UNIVAC' 1107

TECHNICAL BULLETIN

SLEUTH ASSEMBLY SYSTEM

Programmers Reference

First Edition

April, 1962

IT.

ITI.

IV,

VI.

TABLE OF CONTENTS

INTRODUCTION L] L] L] . . . L] . .

A, General Description
B, Program TyPeS v v v o« o o o o o o o
C. Program Structure . « « « « + + &

ASSEMBLY LANGUAGE FORMAT AND SYMBOLOGY .

A, Coding FOTM « &« v o o o o o o o o &
B, Number and Symbol Representation .

COMPONENTS OF A LINE OF CODING
. General Description
. Actual Values « « « + « + &
. opecial Characters . . . « « o &
Function Codes . . . + « « « « &

. Tags and Labels . « ¢« « ¢ o o« &

o O QW

DeSigﬂatOI’S L] . L] . .

MACHINE AND GENERATIVE INSTRUCTIONS .
A, Machine Instructions

B. Generative Instructions . . . « « .

DECLARATIVE INSTRUCTIONS
. Definition . . . « « « « & « &

. Program Specification
. Bauality .+ ¢« ¢ ¢ ¢ ¢ o . W

. Segmenting Instructions

. Table Definition . . + « ¢« ¢ « « &
. List Spacing Instructions
. Selective Jump Switch Definition

Q= &H O QW e

MACRO-INSTRUCTIONS . . . ¢ v v o o« & &
A, Purpose « v ¢« v ¢« ¢ o o«
B. Defining a Macro-instruction . . .
C. Generating a Macro-instruction . .
D. Coding a Macro-instruction

SLEUTH 1

J

W
Q

D

—

O O O ~] O O N

— e
- O O

-
I

ST
N ~3 ~J

w w w P NN NN
Ml F = 0O 0 ~J1 3

w w Ww w w
N O O O

VII.

VIITI.

IX.

XI.
XIT.

XIII.

X1V,

CORRECTIONS . . . « . . .
A, Purpose . .

B. Coding . « . « « « « . .
C. Precautions

ACCIDENTAL SYMBOL DUPLICATION

A, Purpose
B. Method

ASSEMBLY LISTING . .
A, Title Line « . .
B. ROC Auxiliary Information
C. Body of the Listing . .

RELOCATION « . . .
SEGMENTATION . . .

INPUT/OUTPUT ., . . « « « &
. General

AOC L] . L] L] L . L . . .
DIRECT ROC
. BEXEC ROC

H O Q 9 =

SPECIAL DATA TABLES . . .
A, $PARAM
B. $ERROR . . .

LIBRARY SUBROUTINES . . .

A, General Information
B. Assembly Time Inclusion
C. Load Time Inclusion
D. Creating a Subroutine .

SAMPLE PROGRAM
A, Statement of Problem . .
B, Method of Solution . . .

Requirements for Programming

SLEUTH 1i

Page

42
42
42
53

45
45
45

47
47
47
47

48
49

50
50
50
51
55
55

58
58
58

60

60
60
60
62

63
63
63

Page

APPENDIX A, FIELDATA CHARACTER SET .

s i% bS LI I 5 1 o I B = SAN-Y

APPENDIX B, COMPUTER INSTRUCTION REPERTOIRE 71
APPENDIX C. ASSEMBLER-DEFINED (SOFTWARE) FUNCTIONS . 74
APPENDIX D. EXTERNAL INPUT/OUTPUT FUNCTION

REPERTOIRE . . v v v v v ¢« v v« o o o o 75
APPENDIX E. ASSEMBLER-DEFINED SYMBOLS .+ v & v & o . 77
APPENDIX F. MODIFIABLE FIEIDS . . v v v v v « « . . 78

INDEX . L]]] . . L] L] . . 79

SLEUTH 1ii

I.

INTRODUCTION

A,

General Description

SLEUTH (Symbolic Languaglk for the UNIVAC® 1107 THin
Film Computer) is an advanced symbolic Assembly System
which provides the programmer with a powerful and effi-
cient tool for writing programs for the 1107 Computer.
It accepts instructions contalining mnemonic function
codes and designators, and symbolic operand addresses,
and translates these instructions to an absolute or re-
lative form ready for loading and execution.

SLEUTH i1s a two pass assembly system. The first pass

is devoted to merging corrections with the source code
input, developing a dictionary of symbolic assignments,
and doing a major portion of decoding each symbolic in-
struction. The second pass uses the output of the first
pass and the dictionary to complete every instruction.
It produces the desired binary output, & listing, and a
corrected source code if requested.

A set of declarative functions 1s provided to instruct
the Assembler in the special details of assembly which
include:

Definition and generation of macros

Insertion of Library Routines from a Library Tape

FEquation of symbols

Protection against duplication of symbols

Corrections to the source code

Deletion of any predetermined set of instructions
which 1s primarily designed for, but not limited
to, deletion of debugging aids at the completion
of code checking.

Program Types

Three types of binary output can be produced by the As-
sembler, of which two are in relocatable binary form,
or Relative Object Code (ROC). Absolute output (AOC)
can also be obtained for a completely defined progran.

Programs which perform input/output operations internal-
ly, and which are to be run serially, may be in the
Direct I/0 form of ROC (DIRECT ROC). Relocation or re-
assignment of addresses, and modification of peripheral
facilities is possible at load time.

SLEUTH 1

Another form of ROC output is produced for concurrent
processing under the control of the Executive System,
using the latter's I/0 Functional Routines for all
input/output operations, and allowing the Executive
System to make all assignments of memory and I/0 units,
This form is called EXEC ROC,

Figure 1 is a system chart illustrating the various
types of SLEUTH output and the manner in which the as-
sembled programs are loaded and run.

Program Structure

A program may consist of one or more segments. Fach
segment of a program consists normally of an instruction.
arsa, and a data area, 1n opposite banks of core stor-
age.

Data tables, primarily defined for ROC type programs,
are included in the data area. A data table is a group
of data words which may be considered by the program as
an entity. Each entry within a data table bears a fixed
relationship to the first entry and may be referenced
via this first.entry. Each data table is independent of
any other except when specified to begin at the same lo-
cation as another. The data tables, although they may
be included within any one segment, are common to all
segments of a program and may be referenced by any seg-
ment.

For ROC type programs each data table 1s modifiable in
length at load time. A length tag is given to the table,
and a minimum length is assigned during assembly. At
load time a new length can be specified, depending on
the particular data to be operated upon during the run.

Figure 2 illustrates the most complex form of progran.

Note that data table number 4 has been specified to be-
gin at the same location as data table number 2,

LEUTH 2

SOURCE
CODE

EXEC ROC

Y,

MEMORY &
I/0 ALLOCA-
TION INPUT

EXECUTIVE
SYSTEM INCLUDING
CLAMP AND I/0
FUNCTIONAL ROUTINES

RUN
PROGRAM
CONCURRENT,

LIBRARY CORRECTIONS
SLEUTH > LISTING
ASSEMBLER
/’l‘ N \—/‘
RGN BN CORRECTED
s l N SOURCE
s | <\ CODE
N
AN
N
AN
DIRECT ROC AOC
MEMORY &
ALLOCATION
INPUT
Y, Y
CLAMP DIRECT ROC CLAMP
RELATIVE LOAD AOC L(;AD
ROUTINE ROUTINE

RUN
PROGRAM
(SERIAL)

FIGURE 1
SLEUTH 3

RUN

PROGRAM
(SERIAL)

PROGRAM STRUCTURE

A
SEGMENT SEGMENT SEGMENT SEGMENT
#3
#1 #n
#2 INSTRUCTION
AREA
|
| | 7l |
I | I | | |
| | | | | ;
| gankA | ! | '
[I | I l |)
i | | | X]
| I | I
| BANK B I I
| | I |
I I I |--——-——--
| I
| DBANK
AREA
{ DATA
— AREA
#1
: ST esoos oo — DTABLE
| | AREA
Y !
i !
| _
#a
#3
———————————————————————————————————— A Y
FIGURE 2

¢ HYnHIdg

. T T T T T T T T
. [B N S D B B
; L B T T T T
T I B N B I
. N L A T T T 10
. N B T T T 11
: ST Ty T T T T
. L A W T T T
X - {1 B B R IR O I
p T L S
: T T T T 11
; LA T I I I |
; S R T T T 1T
: T T T T T T 7]
: [T T T 17T 17T 17T 177
[A S e S s A S S S B S S
T T T T
L B B T T T T T T
; — 1 T T T T I S R
: — FrrrorTrl T T
; N I T T T 17T
: - FTT T TTTTT T
: - TTTUTTTU T T T
: [R A e I I B B O |
: [R B I B B R A
. A I I T T T T T T
: | B N N S I
: e : I S I T T
- [0 A e S e N S S S B B
T T T T

SLNIWWOD LE sa13id ans il41 NotLoNnd glgl ¢ ovi I
$39Vd—— 40 39vd T 3Lvd YINWVEO0Ud WY¥903d

Waod oNchOD ua_'awassV LDLL ®QVA'Nn NOII:IOIIOD QNVE AJIS 10 NOISIAG

SLEUTH 5

IT.

ASSEMBLY LANGUAGE FORMAT AND SYMBOLOGY

A,

Coding Form

Programs to be written with the SLEUTH Assembly System
will be coded on the UNIVAC 1107 Assembler Coding Form,
Figure 3 is a reproduction of this form,

The form is divided into 4 major headings: Tag, Function,
Sub-fields, and Comments.

1.

Tag field: The Tag field can be blank, or coded with
a Tag or Label. The coded Tag will be defined by the
instruction, and should therefore appear once, and
once only, in the Tag field. A method of protecting
against accidental duplication of tags 1s described
in Section VIII.

A Tag or Label can be written anywhere in the Tag
fieldy right or left justification is not required.
Blank spaces are ignored by the Assembler; the follow-
ing coding of Tags willl generate the same value:

XYZAAA
AXYZAN
AXAYNZ

Function field: The Function field will contain one
of the Function codes described in Section III.

Sub-fields: The Sub-fields represent the data neces-
sary to describe the objective of the Function code:
what is to be acted upon and how.

Each of the sub-fields must be separated by a comma,
except where specified otherwise in context. For
each Function, the order of fields is fixed. How-
ever, for many Functions, the use of certain sub-
fields may be unnecessary or optional. For example,
indexing may or may not be desired. The following
rules must be observed when omitting fields from

the coding:

a. To omit any field(s) from the right, the field(s)
and the preceding comma(s) should be omitted.

b. To omit other fields, while preserving the order,
only the separating commas are coded.

SLEUTH 6

c, For a sub-field within an instruction which re-
quires that it be coded, any number of + or -

signs may be coded in the field to inform the
Assembler that the omission of meaningful coding
is intentional. The field will then be gener-
ated as zeros, without causing SLEUTH to print

an error indication.

Comments: Any line of coding may have a short des-
criptive comment assocliated with it. Any of the
FIELDATA characters can be used. The Comments can
start at any point after the colon. A line of
coding can consist of a Comment only, to separate
and identify portions of the program. A blank line,
for spacing, is a valid use of this application.

Number and Symbol Representation

mTT

Numbers and symbols are represented in SLEUTH source
code as combinations of the characters of the standard
FIELDATA set shown in Appendix A,

1.

Numbers

Numbers may be coded in decimal or octal notation.

Either form may be written whenever an integer value

T TTTMILT

is to be coded. SLEUTH will not accept direct coding
of binary numbers.

Decimal integers are coded with any combination of
the decimal digits O to 9.

Octal integers are coded with any combination of the
octal digits O to 7, and are identified as octal by
prefixing them with a dollar sign.

Rational decimal numbers, written with either an ac-
tual or implied decimal point, are used in the gene-
ration of floating point, and of fixed point scaled
whole numbers.,

Examples of numerical coding are given below, as
they might appear in the sub-fields portion of a cod-
ing line:

1357986 Positive decimal integer
+1357586 Positive decimal integer
- $246753 Negative octal integer
-99,832 Mixed half words
5986.243,2 Floating point number
698,-2,7 Fixed point scaled number

SLEUTH 7

A negative number must be preceded by a - sign. A
positive number may be preceded by a + sign, or left
unsigned. When a sign is specified, the magnitude of
the generated field is checked by SLEUTH to insure
that a position is available for the sign bit. If

no sign is specified, no check is made. This becomes
especially important in the generation of fractional
words, which will be discussed in detail in Section
IV. See Figure k4.

CODED |GENERATED| CHECKED | RESULT
31 or $37 | 011 111 No 0K
+31 or +$37| 011 111 Yes 0K
32 or $40 | 100 000 No 0K
+32 or +$40]| 100 000 Yes Error
FIGURE L4
Symbols

A symbol is some combination of from one to six al-
phabetic (A to Z) and numerical (O to 9) characters.
Each symbol must contain at least one alphabetic
character.

Some symbols are internally defined by SLEUTH, or

by other System components, e.g., Designators, while
others are the inventions of the programmer, e.g.,
Tags and Labels. Symbols defined by SLEUTH are pre-
fixed with a dollar sign, and a list of these given
in Appendix E.

Symbols can appear in the Tag, Function, or Sub-
fields areas of the coding line. Examples of various
symbols are given below:

CONST2 Programmer def%ned sy%bol
1"
TS Co
‘1AL2’-§‘-)_B’_K 1" 1 1"
" n A
g;(llrr " 1 A
K " n 1"
ADD Mnemonic Function Code
EQU Assembler defined Function code
$A3 " . Designator
4L " " Current address Tag

SLEUTH 8

ITI.

COMPONENTS OF A LINE OF CODING

A,

General Description

A 1ins of coding is a comxmplete source language statement.
It may be an instructicn, & data definition, a communica-
tion with the Assembler, with the Executive System, etc..
There must be an entry in the Function field for each
line of coding, except where the line consists solely of
commentss entries in any of the other fields may or may
not be required.

The instruction portion of the line of coding is termi-
nated by a colon (:), which may be coded at any point
after the last coded field. Even where no sub-fields are
required, the colon must still be coded.

Following the colon, a comment explaining the line of
coding may be written. Any FIELDATA characters which can
be printed are acceptable, including a blank space (coded
as A or uncoded), and the colon. The latter, having pre-
viously served its purpose as an instruction terminator,
becomes just another character in the comments field.

A line of coding is not limited in length to a single
line of the coding form, but may be extended by indenting
the next, and subsequent, lines by at least 15 spaces.

Any line may be prefixed by an asterisk (*). Such lines
can be optionally either included in the assembly, or
eliminated as explained in Section VII.

The fields and sub-fields which comprise a line of coding
are made up of various components, which can be classi-
fied as:

Actual Values
Special Characters
Function Codes
Tags and Labels
Designators

Actual Values

An actual value is a true, signed, numerical quantity,
and can be coded as a decimal or octal integern a float-
ing point decimal, or a fixed point scaled number.
Special Characters

FIELDATA characters other than letters and numbers are

called Special Characters. They can be punctuation
marks, mathematical symbols, symbolic abbreviations,

SLEUTH 9

or non-printing Typewriter Operations. A list of these
characters is given below, with a brief note about their
use in coding. A more detailed explanation for each
will be given in context. ©Special characters not shown
here serve no special purpose in programming but may be
used as part of the comments.

1. Punctuation marks:

Colon : Instruction Termination

Comma) Separator

Ditto mark " Function code repetition
Parentheses () Separator

Slash / Separator

Asterisk * Instruction Deletion or h- and

i-field incrementation

2. Mathematical Symbols:

Plus + Positive sign or Tag modification
Minus - Negative sign or Tag modification
Equals = Equality

3. Symbolic Abbreviations:

Blank A Blank Space
Dollar Sign & Octal number and Designator
Identifier

4. Typewriter Operations:

(Octal Codes) 00 Master Space
o1 Upper Case
02 Lower Case

03 Tab
O4 Carriage Return
05 Space

77 Backspace

Function Codes
The Function code 1s the primary operator of each line

of coding, and must invariably be present in each line,
except as previously noted.

SLEUTH 10

A ditto mark (") coded in the Function code field can be
used to eliminate repetitive coding of the same instruc-
tion. See Figure 5.

1 TAG 71819 FuNcTION 1415 SUB FIELDS (
LLl S\ TE ,SUM 3
Ll Lt ,SUM+1T ¢
| I O I L L SUM+2 ¢ /
| I [|
N ~L s
FIGURE 5

There are three types of Function codes discussed in this
manual:

1. Hardware: These are mnemonic, symbolic equivalents
of the machine functions. They may also be coded as
octal integers, if desired. A complete list of these
codes will be found in Appendix B.

2. ©Software: These are Assembler defined operations,
some of which will generate words in the object pro-
gram, while others provide instructions to the As-
sembler. A complete list of these codes will be
found in Appendix C.

3. Macro-instructions and Subroutine Generatives: These
are either system or programmer defined macro-instruc-
tions, or subroutine-generative instructions, and will
be discussed in Sections VI and XIV.

Tags and Labels

A Tag is a symbol, not to exceed 6 characters which is
defined by the programmer, the Assembler, or other sys-
tem components. The use of Tags is not restricted to
the Tag field; they can also appear in any of the vari-
able sub-fields.

Each Tag symbol should be unique. However, since it is
possible that duplication of symbols may inadvertently
occur - for instance, in a problem which is being writ-
ten by two or more programmers - a procedure is provided
to prevent such accidental duplication from destroying
the assembly. This procedure will be discussed in Sec~-
tion VIII.

SLEUTH 11

Tags are classified by SLEUTH by the method employed in
defining them, and special names are used to describe
each type of Tag.

Absolute Tag

Label

Data Table Tag

Data Table Length Tag
Drum Table Tag

Drum Table Length Tag
Segment Length Tag
System Tag

I/0 Channel Tag

1/0 Access Word Tag
1/0 Unit Tag

Absolute Tag

An Absolute Tag is a symbol which represents an ac-
tual value. It can also be equated to another Ab-
solute Tag. Before any reference to an Absolute Tag
can be made, it must have been previously defined.
Fach value is a signed quantity, with a maximum
value of 223-1, 1In the example in Figure 6, MAXM is
an Absolute Tag which the instruction equates to
50003, TOPS is also an Absolute Tag which is equated
to the previously defined Absolute Tag MAXM.

1

TAG 71819 FuncTion 1415 SUB FIELDS /

IMTAIX M)) [EiQU, | 50000 : (

1 T10P S (EQU, | MAXM

FIGURE 6

Label

A Tag appearing as the symbolic address of a word in
the Instruction or Data area of storage is called a
Label. It always represents a 16-bit positive value

which is the absolute or relative location of the as-
sociated word.

SLEUTH 12

A line of coding can be referenced by modifying a
Label in the form: Label + Increment. The incre-
ment 1s a numerical value derived from the algebraic

sum of a combination of integers and Absolute Tags.
The sequence in which this combination is cocded is
not significant. The resulting sum of the basic
label and the increment must be a positive value,
although the increment itself may be negative,
positive or zero. Examples of Labels, incremented
and non-incremented, are:

START no increment
STEP A+8 * integer
DATA-MODFR + Absolute Tag

DATA-10+MODFR + integer and Absolute Tag
DATA+MODFR-10 Same in reverse order

A line of coding can be referenced by using the As-
sembler-defined Label "L " to represent the current
value of the location counter, i.e, the address of
the current instruction. Modification of this ad-
dress can be effected in the form: &L * Increment,
as described above. In the example in Figure 7, if
the contents of arithmetic register A2 are zero,
the next instruction will be found two lines below
the current instruction:

1 TAG 71819 FuncTiON 14]15 SUB FIELDS /
Ll ERJP $A2,8L+2 ¢ (
I Ll /

) || | | J/,

1 L — —

FIGURE 7

3. Data Table Tag-Data Table Length Tag

A Data Table Tag is a Label which represents the
first address of a table named by the Tag. The

Data Table Tag is defined by the declarative Func-
tion code DTABLE, and can be equated to another Dats
Table Tag. Associated with the Data Table Tag is

!The character # is used to indicate that either a + sign or a
- sign may be used in the coding, but the combination + can
never be coded.

SLEUTH 13

the Data Table Length Tag, which represents the num-
ber of storage locations required to contain the
table. The length is defined by equating the Tag to
an actual value or Absolute Tag.

The uses of these Tags will be explained more fully
in the discussion of the DTABLE instruction in Sec-
tion V.

Drum Table Tags - Drum Table Length Tags

These Tags are similar to the Data Table and Data
Table Length Tags, except for the fact that the
storage medium 1s the magnetic drum rather than core.
A further explanation will be found in the discussion
on the MDT instruction in Section V.

Segment Length Tag

The IBANK and DBANK instructions (see Section V)
provide for the coding and definition of Segment
Length Tags. The Assembler counts the number of
generated words in each segment, and assigns that
value to the Segment Length Tag. The programmer

must never assign a value to a Segment Length Tag. It
is coded with the same form as a Label.

System Tag

A sst of System Tags, defined Jointly by SLEUTH and
the Executive System, is used in communications be-
tween the object program and the Executive System.

System Tags must never be defined by a program. Ab-
solute output programns, running independently of the
ROC Load and Executive Systems, must never use Sys-

tem Tags.

Input/Output (I/0)Channel Tags

A symbol of 5 characters or less can be assigned

as an 1/0 Channel Tag. It provides a L4-bit value
for an a-field channel designation in AOC or DIRECT
ROC type programs. Channel Tags are not required
for EXEC ROC type programs, but may be used if it
is desired to refer to the channel.

Further information on the uses of Channel Tags

will be found in the discussion of Input/Output,
Section XII.

SLEUTH 14

I/0 Access Word Tag

The I1/0 Access Word Tag 1s the syrbolic address of
the input, or output, access control word correspond-
ing to the I/0 Channel Tag. It is used for Abhsolute
and ROC Direct programs only.

The I1/0 Access Word Tag is defined internally by
SLEUTH, and no programmed definition is required.

For each Channel Tag, SLEUTH provides an Input Access
Word Tag and an Output Access Word Tag, identified
symbolically by an I or O prefix to the Channel Tag.
Modification of Access Word Tags 1s not acceptable.

Further information on the uses of Access Word Tags
will be found in the discussion of Input/Output rou-
tines, Section XII.

1/0 Unit Tag

The I/0 Unit Tag is a symbol representing an 1/0
Unit. Further information on the uses of Unit Tags
will be found in the discussion of Input/Output rou-
tines, Section XII.

Designators

A Designator is an Assembler defined Tag, and 1is the
symbolic address of a special register, or a special in-
dicator value. There are two types: a-type Designators,
and Jj-type Designators.

1.

a-type Designators

An a-type Designator is defined as the symbolic ad-
dress of one of the special registers of the thin-
film memory. It can be coded in the a or b sub-
fields of an instruction, and will generate a L4-bit
value in the corresponding field of the machine word.
It can also be coded in the u-field, and in this

case will generate a 16-bit octal address.

The programmer may equate a Tag to an a-type De-
signator. The coded Tag would represent the Desig-
nator throughout the program. A single change in
the definition of the Tag would have the effect of
changing each reference to the special register.

A table of a-type Designators is given in Figure 8.

SLEUTH 15

DESIGNATOR VALUE REFERENCE
Decimal Decimal Octal
By) 0 Unassigned?®
$B1-$B15 1-15 1-17 B Registers
$Ag-BA15 12-27 14-33 A Registers
$Q90-%$93 12-15 14-17 Q Registers?®
$RE 64 100 Real Time Clock
$R1 65 101 Repeat Counter
$R2 66 102 M Register
$R3 67 103 T Register
$r4-ER15 68-79 104-117 | R Registers
FIGURE 8

2. J-type Designators

A j-type Designator 1s a symbol representing the ap-
propriate value of the j-field of an instruction. It
should be used only as the representation of the j-
field value, and never as a tag representing some
other field. A L-bit value is always generated.

A table of j-type Designators is given in Figure 9.

DESIGNATOR VALUE REFERENCE
Decimal Decimal Octal
$w @ Y] Whole word
$H1 -$H2 -1 2-1 Half words
$XH1 -$XH2 4-3 4-3 Half words with sign extension
$T1-$T3 7-5 7-5 Third words
$s1-$36 13-8 15-10 | Sixth words
$uop 14 16 U-field is actual operand
$xuoP 15 17 Same, with sign extension

FIGURE 9

®Becomes one of the B Registers with BTR, LBM, TMO instructions.
It 1s always a legitimate designatcr for location @ of film me-
mory.

8The Q Registers ars the 4 overlapping A and B Registars,

SLEUTH 16

IV.

MACHINE AND GENERATIVE INSTRUCTIONS

A,

Machine Instructions

The general coding format for a machine instruction word
is shown in Figure 10. The use of each of the fields
will be explained below.

TAG 71819 FuUNcTION 14]15 SUB FIELDS
LI L f a,u,b,j ¢
| [
L1t [I
|~ R ——

Tag (t)

The Tag, if coded, is a Label, and is the symbolic
address of the line of coding.

Function code (f)

The function code 1s any appropriate function code
of the machine instruction repertoire, Appendix B.
One Assembler-defined Function - JUMP- can also be
considered as a machine instruction. It is equiva-
lent to a CSJP instruction, with an a-field value
of zero.

Special Registers (a)

The a-field normally represents the film memory
special register involved in a machine operation.

It can be coded with a decimal or octal integer, an
Absolute Tag, or most frequently with an a-type De-
signator. The reference can be to any of the A, B,
Q, or R registers as determined by the Function code.

If a Designator is coded which is not of the set

called for by the Function code - for example, a LDB
instruction to bz performed in register A1 - the Assem-
bler will attempt to generate a valid a-field value,
which may or may not be the value intended by the

SLEUTH 17

programmer. If a valid value cannot be generated,

an error warning will be printed.

In the examples in Figure 11, the comments refer to

the a-field coding.

~
=]

9 FUNCTION 14]15 SUB FIELDS 37

COMMENTS

/

| J,UMP JEXIET : UNCODED

K

C,S 4P g,EXIT

* ZERO CODING (SAME AS JUMP)

LABELA| L s uB | | [sa3,L0cCA

! DESIGNATOR FOR A-REGISTER

L1 11 L,D;B | $B2,CONST DESIGNATOR FOR B-REGISTER

L L.o;R | | |$R15,99,,5u0P : DESIGNATOR FOR R-REGISTER

Ll A DD | $Q2,ITEM : DESIGNATOR FOR Q-REGISTER

Lt /S, TP, | |COUNT,TOTAL : ABSOLUTE TAG \
L1t | b 13,DATE : DECIMAL INTEGER = Al /
L1 (L DP; | | |$15,DATA : OCTAL INTEGER = Al {
L1 (LDB, | | [$A1,DATA+S *A1-13-BI3.GENERATED AS 13)
L L. DP, $B12,CONSTB :B12=12-=A0. GENERATED ASQ)
L1 LDB, | | |$Q2,XYZ :Q2-14=B14. GENERATED As 14/
L ADD , | |$Q2,WXYZ Q2= 14 =A2. GENERATED AS 2
L L DP, | | |sB3,ABC :B3 =3 - A?. ERROR WARNING [
T L : \
T I B ____|\|_’_1/|, N _ \/ l

FIGURE 11

4. Operand field (u)

The u-field serves a variety of purposes and the
method of coding is dependent upon the application:

Operand address

Absolute operand

Next instruction

Shift count

Memory lockout indicator
Indirect addressing

SLEUTH 18

Operand Address

In this application the coding in the u-field
represents the address at which the data to be
operated on will be found. It can be coded as
a Label, to 1epresent a core address, or as an
a-type Designator, to represent a film memory
address. Either type of coding can be modified
as described in Section III, paragraph E.Z2..
For Absolute or ROC Direct output programs, an
octal or decimal integer may be coded. A 16-
bit value 1s generated 1n all operand address
applications.

Absolute Operand

When the j-field is an octal 16 or 17 i.e.,
coded with Designator $UOP or $XUOP, the value
entered in the u-field becomes the actual oper-
and, and not the address of the operand. It is
coded as an octal or decimal integer, or a pre-
viously defined Absolute Tag. An 18-bit value
is generated.

Another method of generating an actual valge in
the u-field is by coding a literal expressilon.
This method can be used when the desired value
is a floating point, or fixed point scaled num-
ber, or an integer value requiring more than 18
binary places. An Absolute Tag may also be used.

A literal expression consists of two parts: the
appropriate numerical generative Function code

see paragraph C), and the required value,
separated by a comma. The entire expression is
enclosed within parentheses.

Words are generated for each literal expression,
and are added to the end of the DBANK area being
generated, without duplication.

Next Instruction
In jump type instructions, the u-field represents
the core memory address which contains the next

instruction. Coding is the same as for an oper-
and address.,

SLEUTH 19

Shift Count

In all shifting instructions except Scale Factor
Shift (SFSH), the u-field represents the number
of binary places to be shifted. This shift count

should not exceed 72 places, and 1s coded as a
decimal or octal integer, or an Absolute Tag.

e. Memory Lockout Indicator

A knowledge of the manner in which this instruc-
tion operates is essential to an understanding
of the following explanation. A review of
chapter 12 of the UNIVAC 1107 Technical Bulletin
UT 2463, Central Computer, is recommended.

The u-field of this instruction requires four
groups of L-bit numbers. Write out the four

groups 1in binary,

then convert toc an octal for-

mat. For example, if the desired values are 3,
0, 13, and 9, write in binary:

o1 gege 11a1 1901

The conversion to an octal format will give the
coding $3@331, which is the absolute value to be

coded in the u-field. An Absolute Tag can also
be coded.

819 rFuncTioN 14|15 SUB FIELDS 37 COMMENTS \
LDR, | | [srR6,MmaxM : LABEL)
LD B | $B3,DATA+5 ¢ LABEL, MODIFIED /
MP 1 $A3,$A3 * A-TYPE DESIGNATOR {
S TP, | $A5,$7145 * ABSOLUTE ADDRESS
\LDP, | $A4,14400,,SUOP ! DECIMAL ABSOLUTE OPERAND
L DP, | $A7,$17777,,$U0P : OCTAL ABSOLUTE OPERAND
\L,DP, | $A7,MASK,,$UOP : ABSOLUTE TAG OPERAND
[LDP, | $A6,(WF,6.28,-6) : FLOATING POINT LITERAL \
L,DB, | $B2,(W,$17777) : OCTAL LITERAL \
(S, T\P, | $A3,(W,MASK) * ABSOLUTE TAG LITERAL |
N ZJP $A2,$L-5 : NI =MODIFIED CURRENT ADDRESS \
/$,C S H, $A3,3 * SHIFT COUNT
L MLR | |.$30331 : MEMORY LOCKOUT PARAMETERS
(S, UB, | $A5,*ADDR+5 : INDIRECT ADDRESSING
S UB $A5,ADDR*+5 " "

S UB | $A5,ADDR+*5 " "
(SUB, | $A5,ADDR+5* ” " \
FIGURE 12

LEUTH 20

f. Indirect Addressing

Indirect addressing (setting the i-field to 1)
is effected by coding an asterisk either before
or after any element of the entry in the u-field.

g. Examples of the above applications are given in
Figure 12:

Index Registers (b)

The b-field specifies one of the B-Registers used
for indexing purposes. It is coded with a decimal
or octal integer, an Absolute Tag, or an a-type De-
signator. Only $A@-$A3, $90-893, and $B1-$B15 are
valid Designators.

B-Register incrementation (setting the h-field to 1)
is effected by coding an asterisk before or after
the entry in the bp-field.

Examples of b-field coding are given in Figure 13:

819 FUNCTION 14]15 SUB FIELDS 37 COMMENTS 7
LD,P , | [$A2,ITEM,$B1Q : A-TYPE DESIGNATOR -/
LD/ P $A2,ITEM,$12 : OCTAL ABSOLUTE ADDRESS)
(LD P $A2, ITEM,IDXA ' ABSOLUTE TAG)
ST P | $A3,0UTPUT ,*$B5 : B-REGISTER INCREMENTATION |
S,T,P, , | |$A3,0UTPUT, $B5* T " /
R I S | A
S R R N : j—h)

FIGURE 13

Operand Interpretation (j)

The j-field is coded with a decimal or octal integer,
an Absolute Tag, or a j-type Designator. No coding
is required where the j-fileld is the minor Function
code, i.e., where the Function is a L-letter mnemonic
code. In this case SLEUTH automatically assigns the
correct value.

Examples of j-field coding are given in Figure 1h:

LEUTH 21

9 FUNCTION 14

15 SUB FIELDS 37 COMMENTQ

LD, P $A3,WORD,,$H1 : LOAD LEFT HALF [
LD P | $A4,WORD,,$H2 : LOAD RIGHT HALF)
AD D, | $A5,300 ,,$U0P * U IS ABSOLUTE OPERAND [
E R, J,P, $R15,BEGIN : NOT REQUIRED \
I I :]

—WV\/

FIGURE 14
B. Generative Instructions

In general, generative instructions are defined as those
instructions which generate one or more words in the ob-
ject program. The following types of instructions are

classified as generatives:

Numerical word generatives
Character code generative
Block reservation generative
Macro-instruction generatives
Library Subroutine generatives
Input/Output instructions

Macro-instructions, Library Subroutines, and Input/Output
will be discussed in separate Secections.

1. Numerical Word Generatives

SLEUTH provides a set of software function codes
which are used to define and generate whole or par-
tial numerical words. The coding line consists of
a Tag (optional), Function code, and a varying numn-
ber of sub-fields as determined by the Function
code.

a. Whole Word Generation

(1) The Function code W will generate a 36-bit
signed numerical word. The single sub-
field can be coded with a decimal or octal
integer, an Absolute Tag, or any syrbolic
coding which represents 2 nurericsl value,

SLEUTH 22

b.

(2)

(3)

The Function code WF will generate a Float-
ing Point number. Two independently signed
sub-fields are required: a rational decimal
value, followed by a decimal exponent, se-
parated by a comma. If the exponent is zero,
it can be omitted, and only the value need
be coded.

The Function code WX will generate a Fixed
Point Scaled number. Three independently
signed sub-fields are required: value, de-
c¢imal exponent, and blnary scale factor.

The coding of all three fields should be de-
cimal. In the examples of the WX instruc-
tion in figure 15, the same value will be
generated for all three forms. The exponent
and/or the scale factor may be omitted if
they are zero values.

Partial Word Generation

(1)

(2)

(3)

The Function code H will generate two 18-bit
values into a single word. Each half-word

is generated, and can be signed, independent-
ly, and can be coded as a decimal or octal
integer, an Absolute Tag, an a-type Desig-
nator, or any symbolic coding which repre-
sents a numerical value. The value of each
generated half-word must not exceed 18
binary bits.

The Function code T will generate three 12-
bit values into a single word. Fach third-
word 1s generated, and can be signed, in-
dependently, and can be coded as a decimal
or octal integer, an Absolute Tag, or an
a-type Designator. The value of each gener-
ated third-word must not exceed 12 binary
bits.

The Function code S will generate six 6-bit
values into a single word. EFach sixth-word is
generated, and can be signed, independently,
and can be coded as a decimal or octal in-
teger, an Absolute Tag, or an a-type Designa-
tor. The value of each generated sixth-word
must not exceed 6 binary bits.

SLEUTH 23

(4) The Variable Bit Field Function code G will
generate a number of fields of varying lengths
into a single word. Fach variable field con-
sists of two parts: the value to be gener-
ated, and the size of the field in binary
bits. The two parts are separated by a slash,
and commas separate one fleld from another.

The desired value of each field is coded as a
decimal or octal integer, an Absolute Tag, an
a-type Designator, or any symbolic coding
which represents a numerical value.

A total of 36 binary places must be accounted
for, therefore a zero field of the required
size must be coded at some position of the
word, if necessary.

Examples of numerical word generation are
given in Figure 15.

TAG 718]9 FuncTION 14]15 SUB FIELDS 37 ~ COMMENTS /
Lol ML T LW 14400 : POSITIVE DECIMAL INTEGER {
LCLON|S | T, L -$1357 : NEGATIVE OCTAL INTEGER /
D ATA, | LW ABC P ABSOLUTE TAG J)
DRMDIAT] | W DRMADD : DRUM ADDRESS Y
LFIPIN|O A LW F 6.28,-6 : FLOATING POINT NUMBER
LFIP N0 B, L WE -29.33 :NEGATIVE VALUE, 9 EXPONENT
VEX(PISICIAl | L WX 9.98,,7 : FIXED POINT SCALED NUMBER {
LFIXIPISICIB] | [(WX 998,-2,7 : SAME VALUE)
EXIPiSiCiC| [WX | | |[.998,1,7 : SAME VALUE L
11 [DIXIWID] LHC 1] s : DECIMAL HALF-WORDS {
W 0 RDA, LH 14982, ~$7435 : DECIMAL AND OCTAL HALF-WORDS \
W,0,RDB, LM ABSTAG-5,+25 : MODIFIED ABS. TAG AND DECIMAL
NORDC L H 15,ADDR+5 : DECIMAL AND CORE ADDRESS
3 WD LT $A5,72,-16 : THIRD-WORDS |
3,W,D,2 | T -6,$35,NINE o .\
33,903, LI 1197,59.0 S " /
6 WORD, LS $77,$A5,19, TAGG,-5,0 : SIXTH-WORDS |
VAR BL L6 /2, YALU/16,$31/8,$A2/4, (
Ll b L 39/6 ‘ YARIABLE BIT FIELDS \
I S Ll : l

- ———— T T /-\/\/———-—__;_/W—)

FIGURE 15

SLEUTH 24

Character Code Generative

The Character Code Generation Function code SC will
generate a word containing six FIELDATA characters.
The first sub-fleld of the instruction is coded with
a decimal integer to designate the number of words
to be generated; a maximum of 10 words can be gener-
ated with any one SC instructlon. ©Starting with the
left-most character following the separating comma,
six 6-bit fields from the successive groups of six
written characters form the generated words.

Any of the FIELDATA characters, including those
which normally serve a definite purpose in the cod-
ing, such as the colon, dollar sign, comma, etc.

can be used. A blank space is a valid character
with this Function code, and must be considered when
forming the 6-character groups.

Examples of the SC instruction are given in Figure 16:

1 TAG 7

o

9 FUNCTION

14115 SUB FIELDS 37 COMMENTS

N T S

| ‘S‘C,]

3,ASASIMPLEAASATHIS

I\WAIRING)

L 181€) |

10, NOTE: AMAXIMUM OF TEN 6.CHARACTER WORDS CAN BE GENERATED Wi

| N I T |

L 184Cy

4, TH ONE SC INSTRUCTION

| T I O

I

|~

Block Reservation

The Function code RESV will reserve a block of words.
The Label in the Tag field 1s the address of the
first word of the reserved block. The sub-field may
be coded as a decimal or octal integer, Oor as an Ab-
solute Tag + an increment, and is the number of words
to be generated as zeros and reserved, This instruc-
tion can be used at any point where word generation
is allowed, ie., in either the instruction or data
areas of the progranm.

SLEUTH 25

Examples of the RESV instruction are given in
Figure 17.

1 TAG 71819 FUNCTION 1415 SUB FIELDS
$,B,L,0,CK (R/E SV, 48 .
1T1BjL,0,C K (RIE(S,V, $31 :
|U|B|L|OJC|K IRJE[SLV, ABSTAG+8 .
I O S I O

FIGURE 17

SLEUTH 26

V. DECLARATIVE INSTRUCTIONS

A.

Definition

In general, Declarative instructions are instructions
to the Assembler. They do not normally generate words
in the object program. All Declarative Function codes
are Assembler-defined (software) Functions. See Appen-
dix C.

Declarative instructions can be classified in the follow-
ing categories:

Program Specification

Equality

Segmenting

Table Definitions (core and drum)
List Spacing Instructions
Selective Jump Switch Definitions
Macro-Instruction Definition
Input/Output Definition

Macro-instructions and Input/Output are discussed
separately in Sections VI and XII respectively.

Program Specification

1. The first line of every program must be a PRO in-
struction. The Tag field of this instruction con-
tains the name of the program, and must be left-
justified.

The PRO instruction requires one sub-field, which
is coded with one of three Assembler-defined sym-
bols which specify the object program format:

ABS Absolute Binary (AO0C)

DIR ROC Direct I/0 (DIRECT ROC)

EXE ROC Executive I/0 (EXEC ROC)
The special comments of this instruction will be
printed as the heading for each page of the listing,

up to a maximum of 72 characters. A blank space is
considered to be a valid character.

2. The last line of coding of every program must be an
- ENDPRO instruction. The Tag field is ignored by
SLEUTH. The sub-field is the address at which exe-
cution of the object program is to begin. This

SLEUTH 27

address must be in the instruction area of storage.

Examples of the PRO and ENDPRO instructions are
given in Figure 18.

1 TAG 71819 FUNCTION 14]15 SUB FIELDS 17
P,R,0,G, A, PR,O | ABS : \
P,R10,G, B PRO DIR : AJ/
PIRIOIGI 1C1 lPlRL°I4 EXE : (
L1111 | lENDPRO| |BEGIN : |\
R IS \
N\ W— —_——
FIGURE 18

3. The program name is retained in its symbolic format
in the ROC output of the Assembler. The program
name is expanded to a 12-character left-justified
representation.

It is used as the program name by both the Executive
System and the Relative Load Routine to identify the
program, and to indicate the base address of the ROC.
For further information see the manuals on the 110V
Executive System and 1107 Relative Load Routine.

Equality

The "equals" Declarative serves the logical function of
defining a Tag by assigning a value to it, or of re-
lating two Tags. The Function field can be coded with
eithef 3f two synonymous symbols: EQU or the "equals"
sign (=).

The coding in the sub-field defines the Tag or Label in
the Tag field, and may be written as a decimal or octal
integer, a Designator, or any type of Tag or Label. Mo-
dification in the form Tag * increment is permissible.
The Tag being defined assumes the type of the defining
Tag, 1.e., a Tag defined by a Data Table Tag also be-
comes a Data Table Tag, etc..

The '"equals' declarative is also used to define Tags

within other declaratives. In this case it is coded

not in the Function field of the instruction, but in

one of the sub-fields, and only the equals sign form

(=) is permitted. A more detailed explanation of the
latter use will be given in context.

SLEUTH 28

Examples of the "equals' declarative are given in
Figure 19:

1 TAG 71819 rFuncTiON 14}15 SUB FIELDS 37 COMMENTS\
CHARLI . (EQU, CHUCK : TAG OR LABEL 1
101861 L EQY, $A3 : DESIGNATOR {
(B, EG 1IN, | JEQuU, START+16 P LABEL + INCREMENT \
coNsTX| |, EQuU, | |-48 : INTEGER /
CIONS TX LT -48 2" I\
T ABLC D,T,ABLEl |=-TABLA,LGTHC=CONST+42 : = IN SUB-FIELDS /
I I T I I | I I I | *

| ~———— e
FIGURE 19
D. Segmenting Instructions

Two instructions are available to control the place-
ment of words in each bank of storage, and to segment
the program. These instructions are IBANK, for the
instruction area, and DBANK, for the data area.

A Label coded in the Tag field of an IBANK or DBANK in-
struction will have the same effect as if 1t had been
coded in the Tag fleld of the first machine or genera-
tive instruction following the IBANK or DBANK declara-
tive.

The format of the sub-field portion of the instruction
will depend on whether storage of the segment on tape
or drum is required. Where storage is not required,
at most a single sub=-field will be coded.

For AOC type programs, the sub-field is coded with a
decimal or octal integer, or a previously defined Label
or Tag * increment specifying the absolute address at
which the next generated word 1s to be placed. If the
sub-field is uncoded, the next available address will
be assigned.

For ROC type programs, absolute addresses must never

be gilven to segments, and the sub-field is either left
uncoded if continuation at the next available address
is desired, or is coded symbolically, relative to some
previously defined address of the same type of instruc-
tion, :

SLEUTH 29

0¢ HINETIS

1 TAG

71819 FUNCTION 14]15

SUB FIELDS

BSOLUTE BINARY PROGRAMS

37 COMMENTS

Lt L :

(S TA R T, (I BANK| | $300 L START =$300

Ll11 GETC) :

Lo L Lt BIAINK $300

1SITIAIRIT (1B TIC) o * SAME EFFECT

Ll Lttt 1} |BAINK START :START MUST BE PRE-DEFINED

H

ISITIAIRIT) (I 1 BIAIN K o $ASSEMBLER ASSIGNS NEXT LOCATION
B B RN (L ETC) :

N R (! BANK :

1S TIAIRT (({E;TC)) :SAME EFFECT

LoLb L 1B ANK START+8 ‘RELATIVE LOCATION

A Lol 4 :

S (E\G,M TA| | ;1 B,ANK| |.TAPEQ,LGTI *STORAGE ON TAPE

S EGMTB| | DB,ANK| | ,DRUM,LGTHI :DRUM STORAGE. DRUM TABLE LENGTH
bortobd Ll i TAG MUST ALSO BE LGTHI

S I B Ll :

Lol g 1] Ll :

e L :

I I T S L1 :

[L4 :

Ll 11 R :

I I I O L1 $

I T T O Lol 1 :

L1 Lol :

.

The first use of the IBANK or DBANK instruction sets

the location of the. following instruction. The next

use of the same instruction specifies continuation at
the next available location following the preceding
section of the same type. To accompiish this, SLEUTH
maintains a pair of IBANK and DBANK "location counters,"
and increments these as required.

The effect of an IBANK or DBANK instruction is can-
celled by the next IBANK, DBANK, or DTABLE instruc-
tion. It is not necessary that all instructions of
the same type be grouped together; an IBANK (and its
associated block of instructions) may be followed by
a DBANK, then another IBANK, etc..

For segments requiring that the load routine be directed
to store the segment on tape or drum, two additional sub-
fields must be coded. The first sub-field is coded as
described in paragraph 1. above. The second sub-field
will specify the tape unit or the drum address, and is
coded as a Tape Unit Tag, or a Drum Table Tag. The

third sub-field gives the length of the segment and is
coded as a Segment Length Tag. SLEUTH counts the number
of words generated in each segment, and assigns the ap-
propriate value to the Segment Length Tag automatically.
It can be referred to for the number of words of the seg-
ment.

If drum storage is requested, the Drum Table ILength Tag
and the Segment Length Tag must be coded identically.

A further discussion of Segmentation will be found in
Section XI.

Examples of the IBANK and DBANK instructions are given
in Figure 20.

Table Definition

Tables can be stored in core memory, or on the magnetic
drum.

1. Core Storage tables

The DTABLE instruction defines a data table for ROC
type programs, which is variable in length, in con-
trast to the DBANK area which is fixed in length.

The Tag field of a DTABLE instruction is a Data
Table Tag, and is the name of the table. It repre-
sents the address of the first word of the table.

There are two sub-fields associated with this in-
struction. The first sub-field sets the starting
address of the table, i.e., defines the Data Table

SLEUTH 31

Tag, If this sub-field 1is uncoded, the assign-
ment of the address will be left to the Relative
Load Routine. Coding is required only when it is
desired to equate a data table to a previously de-
fined data table, thus making their starting ad-
dress the same. The coding consists of an "equals"
sign followed by the previously defined Data Table
Tag.

An address within a Data Table can be referenced
by one of two possible methods:

Data Table Tag *+ increment
Data Table Tag + Data Table Length Tag

The combined form: Table Tag * increment * Length
Tag is never permitted.

If a Data Table Tag is defined as being equivalent
to another Data Table Tag by means of a DTABLE in-
struction, both Tags are primary Data Table Tags.
If a Tag is equated to a Data Table Tag *+ increment
by means of an EQU declarative, it is called a se-
condary Data Table Tag. A primary Data Table Tag
can be referenced by either method shown above, but
a secondary Data Table is limited to the form:

Tag *+ increment.

The second sub-field is the Data Table Length Tag,
and specifies the minimum number of storage loca-
tions required to contain all the words generated
for the table. It is modifiable at load time for
ROC type programs. The following methods of coding
are possible.

(blank)

= Absolute Tag

= actual value

Length Tag

Length Tag = Absolute Tag
Length Tag = actual value

If the field is uncoded, a length of zero will be
specified. If the coding 1s in the form: = Abso-
lute Tag or = actual value, the length will be as
specified by the Absolute Tag or actual value. In
all three cases, no modification at load time is
possible.

In the other three cases, the minimum length will
be as specified by the Absolute Tag or actual
value, or zero if no equality is coded, and modi-
fication at load time for ROC type programs is
possible.

SLEUTH 32

The Data Table Tag and the Data Table Length Tag
are retained in the object program in symbolic form
for the Relative Load and Executive Systems.

A Data Table may be preset 1In the same manner as a
DBANK area, by coding the data which will comprise
the table immediately following the table definition.
Following the last coded data line, an IBANK, DBANK,
or DTABLE instruction will signal the end of the
current table.

Further information on Data Tables will be found in
the discussion of Library Subroutines, Section XIV,

Examples of DTABLE instructions are given in Figure

21,

1 Tac 718]9 FuncTioN 1415 SUB FIELDS 37 comments [
(TIAB (LA D TABLE| |, TLGA=64 : PRIMARY. }
T{AB(LiB, | |D,T A/BLE| |, TLGB=CONST+20 : PRIMARY.
1 T1AB|L,C D, T,A B LE =TABLA, TLGC * PRIMARY. MIN. LENGTH = @
I Ly :
L IMIDIS| | LE|QU TABLA+18 : SECONDARY
Ldids) (EQU, TABLB+24 : SECONDARY /
[L1 :
N LD, P, $A2, TABLA+5 : CORRECT REFERENCE
I R A {LIDIP $A2. TABLA+TLGA : " \
Ll LD P, $A2,MDS+2 {

[| (LDP; $A2,JIJS+TLGR *INCORRECT " j
LLor Ln : l w
/\'———'~—4/

FIGURE 21

2. Drum Storage Tables

The MDT instruction defines a drum data table for
absolute or ROC type programs.

The Tag field of an MDT instruction 1is a Drum Table
Tag, and is the name of the table. It represents
the address of the first word of the table.

For absolute type programs, the address of the Drum
Table Tag may be specified by coding the first sub-
field with a decimal or octal integer, or an Absolute
Tag. Or a secondary Drum Table Tag may be equated.to
a primary Drum Table Tag by coding the sub-field with
the "equals" declarative and the primary Tag.

For ROC type programs, a drum table may be equated to
another drum table as described in the preceding
paragraph. If the sub-field is uncoded, the assign-
ment of the starting address will be 1left to the Re-
lative Load Routine.

SLEUTH 33

Associated with each Drum Table Tag is the Drum Table
Length Tag, which is written as the second sub-field.
For absolute type programs it need not be coded un-
less a reference to it is desired. It is then coded
with the "equals" declarative followed by a decimal
or octal integer.

For ROC type programs the Length Tag may be coded as
an Absolute Tag, or an absolute length may be assigned
by coding in the following format:

Length Tag = value

where the value is coded as an Absolute Tag or as a
decimal or octal integer.

The Drum Table Tag and the Drum Table Length Tag
are retained in the object program in symbolic form
for the Relative Load and Executive Systems.

Examples of the MDT instruction are given in Figure
22.

71819 FuNcTION 14115 SUB FIELDS

ABSOLUTE TYPE PROGRAMS

L] L1

DR TIAT, M DT, 500 :
DR, TA2, | | MD,T, , | [DT5,LcA2-50 :
' D/R|T A3, MD,T, , | [- DRTA1 :

OC TYPE PROGRAMS!

I Y B I I

DR TRIT, MDD T | | | LGRI : \
DR, TR 2, MD T, , | [-DRTRI1,LGR2-600 :

B I T T T T I O I

| N S | A I

= —— IS

FIGURE 22

F. Listing Spacing Instructions.

Two instructions are available to control the format of
the assembly side-by-side listing. They are coded in
the body of the program at the point where spacing or
ejecting is desired. They will have no effect on the
assembly of the object progranm.

SLEUTH 3%

1. To instruct SLEUTH to leave n number of blank
lines in the listing, the SPACE instruction is
coded in the function field, and n is coded in
the sub-field as a decimal or octal integer,

2. To instruct SLEUTH to cause a skip to oo}
new page, the EJECT instruction is coded in the
function field. No sub-field coding is required.

the top

Fh

~
[~

Examples of the SPACE and EJECT instructions are
given in Figure 23.

1 TAG 71819 FUNCTION 14(15 SUB FIELDS
I I |SH1ALCF 5 ¢ 2
L1 EJECT : \
I O N O [N

L~ ——

FIGURE 23

G. Selective Jump Switch Definition

Selective Jump Switch Tags are defined by the SWITCH
declarative., Figure 24 illustrates the coding for this
instruction. The Jump Switch Tag in the Tag field is
equated to the value shown in the sub-field for AOC and
Direct ROC type programs. The value must fall in the
range: @-15, and is preceded by the '"equals" declara-
tive. For EXEC ROC type programs it is left uncoded,
since Jump Switches must be assigned by the Executive
System. A switch value of @ has the effect of an uncon-
ditional JUMP instruction.

1 TAG 71819 FuncTION 14115 SUB FIELDS 37 COMMENTS[
VLIPS WL | S W T CHY | =1 : FOR AOC AND DIRECT ROC)
(JPs w3 | |swi TCH : FOR EXEC ROC (
I IO I I N | S N N | : /

I B T e ——— \\
FIGURE 24

SLEUTH 39

VI.

MACRO~-INSTRUCTIONS

A,

Purpose

Macro-instructions provide a method whereby a series of
instruction or data words can be generated by a single
line of coding. A macro-instruction, once defined, can
be used any number of times in a program, and for each
use a different set of parameters can be coded, thus
varying the function, data, registers, etc. of the
basic set of instructions.

Macro-instructions can be either system or program macro-
instructions, with the definitive coding on a separate
input medium or coded directly into the program.

A complete macro-instruction routine consists of two
parts: the definitive set of instructions or "skeleton",
and a single line of coding to generate the instructions
or data for each macro-instruction.

Defining a Macro-instruction.

A macro-instruction is defined once, prior to any actual
reference to it in a program. 1In defining a macro-
instruction, a name is given to it which is a Label un-
like any hardware or software Function code.

Two declarative Function codes are used in the defini-
tion of a macro-instruction. The symbol MACRO signals
the Assembler that the instructions which follow it are
to constitute the skeleton. The name of the macro-
instruction is coded in the Tag field, the Function

code is the symbol MACRO, and no sub-field coding is re-
quired. The symbol ENDMAC signals the end of each macro-
instruction definition. No Tag or sub-field coding is
required.

The skeleton is written between the MACRO and ENDMAC in-
structions, and consists of lines of normal instruction
coding, except that any variable filelds are coded with
parameter identifiers. These are decimal integers, en-
closed in parentheses, and ranging from 1 to the number
of parameters involved. FEach parameter identifier can
be thought of as representing the nth parameter of the
generative macro-instruction to which 1t applies.

The sequence in which the parameters are coded, either
in the skeleton or in the generative instruction, is of
no significance, as long as they are related properly
to each other. Any field, except comments, can be a
parameter.

SLEUTH 36

Fach parameter in the generative instruction replaces
the corresponding parameter identifier of the associ-
ated skeleton instruction on a character-by-character
basis. Thus, any number, letter, or valid special
character is permissible. Elements of the skeleton in-
struction which are not parameter identifiers are re-
tained.

A Label should never be coded in symbolic form in the
Tag field of a skeleton instruction, as it would be de-
fined at each iteration. However, a parameter identi-
fier may be coded in the Tag field and subsequently
identified as a parameter in the generative instruction.

Generating a Macro-instruction

The set of instructions comprising the skeleton of a
macro-instruction will be generated and inserted into
the program by each generative macro-instruction. The
coding line consists of an optional Label in the Tag
field, the name of the macro-instruction in the Func-
tion field, and the parameters required at each itera-
tion coded in the sub-fields, arranged in the sequence
specified in the skeleton. The parameters are enclosed
in parentheses, and commas must not be used to separate
parameters.

Coding a Macro-instruction

The coding of a macro-instruction i1s illustrated by the
examples given in Figure 25a, 25b, and 25c. The basic
macro-instruction is labeled MAC2, and contains within
itself references to three other macro-instructions:
MAC1 for data, and MAC3 and MACYH for additional func-
tions. MAC3 and MACY will not be coded as separate
lines of instruction coding, but will be generated
automatically as a result of parameters (5), (6), and
(7) of MAC2. Both MAC3 and MACY must still be defined,
however. Note the parameter identifiers: the 6th
and 7th parameters of MAC2 are first translated to

(A4) and (TESTA) in the first iteration, and these in
turn become A4 and TESTA, without parentheses, the
parameters of MAC3.

The notes in the comments field of the example, Figures
25a, 25b, and 25c are explained below:

Note 1: Parameter (5) is defined by the generative in-
structions as LABLA and LABLB for the two iter-
ations of MAC2. MAC2 can thereby make refer-
ence to the data of MAC1.

Note 2: A function field can be one of the parameters.

SLEUTH 37

Note

Note

Note

Note

An entire macro-instruction can be coded as
parameters of another macro-instruction.

MAC1 generates data words. The parentheses
enclose a complete sub-field in the form in
which 1t would have been written in straight
programming .

MAC?2 generates instruction words.
MAC3 and MACYL are defined with MAC2. Since

the parameters are first translated as MAC3
(A4) (TESTA), double parentheses are required.

SLEUTH 38

6¢ HLNATIS

9 FUNCTION 14]15 SUB FIELDS 37 COMMENTS NOTES

M AC T M|A C, R O] : 1
[R5 W (n
Lt bW (2) ’
1 181C (3) :
| W 49 :
E/N, D MA,C :
M)A G2 M,ACRO, :
L, D/P (1),(2) i :
(A/DD | (1),(3) :

L §4) | (1), (8)+1 : 18&2

L5 (6) (7) : 3
E,N,DM,AC :
M;A €3 | [MJACRO, :
1S,V B (1), (2) :
2RJP | (1, NG :
| J U MP, ,OKAY :
E N MAC *
(MACi4 | MACRD :
(&R, J,P, (1),NG :
Ju MP, | |,0KAY :
END MAC :
1 |] L ¢
1 R R B ;
Lot ;
O S s
Lol 4 ;
[T N B 5
Ll 11 :
T B :
L1 :

FIGURE 25a

118

Ot HLOH

SUB FIELDS 37 COMMENTS NOTES
S i : _ aiitF IRST ITERATION CODIN]
I T B Lot] :

N MAC T, (325)(75“)(1/F|LE_‘A)(l,ﬂ)(LABLA): : 4
Ll L1 MAC 2 ($A4)(TOTALA)(ITEMA) (SUB)

N O IO S A I O O B (MAC3) (($A4)) ((TESTA) (LABLA): i 6

GENERATED AS

[S R

(LA B LA 325 : MACT STARTS HERE

L1 759 :

Loi 14 & | 1/FILE :

[1.4 :

[N $A4, TOTALA ! MAC2 STARTS HERE

[U $A4,ITEMA 7 o :

b L $A4,LABELA+1 :

L] $A4, TESTA : MAC3 INSERTED HERE
A A O L B R J| P $A4,NG :

I A L U M. P L OKAY . :

N L :

Ll L0 :

A R Ll L :

I SRR B A R :

[O S [

[| :

T O O T I O O :

[R Lot :

I N T [| :

Lot 1] Ll :

N I O N I S | :

I O N N :

FIGURE 25b

bt HLOHTS

9 FUNCTION 14

SUB FIELDS

37

COMMENTS

NOTES

SECOND ITERATION CODIN

L1 00 MACT ($177) (1250) (1/FILE B)(1,0)(LABLB): ° 4
L1111 1 \M|A C 2, ($A2)(TOTALB)(ITEMB)(ADD)
I O O Ll L] (MAC4) (($A2)) () (LABLB): 3

ENERATED A

L1 11 11 Ll 11 :

L A BL,B, LW $177 : MAC1 STARTS HERE
[LY 125¢ s

[B L 18,6 1/FILE B :

| B | L1 Hp 1,0 :

LL 1 Lt , (L, DP $A2, TOTALB t MAC2 STARTS HERE
| L 1A DD $A2,ITEMB :

Ll . 1A, DD $A2,LABLB+1 :

[Z2 R\ J P $A2,NG : MAC4 INSERTED HERE
Ll 41 J UM P LOKAY :

I T N | Ll L i :

I T I L1] | :

[I LLL 0 :

I I I | :

I Y T [I B :

I L L1 :

[B Ly 11 :

(23

FIGURE 25c¢

VII. CORRECTIONS
A, Purpose

Corrections to the source program can be made by means
of a correction program, produced on a separate input
mediun (cards, paper tape or magnetic tape). They will
be merged with the source code input of the program
which is to be corrected, during the first Assembler
pass, and must therefore be in the same sequence as the
main program.

B, Coding

The special declarative instructions which direct the
Assembler in making corrections and which are used only
in the correction routine, are discussed below. They
are coded in the Function field.

1. COR

The first instruction of the correction input is

the COR instruction. The Tag field of this instruc-
tion contains the name of the program to which the
corrections are directed, written exactly as in the
PRO instruction of the main program, including left
justification. No sub-field coding is required.

2. DELETE
Three forms of the DELETE instruction are possible:

a. Coding an asterisk in the sub-field of the
DELETE instruction will delete all instruc-
tions in the main program which were prefixed
by an asterisk, as previously described in
Section III. paragraph A.

When this form of the DELETE instruction is
used, it must be written immediately following
the COR instruction.

Instructions which are added by means of the
correction routines may be prefixed by asterisks,
and such instructions will remain, to be deleted,
if desired, at some future Assembler pass.

b. A single instruction may be deleted by coding
the Label of the instruction, or the previous
Label modified by a positive increment, or the
item number (see Section IX), in the sub-field.

SLEUTH 42

Any number of new instructions can be inserted
in place of the deleted line by coding them on
the correction input immediately following this
form of the DELETE instruction. The replacement
will be halted by the next corrective declara-
tive.

¢c. The DELETE instruction will delete a block of
instructions if the lower and upper limits are
coded in the sub-fields as Labels or item num-
bers. If modified Labels are used, the ilncre-
ments must be positive.

Substitution of new instructions is effected
as described in paragraph B.2.b. above.

3. FOLLOW

Any number of lines of coding can be inserted, with-
out deletion of any existing instructions,; by coding
such instructions immediately following a FOLLOW in-
struction. The sub-field of the FOLLOW instruction
must contain a Label or item number representing the
instruction which will be followed by the new in-
structions. If a modified Label is used, the incre-
ment must be positive. Insertion of new instruc-

tions will be halted by the next corrective declara-

tive
WAL Toe

4., ENDCOR

The last instruction of the correction input must
be an ENDCOR instruction. No Tag or sub-field
coding is redquired.

Precautions

The programmer should exercise cautlon to insure that
the main program is not adversely affected by any cor-
rections. For instance, modified addresses of the
$1+5 type will definitely be affected if any deletion
or addition occurs between $L and $L+5, and a reference
to $L+5 in the corrected program might not be the same
as in the original program.

Corrections must not overlap.

PRO and ENDPRO instructions in the main program should

not be prefixed with an asterisk. They can be indivi-

dually deleted and replaced with new instructions. The
Assembler checks to insure that the deletion of either

is accompanied by a corresponding insertion.

In general, any line of coding which has an item number
associated with it can be corrected.

Examples of correction programming are given in Figure
26.
SLEUTH 43

Hh HLOHETS

TAG 7 9 FUNCTION 14]15 SUB FIELDS 37 COMMENTS
PR,0,G,MC _ | C,0R, : START CORRECTION ROUTINE
N DELETE| |* : DELETE ALL * LINES
L DELETE| |[LABLA+S ' DELETE ONE LINE
Ll 11 DELETE 127 ‘ DELETE ONE LINE (ITEM NO.)

[S A . (L, DB, $B3,72, ,5U0P _‘INSERTCORRECTEDIJNE
bl DELETE LABLB,LABLB+3 ¢ DELETE BLOCK OF INSTRUCTIONS
Ll L L DELETE 245,248 : " " e "
L1 DELE TE| |LABLB,248 : non "
Ll L L F OLLOW LABLC+7 : PREPARE TO ADD INSTRUCTIONS
L [L 11| . (LD P $A2,ITEMA : ADD NEVW INSTRUCTIONS CODED FOR
N S L 1T ENQ $A2,ITEMX : DELETION AT SOME SUBSEQUENT
| I T O O | 14 U MP .LABLF ¢ ASSEMBLY RUN

Ll E,N,D COR : END CORRECTION ROUTINE
Lt 11 L1 :

| I S S W | I S N | :

| S S T T |) Y O T T | :

Ll Lol 1) :

I T I | [| :

| B Ll | :

I I I T :

I I [:

Y I :

[Ll 1] :

I O Ll 1| :

Lt 1 1] | :

[R L1 :

[| [:

I T A N :

I O | [:

R | A ! :

FIGURE 26

VIII.

ACCIDENTAL SYMBOL DUPLICATION

A,

Purpose

It is always preferable to have all Tags and Labels com-
pletely unique, but since accidental duplication of sym-
bols can occur, a method is available to provide some
protection against such a contingency.

Method

The program can be divided into sections by means of an
SEC instruction. No Tag field or sub-field coding is
required. A SEC instruction is not required at the be-
ginning of a program, since the first part of a progrmm
automatically becomes the first (or only) section. All
instructions which follow an SEC instruction become a
part of that section. The effect of an SEC instruction
is terminated by another SEC instruction, or by the end
of the program.

If a Tag is defined only once in a program, this defi-
nition will prevail throughout all sections of the pro-
gram, This definition can occur in any section. If a
tag is defined in more than one section, it will be
assumed to be an accldental duplication, and the defi-
nition in a section will apply to that section only.
Hence, reference to a Tag should never be made outside
the section which contains its definition, unless it

is absolutely certain that only one definition of the
Tag exists for the entire program.

The rules for coding of Tags and Labels for programs
making use of the symbol duplication feature are 1llus-
trated in Figure 27. The numbered notes in the comments

column are explained below:

Note 1: This Tag is acceptable, since it is defined in
the section in which it appears. The symbol
ALICE appears in all three sections, either as
a Label cr as a Data Table Tag. FEach section
generates a different value for ALICE,

Note 2: Since BONNY and DOTTY are defined only once in
the entire program, any reference to these Tags,
in any section, 1s acceptable.

Note 3: CHRIS in section 3 1s incorrect, since it is
not defined in this section, but is defined in
sections 1 and 2. CHRIS will be generated as
as two different values in sections 1 and 2. It
will be generated as zero in section 3, and an
error indication will appear on the program
listing.

SLEUTH 45

9+ HIOHTIS

1 TAG 71819 FUNCTION 14115 FIELDS 37 COMMENTS —
PLRIOJGLMIBL | 1P|RJ,°,,L_ EXE : SECTION 1 AUTOMATICALLY
N T 1B TCy] * ANY MISCELLANEOUS CODING
AL T CE . E QU | TABTAG :
1S HR 1S, 1By STRTAG+2 :
I L 1B TG :
O I L L DP $A2,ALICE .
AR B L 1A DD $A2,BONNY : "
o] b asi TPy $A2,CHRIS :]
[S L 1B TC | :
O O L 1S EC ! SECTION 2
BiON\NY, LW 209 :
00, T T,Y, L E QY |OUTTAG+5 :
I T B L (BTG :
ALl CE . (L,D/P, $A5,ITEM :
' | . (S ,U,B, $A5,BONNY : 2
I A NG, J P $A5,CHRIS : :
et | b 1 BTG :
NI R 1 J UMP /ALICE .
[C{H| RIS, . 1A D, D, $A5,DOTTY : 2
Ll L1y [18, TP, $A5,DOTTY . 2
T A . (E,T,C :
I T ~_L_.i_s__LELcl : SECTION 3
I N N O . (BT C .
|A|L|||C|E[L lElQlUI TTAG :
[T O I |, (L,D/P $A4,ALICE . "
[Ll . A DD $A4 ,BONNY : 2
Ll 1t LS TP $A4,CHRIS . 3
Ll 111 L 1B TS :
| I | E;NDP,RO START :

FIGURE 27

ASSEMBLY LISTING

SLEUTH will automatically produce a listing of each as-
sembled program to provide a record of its interpretation
of the Source program. The only programmed control over
the listing is the spacing as described in Section V, para-
graph F.

The listing consists of three principal sections:

A.

Title Line

The first line shows the program name as it appears in
the PRO instruction of the source program. At the cen-
ter of the page, the word "LIST" appears, followed by
the date.

ROC Auxiliary Information
The contents of the following are listed:
1. Facility record.

2. Directory record.

3. Modification record.

For the uses of the above, refer to the manuals on the
Relative Load Routine and the Executive System.

Body of the Listing

The source program and the assembled object program are
listed side by side. UFor generative instructions the
generated word 1is printed in an expanded octal format.
Values associated with declaratives are listed, e.g.,
the value assigned to a tag by the Equals declarative.

An item number 1s assigned to each line of coding and
appears on the listing. As previously mentioned 1n
Section VII, the item number may be used to identify
lines of coding for corrections.

Coding errors detected by SLEUTH will be listed as
error codes.

SLEUTH 47

RELOCATION

Assembled object programs can be in AOC, DIRECT ROC, or
EXEC ROC form, as specified in the PRO instruction,

Absolute output is in binary form, ready for loading and
execution.

For ROC type programs, fields within some generated words
are necessarily incomplete. Final assignment of absolute
addresses and I/0 units will depend upon the Relative Load
Routine and the Executive Routine at l1oad time.

When ROC output is specified at the beginning of a program,
SLEUTH will produce the data required by the Relative Load
Routine to effect proper modification and relocation.

Coding special tags in a field gives to the Assembler the
information necessary to construct modification indicators
describing how a field is to be modified. The Assembler
also produces, as a part of the ROC format, tables defining
the special tags. From this information the load routine
can modify each word and make the program ready for execu-
tion.

The Table in Appendix F gives the fields within each word
which may be modified on loading if necessary. The possi-
ble forms of coding which may be used to generate the
field are also listed.

Field 29-00 is an unnatural division of a word which is used
as part of the calling sequence for the Executive I/0 pack-
age., Both the unit or drum address and channel assignments
are inserted in the field at load time.

Actual modification to the 30-bit field is restricted to
bits 29-26, and 22-00 for drum addressing or 15-00 for unit
assignment, Within a word two combinations of these modi-
fiable fields may occur:
Field 25-22 and 15-00
or 33-18 and 15-00

Complete information on modification and relocation will be
found in the separate Relative Load Routine manual.

SLEUTH 48

XI. SEGMENTATION

All three types of blnary output can contain segmented
programs. After initial loading of the program by the
loader into core, and into drum or magnetic tape storage,
the program itself must read segments. Information neces-
sary to read a segment should be available within a pro-
gram being assembled, using unit tags, drum table addresses
and length tags. Instructions must be generated to perform

this reading.

An analysis of the operation of the 1107 Relative Load Rou-
tine should make clear the situation that exists at the be-
ginning of execution. The words generated for a segment

are modified if necessary (i.e., for ROC type binary output)
and loaded in core at the execution position. For each
IBANK or DBANK area a single block is written on tape or on
drum if storage was specified. Any section not requiring
storage remains in core, and the initial operating section
must therefore come last, or not be written over by a suc-
ceedlng section.

Sections stored on drum do not necessarily have ascending
drum addresses, but each table name gives the beginning
location of storage. Block markers asre not written on
drum. Storage on tape will be in blocks in the order of
original coding. The first and/or last word of a section
generated can be used as a search word to locate the seg-
ments.

SLEUTH 49

XII. INPUT/OUTPUT
A, General

Assembled object programs can be in AOC, DIRECT ROC, or
EXEC ROC form, as specified in the PRO instruction. FEach
type differs in the method of programming for input/output
operations, and each is discussed separately in this sec-
tion.

For AOC and DIRECT ROC type programs, all input/output
instructions must be coded in detail, using the four
types of I/0 instructions as required:

1. Computer Hardware I/0 Instructions

These instructions are functions performed by the
computer to initiate input/output, or function modes
etc. A full list will be found in the Computer In-
struction Repertoire, Appendix Bj; they are identi-
fied by the octal Function code 75.

2. I/0 External Function Instructions

These instructions are functions performed by the
peripheral equipment, such as Rewind Tape, Read
Drum, Punch Card, etc.. A full list will be found
in the I/0 Function Repertoire, Appendix D.

3. 1/0 Generative Instructions

These are software instructions which are used to
generate external Function words and Access Control
words. See Appendix C.1,

4L, I/0 Declarative Instructions

These are software instructions which are used in
channel and unit definitions. A full list will
be found in Appendix C.2.

B. Requirements for Programming Input/Output

Each input/output operation involves some I/0 channel,
and some I/0 unit of peripheral equipment, both of
which must be assigned, either absolutely or symbolical-
ly, by the source program. In addition, the actual ope-
ration to be performed must be stated by means of Exter-
nal Function words and I/0 Access-Control words.

A channel or unit can be defined without being specified,
i.e., a line of coding will be written to indicate that
such a channel or unit is required, but no specific iden-
tification is stated,.

SLEUTH 50

AOC

For AOC type programs, all input/output instructions
must be coded in detail, and all assignments of I/0

channel, units, drum addresses etc. must be coded in
absolute.

1, 1I/0 Channel Definition and Assignment

An absolute Channel Assignment is made by coding a
decimal (00-15) or octal (00-17) integer, or a pre-
viously defined absolute Channel Tag as the first
sub-field of a Computer I/0 instruction.

A Channel Tag is a symbol of not more than 5 char-
acters, and is defined by means of a Channel Defi-

nition declarative instruction.
is coded in the Tag field,

The Channel Tag

the Channel Definition

declarative 1s coded in the Function field, and an
absolute equation of the Channel Tag with channel

1o n
n

[K= VI S O & 4

il LriQiiiiT

is made by coding the sub-field as: =n.

I/0 Channel Assignment and definition is illustrated
in Figure 28.

1 TAG 7]18]9 FuncTiON 14]15 SUB FIELDS 37 COMMENTS

Ll 11 PM, 1,ABC : ABSOLUTE CHANNEL ASSIGNMENT

) T O Ly :

L TG H 2, M.T CH =2 ? ABSOLUTE CHANNEL DEFINITION
TIAPEL | [N M TA =2 : ABSOLUTE UNIT DEFINITION

T APE2 | NMT A =5 " " " (OPTIONAL)
iTiA P E 3, MITHA = " " "

P TR CH H, PCH, - ” CHANNEL DEFINITION

\PIRIN|T R | _|H|S|P = UNIT '

Ll L1

L J 1P M, TCH2,BCD : ABSOLUTE SYMBOLIC CHANNEL ASSIGNMENT

L1 L L1
NS A I ! o~ :
W ™ o \/—\—__—-—/ \/\—’—\-/\/\K\N_\
FIGURE 28
2. 1/0 Unit Definition and Assignment

An Absolute Unit assignment is made by coding a
decimal or octal integer (up to the maximum number
of I/0 units associated with any given channel),

SLEUTH 57

or a previously defined absolute Unit Tag in the
p-field of an External Function word.

A Unit Tag is a symbol of not more than 6 charac-
ters, and is defined by means of a Unit Definition
declarative instruction. The Unit Tag is coded in
the Tag field, the Unit Definition is coded in the
Function field, and an absolute equation of the
Unit Tag with Unit "n" is made by coding the sub-
field as: = n. The generated value will be in
master bit format.

I/0 units are grouped by I/0 channels by defining
all the units associated with a given channel
immediately after the channel definition.

The unit definition declarative may be suffixed
with the letter O to indicate that such units are
optional, and may be deleted at load time.

I/0 unit assignment and definition are illustrated
in Figure 28.

I1/0 Access Control Words

The actual word-by-word transmission of input data,
output data, or external function words between

the Computer and the peripheral equipment is governed
by I/0 Access-control words stored in the Access-
Control Registers. These Registers are two groups of
film-memory locations specifically assigned as follows:

40-57 (octal) Input Access-Control Registers
60-77 (octal) Output Access-Control Registers

Location 40 is the Input Access-control Register for
Channel 0O, location 41 is the Register for Channel

1, etc.. Similarly, location 60 is the Output Access-
control Register for Channel O, location 61 is the
Register for Channel 1, etc..

To generate Access-control words, two possible in-
struction formats are avallable, as illustrated in
a generalized form in Figure 29.

1

TAG

7

oo

9 FUNCTION 14}15 SUB FIELDS 37 COMMENTS 3

TS I L I I

LA 9,W, v : METHOD 1 (

| L

I T N S |

N W,V : METHOD 2

I O I N |

)
/"""“J sl W"\——\J

FIGURE 29
SLEUTH 52

The Tag field, t, is coded with a Label, or it may
be omitted. The letter A used in method 1 is an
actual generative Function code. The increment
designator g will generate a two bit binary field
into positions 34-35 of the Access-control word,

and is coded as I, D, N, or ND:

I = 99 Increment u address
D =18 Decrement u address
NI = o1 Inhibit Increment
ND = 11 Inhibit Decrement

The word count, w, is coded as a decimal or octal
integer, or an Absolute Tag. The address, u, is
coded in any acceptable u-field format.

An Access-control word is set up in an Access-
control Register by coding the core address of the
word in absolute or symbolic form as the second sub-
field of an appropriate Computer I/0 instruction.
See Figure 28,

Examples of the coding of Access-Control words are
shown in Figure 30,

1 TAG 71819 FuncTiON 14]15 SUB FIELDS 37 COMMENTS [
1 1AIBIC) i 1A 6,56,36800 *METHOD 1 — ABSOLUTE 4)
J1A(B|CI | L LAL | I, WDCNT,RBLOCK : -

N R ! L :

y 1BiC,D| 1 RN 56, RBLOCK *METHOD 2 — INCREMENTIN
L LI 5, AREAB ‘METHOD 2 - DECREMENTING
IR B B Lo :
N e A

FIGURE 30
4. TI/0 External Function Words

I/0 Function Words are actually instructions forming
the repertoire of the various types of peripheral
equipment. A list of the functions for each type of
equipment will be found in Appendix D. Any of the
instructions may be modified by prefixing the Func-
tion code with the letter I, which will produce a
monitoring effect by causing an external interrupt
signal to be emlitted by the peripheral equipment at
the normal conclusion of the operation.

SLEUTH 53

As far as .the Central Computer is concerned, these
external function instructions are treated simply

as data words.

They are generated by an I/0 Func-

tion generative instruction, which can be coded in
either of the two possible methods shown in a gener-
alized form in Figure 31.

1 TAG 7

oo

9 FUNCTION 14

SUB FIELDS 37 COMMENTS

Lt

lIFw‘

f,p,x : METHOD 1

| LN

L

p.x : METHOD 2

| I I B S

{11

| N O O

{
{1

1 1

N B N |

/
)
(
?
\

"

FIGURE 31

The Tag fieid, t, is coded with & Label, or it may

be omitted.
actual generative Function code,

The letter F used in method 1 is an
The letter f re-

presents the appropriate Function code for the

peripheral unit.

The letter p represents the unit

assignment, and is coded either as a Unit Tag, or
as a decimal or octal integer, written in a form

which will produce the same master bit configura-
tion as the Unit definition declarative would pro-

duce.

For example:

Unit 3 should be coded as $4,

for a bit configuration of 19@; Unit 5 should be
coded as $2@, for a bit configuration of @1@ @07,

ete..

The letter x represents a third field which is re-
quired in some functions, such as printer line
spacing.
tal integer, or an Absolute Tag, with values
ranging from @ to 63,

The field is coded with a decimal or oc-

Examples of the coding of External Function words
are shown in Figure 32,

1 TAG

oo

9 FUNCTION 14

SUB FIELDS 37 COMMENTS

104EF,

F

T N

RTFN,3 : METHOD 1

|DE | F|

L F

IRTFN,TAPE3

LE\F 6

F

PC,2

1FIGH,

PHSP,1,2

1
1
-1
|
1

|

IDIEIFI

L
Ll
[
AL
L]
RITFN

3 : METHOD 2

IDIEIFI

4R T FN

TAPE3

EF)6

L 1RC

2

1
i
1
1
T |
|
1
I
!

1F1GH,

PH.SP,

{
\
)
AN
1,2 \

|~

A L —d

MM
FIGURE 32
SLEUTH 54

DIRECT ROC

AOC and DIRECT ROC type programs are essentially simi-
lar in their basic programming requirements. For both

+ 11 Srniit /At rnat Snetrnianatina ma1 + 3
types, all input/output instructicns must be coded in

detail, using the four types of I/0 instructions pre-
viously discussed in paragraph A of this section.

The chief point of difference between the two types is
that in DIRECT ROC programs, final assignment of memory,

I/C channels, units etc. may be made through the Relative

T,oad Routine,

Thus in the source program, such assignments can be
either specific or relative. If the assignments are
specific, they will be honored by the Relative Load
Routine at load time unless modification is desired,
and such modification will be governed by the Location
Input records associated with the Loader. A symbolic,
or unspecified, assignment 1n the source program re-
quires Location Input data with the Loader so that
final assignment can be made.

Absolute or specific assignments are made as described
for AOC type programs. Symbolic assignments are made
by omitting the field in the coding line which speci-
fies the absolute value of the channel, unit, etc..
For example, in a channel or unit definition instruc-
tion (see Figure 28), the sub-field would be left
blank, and not equated to some specific channel or
unit. Similarly, in the generation of an External
Function word (see Figure 30), the input/output unit
designated by the p-field should be coded in symbolic
form.

The word count in Access-control words should, of
course, be coded as an actual value.

For a detailed explanation of load time operations, see
the manual on CLAMP, the Relative Load Routine.

EXEC ROC

Input/Output programming for EXEC ROC type programs
differs completely from the programming for AOC and
DIRECT ROC. The Computer hardware instructions and
the Fxternal Function instructions are not usedj in-
stead, an instruction repertoire consisting of a set
of Fxecutive System pseudo-instructions is used.

SLEUTH 55

An Input/Output command, therefore, is not programmed
as an instruction to the Computer system, but rather
as a request to the Executive System for Input/Output
action. An I/0 Execution Packet is submitted to the
Executive System, and contains the desired pseudo-
function which is to be performed, as well as the
parameters associated with it. The Executive Systenm
interprets this packet, and calls on the Executive
I/0 Functional Routines to perform the desired opera-
tion.

This relationship can be shown graphically:

EXECU- EXECU- I/0 EQUIP-
TION Submitted to TIVE Sets up JFUNCTION|Activates MENT
PACKET 7\ SYSTEM ROUTINES i
FIGURE 33

For EXEC ROC, all I/O channel and unit assignments
must be made in symbolic form., They will be assigned
absolute values at load time by the Executive System,
working through the Relative Load Routine,

Channel Tags are not required in defining I/0 Channels
for EXEC ROC, and a specific channel designation must
not be given. Therefore, a complete channel definition
can consist of only the channel definition declarative
coded in the Function field. There is one exception to
the rule about specifying channels: if a channel is
specified as: = @, then EXEC)y the 1107 Executive
System, will assign the I/0 units grouped under such

a channel to any available channels.

I/0 units are defined, by channels, as described for
AOC and DIRECT ROC, except that again no unit specifi-
cation can be made. The Executive System will attempt
to assign tapes classified as input tapes to units
which currently do not contain a physical tape, thus
minimizing operator effort.

I1/0 Access-control words form a part of the I/0 Packet
and are coded as previously described.

SLEUTH 56

A complete 1list of all Executive System pseudo-func-
tions, as well as a description of the format of the
I/0 Execution Packet and the manner in which an I/0
request is submitted to the Executive System, is con-
tained in the manuai on EXEC, the 1107 Executive
System,

SLEUTH 57

XIIT,

SPECTIAL DATA TABLES

Two special tables can be defined for EXEC ROC type pro-
grams by giving them specilal names as described below.

A. $PARAM

The table named $PARAM will receive the input from the

Parameter Cards which are a part of the Executive Sys-

tem Job Request. FEach card contains 11 words, and ac-
cordingly the table lengths will normally be multiples

of 11.

B. $ERROR

The table named $FRROR is recognized by the Executive
System as a table of eight addresses corresponding to
the eight error interrupt locations (3¢@-377,). If
an error occurs during the operation of the program,
the Executive System will consult the proper address
entry, place the P-register value at the time of the
error in the location specified, and Jjump to the
following word. Simulation of direct use by the pro-
gram of the error interrupts is thus accomplished.

SLEUTH 58

BANK 1

BANK 2

SEGMENTED COMPLEX PROGRAM

CSR = common subroutine
MC = master control

Associated Data Tables Not Shown

FIGURE 34
SLEUTH 59

S = segment
CSR1 SR = subroutine
CSR2 D prefix denotes data
CSR3
MC
SN
s 2]
SR SR1
Ra SR2
il SR3
SR2
DCSR1
DCSR2
DCSR3
DMC
DSN
bsI DSz |—-————— —] bpsri
DSR1 DSR2
DSR1 DSR2 DSR3
DSR2

XTIV . LIBRARY SUBROUTINES

A,

General Information

A program requiring the addition of subroutines from
an external library is called a main program. A main
program, together with its associated subroutines, is
called a complex program. Complex programs, as well
as simple programs (i.e., programs with no associlated
subroutines) may or may not be segmented. Figure 34
illustrates the form of a segmented complex program,
The inclusion of subroutines can be done either at as-
sembly time or at load time.

In general, each subroutine defines its needed I/0
equipment, and drum or core tables, which are then
equated to tags in the main program. The assignment

of common I/0 equipment, drum and data tables, and the
use of multiple entry points allows considerable freedom
in the design of subroutines. The methods used, there-
fore, to communicate between the main program and the
subroutine, or between subroutines, will be to a great
extent dependent on the programming standards estab-
lished at each UNIVAC 1107 Computer installation.

If the subroutine is to be included at assembly time,
its position within the main program is specified. If
the call for the subroutine is at load time, it 1s
added to the end of the main program.

Assembly Time Inclusion

Subroutines which are to be inserted into a main pro-
gram at assembly time will be 1n symbolic notation on

a library tape, and the format will be that of a macro-
instruction skeleton. The actual generation and in-
sertion are effected by an instruction in which the
name of the subroutine is used as the Function code.
Any required parameters are coded in the sub-fields
portion of this instruction.

In general, subroutine inclusion at assembly time is
handled in exactly the same manner as the use of macro-
instructions, except that the definition and skeleton
appear on the library tape and not in the main program.

Load Time Inclusion
Subroutines which are to be added to a main program at

load time will be in a modified ROC format on a library
tape.

SLEUTH 60

A main program requiring subroutines at load time must
specify the subroutines and the various entry points

required by means of the XREF declarative. Figure 35
illustrates such an external reference to two subrOH—

F oA e AT ~Na cmA TAN cwva mie 7830 o
C1NES . iDLV vuioe &l iadv are x.lu._\.l.u.bu_c t:ﬁuJ.J LJU_LJJ.UD Gi

the subroutine TRIG. The subroutine name (TRIG) is
automatically an entry point. ©SQRT is a subroutine
with no additional entry points.

TAG 71819 FuUNCTION 14{15 SUB FIELDS {
TN (X,R EF TRIG(SIN,COS, TAN) ,SQRT: B
I A I I T N B o
I O I [N i

P —— —— ——— —a
FIGURE 35

The main program coding required to enter a subroutine
is dependent on the manner in which the subroutine is
written.

Main program coding should observe the following con-
rentions:

1. All segmentation is handled within the main pro-
gram.

2. The required subroutines are specified by means of
an XREF declarative in each main program segment if
more than one segment exists, Any subroutine speci-
fied in a section always in core is considered a
common subroutine, and may be referenced by any sec-
tion of the program. Subroutines placed within a
program segment which has been stored on drum or
tape can be referenced only by that segment,

3. The total requirements of the subroutine data
tables must be contained within the data tables
specified for the main program.

4. Similarly all drum tables and I/0 equipment must
be specified for the total configuration needed
by the main program and subroutines.

5. A facility record must be made up which describes

the total requirements of the combination of pro-
grams.

SLEUTH 61

Creating a Subroutine

Subroutines, whether they are to be added at assembly
or load time, must be coded within the following limi-
tations:

1.

2,

Subroutines are never segmented; the main program
controls segmentation.

The subroutine consists at most of one IBANK and
DBANK area, and one set of data tables.

A subroutine may itself contain an XREF declarative
cross-referencing other subroutines, if required,
i.e., subroutines within subroutines.

A subroutine may have several entry points which
are defined by the ENTRY declarative. The various
entry points are coded in the sub-fields portion of
the ENTRY instruction and each entry point label
so defined will appear on the Directory Record so
that in adding subroutines each entry point may be
an entrance from other programs. More than one
ENTRY declarative can be used; their effect is
cumulative. The subroutine name is automatically
an entry point.

See Figure 36 for an illustration of the ENTRY de-
clarative.

L1 EN TR Y, SIN,COS, TAN :

TAG 71819 FuUNcTION 1415 SUB FIELDS (
\

FIGURE 36

SLEUTH 62

XV. SAMPLE PROGRAM

A.

Statement Problem

The sample problem given here will evaluate the ex-
pression

2
£(x) = x® +ax® +b (5IB) - ¢

The values of x range from 0 to 999 in steps of 1.
200 sets of random values for a, b, and c are assumed
to be stored in a drum table, each set consisting of
three words containing the values for a, b, and c,
making the total length of the drum table equal to
600. The arrangement of the drum table is:

stored in ABC

stored in ABC +
11 1 ABC

1

a

1

b

1

c

a " " ABC
b

c

a

+

1" 1" ABC
1" " ABC
1" 1 ABC

etc.

2
2
2

[CXNIAN) G e S I

+ o+ 4+

3

2
. . . + .

The expression within parentheses (X—) will be handled

as a macro instruction.

Figure 37 is a flow chart of the problem, and figure 38
illustrates the coding.

Method of Solution

The method used in the sample program is to evaluate
f(x) for a s b, and ¢, and O < x £ 999, write 1000
results on tape, then solve for a, s 1)27 c,> etc., until
the results for the 200 sets of values of a, b, and c
have been written.

The explanations given below refer to the corresponding
nunber in the comments section of the written program.

1. The program name is EFFEX, and the object program
will be an EXEC ROC type program.

2. The symbol XREG is equated to Register B2, and
any reference to XREG is a reference to B2.

SLEUTH 63

10.

.

12.

13.

4.

15,

A single blank space will appear on the program
listing at this point.

The heading "I/0 DEFINITIONS'" is an extension of
the previous instruction, and must therefore have
no instruction terminating colon of its own.

DRUM1 is defined as a magnetic drum channel, but
since this i1s an EXEC ROC type program, no specific
channel identification is made.

ABC is defined as a drum table on some unspecified
drum unit. The length of the table is 600.

OUTPUT 1is defined as an unspecified tape channel.
TAPE1 is defined as an unspecified tape unit.

TABC is defined as a data table 1in core, with a
length of 3 words, and with an unspecified start-
ing address. It represents the 3 core addresses
into which will be read, from the drum table, the
3 words representing the values of a, b, and c.

TOUT is a data table in core, which will be used
to contain the 1000 results calculated for each
set of a, b, and ¢ values, and from which these
results will be written on tape.

MACA is the name of the macro instruction whose
skeleton is defined by the instructions coded
between the MACRO and ENDMAC instructions.

The instructions which follow the IBANK line will
be stored in the instruction bank of core storage
(see comment #23). Because of the previous EJECT
instruction, the coding lines beginning with the
IBANK instructions will be printed on a new page
of the program listing.

START is the symbolic address of the first actual
instruction of the program. The instruction will
place the actual value 199 in Register B5, which
is used as an "iteration counter' to determine
whether the program is completed.

These 2 lines constitute the standard calling se-
quence for submission of I1/0 requests to the
Executive System.

Register B4 is used as an iteration counter to de-

termine the end of the minor loop, i.e., whether
X has reached 999,

SLEUTH 64

16. XREG (see comment #2) is used as an Index Register
to modify TOUT, so that successive results will be
stored in successive locations of the TOUT table.
The 16 least significant positions of XREG are
also stored in XLOC, which becomes the address of
the current value of X.

17. The actual evaluation of x3 + ax® is performed.

18. The macro-instruction is executed with the para-
meters representing the addresses of the current
values of x and b.

19. The result of each iteration is stored in some
location within the table TOUT, as determined by
the value of XREG. XREG is incremented, as spe-
cified by the asterisk.

20. A test i1s made to determine whether the value of
x has reached 999. If no, the contents of the
iteration counter Bh4 are decreased by 1, and
another iteration is made. If it has, the main
loop is finished, and the 1000 results are to be
written on tape.

21. The Read Drum instruction is modified so that the
next set of values for a, b, and ¢ will be read.

22, This is the standard ending instruction to ter-
minate the program and relinquish control to the
Executive System.

23. The following instructions are placed in the data
bank. See comment #12.

oL, PKT1 consists of 4 lines of coding which constitute
the Read Drum I/0 Execution Packet.

25. REQ1 is a Request Parameter for the above.
26, INDXWD is the initisl setting of XREG.

27. REQ2 is a Request Parameter for the Write Tape I/0
request.

o8 . PKT2 consists of 4 lines of coding which constitute
the Write Tape I/0 Execution Packet.

29. ENDPRO defines the end of the program and identifies

START as the address of the first instruction to be
executed.

SLEUTH 65

SAMPLE PROGRAM FLOW CHART

INITIALIZE

WRITE 1000
READ RESULTS
A; B; C;
(o)— :
C FINISHED?
EVALUATE NO
FOR
X; (A B G)
RESET INDEX
REGISTER
YES FOR X TO 99
(X = 9997
NO
STEP UP X STEP UP
BY 1 A; B G

FIGURE 37
SLEUTH 66

49 HINHTS

9 FUNCTION 14

SUB FIELDS 37 COMMENTS NOTES
EJFtFlEl X, | , P, RO EXE : POLYNOMIAL EVALUATION 1

| X|RE |G, , (EjQu, | |$B2 : 2
L1 S PACE]T : 3
| T | L] /0 DEFINITIONS 4
DR \UMT, (MD,CH, : 5
ABC | MD,T, | |, LeTH=600 : 6
19,4, TP \UT (M T CH, : 7
(T APEN, LM TA : 8
[B S;PACEl [1
1L L L d L) DATA TABLE DEFINITIONS
. T;ABC | [p,TAB L E|l |.LABC=3 9
Loy T D TABLE| |, LOUT=1000 : 10
L1 1 1] S,PLACENT :

IMIAC A M, A CRO : n
F I I | 1L|D1P| $AT11,(1) s
[A EIRULT $A11,5,,5U0P s
[T B O L 1L, DP, $A12,(1) :

Lo L (MP.S, $A12,(1) .
Lt 14 , (AD.D $A12,(2) ;
T I I IRLIALY $A12,8A11 :

I I EN/D/MAC :
I I B EJECT :

L1141 ! BjANK : 12
IS TIAIRITY | 1L1D)Bj B5,199,,$U0QP : 13
I S | L DP, $Q0,REQ1 . 14
Ll 1 LM, JP $B1,$X10 . 14
N T B LI $B4,999,,$UO0P : 15

N | ,L,DB XREG,INDXWD : 16
R B L 5, T, B XREG,XLOC,, $H2 :

T W N T SPACE :

FIGURE 38

89 HINHATIS

1 TAG 71819 FuUNcCTION 14]15 SUB FIELDS 37 COMMENTS NOTES
lEllelLl N IL|D1PL $A5,XLOC : 17
Ll 11 L _IM|P§, $A5,8A5 o]
L1t L | $A5,XLOC I :
I AR | 1L DP $A6,XLOC :
Lttt | [aMPs, $A6,3A6 __:
[I O T I Ll $A6,ABC .
I I T M A CA (XLOC)(ABC+1) : 18
Ll L L | |MP§, $A12,ABC+1 :
L | ,AD/D | |$A5,8A6 .
[I | |ADD $A5,8A12 :
S N O T | [|S|UlBl __;AS,ABC+2 :
Ll 1 . S, TP, | [$A5,TOUT, XREG* : 19
Lt 1 d X 3P $B4,EVAL -2 : 2
N | &,D,P, $A7,PKT1+1 :
N N T . ADD, $A7,3,,8U0P B : 21
I O I L 18 TP, $A7,PKT1+1 : 21
AR T E . L, DP, $QF ,REQ2 : 14
[O T O LM JPy $B1,$XI0) : 14
[N X3P $B5,START+1 :
I I T (LM, J P, $B1,$END : 22
[N U O S P ACE 1 :
I A D (B, ANK] : 23
L 1Xi1L;0,C LW g :
L IPIK3Ti1) Lol WL g : 4
Lt 11 | 1RD ABC :
Ll 11 Ly l'i [LABC, TABC .
[L o :
| (R,E Q1 L H | [e.PxT : Y
(},N,D X, WD LM 1.9 : 26
 RIEQ2 T P, PKT2 : 27

FIGURE 38 (Cont)

69 HILNATS

1 TAG 718]9 FuncTiONn 14]15 SUB FIELDS 37 COMMENTS NOTES
_L,J_PIKITIZI Y v e : 28
L4l d 1] W, 72,5, | |TAPE] :
RIS S N LR [LOUT,TOUT _ i
L1 1] LY g :
ULl L1l E,N,D,P RO START : 29
I N L1 :
N O T T O | :
[O Lol L1t - :
[B A R L :
Ll L1 ’
oLt 1 RN RN B §
N R [. i
B S L1 i :
B L N :
N Ll :
LlL 11 Ll 1] :
N R ;
[T O O Ll Ll :
L1 L1 :
Ll Ll g :
L1 Lol 1 :
Lt A I :
T B O [:
I Lol L1 :
S T O N :
Ll 111 Lo :
I S :
Ll 11 Ll 11 :
[N R [B :
AN S L] :

FIGURE 38 (Cont)

APPENDIX A
FIELDATA CHARACTER SET

OCTAL OCTAL
CODE CHARACTER CODE CHARACTER
00 Master Space 40)
1 Upper Case 1 -
2 Lower Case 2 +
3 Tab 3 <or %
L Carriage Return L = or #
5 Space or A 5 > or &
6 A 6 -
7 B 7 $
10 C 50 *
1 D 1 (
2 E 2 1
3 F 3 :
L G i ?
5 H 5 !
6 I 6 R
7 J 7 STOP &
20 K 60 [0}
1 L 1 1
2 M 2 2
3 N 3 3
L 0 L L
5 P 5 5
6 Q 6 6
7 R 7 7
30 S 70 8
1 T 1 9
2 U 2 !
3 \Y 3 H
L W L /
5 X 5 .
6 Y 6 Special
7 Z 7 Backspace

SLEUTH 70

APPENDIX B

INSTRUCTION REPERTOIRE

EXE]FL‘IATION
IME
£] NAME DESCRIPTION IN « SEC. | MNEMONIC
Alternate | Same CODE
Core Core
Banks Bank
01 |0-17 | Store Positive (A)—> U 4.0 8.0 STP
02 Store Negative —A)->U 4.0 8.0 STN
03 Store Magnitude I(A)I-> U 4.0 8.0 STM
04 Store R, (Ry)y > U 4.0 8.0 STR
05 Store Zero 0> U (Clear U) 4.0 8.0 STZ
06 Store B, (B> U 4.0 8.0 STB
10 Load.Positive (U)y-> A 4.0 8.0 LDP
11 Load Negative —(UW->A 4.0 8.0 LDN
12 Load Positive Magnitude HU)I > A 4.0 8.0 LDM
13 Load Negative Magnitude —1(UWl-> A 4.0 8.0 LNM
14 Add (A) 4+ (U)—>A 4.0 8.0 ADD
15 Subtract A — (WA 4.0 8.0 SuB
16 Add Magnitude (A) + (V)i A 4.0 8.0 ADM
17 Subtract Magnitude A —1(WI->A 4.0 8.0 SBM
20 Add and Load A+ U)-A+1 4.0 8.0 ADL
21 Subtract and Load A —U)>A+1 4.0 8.0 SBL
22% Block Transfer (W)i = (V)i repeated k times. . 8.0 8.0 BTR
Initial V, address is u 4+ (By) 17-0, and subse-
quent addresses are formed by incrementa-
tion by (By)ss.15. Similarly, V; addresses are
u + (Ba)17-.0 incremented by (B,)35-1s.
23 Load R, (U)> R, 4.0 8.0 LDR
24 Add to B, (Ba) + (U) » B, 4.0 8.0 ADB
25 Subtract from B, (Ba) — (U)—> B, 4.0 8.0 SBB
26 Load B, Modifier Only (U) > Baz.0 4.0 8.0 LBM
27 Load B, (U) > B, 4.0 8.0 LDB
30 Multiply Integer A (W->AA+1 12.0 16.0 MPI
31 Multiply Single (Integer) (A)+ (U)—> A 12.0 16.0 MPS
32 Multiply Fractional A)ys (W->AA+1 12.0 [16.0 MPF
34 Divide (Integer) (A, A 4 1) = (U); Quotient—> A 313 35.3 Dvi
Remainder—> A+ 1
35 Divide Single and Load (Fractional) (A) <+ (U); Quotient> A + 1 313 35.3 DVL
No Remainder
36 Divide (Fractional) (A, A 4 1) = (U); Quotient > A 31.3 35.3 DVF
Remainder—> A 41
40 Selective Set (A)> A 4+ 1, Then set (A + 1), for (U),=1 4.0 8.0 SSE
e, (A) @ (U)>A+1
41 Selective Complement (A)—> A 4 11. Then complement (A 4 1), 4.0 8.0 SCP
for (U=
e, AW >AL+1
42 Selective Clear ((G) - A1+ 1. Then clear (A 4 1), for 4.0 8.0 SCL
h=
e, AOQO W > A+ 1
43 Selective Substitute g\n) - A1+ 1. Then (U)y—> (A + 1), for 4.7 8.7 SSuU
)n =
ie, (A)O MY+ (V)OO M) »A+1
44 Selective Even Parity Test If [(A) ® (U)] is even parity, Skip NI SEP
No Skip| 6.0 | 10.0
Skip 10.0 14.0
45 Selective Odd Parity Test If [(A) ® (U)] is odd parity, Skip NI SOP
No Skip| 6.0 | 10.0
Skip 100 | 14.0
47 Test Modifier If (Ba)17-0 < (U), take NI; If (Ba)i720 > (U), T™O
Skip. In either case, No Skip | 4.7 8.7
(Ba)17-0 + (Ba)zs..is = Bairo Skip 87 |127
50 Test Zero Skip Nl if (U) =0 No Skip| 4.0 8.0 TZR
Skip 8.0 | 120
51 Test Not Zero Skip N1if (U) < 0 No Skip| 4.0 8.0 TNz
. Skip 8.0 12.0
52 Test Equal Skip NI if (U) = (A) No Skip| 4.0 8.0 TEQ
Skip 8.0 12.0
53 Test Not Equal Skip NI if (U) = (A) No Skip| 4.0 8.0 TNE
Skip 8.0 | 12.0
54 Test Less Than or Equal Skip NI if (U) < (A) No Skip| 4.0 8.0 TLE
Skip 8.0 120
55 Test Greater Than Skip NI if (U) > (A) No Skip| 4.0 8.0 TGR
Skip 8.0 12.0
56 Test Within Limits Skip NIif (A) < (U) < (A + 1) No Skip; 4.7 8.7 TWL
(Note: (A) < (A + Skip 8.7 12.7
57 Test Outside Limits Skip NI if (U) < (A) or (U) >(A41) No Skip| 4.7 8.7 TOL
(Note: (l? < (A+1 Skip 8.7 12.7

t Repeat operations 62-67, 71 take 16 x sec combined setup and termination time. The block transfer (22)
takes 12 u sec combined setup and termination time.

SLEUTH 71

INSTRUCTION REPERTOIRE

EXECUTION
TIME MNEMONIC
L NAME DESCRIPTION IN ~ SEC.
Alternate | Same CODE
Core Core
Banks Bank
60 (0-17 | Test Positive Skip NI if (U) >0 No Skip 4.0 8.0 TPO
Skip 8.0 |12.0
61 Test Negative Skip Nlif (U) <O No Skip 4.0 8.0 TNG
. . Skip 8.0 12.0
6271 Search Equal Skip NI if (U); = (A) No Skip 4.0 4.0 SEQ
Repeated k times Skip 4.0 4.0
63t Search Not Equal Skip NI if (U); 3= (A) No Skip 4.0 4.0 SNE
Repeated k times Skip 4.0 4.0
647 Search Less Than or Equal Skip NI if (U); < (A) No Skip 4.0 4.0 SLE
Repeated k times Skip 4.0 4.0
6571 Search Greater Than Skip NI if (U); > (A) No Skip 4.0 4.0 SGR
Skip 4.0 4.0
667 Search Within Limits Skip NI if (A) < (U); g A+1 No Skip 4.7 4.7 SWL
(Note: (A) < (A+1)) Skip 4.7 4.7
6771 Search Outside Limits Skip NIif (U); < (A) or (U); > (A41) No Sk:p 4.7 4.7 SOL
Y (Note: (A) < (A 4 1)) Skip 4.7 4.7
70 Index Jump If (CM);a > 0, Jumpto U No Jump 8.0 8.0 IXJP
(CM);, < O, Take NI Jump 4.0 4.0
Then (CM);; — 1 - CM;,
NOTE: j in this instruction serves with the
a-designator to specify any one of the 128
words of Control Memory.
71t} ¢
00 Masked Search Equal Skip NI if (U)i ©® (M) = (A) © (M) No Skip 4.0 4.0 MSEQ
Repeated k times Skip 4.0 4.0
01 Masked Search Not Equal Skip N1 if (U);i © (M) 5= (A) © (M) No Skip 4.0 4.0 MSNE
Repeated k times Skip 4.0 4.0
02 Masked Search Less Than Skip Nt if (U); © (M) < (A) © (M) No Skip 4.0 4.0 MSLE
or Equal Repeated k times Skip 4.0 4.0
03 | Masked Search Greater Than Skip NI if (U)i ® (M)> (A) © (M) No Skip 4.0 4.0 MSGR
Repeated k times Skip 4.0 4.0
04 Masked Search Within Limits Skip NI if (A) © (M) < (U); © (M) MSWL
<A+1HO M) No Skip 4.7 4.7
— (Note: (A) ©® (M) < Skip 4.7 4.7
(A+1)0Q (M)
Repeated k times
05 Masked Search Outside Limits Skip NI if (U);i © (M) < (A) or MSOL
WoM<<A+D No Skip 4.7 4.7
(Note: (A) O (M) < Skip 4.7 4.7
(A +1)0 (M)
Repeated k times
72 ¥
00 Wait for interrupt The computer program sequence stops 4.0 WAIT
(i.e., P is not advanced). The wait condi-
tion is removed by an interrupt.
01 Return Jump (P)-> Ujyz.oand JumptoU + 1 8.0 8.0 RTJP
02 Positive Bit Control Jump If (A)33 =0, Jump to U No Jump 4.0 4.0 PBJP
Shift (A) left one in either case Jump 8.0 8.0
03 Negative Bit Control Jump If (A)3s =1, Jumpto U No Jump 4.0 4.0 NBJP
Shift (A) left one in either case Jump 8.0 8.0
04 Add Halves (A)17-0 + (U700 = Arzeo 4.0 8.0 ADDH
(A)3s-18 + (U)as—is = Ass.1s
05 Subtract Halves (AN7-0 — (U700 = Az 4.0 8.0 SUBH
(A)3s.18 — (U)asis = Aas.ag
06 Add Thirds (A)35..24 + (U)35..24 -> A35_424 4.0 8.0 ADDT
(A)23-12 + (U)2za2 > Azza2
(Ao + (Uneo—> Ao
07 | Subtract Thirds (A)ss.24 — (U)as24 ~> Azs.o4 4.0 8.0 SUBT
(A)23.02 — (U)2z12 > Azzaz
(Ao — (Uno—> Ang
10 | Execute Remote Instruction Execute the Instruction at U 4.0 — _ EXRI
-+ Execution Time
11 Load Memory Lockout Register Us.o = MLR 4.0 - LMLR
For Up=1 lockout 0—4095
Uy=1 lockout 4096—8191
U;=1 lockout 8192—16383
Us=1 lockout 16384—32767
Us==1 lockout applies to 1st BANK
Us=-1 lockout applies to 2nd BANK
73 =
00 Single Right Circular Shift} Shift (A) right U places circularly 4.0 SCSH
01 Double Right Circular Shift Shift (A, A 4+ 1) right U places circularly 4.0 DCSH
02 Single Right Logical Shift Shift (A) right U places, end off; fill with 4.0 SLSH
zeros (Max. Shift — 36)

*j serves as part of the Function Code

T Repeat operations 62-67, 71 take 16 u sec combined setup and termination time. The block transfer (22)
takes 12 4 sec combined setup and termination time.

TInstruction execution time is independent of the number of shifts performed (e.g. a shift of 72 takes 4 microseconds). There
are no memory references in the first six shift instructions, 73 00 — 73 05; consequently, the distinction between alternate core
banks and the same core bank is irrelevant.

SLEUTH 72

INSTRUCTION REPERTOIRE

EXECUTION
TIME
j NAME DESCRIPTION IN « SEC. MNEMONIC
Afternate | Same CODE
Core Core
Banks Bank
o3 Doubie Right Logical Shift Shift (A A L 1) right U places, end off; 4.0 DISH
fill with zeros. (Max. Shift =72)
04 | Single Right Arithmetic Shift Shift (A) right U places, end off; fill with sign bits. 4.0 SASH
05 Double Right Arithmetic Shift Shift (A, A 4+ 1) right U places, end off; 4.0 DASH
fill with sign bits. (Max. Shift =72)
06 | Scale Factor Shift (U) = A, shift A left circularly until Azs 5= Axq 6.0 10.0 SFSH
or until A has been shifted 36 times. Store
the scaled quantity in A and the number of
shifts that occurred in A + 1.
74 *
00 | Zero Jump Jumpto Uif (A)=0 No Jump 4.0 4.0 ZRJP
Jump 8.0 8.0
01 Non-zero Jump Jumpto U if (A) £ 0 No Jump 4.0 4.0 NZJP
Jump 8.0 8.0
02 Positive Jump Jumpto Uif (A) >0 No Jump 4.0 4.0 POJP
- Jump 8.0 8.0
03 Negative Jump Jump to U if (A) <O No Jump 4.0 4.0 NGJP
Jump 8.0 8.0
04 | Console Selective Jump Jump to U if A = key setting on console (1 of 15) 4.0 4.0 CSJP
05 | Selective Stop Jump Stop if A = stop key setting on console (1 of 4), 4.0 4.0 SSJP
always jump to U
06 No Operation Do Nothing; continue with NI 4.0 4.0 NOOP
07 Enable All External Interrupts Jump to U and permit interrupts to occur 4.0 4.0 EIJP
and Jump
10 | Even Jump Jumpto U if (A)p=0 No Jump 4.0 4.0 EVJP
Jump 8.0 8.0
11 0dd Jump JumptoUif (A)g=1 No Jump 4.0 4.0 OoDJP
Jump 8.0 8.0
12 Modifier Jump If (B)17-0 > 0, Jumpto U No Jump 4.0 4.0 MOJP
If (Ba)17-0 < O, Take Ni Jump 8.0 8.0
In either case (Ba)i7-0 + (Ba)3s-1s > Baiz-o
13 Load Modifier and Jump (P) » (Ba)17--0 and Jump to U 4.0 4.0 LMJP
14 Overfiow Jump Jump to U if overflow cond. is set 4.0 4.0 (o)Al
15 No-Overflow Jump Jump to U if overflow cond. is not set 4.0 4.0 NOJP
16 | Carry Jump Jump to U if carry cond. is set 4.0 4.0 CYJP
17 No-Carry Jump Jump to U if carry cond. is not set 4.0 4.0 NCJP
75 *
00 | Initiate Input Mode (U) - input control word a, and initiate 4.0 8.0 11PM
input mode on channel a.
01 | Initiate Monitored Input Mode (U) - input control word a, and initiate 4.0 8.0 IMIM
input mode on channel a with monitor.
02 Input Mode Jump Jump to U if channel a is in the input mode. 4.0 4.0 IMJP
03 | Terminate Input Mode Terminate input mode on channel a. 4.0 4.0 TIPM
04 | initiate Output Mode (U) = output control word a, and initiate 4.0 8.0 10PM
. output mode on channel a.
05 | Initiate Monitored Output Mode (U) > output control word a, and initiate 4.0 8.0 IMOM
output mode on channel a with monitor.
06 | Output Mode Jump Jump to U if channel a is in the output mode. 4.0 4.0 OMJP
07 | Terminate Output Mode Terminate output mode on channel a. 4.0 4.0 TOPM
10 | Initiate Function Mode (U) — output control word a, and initiate 4.0 8.0 IFNM
function mode on channel a.
11 | Initiate Monitored Function Mode (U) - output control word a, and initiate 4.0 8.0 IMFM
function mode on channel a with monitor.
12 Function Mode Jump Jump to U if channel a is in the function mode. 4.0 4.0 FMJP
13 | Force External Transfer Request external function or output word 4.0 4.0 FEXT
on channel a.
14 | Erable All External Interrupts All external interrupts are permitted to occur. 4.0 4.0 EAEI
15 Disable All External Interrupts All external interrupts are prevented 4.0 4.0 DAEI
from occurring.
16 | Enable Single External Interrupt An external interrupt on channel 2 4.0 4.0 ESEI
is permitted to occur.
17 Disable Single External Interrupt An external interrupt on channel a 4.0 4.0 DSEI
is prevented from occurring.
76 *
00 | Floating Add A+ (WU >A A+ 1 14.0 | 180 FLAD
01 Floating Subtract A —(U)=>A A+1 14.0 | 18.0 FLSB
Q2 | Floating Multiply A » W->AA+1 13.3 | 17.3 FLMP
03 Floating Divide (A) =+ (U); Quotient > A 26.7 | 307 FLDV
Remainder > A + 1
04 Floating Point Unpack Unpack (U), store mantissa in A 4 1 and store 4.0 8.0 FLUP
. . the biased characteristic in A
05 | Floating Point Normalize Pack Normalize (A) pack with biased characteristic 7.3 11.3 FLNP
from (U) and store atA 41
06 Floating Characteristic
Difference Magnitude Absolute value of |(A)ss.27] —|(U)zs27] > A+ 1 4.0 8.0 FLCM
Floating Characteristic
07 H 4.0 8.0 FLCD

Difference

*j serves as part of the Function Code

‘(A)ur—??i—‘(u)u“n > A+ 1
SLEUTH 73

APPENDIX C

1.

ASSEMBLER-DEFINED (SOFTWAR

E) FUNCTIONS

Generatives
I/0 Function word t F f, fyy T4
1/0 Access-control word t A fl, f, fg
Whole Word t W i)
Floating point word t WE £, f,
Fixed point scaled word Eowx £y, £,f,
Half-word t H iy 5
Third-word t T 1y Ty T3
Sixth-word t S 19 oy fay £, £5, Tg
Variable Field t G f,/b., fz/b ,...f/bn
Character Code t SC ny fi, f5,.2.fn ©
Block Reservation t RESV n
Declaratives
Program start t PRO i}
Program end t ENDPRO f,
Equality t EQU f
t = f7
Instruction Bank Definition IBANK £y fs, f8
Data Bank definition DBANK fis Ty f3
Data Table definition t DIABLE =n, [,
Start Macro definition t MACRO
End Macro definition ENDMAC
Jump Swith Definition t SWITCH
I/0 channel definition-drum t MDCH =
-tape t MTCH =
-paper tape t PTCH =n
-Printer t HPCH =n
-Card t CDCH =n
I/0Unit definition input-tape t INT =
-non-input tape t MIT =n
-paper tape reader t PTR =n
-paper tape punch t PTP =n
-High-Speed Printer t HSP =n
-Card Reader t CR =
-Card Punch t CP =
-Card Read-Punch t CRP =
Drum Table definition t MDT =n, T,
Space (program listing) SPACE n
EJECT (program listing) EJECT
Start Correction routine t COR
End Correction routine ENDCOR
Delete Instructions-* DELETE *
-single line DELETE f,
-many lines DELETE f,, f,
Insert new instructions FCOLLOW

LEUTH 74

APPENDIX D:

EXTERNAL INPUT/OUTPUT FUNCTION REPERTOIRE
Bach of the hardware mnemonic codes may be moaified by pre-
fixing the letter I. This will change the code to the corre-
sponding function followed by an external interrupt. Execu-
tive I/0 functions are never prefixed,.

®

In the fourth column below H and E stand for hardware and
executive respectively.

Tape (Octal Code) (Mnemonic) (Function Name) (Use)
01 WT12 Write Tape at 12.5 KC HE
02 WT25 Write tape at 25 KC HE
20 REW Rewind HE
21 REWL Rewind with interlock HE
4o BOOT Bootstrap HE
4 RTFL Read tape forward low H
gain

Lo RTFN Read tape forward HE
normal gain

43 RTFH Read tape forward H
high gain

61 RTBL Read tape backward low H
gain

62 RTBN Read tape backward HE
normal gain

63 RTBH Read tape backward H
high gain

L5 STFL Search tape forward E
low gain

L6 STFN Search tape forward HE
normal gain

L7 STFH Search tape forward H
high gain

65 STBL Search tape backward H
low gain

66 STBN Search tape backward HE
normal gain

67 STBH Search tape backward H
high gain

43 RTFS Read tape forward with E
sentinel check

63 RTBS Read tave backward with E
sentinel check

L1 MTF Move tape forward JiX

61 MTB Move tape backward E

Drum
02 WD Write drum HE
L2 RD Read drum HE
Ly SD Search drum HE
46 SRD Search Read Drum HE

el
x)

g

UTH 75

Card

Printer

Control

62
63
6L
Ok
05
06
%

42
A

02

03
60
61

02

22
23
2k
26

07
17
33

BRD
BSD
BSRD
CBRD
CFDI
CCBI
CRBI
CFDO
CCBO
CRBO
TC
RC
RCTF
RCTS
PCS@
PCS1

551
S52

PHSP

CCH
TERM
RCH
DCH
RLI

IRLI
ITERM

SLEUTH 76

Block read drum

Block Search drum
Block search read drum
Chain Block read drum

Condition Fieldata in-
put

Condition column binary
input

Condition row binary
input

Condition Fieldata
Output

Condition column binary
Output

Condition row binary
Output

Trip card

Read card

Read card trip fill

Read card trip fill
sentinel check

Punch card stacker @

Punch card stacker 1

Select Stacker 1

Select Stacker 2

Print high speed
printer

Clear channel

Terminate channel

Request channel

Demand channel

Remove logical inter-
lock

Input only-remove
interlock

Input only-terminate
requests

ealeaieaRes!

HE
HE
HE

HE
HE

muia ey lics]

H H Hom™mm

APPENDIX E
ASSEMBLER-DEFINED SYMBOLS

1. a-type Designators

$BP to ¥B1S B-Registers
$AG to BA15 A-Registers
$00 to $93 Q-Registers
$RO to $R15 Special Registers

2. Jj-type Designators

Ew Whole word generative

$H1-$12 Ealf-word generative

$XH1 -$XH2 Half-word generative with sign extension
$71-$73 Third-word generative

$s1-$s6 Sixth-word generative

$uop u-field is actual operand

$xuop Same, with sign extension

3. Miscellaneous Symbols

$L Current instruction address
$PARAM Special Data Table for EXEC ROC
$ERROR Special Data Table for EXEC ROC

SLEUTH 77

APPENDIX F

Fleld Bits
25-22
29-00

22-00

33-18
33-18

or

15-00

MODIFIABLE FIELDS
Coding
Channel Tag

1/0 Unit Tag

Drum Address Constant

I+

Drum Address

1+

Drum Length Tag

Drum Address Constant

I+

Drum Address + Drum Length Tag
Drum Length + Constant

Drum Length + Constant
1/0 Unit Tag
I/0 Access Word Tag

System Tag

Label + Constant

Data Table Tag + Constant
Length Tag + Constant

Data Table Tag + Length Tag
L + Constant

SLEUTH 78

Restricted To
Direct 1/0

Executive I/0
Executive I/0
Executive I/0

Direct I/0
Direct I/0

Length < 216

Direct I/0

INDEX

A, 52

A-type Designator, 15

ABS, 27

Absolute Operand, 19

Absolute Tag, 12

Accidental duplication, 45

Actual value, 9

AOC, 1, 51

Asterisk:instruction deletion, 9
b-field incrementation, 21
h-field incrementation, 21

B
B-field, 21
B-field incrementation, 21
Block reservation, 25

C

Character code generation, 25
Character, FIELDATA, 9

Character, special, 9

Comments, 7

COR, 42

Corrections, 42

csJp, 17, 35

Current Location Counter ($L), 13

D

D, 53

Data Table Length Tag, 13, 32

Data Table Tag, 13, 31

DBANK, 29

Declarative instructions, 27

DELETE, 42

Designator: a-type, 15
j-type, 16

DIR, 27

DIRECT ROC, 1

Ditto mark, 11

Drum Table Length Tag, 14,33

Drum Table Tag, 14,33

DTABLE, 31

Duplication, accidental, 45

LETUTH 79

EJECT, 35
ENDCOR, 43
ENDMAC, 36
ENDPRO, 27
ENTRY, 62
EQU, 28
Equality, 28
ERROR, 53
FXE, 27

EXEC ROC, 2

F, 54

FIELDATA codes, 9,25

Fixed point scaled numbers, 8,23
Floating point numbers, 8,23
FOLLOW, 43

Function code, 10, 17

Function field, 6

G
G, 2k
Generative instructions, 22

H
H,23
H-field incrementation, 21
Half-word generation, 23

I

I, 53

I/0 Access Word Tag, 15,52

I/0 Channel Tag, 14, 51

I/0 External Function words, 53
I/0 Unit Tag, 15,51

IBANK, 29

Incrementation: b-field, 21
h-field, 21
Label, 13

Table Length Tag, 22
Index Registers, 21
Indirect Addressing, 21
Input/Output, 50
Integer, decimal and octal, 6

J-field, 21
J-type Designator, 16
JuMP, 17,35

SLEUTH 80

Label, 12

Library sub-routines, 60
Line of coding, 9
Listing, 34,47

Literal expression, 29

MACRO, 36
Macro-instructions, 36
Memory lockout, 20
Modifiable fields, 48

NI, 53

ND, 53

Next instruction, 19

Numbers, 6

Numerieal word generation, 22

Omitting fields, 6
Operand, 18

PARAM, 58

Partial word generation, 23
PRO, 27

Program specification, 27

Relocation, 48
RESV, 25
ROC-DIRECT, 1
ROC-EXEC, 2

s, 23

Sample program, 63

sC, 25

SEC, L5

Segmenting, 29,49

Segment Length Tag, 14
Selective Jump Switch, 35
shift Count, 20
Sign-coded or uncoded, 8
Sixth-words, 23

Skeleton, macro-instruction 37

SLEUTH 81

SPACE, 35

Special Character, 9
Special Data Tables, 58
Special Registers, 17
Sub-fields, 6

SWITCH, 35

Symbol, 8

System Tag, 14

T, 23

Table definition, 31
Tag definition, 11, 17
Tag field, 6
Third-words, 23

Variable Bit Generation, 24

U-field, 18

w, 22
WF, 23
WX, 23
Whole Words, 22

XREF, 61

SLEUTH 82

UNIVAC

DIVISION OF SPERRY RAND CORPORATION

W UT 2574

us»~

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	xBack

