RTOS

ASSEMVIBLER

UP.7599 Rev. 1

This manual is published by the Univac Division of Sperty Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC® Systems developments. The infor-
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent-
ative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are:

FASTRAND

© 1968, 1970 — SPERRY RAND CORPORATION PRINTED IN U.S.A.

UP-7599 Contents I 1
Rev. 1 UNIVAC 418.111 RTOS ASSEMBLER SECTION: P AGE:
CONTENTS
CONTENTS 1t05d
1. THE UNIVAC 418.111 ASSEMBLER 1-1to 1=-27

1.1, INTRODUCTION 1-1

1.2, SYMBOLIC CODING FORMAT 1-1

1.2.1. Assembler Character Set 1-2

1.3. DESCRIPTION OF FIELDS 1-2

1.3.1. Label Field 1-2

1.3.1.1. Simple Labels 1-3

1.3.1.2. Extemal Labels 1-3

1.3.1.3. Dimensioned (Subscripted) Labels 1-3

1.3.1.4, Location Counter Declaration 1-8

1.3.2. Operation Field 1-9

1.3.3. Operand Field 1-10
1.3.4. Comment Field 1-11
1.3.5. Line Continuation 1-11
1.3.6. Ejection of Paper 1-11
1.4, EXPRESSIONS 1-12
1.4.1. Elementary Items 1-12
1.4.1.1, Symbolic Label 1-12
1.4.1.2. Location Counter 1-13
1.4.1.3. Octal Numbers 1-13
1.4.1.3.1, Double-Precision Octal Numbers 1-13
1.4.1.4, Decimal Numbers 1-14
1.4.1.4.1, Double-Precision Decimal Numbers 1-14
1.4.1.5. Alpha Constants 1-14
1.4.1.5.1. Double-Precision Alpha Constants 1-15
1.4.1.6. Floating-Point Numbers 1-16
1.4.1.7. Parameter Reference Form 1-16
1.4.1.8. Line Items (Literats) 1-17
1.4.2, Operators 1-17
1.4.2.1. Shift Exponent (*/) 1-19
1.4.2.2, Arithmetic Product (*) 1-19
1.4.2.3. Arithmetic Quotient (/) 1-20
1.4,2.4. Covered Quotient (//) 1-20
1.4.2.5, Arithmetic Sum (+) 1-20
1.4.2.6. Arithmetic Difference (=) 1-21
1.4.2.7. Logical Product (**) 1-21
1.4.2.8. Logical Sum (++) 1-21
1.4.2.9. Logical Difference (--) 1-21
1.4,2.10, Equal (=) 1-22
1.4.2.11. Greater Than (>) 1-22
1.4,2.12, Less Than (<) 1-22
1.4.3. Interbay Offset Operator (1) 1-23
1.4.4, Expression Modes 1-24
1.5. DATA WORD GENERATION 1-25
1.5.1. Data Word Expressions 1-26
1.5.2. Alpha Strings 1-26
1.5.3. Double-Precision Floating-Point Numbers 1-27
1.6, DOUBLE-PRECISION EXPRESSIONS 1-27

UP-7599
Rev. 1

UNIVAC 418-11i RTOS ASSEMBLER

Contents
SECTION:

PAGE:

2, ASSEMBLER DIRECTIVES

2.1. GENERAL

2.2, EQU DIRECTIVE

2.3. RES DIRECTIVE

2.4, FORM DIRECTIVE
2.5. 0DD DIRECTIVE

2.,6. EVEN DIRECTIVE

2.7. CHAR DIRECTIVE
2.7.1. XCHAR Directive

2.8, INSERT DIRECTIVE
2.9, UNLIST DIRECTIVE
2.10, LIST DIRECTIVE
2.11. SKIP DIRECTIVE
2.12, END DIRECTIVE
2.13. GO DIRECTIVE
2,14, NAME DIRECTIVE

2.15. DO DIRECTIVE
2,15.1. Conditional po
2.15.2. Nesting of DO Directives

2.16. LIT DIRECTIVE
2.17. INFO DIRECTIVE
2.18., ASM DIRECTIVE

. PROCEDURES

3.1, GENERAL

3.2, PROCEDURE MODES
3.2.1. Simple Mode

3.2.2. Generative Mode
3.2.3. Interpretive Mode

3.3. PROCEDURE SAMPLE
3.4, PROC DIRECTIVE
3.5, END DIRECTIVE

3.6. PROCEDURE REFERENCE
3.6.1. Definition of a Procedure Call Line
3.6.2. The Operand Field of a Call Line

2-1 to 2-15
2-1
2-1
2-3
2-4
2-5

2-15

3-1to 3-31
3-1

UP-7599
Rev. 1

UNIVAC 418-Ill RTOS ASSEMBLER

Contents
SECTION:

PAGE:

3.7. PARAFORMS

3.7.1. Referencing the Number of Fields

3.7.2. Referencing the Number of Subfields

3.7.3. Referencing the Procedure Call Parameters

3.7.4. Referencing the Asterisk in a Procedure Parameter
3.7.5. Referencing the NAME Directive Operand Value
3.7.6. Referencing Subfields of the Oth Field

3.7.7. Summary of Paraforms

3.8. NESTING OF PROCEDURES
3.8.1. Physical Nesting
3.8.2. Levels of Procedures

3.9. PROCEDURE LABELS
3.9.1. Global Labels

3.10. FORWARD REFERENCES

3.11. LOCATION COUNTER DEFINITION
3.11.1. Writing Labels

3.12. COMPLEX PROCEDURES
3.12.1. NAME Directive
3.12.1.1, Local Reference Point

.3.1. Conditional po

2

2

2.3, DO Directive

2

2.3.2, Generative Do

. ASSEMBLER OPERATION

4.1, GENERAL
4.2, CONTROL CARD FORMAT

4.3, ASSEMBLER OUTPUT LISTING
4,3.1, Mode Listing
4.3.2. Cross-Reference Listing

4.4, SYMBOLIC CORRECTIONS

4.5, DIAGNOSTICS

4.5.1, Address Waming (A)

4.5.2, Format Waming (F)

4.5.3. Truncation Waming (T)

4.5.4, Level Error (L)

4,5.5. Instruction Error (1)

4,5.6. Relocation Error (R)

4,5.7. External or Undefined Waming (U)
4.5.8, Double Definition Warning (D)
4.5.9. Expression Errors (E)

1
— o — O O~ O

3-28
3-28

4-1 to 4-18

[
-~

]

— O CO CoO 0O ~
(=)

B
11
—
—_— O

UP-7599 l

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER , o ontents Aces
4,6, ERROR MESSAGES 4-13
4,6.1. Element Not Found 4-13
4,6.2. Procedure Not Found 4-13
4.6.3. END Card Omission 4-13
4.6.4, Drum Library Overflow 4~13
4,6.5. Main Storage Overflow 4-13
4.6.6. Intemal Error 4-14
4.6.7. Element Deletion 4-14
4.6.8. Correction Errors 4-~14
4,7, GENERATION PARAMETERS 4-15
4.8, ELEMENT AND PROCEDURE INSERTION 4-15
4.9, LABEL TABLE REFERENCES 4-15
4.9.1. Operand Field Hierarchy 4-16
4.9.2, Operation Field Hierarchy 4-16

5. COMMAND/ARITHMETIC SECTION 5-1 to 5-9
5.1. GENERAL 5-1
5.2, HARDWARE CHARACTERISTICS 5-1
5.3. DESIGNATORS 5-1
5.4, INSTRUCTION TYPES AND FORMATS 5-3
5.5. ADDRESSING 5-4
9.6, STORAGE PROTECTION (GUARD MODE LIMITS) 5-7
5.7. PRIVILEGED INSTRUCTIONS 5-8
5.8, FLOATING-POINT NUMBERS 5-8
5.9, INTERRUPTS 5-8

6. INSTRUCTION REPERTOIRE DESCRIPTION 6-1to 6-59
6.1. SYMBOL CONVENTIONS 6-1
6.2, INSTRUCTION REPERTOIRE 6-2
6.2.1. Supervisor Call Instuctions 6-2
6.3, TYPESI AND Il INSTRUCTIONS 6-2
6.4, TYPE HI INSTRUCTIONS 6-37
6.4.1. Type Ill-b Instructions 6-37
6.4.2. Type Il1-a Instructions 6-42

UP-7599
‘ Contents
Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER ceemion: oace

APPENDIX A, INSTRUCTION REPERTOIRE SUMMARY A-1to A-7
FIGURES

9=1. Type | Instruction Addressing Techniques 5-6
TABLES

1-1. Assembler Character Set 1-2

1-2 Hiérarchy of Operators 1-18

1-3. Rules for Determining whether Results of Binary Operations are
Relocatable 1-25

UP-7599
Rev. 1

1
UNIVAC 418-111 RTOS ASSEMBLER

SECTION:

PAGE:

1.1.

1.2.

I. THE UNIVAC 418-11
ASSEMBLER

INTRODUCTION

The UNIVAC 418-III Assembler is a symbolic coding language allowing simple,
brief expressions as well as complex expressions. The assembler provides rapid
translation from this symbolic language to machine-language relocatable object
coding for the UNIVAC 418-III System.

The assembler operates under control of the Real-Time Operating System (RTOS).
The output of the assembler is made consistent with the system by using standard
interfacing routines both for the source files and the relocatable program generated.

The assembly language includes a wide and sophisticated variety of operators which
allow the fabrication of desired fields based on information provided at assembly
time. The instruction function codes are assigned mnemonics which describe the
hardware function of each instruction, Assembler directive commands provide the
programmer with the ability to generate data words and values based on specific
conditions at assembly time, Multiple location counters provide a means of preparing
for program segmentation and controlling address generation during assembly of a
source code program.

The assembler produces a relocatable binary output for processing by the loading
mechanism of the system. If requested, it supplies a side-by-side listing of the
original symbolic coding and an edited octal representation of each word generated.
Flags indicate errors in the symbolic coding detected by the assembler.

SYMBOLIC CODING FORMAT

In writing instructions using the assembler language, the programmer is primarily
concerned with three fields: a label field, an operation field, and an operand field.
It is possible to relate the symbolic coding to its associated flowchart, if desired,
by appending comments to each instruction line or program element.

All of the fields and subfields following the label field in the assembler are in free
form providing the greatest convenience possible for the programmer. Consequently,
the programmer is not hampered by the necessity to consider fixed-form boundaries
in the design of symbolic coding.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER

SECTION:

PAGE:

1.2.1.

1.3.

1.3.1.

Assembler Character Set

The assembler uses the XS-3 character set as defined in Table 1-1. If alphanumeric
data is to be generated in a different code convention, the CHAR directive, described
in 2.7, may be used.

DESCRIPTION OF FIELDS

The programmer is primarily concerned with the label field, operation field, and
operand field. The label field must start in column 1. The fields following the label

80 COL., 80 COL.
CARD PRINTABLE X$-3 CARD PRINTABLE XS-3
CODE CHARACTERS CODE CODE CHARACTERS| CODE
12-1 A 01 0100 7 7 00 1010
1222 B 01 o101 8 8 00 1011
12-3 c 01 0110 9 9 00 1100
12-4 D 01 0111 12 + 01 0000
12-5 E 01 1000 11 —(Minus) 00 0010
12-6 F 01 1001 12-0 ? 01 0011
127 G 01 1010 11-0 (Exclam.) 10 0011
12-8 H 01 1011 0-1 / 11 0100
12-9 | 01 1100 2-8 & 11 0011
11-1 J 10 0100 3-8 = 01 1101
11-2 K 10 0101 4-8 "(Apos.) 10 1110
11-3 L. 10 0110 5-8 :(Colon) 01 0001
11-4 M 10 0111 6-8 > 11 1110
11-5 N 10 1000 7-8 @ 10 0000
11-6 0 10 1001 12-3-8 [(Period) 0l 0010
11-7 P 10 1010 12-4-8) 11 1101
11-8 Q 10 1011 12-5-8 [00 1111
11-9 R 10 1100 12-6-8 < 01 1110
0-2 S 11 olol 12-7-8 # 01 1111
0-3 T 11 0110 11-3-8 $ 10 0010
0-4 U 11 o111 11-4-8 * 10 0001
0-5 Y 11 1000 11-5-8] 00 0001
0-6 w 11 1001 11-6-8 ;(Semi-col) 00 1110
0-7 X 11 1010 11-7-8 10 1111
0-8 Y 11 1011 0-2-8 # 11 0000
0-9 z 11 1100 0-3-8 ,(Comma) 11 0010
0 0 00 0011 0-4-8 (11 0001
1 1 00 0100 0-5-8 % 10 1101
2 2 00 0101 0-6-8 AN 00 1101
3 3 00 0110 0-7-8 X 11 1111
4 4 00 0111
5 5 00 1000 BLANK Space N.P. 00 0000
6 6 00 1001
Table 1-1. Assembler Character Set

field are freeform and may start in column 2 if there is no label field.

Label Field

The label field is optional. When used, the label field must start in column 1. No
other field may start in column 1. The label field may contain a declaration of a
specific location counter, a label, or both. The label field is terminated by a blank.

UP-7599
Rev. 1

UNIVAC 418-1lIl RTOS ASSEMBLER

SECTION: PAGE:

1.3.1.1.

Simple Labels

A label identifies a value or a line of symbolic coding. When a label is used,
the assembler assigns it a relative address which is the value of the current
controlling location counter. A relative address is not assigned to a label used
with assembler directives EQU, NAME, FORM, PROC, DO, LIT (see Section 2).

A label consists of one to six alphanumeric characters starting with an alphabetic
charactet in column T, o

Special characters are nou allowed within a label. To ensure uniqueness, many
system labels use the § as part of the label, Usmg the § as part of a label should
be avoided to assure this uniqueness of system labels.

Labels defined in the aforementioned manner are referred to as simple labels and
are allowed on any statement. If a label is the only nonblank field on a statement,

the label is defined as identifying the next location counter value to be generated.

Example:

LABEL

OPERATION OPERAND COMMENTS
10 20 30 40 50

LABEL, | |

1

\ lLILIK,.J.....J__J_L—“L._L__ML*LS_J bk et b e o b e e b

,A[‘ 12|$1b¢ bl

fod

e e e e e v b e e b v e b e

_Blc'iDI S N O |

N A R AT L. R 1T 1 Y T B A I I N A A o

TN SN O S U N WO WO Y S O T N S N VO T U0 TS W WO Y NSO U SN W NN T SN U N N O Y R B

External Labels

An externally defined label is one which may be accessed by other programs.
The loader will correlate the references between the external label references

in one program and the cotresponding external label definitions in another. To
define an external label, an asterisk is appended to the label.

Example:

LABEL

OPERATION OPERAND COMMENTS
10 20 30 40) 50

LABEL, , .

LY N S 5, TR B |'(L1dsC|AAL|]LIAIBKEILI [ERNE S VU RS U0 1O WU NN TN B W

L&l% L.}

CWAN B I‘L‘,L_E._leIIELBLNL&lLJLIYJ DEFINED LABEL |

1S U S T N T

1

T 00 Y O U T U VORN O S VAN YOO N W N OO YO OO U T W N U U W YU T U0 OO Y U00 MO (O N FAO SO N WO T SO O

1.3.1.3.

Dimensioned (Subscripted) Labels

A dimensioned or subscripted label is a label which is distinguished by its
subscripts rather than by the label itself. The label serves to identify a set of
related quantities. A subscript may be any legitimate assembler item, an
expression, or another subscripted label, In defining a subscripted label, all
symbols used in expressing any of its subscripts must have been previously
defined. If another dimensioned label is used as a subscript of the label being
defined, it must have been defined previously.

UP-7599 L 4
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER .

SECTION:

The dimensioned label is identified by the format:

label(suby, subj,...,sub,)

The number of subscripts used in defining a dimensioned label is referred to as
its dimensionality. The maximum dimensionality of a subscripted label is un-
specified. The dimensionality of a subscripted label is constant, that is, once
a member of the set is defined, all other explicitly defined members must have
the same number of subscripts even though each subscript value may differ.

Example:
LABEL OPERATION OPERAND
10 20 30 40
AL(J.&L)I (Y R T l"'lsl T U S O VO Y TN N U S T U VA SO S SO U U S YO NOO% PO G O St AN Y N RO HS PO
31,(&4[,)_L‘,,L),Ld_l. PETRE 3 T O S U S U S U S A T A S S S U ST S S
.C_l&kAL(l_ai_)_L) 121)1 *.7 AN N S OO0 T U T T U O N O PO O TUO0 TN O U S T O I AU S N SO B S B
Dl(;cL([Mla‘_)Lljng_iqll_l\ 1’1)! h‘i)Jm i+|8l TR N N U U U OSSO AU O A VU WO VU S N U HA BTN W DO R S
WU WS WO T OO WO T Y Y S OO O N U U U N WO SO SO T WO U WO TN NN MUY U YO AN S YUY WA S S VT S A AR VO

Explanation:
m Line 1 defines a one-dimensional label A(3). The subscript value is 3.
m Line 2 defines a two-dimensional label B(4,1) with subscript values 4 and 1.

m Line 3 defines a two-dimensional label C(A(3),2) with subscript values A(3)
and 2.

m Line 4 defines a two-dimensional label D(C(A(3),B(4,1)),1) with subscript
values C(A(3),B(4,1)) and 1.

Dimensioned labels may not be defined to be external to the program assembly.
If used within procedures (see Section 3), the dimensioned labels may be defined
as accessible at lower levels by appending the appropriate number of asterisks
immediately following the label and before the left parenthesis.

Dimensioned labels may be defined to have a value in magnitude of 236.1 or less.
If any item used in defining the value of the expression is a double-word item
(see 1.4), the label has a double-word value (see 2.2).

The value of a dimensioned label may be redefined in the course of the assembly
without resulting in a ‘D-flag’.

If reference is made to an undefined member of a defined set of dimensioned
labels, the value of the undefined item is assumed to be a defined zero. If no
member of the set is defined, the value is zero and an external reference is
made to the label.

UP-7599

Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER 1
SECTION: PAGE:
Example:
/e
000001}
000002 U po 000000 70 ooo0 LLK Atl)
+ 6412 00 A , ,
000003 000001 B(1) EQU Lo
000004 00 obooo1 70 ooo0 LLx
+ 6,12 00 Enp
000005
sae SUMMARY wow
PROGRAM SIZE!? oo Vo002

EXTERNAL OR UNDEFINED REFERENCES! A
Explanation:

m Line 2 references the label A(1). Since no member of the set A(i) is defined,
an external reference to A is made.

m Line 3 defines the set B(i) in general and the member B(1) in particular.

B Line 4 references an undefined member of the set B(i). Its value is taken to
be zero.

If reference is made to a dimensioned label, some member of which was previously
defined with a smaller dimensionality, an expression error results, and the value
of the referenced label is taken to be zero.

Example:
LABEL OPERATION OPERAND
10 20 30 40
,AL,(,I ‘1)11 Lo JEQM L T N A R N R R A A R AR N O R SR
I AR RO LN %, SRR R 1“1(i‘1.’lzl)x T SO TS I WO Y N O S SN IO AN T SO U S S
(S N WU N T NS VRV N U U U NN U YOO U T U SO N U TN T U EC YOO OO S WA WO O FUY WY N OO WP SO O

As stated previously, the dimensionality of a subscripted label is constant. As
a result, all members of a set of dimensioned labels must have the same number
of subscripts. An expression error results if a subscripted label is defined

at a different dimensionality than another member of the same set, that is, with
different subscript values but using the same label.

While the user defines the values of a particular dimensioned label, the assembler
internally defines values for the label with lower dimensionalities. These may be
referenced (but not defined) in the course of the assembly. For example, if the
label A(1,2,3,4) is defined, the labels A, A(1), A(1,2), and A(1,2,3) are internally
defined by the assembler. (Note that the name of a dimensioned label must be
unique and may not duplicate a simple label.) If a dimensioned label is defined,
all labels of lower dimensionality having the same name are therefore implicitly
defined by the assembler. The values associated with these assembler-defined
labels is described in the following paragraphs.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER l

SECTION:

PAGE:

An n-dimensional set of labels, A(sy,89,83,...,8,) is defined. Many different

values of each of the subscripts s; may have been used in defining the set of
labels. Each subscript s; has been used n; times; there are n; different subscript
values s;

1

The set of labels defined is:

Then:

The dimensioned labels of the form label(sq,syp,. e s8j), where j < n, are defined
by the assembler to have values equal to the number of different subscripts used

A(1,2,3)
A(5,7,3)
A(5,8,3)
A(7,2,2)
A(8,9,0)
A(1,2,4)

ny = 4 because there are four different subscript values defined in the
first dimension;

for sy =1, n2:1
because only one subscript value (sy = 2) has been defined;
for sq =5, n2:2

because two values (52 = 7 and 8) have been defined with the
same subscript s; = 5;

for sy =7 and 8, ny =1

because one value (82 =2, Sp = 9), has been defined with each
of the subscripts sy = 7 and sy = &;

forSIZIandSZ:Z,nZ:Z

because there are two values (s3 = 3, s3 = 4) with the same
subscripts sy = 1 and sy = 2.

in the next higher dimension specification.

Example:

000001 /e

000002 000144 Al1,2,3) EQU 100
000003 000310 AlS,743) EQU 200
000004 D00454 A(548493) EQU 300
000008 000620 Al74292) EQY 400
000006 000764 A(B,9,0) EQU 500
oooog7 00§130 Al1,2,4) EQU 600
000008 .

000009 00 0WONOD 000144 +A(14243)
cop010 00 000001 ooonos *A

oouotll 00 000002 000001 *ALL)

000012 00 0000023 00p002 *+A(5)

000013 00 000004 000001 «A(7)

000014 00 090005 000002 *AL192)
000015 00 000006 000000 *A(549)
0ooo16 END

UP-7599

Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER ‘

SECTION:

7
PAGE:

Explanation:
m Lines 2 through 7 define a set of dimensioned labels A.
m Line 9 generates the value of the label A(1,2,3).

m Line 10 generates a number equal to the number of different subscript values
sq defined in the set. A = 4 because ny =4 (s1 =1,5,7,8).

m Line 11 generates a number equal to the number of different subscript values
sy defined in the set A with sy = 1. A(1) = 1 because only sy = 2 has been
defined with s; = 1.

m Line 12 generates the value ny for sy = 5.

ng = 2 because sg = 7 and 8 for s1 = 5.

m Line 13 generates the value ny for sy = 7.

ny =1 because only sy = 2 forsy = 7.

m Line 14 generates the value n3 for s{ =1 and sy = 2.
n3 = 2 because s3 = 3 and 4 forsy =1, sp = 2.

m Line 15 generates the value n3 for sy =5 and sy = 9.

ng = 0 because no value with Sp = 9 has been defined.

Label Value Definition
A(1,2,3) 100 explicit*
A(5,7,3) 200 explicit*
A(5,8,3) 300 explicit*
A(7,2,2) 400 explicit*
A(8,9,0) 500 explicit*
A(1,2,4) 600 explicit*
A 4 implicit
A(l) 1 implicit
A(5) 2 implicit
A(7) 1 implicit
A(8) 1 implicit
A(1,2) 2 implicit
A(5,7) 1 implicit
A(5,8) 1 implicit
A(7,2) 1 implicit
A(8,9) 1 implicit
A(9) and all
others 0 implicit

*See foregoing example.

UP-7599
Rev. 1

1

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER l

PAGE:

1.3.1.4.

The purpose of using dimensioned labels as opposed to simple labels may vary.
The DO directive and procedures are capable of generating more than one word
of data or series of instructions. Combined with these tools, dimensioned labels
provide an extremely convenient method for manipulating arrays of any desired
dimension.

Location Counter Declaration

When a program element is assembled, relocatable object code is produced as a
result of the assembly. When the assembled program is loaded by the loader, the
actual address values are assigned. The relocatable code produced by the assem-
bler is therefore relative to a base address assigned by the loader when the
program is executed. A location counter specifies under which base address a
particular word is to be generated. There are 16 location counters (0—-15) within

any one assembly. Any location counter may be used or referenced in any sequence.

The loader regroups the data generated under the various location counters so that
each appears in memory as though the code within the location counter was gener-
ated contiguously.

A program remains under control of location counter 0 if no location counter is
explicitly specified. When a specific location counter is specified, all subsequent
coding is generated under its control until another location counter is specified.

—>> A specific location counter may be activated by $(n) as the first entry in the

label field, where n represents an expression whose value is within the range
of 0 through 15 and denotes the location counter to be activated.

Coding may be present in the same statement which defines a new location
counter. If this is done, the code generated will be under control of the new
location counter. If a label is desired on a line of code which also defines a
new location counter, the format is:

$(n),label operation operand

If a symbol is used in defining the location counter, it must have been previously
defined, :

Example:
0000014 /e
ocooop2 00 00oooo 70 0005 LLK 3
000003 00 000001 55 0003 Jl (LABEL)
000004 os 000000 71 0003 $(5),LABEL ALK 3
000005 LIv
000006 05 0U0DO! 55 0002 J1 ($¢(0))
000007 S(lel),
oooooe 00 000002 770301 ERRORS
000009 END

00 0U0DO3 ooogooo

05 000DD2 goonoz

UP-7599

' 1
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

Explanation:
m Line 2 generates an LLK 5 instruction under location counter 0.

m Line 3 transfers control to the address denoted by LABEL, which is not
necessarily the next address because it is defined under a different location

counter.

m Line 4 defines LABEL under location counter 5 and generates an ALK 3 in-
struction under location counter 5.

m Line 6 transfers control back to the next address under location counter 0,
@ Line 7 reactivates location counter 0.

m Line 8 generates a procedure call ERRORS$. The transfer made in line 6 will
be to this address.

1.3.2. Operation Field

The operation field defines the purpose of the symbolic statement. The operation
field starts with the first nonblank character following the label field. If no label
field value is present, at least one blank character must be coded before defining
the operation field. The operation field may contain any one of the following:

m a mnemonic operation code identifying which instruction is to be generated,;

W an assembler directive specifying some special function to be performed by the
assembler (see Section 2);

m a FORM reference specifying that a data word is to be constructed according to
the format defined by the FORM directive (see Section 2);

m a procedure reference specifying that some procedure is to be assembled (see
Section 3); or

B a data word generating code specifying that one or more words of data constants
are to be generated.

The operation field must be terminated by at least one blank character unless:
m a procedure reference is made,
m a data generating code is defined, or

B a period is used to terminate the entire statement.

If a procedure reference is made, the operation field may be terminated by a comma
followed by procedure parameters. If a data generation code is defined, the data
word may immediately follow the identifier.

The content of the operation field determines the value of the active location
counter. If an instruction is generated, the location counter is incremented by

1 or 2 depending on whether an 18- or 36-bit instruction is to be generated. If an
assembler directive is referenced, the location counter value may or may not be
advanced depending on the specific directive, A FORM reference may cause the
location counter to be advanced by one or two depending on the specified FORM
directive. A procedure reference may cause the location counter to be advanced

by an indefinite value, depending entirely on the definition of the procedure sample.

" C 1
Ulsez_sgl) UNIVAC 418-Ill RTOS ASSEMBLER SECTION: b aGE:

A data word generating code will cause the location counter to be advanced depending
on the number of words generated.

Example:
00000} /o
000002 00 090000 36 0003 LBK 3
000003 FR FORM 6412
000004 00 00p00y 00 0002 FR OyLABEL
000005 [V} PRCALPAR]
000006 00 o0pouz 20451 LABEL #1043
00 000002 463144
000007 END
Explanation:

m Line 2 specifies generation of an LBK instruction.

m Line 3 is an assembler directive defining the format FR.

Line 4 is a FORM reference.

@ Line 5 is a procedure reference on the procedure PRCALL,

m Line 6 is a data constant,

1.3.3. Operand Field

The operand field starts with the first nonblank character following the operation
field. The components of the operand field are called expressions or subfields and
define the information necessary to complete the type of statement specified by
the operation field.

The operand of a mnemonic instruction or data constant requires only one expression
which is terminated by a blank character.

Several of the assembler directives do not require an operand. Others require several
expressions. When groups of expressions are used, they are separated by commas., A
group of such expressions is referred to as a list of expressions. Procedures may
permit multiple lists of expressions. When omitting a subfield other than the first or
last subfield, the construction comma-—zero—comma (,0,) or two contiguous commas
(,,) is necessary. Ending subfields may be omitted entirely if unnecessary.

Example:

LABEL OPERATION OPERAND
10 20 30 40

N O S NAK, L TR R A O T B FURE N S W N U T W
[e 18N lTlAi&l P R S N SO T N VAN R | T I -
S R N S 1_|_M_J__UJVJE! b 18O, F IR}dlnl lHlExRLEx T& THERE , |

LGP T T VOO0 .1 TN TN N N WU 00 N Y U AU U U0V T WO WO DU H A SO N O S SR O

IgFll:11nltldenRMl«111113L)181n1‘x°111sl111:1111111=1J|11

1 It

UP-7599
Rev. 1

1

UNIVAC 418-11l RTOS ASSEMBLER cection, aces

11

1.3.4.

1.3.5.

000001
000002
0000603
000004
0000DS
000006
000007
Qoocos
000009
000010
0000114

1.3.6.

Explanation:

m Line 1 is a mnemonic instruction. The operand field contains an expression
whose value is 5.

m Line 2 is a mnemonic instruction. The operand field contains an expression
whose value is the relocatable address TAG.

m Line 3 is a procedure call containing five lists of expressions.
m Line 4 is a mnemonic instruction not requiring an operand.

m Line 5 is a FORM directive. The operand field contains one list of three
expressions or subfields.

Comment Field

The construction space—period—space (b.b)terminates a line of coding. Any addi-
tional subfields implied by the operation field are taken to be zero. Any characters
following the space—period—space are printed on the assembly listing and may be
used as comments to clarify the purpose of the line of code. If the operand field
has been totally specified, comments may immediately follow the blank character
which terminates the operand field.

Line Continuation

A symbolic line may be continued to the next card image. When a semicolon is
encountered during the processing of the label field, the operation field, or the
operand field, the next card image is read and processing continues starting with
the next nonblank character. If a new list is to be defined on a continuation card,
at least one space should occur before the semicolon.

If a semicolon occurs in the comment field, whether defined or implied, it is not
treated as a continuation character, and the next card image is processed separately.
Continuation to the next card may be specified in any of the three basic fields. In
some situations, such as the first reference to a library procedure, the label and
operation field must be specified on the same card image. In general, it is recom-
mended that semicolons only be used in the operand field.

Example:
/o
o0 oUgooo oooooo LABEL .5
00 000001 LABELT RES 10
000002 A EQU 2
000003 B EQU 3
[777776 TAG EQU LABEL+1=(A>0)~{p<5)
TAG EQU LABI COMMENTS MaAY
ELTS FOLLOW THE i
*le(A>0)=;
D 000000 . (B<B)

END
Ejection of Paper

A slash (/) appearing in column 1 advances paper in the printer to the top of the
next page. This line may not contain any coding but may contain comments. The
slash prints on the new page (see 2.11).

UP-7599
Rev. 1

UNIVAC 418-ill RTOS ASSEMBLER

SECTION: PAGE:

12

1.4,

1.4.1.

1.4.1

EXPRESSIONS

An expression is an elementary item or a series of elementary items connected by
operators. Blanks are not permitted within expressions. The values of elementary
items can be combined through operators (see 1.4.2). The resulting value becomes
the value of the expression. In addition to having an arithmetic value, each elemen-
tary item has associated with it a mode value which indicates whether the numeric
value of the item is constant, that is, cannot be changed, or is relocatable, that is,
relative to some base constant to be determined at some later time. This base con-
stant is generally a storage address or drum address determined by the job loader
prior to execution of the program. In combining elementary items to form an expression,
the mode values of the items are also operated upon to form the mode value of the
expression. When combining elementary items to form an expression, some care must
be exercised to ensure that the resulting mode value of the expression is also correct
(see 1.4.4).

In combining elementary items to form an expression, the symbolic statement is
scanned and interpreted from left to right. Parentheses may be used to force items

to be combined in a different order. All expressions within parentheses are evaluated
before their results are available to be operated upon. Up to six nested levels of
parentheses may be used.

Elementary Items

An elementary item is the smallest element of assembler code that can stand
alone; an elementary item does not contain an operator.

The magnitude of the value of an elementary item may not exceed 236-1, that is,
0777777777777. If an elementary item is not defined, it is assigned a value of
zero. Expressions containing undefined (externally referenced) elementary items
may not exceed a magnitude of 218-1, that is, 0777777.

There are eight ways in which elementary items may be represented. They are
discussed in the following paragraphs.

.1. Symbolic Label

Any label may be used as an elementary item. The value of the item is the
relocatable location counter value of the statement associated with the label.
If the label was defined with an EQU directive, the item value is that of the
operand expression of the EQU statement. Undefined labels have a constant
zero value,

Example:
00000} /o
000002 00 oUgooo 12 ooo! TAG2 LL TAG
000003 00 00ooos 12 0000 TAG LL TAG2
000004 END
Explanation:

m Line 2 defines TAG2 to have a value equal to the relocatable location counter
value of the word containing the instruction LL TAG. The operand field contains
an expression formed by a single elementary item TAG. The value of TAG is
defined in line 3 as the relocatable location counter value of the word contain-
ing the instruction LL TAG2,

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 1

SECTION:

PAGE:

13

1.4.1.2.

1.4.1.3.

1.4.1.3.1.

Location Counter

The relocatable value of any of the location counters may be used as an elemen-
tary item. The symbolic representation of a location counter value reference has

the form:

$(expression)
or

$

If a dollar sign alone is used, the value of the elementary item is the current
value of the active location counter. If a dollar sign followed by a left paren-
thesis is used, the expression value contained within the parenthesis defines
which location counter is referenced. The value of the expression must be
between 0 and 15. It should be remembered in using the $+n that some instruc-
tions increment the location counter value by 2.

Example:

000001 /e

oopoo2 00 00powo RES 8

000003 02 oUopooo 000010 $(2) - $(0)

000004 oo o0poio 55 000! 5(0) J1 $(2)

0oooos 00 00001} 34 Qo114 J $+3

000006 oo 000012 502000 LSp s(2)
00 000013 000001

oopoo7? END

Octal Numbers

An octal number is an elementary item. An octal number consists of a group of

octal integers (0—7) preceded by a 0, The value of the number is the value of
the elementary item.

Example:
000001 /o
000002 00 000000 oooo77 +077
000003 00 000001 000301 +0301013013
00 0UDLG2 013013
poooo4 00 000003 36 0017 LBK 0¥7
000005 END
Double-Precision Octal Numbers
A double-precision octal value is produced by writing an octal constant larger
than 18 bits or placing a letter D immediately after the last octal digit.
Example:
000001 /0
000002 00 0UQDOD 0DOOOD +0770
oo olooo1 000077
000003 00 00pD02 DODOOI +01000000
00 0UQOU3 0D0OOOC
000004 0C 00pDU4 0000OD +1p+017

o0 00poos ooD020
000005 END

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER l

SECTION: l PAGE:

14

1.4.1.4.

Decimal Numbers

A decimal number is an elementary item. A decimal number consists of a group
of decimal integers (0—9) the first of which is not a zero.. The value of the
elementary item is the value of the number.

Example:
Qoooo! /e
goooo2 00 0Upogo 0ooIls “77
ggggg: 0o ogooon 000100 +64
00 0Uooo2 36 0017
000005 Enn '

END

1.4.1.4.1. Double-Precision Decimal Numbers

1.4.1.5.

A double-precision decimal value is produced by writing a decimal constant
whose value is larger than 0777777 or by placing a letter D immediately after
the last decimal digit.

Example:
000001 /e
o0oop002 00 ovaooo 000000 «770
0U 0UbDUL 000115
000003 oo o0ooo2 ooonoo +64D
00 0UDDO3 000100
000004 00 000004 000000 *1p+17
oo 00000s oooo022
000005 - END

Alpha Constants

Alphabetic, numeric, and special characters may be represented in 6-bit XS-3
code. When such characters are enclosed within apostrophes, the enclosed
characters together form an alpha constant. The value associated with each
character of the alpha constant is the 6-bit XS-3 code as defined in Table 1-1.
The value of the elementary item is formed by stringing together the values
associated with each character,

NOTE: A semicolon is a special character which is generated when enclosed

by apostrophes. Therefore, it may not be used as a continuation character
in an alpha constant or alpha string.

Example:

000001 /e

0cop002 oo odgooa 000024 ‘A0

000003 00 000001 002425 LANY:- M

000004 00 000002 242524 LANY-Ta)

000005 00 00pooa 70 og24 . LLk Al
000006 oo oUooos4 71 wvool ALK YBYmrAr

ooooo? END

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

SECTION: PAGE:

The 6-bit value associated with a character in an alpha constant may be re-
defined through the use of the CHAR assembler directive (see 2.7).

An apostrophe may be present as a character within the alpha constant by
coding two contiguous apostrophes for each apostrophe in the constant.

Example:
/e
ool veen
gggooz 00 0UDOOU DOOOS56 NI
000003 00 0UDOUY 565624 o
000004

If the alpha constant consists of one, two, or three characters, the value of the
elementary item is right-justified, zerofilled. If the alpha constant consists of
four, five, or six characters, the value of the elementary item is left-justified,
spacefilled, and generates two words.

An alpha constant may not consist of more than six characters (see 1.5.2).

Example:

ogoool /o

000002 DG 000000 000024 st

000003 00 00000} 002425 EANY:- L

000004 00 000002 242524 +12BCY

000005 00 000003 242526 «14BCD*
00 000004 270000

000006 00 00po0s 242526 «'pBC ¢
00 000006 000000

ggoouo7? END

1.4.1.5.1, Double-Precision Alpha Constants

A double-precision alpha constant is one which consists of four, five, or six
characters, or one which is immediately followed by the letter D.

Example:
o0ooool I
oopoo2 00 000000 000000 *TAYD
po 00po01 000024
000003 00 o0poo2 242526 +'2BC DE?

00 0Upooa 002730
000004 END

UP-7599
Rev. 1

1

SECTION: PAGE:

UNIVAC 418-111 RTOS ASSEMBLER l

16

1.4.1.6.

1.4.1.7.

Floating-Point Numbers

A floating-point number is an elementary item. The value of the elementary item
is the 36-bit binary number formatted according to the hardware representation of
floating-point numbers. Note that in manipulating floating-point elementary items,
the assembler uses double-precision integer arithmetic so that expressions of the
type

1.0 +1

result in a binary number which is the result of an integer arithmetic addition of
the two elementary items. ‘

A floating-point number is recognized by the presence of a decimal point immedi-
ately following a decimal number. The format of a floating point number is one of
the following:

d.
d.d
d.dEse

d.Ese
d.Ee

where: d represents one or more decimal digits.
s represents the sign of the characteristic and may be either + or —.

e represents one or more decimal digits which define the power of 10
by which the number is to be multiplied.

Example:

000001 ‘e

000002 o0 000000 201400 .1,
00 000001 000000

000003 00 0000u2 201403 41,015
00 000003 654050

000004 00 000004 200400 40,5
00 0000GS 000000

00000S 00 000006 203500 +0,5E41
00 0000G7 0000OO

000006 00 000010 174631 *0,5E~1
00 0UDOLY 463146

000007 00 000012 21647} +100+324E2
00 0000123 406314

000008 END

Parameter Reference Form

The parameter reference form (PARAFORM) is an elementary item as long as the
procedure sample is being processed. The definition, explanation, and use of

paraforms are given in Section 3.

UP-7599
Rev. 1

UNIVAC 418.11l RTOS ASSEMBLER cecrions ©

PAGE:

17

1.4.1.8,

1.4.2,

Line Items (Literals)
A line item is any symbolic line, less label, enclosed in parentheses. Line items
may be elementary items.
A literal is represented as an expression enclosed within parentheses and without
connecting operators. The assembler then generates a word containing the expres-
sion value, and this word appears in a literal table at the end of the program. The
value of the line item is the address of the generated constant.
Duplicate literals do not appear in the literal list. When location counters are
used, the literals appear at the end of the coding associated with a particular
counter with only duplicated literals for that particular counter eliminated (see
2.16).
Literals may be double-precision if the symbolic line is a single subfield data
of the double-precision form. The value of this expression is the address of the
first word of the literal.
Line items within line items are permitted up to five levels. If an operator im-
mediately precedes an item enclosed within parentheses, the item is not a literal.
Example:
800001 /e
o0oo02 00 6Coouo 12 0007 LL (YENDY)
000003 00 00pOUI 32 0010 L8 (0101)
000004 00 00gou2 10 ooyl Ly (J Se5)
000005 00 0UBOU3 10 0013 Lu (L (017}
00000s 00 000004 70 4600 Lk +(sLL Oy
000007 00 000005 10 QD14 LA (1.0)
00 00000& 12 0015
000008 END
00 000007 305027
00 000040 000101
00 00001} 34 goo7
00 000012 000017
00 0UDOI3 10 0012
00 0U0014 201400
00 000015 0OPOOD
Operators

There are 12 operators in the assembler which designate the method, and implicitly

the sequence, to be employed in combining elementary items within a subfield. Blanks

are not permitted within an expression. Evaluation of an expression begins with the
substitution of values for each elementary item. The operations are then performed

from left to right in hierarchical order as listed in Table 1-2. All the operators listed

are assembly-time operators.

The operation with the highest hierarchy number is performed first; operations with
the same hierarchy number are performed from left to right, To alter this order,
parentheses may be employed but care should be taken to avoid redundant paren-
theses which may result in the generation of a literal.

UP-7599
Rev. 1

|

UNIVAC 418-111 RTOS ASSEMBLER 1

SECTION: PAGE:

18

If an elementary item or an expression is enclosed in parentheses and an operator
appears adjacent to the parentheses, the function of the parentheses is that of
algebraic grouping. The value of this quantity is the algebraic solution of the items
or expression enclosed in parentheses. This value should not be confused with the
value produced by a literal and, therefore, is not an address.,

HIERARCHY OPERATOR DESCRIPTION
Highest.6 */ a*/b is equivalent to a*2b
5 * arithmetic product
/ arithmetic quotient
// covered quotient (a//b is equivalent
to a+b-1
b
4 + arithmetic sum
- arithmetic difference
3 ** logical product (AND) 110
ij10
0joo
2 ++ logical sum (OR) 10
1.
1]11
0|10
2 - logical difference
(EXCLUSIVE OR) _Ji0
1{o1
0j10
Lowest 1 = a = b has the value of 1 if true,
0 if otherwise
> a> b has the value of 1 if true,
0 if otherwise
< a< b has the value of 1 if true,
0 if otherwise

Table 1-2. Hierarchy of Operators

In the absence of parentheses, the rules of priority determine the sequence in which
operations are performed within an expression. When two or more operators of the
same priority are used, the sequence of interpretation is from left to right. The
following two sample problems illustrate this point:

PROBLEM 1: 9-2*%3++12*%%6 The result is 7,
after step 1 9-6++12%*6

after step 2 3++12*%*6

after step 3 3++4

after step 4 7

UP-7599

Rev 1 UNIVAC 41811l RTOS ASSEMBLER cecrion: paces O

PROBLEM 2: ((9-(2*%3/4))++12)**6 The result is 4.

after step 1 ((9-1)++12)**6

after step 2 (8++12)**6

after step 3 12%%*6

after step 4 4

1.4.2.1. Shift Exponent (*/)
The shift exponent allows the programmer to enter a number and specify its
binary positioning to the assembler. The shift may be left or right according to
the sign of the exponent (-b produces a right shift). x*/b is equivalent to
x*2b,
If the sign of the exponent is positive, a left-circular shift of the number is
performed. If the sign of the exponent is negative, a right-arithmetic shift of
the number is performed.
Example:
000001
000002 00 00DOUG 000060 +bu/3 embo8
000003 00 0UDOOY 000003 roe/=1 'n6/2
000004 00 00gouz 777770 ~0738/=3 v==073/8
000005 00 000003 700000 +(0777777%/18)8/=3
000006 END
1.4.2.2, Arithmetic Product (*)

The integer value of the first item, the multiplicand, is multiplied by the integer
value of the second item, the multiplier, to produce a product which becomes the
value of the expression or next item.

Example:
/e

oopool

2 o0 000000 000020 “lal
gggggs 00 00000} 000040 oq-t:/a .::::
000004 o0 oUgoo2 oooloo e(4a2)n/3 .
000005 000005 L EQU :
000006 000002 BF EQU or
000007 ocoot2 BL EQU 1L

000008 END

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 1

SECTION:

PAGE:

20

1.4.2.3.

1.4.2.4.

1.4.2.5.

Arithmetic Quotient (/)

The integer value of the first item, the dividend, is divided by the integer value
of the second element, the divisor, and the resultant quotient becomes the value
of the expression or next item.

Example:
ooooo! /e
000002 00 odpooo ooono2 “4/2
000003 00 000001 000002 “Hn2/3
000004 00 000002 000000 +40(2/3))
060005 00 000003 oooooo +4e2/30/3 em(H4e2)/24
000006 END

Note that the remainder of the division is discarded and that the quotient resulting
from a divide must be less than 2181,

Covered Quotient (//)

The covered quotient operates the same way as the arithmetic quotient with the
following exception. If the remainder of the division is greater than zero, one is
added to the integer value of the quotient. The resulting integer is substituted
in the expression. The covered quotient may be expressed in the following form-
ula:

a+b-1

a//b = —

b

Example:

000001 /
000002 00 oUogoo ooocO2)
goonoa 00 00DOUI 00GOOQY :3ﬁ£3/s
00004 00 00DOU2 O0DOOLY “28(5//3
000005 END‘ 7

Arithmetic Sum (+)

The arithmetic sum operator produces the algebraic integer sum of the values of
two items.

Example:
000001 /e
000002 00 000000 000007 “5+2
000003 00 000001 12 0003 LL $+2
000004 00 000002 000045 +542430/3
000005 00 000003 000250 “(5+2)93e/3
000006 00 000004 000250 +l5+2)93)4/3

000007 END

UP-7599
Rev. 1

21

SECTION: PAGE:

UNIVAC 418-1il RTOS ASSEMBLER . l

1.4.2.6.

1.4.2.7.

1.4.2.8,

1.4.2.9.

Arithmetic Difference (-)

The arithmetic difference operator produces the algebraic integer difference
between the values of two items.

Example:

/e
ggggg; 00 0Unooo 12 oon2 LL $+4=2
000003 po 00pnuy 000003 +5=2
DpUoDA4 00 0UDDO2 777776 +5=2e3
000005 00 oUoow3 000011 *(5w2)93
0oooos END

Logical Product (**)

The logical product operator (AND) produces the logical product of the values
of two items.

Example:

03**05 The result is 01.

000011
** 000101

000001

Logical Sum (++)

The logical sum operator (OR) produces the logical sum of two items.

Example:

03++05 The result is 07.

000011
++ 000101

000111

Logical Difference (--)

The logical difference operator (XOR) produces the logical difference between
the values of two items.

Example:

03--05 The result is 06.

000011
-- 000101

000110

UP-7599 .
Rev. 1 UNIVAC 418-ill RTOS ASSEMBLER

SECTION: PAGE:

1.4.2.10. Equal (=)

The integer value of the first item is compared with the integer value of the
second item. If the two values are equal, the result of the operation is a binary
1. If they are not equal, the result of the operation is a binary 0.

Example:
000001 /o
000002 . 000U05 A EQU 5
000003 00 OUooun 70 goo3d LLk (Am5)wde(a=6)02
000004 END

1.4.2.11. Greater Than (&)

The integer value of the first item is compared with the integer value of the
second item. If the value of the first item is greater than the value of the second,
the result of the operation is a binary 1. If the integer value of the first item is
less than or equal to the second, the result of the operation is a binary 0,

Example:
et 000005 1. EQU 5 2
gggggg 0o 0UDOOD 36 0000 LBK :::?;::;(A<5)-
00uooH 00 0UDCOLY 70 von0 :t§ NG
000005 o0 000002 71 0003 ALK
oooponé

1.4.2.12, Less Than ()

The integer value of the first item is compared with the integer value of the
second item. If the value of the first item is less than the value of the second
item, the result of the operation is a binary 1. If the first value is greater than
or equal to the value of the second, the result of the operation is a binary 0.

Example:
00Qootl /e
000002 000005 A EQU 5
000003 oo ouogoo 34 0000 LBk 3e(ALS)
000004 00 oGooul 70 0003 LLk 3e(AL15)
000005 00 0UpDDO2 71 0000 ALK 3e(AcC2)

000006 ENp

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 1

SECTION: PAGE:

23

1.4.3.

Interbay Offset Operator (!)

The interbay offset operator (IBOO) is a special operator recognized by the assem-
bler which operates only on the mode of an expression, When the IBOO operator is
present in an expression, a flag is set in the relocation output which causes the
loader to relocate the data word in a special manner. If used, the IBOO operator
must follow an elementaty item, and may be followed by an operator.

Example:

oouvol /e

00pug2 00 000000 32 voo3 L8 (LABEL!)
000003 00 0UgouUt 32 poo4 L8 (LABELI+1)
oopou4 00 0UpouU2 000wow LABEL +0

ogunos END

00 0uUpow3 QQooaQ2
00 0UDOU4 oooco3

The purpose of the IBOO operator 1s to facilitate the accessing of storage in
different bays.

Consider the following ways of accessing the contents of location FROM, which
may be located anywhere in storage.

Examples:
oonuot , /e ")
oogouo2 00 0doouo 12 001
gopoond op ovooot 52 0013 AND (0770000)
couLoo4 ou ounou2 44 0010 SL BAY
000005 .
000006 v 00 00QOU3 12 0034 LL (FROM)
popouo7 00 0LDOUA 16 0010 ANL BAY
oouoos 00 oUoous 44 001! Stk FROMR
000009 .
000010 00 0UpODOs 32 001} LB FROMR)
00001l p0 0UQODU7 13 cood LL 0 slAL)=(FROM)
oooo12 00 ouooin gnoooo BAY +0
000Ul 00 00DDIY 000000 FROMR 0
000014 END
oc oupoi2 000000
00 0UQD13 770000
v 00 0UQDIY 000000
ouuooi /e
o0guno2 v} o0 Ovoouo 32 0oo4 La (FROM)
000003 00 0UpoUl 5073 20 LSR na20
000004 po 00poo02 13 gpoo LL *0
oooo0os Do 0UD0U3 5073 00 LSR 0 «(AL)m(FROM)
oouops END
U 00 0Upno4 000000
000001 ..
ca000s o 00 0fooup 8073 20 LSR 020+FROM
o0ooos 00 guonul 120000 (0
o
000005 o0 0fpovz 8073 00 LSR o e (AL) = (FROM)

END

UP-7599
Rev. 1

SECTION:

UNIVAC 418-111l RTOS ASSEMBLER |

PAGE:

24

1.4.4,

Each of the three foregoing methods has particular advantages. The first example
uses six instructions to set up a bay-relative address. Subsequent references use
two instructions. The disadvantage comes about if many different locations are to
be accessed in this manner.

The second example is disadvantageous if frequent accesses have to be made
because four instructions are used each time.

The third example still uses three instructions each time and is valid only if
FROM is an external reference. If FROM is defined within the assembled program,
the LSR operand specification should be coded as:

LSR 020 + FROM - (FROM**0777777).

The IBOO operator causes the loader to relocate the specified value as follows:

(VALUE)+(REL. BASE)-(BAY IN WHICH VALUE IS STORED) .

As a result, the above access may be performed as follows:

oouoal /e
0ouno2 v 00 oUooog 32 woo2 LB (FROM:
0onond 00 0YpD00! 13 oooo0 L .0
ocouoo4 END

u 00 0UQOO2 ogponn

Expression Modes

As stated previously, each elementary item has both an arithmetic and a mode
value. When operators are used to combine elementary items to form an expression,
the mode values of the elementary items are combined also to form the mode of

the expression.

Table 1-3 gives the rules for determining whether the result of a binary operation
is relocatable, '

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER cecmion: e 2
LEVEL} 1stITEM OP ERATOR 2nd ITEM RESULT NOTE
1 Any ,=,> Any Not relocatable
2 Any 4, Any Not relocatable 2
3 Any *k Any Not relocatable 2
4 Not relocatable +,- Not relocatable Not relocatable
Relocatable +y Not relocatable Relocatable
Not relocatable +,- Relocatable Relocatable
Relocatable +,- Relocatahle Relocatable 1
5 Any *./.// Any - Not relocatable 2,3
6 Any */ Any Not relocatable 2
NOTES:
1. The difference between two relocatable quantities under the same location counter is not
relocatable.
2. Except as noted for level 4, the relocation error flag (R) is set for these operations.
3. Muitiplication of a relocatable quantity by an absolute 1, or absolute 1 by a relocatable

1.5.

quantity is relocatable. Multiplication by absolute 0 is absolute 0. In either case, no error

flag is set.

Table 1-3. Rules for Determining whether Results of Binary Operations are

Relocatable

The mode values associated with a line of code may be examined by using the M
option on the ASM control card (see Section 4),

DATA WORD GENERATION

A + or — in the operation field followed by a single subfield generates one or more
data words. The + or — sign may be separated from the subfield by any number of
blanks. If the first item in the expression is a number or an alpha constant, the +
or — may be omitted. If the mode value of the operand expression signifies that the
data word is double-precision, two 18-bit words are generated. In the absence of a
+ sign, the value of a number is taken to be positive.

The operand field of a data generation statement may contain:
W an expression or elementary item
m an alpha string

m a double-precision floating-point number

UP-7599
Rev. 1

UNIVAC 418.111l RTOS ASSEMBLER 1

SECTION: PAGE:

26

1.5.1.

1.5.2,

Data Word Expressions

The operand field or operation field may contain an expression. A data word con-
sisting of the value of the expression is generated.

Example:
ooopoo! /e
ooooo2 00 o0pouo 000005 +5
oouoo3 00 00po001 000002 TAG +Sel
000004 00 0UpOO2 000004 *TAGHD
000005 00 000003 201400 +1,0
00 00poux 000000
000006 00 00000%s 000000 +5p
00 00gous 000008
coooo7 00 00pou7y 000001 +(TAG)
ooo008 00 o0ooio po0012 (TaG)
000009 o0 000011 001137 +200(2742)+4037
000010 END

00 000012 cooou1

Alpha Strings

An alpha string consists of a series of alphabetic, numeric, and special characters
enclosed within apostrophes. Two successive apostrophes within the string are
equivalent to a single apostrophe which does not signify the end of the string. For
each three characters in the string, one 18-bit data word is generated which consists
of an alpha constant equal to the binary equivalent of the three characters.

Characters are left-justified, spacefilled unless the string consists of less than
three characters. In this case, an alpha constant (right-justified, zerofilled) is
generated.

Example:
oovool 00 00pooo 663334
+*THIS
oo ooona se3a3 T IS AN ALPMA STRING!
00 00Q002 650024
00 0UQOU) 500024
00 0UpOOY 465233
00 00oogs 240065
00 00poODe 665434
00 oOgoo? 503200
Dopuo2 00 oUooio ooDo24
000003 ey

END

UP-7599
Rev. 1

UNIVAC 418-1ll RTOS ASSEMBLER 1

SECTION: PAGE:

27

1.5.3. Double-Precision Floating-Point Numbers

Double-precision floating-point numbers may be generated which conform in format to
the conventions established in the FORTRAN compiler. A double-precision floating-
point number consists of three 18-bit words. The first word contains the character-
istic; the second and third contain the mantissa. If a floating-point elementary item
occurs which specifies more than 27 bits of significance, or which contains the
letter D in the exponent instead of the letter E, a double-precision floating-point
format is generated.

Example:
000001
00u002 00 0UOQUD 040007 ¢1,02
00 CUOODY 310000
00 0UDOU2 0DOOOO
000003 00 000003 040001 *1,23456789

00 00pOOY 236014
oo 00000s 510210
DoouDY po 000006 037755 «0,120=5
00 000007 536740
o0 o00ooio 501437
000005 END

1.6, DOUBLE-PRECISION EXPRESSIONS

As previously stated, several elementary items may be specified to be double-precision.
If an expression contains a double-precision item, the expression is said to be a double-
precision expression. When a double-precision expression is used to generate data, two
words are generated. If the line item specified in a literal is a double-precision item, the
literal value is the address of the first of the two words generated in the literal table.

The following restrictions exist when generating double-precision data words.

m An expression which contains an external reference may not be defined as a
double-precision expression.

w Simple labels may be defined to have a value which exceeds 218—1, but if such
labels are used to generate a data constant, only one word is generated which
consists of the least significant 18 bits of the value of the label.

Example:

oouool /e

000002 oooooo A EQU 01000000

000003 00 0Uo0OD 000000 A

000004 .

000005 000000 Di1) EQU A

oouooe D0 0UQO0O01 000000 *D(1)

goooQ? 00 0Ugno2 10 o010 LA (YABCDEF'")
00 00poOD3 12 004!

0ooDo8 00 000D« 10 o012 TAG LA (1e0)
00 000005 12 0013

000009 00 000006 10 oo1¢ LA (RS TAG)
00 0Coou7 12 0015

00u010 END

o0 oUpOILD 242526
00 000011 273031
00 000012 201400
D0 0UO0D13 no0ooo
00 000014 5010 00
Do 0UDOIS 0o oooY

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER 2

SECTION: PAGE:

2. ASSEMBLER DIRECTIVES

2.1. GENERAL

The assembler provides a series of special directives which provide the means to
control or direct the generation of object code. The symbolic assembler directives
control or direct the assembly processor just as the hardware operation codes control
or direct the central processor. The assembler directives are represented by mnemonics
written in the operation field of a symbolic line of code. The directives are used to
equate the expressions, control the location counter, format the object code, and
control the generation of object code. The general format for the directives is:

label directive specification

The manner in which the assembler interprets each directive varies and is described
in detail in this section.

2.2. EQU DIRECTIVE

The EQU directive is used to equate the symbolic label in the label field to the
value of the expression in the operand fleld Thereafter, this label may be used or
referenced in operand expressions. The operand consists of one list of one ex-
pression. The format is:

label EQU e

Except in the case of dimensioned labels, redefinition of a label causes the state-
ment to be flagged as duplicate; however, the value of the latest expression is used
when a reference to the symbolic label is made. All statements referencing such a
label are also flagged. When a directive is written which affects the value of the
location counter and which uses a label defined in an EQU directive to do this, the
EQU directive which defines the value of the label must occur first.

When the operand expression of the EQU directive is another label, this label must
_have been previously defined in the program assembly or not defined at all. If the
label referenced is defined after it is referenced, the statement is flagged as doubly
defined. If the label referenced is not defined, it becomes an external reference. Sub-
sequent references to the label defined through an EQU directive as equal to an ex-
ternal label reference the external label. The label defined in this manner may not

itself be externally defined.

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER
SECTION: PAGE:
Example:
00:10:51 GASM M T2=1
UNIVAC 418111 ASSEMBLY == MAR 11 1970 00310:51
ocoouol /e
000002 000001 CODE EQu i
000003 000100 XCDE EQu 64+ (CODE™1)
000004 770101 2CDE EQU 0770001 ¢XCDE
000005 00 00gooo 70 0005 LABEL LLk s
+ 6,12 00
00V006 000000 LAB2 EQU LABEL
000007 .
ooo008 [000005 oLB EQuU 5
000009 [} 000006 oLB EQu 6
000010 o ' 00 000001 000006 +0LB
+ 18 ao
Qooo11l .
000012 U 00 000002 000000 +DL B2
. 18 00 CODE
000013 D 0000014 DLB2 EQu oLa3
000014 D 00 0UpoD3 000001 +DLB2
* 18 00O
000015 000001 DLB3 EQy !
000016 0 00 0UoOU4 000001 +0L82
+ 18 0O
000017 .
000018 v 000000 uLB EQu EXDEF
000019 v 00 oLoOoOS 70 000l LLK vLe*l
+ 6,12 00 EXDEF
000020 . .
oopo2l u 000000 ELB® EQU EXDEF e JLLEGAL
000022 END
ne® SUMMARY wee
PROGRAM SIZE: 00 Op00s
EXTERNAL OR UNDEFINED REFERENCES! EXDEF
EXTERNAL DEFINJTIONS: ELB
DOUBLY DEFINED LABELS! oLB2 L8

Explanation:

@ Line 2 defines CODE to have a

m Line 3 defines XCDE to have a

value of 1.

value of 64,

m Line 4 defines ZCDE to have a value of 0770101.

8 Line 6 defines LAB2 to have a value which is relocatable and equal to the

location counter value assigned to line 5.

m Lines 8 through 10 illustrate that D flags are generated if a label is redefined.

m Lines 12 through 15 illustrate forward referencing of a label and the associated

dangers in that a reference to the label is different depending on where the

reference is made.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER

SECTION:

PAGE:

2.3.

m Lines 17 and 18 illustrate indirect external referencing.

® Line 20 illustrates an illegal use of external referencing and external definition.

The magnitude of the value of the operand field may be 36 bits. However, double-

word data generation may only be used through EQU directives using dimensioned
labels.

Example:
009002 v 01000000
000002 000000 A Esu
0goo3 00 oPpooo 000000
gognoﬂ 000000 Bl EQU 01000000
000005 oo ofoool 000001 *B(1)
00 00pooz 000000 .
000006 END
Explanation:

m Line 2 defines the label A to have a value of 01000000.

m Line 3 generates only one data word equal to the least significant 18 bits of the
value of A (sign extended). A zero is therefore generated.

® Line 4 defines the value of B(1) to be 01000000.

m Line 5 generates two data words, 1 and 0.

RES DIRECTIVE

The RES directive is used to redefine the value of the active location counter. If
the sign of the expression in the operand field is positive, an area of main storage
is reserved (buffer). The label, if used, is assigned to the location counter value
prior to changing it; that is, it refers to the first word of the reserved area if the
operand field is positive. The format is:

label RES e

Symbols appearing in the operand field must be defined prior to the use of the RES
directive.

In redefining the value of the location counter, no code is generated; that is, zeros

are not generated for the reserved area. Because the loading of a program is preceded

by clearing its main storage area, the RES directive, when used to define work area
buffers, effectively defines their value as zero.

Example:

000001 /e

000002 000002 1 EQu 2
000003 00 00DOOO WORK RES 56
000004 00 oloo7o 70 0005 LLk 5
0opoosS 00 000071 00 1> , RES =)
000006 00 00Up070 70 0003 LLk 3

000007 END

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER ceemion: 2 e

Explanation:
m Line 3 reserves a 56-word work area.
m Line 4 generates an instruction LLK 5,

m Line 5 generates an LLK 3 at the location following the LLK 5; or, if I>1, the
LLK 3 in line 6 is generated at the same location counter value resulting in
erasing the LLK 5.

NOTE: The relocatable object code produced by the assembler is such that the
generated code is read in a single drum access by the loader as long as the
code is continuous, that is, as long as the location counter value increases
continuously. The RES directive may cause a break in the sequence of code
generated, In the same way, a change in the location counter under which
code is generated causes a break in the sequence. As a result, the program
load time is increased because multiple drum accesses have to be made.
Judicious use of the RES directive results in faster loading of the relocatable

2.4,

code.
Example:
LABEL OPERATION OPERAND
1 10 20 30 40
T N W B S lRtelsl RN Y TN S R A R R B PR DU N W N NN TR0 S T NS SR S
T T S T O U0 U0 TN . > SO O S VO U T N U TP SO ST SO TN S0 S SN ST S ST AT Y S R S
ST R R R RN . 21 (N S N R R N R A N ST SR N N N A RN N SN NN A ST A SN R R
] S S SO OO0 U U T N N T T WS Y Y WO OO (00 O YO T T VO OO SO IO U SO V0 YOO WUV SO0 AN A S N WO S BN U
Explanation:

m Line 1 changes the location counter value by 2. As a result, a different drum access
is made by the loader,

FORM DIRECTIVE

The FORM directive describes a special word format designed by the user. The word
format may include fields of variable length. The length in bits of each field is defined
in the operand field of the FORM directive. The value entered in the operand field
specifies the number of bits desired in each field, The format is:

label FORM €1,€9,.00,€

The number of bits specified by the sum of the values of the operand expressions
must equal 18 or 36 depending on whether a single or double form word is desired.
If the sum of the values of the operand expressions does not equal 18 or 36, an

expression error results,

By writing the label of the FORM directive in the operation field, the form defined in

that line of coding may be referenced from another part of the program. The label of

the FORM line is written in the operation field and is followed by a series of expressions
in the operand field. The expressions in the operand field specify the value to be in-
serted in each field of the generated word or wotds. .

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

2 l 5
SECTION: PAGE:

A reference to a specific FORM label always creates one or two words composed in
the format specified. Truncation occurs and an error flag is set if a given value exceeds
the space indicated in the associated field in the FORM directive.

Unless the field size of the last expression is 12 or 17 bits, the data word generated
is a constant, If the last expression has a field size of 12 or 17 bits, the data word
generated may be 12- or 17-bit relocatable, depending on the mode of the last para-
meter supplied on the FORM call line.

Example:
000001 /o Vo
000002 PTGF FORM 1242,4 &
000003 007706 P i EQU D = 07706,
000004 0o 00p00D 770662 PTGF Px3:2
000005 1s FORM 6y12
000006 00 000001 32 0015 LB (IS 0,BVUFAD)
0oooo7 00 000002 13 0co0 LL «0
000008 00 000003 BUFAD RES 10
000009 ENp

oo 00pois 00 0003

iR boido

Explanation:

m Line 2 defines a form PTGF. Three fields are defined consisting of 12, 2, and 4
bits, respectively.

m Line 3 defines a constant P = 07706.

m Line 4 references the PTGF form and generates a data word 0770662, The first
12 bits are built from P, the next 2 bits contain a 3, and the last 4 bits contain a
2. (Note that this is an example of a PTGS$ call line).

m Line 5 defines a form IS. Two fields are defined consisting of 6 and 12 bits,
respectively. :

m Line 6 generates an LB instruction, The literal is defined to consist of a FORM
reference. The first 6 bits are zero; the last 12 bits contain the address BUFAD,
Since BUFAD is relocatable, the literal becomes 12-bit relocatable.

m Line 7 generates the code to load AL with the contents of BUFAD.

2.5. ODD DIRECTIVE

The ODD directive sets the currently active location counter so that the next symbolic
line is assembled at the next odd address. If the location counter is already positioned
at an odd address, no action is taken. The format is:

OoDD

SECTION; PAGE:

- 9 ;
A UNIVAC 418-11l RTOS ASSEMBLER ‘

2.6. EVEN DIRECTIVE

The EVEN directive sets the currently active location counter so that the next
symbolic line of code is assembled at the next even address. If the location counter
is already positioned at an even address, no action is taken. The format is:

EVEN

2.7. CHAR DIRECTIVE

The CHAR directive permits selective redefinition of the values associated with alpha
constants or strings (see 1.4.1.5). Unless a CHAR directive is used, the assembler
uses the XS-3 code values defined in Table 1-1.— ¢ ¥ rP‘? =

P et &<
The alphabetic character A, for example, has an XS-3 value of 024, By using the
CHAR directive, A may be redefined to have the value 6 (Fieldata). Unless redefined
by another CHAR directive, all subsequent alpha constants and strings use the value
of 6 for an A. The format of the CHAR directive is:

CHAR el,fl,e2,f2,...,en,fn
The specification field consists of a list of paired expressions e; and f;; e; specifies
which character is to be changed, and f; specifies the value to which the character
e; is to be changed. In order to identify which character is to be changed, its XS-3

i
value is specified in e;.

Example:
000001 /o
000002 CHAR TAY,64'BY,7,%CY 8
000003 00 0Woouo 060710 *ABC®
000004 CHAR 024,024,025,025,026,026
ooooas 00 00pQU1l 242526 *ARC?
000006 END

Explanation:

m Line 2 redefines an 'A' (value 024) to 6, 'B' (value 025) to 7, and 'C* (value 026)
to 8.

® Line 3 generates the alpha constant 'ABC'. As a result of the CHAR directive in
line 1, the value 060710 is generated.

B Line 4 resets the values associated with 'A', ‘B', and 'C' to 024, 025, and 026.
Note that the characters to be changed must be referenced through their octal
values because the alpha constants 'A', 'B', and 'C' have been redefined in line

2.

@ Line 5 generates the alpha constant 'ABC', Line 4 results in a value of 0242526.

UP-7599 :
Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER

SECTION: PAGE:

2.7.1. XCHAR Directive /

The XCHAR directive resets the values associated with alpha constants or strings
to the XS-3 code values defined in Table 1—-1. The format of the XCHAR directive
is:

XCHAR

No label or operand field is present.

In the example in 2.7, the alpha constant value associated with 'A', ‘B, and 'C"
could have been redefined to their XS-3 value by using the XCHAR directive.

2.8. INSERT DIRECTIVE

The INSERT directive provides a method to insert symbolic code from either the
user or the system library into the program which is currently being assembled. The
operand consists of one list of one expression specifying the symbolic name of the
program element to be inserted. The format is:

INSERT e

Insertion of symbolic code is terminated when the end-of-file sentinel following the
symbolic code in the library is detected. The symbolic element to be inserted may

consist of common subroutines, translating routines, translation tables, and so on.

The symbolic element to be inserted may itself have an INSERT directive.

2.9. UNLIST DIRECTIVE

The UNLIST directive provides a means of selectively preventing the printing of
output of sections of a program. The format is:

UNLIST

2.10. LIST DIRECTIVE

The LIST directive provides a means of conditionally resuming printing of a program
after using the UNLIST directive. The format is:

LIST e

The LIST directive may have an operand. If the value of the operand expression is
nonzero, printing resumes, If the value of the operand expression is zero, printing
is discontinued.

2.11. SKIP DIRECTIVE

The SKIP directive provides a means of controlling page formatting of the assembly.
The format is:

SKIP e

The SKIP directive may have an operand expression e. If present, e lines are skipped
before resuming the assembly print. If no operand field is specified, the paper is
advanced to the next page before printing is resumed.

UP=/59Y :
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

A page eject may also be accomplished by specifying a slash (/) in column 1 of
any comment catd.

Example:
LABEL OPERATION OPERAND
10 20 30 40
VAT R A R R RN A N T S N B AU R S R SR RN SRR A SR A RN RN AR
AN S T S RN O SO SO T 1 ﬁl‘(xlxpjlth [RO TN UEE B T R S S T N YO O AU SN VU OO W O B R N S O S
AN VO O U U 1 Y YU N YO VR O S N T T U N U U Y YU YT N RO W T VO W GO IO S T IAOC 00 B0 DY S SO N

2.12. END DIRECTIVE

The END directive is used to indicate that the last line of symbolic code in a
procedure or in a program has been reached. The END ditective may have an
operand consisting of one list of two expressions. The operand is used to indicate
the starting address and operating priority, respectively, of the assembled main
program. A blank operand field indicates the end of a subroutine or procedure. The
format is:

END 61,82

When the END directive terminates a program assembly, all literals accumulated
during the course of the assembly are listed and generated.

2.13. GO DIRECTIVE

The GO directive, when not used within a procedure, directs the assembler to ignore
all statements until the associated NAME directive, not defined within a procedure,
is encountered. The NAME directive must be defined subsequent to the GO directive
(forward reference). If an END directive, not signifying the end of a procedure sample,
is encountered before the NAME directive, the assembly is terminated as though the
NAME directive immediately preceded the END directive. The format of the GO di-
rective is:

GO label

where label represents the label of a NAME directive (see 3.12.2).
Example: See 2.14.

2.14. NAME DIRECTIVE

The NAME directive, when not defined within a procedure sample, is used to
signify a point in the assembly at which assembly of symbolic statements is to
be resumed after a GO directive, The format is:

label NAME

The label field contains a six-character label which may be referenced in the operand
field of the GO directive (see 3.12.1).

UP-7599

2
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER secTion: ohce:
Example:
0000014 /e
000002 000005 A EQU 5
000003 00 0000UD 70 0003 LLK 3
000004 DO A=5 , GO NEXT
000005 LLK 5
000006 NEXT NAME
000007 END
Explanation:

m Line 2 assigns a value of 5 to the label A.

m Line 4 uses a DO directive (see 2.15) which causes the statement GO NEXT to
be performed.

m Line 5 is ignored during the assembly because of the GO statement in line 4.

m Line 6 defines the label NEXT. Assembly of source code resumes starting
at the next statement,

2.15. DO DIRECTIVE

The DO directive is used to process a statement conditionally or to generate data
tables by processing a single statement more than once. The format of a DO line
is:

labell DO expression ,label2 operation operand
The comma divides the DO line into two parts:

the determinant: labell DO expression

the DO-item: label2 operation operand
The expression following the DO directive determines how many times the DO-item
is performed. Labell is optional; if used, labell serves as a counter reference

reflecting the current number of times the DO-item has been executed.

The DO-item may be any symbolic line of coding., The DO-item may contain another
DO directive.

Example of a simple DO:

' /o
000001
000002 00 00pooo 000001 A DO 5 » %A

00 000001 ooopooz
00 oudgooz 000003
00 0000UL3 000004
o0 oCoou4 000005

N
000003 ENo

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 2

SECTION: PAGE:

10

Explanation:
m The DO-item generates a data word +A.
® The DO-item is performed 5 times.

m Each time the value of A is incremented by 1. The first time that the DO-item is
performed, the value of A is 1.

All symbols appearing in the determinant expression must be defined prior to the
DO statement. If undefined symbols appear, their value will be taken as 0. If the
determinant expression has a negative value, it is reset to 0 and the DO-item is
not performed.

2.15.1. Conditional DO

The operators <, =, and > are relational operators and generate expressions with
a value of 0 (false) or 1 (true). Whenever the determinant expression of a DO state
ment has a value of 0 or 1, the DO is said to be conditional. If the determinant
expression value is 0, the DO-item is not performed. If the determinant expression
value is 1, the DO-item is performed.

Example:
LABEL OPERATION OPERAND
1 10 20 30 40
A T R DR RN NS D R § L”1;>§Z” LML<1QL;?S?J7FTF7f7z)| Lt n\-ﬁ!ﬁ‘a !CI:Q‘QL”; dodoo bl b 1.1
TSR U O U VAU A0S AU TN N T OO U TR 0 TV T DU U N0 SO0 YO WY VAU ST W0 S SO DU U SNN NN TUOE SO W O SO TN ENT I S N SO N
Explanation:

m If the current location counter value is greater than 07777, the determinant
expression has a value of 1. As a result, the LSR 020 instruction is generated.

2.15.2. Nesting of DO Directives

As stated previously, the DO-item may itself be the determinant of a second
DO directive. DO statements may therefore be nested to as many levels as desired.

As the final DO-item is performed, the repeat count of the innermost determinant
is satisfied before processing of the next determinant resumes.

Example:

oooucol /e
ocoooz 00 0UpooO ooooti f DO 3 »y DO 2 , ¢Beley
00 000001 0ooo12
ov oUpono2 cooo2g
00 000002 oooo22
00 oVUoooy ao00031
00 OCopos ogoo32
000003 END

UP-7599 ‘
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

Explanation:

8 The DO-item +8 *I+] is generated a total of 6 times. The value I is varied from

1 to 3. For each value of I, the DO-item is performed twice. The resultant data
words generated are +011, +012, +021, +022, +031, +032.

2.16. LIT DIRECTIVE

The LIT directive is used to define a literal table under control of the active location
counter, The format of a LIT statement is:

label LIT e

The label is optional and identifies the name of the literal table. The operand expres-
sion e is optional and determines the relative starting address of the literal table.

Through the use of the LIT directive, a number of separate literal tables can be
created. Duplicate literals are eliminated within each unique literal table; however,
duplicate literals may exist in separate literal tables. In the absence of a LIT
directive, all literals are placed in the literal table under location counter zero. The
entries in the label field of a LIT directive comply with the labeling rules as applied
with the location counter declaration and label structure. However, the label may not
be subscripted or suffixed by an asterisk nor may it be referenced (addresses or para-
forms). .

A LIT directive may have a label. If a label is present, the literal table is identified
by this label. Literals generated under a labeled literal table have the form:

label(literal)

The label refers to the literal-table name, and literal represents the literal expression.

Example:
LABEL OPERATION OPERAND
10 20 30 40
L&iTJAiBJ. ‘L Lol 1 ILlIlTl U S I S| L. .L I B | E I F N W I Lobobod b1 H ol I [WO RS S S S §
i i L.k i [i 1 1 IL [Lj 1 i 1 1 | S !LIBIT,.lblBl ‘ .i.(J ILJLIK_J Ll .l..)L AN S W S | i, S DR S SR S Y i
TR VU0 ST NN N VUN U T URSTO WA TO N VYW U U0 O A T 0 U N W SO T TG DU U UOU TN U AT U U0 N I SO0 SO SO OO SO S

If the label field of the LIT directive is left blank, literals to be placed in the defined
table have the form:

(literal)
Example:
LABEL OPERATION OPERAND
10 20 30 40
\.$4LLL‘,L)_L IO [Llle! bt e b et
e b L,I(L_JL»LLIKL ‘1)4 N NSO TN NN WA SUNN S SUNNT DN ST N HNN N N S S SRS
U U VOO U T N YT A S Y VO T VOO O N DU WO O T O U U Y W U O UG O I T SO (S VO S O I

UP-7599
Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER 2

SECTION: PAGE:

12

Unless an operand field is present in the LIT statement, the literal table is generated
under the location counter active at the time that the LIT directive occurred.

If an operand expression is present in the LIT statement, the literal table is generated
starting at the address specified in the operand field of the LIT statement. The location
counter of the specified starting address is used.

Literals are generated only in the second assembly pass. As a result, some care
must be taken in defining the LIT directive. If the operand field specifies the

1

iteral table start address, only those literals subsequently defined for that literal

table are assigned in the specified area.
Example:
000B01 /e
opooa2 00 ovoouo 12 0022 LL 1)
000003 TABI LT
000004 00 00guu! 12 0023 L TABL(1)
000005 s(2),TaB2 LIT AREAZ
gounné 00 oUoouz 12 0040 s(0) - L TAB2(2)
000007 00 0UDG0O3 10 D024 LA (1.0)

00 0UQOU“4 12 0025
000008 s(1) LIt
000009 00 00poos 12 0012 $(0) LL (7)
000010 LT AREAL
000011 00 CUooues 12 0012 Lt (7)
nogo12 oo 0Cooo? 12 0000 Ll (o
000013 0l 0UCoOD S{1)4AREAL RES 10
000014 00 oUooio $(0),AREAZ RES 10
000015 END

00 0U00D22 00000

00 000023 000001

00 0UDOIO 000002

00 0UDO24 201400

00 0UGO25 000000

o1 olUogi2 000007

01 0UO0OO 000012

Explanation:

m Line 2 generates a literal constant 1 under location counter 0.

m Line 3 defines a literal table TAB1 under location counter 0,

m Line 4 generates another literal constant 1, but different from that generated by
line 2 because different literal tables are used.

m Line 5 defines a literal table TAB2 starting at address AREA2 under location
counter 0 (see line 14). The location counter specification is not used and is
superfluous,

m Line 6 generates a literal constant 2 at AREA2.

® Line 7 generates a literal constant 1,0 (2 words) under location counter 0.

m Line 8 uses a lit directive to generate further literals of the type (LITERAL)

under location counter 1,

UP-7599
Rev. 1

2

UNIVAC 418-111 RTOS ASSEMBLER l

SECTION:

PAGE:

13

Line 9 generates a literal constant 7 under location counter 1.

Line 10 defines literal table AREA1 under location counter 1 (see line 13),

Line 11 refers to the same literal as line 7. Because the literal was defined
previous to the LIT in line 10, it is generated at the end of location counter 1.

Line 12 generates a literal constant 10 at AREAL,

Line 13 and 14 reserve 10 words each for the literal tables AREA1 and AREA2.

INFO DIRECTIVE

The INFO directive provides a means of organizing coding assembled under various
location counters into certain system-defined groups. There are six possible groups
into which part or all of a program may be divided:

0 — bay-dependent

1

g AW N

bay-independent

drum

FASTRAND mass storage
common, bay-independent

common, bay-dependent

Group 0 — bay-dependent

Group 0 consists of relocatable object code (instructions and/or constants)
written in such a way that it can be relocated anywhere within a bay starting

at an even address. If a program of this category exceeds 4096 words (one bay),
loading and/or relocation of that program starts automatically at the beginning
of a bay. If the size of the location counter is less than 4096 words, all words
are allocated within one bay. Since group 0 is the most commonly used re-
location mode, it is the assumed group in the absence of an INFO directive for
any location counter.

Group 1 — bay-independent

Group 1 consists of relocatable object code (mostly constants and some instruc-

tions) written in such a way that it can be allocated any available storage location

regardless of bay boundaries.

Group 2 — drum

This group is used to reserve drum area in 512 18-bit word increments at assembly

time and to convey this information to the job loader, It eliminates the need for
writing supervisor calls for drum buffer requests and has the added advantage of
being processed by the job loader prior to loading the program. If for any reason
sufficient drum area is not available, the program is not loaded until sufficient
drum space becomes available, Drum space is allocated in such a way that the
requested area under each location counter is contiguous unless part of the space
is already allocated through an @ASG control card. Location counters of this type
may not be used to generate relocatable object code.

In referencing the drum space allocated through the INFO directive, the location
counter is used by the loader as the logical file number. If multiple elements
within a single program reserve drum space in this manner, the space is allocated
only once for the largest requested area for each location counter (file number).

P-759 ‘
URez? 19 UNIVAC 418-11l RTOS ASSEMBLER 2

SECTION: PAGE:

® Group 3 — FASTRAND mass storage

Logically, the purpose of this group is the same as that of group 2, Hardware
characteristics, however, dictate that FASTRAND allocation is kept separate
from drum allocation. A FASTRAND increment is 3584 18-bit words or 1 track.

m Group 4 — common, bay-independent

This group is simply an extension of group 1, the bay-independent group. It

allows separately assembled routines to share storage areas by using the same
label in the INFO directives for this group. This capability is provided by the

job loader which allocates storage only once for all the references of this label

in the routines to be loaded for a program. The length of the storage area is
chosen by the job loader to be equal to the longest of the location counter lengths.

Group 5 — common, bay-dependent

This is an extension of group 0, the bay-dependent group. It allows separately
assembled routines to share storage area by using the same label in the INFO
directive for this group. This capability is provided by the job loader which
allocates storage only once for all the references of this label in the routines
to be loaded for a program. The length of the storage area is chosen by the job
loader to be equal to the longest of the location counter lengths.

The symbolic format of the INFO directive is:

label INFO 24 11,12,1n

where label is an optional symbolic label which is only meaningful to the job
loader. In the case of groups 4 and 5, the label is the common block name. Labels
are allowed for groups 0, 1, 2, and 3. The operand field consists of two lists of
expressions. The first list represents one of the six group numbers and may consist
of one expression only. The second list may consist of one or more expressions,
each defining one of the specific location counters assigned to that group.

The assembler allows a maximum of 16 INFO statements which are collected and
passed to the job loader.

Example:
0DooD! /e
ooono2 COMMON INFO 4 1,8
000003 s(1)
000004 o1 000000 INTABL RES 500
000005 o0s 000000 $(B),yTAPEL RES 542
000006 08 003000 TAPE2 RES 512
ooouo7 o8 O0020uo TAPE3 RES 1024
coooos8 08 0U40ouD DRBUF® RES 256
ouoooeY 08 0V440p ARRAY® RES 1000
006010 INFO 2 6
oouo1l 06 0UOOOOD $(6),DBUF RES 1000//512
Q00012 o0& 00p0DO2 pBUF2 RES 2000//512
000013 $(0)
0o0noiL4 END
sen SUMMARY ews
PROGRAM S1ZE: 0§ 00764 06 00006 08 04350

EXTERNAL DEFINITIONS: DRBUF ARRAY

UP-7599
Rev. 1

2
UNIVAC 418-11l RTOS ASSEMBLER I LECTIQN:

PAGE:

15

Explanation:

m Line 2 specifies that the code generated under location counters 1 and 8 is to
be considered as bay-independent common storage (group 4). The common area
is identified by the name COMMON.

m Lines 3 through 9 define various buffers in the common area.

m Lines 10, 11, and 12 specify that six blocks of drum space are to be allocated.
The label DBUF refers to the drum address of the first block of this drum area.
The label DBUF2 refers to the drum address of the third block of this drum area.

2.18. ASM DIRECTIVE

The ASM directive is not an assembler directive; it is a library procedure. The
procedure may be used to generate a series of data words (or instructions) in one
statement. The format is:

label ASM 91,62,63,...,en

The label, if present, refers to the first data word generated, e;. The operand consists
of a series of expressions e; each of which is generated as one or more data words.

Example:
ooogool /e
000002 00 000GOoUV 000001 ASM 1,24%(LLK 1)o+LABEL,'ABCD?
00 000001 000002
00 000002 70 cool
v 00 000003 000000
00 000004 242526
00 0Vo0O0s 270000
000003 END
*se SUMMARY ewe
PROGRAM SIZE: 00 Doooe

EXTERNAL OR UNDEFINED REFERENCES?: LABEL

Explanation:

The code generated by the ASM procedure call is equivalent to the series of state-
ments:

+1

+2

LLK 1
+LABEL
‘ABCD-

The ASM procedure is illustrated in 3.7.2.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 3

SECTION:

PAGE:

3.1.

3.2,

3.2.1,

3. PROCEDURES

GENERAL

Often a progtam requires repetitive sequences of coding. These sequences are not
necessarily identical but there is enough similarity to make the writing of these
sequences mechanical, The procedure is a method employed by the assembler which
permits the automatic generation and modification of repetitive coding sequences. A
procedure may be generated any number of times with different parameters supplied
each time it is referenced. Procedures are implemented by the PROC directive. The
source code between the PROC and END directives is commonly referred to as the
ptocedure sample. The PROC directive uses procedure samples to generate the
required coding. As the assembler encounters each procedure sample, it stores the

procedure and the procedure’s entry points. When a call to the procedure is encountered,

the assembler references the procedure entry point table, locates the procedure, and
then generates the required coding. The procedure sample must physically precede

any call to it in the main program unless it is defined in the library as a PROC element.

PROCEDURE MODES

Procedures can be developed in any of three modes: simple, generative, or interpretive.

The differences between simple, generative, and interpretive procedures are functional

differences only, not intrinsic in the manner in which the assembler analyzes them.
Many procedures are actually combinations of all of them,

Simple Mode

The simple mode occurs when the object procedure developed is equivalent to the

object procedure declared. In this mode, the procedure is used essentially to provide

program legibility and avoid repetition of code. An example of a simple mode pro-
cedure is given in 3.7.3.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 3

SECTION: PAGE:

3.2.2.

3.2.3.

3.3.

3.4.

Generative Mode

The generative mode occurs if the object procedure developed is a multiple of the
object procedure defined. By combining the DO directive and a simple mode pro-
cedure, the same code may be generated a number of times. An example of a genera-
tive procedure is given in 3.7.2,

Interpretive Mode

The interpretive mode occurs when the object procedure determines which code is
to be generated, based on the parameters supplied when the procedure is called.
In this mode, the PROC body provides the algorithms to be used for the generation
of code. Examples of interpretive procedures are given in 3.7.4, 3.7.5, and 3.7.6.

PROCEDURE SAMPLE

A procedure sample consists of a group of statements having a PROC and an END
directive as delimiters. The procedure sample is stored by the assembler so that it
may be scanned when the procedure is called upon as a result of the occurrence of
one of its entry points in the function field. The procedure sample is scanned at
least once for each time it is called upon.

PROC DIRECTIVE
The format of the PROC directive is as follows:

label PROC operand

The label field contains any label not exceeding six characters. The label identifies
the specific PROC and is one of the means by which the procedure may be referenced.

The operation field contains the PROC directive. This directive signals the assembler
that sample coding of the procedure is to follow.

The operand field may contain zero, one, or two subfields (separated by commas).
Subfield 1 contains a value specifying the maximum number of fields appearing on
that procedure’s call line.

Subfield 2 of the operand field cannot be written unless a value appears in subfield
1. The value entered in subfield 2 indicates the number of words of code to be
generated when the sample is referenced. Subfield 2 must be omitted in the following
situations:

m if the procedure can generate a variable number of words;
m if forward references are made in the procedure;
m if external definitions are made in the procedure;

m when a label on a procedure reference line is to be assigned to a line other than
the first line of the procedure;

m when a procedure call is present in the procedure which causes the assembler to
bring the second procedure from the library into the procedure storage area.

Except for the foregoing conditions, subfield 2 should be used because it eliminates
two subassembly passes of the procedure sample, thereby shortening assembly time.

UP-7599
Rev. 1 UNIVAC 418111l RTOS ASSEMBLER 3

SECTION: PAGE:

A line terminator (6.5) must precede any comments on the PROC directive line.

Example:
LABEL OPERATION OPERAND
10 20 30 40
.Clgl'MIPIAlRL Lot lPlealci AT Y YL 1 A A D AR S A BT BT RN R S AT R R
Mjaxvlel Lot L1 i lPlR161Cl [T SN TS TN U 30 U OO VU WO A WO MU WU IO HUU YN NS NN VU TN AN U S TN HNUY T N T N GOSN O
TS VN VOO0 A NN N U NUNN U U YOO VRN N U U WS YO0 AU NN U YOO T T O U U O W U YO U G SO0 U0 WO S A S0 S B A O G O
Explanation:

m Line 1 contains the label COMPAR. Subfield 1 of the operand specifies that one
field may appear on the reference line. Subfield 2 indicates that ten words are
generated by the procedure.

m Line 2 has no operand field.

3.5. END DIRECTIVE

The END directive must appear at the end of each procedure. END is coded in the
operation field. The label and operand fields are left blank,

Example:
LABEL OPERATION OPERAND
10 20 30 40
LIGIAIDI*I L Loi 1 lPlRldlcl bodo b1 iuun‘l SR DN W S NS N OO UUN S A SO0 OO0 T YOS T W A Y GO Y OO RO A T
T R R | N S SR ITAG‘ bkt bk o
ot T JBEND v e e b b
(O S SO SN N TS Y YT U TN OO TN WO U N S N TS S S SO N U SN NN A OO SO O WO NOUOE OO MO VA NN T AN OO0 T OO0 N WO O
Explanation:

m Lines 1, 2, and 3 define the procedure sample.

m Line 1 specifies that no parameters are supplied on the call line, that one word
is to be generated whenever the procedure is called, and that the entry point to
the procedure is LOAD.

m Line 2 contains the instruction LL. TAG which is to be generated each time the
PROC is called.

m Line 3 specifies the end of the procedure sample.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 3

SECTION: P AGE:

3.6.

3.6.1,

PROCEDURE REFERENCE

When a procedure reference is encountered at assembly time, the specified procedure
sample is analyzed. If the procedure sample is contained within the assembled program,
it must be defined prior to the first reference. If the procedure sample is defined in a
procedure element in the user or system library, the entire PROC element will be
included in the assembler PROC storage area when a call on any one of its procedures
is made. In searching the libraries for a procedure entry point, the user library is
searched first. Since the entire procedure element is inserted by a reference on one

of its PROCs, care must be taken that no duplication of procedure entry points occurs
when multiple PROC elements are inserted. To reference a procedure, a call line is
used.

Definition of a Procedure Call Line

A procedure call line informs the assembler that generation and modification of a
code sequence are to begin at this point, The operation field contains the external
label of the procedure desired. The operand field contains the expressions (para-
meters) needed for modification. The format of a call line is:

label ptocedure label operand

The label field of a call line is optional.

The operation field contains the entry point of the desired procedure.

The operand field contains the parameters needed to modify the procedure.
A period should be used to terminate the call line.

Example:

LABEL OPERATION OPERAND

10 20 30 40

CA

de

!11llli~}"lL~lqA.;iDllll.i,vllillilll!ll.;llj,bl.';Alv;,,v.JL,liAx

XLILI‘LI,JJLLSLP;ECAt‘J!ill;xlvil [T T S VU S S S S S TOO0 S S S SO S Y
ADDP |, | 11A1D‘D2121 1o 1,141);T5A161 i SﬁH:PﬁJule S YU T S U S S TN Y SRR

U U0 TR WY VO SOR VOO0 OO Y N SO S VO T SN Y SO OY MUY SO UOS NP0 S RSN SN N G SN S0 SO Y WA SN0 S S SN S S DO S SRR

Explanation:
m Line 1 has no label and the procedure LOAD will be generated.
m Line 2 contains the label, CALL1l. The procedure referenced is SPEC.

® Line 3 contains the label ADDP. The procedure ADD22 is referenced. The
operand field contains four parameters. The parameters supplied are grouped
into two fields with two subfields each.

UP-7599
Rev. 1

UNIVAC 418-1Il RTOS ASSEMBLER

\ SECTION:

3

PAGE:

3.6.2.

The Operand Field of a Call Line

The operand field of a call line may contain parameters used to modify values
appearing within a procedure. The parameters appear in fields and subfields of

the operand. There may be any number of fields, and any number of subfields may
appear within the fields. Fields are separated by blanks; subfields are separated

by commas.

Subfield; (1,1)

FIELD, (1) Subfieldy (1,2)
Subfield, (1,n)
Subfieldy (2,1)
FIELD, (2) Subfieldy (2,2)
OPERAND OF A Subfield, (2,n)
CALL LINE
Subfieldy (3,1)
FIELD, (3) Subfield, (3,2)
Subfield, (3,n)
Subfieldl (,1)
FIELD,) Subfieldy (j,2)
Subfield, (j,n)
Example:
LABEL OPERATION OPERAND
20 30 40
RS R NN LY. VAN SN AT BRI 1o, 4,8LT |

A

-

,.Illlil]ll

Jvll11,_.Ji1LLl

1

i

1

4o

Spaces separate fields; commas separate subfields.

Explanation:
m Field 1 contains subfields 6, 4, SLT.
@ Field 2 contains subfields JIM, INST.

m Field 3 contains subfields W, R, S, T.

A

S TS S N S SN

JIM,INST, | wW,R ,8,T .

Loobwn b toode ..ol

UP-7599
Rev. 1

UNIVAC 418-1ll RTOS ASSEMBLER 3

SECTION:

PAGE:

3.7.

3.7.1.

PARAFORMS

The parameter reference form, commonly called the paraform, provides a means for
selectively referring to the operand parameters of a procedure call line. Paraforms
are implicitly defined by the operand field parameters of the procedure call line.
They are used in the operand field of a line of symbolic coding within the procedure
sample. Paraforms are only defined during the processing of the procedure call line
and the referenced procedure sample.

A paraform is identified by the name of the procedure reference. There are six syn-

tactical paraform structures which denote different values associated with the operand
field parameters of the procedure call line.

Referencing the Number of Fields

When the procedure name is used in the operand field of a symbolic line within the

procedure sample, it is equated to a constant equal to the number of fields in the
call line.

Example:
/e
o0oo0d
000002 CALLILe PROC .
000003 1 Do CALLl 4 RES |
000004 END
000005 .
oogggé o aee CALL NAME
v} 7 .
goggga 00 00oooo cALLL FIRST SECND THR(
00 0YD001
00 000002
000009 00 000003 000001 FIRST .l
000010 00 000004 000002 SECND .2
000011 00 0UDoOs 000003 THRD 3
000012 ENpD
Explanation:

m Lines 2 and 4 define the procedure CALLI.
m Line 3 reserves one word CALLI1 times.

m Line 8 calls procedure CALL1 with three fields, FIRST, SECND, and THRD.
As a result the paraform reference CALL1 in line 2 is assigned the value 3
and three words are reserved.

UP-7599

3
Rev. 1 UNIVAC 418-1il RTOS ASSEMBLER SECTION: PAGE:
Example:
00000l 7e
000002 ADD® PROC .
000003 Lt ADD(1 1)
000004 AL ADD(L,2)
000005 DO ADD=2 , SL ADD(2,1)
oooooé ENp
000007 ’
000008 . Sen CALL NAME
000009 .
00C010 00 0Ugooo 12 00023 ADD AsB <
00 0Vpoo1 14 0004
00 0Cpo0o02 44 pOOS
000011 00 000003 000001 A +l
000012 00 00ooD4 ©0D0OGOD2 B +2
000013 00 000005 000003 c +3
000014 END
Explanation:

3.7.2.

m Lines 2 through 6 define the procedure ADD.

m Lines 3 and 4 define a simple addition,

m Line 5 contains a conditional DO statement. The condition is dependent on the
number of fields in the call line, in this case two.

m Line 10 is the call line consisting of two fields.

Referencing the Number of Subfields

The paraform pn (a), where pn denotes the procedure name and (a) is an expression
which represents the ath field on the procedure call line, refers to the number of
subfields present in the ath field,

Example:

000001
000002
000003
000004
000005
000006
000007
gooooe

ooooo?

oo o%pooo
00 00gooi
00 0Upooz

Qooool
ooooo2
000004

PROC o

00 ASMEL) » *ASMEL,)
END

CALL NAME

ASHM 19204

END

UP-7599
Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER 3

SECTION: PAGE:

Explanation:
m Lines 2 and 4 define the procedure ASM.
® Line 3 performs the operation +ASM(1,I), ASM(1) times.

m Line 8 calls the procedure ASM and specifies one field with three subfields
1, 2, and 4. As a result the paraform ASM(1l) is assigned the value 3, and the
operation +ASM(1,I) is performed three times. The code generated as a result
of the ASM call will therefore be three data words:

+1

+2
+4

3.7.3. Referencing the Procedure Call Parameters

In order to reference any of the supplied procedure parameters, the specific para-
meter is identified by specifying the procedure name immediately followed by a
pair of parentheses. Enclosed within the parentheses are two values separated by
a comma. The first value denotes the specific field in the call line; the second
value denotes the specific subfield within the specified field in the call line.

Example:
oogool /o
oooop2 ADDw PROC 143
000003 LL ADD(1 1)
oooood At ADD(1,2)
000005 SL ADD(1,43)
000006 END
ooooo7 .
000008 . Se» CALL NAME
000009 .)
000010 00 oUpooo 12 voo3d ADD ONE+TWO, THREE
00 00pool 14 ooo¢
00 000002 44 0005
0000141 00 0UooO3 000001 ONE +1
000012 oo o0oou4 000002 TWO 2
000013 00 000005 000003 THREE +3
000014 END
Explanation:

m Lines 2 and 6 define the procedure ADD.

@ Lines 3, 4, and 5 generate a load, add, store set of instructions to perform the

operation C = A+B. The addresses of A, B, and C are specified as subfields
1, 2, and 3 of field 1.

m Line 10 calls upon the procedure ADD to generate the code which performs the
operation (ONE)+(TWO) -THREE.

UP-7599 3
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER

SECTION: PAGE:

3.7.4. Referencing the Asterisk in a Procedure Parameter

Because of the use of the asterisk to indicate the index mode in normal instructions,
the presence or absence of an asterisk in the procedure call parameter may be checked
by using the paraform structure pn(a,*b), where pn denotes the procedure name, and

a and b are expressions representing the field and subfield numbers respectively.

If the specified parameter, pn(a,b), is preceded by an asterisk, the paraform pn(a,*b)
is assigned a value 1;otherwise, 0.

Example:
000001 /e
000002 L PROC i
ggggg: MOVE® NAME
0o LEly®l) » LU LE1,1)
000005 Do Lilse2) » LL L(2,2)
0oopoDneée BT Li143)
oonoo7? END
ooaouoe .
oDoooo? . wue CALL EXAMPLE
000010 .
oguoll 00 0Ggooo 10 003é MOVE *(FROM) o*(TO),12
00 000001 12 0037
00 oUgpooz 5070 14
ooool2 00 000003 10 0D3é Ly (FROM)
000013 00 000004 12 0037 LL (7o)
ooCo1Y 00 00C0ous 5070 14 MOVE 050412
oouols 00 0U0pDOs FROM RES 12
000016 00 090022 T0 RES 12
000017 END
00 0UpOD3e 000006
00 0Uppay ooop22
Explanation:

m Lines 2 and 7 define the procedure L.
m Line 3 defines MOVE as an entry point to the procedure.

m Lines 4 and 5 generate the instructions LU L(1,1) and LL L(1,2) if the first
and second subfields of the first field of the parameters on the call line are
preceded by an asterisk.

m Line 11 calls on procedure L by way of the entry point MOVE. Since asterisks
occur in the first two subfields, an LU (FROM) and LL (TO) are generated.

® Line 14 calls on the MOVE procedure. Since no asterisk occurs on the first
two parameters, the LU and LL are not generated.

UP-7599

Rev. 1 UNIVAC 418-1i1 RTOS ASSEMBLER ‘ 3 10
SECTION: PAGE:
Example:
000001 L PROC 142 o
000002 LAe NAME
000003 1 FORM 6412
00U0GH 1 QlosL(lyel), kil)
000005 1 Ol2eL(le®1), Lil, 1))
000006 END
000007 V] 00 oupooo 10 uool LA TAG
u oo 000001 12 000l
oouoos v 00 0UODLZ 11 0000 LA *TAG
u 00 0UpoO3a 13 oool
000009 END
Explanation:

m Lines 1 and 6 define procedure L.
m Line 2 defines an entry point LA. (See 3.6.2).

m Lines 4 and 5 generate:

ey
(2)

3)

lower 12 bits equal to the supplied first parameter

upper 6 bits 010 (LU) and 012 (LL) if no asterisk precedes the first para-

meter

upper 6 bits 011 (LU*) and 013 (LL*) if an asterisk precedes the parameter

m Line 7 causes the following instructions to be generated:

LU
LL

TAG
TAG+1

m Line 8 causes the following instructions to be generated:

LU
LL

*TAG
*TAG+1

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 3 11
SECTION: PAGE:
3.7.5. Referencing the NAME Directive Operand Value
The NAME directive may define a procedure entry point (see 2.14). The paraform
pn(0,0), where pn denotes the procedure name, refers to the value in the operand
field of the NAME directive by which the procedure was called upon. If the pro-
cedure call is to the procedure name itself, pn(0,0) has a value of 0.
Example:
/'
000001
PROC 1,3
Soones koo. N.ﬁg 014 e "AL' FCNe CDE
000004 5UBw NAME 016 e *ANL' FCN. COE
000008 1 FORM 6412
Soooos 1 Ol2+L(hseld bl 1)
Pt I LIOs0)+L (1 s92) 4L (1,2)
Sooeos 1 044¢L(1993),L11,3)
00U008 o
noooo?
B
gggg:? . Wos CALL NAME
000012 .
Doguia 00 0UooUe 12 0oo® ADD ONE#TWO» THREE
00 oUooor 15 ooo?
00 0Ugoo2 44 0010
000014 00 0Cpooa 12 ovor! sus AsBoC
00 0CpoO4 16 0012
o0 o00on0s 44 0013
000015 00 000006 000OOL ONE +1
000016 00 OUgoD7 000002 THO .2
000017 00 olooio 0oono3 THREE 3
oooole 00 00QOi) 00DDOOH A :;
000019 po 000012 0DOODS B :
000020 0D 0UOD13 00DDDG < L
oogo2!
Explanation:

8 Lines 2 and 9 define the procedure L.

m Lines 3 and 4 provide the entry points ADD and SUB. (Note that L. is not an

entry point to the procedure since no asterisk is appended to the label.) If the
procedure is called upon through the entry point ADD, the value of L(0,0) is
014; if called upon by way of the entry point SUB, L(0,0) is 016.

Lines 6, 7, and 8 generate the instructions:

LL or LL*
AL,ANL or AL¥ ANL* and
SL or SL*, respectively.

The indexed function codes a:e used if an asterisk precedes the appropriate

paraform expression. Depending on whether the ADD or SUB entry point is used,
the AL or ANL function code is used.

UP-7599

Rev. 1

3

SECTION:

UNIVAC 418111 RTOS ASSEMBLER l

PAGE:

12

3.7.6.

Line 13 calls on procedure L through the entry point ADD. As a result, the code
generated is: .

LL ONE
AL *TWO
SL THREE

Line 14 calls on procedure L through the entry point SUB. As a result, the
generated code is:

LL A
ANL B
SL C

Referencing Subfields of the 0th Field

The paraform pn(0,b), where pn represents the Erocedure name, may be used to

denote the bth

subfield of the Oth field. The 0N field is defined on the procedure

call immediately following the procedure call name and separated by a comma.

Example:
000001 /e
000002 L PROC !
000003 ADDe NAME 014
000004 suBe NAME 01
00000% 1 FORM 6512
000006 DO L(O0,1)20 , | Ol2+L(lsel),yL(2,y1)
000007 1 LE0»0)+Lila02) 51 (1,2)
oguoos DO L(O)m2 4 I 044+L(1se3)sL(1s3)
000009 ENp
000010 .
0ooo1) « Sew CALL NAME
000012 .
000013 0D 0U00VO 14 U004 ADD AyBoeC
000014 oD 000001 12 DOOS sUgyl AvByoc
00 000002 16 D006
000015 00 000003 14 0006 ADDy 0} AvBosC
00 000004 45 0007
000046 00 00poos 0000014 A *l
000017 00 0000Us 000002 B +2
000018 0o 000007 000003 c *3
000019 END
Explanation:
m Lines 2 and 9 define the procedure L.
m Lines 3 and 4 provide the entry points ADD and SUB.
m Line 6 generates an LL or LL* instruction if the first subfield of the oth field
is present and greater than zero.
® Line 7 generates the instruction AL or ANL, depending on the entry point used.
@ Line 8 generates an SL or SL* instruction if the second subfield of the oth field
is present.
B Line 13 generates the code:

AL B

(Note that subfields L(1,1) and L(1,3) are present but superfluous),

UP-7599
Rev. 1 UNIVAC 418-1ll RTOS ASSEMBLER

SECTION: PAGE:

m Line 14 generates the code:

LL A
ANL B

(Note that the subfield L(1,3) is superfluous.)

m Line 15 generates the code:

AL B
SL *C

(Note that even though subfield .(1,1) must be present, no actual expression 1s
needed. A zero would suffice to define the subfield).

3.7.7. Summary of Paraforms
Paraform constructions are summarized as follows (pn denotes procedure name):

pn When the procedure name is written with no specified field or subfield,
the value of the paraform is a constant equal to the number of fields in
the call line., (The operation field is not included as part of the count.)

pn(a) The value of pn(a) is a constant equal to the number of subfields in the
specified (a) field.

pn(a,b) The value of pn(a,b) is the parameter appearing in the subfield of field a.

pn(a,*b) The value of pn(a,*b) is a constant equal to 1 or 0, depending on whether
the parameter in the bth subfield of the ath field is preceded by an asterisk.

pn(0,0) The paraform pn(0,0) has a value equal to that specified in the operand
field of the NAME directive used for the procedure call entry point. If the
entry point is the procedure name itself, pn(0,0) has a constant value
equal to O,

pn(0,b) The paraform pn(0,b) has a value equal to the parameter in the pth subfield
of the 0P field. The Oth field is considered to be the operation field.

3.8. NESTING OF PROCEDURES

When encountering a procedure call, the assembler temporarily discontinues the
current assembly and begins a subassembly of the procedure sample. Upon encounter-
ing the END directive, the original assembly is resumed. While processing the pro-
cedure sample, another procedure call may be encountered, resulting in the temporary
suspension of the first procedure and the processing of the second. This process

may continue up to 15 levels of procedures and is referred to as the nesting of
procedures. Each time a subassembly of a procedure is entered, all labels within

the procedure are defined for that procedure only. All labels and paraforms defined

in all preceding assemblies are also available to the subassembly. When the main
assembly is resumed, all labels defined within the subassembly are erased.

The nesting of procedures, therefore, enables the programmer to use the same label
in different procedures. Nesting allows simpler block-building techniques but requires
longer assembly time.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

3

SECTION: PAGE:

14

3.8.1,

When practical, the depth of nesting should be limited. Use of the distributed NAME
and GO directives may be helpful in restricting levels of nesting (see 2.13 and 2.14).

Physical Nesting

Physical nesting occurs when a procedure is physically located within the bounds

of another procedure. If a procedure is physically contained within another procedure,
the internal procedure is considered to be defined at one level higher than the
external procedure. Procedures may be nested to 15 levels. Therefore, the physical
location of the procedure sample determines at which level the procedure can be

accessed.

Physical nesting of procedures may be used to prevent certain procedures from

being referenced unconditionally.

Example:

START MAIN PROGRAM Level 0
Start AB Procedure Level 1
Start XY Pr;)cedure Level 2
étart CD Procedure Level 3
END
Start WZ Procedure Level 3

END

END

END .

END

Explanation:

Procedures CD and WZ are nested within the XY procedure and the XY procedure

is nested within the AB procedure.

UP-7599
Rev. 1

SECTION:

UNIVAC 418-1l1l RTOS ASSEMBLER l

PAGE:

15

3.8.2. Levels of Procedures

When procedures are nested, they are considered to have various levels of hierarch
The main program is considered level 0. A procedure called upon at level 0 is
assembled at level 1. Its entry point must therefore be defined to be accessible to
level 0. A procedure called upon within a level 1 procedure is assembled at level
2. In other words, each time a new subassembly is started the level is increased
by 1, and decreased as the procedure subassembly is completed.

The level of a procedure entry point determines where the procedure may be refer-
enced. If the level of the procedure entry point is equal to or less than the level
of the subassembly, it is accessible to that subassembly, and the procedure may
be referenced. If the level of the procedure entry point is greater than the level of

V.

the subassembly, the procedure may not be referenced from within the subassembly.

The level of a procedure entry point is determined by combining the level at which
the procedure sample is defined and the number of asterisks appended to the label
of the entry point. Each asterisk appended to the label of the procedure entry point
makes the label accessible for reference at a level one lower than the level at
which the procedure sample is defined.

Example:

P1* PROC Entry point at level 0

Level 1 procedure

P2 PROC Entry point at level 2
Level 2 procedure
[P3*** PROC Entry point at level 0
Level 3 procedure
—_— END
— P4** PROC Entry point at level 1
Level 3 procedure
—_— END
e END
END

Level 0 code

UP-7599
Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER 3

SECTION:

PAGE:

16

Explanation:

m Entry point Pl is accessible to level 0. Procedure P1 may be called from any-
where in the program.

m Entry point P2 is accessible to level 2. Procedure P2 may be called only from
within a second or higher level procedure.

m Entry point P3 is accessible to level 0. Procedure P3 may be called from any-
where in the program.

® Entry point P4 is accessible to level 1, Procedure P4 may be called from within
a first or higher level procedure only.

Example:
1l p——Pp1* PROC Entry point at level 0
Level 1 procedure
2 P3 Call at level 1
3| P2 PROC Entry point at level 2
Level 2 procedure
4 P4 Call at level 3
5 —pP 3 *k% PROC A Entry point at level 0
Level 3 procedure
6 P2 Call at level 2
7 END
8 =P 4 ¥ * PROC Entry point at level 1
Level 3 procedure
performed as level 4 procedure
9 END
10 END
11 END
12 P1 Procedure call at level 0
Explanation:

m Lines 1 and 11 define a level 1 procedure P1,
m Lines 3 and 10 define a level 2 procedure P2,
m Lines 5 and 7 define a level 3 procedure P3.

m Lines 8 and 9 define a level 3 procedure P4.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 3

SECTION:

PAGE:

17

3.9.

m Line 1 defines a procedure entry point P1 at level 0.
® Line 3 defines a procedure entry point P2 at level 2.
m Line 5 defines a procedure entry point P3 at level 0.
B Line 8 defines a procedure entry point P4 at level 1.

@ Line 12 is a procedure call on procedure P1 which is accessible at all levels.
The procedure P1 is processed at level 1.

w Line 2 is a procedure call on procedure P3 which is accessible at all levels.
The procedure P3 is processed at level 2.

m Line 6 is a procedure call on procedure P2 which is accessible at level 2 and
higher. The procedure P2 is processed at level 3.

m Line 4 is a procedure call on procedure P4 which is accessible at level 1 and
higher. The procedure P4 is processed at level 4.

PROCEDURE LABELS

As stated previously, the labels on the PROC and NAME directives are procedure
entry points, They may be referenced as procedure entry points only at those levels

or higher levels of subassembly at which the entry point is defined. They are in-
accessible below the level at which the entry point is defined. The accessible level
of the entry point is determined by the physical nesting depth of the procedure together
with the number of asterisks appended to the entry point label.

Other labels may be used within procedures. A label is a symbolic representation of
some value. It may be local or global. A local label may be referenced only at the

level at which it is defined or at higher levels. A global label is one which is defined
to be accessible beyond the range of the assembly in which it is defined. When a

label is defined to be accessible beyond the entire assembly, it is said to be externally
defined,

Labels defined in the main program may therefore be referenced within any procedure,
Labels defined within a particular procedute may normally be only referenced within
that procedure or by any procedure called upon by the first procedure.

Example:

000001 I

ooovon2 A PROC

000003 ONE EQU !
000004 Be PROC

000005 - LLK ONE
000006 THO EQU 2
ooopoo7 LLk TWO
0ooons LLx THREE
000009 END

o0ou010 LLK ONE
00001} B

ogopoi2 LLk THREE
000013 END

oouolLY p00003 THREE EQU 3
oouotLs .

000016 o un CALL NAME
ooovos7 .

oowo1s8 0o oUoopo 70 0ool A

00 oUgouty 70 oool

00 o0opoon2 70 oop2

00 000003 70 0003

00 oUooDo4 70 0003
000019 00 0UGDOS 70 o003 Lik THREE
00p020 END

UP-7599 3
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER cecmions .

Explanation:

m Lines 2 and 13 define a first level procedure, A.
m Lines 4 and 9 define a second level procedure, B.
m Line 3 defines ONE at level 1.

m Line 6 defines TWO at level 2.

@ Line 14 defines THREE at level 0.

m Lines 5, 7, and 8 illustrate that all three labels may be referenced within the
second level procedure B.

m Lines 10 and 12 illustrate that only the labels ONE and THREE may be referenced
in the first level procedure A.

® Line 19 illustrates that only the label THREE may be referenced in the main
program, The labels ONE and TWO are not defined to be accessible to level 0.

Labels defined within a procedure are unique to the level at which they are defined.
If the same label is defined at more than one level, any reference to that label will
be to the definition in existence at the highest accessible level.

Example:
oooood /e
ooooo2 A PROC
000003 ONE EQU 1
ooooo4 Be PROC
000005 ONE EQU 2
000006 LLk ONE ¢ ONE = 2
ooouo? END
00w008 B
000009 LLK ONE ¢ ONE = |
000010 END
000011 000003 ONE EQU 3
oooui2 .
000013 LX) CALL NAME
000014 .
000015 oo 00poop 70 0002 A
00 obooo} 70 ooo!
000016 00 000002 70 0003 LLK ONE « ONE = 3
opoot? END
Explanation:

m Lines 2, 4, 7, and 10 define the first and second level procedures A and B,
m Lines 3, 5, and 11 define ONE as 1, 2, and 3, respectively, at levels 1, 2, and 0.

® Lines 6, 9, and 16 illustrate that even though the same label ONE is used, the
values associated in each case are different.

NOTE: 1If line 5 were omitted, the reference to ONE in line 6 would result in a
reference to the value of ONE defined at the next lower level, namely 1.

UNIVAC 418-H1 RTOS ASSEMBLER 3

SECTION: PAGE:

UP-7599
Rev. 1

3.9.1. Global Labels

In order to define labels to be accessible at levels lower than the one at which
they are defined, asterisks are appended to the label definition. For each asterisk
appended to the label, the level of the label is decremented by 1. If the number of
asterisks appended to the label definition exceeds the subassembly level at which
it is defined, the label becomes an external definition and may be referenced by
other programs.

Global labels are defined only after the procedure in which they are defined has
been called.

Care must be taken that global labels are not multiply defined as a result of
repeated calls on the procedure in which they are defined.

Example:
o000l /e
ooouo2 BREGSe PROC
000003 Rlse EQU [}
oooo0o4 B2es EQU 2
000005 Ble EQU 3
000006 END
000007 .
000008 . see CALL NAME
000009 .
000010 . BREGS
000011 o0 00gooo 32 o000l L8 Bl
00co12 END
*e® SUMMARY ews
PROGRAM SJZE! 00 Qooot
EXTERNAL DEFINITIONS: B2 81
Explanation:

m Lines 2 and 6 define the procedure BREGS.

Line 10 calls on the procedure BREGS and causes the labels B1l, B2, and B3
to be defined.

@ Lines 3 and 4 define the external labels B1 and B2 as external definitions,
@ Line 5 defines B3 = 3 at level 0.

m Line 11 illustrates that after the procedure BREGS is called, the label B1 may
be referenced at level 0.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER

SECTION:

PAGE:

20

3.10, FORWARD REFERENCES
Forward references occur when a label is referenced prior to its definition. Forward
references also occur if a label whose value is dependent upon values not yet
defined has been referenced. Forward references are prohibited if the fact that
different values associated with the label in pass 1 and pass 2 of the assembly
causes different amounts of code to be generated in pass 1 and pass 2 of the
assembly.
Example:
LABEL OPERATION OPERAND
10 20 30 40
bl [T iRuExsn o o NG TR TN N TN UT SN0 S SO N SO S S SO ST
A B B L e e
A S B T MLL,L_LJ__“LD_Q;] 1B|>1°1 YR % SH PO A AR TR W O Ot NS SO0 T DA S S SO
B o N e I i
AN O S GO S I S T S Y S S S SN S SN WO A SO MO S R N S NS Y R RS S S A AN RS A R ST S

Explanation:
@ A is not defined in pass 1.

@ B is not defined in pass 1.

The user is cautioned against basing the generation of code within a procedure
sample on a condition involving a forward reference. Consider a hypothetical
MOVE procedure. The programmer may check if the move from and move to
addresses are the same. On the first pass through the source data, the labels of
the from and to areas may or may not have been defined. On the second pass of
the assembler, the labels will have been defined. The values reached on each
pass of the assembler can be different.

If the procedure sample chooses an error exit on pass 1 (that is, no generation of
code) and produces code on pass 2, the labels following the call on the sample
are assigned a location counter value on pass 1 that is different in pass 2. The
result is a multiple definition of those labels.

When the assembler gets a different line count on the first or second pass, multiple
definitions of succeeding labels occur and the D error flag is set.

The user is reminded to take great care when using forward references.

UP-7599
Rev. 1 UNIVAC 418.111l RTOS ASSEMBLER 3

SECTION: PAGE:

3.11. LOCATION COUNTER DEFINITION

A procedure may be made to generate code under one or more location counters by
defining the location counter in the label field of a line item within the procedure
sample. When the procedure is completed, the location counter active at the time

that the procedure was called is reactivated.

Example:
000G0} /s
oou0o2 Aw PROC
000003 SLul $(1)
0000D4 s(1) YYEREY)
000005 END
000006 .
000007 . one CALL NAME
00UD0B .
0oQUoY 00 00oobD 30 DOOED A suBl
« 6,12 01}
u o1 o0opoo 000000
* 18 o0 sugl
000010 00 000001 30 ool A sugz
¢« 6,12 01
v o1 000001 000000
+ 18 00 sugs2
0000114 END
ese SUMMARY ees
PROGRAM SI1ZE: 00 V0002 04 00002
EXTERNAL OR UNDEFINED REFERENCES: SUB2 suBl
Explanation:

m Lines 2 and 5 define the procedure A.

® Line 3 generates an SL]JI instruction to the next word under location counter 1.

® Line 4 defines the subroutine entry address under location counter 1.

B Lines 9 and 10 generate two calls on subroutines SUB1 and SUB2 respectively.
The SLJI instructions are generated under location counter 0; the entry point
addresses, SUB1 and SUB2, are generated under location counter 1.

NOTE: Unless a map is submitted to force location counters 0 and 1 to be in the
same bay, the foregoing example is not executable.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 3

SECTION: PAGE:

22

3.11.1. Writing Labels

A label may be affixed to the line of reference to a procedure. Under normal conditions,
this label is defined as equal to the value of the current location counter at the time

of the procedure call. It is possible to associate this label with a line within the
procedure, This is done by coding an asterisk (*) alone in the label field of that
particular line in the procedure. The label of the calling line is processed exactly as
though it has appeared in place of the asterisk except that it is defined at the level

of the reference line on which it appeared.

Example:

cooool /e

000002 Ae PROC 192

ooop003 Tz Allal)

000004 . J Al1y2)

000005 ENp

oouoDé .

oocon7 . ees CALL NAME

0owoo8 .

00u00Y 00 00gooo 57 0003 JP A ONE»TWO
06 00000G1 34 0004

0ooul0 00 000002 55 0001 J1 JP

006011 00 000003 0oooot ONE «l

oogoi2 00 090004 000002 THO 2

0ouoi3 END

Explanation:

®m Lines 2 and 5 define the procedure A, which generates the instructions TZ and J.
® Line 4 generates the instruction J and has a single asterisk in the label field.

@ Line 9 calls on procedure A. The label JP is defined as equal to the location
counter value of the J instruction instead of the usual TZ instruction which is
the first line generated.

3.12. Complex Procedures

The following paragraphs of this section contain a discussion of those assembler
features which enable the construction and use of complex procedures. When the DO,
NAME, and GO directives are used in conjunction with procedures, a powerful tool
exists for the generation of code which is conditioned by the supplied parameters.
Procedures may be used to conditionally generate code, The PROC structure enables
coding of generation alogrithms in the procedure sample, such that the code generated
applies the alogrithms and may generate entirely different tables or instructions,
depending on the supplied parameters,

3.12.1. NAME Directive
The NAME directive has three functions:
® It provides a local reference point within a given procedure sample.
m It provides alternate entry points to the procedure.

®m It may supply a value to the procedure which is unique for the associated
entry point.

UP-7599
Rev. 1

UNIVAC 418-1ll RTOS ASSEMBLER

SECTION: PAGE:

23

3.12.1.1.

3.12,1.2,

The NAME directive has the structure:

label NAME operand

The label field contains a symbolic label no longer than six alphanumeric characters,
which is used to identify the NAME directive., The operand field may contain a

value which can be referenced in the procedure sample by the paraform pn(0,0),
where pn denotes the procedure name.

The label of the NAME directive is defined in the same way as the label of a PROC
directive; that is, it is defined at the same level as the procedure, and asterisks
are used to make the label accessible at lower levels.

Local Reference Point

The NAME directive provides a local reference point within the procedure sample
in which it is defined. Associated with the label of the NAME directive is the
start of the symbolic code within the procedure immediately following the NAME
directive. By using the GO directive (see 3.12.2) or by using the NAME directive
as a procedure entry point (see 3.12.1.2), different paths through the procedure
sample may be chosen.

Alternate Entry Point

The NAME directive may be used as an alternate entry point to the procedure,

In this form the same rules applying to the PROC directive entry point apply

to the NAME labels. Regardless of the procedure entry point used for any partic-
ular procedure call, the paraform name is the procedure name,

Example:
ooouool /s
ooctoe LADDe PROC
006003 LL LADDU, 1)
000004 ADDe NAME
oouupS AL LADD(I42)
0000606 END
0ooGan7 .
gouupse o« wne CALL NAME
oouGng .
oouGio 00 ovoouo 12 o003 LADD AsB
0o olonot 14 poO4
0ou01) 06 0booo2z 14 0004 ADD O0y8
oouti2 .
000633 00 0Coou3 0o0puol A +]
0000} % 00 000004 000002 B +2
006015 END

Explanation:
B Lines 2 and 6 define the procedure LADD,

® Line 4 defines the alternate entry point ADD. The entry point ADD, because
of its position, does not point to the same procedure sample, If the procedure
is called upon through the entry point ADD, the subassembly of the procedure
starts with line 5.

® Line 10 calls on the procedure LADD and would generate the instructions:
LL A

AL B

UP-7599
Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER 3 24

SECTION: PAGE:

®m Line 11 calls on the procedure LADD but through entry point ADD. As a result,

the generated code would be:

AL B

3.12.1.3. Parameter Value

00000}
000002
000003
000004
0060G0S
000006
00c007
000008
000009
000010
Qo001
0o0o0i2

coo013

000014
000015

Qooote
000017

The paraform pn(0,0) has a value depending on the procedure entry point used in the
the function field of the procedure call line, If the procedure name is used as

the entry point, the paraform pn(0,0) has a value of 0. If an entry point defined

on a NAME directive is used, the paraform pn(0,0) has a value equal to the operand
. value of the NAME directive.

Example?
/e
L PRoOC 1e2
LA® NAME oo e LU FCNe CDE
SAw NAME 046 ¢ SU FCNe CDE
1 FORM 6,12
I LE0,0)5LEL510) :
1 012+0320(L(0,0)ImO46) 5L 01,10+
END
v ooe CALL NAHE
00 0Ovooo 10 000%) LA A
00 000001 12 0005
00 000062 46 0006 SA B
00 000003 44 poo7
00 000004 201400 l.\ “1,0
00 0Goous 000000
00 0000Gs 8 RES 2
ENp

Explanation:

¥ Lines 2 and 8 define the procedure L.

@ Lines 3 and 4 provide the entry points LA and SA. If the procedure is called
through the entry point LA, the paraform L(0,0) has a value 010; if called
through the entry point SA, the paraform L(0,0) has a value 046.

Line 6 generates an instruction with function codes of either 010 or 046, that
is, an LU or an SU.

u Line 7 generates an instruction with function codes of either 012 or 044, that
is, an LL or an SL.

@ Line 12 calls on procedure L through the entry point LA, The code generated
is:

LU A
LL A+l
& Line 13 calls on procedure L through the entry point SA., The code generated

is:
SU B

SL B+l

UP-7599 :
Rev. 1 : UNIVAC 418-111 RTOS ASSEMBLER ‘ 3

SECTION: PAGE:

3.12.2. GO Directive

The GO directive provides a means of transferring control to the line whose label
is in the operand field. The format of the GO directive is as follows:

GO label

The label specified in the operand field must refer to the label of a NAME or PROC
directive and must be accessible at the level at which the GO is performed,

When the GO directive is encountered within a procedure, the next symbolic line
scanned in the procedure sample is the one to which the NAME directive referenced
points. The NAME directive referenced need not be defined in the procedure. As a
result, lateral transfer between procedures is possible through the use of the GO
directive,

In determining the label of the NAME directive referred to, the assembler uses the
following alogrithms:

® If the first character of the operand field of the GO directive is alphabetic, the
label is directly specified.

m If the first character of the operand field of the GO directive is not alphabetic,
the field is assumed to contain an expression. The resultant 36-bit value of the’
expression is then used as representing the left-justified label.

Example 1:

000001 : /e

000002 X PROC)

000003 MOVEe NAME

000Gu4 DO X(l,e1) 4 LU X(l,1}
00G00% DO X(l,e2) , LiL K{l,s2)
0Guo0s DO X(l,e3) 4, GO X}

oowoo7 BT X(1,3)

00008 DO 1 s END

oouboY x1 NAME

000010 DO X(1,3)<04000 4 LBK X(1,3)
0ouGIl DO X(1,3)>03777 , LB (X€1,30)
ooaoi2 SLJl (MOVSUB)

000613 END

oouo Y .

000015 ' Ses CALL NAME

030016 .

000017 00 oloooo 10 0367 MOVE ¢(FROM)+#(T0),12

00 090001 12 0370
00 0Goou2 5070 19
ooooie 00 00p0u3 10 0367 MOVE s(FROM),®(T0),*120
o0 obopoos 12 0370
00 0000GS 36 0170

v 00 000006 30 03rd
000019 oo 000007 FROM RES 120
000020 00 000177 TO RES 120
oouo21 END

00 000367 000007

00 000370 000177

u 00 00037y goeouo
sae SUMMARY see

PROGRAM SIZE? 00 Po372

EXTERNAL OR UNDEFINED REFERENCES} MOVSURB

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER J

SECTION:

PAGE:

26

Explanation:

Lines 2 and 13 define the procedure X,

Line 3 provides the entry point MOVE,

Lines 4 and 5 generate LU and LL if the first two parameters are preceded by an
asterisk.

The GO directive on line 6 will be performed if the third parameter is preceded by
an asterisk. If so, lines 7 and 8 are ignored and the procedure subassembly resumes
at line 9.

If no asterisk appears in the third parameter, line 7 generates a BT instruction.
Line 8 terminates the subassembly of the procedure. Note that the DO statement
is used to avoid the termination of the procedure sample which would result if just

an END statement were coded.

Lines 10 and 11 generate either LBK or LB, depending on the number of words
to be transferred.

Line 12 generates an SL]JI call on the subroutine MOVSUB.
Line 17 calls on the procedure X through the MOVE entry. Since no asterisk

precedes the third parameter, a BT 12 instruction is generated in addition to
the LU and LL instructions.

Line 18 calls on the same procedure but because the third parameter is preceded
by an asterisk, the code generated is:

LU (FROM)
LL (TO)
LBK 120

SLJI (MOVSUB)

UP-7599

UNIVAC 418-111 RTOS ASSEMBLER : 3

27
Rev. 1 SECTION: PAGE:

Example 2:
oooool /e
000002 X PROC 1
0opoo3 MOVEw NAME
006604 00 Xtl,e1) , LU X(l,1)
oouGos Do X(l,e2) , uL X(1,2)
DODGUS DO X(1,#3) , 6O X}
couLc? BT All,3)

j END
06uG08
oouoo9 X1 PROC 0,2
00610 DO X(1,3)<D40UD , LBK X(1,3)
nnu;»x DO X(1,3)>03777 , Lb (X{(1,3))
ougulz sLyl (MOVSUB)
00G013 END

)14 . R
ggggis . e CALL NAME
o0uo16 .
gouaG17 00 00o0nD 10 0367 MOVE ¢ (FROM) ,#(T0), 12

3.12.3.

o0 00Qo01 12 0372
00 0Upoo2 5070 1
popbl8 00 000003 10 0367 MOVE ®(FROM) y*(T0O} 120
ob oUgoud 12 va70
oo 00paos 36 0170

U 00 OWOODe 30 037} .
DOLOLY 00 060067 FROM RES 120
ooL020 ap 000177 T0 RES 120
ooutb2l END

00 0UD3e7 goooaz

00 0V037U 000177

U 00 00037y [e]eJe]eTe]i]
se® SUMMARY aews

PROGRAM SIZES op Uo3zz

£ XTERNAL OR UNDEFINED REFERENCES! MOVSUE

Explanation:

Example 1 is functionally identical to example 2. Instead of a single procedure,

two separate procedures, X and X1, are defined, and the GO directive is used to
transfer into the second procedure,

m If the NAME directive referred to in the GO statement is not defined or is not
accessible at the level of subassembly of the GO directive, an expression

error results (E flag) and scanning of the procedure resumes at the next line of
the procedure sample.)

B The GO directive may direct the assembler to resume processing of the subassembly
at the occurrence of the specified NAME directive, The NAME directive may appear
anywhere; that is, it may be a forward or back reference, or it may be a transfer
into another procedure. As a result, great care must be taken to avoid infinite loops,
caused by using the GO directive inappropriately.

DO Directive

The DO directive, as previously explained, is used to conditionally generate one

or more words of data, The DO directive in the assembler is a powerful tool which,
when used within procedures, provides great flexibility and power, When combined
with the GO directive, the DO directive can be used to generate series of instructions
iteratively as well as conditionally. The following paragraphs detail the rules which
apply when these two directives are used together.

R UNIVAC 41811l RTOS ASSEMBLER 3

SECTION: PAGE:

3.12.3.1. Conditional DO

If one of the conditional operators, < = or >, govern the determinant expression
in the DO, or if the determinate expression has a value of 1, the GO directive is

performed exactly as though the DO directive were absent. Therefore, the ex-
pressions:

DO 1 ,GOA
and

GO A

are functionally identical.

3.12.3.2, Generative DO

If the determinant expression of the DO directive is greater than 1, the DO

is said to be of the generative type. When the GO directive appears as the DO-
item of a generative DO, the GO is performed iteratively as many times as the
repeat count specifies, When an END directive is encountered, the next GO is
petformed. When the DO count is exhausted, processing continues at the state-
ment following the DO.

Example:
ooucol /o
00uuL2 X PROC
ooouo3 LUSTOR« NAME
0GLOOY 1 DO X » GO Xl
000UOS DG 1 4 END
ooLuGe x1 NAME
00uGUL7 LA X{isl1)
[T} SA X€142)
oouLy9 END
[JUTNRY .
00001 . weu CALL NAME
opub12 .
oouuLa 00 0OUDOUD 10 oo14 LDSTOR AsB CyD EF

U0 0YouUl 12 go15

00 0Ugoy2 46 (016

00 0Copoua 44 0017

00 06GQoouy 10 0020

00 olpous 12 oozl

00 00p0us 46 G022

00 0voou7 44 (023

00 000010 tu po24

00 0UQOL1 12 o025

0c 000012 46 G026

00 000013 44 Qo027
oouo L4 .
000UG1S U0 OUDDIY 201400 A +1,0

06 060015 000u00
ouLo16 00 0UpD1e6 8 RES 2
vopul7 00 GUpo2U 202600 [+3,0

00 0UQ021 voouoo
vooule 00 0Vo0D22 D RES 2
000019 00 000024 203500 E +5,0

00 00Q02% 000u00
ooou2o 00 0UoD2é6 F RES 2
gouozt END
Explanation:

B Lines 2 and 9 define the procedure X.

M Line 3 provides the entry point LDSTOR.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

SECTION:

PAGE:

29

® Line 4 cowmbines a DO and GO directive. Since the paraform X may have a
value between 0 and infinity (actually the maximum number of fields allowed
is 176g), it may be either a conditional or generative DO. Assuming X>1, the
DO is of the generative type. As a result the GO X1 is performed X times.
Each time, transfer is made to line 6, and the procedures LA and SA are
performed. After the DO count is exhausted, line 5, which terminates the

subassembly, is performed. If X=1, transfer to line 6 is made, and subassembly

is terminated upon encountering the END directive in line 9.

m Line 7 calls the procedure LA, which generates the instructions LU and LL.

m Line 8 calls the procedure SA,which generates an SU and SL.

® Line 13 calls on the procedure X and generates the instructions:

LU
LL
Su
SL
LU
LL

SU

and so on through F.

A
A+l

B+1

C+1

D

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER

SECTION:

PAGE:

30

Example:

ggoootl
gooco2
0000023
00C004
000005
gooone
000007
00GGo8
000009
[Relep N1}
goooil
ooou12
000013
000014
000015

00u01é

000017

PROGRAM SIZE?

[+1]

1]}

co

00

oo

00

oo

oo

[s]8}

oo

oo

[1]0]

[]¢]

0o

00

odoouo
00ooul
obpooz
00go02a
000004
ougoons
00poue
ovuour
odooig
oupol
oGpoi2

000013

000014
000015

olooie

oo Opotvy

30 0014
+ 6,12
70 ouol
+ 6,12
30 0U1LS
+ 6,12
70 o003
+ 6412
30 0U1S
+ b,12
70 QoO%
+ b,12
30 001S
+ 6,12

~ 30 Voleé

* 6,12
30 ooi14
4 6,12
70 0002
« 4412
30 ouib
+ 6,12
30 0016
+ 6,12

000000

+ 18
000000

* 18
0Qo0000

+ 18

EXTERNAL OR UNDEFINED REFERENCES!S

Explanation :

0o
319
(814
oo
0o
oo
0o
uo
Q0
oo
vo

uo

oo QPgN
0o GET

uo CLOSE

CLOSE GET

/e

S
CALLY
1

X1

. e

PRoC

Qe NAME
SLul (OPEN)
po X+#2 , GO X1
Skyl (CLOSE)
NAME
Do 1>X 4 END
LLK Xtlel)
styl (GET)
END
CALL NAME

cALLIO 1 35

cALLlO 2

END

see SUMMARY swe

oPEN

Lines 2 and 11 define the procedure X.

Line 3 provides the entry point CALLIO.

Line 4 generates a call to subroutine OPEN.

Line 5 is a generative DO directive which transfers to line 7. The determinant

value is forced to be greater than 1 so that line 6 must always be generated
upon completion of the DO. For each parameter supplied, an LLK parameter

value and an SLJI (GET) are generated at lines 9 and 10.

Line 6 generates a call to subroutine CLOSE.

Line 8 terminates both the DO count when I>X and the subassembly after the

generation of line 6.

UP-7599

Rev. 1 UNIVAC 418-i1l RTOS ASSEMBLER

SECTION:

PAGE:

31

AT

m Line 15 calls on the procedure through entry point CALLIO to geherate the

® Line 16 calls on the procedure through entry point CALLIO to generate the

instructions:
SLJI (OPEN)
LLK 1
SLJI (GET)
LLK 3
SLJI (GET)
LLK 5
SLJI (GET)
SLJI (CLOSE)
instructions:
SLJI (OPEN)
LLK 2
SLJI (GET)

SLJI

(CLOSE)

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER 4

SECTION:

PAGE:

4.1.

4.2.

4. ASSEMBLER OPERATION

GENERAL

This section discusses the ways in which the assembler is to be used, what results
are produced, and the meaning of the error diagnostics and messages which may result
during the operation of the assembler.

CONTROL CARD FORMAT

The assembler is an element of the Real Time Operating System (RTOS) and operates
under its control. The assembler may be called upon to assemble a symbolic program

through the use of the @ASM control card.

The @ASM control card has the form:

@ASM,options pronam

The program name, designated by the parameter pronam, is the name of the symbolic
element to be assembled, and will be the name given to the produced relocatable
object code element.

If no options are to be exercised, the comma following the ASM function may be
omitted. At least one blank character must follow the option field. If no options are
specified, the symbolic statements to be assembled must immediately follow the
control card. Upon the occurrence of eithet another control card or an END directive
which does not signify the end of a procedure sample, the assembler is terminated.

The following options may be present on the @ASM control card:

T
M

Results in listing all inserted elements.
Results in listing the mode value of all data words generated.

Results in the omission of all listings except those statements containing
an error flag.

Results in the omission of all listings.

Results in the listing of a cross-reference of all labels referenced in the
assembly after the assembly is complete.

Results in the punching of a relocatable object-code card element.
Specifies that the source to be assembled is to be found in the user run

library as a symbolic element. Correction cards may follow the @ASM
control card.

NOTE: An A option overrides the presence of the N, T, and R options.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER 4

SECTION:

PAGE:

4.3. ASSEMBLER OUTPUT LISTING

Unless an A or N option is present on the @ASM control card, the assembler produces
a printed listing of the symbolic statements processed together with the code pro-

duced.
Example:
00:01:34 WASMyeT THe]
UNIVAC 418=1]1 ASSEMBLY == MAR 17 1970 0030134

000001 START,
000002 u 00 00o0uo 30 0015 SLul (FRMBUF)
000003 INGERT LEVELI
goooot 01 b D0 000001 12 oos7 LL KK2
000002 01 00 06poo2 10 o001 LV XX3
000003 01 00 000003 32 0002 LB XX4
000004 01 INSERT LEVEL2
000004 02 00 0UpOoO4 76 0007 SLy PRINT]
000002 02 00 00000S 32 opool LB XX3
000003 02 00 00000ue 34 poo0 J STARTY
oouo04 02 INSERT LEVEL]
000001 03 00 00poo7? oopooo PRINT1» . 0
000002 03 E 00 0Y0010 001004 PRINTS PR1 BUF44,)

00 000011 000014

0D oUoO1I2 000003

00 000013 000454
000003 03 00 oUoOoiI4 55 ULO7 PR1 J1 PRINTI
000004 03 INSERT LEVELY
000001 04 $(10),
000002 04 D 10 000000 000000 Xx2 . 0
00VD03 04 10 oOopoy ocogooo XXx3 - [1}
000004 04 10 0Yoov2 000000 XX4 . 1]
000005 04 10 000003 BUF RES 44
000004 D 10 000057 000000 xx2 . v
000005 000000 END START,2

1} D0 00001s 0ooo000
see SUMMARY oeae
PROGRAM SIZE: 00 U00le 10 00060

EXTERNAL OR UNDEFINED REFERENCES! FRMBUF

EXTERNAL DEFINITIONS: PRINT}

DOUBLY OEFINED LABELS: XXz

EXPRESSION ERRORSS ool

INSERTED ELEMENTS? LEVELL BY Té4=)
LEVEL2 BY LEVELI

LEVEL3 BY LEVEL2
LEVELY BY LEVELD

Explanation:

Field 1 contains the line number of the symbolic statement.

Field 2 is present only when the symbolic code being assembled comes from an
inserted element, and identifies the level of inserted elements.

Field 3 is present only if diagnostic warnings are produced, and identifies the
type of error detected.

Field 4 identifies the active location counter.
Field 5 contains the relative value of the active location counter.

Fields 6 and 7 contain the binary value of the code generated.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER

SECTION:

PAGE:

8 The remainder of the line reflects the supplied symbolic image.

B Following the END directive, all literals are printed.

The summary printed at the conclusion of the assembly specifies:

the
the
the
the
the

the

size of each location counter used;

names of external or undefined labels;

names of any externally defined labels;

names of any doubly defined labels;

number of diagnostics that occurred during the assembly;

names of any inserted elements and the elements which caused their

insertion.

4.3.1 Mode Listing

If the M option is present on the @ASM control card, each line of generated code

is followed by the mode value of the data word produced. The mode value

indicates:

the size of the relocation field;

® the location counter of the operand field;

B the label of an external reference;

B the presence of the IBOO operator;

B whether the data word is to be relocated;

B whether positive or negative relocation is specified;

B whether the external reference is to be added or subtracted.

The format of the mode value line listed is:

where:

fs

I r fs lc s label

is present if the IBOO operator is present in the expression.

is + if positive relocation is specified;
is — if negative relocation is specified;
is blank if no relocation is to be performed.

is 18 if the entire data word may be relocated or modified by the value of
the external reference;

is 6,12 if the lower 12 bits may be relocated or modified by the value of
the external reference,

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER" 4

SECTION: PAGE:

le is the location counter under which the operand expression is to be relocated,
and is 0 if the operand field in nonrelocatable.

s is blank if the value of the external reference is to be added;
is - if the value of the external reference is to be subtracted.
label is the name of the external reference.

NOTE: The M option should be used only if there is a need to examine the mode
values generated. Even though the assembly is not significantly slowed
down, an extra line of print is generated for each word and may cause an
early overflow of the symbiont drum space.

Example:
00:01 ¢35 DASM M T4=2
UNIVAC 4l18=111 ASSEMBLY == MAR 17 1970 00:0l:35
000001 00 0dYpouo RES 8
oooGo2 00 0Looio 70 000! TAG LLK |
' « 6,12 00
poooo3 00 oUOUlL1 12 0010 L TAG
+ 6,12 0O
oooDDY 05 0Upowo 000000 S$(5),TAGS +0
+ 18 ©O
000005 00 0UpOlL2 12 7777 s(0) LL «TAGS
- 6,12 08
000006 00 0Upog3a aouolo “TAG
. * 18 00
ocoog? 00 00UCD1Y 7771777 =TAGS
- 18 05
oounos D0 0000;s 12 o021 LL (TAGS?)
+ 6,12 00
oopoo9 v 00 000016 12 0003 LL UREF+3
+ 6,12 00 UREF
000010] 00 0UOD}7 12 oogeé (48 3#2-UREF+TAGH
+ 6,12 05 = UREF
00001l v 00 000020 oognoo =UREF!
1+ 18 00 =~ UREF
000012 END
00 00002} 000000
1+ 18 05
te® SUMMARY esa
PROGRAM SI1ZE: o0 UYoo22 05 o0oLO!

EXTERNAL OR UNDEFINED REFERENCES! VREF
Explanation:
m Line 2 is a constant.

B Line 3 is 12-bit relocatable. The operand value is to be relocated under location
counter 0.

®m Line 4 is a constant.

B Line 5 is 12-bit relocatable. The 12-bit operand value is to be relocated under

location counter 5. Relocation is negative; that is, the relocation base is to be
subtracted.

m Lines 6 and 7 are 18-bit relocatable.

B Line 8 itself is 12-bit relocatable. The referenced literal is 18-bit relocatable
and IBOOed.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER : 4

SECTION:

PAGE:

m Line 9 is 12-bit modified by the value UREF.

m Line 10 is 12-bit relocatable by location counter 5, and 12-bit modified by the
value —UREF.

B Line 11 is 18-bit modified by the value —UREF and IBOOed.

4.3.2. Cross-Reference Listing

If an R option is present on the @ASM control card, a cross-reference listing of
all referenced labels will be produced at the end of the assembly. Although the
cross-reference itself does not significantly slow down the assembly, six words
of storage are used for each label reference when the R option is present. As a
result the assembler label table space requirements may be significantly larger
during the assembly with an R option.

At the conclusion of the assembly, all referenced labels are printed in alphabetic
order together with the location counter value at which they were assigned, the
location under which they are defined, and the subassembly level at which they
were defined. The location counter and location counter value of each reference
to the label are also printed.

If a reference is made to a labeled constant, the decimal value of the constant is
printed. The octal value is printed between brackets.

Example:
00:01:36 FBASM 4R T4m3

UNIVAC 418=111 ASSEMBLY == MAR 17 1970 R REY)
oooool xe PROC
00co02 1 EQU 10
000003 . LLK 1
000004 END
000005 00 oloooo 12 ooobs START L LB
000006 v 00 000001 70 0000 LLK UND
coooo7 v 00 000002 5070 00 8T 1
opoooe 00 000003 12 0006 LL 182
000009 00 000004 12 o005 LL L8l
000010 00 00000% 70 0012 Lel X
000601} 00 0C0p006 70 0012 LB2 X
000012 00 000007 34 oou0 J START
000013 END

#es SUMMARY ewe

PROGRAM SIZE? oo Oooto

EXTERNAL OR UNDEFINED REFERENCES! 1 UND
wee CRDSS REFERENCE LISTING wee
1 YUNDEFINED LEVEL D0} REFERENCEp AT LINE(S)? = 00002 0O
1 = 000010 (000DL2) LEVEL 01+ REFERENCEp AT LINE(S)$ = 00005 00 = 00006 0O
LB1 DEFINED AT 000005 Qp LEVEL 007 REFERENCED AT LINE(S): =~ 0000g 00O = 00004 0O
B2 DEFINED AT 0000U6 00 LEVEL 00} REFERENCED AT LINE(S)E = 00003 0O
START DEFINED AT 000000 00 LEVEL 00} REFERENCEp AT LINE(S)i = 00007 @0
UND VUNDEFINED LEVEL 00! REFERENGED AT LINE(S): = 00003 0O

UP-7599
Rev. 1

]

UNIVAC 418-1lil RTOS ASSEMBLER 4

SECTION: PAGE:

4.4. SYMBOLIC CORRECTIONS

If the * option is present, the symbolic code is assembled from the user run library.
Corrections may be made to the symbolic code. Correction cards immediately follow
the @ASM control card and are terminated by the occurrence of another control card.

The line numbers listed in the first column of the assembly are used to indicate whict
images are to be removed or altered. Correction cards are not added to the symbolic
element in the library. Correction cards do not cause the line numbers on the listing
to be changed, so that no matter how many corrections are made, the line numbers
still reflect those associated with the original symbolic element.

Symbolic lines which are deleted as a result of the supplied corrections are marked
and listed with ——— following the line number. They are not assembled.

New symbolic images supplied in the correction deck are marked with +++ following
the line number. The line number associated with new symbolic images is that of the
last statement in the original element.

Example:
004013536 PASMs @ T4=4
UNIVAC 418=1]] ASSEMBLY =~= MAR 17 1970 pooiplilde

00000 === wwa START LLK 1
000001+++ o0 oPpoag 12 0046 START Lk (70)
000002 00 000001 10 0047 Ly ;FRUM’
000003 00 080002 5070 07 8T
000004 === -~ MOVE FROM,(TO)
000004 +++ 00 000003 10 0047 MOVE FROM)TO,7

00 090004 12 0046

00 0Qooos 5070 07
000005 00 000006 770300 E0US
000006 oo o00goo7 FROM RES 25 ,
000006+++ 00 000040 663334 T0 YTHIS IS DESTROYED

00 000041 650034
00 000042 650027
00 000043 3Us566
00 000044 545173
00 000045 302700
000006+++ 0ouooo END START,3
00 000046 000040 =
00 000047 000007

Correction cards having the following PUR-compatible format. Lines are deleted by
specifying:

—11,m

where n is the first and m is the last line to be deleted. Following the correction
card, symbolic statements may be supplied. These are inserted in place of the

deleted images.
In order to add new symbolic images, the card:
—n
whete n is the line following which corrections are to be inserted, is supplied.

The symbolic statements to be added after line n follow the correction card.

Correction cards must be supplied in ascending line number sequence. The — must
occur in column 1 of the correction card.

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER 4
SECTION: PAGE:
‘Exampb:
LABEL OPERATION OPERAND
1 20 30 40
ind WP IO S U U T 50 U N WU TN T G T U T Y W TN O O S S WG A VA S A W S S S O T B
START . AN o WCTe) b L AL Lol
&% ol e e b b e e
i1 MOVE o F mnTlg;.JL__,LA ,,,,,, TSR U TN SO I N NS SO S B D R B
]
e o e e
T . 1'TH1IS 18 O lElSITlRIGLYlglot‘! Lol b
b o JEND IQJAR;T;,.L’:I I N U O SN NN TN N HOU SN S DU S O S0 DO U T
Lol L 1 1 1 1 1 l 1 H L | - j 1 l L2 1 L 1 L1 1 i t 1] 1 i 1 i 1 i L L 1 i U U S | 1
4.5. DIAGNOSTICS

Errors detected by the assembler in processing a symbolic statement are flagged.
Depending on the particular error, the code may or may not be generated correctly.
Some diagnostic flags are not indicative of errors but are warnings.

4.5.1. Address Warning (A)

The address warning diagnostic A is generated if the 12-bit operand address of a
type I or II instruction has a location counter value such that the instruction and
the referenced address are in different bays. If the operand address is relocated

under a different location counter from the instruction, no A-flag will be generated.

Example:
000001} /o
000002 A 00 000000 12 0010 LL A
000003 00 000001 RES 010007
000004 00 oloojo uooooo A +0
000005 00 0looig 12 0007 LL 8
000006 o1 o0oooo s(1) RES olo007
oopoo07 ot 0loooy 000000 B +0
oopooe END
see SUMMARY ase
PROGRAM SIZE: 00 looiz2 01 10010

ADDRESS WARNINGS? ool

UP-7599

Rev. 1 UNIVAC 418-I11l RTOS ASSEMBLER

SECTION: PAGE:

4.5.2. Format Warning (F)

The format warning is generated if a 2,16 FORM directive has a relocatable address
reference in the second expression.

Example:

00000}
000002
000003
00G00Y4
00oo05

/e

IF FORM
00 0Cpouo 000001 IF
00 0U0oO01 70 oool LABEL Lix

END

4.5.3. Truncation Warning (T)

A field truncation warning is generated if:

2416
Oy LABEL
1

B the value of an expression in a FORM reference exceeds the size of the field;

or

B the value of the operand field in a type I or II instruction is a constant exceeding
07777. If the constant is negative and the instruction is an LBK, LLK, or ALK,
the T flag is not generated.

Example

oooool
ogo0p2
000003
000004
000005
000606
00o007
oooGos8
000009

-

PROGRAM SIZE?

/o

1F FORM
00 o0pDoD 160064 IF
00 0UoOGY 70 7772 LLK
00 000002 70 0000 LLx
00 096003 12 3720 LL
00 0000uy4 12 1610 LL
00 0Go0Gs 64 7765 Jup

END
te® SUMMARY ees

00 Ooooe

TRUNCATIUN WARNINGS! 004

4.5.4. Level Error (EL)

Sr495,4
7,2000,3,20
-5

010000

2000

5000

=10

A level error indicates that the number of nested expressions exceeded the maximum
of six. The resulting expression value is 0.

Example:
000001
000002 EL
000003
oogooY EL
000005
000004

PROGRAM SIZE!
EXPRESSION ERRORS}

LEVEL ERRORS;

/e
00 o0Uooop 12 o003
000002 All)
00 090001 000000 ACACACALALALALED I NN

oo

oo

000002 000001

0800023 ooooo07

se¢ SUMMARY wew

00 Poooy

002

002

LL (leljelislle(tellelle2)))
EQU 2

EQU 2

+ALL)

END

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER

SECTION:

PAGE:

4.5.5.

Instruction Error (I)

An instruction error indicates that the assembler detected an illegal operation field
or label field specification. An I flag is generated if:

H a symbolic label is detected in the operation field which is not a defined label,
procedure entry point, assembler directive, FORM name, or mnemonic instruction;

B a location counter is defined in the label field and the terminating character is

not a space, comma, or period;

m the label field is not terminated by a space, asterisk, or period;

® the type number on an INFO directive exceeds 7;

m the type field on an INFO directive is not terminated by a space;

m the location counter specified on an INFO directive exceeds 15 or is not terminated
by a space or comma;

m an EQU directive does not have a label in the label field; or

Example:

00:;01340

®#PROCEDURE JZL

ouooal
060002
000003
000004
000005
000006
oogona7
oooubos
Q00009
000010
000011
000012

PROGRAM SIZE:

VE!L
1

BASM

UNIVAC

EXTERNAL OR UNQUEFINED REFERENCESS

EAPRESSION ERKOURSE 001

INSTRUCTION ERRORSS GoB

T4e10
418m11) ASSEMBLY ==
NOT IN LIBRARY = CALLED
00 000000 0000Uuo
10 0UpOoOO 34 000!
000005
01 0UooQO 000005
00 Yooul oy ooobot

JZL

MAR 17 1970
AT LINE Q00001

10 CopoOO1

00:01:i40

JIL

$(10)LABEL J
LaBEL+O

$(1)
Aw

INFO
INFO
INFO
LQu
PROC
+5
END

END

sne® SUMMARY wsew

L1 2)
s}

BY ELEMENT T4=10

a procedure call line references a procedure entry point in the parameter expressions.

UP-7599
Rev. 1

E]

UNIVAC 418-111l RTOS ASSEMBLER |

SECTION:

PAGE:

10

4.5.6. Relocation Error (R)

4.5.7.

4.5.8.

Relocation warnings or errors are generated if elementary items are combined in
such a way as to cast doubt on the validity of the expression.

Relocation errors are generated if a relocatable item is combined with a constant.
See Table 1-3 for details of allowed mode combinations.

Example:
[s]a)eRe):R} /e
Qogco2 00 oYaooo RES 5
000003 R 00 oUpgys 000005 A +AenS
00ULGH 00 0UQVO& 000240 +5e/h
000L0S R 0o 000007 00OCUULA “Asl2
000006 00 000OIU 000UOS +hel
000067 R 00 0060011 000012 “Ae2
0opopa END

as® SUMMARY ene
PROGRAM SIZE: 00 Upoi2

RELUCATIGN NARNINGSS DU3

External or Undefined Warning (U)

The U flag is set when a label is referenced which is not defined in the assembly. If
the label is externally defined in some other element, the loader collects the elements.

Example:
000001 /o
000602 u 00 000000 70 0000 LLK ABC
000003 u 00 0Gonal 12 0002 L (LABEL)
000004 END
v 00 090002 0VOOOG

“s® SUMMARY ese

PROGRAM SIZE: 00 Youoa

EXTERNAL OR UNDEFINEQD REFERENCES? LABEL AsC

Double Definition Warning (D)

A double definition warning is generated when the value assigned to a label changes.
The assembler processes the symbolic code twice. As a result, a D flag may indicate
that a label is defined at different relative locations because of a pass conflict; that
is, different amounts of code were generated in pass 1 and pass 2 of the assembly.
The D flag is set if:

B a label defined previously is redefined to have a different value. If the label is
a dimensioned label, the D flag is suppressed;

® a label defined in pass 1 of the assembly does not have the same value when
redefined in pass 2;

B a paraform contains a reference to a doubly defined label;

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER cecrion:

PAGE:

11

m a PROC or NAME entry point is defined or multiply defined, regardless of the
level of the entry point;

B8 a literal contains a reference to a doubly defined line item; or

m an expression references a doubly defined label,

Example:

ooooo /s

000002 D 00 0Voo00D 12 0002 TA L T8
000003 0 00 00goQut 12 0000 TH LL s=1
006004) 00 00poG2 000600 B 0

ooooos b) 000001 | A EQU 1
006006 D) 000002 A EQU 2
ogooo7 Pe PROC

000008 +0

0000QY END

000610 00 0Co0o03 000000 P

000031 P PROC

000012 . .l

000613 END

000U1Y 00 OUooD4 gooooo ' P

0000615 D 00 00QUOs 12 o006 L (18)
000016 END

00 00ooGs 000002
en® SUMMARY wwe
PROGRAM S1ZE: oo Gooay

D0VBLY DEFINED LABELS: A P P T8

4.5.9. Expession Errors (E)

Expression errors indicate that the syntax rules for defining an expression were
not obeyed. Expression errors are generated if:

m an elementary item is not followed by an operator or terminator;

® an operator is not followed by an elementary item;

m 1a floating-point number is written so as to have an octal integer part;

B a floating-point number exceeds the maximum value;

® an item is multiplied by, divided by, or compared with an item which is undefined;

B a paraform with subscript is not terminated by a comma or bracket;

B two items are compared which do not have the same mode value;
B two items are compared and one is undefined;

B two relocatable items are combined and are relocated under different location
counters;

® an alphastring or double floating-point number occurs in a literal;

m a dimensioned label is defined or referenced which has previously been defined
with smaller dimensionality;

B an LSD or SSD instruction is indexed;

UP-7599
Rev. 1

UNIVAC 418-lil RTOS ASSEMBLER

4

SECTION: PAGE:

12

® a type Il instruction is indexed;

B a FORM reference has more than the allowed number of operand expressions;

B a GO directive is used and no operand expression is present;

8 a FORM ditective is defined for more than the allowed field sizes;

8 an INSERT directive is specified without operand field;

B a label has more than six characters; or

a location counter larger than 15 is referenced or defined.

Example:

ooooo!

00poo02 E 00 0Uo0WOD 000005

000003 E 00 00000} oooooo

000604 E 00 000002 204406
00 0U00O3 314631

000005 E 00 DOQO0Y wouooo
00 00Qoos 000000

nopooes E 00 0vp0Ds ooouoo

000007

000008

000009

oouolu

oooo1y

o0goui2

00u013 00 DUpOGY poooo2

E 00 0loolo 000000
VE 00 00001} 000003

000014 £

000015 E 00 00po12 000000

000016 £ D0 000013 000001

000017 s 00o00a

oocoays E 00 000014 12 0033

oooo19 3 00 00001s 12 0035

00G02U 00 0Y00lé 70 0005

000021 E 00 000017 000000

poopo22 E 00 00po020 12 ooo0

000023 E 00 o0uvoo2t 502000
00 0Upo22 000001

000024 E 00 000023 64 0001

000025

00G026 € 00 000024 100002

oogo27 €

000028 E

oooo29 El

000030 3 00 0Uppo25 12 QgO2¢é

000631 E 00 000026

000032
00 0U0D33 242526
00 000034 273031
00 00p03s 000000
00 000036 000000

PROGRAM SIZE! 00 Y0037 05 000DS5

EXTERNAL OR UNDEFINED REFERENCES!
EXPRESSION ERRORS! 022

INSTRUCTION ERRORS: 001

uLBL

/e
+5x
A 5
+01042
+10+€50
+3eyLBL
Xe PROC
+2
+X(1,
60
+3
END
X i
Do A>2 4 +3
+ULBL>2
+A+8
$5(5),B RES s
$(0) LL (YABCDEFGH"')
LL (1.03)
Dlly1) LLK 5
D(loly1) LLK 3
LL Dllslsl)
LSp A
Jup oA
IFA FORM 3,15
IFA 19293
1F FORM 24153
INSERT
LABEL7C LLK 3
L $(17)+}
$(17) RES 5
END

s¢e® SUMMARY ewe

UP-7599
Rev. 1

4
UNIVAC 418-1ll RTOS ASSEMBLER \ LECT,ON,

PAGE:

13

4.6.

4.6.1.

4.6.2.

4.6.3.

4.6.4.

4.6.5.

ERROR MESSAGES

When abnormal situations arise in the course of an assembly, the assembler prints
a message which specifies what happened and continues or terminates depending on
the nature of the problem.

Element Not Found

If a symbolic element is to be inserted and cannot be found in either the user or
system library, the message:

***% ELEMENT xxxxxx NOT IN LIBRARY , CALLED AT LINE 111111l BY ELEMENT

cccccece

is printed and the INSERT directive is ignored.

Procedure Not Found

If a procedure is referenced which is not defined in the program and is not present
in the user or system library, the message:

***% PROCEDURE xxxxxx NOT IN LIBRARY , CALLED AT LINE Iliilll BY
ELEMENT cccccc

is printed and the procedure call is assumed to be a label reference. Note that

a possible procedure call is signified by the occurrence of a symbolic label in the
operation field which is not a pteviously defined FORM reference or mnemonic
instruction.

END Card Omission

If the symbolic statements are not terminated by an END directive, the assembler
inserts the image:

END #*** ART GENERATED ***

Drum Library Overflow

If the code generated in the course of the assembly causes the library to overflow,

the message:

ASSEMBLY ABORTED — DRUM LIBRARY OVERFLOW

is printed. The element is not placed in the library.

Main Storage Overflow

If the assembler attempts to obtain additional main storage space because the
procedure sample storage or label table is filled, and no space is obtained, the
assembly is terminated with the message:

ASSEMBLY ABORTED —~ PROCEDURE TABLE OVERFLOW

or

¥+ ASSEMBLY ABORTED — LABEL TABLE OVERFLOW***

Prior to terminating, the assembler tries to obtain as little as 512 words of memory

to expand its tables.

UP-7599
Rev. 1

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER l

PAGE:

14

4.6.6.

4.6.7.

4.6.8.

Internal Errot
If an error condition occurs within the assembler, the message:
ASSEMBLY ABORTED — INTERNAL ERROR

is printed and the assembler terminates automatically. The programmer should try
the run again. If the problem continues to occur, a report should be filed.

Element Deletion

At the conclusion of the assembly, the code produced is registered in the user library
as a relocatable element. If a relocatable element by the same name already exists
in the library, it is deleted and the message:

**%* THE RELOCATABLE ELEMENT xxxxxx , (CREATED mm:dd:yy) ,
HAS BEEN DELETED *** :

is printed. The month (mm), day (dd), and year (yy) refer to the date that the deleted
element was created.

Correction Errors

When correction cards are submitted, several errors may be detected.

If a correction card references a line number beyond the range of the element, the
message:

*** LAST CORRECTION EXTENDS BEYOND ELEMENT ***

is printed, and the correction cards are ignored.

If a correction card references a line number smaller than one previously referenced,
the message:

*** SEQUENCE ERROR *#**

is printed and the correction card is listed and ignored.

If a correction card of the type —n,m is such that m<n, the message:
*¥k L INE NO. DESCENDING ***

is printed and the correction card is listed and ignored.

ur=/ovy

4
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER | LECT,ON:

PAGE:

4.7. GENERATION PARAMETERS

When the RTOS system is generated, parameters may be supplied for the assembler.
The assembler parameters are specified in the element CONFIG on a procedure call

of the type:
ART,m mlc prs Its
where:

mlc is the maximum allowed value for any one location counter;
pts is the reserved procedure table size;
Its is the number of modules (6 words) reserved for the label table.

m is the size of procedure or label table expansion in 256-word blocks. If left
blank, m is assumed to be 16 (4096 words).

The assumed (supplied) parameters are:
ART 030000 300 100

Procedure or label table space is expanded as needed in modules of 256*m maximum
words until no space is available. The maximum location counter value is used to
detect program-directed assembly loops (GO directive which does not terminate).

In order to change the assembler generation parameters the symbolic element ARTGEN
must be assembled with the appropriate CONFIG element.

4.8. ELEMENT AND PROCEDURE INSERTION

The INSERT directive causes a symbolic element in the library to be included as
part of the assembly. A procedure reference to a procedure entry point not defined
in the program may cause the procedure sample to be inserted from the library.

First, the user RUN library is searched for the element or entry point. If not found,
the system library is searched.

If a procedure entry point is referenced, the entire procedure element, which may
include other procedure samples, is brought into procedure storage. As a result, care
should be taken to ensure that a procedure reference does not cause another procedure
in the same element to be read into storage which has entry points which duplicate
already defined procedure entry points.

4.9. LABEL TABLE REFERENCES

Symbolic items are stored in the label table. Whe n a reference is made to a symbolic
item, the label table is searched. If the same symbolic label is used for different
types of symbolic items, the first acceptable definition for the label is used. The
first acceptable reference is determined by the sequence in which the assembler
searches the label table. The sequence is defined in the following paragraphs.

UNIVAC 418-11l RTOS ASSEMBLER l

4 16

‘SECTION: PAGE:

4.9.1. Operand Field Hierarchy

A symbolic item referenced in the operand field may be a label item, a paraform
reference, a dimensioned label item, or a labeled literal reference. The sequence
in which the assembler searches the label table is:

1. label item
2. paraform item
3. dimensioned label item

4. labeled literal

Example:
oogool
600002 00 000000
000003
000004 00 0000}2
000005
000006 01 0Yoouo
000007 a1 000012
000008
000009
000010
0000141
000012
0op013d
00G014
00Q015
000016 02 BU00WD
02 000001
c2 000002
02 000003
00po04L7
00G018 03 000000
000019 03 0UOD}2
000020
000021 VE 03 000013
000022
00 000013
PROGRAM SIZE} 00 Yooty

000013

ooo000

000144
000001
000144
cooooo
000002

70 0012
000144
12 ooo0

70 0012

o1 ooU13

EXTERNAL OR UNDEFINED REFERENCES?

EXPRESSTION ERRQRSI [*173}

4.9.2. Operation Field Hierarchy

rx)

$(1)4+8
B(l)

$(2),C
Cce

ctl)

$(3),y0

0tl)

RES 10
L1y

«A(LLK 10)
LiT

RES 10
+8(1)

Lir

PRQC

+C(l)

*C(lol)
“C(102)

*C

END

EQU 100
[4 cil) ¢

LIy

RES 10

LLK D

EQu 100

LL DlLLK O)
END

se® SUMMARY wee

02 0p004

LLK

03 00014

A symbolic label occurring in the operation field may be a procedure entry point,
a directive reference, an instruction reference, or a label reference. The assembler
determines the nature of the label as follows:

1. If the field is terminated by a space (blank character), a check is made for an
INFO, LIT, NAME, PROC, FORM, EQU, DO, XCHAR, UNLIST, EVEN, ODD, GO,
GO, RES, END, LIST, INSERT, SKIP, or CHAR directive.

2. If the label is not a directive or if the field terminator is a comma, a check is

made for a procedure entry point.

3. If the field terminator is not a space or commas, the field is assumed to be the
operand field, and one or more data words are generated.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER 4

SECTION:

PAGE:

17

4. A check is made for a FORM reference.
5. A check is made for a mnemonic instruction reference.

6. A check is made for a library procedure entry point; and, if found, the procedure
sample is brought into procedure storage.

7. If none of the forgoing references are satisfied, the field is scanned as an operand
field expression.

The sequence described shows that:

1. A label with a name that is identical to an assembler directive may be used as
a procedure entry point if and only if a comma is used to terminate the operation

field.

2. A procedure entry point or form reference which has the same label as a mnemonic
instruction will supercede the instruction reference unless the procedure entry
point is only defined in the library and not yet brought into procedure storage.

3. A label reference not preceded by a + will cause the procedure library to be
searched prior to assuming a data word generation format.

Example:
00301445 WASM T4mié

UNJVAC 418=111 ASSEMBLY == MAR 17 1970 00tpls4s
wsPROCEDURE XCHAR NOT IN LIBRARY = CALLED AT LINE 000010 BY ELEMENT T4~16
®ePROUCEDURE A NOT IN LIBRARY = CALLED AT LINE 000012 BY ELEMENT TH4=~ié
opoool /e
000002 LB FORM 13014
000003 0o 0Uoooo 400024 L8 1y0e20
000004 CHAR® PROQC
000005 LK CHAR(1,1)
000006 END
0oo0o7 oo oloool 70 poa24 CHAR,O A
000008 CHAR TAY,b
000609 00 000002 70 po0é CHAR,O TAt
000010 Ui 00 000003 000000 XCHAR O
000014 00 000004 A RES 5
000012 00 00001} 000004 A
000013 ENpD

#e¢® SUMMARY eee
PROGRAM STZE! oo Qo032
EXTERNAL OR UNUEFINED REFERENCES? XCHAR

INSTRUCTION ERROQORS! 001

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 4

SECTION:

PAGE:

18

Note that a literal contains a line item which begins with the operation field. As a
result, there is a difference between the way that the references in the following
example of

LL (A)
and

LL (A)

are treated because in the first literal, the operation field terminator precludes a
reference to a procedure entry point.

Example:
DD:0l346 PASM T4=i?

UNIVAC 418el]] ASSEMBLY == MAR 17 1970 0oioliye
®sPROCEDURE A NOT IN LIBRARY = CALLED AT LINE 0DOQO4 BY ELEMENT Td4e17
0oo0o! /s
00002 00 00pooo RES 10
0poood v 00 0UgDL2 12 0014 LL CA)
000604 ul 00 000013 12 0014 LL A}
000005 END

U 00 000014 vo0ouoo

*ae SUMMARY swe
PROGRAM SI1ZE: 0o 0gois
EXTERNAL OR UNQEFINED REFERENCES! A

INSTRUCTION ERRORSS 001

UP-7599
Rev. 1

5

‘ SECTION:

UNIVAC 418-111l RTOS ASSEMBLER \

PAGE:

5.1.

5.2.

5.3.

5. COMMAND/ARITHMETIC
SECTION

GENERAL

In this section, the command/arithmetic section of the UNIVAC 418-III System is
discussed. Since all input/output is normally done through executive requests, these
hardware characteristics are not discussed in this document.

HARDWARE CHARACTERISTICS

The UNIVAC 418-III System may contain up to 131,072 addressable words. Each word
consists of 18 bits. Main storage can be thought of as divided into 4096-word segments
called bays.

The address of the instruction being executed is kept in a register called the instruction
address register (IAR).

Eight index registers (B registers) can be used for address modification. The index
registers are memory locations 1 through 10g.

A 6-bit special register (SR) is used to access different bays. Four instructions are
available to load and store the special register.

A 4-bit register called the index register pointer (IRP) contains the address of the
active index register.

When abnormal conditions, such as illegal instructions, arithmetic overflow, or guard
mode violation occur, the operating progtam is interrupted, and the instruction at a
fixed (preassigned) address is executed.

DESIGNATORS
m Compare Designator

The compare designator is a bi-stable, three-stage register whose state is determined
by the execution of any of the COMPARE instructions (f = 02,03,06,07). The results
of the COMPARE instructions are recorded by the compare designator as follows:

— The COMPARE stage is set upon the execution of any of the COMPARE instruc-
tions.

— The LESS THAN stage is set if a COMPARE instruction finds (AL) less than
the contents of the addressed memory location (f = 02,03), or [(AU) EBIY (AL)| less
than the logical product of (AU) and the contents of the addressed memory location
(f = 06,07).

— The EQUALS stage is set if a COMPARE instruction finds (AL) equal to the
contents of the addressed memory location (f = 02,03) or [(AU) (AL)| equal
to the logical product of (AU) and the contents of the addressed memory location
(f = 06,07).

UP-7599
Rev. 1

5

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER '

PAGE:

The COMPARE stage is cleared by the execution of any instruction other than the
arithmetic JUMP instructions (f = 6067). Thus, if the results of a COMPARE instruc-
tion are to be successfully tested, it must be immediately followed by one or more of
the JUMP instructions.

When the COMPARE stage of the compare designator is set, all interrupts are locked
out to avoid the possibility of inadvertently clearing the COMPARE state. It should be
noted that the arithmetic JUMP instructions have significantly different operations if
executed when the COMPARE stage is not set.

m Borrow Designator

The borrow designator is a bi-stable, single-stage element whose state is determined
by the execution of either a double-length ADD instruction (f = 20,21) or a double-
length SUBTRACT instruction (f = 22,23).

If an end-around borrow is required during the execution of either of these instructions,
the end-around borrow is inhibited and the borrow designator is set. The borrow desig-
nator remains set until the subsequent execution of another double-length ADD or
double-length SUBTRACT instruction. ‘

The condition of the borrow designator may be tested by the TEST NO BORROW
instruction (f = 5051). When the borrow designator is set, interrupts are not locked
out.

8 Overflow Designator

The overflow designator is a bi-stable, single-stage element set when an overflow
occurs during the execution of any of the following instructions:

ADD AL (f = 14,15)
SUBTRACT AL (f = 16,17)

ADD A (f = 20,21)

SUBTRACT A (f = 22,23)

DIVIDE A (f = 26,27)

ROUND A (f = 5060)

ADD AL PLUS CONSTANT (f= 71)
FLOATING POINT DIVIDE (f = 5005)

The stage of the overflow designator is tested by either the SKIP ON OVERFLOW
instruction (f = 5053). The execution of either instruction automatically clears the
overflow designator. When the overflow designator is set, interrupts are not locked
out.

® Guard Mode Designator

The guard mode designator is a bi-stable, single-stage element set as a result of
the LGM (f = 5065) instruction. It is cleared by the occurrence of any interrupt.
While the guard mode designator is set, each instruction store cycle is checked.
If the referenced address does not fall within the upper and lower storage limits,
a guard mode interrupt is generated.

UP-7599
Rev. 1

5

UNIVAC 418-111l RTOS ASSEMBLER l

SECTION;: PAGE:

5.4,

INSTRUCTION TYPES AND FORMATS

Instructions are binary numbers formatted in such a manner that when they are trans-
ferred to and interpreted by the command/arithmetic section of the computer, they
result in the execution of a predefined operation. Instructions for the UNIVAC 418-III
System are comprised of two entities, the function field and the operand field. The
contents of the function field informs the c/a section which operation is to be per-
formed; the contents of the operand field supplies the c/a section with the necessary
information to enable it to perform the function. The set of all recognized functions is
referred to as the instruction repertoire.

The UNIVAC 418-III instructions are divided into three distinct categories, referred to
as type I, type II, and type III instructions. Type I instructions are identified by function
codes 02 through 027, 032, 033, and 040 through 047. Type II instructions are identified
by function codes 030, 031, 034 through 037, and 051 through 076. Type III instructions
are identified by function codes 5000 through 5077.

8 Type I instructions

The type I instruction format is:

17 12 J11 0

where: F is the 6-bit function code.
U is the 12 low-order bits of the operand address.

m Type II instructions

The type II instruction format is:

F Uor2Zz
17 12}11 0

where: F is the 6-bit function code.
U is the 12 low-order bits of the operand address.
Z is the 12 low-order bits of an 18-bit sign extended operand.

When F indicates that the 12 low-order bits are to be interpreted as the actual operand,
an 18-bit operand is formed by using Z and propagating the contents of bit 11 to the high-
order 6 bits. This is commonly referred to as sign extension.

m Type IIl instructions

Type III instructions may be divided into two distinct categories, each with a
slightly'different format. They are all categorized by a major function code of 050,
and a minor function code between 0 and 077.

UP-7599
Rev. 1

5
UNIVAC 418-111 RTOS ASSEMBLER \ ‘mmm

‘ PAGE:

5.5.

Type IlI-a

17 12|11 6|5 0

where: F is 508.
M is the minor function code.
K is 0 or a constant less than 64.

Type III-b
F M UNUSED
17 1211 6|5 0
UNUSED I U
17 12|11 0

where: F is 50g.
M is the minor function code.
Iis 0 or 1 depending on whether indexing is to be used.
U is the 12 low-order bits of the operand address.

Note that the type III-b instructions are two-word (36-bit) instructions. In addition
to the above formats there are several type IlI-a instructions which use the contents
of one or more memory locations following their occurrence for specific data. These
are principally the I/0 instructions. They transfer control to the memory location
following the data words used by them.

ADDRESSING

The operand fields of type I, type II, and type III-b instructions contain 12 bits. The
UNIVAC 418-III main storage is logically divided into bays, each containing 4096
18-bit words, and may be expanded to a maximum of 32 bays; therefore, each type I,
type II, or type III-b instruction provides sufficient space to specify any address
within a bay. The bay which contains the desired address is determined by certain
rules outlined in the following discussion.

When an instruction is executed which is in the last storage location of a bay, program

control passes to the first location of the next bay unless it is a skip or jump type
instruction. If it is a skip type instruction, control passes to the first or second
location of the next bay depending on whether or not the skip condition is met. If

it is a jump type instruction, control passes to the storage location specified in the
next bay. This is tantamount to saying that as long as forward jumps are made, it
does not matter where the instruction is located in storage.

In order to enable special-register-sensitive instructions to access any address in
storage, the SR (special register) may be used to specify which bay is to be used.
The special register is active or inactive depending on whether bit 4 is set to 1 or
to 0; bit 4 is not a part of the bay identification. Bits 5 and 3 through O of SR are the
bay bits.

UP-7599 s
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER cecmion, .

Example:
543210

To set the SR active to bay 25 (31g), the binary number] 111] 1T(.i0 Llj (71g) must
be stored in SR because bit 4 (SR active bit) must be set to 1. The desired address
is derived by ignoring bit 4 and treating bit 5 as though it were in bit position 4. By
doing this, 71g becomes 31g (111001, -~ 110015).

543210
To set the SR active to bay 5 (5g), the binary numberLOI 1| OI lTﬂ 1J (25g) must be
stored in SR.

In order to set the special register active to bay 3, the instruction:

LABEL OPERATION OPERAND
10 20 30 40
s L8R 028 I N R R
RV W U N N U O U U S YO SO TN O U WO S OO CUU WO N VAN A NN SO O SO SO0 HONT SO SO0 O S U B U S SO

is executed. To set it active to bay 31 (32nd bay), the instruction:

g SR IOJ!7L A NN OO S OO N VO T VOO TN SO SN WO WU WY SN Y N Y U WO RO '
VAR SN U A U N M YO A U U UOU VOO U UHN U S DUO N YU SN S Y WU O FUAY N NUN SO N N WY S0 WA WOOY W0 SO BT SO SR
PR U U NN NN OO N VOO A T U WA U U U U Y WU N T T IO Y T U U N U N OO N O N Y O T AN NN OO0 G T Y O

o SR e O e L Lo
AT U N T YO U N Y U YO YO0 N U OO ST VOO OO SO NN N NN T Y 0 SO0 WU DU N W AU B SO VO S
ol v v e b v v e v bovv v v e b v e v b

may be executed.

m Type T Instructions

Type I instructions are SR-sensitive and indexable, meaning that if SR is active,
the bay specified by its contents is accessed, and that the contents of the active
index register are used to modify the operand address if the function code is odd.

If SR is not active (bit 4 is 0), the bay to be accessed is that in which the instruc-
tion itself resides; the bay bits are taken from the five high-order bits of the
instruction address register.

UP-7599
Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER l LECWN: 5 .
If the function code (f) is odd, indexing is specified. This means that the full 18-bit
contents of the active index register are arithmetically added to the (positive) 17-bit
operand address. Figure 5-1 illustrates the various addressing techniques for type I
instructions.
1 LABEL o OPERATION 20 % OPERAND 40
B LSRR . O FE T T B OO B 1L1I1N1E1 1‘1 I R N R S |
i e R s 10 00 .. ., +MINE 2, 0 i
IR N N LSR 001023 0 0 1 LINE, 3 I O R T
g bkber 10800 MINE S
o WSRO Ll o L LLHI NE. S, Ly
i e MB J(QéLQJQLQ JEEW o LINE @
e b Ca %0100 bl NE 70 0
e b 13R14 b1 010200 L 1e MINE J&L_L_L Lo aoa
o kb oo %0100 e LINE 9 1o
o S8R 1023 0 JPLINE VO
_MJJ__LL“LL_LILLLLLLJ*L_L,_L,,L_L.&LQ_L‘_IOIOL o dedINE VY
e ISR a0 oo A INE V2
e B 1(~010000), L LINE 0B
i 0100, - LINE VS

lllllllllllllJLlALLAL(LILLLIII([L1LLLlilllIl[lfll

Figure 5~1. Type |l Instruction Addressing Techniques

If line 1 were to be located at address 020000, the following storage references would

be made:

LINE NUMBER

EFFECTIVE U

ADDRESS REFERENCED

- 0 3 b N

® Type II Instructio

0100 + 020000
0100 + 030000
0100 + 020000 + 030000
0100 + 000000 + 030000
0100 + 030000 + 030000
0100 + 020000 — 010000

ns

020100
030100
050100
030100
060100
010100

Type II instructions are never SR-sensitive, differing in this respect from type I
instructions. Regardless of the contents of SR, the bay referenced is the one in
which the instruction resides.

Some type II instructicns are index-sensitive; this allows them to access other
bays by using the active index register to modify the address obtained by combining

Ul 1-0 and IAR17

-12.

Three instructions (LBK, LLK, and ALK) do not make a second storage access. The
sign-extended value of the operand field is used as the operand.

Rev. 1 UNIVAC 418-1il RTOS ASSEMBLER

PAGE:

UP-7599 ‘

SECTION:

m Type III Instructions

The type Ill-a instructions do not require an operand. The type III-b instructions
resemble the type I instructions; they are SR- and index-sensitive. When I is set
to 1, indexing is used; when it is set to 0, no indexing is used.

5.6. STORAGE PROTECTION (GUARD MODE LIMITS)

To ensure program protection, a selected area of storage may be placed under guard
mode limits through the use of the LGM (f = 5065) instruction. When the guard mode

is active, any attempt to store into a storage address outside the range set by the
LGM instruction causes a guard mode interrupt at address 30g. Two nine-bit registers,
storage limits upper and storage limits lower, may be loaded with the upper and lower
bounds of an area of storage to be placed under guard mode. For this purpose, storage
is divided into 256-word blocks. The LGM is a privileged instruction and may not be
used by the programmer.

When the nine high-order bits of a 17-bit storage address are placed in storage limits
lower, the first address of that block is the lower bound of the guard mode limits.
When the nine high-order bits of a 17-bit storage address are placed in storage limits
upper, the last address of that block is the upper bound of the guard mode limits. For
example, the instruction:

LABEL OPERATION OPERAND
1 10 20 30 40
I N U B T LLLL_LG_LM([N S WO N S AN NN W NN WU NN WO TN VOO NG A TN SO VAT TS S N U Y S NN T SN NN SO0 B
I SR N l+l..°L2],.,zL.7 ! ‘17171 TN A VR SO N0 O SNV SR VU UK WOOR (Y SO S 0 VA O SO SO Y TN O H N0 N S N
ettt bbby v v v e b e b e v b

prevents storage outside the range of addresses 077400g to 0137777g; any attempted
violation of this restriction causes a guard mode interrupt instead.

000 111 111 100 000 000 : address 077400

17 [8!7 0
v

0177 = Storage-Limits -Lower Contents

1
1
i .
001 011 111 11 111 111 : address 0137777
|
1

0277 = Storage-L.imits-Upper Contents

Upon the occurrence of any interrupt, the guard mode designator is cleared (disabled),
so that all of main storage becomes accessible to subroutines gaining control through
the interrupt locations.)

Because locations O through 178 are never under guard mode protection, it is always
possible to use them for storage. The index registers are part of that category and are
actually located at addresses 1 through 10g.

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER 5

SECTION: PAGE:

5.7. PRIVILEGED INSTRUCTIONS

Privileged instructions are those which are needed by an operating (controlling) system
in order to perform its job; they are considered inappropriate for use in normal (user)
programs. The appearance of any of these instructions in any user program would have
an unpredictable and probably disastrous effect.

When the guard mode designator is set, through the use of an LGM instruction, any
attempt to execute a privileged instruction causes a guard mode interrupt instead. The
privileged instruction is not executed or initiated.

The privileged instructions are:

5011 load input channel (LIC)

5012 load output channel (LOC)

5013 load external function channel (LFC)
5015 stop input on channel (STIC)

5016 stop output on channel (STOC)

5021 test input channel (TIC)

5022 test output channel (TOC)

5023 test function channel (TFC)

5024 wait for interrupt (WFI)

5025 wait for interrupt (WFI)

5056 stop on key setting (SK) (ignored when in guard mode)
5065 load guatd mode (LGM)

5066 set audible alarm (SSA)

5067 enable ESI interrupts (EEI)

5.8. FLOATING-POINT NUMBERS

Floating-point numbers are two-word, 36-bit constants; they consist of a fixed-point
part (mantissa) and an exponent (characteristic). The format of a floating point number
is:

35|34 27 | 26 18 ! 17 0

where:

s is the sign bit.
c is the eight characteristic bits.
m is the 27 mantissa bits.

The mantissa (m) contains the 27 significant bits of the floating-point number. The
magnitude of the mantissa is either 0 or between .4g and .777777777g, normalized so
that the most significant bit is a 1. The characteristic is the value of ¢ in the expression
20'2008*m. The high-order bit of ¢ (bit 34) is the sign bit of the characteristic. When
C34=1, the characteristic is positive; when 034:0, the characteristic is negative. The
sign bit (s) is 0 when the floating-point number is greater than 0 (positive); it is 1

when the number is less than 0 (negative). The magnitude (positive equivalent) of a
negative number is its one’s complement.

UP-7599

Rev. 1 UNIVAC 418-ill RTOS ASSEMBLER l 5

l SECTION: PAGE!?

For example, the number 2.0 can be rewritten in floating-point form as:

2.0 * 100 , Or
20. * 1071, or
.20 * 10! , and many others.

In these examples, 0, —1, and 1 are the characteristics; 2.0, 20., and .20 are the
mantissas. The three expressions represent-the same quantities, illustrating that the
mantissa and characteristic may be manipulated so that the value of the number remains
unchanged. The octal representation of this number is:

2.0 ¥ 100 = .24 * 23

To normalize, the mantissa is multiplied by 2, and the characteristic is decreased
by 1.

The floating-point format is.
002400000000¢

Finally, to indicate that the power of the characteristic is positive, the characteristic
is biased to obtain 202400000000g. In the same manner, —2.0 is represented as
575377777777g.

5.9. INTERRUPTS

Interrupts are internally generated signals which cause the c/a section to interrupt

its normal sequence of instructions (governed by instruction address register contents),
and to take the next instruction from a predetermined address in main storage. The
contents of the IAR are not changed until the interrupt instruction is executed. An

SLJ or SLJI instruction is placed in the interrupt locations, which captures the value
of IAR in order to allow normal processing to continue when the interrupt processing
coding is completed.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-111 RTOS ASSEMBLER |

PAGE!

6.1.

INSTRUCTION REPERTOIRE
DESCRIPTION

B.

SYMBOL CONVENTIONS

The following is a list of the ‘‘shorthand’ symbols used in the repertoire description.
The meaning each symbol conveys appears to the right of the symbol.

AU Upper accumulator, 18-bit arithmetic register

AL Lower accumulator, 18-bit arithmetic register

A AU and AL linked together to form one 36-bit arithmetic register

B Eight index registers with seven residing in main storage and the currently active index
register in a flip-flop register

f Function code, six high-order bits of all instruction words

F Function register; seven hits

k Designator contained in type Ill instruction words; six bits

m Minor function code contained in type !ll instruction words; six bits

M)Ly + 8),Ly) (AU, or [(y + (B)) (AU)| of compare instructions

NI Next instruction

P or

IAR Program address register; 17 bits (or instruction address register)

SR Special register; five bits, plus one active hit

IRP Index register pointer; 3 hits

U 12 tow-order bits contained in type | and type Il instructions

Up U prefaced with the core storage segment designator hits of P (Pyg.19)

Usr U prefaced with the core storage segment designator bits of SR (SRS,S-O)

y Either an address formed by UP or USR plus U11-0 or a constant formed by Uwith sign
extension.

() Contents of an address or register

()i Initial contents of an address or register

(¢ Final contents of an address or register

(n) Contents of the nth hitof a register

(y=1,y) Contents of two consecutive memory locations linked together to form a 36-bit word. Address

y — 1 contains the most significant halif of the word; y contains the least significant half of
the word.
Indicates COMPARISON when used in logical expressions.

() () Bit-by-hit or logical product (logicat AND) defined by the following table:

01
0{0 0
1{0 1
() B () Logical sum (inclusive OR) defined by the following table:
01
0f0 1
1]1 1
() One’s complement of the contents of an address or register
() () Algebraic product of the contents of two locations
> Transfer of the quantity stated at the left of the symbol to the address or register stated at
the right of the symbol
L] Used to group terms. The brackets do not indicate ‘“the contents of'’.

UP-7599

Rev. 1

6

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER ‘

PAGE:

6.2.

6.2.1.

6.3.

INSTRUCTION REPERTOIRE

The instruction repertoire for the UNIVAC 418-III Assembler is described in this
section. The instructions are listed and defined in the following format:

Octal Code Instruction Name Mnemonic

Operation performed (Symbolic summary)
Definition of the y address or constant
Test defining the instruction

Examples or notes, where necessary

Common usage and example cases are included where necessary to supplement the
description; however, no attempt is made in these descriptions to indicate more
sophisticated uses for any of the instructions.

Supervisor Call Instructions

Several function codes are not assigned a specific function. These are called
supervisor call instructions because when executed they cause a supervisor call
interrupt at location 20g. Depending on software conventions, the RTOS may
perform certain software functions when encountering these illegal function codes.

The supervisor call functions are:
00,01,077

Execution Time: 0.75 usec, and
5000,5001,5077

Execution Time: 1.00 usec.

TYPES I AND II INSTRUCTIONS

02 COMPARE LOWER (CL)
Operation: (AL): (y)
Execution Time: 1.50 usec.
v =Up or Ugg + Up1.9

The COMPARE stage of the compare designator is set.

This instruction compares the contents of AL algebraically with the contents of
y and the compare designator is set as follows:

1. The LESS THAN stage is set if (AL) < (y).
2. The EQUAL stage is set if (AL) = (y).

The contents of AL remain unchanged and in AL. (AL); = (AL);.

UP-7599
Rev. 1

|

6

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER l

PAGE:

03

NOTES:

B -0<+0

@ The COMPARE stage is cleared by the execution of any instruction other than
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE
instruction is to be successfully tested, it must be immediately followed by
one or more of the conditional jump instructions.

B Arithmetic jump instructions have significantly different operations if executed
when the COMPARE stage is not set.

m When the COMPARE stage of the compare designator is set, all interrupts are
locked out to avoid the possibility of inadvertently clearing the COMPARE
stage.

COMPARE LOWER (CL*)

Operation: (AL) : (y + (B))

Execution Time: 1.50 usec.

y=Up or Ugg + Ug1.9

The COMPARE stage of the compare designator is set.

This instruction compares the contents of AL algebraically with the contents of
y +:(B) and the compare designator is set as follows:

1. The LESS THAN stage is set if (AL)< (y + (B)).
2. The EQUAL stage is set if (AL) = (y + (B)).

The contents of AL remains unchanged and in AL, (AL)¢ = (AL);.
NOTES:
B -0<+0

8 The COMPARE stage is cleared by the execution of any instruction other than
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE
instruction is to be successfully tested, it must be immediately followed by one
or more of the conditional jump instructions.

B Arithmetic jump instructions have significantly different operation if executed
when the COMPARE stage is not set.

8 When the COMPARE stage of the compare designator is set, all interrupts are
locked out to avoid the possibility of inadvertently clearing the COMPARE
stage.

UP-7599
Rev. 1

6

SECTION; l PAGE:

UNIVAC 418-111l RTOS ASSEMBLER ' ‘

04

05

MASKED SELECTIVE LOAD (MSL)

Operation: [(AU) (AL)] BR [(AU) B (y)l-> AL
Execution Time: 1.50 usec.

y=UporUsg + U190

This instruction replaces the individual bits of AL with bits of the contents of
y corresponding to 1’s in AU, leaving the remaining bits of AL unaltered. If
(AU), = 1, then (y), > AL.

The contents of AU remain unchanged and in AU. (AU)f = (AU);.

Example: (AU); = 007777 — Mask ‘
(y) =123451
(AL); = 666666
(AL); = 663451

NOTES:

B A mask of positive zero does not change AL. (AL); = (AL);

B A mask of negative zero results in the transfer of the contents of y to AL.
(AL); = (y)

MASKED SELECTIVE LOAD (MSL*)

Operation: [(AU) (AL R [(AU) (y + B)! - AL
Execution Time: 1.50 usec.

y = Up or Ugr + Ug1.0

This instruction replaces the individual bits of AL with bits of the contents of
y + (B) corresponding to 1’s in AU, leaving the remaining bits of AL unaltered.
If (AU), =1, then (y + (B)), - AL .

The contents of AU remain unchanged and in AU. (AU); = (AU);
NOTES:

A mask of positive zero does not change AL, (AL)f = (AL)i

A mask of negative zero results in the transfer of the contents of y + (B) to AL.
(AL); = (y + (B))

Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER ‘ ‘ 6 [5
SECTION: PAGE:

06 COMPARE LOWER MASKED BY UPPER (CLM)
Operation: [(AU) (AL)] : [(AU) €2)!
Execution Time: 2.00 usec.
y=UporUsr + U110
The COMPARE stage of the compare designator is set.

This instruction compares selected bits of AL with corresponding bits of the
contents of y by logically multiplying AU by AL and by the contents of y and
algebraically comparing the two resultants. The compare designator is set as
follows:

1. The LESS THAN stage is set if [(AL) Aau)l < I(y) (AD)]

2. The EQUAL stage is set if [(AL) EBE (AU)] =[(y) (AU)]

The contents of AL remain unchanged and in AL, The contents of AU remain
unchanged and in AU. (AL); = (AL)i and (AU)f = (AU);

Example:

(AU); = 007777 — Mask
(y) = 123451

(AL); = 222351

COMPARE 2351 with 3451

(AU);= 007777

(AL)p= 222351

NOTES:

m -0<+0

m The COMPARE stage is cleared by the execution of any instruction other
than the arithmetic jump instructions (f = 6067). Thus, if the result of a
COMPARE instruction is to be successfully tested, it must be immediately
followed by one or more of the conditional jump instructions.

m Arithmetic jump instructions have significantly different operations if executed
when the COMPARE stage is not set.

m When the COMPARE stage of the compare designator is set, all interrupts are
locked out to avoid the possibility of inadvertently clearing the COMPARE
stage.

UP-7599
Rev. 1

UNIVAC 418-llIl RTOS ASSEMBLER I

SECTION: PAGE:

07 COMPARE LOWER MASKED BY UPPER (CLM*)
Operation: [(AU) BBE (AL)] : [(AU) (y + (B)]
Execution Time: 2.00 usec.
y="Up orUgg + U119
The COMPARE stage of the compare designator is set.

This instruction compares selected bits of AL with corresponding bits of the
contents of y + (B) by logically multiplying AU by AL and by the contents

of y +(B) and algebraically comparing the two resultants. The compare designator
is set as follows:

1. The LESS THAN stage is set if [(AL) Al <[y + B)) (AU)]
2. The EQUAL stage is set if [(AL) (AU)] = [(y + (B)) (AU))

The contents of AL remain unchanged and in AL. The contents of AU remain
unchanged and in AU. (AL)¢ = (AL); and (AU); = (AU);.

NOTES:
B —-0<+0

® The COMPARE stage is cleared by the execution of any instruction other than
the arithmetic jump instructions (f = 6067). Thus, if the result of a COMPARE
instruction is to be successfully tested, it must be immediately followed by
one or more of the conditional jump instructions.

B Arithmetic jump instructions have significantly different operations if executed
when the COMPARE stage is not set.

m When the COMPARE stage of the compare designator is set, all interrupts are
locked out to avoid the possibility of inadvertently clearing the COMPARE
stage.

10 LOAD AU (LU)
Operation: (y) - AU
Execution Time: 1.50 usec.
y="Up orUsg + U119
Clear AU.
This instruction transfers the contents of y to AU.

The contents of y remain unchanged and in y. (9 = ()

UP=/5YY
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER l

SECTION: l PAGE:

7

11

12

13

14

LOAD AU (LU%*)

Operation: (y + (B)) » AU

Execution Time: 1.50 usec.

y=UporUsg + U110

Clear AU.

This instruction transfers the contents of y + (B) to AU.

The contents of y + (B) remain unchanged and in y + (B). (y + (B))y = (y + (B));

LOAD AL (LL)

Operation: (y) » AL

Execution Time: 1.50 usec.

y=UporUgp+ U1

Clear AL.

This instruction transfers the contents of y to AL.

The contents of y remain unchanged and in y. (y); = (y);

LOAD AL (LL¥*)

Operation: (y + (B)) » AL

Execution Time: 1.50 usec.

y="Up orUgp + U1 g

Clear AL.

This instruction transfers the contents of y + (B) to AL.

The contents of y + (B) remain unchanged and iny + (B). (y + (B))y = (v + (B));

ADD TO LOWER (AL)
Operation: [(y) + (AL)l » AL
Execution Time: 1.50 usec.
y=UporUgg + Uiy g

This instruction adds the contents of y to the contents of AL and places the
resultant, SUM, in AL.

The contents of y remain unchanged and in y. (y); = (y);

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER ‘ 6

l SECTION: PAGE:

NOTES:

B If the contents of AL is negative 0 and the contents of y is negative 0, the
result of the addition is negative 0.

(AL); = Us if (AL); = I’s and (y) = 1’s

® The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

® If the magnitude of the resultant is too large for AL to hold, that is, the sum
exceeds the range —377777g to +377777g, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

15 ADD TO LOWER (AL*)
Operation: [(y + (B)) + (AL)] » AL
Execution Time: 1.50 usec.
y=UporUsgr + U1

This instruction adds the contents of y + (B) to the contents of AL and stores the
SUM in AL.

The contents of y + (B) remain unchanged andin y + (B). (y + B))=(G+ ®B®)
NOTES:

m If the contents of AL is negative 0 and the contents of y + (B) is negative 0,
the result of the addition is negative 0.

B The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

® If the magnitude of the resultant is too large for AL to hold, that is, the sum
exceeds the range =377777g to +377777g, the result is incorrect and the
overflow designator is set. The state of the overflow designator is tested by
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO
OVERFLOVW instruction (f = 5053). The execution of either of these two
instructions clears the overflow designator.

16 ADD NEGATIVELY TO LOWER (ANL)
Operation: [(AL) - (y)] » AL
Execution Time: 1.50 usec.
y="UporUgg + Ujg g

This instruction subtracts the contents of y from the contents of AL and places
the resultant, DIFFERENCE, in AL.

The contents of y remain unchanged and in y. (y) = (v);

UP-7599 6
Rev. 1 UNIVAC 418-1il RTOS ASSEMBLER | cecmion: onces D

NOTES:

m If the contents of AL is negative 0 and the contents of y is positive 0, the
result of the subtraction is negative 0. (AL); = 1’s if (AL); = 1’s and (y) = 0’s.

m The results of subtraction involving all other possible combinations of positive
and negative 0 are positive 0.

m If the magnitude of the resultant is too large for AL to hold, that is, the difference
exceeds the range —3777774 to +3777774, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

17 ADD NEGATIVELY TO LOWER (ANL*)
Operation: [(AL) — (y + (B))] » AL
Execution Time: 1.50 usec.

y = UP or USR + U11_0

This instruction subtracts the contents of y + (B) from the contents of AL and
places the resultant, DIFFERENCE, in AL.

The contents of y + (B) remain unchanged and iny + (B). (y + (B))y = (y + (B));

NOTES:

m If the contents of AL is negative 0, and the contents of y + (B) is positive
0, the result of the subtraction is negative 0. (AL)f = 1’s if (AL); = 1’s and
(y+ B))=0s.

B The results of subtraction involving all other possible combinations of positive
and negative 0 are positive 0.

m If the magnitude of the resultant is too large for AL to hold, that is, the difference
exceeds the range —377777g to +377777g, the result is incorrect and the over-
flow designator is set. The state of the overflow designator is tested by either
the SKIP ON OVERFLOW instruction (f = 5052) or SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-111l RTOS ASSEMBLER ‘

PAGE:

10

20

ADD TO A (AA)

Operation: [(A) + (y=1,y)]l > A
Execution Time: 3.00 usec.
y=UporUsr+ Uiig

The borrow designator is cleared to zero.

This instruction is executed by combining the AU and AL registers into a 36-bit
accumulator, the A register. The contents of y—1 and y are treated as one 36-bit
word, a double-length signed binary number. The contents of y—1, y are added to
the contents of A and the resultant, SUM, is placed in A.

The contents of y—1, y remain unchanged and in y—1, y. (y—1,y) = (y—1,y);

Example:

y =-07507

(A); 201007430145

(07507) 351123 (least significant half)
(07506) = 077430 (most significant half)
(A)¢ 300440001270

NOTES:

m The least significant half of the 36-bit number is in y; the most significant
half of the 36-bit number is in y—1. The sign of the 36-bit double-length
number is indicated by the most significant bit of (y—1).

® The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow
for AL comes from AU.

m If an end-around borrow for AU is required, it is inhibited and the borrow
designator is set, indicating that the result left in A is too large by 1 and
must be corrected. This condition is tested by the TEST NO BORROW instruction
(f = 5051). The borrow designator is cleared only by the execution of another
ADD TO A (f = 20,21) or ADD NEGATIVE TO A (f = 22,23) instruction.

m If the contents of A is negative 0 and the contents of y—1,y is negative 0,
the result of the addition is negative 0. (A); = 1’s if (A); = I’s and (y-1,y) = I’s

B The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

B If the magnitude of the resultant is too large for A to hold, that is, the sum
exceeds the range —377777777777g to +377777777777g, the result is incorrect
and the overflow designator is set. The state of the overflow designator is
tested by either the SKIP NO OVERFLOW instruction (f = 5052) or the SKIP
ON NO OVERFLOW instruction (f = 5053). The execution of either of these two
instructions clears the overflow designator.

UP-7599
Rev. 1

6

SECTION:

11

UNIVAC 418-11l RTOS ASSEMBLER ‘

PAGE:

21

ADD TC A (AA™)
Operation: [(A)+ (y+ B) -1,y + BN - A

Execution Time: 3.00 usec.
y=Up orUgr + U110
The borrow designator is cleared to zero.

This instruction is executed by combining the AU and AL régisters into a 36-bit
accumulator, the A register. The contents of y + (B) and y + (B)—1 are treated as
one 36-bit word, a double-length signed binary number. The contents of y + (B)-1,
y + (B) are added to the contents of A and the resultant, SUM, is placed in A.

The contents of y + (B)-1, y + (B) remain unchanged and in y + (B)-1, y + (B).
(y+ B)=1,y+ B))y=(y+ (B)1,y+ (B),

NOTES:

The least significant half of the 36-bit number is in y + (B); the most signifi-
cant half of the 36-bit number is y + (B)—1. The sign of the 36-bit double-
length number is indicated by the most significant bit of (y + (B)-1).

m The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow for
AL comes from AU.

8 If an end-around borrow for AU is required, it is inhibited, and the borrow
designator is set indicating that the result left in A is too large by 1 and must

. be corrected. This condition is tested by the TEST NO BORROW instruction
(f = 5051). The borrow designator is cleared only by the execution of another
ADD TO A (f = 20,21) or ADD NEGATIVELY TO A (f = 22,23) instruction.

m If the contents of A is negative 0 and the contents of y—1,y is negative 0, the
result of the addition is negative 0. (A)¢ = I's if (A); = I’s and (y + (B)-1,y
+(B))=1’s

& The results of addition involving all other possible combinations of positive
and negative 0 are positive 0.

a If the magnitude of the resultant is too large for A to hold, that is, the sum
exceeds the range —377777g to +377777g, the result is incorrect and the
overflow designator is set. The state of the overflow designator is tested by
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO
OVERFLOW instruction (f = 5053). The execution of either of these two
instructions clears the overflow designator.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER ‘

6

SECTION:

PAGE: .

12

22 ADD NEGATIVELY TO A (ANA)

Operation: [(A) — (y—1,y)] -A

Execution Time: 3.00 usec.

y= UP or USR + Ull_o

The borrow designator is cleared.to zero.

This instruction is executed by combining the AU and AL registers into a 36-bit
accumulator, the A register. The contents of y—~1 and y are treated as one 36-bit
word, a double-length signed binary number. The contents of y—1,y are subtracted
from the contents of A and the resultant, DIFFERENCE, is placed in A.

The contents of y—1,y remain unchanged and in y-1,y. (y—1,y)f = (y—1,y);

Example:

y = 07507

(A); = 201007430145

(07507) = 351123 (least significant half)

(07506) = 077430 (most significant half)

(A) = 101357057022

NOTES:

The least significant half of the 36-bit number is in y; the most significant
half of the 36-bit number is in y—1. The sign of the 36-bit double-length
number is indicated by the most significant bit of (y—1).

The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow
for AL comes from AU.

If an end-around borrow for AU is required, it is inhibited and the borrow
designator is set, indicating that the result left in A is too large by 1 and must
be corrected. This condition is tested by the TEST NO BORROW instruction

(f = 5051). The borrow designator is cleared only by the execution of another
ADD TO A (f = 20,21) or ADD NEGATIVELY TO A (f = 22,23) instruction.

If the contents of A is negative 0 and the contents of y—1,y is positive 0,
the result of the subtraction is negative 0. (A); = 1’s if (A); = 1’s and
(y=1,y) = 0’s

The results of subtraction involving all other possible combinations of positive
and negative 0 are positive 0.

UP-7599
Rev. 1

UNIVAC 418-1ll RTOS ASSEMBLER = ‘

6

SECTION:

PAGE:

13

23

If the magnitude of the resultant is too large for A to hold, that is, the difference
exceeds the range —377777777777g to +377777777777g, the result is incorrect
and the overflow designator is set. The state of the overflow designator is
tested by either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP

ON NO OVERFLOW instruction (f = 5053). The execution of either of these

two instructions clears the overflow designator.

ADD NEGATIVELY TO A (ANA*)
Operation: [(A) — (y + (B) =1,y + (B)I-> A
Execution Time: 3.00 usec.
y=UporUgr+ Ui1g

The borrow designator is cleared to zero.

This instruction is executed by combining the AU and AL registers into a 36-bit
accumulator, the A register. The contents of y + (B) — 1 and y + (B) are treated
as one 36-bit word, a double-length signed binary number. The contents of

y + (B)-1, y + (B) are subtracted from the contents of A and the resultant,
DIFFERENCE, is placed in A.

The contents of y + (B)-1, y = (B) temain unchanged and iny + (B)-1, y + (B).
v+ B)-1, y+ (B)=(y+ B)-1, y+ (B))

NOTES:

B The least significant half of the 36-bit number is in y + (B); the most signi-
ficant half of the 36-bit number is in y + (B)—1. The sign of the 36-bit double-
length number is indicated by the most significant bit of (y + (B)-1).

B The operating characteristics of double-length arithmetic operations are the
same as those for single-length arithmetic operations, except that any borrow
for AL comes from AU.

m If an end-around borrow for AU is required, it is inhibited, and the borrow
designator is set indicating that the result left in A is too large by 1 and must
be corrected. This condition is tested by the TEST NO BORROW instruction
(f = 5051). The borrow designator is cleared only by the execution of another
ADD TO A or ADD NEGATIVELY TO A instruction.

B If the contents of A is negative 0 and the contents of y + (B)—1, y + (B) is
positive 0, the result of the subtraction is negative 0. (A); = 1’s if (A); =1’s
and (y—1,y) = 0’s.

B The results of subtraction involving all other possible combinations of positive
and negative 0 are positive 0.

@ If the magnitude of the resultant is too large for A to hold, that is, the difference

exceeds the range —3777777777778 to +377777777777;3" the result is incorrect

and the overflow designator is tested by either the SKIP ON OVERFLOW instruc-

tion (f = 5052) or the SKIP ON NO OVERFLOW instruction (f = 5053). The
execution of either of these two instructions clears the overflow designator.

UP-7599
Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER l

SECTION: PAGE:

14

24 MULTIPLY (M)
Operation: [(AL) x (y)] » A

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y=UporUsg + U119

This instruction multiplies the contents of AL by the contents of y and the resultant,
PRODUCT, is placed in the 36-bit accumulator, the A register, consisting of AU
and AL.

The contents of y remain unchanged and in y.)¢ = ()

NOTES:

B The results of multiplication involving all possible combinations of positive
and negative 0 are positive 0.

m If the most significant half of the product is 17 bits or smaller, it is contained
in AL with leading 0’s in cases of positive products and leading 1’s in cases
of negative products. ALy~ contains the proper sign.

Examples:

Positive Product

(AL) 0000035 = +3

(¥) 000004g = +4

(A) = (AU) + (AL) = 0000005 + 0000144

Negative Product

(AL) = 777774g = -3

() 0000045 = +4

(A) (AU) + (AL) = 777777g + 7777634

1

11

® If the most significant half of the product is exactly 18 bits long, it fills AL
and the sign is carried by AU. For positive products, AU contains all 0’s; for
negative products, AU contains all 1’s. AL~ does not contain the proper sign
but, rather, the most significant bit of the product.

Examples:

Positive Product

(AL) = 000725¢
(y) = 0007414
(A) = (AU)+ (AL) = 000000g + 670465

Negative Product

(AL) = 777052¢ = —725¢

(y) = 000741g

(A) = (AU)+ (AL) = 777777g + 1073128

B No overflow is possible with this instruction because the number of bits in
the product cannot exceed the number of bits in the multiplicand plus the
number of bits in the multiplier.

UP-7599
Rev. 1

SECTION:

UNIVAC 418-Il1 RTOS ASSEMBLER ’

PAGE:

15

25

26

MULTIPLY (M*)
Operation: [(AL)x (y + (B))] - A

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y = UP or USR + U11-0

This instruction multiplies the contents of AL by the contents of y + (B) and the

resultant, PRODUCT, is placed in the 36-bit accumulator, the A register, consisting

of AU and AL.
The contents of y + (B) remain unchanged and in y + (B). (y + (B)); = (y + (B));

NOTES:

m The results of multiplication involving all possible combinations of positive
and negative 0 are positive 0.

m If the most significant half of the product is 17 bits or smaller, it is contained
in AL with leading 0’s in cases of positive products and leading 1’s in cases
of negative products. ALy contains the proper sign.

m If the most significant half of the product is exactly 18 bits long, it fills AL
and the sign is carried by AU. For positive products, AU contains all 0’s; for
negative products, AU contains all 1’s. ALy~ does not contain the proper sign

but, rather, the most significant bit of the product.

B No overflow is possible with this instruction because the number of bits in the
product cannot exceed the number of bits in the multiplicand plus the number of
bits in the multiplier.

DIVIDE (D)
Operation: [(A) + (y)] > AL; Remainder -~ AU

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y=UporUgg + Ut1.g

This instruction divides the contents of A by the contents of y. The QUOTIENT
is placed in AL and the REMAINDER is placed in AU.

The contents of y remain unchanged and in y. ¢ = (¥);

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER |

SECTION: PAGE:

NOTES:

m The results of division involving all possible combinations of positive and

negative 0 are positive 0.

8 The remainder always bears the sign of the dividend with the results satisfying

the relationship: DIVIDEND = QUOTIENT x DIVISOR + REMAINDER

#® If the dividend and the divisor have like signs, the quotient is positive. If

27

they have unlike signs, the quotient is negative.

Examples:
Divisor Dividend Quotient Remainder
+4 +5 +1 +1
-4 +5 -1 +1
+4 -5 -1 -1
-4 -5 +1 -1

If the magnitude of the quotient is too large for AL to hold, that is, the quotient
exceeds the range —377777g to +3777778, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERFLOW instruction {f = 5052) or the SKIP ON NO OVERFLOW
instruction (f = 5053). The execution of either of these two instructions clears
the overflow designator.

DIVIDE (D*)
Operation: [(A) + (y + (B))] » AL; Remainder » AU

Execution Time: 6.50 usec. — Numbers of like signs
7.375 usec. — Numbers of unlike signs

y=Up or USR + U11_0

This instruction divides the contents of A by the contents of y + (B). The
QUOTIENT is placed in AL and the REMAINDER is placed in AU.

The contents of y remain unchanged and in y. (y + B¢ = (y + (B));

NOTES:

B The results of division involving all possible combinations of positive and
negative 0 are positive 0.

B The remainder always bears the sign of the dividend with the results satisfying
the relationship: DIVIDEND = QUOTIENT x DIVISOR + REMAINDER

m If the dividend and the divisor have like signs, the quotient is positive. If they
have unlike signs, the quotient is negative.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER |

SECTION:

PAGE:

17

30

Examples:
Divisor Dividend Quotient Remainder
+4 +5 +1 +1
-4 +5 -1 +1
+4 -5 -1 -1
-4 -5 +1 -1

B If the magnitude of the quotient is too large for AL to hold, that is, the quotient
exceeds the range —377777g to +377777g, the result is incorrect and the overflow
designator is set. The state of the overflow designator is tested by either the
SKIP ON OVERF LOW instruction (f = 5052) or SKIP ON NO OVERFLOW instruc-
tion (f = 5053). The execution of either of these two instructions clears the
overflow designator.

STORE LOCATION AND JUMP INDIRECT (SLJI)
Operation: [(P)+ 1] > (y); [(y)+ 11> P
Execution Time: 2.25 usec.

y=Up+Ur1.0

This instruction stores the current program address +1 at the address defined by
the contents of y. The contents of y are increased by 1, and the new address is
transferred to the P register.

Example of an indirect return jump executed from address 002000g:

INITIAL FINAL

ADDRESS CONTENTS CONTENTS EXPLANATION

0020004 30 6500g 30 6500g Execute subroutine from main program

006500¢ 71 7420g 71 7420g Constant defining location of desired
subroutine

317420g 37 2164g 00 2001g Subroutine exit address

317421 ——————— 00 2001g Subroutine entrance address (control
is transferred here from indirect return
jump)

The effect of the above sequence upon execution of the indirect return jump at
address 002000y is to transfer control to the subroutine starting at 17421g, while
at the same time letting the subroutine know where to return control.

NOTE:

This instruction together with the jump indirect instruction provides the means
needed for jumping to and from subroutines.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER ’

SECTION: PAGE:

18

31

32

33

34

STORE LOCATION AND JUMP INDIRECT (SLJI*)
Operation: [(P)+ 11> (y+ B)); [(y+ B)+ 11> P
Execution Time: 2.25 usec.

y=Up+Ujip

This instruction stores the current program address +1 at the address defined by
the contents of y + (B). Then the contents of y are increased by 1 and the new
address is transferred to P.

NOTE:

This instruction together with the jump indirect instruction provides the means
needed for jumping to and from subroutines.

LOAD B REGISTER (LB)
Operation: (y)-> B
Execution Time: 1.50 usec.
y=UporUsg + Ut1.0

This instruction transfers the contents of y to B specified by IRP. The full
18 bits of y are transferred to B.

The contents of y remain unchanged and in y. (y); = (y);

LOAD B REGISTER (L B*)
Operation: (y + (B)) > B
Execution Time: 1.50 usec.
y=Up or Ugg * U110

This instruction transfers the contents of y + (B) to B specified by IRP. The full
18 bits of y + (B) are transferred to B.

The contents of y remain unchanged and in y. (y + (B)); = (y + (B));
JUMP (J)

Operation: y - Pyq g

Execution Time: 0.75 usec.

y=Up+ U1 g

This instruction passes program control unconditionally to the location specified
by y.

Since only the word address is specified by y and the storage segment address is
specified by Pyg_15, program control remains within the current storage segment.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER : I

SECTION:

PAGE:

19

35

36

37

Example:
P16_12 = 038 and y= 67128

When the instruction is executed, P = 0367128, and control passes to location
036712.

JUMP (J*)

Operation: y + (B) » Pyq
Execution Time: 0.75 usec.
y=Up+ U110

This instruction passes program control unconditionally to the location specified
by y + (B).

Since the word address is specified by y + (B), the storage segment address
specified by Py¢ 1o could be modified causing program control to pass to a new
location in another storage segment.

LOAD B REGISTER WITH ‘““KONSTANT’’ (LBK)
Operation: y » B
Execution Time: 0.75 usec.

y = U (sign extended to 18 bits)

This instruction transfers the contents of y to B specified by the index register
pointer (IRP). The contents of y is the low-order 12 bits of this instruction Ui10
extended to 18 bits by the repetition of bit 11 in bit positions 17 through 12.

Example:

Uj1.0=7701g
(B)i = any value
(B)g = 777701¢

NOTE:

Ul 1-0 is the 12-bit number contained within the instruction; it does not refer to
an address.

LOAD B REGISTER WITH “‘KONSTANT’" (LBK*)
Operation: y + (B) > B
Execution Time: 0.75 usec.

y = U (sign extended to 18 bits)

This instruction transfers the contents of y + (B) to B specified by IRP. The
contents of y are the low-order 12 bits of this instruction, Uq1.9, extended to
18 bits by the repetition of bit 11 in bit positions 17 through 12.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER \

SECTION:

PAGE:

20

40

41

42

43

The effect of this instruction is to change the contents of B by incrementally
increasing or decreasing B.

NOTE:

Uqq_g is the 12-bit number contained within the instruction; it does not refer
to an address.

CLEAR Y (CY)

Operation: 0 -y

Execution Time: 1.50 usec.

y = Up or Ugg + U11.0

This instruction stores an 18-bit word of 0’s at storage address y.
CLEAR Y (CY™¥)

Operation: 0~y + (B)

Execution Time: 1.50 usec.

y=UporUsr + U11.0

This instruction stores an 18-bit word of 0’s at storage address y + (B).

STORE B REGISTER (SB)
Operation: (B)-> y
Execution Time: 1.50 usec.
y=Up orUgg + Uj1.0

This instruction transfers the contents of B, specified by IRP, to the storage
address vy.

The contents of B, specified by IRP, remain unchanged and in B. (B)f = (B);
STORE B REGISTER (SB*)

Operation: (B) » y + (B)

Execution Time: 1.50 usec.

y=UporUsr+ U1

This instruction transfers the contents of B, specified by IRP, to the storage
address y + (B).

" The contents of B, specified by IRP, remain unchanged and in B. B)f = (B);

UP-7599
Rev. 1

6

lSECTION:

\ PAGE:

21

44

45

46

47

51

UNIVAC 418-111 RTOS ASSEMBLER l

STORE AL (SL)

Operation: (AL) >y
Execution Time: 1.50 usec.
y=Up or Ugg + U11.9

This instruction transfers the contents of AL to the storage address y. The contents
of AL remain unchanged and in AL. (AL); = (AL);

STORE AL (SL*)
Operation: (AL)-> y + (B)
Execution Time: 1.50 usec.
y=UporUsr + U119

This instruction transfers the contents of AL to the storage address y + (B). The
contents of AL remain unchanged and in AL. (AL); = (AL),

STORE AU (SU)

Operation: (AU) > y
Execution Time: 1.50 usec.
y=UporUgr+ U9

This instruction transfers the contents of AU to the storage address y. The contents
of AU remain unchanged and in AU. (AU); = (AU),

STORE AU (SU*)

Operation: (AU) » y + (B)

Execution Time: 1.50 usec.

y=Up orUggr + U11.0

This instruction transfers the contents of AU to the storage address y + (B).
The contents of AU remain unchanged and in AU. (AU); = (AU);

INCLUSIVE OR (OR)

Operation: [(AL) ER (y)] - AL

Execution Time: 1.50 usec.

y=Up+ U1

Each bit in y is logically added to corresponding bits in AL and the 18 independent
logical sums are placed in AL. This is a bit-by-bit INCLUSIVE OR. For each bit
in y that equals 1, set the corresponding bit in AL to 1. For each bit that equals 0,
the corresponding bit in AL is left as it is.

UP-7599
Rev. 1

UNIVAC 418-1l1l RTOS ASSEMBLER ‘

SECTION:

PAGE:

22

52

The contents of y remain unchanged and in y. (y)f = (y);

Example:

(AL);
62)
(AL)s

1234564
000077
123477g

]

NOTES:

m The INCLUSIVE OR function is defined in the following table:

(v) oo} 1} 1
(AL) 0
LOGICAL SUM 0|11} 1

m This instruction is sometimes called selective set.

AND (AND)

Operation: [(AL) (vl - AL
Execution Time: 1.50 usec.
y=Up+ U1

Each bit in y is logically multiplied by cortesponding bits in AL and the 18
independent logical products are placed in AL. This is a bit-by-bit AND. For
each bit in y that equals 0, clear the corresponding bit in AL to 0. For each
bit in y that equals 1, the corresponding bit in AL is left as it is.

The contents of y remain unchanged and in y. (y)f = (y);
Example:

123456
707070
103050

It

(AL),
)
(AL);

NOTES:

B The AND function is defined in the following table:

) 0]0]1
(AL) 0| 1]0]1
LOGICAL PRODUCT ojo|o0|1

m This instruction is sometimes called selective clear.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER

SECTION:

PAGE:

23

53

54

EXCLUSIVE OR (XOR)
Operation: (AL) (y) » AL

Execution Time: 1.50 usec.

y=Up+ Uiy

Each bit in y is logically subtracted from corresponding bits in AL and the 18

independent logical differences are placed in AL. This is a bit-by-bit EXCLUSIVE

OR. For each bit in y that equals 1, complement the corresponding bit in AL. For

each bit in y that equals 0, the corresponding bit in AL is left as it is.

The contents of y remain unchanged and in y. (y)f = (y)i

Example:
(AL); = 123456
(y) = 070007

(AL); = 153451

NOTES:

B The EXCLUSIVE OR function is defined in the following table:

(y) olo|1]1
(AL) 0|1 1
LOGICAL DIFFERENCE 0|11

B The instruction is sometimes called selective complement.

ENABLE INTERRUPTS AND JUMP INDIRECT (EJI)

Operation: (y) - the P register, and remove interrupt lockout

Execution Time: 1.50 usec.

y=Up+Uprg

This instruction removes interrupt lockout, enables interrupts and passes program

control to the address which is specified by the contents of y.

NOTES:

m Interrupt lockout is set by all interrupts received from the IOM.

8 An application of this instruction is the termination of a subroutine activated

by an interrupt.

B This instruction gives the same result as executing the two instructions, clear

interrupt lockout (f = 5030) and jump indirect (f = 55), in succession.

m Interrupts are inhibited for one instruction time following the execution of this

instruction.

UP-7599
Rev. 1

6

‘ SECTION:

UNIVAC 418-111l RTOS ASSEMBLER \

PAGE:

24

55

56

57

JUMP INDIRECT (JI)
Operation: (y) > P
Execution Time: 1.50 usec.
y=Up+ U1

This instruction passes program control unconditionally to the location specified
by the contents of y.

TEST B REGISTER FOR EQUALITY (TB)

Operation: IF (B) = (y); SKIP NI, [(P) +2 ~» P]
IF (B) £ (y); ADVANCE B BY ONE [(B) + 1 » B]
EXECUTE NI{(P)+ 1 » P]

Execution Time: 2.50 usec.
y=Up+ U110

This instruction compares the contents of B, specified by IRP, with the contents

of y. If they are equal, the next instruction is skipped. If (B) = (y), then (P) + 2 > P.

If they are not equal, the contents of B are incremented by 1 and the computer
executes the next instruction. If (B) # (y), then (B)+ 1 > B and (P) + 1 » P,

TEST ANY LOCATION FOR ZERO (TZ)

Operation: IF (y)= 0, SKIP NI, [(P) + 2 » P]
IF (y) # 0, DECREMENT (y) BY ONE [(y) — 1 > y]

EXECUTE NI, {(P) + 1 » P]

Execution Time: 2.25 usec.

y=Up+Ui1g

If the contents of y are 0, the next instruction is skipped. If (y) = 0, then (P) + 2 > P.

If they are not 0, they are decremented by 1 and the processor executes the next
instruction. If (y) # 0, then (y) — 1 > y and (P) + 1 » P.

UP-7599
Rev. 1

]

UNIVAC 418-111l RTOS ASSEMBLER '

6 ‘ 25
SECTION: PAGE:

60

60

JUMP ON AU ZERO (JUZ) (Compare designator not set)

Operation: IF (AU)=+0,y-> P
IF (AU)#+0, (P)+ 1P

Execution Time: 0.75 usec.
y=Up+ U1y
The COMPARE stage of the compare designator is not set.

If the contents of AU equals positive 0, program control passes to the location
specified by y. If (AU) = +0, theny » P.

If the contents of AU does not equal positive 0, the processor executes the next
instruction. If (AU) # 40, then (P) + 1 » P.

NOTE:

Negative 0 acts as not 0.

JUMP ON EQUAL (JE) (Compare designator set)

Operation: IF (AL)=M,y - P
IF (AL)# M,)+ 1- P
IF [(AL) I (AU)] =M,y P
IF [(AL) AU £M, (P)+1-P

Execution Time: 0.75 usec.

y=Up+Uirg
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is set, program control passes to
the location specified by y.

IF (AL)= M, theny > P
IF (AL) (AU)] = M, theny > P

If the EQUAL stage of the compare designator is not set, the next instruction is
executed.

IF (AL) # M, then (P)+ 1> P
IF [(AL) (AU) £ M, then (P)+ 1> P

NOTES:
B Negative 0 acts as not 0.

® Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER l

PAGE:

26

61

61

JUMP ON AL ZERO (JLZ) (Compare designator not set)

Operation: (AL)=+0,y-» P
(AL) #+0, (P)+1- P

Execution Time: 0.75 usec.
y=Up+ U1
The COMPARE stage of the compare designator is not set.

If the contents of AL equal positive 0, program control passes to the location
specified by y. IF (AL) = +0, theny > P

If the contents of AL does not equal positive 0 (contains any 1 bits) the processor
executes the next instruction. IF (AL) # 0, then (P)+ 1 + P

NOTE:

Negative 0 acts as not 0.

JUMP ON EQUAL (JE) (Compare designator set)

Operation: IF (AL)=M,y-> P
IF (AL)#M, (P)+1- P
IF [(AL) AV =M,y P
IF [((AL) B (AU)] # M, (P)+1- P

Execution Time: 0.75 usec.
y=Up+Up1yg
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is set, program control passes to
the location specified by y.

IF (AL)=M, THEN y - P
IF [(AL) (AU)l = M, theny > P

If the EQUAL stage of the compare designator is not set, the processor executes
the next instruction.

IF (AL)# M, then (P)+ 1> P
IF {(AL) (AU)] # M, then (P)+ 1> P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER }

SECTION:

PAGE:

27

62

62

JUMP ON AU NONZERO (JUNZ) (Compare designator not set)

Operation: IF (AU)# +0, y > P
IF (AU)=4+0, (P)+ 1P

Execution Time: 0.75 usec.
y=Up+ Ui
The COMPARE stage of the compare designator is not set.

If the contents of AU does not equal positive 0 (contains any 1 bits) program
control passes to the location specified by y. IF (AU) # +0, then y > P,

If the contents of AU equals positive 0, the processor executes the next instruction.

IF (AU) = +0, then (P)+ 1 > P

NOTE:

Negative 0 acts as not 0.

JUMP ON NOT EQUAL (JNE) (Compare designator set)

Operation: IF (AL)# M,y P
IF (AL)=M, (P)+ 1> P
IF [(AL) AU £M,y-> P
IF [(AL) IXB (AU) =M, (P)+ 1> P

Execution Time: 0.75 usec.
y=Up+Uit0
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is not set, the processor passes
control to the location specified by y.

IF (AL) # M, theny > P
IF [(AL) IXd (AU)] # M, theny » P

If the EQUAL stage of the compare designator is set, the processor executes the

next instruction,.

IF (AL)=M, then (P)+ 1 > P
IF [(AL) I (AU)I = M, then (P)+ 1 > P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

6
UNIVAC 418-111' RTOS ASSEMBLER \ ‘sacmm

28

PAGE:

63

63

JUMP ON AL NONZERO (JLNZ) (Compare designator not set)

Operation: IF (AL)# +0,y-> P
IF (AL)=+0, (P)+1- P

Execution Time: 0.75 usec.
y=Up+ U1
The COMPARE stage of the compare designator is not set.

If the contents of AL does not equal positive 0, program control passes to the
location specified by y. IF (AL) # +0, theny > P

If the contents of AL equals positive 0, the processor executes the next instruction.

IF (AL) = +0, then (P) + 1 - P

NOTE:

Negative 0 acts as not 0.

JUMP ON NOT EQUAL (JNE) (Compare designator set)

Operation: IF (AL)# M, y-> P
IF AL)=M, (P)+1 - P
IF [(AL) (AU # M,y P
IF [(AL) Al =M, (P)+1-P

Execution Time: 0.75 usec.
y=Up+ U1
The COMPARE stage of the compare designator is set.

If the EQUAL stage of the compare designator is not set, the processor passes
control to the location specified by y.

IF (AL)# M, theny » P
IF [(AL) INE (AU)I # M, theny > P

If the EQUAL stage of the compare designator is set, the processor executes the
next instruction.

IF (AL) = M, then (P)+ 1> P
IF [(AL) (AU) = M, then (P) + 1 > P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1 " UNIVAC 418-111 RTOS ASSEMBLER

l SECTION: PAGE:

64 JUMP ON AU POSITIVE (JUP) (Compare designator not set)

Operation: IF (AU) POSITIVE, y > P
IF (AU) NOT POSITIVE, (P)+ 1 P

Execution Time: 0.75 usec.
y=Up+ U110
The COMPARE stage of the compare designator is not set.

If the sign of AU is positive, program control passes to the location specified
by y. IF (AU;y5) =0, theny > P

If the sign of AU is negative, the processor executes the next instruction. IF
(AU17) =1, then (P)+1-> P

64 JUMP ON NOT LESS (JNLS) (Compare designator set)

Operation: IF (AL)> M,y P
IF (AL)< M, (P)+1- P
IF [(AL) X3 (AU)] > M,y - P
IF [(AL) (Al < M, P)+1-P

Execution Time: 0.75 usec.
y=Up+ Ui
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is not set, program control
passes to the location specified by y.

IF (AL)> M, theny > P
IF [(AL) XI3 (AU)] > M, theny » P

If the LESS THAN stage of the compare designator is set, the processor executes
the next instruction.

IF (AL)<M, (P)+1- P
IF [(AL) IX12 (AU)I <M, (P)+ 1> P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

SECTION: PAGE:

UNIVAC 418-111 RTOS ASSEMBLER ‘

30

65

65

JUMP ON AL POSITIVE (JLP) (Compare designator not set)

Operation: IF (AL) POSITIVE, y » P
IF (AL) NEGATIVE, (P)+ 1> P

Execution Time: 0.75 usec.
y=Up+ U190
The COMPARE stage of the compare designator is not set.

If the sign of AL is positive, program control passes to the location specified
by y. IF (ALy») =0, theny > P

If the sign of AL is negative, the processor executes the next instruction. IF
(AL17) =1, then (P)+1-P

JUMP ON NOT LESS (JNLS) (Compare designator set)

Operation: IF (AL)> M,y > P
IF (AL)< M, (P)+1- P
IF [(AL) X412 (AU)] > M,y > P
IF [(AU) B (AU) < M, (P)+ 1> P

Execution Time: 0.75 usec.
y=Up+ U1
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is not set, program control
passes to the location specified by y.

IF (AL)> M, theny -~ P
IF [(AL) X3 (AU)] > M, theny > P

If the LESS THAN stage of the compare designator is set, the processor executes
the next instruction.

IF (AL)< M, (P)+ 1> P
IF [(AL) IXI9 (AU)]> M, (P)+ 1> P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1

31

UNIVAC 418-111 RTOS ASSEMBLER ' J 6
SECTION:

PAGE:

66

66

JUMP ON AU NEGATIVE (JUN) (Compare designator not set)

Operation: IF (AU) NEGATIVE, J-» P
IF (AU) POSITIVE, (P)+ 1> P

Execution Time: (.75 usec.
y=Up+ Ui
The COMPARE stage of the compare designator is not set.

If the sign of AU is negative, program control passes to the location specified
by y.

IF (AU17) = 1, then y - p

If the sign of AU is positive, the processor executes the next instruction.
IF (AU17) =0,then (P)+1-> P

JUMP ON LESS (JLS) (Compare designator set)

Operation: IF (AL)<M, y-> P
IF (AL)> M, (P)+ 1> P
IF [(AL) IX) (AU)J<M,y-> P
IF [(AL) X8 (AU)l > M, (P)+ 1 P

Execution Time: 0.75 usec.
y=Up+Uj1g
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is set, program control passes
to the location specified in y.

IF (AL) < M, theny - P

IF [(AL) 14 (AU)] < M, then y > P

If the LESS THAN stage of the compare designator is not set, the processor
executes the next instruction.

IF (AL)> M, then(P)+ 1> P

IF {(AL) IXI2 (AU)] > M, then (P)+ 1- P

NOTE:

Execution of this instruction does not clear the compare designator.

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

SECTION: PAGE:

67 JUMP ON AL NEGATIVE (JLN) (Compare designator not set)

Operation: IF (AL) NEGATIVE, y > P
IF (AL) POSITIVE, (P)+ 1 > P

Execution Time: 0.75 usec.
y=Up+Uyip
The COMPARE stage of the compare designator is not set.

If the sign of AL is negative, program control passes to the location specified
by y.
If (ALy7) =1, theny > P

If the sign of AL is positive, the processor executes the next instruction. IF (AL)
=0,then(P)+1-P

67 JUMP ON LESS (JLS) (Compare designator set)

Operation: IF (AL)< M,y > P
IF (AL)> M, (P)+ 1> P
IF [(AL) (AU)J <M,y P
IF [(AL) AW >M, (P)+1-P

Execution Time: 0.75 usec.

y=Up+ U110
The COMPARE stage of the compare designator is set.

If the LESS THAN stage of the compare designator is set, program control
passes to the location specified by y.

IF (AL) < M, theny > P
IF [(AL) (AU)] < M, theny - P

If the LESS THAN stage of the compare designator is not set, the processor
executes the next instruction.

IF (AL) > M, then (P)+ 1> P
IF [(AL) (AU)] > M, then (P)+ 1 > P

NOTE:

Execution of this instruction does not clear the compare designator.

6

UP-7599 ‘ 33

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER \sscnom \ orces

70 LOAD AL WITH ““KONSTANT’’ (LLK)
Operation: y » AL
Execution Time: 1.00 usec.

y = U (sign extended to 18 bits)

The contents of y are the lower-order 12 bits of this instruction extended to 18
bits by the repetition of bit 11 in bit positions 17 through 12. This expanded
18-bit number is placed in AL.

Examples:

70 0001g, y = 0001g, LOAD AL WITH “KONSTANT’’ + 1
(AL); = any value

(AL)¢ = 000001g _

70 77758, y = 7775g, LOAD AL WITH “KONSTANT”’ - 1
(AL); = any value

(AL)¢ = 777775g

NOTES:

B The LOAD AL WITH ‘““KONSTANT’’ instruction itself remains unchanged by
the operation.

m U is the 12-bit number contained within the instruction; it does not refer to
an address.

B The constant, U, may range in value from —37778 to +3777g.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER I

SECTION:

PAGE:

34

71

ADD ““KONSTANT’’ TO AL (ALK)
Operation: (AL)+ y » AL

Execution Time: 1.00 usec.
y = U (sign extended to 18 bits)

The contents of y are the lower-order 12 bits of this instruction, extended to
18 bits by the repetition of bit 11 in bit positions 17 through 12. This 18-bit

number is then added to the contents of AL and the resultant, SUM, is placed
in AL.

Examples:

71 0002g, y = 0002g, ADD ‘“KONSTANT” + 2 TO AL
(AL); = 0577774
(AL); = 0600014

71 7775g, y = 7775g, ADD “KONSTANT” —2 TO AL
(AL); = 0670554
(AL); = 0670534

NOTES:

B The ADD ““KONSTANT’”’ TO AL instruction itself remains unchanged by the

operation.

B U is the 12-bit number contained within the instruction; it does not refer to an

address.
8 The constant, U, may range in value from —3777g to +3777g.

® If the contents of AL is negative 0 and y is negative 0, the result of the
addition is negative 0.

(AL)¢ = I’s if (AL); = I’s and y = L’s

B The results of addition involving all other possible combinations of positive

and negative 0 are positive 0.

m If the magnitude of the resultant is too large for AL to hold, the result is
~ incorrect and the overflow designator is set. The state of the overflow

designator is tested by either the SKIP ON OVERFLOW instruction (f = 5052)

or the SKIP ON NO OVERFLOW instruction (f = 5053). The execution of
either of these two instructions clears the overflow designator.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER]

SECTION:

PAGE:

35

72

73

STORE INDEX REGISTER (SIR)

Operation: IRP3 - y3_p
0’s » ¥5-4

Execution Time: 3.00 usec.
v=Up * U1

This instruction replaces the six low-order bits of the contents of y with a six-
bit value in which the contents of IRP3_(replaces the contents of y3_ and zeros

replace the contents of yg_4. Bits 17 through 6 of the contents of y remain unchanged.

The resultant is stored at storage location y.

NOTES:

m If the contents of IRP equals 0, bit 3 of the contents of y is set. If the contents
of IRP does not equal 0, bit 3 of the contents of y is cleared. That is, IRP
points to storage address 10g when loaded with 00g.

IF (IRP) = 0 (y3) = 1
IF (IRP) # 0 (y3) = 0

m Since this instruction effects a partial transfer, the 12 high-order bits of y
remain unchanged.

JUMP IF B REGISTER NONZERO (JBNZ)
Operation: IF (B) +0, (B)-1->Bandy-> P
IF (B)+0, (P)+ 1> P
Execution Time: 1.75 usec.

y=Up+ U0

If the contents of B, specified by IRP, are not positive 0, the contents of B are
decremented by 1 and program control passes to the location specified by y. If
the contents of B, specified by IRP, are positive 0, the processor executes the
next instruction.

IF (B) +0, then (B) — 1 > Band y > P
IF (B) +0, then (P) + 1 > P

NOTES:

B Negative 0 acts as not 0.

m Since B is a one’s complement number and can take values less than zero, the
B JUMP is effective for program loops only when the contents of B is initially
positive.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER ‘

SECTION: PAGE:

36

74

75

STORE ADDRESS OF AL (SAD)
Operation: (ALII-O) > V11-0
Execution Time: 3.00 usec.
y=Up+ Ui

The low-order 12 bits of the contents of AL, (AL 11- 0), replace the corresponding
low-order 12 bits of the contents of y, (yy1_g)- The high- order six bits of the
contents of y (y17_1p) remain unchanged.

The contents of AL remain unchanged and in AL.

Example:

(AL); = 762504
(¥) = 562504

NOTE:

Since this instruction effects a partial transfer, the six high-order bits of y
remain unchanged.

STORE SPECIAL REGISTER (SSR)
Operation: (SRS-O) > Y5.0
Execution Time: 3.00 usec.
y=Up+ U119

The contents of the special register replace the 6 low-order bits of the contents
of y (yS—O)' Bit 4 of the special register, SRy, is cleared to 0. The contents of
SR3_0,5 bits 0 through 3 and bit 5, and the contents of V17-6 bits 17 through 6,
remain unchanged by the operation.

NOTES:

m Since the instruction effects a partial transfer, bits 17 through 6 of the contents
of y (y17_6) tremain unchanged.

B This instruction deactivates the special register as the control bit, bit 4, is
cleared.

UP-7599
Rev. 1

6

SECTION:

UNIVAC 418-11l RTOS ASSEMBLER ‘

PAGE:

37

6.4.

6.4.1.

76 STORE LOCATION AND JUMP (SLJ)

Operation: (P)+1syandy+1-P
Execution Time: 2.00 usec.
y=Up+Us10

The address of the next instruction in storage replaces the contents of the
location specified by y; that is, the current program address plus 1 is stored in
y. Program control passes to the location following the location specified by y;
that is, jump to y plus 1.

NOTES:
B This instruction transfers a full 18-bit word to y.

m The lower 17 bits are (P) + 1; the upper bit is set to 0.

TYPE III INSTRUCTIONS

The following ate type III instructions. Each requires a function code of 50 and a
minor function code in the range of 00g through 77g. The 50 function code identifies

the instruction as type III; the minor function code determines the operation to be
performed.

Type III-b Instructions

Most of the type III-b instructions are the optional floating-point instructions. In
processors not equipped with this feature, floating-point commands are considered
as faults and generate a supervisor call interrupt.

5002 FLOATING-POINT ADD (FA) and (FA*)

Operation: (FA)
(A + (y=1,y)] » A
(FA*)
[(A)+ (y-1+(B), y+ BN~ A

Execution Time: (4.35 + number of shifts/8) usec.
y = Up or USR + Ull-O

This instruction causes the signed floating-point number contained in the main
storage addresses specified by y—1 (most significant half) and y (least signi-
ficant half) to be added to the signed floating-point number contained in the

A register. The sign is indicated by the most significant bit of y—1. The
characteristics are compared and the fixed-point part and exponent in the
floating-point number with the smallest exponent are adjusted until the two
exponents are the same. The fixed-point parts are added, the sum is normalized,
and the result is placed in the A register in the floating-point format. AUy
contains the resultant sign. AU16—9 contains the resultant exponent and AU8_0
and ALy~ o contain the resultant fixed-point part.

UP-7599
Rev. 1

UNIVAC 418-ll1 RTOS ASSEMBLER |

6

SECTION:

PAGE:

38

NOTES:

m If the resultant exponent is less than zero and the resultant fixed-point part
is nonzero, the operation is completed by normalizing the fixed-point part

and decrementing the exponent past.zero, packing the result in A, and causing

an underflow interrupt to location 348.

m If the resultant exponent is greater than 377g and the resultant fixed-point

part is nonzero, the operation is completed by normalizing the fixed-point
part (shift right one place), incrementing and truncating the exponent (which
results in a zero exponent), packing the result in A, and causing an overflow
interrupt to location 35g.

B If the resultant fixed-point part is a plus or minus 0, a plus 0 is placed in the

A register and no interrupt is generated.

5003 FLOATING-POINT SUBTRACT (FS) AND (Fs*)

Operation: (FS)
[A) = (y=1,] » A
(FS*)
[(A) — (y=1+ (B), y+ B)]- A

Execution Time: (4.35 + number of shifts/8) usec.
V= UP or USR + Ull-O
This instruction causes the signed floating-point number contained in the main

storage addresses specified by y—1 (most significant half) and y (least signific
half) to be subtracted from the signed floating-point number contained in the A

ant

register. The sign is indicated by the most significant bit of y—1. The exponents

are compared and the fixed-point part and exponent in the floating-point number
with the smallest exponent are adjusted until the two exponents are the same.
After subtraction, the difference is normalized and the result is contained in
the A register in the floating-point format.

AU~ contains the resultant sign. AUjg_g contains the resultant exponent and
AUg o and ALj7 g contain the resultant fixed-point part.

NOTES:

m If the resultant exponent is less than zero and the resultant fixed-point part
is nonzero, the operation is completed by normalizing the exponent and
decrementing the fixed-point part past zero, packing the result in A, and
causing an underflow interrupt to location 34g.

m If the resultant exponent is greater than 377g and the resultant fixed-point
part is nonzero, the operation is completed by normalizing the fixed-point
part (shift right one place), incrementing and truncating the exponent (which
results in a zero exponent), packing the result in A, and causing an overflow
interrupt to location 35g.

m If the resultant fixed-point patt is a plus or minus 0, a plus 0 is placed in the

A register and no interrupt is generated.

UPp-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER l

SECTION:

PAGE:

39

5004

5005

FLOATING-POINT MULTIPLY (FM) and (FM*)

Operation: (FM)
[A)x (y=1,y)] > A
(FM*)
[A)x (y-1+ (B), y+ B)] > A

Execution Time: 12.00 usec.

y = UP or USR + Ull-O

This instruction causes the signed floating-point number contained in the

A register to be multiplied by the contents of the signed floating-point number
contained in the main storage address specified by y — 1 (most significant
half) and y (least significant half), with the product contained in the A
register in the floating-point format. AU17 contains the resultant sign. AU16_9
contains the resultant exponent and AUg_ o and ALy~ contain the resultant
fixed-point part.

NOTES:

m If the resultant exponent is less than zero, the operation is completed by
placing the resulting exponent (which is truncated to 8 bits) and the
normalized fixed-point part (shifted zero or one place left, since operands
are assumed to be normalized) in A, then causing an interrupt to location

34g.

m If the resultant exponent is greater than 377g, the operation is completed
by placing the resulting exponent (truncated to 8 bits) and the normalized
fixed-point part in A, then causing an interrupt to location 35g.

FLOATING-POINT DIVIDE (FD) AND (FD*)

Operation: (FD)
[A)+ y-1,91 > A
(FD*)
[A)+ (y=1+ B), y+ BN » A

Execution Time: 12.00 usec.
y = UP or USR + U11_0

This instruction causes the signed floating-point number contained in the A
register to be divided by the contents of the signed floating-point number
contained in the main storage addresses specified by y—1 (most significant
half) and y (least significant half), with the quotient contained in the A register
in the floating-point format. The remainder is not saved. AU, contains the
resultant sign. AUjg_g contains the resultant exponent and AUg g and ALy 4
contain the resultant fixed-paoint part.

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER \ L 6 ‘ 40
SECTION: PAGE:

5006

NOTES:

m If division is attempted with an unnormalized divisor or a divisor of plus
or minus 0, the operation is suppressed (contents of A is unchanged), the
overflow designator is set, and an exponent overflow interrupt occurs to
location 35g-

s If the resultant exponent is less than 0, the operation is completed by
placing the resulting exponent (truncated to 8 bits) and the normalized fixed-
point part in A, then causing an interrupt to location 34g.

m If the resultant exponent is greater than 377g, the operation is completed by
placing the resulting exponent (truncated to eight bits) and the normalized
fixed-point part (right shift of zero or one place) in A, then causing an
interrupt to location 35g.

FLOATING-POINT PACK (FP) AND (FP*)

Operation: (FP)
(A35) > Azso7
Normalized (Ass_o) - A26-0
[(Y']_O) +actual shift count] A34_27 - A34_27
(FP*) when bit position 12 of the second word = 1,
{[y+(B)7_0] + actual shift COUﬂt% A34_27 -> A34_27

Execution Time: (3.5 + number of shifts/8) usec.
y = UP or USR + U11_0

The contents of the A register (the fixed-point part) is normalized by shifting
the contents of A left or right until the most significant bit of the number is

in bit position 26. The sign bit, Ajg, is extended through bit positions 35-27.
The contents of bit positions 7 through 0 of the main storage address specified
by Y (the exponent part) plus the number of right shifts or minus the number of
left shifts necessary for the normalization is exclusively ORed into bit positions
34-27.

Examples:

(1) (AU) i = 000000 (AL)i = 000001 (y)i = 000233
(AU) f = 201400 (AL)f = 000000 (y)f = 000233

(2) (AU)i =777777 (AL)i = 777773 (y)i= 000233
(AU)f = 575377 (AL = 777777 (y)f = 000233

3) (AU)I =123456 (AL)i = 712345 (y)i = 000233
(AU = 242516 (AL = 273451 (y)f = 000233

(4) (AU)i =100000 (AL)i = 000000 (y)i = 000000
(AU = 007400 (AL)f = 000000 (y)f = 000000

NOTES:

m If the contents of the A register are initially plus or minus 0, the result
is plus 0.

6

SECTION:

UP-7599 :
Rev. 1 UNIVAC 418-1ll RTOS ASSEMBLER

PAGE:

m Overflow and underflow are handled the same as in FA and FS (see notes
given with FA and FS instructions), except that a right shift of eight places
may cause the exponent to overflow past 0.

m The contents of the operand address are normally 02338 (bias +27;) for a
float operation. For example, to tloat an integer value given in (AL):

SLA 18 Put sign into (AU)
SRA 18 Restore (AL)
FP (0200+27) Float

5007 FLOATING-POINT UNPACK (FU) and (FU*)

Operation: (FU)
If (Az5) = 0, (A34.27) > 7.0
If (A3g) = 1, (Agq.p7) > y7.g and 0’s > y17 g(A35) » Azy 7
(FU*) If bit position 12 of the second word = 1,
(Aggq.07) or (Agy 07) ~ Ly + By g

Execution Time: 3.50 usec.
y=UporUgg +Uj19

The contents of the absolute value of the exponent (that is, if S = 1, complement
the exponent) in the A register bit positions 34 through 27 are transferred into
bit positions 7 through O of the main storage address specified by y. If A3s is

a 1 the exponent is complemented before storing. Zeros are put into y17.8- The
content of bit position 35 of the A register is put into bit positions 34 through
27 of the A register. Bit positions 26 through O of the A register are unchanged.

35 34 27 26 0
A s c M
35|34 27{26 0

——

Y |0~ 0 c
17 8|7 0
L O —— s M
35 27|26 0

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER I

6

SECTION:

PAGE:

42

5010 READ AND SET (RS) and (RS*)

Operation: (y) » AL or [y + (B)] »~ AL
(y16_0) > ¥16-0 and 1 -» yi7 or Iy + (B)]16-0 > [y + (B)]16~0 and
1-{y+ (B)]17

Execution Time: 2.50 usec.
y=UporUsg + Uiy g

This instruction transfers the contents of y, bits 17 through 0, into AL. Then
bits 16 through 0 are restored to y, and bit 17 of y is set to 1.

If bit 12 of (P + 1) is set, then the address is B modified.

6.4.2. Type Ill-a Instructions

5011

LOAD INPUT CHANNEL (LIC) — Privileged

Operation: Load I/0 channel K from (P) + 1 and (P) + 2.
Initiate input, (P) + 3 5> P.

Execution Time: 5.30 usec minimum.

Execution of this instruction activates the input channel specified by the K
portion of the instruction and causes the two succeeding addresses to be

stored in the input buffer control word addresses for the designated channel,

(P) + 1 =-terminal buffer control word and (P) + 2 = present buffer control word.
The processor then resumes normal operation by passing program control to the
location immediately following the buffer control words, (P) + 3 > P. The contents
of the two storage registers following the instruction remain unchanged by the
operation.

NOTES:

8 On ESI channels, the two words following a load input channel instruction
are ignored since buffer control addresses are obtained from the communications
line terminal (CLT).

® K must be odd for paired channel, 36-bit operation.

UP-7599 _ UNIVAC 418-11l RTOS ASSEMBLER

Rev. 1

SECTION:

PAGE:

43

5012

5013

LOAD OUTPUT CHANNEL (LOC) - Privileged

Operation: Load I/O channel K from (P) + 1 and (P) + 2.
Initiate output, (P) + 3 » P.

Execution Time: 5.30 usec minimum.

Execution of this instruction activates the output channel specified by the K

portion of the instruction and causes the two succeeding addresses to be stored

in the output buffer control word addresses for the designated channel, (P)

+ 1 = terminal buffer control word and (P) + 2 = present buffer control word,
The processor then resumes normal operation by passing program control to
the location immediately following the buffer control word, (P) + 3 > P. The

contents of the two storage registers following the instruction remain unchanged

by the operation.

NOTES:

® On ESI channels, the two words following a load output channel instruction

are ignored since buffer control addresses are obtained from the communica-

tions line terminal (CLT).

m K must be odd for paired channel, 36-bit operation.

LOAD EXTERNAL FUNCTION CHANNEL (LFC) ~ Privileged

Operation: Load I/0O channel K from (P) + 1 and (P) + 2.
Initiate external function, (P) + 3 - P.

Execution Time: 5.60 usec minimum.

Execution of this instruction activates the input channel specified by the K
portion of the instruction and causes the two succeeding addresses to be
stored in the input buffer control word addresses for the designated channel,
(P) -+ 1 = terminal buffer control word and (P) + 2 == present buffer control
word. The processor then resumes normal operation by passing program con-

trol to the location immediately following the buffer control words, (P) + 3 » P.

The contents of the 2 storage registers following the instruction remain un-
changed by the operation.

NOTES:
m K must be odd for paired channel, 36-bit operation.

m K must be even for channels in ESI mode.

UP-7599
Rev. 1

UNIVAC 418-1l1l RTOS ASSEMBLER ‘

SECTION:

PAGE:

44

5015

5016

5017

5020

STOP INPUT ON CHANNEL (STIC) — Privileged

Operation: Stop input on channel K.
Execution Time: 2.15 usec minimum.

Execution of this instruction stops all input activity on the channel specified
by the K portion of the instruction.

NOTE:

K should be odd for paired, 36-bit channel operation.
STOP OUTPUT ON CHANNEL (STOC) - Privileged
Operation: Stop output or external function on channel K.

Execution Time: 2.15 usec minimum.

Execution of this instruction stops all output or external function activity on
the channel specified by the K portion of the instruction.

NOTE:

K should be odd for paired, 36-bit channel operation,

STORE SPECIAL DESIGNATORS (SSD)

Operation: Store the contents of SR and of the borrow and overflow designators
into the address specified by (P}+1; (P)+2- P,

Execution Time: 2.50 usec.

The designator settings and the SR contents will be stored in the following
format:

0 B[OV 0 SR

17 12]11)10}9 6|5 0

B is set to 1 if the borrow designator is set; 0 if it is not.
OV is set to 1 if the overflow designator is set; 0 if it is not.

LOAD SPECIAL DESIGNATORS (LSD)

Operation: Load the SR register and set the borrow and overflow designators
with the contents of the address specified by (P)+1; (P)+2- P,

Execution Time: 2.50 usec.

The SR is loaded with bits 5—0 of the word specified at (P)+1. The borrow and
overflow designators are set with the values of bit positions 11 and 10 of the
word specified by (P)+1.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER ‘

SECTION: l PAGE:

45

5021

5022

5023

TEST INPUT CHANNEL (TIC) - Privileged
Operation: If input channel K is idle (P) + 2> P

If input channel K is active (P)+ 1> P
Execution Time: 1.00 usec.
This instruction tests for input activity on the channel specified by the K
portion of the instruction. If there is no input activity on channel K, the next
instruction is skipped. If there is activity on channel K, the next instruction
is executed; (P) + 1 » P,
NOTE:
K should be the same as in the load input channel instruction, 5011,
TEST OUTPUT CHANNEL (TOC) - Privileged
Operation: If output channel K is idle (P) + 2> P

If output channel K is active (P) + 1 > P
Execution Time: 1.00 usec.
This instruction tests for output activity or external function activity on the
channel specified by the K portion of the instruction. If there is no output
activity or external function activity on channel K, the next instruction is
skipped; (P) + 2 » P. If there is output activity on channel K, the next instruc-
tion is executed; (P)+ 1 » P.
NOTE:
K should be the same as in the load output channel instruction, 5012,
TEST FUNCTION CHANNEL (TFC) — Privileged

Operation: If external function channel K is idle (P) + 2 P
If external function channel K is active (P) +1- P

Execution Time: 1.00 usec.

This instruction tests for external function activity on the channel specified
by the K portion of the instruction. If there is no external function activity on
channel K, the next instruction is skipped; (P) + 2 » P. If there is external
function activity on channel K, the next instruction is executed; (P) + 1 » P.

NOTE:

K should be the same as in the load external function channel instruction,
5013,

UP=75949
Rev. 1

UNIVAC 418-1l1l RTOS ASSEMBLER l

SECTION:

PAGE:

46

5024
or

5025

5026

5030
or

5031

5034
or

5035

WAIT FOR INTERRUPT (WFI) — Privileged

Operation:

Stop c/a section, but not I/0 transmission until the occurrence of
an interrupt.

Execution Time: 1.00 usec.

This instruction stops the main program operation, but lets I/0O activity con-
tinue normally. When an interrupt of any type occurs, the interrupt is processed,

and main program operation is resumed. K is ignored.

NO OPERATION (NOP)

Operation:

(P) +1- P

Execution Time: 1.00 usec.

The execution of this instruction increments the contents of P by 1, (P)+ 1 » P,
No other operation occuts as a result of this instruction.

ALLOW ALL INTERRUPTS (AA))

Operation:

Remove I/0 interrupt lockout.

Execution Time: 1.00 usec.

This instruction permits all I/O interrupts to be honored after having been
locked out by the prevent all interrupts instruction, 5634 or 5035, or by the
occurrence of an interrupt. K is ignored. Interrupts are inhibited for one instruc-
tion time following the execution of this instruction.

PREVENT ALL INTERRUPTS (PAI)

Operation:

Locks out I/0 interrupts.

Execution Time: 1.00 usec.

This instruction prevents all I/O interrupts from being honored. K is ignored.

NOTES:

m This instruction stops interrupts from the delta clock and day clock but
allows updating of them while preventing all I/O interrupts.

m This instruction has the same effect as the occurrence of an interrupt.

UP-7599
Rev. 1

UNIVAC 418-1Il RTOS ASSEMBLER l

SECTION:

PAGE:

47

5041

5042

5043

RIGHT SHIFT AU (SRU)
Operation: Shift (AU) right K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AU are shifted to the right by the number of bit positions
specified by the K portion of the instruction, The original sign bit of AU,
the content of AUy, at the time the shift begins is filled in at the left end
of AU. In all cases, this is an end-off shift; the lower-order bits of AU,
specified by K, are lost off the right end of AU.

Example:

K = 2 and the contents of AU are positive
(AU); -~ 370000g

First Shift
(AU) - 174000g

Second Shift
(AU)f = 0760008

(AU); - 400000g

First Shift
(AU) - 6000004

Second Shift
(AU)f = 7000008

RIGHT SHIFT AL (SRL)
Operation: Shift (AL) right K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AL are shifted to the right by the number of bit positions
specified by the K portion of the instruction. The original sign bit of AL, the
contents of AL17, at the time the shift begins is filled in at the left end of
AL. In all cases, this is an end-off shift; the low-order bits of AL, specified
by K, are lost off the right end of AL.

RIGHT SHIFT A (SRA)
Operation: Shift (A) right K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of A are shifted to the right by the number of bit positions
specified by the K portion of the instruction. The low-order bit of AU, the
contents of AUq, becomes the high-order bit or sign bit of AL, the contents
of ALy~. The original sign bit of A, the contents of A3z, at the time the shift
begins is filled in at the left end of A. In all cases, this is an end-off shift;
the low-order bits of A, specified by K, are lost off the right end of A.

UP-7599
Rev. 1

UNIVAC 418-1il RTOS ASSEMBLER ‘

SECTION: PAGE:

48

5044

Example:

K = 2 and the contents of A is positive
(A); = 370000 0000004

First Shift
(A) = 174000 000000g

Second Shift
(A)f = 076000 000000g

K = 2 and the contents of A is negative
(A); = 400000 000000g

First Shift
(A) = 600000 0000004

Second Shift
(A)g = 700000 0000008

SCALE A (SCA)

Operation: Shift (A) left circularly by K bit positions or until (A) is normal-
ized; K less the actual shift count (location 0000178).

Execution Time: (2.00 ; number of shifts/8) usec.

If the K portion of the instruction is less than or equal to the shift count needed
to normalize the contents of A, the contents of A are shifted left by the number
of bit positions specified by K and positive 0 is stored at storage location
000017g.

If the K portion of the instruction is greater than the shift count needed to
normalize the contents of A, the contents of A become normalized and the
number of bit positions that the contents of A are actually shifted is sub-
tracted from K and the difference is stored in storage location 000017g. The
contents of A become normalized by shifting the contents of A left until the
most significant bit of the number is in bit position 34, A34. In the case of a
positive number, the content of A3y equals 1, and in the case of a negative
number, the content of Aszy equals 0. The content of A35 cannot equal the
content of Ay for a normalized number.

Example:

35

34

33

UP-7599 -
Rev. 1 UNIVAC 418-11Il RTOS ASSEMBLER

6 49
SECTION: PAGE:

K=7
(A); = 170000 000000g (positive and not normalized)

First Shift
(A)f = 360000 0000008 (positive and normalized)

The processor senses that the contents of A are normalized and stores the
quantity K minus the shift count, (000007g—000001g) = (0000068), at storage
address 000017g.

K=3
(A); = 600000 0000008 (negative and not normalized)

First Shift
(A)g = 400000 000001g (negative and normalized)

When the contents of A is normalized, the quantity K minus the shift count is
stored; (0000038) - (0000018) = (0000028), at storage address 0000178.

K e 1.
(A)i = 070000 000000g (positive and not normalized)

First Shift
(A)¢ = 160000 000000g (positive and not normalized)

When the number of bit positions specified by K have been shifted, the quantity
000000g is stored at storage address 000017g. The contents of A are only par-
tially normalized.

NOTE:

This instruction is useful in the conversion of numbers to a floating-point
format.

5045 LEFT SHIFT AU (SLU)
Operation: Shift (AU) left K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AU are shifted to the left by the number of bit positions speci-
fied by the K portion of the instruction. The high-order bits that are shifted out
through the left end of AU fill in the low-order bit positions of AU. No bits are
lost as a result of the operation,

Example:

K= 2
(AU); = 300000g

First Shift
(AU) = 6000008

Second Shift
(AU)¢ = 400001¢

UP-7599
Rev. 1

UNIVAC 418-111 RTOS ASSEMBLER |

SECTION:

PAGE:

50

5046

5047

5050

LEFT SHIFT AL (SLL)
Operation: Shift (AL) left K bit positions.
Execution Time: (1.00 + number of shifts/8) usec.

The contents of AL are shifted to the left by the number of bit positions speci-
fied by the K portion of the instruction. The high~order bits that are shifted out
through the left end of AL fill in the low-order bit positions of AL. No bits are
lost as a result of the operation.

LEFT SHIFT A (SLA)
Operation: Shift (A) left K bit positions.
Execution Time: (1.25 4 number of shifts/8) usec.

The contents of A are shifted to the left by the number of bit positions speci-
fied by the K portion of the instruction. The high-order bits that are shifted
out through the left end of A fill in the low-order bit positions of A. No bits
are lost as a result of the operation.

Example:

K=2
(A); - 300000 000000g

First Shift
(A) = 600000 000000g

Second Shift
(A)g = 400000 000001g

TEST KEYS (TK)
Operation: If keys designated by K are set, (P)+ 2> P
Execution Time: 1.00 usec.

There are five skip keys on the UNIVAC 418-I1] maintenance panel and console
which, together with this instruction, permit external control of program branch-
ing. Bits 4 through 0 of the K portion of this instruction correspond to skip keys
4 through 0 on the maintenance panel and console. For every bit in K4 _g that is
set to 1, the corresponding skip key is examined. If any of the examined keys are
set, the next instructions are skipped; (P) + 2 » P. If K equals 0 or if all the
examined keys are not set, the next instruction is executed; (P) + 1 » P, If

Kg equals 1, the state of K;_ is ignored, and the next instruction is skipped;
(P)+ 2> P.

Example:

01 (bit 0) skip if skip key 0 is set.

02 (bit 1) skip if skip key 1 is set.

04 (bit 2) skip if skip key 2 is set.

= 10 (bit 3) skip if skip key 3 is set.

20 (bit 4) skip if skip key 4 is set.

40 (bit 5) skip unconditionally.

- 03 (bits 1,0) skip if skip key 1 or 0 is set.

t

il

AAARARARR

UP-7599

Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER ‘ l cEcTion: 6

PAGE:

51

5051

5052

5053

NOTE:

All combinations of octal codes 00 through 77 are valid codes for K.

TEST NO BORROW (TNB)

Operation: If borrow designator is not set (P) + 2 » P
If borrow designator is set (P)+ 1 P

Execution Time: 1.00 usec.

This instruction tests the condition of the borrow designator and passes
program control accordingly. If a double-length add or subtract required a
borrow, the next instruction is skipped; (P) + 2 » P, K is ignored. If a skip
does not occur, a correction of the contents of A is needed. The contents of
A will be too large by a factor of 1, The correcting instruction is ADD NEGA-
TIVELY TO A. This allows a correcting instruction to be inserted to save
program steps.

TEST OVERFLOW (TOF)

Operation: If overflow designator is set (P) + 2+ P
If overflow designator is not set (P) + 1 » P

Execution Time: 1.00 usec.

This instruction tests the condition of the overflow designator and passes
program control accordingly. If an overflow condition occurred on an arithmetic
instruction with the overflow designator set, the next instruction is skipped;
(P) + 2 » P and the overflow designator is cleared. If an overflow condition
did not occur on an arithmetic instruction with the overflow designator not

set, the next instruction is executed. K is ignored.

TEST NO OVERFLOW (TNO)

Operation: If overflow designator is not set (P) + 2 > P
If overflow designator is set (P) + 1> P

Execution Time: 1.00 usec,.

This instruction tests the condition of the overflow designator and passes
program control accordingly. If an overflow condition did not occur on an arith-
metic instruction with the overflow designator not set, the next instruction is
skipped; (P) + 2 - P, If an overflow condition did occur on an arithmetic in-
struction with the overflow designator set, the next instruction is executed;
(P) + 15 P, and clears the overflow designator,

U§;3?919 UNIVAC 418-11l RTOS ASSEMBLER ‘ LECT.W 6 ‘“GE: 52

5054 TEST ODD PARITY (TOP)

Operation: If sum of ones in [(AU) (AL)]
is odd, (P)+ 2> P
If sum of ones in [(AU) (AL)]
is even, (P) + 1> P

Execution Time: 2.40 usec minimum (see NOTE)

The contents of AU are logically multiplied with the contents of AL and the
number of binary 1’s in the result is checked for parity. If the number of 1’s
is odd, the next instruction is skipped; (P) + 2 - P. If the number of 1’s is
even, the next instruction is executed; (P) + 1 > P, K is ignored.

The contents of AL and AU remain unchanged and in AL and AU,
(AU)¢ = (AU); and (AL); = (AL);

Example:

(AU) = 0000778 — Mask
(AL) = 127723g

LAU) (AL)} = 000023¢
Bit Sum = 3

Since the bit sum is odd, the next instruction is skipped.
NOTE:

IOM#0 is used in the execution of this instruction; therefore, the execution
time of this instruction is dependent upon queuing within the IOM.

5055 TEST EVEN PARITY (TEP)

Operation: If sum of ones in [(AU) (ALY
is even, (P)+ 2> P
If sum of ones in [(AU) (AL)]
is odd, (P)+ 1> P

Execution Time: 2.40 usec minimum.

The contents of AU are logically multiplied with the contents of AL and the
number of binary 1’s in the result is checked for parity. If the number of 1’s
is even, the next instruction is skipped; (P) + 2 » P. If the number of 1’s is
odd, the next instruction is executed; (P) + 1 » P. K is ignored.

The contents of AL and AU remain unchanged and in AL and AU,
(AU)¢ = (AU); and (AL)¢ = (AL),

NOTE:

IOM#0 is used in the execution of this instruction; therefore, the execution
time of this instruction is dependent upon queuing within the IOM.

UP-7599
Rev. 1

UNIVAC 418-11l RTOS ASSEMBLER ‘

SECTION:

PAGE:

53

5056 STOP ON KEY SETTING (SK) — Privileged
Operation: Stop if keys designated by K are set.
Execution Time: 1.00 usec.

There are five stop keys on the UNIVAC 418-III maintenance panel and console
which, together with this instruction, permit external control of program stops.
Bits 4 through 0 of the K portion of this instruction correspond to stop keys

4 through 0 on the maintenance panel and console. For every bit in K4 g that
is set to 1, the corresponding stop key is examined. If any of the examined
keys are set, the c/a section stops. If K equals 0 or if all the examined keys
are not set, the next instruction is executed; (P) +1 - P. If Kg equals 1, the
state of K4_q is ignored and processing stops.

Example:

K = 01 (bit 0) stop if stop key 0 is set,

K = 02 (bit 1) stop if stop key 1 is set.

K = 04 (bit 2) stop if stop key 2 is set.

K = 10 (bit 3) stop if stop key 3 is set.

K = 20 (bit 4) stop if stop key 4 is set.

K = 40 (bit 5) stop unconditionally.

K = 03 (bits 1,0) stop if stop key 1 or 0 is set.

NOTES:

m All combinations of octal codes 00 through 77 are valid codes for K.

m This instruction is treated as a no operation while in guard mode.

UP-7599

Rev. 1 UNIVAC 418-1l1l RTOS ASSEMBLER '

SECTION:

PAGE:

54

5060 ROUND A (RND)

5061

Operation: If (A) is positive and (ALy7) =1, (AU) + 1 » AL
If (A) is negative and (ALy7) =0, (AU) =1 > AL
If otherwise, (AU) » (AL)

Execution Time: 1.625 usec.

The purpose of this instruction is to round off double-length arithmetic results
to single-length. If AL contains a significant bit, the significant bit being 1
for positive numbers and 0 for negative numbers, the magnitude of the AU
portion of the double-length result is increased by 1 and the AL portion is
discarded. In all cases, whether rounding takes place or not, the contents of
AU replace the contents of AL. K is ignored.

(AU); = (AU)

The contents of AU remain unchanged and in AU.
The contents of AL are destroyed.

Example:

(A) = 120201 653375g
(AU) = 1202014
(AL); = 653375
(AL); - 1202024

NOTE:

If the contents of AU equal positive 377777g and the contents of AL{7 equal
1, or if the contents of AU equal negative 377777g and the contents of ALy
equal 0 and the ROUND A instruction is executed, overflow occurs and the
overflow designator is set. The state of the overflow designator is tested by
either the SKIP ON OVERFLOW instruction (f = 5052) or the SKIP ON NO
OVERFLOW instruction (f = 5053). The execution of either of these two in-
structions clears the overflow designator.

COMPLEMENT AL (CPL)
Operation: (AL) > AL
Execution Time: 1.00 usec.

The contents of AL are complemented and the result is placed in AL. K is
ignored.

NOTES:
m This instruction effects a bit-by-bit complement of the contents of AL.

m If the contents of AL are all 0’s, the result of the complement is all 0’s.

UP-7599
Rev. 1

UNIVAC 418-1l1l RTOS ASSEMBLER |

SECTION:

PAGE:

55

5062 COMPLEMENT AU (CPU)
Operation: (AU) > AU
Execution Time: 1.00 usec.

The contents of AU are complemented and the result is placed in AU. K is
ignored.

NOTES:
m This instruction effects a bit-by-bit complement of the contents of AU.

m If the contents of AU are all zeros, the result of the complement is all
zeros.

5063 COMPLEMENT A (CPA)
Operation: (A) > A
Execution Time: 1.875 usec.

The contents of A are complemented and the result is placed in A. K is
ignored,

NOTES:
m This instruction effects a bit-by-bit complement of the contents of A.

m If the contents of A are all 0’s, the result of the complement is all 0’s,

5065 LOAD GUARD MODE (LGM) ~ Privileged

Operation: Load the lower and upper storage registers with ((P) + l)g_g
and ((P) + 1)17_9 and set guard mode designator active; (P) + 2
> P.

Execution Time: 1.75 usec.

5066 SET AUDIBLE ALARM (SAA) -~ Privileged

Execution Time: 1.00 usec.

This instruction initiates the console audible alarm. This alarm must be
manually reset with the audio reset switch on the console. K is ignored,

UP-7599
Rev. 1

UNIVAC 418-111f RTOS ASSEMBLER

SECTION: PAGE:

56

5067

5070

ENABLE ESI INTERRUPTS (EEI) - Privileged

Operation: Remove ESI interrupt lockout.

Execution Time: 1.00 usec.

This instruction clears the ESI interrupt lockout designator which is set by

the generation of an ESI ‘‘hard’ interrupt. If the K portion of the instruction

is any octal code 00 through 17, IOM#0 is selected; and if the K portion is
any octal code 20 through 37, IOM#l is selected.
(P) = .
17 12 |11 615 0
f17-12 M11-6 Ks.0

NOTES:

m The IOM does not notify the arithmetic section of interrupts tabled while
the ESI interrupt lockout designator is set.

m After the execution of this instruction, the next ESI interrupt which is
received by the specified IOM generates a ‘‘hard’’ interrupt in addition to
being tabled.

® This instruction does not clear the interrupt lockout in the command/arith-
metic section but clears only the ESI interrupt lockout in the IOM specified
by the K portion of the instruction.

m ESI interrupts are inhibited for one instruction time following the execution
of this instruction.

BLOCK TRANSFER (BT)

Operation: If K #£ 0, (AU)-» (AL); (AU)+ 1 5> AU; (AL)+ 1 » AL.
The sequence is repeated K times.

Execution Time: (1.750 + 1.5 x number of words in block) usec.

This instruction transfers the number of words specified by the K portion of
the instruction from an initial address specified by the contents of AU to an
initial address specified by the contents of AL. The contents of AU equal
the source address and the contents of AL equal the destination address. The
contents of AU and AL are incremented by 1 with each word transferred.

NOTES:

@ The maximum number of words that can be transferred with a single instruc-
tion is limited by the K portion of the instruction, 77 octal words.

m If an interrupt is generated during the block transfer, it is not honored until
the completion of the BLOCK TRANSFER instruction.

m If K equals 0, no data is transferred, and the contents of AU and AL remain

unchanged.
(AU)¢ = (AU); and (AL)s = (AL);

UP-7599 :
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

SECTION: PAGE:

5072

5073

LOAD INDEX REGISTER POINTER (LIR)
Operation: Kg_ g - IRP
Execution Time: 2.50 usec.

The execution of this instruction causes the present contents of the B ‘“hard’’
register to be stored at the address specified by the present contents of IRP.
IRP is then loaded with the low-order three bits, bits 2 through 0, specified
by the K portion of the instruction. The contents of storage, specified by the
new contents of IRP, are loaded into B.

NOTES:

m The constant K is contained within the instruction and does not refer to an
address.

m IRP points to storage address 10g when it is loaded with 00g.

m The index registers, storage addresses Olg through 10g, may be loaded
during an initial load operation.

LOAD SPECIAL REGISTER (LSR)
Operation: y » SRg_
Execution Time: 1.00 usec.

The execution of this instruction causes the low-order six bits of the instruction,
specified by K, to replace the contents of the special register. The special register
is activated only if bit 4 is set, Bit 5 and bits 3 through 0 define the storage seg-
ment to be addressed.

UP-7599

Rev. 1 UNIVAC 41811l RTOS ASSEMBLER cecrions © once: OB
5074 DECIMAL TO BINARY CONVERSION (DB)
Operation: [(AUg.3,6.9,12.15)10 ~ [ALg gl
Execution Time: 7.735 usec.
This instruction causes a three-character BCD number, packed in a six-bit
field in AU, to be converted into a binary number. The resultant binary number
is the content of AL, The maximum decimal number to be converted must not
exceed [999] .
D1 D2 D3
XX NN NNXXNNNNXXNNNN AU OOOOOOOOOOOOOOOOOOAUf
XXXXXXXXXXXXXXXXXXALi OOOOOOOONNNNNNNNNNALf

17 10

9 0

D1, D2, D3 are assumed to be unbiased, positive BCD digits. XX bits are
ignored (D1 = MSC).

NOTES:

No test is made for invalid BCD characters; that is, greater than 9.

This instruction should be useful in program conversion of longer fields
by a convert, multiply by 10N, add, process.

In processors not equipped with this feature, convert commands are considered
a fault and generate a supervisor call interrupt.

UP-7599
Rev. 1

UNIVAC 418-I11 RTOS ASSEMBLER

6

SECTION:

PAGE:

59

5075 BINARY TO DECIMAL CONVERSION (BD)

Operation: [(ALg.)1p > [AUg3 6.9 12.15)10

Execution Time: 8.250 usec.

This instruction causes a binary number which must not exceed 999, to be
converted to BCD. The binary number contained in AL is converted to BCD
and is placed in AU in three six-bit characters. The first two bits of each
packed character are to be ignored and the next 4 bits contain the BCD code.
The most significant character appears at bits AUy, through AUq¢,.

0 000O0O

0O O|NNNNNNNNNN AL.

000O0O0OO

00000O0O0OODOO0O} AL

NOTES:

XX XXX XXXXXXXXXXXXX

D1 D2 D3
e et e, s s gt T, A ™SI,

X X NNNNXXNNNNXXNNNINN

AUy AU

m Larger binary numbers should be converted by a divide by 103, convert,

store sequence,

m In systems not equipped with this feature, the convert commands are con-
sidered a fault and generate a supervisor call interrupt.

AUl

AU

s s,

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER Appendix A
SECTION: PAGE:
TIMING
OPERATION
CODE MNEMONIC INSTRUCTION DESCRIPTION IN i
SECONDS
ARITHMETIC COMMANDS
5060 RND Round A If (A) is positive and 1.625
(AL17)=1, AU +1-AL; If
(A) is negative and (AL17)=
0, (AU)—1-AL,; otherwise
(AU)-AL.
14 AL Add to Lower (AL)4-(Y)>»AL 1.50
15 AL* Add to Lower 1.50
16 ANL Add Negatively to Lower (AL)—(Y)> AL 1.50
17 ANL* Add Negatively to Lower 1.50
20 AA Add to A (AYH(Y=1,Y)>A 3.0
21 AA* Add to A 3.0
22 ANA Add Negatively to A (A)—(Y=1,Y)>A 3.0
23 ANA * Add Negatively to A 3.0
24 M Multiply (AL). (Y)> A 6-5@7\375@
25 e Multiply 6.5
o ' 7.375(2)
26 D Divide (AL)+(Y)»AL; Remainder>AU | 6.5
. 7.375@)
27 D* Divide .5@7 375
71 ALK Add to Lower A “‘Konstant’’ (AL)+ Z>AL 0
FLOATING-POINT ARITHMETIC COMMANDS
5002 ** FA Floating Point Add (A)+(Y=-1,Y)-A 4.35+x
5003 #* FS Floating Point Subtract (A)—(Y=1,Y)-A 4.35+x
5004 *#* FM Floating Point Multiply (A).(Y-=1,Y)>A 12.0
5005 ** FD Floating Point Divide (A)=(Y—=1,Y)»A 12.0
5006 ** FP Floating Point Pack Normalize (A),pack with 3.5+x
biased characteristic from (Y),
and store in A,
5007+# FU Floating Point Unpack Unpack A, leave mantissa 3.5
in A, Store characteristic in Y.
BINARY/DECIMAL CONVERSION COMMANDS
5074 DB Decimal-to-Binary Conversion (AU15__12' 9-6 3_0)» AL (Binary) 7.375
5075 BD Binary-to-Decimal Conversion |AL > (AU; 5-12, 96, 3~0) (Decimal) 8.250

015;3.5919 UNIVAC 418-11l RTOS ASSEMBLER l Appendix A
SECTION: PAGE:
TIMING
OPERATION |\, nEMONIC INSTRUCTION DESCRIPTION IN u
CODE SECONDS
LOGICAL COMMANDS

51 OR Inclusive OR (AL) [I3 (Y)-AL 1.50

52 AND Logical AND (AL) (Y)»AL 1.50

53 XOR Exclusive OR (AL) (Y)-AL 1.50
5061 CPL Complement A Lower The complement of (AL)->AL 1.0
5062 CPU Complement A Upper The complement of (AU)-> AU 1.0
5063 CPA Complement A The complement of (A)-> A 1.875

TRANSFER COMMANDS

10 LU Load A Upper (Y)»AU 1.50

11 LU* Load A Upper 1.50

12 LL Load A Lower (Y)»AL 1.50

13 LL* Load A Lower 1.50

44 SL Store A Lower (AL)->Y 1.50

45 SL* Store A Lower 1.50

46 SU Store A Upper (AU)-Y 1.50

47 SU* Store A Upper 1.50

70 LLK Load A Lower with ‘‘Konstant” (| Z-AL 1.0

04 MSL Masked Selective Load (Yn)~AL for (AUy)=1 1.50

05 MSL* Masked Selective Load . 1.50

32 LB Load Index Register (Y)»IR 1.5

33 LB* Load Index Register 1.5

42 SB Store Index Register (IR)»Y 1.50

43 SB* Store Index Register 1.50

36 LBK Load Index Register with Z- IR 0.75

‘“Konstant’’
37 LBK* Load Index Register with 0.75
‘‘Konstant'’

74 SAD Store Address of A Lower (AL11—0)>>Y11 -0 3.0
5072 LIR Load Index Register Pointer Ky _o~IRP 2.5
5073 LSR Load Special Register Kg_ g~ SR 1.0

72 SIR Store Index Register Pointer (IRP)»Yo _go lfo((;lRELz?.,?: 3.0

If (IRP)=0,
000->Yg_3
75 SSR Store Special Register and (SR)>Yg5_g, 0-SRy 3.0
Inactivate

40 cY Clear Y 0-Y 1.50

41 Cy#* Clear Y 1.50
5070 BT Block Transfer Transfer K words from 1.750+1.5n

ADRpy~ADRAL
5017 SSD Store Special Designators (SD) » IAR+1 2.5
5020 LSD Load Special Designators (IAR+1) » SD 2.5

UP-7599

Appendix A
Rev. 1 UNIVAC 418-1l1l RTOS ASSEMBLER seeTion: -
TIMING
OPERATION
CODE MNEMONIC INSTRUCTION DESCRIPTION IN o
SECONDS
SHIFT COMMANDS
5041 SRU Shift Right A Upper Shift AU right (END-OFF) 1 +x
K bit positions
5042 SRL Shift Right A Lower Shift AL right (END-OFF) 1+x
K bit positions
5043 SRA Shift Right A Shift A right (END-OFF) 1+x
K bit positions
5044 SCA Scale A Shift A left (END ARCUND) 2+x
K places or untii normalized
K less shift>00017g
5045 SLU Shift Left A Upper Shift AU left (END ARQUND) L+x
K bit positions
5046 SLL Shift Left A Lower Shift AL left (END AROUND)
K bit positions
5047 SLA Shift Left A Shift A left (END AROUND) 1+x
K bit positions
LOOP CONTROL COMMANDS
73 JBNZ Jump and Modify if Index If (IR)+0, (IR)—1->IR and 1.75
Register Non-Zero Y- 1AR
If (iIR)=0, (IAR) +1->1AR
56 TB Test B-Register for Equality If(IR)=Y, (IAR)+2-> IAR 2.5
IF(IRXAY,(IR)+1-+IR
57 T2 Test Any Location for Zero If(Y):0,(1AR)+2> IAR 2.25
H(Y)#0,(Y)-1»Y
COMPARE COMMANDS
02 CL Compare A Lower (AL): (Y) set CD accordingly 1.50
03 CL* Compare A Lower 1.50
06 CLM Compare A Lower Masked by [au) YSIRI7YN) 2.0
A Upper (v)l; set €D accordingly
07 CLM=* Compare A Lower Masked by 2.0
A Upper
COMPARISON JUMP COMMANDS (COMPARE DESIGNATOR SET)
60,61 JE Jump on Equal If CD equal condition set, 0.75
Y > IAR
62,63 JNE Jump on Not Equal If CD equal condition clear, 0.75
Y > 1AR
64,65 JNLS Jump on Not Less If CD not less than condition, 0.75
Y+ 1{AR
66,67 JLS Jump on Less If CD less than condition, 0.75

Y- IAR

UP-7599

Rev. 1 UNIVAC 418-11l RTOS ASSEMBLER Appendix A
SECTION: PAGE:
TIMING
OPERATION
CODE MNEMONIC INSTRUCTION DESCRIPTION IN o
SECONDS
ARITHMETIC JUMP COMMANDS (COMPARE DESIGNATOR NOT SET)
60 Juz Jump on A Upper Zero If (AU)=0, Y~IAR 0.75
61 Lz Jump on A Lower Zero If (AL)=0, Y—IAR 0.75
62 JUNZ Jump on A Upper Non-Zero If (AU):40, Y-IAR 0.75
63 JLNZ Jump on A Lower Non-Zero If (AL)#O, Y-IlAR 0.75
64 JUP Jump on A Upper Positive If (AU) is positive, Y~ IAR 0.75
65 JLP Jump on A Lower Positive If (AL) is positive, Y- 1AR 0.75
66 JUN Jump on A Upper Negative If (AU) is negative, Y~ 1AR 0.75
67 JLN Jump on A Lower Negative If (AL) is negative, Y~ IAR 0.75
UNCONDITIONAL JUMP COMMANDS
34 J Jump Y > IAR 0.75
35 J* Jump 0.75
55 N Jump Indirect (Y16 —0)~1AR 1.50
30 SLJI Store Location and Jump (IAR)+ 1 Location in (Y); 2.25
Indirect (Y)+1 > IAR
31 SLJI* Store Lccation and Jump 2.25
Indirect
76 SLJ Store Location and Jump (IAR)+1-Y; Y+1-IAR 2.0
SKIP COMMANDS
5050 TK Test Keys Skip if keys designated by K 1.0
are set. (IAR)+2-1AR
5051 TNB Test No Borrow If borrow indicator off, 1.0
(iIAR)+ 2~ 1AR
5052 TOF Test Overflow If overfiow indicator on, 1.0
(IAR)+2- IAR
5053 TNO Test No Overflow If overflow indicator off, 1.0
(IAR)+2- AR
5054 TOP Test Odd Parity If sum of 1's in (AU) 2.4
(AL) is ODD, (IAR)+2-1IAR minimum
5055 TEP Test Even Parity If sum of 1's in (AU) XY 2.4
(AL) is EVEN, (IAR)+2~1AR minimum
EXECUTIVE COMMANDS (INTERRUPT CONTROL)
5024 WF1 Wait for Interrupt Stop C/A Unit (not 1/0) 1.0
5025 until Interrupt
5030
5031 } AAI Aliow All Interrupts Allow all Interrupts 1.0
5034
5035 PAI Prevent All Interrupts Prevent all Interrupts 1.0
54 EJI Enable Interrupts and (Y »1AR; enables 1.50
. 150
Jump Indirect Interrupts
5067 EEI Enable ESI Interrupt If K=0 tows ESI Interrupts 1.0

1OM #0; f K:208, allow ESI
Interrupts, 10M #1

UP-7599

Rev. 1 UNIVAC 418-111l RTOS ASSEMBLER Appendix A
SECTION: PAGE:
TIMING
OPERATION
CODE MNEMONIC INSTRUCTION DESCRIPTION IN i
SECONDS
EXECUTIVE COMMANDS (1/0)

5011 LIC Load Input.Channel Load 1/0 Channel K from 5.3
(IAR)+1 and (IAR)+2, initiate minimum
input; then (JAR)+3-> I1AR

5012 LOC Load Output Channel Same as LIC except that 5.3
output is initiated minimum

5013 LFC Load External Function Same as LIC except that 5.6

Channel - External Function is initiated minimum

5015 STIC Stop Input on Channel Stop input on Channel K 2.15

minimum

5016 STOC Stop Output on Channel Stop Output on Channel K 2.15

minimum

5021 TiC Test input on Channel If input Channel K idle, 1.0
(IAR}+-2-1AR

5022 T0C Test Output on Channel If Qutput Channel K idle, 1.0
(IAR)+2 > 1AR

5023 TFC Test External Function If External Function Channel 1.0

on Channel K idle, (IAR)+2- IAR
EXECUTIVE COMMANDS (STORAGE PROTECTION)

5065 LGM Load Guard Mode ((IAR)+1)17__9 - Upper Limit 1.75

(HAR)H)B_O > Lower Limit,

Guard Mode is set and

(IAR)+2 -+ IAR
EXECUTIVE COMMANDS (STOP)
5056 SK Stop on Key Settings Stop, if keys designated 1.0

(if not in Guard by K are set; if in Guard
Mode) Mode, (IAR) +1-1AR

EXECUTIVE COMMAND (SPECIAL)

5010 #* RS Read and Set (Y)>AL, 1-Yyy 2.5

5026 NOP No Operation 1.0

5066 SAA Set Audible Alarm 1.0

SUPERVISOR CALL COMMANDS
00 Supervisor Call 0.75
01 Supervisor Call 0.75
77 Supervisor Call 0.75

5000 Supervisor Call 1.0

5001 Supervisor Call 1.0

5077 Supervisor Call 1.0

UP-7599
Rev. 1 UNIVAC 418-111 RTOS ASSEMBLER

Appendix A 6
SECTION: | PAGE:

LLEGEND FOR INSTRUCTION REPERTOIRE
Subscripts specify bit positions in the register or quantity subscripted.
N represents each bit position.

* = To index an assembler instruction, prefix operand with *(asterisk). The assembler adds 1 to
octal operation code, or set 212 =1of IAR +1,

X = number of shifts p seconds
8
n = number of words in the block
* = IR-sensitive if 212 of IAR +1 is set to 1; indexing is indicated by prefixing the operand with an

asterisk (*).

AL = Lower accumulator

AU = Upper accumulator

A = Upper and lower accumulators acting as one register)
IR = The active index register

IAR = Instruction address register

CD = Compare designator

Y = On the left of the » symbol, the storage address in the low-order 12 bits of the instruction (bits

11~0); on the right of the > symbol, the storage location specified by that address.

K = The unsigned integer or bit configuration in the low-order 6 bits of the instruction (bits 5-0).

N

= The low-order 12 bits of the instruction, extended to 18 bits by repetition of bit 11 in bit positions
17~12, and treated as a constant in the range —3777 to +3777 octal.

—

= Contents of the register named in the parentheses; that is, (Y) = contents of Y.

¥

= Replaces the contents of
H = Compare algebraically the quantities on either side of this symbol.
ELIA = Exclusive OR
= Logical AND
= Logical OR
Multiplying numbers of like signs.

Dividing positive numbers.

OR]

®

@ Multiplying numbers of unlike signs.
®

@

Dividing numbers of unlike signs or negative signs.

UP-7599
Rev. 1

UNIVAC 418-111l RTOS ASSEMBLER

Appendix A

SECTION:

PAGE:

A sample of each operand type follows. To index an instruction in the assembly language,
prefix the operand with an asterisk. The assembler adds a 1 bit to the octal op-code of
single word instructions, or sets bit 12 of the second word of two-word instructions (op-

codes 5002 through 5010 and 5064).

LABEL OPERATION 4o OPERAND ‘0 COMMENTS w0 20
WL 0 e B e @ e s s Lt e ke b e e e s
WORK: oo MO e e Do e b e ei e g e b e e]
TEMP oo RES 0 s IO v e b b o oo b e v Lo v oo
e e Q10 FIXED, PRIINT. PART. N N !
FIX o WOy e FEXED POIINT PART, 1 1‘\ TN T B T N S R S N S R |
EXP e IO s i L SEXPONENT L s b s ats ot L a1
VALUE, o RES Lo 0 0800 0 e b oo b e e n v b e o i

vt b e Lo e v Lrcee o vl e o b e s e s e b v
F TSSO TN N U O S U O Y W N SO O T T VO Y N U Y S O S T T Y OO0 T G T U0 W IO Y B U0 S W Y T A B A S B BT

L e o WBK 0 e ROPERAND, 0] RTINS R S U S U AT TS S R
vt b e L ETEMP o L SINDEXED Y OPERAND Lo sl !
s AR s TN ey B xQEiEL&NMD. O SR T SO0 T S S T GO S W S IO O Pt ol
1.4 | B TR B ile,J JF IS S NN SO |]wie’RIKA R U T SRS I' L ,J.YL lglP,lEJBLAINJPL Looa bt bl 4 ,i, N RS SO T R O T T l F T T T O R S S A |
S Py & [U N W KSILLLl dodo Lo L ri’..l,wL RIS I RS S S ,L,l,',,L,J&,JQLP,LE,L&LA‘M..L,J.«K 8 N T SN S N & I R | S O N B § l lobod bbb d ot |
L b I8 $+2 ol Y CPERAND, b T TR S N VI SO SNT |
! b e T e e O e e Y @PERAND L e b e el et
P U TR T W T ST N SOV 00 YOO U VO S 0 O O N YO 0 N YU N0 T ST TN SO S Y S O S O S A U O OO SO SR OO A 00 S S OO A O SO0 ISR
TR TN T S O THU U T YtV S YO SO WU O O S FU T T T U TS T NS S T SO Y S U SN YT S Y N S O O B B O B R R A
1 Cac o b e e el JFLQLRA EACH _OF, THE FLOATING LEINT INSTRUCTIGONS 0
ity g 1o THE, ASSEMBLER GENERATES TwE, INES OF CO0E , . . ., . |
T O O S O N T O T T N DU YO .3 O SO S SO MY S S WO T S O O S S S S S S WO S SO H IS NN T S ST VAU SRR T I S0 B S ST S B A |
PO R SN TN R SRS NS IN | 5 § 'SR CIEIXe=d e e e e b
oot i e v e beb o o IEEX 1.,,1 e e e e e b s o o
it ai b i ER e BRP s e e s a o b ta v |
i vl S EA s VALME 1 COUNTENTS OF, VALME MUST BE ||
et st g e e s e b g e teaENG FLOAT EORMAT v o0
1. R U SO Y S Y T SO TGO T S U U IO YO T Y U O SO S W SO T O SO O T 0 U0 Y VU 0 S S S R A B B P O
TR T T T S U S GO S S U S Y SO N 0 TSN S A N T S VO SO SO S ST IA WAV S S S S U S WU A SR IOV S SO S AT R R

Library 3 3 1004
Univac Marketing Education Center

Div Sperry Rand Corp 52356:58;61
Valley View Dusnhill Bldg 418-l1
251 West DeKalb Pike ST e 22
King of Prussia Pa 19406

ASSEMBLER
UP-7599 REV. 1

UNIVAC 418-11l Real-Time System Library Memo 18 announces the release and availability of ‘“UNIVAC 418-lll Real-Time System RTOS
Assembler Programmers Reference,’’ UP-7599 Rev. 1, covers and 171 pages. This is a Standard Library ltem (SLI).

This version of the UNIVAC 418-III Assembler manual describes the language and its uses in more detail than
the original. Included are descriptions of the coding format, expressions, directives, PROC's, and paraforms.

Certain directives have been removed and some new more powerful ones have been added. For example the UNLIST
directive has been added to the assembler, it provides a means of selectively preventing the printing of out-
put of sections of a program,

Dimensioned Labels, a new feature, are also described in detail. These are labels which are distinguished by
their subscripts rather than by the label itself.

Sample assembled printouts are included wherever possible to support explanations and show examples of the
features discussed. Coding examples are also given throughout the manual to assist in a logical presentation
and flow.

A detailed explanation of the instruction repertoire is included as well as an instruction repertoire summary.
Destruction Notice: UP-7599 Rev. 1 supersedes and replaces "UNIVAC 418-III Real-Time System Assembler Programmers

Reference," UP-7599, released on Library Memo 1 dated June 24, 1968. Please destroy all copies of UP-7599 and/ér
Library Memo 1. !

Distribution of UP-7599 Rev. 1 has been made as indicated below, Additional copies may be requisitioned from
Holyoke, Massachusetts via a Sales Help Requisition through your local Univac Manager.

NOTE: Back Orders for this item are being filled
W/ automatically. Please do not reorder.
ROUP MAMAGER

Documentation and Library Services

St

ACHMENTS:

PRI 0, 217, 630, | UP-7599 Rev. 1 plus Library Memo | !> B UNTVAC 418-11T '
and 692 Library Memo 18 { 18 to S.P.L.S. Lists 57 and 58. i Real-Time System Library
only. : © Memo 18.

AR July 23, 1970

FINISION OF SPERRY RAND CORPMIATION, S, P.LL.S., P.O. BOX 500. BLUE BELL, PA, 19422 UF=400U pev. 4 g

LUNIVAC |

UP.7599 Rev. 1

	0001
	0002
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	_1
	xBack

