
TECHNICAL BULLETIN

CLAMP
Re/a-tive Loael Rou-tine

Progran"ln"lers Re'Ference

Firs"f Edi"fion

April, 1962

TABLE OF CONTENTS

Page

I. INTRODUCTION•................................

II. FORMAT OF PROGRAM FILE.................................. 5

A. Identification Record 6
B. M0dification Record 6
C. Program Record...................................... 8
D . T e r m i na t ion R e cor d • • • • • • • • • . • • • . • . • • • • . • • • . • . • • • • • . • 9

III. PROGRAM MODIFICATION TECHNIQUES 10

A . Modifiable Fields................................... 1 0
B. Data Table Conventions 14
C. Reference List 15

IV . OPERATIONAL FUNCTIONS................................... 16

A. Control Routine 16
B. $PARAM and$ERROR Tables 17
C. Facility Assignment Notification 18

V. LOADING & MODIFICATION OF MULTIPLE PROGRAMS 21

A. Subroutines ... 21
B. Complex Programs 23
C. Segmented Complex Programs 24

VI. ALLOCATION & OPERATION OF PROGRAMS 27

A . EXE C ROC Pro g ram In i t i a t ion. .. 27
B. EXEC ROC Core and Drum Allocation 27
C. DIRECT ROC Program Initiation 27
D. DIRECT ROC Core and Drum Allocation 28

VIr. LOCATION INPUT .. 30

A. Location Input Card Format 30
B. Location Input Paper Tape Format 34

APPENDIX: Relative Object Code 42

INDEX. .. 82

CLAMP i

I. INTRODUCTION

CLAMP (Controlled 10ading and Modification of Erograms),
is designed to transfer the object programs produced by
the UNIVAC@ 1107 Assembly System (or by the ALGOL or
COBOL compilers) from their~input media to their operating
environments. CLAMP can operate as a part of the
Executive System or in an independent status.

The object programs to be loaded by CLAMP, the UNIVAC
110~ Relative Load Routine,are in one of three object
codes:

1. Absolute Object Code (AOC): Programs in this code
are assembled to 0perate at an absolute core loca­
tion. All input/output equipment, as well as data
areas and data tables, is specified with absolute
assignments. AOC programs run independently 0f the
Executive System. These programs may ~nly be
loaded by CLAMP if the loading process does not
cause CLAMP to be overwritten.

2. Relative Object Code - Executive System I/O (EXEC
ROC): These programs are assembled with symbolic
input/output references and must operate under
Executive System c0ntrol. Input/Output functions
in these progra~s are submitted as requests to the
Executive System and the Executive I/O Functional
Routines are used to communicate with all peripheral
equipment. All instructions and data areas are
given relative symbolic assignments.

3. Relative Object Code - Direct I/O (DIRECT ROC):
Input/Output references in these programs may be
symbolic, but must be made absolute at assembly
time. These absolute references may be reassigned
at load time. Programs in this object code operate
independently of the Executive System. All instruc­
tions and da ta areas are gj.ven rela ti ve symbolic as­
signments.

CLAMP will convert all symbolic references in ROC object
programs to absolute assignments at load time.

ROC programs to be loaded by CLAMP are classified as either
simple or complex programs. A simple program is one which
is entirely contained on one input medium and in one program
file. All subroutines referenced by the program are incor­
porated into the object program at assembly time.

CLAMP 1

A complex program is com~osed of a main program and one or
more subroutines. The main program is contained in one
program file while each subroutine is contained in an addi­
tional program file.

Two versions of the Relative Load Routine exist. The first
is a part of the Executive System and loads object programs
which operate under Executive Control, i.e., programs as­
sembled in EXEC ROC format. All core allocations as well
as I/O assignments are made by the Executive System before
control is transferred to CLAMP. This version of the
Relative Load Routine is called up by the Executive as part
of its initiation procedure.

The second version of CLAMP is used to load object programs
which are assembled in AOC or DIRECT ROC format. This
version of the Relative Load Routine may be called either
by the Executive System (if the program~is to operate
independent of the Executive System, but if the Executive
is operating and a Job Request was submitted to it), nr
through manual initiation from the keyboard.

The Executive System may thus reference either of the two
versions of CLAMP. Each Job Request submitted to the
Executive will specify Executive control or independent
operation.

When referenced either by the Executive System or through
manual initiation, the Relative Load Routine will

1 •

2.

3.

4.

5.

6.

Locate the object program on the input media
(only for DIRECT ROC programs).

Accept relocation data and use it to modify and
load the object program.

Modify data table lengths (in the core memory) to
reflect· new table length definitions introduced
at load time.

Modify ~agnetic dr~~ table lengths to reflect,new
table length definitions introduced at load tlme.

Modify symbolic I/O references to absolute assign­
ments (only for EXEC ROC programs).

Assign the addresses for all symbolic r~ferences
to the Executive System or to the Relatlve Load
Routine.

CLAMP 2

7. Modify symbo~ic Selective Jump switch references
to abso~ute assignments (only for EXEC ROC pro­
grams).

8. Load input parameters in the data area of the ob­
ject program.

9. Incorporate subroutines into an object program at
load time.

The fo~lowing pages wi~: serve to describe the manner in
which the Relative Load Routine performs its required f~nc­
tions. It is assumed that the reader is fami~iar with the
pertinent facts concerning the computer system and the
1107 Executive System. Appropriate references to these
systems wi~l be made. The chart of Figure 1 i~lustrates
the operation of the Relative Load Routine.

CLAMP 3

INFORMATION FLOW

//-;-,-, --
I LIBRARY \'­
I TAPE J
\ (ROC) /
'-_/

N * This tape used only with complex programs

** Same tape as Executive System tape

CLAMP

CLAMP

NOTE: Magnetic Drum may be substituted for any (or all) tapes except Library Tape

BLOCK DIAGRAM

READ AND CHECK
ID RECORD

READ MOD IFICATION
RECORD AND ASSIGN

ABSOLUTE FACILI TIES
DETERMINE SUBROUTINE

NO

This tape used only for segmented

programs (storage medium for

segments).

SET UP AND CH ECK
SEGMENT CONTROL

ROUTINE IDENTIFIER

CROSS REFERENCES ANDI-+-_Y.:...;E;;,;;,S __ -i
DOES SEGMENT CONTROL

ROUTINE REQUIRE
SUBROUTINES?

SET UP R EFE RENCE
LIST FOR LOADING

JOB PROGRAM

PRINT
REFERENCE

LIST
ON MONITOR

PRINTER

SIMPLE OR COMPL EX

JOB PROGRAM?

SIMPLE

MODI FY AND LOAD
PROGRAM SEGMENT
AND DATA TABLES

RECORD I BANK AN D/O
DBANK ON SPECIFIED
MEDIUM, IF REQUIRED

ASSIGN CORE
ALLOCATIONS

ASSIGN CONTROL
ROUTINE CROSS

REFERENCES AND
SUBROUTINE FACILITIES

SET UP REF ER ENCE
LIST FOR LOADING

SUBROUTINE

MODIFY AND LOAD
SUBROUTINE IBANK,

DBANK, AND DATA
TABLES

MORE SEGMENTS TO

LOAD?

FIGURE 1

CLAMP 4

NO

MODIFY AND LOAD
SEGMENT CONTROL

ROUTINE IBANK, DBANK,
AND DATA TABLES

RECO RD IBANK AND/OR
DBANK ON SPECIFIED

MEDIUM

ARE THERE MORE

SEGMENTS TO LOAD?

... @MAIN CONTROL ROUTINE

.... '@SEGMENT CONTROL ROUTINE

II. FORMAT OF PROGRAM FILE

A Program File is produced by the 1107 Assembly System, or
by the appropriate compiler, and consists of the object pro­
gram in the form required by the Relative Load Routine to­
gether with all of the necessary information for purposes of
loading and modification. The Program File may be in either
Relative Object Code or in Absolute Object Code.

Each ROC Program File is made up of blocks of 256 words
which are grouped into four types of records. These records
appear in the following order:

1. Identification Record

2. Modification Record

3. Program Record

4. Termination Record

Each record consists of one or more blocks as required by
its specific function. The AOC Program Files contain all
of the above records except for the Modification Record.

All but three types of tags are eliminated from programs
which are assembled in Relative Object Code. These tags
are:

1. Program Name: This is the unique symbolic name (12
Fieldata characters) assigned to the program instruc­
tion portion of an object program.1

The Program Name is used by the Executive System and/
or the Relative Load Routine to identify the program,
and to serve as the relative zero address of the in­
struction portion (IBANK) of the program. The absolute
assignment for this tag is given to the Relative Load
Routine either by the Executive System in the case of
EXEC ROC, or by the Location Input in the case of DIRECT
ROC (see Section VI). This absolute assignment then be­
comes the first location assigned to the program instruc­
tions in core memory. All tags other than the Program
Name which might appear in the IBANK of the source pro­
gram are given relative assignments with respect to the
Program Name.

1For object programs produced
:abe: which is obtained from
line of the source program.
acters with the right-most 6
code s.

by SLEUTH this is the symbolic
the 6-character tag of the PRO
This tag is expanded to 12 char­
characters filled with space

CLAMP 5

2. Data Table Tags: Each ROC program file may contain
one or more Data Table Tags. This tag serves as the
relative zero address of a data table. The absolute
assignment for this tag, specified either by the Ex­
'ecutive System or by the Location Input, becomes the
first location assigned to the data table in the core
memory or the magnetic drum memory. All other loca­
tions within the table are made relative to the Data
Table Tag.

3. Data Table Length Tag: Each Data Table Tag in the
ROC program file has a Data Table Length Tag asso­
ciated with it which represents the minimum length
of the data table. The table length may be in­
creased at load time either through the Executive
System or through the Location Input. The absolute
assignment given to this tag becomes the current
length of the data table in core or drum memory.

Programs assembled in AOC do not contain any symbolic assign­
ments and do not have to be modified by CLAMP.

The four types of records which make up an object Program
File are briefly described in the remainder of this sec­
tion. 2

A. Identification Record

The Identification Record contains the Program Name and
a code identifying the class of program and the type of
ROC (DIRECT or EXEC). The program is classed as a
simple program, a complex program, or as a subroutine.

B. Modification Record

This record contains four types of tables which contain
information necessary to modify the object program for
its operating environment. The types of tables that may
appear in the Modification Record are:

1. Input/Output References

2. System References

3. Drum References

4. Core References

2The Appendix contains a detailed description of the ROe and
AOe Program ~iles.

eLA~1p 6

As the source program is assembled, each symbolic refer­
ence within the program is assigned a reference number.
These reference numbers replace all symbolic references
in the Program Record.

The tables of the Modification Record contain lists of
the symbolic references of the source program together
with the reference numbers which have replaced them.

The tables of the Modification Record are used by the
Relative Load Routine to generate a Reference List
which will include the absolute assignments for all
symbolic references. The Reference List is arranged in
four sections corresponding to the four tables of the
Modification Record. The reference numbers of the Modi­
fication Record correspond with entries in the Reference
List. The operation of the Relative Load Routine with
respect to the Modification Record is discussed in Sec­
tion III. The following paragraphs contain a brief des­
cription of the contents of the Modification Record.

1. Input/Output References: This portion of the Modi­
fication Record contains a list of all symbolic re­
ferences to the peripheral equipment. 3 These refer­
ences are either for the Executive I/O Functional
Routines (EXEC ROC) or for direct input/output
(DIRECT ROC). The references for Executive I/O are
two-word entries which contain the symbolic refer­
ence for the peripheral equipment, an equipment
type field denoting the type of unit (UNISERVO* IlIA
Tape Unit, Card Reader, etc.), ~nd a logical channel
grouping.

All I/O references in DIRECT ROC programs must have
absolute assignments at assembly time. The I/O re­
ference table for these programs is in two parts,
one containing channel references and their abso­
lute assignments, and the other consisting of unit
references and their absolute assignments.

2. System References: Four separate tables may be in­
cluded in this section of the Modification Record.
These tables include symbolic references to the Exe­
cutive System, undefined symbols used in subroutines,
and lists of associated subroutines for the object
program.

3With the exception of magnetic drums.

*Trademark of Sperry Rand Corporation.

CLAMP 7

a. Executive System References: A list of one-word
symbolic references to the Executive System, the
Executive I/O Functional Routines, and the Re­
lative Load Routine.

b. Subroutine List: A list of the Program Names of
all subroutines referenced by the program, but
not incorporated into it at assembly time. 4These
symbols are used at load time to load the re­
quired subroutines from the library tape. This
list is contained in comp~ex programs and sub­
routines only.

c. External Reference List: This portion of the
System References table lists symbolic entrances
to the subroutines in the Subroutine List. The
absolute address for these entrances are as­
signed as the subroutines are loaded from infor­
mation contained in the library tape directory.
This list is contained in complex programs and
subroutines only.

d. Entrance List: This table is contained only in
the program files for subroutines. It contains
a list of the symbolic entrances to the subrou­
tine (excluding the subroutine Program Name).
Each two-word entry contains the mnemonic sym­
bol for the entrance and the address of the
entrance relative to the subroutine Program
Name.

3. Drum References: This table contains a list of all
Data Table Tags and Data Table Length Tags which
reference the magnetic drum(s) together with the
assigned minimum length for each drum table.

4. Core References: Each three word entry in this
table contains a core Data Table Tag, its associ­
ated Data Table Length Tag, and the assigned mini­
mum length of the table.

C. Program Record

All object program instructions and data words are con­
tained in the Program Record. This portion of the ob­
ject program File is arranged in two parts: segment
sections and data table sections.

4In SLEUTH the subroutine names are indicated in the XREF line
of the source program.

CLAMP 8

1. Segment Sections: A segment section contains the
set of instructions that comprise an object program
segment as well as the associated data words (DBANK) ,
if any. From the point of view of the source pro­
gram, the program segment contains all words gener­
ated in the IBANK and DBANK.5

2. Data Table Sections: These parts of the Program
Record contain the set of words for each variable
length data table (DTABLE) assigned at assembly
time. 5 CLAMP will place these data table words in
the core memory locations allocated to the table.

Both the segment sections and the data table sections
contain two types of words: program words and modifi­
cation indicator words. 6 The program words are those
instruction or data words which are generated by the
Assembly System from the information contained in the
source program. These words contain fields such as
function codes which are fixed by the source program,
and fields such as core memory address references which
are to be modified by the Relative Load Routine. The
modifiable fields will contain reference numbers which
refer the Relative Load Routine to the Reference List
which it generates from the information contained in
the Modification Record.

The Modification indicator words contain fields to de­
note the type of modification necessary.

D. Termination Record

This record is the last block of the Program Record. It
contains the address of the first object program word to
be executed, relative to the Program Name. (This is the
address given in the ENDPRO declarative of a SLEUTH
source program.)

5See Data Table Conventions, Section IIIB.

6Modification indicator words are not contained in AOC programs.

CLAMP 9

III. PROGRAM MODIFICATION TECHNIQUES

A. Modifiable Fields

For programs assembled in Relative Object Code, certain
fields within the generated program words are necessari-
ly incomplete and must be modified by SLAMP at load time.
From the s~urce program, an assembler must construct
modification indicators describing how a field is to be
modified. The assembler must also produce the Modificatio~
Record which defines the source code tags from which the
m0difiable fields are generated.

The Relative Load Routine modifies references in program
words to reflect internal program references, core data
table references and their associated table lengths,
drum table references and their associated lengths, I/O
references, and external references, i.e., those pertain­
ing to subroutines and other programs.

1. Internal Program References: Modifiable fields
which contain internal program references are con­
verted to their absolute form by adding the current
address assigned to the Program Name. The word
forms and word fields that can be modified are indi­
cated in Table 1.

MODIFIABLE FIELD(S)
WORD FORM BIT POSITIONS

Whole Word 15-0

Half Word 15-0, 33-18

Instruction Word 15-0

I/O Access Word 15-0, 33-18

Variable Format Word 15-07 , 33-18 7

TABLE 1: MODIFIABLE FIELDS

2. Core Table References: The modifiable fields of the
RQC program w'hich contain core tab le references are
of the forms indicated in Table 2. With the excep­
tion of the 3rd and 4th forms shown, the refe..rence

7If these positions form a single section of the word.

CLAMP 10

numbers for the current tag assignments are con­
tained within the field being modified. In the
5~h form, the current value of the field is the
sum or difference of the values associated with
the reference numbers contained in that field.

1 Data Table Tag

2 Data Table Length Tag

3 Data Table Tag ± Constant

4 Data Table Length Tag ± Constant

5 Data Table Tag ± Data Table Length Tag

TABLE 2: MODIFIABLE FIELD FORMS

In the case of the 3rd and 4th forms shown, the
current value of the field being modified is the
sum or difference of the value associated with
the reference number and the constant. In all
field forms of this type, the constant is contained
in the field being modified. The tag reference num­
ber is either in the field being modified or in the
indicator field associated with that program word,
depending on the value of the constant.

For core table references, both the tag reference
number and the constant are in the field being mo­
dified if the constant is less than 2°. If the
constant is equal to or greater than 2°, the tag
reference number is carried in a nine bit area of
the associated indicator field.

3. Drum Table References: Magnetic drum references
are actually input/output references. They are
discussed separately, however, because the manner
in which drum tables are used parallels that for
core tables.

The modifiable field forms for drum references are
as shown in Table 2. The constant and tag refer­
ence number are in the field being modified if the
constant is less than 212. For other values of the
constant the tag reference number is in a nine bit
area of the indicator field associated with the pro­
gram word.

CLAMP 11

35

not modified

35

not modified

The drum Table Length Tags are handled differently
depending on their posi tion in the program w'ord.
Length tags which occur in the right half of a pro­
gram w'ord are replaced by their current as s ignments
in a 23-bit field (positions 22-0) at load time.
When a length tag occurs in the left half of a pro­
gram word, it is replaced by the 16 least signifi­
cant bits of its current assignment (in positions
33-18 of the program word) at load time. The most
significant seven bits of the assignment are
ignored.

Drum references are discussed again in the follow­
ing paragraphs.

4. Input/Output References: The absolute assignments
for I/O references are made by the Executive Sys­
tem for EXEC ROC programs or through the Location
Input for DIRECT ROC programs.

29

I

29

a. EXEC ROC Programs: In object programs which
operate under control of the Executive System,
a Single symbolic reference is used to denote
both the unit and the channel for the peripheral
equipment. At load time, this symbol is re­
placed by a 30-bit field (positions 29-0) which
contains the current channel and unit assign­
ment. The channel assignment is in positions
29-26.

channel

channel

For drum Data Table Tag references, the current
drum address is consigned to hit positions 22-0.
Both of these assignments are shown in Figure 2.
Note that bits 23-16 of the program wnrd for
peripheral equipment references are not modified
The contents of this field can therefore be as­
signed at assembly time. The unit address is in­
dicated by master bit selection.

25 22 0

I
000 drum address

DRUM ADDRESS REFERENCE

25 23 15 0

00 not modified unit

PERIPHERAL EQUIPMENT REFERENCE

FIGURE 2: EXEC ROC REFERENCES

CLAMP 12

b. DIRECT ROC Programs: In object programs which
operate independently of the Executive System,
all I/O references are specified with a channel
symbol and a unit symbol. Both of these sym­
bols are given absolute assignments at assembly
time, but these assignments may be changed at
load time to assignments contained in the Loca­
tion Input.

The symbolic channel tag is replaced by a four­
bit absolute channel number in positions 25-22.
Each channel used in the source program must be
given a unique symbol.

A channel tag in the source code may be used
to refer to an I/O Access Control Word, in
film memory, associated with the specified
channel. References of this type are converted
at load time to the absolute address of the
control word associated with the channel assign­
ment given to the channel tag.

Symbolic unit references for the magnetic drum(s)
are treated differently from those which refer­
ence other peripheral equipment. Symbolic drum
address references are replaced by a 23-bit
field (positions 22-0) at load time. References
to peripheral equipment other than magnetic
drums are replaced by a 16-bit field which con­
tains the master bit selector for unit designa­
tion.

Two or more I/O references may be equated at assembly
time.

5. Selective Jump Switch References: The symbolic Se­
lective Jump Switch references are replaced by a 4-
bit absolute switch number in positions 25-22 at
load time. Each jump switch used must be given a
unique symbol. Up to fifteen different Selective
Jump switches may be specified. In DIRECT ROC pro­
grams only, they may be used interchangeably with
channel symbols since both are of the same nature.

6. External References

a. Executive System References: Object programs
which operate under control of the Executive
System will make reference to it or to the
Executive I/O Functional Routines during their
operation. These references will be in the
form of specific System Tags (e.g., $XIO) and
will include I/O requests, closeout operations,
and error procedures.

CLAMP 13

At assembly time, the System Tags are replaced
by reference numbers to a system symbol table
in the Reference List and the actual mnemonic
tag is stored in that table. The reference
numbers are replaced with absolute assignments
at load time.

b. Control Routine References: Two system symbols
are provided for DIRECT ROC programs. These
symbols reference a program closeout se4uence
and an error routine. These routines are called
by a control routine which can be loaded by
CLAMP during loading of the object program. The
control routine is discussed in Section IV.

B. Data Table Conventions

The core area assigned to an object program is divided
into three sections: the instruction section (IBANK),
the fixed-length data section (DBANK), and the variable­
length data section (DTABLEs). The fixed-length data
section contains items such as constant pools and
fixed-length tables. Like the instruction section, the
fixed-length data section is one continuous block of
core whose length is determined at assembly time.

Data tables in the variable-length data section of core
or drum are defined by a unique symbolic Data Table Tag
and by a Data Table Length Tag. The length tags need
not be unique for each table but only one value must be
assigned for each unique length tag. The value assigned
to the length tag at assembly time is the minimum length
of the table. This minimum value may be incremented at
load time by specifying a table length increment in the
Job Request (for EXEC ROC programs) or in the Location
Input (for DIRECT ROC programs).

The Relative Object Code defines each data table as an
independent table. Symbolic internal table tags are
not allowed. Provision is made for equating the start­
ing addresses of two or more tables. If this is done,
then the subject tables are listed consecutively in the
Reference List produced by the Relative Load Routine
(see below). The minimum length tag must be specified
at assembly time.

The variable-length data section of core may contain
as many tables as is desired subject to the conven­
tions discussed in the preceding paragraph.

C. Reference List

The Relative Load Routine generates a Reference List
which contains the absolute assignments for all sym­
bolic references. The Reference List is composed of
four sections corresponding to the sections of the
Modification Record.

CLAMP 14

Each Reference List section contains a maximum of 128
one-word entries except for the drum reference section.
The latter contains two-word entries (for a maximum of
256 words). The four sections of the Reference List
are:

1) I/O References

2) System References

3) Drum References

4) Core References

CLAMP 15

IV. OPERATIONAL FUNCTIONS

The Relative Load Routine utilizes the Executive I/O Func­
tional Routines in order to perform its own input/output
operations. B The words generated by an assembler for a
program segment are modified and read into core at the ex­
ecution position. For each IBANK or DBANK area of the ob­
ject program, one block is written on tape or on drum if
storage is specified. Whenever a program segment is
written on a storage medium, that area of core to which it
is assigned is cleared. Any section not requiring storage
remains in core and the initial operating section, i.e.,
the first program segment to be executed, must therefore
be loaded last or not be written over by a succeeding sec­
tion. After initial modification, loading, and storage of
the program by the Relative Load Routine, the program it­
self must read succeeding segments.

When DIRECT ROC programs are loaded, the location of the
object program is specified by the Location Input. The
Relative Load Routine locates the object program on the in­
put medium and then the loading process is initiated. When
EXEC ROC programs are loaded, the location of the object
program is specified in the Job Request. The program is
then located on the input medium by the Executive System
before control is transferred to the Relative Load Routine
for loading.

A. Control Routine (DIRECT ROC Programs)

A control routine is provided by the Relative Load Rou­
tine to handle pro gran termination and error occurrences
for DIRECT ROC programs. The termination portion of the
control routine checks that all input/output operations
have been completed and informs the computer operator
accordingly. The Executive System can then be reloaded.
The error section of the control routine provides an
error indication to the operator followed by a computer
halt. The termination section can then be entered
manually.

The control routine occupies a specific core memory area
which must be reserved by object programs which make use
of it. The loading of the control routine must be speci­
fied in the Location Input so that the Relative Load Rou­
tine may load it while loading the program.

BIn the situation where the Executive System is not present
(DIRECT ROC programs), the I/O Functional Routines are included
in CLAMP.

CLAMP 16

B. $PARAM and $ERROR Tables

Two special tables can be defined for ROC programs.
These are the Input Parameter Table and the Error In­
terrupt Table and are designated by the table names
$PARAM and $ERROR respectiveli.9

1. $PARAM Table: A program may require a set of input
parameters to determine or select options of execu­
tion. Accordingly, the Job Request or the Location
Input may contain one or more input parameter re­
cords. These records, which may take the form of
punched cards, contain 11 words of six alphanumeric
characters each. A maximum of ten such records are
permitted in an object program.

The input parameter words are transferred into the
$PARAM table of the object program if and only if
such a table was defined at assembly time. This
table must be defined in the source program by
using the reserved label $PARAM as a Data Table
Tag.

If the $PARAM table is not large enough to accommo­
date the input parameters, or is not present and an
attempt is made to load such parameters, then an ap­
propriate type-out will notify the operator of this
event.

2. $ERROR Table: Each program to be run under Execu­
tive System control must contain an image of the
core memory Error Interrupt locations (addresses
192-199). This image is the $ERROR table and con­
tains entrance addresses to error recovery subrou­
tines within the object progr~m.

Entries for the $ERROR table must be specified at
assembly time for programs to be run under Execu­
tive control. All unspecified entries are cleared
to zero.

The $ERROR table is assigned storage in the instruc­
tion area (IBANK) of core. No check is made by the
Relative Load Routine for the presence of a $ERROR
table for DIRECT ROC programs. The $ERROR table in
this case is loaded as specified in the object pro­
gram. It is recommended, however, that DIRECT ROC
~rograms include a $ERROR table.

9The table names If$PARAM" and "$ERROR" must be present if these
tables are to be acceptable to CLAMP.

C. Facility Assignment Notification

When all memory and input/output facilities have been
assigned to a program, the operator is notified through
a typeout. The format of the typeout is different for
EXEC ROC and DIRECT ROC programs.

1. EXEC ROC Programs: The format for facility assign­
ment notification is shown in Figure 3. Four differ­
ent typeouts are represented for

a) Selective Jump sW'i tch assignments

b) I/O equipment assignment

c) Drum memory assignments

d) Core memory assignments

The symbols used in Figure 3 are as follows:

job
request

id

JOB REQUEST ID is the alphanumeric identity
of the Job Request (see manual on 1107
Executive System).

program
name

jj/symbol
jj/symbol

jj/symbol
jj/symbol

cc
cc

cc
cc

uu/symbol
uu/symbol

ia/no
ia/no

ia/no
ia/no

jj/symbol
jj/symbol

uu/symbol
uu/symbol

etc.
etc.

IBANK ia/no DBANK ia/no

etc.
etc.

etc.
etc.

FIGURE 3: FACILITY ASSIGNMENT NOTIFICATION

PROGRAM NAME is the alphanumeric tag assigned
to the program (see Section II).

jj is the current Selective JlliTIP switch assign­
ment. This is a decimal number from 01 to
to 15.

symbol is the symbolic reference used in the pro­
gram to reference jump switches or peripheral
units.

CLAMP 18

cc is a decimal number from 00 to 15 denoting the
cur r en t I /0 cha nne 1 ass ig nme n t •

uu is a decimal number from 00 to 15 denoting the
current peripheral unit assignment.

ia is the initial address for a drum table, or
instruction block.

no is the number of words in the subject block

IBANK is the symbolic notation for a core memory in­
struction block.

DBAlfu is the symbolic notation for a core memory
data block.

The Selective Jump switch assignments are printed
five to a line. If any jump switch cannot be as­
signed the jj field is replaced by **.

Each different channel in the I/O equipment assign­
ments starts a new line. The unit assignments as­
sociated with a specific channel follow the channel
number five to a line. If any peripheral equipment
cannot be assigned, the unit number is replaced by
** •
The third group of typeouts shown in Figure 3
illustrates the format for drum allocation. Each
block of drum, which may contain one or more drum
tables, allocated to the program is typed out. Each
different dru~m channel starts a new line. The as­
signed drum areas on a channel follow the channel
number three to a line. The ia and no fields are
each seven digits in length. The ia field is re­
placed by ******* if a drum block cannot be assigned.

The last line of Figure 3 is used to indicate the
core areas assigned to the object program. The ia
and no fields are each five digits in length. In
the event the core area indicated in the Job Request
is too small, the ia field is replaced by *****.

Following the facility assignments as indicated in
Figure 3, a message is printed to verify the status
of facilities. This message has one of the follow­
ing forms:

a. FACILITIES ASSIGNED: This message is printed
when all facilities have been assigned and the
facility requirements contained in the Job Re­
quest were adequate.

CLAMP 19

bo FACILITIES ASSIGNED WITH CORRECTIONS: This
message is typed when the facility requirements
in the Job Request were insufficient to contain
the program, but additional jump sW'itches, I/O
units, or drum areas were available to assign
to the program. No indication is made as to
which facility items were corrected.

c. FACILITIES CANNOT BE ASSIGNED: This message is
used when Job Request facility requirements are
insufficient and the additional assignments
could not be made due to one or more of the
following reasons:

(1) Insufficient peripheral units on assigned
channel.

(2) Insufficient drum area on assigned channer.

(3) Requirements for core areas are insufficient.

When facilities cannot be assigned, the loading
is terminated and control is returned to the
Executive System for appropriate action.

2. DIRECT RQC Programs: The typeout for facility as­
signment notification for these programs is similar
to the format shown above for Executive controlled
programs. The first group shown in Figure 3 is used
for both Selective Jump switch assignments as well
as I/O channel assignments. The second group is
used only for I/O unit assignments and the cc field
is replaced by the symbol "UN" 0

The typeo~t for drum assiglliTIents (the third group of
Figure 3) indicates drum blocks only, without channel
de signa t ion. The cc fie ld cont a ins the symbo 1 IIDR II •

The last line is used for core assignments. In this
case, however, more than one IBANK or DBANK area may
be assigned by Location Input so more" than two indi­
cations iliay be typed out. These assiglliTIents are
typed three to a line.

The message "PROGRAM LOADED II is typed following the load­
ing of the program. The program is then initiated follow­
ing receipt of an appropriate message from the operator
indicating that the req~ired I/O ~nits are loaded.

CLA>IP 20

v. LOADING AND MODIFICATION OF COMPLEX PROGRAMS

Provision is made in the Relative Load Routine for the in­
corporation of subroutines into an object program at load
time. 10 A program requiring the addition of subroutines
is called a main program. The main program and its asso­
ciated subroutines is called a complex program. Complex
programs may, or may not, be segmented.

A. Subroutines

The Relative Object Code for subroutines must have
certain characteristics in order to facilitate their
incorporation into a program at load timeo

1. Directory Card: A Directory Card is produced for
each subroutine when it is assembled. This re­
cord contains the following information in a com­
pact list which becomes a part of the Library Tape
Directory and is made available to the Relative
Load Routine:

a • Subroutine Name1 l

b. Subroutine entrances

(1) Symbo lic entrance (tag)

(2) Entrance address relative to the Subrou­
tine Name.

c. Names of all subsidiary -subroutines referenced
by this subroutine.

d. Length of IBANK for this subroutine.

e. Length of DBANK for this subroutine.

2. Symbol Definition: Each symbol used in a subrou­
tine must be defined by that subroutine. The sub
routine may consist at most of one IBANK, one
DBANK and one set of variable-length data tables.

a. DBANK: Only one fixed-length data section is
allowed in a subroutine. This core section is
assigned to the locations which precede the
fixed-length data section of the referencing
master program. The object program is thus
given a single fixed-length data section.

1 0 The Retrieval section of the 1107 LIBRARIAN is an integra~
part of CLAMP.

llThe Subroutine Name is analogous to the Program Name of the
main program.

CLAMP 21

b. Common Data Tables: All data tables used by
the subroutine must be defined in the subrou­
tine's variable-length core data section. All
drum tables used by the subroutine must be
similarly defined within the subroutine. All
tables thus defined in either the variable­
length core data section or on the magnetic
drums are considered as common data tables.

The referencing main program must also de­
fine every common data table which is defined
in a subroutine. All common core data tables
must be defined in the variable-length data
section of the main program. Common drum
tables must be defined in the drum table sec­
tion of the main program.

c. I/O Equipment: Like data tables, all I/O
equipment used in common by a main program
and the subroutines referenced by it must be
defined in both the main program and the
subroutine. I/O equipment which is used only
by a subroutine need only be defined within
that subroutine. The facility requirements
for the total object program howBver, must in­
clude all I/O equipment referenced by the sub­
routines.

d. Subrouti.ne Entrances: Provision is made in the
Relative Object Code for multiple entrances to
the subroutine. All of these entrances, exclud­
ing the Subroutine Name, must be defined sym­
bolically as well as relative to the Subroutine
Name. The Relative Object Code for subroutines
contains a special section for these entrances.

e. External References: All subroutines may con­
tain symbolic entrances to other subroutineso

3. Restrictions: Certain restrictions are made in
order to facilitate the incorporation of subroutines
into an object program at load time.

a. Closed .subroutines: The Relative Load Routine
handles only closed subroutines at load time
since the relative location of the subroutine
in the program is not fixed. Open subroutines
must be incorporated into an object program at
assembly time.

CLAMP 22

b. Segmentation: Subroutines may not be segmented.
All segmentation occurs within the main program.

B. Complex Programs

The Modification Record of the main program is loaded
first and the Reference List is generated. The main
program subroutine list (generated from the XREF line
of the source code) is then submitted to the retrieval
section of the 1107 LIBRARIAN. The subroutines are
then loaded from the library tape followed by the Pro­
gram Record of the main program.

1. Data Tables: Each complex program has only one
fixed-length core data section. The fixed-length
data section of the main program is preceded by
the fixed-length data sections of all referenced
subroutines. All common core data tables, i.e.,
tables used in common by both main program and
subroutines, are placed in the variable-length
core data section of the object program. All of
these common core data tables must be defined
within the main program. These definitions are
incorporated into the subroutines during loading.
The minimum table lengths specified at assembly
time are honored. If the table length as speci­
fied in the main program is less than that given
in the subroutine, an error indication is pre­
sented.

The Data Table Tags defined in the main program
are perpetuated throughout the entire loading pro­
cedure. All common data tables in the referenced
subroutines, are therefore defined in terms of the
main program specifications. The Data Table Tags
defined within the subroutine are used only during
loading and are not perpetuated. If a data table
which was not defined in the main program is en­
countered during subroutine loading, an error indi­
cation will be given.

The $PARAM and $ERROR tables, when present in the
main program, are treated as common data tables.
All drum data tables are also considered as common
tables and are handled in the same manner as are
core tables.

2. Instruction Section: The instruction section
(IBANK) of the main program is preceded by the
instruction sections of the subroutines. The ob­
ject program will then contain only one instruc­
tion section after loading. All references to the
mai~ program are speci:ied relative to the main
Program name.

3. I/O References: All common I/O references, i.e.,
those used in common by both main program and sub­
routines (or by two or more subroutines), are de­
fined in the main program. These definitions are
incorporated into the subroutines as they are
loaded. Logical channel assignments specified in
the main program are followed. Logical channel
assignments in the subroutines are therefore not
honored.

Common I/O references are specified by using the
same symbol in the main program and in the sub­
routine or by equating symbols in the main pro­
gram. The equation of I/O reference symbols may
be made only on the main program level. The I/O
references defined in the main program are perpe­
tuated throughout the loading procedure. This is
not the case with I/O definitions within subrou­
tines, however, and these are used only during
subroutine loading.

The I/O equipment necessary for the operation of
a complex program is specified in the main program
I/O facility requirements. These facilities in­
clude common I/O equipment as well as equipment
used by a subroutine alone.

C. Segmented Complex Programs

Provision is made for loading segmented complex pro­
grams. The subroutines within the program are never
segmented; only the main program may be segmented. In
segmented complex programs, the main program is divided
into a main control routine and one or more segment
control routines.

1. Main Control Routine: This section of the object
program must remain in core at all times during
execution of the segmented complex program. This
routine provides the control necessary for trans­
ferring program segments into core for execution.

The main control routine contains all definitions
associated with the entire main progran. These
definitions include:

a. All common core and/or drum tables used by the
main control routine, the segment control rou­
tines, and/or the associated subroutines.

CLAMP 24

b. All common I/O r~ferences ~sed by the main
control routine, the segment control routines,
and/or the associated subroutines.

c. All noncommon I/O references used by the
master control routine and/or the segment con­
trol routines.

d. The Subroutinp. Names of all subroutines associ­
ated with the main control routine.

e. The entrances to subroutines (other than Sub­
routine Name) associated with the main con­
tro 1 r out ine •

The subroutines associated with the main control
program are loaded and remain in core at all times
during execution.

These subroutines may be referenced by the main
control routine, the segment control routines, or
by any of the subroutines "V.ri thin a segment.

The main control routine may reference any seg­
ment control routine as well as any subroutine as­
sociated with the main control routine. It may
not, however, reference a subroutine associated w'i th
a segment control routine.

2. Segment Control Routine: Each segment of the main
program contains a string of instructions which may
be augmented by one or more subroutines (incorpor­
ated at load time) and which control the subroutines
contained within that segment. This group of in­
structions comprises the segment control routine.

The segment control routine and all associated sub­
routines must be recorded on a program specified
storage medium after they have been converted to
absolute form. This storage medium should be re­
ferenced only by the main control routine. The
segment control routine should not refer to the
storage for that segment or for any other segment.
All read-in and placement of segments is primarily
under control of the main control routine.

The segment control routine contains definitions for
the Subroutine Names and other entrances for all sub­
routines associated with it. Each segment control
routine which has assoctated subroutines must specify
a fixed-length core data section (DBAllli::). This sec­
tion must include at least one non zero word. The
DBAllli:: of the segment control routine is located re­
lative to the DBANK of the master control routine.

CLAMP 25

The DBANK of all associated subroutines is then lo­
cated following the DBANK of the segment control
routine.

The segment control routine may reference the main
control routine or any other segment control rou­
tine. It may also reference any subroutine with it
or with the main control routine. It may not, how­
ever, reference a subroutine associated with another
segment control routine.

CLAMP 26

VI. ALLOCATION AND OPERATION OF PROGRAMS

The nature of the program is specified on the PTY card of
the Job Request, i.e., whether the program is to be run
under Executive control (EXEC ROC) or whether it is to be
run independent of the Executive System (DIRECT ROC).

A. EXEC ROC Program Initiation

Programs which are to be run under control of the 1107
Executive System and which utilize the Executive I/O
Functional Routines are initiated via a Job Request
submitted to the Executive System. The Executive Sys­
tem will read the first block on the input medium spe­
cified by the PTY card of the Job Request; this block
for EXEC ROC programs is the Program Identification Re­
cord. The Executive System will then transfer the
peripheral equipment location of the input mediu~ the
number of words in the block just read, and the core
address of the block, to CLAMP.

B. EXEC ROC Core and Drum Allocation

All core and drum allocation for EXEC ROC programs is
handled by the 1107 Executive System.

C. DIRECT ROC Program Initiation

If the Executive System is not in control, DIRECT ROC
programs can be initiated by loading the Relative Load
Routine by the standard bootstrap procedure. The peri­
pheral equipment tfaddress" of the program input medium
is specified by means of a keyboard entry. The first
block of the input medium may be the Program Identifi­
cation Record or it may be Location Input. If the first
block of input is not Location Input, then Location In­
pu~ for the subject program does not exist.

The keyboard entry has the form

t, cc, uu.

where t denotes the type of input medium. This
may be (1) the symbol "Tit to designate

UNISERVO IlIA, or

(2) the symbol "A" to designate
UNISERVO IIA, or

(3) the symbol "DIt to designate
magnetic drum

CLAMP 27

(4) the symbol up" to designate that
the Location Input is on paper
tape. In this case the uu field
is omitted.

(5) the symbol itCH to designate that
the Location Input is on punched
cards. In this case, the uu field
is omitted.

cc denotes the absolute channel for the input
medium (one or two decimal digits)

uu denotes the input medium unit (one or two
decimal digits.) In case of magnetic drum,
this field is a decimal drum address of up
to 7 digits.

For DIRECT ROC programs initiated through the Executive
System, the Executive transfers the peripheral equip­
ment "address lt of the input medium to the Relative Load
Routine. Section VII contains a description of Loca­
tion Input.

D. DIRECT ROC Core and Drum Allocation

Core and drum allocations are assigned as indicated in
the Location Input. Provision is made, however, for
the Relative Load Routine to load programs and make as­
signments in cases where these specifications are
omitted from the Location Input.

1. Instruction Area: The Program Name is assigned
the core address indicated in the Location Input
if a core address is specified on the LAB Card. In
the absence of such specification, the Program Name
is assigned the first available location in one
core bank.

2. Core Data Tables: The core data tables are assigned
addresses as indicated in the Location Input. In the
absence of all or part of the address assignments,
the core data tables specified in the Location Input
are assigned first. All other tables are assigned
to available locations, first in the core bank other
than the one to which instructions have been assign­
ed, and then to the same core bank if necessary.

28

3. Drum Tables: These tables are assigned drum ad­
dresses as indicated in the Location Input. In
the absence of all or part of the address assign­
ments, the tables specified by the Location Input
are assigned first. All other drum tables are
then assigned to available drum areas.

4. CLAMP Area: The core area used by CLAMP may be
overlaid by the object program. In this case
the portion of the object program which is to
overlay the Relative Load Ro~tine must be loaded
as a segment of the object program and must be
recorded on a storage medium. If a DTABLE is to
use this area, it cannot have constants loaded
in it at load time.

CLAMP 29

VII. LOCATION INPUT

Location Input contains information used to place a DIRECT
ROC program in core memory together with instructions for
modification of data tables and of program environment to
suit a particular run. In the absence of Location Input,
all table and I/O assignments made at assembly time are
honored by CLAMP.

Location Input must contain the Program Name and the peri­
pheral equipment "address" of the Program File. In addi­
tion, it may contain any or all of the following:

1. Absolute address for the Program Name

2. Absolute address for any core or drum table

3. Any table length incrementation

4. Any peripheral equipment reassignment

5. Any input parameters
Location Input may be in one of two formats: card format
or paper tape format.

A .. Location Input Card12 Format

LocatioQ Input in card format must be preceded by a
START Card and followed bv a STOP Card (see manual
on 1107 Systems Conventio~s.) The START Card is
illustrated in Figure 4 and the STOP Card in
Figure 12.

Location input in card format consists of one or more
cards. The Label Card (LAB) must be present in each
Location Input, and must follow the START Card. An
Address Card (ADD) is used to assign absolute addresses
to data tables in core or drum. A Table Length Card
(TAL) is used to indicate increments to core or drum
Data Table Lengths. The Peripheral Cards (PER)
contain absolute reassignments for I/O channel and
unit references. Parameter Cards (PMn) are used for
programs requiring input parameters.

All cards except for the LAB card are optional and are
present in Location Input only if required. The order
of card types following the LAB card is immaterial.

1. Label Card (LAB): Figure 5 illustrates the form
of the LAB Card. The LAB Card is the basic card
for every Location Input and consists of up to
eleven ordered fields separated by commas. Two

12 The term "cardH is used here to indicate a unit record which can
take the form of punched cards or magnetic tape blocks.

CLAMP 30

consecutive commas must be used to show the omis­
sion of a field except when trailing fields are
ommitted. The end-of-card is indicated by a period
following the last field. All spaces and blanks
are ignored. The fields and information contained
therein are as follows:

RUN ID:

CARD TYPE:

PROGRAM NAME:

INPUT TYPE:

From one to six Fieldata
characters which identify
the program run.

The characters LAB to iden­
tify the card as a Label
Card.

From one to twelve Fieldata
characters which identify
the program.

This field defines the input
medium of the program. It
contains either:

1) The symbol "Tit to denote
a UNISERVO IlIA tape
unit.

2) The symbol It A" to denote
a UNISERVO IIA tape unit.

3) The symbol It Dft to denote
a magnetic drum.

INPUT CHANNEL: This field contains the ab­
solute channel number of
the input medium.

INPUT UNIT: The absolute tape unit number
or drum address of the input
medium.

IBANK LOCATION: Absolute address of the IBANK,
one to five decimal digits.

DBANK LOCATION: Absolute address of the DBANK,
one to five decimal digits.

SUBROUTINE INPUT TYPE: This field defines the type
of input for subroutines as­
sociated with complex pro­
grams and may contain any of
the symbols described above
for INPUT TYPE.

SUBROUTINE CHANNEL: The absolute channel number
of the subroutine input medium.

CLAMP 31

SUBROUTINE UNIT: The absolute tape unit num­
ber or drum address of the
subroutine input medium.

The IBANK and DBANK LOCATION fields and the subrou­
tine fields are optional. All other fields must be
included on the LAB Card. If the DBANK assignment
is specified, the IBANK must be assigned. In the
absence of the IBANK or DBANK absolute assignments,
they are placed in core memory in a dynamic manner
(see Section VI.D.).

2. Address Card (ADD): Figures6 and 7 illustrate the
form of the ADD Card. This card must appear in Lo­
cation Input when absolute core address assignments
for data tables are to be made. The card contains
a RUN ID field which is identical to the one on the
LAB Card, a CARD TYPE field containing the symbol
ADD to identify the card, and a number of ADDRESS
ASSIGNMENT fields separated by commas. These
latter fields are in the format:

Data Table Tag/Address

where the Data Table Tag is the one used in the
source code and the address is from one to seven
decimal digits indicating an absolute address as­
signment. The absolute addresses for core tables
are treated as modulo 216 and those for drum tables
as modulo 223. These tables may be core or drum
data tables according to their source code defini­
tion. If more than one card is needed to assign
all Data Table Tags, the cards are repeated in the
same format. The ADDRESS ASSIGNMENT fields can
not be split between two cards. The last field on
each card must be followed by a period. A maximum
of 128 Data Table Tag assignments are allowed.

The ADDRESS ASSIGNMENT fields must be arranged on
the cards in separate order groups, i.e., one group
for core and one for drum. The address assignments
within each group must appear in ascending order.

3. Table Length Card (TAL): Figure 8 illustrates the
form of the TAL Card. This card specifies incre­
ments to the minimum data table lengths established
at assembly time. The card contains a RUN ID field
identical to the one on the LAB Card, a CARD TYPE
field containing the symbol TAL, and a number of
TABLE LENGTH INCREMENT fields separated by commas.
These fields are in the =orTat:

Data Table Length Tag/Increment

where the Data Table Length Tag is the one used in
the source code and the increment is from one to
seven decimal digits indicating an increment to the
minimum table length. The length increments are
treaGed as modulo 216 for core tables and as
modulo 223 for drum tables. If more than one card
is needed to assign all Data Table Length Tag incre­
ments, the cards are repeated in the same format.
The TABLE LENGTH INCREMENT field can not be split
between two cards. The last field on each card is
followed by a period. A maximum of 128 Data Table
Length Tags are allowed.

4. Peripheral Card (PER): Figure 9 illustrates the
form of the PER Card. This card specifies reassign­
ment of I/O channel and unit references. The card
contains a RUN ID field identical to the one on the
LAB Card, a CARD TYPE field containing the symbol
PER, and a number of I/O ASSIGN1ENT fields separated
by commas. These fields are in the format:

Reference/Assignment

where the reference is the one used in the source
code, and the assignment is one or two decimal
digits indicating an absolute channel or unit num­
ber. All absolute assignments are treated as
modu10 24 If more than one card is need to assign
the I/O references, the cards are repeated in the
same format. The I/O ASSIGNMENT field cannot be
split between two cards. The last field on each
card is followed by a period. A maximum of 128
I/O reference assignments are allowed.

5. Parameter Card (PMn): Figures 10 and 11 illustrate
the form of the PMn Card. A program may require a
set of input parameters to determine or select op­
tions of execution. These parameters are entered
by the PMn cards. The cards contain a RUN ID
field identical to the one on the LAB card, a CARD
TYPE field containing the symbol PMn, where n is
a decimal digit from~ to 9, and a PARAMETERS field
which contains 66 Fieldata characters. The 66 char­
acters are those which immediately follow the comma
after the PMn field.

CLAMP 33

A maximum of ten PMn cards are allowed for any
one Location Input. The cards must be numbered
and appear sequentially as PM0, PM1, •.• , PM9.
However, PMn cards within a sequence may be
omitted. The parameters are transferred to the
object program's $PARAM table, six characters per
word, 11 words per card. Unspecified characters
will be assigned the Fieldata space character. If
a card is omitted in the sequence, the result will
be 11 words of binary zero in the $PARAM table.

B. Location Input Paper Tape Format

The term "sentence tr is used below to indicate a unit
record on paper tane. A paper tape sentence may con­
tain up to 480 Fieldata coded characters except where
otherwise noted. The sentence must be followed by a
period. Spaces, carriage returns, and non-printing
characters are not included in the count of the
total number of characters.

The Location Input paper tape must be headed by

LOCINP .

and followed by a carriage return. The information
required in paper tape format is identical to that
described above for card format.

Figure 13 contains an example of paper tape Location
Input.

1. Label Sentence (LAB): The LAB Sentence contains
the same information as the LAB Card plus a carri­
age return following the period at the end of the
sentence. The information for the LAB Sentence
must be contained within 80 characters.

2. Address Sentence (ADD): The ADD Sentence contains
the same information as the ADD Card. A period
followed by a carriage return designates the end
of a sentence. If more than one sentence is needed
to assign all Data Table Tag addresses, then another
ADD sentence is typed.

3. Table Length Sentence (TAL): The TAL Sentence con­
tains the same information as the TAL card. A
period followed by a carriage return designates the
end of a sentence. If more than one sentence is
needed to assign all table ~ength increments, then
another TAL Sentence may be punched.

CLAMP 34

4. Peripheral Sentence (PER): The PER Sentence con­
tains the same information as the PER Card. Up
to six lines of 80 characters each may be typed in
one sentence. A period followed by a carriage re­
turn designates the end of a sentence. If all of
the I/O references cannot be assigned in one sen­
tence of six lines, another PER sentence is typed.

5. Parameter Sentence (PMn): The PMn Sentence contains
the same information as the PMn card. The 66 char­
acters transferred are those which immediately
follow the comma after the PMn field. Since carri­
age return is a permissable parameter character, up
to 67 frames may be necessary to complete a PMn sen­
tence. All 66 characters must be specified for
each PMn Sentence. Up to 10 PMn Sentences are
allowed.

6. End of Location Input: The end of Location Input
is signalled by the naper tape stop code (see Figure
13).

CLAMP 35

I I I
I

II
II II

LOCA TION INP UT CA R 0 FO RMA T

II ; I I

I I
10101000~0000000000000000000000000100000

:x: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 04 65 66 61 68 69 00 11 n 13 74 15 16 71 78 79 80

: 11
0)
CD

,~ 22222222222222222222222222222'222222222222222212222122222222222222222222222222222
.a.
~ 3131313333331313333333333333331331
0::

. ~ 444444144144
l!l
z
~ 5555555555555555155555555555555555555555555555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55551551555
~

6666666666666166666666666666666166666&666666666666666666666666666666666666166666

77777771777717777177777777771777777711717777117 7 7111717 717 7777111171111177777777

818181188188B8888888888888888888

99 9 9 9 9 9 9 9 9 9 9 9 9 919 99 9 9 9 9 9 99 9 9 9 9 99 9 9 9 9 9 9 9 9.9 9 9 9 9 9 9 9 9 919 919 9 9 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2a 21 22 23 24 25 26 27 28 29 30 31 32 3. 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 &i 63 64 65 66 67- 66 69 7071 72 73 74 75 76 77 78 79 80

FIGURE 4: START CARD

I II I I I I I

II I 11'1 I III I
0001110001000000000101010101011110111!101010000000000000000000000000000000000000

:x: 1 23456 7a9roll~uu~ffi17n~20~2223~252627282930~3233343536~ 39.~~43444546~48e50~5253545556~58~60~6263046566~68.0071nn~~1671n~80

m 111 11111111111,,"1"'111111"'1'1'1'111 11
CD
0)
CD

~ 22222222'122222222222222212222222222222222222222222122222222222222222222222222222
a.
; 33331113313333333333313131113333133333131313133333333333333333333333333333333333
0::

~ 444144444444444414414444444444A4414444444441444444444444444444444444444444444444
t­
l!l

~ 5155555555555555555515555555155555555555555555555555 5 5 5 5555555555555555555555555
0::

~ 66666666666616666666666666~66666666666666666~66666666666666666666666666666666666

u)
Ii 771771171111117117177171117777771117777 J 7 7 71777777171111777177777777771777777771

; 888881888188888888888181818188881888881818181888888888888888B8888888888888888888

~ 19 9 9 9 9 9 9 9 9 919 919 9 919 9,9
, 2 3 4 5 6 1 8 9 1011 1213141"51617 18 1920212223242526 27 28 29 'lO 3132 3S 34 3536 J7 38 39 40 414243 4445 46 47 48 495051 5253 54 5556575& 59 0061 6263 64 65 66 61 66 69 70 71 727314157677 18 79 80

FIGURE 5: LAB CARD

CLAMP 36

I III I I II' II II I

II I 1 I I
000111000100010101011110~010101000010'00010000101000I000010100010111100000000000

L 1 23456 789rol1u~u~ffin~~~~~~U~~~~~~~~~~~~m~~~~~~~~~G~~~~~~~~~~~~OO~~~~~~~~~~nnnH~nnn~m ~
aJ 1111111111111111 '111 I
(D
co
CD

~ 22222222222222222222222222222122222222222222222222'122 22222222222222222222212222
a..

~ 33331133313133313333331313331333133131333333331313333333313133133333313333333333
..:
a::

z 44414441144441444444444444144444444444444441444444444444444444441444444444444444 ~
<.!)
z
~ 51555555555555155555555555515555515555555555515555555515155555555555555555555555
0:::

..;, 6666666666661666666666666166666666666666666666666666

~ 77177777777777777777777777777777771171111711177777177717117171777117777717771717
:>

~ 88888188818888888888881888888888888188888888881888888888818888888888818888888888

~ 1999199999999991999999999999999999999999
I 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 ?oO 31 32 3:i ~ 35 35 31 33 39 .w 41 42 43 44 45 ~ 47 48 49 ~ 51 52 53 54 55 56 57 5a 59 60 61 62 oj &I .5 6S 67 68 69 70 71 72 73 14 75 76 77 78 79 liD

FIGURE 6: ADD CARD (1)

I '1' II I

II
000111000101000100

L 1 2 3 4 5 6 1 8 9 1011 12 13 14 15 16 17 18 19 ~ 21 ~ 23 24 ~ ~ 27 28 ~ 30 31 ~ ~ 34 ~ ~ 37 ~ ~ ~ 41 42 43 ~ ~ ~ 47 ~ 49 ~ 51 52 ~ ~ ~ ~ 57 ~ ~ 60 61 ~ ~ ~ ~ ~ 67 ~ 69 ;0 71 n 73 74 75 76 77 78'79 m
: 1 1 1 1 1 1 11 1 1 1 1 11 1 111

'co
CD

~ 22222222222222222122222222222222222222222222222222,22222222222222222222222222222
,a..
~ 33331133313133333313333133
a::

• ~ 4441444114444414444144
,<.!)

z
~ 515555555555555555551555
0:::

666666666666666666666166

7717111711777117771117177777717717111177771117171717 7 17 717 7 111711717717717177171

8 8 8 8 818 8 818 8 8 8 8 8 8 8 8 8 8 8 818 88

199 999999999999999999999999999
I 2 3 4 5 6 7 8' 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 ~ 27 28 ~ :10 31 32 33 ~ ~ 36 37 33 39 40 41 42 43 44 45 48 47 48 49 5() 51 52 53 54 55 56 57 ~ 5S 60 61 62 53 64 65 6S &7 68 69 70 71 72 73 74 75 76 77 78 79 80

FIGURE 7: ADD CARD (2)

CLAMP 37

I I

II I

II II
I

II II
I

II II
I

II II
I

•
00011110010100000101110100000100001010000010111010000010110000000000000000000000

~ 12345& 189mnnUU~m"m~~~~nN~~~a~~~~~~~.~~~.~~U~~GU~U~~~~MM~~~~~~QS~~.~~~~nnnu~nnn~ ••
: 1 1 1 t 1 1 1 11 1 1 1 11 1 1 1111 1 1 1 lit 1 1 1 111 1 1 1 1 111 1 1 1 11 1 1 1 1 1 11 t 1 1 11 I
IX)
IX)

~ 22222222222221222222222221221221222222122221222222122222222222222222222222222222
a..
~ 33331113113133133333313133133333131313313133331313313331331333333333333333333333
< a:
~ 44414444444444444444444444444444414444444444444444444144444444444444444444444444
~ z
~ 51555555555555515555555555515555555555551555555555551555555555555555555555555555
a:

66

171777717777777777777177177777 777777777777 1 I 7 111111 7 7 7 7 177117777777777 1717777777

88888188818888888888818888888888881888888888881888888888881888888888888888888888

19 9 9 9 9 999 9 9 9 9 9 9 9 9 9 999 9 999 9 9 9 9 9 9 9 9 9 99 9 9 999 999 9 9 999 9 9 9 9 9 9 9 9 9 9
I 2 3 4 5 I 1 8 9 10 n 12 13 14 15 16 17 18 19 ~ 21 ~ n 24 25 26 ~ 28 ~ 30 31 ~ 3:i ~ ~ 36 37 38 39 40 41 42 U ~ ~ G 47 ~ U 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ~ • 67 68 69 7G 71 72 73 74 75 76 77 78 79 8Q

I

II
I I

I I I
1
1 1

FIGURE 8: TAL CARD

I

I

I

00011100010000101000010100111010011100
~ 1234561ItmnnUU~m"m~~~~nN~~~a~~~~~~~.~3839.~~U~~GUaU~~~~M M~~~~~~QS64~.~~69~nnnU~n77nn. t
IX) 111111111 11111111 I 1111111111111 111
IX)
00

~ 22222222222222222222222222222222222212222222222222722222222222222222222222222222
a..
~ 333311333'333331133333313331331333133133
a:

g 444144444444444444444414441444444144
~

~ 5155555155551155555155
a:

. 66666666666666666666166661666666166666666666R66666666666666666666666666666666666
<

~ 7717771777771177717777777717777771777777777717717171 7 17 7 71711117 1 717777777717117
::>

~ 8888818881888888'88888818888881888888'888888~888888888888888t8888888888888888888

~ 19 999 9 9 919 919 9 9 9 9 9- 9 9 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 999 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9999
, 2 3 4 5 I 1 8 9 10 11 1213 1415 16 17 18 l'9 ~ 21 ~ 23 24 25 26 27 28 ~ 30 31 32 3:i 34 ~ :l6 37 38 39 40 41 42 43 ~ 45 G 47 ~ 49 50 51 52 53 54 55 56 57 55 59 60 61 6263 64 65 6G 67 58 6~ 7071 72 73 74 75 76 77 7S 79 80

FIGURE 9: PER CARD

CLAMP 38

I
II III I 1

I I III II I I I
I I 1

II I II I I II I I I I
1 I I I I I 1

00011100010100010001011101010000000010010000011000010100000010000000000010010000
l: 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 IS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 S4 65 66 67 68 69 ;0 1112 73 74 75 76 n 78 79 811

: 11 t 111111111111111111111111111
GO eo
~ 22222222222222222221222221222222222222212222221222112222222222222222222222212222
!L.

~ 33331133313333313333331333333313333113333333333333333133333333333333333313333333
0::

~ 44414441444144444444444444444444444444444444414414444444444414441444441444444444
Cl
z
~ 51555555555555555555555555555555555551555551555155555551551555515555555151555555
0::

66666666166666661666&66666666666666666

7717771777771777777771717771777777777777777/777177177777777777777717777777777777

88888188818888888888888188888881888888888888888888888818888188888888888888888888

19999999999999999999199999199999919999199919999999999999919991199999199999199999
I 7 3 , 5 6 1 8 9 13 11 1213 1415 16 11 18 1920 21 22 2324 25 26 27 78 29 :lO 31 323:; 34 35 36 37 38 39 40 41 4243 44 45 46 4748 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 7273 74 ~ 76 '11187960

I 111111111
II II 111111111

FIGURE 10: PM0 CARD

I I I

II
00011100010000000000000000001111111101000000000000000001100000000000000000000000

ili 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51, 52 53 54 55 56 57 58 59 60 61 62 63 D4 65 66 61 68 69 ;0 1112 73 14 75 16 n 78 19 80 •

11
eo
~
~ 22222222222122222222122222221222222222222222222122122222222222222222222222222222
!L.
o
z
<

33331133113313333333313333333133333333333133333313333333133333333333333333333333
10::

I ~ 44414441444441444444441444444414444411441444444441444444444444444444444444444444
it;

~ 5155555555555515555555515555555155555555555555555515 5 5 ~ 5 5 5 5 555555555555555555555
0::

. 666666666666666166R66666166~6666166666666666G66666616666666666666666666666666666
<C

~ 7717771777777777177777711177717771771777777/777777171777771777777777777777777771
:J

; 88888188818888888188888888188888881811881188888888888188188888888888888888888888

~ 19999999999999999919999999919999999199999999999999999919999999999999999999999999
• 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 23 24 25 26 27 28 29 :lO 31 32 3:i 34 35 36 37 31! 39 40 41 4243 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 67 68 69 1071 72 73 14 75 76 1118 7980

FIGURE 11: PM3 CARD

CLAMP 39

1111I111 I I I I 1 I I I I I I I I I
:n::n::o::Oflfn:: .
11111111

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOO ~OOOOOOOOOOOOOOOOOOOOOOOOO
l: 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 67 68 69 "iO 71 12 73 74 75 76 77 78 79 80
ID

co
co
co
M
N

I

11.

11

22

@ 33
...:
Q:

~ 111111114411111111
l­
I.!)
Z

~ 55
Q:

66

77

111111118811111111

99S99999999999999999999999999999
I 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 13 20 21 2Z 23 24 25 26 27 ;:8 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 4S 47 48 49 50 51 52 53 54 5~ 56 51 58 59 60 61 62 ~3 St 65 66 67 68 69 7071 72 73 74 75 75 77 78 79 80

FIGURE 12: STOP CARD

CLAHP 40

An example of Paper T o.pe Location Input appears below. The first I ine is the header sentence

"LOCINP." The second line is an LAB sentence which identifies the run by "INPUT" and the

program by "PROGRAM-RUN." The program is located on UNISERVO II A tape unit number 3 on

channel number 2. The program IBANK is located at decimal address 5000 and its DBANK at 40000.

The program requ ires subroutines located on channell, UN ISE RVO II A un it 4. The th ird line is the

beginning of an ADD sentence which occupies six lines. The last line contains the stop code sym­
bol denoting the end of Location Input.

LOCINP.

INPUT,LAB,PROGRAM-RUN,A,2,3,5000,~vOO,A,1,4.

INPUT,ADO,COUNTI/l000, COUNT2/1351, TAGI/1495, TAG2/1595, TAG3/2030, TAG4/5432,

TAG5/6242, SYMBOL/b324, NAMEI/b'lOO, NAME2/b550, NAt€316bbo, NAME4/1100,

NAME5/12345, TITLEI/13456, TITLE2/14561, TITLE3/15b18, TITLE4/1 b189,

LABEL1/11890, LABEL2/18900, LABEL3/19000, LABEL4/20000, LABEL5/22222,

LABEL6/23~5b, TAGA/24561, TAGB/25678, TAGC/2 b 789 , TAGD/2789o, TAGE/28900,

TAGF/29000, TAGG/345b7, TAGH/35b78, TAGI/3b189, TAGJ/3789o, TAGK/38900.

I NPUT,ADD, TAGL/123~5b.

INPUT,TAL, TABLEA/l00, TABLEB/1234, TABLE C/2 00 , TABLED/300.

INPUT,PER, IN5/3, INb/4, OUT/l0.

I NPUT,PMO, UP TO SIXTY SIX CHARACTERS ARE USED AS THE REQUIRED PARAMETERS

INPUT,PM3,ABCDEFGHIJKLMNOPQRSTUVWXYZ()+-*. 1234567890:$>-<·?1

(I

FIGURE 13: PAPER TAPE LOCATION INPUT

o

o

o

o

o

o

o

o

o

o

APPEIIDIX: RELATIVE OBJECT CODE

T
J.. • INTRODDCTION

This Appendix contains a detailed description of the 1107
Relative Object Codeo For purposes of clarity and brevity,
the follow'ing tw'o symbols have been used throughoiJ_t to re­
present a Data Table Tag and a Data Table Length Tag, res­
pectively:

DTAG

LTAG

The unique symbolic Data Table Tag assigned
for each data table in the object progra~.
The abso lute assignrnen t of this DTAG is the
first location assigned the data table in
core ~emory or on magnetic drum.

The s y ITl b 0 1 i c D a taT a b 1 e L e ng t h Tag. The a b -
sol "Ll tea s s i g rLT. e n t 0 f t his L TAG is the cur r en t
length of the data table in core ~effiory or on
llagnetic drurr~.

CLA~1P 42

II. DESCRIPTION OF ROC PROGRAM FILE

In general, an object program that is to be loaded by the
Relative Load Routine is contained in a Program File. The
Program File is an output of an assembly system and/or a
compiler. A complete layout of the Program File is shown
in Figure 1. Although the object program need not con­
tain all of the sections listed, those sections which are
present must be in the order shown.

The Program File consists of four records in the following
order:

1) Identification Record

2) Modification Record

3) Program Record

4) Termination Record

Each record in the Program File consists of one or more
blocks of 256 words each. The first word in each block
identifies the record with which the block is concerned.
The identifier wvrd for the Identification Record is the
first six characters of the Program Name. The identifier
words for the other Program File records are:

Record Type Identifier Word

Modification *MODRC

ProgralIl *PRO'RC

Termination *TRMRC

Each block contains a checksum. The checksum for the
Identification Record block is the next to last word of
the block. For all other records, it is the last word
of the block.

All unused words in the Program File blocks are disre­
garded. No special setting is required for these words.
However, the contents of these disregarded words are in­
cluded in the block checksum calculation.

The checksum is generated as follows:

1) The sum of all words, except the checksum word, in
the block is calculated disregarding overflow.

2) The upper half of the checksum is added to the lower
half (without sign extension) thus generating a 19-
bit checksum in the least significant bits.

3) This 19-bit checksum is stored in the checksum word
of the block.

CLAMP 43

PROGRAM NAM

0100
0101
0110 *MODRC
0111 Table I D
1000
1001
nOD

PROGRAM NAME

*MODRC

Input-Output
References

Exec. System
References

Subroutine
List

External
References

Entrance
List

Drum "An
References

Drum liB"
References

Core
Rtlferences

~--

Identification

Record

(one 256

word block)

Modification

Record

(one or more

256 word

blocks)

*PRORC

Segment
10

Group

Table 10
Group 10

Program Word

*TRMRC
Group 10

Program Word

Group

*TRMRC

FIGURE 1: PROGRAM FILE FORMAT

CLAMP 1+4

Program

Record

(one or

more 256

word blocks)

Term inat i on
Record

(Last *PRORC

block: one

256 word

block)

III. IDENTIFICATION RECORD

The first record in a Program File is the Identification
Record. This record is composed of one 256 word Label
B 10 ck. The Labe 1 B lock is illus tra ted in Figure 2.

WORD
NUMBER

00

01

02

03

04

05

06

07

08

09

253

254

255

35 32 28 17 10 8
PROGRAM NAME

Seventh through twelfth character

pf

0 0
tt 0 0 nr
tt 0 0 nr

tt 0 0 nr

tt 0 0 nr

tt 0 0 nr

tt 0 0

tt o -------------------------- 0 nr

tt o 0 nr

disregarded

00 segment count 00 table count

Checksum

PROGRAM NAME

pf = program type
t = modification fl ag

r = number of * MO 0 RC references
tt = tabl e type

t = modification table count nr = number of table entries

FIGURE 2: LABEL BLOCK

0

0

* MOORC table
ID words

Words 00 and 01 contain the Program Name. The Progra~
Name is a combination of 1 to 12 of the following char­
acters, in Fieldata code~

A, B, . .. , 0, ... , Z, 0, 1, ~ .. , 9

The Name is left justified and space filled to contain 12
characters. The hyphen (-) may also be used in the na~e,
but it cannot be the first character.

Word 02 contains the program type flag in bits 35-33.
This flag has the following values:

Progra,1l type flag (pf) Object Code Type ROC Program Type

0 0 0 Absolute DIRECT Simple
0 0 1 Relative DIRECT Simple
0 1 0 Relative DIRECT Subroutine
0 1 1 Relative DIRECT Complex
1 0 0 Rela tive None Subroutine
1 0 1 Relative EXEC Simple
1 1 0 Relative EXEC Subroutine
1 1 1 Relative EXEC Complex

Programs and subroutines with flag fields 101, 110,111 oper­
ate under Executive System control. Subroutines with flag
field 100 do not contain input/output references and can be
used in EXEC ROC or DIRECT ROC programs.

Word 03 describes the modification tables associated with
the Program File. These tables are contained in the *MODRC.
Bit 3 5 i s the mo d if i cat ion f la g • T his f 1 a g is 0 if tab 1 e
lengths may be incremented at load time. It is 1 if incre­
mentation of table lengths is not allowed. The modifica­
tion table count, bits 28-18, indicates the nlliTIber of modi­
fication tables in the *MODRC. This value is the number
of *MODRC table ID words which follow. Bits 10-00 indi­
cate the nlli'1lber of entries in all modification tables. This
nUlnber is the total of the values in the nr field of all
*MODRC table ID words.

The *MODRC table ID words, words 04 and following, describe
the *MODRC tables associated with the Program File. Bits
08-00 indicate the number of entries for the subject table.
The table type is described by bits 35-32 as follows:

CLAMP 46

Type Flag (tt)

0000
0001

0010

0011
0100
0101
0110
0111
1000
t·001
1010
1011
1100

Table Type

I/O reference
I/O Reference

I/O reference

I/O reference
System reference
system reference
system refere~ce
system reference
dr:mJ. refer ence
drum reference
drum reference
dr'J.ffi ref er enc e
core reference

Type References

Selective jump switch
Executive I/O Functional

Routines
Direct I/O, channel re-

ference
Direct I/O, unit reference
Executive System reference
subroutine list
external references
entrance list
drum channel A*
drum channel B*
drum channel C*
drum channel D*

*Note: Bits 33-32 of the drum reference flag denote the logical
channel assignments. If tWD or more drum channels are
specified in the object program, there is a separate drum
reference table for each channel. The difference is de­
noted by a change in bit 33 and/or bit 32 in the drum
reference flag.

All the words from the word following the last *MODRC table
ID word up to and including word 252 are disregarded.

Word 253 describes the Program Record (*PRORC) associated
with the Program File. Bits 33-18 indicate the n~TIber of
program segments in the program. Bits 15-00 indicate the
number of variable-length tables which have entries in the
*PRORC. The remaining bits of the word are set to zero.

Word 254 is the block checkswTI.

Word 255 is a repeat of the first six characters of the
Program Name.

CLAMP 47

IV. MODIFICATION RECORD

The Modification Record C*MODRC) is composed of one or
more blocks of 256 words each. Figure 3 illustrates a
Modification Record block. Word 00 contains the identi­
fier, *MODRC, in Fieldata code. Word 255 is the block
checksum. Each block is composed of 254 modification
table entry words. If an entry of more than one word
will not fit at the end of a *MODRC block, it will be
split between the present block and the next block. Un­
used words in the last MODRC block are disregarded.

WORD
NUMBER

00
01

02

253
254

* M o o

254
* MOORC Table

Entry Words

R

255 Checksum

YIGURE 3: MODIFICATION RECORD BLOCK

CLAMP 48

C

The entries in the *MODRC blocks comprise four groups of
modification tables. The contents of these tables are
used to modify the object program for its operating en­
viroThTIent. The four groups of tables that may appear are:

Input/Output References
System References
Drum References
Core Rpferences

All of these tables need not be included with every object
program; however, those tables which are present must ap­
pear in the order shown above.

A. REFERENCE IIDMBERS: As a program is assembled, each
symbolic reference contained in the modification
tables is assigned a reference number. Thus each
symbolic reference in the source code is replaced by
a reference number. These reference numbers will
correspond to entries in one of the four modification
table groups. The modification tables contain the
absolute assignment for each symbolic reference. The
reference n~~bers for each modification table group
are an independent set.

B. INPUT/OUTPUT REFERENCES: Symbolic references to peri­
pheral equipment and Selective Jurnp swi tches are con­
tained in the input/output section of the *MODRC. This
section of the *MObRC may contain up to 128 unique en­
tries of two words each. The first word is the sym­
bolic reference. The logical assignment of the equip­
ment is in the second word. The jump switch entry is
illustrated in Figure 4. Figure 5 illustrates the
EXEC ROC entry. The DIRECT ROC enGries are illus­
trated in Figures 6 and 7.

For object programs in EXEC ROC the 128 allowable
references are available to represent Selective
Jump switches and input/output units. All Selec­
tive Jump switch references must appear in the
first 16 I/O references.

For DIRECT ROC programs, all symbolic input/output
channel references must be included in the 128
allowable references. The channel references may
only appear in the first sixteen entries in the
input/output references. Selective Jump switch
references and channel references must share the
first 16 references. Symbolic channel references
and Selective Jump switches may be used inter­
changeably.

CLAMP 49

The status flag is in bits 35-34 of the second word,of the
input/output *MODRC entry. The status flag applies to all
EXEC ROC reference entries and DIRECT ROC unit reference
entries. The status flag may also be associated with Se­
lective Jump switch entries in EXEC ROC programs. The
status flag may not be used for channel and jump switch
entries in DIRECT ROC programs.

The status flag values are:

S tat us f la g (s)

00
01

10
1 1

Definition

May not be deleted at Load time.
May not be deleted at Load time;
equate this reference to last
preceding reference.
May be deleted at Load time.
May be deleted at Load time;
equate this reference to last
preceding reference.

In addition to Selective Jump switch references, the input/
output section of the *MODRC contains one of two types of
input/output references. These references are either for
the Executive -I/O Functional Routines or for direct con­
trolled input/output.

1. SELECTIVE JUMP SWITCH REFERENCES: In, object programs
which utilize the Selective Jump switches, the table
containing these references appears first in the *MODRC
input/output section. This table is limited to 16 en­
tries. The reference numbers assigned to these en­
tries must be the first numbers assigned in the input/
output section.

Entries in this table are composed of two words. The
first word is the symbolic Selective Jump switch re­
ference. The contents of the second word varies with
the type of input/output operation used with the ob­
ject program. F'or EXEC ROC programs the second word
contains the logical switch number. For DIRECT ROC
programs, the second word contains the absolute Selec­
tive Jump switch assignment made at assembly time.

The second word contains three fields. The status
flag is in bits 35-34. The Selective Jump switch num­
ber is in bits 25-22 and is repeated in bits 03-00.
The Selective Jump switch entry is illustrated in
Figure 4.

CLAMP 50

35

s

33 25 21

Symbol ic Selective Jump Switch Reference

0 0 j 0 0 j

s = status flag j = jump switch number

FIGURE 4: SELECTIVE JUMP SWITCH ENTRY

2. EXECUTIVE SYSTEM INPUT/OUTPUT REFERENCES: FOR
EXEC ROC programs, each entry in the input/output
reference table, Figure 5, contains two words.
This table contains entries for all peripheral
equipment with the exception of magnetic drums.
The first word is the symbolic reference for the
peripheral equipment. The second word contains
the status flag in bits 35-34, the peripheral
equipment type in bits 21-18, the logical channel
grouping in bits 15-12, and the use flag in bit
00.

The logical channel field contains values from 1
through 15. A logical channel of zero is used to
indicate that the unit may be assigned to any
available channel. This field, together with the
equipment type field, is used to define the abso­
lute channel. A different set of logical channel
numbers is assigned for each type of .peripheral
equipment.

The equipment type field has one of the following
values:

Equipment Type Field Equipment Referenced

000 1 UNISERVO IIA
o 0 1 1 UNISERVO IlIA
o 1 0 1 High-Speed Printer
1 o 0 1 Card Reader
1 o 1 0 Card Punch
1 1 0 1 Paper Tape Reader
1 1 1 0 Paper Tape Punch

The use flag, bit 00, indicates the use of the
peripheral equipment such that if it is 0, the
equipment is used for input. For output or
buffer usage, the use flag is 1.

CLAMP 51

o

35 33 21 17 15 11 o

Symbol ic Input/Output Unit Reference

s 0 0 pt 00 c 0 0 u

s = status flag c = logical channel

35

0

pt = peripheral equipment type u = use flag

FIGURE 5: EXECUTIVE I/O REFERENCE ENTRY

3. DIRECT INPUT/OUTPUT REFERENCES: Two separate tables
are used for input/output references in DIRECT ROC
programs. All input/output references must have
assignments at assembly time.

The first table contains channel references and their
assignment. The second table contains unit references
and their assig~TIent. The status flag is contained
in the second table only. No entries for magnetic
drum reference(s) are contained in the second table.

a. DIRECT INPUT/OUTPUT CHANNEL REFERENCES: Entries
in the first table (Figure 6), contain channel
references. Each entry consists of two words.
The first wurd is the symbolic channel reference.
The second word contains the channel assignment.
This channel assignment is in bits 25-22 (the
a-field) and is repeated in bits 03-00.

25 21 3 o

Symbol ic Input/Output Channel Reference

0 ch 0 0 ch

ch == channel assignment

FIGURE 6: DIRECT I/O CHANNEL REFERENCE ENTRY

CLAMP 52

35 33

s 0

b. DIRECT INPUT/OUTPUT UNIT REFERENCES: The unit
references, Figure 7, are in the second table.
The first wnrd in each two-word entry contains
the symbolic unit reference. The second word
contains the status flag in bits 35-34 and the
unit assigThTIent in bits 15-00.

15

Symbol ic Input/Output Unit Reference

0 unit selector bit

s=status tla g

FIGURE 7: DIRECT I/O UNIT REFERENCE ~~JT::iY

C. SYSTEM REFERENCES: The system reference section of
the *MODRC may include up to four separate tables.
These tables include:

Executive System References
Subroutine List
External References
Entrance List

All of these tables need not appear in each object pro­
gram. However, those that do appear must be in the
order shown.

Up to 128 unique references may be included in this sec­
tion of the *MODRC.

1. EXECUTIVE SYSTEM REFERENCES: This table contains a
list of references to the Executive System control,
the Executive System I/O Functional Routines, and/or
the Relative Load Routine. Each entry in thls table
will be one wDrd, the symbolic reference.

o

2. SUBROUTINE LIST: This table contains a list of the
names of all subroutines referenced by the object
program, but not incorporated into the object program.
Each entry in this table is one wnrd, the Subroutine
Name. These names are used to load the required sub­
routines from the Library at load time.

This table may be included in the Program File for
subroutines and complex programs only. Each entry
in this table is assigned a reference number in the
sy s t errl refer ence sec t ion of the *110DRC.

CLAMP 53

35

0

3. EXTERNAL REFERENCES: This table contains a list
of references to subroutines, other than their
name, which are incorporated at load time. The
references are entrances to the subroutines listed
in paragraph C. 2. above.

Each table entry is one word, the symbolic external
reference. Each entry is assigned a reference num­
ber in the system reference section of the *MODRC.
This table may be included in the Program File for
subroutines and complex programs only.

4. ENTRANCE LIST: This table is contained only in the
Program Files for subroutines. It contains a list
of the symbolic entrances to the subroutine. Each
table entry contains two words. The first word is
the mnemonic symbol for the entrance. The second
word contains the address of the entrance relative
to the Subroutine Name. The entry is illustrated
in Figure 8.

15

Symbol ic Subroutine Entrance Tag

0 relative add ress

FIGURE 8: ENTRANCE LIST ENTRY

o

D. DRUM REFERENC:ES: The dru.m reference table contains a list
of all DTAG and LTAG references to th8 magnetic dru.m(s)
together with the assigned minimum length for each drUlil
table. Each entry contains three words. The first word
is the symbolic DTAG associated with the drlliTI table. The
symbo lic LTAG is in the second word. Figure 9 ilL1S tra t e s
the drum reference entry in the *MODRC.

CLAMP 54

35 33 22 o

Symbolic DTAG

Symbolic L TAG

p m 0 0 minimum drum table length

p = position flag m = segment storage flag

FIGURE 9: DRUM REFERENCE ENTRY

The third word contains the mlnlmum drum table length in
bits 22-00. The relationship of the subject drum table
to the last preceding table is contained in bit 35. Bit
34 contains a flag to indicate whether or not the drum
table is used for segment storage in segmented programs.
Bit 34 contains a 1 if the drum table is used for seg­
ment storage. In all other cases this bit is O.

The position flag, bit 35 of word 3, is 0 for independent
tables, and has the value 1 if the subject table starts
at the same location as the last preceding table.

If the length of any table had been assigned its absolute
value, i.e., table length incrementation is not permitted
at load time, the word containing the LTAG must have heeD
cleared to zero.

Up to 128 drum tables may be contained in an object pro­
gram. Reference numbers are arranged so that LTAG re­
ference numbers are odd and DTAG reference numbers are
even. Up to 256 references may be included in this sec­
tion of the *MODRC.

CLAMP 55

E. CORE REFERENCES: The core reference table contains a
1 i s t 0 fall D TAG and LT A G ref ere n c est 0 the d a t a sec t ion
of core ffiemory. Each entry in the core reference table
contains three wnrds. The first word is the symbolic
DTAG. The symbolic LTAG is in the second wnrd. The
third word contains the minimum table length in bits
15-00. Bit 35 of the third word is the position flag.
The position flag gives the position of the subject core
table to the last preceding core table. The values of
the position flag are assigned in the same manner as for
drum tables (see Section IV.D.). The entry is illustrated
in Figure 10.

The first entries in the core reference table are:

Fixed Length Data Table (DBANK)
$ERROR Table
$PARAM Table.

All of these tables need not be included with every object
program; however those tables which are present must ap­
pear in the order shown above. The position flag for each
of these tables is zero.

Both the LTAG and the DTAG for the DBANK are cleared to
zero. For complex programs, the length assigned to this
table inCludes the area needed by the main program and any
included subroutines. It does not include the area(s)
necessary for subroutines incorporated at load time.

The LTAG for the $ERROR table is cleared to zero. This
table is assigned in the instruction area of the object
program. The $PARAM table, when present, is assigned in
the variable-length core data section.

All other tables listed in the core reference table are
in the variable-length core data section. The absolute
length for any of these tables may be assigned at assem­
bly time. In this case the LTAG for the subject table
is cleared to zero.

Both the symbolic LTAG and DTAG for a specific core
table are replaced by the same reference number in the
object program wnrd. The field position of the refer­
ence number and/or an indicator determines if the cur­
rent table length or address is to be used in the modi­
fication of the program word.

CLAMP 56

35

p 0

p = posi ti on flag

Up to 128 separate core tables may be defined in an
object program.

15

Symbolic DTAG

Symbolic L TAG

0 minimum core table length

FIGURE 10: CORE REFERENCE ENTRY

CL ·~MD 5; rt .. ~ I

o

V. PROGRAM RECORD

The Program Record is composed of one more blocks of 256
words each. A Program Record block is illustrated in
Figure 11. Word 00 contains the identifier *PRORC, in
Fieldata code. The identifier for the last block of the
Program Record is *TRMRC.

WORD
NUMBER

00

01

02

03

253

254

255

* P

FIGURE 11:

R

254 * PRORC
10 or Program

Words

Checksum

o R

PROGRAM RECORD BLOCK

CLAMP 58

C

Word 255 contains the block checksum. Each block contains
from 246 to 254 program words, indica tor words, and/or
identifier words. A balance of eight or less words in a
*PRORC block is disregarded. Likewise any balance in the
*TRMRC block (the last *PRORC block) is disregarded.

The Program Record contains all object program instructions
and data table entries assigned at assembly time. These
words are arranged in program sections. Program sections
are one of two types; segment sections or table sections.

Each program section is headed by a section identifier.
These words describe the program section which follows. In­
dividual program sections are divided into program word
groups. Each program wnrd group is headed by a group iden­
tifier word.

A. PROGRAM SECTIONS: The segment sections contain the
IBANK of an object program segment. This section also
contains the DBANK associated with the program segment.

For segmented complex programs, the segment section may
contain a subroutine reference portion. This portion
appears in each segment section (with the exception of
the main control routine) which has subroutine references.
A subroutine list and an external reference list make up
this portion of the segment section.

The subroutine list contains the Names of the subroutines
to be incorporated into the program segment at load timeo
The references to these subroutines, in the program seg­
ment, are contained in the external reference list. The
subroutine list and external reference list for the main
control routine are contained in the program *MODRC.

The table sections contain the set of words to be loaded
into the variable-length tables from the Program Fileo

B. PROGRAM SECTION IDENTIFIERS: The section identifier is
used to identify each program section in the Program Re­
cord. The first entry in the first *PRORC block is a
section identifier. A section identifier also heads
each program segment and/or group of data table entries.

The section identifier for program segments is illustrated
in Figure 12. This identifier is four words in length.
Words 00 and 01 are bank descriptors. Word 00 refers to
the IBANK. The DBANK is described in word 01. Bit 35 is
the storage flag. If bit 35 is 1, the subject bank is
recorded on a storage medium after modification. Bits
33-18 indicate the number of words in the IBANK or DBANK.

CLAMP 59

WORD

The relative address field, bits 15-00 indicates the
address for the first word in the IBANK or the first
word in DBANK.

NUMBER 35 33 31 23 19 17 15 11 7

00

01

02

03

r 0 word count 0 0 relative address

r 0 word count 0 0 relative address

o 0 0 0 ns o 000 ref. no. 2 d 000 ref. no. 1

o 0 0 0 nr o 0 0 0 ref. no. 2 d 000 ref. no. 1

r = sto rage fl ag d = drum flag
ns = number of sUbroutines

Word 0 = IBANK descriptor
Word 1 = DBANK descriptor

nr = number of external references
Word 2 = IBANK storage
Word 3 = DBANK storage

FIGURE 12: SEGMENT SECTION IDENTIFIER

For complex segmented programs, the number of entries in
the subroutine list is indicated by bits 31-24 of word 02.
Bit s 31 - 2 4 0 f wo r d 03 i nd i cat e the n urn be r 0 f ext e r na 1 r e -
ferences in the segment section. For simple programs,
these fields are disregarded. They must be cleared to
zero in complex segmented programs when the segment does
not have load time included subroutines.

Bits 19-00 of words 02 and 03 are the segment storage
descriptors. Word 02 is used for the IBANK and word 03
is used for the DBANK. Bits 19-12 contain the reference
number for the storage channel for DIRECT ROC programs
only. Bits 07-00 contain the unit or drum address re­
ference number. Bit 11 is set to 1 when the storage
medium is a drum. These fields are disregarded if the
storage flag for the subject bank is not set in word 00
or 01.

The table section identifier is illustrated in Figure 13.
This is a one word identifier. Bit 35 is 0 and bit 34
must always be 1. The word count, bits 33-18, indicates
the number of data table words which are to be loaded.
Bits 07-00 contain the reference number for the subject
table in the core reference section of the *MODRC. Stor­
age of variable-length data tables on an external medilliTI
is not provided.

CLAMP 60

o

35 33 17 7 o

35

I tf I

word count ref. no.

FIGURE 13: TABLE SECTION IDENTIFIER

C. GROUP IDENTIFIER WORDS: Each group of consecutive instruc­
tion words, consecutive data table words, and subroutine
reference in a program section is headed by a group iden­
tifier word. A group identifier follows the section iden­
tifier for the first group in a section. The second word
in each *PRORC block is either a group identifier or a sec~
tion identifier word. The group identifier word is illus­
trated in Figure 14.

33 25 17 15 0

c e
I b I k I relative address

tf = type flag b = ID flag
c = word count k = group type
e = entry count

FIGURE 14: GROUP IDENTIFIER

The type flag, bits 35-34, is used to indicate the type
of program word group that follows. This flag has the
following values:

Type Flag Word Group

1 0 instruction or data table words
1 1 subroutine references

1. INSTRUCTION AND DATA TABLE WORD GROUPS: These word
groups are composed of program words and indicator
words. Figure 15 illustrates the layout of an in­
struction or data table word group. The half words
K thru T are either instruction half words or data
table half words; only one kind is found in any
given word group. There are two indicator fields

CLAMP 61

associated with each program word. The indicator
fields are packed into the latter words of th&
word group. The indicator field for the upper
half of the first program word (K in Figure 15)
is located in the most significant bits of the
last word in the word group (the k-field in
Figure 15). This indicator field is followed by
the indicator field for the lower half of the
first program word, and so forth. If an indicator
field does not fit in the least significant bit of
a word, it is split between the present word and
the preceding word in the word group; i.e., the
field consisting of s1 and s2 is the indicator
field for the half program word S in Figure 15 (s1
contains the most significant indicator bits). All
bits of the word within the instruction and data
table word groups are used for program words or
indicator fields, except for the possibility of
the least significant bits of the indicator word
following the last program word.

35 18 17 o

GROUP IDENTIFIER WORD

K M

N P

Q R

S T

~ ~~

s2

k m n sl

FIGURE 15: INSTRUCTION AND DATA TABLE WORD GROUP

CLA1/~? 62

Field

All IBANK and DBANK word groups for a specific pro­
gram segment must appear in one program section.
The IBANK and DBANK word groups need not be segre­
gated within the section, however.

The identifiers for these groups use the following
fields in addition to the type flag:

Bit Posi tiors Use

Word count 33-26 Number of words in group
Entry count 25-18 Number of program w'ord s in group
ID flag 17 Denotes last group in program

section
Group type 16 Denotes if group contains ins truc-

tions or data words.

The ID flag, bit 17, is set to 1 only when the word
group identifier refers to the last group in a pro­
gram section. A section identifier or the *TRMRC
notation follows the subject word group. Bit 16 is
set to 1 for word groups which contain data table
words (either DBANE:: or variable-length table en­
tries). It is set to 0 for word groups containing
instruction words. The relative address field
locates the program words in the word group in the
IBANK, DBANK, or DTABLE.

2. SUBROUTINE REFERENCE WORD GROUPS: These word groups
may appear only in segment sections of complex seg­
mented programs. These word groups are used to spe­
cify subroutines incorporated at load time, and form
an extension to the system reference sectiOn of the
*MODRC. Two types of word groups appear in this por­
tion of the segment section. The subroutine list
group precedes the external reference group. These
word groups follow the segment section identifier

Entry

Group

and precede the instruction and data table word
groups in the segment sections in which they appear.

The identifiers for these groups use the following
fields, in addition to the type flag:

Field Bi t Pos it ions Use

count 25-18 Number of words in group

type 16 Denotes group contents

Relative address 15-00 Reference nlL.llber

CLAMP 63

Bit 16, the group type, is ~ for the subroutine list
and 1 for the external reference list. The relative
address field contains the reference number of the
first group word in the system reference modification
table. The remainder of the fields in the identifier
word are disregardedo

The subroutine list contains the names of all subrou­
tines to be incorporated into the program segment at
load time. Each name is contained in one wDrd.

The external reference list contains the symbolic re­
ferences to the subroutines in the program segment.
Each reference is contained in one word.

D. PROGRAM ArID IIIDICATOR WORDS: The major portion of the
Program Record is composed of program and indicator words.
These wDrds appear in instruction and data table word
groups. Each program word has two indicator fields asso­
ciated with it.

1. INDICATOR FIELDS: Each indicator field denotes the
modification for one half of a program wDrd. The
indicator for the left half precedes the indicator
for the right half. An indicator field contains 1,
4 or 13 bits. Each indicator field can contain three
subfields: a modification flag, a modification type,
and a reference number. The indicator values are
tabulated in Figure 16.

The modification flag indicates if the half program
word is to be modified. The modification flag is D
for no modification and 1 w'hen modification is
necessary. When the modification flag is 0, the in­
dicator contains only one bit. If the flag is 1,
the next 3 or 12 bits denote the type of modifica­
tion.

The modification type subfield indicates the modi­
fication that is to be performed. Values 'in the
modification type subfield take on different mean­
ings based on the object program format. These
meanings are determined by the type of ROC used in
the object program. The number of bits modified
in the half program word is affected by these dif­
ferent meanings.

INDICATOR

z z
0 0 -t-c.!) t-w «« «Q. LEFT HALF WORD MODIFICATION
~...1 u>-
u.u. U::t--C C
0 0
:l: :l:

0 No Modification

1 o 0 0 Add current Program Name address (I6-bit field)

1 001 Core DTAG ± LTAG (I6-bit field)

1 0 1 0 Core TAG, Core TAG ± constant (I6-bit field)

1 o 1 1 System symbol (16-bit field)

1 1 0 0 I/O{Selective Jump Switch (4-bit field)}
Channel Reference (4-bit field)*

1 1 0 1 Not Available

1 1 1 0 Drum L TAG ± constant (I6-bit field)

1 1 1 1 I/O Unit Reference (I6-bit field)*

* Available only for DIRECT ROC object pro~rams

** 16-blt field for DIRECT ROC object pro~rams.

For EXEC ROC object pro~rams, modifiable
field is 3D bits.

*** For DIRECT ROC object pro~rams, 23-bit field.

For EXEC RO C object pro~rams, 30-bit field.

RIGHT HALF WORD MODIFICATION

No Modification

Add current Program Name address (I6-bit field)

Core DTA G ± L TA G (I6-bit field)

Core TAG, Core TAG ± constant (I6-bit field)

System symbol (I6-bit field)

Not Available

Drum DTAG ± LTAG ***

Drum TAG, Drum TAG ± constant ****

I/o Unit Reference **

**** For LTAG, 23-bit field

For DTAG, DIRECT ROC object pro~ram,
23-blt field

For DTAG, EXEC ROC object pro~ram,
3D-bit field

FIGURE 16: . MODIFICATION INDICATOR FIELDS

The reference number subfield is used when the modi­
fication is a special case of the "TAG ± constant"
form. In this case'6the constant has a value equal
to or greater than 2 for core references, or the
constant has a value equal to or greater than 212
for magnetic drum references.

a. INDICATORS FOR CORE REFERENCES: The indicators
for IBANK references, core data table references,
and system symbol references refer to a 16-bit
field in the half program word. Figure 17 illus­
trates the indicators and their associated pro­
gram word fields. This type of indicator may be
used to denote modification in either the left

Subfield

000

001

010

011

or right half program word.

The modification type subfield for core references
has one of the following values:

Definition

Internal Program Reference

Add current address of Program Na~e to
value in program word field and place
sum in program word field.

Core DTAG ± LTAG

Add values referenced by core table refer­
ence numbers in program word field and
place sum in program word field.

Core TAG, Core TAG ± constant

Add value referenced by core table reference
number to value in program word field and
place sum in program word field. The size
of the constant determines location of re­
ference number.

System Symbol References

Replace the system reference number in pro­
gram word field by current address of system
symbol.

b. INDICATORS FOR DRUM LTAG REFERENCES:: The indica­
tors, Figure 18, for drum table length modifica­
tion refer to either a 16-bit field or a 23-bit
field in the program word. The size of the pro­
gram word field depends on the part of the pro­
gram word (either left half or right half) which
is modified. The value of the modification type
subfield is 110. The reference nQ~ber for the
LTAG is always odd.

CLAMP 66

FIELD FORM

Core DTAG ± LTAG

Core TAG
Core TAG ± constant

0< constant < 26

Core TAG ± constant
26 < constant < 215

SYSTEM REFERENCE

15
33

I

PROGRAM WORD FIELD

o
18

I-

15 13 7 o
33 31

1
0 I ± I

~L TAG refer. no. + DTAG refer. no.~

6
24

o
18

r--TAG refer. no. ..,- CONSTANT-+1

o
18

-------CONSTANT -----.. ~I

CONSTANT SIZE INDICATOR

15 12 6
24

rREFER. NO.--1

o

FIGURE 17: IBANK, CORE, AND SYSTEM REFERENCES

INDICATOR FIELD

MODIFICATION FLAG

FIELD FORM

Drum LTAG ± constant
0< constant < 212

Drum L TAG ± constant
2'2 < constant < 222

Drum L TAG ± constant
o < constant < 26

Drum LTAG ± constant
26 < constant < 2'5

PROGRAM WORD FIELD

19 12 0

rL TAG refer. no. -1 111 CONSTANT "I

o

~----------------CONSTANT----------------~-'

CONSTANT SIZE INDICATOR

Drum L TAGs in Right Half Program Word

31 23 18

~LTAG refer. no. _,_ CONSTANT~

18

CON ST ANT -----------'1 • .."

CONSTANT SIZE INDICATOR

Drum L TAGs in Left Half Program Word

FIGURE 18: DRUM LTAG REFERENCES

INDICATOR FIELD

0

0

YPE~

9 7 o

o

YPE~ /-+--L TAG refer. no.-----1

o

7 o

1""'- L TAG refer. no,-"'I

Subfield

1 01

11 0

111

The current value for the program word field
is the sum or difference of the value associ­
ated with the drum reference number and the
value contained in the program word field.
The drlliTI reference number is either in the
program word field or in the indicator field
depending on the value of the constant.

When a drlliTI LTAG reference indicator is associ­
ated with a left half program word, a 16-bit
field is modified. This 16-bit field occupies
bits 33-18. The 16 least significant bits of
the value generated are placed in the program
word field. The conventions for this reference
are the same as those for a core LTAG.

If a drum LTAG reference indicator is associated
with a right half program word, a 23-bit fieid
is modified. This 23-bit field is in bits 22-00.
When this modification is used, the left half of
the program word cannot be modified.

c. INDICATORS FOR EXECUTIVE SYSTEM INPUT/OUTPUT RE­
FERENCES: The indicators for Executive System
input/output references refer to a 30-bit field.
~ee Figure 19). This type of indicator is asso­
ciated with right half word modification only
The field modified occupies bits 29-00. If this
modification is used, no modification can be made
in the left half program word.

The modification type subfield has one of the
f 0110 W' i ng val u e s :

Definition

DrlliTI DTAG ± LTAG

Add values referenced by drum reference
numbers in program word field and place
sum in program word field.

Drum DTAG, Drum DTAG ± constant

Add value referenced by drum reference
number to value in program word field and
place sum in program word field. The size
of constant determines reference nlliTIber
location.

Eq~ipment Reference

Repla.ce equipment reference nU.:r.ber by
current channel and unit assigQTIent.

CLA1JIP 69

0
t-l
~ :s:
'\j

.--J
0

FIELD FORM

EQUIPMENT REFERENCE

Drum DTAG ± LTAG

Drum DTAG ± constant
o < constant < 212

Drum DTAG ± constant
212 < constant < 222 - -

29
;

29

29

29

PROGRAM WORD flPlLD

23 16 12 6 0

o 0 0 0 0 0

1 1

000

1

o 0 0 0 0 0 I
r-NOT MODIFIED---l rREFER. NO • ...,

21 19 12 7 0

o 0 o 0 0 0 0 0
I± 1

0
1

1 1
o 0 0 0 01

~LTAG refer. no.~ rDTAG refer. nO'.---1

19 12 0

0000000 0

roTAG refer. no. -,- CONSTANT -I

o

000 0 0 0 0

..-------- CONSTANT---------.../·I

CONSTANT SIZE INDICATOR

FIGURE 19: EXEC ROC I/O REFERENCES

INDICATOR FIELD

0

0

0

1 0

PE1

9 7 o

o o

~DTAG ref. no.--+-l

MODIFICATION FLAG

d. INDICATORS FOR SELECTIVE JUMP SWITCH REFERENCES:
The indicator for Selective Jump Switch references
refers to a four-bit field. See Figure 20. The
four-bit field is in bits 25-22, the a-field. The
indicator is used with left half program words
only. The modification type subfield value is
100. The jlliTIP switch reference number in the pro­
gram word is replaced by its current assignment.

e. INDICATORS FOR DIRECT INPUT/OUTPUT REFERENCES:
The indicators for Direct Input/Output references
refer to 4,16, or 23-bit fields. See Figure 20.
These indicators are used for channel references,
unit references, and drum references.

The channel reference indicators refer to the four
bit a-field, bits 25-22. This indicator is used
with left half program words only. The modifica­
tion type subfield value is 100. The channel re­
ference number in the program word is replaced by
its current assignment. This modification is
identical to the Selective Jump Switch modifica­
tion.

The indicators for unit references refer to a
16-bit field. This indicator may be associated
with either a left half program word or a right
half program word. The modification is made in
the low' order 16-bi ts of the half program word.
The value of the modification type subfield is
111 •

The unit reference indicator may be used for in­
put/output access-control word references. In
this case the reference number refers to a
channel rather than a unit. The sum of the
value associated with the input/output reference
number and the value in the 6 least significant
bits of the half program word is placed in the
16 least significant bits of the half program
w·ord.

The indicators for drum references refer to a
23-bit field. This 23-bit field is in bits 22-
00. This indicator is associated with right
half program words only. When the right half
program word has this modification, no modifica­
tion may be made in the left half program word.

The modification type subfield values are:

CLAMP 71

FIELD FORM

UNIT REFERENCE

I/O ACCESS CONTROL WORD REFERENCE

CHANN EL AND SELECTIVE
JUMP SWITCH REFERENCE

Drum DTAG ± L TAG

Drum DTAG
Drum DTAG ± constant

0< constand < 2'2 - -

Drum DTAG ± constant
2'2 < constant < 222

25 22

D
rREF. NO.,

22 20

20

PROGRAM WORD FIELD

15 12 5

33 r
O

f3

I 0 0 ~ _

15
33

r REF• NO.---1

9
27

5
23

o

o 0 0 0 0 0 16 I

o
18

o 0 0 0 0 0 1 1/0 0 0 0 0 I
r- -, .. I/O REFERENCE.,
CHANNEL
REF. NO.

12 8 0

o 000 o I
r- L TAG ref. no.-+-j ~ DTAG ref. nO'4

12 0

o

r-DTAG ref. no.--.-+-I-..---- CONSTANT ---~-I

o

'+-------- CONSTANT -------~.I

INDICATOR FIELD

o

PE"1

o

1

o

0

0

9 7 o

o o

~DTAG ref. no.~

CONSTANT SIZE INDICATOR MODIFICATION FLAG

FIGURE 20: DIRECT ROC I/O AND SELECTIVE JUMP REFERENCES

Subfield

1 01

110

Definition

Drum DTAG ± LTAG

Add values referenced by drum table re­
ference nUDlbers in program word field
and place sum in program word field.

Drum DTAG, Drum DTAG ± constant

Add value referenced by drum table re­
ference number to value in program word
field and place sum in program word field
The size of the constant determines loca­
tion of reference number.

2. PROGRAM WORD FIELDS: The program word fields which
are subject to modification contain reference numbers
and/or constants.

a. FIELDS FOR IBANK REFERENCES: The modifiable
fields for IBAl~ references are in bits 33-18 or
in bits 15-00. These fields contain an address
which is relative to the Program Name. The cur­
rent address of the Program Name is added to
this value. The sum is placed in the program
word field. See Figure 17.

b. FIELD FOR CORE TABLE REFERENCES: The modifiable
fields for core table references of the form
"DTAG ± LTAG" are in bits 33-18 or in bits 15-00.
The sign is in bit 32 or bit 14. The LTAG refer­
ence nlliTIber is in bits 31-25 or bits 13-07. The
DTAG reference number is in bits 24-18 or bits
06-00. See Figure 17.

The modifiable fields for core table references
of the form "TAG" or "TAG + constant" are either
in bits 33-18 or bits 15-00. The most signifi­
cant bit in the modifiable field indicates the
location of the TAG reference number. This bit
is 1 if the reference nQ~ber is in the indicator.
If this bit is 0, the TAG reference number is
contained in the modifiable field. The sign is
in bit 14 or bit 32. If the TAG reference num­
ber is in the indicator, the sign is in bit 03.
The TAG reference number is in bits 31-24 or
bits 13-06 of the program word. When the indi­
cator contains the TAG reference number, it is
in bits 07-00. The most significant bit of the
reference number indicates the type of TAG. This
bit is 0 for DTAGs and 1 for LTAGs. See Figure
17.

CLAMP 73

c. FIELD FOR SYSTEM REFERENCES: The modifiable
field for system references is in bits 33-18
or in bits 15-00. The system reference number
is either in bits 30-24 or in bits 12-06. The
current address associated with the reference
number is placed into the 16-bit modifiable
field. See Figure 17.

d. FIELD FOR DRUM REFERENCES: The modifiable field
for drum references is in 16, 23, or 30 bit
fields. The reference number for drum TAGs oc­
cupies 8 bits. The least significant bit in­
dicates the type of TAG. If this bit is 0, a
DTAG is referenced. This bit is 1 for LTAG re­
ferences.

The modifiable field for drum LTAG references
is in 16 or 23 bit fields. If the modifiable
field is in a left half program word, a 16-bit
modifiable field, bits 33-18, is referenced.
For a modifiable field in a right half program
word, a 23-bit field, bits 22-00, is referenced.
See Figure 18.

The modification for the 16-bit drum LTAG refer­
ence field is handled in the same manner as core
table references. The modification for the 23-
bit field is handled in the same manner as
DIRECT ROC drum DTAG references.

The modifiable fields for drum DTAG references
is 23 bits or 30 bits. The modifiable field
is always in the right half program word.

The 30-bit field, bits 29-00, applies to EXEC
ROC programs. Bits 29-25 contain the channel
assignment. See Figure 19.

The 23-bit field, bits 22~OO, applies to DIRECT
ROC programs. See Figure 20.

In the "DTAG" or "DTAG ± constant" forms, bit 22
indicates the location of the reference number.
If this bit is ~, bits 19-12 of the program word
contain the drum reference number. If bit 22 is
1, the drum reference number is in bits 07-00 of
the indicator. The sign is in bit 21 of the pro­
gram word or bit 08 of the indicatoro The cur­
rent value for the mOdifiable field is the sum or
difference of the value associated with the refer­
ence n~TIber and the value is the constant part of
the modifiable field.

For the "DTAG ± LTAG" form, bit 21 contains the
sign, 19-12 contain the LTAG reference number,
and the DTAG reference number is in bits 07-00.
The current value of this field is the sum or
difference of the values associated with the
DTAG and LTAG reference numbers.

e. FIELD FOR INPUT/OUTPUT REFERENCES: The modifi­
able fields for input/output references contain
4, 16, or 30 bits. The size of the field is
dependent on the type of input/output control
and the kind of reference.

The modifiable field for Selective Jump Switches
is four bits, bits 25-22. This field contains
the reference number for the current switch as­
signment which replaces it. This type of modi­
fiable field is associated only with left half
program words. See Figure 20.

The modifiable field for EXEC ROC input/
output references contains 30 bits. The refer­
ence number is in bits 12-06. The current chan­
nel assignment is placed in bits 29-25 and the
current unit assignment is placed in bits 15-00.
Bits 23-16 are not modified. All other bits in
the 30-bit field are zero. This type of modifi­
able field is only associated with a right half
program wnrd. See Figure 19.

The modifiable fields for DIRECT ROC input/output
ref ere nc esc 0 n t a in 4 0 r 1 6 bit s • The mOo d if i a b 1 e
field for channel references is four bits, bits
25-22. This field contains the reference n~~ber
for the current absolute channel assignment which
replaces it. See Figure 20.

The modifiable fields for unit references are in
bits 33-18 or in bits 15-00. The reference num­
ber is in bits 30-24 or bits 12-06. This refer­
ence number may refer to a unit reference, a
channel reference, or input/output access-control
wnrd reference. In the case of input/output ac­
cess control words, bits 05-00 or bit.s 23-18 con­
tain either 40 (octal) for input or 60 (octal)
for output. See Figure 20.

The modifiable field is replaced by the S~h of
the value in bits 05-00 or bits 23-18 and the
value associated with the input/output reference
number.

CLAMP 75

35

0

VI. TERMINATION RECORD

*

The Termination Record is the last *PRORC block. It is iden­
tical to a *PRORC block except that the first word in the
block contains *TRMRC, in Fieldata code. The block contains
program section words in the same manner as *PRORC blocks.

The last program section is follow'ed by a tw'o-w'ord entryo
This entry is illustrated in Figure 210 The first wnrd is
the identifier *TRMRC, in Fieldata code o The second word
contains the address, relative to the Program Na~e of the
first instruction to be executed. This field is in bits
15-00 0

Any balance in this block is disregardedo The last wnrd in
the block is the checksum.

15

T R M R C

0 relative address

FIGURE 21: TERMINATION ENTRY

CLAMP 76

o

VII. PROGRAM FILE" FOR ABSOLUTE OBJECT CODE PROGRAMS

35

The Program File for Absolute Object Code (AOC) programs is
slightly different from the Program File for ROC programs.
The Program File consists of three records, in the follow­
ing order:

1) Identification Record

2) Program Record

3) Termination Record

The Identification Record consists of one block. The Pro­
gram Record contains as many blocks as are necessary to in­
clude all program instructions and data tables.

The last word in each block of the Program File, with the
exception of the Identification Record block, contains the
block checksum. Each block in the Program File contains
256 w'ord s.

The fir s t word in each block is the identifier w'ord. The
identifier for the Identification Record is the first six
characters of the alphanumeric Program Name. The identi­
fiers for the other records are:

Record Type Record Label

Program *PID RC

Termination *TRMRC

All unused words in the Program File blocks are disregarded.
No special setting is required in these w'ords.

A. IDENTIFICATION RECORD: The first record in a Program
File is the Identification Record. This record is com­
posed of one 256-word Label Block. The Label Block is
illustrated in Figure 22.

17 o WORD
NUMBER

PROGRAM NAME

Seventh Through Twe Ifth Character

0--0

Disregarded

00

01

02

00 Segment Count 00 Table Count 253

254

255

Checksum

PROGRAM NAME

FIGURE 22: LABEL BLOCK, AOe

Words 00 and 01 contain the Program Name. The conven­
tions for the Program Name are discussed in Section III.
The first six characters of the Program Name are re­
peated in word 255. Word 254 contains the block check­
sum. Word 02 is cleared to zero.

Word 253 describes the *PRORC of the Program File. Bits
33-18 indicate the number of program segments. Bits
15-00 indicate the nlliTIber of data tables which are to be
loaded from the *PRORC. The balance of the block is
disregarded.

B. PROGRAM RECORD: The Program Record is composed of one or
more blocks of 256 words each. A Program Record block is
illustrated in Figure 23. Word 00 contains the identifier
*PRORC, in Fieldata code. The identifier for the last
block of the Program Record is *TRMRC.

WORD
NUMBER

00 * p R o R C

01

02

254

255 Checksum

FIGURE 23: PROGRAM RECORD BLOCK, AOC

Word 255 contains the block checksum. Each block contains
from 246 to 254 program words and/or identifier words. A
balance of eight or less wnrds in a *PRORC block are disre­
garded. Likewise~ any balance in the *TRMRC block (the
last *PROBC block) is disregarded.

The Program Record contains all programs instructions and
data table entries assigned at assembly time. These words
are arranged in program sections. Program sections are one
of two types: segment sections or table sections.

CLAMP 78

Each program section is headed by a section identifier.
These wnrds describe the program section which follows.
Individual program sections are divided into progr·am wnrd
groups. Each program word group is headed by a group
identifier word.

1. PROGRAM SECTIONS: Segment sections contain the
segment IBANK and its associated DBANK. Table
sections contain the DTABLE entries from the Pro­
gram File.

2. PROGRAM SECTION IDENTIFIER: The section identifier
is used to identify each program section in the Pro­
gram Record. A section identifier heads each pro­
gram segment and/or set of data table entries. The
first entry in the first *PRORC block is a section
identifier.

The section identifier for program segments is
illustrated in Figure 24. This identifier is four
words in leng the Words 00 and 01 are bank descr ip­
tors. Word 00 refers to the IBANK and word 01 refers
to the DBANK. Bit 35 is the storage flag. This bit
is 1 if the bank is recorded on a storage medium
after loading. Bits 33-18 indicate the number of
words in the bank. The address field, bits 15-00,
give the address of the first word in the bank.

WORD
NUMBER 35 33 29 17 15 a

r a word count 00 relative address 00 !BAN K descriptor

r a word count 00 relative address 01 DBANK descriptor

02 IBANK storage d 00000 storage location

d 00000 storage location 03 0 BAN K storage

r= storage flag d= drum flag

FIGURE 24: SEGMENT SECTION IDE~TIFIER, AOC

Words 02 and 03 are segment storage descriptors. The
IBANK storage is in word 02 and DBANK storage is in
wnrd 03. Bit 35 is set to 1 if the storage is on
drum. The storage location for the bank is in bits
29-00. The storage descriptor is in EXEC ROC for­
mat.

CLAMP !]9

35 33

The table section identifier is illustrated in
Figure 25. It is one word long. Bit 35 is 0 and
bit 34 is 1. The wo r d co un t, bit s 33 -1 8, i nd i cat e
the n~~ber of table words to be loaded. The re­
mainder of the word is disregarded.

17

word count

FIGURE 25: TABLE SECTION IDENTIFIER, AOC

3. GROUP IDENTIFIER WORDS: Each group of consecutive
instruction words and/or consecutive table words,
in a program section, is headed by a group identi­
fier word. A group identifier follows each sec­
tion identifier. The second word in each *PRORC
block is either a group identifier or a section
identifier word. The group identifier word is
illustrated in Figure 26.

o

35 25 17 15 o

e address

e = entry count k = group type
b = ID flag

FIGURE 26: GROUP IDENTIFIER~ AOC

The entry count field, bits 25-18, indicates the num­
ber of words in the word group. The ID flag, bit 17,
is 1 when the word group following is the last in the
program section. Bit 16 is 0 for instruction word
groups and 1 for table word groups. The address field,
bits 15-00, contains the address for the first wnrd in
the word group.

All IBANK and DBANK word groups for a single program
segment must appear in one program section. The
IBANK and DBANK word groups need not be segregated
within the section, however.

CLAMP 80

35

*

0

4. PROGRAM WORDS: The balance of the *PRORC blocks con­
tain either instruction words or data table words.
Modification indicators are not used in Absolute Ob­
ject Code.

C. TERMINATION RECORD: The Termination Record is the last
*PRORC block. It is identical to a *PRORC block except
that the first word contains *TRMRC, in Fieldata code.
The block contains progra~ sections in the same manner as
*PRORC blocks.

The last program section is followed by a twD-word entry.
This entry is illustrated in Figure 27. The first word
contains *TRMRC in Fieldata code. The second word con­
tains the execution address in bits 15-00.

Any balance in this block is disregarded. The last word
in the block is the checksum.

15

T R M R C

0 address

FIGURE 27: TERMINATION ENTRY, AOe

eLA~'lp 81

o

INDEX

A

Absolute Object Code, definition, 1
ADD Card, of Location Input, 32, 37

ALGOL, 1
Allocation, of object programs, 27-29
AOC, see Absolute Object Code

checksum, of Program File, 43
COBOL, 1

C

common data tables, 22, 23
complex program, definition of, 2
complex programs, loading and modification of, 21-26
control routine, for DIRECT ROC programs, 14, 16
Core References, in ~bject programs, 8, 10, 11

D

Data Table Length Tag, definition of, 6, 14
data tables, 14, 21, 22, 23, 28, 29
Data Table Section, of Program Record, 9, 14
Data Table Tag, definition of, 6, 14
DBANK, 9, 14, 16, 21, 25, 26
DIRECT ROC, definition, 1
Drum References, in object programs, 8, 11, 12
DTABLE, 9, 14, 22, 29
DTAG, 42

E

$ERROR table, 17, 23
Executive I/O Functional Routines, 1, 7, 8, 13, 16, 27
EXEC ROC, definition, 1
Executive System, 1,2,5,7,8,12,13,16,1 7 ,27
Executive System References, in object programs, 13

F

facility assignment, notification of, 18, 19, 20

I

IBANK, 5, 9, 14, 1 6, 21, 23
Identification Record, of AOC Program File, ~7, 78
Identification Record, of ROC Program File, 5, 6, 27 , 45-47
Input/Output References, in object programs, 7, 12, 13, 24

J

Job R e que s t, to EXE C, 1 4 , 1 6, 1 7, 1 8, 1 9, 20 , 2 7

CLAMP 8~

INDEX

L

LAB Card, of Location Input, 28, 30-32, 36
LIBRARIAN, 21, 23
Location Input, 5, 6, 12, 14, 16, 17, 20, 27, 28, 29, 30-41

ADD Card, 32, 37
LAB Card, 28, 30-32, 36
PER Card, 33, 38
PMn Card, 33, 34, 39
TAL Card, 32, 33, 38

Location Input, paper tape, 34, 35, 41
LTAG, 42

M

modifiable fields, of program words, 10-13
modification indicators, 9, 10
modification, of object programs, 2, 6-8, 10-14
modification, of complex programs, 21-26
Modification Record, of ROC Program File, 5, 6-8, 10, 23, 48-57

o

operation, of object programs, 27-29

P

paper tape, Location Input on, 34, 35, 41
$PARAM table, 1~, 23
PER Card, of Location Input, 33, 38
PMn Card, of Location Input, 33, 34 , 39
Program File, AOC, 77-81
Program File, ROC, 5-9, 42- 7 6
Program Name, definition of, 5
Program Name, of subroutines, 8
Program Record, of AOC Program File, 78-81
Program Record, of ROC Program File, 5, 8, 9, 23, 58-75

R

Reference List, 7, 15
Relative Object Code, definition,
ROC, see Relative Object Code

S

segmentation, of complex programs, 24-26
segmentation, of subroutines, 23
Segment Section, of Program Record, 9
Selective Jump Switch References, in object programs~ 13
simple program, definition, 1
SLEUTH Assembly System, 5 8, 9
subroutine Program Name, 8, 21, 25
subroutines, 1, 8, 9, 21-23
System References, in object programs, 7, 8, 13

CLAMP 83

INDEX

T

TAL Card, of Location Input, 32, 33, 38
Termination Record, of AOC Program File, 81
Termination Record, of ROC Program File, 5, 9, 76

CLAMP 84

UNIVAC
OIVISION OF SPERRY RANO CORPORATION

UP 2575

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	xBack

