univac®

490

" REAL-THVIE SYSTEM
TECHNICAL BULLETIN

REX
Real-Time Executive Routine

Programmers Reference

First Edition

July, 1962

PREFACE

A knowledge of basic programming related to the UNIVAC 490 System is assumed in the prepara-
tion of this document. A prerequisite document is the SPURT Assembly System Programmer’s Re-
ference Manual.

CONTENTS

L INTRODUCTION L i i i i i it etsetatinnesennonannanans 1- 1

A. GENERAL DESCRIPTION . .t ot o it nvnvnosnootonnssssnsssanoeassnssossans 1-1
B. FUNCTIONAL DESCRIPTION , . . . it ittt ieennaennsoaaanscnansssnassaas 1- 3

2. OPERATIONAL CONTROL |, ., . . . ittt ittt eaeanssnans 2-1

Program Sequencingand Loading00eeieeennn ce e SN 2-
THE MASTER INSTRUCTION TAPEo nnn it e st e 2=
B. INTERNAL LOAD REQUESTS ... e T

1
1
6
1. Real Time Extensions el |
7
7
8

>

2. Batch Load RequestS. . v . v vt vv i et oo eaconooncesocononssascnsos Y
3. SegmentCali, s e t e e e e ee s esesceacanscecaaeaeaas 2-
4. FacilityRelease C e e e ee ece s e C et s cecesccenentneaacon 2-

C. OPERATORF FUNCTIONSttt eeestcoscssocsssscsosenansssons .. 2-10

1. Start Schedule Formatccciei i rineononens ceaeeesansosseass 210
Hold Schedule Format ittt itiiooeoovonoooocannnsns ceve. 2-10
Terminate Schedule Formatt iiiiinenineeenrocoonononocaonns 2-10
Lockout Format 0o inivennennnnn et et et ceve. 2-10
L T 1 eo. 2-10
. Load Format,..... O L
. Facility Update Format et e s ae et e st e e eeanae o ceesaae 2-11

D. ALLOCATION OF FACILITIES ..t v e vvoooonns e et s e ee e e eeeeanaaan ce. 2-11
L. Core MemMOMY & vt v vt et s s ecoooconeooseosesoosssancseonosnsannssonas e 2-11

E. ALLOCATION OF PERIPHERALSc.0vi0an C it st e ceaseess 2=10

Fo LOADING . . ¢ ottt v et vt oo ooneosoocosonoossoosasssaocooos sssassoasss 2-16

Lo AbBSOIUtE & i vttt it it et i et s e e e et ee e e o o0 s e s e s e a s 2-16

2. Simple Relative . v v v v e o r it ie ittt it v enoeeaoaaeososcasosanaaassos 2-16

3. Complex Relative . .. v i vt i it nccnoscecaenvenconaosoososoonnnnnss 2-16

G. CONSOLE INPUT/OUTPUT OPERATIONS & i it v vt cnnnenonsoneconaosonnssss 2-17
1. Program-To-Operator Communication « o « o v v v v v v vt v st nt e v s s s eneonsonsossos 2-17

2. Operator-To-Program Communication « « « o v ¢« v e vt e vt iieesnncaosooansoancsos 2-20

3. EXECUTIVE CONTROLt tiieioeoneeoosoanossoosososessassacosnns 3-1
A. TABLE AND STORAGE AREAS ... i ittt eeeooacaonooseesnocssnscasossons -1
1. The Executive Enfry Table . .. v i vt it v ei i te tecvnoneoaneanetssoecasoanse 3-1

2. Standard Information Maintained By REX i i ittt it et essocoooennnsnns 3- 2

3. The Executive Addendum oo i vt it vttt vt aeosancoconosesoososansssan 3-3

4, Utility Request Table . . v vt it ittt ce tteeneonconncoconaaneonnsss 3- 3

5. Delayed Response Table, , ettt it ettt e 3- 6

B, INterUpPt ERBFANCES & v v v v v i it it sttt et ettt et 3-6

7. Communication Interrupt Table | . . v v v s vt oo o v oo oo oo eoeossooocsosnaoossssss 3-8

B, Time-Table | ...ttt i it tieneeeeeeenconasceanssanoassacnsccnss 3-8

B. STANDARD PERIPHERAL INPUT/OUTPUT & v vttt oo oe o oeoeeoenoeonenenennan 3- 8
1. The Input/Output Requesto o o i i e i e 3-8

2. Standard Parameters it i i i i i i i e e e e 3-10

3. Register REferENCesS i iutnin ettt iitnnnnnstnesonnaasannnns 3-11

4. Input/0utput SUPBIVISION L L ittt it it i i e i e 3-11

C. STANDARD PERIPHERAL INPUT/OUTPUT STATUS CHECKING . . .ttt e v vnvnsenns 3-15
1. Purpose , e s e e st e et s ettt es a0 Ce s e et ea e 3-15

2. Activation of CKSTAT Routine |, i it ie cevnooeooeneoansssennnssnas 3-15

3. Examples of CKSTAT USE ., vttt it veteennenenesnsossonsnsnsnnnnss 3-16

4. Logical-Considerations . . . v vv it ininti e enaencaecr et n s anane s 3-17

5. Programming Considerations , .., et it i ettt 3-17

D. COMMUNICATION INPUT/OUTPUT ... it eeetetnosnsacsnssconsssssscsssssns 3-19
1. Communication Interrupts ittt it i i i i i e 3-19

2. Submission of Intermupts i i e i i i 3-20

3. Acquisition of Stored Interrupts i i e e e 3-20

4. Interrupt Analysis by the Real-Time Program .,ot ineneeooereonaneenns 3-21

5. The General Purpose Search . .. v v ittt et ceennenoraroneenosssosonnnnses 3-21

E. INITIATION OF INTERVAL-TIMER INTERRUP TS & vttt 6t oo soseeaccnoncnssnos 3-24
F. WORKER PROGRAM VOLUNTARY RELEASE OF CONTROL ... vt vvvoennnnn e 3-24
T SUSPENSION | 4 v v e s s e e e s cecoconcoencoansoanaonansnoas e 3-24

2. Termination it enennnann W e et s e s e s as ce e st 0 s e st e e e 3-24

3. Temporary Release . . . vvis e ive e eenneoeenneoneneenneoennns e 3-25

A, EXChaNgB . v v i oo e ettt vt st e oo oo sonsossssossosssonsacosasscsssess 3-25

G. THE SWITCHER 4 . ittt v v o et neoennoocaonnososassnsonocsssasasssssasnaos 3-25
1. Priority Considerations . . v oo v o i ieveenoveeosnernsansocssocecocacnsons 3-25

R 1T £ 11 3-26

4. CONTINGENCY CONTROL.....

A. CONTINGENCY INTERRUPTS
1. Faultinterrupt

2. Interval-Timer interrupt

e e

e o o 0 8 0 s 0

e o 0 0 0 o

© o 6 &4 ¢ 0 0 a0 0 8 s 0 6 02 e s 0 2 0 8 0 e 20 e s 8

B. CONTINGENCY DIVERSION OF PROGRAM FLOW ., ., e ae e

1. Addendum Overflow, .. v ittt i it ciiieneoesoononnsncss
2. An Excessive Accumulation of Input/Output Requests Without Assoctated Status Checking
3. Communication Interrupt Table Overflow .

C. OPERATOR CONTINGENCY INTERVENTIONS ecnn ceeesso s

1. Program Start.......
2: Suspend « v e s e e
3. Termination. ...
. Interlock Response .

5. UTILITY SERVICES

A. OPERATOR REQUESTS

-—
.

Inspect Core . .
Change Drum . .
Change Core . .

Print Core ...

QO I YN o N
. . . .

B. PROGRAM REQUESTS
I. PrintDrumt ceeena

Print Drum

Inspect Brum

LI A R Y

e o 0 0 s s s o
© e s 6 o 0 s s s s 0 e .
L R T R .
L O L R) LR INY
e s 0 0 0 00 .

LI O R A A A NI
) LY * 0o e 0
a8 0 6 0 8 s s 0 0 00
L I R R I A A
s ¢ 0 00 80 00 08

¢ & 6 s s 8 s 000 8 o e

Y e s

2. Print Core
3. Assistance in Establlshmg Rerun Dump

4, Utilization of Rerun Dump .

6. PROGRAM PREPARATION

A. SOURCE LANGUAGE
USE OF JUMP KEYS
USE OF CONDITIONAL AND UNCONDITIONAL STOPS v vt v v v cee o
STANDARD LOCATIONS

SEGMENTATION

mmoaop

APPENDIX A.

BASIC PROGRAM FORMATS

Site Utility v o s o o s v v o
Additional Operator Entries

L N N A) s 0 o o . ¢ 0 06 80 0600 60 0
oooooo o8 s 0 o e s 0 o 0 . e s a0 e 0
LRI 2 0 e 0 6 o 8 a0 00 00 00 0 s
® ¢ & o 6 0 0 0 @ &0 0 a s 0o a8 s s A ¢« o 0 o 8 .
LY e e 0 s s e e e . ° . e 6 0 0 0 0

© 69 8 6006006080 e s 0 e e 80 0000 a0 s
................ o s s s s s s s 00
........ © 8 6 9 0 6 06 008006000 e 80 e
* 0 0 0 © 9 9 5 68 0 60 200 000 e 0o DY
.......... . e s 0 0 00 @0 0 06 s 00
90 068 0000 a t s s e s s 0 O] .

LI I N R A A 9 0 0 8 6 830 6 0 5 8 00 e e e 0 D TN
ooooooooo o s 0 8 8 6 02 080 0 0 ° e 6 s 0 a0 o e 0 s 0 0
© 6 6 80 20 06 0 0 8000 e s e . s 0 0 9 s o

------- L) @ 08 0 0 0 6 0 0 0 @000 00 s 0o

e 0 6 00 0 0 6 e 0 a9 e s 0 0 0 0 0 0 @ . o0

° o s e 0 e L Y e o 0 8 8 0 0 a0 9 0 0o e 0 0 0 00 s e
------------- 0 0 0 0 o s 9.0 6 0 0 o o @ 6 62 000 0 0 e 0
@« 5 e e 0 0 80 0 © 0 8 0 0 9 9 6 0 0 0 6 0 9 0 0 s s s 0 G G G S5 e s 0
nnnnnnnnnn ® % 0 6 6 8 o 6 0 8 0 0 6 8 8 e a0 G e 8000602 s e

FACILITY REQUIREMENTS

e o & s 2 =

o e
s e s 0 0 e
. .
. e .

......

“ 0o e

] LY
e e 08 8 o
0 s 0 °
----- .
LY LI
s e 0 s 9 0

® 2 08 2 6 & 2 s 2 2 2 8 2 2 22 e 22 2 52 s s 2 s s e &8 z & 36 S 3 S S 38 S s 3
-------- S €0 4 0 00 0 0 .. ¢ o0 8 0 200 00 000000 0) o s e o0
“ e 4 0 0 0 8 0 G 9 8 s 05 8080 80 0 s.0s0e 0 06 88 LRI Y

D) D o 0 9 % 9 9 9 8 o 0 5 5 0 0 6 0 o Y o . 9 a s s 8 0 0 5 0
..

¢ 0 s 0 a5 0 e 0 o e e 8 0 0 5 8 0 8 o e 6 o 0 & 0 0 o » s 8 0 0 s s e

Modification Codes

D W NN N e e

[N

N NN N

LD W W W W

p—

— e I 5 IR & Q= S

QO O RO = it s

LN N

iii

A. ABSOLUTE vt vt e v e e et et e ettt e et et et A- 13
1. Identification ReCOrd . . . v v v v i v v i it i it et ettt ot nenensotocensanss A- 3
2. Instruction Record | . . . i v i it i it it et it e o e e o e e et e e A- 4
3. End-of-Program Sentinel , it ittt it it et et e e e e A- 4
4, Storage Format , .\ . .. i it vttt i ittt ittt oc ettt e s A- 5

B. SIMPLE RELATIVE . . i it vttt oo oonntneseonesseososossssscsnsionsens A- 6
1. Identification Record viv it it ettt e nenencs Y - T
2. Instruction Record , | it it it ittt ittt it e e A- 6
3. End-of-Program Sentinel i i i it ittt i e i et et A- 17
4, Storage Format . | . . . i i ittt i it i e et c ettt st A- 7

C. COMPLEX RELATIVE . . it vt v o oo oo oseosoccescocnasasescessoaossocss A- 8
1. Identification ReCOrd, . . o v v v v v v it ittt et e et e es cocconnooannseancasas A- 8
2. Facility ReCord ., . . i v i v v it ettt ot oo oonoecesasosasonsnsnsscsss A- 8
3. Segment Description RecOrd v v v v vt it ittt it ittt e e A-10
4, File Description RECOI . . v v v vt v vttt it ittt ettt ettt eoooooenaneneens A-10
5. Control Segment Record v v i i vt v i it it ettt b et st ot e e A-11
6. Secondary Segment Record. ettt ettt et it et e A-12
7. End-of-Program Sentinel . . . o v i vt ittt i i it ettt e et e e A-12
8. Storage Fofmat . . . L . v i it ittt et e it e s it e e it et A-13
9. Segment Description Record When Modified v v v v vt v v ittt e it ittt oo A-14

AP P ENDIX B L ittt ittt e ittt tee i tne st annenaees B-1

EXAMPLE 1 ., i it ot ittt s o asessensenssoseesonsesaseesstanseenens B-1

EXAMPLE 2 & it v st ot eeooeneeneononssnesnsneenssseneneececononennes B~ 2

EXAMPLE 3 . i i it v v ot eeenooeneeseeoesosoceenossenesssossoeasnnsas B- 3

EXAMPLE 4 ,..... ... e et it e e et e e e B- 4

EXAMPLE 5 . i it it vttt o st ot o onsossosoensasoassssssnsessssssssenaes B- 6

EXAMPLE 6 . i v v v v ottt o s oo o oo asoeosasnossoanssasesesoseesoneens B- 7

AP P ENDIX € o ittt i i it ittt it te ittt et et aeannennns c-1

GENERAL COMMENTS ONOPERATOR ENTRIES ittt tnnnes c-1

1. INTRODUCTION

A. General Description

The Real-Time Executive Routine (REX) controls, sequences, and provides for the most efficient
use of facilities for user programs operating in the UNIVAC® 490 Real-Time System. REX is related
to the other routines which comprise the complete software package for the system. The SPURT
Assembly System will translate a program written in a symbolic language designed to simplify pro-
gram coding. SPURT output is a program suitable as input to the computer. Symbolic notation in
SPURT language will produce coding which will provide linkage to REX routines.

A group of Utility Routines are designed to operate under REX control. These routines may be stored
in the high-speed memory of the computer or on peripheral drum units. They provide the user with
sophisticated and tested routines for many common tasks such as core and drum memory printouts
and routines to change core memory. Utility Routines may be initiated by coding within a program
or by entries on the console typewriter.

Special consideration must be given to the demands of the real-time program in any real-time system.
The real-time program is characterized by random requests made upon the facilities of the system.
It is possible to make general estimates of the facility requirements of the real-time program. The
actual demands for facilities at any particular time cannot be estimated, however, as this will be
dependent upon variable circumstances. This is in contrast to a program which will receive a batch
of input information, where both the volume of input and the facilities required may be determined
prior to the initiation of the program. A distinction is therefore made between the real-time program
and batch programs.

A major consideration in the design of REX was to provide a priority structure that would release
facilities to the real-time program upon demand. There are times when the demands of the real-time
program will require full use of facilities; while at other times only an occasional request will be
presented for processing. One or several batch programs may be run concurrently with the real-time
program at these times. REX will provide for the interruption of batch programs when the real-time
program is processing a request., REX will also attempt to overlap the input/output time associated
with the real-time request.

1/0, LOAD, UTILITY AND CONSOLE REQUESTS

FIGURE 1

UNIYAC 490

REAL-TIME EXECUTIVE PROGRAM

NORMAL RETURN

LISTING FUNCTION

ADDENDUM OVERFLOW

REQUESTS

LOAD AND UTILITY
REQUESTS

z_ N

INPUT/OUTPUT
REQUESTS

TRANSLATOR

Lo

CONSOLE CONTROL

INSTRUCTION

WORKER

RTIAS

CONSOLE
INTERRUPTS

COMMUNICATION INTERRUPTS

DRUM CONTROL

I/O INTERRUPTS

W

STANDARD
PERIPHERAL

1/0 SUBROUTINES
7N

|
INTERRUPT I
or REQUEST | Y

v

INTERRUPT CONTROL

/

—>

INITIATOR

DRUM-STORED LOAD AND UTILITY ROUTINES

LOAD
4__ TERMINATE
CALL FROM RERUN
DRUM SEGMENT CALL
OTHER

WHEN CALLED INTO CORE MEMORY
A DRUM STORED ROUTINE OPERATES
AS A WORKER PROGRAM

IF LIST EMPTY AND CHANNEL NOT BUSY

PROGRAM

VOLUNTARY RELEASE
OF CONTROL

ACCUMULATED
INTERRUPT

EXIT

>

<

COMPLETED REQUEST, COMPLETED
INITIATION, OR RETURN FROM

INTERRUPTION RESULTING IN
SUSPENSION

INTERROGATE REQUEST STATUS
OR MARK RETURN POINT

REQUEST COMPLETE OR
RETIUBN POINT MABKED

WORKER PROGRAM CONTINGENCY PROVISION

SWITCHER

NOT COMPLET

NO RETURN

INPUT/OUTPUT

INTERROGATION

POINT MARKED

ENTRY
>

RETURN
€ —_

CONTINGENCY
CONTROL

CONTROL PASSES DIRECTLY TO INITIATOR

CONTINGENCY
INTERRUPT

NO WORKER PROGRAM
CONTINGENCY PROVISION
(SUSPEND PROGRAM)

The high-speed (core) memory of the computer will normally contain the REX Routine, a real-time
program, and one or more batch programs.

B. Functional Description

The flow paths to and from the routines that comprise the major functions of REX are shown in figure
1. A brief description of each function will follow to provide an overall description. A detailed de-
scription of each function may be found in the remaining sections of the manual.

1. SELECTION AND LOADING

Programs are presented for selection on a Master Instruction Tape (MIT). A routine is provided
which will extract a program from a library provided by the REX user. This will be accompanied
by card input which will describe when and how the program will be loaded. Options are provided
so that a program may be placed on the MIT and called only on demand by an operator console
entry. A program may also be selected to run and then inhibited by console entry. The facility
requitements of the program will be defined by information on the MIT.

2. LISTING

The environment that is controlled by REX is a complex one in which the real-time program and
and one or several batch programs will make requests for the use of facilities. The listing func-
tion provides a means through which REX may give order to these requests for program ioading,
input/output facilities, and various utility functions. If the necessary facilities are available,
REX will provide them and keep a central record to indicate that they are in use. When facilities
are no longer required they are released and requests are removed from the list.

3. CONSOLE CONTROL

Provision is made for a running program to inform the operator of conditions that may exist dur-
ing operation, such as the completion of a load, or the malfunction of a peripheral unit. Pro-
vision is also made for the operator to effect the operation of a program by input messages. These
requests are made through the console typewriter.

Console Control will supervise the use of the console. Buffer areas contained in an addendum
created at load time with hold console data prior to its submission to the console typewriter. A
subsidiary function is the translation routine which will convert information from machine nota-
tion to a form that may be printed on the console typewriter. An example of this would be a re-
quest to print a location in high speed memory. The binary contents of the location interpreted
as octal digits are translated to the notation required for output to the typewriter.

4. DRUM CONTROL
A number of utility functions are provided to operate under REX control, such as a printout of
drum or core locations. Utility functions may alsoc be created by the user. The routines that per-
form these functions are usually kept in drum storage and called into core memory when needed.

The Drum Control Routine will load utility routines, and once loaded they will operate as a worker
program under REX control.

5. INITIATION

The Initiator Routine will maintain a priority supervision over standard peripheral input/output
requests. It will give priority to real-time program requests. Batch processor requests will be
initiated in the order of submission.

SWITCHING

The Switcher Routine is the means by which REX relinguishes control and establishes inter-
program priorities. Programs will be arranged so that those with relatively little input/output time
will be operated within the input/output time of a higher ranking program.The Switcher Routine
will also provide for the processing of interrupts that have occurred when anon-suspendible routine
was operating.

REAL-TIME INTERRUPT ANALYSIS

The Real-Time Interrupt Analysis Subroutines (RTIAS) are provided by the user. REX makes pro-
vision for entry to and exit from these routines which are designed in accordance with the com-
munication system configuration to assure a continuous and orderly flow of input/output informa-
tion.REX will provide assistance in controlling communications interrupts and an optional routine
to search for terminated input/output buffers. Standard peripheral input/output requests are con-
trolled by subroutines assigned to each channel.

INPUT/OUTPUT INTERROGATION

A worker program may determine the condition of a standard input/output request by entering the
Input/Output Interrogation Routine. An option is provided whereby the program may wait for com-
pletion of an input/output request or it may continue after marking a return point to which REX
will return control upon completion of the request. Provision is made for a program to release
control to REX when it cannot logically make further requests for the use of facilities. Requests
that have not been completed will be supervised by REX and control will be returned to the
worker program at the specified return points. A program that has reached its logical termination
point will release all its facilities by a separate utility request.

CONTINGENCY CONTROL

Contingency Control provides for situations where the normal flow of a program is interrupted.
The interruption may be the result of a logical inconsistency within a program, such as the over-
flow of table areas associated with program requests or communications requests, or it may be
one of the standard machine generated interruptions associated with fault recovery, or interval-
timer update. The worker program may contain coding to provide for these interrupts. REX will
provide for the orderly acceptance of interruptions of this type, and if no user coding is pro-
vided the program will in most cases be suspended.

2. OPERATIONAL CONTROL

PROGRAM SEQUENCING AND LOADING

It is the function of the routines described in this section to sequence, load, and initiate programs
in order to make the most efficient use of facilities at any point in time.

Programs are presented for selection on a Master Instruction Tape (MIT). A dynamic selection process
is initiated when the schedule is started and upon the termination of a running program. The set of
programs examined at this time is governed by inter-program priority and a relation in which one
program or group of programs may be dependent upon the output of some other program. These inter-
progtam relationships are determined when a MIT is created.

The family of routines associated with program sequencing and loading will provide for:

m the computer operator to make deletions and additions to the set of programs defined by the MIT.
m loading programs in a simple format more suitable for debugging operations.

m loading a real-time program and extensions. These extensions will consist of routines within the
real time program that are not used frequently. They are placed in peripheral storage and called
on demand.

m loading and restarting reun dumps to recreate to environment existing before a fault or error.

A. The Master Instruction Tape

The MIT may be thought of as a schedule of programs to be run. The tape will contain the instruction
coding for each program in complex relative form,which means that peripheral facilities and core
memory are assigned at load time. (See complex relative format Appendix A.) Information required by

the load routine is supplied by Index Records and Program Facility summaries which precede the
instruction coding records on the MIT.

Each program is executed with a minimum of operator intervention. The loading of a program will be
accompanied by a console type-out describing the facilities required for the run. After the periph-
erals have been set up, the operator starts the program by console type-in. Loading will continue
until all scheduled programs have been run or until inhibited by operator intervention.

a.

Preparation of the Master Instruction Tape.

The REX user is provided with a Master Instruction Tape Assembly Routine:which will accept
scheduling requests from cards. Card format information and operating instructions for this
routine are in the Utility Routine Manual. The routine will extract requested programs from a
reference library, provide loading information records, and produce a MIT.

Definition of Terms.

The following terms are used in the description of MIT records which follow:

(1) Priority Group. A group of programs all of which must be initiated before the next
priority group becomes eligible for initiation,

(2) String . A subset of a priority group comprised of programs which must be executed
serially. A one-program string is permissible.

(3) String Leader. The first program of a string.

(4) Computer Estimate (CE) . An optional scheduling parameter répresenting the ratio of
central processor time within a processing cycle to total processing cycle time. The ratio is

expressed in tenths., A value of 1 would mean the central processor is used during only 1/10

of the basic processing cycle; a value of 10, the program is capable of keeping the central

processor continuously busy.

(5) Running Time. An optional scheduling parameter representing the estimated running time
of a program in minutes were it to run independently.

(6) Program Lock. An indicator associated with each program. If set it means the program
will be bypassed when executing the schedule.

(7) String Lock. An indicator meaningful in string context. If set it means this and subsequent
programs of the string will be bypassed when executing the schedule.

(8) MIT Number. A sequential number assigned by the Master Instruction Tape Assembly
Routine to each program as it is placed on the MIT. It is used for internal identification and
tape position control.

The program lock and string lock options described above are provided to allow deletion of
programs or strings after a schedule has been started. Programs may be included on a MIT
which may or may not be run depending upon operator decision.

Description of Records.

A MIT may contain a maximum of 64 individual programs. It contains contiguous groups of
records in the order listed below.

(1) A label record.

(2) One or a group of index records.

(3) One or a group of Program Facility Summaries.
(4) One or more programs in complex relative format.

(5) Two Standard End of File Sentinels.

Labe! Record

o]

[

o

Not
used

21

22
23

7 2 7 2 7 2 7 2 7 2
7 2 7 2 7 2 7 2 7 2
A M | T
A A A A
A A A A n n
yi y2 dl d2 d3

Number of programs Number of priority groups
7 2 7 2 7 2 7 o2 7 2
7 2 7 2 7 2 7 2 7 2

nn is an octal identifier assigned at time of creation. yyddd is year and day. ddd is from 001
to 366.

index Record

66 (max)

There is one index record for each priority group. A maximum of 8 priority groups may be
contained on the MIT, and a priority group may contain any number of programs. The MIT,
however, can contain a maximum of 64 individual programs.

7 7 7 7 7 priority group

c MIT number string running time

} string
index

One-word index for each string within the priority group.

—\/\/—\/\//\/-\/\/\N
,.,_._,,\/'\‘_‘__,/\\,,—-—-/_,-\.,/_//\\/\,1

~I
-~
~d
~I
~

priority group

W 00 N D N B WM e

f—-
<

11

12

88 Max.

2-4

cis lock condition indicator in bit positions 27-29.
1 string lock
2 program lock
6 no lock

MIT no. is that of the string leader.

Program Facility Summary Record

library number MIT number
successors library number successors MIT number
c y compute estimate program running time
minimum core maximum core
min S, min S, min §, max S max S, max $
minimum card reader ' minimum card punch Summary 1
minimum paper tape reader minimum paper tape punch
minimum high-speed printer

minimum relocatable drum area

maximum relocatable drum area

Additional summaries, maximum
of eight per block

W_J\/f\/\/\,\/

c is lock condition indicator in bit positions 27-29 as in index record.

y is an indicator to show the presence or absence of operational parameters. (See Operational
Parameters).

S3indicates IBM Compatible servos used by program.
S2 indicates UNIVAC III servos used by program.
S1 indicates UNIVAC IIA servos used by program.

Drum base when it appears in the last word includes drum channel normalized right in the
high-order 6 bits.

Minimum and maximum requirements are used by REX in allocating facilities. The use of these
entries will be more fully explained in later sections.

fald fd =
rrogram rormaoft

Program format is complex relative — (See Appendix A). Block descriptions are modified to
include MIT number as the most significant part of the descriptor word during MIT creation.

49
50

MIT number 0 0 0 0 0

(ldentification Record)

MIT number 0 0 0 0 1

(Facility Record)

=
3
=3
£
=3
or
D
]
o
<«
(=]
<
N

MIT number 0 0 0 0 3

(File Description Record)

MIT number 0 0 0 0 4

(Contro! Segment Record)

MIT number segment number 5

(Secondary Segment Record)

Only the first block of each record bears >de‘scriptorvs as shown. Subsequent blocks bear de-
scriptors of binary zeros. This also applies to parameter records.

Operational Parameters

Operational parameters may be inserted within a program at the time a MIT is created. The
parameter record generated will be the final record of the program,

MIT number 0 0 0 0 6

Additional block indicator No. of parameter words

parameter word 1

parameter word 2

W\/"
/\W

parameter word 48

check sum

MIT number 0 0 0 0 6

{51-wd block

The upper half of word 1 is set non-zero if another block follows. The lower half represents
the number of parameter words in this block.

Sentinel

A MIT will be terminated with two standard end-of-file sentinels.

B. Internal Load Requests

Operating programs may request various load and load-related functions. They are initiated by entry
to REX routines accompanied by a packet of information. This is inserted as coding within the
requesting program.

1. REAL TIME EXTENSIONS

Tasks within the real-time program may be arranged in an order of priority. Control routines
and frequently used task routines are kept in core memory at all times if possible. Routines
that are used less frequently may be drum stored in absolute form with overlapped core area
assigned to those routines not likely to be concurrently executed. Routines that are least fre-
quently required may be peripherally stored in relative address form and allocated to avail-
able core storage when needed.

REX will provide assistance for loading routines of the latter category. These extensions
must be in simple relative program format (See Appendix A). They may be stored on the drum
or on magnetic tapes. They will be loaded into any available core area with preference being
given to that nearest the permanently allocated real-time program area. If necessary one or
more batch-processors will be suspended and drum-stored in order to accomodate a requested
extension. Suspended batch processors will be reloaded when a suitable environment is again
established. One extension request at a time may be pending. Extensions cannot acquire
peripheral facilities. ‘

Format:

EAS 52 0 °
i d 7 ¢han

drum address or search word

W R

starting location No. of words loaded

DONE— (control here when load completed)

WORD
0 This word contains an indirect jump instruction to the executive entry table to in-
itiate the extension load.
1 The upper half of this word will contain an executive action specifier (EAS). This

allows control to be returned within the program. EAS use is explained in detail as

WORD

part of the description of the CKSTAT operator. Positions 0-5 of this word contain
the function code which is replaced by 77 if the requested routine cannot be loaded
before control is retumed at DONE. Possible causes are that the requested routine
was not found or peripheral error.

2 A two bit indicator (i) specifies the storage medium.

00 specifies magnetic tape.
10 specifies drum.

Another indicator (d) may be used to imply the tape identified in the remaining
portions of this word contains more than one program and that programs are in as-
cending sequence by identification record block descriptor. REX will record the
position of the tape after performance of an operation so that tape movement for the
next operation will be in the proper direction. Only one tape may be used with this
option. The indicator is 1.

A zero indicator implies a forward search with a rewind following each operation.

If a tape load — identification record block descriptor of routine to be loaded. If a
drum load — drum address and channel.

This information is supplied by REX load before control is returned at DONE addrass.

2. BATCH LOAD REQUESTS

At infrequent intervals the real-time program may desire that a task be performed which would
require additional facilities and be essentially of a batch nature. An example of such a task
would be preparation of a report based upon accumulation of a predetermined quantity of data
or passage of a given time increment.

REX will service requests submitted by the real-time program to load batch processors.
Programs loaded in response to this type of request will be treated as individual programs
and may acquire peripheral facilities.

b. Format:
0 6 4 1 1 0 0 0 1 4 4
1 EAS 5 ? 1 °
2| i d T chan PP it
3 Drum-address or search word
DONE——>(control here when load completed)

All notes describing the extension request apply to batch requests.

3. SEGMENT CALL

a.

This function provides for loading segments. The segmentation function and the related
symbolic coding are described in the SPURT Programmer Reference Manual. If a segment
cannot be loaded because of peripheral difficulties, the requesting program will be suspended
pending operator intervention.

2-7

b. Format:

0 6 4 1 1 0 0 0 1 4 4

5 o]
1 0 0 0 0 0 2 3
2 Segment No.

DONE— (control returned here when segment has been entered

Segment number is used to find the locator pair within the executive addendum of the program
which specifies the location and the form of storage for the segment. Locator pairs are in-
corporated into the executive addendum of the segmented program by the load routine. The
format of the locator pair is described under EXECUTIVE ADDENDUM.

4. FACILITY RELEASE

The functions described below are 'designed to permit the release of facilities so that they may
be used by other programs. '

a. Unit release format:

0 6 4 1 1 0 0 0 1 4 4
1 | ! g "
2 1 2 0 0 0 7 chan *]® it

DONE ——> (control returned here as soon as request has been listed)

The unit designated is made available for use by other programs.

b. Core release format:

0 6 4 1 1 0 0 0 1 4 4
1 2 5 °
) starting location number of words

DONE——> (control returned here as soon as request has been listed)

The core area designated is released. The area may be at the end of a running program, or it
will serve to terminate a real-time extension. Extensions must be terminated in this way.

c. Drum release format:

starting address

number of words

DONE%»(control returned here as soon as request has been listed)

INTERNAL REQUEST USAGE

PERMISSABLE FORMAT

TYPE WHEN SUBMITTED COMMENTS
AND SOURCE
When no other Other tape Extension and Batch Load
EXTENSION request of like Simple Relative requests may be submitted
kind is pending Drum by the real-time program only.
) Other tape
BATCH LOAD Complex Relative
» Drum Complex Relative is the
only format in which segmented
programs will be put out by
SPURT.
Other tape
SEGMENT CALL Complex Relative MiT
. Drum
Anytime
FACILITY
RELEASE Any

Figure 2. Internal Request Usage

2-10

The telocatable drum area specified will be released. Release must be from the high-addressed
end of the assigned area.

Summary

A summary of requirements and limitations for internal load requests and release functiong
appears in figure 2.

C. Operator Functions
The operator has ultimate control over run sequencing and initiation. He may wish to operate with or

without a MIT. If operating with a MIT he may wish to delete scheduled programs, remove locks

4z o S

imposed at time of creation or temporarily suspend execution of the schedule. All operator perogatives
are exercised by console type-in. A description of type-in formats and their functions are listed
below. See GENERAL COMMENTS ON OPERATOR ENTRIES, Appendix C.

1. START SCHEDULE FORMAT:
SS D ch D sv ®©

The function initiated by this type-in provides for initiating the MIT located on the designated
channel and servo. This function may also be used to release a hold imposed upon a schedule
subsequent to its initiation. The designation of a channel and servo is not required for release.

2. HOLD SCHEDULE FORMAT:
HS ©

This function will prevent further automatic loading from the MIT.

3. TERMINATE SCHEDULE FORMAT:
TS ©

This function will terminate a MIT. It may be used regardless of whether the MIT is active, in a
hold condition, or exhausted. (Exhausted means that gll scheduled programs have been executed,
a condition communicated to the operator by console type-out).

Once this function has been entered all internal records pertaining to this MIT are purged. No
MIT references are meaningful until a new schedule is started.

4. LOCKOUT FORMAT:
S(tring)
LO D MIT no.[] or (6]
P(rogram)
This function may be used to impose a program or string lock upon any program on the MIT.
5. UNLOCK FORMAT:
UL] MIT no. ®

This function will abrogate any lock condition existing for the designated program.

6. LOAD FORMAT:

LDDpsD chstDplDbsty (0]

This function provides for all loading other than that performed automatically during execution
of a MIT.

ps Program source
T magnetic tape
D drum

C cards (errata only)

ch Channel
sv servo designation if from magnetic tape, otherwise omitted.
gt defines program location. If program is to be loaded from magnetic tape, this wili be the

block descriptor of the program identification record. (7474747474 whenever a rerun dump
is to be loaded). If load is from drum, this will be the drum address of the program identi-
fication record.

bs Base address if load format is simple relative. Dump identification if loading a rerun
dump.
ty Type of loading operation. See figure 3.

R load reai-time program.
E load errata.
B batch

FACILITY UPDATE FORMAT:

u

FUDchDunDOI‘@

D

This function provides for maintaining the central facility table from which REX makes facility
assignments. The channel (ch) and unit (un) are each defined by two digits. Omit unit when chan-
nel specifies drum or disc subsystem. When channel specifies card or paper tape subsystem,
unit 1 means reader, unit 2 means punch.

Up
D Down

Allocation of Facilities

CORE MEMORY

The division of core between REX, a real-time program and batch programs is shown below. The
Batch Lower Boundary represents the lowest address to which batch programs can extend. An
area for real-time extensions may be allocated. This would tend to reduce interference with
batch programs. If the Batch Lower Boundary is not specified, it will be automatically defined
as the upper boundary of the real-time program. Or, if the real-time program is not operating, it
will be defined as the upper boundary of REX.

a. The Real-Time Program

The real-time program should be allocated as shown. If it is loaded from complex relative
form, it will be so placed. Conflict at load time with batch programs already operating wiil

2-11

¢1—¢C

OPERATOR LOAD

REQUEST USAGE

TYPE OF
LOADING OPER.

WHEN ENTERED

PERMISSIBLE FORMAT AND SOURCE

EFFECT

COMMENTS

Absolute

Other tape
Drum

Will hold in abeyance

R Other than when loading of scheduled
Real Time Program programs from MIT until
already running Other tape requested program has

Complex Relative { been loaded.
Drum
Once a simple relative
Other tape or absolute program
Complex { MIT (Other than the RTP)
Relative Drum has been loaded, no
: further loading will
B Anytime occur until it terminates.
{ Other tape
Simple
Relative Drum
Other tape
Absolute
Drum
Other tape No placement checking
Absolute is performed by REX.
Cards Consequently, the load
E Anytime will be carried out
: regardless of the
gﬂglfve { Other tape condition of memory and

will not effect the
schedule or subsequent
initiation.

Only one operator request
may be pending. Entry

of a second will cause
obliteration of the first.

“Other tape'' means some
magnetic tape other than
that designated as MIT by
the SS function. 1t may
contain any number or
mixture of programs so
long as the descriptor
entered is unique to the
identification record of the
program to be loaded.

If a segmented program is
running from an ‘‘other tape’’
no other program can be
loaded from that tape.

Figure 3. Operator Load Request Usage’

Core Memory

Lower (00000) interrupt and buffer

X3y

1/0 Subroutines -

Control Routines and Frequently

Used Task Routines Boundaries of

Real-Time Program

Wvy904d
IRIL-TV3Y

Operating Area for Permanently
Allocated Drum-Stored Routines

VIR

Batch Lower Boundary

BATCH PROGRAMS

Upper (77717)

be resolved by holding in abeyance further batch loading and waiting until the competing
batch program (s) terminates. A form of operator termination which will cause the terminated
. program to be rescheduled is explained under Contingency Control.

Real-Time Extensions

Allocation of real-time extensions will start at the uppet boundary of the real-time program
and continue to the upper end of core. Conflict with batch programs will be resolved by tempo-
rarily suspending and drum-storing them.

The allocation routine will always seek running area starting at the upper boundary of the
real-time program. This will have the effect of filling in holes caused by termination of
previous extensions.

Allocation from MIT

Allocation algorithms are based upon a concept of forming and maintaining program pyramids.

2-13

2-14

Pyramid Formation Involves:

(1) Selecting from string leaders of the priority group currently being executed a set of pro-
grams which can be accommodated by existing facilities. String leaders are considered ac-
cording to string running time, that is, the strings having the longest remaining time are
always inspected first.

(2) Forming the chosen set into a pyramid based on individual program running time.

Pyramid maintenance involves adding to an existing pyramid. The first string leader that will
fit upon a vacant base will be loaded. String leaders are considered, in the order described
above, according to string running time. At each termination allocation is re-evaluated and, if
possible, one or more new programs introduced. A pyramid is formed whenever a boundary
upon which it may be placed is free. If the real-time program is not operating placement may
be on the Batch Lower Boundary or End-of-Core.

If the real-time program is operating only End-of-Core will be used. This will tend to minimize
use of core nearest the real-time program, which is the area most likely to be invaded by
real-time extensions.

BATCH LOWER BOUND

_

G /’IIII |

B

L,

P (PROGRAM)

VB (VACATED BASE)

END OF CORE

-— time —»

The illustration above shows the area provided for batch programs. The real-time program is
not operating. The allocation of programs within the batch area is dependent upon available
area (shown as a vertical function) and running time (shown as a horizontal function). A new
pyramid is formed at the termination of programs 3 and 4. At termination of program 2, two
vacated bases exist upon which additions may be made. The base belonging to the pyramid

placed on End-of-Core is first considered. Program 6 would not fit on the base and as asecond
choice was loaded on the other vacated base area because of time considerations. REX main-

tains a record of the remaining running time of programs based upon information supplied on
the MIT.

Operator Load Requests

Programs requesfed hy the Operatar will he loaded as soon as sufficient area exists

+h A
PR LR BB R BAAS) S5 ey “aas e a1 owiC

program is in simple relative or absolute format, it is not loaded until all batch processors
have terminated. Core usage is investigated and recorded to prevent interference with REX
or the real-time program and its extensions.

e. Internal Batch Load

Internal load requests are loaded in the same manner as operator requests.

E. Allocation of Peripherals

REX will maintain a central facility registry which will reflect the status and availability of all
peripherals within a system. In addition, REX will maintain a relocatable drum area map. Programs
loaded from complex relative format will have relocatable facility requirements satisfied by assigning,
from the registry, those currently available. The registry will be updated.

a.

Relocatable Drum Memory
A program may operate with varying quantities of relocatable drum area assigned. For example,
a typical segmented program such as a Sort/Merge program might have the following drum
requirement:
Declared Area
minimum = 6K
maximum = 600K
Segment Storage
minimum = 0
maximum = 8K (total length of all segments)
Allocation algorithm:
Declared Area

(1) Assign the maximum requirement within the smallest area which will accommodate the
maximum.

(2) If 1 fails, assign the largest area that will accommodate the minimum,

(3) If 2 fails, the program cannot be loaded.

b. Segment Area

Allocation of segment storage area is not related to allocation of declared area. Conse-
quently, the two areas may be discontinuous.

1) n + 1 storage requirements of decreasing length are calculated.

n is the number of segments.

i tl=
requiremen 11+12+13+"'+1n
2:11+12+13+...+1n_1
11:11
n+1=20

2) An iterative process which attempts to allocate each requirement (starting with the
largest) to the smallest satisfactory area is initiated.

Failure to allocate storage for any segment means that segments will be loaded from tape
and modified to running form each time called.

Relocatable Units

A relocatable unit requirement is defined in terms of channel groups. A channel group con-

sists of all units assigned a particular channel. (See ASSIGN operator in SPURT Manual). It
may be expressed in terms of a maximum (desired) and a minimum (tequired) number of units.
An attempt will be made to first allocate the maximum, then the maximum less one, etc. until
sufficient units exist or until the minimum cannot be satisfied and the program must be rejected.

A channel group may be split across two actual channels or two channel groups may be con-
solidated on a single actual channel. Consolidation will not be performed unless absolutely
necessary,

a. Fixed Requirements

(1) A fixed facility requirement reflecting use of mass storage channels or units may be
expressed. Such a requirement is not relocatable at load time except by operator direction.

In the case of mass storage channels the only action performed by REX is a check to see if
" the peripheral type sought is actually on the channel expressed and is operable. If it is not
on the channel, the operator will be given the opportunity to designate the proper channel so
that substitution may be effected during loading.

In the case of units, a check will be performed to see if the peripheral type is on the channel
expressed, if the unit expressed is present and operable, and if the unit is not currently busy.
A negative result for any of these tests will cause REX to seek operator substitution.

(2) The Real-Time Program

The real-time program may be loaded from complex relative format in which case allocation of
facilities would be as for any other program with the excepticn that core memory area would

commence immediately above REX.

It would seem likely, however, for an intricate program subject to change that an absolute
format would be easier to maintain, faster to load and simpler for an operator to service.
Consequently, a provision will be made for marking units within the central facility registry
as belonging to the real-time program. Whenever the real-time program is loaded from absolute
format these units will be set busy.

Loading
ABSOLUTE

Program length is extracted from the identification record. This, in conjunction with the initial
program address expressed in the first instruction record, is used to calculate core occupancy.
If no conflict exists the program is transferred into core memory. No modification is made during
the loading process. (Facilities are set busy if this is the real-time program). If the program is
loaded from magnetic tape, the load channel and servo will be defined by the low-order eight bits
of B! at activation.

SIMPLE RELATIVE

The operator-supplied base address in conjunction with the program length is used to calculate
core occupancy. If no conflict exists the program is transferred into core memory. Address modi-
fication is performed during loading. If loaded from magnetic tape, load servo designation will be
available at activation as described for absolute format.

COMPLEX RELATIVE
a. Process

Once it has been ascertained that the program tan be loaded and facilities have been allo-
cated, a type-out is performed listing assigned facilities. The control segment is modified to
running form and loaded into running location. Each secondary segment to be drum-stered is

modified to running form and transferred to the drum. Finally, any operational parameters to be
loaded are placed in core memory. It should be noted that the secondary segment in core
memory at the time the program is started will be that which was last stored to the drum and
is unpredictable.

b. Arrangement of Segmented Programs

« Controi Segment Base

X

\ (When Control Segment
\ is LOADED)

AN

Control Segment \ CURRENT BASE

Secondary Segment

Two addresses are important in modifying a program to running form. They are,Control Segment
Base and Current Base.

The Current Base is that address at which the segment being loaded starts.

Control Segment Base is the address at which the control segment starts This address is
remembered for use during loading of secondary segments.

When the control segment is being loaded current base is identical to control segment base.

G. Console Input/Output Operations

A running program sometimes finds it necessary to type out short messages advising the operator of
conditions that exist during the execution of the program or upon termination. In addition, it is some-
times necessary to communicate with a running program. This communication may be a response to
a message that has been typed out, or it may be an unsolicited entry that will in some way affect the
execution of the program.

1. PROGRAM TO OPERATOR COMMUNICATION

Information is typed out by submitting packets to the appropriate subroutine controlled by REX.
The information to be typed out is transferred by REX into the executive addendum of the program,
where it is held until the console printer is available. The program may continue while waiting
for the printer and the buffer may be modified if desired.

REX will absorb only one request per program. Therefore, a program submitting several con-
secutive requests will be held up at each submission until the prior one is complete.

a. CONSOLE OUTPUT REQUESTS

The most convenient method to specify the information to be typed out, with an entry to the
appropriate subroutine, is by the use of the SPURT operators TYPET and TYPEC. These are
described in detail under CONSOLE TYPEWRITER FUNCTIONAL SUBROUTINES in the
SPURT manual.

(1) TYPET (Type Fieldata Text)

SILRIP.U(142)

0 0 0 0 0 No. of characters
0 0 0 0 0 1st address of buffer

The packet above is generated by the TYPET operator and is usually accompanied by a
Fieldata text. It is necessary to observe this format when typing out internally generated in-
formation. The maximum of 70 characters, left-justified in the buffer area, must also be
observed.

(2) TYPEC (Type Contents)

The packet generated by a TYPEC operator is described in the SPURT manual. Entrance to
the REX Encode Routine will cause the specified registers or memory locations to be trans-
lated to Fieldata code which will be typed out in TYPET format.

REX Encode operates at the priority level of the submitting program and can accommodate
several programs concurrently. REX encode uses the buffer area within the executive addendum
of the program to encode a maximum of 70 characters.

b. CONSOLE FORMAT REQUESTS

The operation which follows will restrict the use of the console to the program submitting the
request. This will insure a contiguous format in situations where a number of TYPET and
TYPEC operations are required to complete a given format. The packet format for this opera-
tion will be generated by the CONSOLE. HOLD operator (See SPURT Manual) and will appear
as follows:

SILRJP.U(142)

0 3 0 0 0

The individual TYPET and TYPEC operations that will produce the contiguous message
should immediately follow the request for a console hold. REX will employ checks to prevent
undue monopolization of the console.

2-18

The normal method of terminating a hold mode is by submitting the following packet to REX:

SILRJP.U(14Z)

3
[=nd
o
o
(o)
<
o
"3
o
9]
2
)
LA
=
=,
-
=
o
o
0a
[¢]
3
[4]
2]
[o]
Ll
[
[N
o
~
:'%
o
(@]
Q
2
R
Q
t-‘
(&)
o)
txd
t—i
o]
S
[72]
tx
o)
o]
@
-
)]
"~
0
=3
~
n
[y]
1
172
]
(=
o)
*J
=2
]
3
=
n
=
N/

A console hold may also be terminated by the submission -of an accept request.

c. CONSOLE TYPEWRITER FORMAT

For each independent console submission REX attaches a‘triple line feed, a program number
and 6 spaces to precede the supplied data. Thus the successive mnemonics.

TYPET: START A OF A JOB | cR| NR.10576
TYPET: JOB A 10575 A COMPLETE

would result in console output

6 spaces
e
P xx START OF JOB
NR. 10576
P xx JOB 10575 COMPLETE

Since the line feed and program number are automatically supplied for each independent

request, a ICR | as a first character of an independent request is ignored. All other |[CR|
characters are honored (as shown) with a carriage return, line feed and 9-space indentation.

A string of requests within a HOLD mode is considered one independent request. Thus the
sequence

CONSOLE . HOLD

TYPET: STARTA OF A JoB |CR| NR. 10576
TYPET: JOBA 10575 A COMPLETE

CONSOLE . RELEASE

would appear as

P xx START OF JOB
NR. 10576
JOB 10575 COMPLETE

2-19

2-20

OPERATOR TO PROGRAM COMMUNICATION

Operator input to a program may be either solicited or unsolicited. Solicited input would require
a previous program to operator transmission describing the entry to be made and also specifying
the buffer to accept the input.

a. SOLICITED REQUESTS
(1) ACCEPT (Accept Characters)
SILRJP.U(142)
0 2 Number of characters 1st address of buffer
‘ EAS

Return Point

The ACCEPT packet conditions Console Control to expect and accept an operator entry of a
specified maximum number of characters to be stored in the buffer indicated.

Nomally, an ACCEPT request would be preceded by a CONSOLE HOLD and one or more
TYPET and/or TYPEC requests describing the entry to be made. The ACCEPT request, like
CONSOLE'RELEASE, terminates a CONSOLE*HOLD mode.

REX assigns a delay number (Dxx) by which the operator will respond to the solicitation.
The identification of this delay number is made by printout ACCEPT: DXX. Depending on
whether or not the ACCEPT operator terminates a CONSOLE-HOLD mode, the ACCEPT type-
out will be either an independent request with program number typed out or a dependent part
of a HOLD series.

When the entry has been completed, the line following the packet will be eligible for control at
DONE inthe same manner as the completion of a standard input/output request. The parameter
‘“EAS’’ may be used to retain control without waiting for the response. If EAS is left zero the
program remains ‘suspended until the entry is made and the DONE address is made eligible
for control. If EAS is non-zero, the address specified by EAS will regain control immediately,
Control will not appear at DONE until operator response has been made anduse of REX*TAKE-
OVER has resulted in use of this return point.

The DONE address, REX*TAKEOVER, and EAS are explained in detail under STANDARD
PERIPHERAL INPUT/OUTPUT CONTROL. The accept packet is generated by an ACCEPT
operator in SPURT code.

UNSOLICITED REQUESTS

(1) Indicator and Entry Format

This entry is made solely on the initiative of the operator. Console control will determine if
the addressee program has provided for the acceptance of such unsolicited entries. The in-
dicator optionally specified in the Executive Information Region will be compared to zero. If
no indicator is specified, or if the indicator is non-zero the entry will be rejected. Otherwise
characters will be accepted and stored into the consecutive locations following the indicator
word, so long as the maximum number of acceptable characters specified in the lower half of
the indicator word is not exceeded.

When all characters have been entered, the upper half of the indicator word will be set non-
zero by storing the number of characters entered. If the maximum number of characters ac-

ceptable is violated the operator will be so informed and the indicator left as zero.

The program accepting unsolicited entries interrogates the indicator whenever it is interested
in accommodating an unsolicited entry and resets the indicator to zero to permit additional

unsolicited entries.

Indicator Maximum number of characters acceptable Indicator word
c1 c2 c3 c4 o5 l characters
cé c7 g . .)

(2) Input Format

Unsolicited entries are begun by entering Pxx [] to describe the program addressed (where
xx is the appropriate octal coded program number). If an entry is unacceptable to the addressee,
a printout will so inform the operator. Otherwise the characters comprising the entry may be
entered.

Response to input requests made by ACCEPT is addressed by entering Dxx [] to describe
the entry in the delay table (where Dxx is the identifier printed as part of the ACCEPT Dxx
output).

c. CHARACTER ACCEPTANCE

The characters accepted from operator type-in will be stored left-justified, 5 characters per
word into the buffer specified. If a number of characters greater than ‘‘no, of characters?”
parameter applicable is entered, the entry will be rejected with explanatory print-out by REX.
The operator may then again attempt entry. '

All characters typed (excepting carriage return-04-and backspace-77) will be entered into the
buffer. Each character will be inspected to see if it is 57, the stop character, or 77, the
backspace character, If 57, the character will be counted and stored and the accept mode
terminated. If 77, the last preceding character will be erased from the buffer. The 77 will not
be stored. Three consecutive 77’s will cause the entire entry to be erased.

Unused character positions in the last buffer word into which characters are stored will be

set to Fieldata master spaces (binary zeros). The number of characters should therefore
be a multiple of 5 to include trailing spaces.

2-21

3. EXECUTIVE CONTROL

The section which follows will describe the table areas required by REX. Executive functions will
be generally described with a detailed explanation of parameter requirements and other information
which the user of REX would require.

A. Tables and Storage Areas

1. THE EXECUTIVE ENTRY TABLE

The entrance to REX routines will be recorded in the Executive Entry Table occupying octal
core memory locations 140-146 inclusive. A worker program may enter by executing an indirect
arithmetic return jump (64) to the appropriate half word in the table.

When SPURT input/output and executive-oriented mnemonics are used, entrance linkage will be
generated and need not concern the user.

EXECUTIVE ENTRY TABLE

ADDRESS UPPER HALF LOWER HALF

140 A B
141 (o] D
142 E F
143 G H
144 | J
145 K L
146 M

2.

ENTRY USE

ST

A All standard peripheral input/output requests (not console)

8 Input/output request status interrogation (CKSTAT operator).

C Temporary release of control to REX. (REX . TAKEOVER operator).

D REX Translation Routine (TYPEC entry for encoding.)

E Console requests, STOPRUN and TERMINATE operators, internal load requests.
F Servo lockout release.

G Fetch communication interrupt.

H Exchange present position for a marked return point.

I REX internal use. Entry to error message routine.

J Program — submitted utility requests and Initialization of Real-Time Program.
K Enter routine to set Interval-timer.

L Not assigned.

M Not assigned.

ANDARD INFORMATION MAINTAINED BY REX

a. DATE
The address of today’s date will be maintained in the lower half of memory location 00146.
The date will consist of year and day. Days will be numbered consecutively starting with
1 on January first. Entries are in Fieldata code, and the format of the whole word addressed
by the lower portion of 00146 is:
Yy ddd
year day
The above is a suggested format. The date will be called for by REX as part of the initializa-
tion load and some other five-digit Fieldata format may be substituted.
b. TIME

REX will answer day clock interrupts and maintain the time in hours, minutes and 30 second
indicator in memory location 00147,

The time will be stored in Fieldata code. When the 30 second indicator is Q, the Fieldata

space (05 will be stored in the right-most 6 bits. When the 30 second indicator is 1, the
Fieldata character for plus (42) will be stored.

ADDRESS CONTENTS

00147 hh mm i

hours minutes 30-second indicator

THE EXECUTIVE ADDENDUM

Every program to be controlled by REX will be assigned a variable length storage adjacent to
and preceding the program. This area will be referred to as an executive addendum. The use of
areas within the executive addendum is explained in figure 4. The addendum is used by REX to

LERLEE gt

implement control over a running program. It provides for the storage of operational registers
when a program is isterrupted. B-registers at time of input/output reguest, contro! indicators
relative to the operating status of the program, and buffers to accommodate console typewriter
input/output requests have storage areas provided in the addendum. Reference will be made to
the addendum in describing those routines which utilize addendum areas. Only those entries
which are of immediate concern to the user are fully described. The remaining descriptions are

included for general information.

The responsibility of the programmer in defining this area is to specify the number of addendum
storage elements which will be required. Section VI, PROGRAM PREPARATION will clarify this
responsibility.

UTILITY REQUEST TABLE

a. The REX Utility Request Table is for internal use by REX and provides for the orderly sub-
mission of utility requests. The area assigned consists of one location which describes the
space available. This is immediately followed by table entries of variable length. See figure
5. Requests are stored until honored by REX. The user will not ordinarily be concerned with
entries to the Utility Request Table. Requests will be stored by REX in response to operator
entry or the submission of a packet. The user will be required to access the table only when
he makes use of a Site Utility Routine and the necessary procedures will be described in that
section.

The table may be searched by scanning successive function codes using count (N) of first
function to skip over parameters of that function to the next function. The search may be
terminated by testing for the start of the inactive area (the address indicated in lower half
of word zero).

b. TABLE ENTRY FORMAT

Utility requests may be entered in the table through the console typewriter or by an’internal
" request effected by the submission of a packet.

(1) Console Requests

Utility requests via the console are accepted by Console Control which generates an entry
for the utility table whenever the function description is valid, maximum permissible character
count is not exceeded, and the field format is acceptable. A field is a variable string of
characters describing a particular parameter and is terminated by the special character []
(Fieldata 76). Characters within a field are right justified. The character (& (Fieldata
57) which.terminates an entry, also terminates the current field.

An entry may be typed in the following format:

pc200 770 o040 pm ©

1 2 3 4 5 6
This is a request to print core (field 1), from 00230 to 00777 (field 2 and 3), inoctal (field 4),
on printer 1 (field 6), which is on channel 4 (field 5). This example is entered in the table re-
presented in figure 5.

0 COMMENTS

Lost Control Re-Entry

(LCR)

—

EXECUTIVE ADDENDUM
WORD
(0CTAL) 39 15 14

0 * Lost Control Indicator (LCI) P-Register (87

! (B1) (82)

2 (B3) (B4)

3 (B5) (B6)

4 (A)

5 Q)

6 Program 1/0 Bound (Queue Full at List Time)
7 Label of Submitted 1/0 Request Place to go (PTG) Storage Element Assigned

24

25
26
27
30
31
32
33
34
35

36
37
40

55

57
60
61
62
63

14-Word Table for Linking

W
— e — e~

1/0 Request with Associated CKSTAT

14 1/0 Request can be
Accommodated Before use
of CKSTAT is Required
to Free Slot in Table.

(Q) at TYPEC Submission

Since REXENCODE

(A) at TYPEC Submission

Operates at Progiam's
Priority, LCR Module

(B6) at TYPEC Submission

(B7) at TYPEC Submission

|

cannot be used at

Current Address — TYPEC

Save Code - TYPEC

TYPEC Time.

Built-Up T

YPEC Code

Character Count 1-5

* Assigned Program Number

TYPET Request

Total Character Count

* Addendum Base + 40,

Temporary Storage

Transdata Address - Exit After Submission

—_—

e T A T

14-Word Buffer for Accomodation of Generated TYPEC
Messages and for Absorption of TYPET Buffers from
Submitting Program. A Maximum of 70 Characters can

be Agcommodaied.

Overflow Storage

Overflow Storage

]

Channel A Servo Lock-Out by Select Bit

Channel B Servo Lock-Out, etc. Iz l' |°

t- Terminate Program

Count of Storage Elements Started

Count of Storage Elements Completed

Cause of l 27-EEX

25-Voluntary
| _Zo-Uperaior i

-
et

N owvnp

Addrass of PTG being Monitored for 1st return (CI0)

Ordering Count of 1/0 Requests Submitted

if set. Operator Re-

sponse is Recorded
by Master Bit Scheme.

s~ Program in Suspended

Figure 4.

condition if Set.

WORD
(OCTAL) 29 0
64 * Number of 1/0 Storage Elements Specified * Address of EIR
65 Element Status Indicator Exit Address or Time
86 (B1) — at CKSTAT Time (B2)
67 (83) (84)
70 (B5) (B6)
n 1/0 Routine {(or REX) Generated Status Word
72 Error Address (EA) Normal Completion (done)
73 (B1) - at 1/0 Request Time (82)
74 (B3) (B4)
75 (BS) (86)
76 Addendum Base Address Address of 1/0 Request
* Designates Entries made by Loader Initialization Routine
Loader Places Zeros in Remainder of Addendum.
Last Addendum Storage Element
SEG [Py ® Segment Length Address to be used as Current Base
n
MIT Number Segment Number ? 5 °
L™ —W
/—M
SEG 00 I Segment Length Address to be used as Current Base
2
P s 27] 0 0 0 0 0 Segment Number ? 5 °
SEG 10 I Segment Length Address to be used as Current Base
y Drum Address
Executive Information Region
Program Coding

EXECUTIVE ADDENDUM (Cont'd)

>
S
z
?

e

Figure 4.

COMMENTS

Addendum Storage
Element

Addition Addendum
Storage Elements as
Specified in EIR of
Program.

x — Source Indicator
10 - Drum
00 - Magnetic Tape
Program From MIT,
Segment not Drum
Stored.

Program from other Tape,
Segment Not Drum Stored

Segment is Drum-Stored
y =1 if Modified to Running
Form, if not Modified, y=g.

(2) Program Requesfts

An entry on the utility table made as a result of the submission of a packet by an operating
program will result in octal information rather than Fieldata characters arranged in fields.
This will cause the operation header to be entered followed by the address of the packet.
The digits comprising the header and the packet address will be added to N as in console
entry.

DELAYED RESPONSE TABLE

The delayed response table is used internally by REX. The table contains 2 word items relative
to solicitations directed to the opetrator. Entries in this table are the result of either program
solicitation of operator response by use of ACCEPT, or a REX solicitation in connection with
an interlock error from an input/output initiation.

These solicitations are automatically assigned a slot in the table in order to avoid excessive
processing delays within Console Control. As explained in the Console Control description, an
identifier (Dxx) is typed out with solicitations and eventual response is to this identifier. Dxx,
in effect, becomes the function code of the computer operator response.

The delay table will be monitored so that entries in the table which have not been responded
to within a fixed time period will again be brought to the operator’s attention. If the entry
remains unused at the end of a second period, the delay entry will be automatically answered.
Entries related to interlock errors will be answered to cause reinitiation; entries related to
accept requests will be returned with one arbitrary character to the requesting program. That
character will be (& Fieldata 57.

INTERRUPT ENTRANCES

Core memory locations 00020-00035, 00040-00055, and 00060-00075 are the interrupt entrance
registers, When an interrupt occurs the next instruction to be executed is that contained in the
interrupt entrance register associated with the channel and type of interrupt. The use of these
registers is restricted to REX.

L=€

WORD
0

1
2

UTILITY REQUEST TABLE

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4 3 2 1

0

number of words available for new entries

next entry starting address

Used by UTLCNTRL

n function code

parameters comprising entry

Termination code for first entry

Sample Entry

/_/—\—_/\/\——\/\/___/\
/_\/—-\,/\/\/___/_,v\

Parameter for UTLCNTRL 5 1 0
0 0 6 2 6 3 6 0 0 (76)
0 0 6 7 6 7 6 7 O
0 0 0 0 0 0 2 4 O
0 0 0 0 0 0 4 0
0 0 0 0 2 5 1 © (57)

Figure 5.

COMMENT

First entry.

n - number of
sebsequent words
in entry

Subsequent entries

{10 - PC function code
L 5 - no. of subsequent wds

230 ~ beginning address
777 - final address
0 - octal

4 - channel
P1 - printer]

COMMUNICATION INTERRUPT TABLE

The real-time program must specify the memory set aside for storing communication interrupts
which occur with REX or the real-time interrupt analysis subroutine in control. This specifica-
tion is part of the initialization packet by which the real-time program describes to REX char-
acteristics of its particular organization.

Interrupts are stored in communication interrupt tables as one word entries, The control of the
specified table is left to REX which passes stored interrupts upon discovery in the switcher
or upon request by the real-time program. See figure 6.

TIME-TABLE

REX will service a time-table to activate routines at specified times if this is assigned by the
real-time program. It consists of a control word and one or more entries.

Search period Table length Control Word

Starting Address of routine Activation time Table Entry

//

12 |13 12]11) ©
tens units tens units SEC

S— T

Hours Minutes 30 second
indicator
Set to 1 by REX when 0 = first half
entry is used. 1= second half

Search period is the desited interval between REX inspections. It is specified in units of 30
seconds. For example, a value of 4 would cause the table to be inspected every 2 minutes.
Table length represents the number of locations to be inspected.

Each time the table is inspected REX will look at all entries seeking times equal to or less
than present time. The starting address associated with each qualifying time will be marked
as a return point. If an addendum storage element in which to mark the return point is not avail-
able, REX will pass over the entry during this search. Attempts to mark a return point will con-
tinue at each subsequent day-clock interrupt (regardless of search period) until a return point
is marked. Failure to find a storage element will not cause addendum overflow.

Processed entries will be identified by setting bit position 14 to binary 1.

Standard Peripheral Input/Output

THE INPUT/OUTPUT REQUEST

A program requests input/output functions by an indirect arithmetic return jump to the address
contained in the upper half of word 140. The jump instruction will be followed by a variable
number of adjacent parameter words.

COMMUNICATION

INTERRUPT TABLE

29 28 2726 25 24 23 22 21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2

Address of next interrupt out

Address to store next interrupt in

Start of table (W)

End of table (W)

No. of interrupts currently stored

Address of RTIAS entry applicable

Storage Area

6—¢

Figure 6.

One such table would exiat for each category of interrupt (A common storage area might be defined for different
kinds of interrupts. This would have the effect of eliminating the REX distinction betwe en categories).

Within REX

Within Real
Time Program

2. STANDARD PARAMETERS

A standard format has been established for input/output request parameters. It is applicable,
with minor variations, to all peripherals except the console. The entry to REX and the proper
parameters may be most convienently inserted within program coding by the use of SPURT opera-
tors, their function, and their relation to REX are described in the SPURT manual under SPURT
INPUT-OUTPUT OPERATIONS ASSOCIATED WITH THE REAL TIME EXECUTIVE ROUTINE.

LINE
L SILRIP - U(140) Entry
\
2 Function Word
24 20| 15 |14 ’

3 N C P Parameter

29 23 21 18 15 | 1a Words
4 11 0. 3 B" XXXXX

29 23 21 18 15 |14
5 11 0 K | 8" YYYYY

LINE 1 A Set Interrupt Lockout Return Jump to the Executive Input/Output Routine entry,
(See Executive Entry Table).

LINE 2 Specifies the function to be performed by peripheral equipment. A beginning dtrum
address, UNISERVO number, or special information peculiar to the equipment type
is specified. (SPURT output inserts channel number into bit positions 4-7 where
applicable for use by the loader).

LINE 3 N, C, and P specify information necessary to executive input/output routines. N

is the number of parameter words excluding the return jump. C is the channel on
which the function is to be performed. P will contain a code defining the type of
peripheral addressed prior to program load time.

P PERIPHERAL ADDRESSED
1 Drum

2 Disc

3 UNISERVO ila Magnetic Tape.
4 Paper Tape Reader

5 High-Speed Printer

6 Card Reader

7 Card Punch

10 iBM Compatible Magnetic Tape.
11 Paper Tape Punch

12 UNISERVO Ill Magnetic Tape

3-10

At load time (when loading from complex relative format only) an identification
assigned to the program in which the parameters appear is substituted for the peri-
pheral type.

LINE 4 This line consists of a fixed portion, which is an instruction, that will be executed

by the REX input/output routine. The buffer control word contained in the memory
location represented by XXXXX + Bn will be brought to the A register by the execu-
tion of this instruction.

LINE 5 Similar to LINE 4. The search identifier will be brought to the A register from the

memory location represented by YYYYY + B (with variable K designator) by the
execution of this instruction.

Lines 1 through 3 are always present. Lines 4 and 5 are optional since one or both may be un-
necessary for some functions such as a servo rewind. If words are present they must be in the

form and order shown.

REGISTER REFERENCES

Only B1 through 36 may be referenced in a parameter packet. REX will use registers A, Q, and
B7 with no provision for storage of values prior to submission of the input/output request.

Once a request has been submitted the parameter words cannot be altered in memory. The ap-
propriate REX routines will access these words relative to the address supplied by the return
jump instruction. They may, therefore, be changed only when request completion has been as-
certained. One or several additional requests may be submitted by changing the values of regis-
ters Bl through B6, as this will not affect the parameter word values. The determination of re-
quest completion is explained under STATUS CHECKING. '

INPUT/OUTPUT SUPERVISION

a.

LISTING -

When a request is submitted by a worker program the packet address will be placed on a
request queue associated with the channel. Index-registers 1 through 6 will be saved within
the submitting program’s executive addendum in a storage element assigned to this particular
request. Two queues will be maintained for each channel; one for real-time requests, the
other for batch processor requests. Whenever a real-time request is queued a channel-critical
indicator will be set. The capacity of the queues will depend on the type of peripheral equip-
ment on the channel. When the queue for a channel is full, any program attempting to submit
a request on that channel will be momentarily suspended until its request can be queued.
Queues will be sufficiently large to make this condition infrequent.

For each program a count will be maintained and assigned to input/output requests as sub-
mission sequence. This order controls the use of return points among completed requests
and also controls the order of initiation within a priority class. Priority among input/output
requests will apply only to the real-time program and is optional. When a request is sub-
mitted the B register specified in the REAL-TIME INITIALIZATION TABLE may contain
a priority number from 0 to 7. Zero is the highest priority. Higher priorities will be inserted
in the queue above lesser priority }equests and will consequently be initiated first. All batch
program requests will be assigned the same priority without option. The priority code will be
superimposed as the most significant bits of the chronological code.

3-11

INITIATION

After a request is queued, an attempt will be made to initiate the request. If the channel is
busy, control will be returned to the submitting program unless an interrupt has occurred dur-
ing the processing of the request requiring action by the Switcher. If the channel is not busy,
a request will be immediately initiated and control follows the same path.

In order to process input/output requests as quickly as possible, a queued request will nor-
mally be initiated as soon as a channel becomes not busy. An attempt will first be made to
initiate a real-time request on that channel. If, however, the real-time queue is empty, a
request from the batch processor queue will be initiated. Whenever a batch processor request
is initiated, the channel-critical indicator will be clear

in order of submission within the class of priorities. Batch requests will be initiated on a

ared, Real-time requests will be initiated
strict first in-first out basis. When initiation results in successful completion, the status
word associated with the completion will be recorded in the executive addendum of the sub-
mitting program within the storage element assigned the completed request.

. INTERRUPTS

(1) ACTION AT TIME OF OCCURRENCE. Whenever an interrupt condition exists, control
will go to REX by virtue of a return jump instruction loaded in the interrupt entrance regis-
ter. REX will determine the channel on which the interrupt occurred and the type of interrupt
(internal or external), This information will be recorded in the interrupt record word.

The program interrupted will be examined next. If REX or the interrupt analysis subroutine
of the real-time program (RTIAS) was interrupted, coantrol will be returned to the point of inter-
ruption. This procedute makes REX and the interrupt analysis subroutine non-suspendible,
and is necessary to prevent a second entry to the interrupted routine.

If the real-time program proper is interrupted, and the channel-critical indicator is set, the
interrupt will be analyzed. If, however, the channel-critical indicator is clear, control will be
returned to the point of interruption without analysis. Interrupts which are not analyzed at
this time will be considered when the Switcher is next entered.

If a batch processor was interrupted, the interrupt will be analyzed. An exception is made to
accommodate an input/output subroutine written to operate in a continuous mode from a single
input/output request if any program other than REX or RTIAS is interrupted. For example, the
card reader input/output subroutine accepts requests to read more than one card. An input/
output operation is continuous whenever an external function is to be initiated upon receipt
of an interrupt signifying successful completion of the previous function without the necessity
of another request. The input/output subroutine will employ a special interrupt entrance which
it will open when in this mode. This action by REX in conjunction with the input/output sub-
routine will enable initiation of the next external function and immediate return of control to
the program interrupted.

The time otherwise spent going through the Switcher following analysis of the interrupt will
be saved. These vetry brief excursions will be with interrupt inhibited.

(2) ANALYSIS. When an interrupt is to be analyzed, the captured value of P, along with at-
interrupt values of A, Q and B1-B7 will be stored in the executive addendum of the interrupted

program, as a lost-control re-entry. A code word defining the type of interrupt will be placed
in the A register and control given to the appropriate input/output subroutine for analysis of
the interrupt.

The input/output subroutine will analyze the interrupt. It may initiate another external func-
tion because of the nature of the request, or because of the occurrence of an error from which
it is attempting to recover. It may find the request satisfactorily completed, or it may find
that it cannot recover from an error which has occurred. In any event, before exiting, it will
place a status word in the accumulator to define the status of the request. REX will interpret
this status word. If satisfactory completion has occurred, control will be given to Input/
Output Initiation for initiation of the next request on the channel. If the request is still in
progress REX will exit to the Switcher. REX takes special action in case of a interlock error
or magnetic tape errors. For other errors the status word is simply stored in the executive
addendum at this time within the storage element assigned this request.

ERROR PROCEDURES

When an error condition occurs all practical mechanical recovery measures are taken auto-
matically by REX input/output subroutines without worker program attention. If the error con-
dition persists it is ultimately reported to the responsible worker program via the status word.
The worker program may wish to engage in further recovery attempts founded in personal
knowledge of file structure or alternate sources of information (logical recovery measures).

The following information pertinent to error recovery will be available in transitory registers:

REGISTER CONTENTS
A A status word indicative of the type of error.)
Q (upper) The address of the input/output request.
Q (lower) The address following the CKSTAT packet (DONE address).
B7 An address aaaaa which refers to a three word area costaining B-

register values at the time the request was submitted. This area is
in the following format:

U L
aaaaa Bi B2
“agaaa+1 B3 B4
aaaaa+2 B5 B6

In light of mechanical recovery measures already taken, it is extremely unlikely that resub-
mission of the request which precipitated the error will result in recovery and, therefore, re-
submission is not recommended as a worker program action.

(1) INTERLOCK ERRORS. Interlock errors, such as card jams, occurring on any subsystem
during the processing of an input/output request may often be corrected by operator action.
The executive routine will sense these potentially correctable errors, and inform the operator,

3-14

giving him the cause to the extent that it can be determined, and also the program and channel.
It will then suspend operation of the source queue until operator action is taken. The error-
producing request will remain in its queue positioned for reinitiation. The operator will have
the choice of instructing REX to suspend the program, ignore the error, or reinitiate the re-
quest. By the reply I (ignore) the operator will cause the interlock error to be passed to the
program which submitted the packet in the normal manner via the appropriate error address.
At such time the program knows that operator intervention has been futile or waived, and
any recovery procedure is left to the program. Following the ‘I’ response, the source queue
is automatically activated and initiation from it is resumed. If the interlock was on a mag-
netic tape subsystem, a logical lock-out is set for the interlocked servo.

(2) NON-INTERLOCK ERRORS Magnetic Tape Subsystem. In event of error a logical servo
lock-out will be set. The request which caused the error will have assigned to it a status
word specifying the error which has occurred. Requests subsequently presented for initia-
tion (including any in the queue at time of error) will be assigned a special status word and
will not be initiated. The special status word assigned will have the following form:

29 23 |22 19|18 15 |14 6|5 o

0 0 Channel Unit 0 0 0 7 1

where channel and unit uniquely identify the error servo.

Rejection will continue until logical servo lock-out is released. Release is accomplished by
entering the A register with an 8-bit channel-unit designation, setting Q to indicate release
option and executing a SILRJP to L(142), Executive Entry F.

23 817 4|3 0o

ZERO FILLED Channel Unit

Two release options exist., They are similar in that either will cause the lock-out condition
to be terminated. They differ in treatment of accumulated, rejected requests.

OPTION 1. Jettison accumulated, rejected requests. CKSTAT need not be used for jettisoned
requests. If a jettisoned request has already been interrogated by use of CKSTAT,
the return point marked will be erased. In either case, the resultant condition is
as if such requests had never been submitted.

To exercise this option set Q negative.

OPTION 2. Do not jettison accumulated rejected requests. If this option is exercised re-
jected requests may, in effect, be recovered. This is because CKSTAT returns
will be via the error address with all information necessary to recreate the

vilginal at-submission environment.

To exercise this option set Q positive.

REX return will be tothe instruction following the SILRJP. Normal operations may be resumed.

Other Subsystems. An error detected will be reported to the responsible program by des-
criptive status word. Initiation of queued requests will continue. Logical lock-out will not
be used. See SPURT manual for Status Words and their meanings.

C. Standard Peripheral Input/Output Status Checking

-~
.

2,

PURPOSE

The REX CKSTAT routine can be called on by a worker program to determine the status of a
submitted input/output request.

a.

Return Point Marking

An obvious purpose of the REX CKSTAT routine is to enable the worker program tc deter-
mine whether or not a particular input/output operation has been successfully completed.
The worker program specifies alternative locations to which control may be returned upon
completion of the input/output request, an error address to be honored if the request was
not completed successfully, and a normal address to be honored if the request has been com-
pleted successfully. The normal address (DONE), is always implied and is the location im-
mediately following the packet generated by thé CKSTAT mnemonic operator. The error ad-
dress is specifiable.

Return Time Marking.

In addition, the REX CKSTAT routine allows the worker program to specify when control
is next to be returned within itself, Three possibilities are allowed: 1) control will be next
returned to this program only when the particular input/output request being checked has beén
completed, 2) control will be next returned when any previously initiated and CKSTAT inter-
rogated request has been completed, or 3) control will next be returned as soon as possible
regardless of the status of any input/output request. In the last instance, control will be
transferred to a particular location indicated in the CKSTAT operator. This alternative allows
the user to transfer control to a location not associated with a previously initiated input/
output request which is specified by the EAS described below.

ACTIVATION OF CKSTAT ROUTINE

a.

The CKSTAT Operator

The CKSTAT mnemonic operator is to be employed by the worker program to check the status
of a previously requested operation. In response to the CKSTAT operator a return jump to the
REX CKSTAT routine is generated along with the necessary parameters.

The CKSTAT operator with the various parameter entries and their uses are described in the

SPURT Manual under CKSTAT. The actual packet generated by the SPURT operator takes
the following form:

3-15

LINE

29 i 15 |14 [
! SILJP L(140) Entry
29 15 |14 0
2 RL+1 EAS Param
- meter
29 15 | 14 0
2 Annnn — Words
¢ 00000 EA ’
4 DONE
LINE 1 Set interrupt lockout return jump to REX.
LINE 2 RL is the address of the request being CKSTAT interrogated.

EAS indicates the Executive Action Specifier. If this operand is omitted, EAS wil!
be set to the code 00000. If the operand is TAKEOVER, EAS will be set to the code
00001. If a worker program label, it will be set to the allocated address.

LINE 3 EA indicates the error address. Use of STOPRUN or omitting the EA operand will
cause this location to be set to the code 00001.

LINE 4 The address following the packet referred to as DONE is the eventual return ad-
dress to be honored only if the request being checked was completed success-
fully. It must contain a legitimate instruction.

EXAMPLES OF CKSTAT USE

An example of CKSTAT use is included in the SPURT Manual related to the SPURT coding.
The three options inferred in the use of the CKSTAT operator are explained below.

These uses are illustrated with diagrammatic examples.

(1) When a program needs the result of a particular input/output request and does not want
control until that request has been completed, the programmer should CKSTAT that request
and leave EAS blank. Control will not be given to his program again until that input/output
request is completed, and then it will be returned at DONE or EA, (See Example 1, Appendix B).

(2) If a program has reached a point in its processing cycle where it cannot proceed until
some outstanding input/output request has been completed, it may CKSTAT a submitted
input/output request (for which CKSTAT has not been used) using TAKEOVER as EAS. (See
Example 2, Appendix B). As a result, control is relinquished until any one of the previously
submitted input/output requests, which have been interregated by a CKSTAT, are completed.

(3) A major use foreseen in designing CKSTAT is to accommodate a well organized set of
logically independent ‘‘job’’ subroutines controlled by a master routine. .This master routine
would start a particular job subroutine, the subroutine might submit an input/outputrequest
and need to wait for its completion; it would CKSTAT specifying its master routine as EAS.

4.

5.

After the input/output request had been initiated, control would be returned to a label speci-
fied by EAS where a new job and input/output request may be submitted. This sequence of
jobs could continue until there were no more jobs to start, or the worker program’s memory
was full, etc. At this point the master program would exit to REX-TAKEOVER (not part of
CKSTAT; an independent operator which acts similarly to TAKEOVER in CKSTAT). This
operator enables REX to return control to any of the job subroutines whose input/output
request is completed. No bookkeeping on the part of the program is necessary for automatic
returns from TAKEOVER, (See Example 3, Appendix B).

LOGICAL CONSIDERATIONS

(1) Order of Completion of Requests. Among requests on several channels, the relationship
between submission and completion cannot be predicted. This is because a queue may exist
on one channel at time of submission and not on another, and also because peripherals differ
in speed. Requests on a single channel, however, are initiated and completed in order of
submission (except when the real-time program exercises its priority option, in that case,
initiation is in order of submission within priority class).

(2) Order of Return of Control. Once a program has voluntarily given up control by using
TAKEOVER, completed, CKSTAT interrogated, input/output requests for that program will
be sought. If more than one request qualifies, control will be returned to that first submitted
within the highest priority class. v

(3) Checking the Status of an Unsubmitted Request. If CKSTAT is used referring to a label
for which no input/output packet has been submitted, control will be returned to EA with a
special status word of zero. If an input/output request is interrogated by a CKSTAT more
than once, second and subsequent returns will be of this type.

(4) No Return Points Marked. If control is relinquished by a batch processor with no marked
return points established, the program will be suspended pending operator intervention.

PROGRAMMING CONSIDERATIONS

(1) An input/output request must be labeled to provide linkage for a subsequent CKSTAT.

(2) When a program has no other function to perform, it must relinquish controi by using the
operator REX . TAKEOVER.

(3) All input/output requests must be interrogated by a CKSTAT operator. Requests to the
console ptinter input/output subroutine are not considered input/output requests, therefore
it is not necessary to CKSTAT console requests.

3-17

81—¢

ACQUIRE INTERRUPT
FROM STORED
LIST

RETURN

COMMUNICATIONS
CONTROL UNIT
(Ccu)

'

INTERRUPTS
[LockouT sET)

EXTERNAL

r—iINTERNAL
INPUT

COMMUNICATIONS INPUT/OUTPUT
1
REAL-TIME IS INTERRUPTED\
INITIALIZATION| PROGRAM SUSPENDIBLE
TABLE AND IS RTP ACCEPTING JYES
. INTERRUPTS?
e -
NO ESTABLISH
LOST CONTROL
RE-ENTRY
IN’l?gRORRL'IEPT [REMOVE lockouT]
WORD \
REAL-TIME
PROGRAM -
(INITIATES
COMMUNICATIONS
INPUT/OUTPUT)
ACTIVATE
CHANNEL
INPUT/OUTPUT
COMMUNICA-
TION
INTERRUPT
TABLE
(STORED |
INTERRUPTS) [REMOVE
LOCKOUT]
\
EXIT

Figure 7.

INTERNAL
OUTPUT

D. Communication Input/Qutput

Programming requirements for communications input/output will depend upon the type and configura-
tion of the equipment for each installation. REX will provide optional programming in the form of
generalized routines where applicable.

Figute 7 is a flow diagram of the major paths involving REX communications input/output. Input/
output operations are initiated by the Real-Time Program. The operations following initiation are,
in most cases, controlled by values contained within the Real-Time Initialization Table which is
described in the section on Program Preparation.

1. COMMUNICATION INTERRUPTS

REX action at the time of interrupt will depend upon the type of interrupt.

a. INTERNAL INTERRUPT - INPUT

It is recommended that the use of this type of interrupt be limited to signalling the presence
of segments of character trains of indeterminate length, where the entire character train is
too long to be accommodated in a single buffer. Following this type of interrupt, REX will
activate channel input logic, save operational registers A, B6, and B7, set B7 to channel
number and transfer control to a search routine at the address specified in the Real-Time
Initialization Table. Operational registers other than those saved by REX must be restored
o at-entry values before exit if they are needed. Two options exist at this point,

(1) The user may code his own search routine. This will permit an evaluation of the impor-
tance of the interrupts. Some interrupts may be discarded at this point; this will obviate the
need for presentation of interrupts to a RTIAS.

(2) The user may utilize the General Purpose Search Routine provided as a generalized rou-
tine. (See General Purpose Search Routine for description and entry requirements.) This rou-
tine will perform the following functions:

() Inspect Buffer Control Registers (BCR) on a specified channel in quest of aterminated
Buffer Control Word (BCW).

(b) Access the upper half of the word immediately following the terminated buffer. This
half word will be considered a ‘‘linking’’ address at which a substitute BCW defining
an alternate buffer will be found. The real-time program is responsible for maintain-
ing ““linkihg’’ addresses and/or substitute Buffer Control Words.

(c) Extract the substitute BCW and store it to the BCR thereby overlaying the terminated
BCW.

When an interrupt word is to be synthesized upon exit from the first option, or when-
ever exit is made from the second option, REX will expect B7 to contain a value to
be placed in the lower portion of a synthesized interrupt word. REX will synthesize
an interrupt word comprised of time of occurrence in the upper half and the contents
of B7 in the lower half. B7 could be an increment which would access the terminated
BCR when added to a base address.

3-20

2.

3.

(3) If the interrupt is disposed of by the search routine, REX will expect B7 to contain 00000.
REX exit will be to the point of interrupt.

INTERNAL INTERRUPT -OUTPUT

An interrupt of this type may be used to signal the termination of either poll or message out-
put buffers. Foliowing this type of interrupt, REX will activate channel output logic, save
operational registers A, B6, and B7, set B7 to channel number, and transfer control to the
search routine at the address specified in the Real-Time Initialization Table. Operational
registers other than those saved by REX must be restored to at-entry values before exit if
they are needed. Two options will exist at this point as described above for Internal Interrupt-
Input.

EXTERNAL INTERRUPT

It is recommended that whenever possible external interrupt be used to signal input completion,
poll completion or message output completion. External Interrupt is accompanied by a hard-
ware-generated interrupt word which contains the address of the BCR in use. No search is

nirad
ICG.

At time of interrupt REX will remove the hardware-generated interrupt word from the data lines.

SUBMISSION OF INTERRUPTS.

Once an interrupt word is available REX will determine if the interrupted program is suspend-
ible. Two routines are permanently non-suspendible: they are REX and the Interrupt Analysis
Subroutine of the Real-Time Program (RTIAS). The Real-Time Program itself is selectively
non-suspendible depending upon values contained in the indicators in the Real-Time Initializa-
tion Table. These indicators may determine that a particular category of communication in-
terrupt, or all communications interrupts are not wanted at this time.

If the program is suspendible, REX will establish a lost-control re-entry for the program and
transfer control to the appropriate Real-Time Interrupt Analysis Subroutine. (See Real-Time
Initialization Table.) The A register will contain the interrupt word and Bl will contain a
count of interrupts of a similar kind. Before transfering control to the RTIAS, REX will re-
move the interrupt lock-out which has been set since the time of the interrupt.

If the interrupted program is non-suspendible, REX will record the interrupt word in the Com-
munication Interrupt Table. The lock-out established at the time of interrupt will be removed
and control will be returned to the point of interrupt.

ACQUISITION OF STORED INTERRUPTS.

The Real-Time Program may obtain a stored communication interrupt from the Communication
Interrupt Table. The Acquisition Routine is entered by return jump (SILRJP) to the upper
portion of word 143 (entry G of the Executive Entry Table). The type of interrupt may be
specified as follows:

B1 set to: Interrupt Requested:
0 Internal — Input
1 Internal — Output
2 External

Control will be returned to the instruction following the return jump. The register values that
will exist at this time are:

A will contain the interrupt; or if register A is zero there were no interrupts of
this type. The oldest interrupt will be presented.

B1 will contain a count of the remaining stored interrupts of the type requested.

4. INTERRUPT ANALYSIS BY THE REAL-TIME PROGRAM.

The real-time program must provide a closed subroutine (RTIAS) to analyze interrupts occuring
on communication channels. The presentation of an interrupt to this routine may occur at time of
interrupt or upon detection of an interrupt during an excursion through the Switcher.

a. Required Action of RTIAS

This subroutine must assume responsibility for interrupts presented to it. The functions
performed by RTIAS may be as simple as setting a bit to show a particular CCU ready for
output, or as complex as entering an input buffer, analyzing the importance of the input mes-
sage and, as a result of this analysis, making an entry on one of a set of priority-oriented
task queues.

If the interrupt signalled the presence of a segment of as indeterminate character train (Internal
Interrupt — Input), this subroutine w111 be responsible for taking action necessary to assure
that alternate buffering will exist at next interrupt. See Examples 4 and 5 of APPENDIX B
for suggested schemes employing one buffer and two buffers for a central CCU.

b. Optional Action by RTIAS

The RTIAS may submit input/output requests. It may also check its addendum to see if a lost
control re-entry exists (saved P register of Executive Addendum not equal to zero).

If a lost control re-entry does not exist, the subroutine may create one by storing desired reg-
ister values to the appropriate addendum fields. Some routine within the real-time program
may be activated in this way without waiting for an input/output completion to regain control.
Whether or not a lost control re-entry is created, exit must be to the address defined by REX
entry.

5. THE GENERAL PURPOSE SEARCH.

The REX user will be provided with a general purpose search subroutine for optional inclusion
within the real-time program. This subroutine will be capable of locating terminated buffer
control words resulting in either input or output internal interrupts. It will search any channel
using either of two search options.

Option 1 — Seek lower half of BCW greater than upper half.

Option 2 — Perform repeated masked comparison on the specified number of low-order
bits of each BCW seeking equality with search key.

3-21

Option 1 is self explanatory. An illustration of how option 2 is related to buffer length and
location is presented as Example 6, APPENDIX B.

Operation.

For each channel io be searched GPS will be modified to include 4 parameters: numbet of
Communication Control Units, base address of CCU channel group, search key and search
mask. Absence of the last two wiil imply L > U search.

Input Interrupt — GPS will inspect the input BCR of each CCU comprising the channel group.
The search option dictated by channel parameters will be used. Inspection will start with the
BCR having the lowest address and proceed through that having the highest. One comparison
for each CCU is tequired.

Output Interrupt — GPS will treat all units on a channel as if they were a 5-level TFD CCU
(the reason for this will become apparent when arrangement of BCRs is discussed). The search
may require, in the worst case, three comparisons for each CCU. The search option dictated
by channel parameters will be used to inspect buffer control registers according to the fol-
lowing plan:

1. Inspect all Output Buffer Control Registers

2. Inspect all Poll Buffer Control Registers

3. Inspect all ““Special’’ Buffer Control Registers
In each case inspection will start with that BCR having the lowest address and continue
through that having the highest. A find at any time, of course, terminates the search.
Choice of Search Option.
If the mean number of comparisons per find is greater than five, option two should be used.
If less than or equal to 5, option one should be used.
Special Search
Personalized search subroutines tailored to peculiarities of a particular system may be sub-
stituted for GPS as long as REX interface rules are observed.

Arrangement of Buffer Control Registers.

Each CCU will require four contiguous locations.

CCU TYPE ADDRESS USE
CCU-5-TFD *00 Poll
(telegraphic S5-level *01 Special Poll Termination
full duplex Subsystem) *10 Output
*11 Input

CCU TYPE ADDRESS USE
CCU-PLM 00 Not used
(Telephone party line 01 Not used
Subsystem) *10 Output and Poll
*11 Input
CCU-7-THD 00 Not used
(Telegraphic 7-level 01 Not used
half duplex Subsystem) *10 Qutput
*11 Input

‘¢Address’’ represents bit positions 2

and 20 of the externally specified index generated by

the CCU. Combinations marked with an asterisk are the only combinations which the associated
CCU can generate. This implies certain address restrictions. For each of the units listed
above, the Output BCR must be located at an address ending in 2 or 6; the Input BCR must
be located at an address ending in 3 or 7; etc.

To use GPS the following arrangement should be observed. If some other search routine is
incorporated it may dictate the arrangement.

n

n+1
n+2
n+3
n+4
n+5
n+6

Channel Group 1 n+12

Poll

Special Poll Termination
Putput

Input

Poll

Special Poll Termination
Output

Unused

Unused

Output and Poll
Input

Unused

Unused

Output and Poll

CCU-5-TFD
Subgroup

CCU-PLM
Subgroup

n represents channel group base address and must be XXXX0 or XXXX4.

Unused
Unused
Output
Input

Channel group 1 would have as its base address 00150,,.
(o]

CCU-U-THD
Subgroup

This arrangement of subgroups is predicated on the assumption that ‘*Special’’ buffers need
not terminate and, therefore, need not cause interrupt. This being the case, no ‘“Unused?”’

3-23

locations would be inspected during the output search. The reason ‘“Special?’ buffers need not
be used so as to cause interrupt is because either of the conditions forcing their use will, in
itself, cause interrupt. These two conditions are a ‘‘Business’’ reply to a poll transmission
{which means an input message is on the way) and an error condition which causes poll se-
quence termination and results in external interrupt.

E. Initiation of Interval — Timer Interrupts

REX will provide an intetrval — timer which may be used by the real-time program to obtain interrupts
as a function of time. The real-time program defines the desired period by expressing it in milli-
seconds in B7. For example, if B7 contained 1001 this would define an interval of 9 milliseconds.
When B7 contains the desired value, the interval — timer is set by a return jump (SILR]JP) to the
address specified in the upper portion of word 145 (entry K of the Executive Entry Table).This will

activate a REX routine which will negate any previous timer definition, clear the timer word speci-
fied in the Real-Time Initialization Table, commence timing, and return control following the initiat-
ing return jump. When the timer runs out REX will increment the timer word by 1 and reset the timer.

If the indicator associated with the interval — timer entry to the RTIAS is set to accept interrupts,
control will appear at the specified entry as soon as possible. Priority considerations for the inter-
val — timer are discussed in the Switcher.

Once initiated the above process is continuous. The period may be redefined at any time. Defining a
period of zero in B7 will terminate REX action.
F. Worker Program Voluntary Release Of Control

Several options are provided for conditional, voluntary release of control. These options supplement
the CKSTAT opetation in determining the logical flow of a program and accomodate contingencies
concerned with this flow.

1. SUSPENSION

SILRJP U(142)

The submission of this packet causes REX to remove the requesting program from theswitcher
list. The program remains suspended untii operator action either restarts or terminates the pro-
gram. The fact of suspension will be typed out along with the P-Register and B registers 1 thru6.
This packet is genérated by SPURT in response to the mnemonic operator REX . STOPRUN.

The effect of this packet is also achieved by an error address of STOPRUN with a CKSTAT operator,

2. TERMINATION

SILRJP U(142)

The submission of this packet causes REX to remove the requesting program from all tables and
queues and releases the facilities assigned to the program. This operator is the normal means of
indicating a complete run. This packet is generated by SPURT in response to the mnemonic
operator REX . TERMRUN.

TEMPORARY RELEASE.

SILRJP U(141)

This instruction is generated by SPURT in response to the mnemonic operator REX . TAKEOVER.
The operator is used to release control until some previously submitted request is completed and
the associated return point is eligible for control.

The effect of this instruction is also achieved by an EAS parameter of TAKEOVER witha CKSTAT
operator. The order of returning control to completed return points is described under Standard

Peripheral Input/Output.

EXCHANGE

SILRJP L(143)

This operator allows a program which can proceed on the current path to trade its current posi-
tion for a marked return point which is elgible for control. If no such return points exist when the
proposal to trade is made the requesting program retains control one line beyond this instruction.

The real-time program may assign a priority to each input/output request; this priority is reflected
in the order in which marked return points are used. The real-time program may desire to ex-
change the current position for a return point associated with a higher priority job. In this case
the real-time program must, if exercising the priority ‘option, set the priority B-register specified
in the Real-Time Initialization Table to a number Q thru 7 before an exchange, so that only
marked return points associated with a higher priority task (lower number) will be considered.

The value set in the B-register is the priority of an acceptable trade. Thus, if the B-register is
set to 2, the proposed exchange is for a marked return point of priority 0, 1 or 2. Only operational
registers B1 thru B6 are preserved if an exchange is made. The priority assigned the new exchange-
created retutn point will be the original B-register value assigned.

The Switcher
PRIORITY CONSIDERATIONS.

The switcher routine provides for sequencing the operation of programs constituting the current
memory mix. Consistent with the principle of expediting the real-time application, the switcher
will settle any competition for priority in favor of the real-time program. Batch processors in
memory will have an order of priority among themselves by virtue of the order in which they are
considered for control. The programs will be arranged so that those with relatively little input/
output time will be operated within input/output time of a higher ranking program. Amonga given
set of programs the order in which they are considered for control (scanned) will be determined
by the load program, based on a programmer estimate of the percentage of time spent waiting for

3-25

3-26

input/output within a basic processingcycle. A new program to be initiated will be assigned a
rank within the consideration order based on the above estimate (the higher the percentage, the
higher the rank).

te switcher provides the means by which REX gives up control. However, before control is
given to a worker program interrupts which occurred during the time non-suspendible routines

were operating must be considered.

Critical interrupts are considered first. As explained previously, critical interrupts result from

a real-time program standard peripheral request in execution, occurrence of an interrupt on a

standard peripheral channel that has a real-time request waiting to be initiated, occurrence of
an interrupt on a standard peripheral channel that has a real-time request waiting to be initiated,

occurrence of an interrupt on a communication channel, or interval-timer interrupt. Critical in-

terrupts are considered in the following order:

(1) Interval-timer

(2) Communication Internal Input
(3) Communication Internal Output
(4) Standard Peripheral

(5) Communication External

Presentation of interval-timer and communication interrupts may be selectively inhibited by the
real-time program. (See Real-Time Initialization Table.)

After all wanted critical interrupts have been processed, the real-time program will be considered
for control. If a lost control re-eniry exists operational registers will be restored and control re-
turned at the stored P value. If the real-time program has not lost control, completed standard
peripheral input/output requests for the real-time program will be examined with respect to the
CKSTAT operator. If a completed request exists, control will be returned to the real-time program
at a point determined by its associated CKSTAT.

If control cannot be returned to the real-time program in any of the above situations, all non-
critical standard peripheral interrupts will be analyzed at this time. Next the batch processors
will be considered according to the priority scheme described above. For a particular program a
lost control re-entry point will be sought first, and then, if one is not established, completed
input/output requests. Control will be given to the prograrh in these two cases in the same manner
as for the real-time program. A

If none of the programs currently in memory can operate, the switcher will be re-entered and the
above procedure repeated until an exit to one of the programs can be achieved.

4. CONTINGENCY CONTROL

Contingency interruptions may occur as the result of machine controlled interrupts, such as fault
and interval-timer interrupts., The overflow of storage areas, the unavailability of peripheral units,
or logical faults within a program are another type of interruption. REX provides routines that will
provide for these interruptions and permits the use of various options.

A. Contingency Interrupts

1.

FAULT INTERRUPT

The result of execution of an illegal operation (00 or 77). The address of a fault routine may be
specified in the lower half of word zero of a program’s Executive Information Region. If a fault
occurs while the program is operating, control will be transferred to this address. Operational
registers will be the same as at the time of fault. The value of the P-register when the fault
occurred will be stored in the lower haif of word 4 of the program’s Executive Information Region,

If no address is supplied, a faulting program will be suspended. A printout noting the suspension
and specifying values in operational registers at the time of fault will be made.

INTERVAL-TIMER INTERRUPT

Some of the more obvious uses of interval-timer interrupts are associated with communication
polling in the real-time program. Access to a routine which will maintain this type of interrupt
o oat L 2 dd Al DAl M a Totat 12 At LT

i>s [N VA=F R —PRVIE - l)luvxucu 111 LU AT Aal™ 1 11T LIIltilAallLsatlivil L aicTs

The procedures for initiating and maintaining interval-timer interrupts are discussed under Execu-
tive Control (see INITIATION OF INTERVAL-TIMER INTERRUPTS).

1.

Contingency Diversion of Program Flow
ADDENDUM OVERFLOW.

Overflow occurs when a function is requested of REX that requires use of an Addendum Storage
Element and none is available. The entrance to a routine to recover from this contingency may
be specified in word three of the Executive Information Region. Parameters upon entry are:

REGISTER CONTENTS
A Zero
B1-B6 Values existing at submission of the request

percipitating overflow.

B7 Address of the request percipitating overflow.

The request has not been listed or initiated. A possible recovery would be to save the address
of the request causing overflow and to use the Exchange Operation to establish a return point.
When control appears at this return point the request may be resubmitted during a later pass
through the switcher.

AN EXCESSIVE ACCUMULATION OF INPUT/OUTPUT REQUESTS WITHOUT ASSOCIATED
STATUS CHECKING.

A program may accumulate a maximum of 14 submitted input/output requests which have not as
yet been interrogated by a CKSTAT. Submission of a fifteenth request will precipitate REX
action as described for addendum overflow. To distinguish between this condition and addendum
overflow, A will be set non-zero. Other registers will be set as previonsly described.

COMMUNICATION INTERRUPT TABLE OVERFLOW.

This contingency applies only to the real-time program. It arises when a communication interrupt
is to be stored in the table specified at real-time initialization and the table is full.

The recovery routine specified by the Real-Time Initialization Table will be entered by SILR]JP
with the following register values:

A — interrupt word to be stored
0 — internal input

B1 1 — internal output
2 — external

The recovery routine must operate as a closed subroutine, and must prevent premature reentry
by either operating with interrupt lockout set or employing recursive logic.

C.

Operator Contingency Interventions.

Operator entry is required to terminate or restart a suspended program. It is also required in interlock
error situations and may be used to suspend a running program at any time.

2,

PROGRAM START

The program specified by the operand XX is to be started (or restarted) at the starting address
or at any specified address with operational registers specified in order P, A, Q, B1 thru B7.
Not all operational registers need be specified, but when any are specified the preceding reg-
isters in this sequence must be described.
P A Q B1 B2
format: Ps[0 xx{O vpeppel] ecaaa] qqq] yyy[d =zzz e O

XX is program number

SUSPEND

The program specified is suspended from further operation by this operator entry. It remains in-
active in memory until terminated or restarted by the operator. The status of the program and
opetational register contents will be typed out in response to the suspension. This data can be
used to restart the suspended program.

format: sP O xx ©

XX is program number

TERMINATION

This function will terminate the designated program whether it is in a suspended or active mode.
If a second operand (R) is included in the type-in, the program will be terminated and then re-

peated.

format for normal termination:
TP O Xx ©
format for termination and repeat:
TP O xx O R ®

XX is progrem number

INTERLOCK RESPONSE

Interlock errors occurring during the processing of an input/output request may often be cor-
rected by operator action. After a type-out by the input/output functional subroutine REX will
type a request for operator response in the form:

REX ADVISE, Pxx, CHyy, Dxx

This requests operator action on the interlock on channel yy, for the request from program xx.
The delay table entry xx has been set up to receive the response and in the interim will free
the console printer. Operator response is by Dxx and may be one of three types.

a) Dxx

i

e
[~
”
x

c) Dxx

This entry informs REX the cause of interlock has been remedied
and the request should be reinitiated.

This entry instructs REX to pass the error back to the programin
the same manner as other errors. The program knows that operator
intervention has been futile or waived when its error address is
reached.

This entry imposes an error address of STOPRUN for this input/
output request, frees the channel, and returns control to the pro-
gram. The program will be automatically suspended when the
error address is reached in the normal flow.

5. UTILITY SERVICES

The operator or a program may request that REX perform utility functions. Operator request is via the
keyboatd while programs submit special parameter packets; the requests will be listed in the Utility
Requést Table until executed by the appropriate drum-stored routine, Drum-stored routines are called
by Utility Control, a drum control program that loads and initiates all REX drum-stored routines.

When the table holding utility requests is full, other requests will be rejected either by informing the
operator when entry is attempted or by temporarily suspending a submitting program.

A. Operator Requests

A function code identifies the action requested, The operands necessary to the function may be en-
tered after the function code is acknowledged (typed back without rejection). Format of operands
will be investigated by the activated utility routine after the entire message has been extracted from
the utility request table. If the format is violated the utility routine may either solicit a correct
entry or reject the message requiring a new operator request,

The format for operator requests is described with each function. (See APPENDIX C for general
comments concerning console input/output).

1. INSPECT DRUM

This function provides console output for small blocks of drum storage. Operands specify channel,
initial drum address and the number of consecutive locations to be printed. The contents of drum
locations are interpreted as octal numbers.

format: 1D O xx O aggaaaea [] nn o
——— P — N a—
channel number starting locations
address to be typed

(maximum 77)

2. INSPECT CORE

Identical to ID except printout is from core memory.

format: IC O cacaa O nn o
— A~ — — . —
starting address locations to
be typed

(maximum 77)

CHANGE DRUM

This function provides the ability to set the contents of specified drum locations. Output on the
console printer shows the contents of the changed locations both before and after, Positive or

negative, decimal or octal, constants may be entered, Decimal constants are of the form:

{-} xxxxxxxxxD
01d contents are printed decimally, if the input was decimal. If input was negative and old con-
tents are negative, they are printed as negative. Octal input results in straight octal output.

A maximum of three consecutive locations may be set with one CD request. The request is ter-
minated with (immediately after the last constant.

format: cp O xx [0 AAAAAAAA [] <, O c, | <, ®
channel for first address first second third con-

magnefic drum to be changed <constant constant stant

CHANGE CORE

Identical to CD except that storage is to core memory.

format: c¢cc [AAAAA O ¢, O ¢, ©
I e

starting address Ist 2nd (maximum 3

constant constant constants)

PRINT DRUM
This request activates a routine to print the contents of blocks of drum storage on the high-speed
printer, or alternately to dump these print images on a magnetic tape one line per recotd.

The output will be either as Fieldata characters (5 characters per location) or as octal coded
information. The output format is eight words per printer line, The format is fixed, tegardless of
the requested starting address; that is, the left-most location is always an address ending in 0
and the right-most word is the contents of an address ending in 7.

Octal Printer format:

HEADER: LOCATION 0 1 7

1st line YYYYYYYO XXXXX XXXXX XXXXX XXXXX XXXXX XXXXX

Fieldata Printer format:
HEADER: LOCATION 0 1 7

1st line YYYYYYYO XXXXX XXXXX XXXXX

In the fieldata format each character is checked for a 77 code which terminates a print line.
Whenever this code is found the former print line is repeated with spaces filled in up to the 77
code. By this process the 77 code appears as a ‘‘break’’ and all characters are printed.

format:
PD 0O xx O bbbbbbb [] eeecee [J y O =220 v ©

— r— r—

channel beginning ending O-octal Output Sxx-setvo

for drum drum address drum format channel unit
up to 8 address C-field Px-printer
characters up to 8 data Unit

characters code

PRINT CORE

Identical to PD except printout is from core memory.

PC [J bbbbb [J eeeee [y [O 2z O v 16
P — N O —
beginning ending O-octal output Servo Unit-Sxx
core address core address C-field channel Printer Unit-Px
data
code

SITE UTILITY

Provision is made for the conveyance of parameters to a utility routine to be activated by Utility
Control. Once activated it will bear the same relationship to REX as do REX utility and load
routines. The entry to any utility routine is by return jump to the first instruction. The address
of the Utility Table will be contained in B1. The first word of the entry which resulted in activa-
tion of the Site Utility routine will be located at (B1) + 1.

The routine loaded by Utility Control may itself be a control program capable of calling other
utility programs as dictated by the parameters conveyed. A site utility hierarchy may be created

in this way to provide personal utility functions.

The following limitations apply to site utility routines:

(1) While a site utility routine is being executed no REX routine in the utility or load family
can operate.

(2) The size of the site utility conglomerate in core memory cannot exceed 400D consecutive
locations, the first of which is that to which entry was initially made.

(3) Site utility may use a maximum of two addendum storage elements.
(4) Site utility is prohibited from making a program utility request of REX.

(5) Before a site utility exits, the function code of the parameter entry must be set to 77.
Exit will be to the address provided by the return jump entry.

5-3

format:

SU [e e o0 60060 060606 O
W
maximum of 77 characters

and 15 fields

8. ADDITIONAL OPERATOR ENTRIES.

Section C of Contingency Control and Sections A and B of Console Control treat of other operator
entries.

B. Program Requests
1. PRINT DRUM

This internal request achieves the printout of blocks of drum storage in the format described
under the operator request Print Drum. If EAS is zero the program will remain suspended until
the request is complete. If EAS is an address (not zero), control will be transfered to the speci-
fied address immediately.

0 6 4 1 1 0 0 0 1 4 4
5 0
1 EAS 1 6
22
? START ADDRESS
h 3 ' FINAL ADDRESS
23 20 14 113 7 4 |3 0
4 CH U
DON’E ' output channel output unit
(control here
when request 0-printer output
is complete) 1-tape output
0-octal output

1-field data output

channel for drum
control unit

5-4

FY

2. PRINT CORE

This internal request achieves the printout of blocks of core storage in the format described
under operator request Print Core. If EAS is zero the program will remain suspended until the
request is complete. If EAS is an address (not zero), control will be transfered to the specified
address immediately.

14
EAS 1 7

START ADDRESS

FINAL ADDRESS

14 |13 7 4 |3 [+
CH U
———— T~ NN N\ .
DONE (Control here when Output Output Unit
request completed) Channel

0-printer output
1-tape output

0-octal output
1-field data output

3. ASSISTANCE IN ESTABLISHING RERUN DUMP

The purpose of this request is to provide REX with information necessary to establish a rerun
dump.
REX will perform the following actions:

(1) Write onto the drum an image of the core memory assigned to the requesting program.

(2) Compose and write onto the dump servo a bypass sentinel followed by REX facility and
control information.

(3) Write specified peripheral areas onto the dump servo using the core memory of the re-
questing program area as a transfer buffer.

{4) Reload the drum-stored program image, write it onto the dump servo and follow it with
another bypass sentinel.

(5) Perform an identifying console type-out.

When control is returned to the requesting program the A register will contain a count of the
aumber of hlocks written onto the dump tape (including bypass sentinels). The Q register will
contain a count of the number of words written (including inter-record gaps). If REX could not
perform the requested dump because of a non-static program condition or because of tape error,
A will be set to zero.

a. Format

14
0 6 4 1 1 0 0 0 1 4 4
is
1 1 5
14 7 3 0o
2 octal count for dump identifications dump servo chan unit
14
3 restart address if dump is used annnn
23
4 chan starting address of area one
23
5 P ending address of area one

/—\MM—\/-’
/___——'\—_——_‘_—\——Nr

— sy
23
chan starting address of area n
23
P ending address of area n
14
number of tape file designs
14
address of tape file design 1 address of tape file design 2
14
address of tape file design n

DONE—control returned here when request completed

nnnnn represents the number of peripheral storage areas to be saved. Zero would imply save
none. 77777 would imply save all relocatable area.

P represents peripheral type code: 1 drum, 2 disc

File design is the first address of the standard (COBOL) file design.

b. Type-out
REX RERUN DUMP ccec OF PROG. XXXXXXXXXX ON CHyy, Svv
e — —— ot e e ——
Standard Uiiliiy Dump Program Permanent
Routine ldentifier Identification identification

UTILIZATION OF A RERUN DUMP.

A variation of the load type-in (LD), which was explained under Operational Control, will be
used to reload a particular rerun dump. REX will locate the specified dump, reload peripheral
areas, reload core memory, type instructions for mounting tapes (including the program tape if
applicable), position each tape according to the block count specified within its file design and
return control to the restart address. A and Q will be set as at dump time. Format for rerun is as
follows:

Lo O 1 O ch [0 serve [7474747474 [] ccc O B ©
ch channel number
cec dump identification specified in printout
REX will produce a type-out in the following format:
REX MOUNT REEL nn OF X X ON CHyy, Svv
M e e ——
reel number 15 character
file identification

ENTER M WHEN ALL TAPES MOUNTED. ACCEPT Dxx

A console entry of the character M will initiate the rerun.

6. PROGRAM PREPARATION

‘A. Source Language
Worker programs to be run under control of REX may be written in either SPURT language or COBOL,

which is translated to SPURT language during compilation.

Use of SPURT input/output and REX-oriented macros will cause REX-required parameters and entry
jumps to be generated during assembly. Generated parameters are assigned modification codes that
will allow the load program to recognize and suitably alter them when modifying the worker program
to running form,

A programmer may, of course, code parameters and entry jumps in lieu of using the aforementioned
macros. If he does this, he must assume responsibility for modifying these parameters to running
form himself.

B. USE OF JUMP KEYS

Worker programs should not be dependent upon jump key settings. A substitute, unsolicited operator
type-in, is provided.

C. Use of Conditional and Unconditional Stops

Worker programs should not stop the central processor. The following substitutes are provided:

[e L s a1
Yy udiug cxtucx UL tllc

a
"t
<
[}
=
-
-
C
[
cr

(1) A worker program may suspend i

P
SPURT mnemonics REX - STOPRUN or ACCEPT.

(2) A worker program may terminate itself by using the SPURT mnemonic REX . TERMRUN.

D. Standard Locations

EXECUTIVE INFORMATION REGION

In order to facilitate exchange of information between worker programs and REX, the first five ioca-
tions relative to the initial address of a worker program, or the control segment thereof, are assigned
specific uses. These locations will be referred to as the Executive Information Region. Special ad-
ditional information is required of the real-time program. This information is made available to REX
via an Initialization Table defined by the real-time program as part of its initialization procedure.

WORD

NOTES:

EXECUTIVE INFORMATION REGION

UPPER HALF LOWER HALF

Entrance address of fault recovery

Worker program starting address, routine. (note 1)

Address of relocatable area No. of Addendum Storage Elements
bounding addresses. (note 2) to be provided. (note 4)

not assigned

Address of unsolicited operator Entrance address of addendum over-
entry indicator word. flow recovery routine. (note 1)
Starting Address of parameter P-register value at time

storage area. (note 3) of fault.

Optional. If zero, REX will automatically suspend the program pending operator interven-
tion.

Inserted by REX. Bounding core and bounding relocatable drum area addresses are pre-
served by the Loader within a program’s addendum. They will remain there until the pro-
gram performs a console type-out of more than 50 characters.

This is word number 54, of the executive addendum (see Executive Addendum). This ad-
dress — 54, will access the first word (word 0) of the addendum. This is associated
with possible RTIAS establishment of a lost control re-entry.

Ending Core Beginning Core

29 24
Chan Beginning Drum

Ending Drum

Optional. It is required only if operational parameters are to be conveyed to the program at

load time.

An Addendum Storage Element is a 10-word temporary storage within a program’s executive
addendum. One element is placed into use each time a program performs one of the follow-

ing operations:
(1) Submits an input/output request,
(2) Uses ACCEPT

(3) Requests a Real-Time Extension

(4) Requests a Batch Load
(5) Calls a segment
(6) Requests a core or drum memory dump

(7) Has a time table routine started.

An element is released for reuse each time the result of the operation which originally
caused its use is reported to the program. That is, whenever control appears at the DONE
(or, if applicable, ERROR) address associated with the operation.

Consider, for example, a typical input/output sequence. When the request is submitted a
vacant storage element is located. B-register values and bookkeeping information are
saved therein. When the request is processed the routine-generated status wotd is saved
within the same element. When the status of the request is interrogated, the status word
is reported to the program and the element is freed. (Note, however, that if CKSTAT is

used to mark a return point, the element is not freed but will remain in use until request A

status is subsequently reported in response to program use of TAKEOVER).

It can readily be seen that if each time a program requested an operation it chose to wait

until that operation was complete before requesting another, only one storage element

would be required. If the program was more complex, additional elements would be required.
5. Unused fields should be set to zero.

REAL-TIME INITIALIZATION TABLE

The purpose of this table is to provide the real-time program with a means by which it may specify
certain options. (See Figure 8.) The table may be thought of as a packet of information which is
conveyed to REX and is preceded by a SILRJP to entry J (lower portion of word 144). When REX
has absorbed the parameters contained within the table, control will be returned following the table.

E. Segmentation

Due to limited core space, it may be necessary for a progtammer to break a program into segments.
There must be one control segment and there may be any number of secondary segments. The con-
trol segment will remain in core memory during the entire time a program is running. At any given
time one, and only one, secondary segment may share core memory with the control segment. It will
be adjacent to and immediately following the control segment,

REX will load secondary segments as requested by the program. The SPURT mnemonic ‘“‘LOAD?”’

may be used to make requests. Segments will always be called from initial form.

Segment delineation and inter-segment communication are described in the SPURT Programmer’s
Reference Manual.
F. Facility Requirements

The facility requirement of a program must be declared by the programmer. For declarative operators
and useage rules see the SPURT Programmer’s Reference Manual.

WORD

REAL-TIME PROGRAM INITIALIZATION TABLE

5 0
13

Entrance to RTIAS for external Start address of
interrupt* time table
Entrance to RTIAS for Entrance to closed subroutine to effect
internal input interrupt* search for internal input interrupt
Entrance to RTIAS for internal Entrance to closed subroutine to effect
output interrupt* search for internal output interrupt
Starting address for communication Final address for table
external interrupt table
Starting address for communication Final address for table
internal interrupt input table
Starting address for communication Final address for table
internal interrupt output table
Address of overflow contingency B register used to indicate 1/0 request

priority, O implies no priority used.
ENTRANCE TO RTIAS for
Interval-timer Interrupt*

Not assigned

Figure 8. Real-Time Program Initialization Table

* The upper half word of each entry is an indicator. If & particular indicator is zero, it means the real-time program will
permit itself to be suspended for Interrupts of that type. If a particular Indicator is non-zero, the real~time program is
currently not permitting itself to be suspended for interrupts of that type. Communication interrupts will be stored by
REX until the indicator is cleared or until a specific request via executive entry G is made. Interval-timer interrupts
will be recorded by incrementing the location immediately preceding the interval-timer entry defined in the upper portion
of word 8. This timer word will therefore contain a count of timer interrupts.

APPENDIX A

BASIC PROGRAM FORMATS

The following conventions are equally applicable to all formats:
(1) All unused words, fields and portions of fields must be filled with binary zero.

(2) Check sums are formed by adding together all words in a block. Full word (30-bit) adds
are performed.

(3) Magnetic tape is written at high density.

T AN - PSS Y 5 S I U SR S & —--L __ fer
\T/ iuTurinivalivil iiuviidiatiuvig, DUl ad

FROGRAM
is in Fieldata code with left justification.

Y. e s mmwe ——e .

AME", “"PROGRAMMER’'and “*“DATE"’,

(5) SPURT places the output number in the library number field.

Modification Codes

1.

COMPLEX RELATIVE FORMAT

A six-bit modification code is associated with each word of a program in complex relative format.
Each instruction word modified will be storedin a location determined by the ‘‘storage counter.’’
This counter will initially be set to the current base and incremented {or reset in accordance

with modification codes) as loading progresses.

(a) Miscellaneous Modifications

00

n1
(VB §

No modification

End of Segment

02 End of Program

(b) Modification by the Current Base
03 Add current base to lower half

04 Add current base to upper half

05 Add current base to upper and lower half

(¢) Modification by Control Segment Base

06
07
10

Add control segment base to lower half
Add control segment base to upper half

Add control segment base to upper and lower half

(d) Modification by the Control Segment Base and the Current Base

11

Add current base to lower half and control segment base to upper half

12 Add current base to upper half and control segment to lower half

(e) Changes to the Storage Counter

13

14

Add the lower half to the counter. Do not store any word. This is for ‘“‘Reserve’’
instruction. No. of locations skipped will be equal to the number in the lower
half of the word.

Add the control segment base to the lower half. Set the counter to the new value.
Do not store any word. The words following this code will be stored in the control
segment after modification. This creates the necessary entry tables in the control
segment for intersegment communication.

(f) Modification of Peripheral Equipment References

15

16
17

20
21

22

Channel in bits 4-7, unit in bits 0-3. Substitute assigned channel and unit. Relo-
catable system. If an assignment has not been made, substitute a word of 7’s.

Same as 15, fixed system.

Channel in bits 20-23, peripheral type in bits 15-19. Substitute assigned channel
and change peripheral type to program number. Relocatable system.*

Same as 17, fixed system.

Channel in bits 20-23. Substitute assigned channel. Add control segment base to
lower half. Relocatable system.*

Channel in bits 20-23. Substitute assigned channel. Add control segment base to
lower half. Relocatabie system.*

23 Channel in bits 20-23. Substitute assigned channel. Add current base to lower
half. Relocatable system.* '

24 Same as 21, fixed system,
25 Same as 22, fixed system.
26 Same as 23, fixed system.
27 Channel in bits 24-29, drum address in bits 0-23. Relocatable system.

* If channel has not been assigned, substitute channel 17.

2, SIMPLE RELATIVE FORMAT

A 3-bit modification code is associated with each word of a program in simple relative format.

Each instruction word will be modified and stored in a location determined by the ‘‘storage

counter.”” This counter will initially be set to the assigned base and incremented (or reset in
accordance with modification codes) as loading progresses.

No modification

Add the base address to the lower half.
Add the base address to the upper half.
Add the base address to both halves.

Execute the instruction (used to reset the storage counter).

N oh W NN = O

End of program.

A. Absolute

A program in absolute format is comprised of an Identification Record, one or more Instruction Re-
cords, and an End-of-Program Sentinel.

1. IDENTIFICATION RECORD

7 4 7 4 7 Library Number

PROGRAM NAME
(10 characters)

PROGRAMMER
(10 characters)
DATE
(10 characters)
Memory Requirement of Program 2 0
7 4 7 4 T Library Number

(9-wd block)

INSTRUCTION RECORD

‘Ending core address (U) Beginning core address (L)

Check Sum for following block

Instruction words to be read into the core

memory area delimited by U and L.

Block length = (U-L) + 1

(1) This record is comprised of two blocks; the first of 2 words, the second of any length. -

(2) When outputed by SPURT the length of the second block is less than or equal to 256
words.

END-OF-PROGRAM SENTINEL

(2-wd block)

4.

STORAGE FORMAT

TAPE STORED

IDENTIFICATION
RECORD

Up Lo

CHECK SUMg

INSTRUCTION
WORD

Ug L

CHECK SUM;

INSTRUCTION
WORDS,

SENTINEL

A drum-stored program occupies a continuous drum area. There are no inter-record gaps or inserts.

DRUM STORED

IDENTIFICATION
RECORD

Ug Lo

CHECK SUM,

INSTRUCTION
J///,,f’[Up-Lg)+1 WORDSg
v 2

U L

CHECK SUM;

INSTRUCTION

WORDS,

SENTINEL

DB = Drum Base
DA = Drum Address

DAg=DB+9
b2 DA; = DAg+ 2
DA2= DAl + (UU - LO) +1
etc.

4 DB

<« DA,

«4DA,

44,

etc.

B. Simple Relative
A program in simple relative format is comprised of an Identification Record, one or more Instruction

Records and an End-of-Program Sentinel.

1. IDENTIFICATION RECORD

7 4 7 4 7 Library number

PROGRAM NAME
0c

{10 characters)

PROGRAMMER
(10 characters)

DATE
(10 characters)
Memory Requirement of Program 2
7 4 1 4 7 Library number
(9-wd block)
2. INSTRUCTION RECORD
mc
mc, 2 me me .
me mc
iz i3
mc
50

instruction word 1
instruction word 2

instruction word 50

Check Sum

(56-wd block)

3. END-OF-PROGRAM SENTINEL

1 2 2 3 1 1 2 4 1 3
1 1 3 2 2 2 2 5 0 5
(2-wd block)

4. STORAGE FORMAT

TAPE STORED DRUM STORED
, <4DB
IDENTIFICATION . IDENTIFICATION
RECORD 9 RECORD
44,
INSTRUCTION
56
INSTRUCTION . RECORD,
RECORD,
) 4 DAy
INSTRUCTION
56
RECORD,
INSTRUCTION etc.
56
RECORD,
INSTRUCTION
56
RECORD
n
INSTRUCTION
56
RECORD,
DA = Drum Address
DB = Drum Base
DAO = DB + 9
DA; = DAq + 56
SENTINEL b2 etc.

A drum-stored program occupies a continuous area. There are no inter-record gaps or inserts.

C. Complex Relative

A program in complex relative format is comprised of an Identification Record, a Facility Record,
a Segment Description Record (if segmented), a File Description Record (if desired), a Control

Segment Record, one

or more Secondary Segment

Records (if segmented) and an End-of-Program

Sentinel.

1. IDENTIFICATION RECORD

Library number

PROGRAM NAME
(10 characters)

PROGRAMMER
(10 characters)

DATE
(10 characters)

7

Library number

2. FACILITY RECORD

(9-wd block)

25 1 17|z's

3!2

1

o ot g |
0. of return points |

No. of segments

Desired core memory suppiement

Length of longest segment

Length of control segment

not assigned

(Fixed requirements)

End sentinel (binary ones)

(Relocatable requirements)

14

End sentine! (binary ones)

CHECK SUM

L]

(1) The record is comprised of one 51D-word block.

(2) Program length of a non-segmented program

field.

will appear in ‘‘Length of control segment’’

Fixed Requirement Entries

FORMAT A

23 20 |19 15

¢ p

Format A will apply to standard peripheral subsystems without units and communication sub-
systems.

‘‘c’’ represents channel number,

““p?’ represents peripheral type code.

FORMAT B .
23 Zo0[1s 18[14 Ngo, of unjts ° 5 No,ofunits ©
c p require desired
4|3 o}
channel unit
channel unit
channel unit

Format B will apply to standard peripheral subsystems with units.
These subsystems are:

(a) Magnetic Tape
(b) Card

(c) Paper Tape

(d) High Speed Printer

““No. of units required’’ expresses the minimum number of units of this peripheral type neces-
sary to run the program. ‘‘No. of units desired’’ expresses the maximum number which could
be utilized if available. Both entries are required.

Following the ‘‘summary’’ line will be one ‘‘detail’’ line for each unit. The number of detail
lines must equal ‘‘No. of units desired.”’

Relocatable Requirement Entries

FORMAT C

- 123 20 (19 15

c p

No. of words required

No. of words desired

A relocatable drum area requirement will be expressed in Format C. ‘‘No. of words required”’
defines the minimum number of continguous drum locations necessary to run this program. **No.
L .1 X _c_ . 3ee J_€°_ - _ el % . R R — L | . 11 1 . R 1 -F PR — .
O WOias dcsSiied UC1iiieS uic iaXiinuim iluivei waicn Could be utillzed 11 avdllaple, poih

entries are required.

Format B will apply to relocatable standard peripheral subsystems with units.

3. SEGMENT DESCRIPTION RECORD

23 9 27|26 3jz 2 o

4 Length of Segmeni 1

Length of Segment 2

Lengih of Segment 3

etc.

e~ —""C— " N\~ —
———~~——— N\ —~—__—

CHECK SUM

(1) This record is required for segmented programs only. It will consist of one or more 51D-wd
blocks.

4. FILE DESCRIPTION RECORD

FI 27126 372 T

3 3

File Label
(15 characters)

® Peripheral Type '° channe!* I* unit °

Channel Unit

End sentinei (binary ones)

e~~~ D~
N T e T ———————_

CHECK SUM

A-10

(1) This record is optional. If present, it will be comprised of one or more 51D-word blocks.
Additional blocks will be of identical format (excluding blocks descriptors).

(2) Each entry will consist of 6 words: 3 text and 3 facility words. It will be assumedthat
text is in Fieldata code. All 15 characters will be typed without inspection.

(3) Facility word 1 will always be considered significant. Facility words 2 and 3 will be
considered significant only if non-zero. If the number of entries is a multiple of 8, the End
sentinel must be omitted.

5. CONTROL SEGMENT RECORD
29 26 32 o
4
29 e 24[23 nc B[17 e 1211 e &5 e
1 2 3 4 5

Instruction word 1

Instruction word 2

N——— T — \,____/__‘,_\'\
N S~ A\-—\/——/‘—"’_\\

Instruction word 5

mcl mc2 rnc3 mc4 mc5

Instruction word 1

W ﬁﬁ\’\

M

CHECK SUM

(1) This record is comprised of one or more 51D word blocks. Each block contains eight,
6-word instruction modules. An instruction module is comprised of one word of modification
codes and 5 instruction words. ‘‘mc’’ represents modification code. ‘‘mc_?’ corresponds to
corresponds to instruction word 1 “mc2 ’’ to instruction word 2, etc. 1

(2) Only the first block will bear block descriptors as shown. Subsequent blocks will bear
descriptors of binary zeros.

{3) Non-segmented programs will be marked as control segments.

6.

SECONDARY SEGMENT RECCRD

25 z 15|74

3 <

Internal format identical to

coniroi segment biacks

————— | -

CHECK SUM
5 -« 'n > 5

(1) There is one record for each secondary segment, Each record is comprised of one or
more 51D word blocks. The first block of each record will bear block descriptors as shown.

- Each subsequent block will bear descriptors of binary zeros.

7.

(2) “‘n’’ represents segment number. The first segment of output will be 1, the second 2, etc.

END-OF-PROGRAM SENTINEL

1 2 2 3 1 1 2 4 1 3
1 1 3 2 2 2 2 5 0 5
(2-wd block)

8.

STORAGE FORMAT

TAPE STORED

IDENTIFICATION
RECORD

FACILITY
RECORD

SEGMENT
DESCRIPTION

FILE
:RIPTION

2
m
(el

<

CONTROL
SEGMENT
(BLOCK 1)

CONTROL
SEGMENT
(BLOCK n)

SECONDARY
SEGMENT 1
(BLOCK 1)

SECONDARY
SEGMENT 1
(BLOCK n)

SENTINEL

A drum-stored program occupies a continuous area. There are no inter-record gaps or inserts.

51

N

51

51

51

51

51

51

N N’ ~—— . N - N~ N

b

51

51

51

51

s1

51

51

DA = Drum Address
DB = Drum Base

DA = DB + 9
DA = DA + 51
DA = DA, + 51

etc.

IDENTIFICATION
RECORD

FACILITY
RECORD

MODIFIED
SEGMENT
DESCRIPTION

FILE
DESCRIPTION

CONTROL
SEGMENT
(BLOCK 1)

CONTROL
SEGMENT
(BLOCK n)

SECONDARY
SEGMENT
(BLOCK 1)

f,—-.../\..-—\ P e Y et W s et W ey P ey

SECONDARY
SEGMENT 1
(BLOCK n)

<08

S LY

etc.

9. SEGMENT DESCRIPTION RECORD WHEN MODIFIED

. 2 2
Address relative to drum base, seg 1 Length of Segment 1
Address relative to drum base, seg 2 Length of Segment 2
Address relative to drum base, seg 3 Length of Segment 3
Address relative to drum base, seg 4 Length of Segment 4
Address relative to drum base, seg 5 Length of Segment 5
Address relative to drum base, seg 6 Length of Segment 6

CHECK SUM

(1) “‘Address relative to drum base’’ of any record equals the drum address of that record
minus the drum base. It is calculated and inserted into the Segment Description Record at the
time a program is transferred to the drum.

APPENDIX B

EXAMPLE 1. Input/Output Logic for-a Program to Read and Summarize a Magnetic Tape.

The purpose of the program is to summarize the information contained on a magnetic tape. The sum-
mary is built up in core memory from two input buffers. One buffer acts as a standby input while the
other is being processed. The CKSTAT operators illustrate the use of a blank EAS. The first pass
will include an error exit from the first CKSTAT, which is not associated with a previous read re-
quest. REX will supply a status word of zeros and a return to the error address (EA).

READ INTO |
BSFID’EIRTB NO RECORD OF
REQUEST CKSTAT
I ON FIRST PASS

CKSTAT

READ A
O e FO

STATUS
BRANCH

~
~
! DONE “— °
PROCESS :
A
READ INTO ERROR
BUFFER A ROUTINE
CKSTAT
READ B

STATUS
BRANCH

-

PROCESS
B

EXAMPLE 2. Another Method of Performing the Task Illustrated by Example 1 Utilizing the TAKE-
OVER Operator.

The following flow diagram shows the use of CKSTAT empioying an EAS to return control to REX
upon completion of either of two read operations. The read into Buffer A is interrogatedby a CKSTAT.
During the first pass, control is immediately given to a read of Buffer B through switch A,. Switch
Av is set so that succeeding passes will go immediately to a TAKEOVER operator. The read of
Buffer B is interrogated by a CKSTAT and control is given to REX to await the completion of either
of the two reads. Completion of a read will return control following the CKSTAT which enters a
routine to process the data in the completed buffer and then Initiates a read of new data into the
buffer, A dynamic condition is thereafter established so that REX will control reads to assure com-
pietion. For both reads, EA will go to a common error routine.

-~
-~ -
~
\

SET A, SET A,
READ INTO T0 REX READ INTO
BUFFER A TAKEOVER BUFFER B

b Y
CKSTAT CKSTAT
READ A READ B

S
STATUS STATUS

BRANCH

BRANCH

DONE EA EAS DONE EA EAS

PROCESS PROCESS
A B

TO ERROR
ROUTINE

EXAMPLE 3. Diagrammatic Example of a Real-Time Control of Associated Subroutines.

The diagrammatic representation on this page shows a real-time program and a group of associated
subroutines, An interrupt that is presented to the Real-Time Interrupt Analysis Subroutine through
REX will cause the Real-Time Control routine to activate one of the subroutines associated with that
type of interrupt. Subroutine A, for example, may be required to access the drum to acquire informa-
tion for processing. The subroutine initiates a drum read and then returns control to the control program.

In the meantime, an interrupt presented to Real-Time Control indicates that Subroutine B should be
activated. Subroutine B may be requited to write a message to a magnetic tape as part of its pro-
cessing cycle. The tape write is initiated and control is returned to Real-Time Control.

If Real-Time Control has not received an interrupt which would activate some other subroutine, it
will give control to REX to await completion of either the drum read or the tape write that was initated
by Subroutine A or Subroutine B respectively.

Another interrupt may cccur which will cause REX to give control to Real-Time Control. Real-Time
Control may activate Subroutine C which will submit a card punch request as part of the processing
cyele. While awaiting completion of this request control is given to Real-Time Control which in turn
releases control to REX if it has no other subroutine that it may activate at this time.

REX will return control to each subroutine at the DONE address upon completion of the pheripheral
request. Control will be given to Real-Time.Control when the subroutine has completed the process-
ing-cycle. Real-Time Control will either initiate another subroutine or again relinguish control to
REX by a REX - TAKEOVER operator.

The result of the use of CKSTAT in this example is to make REX responsible for all ‘“bookkeeping’’
of input/output requests.

SUBROUTINE |« N COMMUNICATION
A > PERIPHERALS
DONE =———=[—=—= EAS —> -
- | REAL-TIME INTERRUPT
ANALYSIS
A
y
SUBROUTINE -~ REAL- REX [RELEASES CONTROL
B Cas TIME AT DONE FOR COMPLETED
DONE > —> CONTROL ‘T-;KREEOXV';; INPUT/OUTPUT <
REQUEST]
3
) /
. INPUT/OUTPUT FUNCTIONAL
SUBRC():UTINE -« SUBROUTINES
DONE=—=——=—— EAS=> ~T J\ Y

D Qo

EXAMPLE 4. A scheme for using one buffer area per central CCU and extending it when overflow

occurs.

SYMBOLIC
ADDRESS

A+B —

A+ L —

Linking }_,

Address

BUFFER ARRANGEMENT

Overflow Area

Primary Area

Buffer
Area (L)

e
-

Linking Address

A+L-1

_’\N

Substitute BCW

Let A be the first address of a buffer area. Let C be the number of characters determined for a mes-
sage segment. Let B be an arbitrary inctement chosen to provide desired time delay. L represents
buffer length and is equal to B + C.

Then set aside an area in core of length L A+ 1 beginning at A and extending through address A + L,
where locations A thru A + L — 1 represent buffer area and location A + L contains the linking ad-
dress at which a substitute BCW will be found.

TIME CCU BUFFER CONTROL REGISTER (INPUT)

(1) Initially AslL -1 A+B

(2) At Time of

Interrupt A+L -1 A+l
(3) As loaded by _

REX at time Arl -1 A

of interrupt.
(4) As adjusted _

by RTIAS A+L-1 A+Y+B

The CCU-BCW is initially set as shown at time (1). When C characters have been entered into core
memory the BCW will stand as shown at time (2) and an internal interrupt will occur. REX will ans-
wer the interrupt, reactivate input/output logic, ascertain the terminated buffer, pick up the sub-
stitute BCW located at the linking address and store this value into the BCR. The. BCW now stands
as shown at time (3).

REX will transfer control to the RTIAS (if the interrupted program is suspendible) with the synthe-
sized interrupt word in A. The RTIAS could pack the characters located in the primary area into an
output buffer. After packing has been completed, the RTIAS could use a RPL A + Y to increment
the current value of the lower half of the BCW by value B.

It could then move characters buffered into the overflow area during the time packing was taking
place down B locations into the primary area. RTIAS would then be free to perform whatever hous-
keeping or processing it might require before exiting to REX.

The net effect of this one-buffer scheme is to extend the time period available for emptying the pri-
mary area by the time it takes to receive B characters.

EXAMPLE 5. A scheme employing two buffers per central CCU and alternating them when over-
flow occurs.

BUFFER A
SYMBOLIC
ADDRESS
A -
La
A+ly; > Linking Address A
BUFFER B
B »
Ly
B+ Ly » Linking Address B
Linking - B+ Lb_l B
AddvressA
Linkin
Address 6™ A+L, -1 A
TIME CCU BUFFER CONTROL REGISTER (INPUT)
(1) Initially A+L, -1 A
(2) At time of interrupt one. A+L, -1 A+ L,
(3) As loaded by REX at time of B+ Ly -1 B
interrupt one.
(4) At time of interrupt two. B + L1b -1 B+ Ly
(5) As loaded by REX at time of A+L, -1 A
interrupt two.

REX action at time of interrupt is as described for example 4. The above process repeats itself
until end-of-character train (signalled by external interrupt) arrives.

EXAMPLE 6. An illustration of how search option two relates to buffer length and location.

Buffer location is chosen in such manner that some number of low-order bits (m), of the BCW ex-
press upon buffer termination a value which cannot exist while the buffer is active. This unique
value is referred to as the Search Key.

OCTAL

XXXX0 =
XXXX1 =
XXXX2 =
XXXX3 =
XXXX4 =
XXXX5 =
XXXX6 =
XXXX7 =
XXX 10 =
XXX 11 =
XXX 12 =
XXX 13 =
XXX 14 =
XXX 15 =
XXX 16 =
XXX 17 =
XXX 20 =
XXX 21 =
XXX 22 =
XXX 23 =
XXX 24 =
XXX 25 =
XXX 26 =
XXX 27 =
XXX 30 =
XXX 31 =
XXX 32 =
XXX 33 =
XXX 34 =
XXX 35 =
XXX 36 =
XXX 37 =

ADDRESS

bk fh b ek et ok ek b e pod pd o o ek ek ok

BINARY
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

1100

1101

Buffer

Key

1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

1101

Buffer
B

Key

1110
1111

m=4

Suppose, for example, m was chosen as 4 and the
Search Key was defined as 1101. Then, buffer A
is defined such that the 4 low-order bits of the
BCW will equal the Key at the time of interrupt
(termination). Likewise, buffer B.

The starting address of the buffer is immaterial
so long as the length of the buffer does not exceed
2™ _ 1 words.

BUFFER CONTROL WORDS AT INTERRUPT
Buffer A XX X1 4 XX X135

Buffer B XXX 34| XX X35

GENERAL COMMENTS ON OPERATOR ENTRIES

APPENDIX C

The acceptance of console input is indicated by a type-out of the information that has been entered
on the keyboard. For example, if a print core operation is desired, the first entry will be PC. If REX
can accept console input, the PC will be typed on the console. If there is no accompanying type-

out the entry will have to be retyped until REX acceptance is indicated.

REX console control will also check to see that the maximum permissible character count is not
exceeded, that the field format is acceptable, and that the function description is valid.

The following characters have special meaning for REX Console Control:

MEANING

KEY SYMBOL OCTAL FIELDATA VALUE
O 76
® 57
(Special)
77

Indicates the end of a vari-
able field of characters.

Terminates a console entry.

This willerase the last pre-
secutive special characters

(77) will erase the entire
entry,

ACQUISTION OF STORED INTERRUPTS

(COMMUNICATION)
ADDENDUM OVERFLOW.
ALLOCATION OF FACILITIES. . .
ALLOCATION OF PERIPHERALS .

BATCH LOAD REQUESTS

CHANGE CORE. +. . ..
‘CHANGE'DRUM.
COMMUNICATION INPUT/OUTPUT .
COMMUNICATION INTERRUPTS .

COMMUNICATION INTERRUPT TABLE .
COMMUNICATION INTERRUPT TABLE

OVERFLOW.
COMPUTER ESTIMATE (CE). . . .

CONSOLE INPUT/OUTPUT OPERATIONS .

3
7

DA {PROVI Xi . .
DELAYED RESPONSE TABLE . . .

ERROR PROCEDURES (STANDARD
INPUT/OUTPUT)
EXECUTIVE ADDENDUM
EXECUTIVE ENTRY TABLE. . . .
EXECUTIVE INFORMATION REGION

FACILITY RELEASE

FACILITY UPDATE (TYPE-IN) . . .
FAULT INTERRUPT.
GENERAL PURPOSE SEARCH . . .

HOLD SCHEDULE (TYPE-IN). . . .

INDEX RECORD. . . + . v « « . .
INSPECTCORE. . « «

INSPECTDRUM. -« « « « « « . . .
INTERLOCK RESPONSE

INTERNAL INTERRUPT ~INPUT . .
INTERNAL INTERRUPT -OUTPUT .

INTERNAL LOAD REQUESTS . .
INTERRUPT ENTRANCES
INTERVAL ~ TIMER INTERRUP TION

JUMP KEYS(USEOF)

LABEL RECORD (MIT).

.. 3-20
.. 4-2
C.o2-11
.. 2215
L.o2- 7
.. 5-2
.. 5-2
.. 3-19
.. 3219
.. 3-8
. 4-2
.. 2-2
2-17

.. 3-6
3-13

3- 3

.. 321
.. 6-2
. 2-8
2-11
4-1
3-21
2-10

2- 3

5- 1

.. 523
.. 4-3
.. 3219
. 3-19
2- 6
... 3-6
3-24,4- 1
6- 1

2- 3

INDEX

LISTING (INPUT/OUTPUT REQUESTS) . .

LOAD(TYPE-IN)«« ..
LOADING. . . « . ¢« ¢ v ¢« v v v v o v
LOCKOUT (TYPE-IN)

MASTER INSTRUCTION TAPE
MIT NUMBER « « ¢ v ¢ v v o

OPERATIONAL PARAMETERS . .

PREPARATION OF MASTER INSTRUCTION

TAPE. . . . ¢ v ¢ o v v v v v e e
PRINTCORE « ¢« ¢« o v v v v o
PRINTDRUM ¢« . o o v o
PRIORITYGROUP
PROGRAMLOCK. . . . « . . «
PROGRAM START

PROGRAM FACILITY RECORD (MIT). . . .
PROGRAM FACILITY SUMMARY RECORD
PROGRAM SEQUENCING AND LOADING . .

REAL-TIME EXTENSIONS.
REAL-TIME INITIALIZATION TABLE . .
REAL-TIME INTERRUPT ANALYSIS (RTIAS)
RERUNDUMP ¢« ¢ « « ¢ v o o o
RUNNING TIME « o o . .

SEGMENT CALL.

SITEUTILITY. o o 0«0 o 4
START SCHEDULE (TYPE-IN).
STATUS CHECKING
STRING. ¢« . o o o v v o
STRING LEADER

STRINGLOCK. + v v v v v v v v o
SUBMISSION OF INTERRUPTS
(COMMUNICATION) v v ¢« . . .

SUSPEND (PROGRAM)
SWITCHER ROUTINE.

TIME (MAINTAINED BY REX)
TERMINATE (PROGRAM).
TERMINATE SCHEDULE (TYPE-IN)
TIME-TABLE.
TYPEC. . « . . v v v v v v v v e o v
TYPET . « & v ¢« v v v v o v v v v s

UNLOCK (TYPE-IN) ch e e e e e e e
UNSOLICITED REQUESTS
UTILITY REQUEST TABLE.

3-11
2-10
2-16
2-10
2- 1
2- 2
2- 5
2- 2
5- 2

. 5-2
2~ 2
2- 2
4- 3
2- 4
2- 4
2- 1
2- 6
6- 3
3-21
5- 5
2- 2
2-7
5- 3
2-10
3-15
2- 2
2- 2
2- 2
3-20
4- 3
3-25
3- 2
4- 3
2-10
3-8
2-18
2-18
2-10

. 2-20

.3-3

UNIVAC

DIVISION OF Y RAND CC ATION

“W° UP 2578

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	Index
	xBack

