compiled region on tape initially, the tape mode symbol, ‘“T(n)’’, may
be written in the v address field of the ‘“‘COMPAT’’ control line (Section 15.5). The compiled
region will then become segment zero on the designated tape unit.

USE OF SUBROUTINES

The internal form of standard USE subroutines acceptable to the USE Compiler is explained in
detail later in Section 13. To use a subroutine the following conventions must be understood:

a, The subroutine is to be entered by a standard return jump instruction; the entrance is always
the first word of the subroutine and the normal exit is always the third word.

b. At the time of exit from the subroutine the results are always stored within the subroutine in
the fourth and following cells. (They may, in addition to this, be stored in the accumulator or
elsewhere).

c. Previous to the time of entrance to the subroutine the arguments and/or parameters must have

been transferred to specific cell's within the subroutine. (Namely, the cells immediately follow-

ing the cells reserved for results).

.

d. The subroutine is ‘self-contained (that is it includes its own instructions and constants, and
refers only to itself) with the following exceptions:

1) It may refer to the accumulator and to the Q-register.

2) It may refer to the subroutine temporary pool in the compiled tegion (Section 9).

3) It may refer to other standard USE subroutines.
Information, including the length of the subroutine, the number and order of results, possible loca-
tion of results in addition to the standard location, number, order, and lo:ation required within the
subroutine of parameters and/or arguments, number of cells used in the temporary pool, and other

subroutines referred to, will be found in the individual subroutine write-up.

The use of a line of coding which produces a subroutine calling sequence will, in many cases,
make it unnecessary for the programmer to concern himself with many of these details. Such a

10

line of coding will cause the subroutine itself to be placed either in the compiled region or at a
position specified by the programmer. It will insure that a tag is equated to the machine locations
associated with the first word of the subroutine. It will generate the coding in the main program
necessary to transmit the arguments and/or parameters into the subroutine, and to return jump to
the subroutine, and finally, unless otherwise specified by the programmer, it will insure that all
subsidiary ‘subroutines are included in the compiled region.

As has already been explained (Section 5.3) the presence of the name of a subroutine in the oper-
ation code field of a line of coding indicates that a calling sequence is to be generated. The v
address field of the line may either be blank, or contain exactly one tag. If it contains a tag which
is equated to machine locations as a result of its appearance in the tag field of some other line of
coding, the subroutine will be placed at the storage address and prepared for execution at the
execution address equated to thattag, It is up to the programmer to insurethat there is room for the
subroutine at the location specified. He may do this for example by appropriate use of control
lines such as “RESERV’’ or ““LOCATE’’, which are explained in detail later. If the subroutine is
to be in a segment on magnetic tape a ‘“LOCATE’’ control line must be used (Sections 15.2 and
15.4).

If the v address field of a line which produces a calling sequence contains a tag which does not
appear in the tag field on any line of coding, or if it is blank, the subroutine will be placed in the
compiled region and the tag, if any, will be equated to the machine locations, within the compiled
region, associated with the first word of the subroutine.

The u address field of a line of coding which produces a subroutine calling sequence may contain
any of the types of terms permitted in the address fields of a line which produces an 1103A in-
struction (Section 6.1). It itepresents the location of the argument or parameter (or the first of these
if more than one is required). If two or more parameters and/or arguments are required they must
be available, in the correct order, in sequential cells so that they may be transfetred to the correct
cells within the subroutine by a repeated transmit positive instruction which will be produced by
the compiler.

The compiler will insure that any subsidiary subroutines which are referred to by the primary sub-
routine are included in the compiled region unless the programmer, by means of the USES control
line, which is explained in detail later (Section 15.7), indicates that a copy of the subsidiary
subroutine at some specified place outside of the compiled region is to be employed.

As was explained (Sec. 5.3), the calling sequence produced by the compiler will consist of either
a single return jump; a transmit- positive, return jump; or a repeat, transmit positive, retum jump;
depending on the number of parameters and/or arguments required. In any case the tag, if any, in
the tag field of the line which produces the calling sequence is equated to the machine locations
associated with the first word of the calling sequence.

It is possible to include a 'subroutine in a program without producing a calling sequence, This is
accomplished by means of the LOCATE control line which specifically locates, at the point in
the program where the LOCATE line occurs, the subroutine whose name appears in the n address
field. The use of LOCATE is explained in detail in Section 15.4.

It is, of course, the programmer’s responsibility to insure that every subroutine to which he re-
fers (and any subsidiary subroutines which they require) are available to the compiler at the time
his program is compiled. Any subroutine, provided it is in the proper form (described fully in
Section 13), which is not in the internally stored library may be included with the coding for the
main program. The compiler will accept such external subroutines, and in effect (though not
physically) add them to the library while that one program is being compiled.

13. FORM OF SUBROUTINES
The compiler will compile subroutines which are in a magnetic tape internal library or included
externally as part of the coding for the program. Both internal and external ‘subroutines are written
in the same form as other coding for the compiler with certain exceptions which are described here,

The item number field should be left blank on all lines of coding of a subroutine,

A subroutine consists, in general, of nine parts:

1) Leading line 6) Result cells

2) Parameter lines 7) Argument and/or parameter cells
3) Entrance line 8) Body of the routine

4) Alam exit 9) Ending line

5) Normal exit

1) The leading line of a subroutine must have the special control symbol ‘“SUB’’ in the operation
code field to indicate that a subroutine is to be processed, The u address field of the leading
line contains the name of the subroutine, and the v address field contains an integer which is
equal to the number of consecutive cells occupied by routine. The SUB control line is described
fully in Section 15.12.

2) There are three types of parameter lines introduced, respectively, by the special control sym-
bols ‘““TEMPS”’, “INOUT”, and ‘“Pn’’ (where n represents a digit 0 through 9) in the operation
onde field.

A “TEMPS’’ control line is used to indicate, by an integer in the u address field, the number of
consecutive cells used by the subroutine in the subroutine tempcrary pool in the compiled
region. An integer in the v address field indicates the position within the temporary pool at
which the temporaries for this 'subroutine are to start. Normally this is zerc except when it is
necessary to avoid conflict with a ‘subsidiary subroutine which itself uses the temporary pool.

An “INOUT?”’ control line is used to specify by means of integers in the u and v address fields,
respectively, the number of arguments and/or parameters and the number of results. If either
the ‘“TEMPS’ line or the “INOUT” line does not appear the corresponding parameters are
taken to be zero.

Control lines introduced by ‘P0’’, ““P1°’, ... “P9” in the operation code field have no effect
on the compilation of the program but are permitted to make USE subroutines compatible with
other systems,

3) The entrance line produces the first word of the machine language subroutine. It should be an
unconditional jump to the body of the subroutine.

4) The alarmm exit line should have the control symbol ‘‘ALARM’’ in the operation code field. This
produces the second word of the machine language subroutine. The compiler will supply an
appropriate instruction for the cell, This will depend on the computation system in use at a
particular installation and might, for example, be a retum jump to an alarm print out routine
located at a fixed position on the drum,

5) The aormal exit line produces the third word in the machine language subroutine, It shouid be
an unconditional jump instruction which may be set up by a retum jump instruction in the main
program.

11

12

6) Result cells and

7) Parameter and/or argument cells must be reserved within the 'subroutine immediately following
the normal exit either by use of the ‘“‘RESERV’’ control line or by making entries in the tag
field on the comect number of lines.

8) The body of the subroutine may contain the following types of lines:

Lines which produce 1103A instructions

Lines which produce numbers

Lines which produce subroutine calling sequences
“EQUALS’”’ and ““RESERV’’ control lines

These lines may be written just as in other (non-subroutine) coding for the compiler except that:

a. No item numbers may be used.
b. No constant pool addresses of the form ‘‘L(. . .)’’ may be used.

¢. Tags which appear in the v address field of lines which produce subroutine calling
sequences should not appear in the tag field. They are equated by the compiler to the
machine locations associated with the first word of the subsidiary subroutine thus

called for.

d. Other tags which appear in the u or v address fields but not in the tag field are
equated, in the order of their occurrence, to the addresses of cells in the subroutine
temporary pool in the compiled region.

9) The ending line of a subroutine must contain the special control sumbol ““ENDSUB’’ in the oper-
ation code field.

14. CHANGES AND CCRRECTIONS; RECOMPILING

The procedure described in this section in no way precludes any other method of correcting a
program compiled by the USE Compiler. Since both a loadable binary tape and a side-by-side list-
ing tape are produced as outputs from the compiler, the installation or individual programmer has
complete freedom to proceed in whatever way is most advisable in each case. The binary tape may
be loaded into the computer and binaty corrections inserted manually or via any of the input media,
or a tape editing routine may be used to correct the binary tape.

However, when it is desired to obtain the advantages of a re-compilation (such as an up-to-date
listing, and freedom from patches) the compiler itself should be used. Since an output listing tape
appears to the compiler to be the same, in all essential respects, as an original unityped main
program tape, the compiler does not differentiate between the first and subsequent compilations of
a program. Changes may be made at the time of the first compilation if desited.

Each program to be compiled may be accompanied by a list of changes either all on magnetic tape
or all on cards. The changes are written exactly like other lines of coding except that the item
numbers on successive lines need not be in order. However, where a single digit or a blank
appears in the item number field of a change line, the compiler will supply an item number just as
it does for lines of coding in the main program. The changes are then sotted by the compiler ac-
cording to item number and merged with the lines of coding from the main program as compilation
proceeds.

15.

15.1

15.2

Three types of changes may be made: one-for-one replacements, insertions, and deletions. It is
important to note that these are changes to the compiler language program, not to the machine
language program, i.e., lines of coding, not computer words, are being replaced, inserted, and
deleted. It is therefore entirely feasible to change control lines as well as lines which produce
1103A instructions or numbers. This is one of the advantages of re-compiling.

Replacements: If the item number of a change line is identical to the item number on a
line of the main program, the change line will replace the line in the main program.

Insertions: If the item nymber of a change line is not identical to the item number on
any line of the main program, the change line will be inserted between two lines in the
main program at the point such that the resulting sequence of item numbers i's monotoni~
cally increasing. This point is, of course, unique.

Deletions: If the first of a group of successive lines is replaced (as explained above)
by a change line having the control symbol ‘““DELETE’’ in the operation code field,
the entire group of lines will be deleted from the main program. The extent of the group
of lines to be deleted is specified in the address fields of the ‘““DELETE’’ control
line as is explained in detail in Section 15.10.

THE USE OF CONTROL LINES

Many of the special control symbols which may appear in the operation code field have already
been mentioned. In this section the uses of all such control lines are explained in detail.

“SETLOC'. The ‘‘SETLOC’ control line normally sets the execution and storage location
counters to the translated values of the expressions found in the u and v address fields re-
spectively. These fields may contain any of the types of terms permitted in the u and v address
fields of lines which produce 1103A instructions (Section 6.1) with three exceptions:

1) Constant pool addresses of the form “L(. . .)” are not allowed.
2) Item numbers are not allowed.

3) Any tags which are used must have appeared in the tag field on a preceding line of coding,.

Altematively, the v address field of a *“*SETLOC’’ control line may contain the single tape mode
symbol “T(n)”’ to set the tape mode and designate tape unit n as the storage location of the suc-
ceeding segments.

Otrdinarily if either the u or the v address field is blank the correspondinglocation counter is not
altered (thus a blank is not equivalent to a zero in this case). However, if a ‘‘SETLOC’’ control
line with a blank v address field occurs while the compiler is in the tape mode (Section 11) the
storage location counter is increased by one to indicate a new segment in the same tape unit.

““‘SETLOC”’ is not allowed in subroutines. It should not have a tag in the tag field.

“*‘RESERY'’'. The ‘““RESERV”’ control line nomally advances the execution and storage location
counters by the translated values of the expressions found in the u and v address fields respec-
tively. These fields may contain the same types of terms as those described in the first paragraph
of “SETLOC’’ above (Section 15.1).

13

14

15.3

15.4

15.5

Ordinarily if the u or v address field is blank the corresponding location counter is not altered. If
a ““RESERV’’ control line occurs while the compiler is in the tape model (Sec. 11), the storage
location counter is increased by one to indicate a new segment on the same tape unit regardless
of the v address field.

If a tag appears in the tag field of a ‘““RESERV’’ line, it is equated to the values found in the
location counters before they are altered. Thus the tag is associated with the first cell in the
reserved region, and, if in the tape mode, with the preceding segment.

Within a subroutine ‘“‘RESERV’’ does not start a new segment. Also within a subroutine but not
otherwise, the translated values of the contents of the u and v address fields must be the same
and the reserved region is loaded with binary zeros.

“*EQUALS". The “EQUALS’’ control line, which may appear anywhere in a program, equates the
tag appearing in the tag field to the translated values of the expressions found in the u and v
address fields. These fields may contain the same types of terms as those described in the first
paragraph under ““SETLOC’’ above (Sec. 15.1).

If either the u or the v address field (but not both) is blank, both the execution location and the
‘storage location equated to the tag will be the same, and equal to the translated value of the ex-
pression in the non-blank address field.

*“LOCATE". The “LOCATE” control line causes the subroutine whose name appears in the u
address field to be included in the machine language code at the point where the “LOCATE”’
occurs. The v address field is not used and no calling sequence is produced.

If a tag appears in the tag field it is equated to the cell associated with the first word of the sub-
routine, i.e., the entrance.

The subroutine must be available to the compiler at the time the ““LOCATE?” occurs, either in the
internal library or by having been included in a preceding part of the coding.

“LOCATE”’ may not be used within a subroutine.

‘“*COMPAT". The ‘“‘COMPAT’’ (compile at) control line permits the programmer to override the
automatic placing of the compiled region at the high numbered end of core storage, and/or to equate
a tag to the machine locations of the first cell of the compiled region (i.e., the beginning of the
subroutine temporary pool). At most, one ‘“‘COMPAT’’ control line may appear in a program but
it may appear anywhere except within a subroutine.

Normally the execution and storage locations of the compiled region are made equal to the trans-
lated values of the expressions found in the u and v address fields, respectively. These fields
may contain any of the types of terms described in the first paragraph under ““SETLOC’’ above
(Sec. 15.1). If the u address field is blank the execution location of the compiled region will be at
the high numbeted end of magnetic core storage. If the v address field is blank the storage location
will be the same as the execution location.

Altematively, the v address field of the ““COMPAT’" control line may contain the single tape
mode symbol ‘“T(n)’’ where n represents a digit 1 through 9. Inthis case the storagelocation of the
compiled region will be segment zero on tape unit n.

If a tag appears in the tag field of a ‘““COMPAT?”’ control line, it is equated to the machine loca~
tions of the first cell of the compiled region.

15.6

15.7

“DUPx"'. The “DUPx’’ (duplicate) control line reduces the amount of writing required when the
entries in corresponding fields on each of a group of successive lines would be identical. If the
group of lines is immediately preceded by the appropriate “DUPx’’ control line, then, in all the
lines of the group except the first, those fields which would be duplicates of corresponding
fields in the first line may be left blank.

In writing the ““DUPx’’ operation code the letters O, U, and V refer to the operation code field,
and the u and v address fields respectively, and are used to indicate which of these fields are to
be duplicated. Thus, the ‘“‘DUPX’’ operation code symbol may take any of the following forms:

“‘DUPO”’ ‘“pupou”’
“DUPU” ‘“DUPOV”’
“DUPV”’ “pupuv”’

The special case “DUPOUV’’, where all three of the fields are to be duplicated, is discussed
below.

The extent of the group of lines on which the duplication is to be effective may be indicated in
either one of two ways.

1) The u address field of the “DUPx’ control line contains a single integer equal to the total
number of lines in the group (including the first), and the v address field contains the word
‘““TIMES”’, or

2) The u address field contains the word “THRU’’, and the v address field contains a singleitem
number which is the same as that in the item number field on the last line of the group.

The first line following the ‘““DUPx’’ line must be written out in full in the normal fashion. The
remaining lines of the group are written in the normal way except that the duplicated fields are
left blank,

The compiler actually fills in the blank fields. Therefore, the ‘‘DUPx’’ line itself will not appear
on the output listing but each line of t he group will appear in its complete form.

The special case, ‘‘“DUPOUV”’, where all three fields are to be duplicated is treated in a slightly
different way. The first line of the ‘‘group of identical lines’’ is written out in full immediately
following the ‘“DUPOUV’” line as usual. But, the remaining lines of the group are not written at
all. Therefore, only method 1 above for indicating the extent of the group is applicable in this
case. The “DUPOUV”’ line and the following line will appear on the output listing. ““DUPOUV’’
should not immediately precede “LOCATE”, ‘“‘SUB”, ‘“‘CARDS”’, or ““TAPE’’ control lines.

“DUPx’ may not be used within a subroutine.

‘*USES’’. Ashasbeen explained previously (Sections 12 and 15.4), the occurrence of a ““LLOCATE?”
control line, ot of a line which generates a subroutine calling sequence, indicates that a specified
subroutine is to be included in the program. If this primary subroutine requires subsidiary sub-
routines, the compiler, normally, will insure that such subsidiary subroutines are included in the
compiled region and the primary subroutine will refer to them there. The programmer may, how-
ever, override this automatic inclusion of subsidiary subroutines by means of ‘““USES’’ control
lines following the line which specifies the primary subroutine (i.e., either a ““LOCATE"’ control
line, or a line which generates the subroutine calling sequence).

15

16

The u address field of the “USES’’ control line contains the name of a subroutine which is sub-
sidiary to the most recently referenced primary subroutine. The v address field of the “USES”’
control line must contain exactly one tag. The compiler will then assume that the subsidiary sub-
routine whose name is in the u address field of the “USES’’ control line is available at the loca-
tion specified by the tag in the v address field, and the primary subroutine will refer to the sub-
routine at that location, It is the programmer’s responsibility to insure that the subsidiary sub-
routine is actually at the location indicated. This may be done, for example, by means of a
‘““LOCATE”’ control line (Sec. 15.4).

A ‘‘USES’’ control line must not appear within a subroutine.

15.8 “‘CARDS’’. The *‘CARDS’’ control line indicates that the succeeding lines of coding are to be
found on cards in the card reader. Since the output listing of the program will be entirely on mag-
netic tape this line will be omitted from the output. The cards themselves need be available only
the first time the program is compiled.

The contents of the address fields of a ‘““CARDS’’ control line is insignificant. This line must
not appear within a subroutine,

15.9 “TAPE''. The “TAPE” control line indicates that succeeding lines of coding are to be found on
magnetic tape, This line would be the last line of a group which is on cards. It will not appear
on the output listing since the entire output listing is on magnetic tape.

The contents of the address fields is insignificant on a ““TAPE? control line. This line must not
appear within a subroutine. (Of course, it may immediately follow a subroutine on cards.)

15.10 “DELETE'. The control line “DELETE’’, which should appear only among the changes, is
used to delete a group of consecutive lines from the main program. The extent of the group of
lines to be deleted may be indicated in either one of two ways,

1) The u address of the “DELETE’’ line contains a single integer equal to the total number of
lines in the group to be deleted, and the v address field contains either the word ‘“‘LINE’’ or
“LINES’’, or

2) The u address field contains the word ‘“THRU’’, and the v address field contains a single
item number which is the same as that in the item number field of the last line to be deleted,

If both the u and v address fields of the “DELETE’’ line are blank, the effect is the: same as
though “1, LINE”’ had been written there.

The compiler actually carries out the deletion and neither the “DELETE”’ line itself nor the de-
leted lines will appear in the output listing,

15.11 *‘NOMORE’’. The ‘““NOMORE’’ control line must appear only as the last line of coding in the list
of changes and indicates to the compiler that there are no more changes. The contents of the ad-
dress fields are insignificant.

15.12 **sUB’’. The ‘““SUB”’ control line may appear only as the leading line of a subroutine. The u ad-
dress field contains the name of the subroutine. If the subroutine is in theinternal machine library
its name may consist of any combination of from one to six alphanumeric characters which does
not conflict with any acceptable operation code symbol. If the subroutine is an extemal one sup-

15.13

15.14

15.15

15.16

15.17

15.18

16.

plied along with the main program, its name must consist of one of the organization letter pairs
listed in Table 3 followed by from one to fcur alphanumeric characters.

The v address field of a ““SUB’’ control line contains an integer which is equal to the number of
consecutive cells required by the subroutine, This includes cells for the entrance. alarm exit, nor-
mal exit, results, arguments and instructions, constants, and subsidiary subroutine calling se-
quences in the body of the routine, but does not include cells used in the subroutine temporary
pool.

““ALARM'’. The “ALARM’’ control line should appear only immediately following the entrance
line within a subroutine. It will produce an appropriate alarm exit instruction in the machine-lan-
guage code. The contents of the address fields are insignificant,

“TEMPS'. The “TEMPS’’ control line may appear at most once within each subroutine. It indi-
cates to the compiler what part of the subroutine temporary pool in the compiled region is to be
used by the subroutine in which it occurs. The u address field contains an integer which is equal
to the number of consecutive cells used by this subroutine in the temporary pool. The v address
field contains an integer which is equal to the number of cells to be left at the beginning of the
temporary pool ahead of those used by this 'subroutine. These may be temporaties used by subsid-
ary subroutines. If either address field is blank, or if the ‘““TEMPS’’ line does not appear within
the 'subroutine, the corresponding quantities are taken to be zero.

“INOUT''. The “INOUT”’ control line may appear at most once within each subroutine. The u ad-
dress field contains an integer which is equal to the number of parameters and/or arguments which
must be placed within the subroutine before it is entered. The v address field contains an integer
which is equal to the number of results which the subroutine computes and stores within itself. If
either address field is blank, or if the *“‘INOUT’’ line does not appear within a subroutine, the cor-
responding quantities are taken to be zero.

**Pn’’. Control lines having ‘‘PO’’, “P1”’, . .. ““P9”, in the operation code field are reproduced
on the output listing but have no effect on the program. They are permittedin order to make it pos-
sible for USE subroutines to be compatible with other systems which might require more parameters.
They may occur only within subroutines.

“ENDSUB’'. The ‘““ENDSUB’’ control line may appear only as the final line of each subroutine.
The contents of the address fields is insignificant.

**END’'. The control line ‘“END’’ must appear as the lastline of the program. The contents of the
u address field are insignificant. The v address field may contain any of the types of terms per-
mitted in the address fields of lines which produce 1103A instructions. The translated value of the
entry in the v address field will be stored in a particular location in the final block on the binary
output tape. It may be used by the binary tape loading routine as the address at which computation
is to begin.

WARNINGS ISSUED BY THE COMPILER

During compilation of a program the compiler may detect various situations which make it impossi-
ble to continue in the normal way. These situations may represent typing errors, per pheral or input
equipment malfunction, programming errors or intentional use of certain features of the compiler in
an unanticipated manner. In practically all such cases the compiler will take a prescribed action

17

18

to overcome the difficulty and then proceed with the compilation. A special warning symbol, “‘W”’,
will be placed on the output listing on the line of coding in which the unusual situation was de-
tected, and a footnote (referencing the item number of the line containing the warning symbol) will
explain the reason for the warning. Table 4 lists some of the unusual situations which are detected

and explains the action taken. In a very few cases the nature of the situation makes it impossible
to continue at all.,

FP
FI
UP
NP
NE
TP
™
TN
P
TU
TV
EF
RA
LT
RS
cC
SP
SA
SN
SS
AT
ST
R]
1J
T]

TABLE |

STANDARD OPERATION CODES

Floating Polynomial Multiply 01

Floating Inner Product

Unpack

Normalize Pack
Normalize Exit
Transmit Positive
Transmit Magnitude
Transmit Negative
Interpret

Transmit u-address
Transmit v-address
External Function
Replace Add

Left Transmit

Replace Subtract

Controlled Complement

Split Positive Entry
Split Add

Split Negative Entry
Split Subtract

Add and Transmit

Subtract and Transmit

Return Jump
Index Jump

Threshold Jump

02
03
04
05
11
12
13
i4
15
16
17
21
22
23
27
31
32
33
34
35
36
37
41

42

EJ

QJ

M]

S]

Z)

QT
QA
o
LA
LQ
MS

PS
PR
PU
FA
FS

FM
FD
MP
MA
DV
SF
RP
ER

EW

Equality Jump

Q-Jump

Manually Selective Jump
Sign Jump

Zero Jump
Q-controlled Transmit
Q-contxolled'Add
Q-controlled Substitute
Left Shift in A

Left Shift in Q
Manually Selective Stop
Program Stop

Print ‘

Punch

Floating Add

Floating Subtract
Floating Multiply
Floating Divide
Multiply

Multiply Add

Divide

Scale Factor

Repeat

External Read

External Write

43
44
45
46
47
51
52
53
54
55
56
57
61
63
64
65
66
67
71
72
73
74
75
76

77

19

.20

MSO
MS1
MS2

MS3

PUO
PU6

Normalize

Quasinormalize

Transmit A Left

Transmit A Right

Punch 6 Levels

PERMISSIBLE LEADING

AP
BA
CE
HO
ML
RR
RW
WF

TABLE il

j-TYPE OPERATION CODES

PU1
050 PU7 Punch 7 Levels
RPO . .
051 RPN Modify neither u nor v
RP1
220 RPV} Modify v
RP2
221 RPU} Modify u
450 RPRB
Modify B
RP3 } lodify Both u and v
451
ERO
452 ERA} Read from I0A
453 ggé} Read from I0B
560
EWO .
561 EWA} Write to IOA
562 EW1
EgB} Write to 10B
563
630
TABLE il

CHARACTERS FOR EXTERNAL SUBROUTINE NAMES

Applied Physics Lab., John Hopkins University
Boeing Airplane Company

U.S. Army, Corps of Engineers

Holloman Air Force Base

Missiles Systems Division, Lockheéd Aircraft Corp.
Remington Rand Division, Sperry Rand Corp.
Ramo-Wooldridge Corp.

Wright Air Development Center

631

750

751

752

753

760

761

770

771

TABLE IV

WARNINGS ISSUED BY THE COMPILER

WARNING
Item Number illegal, too large, or out of order.
More than 6 characters in tag or operation code field.
More than 59 characters in u and v address fields.
More than 7 terms in u or v address fields.
Illegal term in u or v address fields.
Superfluous sign in u or v address fields.
Tag in u or v address fields which appeared more than
once in tag field.

Item number used in u or v address field not equated
to a machine location.

Constant pool full.

Duplicate tag in tag field.

Tag incorrectly in tag field of control line.

No room in directory for tag or item number.

Tag incorrectly used in u or v address fields of
control line without having previously appeared in

tag field.

Constant pool address of the form ‘““L(. . .)’’ in u or
v address field of control line,

Translated value of expression in u or v address field
>215 o 0.

Translated value of expression in u address field
> 212 o5 0 in j-type operation.

Illegal operation.

ACTION TAKEN
Compilation stops.
Rightmost six characters are used.
Leftmost 59 characters are used.
Leftmost 7 terms are used.
Illegal term translated as zero.

Rightmost sign applied (i.e. sign
closest to term).

Location first equated to tag is used.

Item number translated as zero.

Address of form ““L(. . .)’’ translated
as zero.
Location first equated to tag is used.

Tag is ignored.

Tag or item number will not be
equated to a machine location.

Tag translated as zero.

Term translated as zero.

Used MOD 21%

Used MOD 212

Translated to binary zero word.

21

22

TABLE 1V (Continued)

WARNINGS ISSUED BY THE COMPILER

WARNING

Number contains too many digits, or an illegal charac-
ter, or is too large or too small.

No room in subroutine table, illegal name or external
subroutine on subroutine not available to compiler.

More than one ‘‘INOUT’? or ‘“TEMPS”’ control line in
a subroutine.

Too many temps, arguments, or results used by sub-
routine.

Storage Regions overlap.

Location counter ~ 7777 or 77777.
“DUPOUV’’ applied to certain lines illegally.

Improper entries in u and/or v address fields of
“DELETE”’ control line.

More than one change with the same item number.

Both u and v address fields blank on an ‘“EQUALS”’
control line.

‘“USES”’ control line out of place.
““COMPAT?’ used more than once in program.

Too many warnings

ACTION TAKEN

Number translated as binary zero.

Subroutine not included in program.

Last one to appear is used.

Subroutine will not operate correctly.

Will be loaded in order written with
compiled region and subroutines
last.

Recycled to 0 or 40000.
“DUPOUV?”’ is ignored.

Treated as though it read ““1, LINE”’,

Last one used.

Tag is equated to zero.

Line ignored.
First ‘““COMPAT’’ applies.

Further warnings not footnoted.

XS$3 CHARACTER DESIRED

Digits 0 thru 9

Letters A thru Z except 0

LY By] +)): (!/

Space

Letter G

Fast Feed 1

Fast Feed 2

Fast Feed 3

Fast Feed 4

Asterisk *

Breakpoint 8

Comma ,

. Dollar sign $

Multiline

Number sign #

Stop code

TABLE V

WRITE

Digits O thru 9

Letters A thru Z except 0

LY By +a)n (;/

#1
#2

#3

#4

#A
B
#C
#D
M
#N

#S

23

24

OCTAL

00
01
02
03
04
05
06
07
10
11
12
13
14
15
20
21
22
23
24
25
77
76
16
17
26
27
66
67

OCTAL
30
31
32

34
35
36
37
40
41
42
43
44

47

TABLE VI

BASIC OPERATIONS

MNEMONICS

LDR
LFR
ADD
SBT
MPY
MPA
PMP
DIV
SOR
SIN
cos
EXP
LOG
ATN
STU
BTU
FIX
FLT
STR
BTR
NOP
LBB
CIP
NIP
LDP
LDN
LDM
ADM

MATRIX OPERATIONS

MNEMONICS
MADD
MSBT
MMPY
MTRM
MTRP
MINV
MSMP
MDAD
MSPR
MDET
MROW
MCOL
MPAR
MRPL
MSET

FUNCTION

Load Result Storage
Load F and R

Add

Subtract

Multiply

Multiply Add
Polynomial Multiply
Divide

Square Root

Sine

Cosine

Exponential

Logarithm

Arctangent

Store Unrounded

Block Transfer Unrounded
Floating to Stated
Stated to Floating

Store Rounded

Block Transfer Rounded
No Operation

Locate B-Boxes
Conjugate Inner Product
Non-conjugate Inner Product
Load Positive

Load Negative

L oad Magnitude

Add Magnitude

FUNCTION
Add
Subtract
Multiply
Transmit
Transpose
Inverse
Scalar Multiply
Diagonal ADD
Spur
Determinant
Row Select
Column Select
Partition
Replace
Bank Set

OCTAL

50

51

52

53

54

55

56

57

60

61

62

63

65

70

71

72

73

74

75

TABLE VI (Continved)

DOUBLE PRECISION OPERATIONS

MNEMONICS

DLDR
DLFR
DADD
DSBT
DMPY
DMPA
DPMP
DDIV
DSQR
DSIN
DCOS
DEXP
DLOG
DATN
DSTU
DBTU
DFIX
DFLT
DSTR

DBTR

FUNCTION

Load Result Storage
Load F and R

Add

Subtract

Multiply

Multiply Add
Polynomial Multiply
Divide

Square Root

Sine

Cosine

Exponential

Logarithm

Arctangent

Store Result Unrounded
Block Transfer Unrounded
Floating to Stated
Stated to Floating
Store Result Rounded

Block Transfer Rounded

25

Il. Technical Notes On Operating the
USE Compiler with the UNIVAC Scientific 1103A

In order to make the USE Compiler compatible with the various operating systems used at the
different installations, the beginning and end states have been defined well in toward the com-
piler. It is necessary for each installation to supply the coding needed to fit the compiler into
its system.

The self-loading binary deck will load the compiler into the correct cells on the drum. Each
installation may then dump it in any desired form on magnetic tape. The compiler does not read

itself in from magnetic tape during compiling. It must be loaded onto the drum before control is
transferred to it.

TO LOAD COMPILER FROM BINARY CARDS:

1. Place binary deck in reader. First three cards must be in correct order. Card with 12
punch in column 80 must be last.

2. Pick one read card.

3. Key in the following program, (octai).

00100 17 00000 00103
00101 75 30030 00000
00102 76 10000 00000
00103 40 00000 00005

4, Start at 00100 (octal). Computer reads in compiler and halts on an MSO.

At this point the basic compiler occupies-cells 44200 through 63544 (octal). It may be
dumped out on magnetic tape in any form desired, or used immediately to compile.

The loading process destroys the contents of cells 0 through 101 (octal).

TO COMPILE A PROGRAM:

1. The basic compiler must be stored in cells 44200 through 63544 (octal).
2. All magnetic tapes involved must be correctly positioned. (See Page 31)

3. Cards, if used, must be in hopper and the Bull cycled.

26

4. A correct set of input parameters must be in cells 44100 through 44137 (octal). (See.

Page 29)

5. Instructions to be executed following compilation should be in cells 44000 through
44077 (octal).

6. Start at 44200 (octal).

ON COMPLETION OF COMPILING:
1. Control is transferred to the instruction at 44000 (octal).

2. The output parameters have been set up in cells 44140 through 44177 (octal). (See
Page 30)

3. As specified by the input parameters the magnetic tapes are either rewound or left in
positions indicated in the output parameters.

4, The input parameters are unchanged,
5. The basic compiler is reset and may be used again without reloading.
6. The following cells have been used: 00000 through 07777 (octal), 63545 through 67777

(octal), and depending on the number of changes patt of the range 70000 through 77777

(octal). (Precisely 17n (decimal) cells starting with 70000 (octal) will be used where n
is the number of changes.)

7. The following cells are unchanged: 40000 through 43777 (octal) and the 'second and
third banks of magnetic cores, 10000 through 27777 (octal).

27

SUMMARY OF COMPILER USE OF INTERNAL STORAGE
00000 — 07777 Entire first bank of cotes will be destroyed

Second and third bank of cores are not used

10000 — 17777 }
20000 — 27777

40000 —~ 43777 Not used

44000 — 44077 Arbitrary program to follow compiling
44100 — 44137 Compiler input parameters

44140 — 44177 Compiler output parameters

44200 — 63544 The compiler

63545 — 67777 Used by compiler

70000 — 77777 17 n cells destroyed where n is the number of changes

44100

44101

44102

44103

44104

44105

44106

44107

44110

44111

44112

44113

44114

44115

44116

44117

44120

COMPILER INPUT PARAMETERS

Changes: 0 = None, 1 to 10 = Tape Unit, 12 = Cards
Type of change tape: 0 = Unityper

Main program: 1 to 10 = Tape Unif, 0 = Cards

First line of main program: 0 = Tape, 12 = Cards

Type of main program tape: 0 = Unityper, 1 = Output
Tape unit for temporary: 1 to 10

Tape unit for output: 1 to 10

Tape unit for subroutine library: 1 to 10, 0 = None
Number of blocks to beginning of library (in v)

Tape unit for binary: 1 to 10, 0 = None

Instruction for alarm line within subroutines

Last address of core + 1 available to program being compiled (in u and v).
Rewind main program tape: 0 = No, 1 = After first pass
Rewind change tape: 0 =No, 1= After first pass
Rewind subr. library tape: 0 = No, 1 = After interlude
Rewind binary tape: 0 = No, 1 = At end

Rewind output tape: 0 =No, 1 = At end

44121 — 44137 Not yet assigned. Should be zero.

29

30

44140

44141
44142
44143
44144
44145
44146
44147
44150
44151
44152
44153
44154

44155

COMPILER OUTPUT PARAMETERS

Reason for ‘stopping:

W = O

Normal completion
Illegal input parameters
Parity error

TAPE command with no tape unit specified in input
parameters.

Number of blocks forward on tape unit 1

” 1

”" 12

LR] 2

” ”

” 124

”

2

2

”» 2

O 00 g D N K W

» 10

Physical tape unit on which parity error occurred

Logical tape unit on which parity error occurred:

0
1
2
3
4
5

6

Change tape

Main program

Subroutine library tape
Manuscript subroutine tape
Temporary tape

Binary tape

Output tape

Starting address following parity error

44156 — 44177: Net yet assigned

COMPILER USE OF MAGNETIC TAPES

The following logical tapes may be involved:
Symbolic output tape
Temporary (intermediate) tape
Binary output tape
Main program input tape
Change tape
Subroutine library tape

The symbolic output tape is also used by the compiler to hold external (manuscript) subroutines
during the first pass and may be used as additional temporary working space if reprocessing the
binary tape is necessary.

Each logical tape, if used at all, must be a unique physical tape with one exception. The changes
and main program may be on the same tape if the main program immediately follows the last line
of changes (i.e., the ““no more’ line). Each physical tape used must be on a unique unit with
one exception, The binary tape may be on the same unit as the main program or the changes. In
this event, the compiler at the appropriate time will rewind the main program or change tape and
halt on an MS to 05050 (octal) so that a blank may be mounted. On restarting at 05050 (octal)
compilation will continue, The binary tape will then be produced after the second pass.

The units for the symbolic output tape and for the temporary tape must always be specified in
the input parameters. '

The temporary tape must be a blank, (i.e., any information on it will be destroyed). All other
tapes should be positioned at the point where writing or reading is to begin, with one exception.
The beginning of the subroutine library may be any number of blocks (specified in the input
parameters) from the initial position of the tape.

If any of the uniqueness rules for tape units are violated, or if the symbolic output and temporary
tape units are not specified, compilation will not be attempted. Control will be transferred to
cell 44000 (octal) immediately with the correct indication left in the output parameters.

If library tape is not ‘specified, it is assumed that there is none. Any reference to subroutines
not included as manuscript subroutines will cause wamings of ‘‘Illegal Operation’’ or ‘‘Sub-
routine not available,”

If the main program starts on cards and includes a ““Tape’’ line, and no main program tape has
been specified, compilation will cease. Control will be transferred to cell 44000 with the correct
indication left in the output parameters.

31

32

PREPARATION OF INPUT

When reading changes and main program from either cards or unityped magnetic tape, the Com-
piler depends entirely on punctuation (commas and end-of-line symbols) to identify the various
parts of the symbolic lines of coding. Card columns and character positions within the blockette
have no significance. Spaces (except within comments) are completely ignored. Therefore, each
installation may use any punching or unityping format it desires or simply place significant
characters one after another with no spacing at all. It is not necessary to begin each line of
coding on a new card or a new blockette.

USE COMPILER CHARACTER CODES

CHARACTER [OSTAH CARD cHARACTER | 9STAF conD
0 03 0 M 47 411
1 04 1 N 50 5,11
2 05 2 0 51 6,11
3 06 3 P 52 7, 1
4 07 4 Q 53 8, 11
5 10 5 R 54 9, 11
6 1 6 s 65 2, 0
7 12 7 T 66 3,0
8 13 8 U 67 4,0
9 14 9 v 70 5,0
A 24 1, 12 w 7 6,0
B 25 2,12 X) 72 7,0
c 26 3,12 Y 73 8, 0
D 27 4,12 z 74 9, 0
E 30 5, 12 (17 4,8,0
F 31 6, 12 !) 43 4,8, 12
G 32 7,12 . 22 3, 8,12
H 33 8,12 + 63 3,8
I 34 9, 12 - 02 n
J 44 1, SPACE 01 None
K 45 2,11 21 3,8,0
L 46 3, N $ END- 55 3,8, 11
OF-LINE

FORM OF BINARY TAPE

Each block of the binary tape produced by the compiler has the following form:

Address Word

Length Word

n data words.
120 Word _
0
Block

0

(117-n) zero words to fill out block.

Check Sum

The OC (Operation Code) part of the address word may be either 00, introducing a nommal block,
or 40, introducing a ‘‘tape mode’’ block. A normal address word has the form:

00 EEEEE SSSSS
6 15 15 bits

where EEEEE is the execution address, and SSSSS is the storage address of the first data word.
A tape mode address word has the form:

40 EEEEE T S

6 15 4 11 bits
where EEEEE is the execution address, T specifies a magnetic tape unit (1 =T £10), and S is
a sequence number. The sequence number S associated with a particular tape number T in the
address word of a tape mode block is always larger than any other sequence number associated
with the same tape number in the address word of any preceding block, i.e., the sequence num-
bers associated with a given tape number must increase throughout the entire binary tape.

Normally, the length word takes the following form:

00 NNNNN 00000

33

34

The u address part of the length word, NNNNN, contains n, the number of data words in the block.
[n <117 (decimal); usually n = 117.]

The length word in the last block takes the form:
40 00000 BBBBB

where the v address part, BBBBB, is the “begin computing address’’ (i.e., the translated value
of the v field of the END line of coding). There are no data words in the last block.

The n data words immediately follow the length word. Following the data words are as many
binary zero words as needed to fill out the block save one word.

The check sum, which is always the last word of the block, is the right 36 bits of the sum of the
split extensions of all other words in the block. That is, the address word, the length word, and
the n data words are included in the check 'sum.

TO LOAD A BINARY TAPE PRODUCED BY THE COMPILER

Although not a part of the basic compiler, a routine is provided which will load binary tapes pro-
duced by the compiler. If the binary cards for the binary tape loader are included with the com-
compiler binary deck, the routine will be read into cells 70000 thru 70425 (octal) when the com-
piler is loaded. It may be dumped out in any convenient form. Note that the binary tape loader
will be destroyed if compiling with changes is done; it should, therefore, be saved on magnetic
tape.

The binary tape loader reads in the binary tape produced by the USE Compiler and stores the data
words of each block from the tape into consecutive locations starting at the storage address
specified by. the address word in the block. The loader stores input data into cores; onto the
Magnetic Drum, other than the core image (76000 — 77777 (octal)); or onto magnetic tapes other
than the binary tape itself or those specially restricted.

The loader puts an M]J into the Operation Code portion of cell 00000 (octal), i.e., Fl’ unless data
being read in from the binary tape specifies otherwise,

To start, the Uniservo number on which the binary tape is located is inserted into Q, and then
the machine is started at 70000 (octal). The contents of cells 00000 — 02000 (octal) are trans-
ferred to the core image, and the routine transfers itself into the first portion of core storage.

The routine, after getting into core storage, sums the constant portion of itself to ensure that it
is intact. If the sum check fails, the Flexowriter prints an E and the machine comes to an MSO
stop. If the machine is ‘started again at this point, the routine will proceed exactly as if the sum
had checked.
A Y

The loader checks the parity and sum of every block read in; reads forward and backward using
the three different biases if necessary; and, if either check fails in each of all six cases, prints
out on the Flexowriter MAGNETIC TAPE BLOCK READ IN CHECK FAILS followed by the storage
address of the first word of the block to be stored. This address may consist of the tape unit
number in decimal and the segment number in octal or simply a machine address in octal. The
machine then comes to an MSO stop. If the machine is then started the block as last read in (read-
ing backward at low bias)is transferred exactly as if both checks had worked after the last read in.

The loader checks any tape unit number to which a block is to be transferred against the tape

unit number on which the binary tape is located and any other tape units which are notto be writ-
ten on and whose numbers have been inserted into cells 70407 thru 70417 inclusive. If the tape

unit number is illegal, the Flexowriter prints ILLEGAL TAPE UNIT NUMBER followed by the

tape unit number in decimal. The binary tape unit number is put into register Q, the core image is

restored, and the machine stops at MSO 70000) B.

If the non-tape storage address of any data word is illegal, i.e., between 10000 and 37777 octal
or above 76000 octal, the Flexowriter prints ILLEGAL STORAGE ADDRESS followed by the
first such address corresponding to a data word in the block.* All data words in the block which
have legal addresses are properly stored. The binary tape unit number is then put into register Q,
the core image is restored, and the machine stops at MSO 70000) B.

After the last block on the binary tape has been read in, the core image is restored and the ma-
chine stops at an MSO to the starting address of the program which has been read in.

*Note to permit loading 2 or 3 banks of cores cell 70370 (octal) should be changed to

00 00000 20001 or 00 00000 30001

respectively.

35

36

USE COMPILER BINARY SUBROUTINE TAPE
This section applies al'so to the UNIVAC 1105 USE compiler.

The USE Compiler is independent of the 'subroutine library with which it is used. That is, changes
may be made to the library without changing the compiler itself. This is achieved by maintaining
an index on the library tape, which is read by the compiler at the appropriate time.

Subroutines on the library tape are in a relocatable binary form. In general, they are stored as
though they were to be located at 4000)B and as though the temporary pool (compiled region)
were to be located at 7000)B. Once the actual locations of the subroutine and the compiled
region have been determined for a particular program, the addresses in the library form of the 'sub-
routine can be properly modified.

Those addresses less than 4000)B are constants, those between 4000)B and 7000)B are relative
to the location of the subroutine, and those greater than 7000)B are in the temporary pool. Certain
exceptions occur in this 'scheme, principally constants whose address parts are greater than
4000)B, and references to subsidiary subroutines. These exceptions are handled by introducing
'special key words into the 'subroutine to indicate how the exceptional cases are to be modified.

The following is a detailed description of the precise form of the library tape.

A USE Subroutine Library consists of a main index, a cross reference index and any number
(2 120) of ‘subroutines.

The library need not start at the beginning of the tape. The main index, the cross reference in-
dex, and the first subroutine must each start a new block.

The Main Index — The main index has an entry for each subroutine in the library. The entries in
the index are in the same order as the 'subroutines are on the tape.

Each entty requires three computer words as follows:

I 6 T 6 T 6 1 6 T 6 1 6] bits

Name of Subroutine

Main Index

| 7 | | 10] 6 I 6] bits entry
No. of Pos. of No. of Args. Results
temps temps words for
one subroutine
I 5 l 15 [15 | bits

No. of cross refs, Loc. of cross refs.

The first word of the entry consists of the name of the subroutine in six six-bit excess-three
characters.

The 'second word of the entry contains five numbers starting from the left: seven bits give the
number of cells to be reserved for this routine in the subroutine temporary pool, seven bits give

the number of cells to be reserved at the beginning of the subroutine temporary pool ahead of
those reserved for this routine, ten bits give the number of consecutive cells required for the
subroutine, six bits give the number of arguments to be transferred into the subroutine by the
calling sequence, and the rightmost six bits give the number of results produced by the sub-
routine, The information contained in the first two words of the entry is the same as that in the
u and v addresses of the ‘“‘SUB”’, “TEMPS’’, and ““INOUT’”’ lines of the subroutine.

The third word of the entry contains two numbers conceming subsidiary subroutines. The u ad-
dress portion of the third word of the entry contains the number of different subroutines referred
to (by means of calling sequence generator lines) in the primary subroutine. The v address portion
of the third word of the entry gives the relative position (starting with zero) in the cross reference
index of the first word associated with this primary subroutine.

The first word following the final entry in the main index is the flag word 77 00000 00000.

The Cross Reference Index: The cross reference index begins at the beginning of the block which
immediately follows the block containing the flag word which ends the main index.

The cross reference index consists of a series of groups of subroutine names, each given as six
six-bit excess-three characters. Each group contains the names of all subsidiary subroutines re-
ferred to by one of the primary subroutines. If a subroutine listed in the main index does not refer
to any other subroutine there will be no group in the cross reference index corresponding to it.
Within each group the subsidiary subroutine names must be in the same order as their first ap-
pearances in the operation code field of the primary subroutine.

Immediately following the final name in the final group in the cross reference index is the flag
word 77 00000 00000. Immediately following this flag word is a 'single word check sum of all
words in both the main index and the cross reference index with the exception of the two flag
words,

The Library Subroutines: The first word of the first subroutine in library fom is the first word in

the block immediately following the block containing the check sum which ends the cross refer
ence index. Each subroutine immediately follows its predecessor (i.e., only the first subroutine
is required to start a new block) except that the last word in each block is a single word check
sum of the other 119 words in that block.

In library form a subroutine consists of an identification word, base words which when propetly
modified become the words of the compiled subroutine, and usually some key words which indi-
cate certain types of modification.

Identification Word: The first word in a subroutine in library form is always an identification word
of the form:

57 55371 N

The 57 55371 pattern serves as a check indicating the beginning of a subroutine. The N is the
total number of words in the subroutine on tape. N includes the identification word, all base words,
and all key words, but does not include any block check sum words.

Base Words: Each base word is of the form OP, B, B where the values of its address parts, B,
depend on the type of modification required in order to convert them into the address parts, A, of
the word in the compiled subroutine. (The operation part of a base word is unmodified.)

37

38

Each address, A, (i.e., the u and the v part of each word) in a compiled subroutine must be ex-
pressible as the sum (modulo 215) of a constant, C, and at most one of the following variable
locations:*

E_, the execution address of the beginning of the subroutine.

o the storage address of the beginning of the subroutine.

S

E.., the execution address of the beginning of the temporary pool.
Sy, the storage address of the beginning of the temporary pool.
X

.(i=0,1, 2,...), the execution address of the beginning of the ith subsidiary subroutine.
1

An address is called a ‘“‘normal address’’if it is expressible in the form C, C+E_, or C + Ep,

and if the low order four octal digits of C (C modulo 212) are in the ranges shown in line 2 of
Table 1. If B is then defined as shown in line 3 it is clear that the value of B determines the
form of the address, A, which may be computed as shown in line 5.

If an address is not normal, B is defined as shown in line 2 of Table 2. In these cases, the value
of B does not determine the form of the address so 10-bit codes shown in line 3 are assigned to
distinguish the various cases. The address, A, in the compiled subroutine may then be computed
as shown in line 4,

If both addresses in a base word are normal and if the operation part of the word is not 70, the
base word is normal. If one or both of the addresses in a base word are not normal, or if the oper
ation part of the word is 70, the base word is abnomal.

As has been pointed out above, normal base words can be properly modified without reference to
key words. Groups of one or more consecutive abnormal base words may be interspersed among
the normal words. Each group of abnormal words is preceded by a key word of the following form:

[70 | ucode | v code | m 1
6 bits 10 bits 10 bits 10 bits

The 70 in the operation part of a key word serves to identify it as such and to distinguish it from
normal words. The number of abnormal words in the group is given by m. The u code and v code
parts of the key word specify the type of modification required for the u and v address parts of
the abnormal words in the group. The exact form of these 10-bit codes is given in line 3, Table 2.

The first base word (the entrance) of a subroutine must be normal (e.g., MJO, O, BODY). The
second base word is a dummy word which is arbitrarily replaced with an ‘‘Alam” line. A key
word may not appear before these first two base words,

*Technically this restriction prohibits an address which is dependent on two or more of the above
variable locations although such an address is legal in a symbolic subroutine. It is felt that
this added restriction is of no practical consequence. Note, for example, that the difference of
two addresses within the subroutine is expressible as a constant.

TABLE 1

1. Form of expression for

normal address A=C A=C +Es A:C+ET
2. Range of C mod 2'2 {0, 3777] [o, 2777] [0, 0777]
3. Definition of B B=C B = C +4000 B =C + 7000
4. Range of B mod 2'2 {o, 3777] [4000, 6777] " [7000, 7777]
5. To compute address A=B A=B+E_-4000 | A =B +E_-7000

TABLE 2

1. Form of expression

for abnormal address c A=C+E_ [A=C+S_ [A=C+E, | A=C+S, | A=C+X;
2. Definition of B B =C| B=C+4000 |B=C+4000 | B=C+7000 [B=C+7000 | B=C+2000
3. 10-bit code 0001 0002 0003 0004 0005 1000+i
4. To compute address A =B |A=B+E_.4000(A=B+5,-4000| A=B+E,-7000| A=B+S-7000(A=B+X-2000

39

40

I1l. The USE Compiler-Programming Manual
for the UNIVAC 1105

.INTRODUCTION

The purpose of the USE Compiler is to reduce the amount of effort required to prepare a correct code for
the UNIVAC Scientific Computer, 1105. The use of the compiler requires an understanding of the use of
1105 computing system, and such an understanding is assumed in this manual.

Normally, the input to the compiler consists of a program written in the symbolic language described
here and unityped on magnetic tape. In addition a list-of changes to be made to the main program may be
supplied on magnetic tape. The output from the compiler is a tape which when listed on the offline High-
Speed Printer produces a side-by-side listing of the symbolic program as written by the programmer along
with the translated machine language program in octal. In addition a loadable binary tape is produced.

.INPUT LANGUAGE

The language accepted by the USE Compiler consists of a series of lines of coding. Most lines
of coding produce either an instruction or a number in the final machine-language code. Some
lines, however, generate more than one word in the final code, while others are directions to the
compiler and do not appear at all in the machine-language code.

Each line of coding is terminated by a special ‘‘end of line’’ symbol ““$’’ or “~|** which must
appear nowhere except at the end of a line. A line contains up to sixfields separated by commas
‘¢, Characters to the left of the first comma are in the item number field. The tag field follows
the first comma, the operation code field follows the second comma, the u address field follows
the third comma, the v address field follows the fourth comma, and the comments field follows
the fifth comma.

The number of characters in any field is not fixed. Spaces are not equivalent to zeros; in fact,
spaces are ignored except in the comments field. In certain cases it is permissible to leave a
field blank; however, the correct number of commas as stated above must precede each field
which is present, Commas beyond the fifth in any line are simply characters within the com-
ments field and have no special significance. The code may be written either on blank paper
or on forms with the end of line symbols and certain of the commas pre-printed.

.ITEM NUMBER FIELD

An item number is a number greater than or equal to one, having at most six digits to the left
of the decimal point and at most four digits to the right of the point. The compiler will associate

an item number with each line of coding. Normally the item numbers will be computed in a se-
quential fashion by the compiler, but a programmer may override this automatic computation of
item numbers and explicitly assign any item number he wishes to any line of coding. The only
testriction is that the item number on any line (whether computed by the compiler or supplied
by the programmer) must be greater than the item number on the preceding line. That is,the
sequence of item numbers must increase monotonically throughout the entire program.

The compiler will bey the following rules in assigning item numbers:

1. If more than one digit appears in the item number field the number as it appears is
taken as the item number of that line, If no decimal point appears the number is con-
sidered an integer., The position of the right-most digit becomes the ‘‘index position’’.
Thus, the index position may be the one’s position or any one of the four fractional
digit positions permitted in an item number.

2. If exactly one digit appears in the item numt=r fie'd that digit is extracted into the
index position of the last item number which was written out in full. If exactly one
digit appears in the item number field of the fi'st line of coding it is taken as the
ccmplete item number, and rule 1, above, applies.

3. 'If the item number field is blank a one is added into the index position of the item
number associated with the immediately preceding line of coding. If the item number
field of the first line of coding is blank item number 1 is assigned to that line and the
one’s position becomes the index position.

Note that the index position is changed only when more than one digit appears in the item
number field.

The programmer may adopt any one of several schemes for the assignment of item numbers.
For example:

Option 1. Write a complete item number explicitly on each line of coding. Any mono-
tonically increasing sequence of item numbers may be used.

Option 2. Leave the item number field blank throughout the code. The compiler will
follow rule 3 and simply assign the integral item numbers 1, 2, 3, .. ., to the success-
ive lines of coding. If it is desired to have the compiler count up in steps of one-tenth
or one-hundredth, simply write 1.0 or 1.00 in the item number field of the first line of
coding. If it is desired to interrupt the sequence and begin againat a different number
simply write the new starting number in full in the item number field of the appropriate
line, (taking care, of course, that the item number written is larger than that which will
be computed by the compiler for the immediately preceding line).

Option 3. Write out in full every tenth item number (namely, those whose final digit
is 0), and on the nine intervening lines write the single digits 1, 2, . .. 9. A pre-
printed form may be used on which the single digits are already printed in the item
number fields and it is therefore necessary to make an entry in this field only on every
tenth line, Note that it is not necessary to use every line of the pre-printed form since
the typist may be instructed to ignore a line which contains only an item number.

The use of item numbers for making changes to a code is described in Sec. 13.The important
points covered so far are these:

41

42

1. Each line of coding is assigned a unique item number.

2. It does not matter whether the line produce none, one, or more than one word in
the final machine-language code.

3. The item numbers will form a monotonically increasing sequence throughout the
program.

If the above rules produce an item number which is not greaterthan all preceding item numbers
an error will be indicated but compiling will continue.

. TAG FIELD

A tag is a symbol whose principal purpose is to serve as a symbolic address for a cell in the
computer, A tag may consist of from one to six alphanumeric characters (chosen from the letters
a thru Z and the digits 0 thru 9) at least oneof which is a letter. The letter ‘‘0’’ will be changed
to a zero by the compiler.

Five particular tags are automatically equated to fixed machine addresses as follows:

Tag Machine Address
FILL Illegal machine address 30000)B

Q The quotient register 31000)B

A The accumulator 32000)B

D The first drum address 40000)B

L The present value of the location counters

If a tag appears in the tag field of a line of coding which produces one or more words in the final
machine-language code, that tag will be equated to the machine address of the cell occupied by
the word, or first word, so produced. Tags may also -be equated to machine addresses in other
ways which are described in Sec. 10, 13.2, 14.3, 14.4, 14.5, It is neither necessary nor desir-
able to have an entry in the tag field of every line. On the other hand, eachline which produces
a word referred to by another word probably should be tagged.

. OPERATION CODE FIELD

The operation is a symbol appearing in the operation code field and containing one to six alpha-
numeric characters. There are four main classes of symbols which may be used in this field:
Those which produce instructions in the final machine language code, those which produce
numbers, those which generate subroutine calling sequences, and those which permit the pro-
grammer to modify and control some of the functions of the compiler.

5.1 OPERATION SYMBOLS WHICH PRODUCE 1105 INSTRUCTIONS

There are three types of symbols in this class.
a. Octal operation codes.

Any two octal digits will become the operation part (bits 30 thru 35) of an 1105 word.

5.2

5.3

b. Standard letter pair operation codes.

Any of the letter pair symbolic operation codes recommended by Remington Rand will be
translated to the corresponding pait of octal digits and become the operation part of an 1105
word. These codes are listed in Table 1.

c. Certain three-character codes for the 1105 j-type operations.

In each case these are formed by affixing a third character to one of the two-letter codes
listed in Table 1. The presence of the third character does not affect the translation of the
first two letters which become the operation part of an 1105 word. In addition the third char-
acter is translated to an octal digit and becomes the j digit (bits 27 thru 29) of the 1105
word. The permissible three character codes of this type are listed in Table 2.

OPERATION SYMBOLS WHICH PRODUCE NUMBERS

There are four operation symbols which produce numbers in the final machine language code;
“B?, “F”, “X”, and XS3-n’’ where n represents one of the first nine integers.

a, The operation symbol ‘‘B”’, possibly followed by up to five octal digits within the operation
code field) introduces an octal integer which will become an 1105 binary integer in the
machine language code,

b. The operation symbol ‘‘F?’ introduces a generalized decimal number which will be translated
to the corresponding 1105 floating point number.

c. The operation ‘‘X’’ introduces a generalized decimal number which will be translated to the
corresponding 1105 binary integer. The exact form of a generalized decimal number is
described in section 6.2.

d. The operation XS3 or XS3-n introduces a series of characters, (alphabetic, numeric and other)
which will be translated to n words of six excess—three characters. XS3 is equivalent to
XS3-1. The use of this operation is described fully in Section 6.2.

OPERATION SYMBOLS WHICH PRODUCE SUBROUTINE CALLING SEQUENCES

Operation symbols in this class are the names of subroutines. Two cases arise: internal sub-
routines which are directly available to the compiler as part of the machine library, and external
subroutines which must be supplied along with the program in which they are to be used. The
name of an internal subroutine may be any combination of one to six alphanumeric characters
provided it is not identical to any other acceptable operation symbol. The name of an external
subroutine must consist of an organization letter pair such as those listed in Table 3 followed
by one to four alphanumeric characters. The appearance of the name of a subroutine in the
operation code field will produce a calling sequence and, at a remote location, the subroutine
itself, The calling sequence will transfer the appropriate parameters and arguments to the sub-
routine and return jump to it,

Depending on the number of parameters and arguments required, the calling sequence may con-
sist of one, two, or three words in the final machine code. If none are required the calling se-
quence is simply a return jump instruction. If one parameter or argument is needed the return

43

44

jump‘is preceded by a transmit positive instruction. For more than one, the transmit positive
instruction is preceded by a repeat instruction. If thete are two arguments, both of which are
in the accumulator, the return jump is preceded by a left transmit and a transmit positive
instruction.

5.4 OPERATION SYMBOLS WHICH CONTROL THE COMPILER

6.

The following are special control symbols which may appear in the operation code field:

“SETLOC”’ ‘““USES’’ “ALARM”
‘RESERV”’ ‘‘CARDS"’ “TEMPS”
‘““EQUALS”’ “TAPE”’ “INOUT?”
“LOCATE"”’ ‘““DELETE”’ “Pn” where n represents
““COMPAT”’ ‘““NOMORE?’ 0,1,...9
‘““DUPx”’ where x represents ‘‘SUB”’ ‘‘ENDSUB”’

VvV, U, UV, O, 0V, ‘““END”

OU, or OUV

Each of these control symbols is described in detail in Sec. 14. In general they do not produce
words in the final machine code. Rather they tell the compiler how it should operate on the other
lines of coding.

. ADDRESS FIELDS

—

The entries which may appear in the u and v address fields are determined,for each line, by the
operation symbol on that line,

THE ADDRESS FIELDS OF A LINE WHICH PRODUCES AN 1105 INSTRUCTION

The u and/or v address fields of an 1105 instruction line may contain any of the following types
of terms.

a, Decimal address — a decimal integer translated as the corresponding binary integer,

b, Octal address — an octal integer followed by ‘‘)B”’ translated as the corresponding binary
integer.

c. Tag-one to six alphanumeric characters at least one of which is a letter, translated to the

machine execution address to which it has been equated as explained in Sections 4 and 10.

d.

g.

Storage Address — A tag as described in paragraph c. above followed by ‘“)S”’ translated to
the machine storage address to which it has been equated as explained in Sections 8 and 10.

A constant pool address — written ‘‘L(---)’’ translated as the machine address, within the
constant pool (Sec. 9) of the number which is enclosed by the parentheses. The number is
written just as it would appear in the operation code field and the u and v address fields of a
separate line of coding, but without any commas. That is, a “B”’, “X” or “F” followed by
the significant digits and exponents if needed (Sec. 6.2). If no “B”’, “X'"’, or ‘““F’’ appears,
an “X’’ is assumed.

Compound addresses — any series of up to seven of the types of terms described in para-
graphs a. through e. above, separated by ““+’’ or ‘“~?’ signs, translated as the algebraic

sum of the translations of the individual terms.

A completely blank field will be translated to binary zero,

6.2 THE ADDRESS FIELDS OF A LINE WHICH PRODUCES A NUMBER

a.

Octal integers — The octal digits in the address fields of a line containing the operation
symbol ‘‘B’’ are taken together with any octal digits which may have followed the “B”
within the operation code field as an octal integer and translated to the corresponding binary
integer.

A generalized decimal number which may appear in the address fields on a line containing
the operation symbols ‘“‘X’’ or “‘F’’, consists of a significant digits part and, if desired,
a binary and/or decimal exponent part. The significant digits part of a generalized decimal
number is simply a decimal number, preceded by a sign and including a decimal point it
desired. The binary and/or decimal exponent parts, if present, follow the significant digits
part. They are introduced by the letters ‘‘B’’ and ‘‘D”’ respectively and consist of decimal
integers of no more than three digits preceded by a “‘+”’ or ‘““~”’ sign if desired. The''+”
sign may be omitted in both the significant digits part and also the exponent parts of the
number.

XS3-n — Normally, the desired characters are simply written in the u and v address fields.
However, a space is represented by an asterisk and certain other special characters are
represented by a character pair. The first character of such a pair is always #. The com-
plete list of characters is given in Table 5. If the number of characters produced by the

" contents of the u and v fields is less than 6n, the n words will be filled out with space

characters (01 octal) and a warming will be given; if greater than 6n, only the first 6n
characters will be used and a warning will be given. If the character # is followed by a
character not listed in Table 5, the # is ignored and a warning is given.

The characters required in the address fields of a line which produces a number may be
writtenright across both the uand v fields. Thatis,thefourth commaof theline(which separates
the u field from the v field) may occur before, among, or following the other characters. It
will have no effect on the translation of the number.,

6.3 THE ADDRESS FIELDS OF A LINE WHICH PRODUCES A SUBROUTINE CALLING SEQUENCE

The u address field of a line which produces a subroutine calling sequence is associated with

45

46

6.4

7.

the location of the subroutine arguments and/or parameters and may contain any of the types of
terms permitted in the address fields of a line which produces an 1105 instruction. The v address
field of a line which produces a subroutine calling sequence is associated with the location of
the subroutine itself and must be blank or contain exactly one tag. The use of subroutines is
described fully in Section 11.

THE ADDRESS FIELDS OF A COMPILER CONTROL LINE

The entries permitted in the address fields of a compiler control line depend on the particular
control symbol which is being used in the operation code field, and will be fully described later
as each control symbol is explained in Section 14. In general, they are either certain of the types
of terms permitted in the address fields of a line which produces an 1105 instruction (Sec. 6.1) or
symbols having special meaning in connection with a particular control function.

COMMENTS FIELD

The comments field is essentially ignored by the compiler but is teproduced on the output
listing. The programmer may enter any comments he wishes except that the end of line symbol
““$” or ““~J”” must occur only at the end, and the total number of characters between the third
comma of the line (which separates the operation code field from the u address field) and the
end of line symbol is limited to fifty-nine.

. ASSIGNMENT OF MACHINE LOCATIONS

Each word in the machine language program will be associated with two machine locations:
1. A storage location at which the word is to be stored at the start of the program, and

2. An execution location which the word is expected to occupy when it is used in the
program.

These two machine locations may be the same (and usually will be unless the program is large
enough to require segmentation). In large segmented programs, the execution location may be a
magnetic core address, whilethe storagelocation is onthe magnetic drum but this is not required,

In order to associate these two machine locations with each word of the machine language pro-
gram the compiler will maintain two location counters; one for the execution and one for the
storage location. Ordinarily both counters are set to four at the start of a compilation. As each
word of the machine language program is produced it is associated with the addresses found in
the counters, and the location counters are then advanced by one.

The programmer, however, may at any point in the program modify this sequential assignment of
machine locations. By use of the RESERV control line one or both of the counters may be ad-
vanced by an arbitraty amount. The SETLOC control line completely interrupts the sequence and
permits specification of new starting values for one or both of the location counters. The use of
these control lines is described fully in Sections 14.1 and 14.2.

. THE COMPILED REGION

In addition to instructions, numbers, and subroutine calling sequences which are produced

9.1

9.2

9.3

9.4

10.

directly as a resuit of the occurrence of the corresponding types of lines of coding, there will be
a region of the final machine langauge code which is produced automatically by the compiler.
This compiled region will contain, in general, four parts.

THE SUBROUTINE TEMPORARY POOL is a group of cells reserved for the use of all sub-
routines in the program which require common temporary storage. Its length depends on the
requirements of the particular subroutines used in the program.

THE CONSTANT POOL is a group of cells each of which contains the binary translation of a
number whose constant pooladdress has been referred to by the “L(. . .)’’ notation somewhere
in the program.

THE WORKING STORAGE is a group of cells each of whose addresses is equated to a tag
used in the program but not otherwise equated to a machine location.

THE SUBROUTINES which are used in the program and not specifically located elsewhere by
the programmer will be placed in the compiled region.

Ordinarily the execution and storage locations of the compiled region will be the same, and such
that the compiled region will be located at the high numbered end of magnetic core storage. The
programmer may, however, by use of the COMPAT (compile at) control line, cause the compiled
region to be assigned arbitrary storage and execution locations. The COMPAT control line also
permits the equating of a tag to the machine address of the compiled region. Thus the sub-
routine temporary pool may be referred to in the main program if desired. The use of the COMPAT
control line is described fully in Section 14.5.

EQUATING TAGS TO MACHINE ADDRESSES

As has been mentioned in Sec. 4 each tag which appears in the tag field of a line of coding
which produces one or more words in the machine-language code is equated to the execution
and storage locations associated with the word, or the first word, so produced. Thus.a tag may
appear on any line which produces an 1105 instruction, a number, or a subroutine calling
sequence,

In most cases, the tag field of acontrol line should be left blank since control lines do not pro-
duce wotds in the machine-language code. There are four exceptions, however. The EQUALS
control line equates the tag to arbitrary storage and execution addresses. The COMPAT control
line equates the tag to the beginning of the compiled region (i.e. the beginning of the subroutine
temporary pool). The RESERV control line equates the tag to the adaiess of the first word of an
unfilled region. The LOCATE control line equates the tag to the beginning of a subroutine. The
use of these control lines is explained in detail in Sections 14.2, 14.3, 14.4 and 14.5. Any given
tag may appear in the tag field only once in the main program and only once in any given sub-
routine,

Tags which are not equated to machine addresses as a result of their occurrence in the tag field
as explained above may appear in the u or v fields of lines which produce 1105 instructions or
subroutine calling sequences. The special tags‘‘A”’, ¢‘Q”, “D’?, ““L”’, and “FILL” are equated
to machine addresses. Other tags are equated by the compiler to machine addresses within the
compiled region as follows: Those appearing in the v field of lines which produce subroutine

47

48

11.

calling sequences are equated to the addresses associated with the first word of that subroutine.
Those which appear in the u field of lines which produce subroutine calling sequences or in the
u or v field of lines which produce 1105 instructions are equated to the addresses or cells in
the working storage part of the compiled region.

USE OF SUBROUTINES

The internal form of standard USE subroutines acceptable to the USE compiler is explained in
detail in Section 12. To use a subroutine the following conventions must be understood:

a, The subroutine is to be entered by a standard return jump instruction; the entrance is al-
ways the first word of the subroutine and the normal exit is always the third word.

b. Atthe time of exit from the subroutine the results are always stored within the subroutine
in the fourth and following cells. (They may, in addition to this, be stored in the accumu-
lator or elsewhere). .

c. Previous to the time of entrance to the subroutine the arguments and/or parameters must
have been transferred to specific cells within the subroutine. (Namely, the cells immediately
following the cells reserved for results.)

d. The subroutine is self-contained (that is it includes its own instructions and constants,
and refers only to itself) with the following exceptions: '

1) It may refer to the accumulator and to the Q-register.
2) It may refer to the subroutine temporary pool in the compiled region (Section 9).
3) It may refer to other standard USE subroutines. ¢

Information, including the length of the subroutine, the number and order of results, possible
location of results in addition to the standard location, number, order, and locdtion required
within the subroutine of parameters and/or arguments, number of cells used in the temporary
pool, and other subroutines referred to, will be found in the individual subroutine write-up.

The use of a line of coding which produces a subroutine calling sequence will, in many cases,
make it unnecessary for the programmer to concern himself with many of these details. Such a
line of coding will cause the subroutine itself to be placed either in the compiled region (Sec. 9)
or at a position specified by the programmer. It will insure that a tag is equated to the machine
locations associated with the first word of the subroutine. It will generate the coding in the
main program necessary to transmit the arguments and/or parameters into the subroutine, and
finally, unless otherwise specified by the programmer, it will insure that all subsidiary sub-
routines are included in the compiled region.

As has already been explained (Sec. 5.3), the presence of the name of a subroutine in the
operation code field of a line of coding indicates that a calling sequence is to be generated. The
v address field of the line may either be blank, or contain exactly one tag. If it contains a tag
which is equated to machine locations as a result of its appearance in the tag field of some other
line of coding, the subroutine will be placed at the storage address and prepared for execution at

12.

the execution address equated to that tag. It is up to the programmer to insure that there is room
for the subroutine at the location specified. He may do this for example by appropriate use of
control lines such as ““RESERV’’ or “LOCATE”’, which are explained in detail later (Sections
14.2 and 14.4).

If the v address field of a line which produces a calling sequence contains a tag which does
not appear in the tag field on any line of coding, or if it is blank, the subroutine will be placed
in the compiled region and the tag, if any, will be equated to the machine locations, within the
compiled region, associated with the first word of the subroutine.

The u address field of a line of coding which produces a subroutine calling sequence may
contain any of the types of terms permitted in the address fields of a line which produces an
1105 instruction. It represents the location of the argument or pa-ameter (or the first of these
if more than one is required. If more than two parameters and/or arguments are required they
must be available, in the correct order, in sequential cells so that they may be transferred to
the correct cells within the subroutine by a repeated transmit positive instruction which will be
produced by the compiler. If only two parameters or arguments are required they may be stored
in sequential cells or in the left and right halves of the accumulator.

The compiler will insure that any subsidiary subroutines which are referred to by the primary sub-
routine are included in the compiled region unless the programmer, by means of the USES control
line, which is explained in detail in Section 14.7, indicates that a copy of the subsidiary sub-
routine at some specified place outside of the compiled region is to be employed.

The calling sequence’ produced by the compiler will consist of either a single return jump; a
transmit pesitive, return jump; a repeat transmit positive, return jump; or a left transmit, trans-
mit positive, return jump, depending on the number of parameters and/or arguments required.
In any case the tag, if any, in the tag field of the line which produces the calling sequence is
equated to the machine locations associated with the first word of the calling sequence.

It is possible to include a subroutine in a program without producing a calling sequence. This
is accomplished by means of the LOCATE control line which specifically locates, at the point
in the program where the LOCATE line occurs, the subroutine whose name appears in the u
address field.

It is, of course, the programmer’s responsibility to insure that every subroutine to which he
refers.(and any subsidiary subroutines which they require) are available to the compiler at the
time his program is compiled. Any subroutine, provided it is in the proper form, which is not
in the internally stored library may be included with the coding for the main program. The com-
piler will accept such external subroutines, and in effect (though not physically) add them to
the library while that one program is being compiled.

FORM OF SUBROUTINES

The compiler will compile subroutines which are in a magnetic tape internal library or included
externally as part of the coding for the program. Both intermal and external subroutines are
written in the same form as othercoding for the compiler with certain exceptions which are
described here.

The item number field should be left blank on all lines of coding of a subroutine.

49

50

A subroutine consists, in general, of nine parts:

1
2)
3
4)
5)
6)
7
8)
9

Leading line

Parameter lines

Entrance line

Alamm exit

Normal exit

Result cells

Argument and/or parameter cells
Body of the routine

Ending line

D

2)

3)

4

5)

The leading line of a subroutine must have the special control symbol ‘‘SUB?” in
the operation code field to indicate that a subroutine is to be processed. The u
address field of the leading line contains the name of the subroutine, and the v
address field contains an integer which is equal to the number of consecutive
cells occupied by routine. The ‘‘SUB’’ coatrol line is described fully in Section
14.10.

There are three types of parameter lines introduced, respectively, by the special
control symbols ‘‘TEMPS”’, “INOUT’’, and “Pn” (where n represents a digit 0
through 9) in the operation code field.

A “TEMPS”’ control line is used to indicate, by an integer in the u address field
the number of consecutive cells used by the subroutine in the subroutine temporary
pool in the compiled region. An integer in the v address field indicates the position
within the temporary pool at which the temporaries for this subroutine are to start.
Normally this is zero except when it is necessary to avoid conflict with a sub-
sidiary subroutine which itself uses the temporary pool.

An “INOUT”’ control line is used to specify by means of integers in the u and
v address fields, respectively, the number of arguments and/or parameters andthe
number of results. If either the ‘““TEMPS’’ line of the ‘‘INOUT”’ line does not ap-
pear the corresponding parameters are taken to be zero.

Control lines introduced by ‘PO, ‘““P1”, . . . “P9 in the operation code field
have no effect on the compilation of the program but are permitted to make USE
subroutines compatible with other systems.

The enfrance line produces the first word of the machine language subroutine. It
should be an unconditional jump to the body of the subroutine.

The alarm exit line should have the control symbol ‘‘ALARM” in the operation
code field. This produces the second word of the machine language subroutine.
The compiler will supply an appropriate instruction for the cell. This will depend
on the computation system in use at a particv’ar installation and might, for ex-
ample be a return jump to an alarm print out routine loc..2d at a fixed position
on the drum.

The normal exit line produces the third word in the machine language subroutine.
It should be an unconditional jump instruction which may be set up by a return
jump instruction in the main program.

6) Result cells and

7) Parameter and/or argument cells must be reserved within the subroutine immediately
following the normal exit either by use of the “‘RESERV”’ control line or by making
entries in the tag field on the correct number of lines.

8) The body of the subroutine may contain the following types of lines:

Lines which produce 1105 instructions
Lines which produce numbers

Lines which produce subroutine calling sequences
““EQUALS’’ and ‘“RESERV’’ control lines

These lines may be written just as in other (non-subroutine) coding for the compiler
except that:

a. No constant pool addresses of the form ‘‘L(. . .)’’ may be used.

b. Tags which appear in the v address field of lines which produce sub-
routine calling sequences should not appear in the tag field. They are
equated by the compiler to the machine locations associated with the first
word of the subsidiary subroutine thus called for.

c. Other tags which appear in the u or v address fields but not in the tag
field are equated, in order of their occurrence, to the addresses of cells
in the subroutine temporary pool in the compiled region.

9) The ending line of a subroutine must contain the special control symbol ““ENDSUB”
in the operation code field.

13. CHANGES AND CORRECTIONS; RECOMPILING

The procedure described in this section in no way precludes any other method of correcting a
program compiled by the USE Compiler. Since both a loadable binary tape and a side-by-side
listing tape are produced as outputs from the compiler the installation or individual programmer
has camplete freedom to proceed in whatever way is most advisable in each case. The binary

tape may be loaded into the computer and binary corrections inserted manually or via any of.

the input media, or a tape editing routing may be used to correct the binary tape.

However, when it is desired to obtain the advantages of a re-compilation (such as an up-to-
jate listing and freedom from patches) the compiler itself should be used. Since an output
‘isting tape appears to the coempiler to be the same, in all essential respects, as an original
unityped main program tape, the compiler does not differentiate between the first and subse-
quent compilations of a program. Changes may be made at the time of the first compilation
if desired.

Each program to be compiled may be accompanied by a list of changes on magnetic tape, The
changes are written exactly like other lines of coding except that the item numbers on succes-
sive lines need not be in order., However, where a single digit or a blank appears in the item

51

52

14.

14.1

14.2

number field of a change line the compiler will supply an item number just as it does for lines
of coding in the main program. The changes are then sorted by the compiler according to the
item number and merged with the lines of coding from the main program as compilation proceeds.

Three types of changes may be made: one-for-one replacements, insertions, and deletions. Itis
important to note that these are changes to the compiler language program, not to the machine
language program. That is, lines of coding, not computer words, are being replaced, inserted
and deleted. It is therefore entirely feasible to change control lines as well as lines which
produce 1105 instructions or numbers. This is one of the advantages of recompiling.

Replacements: Ifthe item number ofa change lineisidenticalto the item number on a line of the
main program, the change line will replace the line in the main program.

Insertions: If the item number of a change line is not identical to the item number on any line
of the main program the change line will be inserted between two lines in the main program
at the point such that the resulting sequence of item numbers is monotonically increasing. This
point is, of course, unique.

Deletions: If the first of a group of successive lines is replaced (as explained above) by a
change line having the control symbol “DELETE’’ in the operation code field the entire group of
lines will be deleted from the main program. The extent of the group of lines to be deleted is
specified in the address fields of the ‘‘DELETE’’ control line as is explained in detail in
Section 14.8.

THE USE OF CONTROL LINES

Many of the special control symbols which may appear in the operation code field have already
been mentioned. In this section the uses of all such control lines are explained in detail.

“*SETLOC' The “SETLOC”’ control line normally sets the execution and storage location
counters to the translated values of the expressions found in the u and v address fields re-
spectively. These fields may contain any of the types of terms permitted in the u and v address
fields of lines which produce 1105 instructions (Sec. 6.1) with two exceptions:

1) Constant pool addresses of the form “L(. . .)’’ are not allowed.

2) Any tags which are used must have appeared in the tag field on a preceding line of coding.

If either the u or the v address field is blank the corresponding location counter is not altered
(thus a blank is not equivalent to zero in this case).

““SETLOC” is not allowed in subroutines. It should not have a tag in the tag field.

“*RESERY’' The ‘“RESERV’’ control line normally advances the execution and storage location
counters by the translated values of the expressions found in the u and v address fields respect-
ively. These fields may contain the same types of terms as those described in the first para-

graph of ““‘SETLOC” in Section 14.1.

If the u or v address field is blank the corresponding location counter is not altered.

If a tag appears in the tag field of a “RESERV”’ line, it is equated to the values found in the

14.3

14.4

14.5

14.6

location counters*before they are altered. Thus the tag is associated with the first cell in the
reserved region.

Within a subroutine, but net otherwise, the translated values of the counters of the u and v
address fields must bethe same and the reserved region is loaded with binary zeros.

**EQUALS'" The ‘“EQUALS’’ control line which may appear anywhere in a program, equates the
tag appearing in the tag field to the translated values of the expressions found in theuand v
address fields. These fields may contain the same types of terms as those described in the
first paragraph under ‘‘SETLOC”.

If either the u or v address field, but not both, is blank, both the execution location and the
storage location equated to the tag will be the same, and equal to the translated value of the
expression in the non-blank address field.

“LOCATE' The ‘““°LOCATE’’ control line causes the subroutine whose name appears in the u
address field to be included in the machine langauge code at the point where the ““LOCATE”
occurs. The v address field is not used. No calling sequence is produced.

If a tag appears in the tag field it is equated to the cell associated with the first word of the
subroutine (i.e. the entrance).

The subroutine must be available to the compiler at the time the ‘““LLOCATE” occurs, either
in the internal library or by having been included in a preceding part of the coding.

““LOCATE”’ may not be used within a subrotutine.

“*COMPAT' The “COMPAT?’ (compile at) control line permits the programmer to override the
automatic placing of the compiled region at the high numbered end of core storage, and/or the
to equate a tag to the machine locations of the first cell of the compiled region (i.e. the begin-
ning of the subroutine temporary pool). At most one ‘““COMPAT? control line may appear in a
program but it may appear anywhere except within a subroutine.)

Normally the execution and storage locations of the compiled region are made equal to the
translated values of the expressions found in the u and v address fields, respectively. 'These
fields may contain any of the types of terms described in the first paragraph under ““SETLOC?”.
If the u address field is blank the execution location of the compiled region will be at the high
numbered end of magnetic core storage. If the v address field is blank the storage location will
be the same as the execution location.

If a tag appears in the tag field of a “COMPAT’’ control line, it is equated to the machine lo-
cations of the first cell of the compiled region.

“DYPx" The ““DUPx” (duplicate) control line reduces the amount of writing required when
the entries in corresponding fields on each of a group of successive lines would be identical.
If the group of lines is immediately preceded by the appropriate ‘‘DUPx’ control line, then, in
allthe lines ofthe group exceptthefirst, those fields would be duplicates of corresponding fields
in the first line may be left blank.

In writing the ‘““DUPx’’ operation code the letters O, U, and V refer to the operation code field,
and the U and V address fields respectively, and are used to indicate which of these fields are
to be duplicated. Thus, the ‘““DUPx” operation code symbol may take any of the following terms:

“DUPO)’ “DUPU” “DUPV" “DUPOU” “DUPOV” “DUPUV”

53

54

14.7

14.8

The special case “DUPOUV?”’, where all three of the fields are to be duplicated, is discussed
below.!

The extent of the group of lines on which the duplication is tobe effective is indicated as follows:

The u address field of the “DUPx’’ control line contains a single integer equal to the
total number of lines in the group (including the first), and the v address field contains
the word ‘“TIMES’’.

The first line following the “DUPx’’ line must be written out in full in the normal fashion. The

remaining lines of the group are written in the normal way except that the duplicated fields are
left blank.

The compiler actually fills in the blank fields, Therefore, the ““DUPx” line itself will not appear
on the output listing but each line of the group will appear in its complete form.

The special case, ‘“‘DUPOUV’’, where all three fields are to be duplicated is treated in a slightly
different way. The first line of the ‘‘group of identical lines’’ is written out in full immediately
following the ““DUPOUV’’ line as usual. But, the remaining lines of the group are not written at
all. The “DUPOUV”’ line and the following line will appear on the output listing. ‘“DUPOQUV”
should not immediately precede “LOCATE’’ or ‘‘SUB’’ control lines.

“DUPx’’ may not be used within a subroutine.

*'USES'" As explained in Sections 11 and 14.4, the occurrence of a ‘““LOCATE’’ control line, or
of a line which generates a subroutine calling sequence indicates that a specified subroutine is
to be included in the program. If this primary subroutine requires subsidiary subroutines the
compiler, normally, will insure that such subsidiary subroutines ate included in the compiled
region and the primary subroutine will refer to them there. The programmer may, however, override
this automatic inclusion of subsidiary subroutines by means of ‘“USES’ control lines following
the line which specifies the primary subroutine, (i.e. either a “LOCATE’’ control line, or a line
which generates the subroutine calling sequence).

The u address field of the ‘““USES’’ control line contains the name of a subroutine which is sub-
sidiary to the most recently referenced primary 'subroutine, The v address field of the ‘ USES”
control line must contain exactly one tag., The compiler will then assume that the subsidiary sub-
routine whose name is in the u address field of the ‘““‘USES’’ control line is available at the loca-
tion specified by the tag in the v address field, and the primary ‘subroutine will refer to the sub-
'subsidiary subroutine at that location. It is the programmer’s responsibility to insure that the
'subsidiary subroutine is actually at the location indicated. This may be done, for example, by
means of a “LOCATE”’ control line (See 14.4).

A ““USES” control line must not appear within a ‘subroutine.

“DELETE'" The control line ““DELETE’”’, which should appear only among the changes, is used
to delete a group of consecutive lines from the main program. The extent of the group of lines to
be deleted is indicated as follows:

The u address of the “DELETE’’ line contains asingleinteger equal to the total number

of lines in the group to be deleted (including the DELETE line itself) and the v address
field contains either the word ‘‘LINE?” or “‘LINES”’.

14.9

14.10

14.11

If both the u and v address fields of the ““DELETE?” line are blank, the effect is the same as
though ‘1, LINE’’ had been written there.

The compiler actually carries out the deletion and neither the “DELETE?” line itself nor the
deleted lines will appear in the output listing,

““NOMORE' The ‘““NOMORE” control line must appear only as the last line of coding in the
list of changes and indicates to the compiler that there are no more changes. The content of
the address fields is insignificant.

“*SUB' The ‘‘SUB’’ control-line may appear only as the leading line of a subroutine. The u
address field contains the name of the subroutine. If the subroutine is in the internal machine
library its name may consist of any combination of from one to six alphanumeric characters
which does not conflict with any acceptable operation code symbol. If the subroutine is an
external one supplied along with the main program its name must consist of one of the organiza-
tion letter pairs such as those listed in Table 3 followed by from one to four alphanumeric
characters.

The v address field of a ‘‘SUB’’ control line contains an integer which is equal to the number
of consecutive cells required by the subroutine. This includes cells for the entrance, alarm
exit, normal exit, results, arguments and instructions, constants, and subsidiary subroutine
calling sequences in the body of the routine, but does not include cells used in the subroutine
temporary pool.

‘*ALARM’'’ The ‘““ALARM’’ control line should appear only immediately following the entrance
line within a subroutine. It will produce an appropriate alarm exit instruction in the machine
language code. The contents of the address fields are insignificant.

14.12 “TEMPS' The ‘““TEMPS” control line may appear at most once within each subroutine, It

14.13

14.14

14.15

indicates to the compiler what part of the subroutine temporary pool in the compiled region
is to be used by the subroutine in which it occurs. The u address field contains an integer
which is equal to the number of consecutive cells used by this subroutine in the temporary
pool. The v address field contains an integer which is equal to the number of cells to be
left at the beginning of the temporary pool ahead of those used by this subroutine. These may
be temporaries used by subsidiary subroutines. If either address field is blank, or if the
‘“TEMPS”’ line does not appear- within the subroutine the cotresponding quantities are taken
to be zero.

“INOUT'* The ‘“INOUT” control line may appear at most once within each subroutine. The u
address field contains an integer which is equal to the number of parameters and/or arguments
which must be placed within the subroutine before it is entered. The v address field contains
an integer which is equal to the number of results which the subroutine computes and stores
within itself. If either address field is blank, or if the ‘“INOUT” line does not appear within
a subroutine the corresponding quanties are taken to be zero.

*Pn’’ Control lines having ‘“‘P0O”, “P1”’, . ., ““P9”,in the operation code field are reproduced
on the output listing but have no effect on the program. They are permitted in order to make it
possible for USE subroutinés to be compatible with other systems which might require more
parameters. They may occur only within subroutines.

“*ENDUSB" The ‘““ENDSUB?”’ control line may appear only as the final line of each subroutine.

55

56

The contents of the address fields are insignificant.

14.16 “*END'' The control line ‘‘END” must appear as the last line of the program. The content of

15.

the u address field is insignificant. The v address field may contajn any of the types of terms
permitted in the address fields of lines which produce 1105 instructions. The translated value
of the entry in the v address field will be stored in a particular location in the final block on
the binary output tape. It may be used by the binary tape loading routine as the address at
which computation is to begin.

WARNINGS ISSUED BY THE COMPILER

During compilation of a program the compiler may detect various situations which make it im-
possible to continue in the normal way. These situations may represent typists’ mistakes,
peripheral or input equipment malfunction, programmer’s blunders or intentional use of certain
features of the compiler in an unanticipated manner, In practically all such cases the compiler
will take a prescribed action to overcome the difficulty and then proceed with the compilation.
A special warining symbol, ‘“‘W’’, will be placed on the output listing on the line of coding in
which the unusual situation was detected, and a footnote (referencing the item number of the
line containing the warning symbol) will explain the reason for the warning., Table 4 lists
some of the unusual situations which are detected and explains the action taken.

FP

FI

NP
NE
TP
™
TN
IP
TU
TV
EF
RA
LT
RS
CcC
Sp
SA
SN
SS
AT
ST
R]
1y
Tj

TABLE |

STANDARD OPERATION CODES

Floating Polynomial Multiply 01

Floating Inner Product
Unpack

Normalize Pack
Normalize Exit
Transmit Positive
Transmit Magnitude
Transmit Negative
Interpret

Transmit u-address
Transmit v-address
External Function
Replace Add

Left Transmit
Replace Subtract
Controlled Complement
Split Positive Entry
Split Add

Split Negative Entry
Split Subtract

Add and Transmit
Subtract and Transmit
Return Jump

Index Jump

Threshold Jump

02
03
04
05
11
12
13
14
15
16
17
21
22
23
27
31
32
33
34
35
36
37
41

42

E]

QJ

MJ

SJ

Z]

QT
QA
Qs
LA
LQ
MS
PS
PR
PU
FA
FS
FM
FD
MP
MA
DV

SF

RP

ER

EW

Equality Jump

Q-Jump

Manually Selective Jump
Sign Jump

Zero Jump
Q-controlled Transmit
Q-controlled Add
Q-controlled Substitute
Left Shift in A

Left Shift in Q
Manually Selective Stop
Program Stop

Print

Punch

Floating Add

Floating Subtract
Floating Multiply
Floating Divide
Multiply

Multiply Add

Divide

Scale Factor

Repeat

External Read

E xternal Write

43
44
45
46
47
51
52
53
54
55
56
57
61
63
64
65
66
67
71
72
73
74
75
76

77

57

58

MSO
MS1

MS2

TABLE 1l

j-TYPEOPERATION CODES

MS3
Normalize 050
ggg } Punch 6 Levels
Quasinormalize 051
PU1
PU7 } Punch 7 Levels
Transmit A Left 220
RPO
RPN Modify neither u or v
Transmit A Right 221
RP1 .
450 RPV } Modify v
RP2
452
RP3
453 RPB Modify both u and v
454 RO } Read I0A
455)
ER
EWO
560
Ewl
561 EWB (Write to 10B
562
TABLE I

PERMISSIBLE LEADING CHARACTERS FOR EXTERNAL SUBROUTINE

AP
BA
CE
HO
ML
RR
RW
WF
NC
AR

Applied Physics Lab., Johns Hopkins University
Boeing Aimplane Company

U. S. Army, Corps of Engineers

Holloman Air Force Base

Missiles Systems Division, Lockheed Aircraft Corp.
Remington Rand Division, Sperry Rand Corp.
Ramo-Wooldridge Corp.

Wright Air Development Center

University of North Carolina

Armour Research Foundation

563

630

631

750

751

752

753

760

761

770

771

TABLE IV

WARNINGS ISSUED BY THE COMPILER

WARNING
More than 6 characters in tag or operation code field.
More than 59 characters in u and v address field.
More than 7 terms in u or v address fields,
Illegal term in u or v address fields, |
Superfluous sign in u or v address fields.
Tag in u or v address fields which appeared more than
once in tag field.

Constant pool full,

Duplicate tag in tag field.

Tag incorrectly in tag field of control line,

No room in directory for tag.

Tag incorrectly used in u or v address fields of control
line without having previously appeared in tag field.

Constant pool address of the form ““L(. . .)” inuor v
address field of control line.

Translated value of expression in u or v address field
> 215 or< 0

Translated value of expression in u address field
2212 51 <0 in j-type operation.

Illegal operation.

Number contains too many digits, or an illegal character,
or is too large or too small.

No room in subroutine table, illegal name on external
subroutine or subroutine not available to compiler.

More than one ‘“INOUT’? or ‘“TEMPS’’ control line in
subroutine.

Too many temps, arguments, or results used by
subroutine.

ACTION TAKEN
Rightmost six characters are used.
Leftmost 59 characters are used.
Leftmost 7 terms are used.

Illegal term translated as zero.

Rightmost sign applied (i.e. sign
closest to term).

Location first equated to tag is used.

Address of form *“L(. . .)” translated
as zero,

L ocation first equated to tag is used.
Tag is ignored.

T ag will not be equated to a machine
location,

Tag translated as zero.

Term translated as zero.

Used MOD 215,

Used MOD 212,

Translated to binary zero word.

Number translated as binary zero.
Subroutine not included in program.
L ast one to appear is used.

Subroutine not included in program.

59

€0

TABLE 1Y (Continued)
WARNINGS ISSUED BY THE COMPILER

WARNING
Storage Regions overlap.

“DUPOUV"’ applied to certain lines illegally.

Improper entries in u and/or v address fields of
“DELETE?” control line,

More than one change with the same item number.

Both u and v address fields blank on an ‘‘EQUALS”’
control line.

‘““USES”’ control line out of place.
‘““COMPAT”’ used more than once in program.

Too many warnings.

ACTION TAKEN

Will be loaded in order written with
compiled region and subroutines last.

“DUPOUV?”’ is ignored.

Treated as though it read “1, LINE”,

L ast one used.

Tag is equated to zero.

Line ignored.
First “COMPAT?’’ applies.

Further warnings not footnoted.

TABLE V

X$83-n

XS3 Character Desired Write
Digits 0 thru 9 Digits 0 thru 9
Letters A thru Z except 0 Letters A thru Z except 0
.,-,+,),(,/ w=H)G/
Space on *
Letter O (51 #0
Fast Feed 1 A B7 #1
Fast Feed 2 (42) #2
Fast Feed 3 &7 #3
Fast Feed 4 (76) #4
Breakpoint S (Y] ¥B
Comma , @2n #C
Dollar sign $ (55) #D
Multiline 20) #M
Number sign # 35 #N
Stop cpde (60) #S

Ignore (00) #1

62

IV. Technical Notes on Operating the
USE Compiler with the UNIVAC 1105

To compile a program:

The compiler must be stored in the computer. It occupies the first bank of core and 421008 —
477774 on the drum. The second bank of core is used during compilation, also cells 50000g -
67777 for storage of tags and their associated addresses and cells 700005 — 77777g for storage
of changes. 42000, — 42077 are reserved for input and output parameters. Cells 40000, — 41777,
are not used by the compiler. Note: Since part of the compiler loads directly into cote and is
modified during compilation, it is necessary to reload the compiler in order to restart or to compile
a second program.

)

The following input parameters must be preset:

420008

420018

42002

420034

420043

420058

42006g

42007g

All tapes necessary to the program being compiled must be positioned on the proper uniservos.
The compiler assumes the following tape assignments which cannot be changed without altering

the compiler coding:

The .compiler exits to this cell at conclusion of compilation. It
should contain a stop order or a jump to an arbitrary program.

Any changes to the main program? 0 = no, 1 = yes

Type of main program. 0 = unityped, 1 = symbolic output
(recompilation)

Is there a subroutine library tape? 0 =no, 1 =yes

Number of blocks to the beginning of the library in case tape is not
positioned at the beginning of the library index (in v).

ALARM line — an exit to an arbitrary routine which the compiler
will store in the ALARM line of subroutines,

Last address of core + 1 available to program being compiled (in u
and v) — 00 20000 20000 for a 2-core machine,

Number of acceptable (i.e. RW, BC etc.) 2-letter manuscript subrou-
tine headings (in u). This indicates the number of entries in the
L4300 region.There are 10 at present and the parametershould read
00 00012 00000. Twenty-five more cells are available for addi-

tional entries and the parameter should be increased as entries are
added.

TCU 1 No. 3 -~ Intermediate TCU 2 No. 3 — Input (see discussion of
multiple tape input)

TCU 1 No. 4 -~ Manuscript subroutines .
] L TCU 2 No. 4 — Binary output
TCU 1 No. 5 - Binary subroutine library TCU2No. 5 - Symbolic output
TCU 2 No.2 - Input TCU 2 No. 6 -~ Changes to the main program

An input tape must always be available on TCU 2 No. 2, as well as blank tapes on TCU 1 No. 3,
TCU 2 No. 4 and TCU 2 Na, 5. All other tapes are optional. The manuscript subroutine tape is a
temporary tape used by the compiler only on those programs which include external subroutines(as
opposed to those subroutines on the binary subroutine library tape)

Start at cell 7000g. Compilation should proceed to a normal stop — a jumpto 42000g with all tapes
rewound — except for the following reasons:

1. If there are too many entries in the subroutine library index, an ‘‘i”’ will be printed on the flex-
owriter, compilation will halt and control will be transferred to cell 420004.

2. If there is a check sum failure in loading the subroutine library index, a “c’’ will be printed
on the flexowriter, compilation will halt and control will be transferred to cell 42000g.

3. In case of a tape read error which fails on all biases, backward or forward, a “‘p’’ will be print-
ed on the flexowriter, the buffer will be cleared, the tape moved forwardone block and the com-
piler will MS to the entrance of the re-read routine (cell 367g in the present version of the com-
piler.) It is possible to try reading this block again by ‘starting at 367g. In case there is any
question about which tape failed, the extemal function read command is stored in cell 42053g.
The compiler does not try to determine whether the error was a parity or sprocket failure.

At the conclusion of compilation, certain output parameters are stored by the compiler as follows:
42054g — 42065g Block counts on TCU 1, tapes 1 thru 10 respectively
420668 — 420773 Block counts on TCU2, tapes 1 thru 10 respectively

Multiple tape input. If the compiler encounters a block of X's before reachingthe END line, it takes
this as a signal that there is further input on another uniservo. Specifically, if the tape on TCU 2
No. 2 ends with a block of X’s, the compiler will expect further input on TCU 2 No. 3, and will
tewind No. 2 with interlock. If the tape on unit 3 ends with a block of X’s, the compiler will rewind
No. 3 with interlock and switch back to unit 2, assuming that an operator has placed a new tape on
this servo. The compiler will continue to switch back and forth between TCU 2 No. 2 and TCU2
No. 3 until an END line is encountered.

Extra block on input tapes. Since the input tapes to the compiler run free, it is necessaty to write
an extra block on each original input tape to avoid sprocket errors. It does not matter what is writ-
ten in this block. The compiler will provide an extra block of space codes on the symbolic output
tape for recompilation,

Midpoint stop. If the MS1 switch is set, compilation will halt before entering the second pass. By
dumping the entire computer on tape at this point, it is possible to recover from a failure during
the second pass.When re-starting, all tapes should be rewound except the binary subroutine library
tape which must be positioned at the end of the index and before the first subroutine on the tape.

Binary output tape loader. The binary load routine is the same as that used on the 1103A. It is
necessary to set the computer in the bypass mode from the console before using this routine.

64

FORM OF BINARY TAPE

Each block of the binary tape produced by the compiler has the following form:

Address Word
Length Word
n data words.
120 Word
Block 0 1
} (117-n) zero words to fill out block.
0
Check Sum

An address word has the férm:

00 EEEEE SSSSS

6 15 15 bits
where EEEEE is the execution address, and SSSSS is the storage address of the first data word.
The length word takes the following form:

00 NNNNN 00000

The u address part of the length word, NNNNN, containsn, the number of data words in the block.
[n <117 (decimal); usually n = 117.]

The length word in the last block takes the form:
40 00000 BBBBB

where the v address part, BBBBB, is the begin computing address (i.e. the translated value of the
v field of the END line of coding). There are no data words in the last block.

The n data words immediately follow the length word. Following the datawordsare as many binary
zero words as needed to fill out the block save one word.

The check sum, which is always the last word of the block, is right 36 bits of sum of the split
extensions of all other words in the block. That is, the address word, the length word and the n
data words are included in the check ‘sum.

000
001
002
003
004
005
006
007
010
011
014
015
016
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044
045
134
135
136
137
140
141
142
143
144
145
146
147

1105 USE COMPILER

ERROR CODES

No further errots

Too many characters in u, v, and comments
Superfluous signs in v

Illegal term in v

Too many temms in v

Next generated item number too big

Next item number illegal

This item number out of order

Duplicate tag in v

No room in directory for tag

L(c) in v of control command

Unassigned tag in v of control command

No room in directory for L (¢)

v (mod 2'%) £ v

Illegal character in number

Too many digits in number

Number overflow

Exponent overflow

All significance lost

Illegal exponent

Duplicate tag in tag column

Item number of next change illegal

COMPAT repeated

Tag not significant with this control command
Improper u and v with DELETE

Change item number repeated

Too many characters in tag column

No letter in tag

Illegal character in tag

Compiled region too big

Two ““USES’’ for same subsidiary ‘subroutine
Too many subsidiary subroutines (table 6 filled)
More than 6n characters in XS3 instruction
Less than 6n characters in XS3 instruction

followed by illegal character in XS3 instruction
ENDSUB inserted by compiler

This storage region overlaps another
Compiled region overlaps another region

Too many words in subroutine

Too many temporaries or arguments in subroutine
Extra INOUT or TEMPS in manuscript subroutine
USES operation out of place

LOCATE precedes SUB

Too many subroutine copies

Too many manuscript subroutines

Illegal duplication

Sub-copy omitted because tag directory is full

65

66

150
151
152
153
154
155
156
157
160
161
162
163
166
167
170
172
173
174
175
176

More than one sub with same tag
Illegal name on manuscript subroutine
u must equal v on this line

Line compiled at recycled location

u (mod 215)# u (mod 2!%)

Too many changes

Illegal operation

u (mod 215) £ 4

Subroutine not available

No more room in table 7

Unassigned tag in u of control command
L (o) in u of control command

Too many overlapping regions
Duplicate tag in u

u and v blanks in EQUALS line

Error directory full

Too many terms in u

Illegal term in u

Superfluous sign in u

Too many characters in operation

S0000
50100
S0300
S0400
S0500
S0600
50700
S0800
$1000
$1100
$1300
$1400
S1500
S$1600
$1700
$1900
$2000
$2100
$2200
$2300
$2400
$2500
$2600
52700
$2800
52900
$3000
$3100
$3200
$3300
53400
S3700
$3800
S3900
$S4000
54100
S4300
$4400
$4700
$4800

54900
S5000
$5100
$5200
$5300

1105 USE COMPILER

SUBROUTINE REGIONS

Sorting

Decode u and v

Tag directory routine

Line to symbolic output tape

Index location counters

Form 20-word symbolic blockette

Binary word to binary output tape

Get next line from intermediate tape

Op. switch on first pass

Number conversion (explicit)

Error routine

Evaluate u or v

Number conversion — L (c)

Processuorv

L (c) directory routine

Get next manuscript subroutine line

USES - first pass

B, F, or X — first pass

G or Y — first pass (NOT CODED)

2 octal digits — first pass

1105 or modified 1105 codes — first pass
SUB - interlude

SUB - first pass

DUPX - first pass

DUPOUV - first pass

COMPAT - first pass

EQUALS - first pass

RESERV - first pass

SETLOC - first pass

END - first pass

Illegal operation — first pass

LOCATE - first pass

Calling sequence generator — first pass
List only — first pass

List only — second pass

B, F, or X — second pass

2 octal digits, 1105 and modified 1105 operations — second pass
P(n), TEMPS, INOUT - interlude

Calling sequence generator — second pass
SUB, LOCATE, EQUALS, RESERV, COMPAT, SETLOC, USES,
DUPOUV, ops. WITHIN SUBROUTINES — second pass
ALARM - interlude

RESERV - interlude

EQUALS - interlude

ENDSUB - interlude

1105 and modified 1105 operations — interlude

67

68

$5400
S5500
S5600
S5700
$5800
S6000
S6100
56300
$6400
$6500
$6600
S6700
S6800
S$6900
$7000
§7100
$7200
S7400
$7500
$7600
S7800
58000
$8200
S8300
58500
S8600
$8700
S8800
$8900
$9000
$9100
S9300
S9500
$9700
S9800
$9900
SA200
SA300
SA400
SA500
SA600
SA700
SA800
SA900
SB200
SB700
SC600
SC700
SC800
SD200
SD300
SD400

2 octal digits — interlude

END — second pass

Illegal operation — second pass
B, F, or X — interlude

Illegal operation — interlude

More subs. needed?

Check tag for duplication

List only — interlude

Calling sequence generator — interlude
Op. switch — interlude

Change bias and re-read

Changes to drum

Start of region

End of region

Tag assignment — first pass

SUB — postlude

P(n), TEMPS, INOUT — postlude
Set ups

Set up for first pass

Merge

2 octal digits, 1105 and modified 1105 operations — postlude
Set up for 'second pass

Refill the tape bin

Get next character

= (pi)

p (tho)

Line to intermediate tape

Set up for interlude

Line to manuscript subroutine tape
Set up for postlude

Subroutine op switch — first pass
Get next character from standard bin
B, X or F — postlude

Illegal operation — postlude
ALARM - postlude

RESERV - postlude

EQUALS — postlude

ENDSUB — postlude

List only — postlude

Calling sequence generator — postlude
Clean up following last ENDSUB
Search tables 2 and 3

Search table 1

Generate error list

Search table 7 (subroutine W)
Load subroutine library index

XS3 — first pass

XS3 — interlude

XS3 — second pass and postlude
Generate table 8

Pick up relocatable binary subroutines
Final clean up

1105 USE COMPILER

LIMITS

239 changes including the NOMORE line
4061 tags including A, Q, D, FILL and L
25 errors which will be indicated with codes as well as W’s
120 subroutines in library index (including external routines)
50 subroutines in any one program (including subsidiaries)
100 subsidiary 'subroutines in library index (including external subs.)
25 subroutines referred to by USES commands
100 L (c)’s
50 storage regions where check for overlap will be made
25 overlapping regions where error will be indicated
63 arguments in a subroutine
1023 words in a subroutine
127 temporaries in a subroutine

63 results in a subroutine

69

1105 USE COMPILER

NOTES ON THE INTERMEDIATE TAPE FORMAT

A line of coding as it is written on the intermediate tape is 34 computer words long. They are ar-
ranged as follows:
1 Item number — integer in op and u, fraction in v
1 Alpha numeric tag
1 Op. jump (replacing the aciual operation)
13 Tag, operation, u, v and comments
1 Location counters —in u and v
1 Code word for u — up to 7 five bit codes
7 Decoded u terms
1 Code word for v
7 Decoded v terms

1 Error indicator

1105 USE COMPILER

NOTES ON SUBROUTINE TABLES

TABLE 1 Col. 1 — L2200 Col. 2 - L2600 Col. 3 -~ L2900 (Subs, in program)

Name of subroutine Location at which to u Relative location in tables 2 or 3,
assemble, This gives implicitly the tape unit

Once for each copy needed Rélative location of tag, | and the relative position on that tape,

blank or EAC and SAC. v Relative position (left 8 bits) and
Op part indicates which., | extent (right 7 bits) of associated
entries in table 7

Set to 40 00000 00000 originally.
Sign bit removed when col. 3 u is

filled.

TABLE 2 Col. 1 — L1900 Col. 2 — L2000 Col. 3 — L2100 (sub. library index)
Name of ‘subroutine From left

No. of temps. 7 bits u — No. of cross references

Rel. pos. of v — Location in table 5 of cross

temps 7 bits references

No. of words 10 bits

No. of arguments 6 bits

No. of results 6 bits
TABLE 3 Col. 1 — L1000 Col. 2 — L1200 Col. 3 — L1500 (ms. sub. index)

This is the same as table 2 except that column 3 refers to table 6 instead of table 5 and relative
position matches manuscript subroutine tape instead of library tape.

TABLE 4 — L6300-A sorted list of table 1

A single list containing the relative positions of subroutinesin table 1 in order of increasing mag-
nitude of the third column. Repetitions are indicated by preceding zeros.

TABLE 5 — L3200 - Subroutine cross references

A series of groups of subroutine cross references for library subroutines. All those subroutines

explicitly referred to in calling sequence generators withinthe subroutines of table 2 will be listed
in the group associated with that subroutine.

TABLE 6 — L3300

The same as table 5 except that it is associated with the manuscript'subroutines in table 3 instead
of the library subroutines in table 2. Table 6 may contain library or manuscript subroutines, while
table 5 may contain only library subroutines.

TABLE 7 Col. 1-L.3700 Col. 2 — L3800 Cross referenced subs mentioned in USES
Name of ‘subroutine Relative positions | All references associated with a single copy of
of tags from v of a given subroutine are grouped together in this
USES commands, table unless the programmer erroneously split
up his USES commands

Note: The beginning of table 6 immediately follows the end of table 5, just as the beginning of
table 3 immediately follows the end of table 2,

71

1105 USE COMPILER

FORMAT OF A BLOCKETTE ON THE SYMBOLIC OUTPUT TAPE

EXECUTLON ADDRESS

l I I | | | sPacE]
STORAGE ADDRESS
[sPACE] [| l l |
OPERATION v
/\
[sPacE [sPacE I SPACE |]
] - u v
r4 A —
| l | | [sPacE |]
p v -~ v . w
| [| | | sPACE |]

ITEM NUMBEB - INTEGER

[Pacel [[T T]
ILSM Dig'ml_ ITEM NUMBER - FRACTION
/__A'_\/—A'—\I - 1]
L1 | l | l]
COMMA TAG
Vs L N —
L SPACE | | | l |
TAG COMMA OPE l}\ATION
A e N . N
| | l | sPACE] l]
OPERATION COMMA
pa - Y b r—.
| | l | | SPACE | |
v -sen v
. hY
L | | | | l |
U semcemenensncacannn -u COMM A Vemmemeaee v
Z N— y— " — A
[| | | l | J
v v
| | | | | |
v COMMA COMMENTS

l | l |]

COMMENTS

7T T1
[I

V. Examples Demonstrating Sundry Properties
of the Compiler

1. Subroutines and calling sequences

a) Intemal subroutine SQRT. Consider the line

b)

39, JOE, SQRT, NUMBER, ROOT $
40, FRED, TP, ROOT 43, A, $

JOE is equated to the current values of the execution address counterand storage address coun-
ter just as it is for any ordinary line (e.g., both at 06000g)

SQRT is searched for in the main subroutine library index when it is learned how many argu-
ments and results cells are required. In this case there is 1 argument and the 1 result is set
in the same cell so will be recorded as zero results,

NUMBER is the address where the first (in this case the only) argument is to be found (e.g. at
00407,,).
8

ROOT is equated to the entrance line of the subroutine. Suppose this is at 160138 onwards,
The calling sequence generated would be then: —

06000 06000 11 00407 16016 39. ,JOE, SQRT, NUMBER, ROOT, §$
06001 06001 37 16015 16013
06002 06002 11 16016 32000 40. ,FRED, TP, ROOT +3, A, §

M.S. subroutine RRF004. This is also a square root routine (in fact the same as SQRT but in
M.S. form). It contains all the information necessary to generate the same calling sequence as
for SQRT when we write

,JOE ,RRF004, NUMBER, ROOT, $

Let us consider another example RWEGI1. On the input tape will have been unityped the
following —

, ,SUB, RWEGIl, 461, §
, JTEMPS, 1 , 0, §
» oINOUT, 2 , 2, §

73

74

After this, comes the subroutine in standard form. In the program suppose we write —

99, BOB, RWEGI], FRED, SID, §$
100, JOE, TP ,SID+3, Q, §

Then reference to the INOUT line gives the following calling sequence generated by the com-
piler. (Assuming EAC = SAC at 00110, arguments at 04000 and 04001 and the entry line of the
subroutine is subsequently set in the compiled region by the machine, say, at 16223;)

00110 00110 75 30002 00112 99. , BOB, RWEGIl, FRED, SID, §
00111 00111 11 04000 16230
00112 00112 37 16225 16223
00113 00113 11 16226 31000 100. , JOE, TP , SID+3, Q, S

Notice that SID is assigned by the compiler in the compiled region. Another copy of the sub-
routine will also be found in the compiled region if another calling line for RWEGI1 has its
v field blank. In general this is undesirable,

2. SETLOC Consider the following:

71, FRED, RPB , 150, JOE, $

, , TP , JOE)S, JOE, $
o, , SETLOC, 100, 50000)B, $
, JOE , TP , A, Q, $ etc.

This routine transfers 150 instructions from drum to core and jumps to the first instruction 'so
transferred. Suppose at FRED the execution and ‘storage address counters areboth 053614. The
SETLOC operation resets them to 001448 and 500004 respectively. The listing appears thus

05361 05361 75 30226 00144 71. ,FRED, RPB, 150, JOE, $
05362 05362 11 50000 00144 72. ,) TP, JOE)s, JOE, $

73. , SETLOC, 100, 50000)B, $
00144 50000 11 32000 31000 74. , JOE, TP, A, Q, $

If a tag appeared in the tag field of item 73. we would get e.g.
W 73. ,TAG, SETLOC '—————
and at the end of the listing we would find

73.0000 032 where 032 is the error code indicating that ‘“TAG’’ has no significan ce.

3. RESERV Consider the following

84 ,JOE , ’ , 1, $
85 ,FRED, RESERV, 25, , $
8% ,SID , TP , A, FRED $
87 , , RA , SID,]JOE, $

Suppose at item 84 the execution and storage address counters had been 027535 and 51106,
respectively. The following listing will be produced.

02753 51106 00 00000 00001 84, ,JOE , , 1,

’ $
85. ,FRED, RESERV, 25,) $
03005 51107 11 32000 02754 86. ,SID , TP , A, FRED, $
03006 51110 21 03005 02753 87. , , RA , SID,]JOE, $
Notice that the contents of locations 02754 thru 03004 are not listed neither are they altered
i.e. we may not assume them to contain zero, (unless this control line appears in a subroutine
when the contents of the u and v addresses thereof must be the same).
4. EQUALS Consider the following
35, , MJ, 0, SID, $
and later
49, , MJ ,0 ,JOE , §
50, SID, EQUALS, 600)B, , $
51, JOE, EQUALS, SID , , %

If at both items 35 and 49 EAC = SAC and are respectively 00300 and 00315, then the listing
appears thus:

00300 00300 45 00000 00600 35. , , MJ , 0O , SID, $
and later
00315 00315 45 00000 00600 49, ’ ,» MJ ,» 0. s, JOE, $

50, , SID , EQUALS, 600)B, $
51. », JOE , EQUALS, SID , §

Note that SID must have appeared in the tag field before it can be used in the u or v address of
an equals line.

5. LOCATE

Let INTSUB be a non-self restoring subroutine on the library tape occupying 25 cells and hav-
ing 3 arguments yielding 1 result. Consider the following:

47 , JOE , INTSUB, FRED , BOB , $
48 , , TP , BOB+3 , A , $
49 , , RPB , 25 , SID , $
50 , y» TP , TED)S , BOB , $
51 , , SETLOC, 1000)B , . $
52 , TED , LOCATE,INTSUB |, , $
53 , , SETLOC, TED)S+25 , , $
54, SID , EJ , 1600)B , 15000B , $

Suppose EAC = SAC = 00200g at item 47, the 3 arguments at 00500g 1 and 2 and the subrou-
tine to be stored and executed at 01000g. The compiler will give the following listing:

00200 00200 75 30003 00202 47. , JOE , INSTUB , FRED , BOB, $
00201 00201 11 00500 01004 -
00202 00202 37 01002 01000

00203 00203 11 01003 32000 48. , , TP , BOB+3 , A , $
00204 00204 75 30031 00237 49, , , RPB , 25 , SID, $
00205 00205 11 00206 01000 50. , , TP , TED)S , BOB, $
51. , , SETLOC, 1000)B , , $
01000 00206 Facsimile of 52. , TED , LOCATE, INTSUB,) $
’ ! the subroutine
! ’ stored and
’ ’ executed at
01030 00236 01000g
53. , , SETLOC, TED)St+25, , $
00237 00237 43 01600 01500 54. , SID , EJ , 1600)B , 1500)B, $

When the compiled program runs, the subroutine is entered and then restored for the next entry.

When a LOCATE line introduces a M.S. subroutine, that subroutine must have already been
listed.

DUP x

Consider the following:

51: , TP ’ A ’ Q ’ $
52, , DUPOV , 4 » TIMES , $
53, , RA , JOE , 1000)B , $
540 ’ ’ JOE+1 ’ ’ $
55, R ‘, JOEH4 , , $
569 ’ s JOE+8 ’ ’ $

Suppose EAC = SAC 00100g at item 51, and that JOE is at 00300g. The output listing will ap-
pear as follows:

00100 00100 11 32000 31000 51. , TP , A , Q , %
00101 00101 21 00300 01000 S3. , RA , JOE , 10000B, §$
00102 00102 21 00301 01000 54. , RA , JOE +l1 , 10000B, $
00103 00103 21 00304 01000 S55. , RA , JOE +4, 1000)B, §
00104 00104 21 00310 01000 56. , RA , JOE+8, 1000)B, $

Notice that item 52 has disappeared.
DUPOUV

Consider the following: —

19, , Ms1, , FILL, §
20, ,DUPOUV , 4, TIMES, §
21, JOE , B01, 01010, 10101, §$
22, FRED , TP , A, JOE+1,, §

Suppose at item 19, EAC = SAC = 00300g. The output listing will appear as follows:

00300 00300 56 10000 30000 19, , , MS1, , FILL, $
20. , , DUPOUV, 4, TIMES, $

00301 00301 01 01010 10101 21. , JOE, BO1, 01010, 10101, $

00302 00302 01 01010 10101

00303 00303 01 01010 10101

00304 00304 01 01010 10101

00305 00305 11 32000 00302 22. , FRED, TP, A, JOE+1, $

. USES

Consider the line:

, JOE , SOQRT, NUMBER, ROOT, $
This we know produces a calling sequence at JOE to enter the subroutine SQRT, at ROOT.
Subsequently ROOT must be defined and space made for the subroutine. Suppose this is at
02000g. Now consider the following:

’ , ARCTAN, X , SID , $

, , USES , SQRT , ROOT, $

The arctan subroutine will be stored at SID and at some point therein will be the R] to SQRT
subroutine, The USES line makes this R],ROOT + 2,RO0T. :

. DELETE

Consider the following:

05777 05777 15 05760 06003 38. , , TU , TED , BOB , $
06000 06000 11 00407 16016 39. , JOE , SQRT, NUMBER, ROOT, $
06001 06001 37 16015 16013

06002 06002 11 16016 32000 40. , FRED, TP , ROOT+3, A , $
06003 06003 11 30000 31000 41. , BOB, TP , FILL , Q ’ $

Suppose the changes tape contains the line
39. , » DELETE, 2, LINES, $
On recompilation, incorporating the changes we will get

05777 05777 15 05760 06000 38. , , TU, TED , BOB,
06000 06000 11 30000 31000 41. , BOB, TP, FILL, Q ,

w9

78

Notice BOB is changed, ‘“2 lines’’ refers to lines of symbolic and not the machine coding they
produce. JOE & FRED will have dissappeared from the tag directory, the DELETE line does
not appear in the output listing,

10. TEMPS

Suppose the compiled region starts at 16000g, i.e., this is the first location in the subroutine
temporary pool. Let there be a subroutine containing the line,

, , TEMPS, 3, 4, $
Subsequently in the body of this subroutine suppose there is the line
, , TP, A, Ws1, $
Where WS1 is the first unassigned tag in the 'subroutine. Then this line will be translated as

11 32000 16004

750

U-1869

	00000
	00001
	00002
	00003
	00004
	0001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	xBack

