
TECHNICAL BULLETIN

REX
Real-Time E~ecu-tive R~u-tine

Pr~gralnlTlers Re-Ference

Firsf: Edif:ion

July, 1962

PREFACE

A knowledge of basic programming related to the UNIVAC 490 System is assumed in the prepara­
tion of this document. A prerequisite document is the SPURT Assembly System Programmees Re­

ference Manual.

CONTENTS

1. INTRODUCTION •• 1-

A. GENERAL DESCRIPTION •• 1- 1
B. FUNCTIONAL DESCRIPTION •• 1- 3

2. OPERATIONAL CONTROL ••••••••••••••••••••.•••••••.••••••••••••••••. 2-

Program Sequencing and Loading ••••••••••••••••••••••••••••••••••••• 2- 1
A. THE MASTER INSTRUCTION TAPE ••••••••••••••••••••••••••••••••••••• 2- 1
B. INTERNAL LOAD REQUESTS ••• 2- 6

1. Real Time Extensions •• 2- 6
2. Batch Load Requests. •• 2- 7
3. Segment Call •• 2- 7
4. Facility Release ••• 2- 8

C. OPERATOR FUNCTIONS •• 2-10

1. Start Schedule Format •• 2-10
2. Hold Schedule Format •• 2-10
3. Terminate Schedule Format •••••••• '.' ••••••••••••••••••••••••••••••••• 2-10
4. Lockout Format. •• 2-10
5. UnlockFormat ••• 2-10
6. Load Format. • • • • • • • . •• 2-10
7. Facility Update Format ••• 2-11

D. ALLOCATION OF FACILITIES •• 2-11

1. CoreMemory •• 2-11

E. ALLOCATION OF PERiPHERALS •••••••••••••••••••••••••••••••••••••• 2-15

F. LOADING ••• 2-16

1. Absolute •• 2-16
2. Simple Relative •• 2-16
3. Complex Relative ••• 2-16

G. CONSOLE INPUT/OUTPUT OPERATIONS ••••••••••••••••••••••••••••••••• 2-17

1. Program-To-Operator Communication. •• 2 -17
2. Operator-To-Program Communication •••••••••••••••••••••••••••••••••••••• 2-20

3. EXECUTIVE CONTROL •••••••••••••••..••••••••••••••••••••••••••••••• 3- 1

A. TABLE AND STORAGE AREAS .•••••••••••. til •• Q. iii ••••••••••••••••••••• 3-

1. The Executive Entry Table ••• 3- 1
2. Standard Information Maintained By REX ••••••••••••••••••••••••••••••••••• 3- 2
3. The Executive Addendum •• 3- 3
4. Utility Request Table •• 3- 3
5. Delayed Response Table. •• 3- 6
6. Interrupt Entrances •• 3- 6
7. Communication Interrupt Table ••• 3- 8
8. Time-Table •• 3- 8

B. STANDARD PERIPHERAL INPUT/OUTPUT •••••••••••••••••••••••••••••••• 3- 8

1. The Input/Output Request. •• 3- 8
2. Standard Parameters •• •• 3-10
3. Register References ••• 3-11
4. In pu t/O utput Superv is i on •• 3 -11

C. STANDARD PERIPHERAL INPUT/OUTPUT STATUS CHECKING •••••••••••••••• " 3-15

1. Purpose. •• 3-15
2. Activation of CKSTAT Routine •• 3-15
3. Examples of CKSTAT Use. •• 3-16
4. Logica I'Considerations •• 3-17
5. Programming Considerations ••• 3-17

D. COMMUNICATION INPUT/OUTPUT •••••••••••••••••••••••••••••••••••••• 3-19

1. Communication Interrupts •• 3-19
2. Submission of Interrupts •• •• 3-20
3. Acquisition of Stored Interrupts ••• 3-20
4. Interrupt Analysis by the Real-Time Program ••••••••••••••••••••••••••••••••• 3-21
5. The General Purpose Search ••• 3-21

E. INITIATION OF INTERVAL-TIMER INTERRUPTS •••••••••••••••••••••••••••• 3-24

F. WORKER PROGRAM VOLUNTARY RELEASE OF CONTROL ••••••••••••••••••••• 3-24

1. Suspension ••• 3-24
2. Termination •• 3- 2 4
3. Temporary Release • • • • • • • • • • • • • • • • • • •• •• 3-25
4. Exchange.... •• 3- 2 5

G. THE SWiTCHER ••• 3-25

1. Priority Considerations •••• , ••••••• , •• 3-25
2. Operation • • • • • • • • • • • • • • • • • .• •• 3- 26

ii

4. CONTINGENCY CONT,ROL ••• 4- I'

A. CONTINGENCY INTERRUPTS ••• 4- 1

1. Fault Interrupt ••••••••• • • • • • • • • • • • • • • • .• •• 4- 1
2. In terva I-Timer Interrupt •.••••••• •• 4 - 1

B. CONTINGENCY DiVERSION OF PROGRAM FLOW •••••••••••••••••••••••••••• 4- 2

1. Addendum Overflow. •• 4- 2
2. An Excessive Accumulation of Input/Output Requests Without Associated Status Checking. • • • •• 4- 2
3. Communication Interrupt Table Overflow •••••••••••••••••••••••••••••••••••• 4- 2

C. OPERATOR CONTINGENCY INTERVENTIONS •••••••••••••••••••••••••••••• 4- 3

1. Program Start ••• ~ • • • • •• 4- 3
2 .. Suspend •• • • • • • •• 4- 3
3. Termination ••••••••••. ' •• 4- 3
4. Interlock Response •• 4- 3

5. U TIL ITY SERVIC ES, •••••••••••••••••••••.••••••••••••••••••••.•••••••• 5- 1

A. OPERATOR REQUESTS ••• 5- 1

1. Inspect Drum. • . •• 5- 1
2. Inspect Core •• 5- 1
3. Change Drum. •• 5- 2
4. Change Core. •• 5- 2
5. Print Drum •• 5- 2
6. P riot Core ••• 5- 3
7. Site Utility. •• 5- 3
8. Additional Operator Entries ••• 5- 4

B. PROGRAM REQUESTS •• 5- 4

1. P r i n t D ru m ••• •• 5 - 4
2. Print Core ••• 5- 5
3. Assistance in Establishing Rerun Dump •• 5- 5
4. uti! ization of Rerun Dump •• •• 5- 7

6. PROGRAM PREPARATlON •• 6- 1

A. SO U R C E LAN G U AGE •• •• 6 - 1
B. USE OF JUMP KEYS ••••••••••••••••••••••••••••••••••••••• ' •••••••• 6- 1
C. USE OF CONDITIONAL AND UNCONDITIONAL STOPS ••••••••••••••••••••••••• 6- 1
D. STANDARD LOCATIONS ••• 6- 2
E. SEGMENTATION •• 6- 3
F. FACILITY REQUIREMENTS ••••••••••••••••••••••••••••• '.' •••••••••••• 6- 3

APPENDIX A .. A-

BASIC PROGRAM FORMATS ••••••••••••••••..••••••.••••.•.•••••••••• A-

Modification Codes •••••• ~ •• A - 2

1. Complex Relative Format •• A - 2
2. Simple Re!ative Format ••• A - 3

iii

A. ABSOLUTE A- 3

1. Identification Record •• A- 3
2. Instruction Record ••• A- 4
3. End-of-Program Sentinel ••• A- 4
4. Storage Format •• A- 5

B. SIMPLE RELATIVE A- 6

1. Identification Record ••• ~ A- 6
2. Instruction Record •• A- 6
3. End-of-Program ·Sentinel ••• A- 7
4. Storage Format •• A- 7

C. COMPLEX RELATIVE .. . A- 8

1. Identification Record ••• A- 8
2. Faci lity Record ••• A- 8
3. Segment Description Record ••• A -10
4. Fi Ie Description Record ••• A -10
5. Control Segment Record ••• A-II
6. Secondary Segment Record •• A-12
7. End-ot-Program Sentinel ••• A-12
8. Storage Format •• A-13
9. Segment Description Record When Modified ••••••••••••••••••••••••••••••••• A -14

APPENDIX B 8-

EXAMPLE 1 ~ 8- 1
EXAMPLE 2 · 8- 2
EXAMPLE 3 · 8- 3
EXAMPLE 4 · 8- 4
EXAMPLE 5 · 8- 6
EXAMPLE 6 · 8- 7

APPENDIX C C-

GENERAL COMMENTS ON OPERATOR ENTRIES C-

1V

1. INTRODUCTION

A. General Description

The Real-Time Executive Routine (REX) controls, sequences, and provides for the most efficient
use of facilities for user programs operating in the UNIVAC@ 490 Real-Time System, REX is related

to the other routines which comprise the complete software package for the system. The SPURT
Assembly System will translate a program written in a symbolic language designed to simplify pro­

gram coding. SPURT output is a program suitable as input to the computer. Symbolic notation in

SPURT language will produce coding which will provide linkage to REX routines.

A group of Utility Routines are designed to operate under REX control. These routines may be stored
in the high-speed memory of the computer or on peripheral drum units. They provide the user with

sophisticated and tested routines for many common tasks such as core and drum memory printouts
and routines to change core memory. Utility Routines may be initiated by coding within a program

or by. entries on the console typewriter.

Special consideration must be given to the demands of the real-time program in any real-time system.
The real-time program is characterized by random requests made upon the facilities of the system.
It is possible to make general estimates of the facility requirements of the real-time program. The
actual deman.ds for facilities at any particular time cannot be estimated, however, as this will be

dependent upon variable circumstances. This is in contrast to a program which will receive a batch

of input information, where both the volume of input and the facilities required may be determined

prior to the initiation of the program. A distinction is therefore made between the real-time program
and batch programs.

A major consideration in the design of REX was to provide a priority structure that would release

facilities to the real-time program upon demand. There are times when the demands of the real-time

program will require full use of facilities; while at other times only an occasional request will be

presented for processing. One or several batch programs may be run concurrently with the real-time
program at these times. REX will provide for the interruption of batch programs when the real-time
program is processing a request. REX will also attempt to overlap the input/output time associated
with the real-time request.

1-1

1-2

®tASTER

INSTRUCTION

TAPE

I/O, LOAD, UTILITY AND CONSOLE REQUESTS
r---~~ J LISTING FUNCTION NORMAL RETURN 1-----------------------

I
I
I
I
I
I
I
I
I

CONSOLE
REQUESTS

LOAD AND UTILITY
REQUESTS

~~ !
OPERATOR I
REQUEST ~

'-'
TRANSLATOR CONSOLE CONTROL

-~
~~ I

I
I
I
I
I

en
ILl I­
JIl.
O~
cnO::
zO::
o ILl
Ul-

I/O INTERRUPTS

WORKER

RTIAS

PROGRAM

COMMUNICATION INTERRUPTS

"' (......
.. ------------~

VOLUNT ARY RELEASE
OF CONTROL

....
COMPLETED REQUEST, COMPLETED
INITIATION, OR RETURN FROM '--.,..-----------------_-r--, N T E RRU P TI 0 N RES U L TI NG I N t SUSPENSION

I
I
I INTERROGATE REQUEST STATUS

Z

~

INTERRUPT CONTROL

ACCUMULATED
INTERRUPT

REQUEST ~~
NOT COMPLETE

I OR MARK RETURN POINT

1 ______ -------- 1-)
REQUEST COMPLETE OR
~~Tt'Dt.J ~~I-M'" fUlAQk'"l:;"n

INPUT /OUTPUT
STATUS

INTERROGATION
.. _. _ _ _- II.-________ -..JI

WORKER PROGRAM CONTINGENCY PROVISION

ENTRY

RETURN .---------

I~
I
I
I
I

SWITCHER

NO RETURN
POINT MARKED

FIGU RE 1

UNIVAC 490

REA L-TIM E EX E CUT I V E PRO G RAM

INPUT /OUTPUT
REQUESTS

DRUM CONTROL

STANDARD

PERIPHERAL

I/O SUBROUTIN ES
,,-.

.. ~ !
INTERRUPT JI
OR REQUEST T

INITIATOR

EXIT

CON TI NG ENCY
CONTROL

ADDENDUM OVERFLOW

DRUM-STORED LOAD AND UTILITY ROUTINES

'\ LOAD

~ TERMINATE

CALL F.ROM RERUN
DRUM

) SEGMENT CALL
OTHER

WHEN CALLED INTO CORE MEMORY
A DRUM STORED ROUTINE OPERATES
AS A WORKER PROGRAM

I F LIST EMPTY AND CHANNEL NOT BUSY

CONTROL PASSES DIRECTLY TO INITIATOR

NO WORKER PROGRAM
CONTINGENCY PROVISION

(SUSPEND PROGRAM)

CONTINGENCY
INTERRUPT

\1
I
I

~ FAULT, INTERVAL-TIMER I

q.:------------I I

The high-speed (core) memory of the computer will normally contain the REX Routine, a real-time

program, and one or more batch programs.

B. Functional Description

The flow paths to and from the routines that comprise the major functions of REX are sho'wn in figure

1. A brief description of each function will follow to provide an overall deSCription. A detailed de­

scription of each function may be found in the remaining sections of the manual.

1. SELECTION AND LOADING

Programs are presented for selection on a Master Instruction Tape (MIT). A routine is provided
which will extract a program from a library provided by the REX user. This will be accompanied

by card input which will describe when and how the program will be loaded. Options are provided

so that a program may be placed on the MIT and called only on demand by an operator console

entry. A program may also be 'selected to run and then inhibited by console entry. The facility

requirements of the program will be defined by information on the MIT.

2. LISTING

The environment that is controlled by REX is a complex one in which the real-time program and

and one or several batch programs will make requests for the use of facilities. The listing func­

tion provides a means through which REX may give order to these requests for program loading,

input/output facilities, and various utility functions. If the necessary facilities are available,

REX will provide them and keep a central record to indicate that they are in use. When facilities
are no longer required they are released and requests are removed from the list.

3. CONSOL E CON TRO L

Provision is made for a running program to inform the operator of conditions that may exist dur­

ing operation, such as the completion of a load, or t.lte malfunction of a peripheral unit. Pro­
vision is also made for the operator to effect the operation of a program by input messages. These
requests are made through the console typewriter.

Console Control will supervise the use of the console. Buffer areas contained in an addendum

created at load time with hold console data prior to its submission to the console typewriter. A

subSidiary function is the translation routine which will convert information from machine nota­
tion to a form that may be printed on the console typewriter. An example of this would be a re­
quest to print a location in high speed memory. The binary contents of the location interpreted

as octal digits are translated to the notation required for output to the typewriter.

4. DRUM CONTROL

A number of utility functions are provided to operate under REX control, such as a printout of

drum or core locations. Utility functions may also be created by the user. The routines that per­

form these functions are usually kept in drum storage and called into core memory when needed.

The Drum Control Routine will load utility routines, and once loaded they w ill operate as a worker
program under REX control.

5. INITIATION

The Initiator Routine will maintain a priority supervision over standard peripheral input/output
requests. It will give priority to real-time program requests. Batch processor requests will be
initiated in the order of submission.

1-3

1-4

6. SWITCHING

The Switcher Routine is the means by which REX relinguishes control and establishes inter­
program priorities. programs will be arranged so that those with relatively little input/output time

will be operated within the input/output time of a higher ranking program. The Switcher Routine
will also provide for the processing of interrupts that have occurred when a non-suspendible routine

was operating.

7. REAL-TIME INTERRUPT ANALYSIS

The Real-Time Interrupt Analysis Subroutines (RTIAS) are provided by the user. REX makes pro­
vision for entry to and exit from these routines which are designed in accordance with the com­
munication system configuration to assure a continuous and orderly flow of input/output informa­
tion.REX will provide ass istance in controlling comm unications interrupts and an optional routine
to search for terminated input/output buffers. Standard peripheral input/output requests are con­
trolled by subroutines assigned to each channel.

8. INPUT/OUTPUT INTERROGATION

A worker program may determine the condition of a standard input/output request by entering the
Input/Output Interrogation Routine. An option is provided whereby the program may wait for com­
pletion of an input/output request or it may continue after marking a return point to which REX
will return control upon completion of the request. Provision is made for a program to release

control to REX when it cannot logically make further requests for the use of facilities. Requests
that have not been completed will be supervised by REX and control will be returned to the
worker program at the specified return points. A program that has reached its logical termination
point will r€lease all its facilities by a separate utility request.

9. CONTINGENCY CONTROL

Contingency Control provides for situations where the normal flow of a program is interrupted.
The interruption may be the result of a logical inconsistency within a program, such as the over­

flow of table areas associated with program requests or communications requests, or it may be
one of the standard machine generated interruptions associated with fault recovery, or in terval­
timer update. The worker program may contain coding to provide for these interrupts. REX will
provide for the orderly acceptance of interruptions of this type, and if no user coding is pro­
vided the program will in most cases be suspended.

2. OPERATIONAL CONTROL

PROGRAM SEQUENCING AND LOADING

It is the function of the routines described in this section to sequence, load, and initiate programs
in order to make the most efficient use of facilities at any point in time.

Programs are presented for selection on a Master Instruction Tape (MIT). A dynamic selection process
is initiated when the schedule is started and upon the termination of a running program. The set of
programs examined at this time is governed by inter-program priority and a relation in which one
program or group of programs may be dependent upon the output of some other program: These inter­
program relationships are determined when a MIT is created. '

The family of routines associated with program sequencing and loading will provide for:

• the computer operator to make deletions and additions to the set of programs defined by the MIT.

• loading programs in a simple format more suitable for deJ:>ugging operations.

• loading a real-time program and extensions. These extensions will consist of routines within the
real time program that are not used frequently. They are placed in peripheral storage and called
on demand.

• loading and restarting reun dumps to recreate to environment existing before a fault or error.

A. The Master Instruction Tape

The MIT may be thought of as a schedule of programs to be run. The tape will contain the instruction
coding for each program in complex relative form, which means that peripheral facilities and core
memory are assigned at load time. (See complex relative format Appendix A.) Information required by
the load routine is supplied by Index Records and Program Facility summaries which precede the
instruction coding records on the MIT.

Each program is executed with a minimum of operator intervention. The loading of a program will be
accompanied by a console type-out describing the facilities required for the run. After the periph­
erals have been set up, the operator starts the program by console type-in. Loading will continue
until all scheduled programs have been run or until inhibited by operator intervention.

2-1

2-2

a. Preparation of the Master Instruction Tape.

Th e REX user is provided with a Master Instruction Tape Assembly Routine-which will accept
scheduling requests from cards. Card format information and operating instructions for this
routine are in the Utility Routine Manual. The routine will extract requested programs from a
reference library, provide loading information records, and produce a MIT.

b. Definition of Terms.

The following terms are used in the description of MIT records which follow:

(1) Priority Group. A group of programs all of which must be initiated before the next
priority group becomes eligible for initiation.

(2) String. A subset of a priority group comprised of programs which must be executed
serially. A one-program string is permissible.

(3) String Leader. The first program of a string.

(4) Computer Estimate (CE) . An optional scheduling parameter representing the ratio of·
central processor time within a processing cycle to total processing cycle time. The ratio is
expressed in tenths. A value of 1 would mean the central processor is used during only 1/10
of the basic processing cycle; a value of 10, the program is capable of keeping the central
processor continuously busy.

(5) Running Time. An optional scheduling parameter representing the estimated running time
of a program in minutes were it to run independently.

(6) Program Lock. An indicator associated with each program. If set it means the program
will be bypassed when executing the schedule.

(7) String Lock. An indicator meaningful in string context. If set it means this and subsequent
programs of the string will be bypassed when executing the schedule.

(8) MIT Number. A sequential number assigned by the Master Instruction Tape Assembly·
Rou tine to each program as it is placed on the MIT. It is used for internal identification and
tape position control.

The program lock and string lock options described above are provided to allow deletion of

programs or strings after a schedule has been started. Program~ may be included on a MIT
which mayor may not be run depending upon operator decision.

c. Description of Records.

A MIT may contain a maximum of 64 individual programs. It contains contiguous groups of
records in the order listed below.

(1) A label record.

(2) One or a group of index records.

(3) One or a group of Program Facility Summaries.

(4) One o.r more programs in complex relative format.

(5) Two Standard End of File Sentinels.

Label R~cord

0

1

2

3

4

5

Not
used

\
21

22

23

7 t) '7 t) '7 ? 7 ? 7 ?
L I L I '- I L. t L.

7 2 7 2 7 2 7 2 7 2

/). M T 6.

6. 6. 6. 6. 6.
I

6. 6. 6. 6. I n n

yl y2 A1 d2 A'l
U.L u~

Number of programs Number of priority groups

7 2 7 2 7 2 7 2 7 2

7 2 7 2 7 2 7 2 7 2

nn is an octal identifier assigned at time of creation. yyddd is year and day. ddd is from 001
to 366.

Index Record

o

2

3

There is one index record for each priority group. A maximum of 8 priority groups may be
contained on the MIT, and a priority group may contain any number of programs. The MIT,
however, can contain a maximum of 64 individual programs.

7 7 7 7 7 prio rity group

c MIT number string runn fng time

One-word index for each string within the priority group.

66(max)_I ____ 7 _______ 7 _______ 7 ________ 7 _______ 7 __ ~ ______________ p_ri_or_it_y_g_ro_u_p ____________ ~

string
index

2-3

2-4

o

2

3

4

5

6

7

8

9

10

11

12

88 Max.

c is lock condition indicator in bit positions 27-29.

1 string lock

2 program lock

6 no lock

MIT no. is that of the string leader.

Program Facility Summary Record

I ibrary number

successors library number

c I y I compute estimate

minimum core

min S3 I min ~ I min S1

minimum card reader

minimum paper tape reader

max ~

MIT number

successors MIT number

program running time

maximum core

I max S;z I
minimum card punch

minimum paper tape punch

minimum high-speed printer

minimum relocatable drum area

maximum relocatable drum area

dwm base of program o,r zero

Additional summaries, maximum
of eight per block

- -- -
c is lock condition indicator in bit positions 27-29 as in index record.

max S,

Summary 1

I

I)

y is an indicator to show the presence or absence of operational parameters. (See Operational
Parameters).

S3indicates IBM Compatible servos used by program.

S2 indicates UNIVAC III servos used by program.

Sl indicates UNIVAC IIA servos used by program.

Drum base when it appears in the last word includes drum channel normalized right in the
high-order 6 bits.

Minimum and maximum requirements are used by REX in allocating facilities. The use of these
en tries will be more fully explained in later sections.

Prugram rormai

Program format is complex relative - (See Appendix A). Block descriptions are modified to
include MIT number as the most significant part of the descriptor word during MIT creation.

o

2

3

4

•

•

•

49

50

MIT number o o

(Identification Record)

MIT number o o

(Facility Record)

MIT number o o

(Segment Desciiption Record)

MIT number o o

(File Description Record)

MIT number o o

(Contro I Segme nt Record)

MIT number segment number

(Secondary Segment Record)

o

o

n
u

o

o

o

o

o

o

o

o

t')

L

3

4

5

Only the first block of each record bears descriptors as shown. Subsequent blocks bear de­
scriptors of binary zeros. This also applies to parameter records.

Operational Parameters

Operational parameters may be inserted within a program at the time a MIT is created. The
parameter record generated will be the final record of the program.

MIT number o o o o 6

Additiona I block indicator No. of parameter words

parameter word 1

parameter word 2

~~------~--~---------~~ - - -.... - --

parameter word 48

check sum

MIT number o o o o 6

(51=wd block)

2-5

2-6

The upper half of word 1 is set non-zero if another block follows. The lower half represents
the number of parameter words in this block.

Sentinel

A MIT will be terminated with two standard end-of-file sentinels.

B. Internal Load Requests

Operating programs m~y request various load and load-related functions. They are initiated by entry
to REX routines accompanied by a packet of information. This is inserted as coding within the
requesting program.

1. REAL TIME EXTENSIONS

o

2

3

4

i

Tasks wi thin the real-time program may be arranged in an order of priority. Control routines

and frequently used task routines are k.ept in core memory at all times if possible. Routines
that are used less frequently may be drum stored in absolute form with overlapped core area

assigned to those routines not likely to be concurrently executed. Routines that are least fre­
quently required may be peripherally stored in relative address form and allocated to avail­

able core storage when needed.

REX will provide assistance for loading routines of the latter category. These extensions
must be in simple relative program format (See Appendix A). They may be stored on the drum
or on magnetic tapes. They will be loaded into any available core area with preference being
given to that nearest the permanently allocated real-time program area. If necessary one or
more batch-processors will be suspended and drum-stored in order to accomodate a requested
extension. Suspended batch processors will be reloaded when a suitable environment is again
established. One extension reguest a_t a time may be pending'. Extensions cannot acquire
peripheral facilities.

Format:

6 4 1 1 0 0 0 1 4 4

EAS /5 2 0
0

I I d 17 chan 41 3 un it
0

drum address or search word

starting location No. of words loaded

DONE~ (control here when load completed)

WORD

o This word contains an indirect jump instruction to the executive entry table to in-
:.L!_"_ L __ .,.. ___ .: __ 1 __ ...l
.LI...I.C1l.C' L.1J~ ~AL~.l.I . .:J.LV,lJ. .Lvuu.

The upper half of this word will contain an executive action specifier (EAS). This
allows control to be returned within the program. EAS use is explained in detail as

WORD

part of the description of the CKSTAT operator. Positions 0-5 of this word contain
the function code which is replaced by 77 if the requested routine cannot be loaded
before control is returned at DONE. Possible causes are that the requested routine
was not found or peripheral error.

2 A two bit indicator (i) specifies the storage medium.

00 specifies magnetic tape.

10 specifies drum.

Another indicator (d) may be used to imply the tape identified in the remaining
portions of this word contains more than one program and that programs are in as­
cending sequence by identification record block descriptor. REX will record the
position of the tape after performance of an operation so that tape movement for the
next operation will be in the proper direction. Only one tape may be used with this
option. The indicator is 1.

A zero indicator implies a forward search with a rewind following each operation.

3 If a tape load - identification record block descriptor of routine to be loaded. If a

drum load - drum address and channel.

4 This information is supplied by REX load before control is returned at DONE addr~s.

2. BA TCH LOA D REQUESTS

o

2

3

a. At infrequent intervals the real-time program may desire tha t a task be performed which would
require additional facilities and be essentially of a batch nature. An example of such a task
would be preparation of a report based upon accumulation of a predetermined quantity of data
or passage of a given time increment.

REX will service requests submitted by the real-time program to load batch processors.
Programs loaded in response to this type of request will be treated as individual programs

and may acquire peripheral facilities.

b. Format:

6 4 1 1 0 0 0 1 4 4

EAS 15 2 1 0

i I I d 17 chan 41 3
un it

0

Drum-address or search word

DO NE----;~~ (control here when load completed)

All notes describing the extension request apply to batch requests.

3. SEGMENT CALL

a. This function provides for loading segments. The segmentation function and the related
symbolic coding are described in the SPURT Programmer Reference Manual. If a segment
cannot be loaded because of peripheral difficulties, the requesting program will be suspended
pending operator intervention.

2-7

2-8

b. Format:

;1 ~~:------:~----~~------_o~-----~~--O--------O---se-g-me-n-tN-o~t-----42 _____ :~01
DON E ---+-- (control returned here when segment has been entered

Segment number is used to find the locator pair within the executive addendum of the program
which specifies the location and the form of storage for the segment. Locator pairs are in­
corporated into the executive addendum of the segmented program by the load routine. The
format of Ithe locator pair is described under EXECUTIVE ADDENDVM.

4. FACILITY RELEASE

o
1

2

The functions described below are 'designed to permit the release of facilities so that they may
be used by other programs.

a. Unit release format:

6 4 o o 0 4 4 J 15 2 4

01 17 chan 41 3
unit 2 o o o

DONI ~ (contro'l returned here as soon as request has been listed)

The unit designated is made available for use by other programs.

o
1

2

b. Core release format:

6 4 1

starting location

1 0

DONE~ (control returned here as soon as request has been listed)

0 0 1

15
number of words

4 4

2 5
0

The core area designated is released. The area may be at the end of a running program, or it
will serve to terminate a real-time extension. Extensions must be terminated in this way.

c. Drum release format:

0 6 4 1 0 0 0 1 4 4

01 15 2 6
I

I
2 sta rting address

3 num ber of words

DONE~(control returned here as soon as request has been listed)

TYPE

EXTENSION

BATCH LOAD

I SEGMENT CALLI

FACILITY
RELEASE

INTERNAL REQUEST USAGE

WHEN SUBMITTED

When no other
request of I ike
kind is pend ing

Anytime

PERMISSABLE FORMAT

AND SOURCE

Simple Relative

{ Other tape

Drum

I { Other tape Complex Relative

Drum

I
Other tape

Complex Relative { Mit

Drum

I

Any

Figure 2. Internal Request Usage

COMMENTS

Extension and Batch Load
requests may be submitted
by the real-time program only.

I
Complex Relative is the
only format in which segmented
programs will be put out by
SPURT.

2-9

2-10

The relocatable drum area specified will be released. Release must be from the high-addressed
end of the assigned area.

Summary

A summary of requirements and limitations for internal load requests and release function~
appears in figure 2.

C. Operator Functions

The operator has ultimate control over run sequencing and initiation. He may wish to operate with Of

without a MIT. If operating with a MIT he may wish to delete scheduled programs, remove locks
imposed at time of creation or temporarily suspend eXecution of the schedule. All operator perogati yes
are exercised by console type-in. A description of type-in formats and their functions are listed
below. See GENERAL COMMENTS ON OPERATOR ENTRIES, Appendix C.

1. START SCHEDULE FORMAT:

SS 0 ch 0 sv @

The function initiated by this type-in provides for initiating the MIT located on the desi gnated
channel and servo. This function may also be used to release a hold imposed upon a schedule
subsequent to its initiation. The designation of a channel and servo is not required for release.

2. HOLD SCHEDULE FORMA T:

HS ill

This function will prevent further au tomatic loading from the MIT.

3. TERMINATE SCHEDULE FORMAT:

TS <D

This function will terminate a MIT. It may be used regardless of whether the MIT is acti ve, iA. a
hold condition, or exhausted. (Exhausted means that all scheduled programs have been executed,
a condition communicated to the operator by console type-out).

Once this function has been entered all internal reco rds pertainin g to this MIT are purged. No
MIT references are meanin gful un til a new schedule is started.

4. LOCKOUT FORMAT:

S(tring)

LO 0 MIT no.O or

P(rograrh)

This function may be used to impose a program or string lock upon any program on the MIT.

5. UNLOCK FORMA T:

UL 0 MIT no. ill

This function will abrogate any lock condition existing for the designated program.

6. LOAD FORMAT:

L oOps 0 ch 0 sv 0 pi 0 bs 0 ty <D

This function provides for all loading other than that performed automatically during execution

of a MIT.

ps Program source

T magnetictape

D drum

C cards (errata only)

ch Channel

sv servo designation if from magnetic tape, otherwise omitted.

pi defines program location. If program is to be loaded from magnetic tape, rolS wiIi be ihe
block descriptor of the program identification record. (7474747474 whenever a rerun dump
is to be loaded). If load is from drum, this will be the drum address of the program identi­

fication record.

bs Base address if load format is simple relative. Dump identification if loading a rerun
dump.

ty Type of loading operation. See figure 3.

R load real-time program.

E load errata.

B batch

7. FACiLiTY UPDA TE FORMA T:

U

FU 0 ch 0 un 0 or ill
o

This function provides for maintaining the central facility table from which REX makes facility

assignments. The channel (ch) and unit (un) are each defined by two digits. Omit unit when chan­

nel specifies drum or disc subsystem. When channei specifies card or paper tape subsystem,

unit 1 means reader, unit 2 means punch.

u Up

o Down

D. Allocation of F ac iI ities

1. CORE MEMORY

The division of core between REX, a real-time program and batch programs is shown below. The
Batch Lower Boundary represents the lowest address to which batch programs can extend. An
area for real-time extensions may be allocated. This would tend to reduce interference with
batch programs. If the Batch Lower Boundary is not specified, it will be automatically defined
as the upper boundary of the real-time program. Or, if the real-time program is noi operating, it
will be defined as the upper boundary of REX.

a. The Real-Time Program

The real-time program should be allocated as shown. If it is loaded from complex relative
form, it will be so placed. Conflict at load time with batch programs already operating will

2-11

OPERATOR LOAD REQUEST USAGE

TYPE OF

LOADING OPE R. WHEN ENTERED PERMISSIBLE FORMAT AND SOURCE EFFECT COMMENTS

{ Other tape
Abs olute

Drum Will hold in abeyance On Iy one operator request
R Other than when loading of scheduled may be pending. Entry

Rea I Ti me Program programs from MIT until of a second wi II cause
a Iready running

Complex Relative {
Othe r tape requested program has obliteration of the first.

been loaded.

Drum
r" Once a simple relative IIOther tape" means some

{ Other tape or a bsolute program magneti c tape other than
Complex MIT (Other than the RTP) that designated as MIT by
Relati ve Drum has been loaded, no the SS functi on. It may

B Anytime
further loading will contain any number or
occur until it terminates. mixture of programs so

{ Other tape long as the descriptor
Simple entered is un ique to the
Relative Drum identification record of the

program to be loaded.

{ Other tape
Abso lute

Drum If a segmented program is
runni ng from an "other tape"
no other program can be
loaded from that tape.

-

{ Other tape No placement checking
Absolute is performed by REX.

Cards Consequently, the load
E Anyti me

{
will be carried out

S.imple Other tape
regardless of the

Relative condition of memory and
will not effect the
schedule or subsequent
initiation.

Figure 3. Operator Load Request Usage

Lower (00000)

Upper (77777)

Core Memory

Interrupt and buffer
__ ~ont~ registers ____ 1

I ;::~~Ib~:utines I

I/O Subroutines

Control Routines and Frequently
Used Task Routines

Operating Area for Permanently
Allocated Drum-Stored Routines

BATCH PRO GRAMS

-u
:::0
0
c;".)

:::0
:J>
s:

::::0
rn
X

:::0
rn
:J>
r
~
:s:
rn

Boundaries of
Rea I-Time Program

Batch Lower Boundary

be resolved by holding in abeyance further batch loading and waiting until the competing
batch program (s) terminates. A form of operator termination which will cause the terminated
program to be rescheduled is explained under Con tingency Con trol.

b. Real-Time Extensions

Allocation of real-time extensions will start at the upper boundary of the real-time program
and continue to the upper end of core. Conflict with batch programs will be resolved by tempo­
rarily suspending and drum-storing them.

The allocation routine will always seek running area starting at the upper boundary of the
real-time program. This will have the effect of filling in holes caused by terminatiot:l of
previous extensions.

c~ Allocation from MIT

Allocation algorithms are based upon a concept of forming and maintaining program pyramids.

2-13

2-14

Pyramid Formation Involves:

(1) Selecting from string leaders of the priority group currently being executed a set of pro­
grams which can be accommodated by existing facilities. String leaders are considered ac­
cording to string running time, that is, the strings having the longest remaining time are
always inspected first.

(2) Forming the chosen set into a pyramid based on individual program running time.

Pyramid maintenance involves adding to an existing pyramid. The first string leader that will
fit upon a vacant base will be loaded. String leaders are considered, in the order described
above, according to string running time. At each termination allocation is re-evaluated and, if
possible, one or more new programs introduced. A pyramid is formed whenever a boundary
upon which it may be placed is free. If the real-time program is not operating placement may
be on the Batch Lower Boundary or End-of-Core.

If the real-time program is operating only End-of-Core will be used. This will tend to minimize
use of core nearest the real-time program, which is the area most likely to be invaded by
real-time extensions.

BATCH LOWER BOUND

P (PROGRAM)

VB (VACATED BASE)

END OF CORE

~time ~

The illustration above shows the area provided for batch programs. The real-time program is
not operating. The allocation of programs within the batch area is dependent upon available
area (shown as a vertical function) and running time (shown as a horizontal function). A new
pyramid is formed at the termination of programs 3 and 4. At termination of program 2, two
vacated bases exist upon which additions may be made. The base belonging to the pyramid

placed on End-of-Core is first considered. Program 6 would not fit on the base and as a second

choice was loaded on the other vacated base area because of time considerations. REX main­

tains a record of the remaining running time of programs based upon information supplied on

the MIT.

d. Operator Load Requests

Prog.rams Tequesten hy thp ()ppr~t()! will bt:> 10~J!t:>d ~s S00!! ~s s"!!ff!de!!! ~!'e~ exi~t~. If the
program is in simple relative or absolute format, it is not loaded un til all batch processors
have terminated. Core usage is investigated and recorded to prevent interference with REX
or the real-time program and its extensions.

e. Internal Batch Load

Internal load requests are loaded in the same manner as operator requests.

E. A 1I0cation of Peri phera I s

REX will maintain a central facility registry which will reflect the status and availability of all
peripherals within a system. In addition, REX will maintain a relocatable drum area map. Programs
loaded from complex relative format will have relocatable facility requirements satisfied by assigning,
from the registry, those currently available. The registry will be updated.

a. Relocatable Drum Memory

A program may operate with varying quantities of relocatable drum area assigned. For example,
a typical segmented program such as a Sort/Merge program might have the following dru!:1
requi rem en t:

Declared Area

minimum = 6K

maximum = 600K

Segmen t Storage

minimum = 0

maximum = 8K (total length of all segments)

Allocation algorithm:

Declared Area

(1) Assign the maximum requirement wi thin the smallest area which will accommodate the
maximum.

(2) If 1 fails, assign the largest area tha t will accommodate the minimum.

(3) If 2 fails, the program cannot be loaded.

b. Segment Area

Allocation of segment storage area is not related to allocation of declared area. Conse­

quently, the two areas may be discontinuous.

1) n + 1 storage requirements of decreasing length are calculated.

n is the number of segments.

requirement 1 = 1 + 1 + 1 + ... + In
t 2 3

n = 1,

n + 1 = 0

2) An iterative process which ~ttempts to allocate each requirement (starting with the
largest) to the smallest satisfactory area is initiated.

Failure to allocate storage for any .segment means that segments will be loaded from tape

and modified to running form each time called.

c. Relocatable Units

A relocatable unit requirement is defined in terms of channel groups. A channel group con-

2-15

2-16

sists of all units assigned a particular channel. (See ASSIGN operator in SPURT Manual). It
may be expressed in terms of a maximum (desired) and a minimum (required) number of units.
An attempt will be made to first allocate the maximum, then the maximum less one, etc. until
sufficient units exist or until the minimum cannot be satisfied and the program must be rejected.

A channel group may be split across two actual channels or two channel groups may be con­
solidated on a single actual channeL Consolidqtion will not be performed unless absolutely
necessary.

a. Fixed Requirements

(1) A fixed facility requirement reflecting use of mass storage channels or units may be
expressed. Such a requirement is not relocatable at load time except by operator direction.

In the case of mass storage -channels the only action performed by REX is a check to see if
. the peripheral type sought is actually on the channel expressed and is operable. If it is not

on the channel, the operator will be given the opportunity to designate the proper channel so
that substitution may be effected during loading.

In the case of units, a check will be performed to see if the peripheral type is on the channel
expressed, if the unit expressed is present and operable, and if the unit IS not currently b\lsy.
A negative result for any of these tests will cause REX to seek operator substitution.

(2) The Real-Time Program

The real-time program may be loaded from complex relative format in which case allocation of
facilities would be as for any other program with the exception that ccr~ memory area \vould
commence immediately above REX.

It would seem likely, however, for an intricate program subject to change that an absolute
format would be easier to maintain, faster to load and simpler for an operator to service.
Consequently, a provision will be made for marking units within the central facility registry
as belonging to the real-time program. Whenever the real-time program is loaded from absolute
format these units will be set busy.

F. Loading

7. ABSOLUTE

Program length is extracted from the identification record. This, in conjunction with the initial
program address expressed in the first instruction record, is used to calculate core occupancy.
If no conflict .exists the program is transferred into core memory. No modification is made during
the loading process. (Facilities are set busy if'this is the real-time program). If the program is
loaded from magnetic tape, the load channel and servo will be defined by the low-o,rder eight bits
of B 1 at activation.

2. SIMPLE RELA TIVE

The operator-supplied base address in conjunction with the program length is used to calculate
core occupancy. If no conflict exists the program is trans ferred into core memory. Address modi­
fication is performed during loading. If loaded from magnetic tape, load servo designation will be
available at activation as described for absolute format.

3. COMPLEX RELA TIVE

a. Process

Once it has been ascertained that the program Can be loaded. and facilities have been allo­
cated, a type-out is performed listing assigned facilities. The control segment is modified to
running form and loaded into running location. Each secondary segment to be drum-stored is

modified to running form and transferred to the drum. Finally, any operational parameters to be

loaded are placed in core memory. It should be noted that the secondary segment in core
memory at the time the program is started will be that which was last stored to the drum and
is unpredictable.

b. Arrangement of Segmented Programs

...-____________ ----, Controi Segment Base

I
" (When Controt Segment

\ is LOADED)
'\

Control Segment I \ CURRENT BASE

Secondary Segment

Two addresses are important in modifying a program to running form. They are,Control Segment
Base and Current Base.

The Current Base is that address at which the segment being loaded starts.

Control Segment Base is the address at which the control segment starts. This address is
remembered for use during loading of secondary segments.

When the control segment is being loaded current base is identical to control segment base.

G. Console Input/Output Operations

A running program sometimes finds it necessary to type out short messages advising the operator of
conditions that exist during the execu tion of the program or upon termination. In addition, it is some­
times necessary to communicate with a running program. This communication may be a response to
a message that has been typed out, or it may be an unsolicited entry that will in some way affect the
execution of the program.

1. PROGRAM TO OPERATOR COMMUNICA TION

Information is typed out by submitting packets to the appropriate subroutine controlled by REX.
The information to be typed out is transferred by REX into the executive addendum of the program,
where it is held until the console printer is available. The program may continue while waiting

for the printer and the buffer may be modified if desired.

2-17

.

2-18

REX will absorb only one request per program. Therefore, a program submitting several con­
secutive requests will be held up at each submission until the prior one is complete.

a. CONSOLE OUTPUT REQUESTS

The most convenient method to specify the information to be typed out, with an entry to the
appropriate subroutine, is ~y the use of the SPURT operators TYPET and TYPEC. These are

described in detail under CONSOLE TYPEWRITER FUNCTIONAL SUBROUTINES in the
SPURT manual.

(1) TYPET (Type Fieldata Text)

SIL RJ P .U(1"l2)

0 I 0 I 0 0 0 No. of characters

0 0 0 0 0 1st address of buffer

The packet above is generated by the TYPET operator and is usually accompanied by a
Fieldata text. It is necessary to observe this format when typing out internally generated in­
formation. The maximum of 70 characters, left-justified in the buffer area, must also be
observed.

(2) TYPEC (Type Contents)

The packet generated by a TYPEC operator is described in the SPURT manual. Entrance to
the REX Encode Routine will cause the specified registers or memory locations to be trans­
lated to Fieldata code which will be typed out in TYPET format.

REX Encode operates at the priority level of the submi tting program and can accommodate
several programs concurrently. REX encode uses the buffer area within the executive addendum
of the program to encode a maximum of 70 characters.

b. CONS OLE FORMAT REQUES TS

o

The operation which follows will restrict the use of the console to the program submitting the
request. This will insure a contiguous format in situations where a number of TYPET and
TYPE-C operations are required to complete a given format. The packet forma t for this opera-

tion will be generated by the CONSOLE. HOLD operator (See SPURT Manual) and will appear
as follows:

SILRJP.U(142)

3 o o o

The individual TYPET and TYPEC operations that will produce the contiguous message
should immediately follow the request for a console hold. REX will employ checks to prevent
undue monopolization of the console.

The normal method of terminating a hold mode is by su bmi tting the following packet to REX:

SiLRJP .U(l42)

o 4 o o o

The above packet will be generated by the CONSOLE RELEASE operator (see SPURT Manual.)

A console hold may also be terminated by the submission -of an accept request.

c. CONSOLE TYPEWRITER FORMAT

For each independen t console submission REX attaches a ·triple line feed, a program number
and 6 spaces to precede the supplied data. Thus the successive mnemonics.

TYPET: START L1 OF L1 JOB I CR I NR.10576

TYPET: JOB Ll 10575Ll COMPLETE

would result in console output

6 spaces
,--~

Pxx START OF JOB

NR. 10576

Pxx JOB 10575 COMPLETE

'Since the line feed and program number are automatically supplied for each independent
request, a I CR I as a first character of an independent request is ignored. All other "CR,
characters are honored (as shown) with a carriage return, line feed and 9-space indentation.

A string of requests within a HOLD mode is considered one independent request. Thus the
sequence

CONSOLE HOLD
TYPET: START Ll OF Ll JOB I CR I NR. 10576

TYPET: JOBLl 10575Ll COMPLETE

CONSOLE RELEASE

would appear as

Pxx START OF JOB

NR.l0576

JOB 10575 COMPLETE

2-19

2-20

2. OPERA TOR TO PROGRAM COMMUNICA TION

Operator input to a program may be either solicited or unsolicited. Solicited input would require
a previous program to operator transmission describing the entry to be made and also specifying
the buffer to accept the input.

a. SOLICITED REQUESTS

(1) ACCEPT (Accept Characters)

I I
SILRJP.U(142)

o 2 Number of characters 1st address of buffer

EAS

Return Point

The ACCEPT packet conditions Console Control to expect and accept an operator entry of a
specified maximum num ber of characters to be stored in the buffer indicated.

No nn ally , an ACCEPT request would be preceded by a CONSOLE HOLD and one or more
TYPET and/or TYPEC requests describing the entry to be made. The ACCEPT request, like
CONSOLE"RELEASE, terminates a CONSOLE"HOLD mode.

REX assigns a delay number (Dxx) by which the operator will respond to the solicitation.
The identification of this delay number is made by printout ACCEPT: DXX. Depending on
whether or not the ACCEPT operator terminates a CONSOLE·HOLD mode, the ACCEPT type­
out will be either an independent request with program number typed out or a dependent part
of a HOLD series.

When the entry has been completed, the line following the packet will be eligible for control at
DONE in the same manner as the completion of a standard input/output request. The parameter
"EAS" may be used to retain control without waiting for the response. If EAS is left zero the
program remains suspended until the en try is made and the DONE address is made eligible
for control. If EAS is non-zero, the address specified by EAS will regain control immediately.
Control will not appear at DONE until operator response has been made and use of REX·TAKE­
OVER has resulted in use of this return point.

The DONE address, REX -TAKEOVER, and EAS are explained in detail under STANDARD
PERIPHERAL INPUT/OUTPUT CONTROL. The accept packet is generated by an ACCEPT
operator in SPURT code.

b. UNSOLICITED REQUESTS

(1) Indicator and Entry Format

This entry is made solely on the initiative of the operator. Console control will determine if
the addressee program has provided for the acceptance of such unsolicited entries. The in­
dicator optionally specified in the Executive Information Region will be compared to zero. If
no indicator is specified, or if the indicator is non-zero the entry will be reiected. Otherwise
characters will be accepted and stored into the consecutive locations following the indicator
word, so long as the maximum number of acceptable characters specified in the lower half of
the indicator word is not exceeded.

When all characters have been entered, the upper half of the indicator word will be set non­
zero by storing the number of characters entered. If the maximum number of characters ac­
ceptable is violated the operator will be so informed and the indicator left as zero.

The program accepting unsolicited entries interrogates the indicator whenever it is interested
in accommodating an unsolicited entry and resets the indicator to zero to permit additional
unsolici ted en tries.

Indicator Maximum number of characters acceptable Indicator word

Cl C2 C3 C4 C5 characte1'S
C6 C7

(2) Input Format

Unsolicited entries are begun by entering Pxx 0 to describe the program addressed (where
xx is the appropriate octal coded program number). If an entry is unacceptable to the addressee,
a printout will so inform the operator. Otherwise the characters comprising the entry may be
entered.

Response to input requests made by ACCEPT is addressed by entering Dxx 0 to describe
the entry' in the delay table (where Dxx is the identifie~ printed as part of the ACCEPT Dxx

output).

c. CHARACTER ACCEPTANCE

The characters accepted from operator type-in will be stored left-justified, 5 characters per
word into the buffer spe~ified. If a number of characteliS greater than "no. of characters"
parameter applicable is entered, the entry will be rejected with explanatory print-out by REX.
The operator may then again attempt entry.

All characters typed (excepting carriage return-04-and backspace-77) will be entered into the
buffer. Each character will be inspected to see if it is 57, the stop character, or 77, the
backspace character. If 57, the character will be counted and stored and the accept mode
terminated. If 77, the last preceding character will be erased from the buffer. The 77 will not
be stored. Three consecutive 77's will cause the entire entry to be er-ased.

Unused character positions in the last buffer word into which characters are stored will be
set to Fieldata master spaces (binary zeros). The number of characters should therefore
be a multiple of 5 to include trailing spaces.

2-21

3. EXECUTIVE CONTROL

The section which follows will describe the table areas required by REX. Executive functions will
be generally described with a detailed explanation of parameter requirements and other information

which the user of REX would require.

A. Tables and Storage Areas

1. THE EXECUTIVE ENTRY TABLE

The entrance to REX routines will be recorded in the Executive Entry Table occupying octal

core memory locations 140-146 inclusive. A worker program may enter by executing an indirect
arithmetic return jump (64) to the appropriate half word in the table.

When SPURT input/output and executive-oriented mnemonics are used, entrance linkage will be
generated and need not concern the user.

EXECUTIVE ENTRY TABLE

ADDRESS UPPER HALF LOWER HALF

140 A B

141 C D

142 E F

143 G H

144 J

145 K L

146 M

3-1

3-2

ENTRY

A

B

C

D

E

F

G

H

J

K

L

M

USE

All standard peripheral input/output requests (not console)

Input/ output reques t status interrogation (CKST AT operator).

Temporary release of control to REX. (REX. TAKEOVER operator).

REX Translation Routine (TYPEC entry for encoding.)

Console requests, STOPRUN and TERMINATE operators, internal load requests.

Servo lockout release.

Fetch communication interrupt.

Exchange present position for a marked return point.

REX internal use. Entry to error message routine.

Program - submitted utility requests and Initialization of Real-Time Program.

Enter routine to set Interval-timer.

Not assigned.

Not assigned.

2. STANDARD iNFORMA TiON MAiNTAiNED BY REX

a. DATE

The address of today's date will be maintained in the lower half of memory location 00146.
The date will consist of year and day. Days will be numbered consecutively starting with

1 on January first. Entries are in Fieldata code, and the format of the whole word addressed
by the lower portion of 00146 is:

yy ddd

year day

The above is a suggested format. The date will be called for by REX as part of the initializa­
tion load and some other five-digit Fieldata format may be substituted.

b. TIME

REX will answer day clock interrupts and maintain the time in hours, minutes and 30 second
indicator in memory location 00147.

The time will be stored in Fieldata code. When the 30 second indicator is 0, the Fieldata

space (OS will be stored in the right-most 6 bits. When the 30 second indicator is 1, the
Fieldata character for plus (42) will be stored.

ADDRESS CONTENTS

00147 hh mm

hours minutes 3D-second ind icator

3. THE EXECUTIVE ADDENDUM

Every .program to be controlled by REX will be assigned a variable length storage adjacent to
and preceding the program. This erea will be referred to as an executive addendum. The use of
areas within the executive addendum is explained in figure 4. The addendum is used by REX to
implement control over a running program. It provides for the storage of operational registers
when ap!'ogram is interrupted. B-registers at time of input/output requesti control indicators
relative to the operating status of the program, and buffers to accommodate console typewriter
input/output requests have storage areas provided in the addendum. Reference will be made to

the addendum in describing tho se routines which utilize addendum areas. Only those entries
which are of imm ediate concern to the user are fully described. The remaining descriptions are
included for general information.

The responsibility of the programmer in defining this area is to specify the numbet of addendum

storage elements which will be required. Section VI, PROGRAM PREP ARATION will clarify this
responsibility.

4. UTILITY REQUEST TABLE

a. The REX Utility Request Table is for internal use by REX and provides for the orderly sub­

mission of utility requests. The area assigned consists of one location which describes the
space available. This is immediately followed by table entries of variable length. See figure

5. Requests are stored until honored by REX. The user will not ordinarily be concerned with
entries to the Utility Request Table. Requests will be stored by REX in response to operator
entry or the submission of a packet. The user will be required to access the table only when
he makes use of a Site Utility Routine and the necessary procedures will be described in that
section.

The table may be searched by scanning successive function codes using count (N) of first

function to skip over parameters of that function to the next fun-ction. The search may be

terminated by testing for the start of the inactive area (the address indicated in lower half
of word zero).

b. TABLE ENTRY FORMAT

Utility requests may be entered in the table through the console typewriter or by an' internal
. request effected by the submission of a packet.

(1) Console Requests

Utility requests via the console are accepted by Console Controi which generates an entry

for the utility table whenever the function description is valid, maximum permissible character
count is not exceeded, and the field format is acceptable. A field is a variable string of
characters describing a particular parameter and is terminated by the special character 0
(Fieldata 76). Characters within a field are right justified. The character <D (Fieldata
57) which. terminates an entry, also terminates the current field.

An entry may be typed in the following format:

PC 0 230 0 7770 0 0 4 0 P 1 <D

2 3 4 5 6

This is a request to print core (field 1), from 00230 to 00777 (field 2 and 3), in octal (field 4),
on printer 1 (field 6), which is on channel 4 (field 5). This example is entered in the table re­
presented in figure 5.

3-3

WORD
(OCTAL)29

o

2

3

4

S

6

7

*

EXECUTIVE ADDENDUM

15 14 o

Lost Control Indicator (LCI) P-Register (B7)
1\

(Bl) (B2) J

(B3) (B4) (
(B5) (B6) (

(A)) (Q)

Program I/O Bound (Queue Full at List Time)

Label of Submitted I/O Request Place to go (PTG) Storage Element Assigned
\

14 - Word Table for Linking
I

- -........ ~ -f ~) -
~--.J"- - F

t 24

2S

26

27

30

31

32

33

34

3S

36

37

40

SS

56

S7

60

61

62

63

3-4

-

-I/O Request with Associated CKSTAT

(Q) at TYPEC Submission

(A) at TYPEC Submission

(B6) at TYPEC Submission (B7) at TYP EC Submission

Current Address - TYPEC Save Code - TYP EC

Built-Up TYPEC Code

Character Count 1-5

* Assigned Program Number

Total Character Count

* Addendum Base + 408

Temporary Storage Transdata Address - Exit After Submission

~

14-Word Buffer for Accomodation of Generated TYPEC
Messages and for Absorption of TYP ET Buffers from
Submitting Program. A Maximum of 70 Characters can
be A mmod ed.

Overflow Storage Overflow Storage

Channel A Servo Lock-Out by Sel ect Bit

Count of Storage Elements Started
25-Voluntary

Seij

Ordering Count of 1/9 Requests Submitted

Channel B Servo Lock-Out, etc.

Count of Storage Elements C'ompleted

A"titi,..C!C! nf PT~ hoin" 'Annitn'o~ fn", 1 C!t rot"rn {('In,
•• _"" """ b , """,. ,&W"'" ."" ... ,1' \V,"'" ,

Figure 4.

}

j

I

COMMENTS

Lost Control Re-Entry
(LCR)

14 I/O Request can be
Accommodated Before use
of CKSTAT is Required
to Free Slot in Table.

Since REXENCODE
Operates at Program's
Priority, LCR Module
cannot be used at
TYPEC Time.

TYPET Request

t - Terminate Program
if set. Operator Re­
sponse is Recorded
by Master Bit Scheme.

s - Program in Suspended
condition if Set.

E X E CUT I V E ADD END U M (Cont'd)

WORD
(OCTAL) 29 15 14 o

64

65

66

67

70

71

72

73

74

75

76

SEG
n

SEG
2

SEG
1

• Number of !l0 Storage E!ements Specified I • Address of E!R I
Element Status Indicator Exit Address or Time

(Bl) - at CKSTAT Time (B2)

(e3} (84)

)
~ __________ ~(B~5) __________ ~ __________ ~(~B6~) ________ ~11

I/O Routine (or REX) Generated Status Word

I> Error Address (EA) Normal Completion (done)

(Bl) - at I/O Request Time (B2)

(93) (B4)

(B5) (B6-)

Addendum Base Address Address of I/O Request j

• Designates Entries made by Loader Initialization Routine

J
Loader Places Zeros in Remainder of Addendum.

\ ,

Last Addendum Storage Element
)

29X
28

1 Segment Length Address to be used as Current Base } MIT Number Segment Number T2 0
5

~ - - -- -
o

Segment Length Address to be used as Current Base }

o 0 0 0 Segment Number 2 5 0

~~L-_________ S~eg~m_en_t_L_e_ng~th ________ ~ _____ A_d_d_re_ss_t_o_b_e_u_sp_d_a_s_C_ur_re_n_t_B_as_e ____ ~}
D rum Address

Executive Information Region

Program Coding

Figure 4.

COMMENTS

Addendum Storage
Element

Addition Addendum
Storage Elements as
Specified in EIR of
Program.

x - Source Indicator
10 - Drum
00 - Magnetic Tape
Program From MIT,
Segment not Drum
Stored.

Program from othei Tape J

Segment Not Drum Stored

Segment is Drum-Stored
y = 1 if MOdified to Running
Form, if not Modified, y= S.

3-5

3-6

(2) Program Requests

An entry on the utility table made as a result of the submission of a packet by an operating
program will result in octal information rather than Fieldata characters arranged in fields.
This will cause the operation header to be entered followed by the address of the packet.
The digits comprising the header and the packet address will be added to N as in console
entry.

5. DELAYED RESPONSE TABLE

The delayed response table is used internally by REX. The table contains 2 word items relative

to solicitations directed to the operator. Entries in this table are the result of either program
solicitation of operator response by use of ACCEPT, or a REX solicitation in connection with
an interlock error from an input/output initiation.

These solicitations are automatically assigned a slot in the table in order to avoid excessive

processing delays within Console Control. As explained in the Console Control description, an
identifier (Dxx) is typed out with solicitations and eventual response is to this identifier. Dxx,
in effect, becomes the function code of the computer operator response.

The delay table will be monitored so that entries in the table which have not been responded

to within a fixed time period will again be brought to the operator's attention. If the entry
remains unused at the end of a second period, the delay entry will be automatically answered.
Entries related to interlock errors will be answered to cause reinitiation; entries related to
accept requests will be returned with one arbitrary character to the requesting program. That
character will be <D Fieldata 57.

6. INTERRUPT ENTRANCES

Core memory locations 00020-00035, 00040-00055, and 00060-00075 are the interrupt entrance
registers. When an interrupt occurs the next instruction to be executed is that contained in the
interrupt entrance register associated with the channel and type of interrupt. The use of these
registers is restricted to REX.

w
I

"'-..J

WORD

o

2

UTILITY REQU EST TABLE

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1.2 11 10 9 8 7 61 5 4 3 2
number of words available for new entries 1_ '.;;.;...,;-n.;...ex-t-e-nt-ry-s-t-ar-ti-n~-: a-d-d-re-ss------..

1--__ Used by UTLCNTRL , __ ---'-1_ n '--']--f-un-c-tj-on-co-d-e ---I

1 0

parameters comprising entry
~-------------.----------~------- ------

Term ination code for first entry ____ ~ l-L-_5 ___ 7_---I

~ - ~ --

Sample Entry

Parameter for UTLCNTR L I 5 1 0
-

0 0 6 2 6 3 6 0 0 (76)
- -

0 0 6 7 6 7 6 7 0

0 0 0 0 0 0 2 4 0

0 0 0 0 0 0 6 4 0

0 0 0 0 2 5 6 1 ID (57)

F;gure 5.

COMMI:NT

First entry.
n - number of

sebsequent words
in en try

SubsequE~nt entries

{
, 10 - rC function code
: 5 - no. of subsequent wds

230 - beginning address

777 - fina I address

o - octal

4 - channe I

P 1 - p r i n te r 1

3-8

7. COMM UNIC ATION INTERRUPT TAB LE

The real-time program must specify the memory set aside for storing communication interrupts
which occur with REX or the real-time interrupt analysis subroutine in control. This specifica­
tion is part of the initialization packet by which the real-time program describes to REX char­

acteristics of its particular organization.

Interrupts are stored in communication interrupt tables as one word entries. The control of the
specified table is left to REX which passes stored interrupts upon discovery in the switcher
or upon request by the real-time program. See figure 6.

8. TIME-TABLE

REX will service a time-table to activate routines at specified times if this is assigned by the

real-time program. It consists of a control word and one or more entries.

Search period Table length Contr 01 Word

Starting Address of routine Activation time Table Entry

~ -------- ~
14 13 12 11 9 8 7 6 5 4 3 2 1 0

tens units tens units SEC

T'----------~--------~--------------~-----------~ Hours Minutes 30 second
indicator

0= first half Set to 1 by R EX when
entry is used. 1 = second half

Search period is the desired interval between REX inspections. It is specified in units of 30

seconds. For example, a value of 4 would cause the table to be inspected every 2 minutes.
Table length represents the number of locations to be inspected.

Each time the table is inspected REX will look at all entries seeking times equal to or less
than present time. The starting address associated with each qualifying time will be marked
as a return point. If an addendum storage element in which to mark the return point is not avail­
able, REX will pass over the entry during this search. Attempts to mark a return point will con­
tinue at each subsequent day-clock interrupt (regardless of search period) until a return point
is marked. Failure to find a storage element will not cause addendum overflow.

Processed entries will be identified by setting bit position 14 to binary 1.

B. Standard Peripheral Input/Output

1. THE INPUT/OUTPUT REQUEST

A program requests input/output functions by an indirect arithmetic return jump to the address
contained in the upper half of word 1,40. The jump instruction will be followed by a variable
number of adjacent parameter words.

COMMUNrCATION INTERRUPT TABLE

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address of next interrupt out Address to store next interrupt in

~
----- 1--------

End of table (WI) Start of table (W)
1------

No. of interrupts currently stored Address of RTIAS entry applicable

W~~-------------------------------------

Storage Area

Wl~~--.----------------.--------------~
One such table would exist lor each category 01 interrupt (A commo.n stortJlle area millht be defined lor dillerent
kinds 01 Interrupts. _ This would have ·the ellect 01 eliminating the REX distinction betwe ell cateliorles).

Figure 6.

Within REX

Within Rea I
Time Program

3-10

2. STANDARD PARAMETERS

A standard format has been established for input/output request parameters. It is applicable,
with minor variations, to all peripherals except the console. The entry to REX and the proper
parameters may be most convienently inserted within program coding by the use of SPURT opera­

tors, their function, and their relation to REX are described in the SPURT manual under SPURT

INPUT- OUTPUT OPERATIONS ASSOCIATED WITH THE REAL TIME EXECUTIVE ROUTINE.

N

29

1

29
1

LINE 1

LINE 2

LIN E 3

Function Word

24 20 15 14

C P

23 21 18 15 14

1 0, 3 Sn XXXXX
23 21 18 15 14

1 0 K Sn yyyyy

A Set Interrupt Lockout Return Jump to the Executive Input/Output Routine entry.
(See Executive Entry Table).

Specifies the function to be performed by peripheral equipment. A beginning drum
address, UNISERVO number, or special information peculiar to the equipment type

is specified. (SPURT output inserts channel number into bit positions 4-7 where
applicable for use by the loader).

N, C, and P specify information necessary to executive input/output routines. N
is the number of parameter words excluding the return jump. C is the channel on
which the function is to be performed. P will contain a code defining the type of
peripheral addressed prior to program load time.

p PERIPHERAL ADDRESSED

Drum

2 Disc

3 UNISERVO lIa Magnetic Tape.

4 Paper Tape Reader

5 H igh.Speed Printer

6 Card Reader

7 Card Punch

10 IBM Compatible Magnetic Tape.

11 Paper Ta-pe Punch

12 UNISERVO III Magnetic Tape

LINE 4

LINE 5

At load time (when loading from complex relative format only) an identification
assigned to the program in which the parameters appear is substituted for the peri­

pheral type.

This line consists of a fixed portion, which is an instruction, that will be executed

by the REX input/output routine. The buffer control word contained in the memory
location represented by XXXXX + Bn will be brought to the A register by the execu­

tion of this instruction.

Similar to LINE 4. The search identifier will be brought to the A re.gister from the
memory location represented by YYYYY + B (with variable K designator) by the

execution of this instruction.

Lines 1 through 3 are always present. Lines 4 and 5 are optional since one or both may be un­

necessary for some functions such as a servo rewind. If words are present they must be in the

form and order shown.

3. REGISTER REFERENCES

Only B1 through B6 may be referenced in a parameter packet. REX will use registers A, Q, and

B7 with no provision for storage of values prior to submission of the input/output request.

Once a request has been submitted the parameter words cannot be altered in memory. The ap­
propriate REX routines will access these words relative to the address supplied by the return
jump instruction. They may, therefore, be changed only when request completion has been as­
certained. One or several additional requests may be submitted by changing the values of regis- .

ters Bl through B6, as this will not affect the parameter word values. The determination of re­

quest completion is explained under STATUS CH ECKING.

4. INPUT/OUTPUT SUPERVISION

a. LISTING

When a request is submitted by a worker program the packet address will be placed on a
request queue associated with the channel. Index-registers 1 through 6 will be saved within

the· submitting program's executive addendum in a storage element assigned to this particular
request. Two queues will be maintained for each channel; one for real-time requests, the
other for batch processor requests. Whenever a real-time request is queued a channel-critical

indicator will be set. The capacity of the queues will depend on the type of peripheral equip­
ment on the channel. When the queue for a channel is full, any program attempting to submit

a request on that channel will be momentarily suspended until its request can be queued.
Queues will be sufficiently large to make this condition infrequent.

For each program a count will be maintained and assigned to input/output requests as sub­
mission sequence. This order controls the use of return points among completed requests

and also controls the order of initiation within a priority class. Priority amoQ,g input/output
requests will apply only to the real-time program and is optional. When a request is sub­

mitted the B register specified in the REAL-TIME INITIALIZATION TABLE may contain
a priority number from 0 to 7. Zer? is the highest priority. Higher priorities will be inserted
in the queue above lesser priority requests and will consequently be initiated first. All batch
program requests will be assigned the same priority without option. The priority code will be

superimposed as the most significant bits of the chronological code.

3-11

3-12

b. INITIATION

After a request is queued, an attempt will be made to initiate the request. If the channel is
busy, control will be returned to the submitting program unless an interrupt has occurred dur­
ing the processing of the request requiring action by the Switcher. If the channel is not busy,

a request will be immediately initiated and control follows the same path.

In order to process input/output requests as quickly as possible, a queued request will nor­

mally be initiated as soon as a channel becomes not busy. An attempt will first be made to
initiate a real-time request on that channe·1. If, however, the real-time queue is empty, a
request from the batch processor queue will be initiated. Whenever a batch processor request
is initiated, the channel--critical indicator will be cleared. Real-time requests will be initiated
in order of submission within the class of priorities. Batch requests will be initiated on a

strict first in-first out basis. When initiation results in successful completion, the status
word associated with the completion will be recorded in the executive addendum of the sub­
mitting program within the storage 'element assigned the completed request.

c. INTERRUPTS

(1) ACTION AT TIME OF OCCURRENCE. Whenever an interrupt condition exists, control
will go to REX by virtue of a return jump instruction loaded in the interrupt entrance regis­

ter. REX will determine the channel on which the interrupt occurred and the type of interrupt
(intern a! or external). This information will be recorded in the interrupt record word.

The program interrupted will be examined next. If REX or the interrupt analysis subroutine

of the real-time program (RTIAS) was interrupted, control will be returned to the point of inter­
ruption. This procedure makes REX and the interrupt analysis subroutine non-suspendible,
and is necessary to prevent a second entry to the interrupted routine.

If the real-time program proper is interrupted, and the channel-critical indicator is set, the
interrupt will be analyzed. If, however, the channel-critical indicator is clear, control will be

returned to the point of interruption without analysis. Interrupts which are not analyzed at
this time will be considered when the Switcher is next entered.

If a batch processor was interrupted, the interrupt will be analyzed. An exception is made to
accommodate an input/output subroutine written to operate in a continuous mode from a single

input/output request if any program other than REX or RTIAS is interrupted. For example, the
card reader input/output subroutine accepts requests to read more than one card. An input/
output operation is continuous whenever an external function is to be initiated upon receipt
of an interrupt signifying successful completion of the previous function without the necessity
of another request. The input/output subroutine will employ a special interrupt entrance which
it will open when in this mode. This action by REX in conjunction with the input/output sub­
routine will enable initiation of the next external function and immediate return of control to
tqe program interrupted.

The time otherwise spent going through the Switcher following analysis of the interrupt will
be saved. These very brief excursions will be with interrupt inhibited.

(2) ANALYSIS. When an interrupt is to be analyzed, the captured value of P, along with at­
interrupt values of A, Q and B1-B7 will be stored in the executive addendum of the interrupted

program, as a lost-control re-entry. A code word defining the type of interrupt will be placed
in the A register and control given to the appropriate input/output subroutine for analysis of
the interrupt.

The input/output subroutine wili analyze the interrupt. It may initiate another external tunc­
tion because of the nature of the request, or because of the occurrence of an error from which
it is attempting to recover. It may find the request satisfactorily completed, or it may find
that it cannot recover from an error which has occurred. In any event, before exiting, it will
place a status word in the accumulator to define the status of the request. REX will interpret

this status word. If satisfactory completion has occurred, control will be given to Input!
Output Initiation for initiation of the next request on the channel. If the request is still in
progress REX will exit to the Switcher. REX takes special action in case of a interlock error

or magnetic tape errors. For other errors the status word is simply stored in the executive
addendum at this time within the storage element assigned this request.

d. ERROR PROCEDURES

When an error condition occurs all practical mechanical recovery measures are taken auto-
matically by REX input,/output subroutines without vlorker program attention. If the error Con~
dition persists it is ultimately reported to the responsible worker program via the status word.

The worker program may wish to engage in further recovery attempts founded in personal
knowledge of file structure or alternate sources of information (logical recovery measures).

The following information pertinent to error recovery will be available in transitory registers:

REGISTER

A

Q (upper)

Q (lower)

B7

CONTENTS

A status word indicative of the type of error.

The address of the input/output request.

The address following the CKSTAT packet (DONE address).

An address aaaaa which refers to a three word area containing B­
register values at the time the request was submitted. This area is

in the following format:

aaaaa

- aaaaa+ 1

aaaaa+ 2

u
Bl

B3

BS

L

B2

B4

B6

In light of mechanical recovery measures already taken, it is extremely unlikely that resub­
mission of the request which precipitated the error will result in recovery and, therefore, re­
submission is not recommended as a worker program action.

(1) INTERLOCK ERRORS. Interlock errors, such as card jams, occurring on any subsystem
during the processing of an input/output request may often be corrected by operator action.
The executive routine will sense these potentially correctable errors, and inform the operator,

3-13

3-14

giving him the cause to the extent that it can be determined, and also the program and channel.
It will then suspend operation of the source queue until operator action is taken. The error­

producing request will remain in its queue positioned for reinitiation. The operator will have
the choice of instructing REX to suspend the program, ignore the error, or reinitiate the re­

quest. By the reply I (ignore) the operator will cause the interlock error to be passed to the
program which submitted the packet in the normal manner via the appropriate error address.
At such time the program knows that operator intervention has been futile or waived, and
any recovery procedure is left to the program. Following the "I" response, the Source queue

is automaticaliy activated and initiation from it is resumed. If the interlock was on a mag­
netic tape subsystem, a logical lock-out is set for the interlocked servo.

(2) NON-INTERLOCK ERRORS Magnetic Tape Subsystem. In event of error a logical servo
lock-out will be set. The request which caused the error will have assigned to it a status
word specifying the error which has occurred. Requests subsequently presented for initia­
tion (including any in the queue at time of error) will be assigned a special status word and
will not be initiated. The special status word assigned will have the following form:

29 23 22 19 18 15 14 6 5 0

0 0 Channel Unit 0 0 0 7 7

where channel and unit uniquely identify the error servo.

Rejection will continue until logical servo lock-out is released. Release is accomplished by

entering the A register with an 8-bit channel-unit designation, setting Q to indicate release

option and executing a SILRJP to L(142), Executive Entry F.

ZERO FILLED -----BI'ChanneI
4

1
3

Unit 0 I

Two release options exist. They are similar in that either will cause the lock-out condition
to be terminated. They differ in treatment of accumulated, rejected requests.

OPTION 1. Jettison accumulated, rejected requests. CKSTAT need not be used for jettisoned
requests. If a jettisoned request has already been interrogated by use of CKST AT,

the return point marked will be erased. In either case, the resultant condition is
as if such requests had never been submitted.

To exercise this option set Q negative.

o P TI ON 2. Do not jettison accumulated rejected requests. If this option is exercised re­

jected requests may, in effect, be recovered. This is because CKSTAT returns
will be via the error address with all information necessary to recreate the

uiiginal at-submission environment.

To exercise this option set Q positive.

REX return will be to the instruction following the SILRJP. Normal operations may be resumed.

Other Subsystems. An error detected will be reported to the responsible program by des­
criptive status word. Initiation of queued requests wiU continue. Logical lock-out w ill not
be used. See SPURT manual for Status Words and their meanings.

C. Standard Peripheral Input/Output Status Checking

1. PURPOSE

The REX CKST AT routine can be called on by a worker program to determine the status of a
submitted input/output request.

a. Return Point Marking

An obvious purpose of the REX CKSTAT routine is to enable the worker program to deter=

mine whether or not a particular input/output operation has been successfull y completed.
The worker program specifies alternative locations to which control may be returned upon
completion of the input/output request, an error address to be honored if the request was
not completed successfully, and a normal address to be honored if the request has been com­
pleted su·ecessfully. The normal address (DONE), is always implied and is the location im­
mediately following the packet generated by the CKSTAT mnemonic operator. The error ad­
dress is specifiable.

b. Return Time Marking.

In addition, the REX CKSTAT routine allows the worker program to specify when control
is next to be returned within itself. Three possibilities are allowed: 1) control will be next
returned to this program only when the particular input/output request being checked has been

completed, 2) control will be next returned when any previously initiated and CKSTAT inter­
rogated request has been completed, or 3) control will next be returned as soon as possible

regardless of the status of any input/output request. In the last instance, control will be

transferred to a particular location indicated in the CKSTAT operator. This alternative allows
the user to transfer control to a location not associated with a previously initiated input/
output request which is specified by the EAS described below.

2. ACTIVATION OF CKSTAT ROUTINE

a. The CKST AT Operator

The CKSTA T mnemonic operator is to be employed by the worker program to check the status
of a previously requested operation. In response to the CKST AT operator a return jump to the
REX CKST AT routine is generated along with the necess ary parameters.

The CKST AT operator with the various parameter en tries and their uses are described in the

SPURT Manual under CKSTAT. The actual packet generated by the SPURT operator takes
the following form:

3-15

3-16

LINE

2

3

t Entry
29 15 14 0

SILJP L(140)

~ _____ UU_UUU ____ ~ _______ tR ____ ~J
29 15 14 0

RL+ 1 EAS

29 15 14 0
A"',.."

ParaHl
meter
Words

4 DONE

LIN E 1 Set interrupt lockout return jump to REX.

LIN E 2 RL is the address of the request being CKST AT interrogated.

LINE 3

LINE 4

EAS indicates the Executive Action Specifier. If this operand is omitted, EAS wil!

be set to the code 00000. If the operand is TAKEOVER, EAS will be set to the code
00001. If a worker program label, it will be set to the allocated address.

EA indicates the error address. Use of STOPRUN or omitting the EA operand will
cause this location to be set to the code 00001.

The address following the packet referred to as DONE is the eventual return ad­
dress to be honored only if the request being checked was completed success­
fully. It must contain a legitimate instruction.

3. EXAMPLES OF CKSTAT USE

An example of CKST AT use is included in the SPURT Manual related to the SPU RT coding.
The three options inferred in the use of the CKST A T operator are explained below.

These uses are illustrated with diagrammatic examples.

(1) When a program needs the result of a particular input/output request and does not want
control until that request has been completed, the programmer should CKST AT that request
and leave EAS blank. Control will not be given to his program again until that input/output

request is completed, and then it will be returned at DONE or EA. (See Example 1, Appendix B).

(2) If a program has reached a point in its processing cycle where it cannot proceed until
some outstanding input/output request has been completed, it may CKST AT a submitted

input/output request (for which CKSTAT has not been used) using TAKEOVER as EAS. (See
Example 2, 'Appendix B). As a result, control is relinquished until anyone of the previously
submitted input/output requests, which have been interregated by a CKSTAT, are completed.

C~) A major use foreseen in designing CKST AT is to accommodate a well organized set of
logically independent "job" subroutines controlled by a master routine .. This master routine
would start a particular job subroutine, the subroutine might submit an input/output request

and need to wait for its completion; it would CKST AT specifying its master routine as EAS.

After the input/output request had been initiated, control would be returned to a label speci­
fied by EAS where a new job and input/output request may be submitted. This sequence of
jobs could continue until there were no more jobs to start, or the worker program's memory

was full, etc. At this point the master program would exit to REX-TAKEOVER (not part of

CKSTAT; an independent operator which acts similarly to TAKEOVER in CKSTAT). This

operator enables REX to return control to any of the job subroutines whose input/output
request is completed. No bookkeeping on the part of the program is necessary for automatic

returns from TAKEOVER. (See Example 3, Appendix B).

4. LOGICAL CONSIDERATIONS

(1) Order of Completion of Requests. Among requests on several channels, the relationship
between submission and completion cannot be predicted. This is because a queue may exist

on one channel at time of submission and not on another, and also because peripherals differ
in speed. Requests on a single channel, however, are initiated and completed in order of
submission (except when the real-time program exercises its priority option, in that case,
initiation is in order of submission within priority class).

(2) Order of Return of Control. Once a program has voluntarily given up control by using

TAKEOVER, completed, CKSTAT interrogated, input/output requests for that program will
be sought. If more than one request qualifies, control will be returned to that first submitted
within the highest priority class.

(3) Checking the Status of an Unsubmitted Request. If CKST AT is used referring to a label

for which no input/output packet has been submitted, control will be returned to EA with a

special status word of zero. If an input/output request is interrogated by a CKSTAT more
than once, second and subsequent returns will be of this type.

(4) No Return Points Marked. If control is relinquished by a batch processor with no marked

return points established, the program will be suspended pending operator intervention.

S. PROGRAMMING CONSIDERA TIONS

(1) An input/output request must be labeled to provide linkage for a subsequent CKST AT.

(2) When a program has no other function to perform, it must relinquish controi by using the
operator REX. TAKEOVER.

(3) All input/output requests must be interrogated by a CKSTAT operator. Requests to the

console printer input/output subroutine are not considered input/output requests, therefore
it is not necessary to CKSTAT console requests.

3-17

w
I
00

ACQUIRE INTERRUPT
FROM STOREO

LIST

RETURN

REAL-TIME
INITIALIZATION

TABLE

REAL-TIME
PROGRAM

(IN ITIATES
COMMUN ICA T IONS

INPUT /OUTPUT)

---t-..... COMMUNICA­
TION

INTERRUPT
TABLE

(STORED
INTERRUPTS)

COMMUNICATIONS INPUT/OUTPUT

t .

IS INTERRUPTED
PROGRAM S USPEND1BLE
AND IS RTP ACCEPTING

INTERRUPTS?

NO

STORE
INTERRUPT

WORD

I
[REMOVE
LOCKOUT]

~ ,

YES

ESTABLIS.g
LOST CONTROL

RE-ENTRY

[REMOVE JOCKOUT]

........ I~T:ERR~P:J:.
HH HHHANAill¥s.isIHHl H
:::: :::ci:ir..:c~i:i:T.:i~jc:::: :: :::: :::Q~~~~';":i::':I~~:::: ::
HH HHlHHcR1tliAsaHHlHHl H

1111II1I111111111111111111111111111111111

ilIllWlljjjjljjljjjjjjjjjjljjljljjljj jl

Figure 7.

COMMUNICATIONS
CONTROL UNIT

(CCU)

INTERRUPTS
[LOCKOUT SET]

....... ______ EXTERNAL ---I

J
NTERNAL

INPUT

ACTIVATE ~f
CHANNEL fo-II

INPUT/OUTPUT I
~----------~ ~INTERNAL

OUTPUT

D. Communication Input/Output

Programming requirements for communications input/output will depend upon the type and configura­
tion of the equipment for each installation. REX will provide optional programming in the form of

generalized routines where applicable.

Figure 7 is a flow diagram of the major paths involving REX communications input/output. Input/
output operations are initiated by the Real-Time Program. The operations following initiation are,
in most cases, controlled by values contained within the Real-Time Initialization Table which is
described in the section on Program Preparation.

1. COMMUNICATION INTERRUPTS

REX action at the time of interrupt will depend upon the type of interrupt.

a. INTERNAL INTERRUPT - INPUT

It is recommended that the use of this type of interrupt be limited to signalling the presence
of segments of character trains of indeterminate length, where the entire character train is

too long to be accommodated in a single buffer. Following this type of interrupt, REX will
activate channel input logic, save operational registers A, B6, and B7, .set B7 to channel
number and trans fer control to a search routine at the address specified in the Real-Time
Initialization Table. Operational registers other than those saved by REX must be restored
to at-entry values before exit if they are needed. Two options exist at this point.

(1) The user may code his own search routine. This will permit an evaluation of the impor-..
tance of the interrupts. Some interrupts may be discarded at this point; this will obviate the
need for presentation of interrupts to a RTIAS.

(2) The user may utilize the General Pu rp,?se Search Routine provided as a generalized rou­
tine. (See General Purpose Search Routine for description and entry requirements.) This rou­

tine will perform the following functions:

(a) Inspect Buffer Control Registers (BCR) on a specified channel in quest of a terminated
Buffer Control Word (BCW).

(b) Access the upper half of the word immediately following the term inated buffer. This
half word will be considered a "linking" address at which .a substitute BCW defining
an alternate buffer will be found. The real-time program is responsible Jor maintain.,
ing t'linkihg" addresses and/or substitute Buffer Control Words.

(c) Extract the substitute BCW and store it to the BCR thereby overlaying the terminated

BCW.

When an interrupt word is to be synthesized upon exit from the first option, or when­
ever exit is made from the second option, REX will expect B7 to contain a value to
be placed in the lower portion of a synthesized interrupt word. REX will synthesize
an Interrupt word comprised of time of occurrence in the upper half and the contents

of B7 in the lower half. B7 could be an increment which would access the terminated
BCR when added to a base address.

3-19

3-20

(3) If the interrupt is disposed of by the search routine, REX will expect B7 to contain 00000.

REX exit will be to the point of interrupt.

b. INTERNAL INTERRUPT-OUTPUT

An interrupt of this type may be used to signal the termination of either poll or message out­
put buffers. Foliowing this type of interrupt, REX will activate channel output logic, g"ave

operational registers A, B6,. and B7, set B7 to channel number, and transfer control to the

search routine at the address specified in the Real-Time Initialization Table. Operational
registers other than those saved by REX must be restored to at-entry values before exit if
they are needed. Two options will exist at this point as described above for Internal Interrupt-

Input.

c. EXTERNAL INTERRUPT

It is recommended that whenever possible external interrupt be used to signal input completion,

poll completion or message output completion. External Interrupt is accompanied by a hard­

ware-generated interrupt word which contains the address of the BeR in use. No search is

requiredfJ

At time of interrupt REX will remove the hardware-generated intenupt word from the data lines.

2. SUBMISSION OF INTERRUPTS.

Once an interrupt word is available REX will determine if the interrupted program is suspend­
ible. Two routines are permanently non-suspendible: they are REX and the Interrupt Analysis
Subroutine of the Real-Time Program (RTIAS). The Real-Time Program itself is selectively
non-suspendible depending upon values contained in the indicators in the Real-Time Initializa­

tion Table. These indicators may determine that a particular category of communication in­
terrupt, or all communications interrupts are not wanted at this time.

If the program is suspendible, REX will establish a lost-control re-entry for the program and
transfer control to the appropriate Real-Time Interrupt Analysis Subroutine. (See Real-Time

Initialization Table.) The A register will contain the interrupt word and Bl will contain a
count of interrupts of a similar kind. Before transfering control to the RTIAS, REX will re­
move the interrupt lock-out which has been set since the time of the interrupt.

If the interrupted program is non-suspendible, REX will record the interrupt word in the Com­

munication Interrupt Table. The lock-out established at the time of interrupt will be removed
and control will be returned to t..he point of interrupt.

3. ACQUISITION OF STORED INTERRUPTS,

The Real-Time Program may obtain a stored communication interrupt from the Communication
Interrupt Table. The Acquisition Routine is entered by return jump (SILR]P) to the upper
portion of word 143 (entry G of the Executive Entry Table). The type of interrupt may be
specified as follows:

Bl set to: Interrupt Requested:

o Internal - Input

1 Internal- Output

2 Exte:rnal

Control will be returned to the instruction following the return jump. The register values that
will exist at this time are:

A will contain the interrupt; or if register A is zero there were no interrupts of
this type. The oldest interrupt will be presented.

Bl will contain a count of the remaining stored interrupts of the type requested.

4. INTERRUPT ANALYSIS BY THE REAL-TIME PROGRAM.

The real-time program must provide a closed subroutine (RTIAS) to analyze interrupts occuring
on communication channels. The presentation of an interrupt to this routine may occur at time of
interrupt or upon ·detection of an interrupt dming an excursion through the Switcher.

a. Required Action of RTIAS

This subroutine must assume responsibility for interrupts presented to it. T he functions
performed by RTIAS may be as simple as setting a bit to show a particular ceU ready for
output, or as complex as entering an input buffer, analyzing the importance of the input mes­
sage and, as a result of this analysis, making an entry on one of a set of priority-oriented

task queues.

If the interrupt signalled the presence of a segment of as indeterminate character train (Internal
Interrupt _ Input), this subroutine will be responsible for taking action necessary to assure
that alternate buffering will exist at next interrupt. See Examples 4 and 5 of ApPENDIX B
for suggested schemes employing one buffer and two buffers for a central ceu.

b. Optional Action by RTIAS

The RTIAS may submit input/output requests. It may also check its addendum to see if a lost
control re-entry exists (saved P register of Executive Addendum not equal to zero).

If a lost control re-entry does not exist, the subroutine may create one by storing desired reg­
ister values to the appropriate addendum fields. Some routine within the real-time program
may be activated in this way without waiting for an input/output completion to regain control.
Whether or not a lost control re-entry is created, exit must be to the address defined by REX
entry.

5. THE GENERAL PURPOSE SEARCH.

The REX user will be provided with a general purpose search subroutine for optional inclusion
within the real-time program. This subroutine will be capable of locating terminated buffer
control words resulting in either input or output internal interrupts. It will search apy channel
using either of two search options.

Option 1 - Seek lower half of BCW greater than upper half.

Option 2 - Perform repeated masked comparison on the specified number of low-order
bits of e8.ch BCW seeking equality with search key.

3-21

3-22

Option 1 is self explanatory. An illustration of how option 2 is related to buffer length and
location is presented as Example 6, APPENDIX B.

a. Operation.

For each channel to be searched GPS will be modified to include 4 parameters: number of
Communication Control Units, base address of CCU channel group, search key and search

mask. Absence of the iast two wiH impiy L >·U search.

Input Interrupt - GPS will inspect the input BCR of e.ach CCU comprising the channel group.
The search option dictated by channel parameters will be used. Inspection will start with the
BCR having the lowest address and proceed through that having the highest. One comparison

for each CCU is required.

Output Interrupt - GPS will treat all units on a channel as if they were a 5-level TFD CCU

(the reason for this will become apparent when arrangement of BCRs is discussed). The search
may require, in the worst case, three comparisons for each CCU. The search option dictated
by channel parameters will be used to inspect buffer control registers according to the fol­

lowing plan:

1. Inspect all Output Buffer Control Registers

2. Inspect all Poll Buffer Control Registers

3. Inspect all "Special" Buffer Control Registers

In each case inspection will start with that BCR having the lowest address and continue
thiOugh that having the highest. A find at any time, of course, terminates the search.

b. Choice of Search Option.

If the mean number of comparisons per find is greater than five 1 option two should be used.
If less than or equal to 5, option one should be used.

c. Special Search

Personalized search subroutines tailored to peculiarities of a particular system may be sub­
stituted for GPS as long as REX interface rules are observed.

d. Arrangement of Buffer Control Registers.

Each CCU will require four contiguous locations.

CCU TYPE

CCU-5-TFD

(telegraphic 5-level

full duplex Subsystem)

ADD R ES S

*00

*01

*10

*11

USE

Poll

Special Poll Termination

Output

Input

CCU TY P E ADDRESS USE

CCU-PLM 00 Not used

01 Not used (Telephone party line

Subsystem) *10 Output and Poll

CCU-7-THD

(Telegraphic 7-level

half duplex Subsystem)

*11

00

01

*10

*11

Input

Not used

Not used

Output

Input

'~Address" represents bit positions 21 and 20 of the externally specified index generated by

the CCU. Combinations marked with an asterisk are the only combinations which the associated

CCU can generate. This implies certain address restrictions. For each of the units listed
above, the Output BCR must be located at an address ending in 2 or 6; the Input BCR must
be located at an address ending in 3 or 7; etc.

To use GPS the following arrangement should be observed. If some other search routine is
incorporated it may dictate the arrangement.

n Poll

n+1 Special Poll Termination

n+2 Output

n+3 Input

n+4 Poll

n+5 Special Poll Termination

n+6 Output

..E ~7 ___ ..!.n~t_
n + 10 Unused
n+ 11 Unused

Channel Group 1 n+ 12 Output and Poll

n+ 13 Input

n+ 14 Unused

n+ 15 Unused

n+16 Output and Poll
n+ 17 Input
---- ------

n+20 Unused
n+21 Unused
n+22 Output
n+23 Input

n represents channel group base address and must be XXXXO or XXXX4.

Channel group 1 would have as its base address 00150n •
o

CCU-5-TFD

Subgroup

CCU-PLM

Subgr:oup

CCU-U-THD

Subgroup

This arrangement of subgroups is predicated on the assumption that "Special" buffers need

not terminate and, therefore. need not cause interrupt. This being the case, no "Unused"

3-23

3-24

locations would be inspected during the output search. The reason "SpeciaH' buffers need not
be used so as to cause interrupt is because either of the conditions forcing their use will, in
itself, cause interrupt. These two conditions are a "Business" reply to a poll transmission
(which means an input -message is on the w.ay) and an error condition which causes poll se­
quence termination and results in external interrupt.

E. Initiation of Interval - Timer Interrupts

REX will provide an interval - timer which may be used by the real-time program to obtain interrupts
as a function of time. The real-time program defines the desired period by expressing it in milli­
seconds in 87. For example, if B7 contained 1001 this would define an interval of 9 milliseconds.
When B7 contains the desired value, the interval - timer is set by a return jump (SILRjP) to the

address specified in the upper portion of word 145 (entry K of the Executive Entry Table).This will
activate a REX routine which will negate any previous timer definition, clear the timer word speci­

fied in the Real-Time Initialization Table, commence timing, and return control following the initiat­
ing return jump. When the timer runs out REX will increment the timer word by 1 and reset the timer.

If the indicator associated with the interval - timer entry to the RTIAS is set to accept interrUpts,
control wiil appear at the specified entry as soon as possible. Priority considerations for the inter­

val - timer are discussed in the Switcher.

Once initiated the above process is continuous. The period may be redefined at any time. Defining a

period of zero in B7 will terminate REX action.

F. Worker Program Voluntary Release Of Control

Several options are provided for conditional, voluntary release of control. These options supplement

the CKST AT operation in determining the logical flow of a program and accomodate contingencies
concerned with this flow.

1. SUSPENSION

StLRJP U(142)

0 5 0 0 0 0 0 0 0 0

The submission of this packet causes REX to remove the requesting program from the switcher
Ust. The program remains suspended untii operator action either restarts or terminates the pro­
gram. The fact of suspension will be typed out along with the P-Register and B registers 1 thru 6.

This packet is generated by SPURT in response to the mnemonic operator REX. STOPRUN.

The effect of this packet is also achieved by an error address of STOPRUN with a CKSTAT operator.

2. TERMINATION

SILRJP U(142)

0 5 0 0 0 0 0 0 0 1
I

The submission of this packet causes REX to remove the requesting program from all tables and
queues and releases the facilities assigned to the program. This operator is the normal means of

11" indicating a complete run. This packet is generated by SPURT in response to the mnemon,ic

operator REX . TERMRUN.

3. TEMPORARY RELEASE.

SILRJP U(141)

This instruction is generated by SPURT in response to the mnemonic operator REX. TAKEOVER.
The operator is used to release control until some previously submitted request is completed and
the associated return point is eligible for control.

The effect of this instruction is also achieved by an EAS parameter of T AKEOVE R with a CKST AT
operator. The order of returning control to completed return points is described under Standard

Peripheral Input/Output.

4. EXCHANGE

SILRJP L(143)

This operator allows a program which can proceed on the current path to trade its current posi­

tion for a marked return point which is elgible for control. If no such return points exist when the
proposal to trade is made the requesting program retains control one line beyond this instruction.

The real-time program may assign a priority to each input/output request; this priority is reflected
in the order in which marked return points are used. The real-time program may desire to ex­
change the current position for a return point associated with a higher priority job. In this c~se
the real-time program must, if exercising the priority 'option, set the priority B-register specified
in the Real-Time Initialization Table to a number 0 thru 7 before an exchange, so that only
marked return points associated with a higher priority task (lower number) will be considered.

The value set in the B-register is the priority of an acceptable trade. Thus, if the B-register is
set to 2, the proposed exchange is for a marked return point of priority 0, 1 or 2. Only operational

registers B 1 thru B6 are preserved if an exchan ge is J¥ade. The priority aSSigned the new exchange­
created return point will be the original B-register value assigned.

G. The Switcher

7. PRIORITY CONSIDERATIONS.

The switcher routine provides for sequencing the operation of programs constituting the current

memory mix. Consistent with the principle of expediting the real-time application, the switcher
will settle any competition for priority in favor of the real-time program. Batch processors in
memory will have an order of priority among themselves by virtue of the order in which they are
considered for control. The programs will be arranged so that those with relatively little input/
output time will be operated within input/output time o(a higher ranking prog'ram. Among a given
set of programs the order in which they are considered for control (scanned) will be determined
by the load program, based on a programmer estimate of the perce,ntage of time spent waiting for

3-25

3-26

input/output within a basic processing cycle. A new program to be initiated will be assigned a
rank within the consider.ation order based on the above estimate (the higher the percentage, the

higher the rank).

2. OPERA TION.

The switcher provides the means by wpich REX gives up control. However, before control is

given to a worker program interrupts which occurred during the time non-suspendible routines

were operating must be considered.

Critical interrupts are considered first. As explained previously, critical interrupts result from
a real-time program standard peripheral request in execution, occurrence of an interrupt on a

standard peripheral channel that has a real-time request waiting to be initiated, occurrence of
an interrupt on a standard peripheral channel that has a real-time request waiting to be initiated,

occurrence of an interrupt on a communication channel, or in terval-timer interrupt. Critical in­
terrupts are considered in the following order:

(1) Interval-timer

(2) Communication internal input

(3) Communication Internal Output

(4) Standard Peripheral

(5) Comm unication External

Presentation of interval-timer and communication interrupts may be selectively inhibited by the
real-time program. (See Real-Time Initialization Table.)

After all wanted critical interrupts have been processed, the real-time program will be considered

for control. If a lost control re-entry exists operational registers will be restored and control re­

turned at the stored P value. If the real-time program has not lost control, completed standard

peripheral input/output requests for the real-time program will be examined with respect to the
CKST AT operator. If a completed request exists, control will be returned to the real-time program
at a point determined by its associated CKST AT.

If control cannot be returned to the real-time program in any of the above situations, all non­

critical standard peripheral interrupts will be analyzed at this time. Next the batch processors
will be considered according to the priority scheme described above. For a particular program a
lost control re-entry point will be sought first, and then, if one is not established, completed
input/output requests. Control will be given to the program in these two cases in the same manner
as for the real-time program.

If none of the programs currently in memory can operate, the switcher will be re-entered and the

above procedure repeated until an exit to one of the programs can be achieved.

4. CONTINGENCY CONTROL

Contingency interruptions may occur as the result of machine controlled interrupts, such as fault
and interval-timer interrupts. The overflow of storage areas, the unavailability of peripheral units,
or logical faults within a program are another type of interruption. REX provides routines that will
provide for these interruptions and permits the use of various options.

A. Contingency Interrupts

J. FAULT INTERRUPT

The result of execution of an illegal operation (00 or 77). The address of a fault routine may be
specified in the lower half of word zero of a program's Executive Information Region. If a fault
occurs w!Iile the program is operating, control will be transferred to this address. Operational
registers will be the same as at the time of fault. The value of the P-register when the fault
occurred will be stored in the lower half of word 4 of the program's Executive Information Region.

If no address is supplied, a faulting program will be suspended. A printout noting the suspension

and specifying values in operational registers at the time of fault will be made.

2. INTERVAL-TIMER INTERRUPT

Some of the more obvious uses of interval-timer interrupts are associated with communication
polling in the real-time program. Access to a routine which will maintain this type of interrupt
,_ L1 ____ £ ___ _____ !..:I_..:I !_ .1.1-._ D~_1 'T'! __ T_!L!_1! __ I.! __ 'T'_1-.1_
.l::S ll1CJ.I::J.VJ.C PJ.vvJ.ucu .111 UIC J.'-"'ClJ.-.L J.1UC .Lll.LL.LClJ.J.~"'L.LVl1 .J. ClU.J.C.

The procedures for initiating and maintaining interval-timer interrupts are discussed under Execu­

tive Control (see INITIATION OF INTERVAL-TIMER INTERRUPT~).

4-1

4-2

B. Contingency Diversion of Program Flow

1. ADDENDUM OVERFLOW.

Overflow occurs when a function is requested of REX that requires use of an Addendum Storage
Element and none is available. The entrance to a routine to recover from this contingency may

be specified in word three of the Executive Information Region. Parameters upon entry are:

REGISTER

A

B1-B6

B7

CONTENTS

Zero

Values existing at submission of the request
percipitating overflow.

Address of the request percipitating overflow.

The request has not been listed or initiated. A possible recovery would be to save the address

of the request causing overflow and to use the Exchange Operation to establish a return point.
When control appears at this return point the request may be resubmitted during a later pass

through the switcher.

2. AN EXCESSIVE ACCUMULATION OF INPUT/OUTPUT REQUESTS WITHOUT ASSOCIATED

STA TUS CHECKING.

A program may accumulate a maximum of 14 submitted input/output requests which have not as
yet been interrogated by a CKSTAT. Submission of a fifteenth request will precipitate REX
action as described for addendum overflow. To distinguish between this condition and addendum
overflow, A will be set non-zero. Other registers will be set as previously described.

3. COMMUNICATION INTERRUPT TABLE OVERFLOW.

This contingency applies only to the real-time program. It arises when a communication interrupt
is to be stored in the table specified at real-time initialization and the table is full.

The recovery routine specified by the Real-Time Initialization Table will be entered by SILRJP

with the following register values:

A - interrupt word to be stored
o - internal input

B 1 1 - internal output
2 - external

The recovery routine must operate as a closed subroutine, and must prevent premature reentry
by either operating with interrupt lockout set or employing recursive logic.

C. Operator Contingency Interventions.

Operator entry is required to terminate or restart a suspended program. It is also required in interlock
error situations and may be used to suspend a running program at any time.

1. PROGRAM START

The program specified by the operand XX is to be started (or restarted) at the starting address
or at any specified address with operational registers specified in order P, A, Q, HI thru B7.
Not all operational registers need be specified, but when any are specified the preceding reg­
isters in this sequence must be described.

p A Q Bl B2

format: PS D xxD pppppO aaaaaO qqqO yyyO zzz

XX is program number

2. SUSP END

The program specified is suspended from further operation by this operator entry. It remains in­
active in memory until terminated or restarted by the operator. The status of the program and
operational register contents will be typed out in response to the suspension. This data can be
used to restart the suspended program.

format: SP 0 XX <D

XX is program number

3. TERM INA TION

This function will terminate the designated program whether it is in a suspended or active mode.
If a second operand (R) is included in the type-in, the program will be terminated and then re­

peated.

format for normal termination:

TP 0 XX <D

format for termination and repeat:

TP 0 XX 0 R <D

X X ! 5 P r 09 ra m n u m b e r

4. INTERLOCK RESPONSE

Interlock errors occurring during the processing of an input/output request may often be cor­

rected by operator action. After a type-out by the input/output functional subroutine REX will
type a request for operator response in the form:

REX ADVISE, Pxx, CHyy, Dxx

This requests operator action on the interlock on channel yy, for the request from program xx.

The delay table entry xx has been set up to receive the response and in the interim will free
the console printer. Operator response is by Dxx and may be one of three types.

4-3

a) Dxx 0 F

b) Dx" 0

c) Dxx 0 S

4-4

This entry informs REX the cause of interlock has been remedied
and the request should be reinitiated.

This entry instructs REX to pass the error back to the program in

the same manner as other errors. The program knows that operator
intervention has been futile or waived when its error address is
reached.

This entry imposes an error address of STOPRUN for this input/
output request, frees the channel, and returns control to the pro­
gram. The program wiii be automatically suspended when the
error address is reached in the normal flow.

5. UTILITY SERVICES

The operator or a program may request that REX perform utility functions. Operator request is via the
keyboard while programs submit special parameter packets; the requests will be listed in the Utility
Request Table until executed by the appropriate drum-stored routine. Drum-stored· routines are called
by Utility Control, a drum control program that loads and initiates all REX drum-stored routines.

When the table holding utility requests is full, other requests will be rejected either by informing the
operator when entry is attempted or by temporarily suspending a submitting program.

A. Operator Requests

A function code identifies the action requested. The operands necessary to the function may be en­
tered after the function code is ackno~ledged (typed back without rejection). Format of operands
will be investigated by the activated utility routine after the entire message has been extracted from
the utility request table. If the format is violated the utility routine may either solicit a correct
entry or reject the message requiring a new operator request.

The format for operator requests is described with each function. (See APPENDIX C for general
comments concerning console input/output).

1. INSPECT DRUM

This function provides console output for small blocks of drum storage. Operands specify channel,
initial drum address and the number of consecutive locations to be printed. The contents of drum

locations are interpreted as octal numbers.

format: 10 0 xx 0 aaaaaaaa 0 nn <D ------- ~ ~

2. INSPECT CORE

channel number starting

address

locations

to be typed

(maximum 77)

Identical to ID except printout is from core memory.

format: Ie o aaaaa

starting address

o nn

locations to

be typed

(maximum 77)

5-1

5-2

3. CHANGE DRUM

This function provides the ability to set the contents of specified drum locations. Output on the
console printer shows the contents of the changed locations both before and after. Positive or
negative, decimal or octal, constants may be entered. Decimal constants are of the form:

{-} xxxxxxxxx D

Old contents are printed decimally; if the input was decimal. If input was negative and old con­
tents are negative, they are printed as negative. Octal input results in straight octal output.

A maximum of three consecutive locations may be set with one CD request. The request is ter­
minated with ID immediately after the last constant.

format: CD o XX 0 AAAAAAAA 0 C 0 C
2

0 C
3

ID
~ ~~ ~ ~'-""---'-"
channel for first address first second third con-

magnetic drum to be changed constant constant

4. CHANG-E CORE

Identical to CD except that storage is to core memory.

format: CC

5. PRINT DRUM

o AAAAA o C 1
~

starting address 1st 2nd (maximum 3

constant constant constants)

stant

This request activates a routine to print the contents of blocks of drum storage on the high-speed
printer, or alternately to dump these print images on a magnetic tape one line per record.

The output will be either as Fieldata characters (5 characters per location) or as octal coded
information. The output format is eight words per printer line~ The format is fixed, regardless of
the requested starting address; that is, the left-most location is always an address ending in 0
and the right-most word is the contents of an address ending in 7.

Octal Printer format:

HEADER: LOCATION

1st line YYYYYYYO

o

XXXXX XXXXX

Fieldata Printer format:

HEADER: LOCATION o

1st line YYYYYYYO XXXXX xXxXX

XXXXX XXXXX

7

XXXXX

7

XXXXX XXXXX

In the fieldata format each character is checked for a 77 code which terminates a print line.

Whenever this code is found the former print line is repeated with spaces filled in up to the 77
code. By this process the 77 code appears as a "break" and all characters are printed.

PO

format:

o xx
~
channel

for drum

0 bbbbbbb 0
~
beg inn ing

drumoddress

up to 8

characters

eeeeee

~
ending

drum

address

up to 8

characters

0 y

~
O-octol

format

C -fie Id

data

code

o xz 0 v ID
~~
Output Sxx-set'vo

channel unit

P x-printer

Un it

6. PRINT CORE

Identical to PD except printout is from core memory.

PC 0 bbbbb 0 eeeee

~ ~
beg inning ending

core address core address

0 y 0
~
O-octal

C-fie Id

data

code

xx

~
output

channel

0 v -------­Servo Un it-Sxx

Printer Unit-Px

7. SITE UTILITY

Provision is made for the conveyance of parameters to a utility routine to be activated by Utility
Control. Once activated it will bear the same relationship to REX as do REX utility and load
routines. The entry to any utility routine is by return jump to the first instruction. The address
of the Utility Table will be contained in B1. The first word of the entry which resulted in activa­

tion of the Site Utility routine will be located at (B 1) + 1.

The routine loaded by Utility Control may itself be a control program capable of calling other
utility programs as dictated by the parameters conveyed. A site utility hierarchy may be created
in this way to provide personal utility functions.

The" following limitations apply to site utility routines:

(1) While a site utility routine is being executed no REX routine in the utility or load family
can operate.

(2) The size of the site utility conglomerate in core memory cannot exceed 400D consecu tive
locations, the first of which is that to which entry was initially made.

(3) Site utility may use a maximum of two addendum storage elements.

(4) Site utility is prohibited from making a program utility request of REX.

(5) Before a site utility exits, the function code of the parameter entry must be set to 77.
Exit will be to the address provided by the return jump entry.

5-3

5-4

format:

su 0 • • • • • • • • • •• <D
~

ma xim u m of 77 eha raeters

and 15 fields

8. ADDITIONAL OPERATOR ENTRIES.

Section C of Contingency Control and Sections A and B of Console Control treat of other operator

entries.

8. Program Requests

1. PRINT DRUM

o

2

3

4

This internal request achieves the printout of blocks of drum storage in the format described
under the operator request Print Drum. If EAS is zero the program will remain suspended until
the request is complete. If EAS is an address (not zero), control will be transfered to the speci­

fied address immediately.

6

~

DONE
(contro I here
when requ est
is complete)

4

23

I I 0

EAS

122

20

LChannel for drum
control unit

0 0 1 4 4

5 0

I 6

START ADDRESS

FINAL ADDRESS

14 13 7 4 3 0

CH II
u

--~ ----..--TT output channel output unit

L O-printer output
I-tape output

O-octal output
Iofield data output

o

2

3

2. PRINT CORE

This internal request achieves the printouj of blocks of core storage in the format described
under operator request Print Core. If EAS is zero the program will remain suspended until the
request is complete. If EAS is an address (not zero), control will be transfered to the specified
address immediately.

I
6 4 1 1 0 0 0 1 4 4

14

EAS 1 7

14

START ADDRESS

14

FINAL ADDRESS

0 '4
1
'3

I 17 41
3

I"'U II
vii u

41 I I I I
~--~.----------------------------------~~~~------------.~~==~~~~~==~~~==~

DON E (Control here when
request completed)

O-printer output
I-tape output

L O-octal output
I-field data output

3. ASSISTANCE IN ESTABLISHING RERUN DUMP

Output

Channel

Output Unit

The purpose of this request is to provide REX with information necess ary to establish a rerun

dump.

REX will perform the following actions:

(1) Write onto the drum an image of the core memory assigned to the requesting program.

(2) Compose and write onto the dump servo a bypass sentinel followed by REX facility and
control information.

5-5

o

2

3

4

5

5-6

(3) Write specified peripheral areas onto the dump servo using the core memory of the re­

questing pro gram area as a transfer buffer.

(4) Reload the drll!!l=stored program image, write it onto the dump servo and follow it with

another bypass sentineL

(5) Perform an identifying console type-out.

When control is returned to the requesting program the A register will contain a count of the

number of blocks written onto the dump tape (including bypass sentinels). The Q register will
contain a count of the number of words written (including in"ter-record gaps). If REX could not
perform the requested dump because of a non-static program condition or because of tape error,

A will be set to zero.

a. Format

14

6 4 1 1 0 0 0 1 4 4

114
1 5

14 7 3 0

octal count for dump identifications dump servo chan unit

14

restart address if dump is used I nnnnn
i

23

chan starting address of area one

23

P ending address of area one

- -~ - -- - -
- --""'0.. - -", -- - - - - -

23

chan starting address of area n

23

P ending address of area n

14

number of tape file designs

14

address of tape file design 1 address of tape file design 2

14

address of tape file design n

DONE~contro! returned here when request comp!eted

nnnnn represents the number of peripheral storage areas to be saved. Zero would imply save

none. 77777 would imply save all relocatable area.

P represents peripheral type code: 1 drum, 2 dis.c

File design is the first address of the standard (COBOL) file design.

b. Type-out

Standard Utiliiy

Routine Identifier

RERUN DUMP ccc OF PROG.

Dump

Identification

4. UTILIZATION OF A RERUN. DUMP.

XXXXXXXXXX ON CHyy, Svv

Program PermanenT

id ent i fi cation

A variation of the load type-in (LD), which was explained under Operational Control, will be
used to reload a particular rerun dump. REX will locate the specified dump, reload peripheral
areas, reload core memory, type instructions for mounting tapes (including the program tape if
applicable), position each tape according to the block count specified within its file design and
return control to the restart address. A and Q will be set as at dump time. Format for rerun is as

follows:

LD 0 T 0 ch 0 serve 0 7474747474 0 ccc 0 B <D

ch channel number

ccc dump identification specified in printout

REX will produce a type-out in the following format:

REX MOUNT REEL nn OF X ••••• X ON CHyy, Svv

~ -------
reel nwmber 15 character

file identification

ENTER M WHEN ALL TAPES MOUNTED. ACCEPT Dxx

A console en try of the character M will initiate the rerun.

5-7

6. PROGRAM PREPARATION

"A. Source Language

Worker programs to be run under control of REX may be written in either SPURT language or COBOL,

which is translated to SPURT language during compilation.

Use of SPURT input/output and REX-oriented macros will cause REX-required parameters and entry
jumps to be generated during assembly. Generated parameters are assigned modification codes that

will allow the load program to recognize and suitably alter them when modifying the worker program

to running form.

A programmer may, of course, code parameters and entry jumps in lieu of using the aforementioned
macros. If he does this, he must assume responsibility for modifying these parameters to running

form himself.

B. USE OF JUMP KEYS

Worker programs should not be dependent upon jump key settings. A substitute, unsolicited operator
type-in, is provided.

C. Use of Conditional and Unconditional Stops

Worker programs should not stop the central processor. The following substitutes are provided:

11\ A. ~TT-. .. l,,,,, .. _ .. _______ _ ... __ -._,.1 : ... __ 1& ___ ...:1: __ _____ "' __ !_4- ___ .. __ L! __ 1-. _____ !. ___ ~,!.I,.1 _ ~..I.1

\~I L~ .. v~n ... ~ y~ve.~"'''' ... o.J "'~"'Y"'''U .LLL.L y U.L115 Vp ~O'LV~ ~llL<;;~V<;;UL~VU uy U;:,~U!::. C~ll1CI UI lU~

SPURT mnemonics REX· STOPRUN or ACCEPT.

(2) A worker program may terminate itself by using the SPURT mnemonic REX. TERMRUN.

6-1

6-2

D. Standard Locations

EX ECUTIVE INFORMATION REGION

In order to facilitate exchange of information between worker programs and REX, the first five loca­
tions relative to the initial address of a worker program, or the control segment thereof, are assigned
specific uses. These locations will be referred to as the Executive Information Region. Special ad­
ditional information is required of the real-time program. This information is made available to REX

via an Initialization Table defined by the real-time program as part of its initialization procedure.

EXECUTIVE INFORMATION REGION

WORD UPPER HALF LOWER HALF

Worker program starting address.
Entrance address of fault recovery
routine. (note 1) o

Address of relocatable area No. of Addendum Storage Elements
bounding addresses. (note 2) to be provided. (note 4)

2 not assigned

3
Address of unsol icited operator Entrance address of addendum over-
entry indicator word. flow recovery routine. (note 1)

Starting Address of parameter P-register value at time

I
storage area. (note 3) of fault.

4

NOTES:

1. Optional. If zero, REX will automatically suspend the program pending operator interven G

tion.

2. Inserted. by REX. Bounding core and bounding relocatable drum area addresses are pre­
served by the Loader within a program's addendum. They will remain there until the pro­

gram performs a console type-out of more than 50 characters.

This is word number 548 of the executive addendum (see Executive Addendum). This ad­
dress - 548 will access the first word (word 0) of the addendum. This is associated
with possible RTIAS establishment of a lost control re-entry.

Ending Core I Beginning Core

I I Ending Drum

29 241
Chan Beginning Drum

3. Optional. It is required only if operational parameters are to be conveyed to the program at

load time.

4. An Addendum Storage Element is a 10-word temporary storage within a program's executive
addendum. One element is placed into use each time a program performs one of the follow­

ing -operations:

(1) Submits an input/output request.

(2) Uses ACCEPT

(3) Requests a Real-Time Extension

(4) Requests a Batch Load

(5) Calls a segment

(6) Requests a core or drum memory dump

(7) Has a time table routine started.

An element is released for reuse each tfme the result of -the operation which originally
caused its use is reported to the program. That is, whenever control appears at the DONE
(or, if applicable, ERROR) address associated with the operation.

Consider, for example, a typical input/output sequence. When the request is submitted a
vacant storage element is located. B-register values and bookkeeping information are
saved therein. When the request is processed the routine-generated status word is saved

within the same element. When the status of the request is interrogated, the status word
is reported to the program and the element is freed. (Note, however, that if CKSTAT is
used to mark a return point, the element is not freed but will remain in uSe until request
status is subsequently reported in response to program use of TAKEOVER).

It can readily be seen that if each time a program requested an operation it chose to wait
until that operation was complete before requesting another, only one storage element'
would be required. If the program was more complex, additional elements would be required.

5. Unused fields should be set to zero.

REA L • TIM E I NIT I A LIZ A Tl0 N TAB L E

The purpose of this table is to provide the real-time program with a means by which it may specify
certain options. (See Figure 8.) The table may be thought of as a packet of information which is

conveyed to REX and is preceded by a SILRJP to entry J (lower portion of word 144). When REX
has absorbed the parameters contained within the table, control will be returned following the table.

E. Segm entation

Due to limited core space, it may be necessary for a programmer to break a program into segments.
There must be one control segment and there may be any number of secondary segments. The con­
trol segment will remain in core memory during the entire time a program is running. At any given
time one, and only one, secondary segment may share core memory with the control segment. It will
be adjacent to and immediately following the control segment.

REX will load secondary segments as requested by the program. The SPURT mnemonic "LOAD"

may be used to make requests. Segments will always be called from initial form.

Segment delineation and inter-segment communication are described in the SPURT Programmer's
Reference Manual.

F. Facility Requirements

The facility requirement of a program must be declared by the programmer. For declarative operators
and useage rules see the SPURT Programmer's Reference Manual.

6-3

0\
I

,J::..

WORD

o

2

3

4

5

6

7

8

9

REAL-TIME PROGRAM INITIALIZATION TABLE

,---
is

Entrance to RTIAS for external
interrupt*

IEntrance to RTIAS for
internal input interrupt*

Entrance to RTIAS for internal
output interrupt*

Starting address fo r communication
external interrupt table

Starting address for communication
internal interrupt input table

Starting address for communication
internal interrupt output table

Address of overflow contingency

ENTRANCE TO RTIAS for
Interval-timer Interrupt*

rt address of Sta
ti IT Ie table

tran ce to c 10 sed su bro uti ne to effect En
se arch for internal input interrupt

trance to closed subroutine to effect En
se arch for internal output interrupt

Fi

Fi

Fi

B
pr

Not assigned

nal address for table

nal address for table

nal address for table

register used to indicate I/O request
iority.O implies no priority used.

-

Figure 8. Real-Time Program Initialization Table

0

13

--

• The upper hall word of eB,ch entry is an indicator. If a particular indicator is zero, it means the real-time pro~r8lm will
permit Itself to be suspemded for interrupts of that type. If a particular indicator is non-zero, the real-time program is
currently not permittln~ itself to be suspended for intert'upts of that type. Communication interrupts will be stored by
REX until the indicator is cleared Or until a specific request via executive entry G is made. Interval-timer intorrupts
will be recorded by incrementing the loca.tion immediately precedln~ the interval-timer entry defined In the upper porHom
of word 8. This timer word will therefore contain a count of timer interrupts.

APPENDIX A

BASIC PROGRAM FORMATS

The following conventions are equally applicable to all formats:

(1) All unused words, fields and portions of fields must be filled with binary zero.

(2) Check sums are formed by adding together all words in a block. Full word (30-bit) adds
are performed.

(3) Magnetic tape is written at high density.

'A' T..:I __ 4.!£! __ .L! __ ~._~_. ____ !_. _____ 1- _---; tt'T""'lt. ,......"" -- •• I'~ ___ -.------~~, ... ::- -:-.-;;
\."TJ AUCll .. ,LLA a .. AVll UUVlll1dUVll, ::.U ll d::' r r\VUr\filVl l~ fiIVIC· ., .t" KUUKl\MIVl.t.K ana VA 1 r., ,

is in Fieldata code with left justification.

(5) SPURT places the output number in the library number field.

A-l

A-2

Modification Codes

1. COMPLEX RELA TIVE FORMA T

A six-bit modification code is associated with each· word of a program in complex relative format.
Each instruction word modified will be stored in a location determined by the "storage counter."
This counter will initially be set to the current base and incremented (or reset in accordance
with modification codes) as loading progresses.

(a) Miscellaneous Modifications

00 No modification

01 End of Segment

02 End of Program

(b) Modification by the Current Base

03 Add current base to lower half

04 Add current base to upper half

05 Add current base to upper and lower half

(c) Modification by Control Segment Base

06 Add control segment base to lower half

07 Add control segment base to upper half

10 Add control segment base to upper and lower half

(d) Modification by the Control Segment Base and the Current Base

11 Add current base to lower half and control segment base to upper half

12 Add current base to upper half and control segment to lower half

(e) Changes to the Storage Counter

13 Add the lower half to the counter. Do not store any word. This is for "Reserve"
instruction. No. of locations skipped will be equal to the number in the lower
half of the word.

14 Add the control segment base to the lower half. Set the counter to the new value.
Do not store any word. The words following this code will be stored in the control
segment after modification. This creates the necessary entry tables in the control
segment for intersegment communication.

(f) Modifi.cation of Peripheral Equipment References

15 Channel in bits 4-7, unit in bits 0-3. Substitute assigned channel and unit. Relo­
catable system. If an assignment has not been made, substitute a word of 7's.

16 Same as 15, fixed system.

17 Channel in bits 20-23, peripheral type in bits 15-19. Substitute assigned channel
and change peripheral type to program number. Relocatable system.*

20 Same as 17, fixed system.

21 Channel in bits 20-23. Substitute assigned channel. Add control segment base to
lower half. Relocatable system.*

22 Channel in bits 20-23. Substitute assigned channel. Add control segment base to
lower half. Relocatable system. lit

23 Channel in bits 20-23. Substitute assigned channel. Add current base to lower
half. Relocatable system.*

24 Same as 21, fixed system.

25 Same as 22, fixed system.

26 Same as 23, fixed system.

27 Channel in bits 24-29, drum address in bits 0-23. Relocatable system.

* If channel has not been assigned, substitute channel 17.

2. SIMPLE RELA TIVE FORMA T

A 3-bit modification code is associated with each word of a program in simple relative format.
Each instruction word will be modified and stored in a location determined by the "storage
counter." This counter will initially be set to the assigned base and incremented (or reset in
accordance with modification codes) as loading progresses.

o No modification

1 Add the base address to the lower half.

2 Add the base address to the upper half.

3 Add. the base address to both halves.

4 Execute the instruction (used to reset the storage counter).

5 End of program.

A. Absolute

A program in absolute format is comprised of an Identification Record, one or more Instruction Re­
cords, and an End-of-Program Sentinel.

1. IDENTIFICATION RECORD

7 I 4 I 7 I 4 I 7 Library Number

PROGRAM NAME
(10 characters)

PROGRAMMER

(10 characters)

DATE
(10 characters)

Memory Requirement of Program ~I I 0

7 j 4 I 7 I 4 I 7 Library Number

(9-wd block)

A-3

A-4

2. INSTRUCTION RECORD

Ending core address (U) 8eginn ing core address (L)

Check Sum for following block

Instruction words to be read into the core

memory area delimited by U and L.

Block length = (U - L) + 1

(1) This record is comprised of two blocks; the first of 2 words, the second of any length ..

(2) When outputed by SPURT the length of the second block is less than or equal to 256
words.

3. END-OF-PROGRAM SENTINEL

2 2 3 2 4 1 3

3 2 2 2 2 5 o 5

(2-wd block)

4. STORAGE FORMAT

TAPE STORED DRUM STORED

IDENTIFICATION ~ 9 ~ RECORD

I' {

IDENTIFICATION
RECORD

{ Uo I La
} 2

CHECK SUMO

Uo I La

CHECK SUMO

INSTRUCTION
I ~(Uo- LO)+ 1
~

INSTRUCTION

WORDSO

WORDO

CHECK SUM!

INSTRUCTION

WORDSI

r.-_S_EN_T_I N_E_L __ I} 2

DB = Drum Base
DA = Drum Add ress

DAO = DB + 9

DAI = DAO + 2

~

DA2 = DA 1 + (UO - La) + 1

etc.

Ul I Ll

CHECK SUMI

INSTRUCTION

WORDSI

SENTINEL

~DB

etc.

A drum-stored program occupies a continuous drum area. There are no inter-record gaps or inserts.

A-S

A-6

B. Simple Relative

A program in simple relative format is comprised of an Identification Record, one or more Instruction

Records and an End-of-Program Sentinel.

1. IDENTIFICATION RECORD

7 4 I 7 I 4

Memory Requirement of Program

7 l 4 I 7 I 4

2. INSTRUCTION RECORD

mc, mc
2

mc mc I 12 13

~ --

I

I

7 \

PROGRAM NAME
(10 characters)

I I\v\]"r\lII IL."

(10 characters)

DATE
(10 characters)

7

(9-wd block)

instruction word 1

instruction word 2

--- """""'--

instruction word 50

Check Sum

(56-wd bloc k)

Library number

1 2
Library number

I mc I mc
9 '0

! mc
50

~-- ---

3. END-OF-PROGRAM SENTINEL

4.

1 2 2

1 3

STORAGE FORMA T

TAPE STORED

ID ENTI FICATION

RECORD

INSTRU CTION

RECORD l

}

~I)

INSTRUCTION

RECORD2

INSTRUCTION

RECOR On

SENTINEL I }

3

2

9

56

56

56

2

1 2 4 3

2 2 2 5 o 5

(2-wd block)

DRUM STORED

9\ ----...." DB

.... DAo

IDENTI FICATION

RECORD

INSTRUCTION
56

RECORD l

INSTRUCTION
56

RECORD2

I
etc.

INSTRU CTION
56

RECORDn

DA = Drum Address
DB = Drum Base
DAO = DB + 9

DAl = DAQ + 56

etc.

A drum-stored program occupies a continuous area. There are no inter-record gaps or inserts.

A-7

A-8

C. Complex Relative

A program in complex relative format is comprised of an Identification Record, a Facility Record,

a Segment Description Record (if segmented), a File Description Record (if desired), a Control
Segment Record, one or more Secondary Segment Records (if segmented) and an End-of-Program
Sentinel.

7. IDENTIFICA TION RECORD

7 4 7 4 7 Library number

PROGRAM NAME
(10 characters)

PROGRAMMER
(10 characters)

DATE
(10 characters)

I 3

7 I 4 I 7 I 4 I 7 Library number

(9-wd block)

2. FACILITY RECORD

29 1 2'!21 I!Z 1
0

IZ~o. of return points
4 r3 15

1
14 0

iio. oi segmenis Desired core memory suppiemenl

Length of longest segment I Length of control segment

not assigned

(Fixed requirements)

r4
, End sentinel (binary ones)

0

I

(Relocatable requ irements)

114 End sentinel (binary ones)
0

CHECK SUM

1 I I 1

(1) The record is comprised of one SID-word block.

(2) Program· length of a non-segmented program will appeal' in "Length of control segment"

field.

I

a. Fixed Requirement Entries

FORMAT A

c p

Format A will apply to standard peripheral subsystems without units and communication sub­
systems.

"c" represents channel number.

"p" represents peripheral type code.

FORMAT B

1

23 20

1

'9 15 14 No. of.unjts 9

1 c P require
7

Format B will apply to standard peripheral subsystems with units.

These subsystems are:

(a) Magnetic Tape
(b) Card

(c) Paper Tape
(d) High Speed Printer

/5 N0d of un its 0

esired
4 3 0

channel unit

channel unit

channel unit

"N o. of units required" expresses the minimum number of units of this peripheral type neces­

sary to run the program. "No. of units desired" expresses the maximum number which could
be utilized if available. Both entries are required.

Following the "summary" line will be one "detail" line for each unit. The number of detail
lines must equal "No. of units desired."

b. Relocatable Requirement Entries

FORMAT C

1

23
C 20 1'9 P

15l

No. of words required

No. of words desired

A relocatable drum area requirement will be expressed in Format C. "No. of words required"

defines the minimum number of continguous drum locations necessary to run this p.rogram. "No.

of wOlds de5i,ed" defineS the iii c1xiiliiiiii ii uiii L~i wliil::h l::uu1ct LIi: u i.iliz~u if available. Both

entries are required.

Format B will apply to relocatable standard peripheral subsystems with units.

A-9

3. SEGMENT DESCRIPTION RECORD

Length oj Segment 1

Length of Segment 2

Length of Segment 3

etc.

CHECK SUM

2 2

(1) This record is required for segmented programs only. It will consist of one or more 51D-wd
blocks.

4. FILE DESCRIPTION RECORD

29 3 27 26

3

A-IO

File Label
(15 characters)

19 Peripheral Type 15

End sentinei (binary ones)

CHECK SUM

7 Channel 41 3 Unit 0

Channel Unit

3

(1) This record is optional. If present, it will be comprised of one or more SID-word blocks.

Additional blocks will be of identical format (excluding blocks descriptors).

(2) Each entry will consist of 6 words: 3 text and 3 facility words. It will be assumed that

text is in F'ieldata code. All 15 characters will be typed without inspection.

(3) Facility word 1 will always be considered significant. Facility words 2 and 3 will be

considered significant only if non-zero. If the number of entries is a multiple of 8, the End

sentinel must be omitted.

5. CONTROL SEGMENT RECORD

29
4

29

.....

4

1
26 3/2 0

4

mC
l

24
1

23
mC

2
18

1

'7
mC

3
'2/" mC 4 615

mC
5

Instruction word 1

Instruction word 2

-- ----- ---- - ~ -
Instruction word 5

Instruction word 1

CHECK SUM

4

(1) This record is comprised of one or more 510 word blocks. Each block contains eight,

6-word instruction modules. An instruction module is comprised of one word of modification

codes and 5 instruction words. "mc" represents modification code. "mc " corresponds to 1 .
corresponds to instruction word 1 "mc

2
" to instruction word 2, etc.

(2) Only the first block will bear block descriptors as shown. Subsequent blocks will bear

descriptors of binary zeros.

(3) Non-segmented programs will be marked as control segments.

A-II

6. SECONDARY SEGMENT RECCRD

1

29
5 ~'I~~ ;51'~

If n ;1 2
5

I
Internal format identical to

I
controi segment biocks

L ~ ------ ~ ~
~ - ------ - """"-- -r--.-- - - -

CH ECK SUM

I
n --------t .. ~jl

-!
5 I

I 5

(1) There is one record for each secondary segment. Each record is comprised of one or
more S1D word blocks. The first block of each record will bear block descriptors as shown.
Each subsequent block will bear descriptors of binary zeros.

(2) "n" represents segment number. The first segment of output will be 1, the second 2, etc.

7. END.OF-PROGRAM SENTINEL

1 2 2

I 2 2 2 2 5 o 5

3 2 4 1 3

1 3

(2-wd block)

A-12

01

I

I
J

8. STORAGE FORMA T

TAPE STORED

IDENTI FICATION
RECORD

FACILITY

RECORD

SEGMENT

DESCRIPTION

FILE

DESC R!PTIO N

CONTROL
SEGMENT

(BLOCK 1)

CONTROL
SEGMENT

(BLOCK n)

SECONDARY
SEGMENT 1
(BLOCK 1)

} 9

} 51

I J

} 51

I} 51

} 51

l 51

'------....

} 51

SECONDARY
SEGMENT 1
(BLOCK n)

~-----....

lSI

~_S_E_N T_I_N E_L_ I} 2

9 {

51 {

51 {

51 {

51 {

\

51 {

51 {

51 {

DA = Drum Address
DB = Drum Base

DA = DBO + 9

DA = DA1 + 51

DA = DA2 + 51

etc.

I DENTI FICATION
RECORD

~°Ao
FACILITY

RECORD

40A.
~ I

MODIFI ED
SEGMENT

DESCRIPTION

FILE

DESCRIPTION

CONTROL
SEGMENT etc.

(BLOCK 1)

CONTROL
SEGMENT

(BLOCK n)

SECONDARY
SEGMENT

(BLOCK 1)

SECONDARY
SEGMENT 1
(BLOCK n)

A drum-stored program occupies a continuous area. There are no inter-record gaps or inserts.

A-13

9. SEGMENT DESCRIPTION RECORD WHEN MODiFIED

A-14

2 I I 2

Address relative to drum base, seg 1 Length of Segment 1

Address relative to drum base, seg 2 Length of Segment 2

Address relative to drum base, seg 3 Length of Segment 3

Address relative to drum base, seg 4 Length of Segment 4

Address re lative to drum base, seg 5 Length of Segment 5

Address relative to drum base, seg 6 Length of Segment 6

I

-- -- ----- - ---
CHECK SUM

2 2

(1) "Address relative to drum base" of any record equals the drum address of that record

minus the drum base. It is calculated and inserted into the Segment Description Record at the

time a program is transferred to the drum.

APPENDIX B

E XA MP L E 1. Input/Output Logic fora Program to Read and Summarize a Magnetic Tape.

The purpose of the program is to summarize the inform'ati9h contained on a magnetic tape. The sum­
mary is built up in core memory from two input buffers. One buffer acts as a standby input while the
other 'is being processed. The CKSTAT operators illustrate the use of a blank EAS. The first pass

will include an error exit from the first CKST AT, which is not associated with a previous read re­
quest. REX will supply a status word of zeros and a return to the error address (EA).

-,
PROCESS

B

NO RECORD OF
REQUEST CKSTAT

ON FIRST PASS

___ -0-J,-__ S_ET_AZ __ ...JkV
-.......

ERROR
ROUTINE

B-1

B-2

EXAMPLE 2. Another Method of Performing the Task Illustrated by Example 1 Utilizing the TAKE­

OVER Operator.

The following flow diagram shows the use of CKST AT employing an EAS to return controi to REX
upon completion of either of two read operations. The read into Buffer A is interrogated by a CKST AT.
During the first pass, control is immediately given to a read of Buffer B through switch Av. Switch
A is set so that succeeding passes will go immediately to a TAKEOVER operator. The read of

v
Buffer B is interrogated by a CKSTAT and control is given to REX to await the completion of either
of the two reads. Completion of a read will return control following the CKSTAT which enters a
routine to process the data in the completed buffer a..'1d then initiates a read of new data into the
buffer. A dynamic condition is thereafter established so that REX will control reads to assure com­
pietion. For both reads, EA will go to a commo~ error routine.

PROCESS
A

READ INTO
BUFFER A

CKSTAT
READ A

TO REX
TAKEOVER

DONE

PROCESS
B

SET At

READ INTO I
BUFFER B

CKSTAT
READ B

TO ERROR
ROUTINE

EXAMPL E 3. Diagrammatic Example of a Real-Time Control of Associated Subroutines.

The diagrammatic representation on this page shows a real-time program and a group of associated
subroutines. An interrupt that is presented to the Real-Time Interrupt Analysis Subroutine through
REX will cause the Real-Time Control routine to activate one of the subroutines associated with that
type of interrupt. Subroutine A, for example, may be required to access the drum to acquire informa­
tion for processing. The-subroutine initiates a drum read and then returns control to the control program.

In the meantime, an interrupt presented to Real-Time Control indicates that Subroutine B should be
activated. Subroutine B may be required to write a message to a magnetic tape as part of its pro­
cessing cycle. The tape write is initiated and control is returned to Real-Time Control.

If Real-Time Control has not received an interrupt which would activate some other subroutine, it

will give control to REX to await completion of either the drum read or the tape write that was initated
by Subroutine A or Subroutine B respectively.

Another interrupt may occur which will cause REX to give control to Real-Time Control. Real-Time
Control may activate Subroutine C which will submit a card punch request as part of the processing
cycle. While awaiting completion of this request control is given to Real-Time Control which iil turn

releases control to REX if it has no other subroutine that it may activate at this time.

REX will return control to each subroutine at the DONE address upon completion of the pheripheral
request. Control will be given to Real-Time.Control when the subroutine has completed the process­
ing· cycle. Real-Time Control will either initiate another subroutine or again relinguish control to

REX by a REX· TAKEOVER operator.

The result of the use of CKSTA T in this example is to make REX responsible for all "'bookkeeping"
of input/output requests.

SUBROUTINE COMM U N I CA T 10 N - A PERIPHERALS -
DONE tI EAS --+

REAL- TIME INTERRUPT
ANAL YSIS

t
SUBROUTINE REAL- REX [RELEASES CONTROL - B TIME AT DONE FOR COMPLETED

DONE tI EAS --.
CONTROL -REX INPUT /OUTPUT ~

TAKEOVER
REQUEST]

t
SUBROUTINE

INPUT /OUTPUT FUNCTIONAL
SUBROUTINES - C ,
~- ~ DONE • EAS ---...

------- ~ "- '.. : -.
t)

B-3

B-4

E XAMP L E 4. A scheme for using one buffer area per central CCU and extending it when overflow

occurs.

SYMBOLIC
ADDRESS

A

A+B

Linking
Address

BUFFER ARRANGEMENT

-.. f
Overflow Area B

-..
I

ci
Primary Area

I Linking Address I.LI -1~_~ __ ----,

}~ _________ A_+_L-_1 ________ ~ __________ A ________ ~
'--~~--.. ----~~~~--.... --~~

Substitute BCW

Buffer
Area (L)

Let A be the first address of a buffer area. Let C be the number of characters determined for a mes­
sage segment. Let B be an arbitrary increment chosen to provide desired time delay. L represents

buffer length and is equal to B + C.

Then set aside an area in core of length L + 1 beginning at A and extending through address A + L,
where locations A thru A + L - 1 represent buffer area and location A + L contains the linking ad­

dress at which a substitute BCW will be found.

TIME

(1) Initially

(2) At Time of
Interrupt

CCU BUFFER CONTROL REGISTER (INPUT)

A+ L - 1 A+L

A (3) As loaded by _I

REX at time of interrupt. 1...-________________ ---J _________________ --1

(4) As adjusted
by RTIAS

The CCU-BCW is initially set as shown at time (1). When C characters have been entered into core
memory the BCW will stand as shown at time (2) and an internal interrupt will occur. REX will ans­

wer the interrupt, reactivate input/output logic, ascertain the terminated buffer, pick up the sub­
stitute BCW loceted at the linking address and store this value into the BCR. The. BCW now stands

as shown at time (3).

REX will transfer control to the RTIAS (if the interrupted program is suspendible) with the synthe­
sized interrupt word in A. The RTIAS could pack the characters located in the primary area into an
Oqtput buffer. After packing has been completed, the RTIAS could use a RPL A + Y to increment
the current value of the lower half of the BCW by value B.

It could then move characters buffered into the overflow area during the time packing was taking
place down B locations into the primary area. RTIAS would then be free to perform whatever hous­
keepi.ng or processing it might require before exiting to REX.

The net effect of this one-buffer scheme is to extend the time period available for emptying the pri­
mary area by the time it takes to receive B characters.

B-5

B-6

EXAM P l E 5. A scheme employing two buffers per central CCU and alternating them when over­

flow occurs.

SYMBOLIC
ADDRESS

A ...

A+La -I
B

8+4, -I

Linking Address A

Linking Address B

BUFFER A

I'
BUFFER B

I'
B Linking "'1 B + Lb - I

~re~A b" ____________________________________ ~ ___________________________________ ~

Linking ~ , A + L - 1
Address tI a

~-----------------~--------------~--~
A

La

Lb

TIME CCU BUFFER CONTROL REGISTER (INPUT)

(1) Initially

(2) At time of interrupt one.

(3) As loaded by REX at time of
interrupt one.

(4) At time of interrupt two.

(5) As loaded by R EX at time of
in t err up t tw 0 •

A + La - 1 A

A + La - 1 A + La

B

A + La - 1 A

REX action at time of interrupt is as described for example 4. The above process repeats itself

until end-of-character train (signalled by external interrupt) arrives.

E XA M P L E 6. An illustration of how search option two relates to buffer length and location.

Buffer location is chosen in such manner that some number of low-order bits (m), of the BCW ex­
press upon buffer termination a value which cannot exist while the buffer is active. This unique
value is referred to as the Search Key.

OCTAL

XXXXO=
XXXXl=
XXXX2 =
XXXX3 =
XXXX4=
XXXX5=
XXXX6=
XXXX7=
XXX 10 =
XXXll=
XXX 12 =
XXX 13 =

XXX14=
XXXI5=
XX-X 16 =
XXXI7=
XXX20=
XXX 21 =
X X X 22 =
X X X 23 =
XXX24=
XXX25=
X X X 26 =
XXX 27 =
X X X 30 =
XXX 31 =
XXX32=
X X X 33 =
XXX 34 =
XXX 35 =
XX X 36 =

X X X 37 =

ADD R ESS

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

I

BINARY

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
llOO
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

m = 4

,

I
B u ffe r

A

I

Key

\

)

{ B-Uf~e r

1
I

Key

Suppose, for example, m was chosen as 4 and the
Search Key was defined as 1101. Then, buffer A
is defined such that the 4 low-order bits of the
BCW will equal the Key at the time of interrupt
(termination)_ Likewise, buffer B.

The starting address of the buffer is immaterial
so long as the length of the buffer does not exceed
2m - 1 words.

BUFFER CONTROL WORDS AT INTERRUPT

Buffer A Ix X X 1 4 X X X 5

Buffer B Ix X X 3 4 X X X 3 5

B-7

APPENDIX C

GENERAL COMMENTS ON OPERATOR ENTRIES

The acceptance of console input is indicated by a type-out of the infonnation that has been entered
on the keyboard. For example, if a print core operation is desired, the first entry will be PC. If REX
can accept console input, the PC will be typed on the console. If there is no accompanying type­
out the entry will have to be retyped until REX acceptance is indicated.

REX console control will also check to see that the maximum permissible character count is not
exceeded, that the field format is acceptable, and that the function description is valid.

The following characters have special meaning for REX Console Control:

KEY SYMBOL OCTAL FIELDATA VALUE

o 76

57

(Special)

77

MEANING

Indicates the end of a vari­
able field of characters.

Terminates a console entry.

This will erase the last pre­
viou~ ch::lr~::u~·t€'!, Three C0~­
secuti ve special characters
(77) will erase the en tire·
entry.

ACQUISTION 0 F STO RED INT E RRUPTS

(COMMUNI CATION) • • • •• • • •• 3 -20
ADDENDUM OVERFLOW. • • • • • 4- 2

ALLOCATION OF FACILITIES. • • • • •• 2-11

ALLOCATION OF PERIPHERALS

BATCH LOAD REQUESTS.

CHANGE CORE •••••••

CHANGE DRUM •••••••

COMMUNICATION INPUT/OUTPUT ••

COMMUNICATION INTERRUPTS ••

COMMUNICATION INTERRUPT TABLE.

COMMUNICATION INTERRUPT TABLE

OVERFLOW ••••••••••••

COMPUTER ESTIMATE (CE) ••••••

CONSOLE INPUT/OUTPUT OPERATIONS ••

DATE {PROVIDED BY REX} •

DELAYED RESPONSE TABLE

ERROR PROCEDURES (STANDARD

INPUT/OUTPUT) •••••

EXECUTIVE ADDENDUM •••••

EXECUTIVE ENTRY TABLE •••••

EXECUTIVE INFORMATION REGION.

FACILITY RELEASE c ••••

FACILITY UPDATE (TYPE-IN).

FAUL T INTERRUPT •••••

GENERAL PURPOSE SEARCH

HOLD SCHEDULE (TYPE-IN).

INDEX RECORD.

INSP ECT CORE ••

INSP ECT DRUM.

2 -15

2 - 7

5 - 2

5 - 2

3 -19
3 -19

3 - 8

4 - 2

2 - 2
2 -17

3 - 6

3 -13
3- 3

3-
6 - 2

2 - 8
2 -11

4 - 1

3 -21

2 -10

2 - 3

5 - 1

5 - 1
INTERLOCK RESPON,SE. • • 4- 3

INTERNAL INTERRUPT-INPUT. 3-19

INTERNAL INTERRUPT-OUTPUT. 3-19

INTERNAL LOAD REQUESTS ••••••• 2 - 6

INTERRUPT ENTRANCES ••••••••• 3- 6

INTERVAL-TIMER INTERRUPTION 3-24.4- 1

JUMP KEYS (USE 0 F) • 6-

LABEL RECORD (MIT). 2 - 3

INDEX

LISTING (INPUT/OUTPUT REQUESTS)

LOAD (TYP E-IN) ••

3 -11

2 -10
LOADING ••••••••••••••••• 2-16

LOCKOU T (TYP E-IN) 2 -10

MASTER INSTRUCTION TAPE

MIT NUMBER ••••••••

OP ERA TIO NAL PARAM ETERS

2-

2-

2-

1

2

5

PREPARATION OF MASTER INSTRUCTION

TAPE ••• 2 - 2
PRINT CORE •••

PRINT DRUM ••••
• ••• 5 - 2
••• 5 - 2

PRIORITY GROUP.

PROGRAM LOCK ••

PROGRAM START. • •••

PROGRAM FACILITY RECORD (MIT) ••

PROGRAM FACILITY SUMMARY RECORD

PROGRAM SEQUENCING AND LOADING

2 - 2

2- 2

4- 3

2- 4

2- 4

2- 1

REAL-TIME EXTENSIONS •••••••••• 2- 6

REAL-TIME INITIALIZATION TABLE. 6 - 3
3 -21

5 - 5
2- 2

REA L -TIM E IN T ERR U PT A N A L Y SIS (R T I AS)

RERUN DUMP.

RUNNING TIME.

SEGMENT CALL ••

SITE UTILITY. • • •••

START SCHEDULE (TYPE-IN) ••

STATUS CHECKING

STRING ••••••

STRING LEADER ••

STRING LOCK ••••

SUBMISSION OF INTERRUPTS

(COMMUNICATION) •

SUSPEND (PROGRAM)

SWITCHER ROUTINE.

TIME (MAINTAINED BY REX) •

TERMINATE (PROGRAM) •••

TERMINATE SCHEDULE (TYPE-IN)

TIME-TABLE.

TYP EC ••

TYP ET •••••

UNLOCK (TYPE-IN) •

UNSOL ICIT ED RE QU ESTS

UTILITY REQUEST TABLE ••

• • 2 - 7

· 5 - 3
• 2 -10

• 3 -15

• • 2 - 2
2 - 2

• ••• 2 - 2

3-20

4 - 3

3 -25

• • 3 - 2

• ••• 4 - 3
2 -10

3 - 8

• 2 -18
2 -18

..• 2 -10

. 2 -20

...•. 3 - 3

UNIVAC
DIVISIDN DF SPERRY RAND CDRPDRATIDN

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	Index
	xBack

