490

REAL-TIME SYSTEM

TECHNICAL BULLETIN

UNIVAC 4S50
Real-Time Computer

October, 1961

CONTENTS

1. REAL-TIME COMPUTER +tutctuuerennrencennsseacsonoscsonasossasnsssssssacssascssnssanes -1

R (0] TN T ol € SR 1-1

Octal Notation ..oveiner it i i i i ettt e i e e e eaenanenaanaas - 1-1

L0111 0 YTt o R 1-2
Arithmetic Section ..o.iuiiiii i i i i ittt 1-2
Input-Output Section .o e i et i e et et e 1-2
2T 1] (-] 1-2
Operational Registers «.uvevneriiii it it ittt ittt et tteettneeaaenannns 1-3
Transient Registers «oueueiu i ittt ittt ittt et racttaeaeansaeanenan 1-3
Operator CONS0IE v veeir et ite e ee e teereteneesanenrauecsasensosenensasensensosnnenns 1- 4
Maintenance Panel ..ot i e it et ettt e ere e 1- 4

Wired Memory ot i it ittt ittt et ettt e e e, 1-5

2. INSTRUGCTIONS ot tutttnateatsetttsateseesotsasesssansentsseserseneencenssnsannannnnns 2-1
VT 0 2-1
Instruction Word ...ttt i e e ettt it e et 2-2
D12 B -1 O 2-2

Y DeSignator o e i e e e e, 2-2

J 0 LS4 1 A 2-2
QLT])) P 2-2

oD E]]] G 2-2

3. TRANSFER INSTRUCTIONS .t uuueuueaannenesnensesoasensnnsosenesssnensosennnaneenaensns 3-1
4, ARITHMETIC INSTRUCTIONS « .t tnutnenuenennaneseaneenaessnsaseeansarsssssaeeesansannen 4-1
BT 1ot €1 4-1
Lo o 4-2

LT] T o 1 4-12
3T 4-14

Negative Zero Quotients and Remaindersooviiiiniiiiiiiiieiiii it iiieinenaennns 4-14

e SHIFT INSTRUGCTIONS t vttt teetttesen s teaeeseesneeeesassaneeeeeennenenesnnaneeeeeenns 5-1

. LOGICAL INSTRUCTIONS it ittt ittt iietinteaeesteenesncensnseneenonneansneansns 6-1
Logical Product «.oueeitt i e e et 61

] =103 7T -1 6-1

T - Tox T 0 1 T A 6~ 2
Selective Complement .ottt i e e e 6— 2
Selective Substituteooeiiiii e eeeniieeahe e 6- 2

. MODIFYING INSTRUCTIONS et euttnttnuenneenneaneeneneennannsaneanueanraneeneeanennsn 7-1
e JUMP INSTRUCTIONS - vttt tneenesesanenneeneeaeesaseaseneenasenseesesnsenaeaneeeeanens 8-1
. INPUT-OUTPUT INSTRUGCTIONS .ttt ittt ittt ittt ttttnnetrecenenntasssecnnsuennnns 9-1
Input-Output Instruction Word .. .ovevene it e 9-1
DTS (P 9-1

Y DS gNatOr o e e 9-1
/j\Designator ... 9-1

/l} 0o 1T 110 P 9-1

'Ij\’I} COMDIN At NS ettt e e e 9-1

DT E] 10 S 9-2
Input-OutpUt BUFf IS ottt i 9- 2
FURCHON WordS ottt e e i et e e e e e 9- 6
Intemal Interrupt o e e e 9-7
External I ermUpt c e o e e e 9- 7

Input-Output Priority Structure ..ot e e 9- 8

The heart of the UNIVAC®490 Real-Time System
is a stored program binary computer designed to
process large quantities of data in both batch-
processing and real-time modes. The Computer
provides large internal magnetic core storage,
programming flexibility, a versatile input-output
section, and solid-state arithmetic and logical
circuitry that performs tens of thousands of pro-
cessing operations every second.

Other important features of the Real-Time Com-
puter are:

¥ Access time to all storage locations of 1.9
microseconds; ability to store and to select
information randomly.

m 30-bit word iength with a 15-bit half-word
option.

m Repertoire of 62 basic instructions which
can be modified to produce over 25,000
different instructions.

s Single address instructions with provision
for address modification.

m Multiple program capabilities.

u Ability to perform rapid data exchanges
with external equipment without main pro-
gram attention.

m Real-time clock for automatically initiating
various Computer operations at predetermined
times.

m Parallel one’s complement binary notation.

MOST SIGNIFICANT BIT (Sign Bit)

1. REAL-TIME COMPUTER

STORAGE SECTION

The internal storage in the Computer consists of
thousands of ferrite cores that are mounted within
printed-circuit frames. Each core is capable of
assuming either of two stable magnetic states;
one state represents binary 0; the other, binary 1.

At the option of the user, the Computer is avail-
able with a storage capacity of either 16,384 or
32,768 computer words. Since information in stor-
age is randomly selected, access to all addresses
is the same; that is, words can be inserted into
or removed from any address in storage at a rate
of six microseconds per word. The basic internal
data word is shown in Figure 1-1.

As shown in the diagram, bit position 29 con-
tains the sign. If this bit position contains a
binary 0, the quantity represented is positive.
If it contains a binary 1, the quantity is negative.

Octal Notation

The UNIVAC 490 Real-Time Computer is a binary
computer; consequently, all computer words appear
as combinations of binary 1’s and 0’s. Since a
computer word consists of 30 bits, this tends to
be cumbersome. For this reason, binary notation
is expressed in octal form. The conversion from
binary to octal notation simply involves dividing
the binary digits into consecutive sets of three
from right to left, and then reading these sets in
decimal. For example, a full core storage system
requires the use of 32,768 storage addresses.
Representation of the upper limit storage in
binary notation requires the use of 15 bits. This
same decimal number, however, can be represented
by five octal digits.

LEAST SIGNIFICANT BIT

29(28)27|26(25(24|23|22/21 (2019181716 |15

14)13(12111(10/9 |8 7|6|5(4]3[2, 1|0

Figure 1-1.

Basic Internal Data Word

DECIMAL | 32,767 (UPPER LIMIT ADDRESS)
BINARY | 111 111 111 111 111
OCTAL 7 7 7 7 1

It should be noted that the working digits in the
octal system are 0 through 7. The word “‘octal’’
means ‘‘eight;’’ therefore, when counting in octal
notation, the number after 7 is 10. For ease of
programming, all quantities, function code values,

...... ad.

dress, and the operand itself are expressed in
octal notation.

CONTROL SECTION

In addition to the storage section, the Computer
has three other sections, control, arithmetic, and
input-output (Figure 1-2). The control section
governs the operations that take place during the
sequential execution of the instructions. It also
coordinates the flow of data between the arith-
metic and storage sections,

ARITHMETIC SECTION

The arithmetic section is composed of the circuits
and registers that are used to perform arithmetic
and logical operations.

MAIN MEMORY

INPUT-OUTPUT SECTION

The input-output section is composed of the cir-
cuits, input gates, and output registers that
are used to transfer data to or from the Computer.

REGISTERS

The UNIVAC 490 Real-Time Computer contains a
number of registers which hold information during
computation. These registers, designated Dy a
letter or letter-numeral combination, are inter-
connected by parallel transmission paths. Dur-
ing processing, information flows to and from the
registers via these paths.

The registers fall into two categories: operational
and transient. Operational registers are referred to
in the functional description of an instruction. In-
formation that is placed in these registers is re-
tained until it is replaced by new information.
Transient registers are temporary storage loca-
tions that are used in the manipulation of instruc-
tion and data words during the execution of an
instruction. These registers are not referenced by
the instruction and do not retain information from
one operation to the next.

TROL
16K, 32K MAGNETIC CORE PROGRAM CONTRO
Y U-REGISTER
P-REGISTER
S-REGISTER INDEXING
A 4&
Co REGISTER jut=m
R Y
14
INPUT - ZREGISTER R Rt
INPUT-QUTPUT GATES -
CHANNELS } i A
C! REGISTER
,l,
AREGISTER | |ARITHMETIC CONTROL |t
- X-REGISTER v
D-REGISTER INDEX REGISTERS
o ADDER
Q-REGISTER [BlT B, B; B4J Bs LB,, I B,

Figure 1-2. Simplified Logic Diagram of the UNIVAC 490
Real-Time Computer

Operational Registers
A-Register

The A-register or accumulator is the principal
30-bit arithmetic register. It is primarily used
for arithmetic and shifting operations. In arith-
metic operations, the result is usually retained
in the A-register for use in later program steps.
For example, after addition or subtraction, the
sum or difference is retained in the accumulator;
after multiplication, the most significant half of
the product is retained in the accumulator; after
division, the remainder is retained in the ac-
cumulator.

In shifting operations, the contents of the A-
register may be shifted right or left. Left shifts
are circular. In right shifts the sign bit is ex-
tended by the number of bit positions shifted
and the bits shifted from the lower-end are lost.

Q-Register

The Q-register is a 30-bit auxiliary arithmetic
register that has adding, shifting, and logical
properties. Its principal function is to assist the
A-register in multiply, divide, and logical opera-
tions.

In the case of shifting operations, the contents of
the Q-register may be shifted right or left in the
same manner as the A-register.

A- and Q-registers in combination

divide,' and certain shift instructions
utilize the A- and Q-registers as a single 60—
bit register. To illustrate, the Q-register holds
the multiplier at the beginning of a multiply opera-
tion and at the end the double-length product is in
the AQ-register, that is, the upper half of the
product is in the A-register and the lower half
is in the Q-register. In a divide operation the
AQ-register holds the dividend and at the end
the quotient is in the Q-register and the remainder
is in the A-register.

Multiply,

In shifting operations, the 60~bit contents of
the AQ-register (the upper half of which is the
A-register) may be shifted right or left in the
same manner as either the A-register or the Q-
register. When the AQ-register is shifted to the
right, bits from the lower-end of the A-register
are shifted into the upper-end of the Q-register

and the bits that are shifted from the lower-end
of the Q-register are lost. In a left shift, bits
from the upper-end of the Q-register are shifted
into the lower-end of the A-register and the bits
that are shifted from the upper-end of the A-
register fill in on the lower-end of the Q-register.

P-Register

The P-register or program address counter is a
15-bit register that holds the address of the next
sequential instruction throughout the program. As
each program address is transferred from the P-
register to the S-register, the contents of the
P-register are increased by 1. When Jump instruc-
tions are executed, the P-register is cleared and
a new program address is entered.

B-Registers (Index Registers)

The B-registers, numbered B1 through B7, are
15-bit registers whose contents are used to in-
crement the operand address before execution of
an instruction may also be used to index pro-
gram loops. In addition, the B7-register is used
as a counter in the repeat mode where a selected
instruction is executed the number of times speci-
fied (covered later in the discussion of the 70
instruction).

Transient Registers
X-Register

The X-register, a 30-bit register with comple-

menting properties, is used as an arithmetic
communication tegister. The X-register receives
the operand from storage during all arithmetic
operations. All communication between the A-
and Q-registers and the other

gisters or the adder output is via the X-register.

operational re-

S-Register

The S-register is a 15-bit register which holds
the storage address during storage references.
At the beginning of the storage access period,
the address is transferred to the S-register. The
contents of the S-register are then translated to
activate the storage selection system.

Z-Register

The Z-register is a 30-—bit register that serves
as an operand buffer for storage references. Dur-
the read portion of the storage access period, the

Z -register is cleared. The digit reading amplifiers
are then sampled to set the contents of the Z-re-
gister corresponding to the bits in storage. During
the write portion of the storage access period, the
Z -register controls the inhibit circuits in order
to write or restore the disturbed storage address.
Input data from the input channels is gated directly
to the Z-register.

K-Register

The K-register is a 6-bit register that functions
as a shift counter for shift operations and all
arithmetic operations involving shifts. The maxi-
mum shift count permitted is 59 _, Multiply and
divide operations are controlled by presetting the
K-register to 30,,. The K-register then counts
the operational steps.

U-Register

The U-register or program control register is a
30-—bit register that holds the instruction word
during the execution of an operation. The func-
tion code and the various instruction designators
are translated from the appropriate sections of
this register. If an address modification is re-
quired before execution, the contents of the ap-
propriate B-register are added to the low order
15 bits of the U-register.

R-Register

The R-register is a 15—bit register that functions
as a communications register for all internal trans-
missions to the B-registers.

R'-Register

The R'-register is a 15-bit register that functions
as a communications register for all internal trans-
missions from the B-registers. During address
modification this register holds the incrementing
quantity.

C-Registers

The C-registers are 30-bit communication buffer
registers through which computer data is syn-
chronized. There are two C-registers, C0 and C1.
The CO-register is used to communicate output
data to peripheral devices on 12 different channels.
The Cl-register is used to communicate output
data on two different channels to other computers.
Input data is gated directly to the Z-register.

OPERATOR'S CONSOLE

The Operator’s Console is used for monitoring
internal operations. It consists of an alpha-
numeric keyboard, a printer, and an indicator
panel. The keyboard is used to enter data or
changes to the program and the printer provides
type-outs of program generated information. The
indicator panel contains indicators that inform
the operator of the status of the program in pro-
gress and switches that allow various manual
operations to be performed.

MAINTENANCE PANEL

The maintenance panel is used for debugging
and preventive maintenance operations. To aid
in these operations the maintenance panel is
provided with a series of indicators and switches.
Included among the indicators are the following
registers:

1. P-register 10. Bb5-register
2. CO-register 11. Bé-register
3. Cl-register 12. B7-register
4. Q-register 13. U-register
5. A-register 14. S-register
6. Bl-register 15. X-register
7. B2-register 16. Z-register
8. B3-register 17. R-register
9. B4-register 18. R'-register

In addition to the above indicators, switches are
provided that allow:

m The execution of consecutive program steps
at a low rate.

s The execution of one consecutive Computer
clock phase (4 of a cycle) for each depres-
sion of a switch.

s The execution of one consecutive program
step for each depression of a switch.

m Operation that is normal except that the
Computer does not stop when it executes a
programmed stop instruction.

s The Real-Time Clock to be disconnected.
s The Increment Clock to be disconnected.

s The automatic recovery feature to be dis-
connected.

s The functions of the following switches
on the maintenance panel to be transferred
to the Operators’s Console: Jump switches
1, 2, and 3; the Bootstrap switch (main-
tenance panel) to the Start switch (Opera-
tor’s Console); Instruction Step switch
(maintenance panel) to Stop switch (Opera-
tor’s console).

WIRED MEMORY

A permanent memory is built into the Computer
to provide for automatic reading in of new pro-
grams and automatic error recovery. It consists
of sixteen 30-bit words of storage and is wired
to fit the specialized needs of the Computer
uset. The wired memory may be accessed by a
program, but can only be changed manually (by
maintenance personnel). The addresses of the
words in wired memory parallel storage addresses
00000 through 006017 in the Computer. Whether the
Computer utilizes the words in wired memory or
those in core storage, depends upon the position

of the Wired Memory switch (Bootstrap switch)
on the maintenance panel. The positions of this
switch are:

a Automatic Recovery

® Neutral

s Bootstrap

When this spring-loaded switch is in the Bootstrap
position, the Computer executes the program start-
ing at address 00000 in the wired memory.

When the switch is in the Automatic Recovery
positior, and a fault interrupt occurs, the Computer
executes the program starting at wired memory
address 00014. A fault interrupt is caused when
the Incremental Clock interrupts on overflow, an
illegal function code (00 or 77) occurs, or the
Incremental Clock is not updated.

When the switch is in the Neutral position, the
Computer ignores the wired memory, and any
references to addresses 00000 through 00017
apply to these addresses in core storage.

1-5

The UNIVAC 490 Real-Time Computer has a rep-
ertoire of 62 basic instructions that can be mod-
ified to produce over 25,000 different instructions.
These instructions fall into seven categories:
transfer, arithmetic, shift, logical, modifying,
jump and input-output. Each category is covered
in a separate chapter.

NOTATION

In the succeeding discussions, the
conventions are used:

following

Y Operand.

~<|

The low-order 15 bits contained in the in-
struction word after B-register modification.

YL The low-order 15 bits contained in the stor-
age location at address y.

Yy The high-order 15 bits contained in the
storage location at address y.

Xy A 30-bit operand whose lower half is ¥y, the

low-order 15 bits contained intheinstruction
word after B-register modification; the
upper half is an extension of the sign bit.

XY

XYy

2. INSTRUCTIONS

The upper half of the operand will be all
0’s if bit 14 of y is a, 0 or it will be all 1’s
if bit 14 is a 1.

A 30-bit operand whose lower half is the
low-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign. The upper half of the
operand will be all 0’s if bit 14 in the stor-
age location is a 0, or it will be all 1’s if
bit 14 is a 1.

A 30-bit operand whose lower half is the
high-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign. The upper half of the
operand will be all (’s if bit 29in the stor-
age location is a 0, or it will be all 1’s if

bit 29 is a 1.
The A-register (30 bits).
The @-register (30 bits).

The A-register combined with Q-register to
form a 60-bit register. The A-register is
the most significant half of this register.

The particular
(15 bits).

B-register specified by Jj

P The program address register (15 bits).
R The remainder.

The contents of the register or storage
location enclosed within the parentheses.

The complement of the contents of the re-
gister or storage location enclosed within
the parentheses.

()i The initial contents of the register enclosed
within the parentheses.

() The final contents of the register enclosed
within the parentheses.

()n The nth bit position of the register enclosed
within the parentheses.

NI The next instruction.

INSTRUCTION WORD

The instruction word format is shown in Figure
2-1.

f i k b y
29 24 123 21|20 18|17 15|14 0
Figure 2-1. Instruction Word

fDESIGNATOR

The function code designator, f, is a 6-bit code
that specifies the operation to be performed.

y DESIGNATOR

The operator designator, y, is a 15-bit code that
represents either the operand or the operand ad-
dress before B-register modification.

j DESIGNATAOR

The branch-condition designator, j, is a 3-bit
code that may be interpreted as a skip or jump-
condition designator, a register designator, or a
repeat modification designator.

k DESIGNATOR

The operand-interpretation designator, k, is a 3-
bit code that controls where the operand is procured
from and/or where it is stored.

b DESIGNATOR

The operand address modification designator, b,
is a 3-bit code that specifies the B-register that
contains the quantity that is added to y to form
the operand or operand address.

B-Register (Index Register) Modification Of

instructions

B-register modification consists of adding the
contents of the B-register specified by the b
designator in the instruction word to y, the low-
order 15 bits of this word, before any storage
reference is made. This process takes place in the
pfogram control register, U; consequently, the
instruction word as it appears in storage, is not
aitered. The sum formed by this addition is y.

One of eight B-registers, numbered 0 through 7,
may be specified by the b designator in the in-
struction word. B-register 0 is not a physical
register like the other seven. If this register is
specified, that is, b = 0 in the instruction word,
the result is the same as if the specified B-register
contained all 0’s. In this case, as in all others,
B-register modification consists of formingy =y
+ (B)j. This addition is a 15-bit binary addition
with end-around carry. An end-around carry results
when a carry is generated in the addition of the
highest order bits; a binary 1 is added to the
lowest order bit in the sum. The following example
illustrates this concept:

y =77775=111111111111101 (the low-order 13
bits contained in
the instruction
word)

(B)j=00005=000000000000101 (the contents of
the specified B-

register)

1 (end-aroundcarry)

y =00003=00000000000001L1 (the low-order 15
bits contained in
the instruction
word after B-
register modifi-

cation)

It should be noted that B-register modification
cannot be used to generate y = 00000 unless both
y and (B)j = 00000. This limitation is imposed
because the nature of end-around carry addition
is such that it is mathematically impossible to
generate y = 00000 except in the case cited
above.

3. TRANSFER INSTRUCTIONS

Transfer instructions either transfer data that is
contained in a storage location to a register or
store the contents of a register in a storage
location.

ENTER Q

CLASS: Read
FUNCTION CODE: 10
MNEMONIC: ENT - Q
OPERATION: Y—=0Q

DESCRIPTION: This instruction transfers a 30-bit
operand to the Q-register.

k DESIGNATORS: The operand transferred to
the Q-register is derived as follows:

k=10: y—>0Q. The lower half of the operandis
¥, the low-order 15 bits contained in the in-
struction word after B-register modification;
the upper half is all 0’s.

k=1 ¥—>0Q. The lower half of the operand
is the low-order 15 bits contained in the storage
location at address y; the upper half is all 0’s.

k=2: YU—FQ. The lower half of the operandis
the high-order 15 bits contained in the storage
at address y; the upper half is all 0’s.

k=3: Y= Q. The 30-bit operand is contained
in the storage location at address y.

k=4: Xy=—>Q. The lower half of the operand
is y, the low-order 15 bits contained in the
instruction word after B-register modification;
the upper half is an extension of the sign bit.
The upper half of the operand will be all 0’s
if bit 14 of ¥ is a 0, or it will be all 1’sif bit
14 is a 1.

k=5 XYL—>Q. The lower half of the operand
is the low-order 15 bits contained in the storage
location at address y; the upper_half is an
extension of the sign bit. The upper half of the

operand will be all 0’s if bit 14 in the storage
location is a 0 or it will be all 1’s if bit 14is
al.

k=6: XY77> Q. The lower half of the operand
and is the high-order 15 bits contained in the
storage location at address y; the upper half is
an extension of the sign bit. The upper half of
the operand will be all 0’s if bit 29 in the
storage location is a 0 or it will be all 1’s if
bit 29 is a 1.

k=7: A—>Q. The operand is the 30 bits
contained in the A-register.

i DESIGNATORS: The skip conditions are deter-
mined as follows:

j = 0: no skip.
j=1: skip NI
j = 2: skip NI if (Q)[is + or + 0.
j =31 skip NI if (Q)f is - or --0.
j = 4: skip NI if (A) is + 0.
j =5 skip NI if (4) is not + 0.
j = 6: skip NI if (A) is + or + 0.
i = 7: skip NI if (4) is - or - 0.
ENTER A
CLASS: Read
FUNCTION CODE: 11
MNEMONIC: ENT - 4
OPERATION: Yy—4

DESCRIPTION: This instruction transfers a 30-bit

operand to the A-register,

k DESIGNATORS: The operand transferred to the
A-register is derived as follows:

k=0: y—A. The lower half of the operand is
y, the low-order 15 bits contained in the in-
struction word after B-register modification;
the upper half is all 0’s.

k=1: Y= A. The lower half of the operand
is the low-order 15 bits contained in the stor-

age location at address y; the upper-half is
all 0’s.

k=2: Y7~ A. The lower half of the operand
is the high-order 15 bits contained in the stor-
age location at address y; the upper half is
all 0’s.

k=3: Y=—»A. The operand is the 30-bits
contained in the storage location at address y.

K=4. Xy—>A. The lower lialf of the operand
is y — the low-order 15 bits contained in the
instruction word after B-register modification;
the upper half is an extension of the sign bit.
The upper half of the operand will be all 0’s if
bit 14 of ¥ is a 0 or it will be all 1’s if bit 14

is a 1.

k=5 XY7—> A. The lower half of the operand
is the low-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of the
operand will be all 0’s if bit 14 in the storage
location is a 0 or it will be all 1’s if bit 14
is a 1.

k=6 XY= A. The lower half of the operand
is the high-order 15 bits contained in the stor-
age location at address y; the upper half is an
extension of the sign bit. The upper half of the
operand will be all 0’s if bit 29 in the storage
location is a 0 or it will be all 1’s if bit 29
is a 1.

k=7: (A)=—»A. The contents of the A-register
remains the same.

] DESIGNATORS: The skip conditions are deter-

as follows:

i =10 no skip.

j=1: skip NL

j = 2: skip NI if (Q) if + or + 0.
j = 3: skip NI if (Q) is - or - 0.
j = 4 skip NI if (A);is + 0.

j =351 skip NI if (A)sis not + 0.
j = 6: skip NI if (A)fis + or + 0.
j=7: skip NI if (A)sis - or - 0.

ENTER Bj

CLASS: Read
FUNCTION CODE: 12
MNEMONIC: ENT * B,
OPERATION: Y—-B;

DESCRIPTION: This instruction transfers al5-bit

operand to a selected B-register. The j designator
specifies the selected register; consequently, a
skip condition cannot be programmed in this
instruction.

k DESIGNATORS: The operand transferred to the
selected B-register is derived as follows:

k=0 of 4. y—>»B.. The operand is the low-
order 15 bits contained in the instruction word

after B-register modification.

k=1, 3, or 51 Yy—>B.. The operand is the
low-order 15 bits contained
location at address y.

in the storage

k=2, 0r6: Yg—> Bj. The operand is the high-
order 15 bits contained in storage location at
address y.

k=7: AL——’Bj- The operand is the low-order
15-bits containéd in the A-register.

j DESIGNATORS: The selected B-register is
specified as follows:

j= 0: no operation is performed and the pro-
gram advances to the next instructions.

j=1: B-register 1.

j = 2. B-register 2.

j = 3: B-register 3.

j = 4. B-register 4.

j = 5. B-register 5.

j = 6: B-register 6.

j = 7. B-register 7.

STORE Q

CLASS: Store
FUNCTION CODE: 14
MNEMONIC: STR ' Q
OPERATION: (Q)=—>Y

DESCRIPTION: This instruction stores the con-
tents of the Q-register in a storage location.

k DESIGNATORS: The operand that is stored in

the storage location is derived as follows:

k=0: (Q)=>Q. The contents of the Q-register
are complemented.

k=1: (@)Y , Yy is undisturbed. The low-
order 15 bits of the Q-register are stored in the
lower half of the storage location at address y;
the upper half of the storage location is
undisturbed.

k=2: @f—>Yy,Y; is undisturbed. The
low-order 15 bits of the Q-register are stored
in the upper half of the storage location at
address y; the lower half of the storage location
is undisturbed.

k=3: (Q)=>Y. The contents of the Q-register
are stored in the storage location at address y.

k=4: (Q)=—>A.The contents of the Q-register
are stored in the A-register.

k=5: (Q)}j“*YL » Yy is undisturbed. The
complement of the low-order 15 bits of the Q-
register is stored in the lower half of the
storage location at address y; the upper half
of the storage location is undisturbed.

k=6: (Q)y—>Yyp , Y is undisturbed. The
complement of the low-order 15 bits of the Q-
register is stored in the upper half of the stor-
age location ataddress y; the lower half of the
storage location is undisturbed.

k=7: (Q)=—>Y. The complement of the con-
tents of the Q-register is stored in the storage
location at address y.

i DESIGNATORS: The skip conditions are deter-
mined as follows:

j = 0: no skip.
j=1: skip NI
j = 2 skip NI if (Q)pis + or + 0.
j = 3 skip NI if (Q)f is - or - 0.
j = 4 skip NIif (A)pis +0
1 =291 skip NI if (A);is not + 0.
i =6: skip NI if (A)f is + or + 0.
j=17: skip NI if (A)gis - or - 0.
STORE A
CLASS: Store
FUNCTION CODE: 15
MNEMONIC: STR " A
OPERATION: (Ay—»=Y

DESCRIPTION: This instruction stores the con-
tents of the A-register in a storage location.

j DESIGNATORS: The operand that is stored'in-
the storage location is derived as follows:

k=10: (A)=> Q. The contents of the A-register
are stored in the Q-register.

k=1 (A)7—Y| , Yy is undisturbed. The low-
order 15 bits of the A-register are stored in
the lower half of the storage location at ad-
dress y; the upper half of the storage location
is undisturbed.

k=2: (A)L—>YU , Yy is undisturbed. The low-
order 15 bits of the A-register are stored in
the upper half of the storage location at ad-
dress y; the lower half of the storage location
is undisturbed.

k=3: (A)=>»Y. The contents of the A-register
are stored in the storage location at address y.

k=4: (A)—>A. The contents of the A-register
are complemented.

k=5 (A)—>Y; , Yy is undisturbed. The
complement of the low-order 15-bits of the A-
register is stored in the lower half of the
storage location at address y; the upper half
of the storage location is undisturbed.

k=6: (A)y—>Yy , Y, is undisturbed. The
complement of the low-order 15-bits of the A-
register is stored in the upper half of the
storage location at address y; the lower half

ot . L1 - . PR T
Ul UIT SLUIdEE 10Cd vl 15 ululsiuived.

k=7: (4)=—>Y. The complement of the con-
tents of the A-register is stored in the storage
location at address y.

j DESIGNATORS: The skip conditions are deter-
mined as follows :

j=0: no skip.
j=1: skip NI
j =20 skip NI if (Q);is + or+ 0.
j = 3: skip NI if (Q);is ~ or - 0.
j = 4 skip NI if (4)pis + 0.
j =50 skip NI if (4);is not + 0.
j =6 skip NI if (A)pis + or+ 0.
j=7: skip NI if (A);is - or - 0.
STORE Bj
CLASS: Store
FUNCTION CODE: 16
MNEMONIC: STR " B,
OPERATION: (B)j—->Y

DESCRIPTION: This register stores the contents
of a selected B-register in a storage location
The j designator is used to specify the selected
register; consequently, a skip condition cannot be
be programmed in this instruction.

k DESIGNATORS: The operand that is stored in
the storage location is derived as follows:

k=0: (B)j—->QL ,0’s=—=Qp. The contents of
the B-register are stored in the lower half of
the Q-register; the upper half of the Q-register
is all 0’s.

k=1: (B)j_—*YL'YU is undisturbed. The
contents of the B-register are stored in the
lower half of the storage location at address
y; the upper half of the storage location is
undisturbed.

k= 2: (B)j—>YU,YL is undisturbed. The
contents of the B-register are stored in the
upper half of the storage location at address
y; the lower half of the storage location is
undisturbed.

k=3: (B)j —>Y; ,0’s=>Y . The contents of
the B-register are stored in the lower half of
storage location at address y; the upper half
of the storage location is all 0’s.

k=14:(B), —=Ar ,0’s—>AU. The contents of
the B-register are stored in the lower half of
the A-register; the upper half of the A-register
is all 0’s.

k=5: (B)j'—>YL,YU is undisturbed. The
complement of the contents of the B-register
is stored in the lower half of the storage
location at address y; the upper half of the
storage location is undisturbed.

k=6: (B);==Yy Yy is undisturbed. The
complement of the contents of the B-register

is transferred to the upper half of the storage
location at address y; the lower half of the
storage location is undisturbed.

k=7: X (B)} —>Y. The complement of the
contents of the B-register is transferred to the
lower half of the storage location at address y;
the upper half of the storage location is an
extension of the sign bit. The upper half of
the storage location will be all 0’s if bit 14 of
the complement of the contents of the B-
register is a 0 or it will be all 1’s if bit 14 is
al.

DESIGNATORS: The selected B-register is

specified as follows:

no operation is performed and the pro-
gram advances to i i
B-register 1.

B-register 2.

B-register 3.

B-register 4.

B-register 5.

B-register 6.

—

i -
~N O U W N
.« . .oo ..

B-register 7.

4. ARITHMETIC

Arithmetic instructions combine the contents of
a storage location with the contents of a selected
register or combine the contents of two registers

The result that is formed is then stored in a stor-
age location, retained in a register, or both.

SUBTRACTION

Subtraction in the UNIVAC 490 Real-Time Com-
puter is binary subtraction with end-around borrow.
An end-around borrow means that if a borrow is
generated when the bit in position 29 of the sub-
trahend is subtracted from the bit in position 29
of the minuend, a binary 1 will be subtracted from
the bit in position 0 of the difference. The follow-
ing example illustrates this concept:

(000000000000000000000000000011
- 111111111111111111111111111110

000000000000000000000000000101
1 (end around borrow)

000000000000000000000000000100

(a positive number)
(a negative number)

(a positive number)

The following rules apply for subtraction:

1. If a negative number is subtracted from a
positive number, the difference will be a
positive number.

2. If a positive number is subtracted from a
negative number, the difference will be a
negative number.

3. If a positive number is subtracted from a
positive number, the difference may be
either a positive or a negative number.

INSTRUCTIONS

4. If a negative number is subtracted from a
negative number, the difference may be
either a positive or a negative number.

5. If negative 0 is subtracted from positive 0,
the difference will be positive 0.

6. If positive 0 is subtracted from negative 0,
the difference will be negative 0.

7. If negative 0 is subtracted from negative 0,
the difference will be positive 0.

8. If a number is subtracted from itself, the
difference will be positive 0.

The above rules are followed except when the
absolute value of the difference exceeds 2 2° 1.
In this case, rule 1 or 2 is violated, as i}lothe
following examples:

010011100010001110000111101100
—100010110000101100111010000000

110000110001100001001101101100
1 (end around borrow)

110000110001100001001101101011

(a positive number)
(a negative number)

(a negative number)

The difference that is formed in this example is
a negative number; consequently, it is an in-
correct answer since it violates rule 1.

100011010001000110101100011010
- 010011100101110111001010011100

001111101011001011100001111110

(a negative number)
(a positive number)

(a positive number)

The difference that is formed in this example is
a positive number; consequently, it is an incorrect
answer since it violates rule 2. If there is a pos-
sibility that rule 1 or 2 for subtraction may be
violated, the programmer is advised to make some
provision in the program for handling these cases
when they occur.

ADDITION

Addition in ihe UNIVACT 450 Real-Tiime Coiiputei
makes use of the subtraction process. Simply
stated, addition is performed by complementing
the addend and then subtracting it from the augend.

The following rules apply for addition:

1. If a negative number is added to a negative
number, the sum will be a negative number.

2. If a positive number is added to a positive
number, the sum will be a positive number.

3. If a negative number is added to a positive
number, the sum may be either a positive or
a negative number.

4. If a positive number is added to a negative
number, the sum may be either a positive
ot a negative number.

5. If positive 0 is added to
sum will be positive 0.

positive 0, the

6. If negative 0 is added to
sum will be negative 0.

negative 0, the

7. If negative 0 is added to
sum will be positive 0.

positive 0, the

8. If a number is added to its complement, the

sum will be positive 0.

The above rules are followed except when the
absolute value of the sum exceeds 22°—1.1In
these cases, rule 1 or 2 for addition is lvmlated
in the same manner that rule 1 or 2 for subtrac-
tion is violated.

If there is a possibility that rule 1 or 2 for ad-
dition may be violated, the programmer is advised
to make some provision in the program for handling
these cases when they occur.

ADD A

CLASS: Read
FUNCTION CODE: 20
MNEMONIC: ADD- A
OPERATION: (A) + Y=—>-A

DESCRIPTION: This instruction adds a 30-bit
operand to the contents of the A-register, and
retains the sum that is formed in the A-register.

k DESIGNATORS: The operand that is added to

the contents of the A-register is derived as follows:
k=0:7 + (A)~»A. The half of the
operand is ¥, the low-order 15 bits contained
in the instruction word after B-register modi-
fication; the upper half is all 0’s.

lower

k=1:Y¥ + (A)—»A. The lower half of the
operané is the low-order 15 bits contained in
the storage location at address ¥; the upper
half is all 0’s.

k=2:Y,+ (A)=—»A. The lower half of the
operand is the high-order 15 bits contained
in the storage location at address y; the upper
half is all 0’s.

k=3:Y + (A)—>A. The operand is the 30-
bits contained in the storage location at
address 7,

k=4:Xy + (A)=»A. The lower half of the
operand is y—the low-order 15 bits contained
in the instruction word after B-register modi-
fication; the upper half is an extension of the
sign bit. The upper half of the operand will be
all 0's if bit 14 of ¥ is a 0, or it will be all
1’s if bit 14 is a 1.

k=5:XY + (A)—>A. The lower half of the
operand is the low-order 15 bits contained in
the storage location at address y; the upper
half of the operand will be all 0’s if bit 14 in
storage location is a 0, or it will be all 1’s
if bit 14 is a 1.

k=6:XY,+ (A)—>A. The lower half of the
operand is the high-order 15 bits contained in
the storage location at address y; the upper
half is an extension of the sign bit. The upper
half of the operand will be all (’s if bit 29 in
the storage location is a 0, or it will be all
1’s if bit 29 is a 1,

k=7:(A) + (A)==»A. The operand is the 30—
bits contained in the A-register

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j=0: no skip.
j=1: skip NI.
j=2: skip NI if (Q) + or + 0.
j=3: skip NI if (Q) is — or — 0.
j=4: skip NI if (A)f is + 0.
j=5: skip NI if (A); is not + 0.
j=6: skip NI if (A); is + or + 0.
j=T: skip NI if (A)f is - or — 0.
SUBTRACT A
CLASS: Read
FUNCTION CODE: 21
MNEMONIC: SUB - 4
OPERATION: (A) = Y—» A

DESCRIPTION: This instruction subtracts a
30-bit operand from the contents of the A-register
and retains the difference that is formed in the
A-register.

k DESIGNATORS: The operand that is subtracted
from the A-register is derived as follows:

k=0:(A) - y—>A. The lower half of the
operand is ¥ — the low-order 15 bits contained
in the instruction word after B-register modi-
fication; the upper half is all 0’s.

k=1:(A) - ¥,=>A. The lower half of the
operand is the low-order 15 bits contained in
storage location at address y; the upper half
is all 0’s.

k=2:(A) - Y—>A. The lower half of the
operand is the high-order 15 bits contained in
the storage location at address ¥; the upper
half is all 0’s.

k=3: A — Y—>A. The operand is the 30 bits
contained in the storage location at address ¥.

k=4:(A) — y—>»A. The lower half of the
operand is ¥ — the low-order 15 bits contained
in the instruction word after B-register modi-
fication; the upper half is an extension of the

sign bit. The upper half of the operand will be
0’s if bit 14 of y is a 0, or it will be all 1’s if
bit 14 is a 1.

k=5:(A) - XY=>A. The lower half of the
operand is the low-order 15 bits contained in
the storage location at address y; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 14
in the storage location is a 0, or it will be all
1’s if bit 14 is a 1.

k=6:(A) - XY;/=>A. The lower half of the
operand is the high-order 15 bits contained in
the storage location at address ¥; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 29 in
the storage location is a 0, or it will be all
1’s if bit 29 is a 1.

k=7:(A) —(A) = + 0—>»A, The operand is
the 30 bits contained in the A-register. The
operation that is performed is equivalent to
subtracting a number from itself; consequently,
the A-register will always contain + 0 when
this value for k is used.

j DESIGNATORS: The skip conditions are detet-
mined as follows:

ADD Q

j=0: no skip.
j=1: skip NI ‘
j=2: skip NI'if (Q) is + or + 0.
i=3: skip NI if (@) is — or — 0.
j=4: skip NI if (A)pis +0.
j=5: skip NI if (A); is not + 0.
j=6: skip NI if (A)fis + or + 0.
j=17: skip NI if (A)fis — or — 0.
CLASS: Read

FUNCTION CODE: 26
MNEMONIC: ADD -
OPERATION: Q)+ Y—=Q

DESCRIPTION: This instruction adds a 30-bit
operand to the contents of the Q-register and re-
tains the sum that is formed in the Q-register.

k DESIGNATORS: The operand that is added to
the contents of the Q-register is derived as
follows:

0: no skip.

1: skip NI.

2. skip NI if (A) is + or + 0.
3: skip N1 if (A) is — or — 0.
4: skip NI if (Q)sis + 0.
5:
6:
1

k=0:y5 + (0)—Q. The lower half of the
operand is ¥ — the low-order 15 bits are con-
tained in the instruction word after B-register
modification; the upper half is all 0’s.

"

skip NI if (Q); is not + 0.
skip NI if (Q);is + or + 0.
skip NI if (Q)fis — or — 0.

j
j
j
j
i
j
j

k=1:YL+(Q)—>Q. The lower half of the 1=

operand is the low-order 15 bits contained 1in SUBTRACT Q
the storage location at address ¥; the upper
half is all 0’s. CLASS: Read

k=2:Y + (Q)—=Q. The lower half of the ~ FUNCTION CODE: 27
operand is the high-order 15 bits contained

. . MNEMONIC: SUB ' ¢

in the storage location at address ¥; the upper

half is all O’s. OPERATION: Q) — Y —=Q

k=3:Y + (Q)=—>»Q. The operand is the 30 DESCRIPTION: This instruction subtracts a.30-

bits contained in the storage location at ad- bit operand from the contents of the Q-regxster

dress V. and retains the difference that is formed in the
Q-register.

k=4:X7 + (Q)—>»Q. The lower half of the)
operand is 7 — the low-order 15 bits contained k DESIGNATORS: The operand that is subtracted

in the instruction word after B-register modi- from the contents of the Q-register is derived as

fication; the upper half is an extension of the follows:

sign bit. The upper half of the operand will be i _

all 0’s if bit 14 of 7 is a 0, or it will be all k=0:(Q) -y—>Q. The lower half of the

1’s if bit 14 is a 1 operand is J — the low-order 15 bits contained
’ in the instruction word after B-register modi-

k=5:XY + (Q)—=0Q. The lower half of the fication; the upper half is all 0’s.

low-order 15 bits contained in the storage .
location at address y; the upper half is an k= 1'(Q)__ 4 Q. The low'er half .Of th.e
extension of the sign bit. The upper half of operand is the low-order 15 bits contained in

the operand will be all 0’s if bit 14 in the the storage location at address ¥; the upper

storage location is a 0, or it will be all 1’s half is all 0’s.

if bit 14 is a 1.

k=2:(Q) - Y= 0Q. The lower half of the
k=6:XY + (Q)—»0Q. The lower half of the operand 1is the high order bits contained
operand is the high-order 15 bits contained in the storage location at address 7; the upper
in the storage location at address ¥; the upper half is all 0’s.

half is an extension of the sign bit. The upper Y b d i "
half of the operand will be all 0’s if bit 29 in =3:(Q) - Y—>(. The operand is the 30

the storage location is a 0, or it will be all 1’s bits contained in the storage location at ad-

if bit 29 is a 1. dress 7.

k=4:(Q) — Xy=—»Q. The lower half of the
operand is ¥y — the low-order 15 bits con-
tained in the instruction word after B-register
modification; the upper half is an extension of
the sign bit. The upper half of the operand will
j DESIGNATORS: The skip conditions are deter- be all 0’s if bit 14 of ¥ is a 0, or it will be all
mined as follows: 1’s if bit 14 is a 1.

k=7:(A) + (0)— Q. The operand is the 30
bits contained in the 4-register.

k=5:(0) — XY=>0Q. The lower half of the
operand is the low-order 15 bits contained in
the storage location at address y; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 14 in
the storage location is a 0, or it will be all
1’s if bit 14 is a 1,

k=6:(Q) — X¥;—0Q. The lower half of the
operand is the high-order 15 bits contained in
the storage location at address ¥y; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 29
in the storage location is a 0, or it will be all
1’s if bit 29 is a 1.

k=7:(Q) — (A)=+» Q. The operand is the
30 bits contained in the A-register.

j DESIGNATORS: The skip conditions are deter-

mined as follows:

j=0: no skip.
j=1: skip NI.
i=2: skip NI if (A) is + or + 0.
j=3: skip NI if (A) is — or — 0.
j=4: skip NI if (Q); is + 0.
j=5: skip NI if (Q); is not + 0.
j=6: skip NI if (Q);is + or + 0.
j=7: skip NI if (Q)pis — or — 0.
ENTER Y + Q
CLASS: Read

k=1:(0) + ¥,—A. The lower half of the
operand .is the low-order 15 bits contained in
the storage location at address ¥; the upper
half is all 0’s.

k=2:(0) + I@—*A. The lower half of the
operand is the high-order 15 bits contained
in the storage location at address ¥y; the upper
half is all 0’s.

k=3:(0) + Y=>A. The operand is the 30
bits contained in the storage location at ad-
dress .

k=4:¢(Q) + Xy—>A. The lower half of the
operand is ¥ — the low-order 15 bits con-
tained in the instruction word after B-register
modification; the upper half is an extension
of the sign bit. The upper half of the operand
will be all 0’s if bit 14 of ¥ is a 0, or it will
be all 1’s if bit 14 is a 1.

k=5:(Q) + XY—>A., The lower half of the
operand is the low-order 15 bits contained in
the storage location at address ¥; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 14
in the storage location is a 0, or it will be all
1’s if bit 14 is a 1.

k=6:(Q) + X¥;—>A. The lower half of the
operand is the high-order 15 bits contained in
the storage location at address ¥y; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 29 in
the storage location is a 0, or it will be all
ones if bit 29 is a 1.

FUNCTION CODE: 30

MNEMONIC: ENT* Y + Q

OPERATION: Q+Y—»4A

DESCRIPTION: This instruction adds a 30-bit
operand to the contents of the Q-register and
retains the sum that is formed in the A-register.
The contents of the Q-register are undisturbed by
this instruction.

k DESIGNATORS: The operand that is added to
the contents of the Q-register is derived as follows:

k=0: () + y=»A. The lower half of the
operand is ¥ — the low-order 15 bits contained
in the instruction word after B-register modi-
fication; the upper half is all 0’s.

k=7:(Q) + (A)—A. The operand is the 30

. bits contained in the A-register.

j DESIGNATORS: The skip conditions are deter-

mined as follows:

j=0: no skip.

j=1: skip NI.

j=2: skip NI if (Q) is + or + 0.
i=3: skip NI'if (Q) is — or — Q.
j=4: skip NI if (A); if + 0.
j=5: skip NI if (A)f is not + 0.
j=6: skip NI if (A)sis + or + 0.
j=17: skip NI if (Aj;is — or — 0.

ENTERY - Q

CLASS: Read
FUNCTION CODE: 31
MNEMONIC: ENT. ¥ - Q
OPERATION: Y - Q—A,

DESCRIPTION: This instruction subtracts the
contents of the Q-register-from a 30-bit operand
and retains the difference that is farmed in the
A-register. The contents of the Q-register are un-
disturbed by this instruction.

k DESIGNATORS: The operand that the contents
of the register Q are subtracted from is derived as
follows:

k=0:5 — (Q)—>A. The lower half of the
operand is y — the low-order 15 bits contained
in the instruction word after B-register modi-
fication; the upper half is all Q’s.

k=1:Y% — (Q)=—>A. The lower half of the
operand is the low-order 15 bits contained in
the storage location at address y; the upper
half is all 0’s.

k=2:¥,~ (Q)=—>A. The lower half of the
operand is the high-order 15 bits contained in
storage location at address y; the upper half
is all 0’s.

k=3:Y - (Q)—=A. The operand is the 30
bits contained in the storage location at ad-
dress y.

k=4:Xy - (Q)—>A., The lower half of the
operand is y — the low order 15 bits contained
in the instruction word after B-register modi-
fication; the upper half is an extension of the
sign bit. The upper half of the operand will be
0’s if bit 14 of ¥ is a 0, or it will be all 1’s if
bit 14 is a 1.

k=5:XY, -~ (Q)=—>=A. The lower half of the
operand is the low-order 15 bits contained in
the storage location at address y; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 14 in
the storage location is a 0 or it will be all 1’s
if bit 14 is a 1.

k=6:XY — (Q)—>A. The lower half of the
operand is the high-order 15 bits contained in
the storage location at address j; the upper
half is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 29 in
the storage location is a 0 or it will be all 1’s
if bit29 is a 1.

k=7:(A) - (Q) —>A. The operand is the 30
bits contained in the A-register.
j DESIGNATORS:
mined as follows:

‘I'he skip conditions are deter-

j=0: no skip.

j=1: skip NI

2: skip NI'if (Q) is + or + 0.
3: skip NIif (Q) is — or — 0.
4: skip NI if (A)pis + 0.

5: skip NI if (A); is not + 0.
6:

1

1]

skip NI if (A); is + or + 0.
skip NI if (A); is — or — 0.

j
i
i
i
j
]

STOREA +Q

CLASS: Store

FUNCTION CODE: 32

MNEMONIC: STR- A +@Q
OPERATION: (A) + (Q) —Y and A

DESCRIPTION: The instruction adds the con-
tents of the A- and Q-registers, retains the sum
that is formed in the A-register, and stores this
sum in a storage location.

k DESIGNATORS: The sum that is stored in the
storage location is derived as follows:

k=0:(A) + (Q)—= A, Q. The sum is stored in
the Q-register. Except when k is 0, the Q-
register is undisturbed by this instruction.

k=1:(4) + (Q)—= A4, (A)— ¥ , ¥ is undis-
turbed. The low-order 15 bits of the sum are
stored in the lower half of the storage loca-
tion at address y; the upper half of the storage
location is undisturbed.

k=2:(A) + (Q)— A, (A),—=Y,,Y is undis-
turbed. The low-order 15 bits of the sum are
stored in the upper half of the storage loca-
tion at address y; the lower half of the storage
location is undisturbed.

k=3:(A) + (Q) —A, Y. The sum is stored
in the storage location at address .

k=4:(A) + (Q)—= A. The sum is stored in
the A-register.

k=5:(A) + (Q)—A, (A);—»YL,YU is undis-
tutbed. The complement of the low-order 15
bits of the sum is stored in the lower half of
the storage location at address y; the upper
half of the storage location is undisturbed.

k=6:(4) + (Q) —=A4, (A))—>Y,Y is undis-
turbed. The complement of the low-order 15
bits of the sum is stored in the upper half of
the storage location at address y; the lower
half of the storage location is undisturbed.

k=7:(A) + (Q)—=A, (A)'=—>Y. The comple-
ment of the sum is stored in the storage loca-

tion at address y

i DESIGNATORS: The skip conditions are deter-
mined as foliows:
j=0: no skip.
j=1: skip NI.
2: skip NI if (Q)f is + or + 0.
3: skip NI if (Q)fis — or — 0.
= 4: skip NI if (A);is + 0.
5: skip NI if (A)sis not + 0.
6: skip NI'if (A)fis + or + 0.
7. skip NI if (A)sis — or — 0.

STORE A - Q

CLASS: Store

FUNCTION CODE: 33

MNEMONIC: STR* 4-Q
OPERATION: (A) - (Q) —=Y and 4

DESCRIPTION: This instruction subtracts the
contents of the Q-register from the A-register,
retains the difference that is formed in the A-
register, and stores this difference in a stor-
age location.

k DESIGNATORS: The difference that is stored
in the storage location is derived as follows:

k=0:(4A) - (Q)—= A, Q. The difference is
stored in the Q-register. With the exception
of this value for k, the Q-register is undisturbed
by this instruction.

k=1: (A) = (Q)—>A, (A)7=Y,, ¥, is undis-
turbed. The low-order 15 bits of the difference
are stored in the lower half of the storage loca-
tion at address y; the upper half of the storage
location is undisturbed.

k=2:(A) - (@)= A, (A);—>Y;, Y, is undis-
turbed. The low-order 15 bits of the difference
are stored in the upper half of the storage
location at address y; the lower half of the
storage location is undisturbed.

k=3:(A) - (Q)=>A, Y. The difference is
stored in the storage location at address y.

1=

k=4:(A) ~ (0) —A. The diiference is stored

in the A-register.

k=5:(4) - (Q) —A, (A),:—-»YL,YUis undis-
turbed. The complement of the low-order 15
bits of the difference is stored in the lower
half of the storage location at address ¥; the
upper half of the storage location is undisturbed.

k=6:(A) — (Q)—= A, (A), Y,,¥, is undis-
turbed. The complement of the low-order 15
bits of the difference is stored in the upper
half of the storage location at address y; the
lower half of the storage location is undisturbed.

k=7:(A) = (Q)—»A, (A)'! =Y. The comple-
ment of the difference is stored in the storage
location at address y.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

1: no skip.

1: skip NI.

2: skip NI if (Q)sis + or + 0.
3: skip NI if (Q)fis — or — 0.
4: skip NI if (A);is + 0.
5:
6:
1:

n

1]

skip NI if (A);is not + 0.
skip NI if (A)pis + or + 0.
skip NI if (A)sis — or - 0.

j
j
j
j
j
j
j
]

REPLACE A +Y

CLASS: Replace
FUNCTION CODE: 24

MNEMONIC: RPL - A +Y
OPERATION: (A) + Y —=Y and A

DESCRIPTION: This adds a 30—
bit operand to the contents of the A-register, re-
tains the sum formed in the A-register, and stores
this sum in the storage location from which the
operand was obtained.

instruction

k DESIGNATORS: The operand that is added to
the contents of the A-register and the sum stored
in the storage location from which the operand
was obtained atre derived as follows:

k=0, 4, or 7: not used.

k = IZYL + (A)=>»A, (A)—>Y ; YL', is undis-
turbed.” The lower half of the operand is the
low-order 15 bits contained in the storage
location at address y; the upper half is all
0’s. After the sum is formed in the A-register,
the low-order 15 bits are stored in the lower
half of the storage location from which the
operand was obtained; the upper half of the
storage location is undisturbed.

k=2: YU+ (A)—>A, (A —>I{}; YL is undis-
turbed. The lower half of the operand is the
high-order 15 bits contained in the storage
location at address y; the upper half is all
0’s. After the sum is formed in the A-register,
the low-order 15 bits are stored in the upper
half of the storage location from which the
operand was obtained; the lower half of the
storage location is undisturbed.

k=3:Y + (A)—>» A, Y. The operand is the
30 bits contained in the storage location at
address y. After the sum is formed in the A4-
register it is stored in the storage location
from which the operand was obtained.

k=5:XY + (A)—=A, (A)—Y ; ¥ is undis-
turbed. The lower half of the operand is the
low-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 14 in the
storage location is a 0, or it will be all 1’s
if bit 14 is a 1. After the sum is formed in
the A-register, the low-order 15 bits of this

sum are stored in the lower half of the storage
location from which the operand was obtained;
the upper half of the storage location is un-
disturbed.

k=6:XY,+ (A)—»A4, (A),=—>Y,; ¥ is undis-
turbed. The lower half of the operand is the
high-order 15 bits contained in the storage
location at address y; the upper half is an ex-
tension of the sign bit. The upper half of the
operand will he all 0’« if hit 20 in the starage
location is 0, or it will be all 1’s if bit 29 is a
1. After the sum is formed in the A-register,
the low-order 15 bits of this sum are stored in
the upper half of the storage location from
which the operand was obtained; the lower
half of the storage location is undisturbed.

j DESIGNATORS: The skip conditions ate deter-
mined as follows:

no skip.

skip NI.

skip NI if (@) is + or + 0.

skip NI if (Q) is — or — 0.

skip NI if (A)sis + 0.

skip NI if (A)sis not + 0.

skip NI if (A)f is + or + Q

skip NI if (A);is — or — 0.

PR O
1] l [}

" n u]
~N O O AW N e O
ce s se se ee se ee ae

—
i

REPLACE A - Y

CLASS: Replace
FUNCTION CODE: 25

MNEMONIC: RPL. A - ¥
OPERATION: (A) =Y —=Y and 4

DESCRIPTION: This instruction subtracts a
30-bit operand from the contents of the A-register,
retains the difference that is formed in the A-
register, and stores this sum in the storage
location from which the operand was obtained.

k DESIGNATORS: The operand that is subtracted
from the contents of the A-register and the dif-
ference that is stored in the storage location from
which the operand was obtained are derived as
follows:

k=0, 4, or 7: not used.

k=1:(4) = ¥, —>A; (A)?YL; Y is undis-
turbed. The lower half of the operand isthe
low-order 15 bits contained in the storage
location at address y; the upper half is all 0’s.
After the difference is formed in the A-register,
the low-order 15 bits of this sum are stored in
the lower half of the storage location from
which the operand was obtained; the upper
half of the storage location is undisturbed.

k=2:(A) = Y,=—>A4, (A)—>Y, Y is undis-
turbed. The lower half of the operand is the
high-order 15 bits contained in the storage
location at address y; the upper half is all 0’s.
After the difference is formed in the A-register,
the low-order 15 bits of the difference are
stored in the upper half of the storage location

from which the operand was obtained.

k=3:(4) = Y=—>A4, Y. The operand is the 30
bits contained in the storage location at ad-
dress 7. After the difference is formed in A-
register, it is stored in the storage location
from which the operand was obtained.

k=5:(A) - XY,—A, (A)7~>Y%; ¥, undis-
turbed. The lower half of the operand is the
low-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit, The upper half of
the operand will be all 0’s if bit 14 in the
storage location is a 0, or it will be all 1’s
if bit 14 is a 1. After the difference is formed
in the A-register, the low-order 15 bits of this
difference are stored in the lower half of the
storage location from which the operand was
obtained; the upper half of the storage loca-
tion is undisturbed.

k=6:(A) - XY, —>»A, (A),—>Y,; Y, is undis-
turbed. The lower half of the operand is the
high-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 29 in the
storage location is a 0, or it will be all 1’s
if bit 29 is a 1. After the difference is formed
in the A-register, the low-order 15 bits of this
difference are stored in the upper half of the
storage location from which the operand was
obtained; the lower half of the storage location
is undisturbed.

—
i

no skip.

skip NI.

skip NI if (Q) is + or + 0.
skip NI if (Q) is — or = 0.
skip NI if (A)i is + 0.

skip NI if (A)f is not + 0.
skip NI if (A)f is + or + 0.
skip NI if(A)f is — or — 0.

1] 1} i

—
1}

"

——
1}
~J o wn - w ~No — o

"

REPLACE Y +Q

CLASS: Replace
FUNCTION CODE: 34

MNEMONIC: RPL " Y + Q
OPERATION: Y + (Q)=>Y and A

DESCRIPTION: This instruction adds a 30-bit
operand to the contents of the Q-register, retains
the sum that is formed in the A-register, and
stores this sum in the storage location from
which the operand was obtained.

k DESIGNATORS: The operand that is added to
the contents of the Q-register and the sum that is
stored in the storage location that the operand
was obtained from are derived as follows:

k=0, 4, and 7: not used.

k=1:Y, + (Q)—A, (A7, ;Y, is un-
disturbed. The lower half of the operand is
the low-order 15 bits contained in the storage
location at address y; the upper half is all
0’s. After the sum is formed in the A-register,
the low-order 15 bits of this sum are stored in
the lower half of the storage location from
which the operand was obtained; the upper
half of the storage location is undisturbed.

k=2:Y, + (Q)—A, (A) ;Y ;Y isun-
disturbed. The lower half of the operand is
the high-order 15 bits contained in the storage
location at address y; the upper half is all 0’s.
After the sum is formed in the A-register, the
low-order 15 bits of this sum are stored in the
upper half of the storage location from which

j DESIGNATORS: The skip conditions are deter- the operand was obtained; the lower half of
mined as follows: the storage location is undisturbed.

k=3:Y + (Q)—A4, Y. The operand is the 30-
bits contained in the storage location at ad-
dress y. After the sum is formed in the A-
register, it is stored in the storage location
from which the operand was obtained.

k=5 XY, + (Q)—>A4, A—Y, Y, s
undisturbed. The lower half of the operand is
the low-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all0’s if bit 14 in the stor-
age location is a 0, or it will be all 1’s if bit
14 is a 1. After the sum is formed in the A-
register, the low-order 15 bits of this sum are
stored in the lower half of the storage location
from which the operand was obtained; the
upper half of the storage location is undisturbed.

k=6: XY, +(Q)=—A, (A)j—>Y ;Y isun-
disturbed. The lower half of the operand is the
high order 15 bits contained in the storage
location at address ¥y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 29 in the
storage location is a 0, or it will be all 0’s if
bit 29 is a 0. After the sum is formed in the
A-register, the low-order 15 bits of this sum
are stored in the upper half of the storage
location from which the operand was obtained;
the lower half of the storage location is
undisturbed.

| DESIGNATORS: The conditions for skip are
determined as follows:

j=0: no skip.

j=1: skip NI

j=2: skip NI if (Q) is + or + 0.
j=3: skip NI if (Q) is — or — 0.
j skip NI if (A)gis + 0.

i skip NI if (A); is not + 0.

i skip NI if (A)is + or+ 0.
j=7: skip NI if (A);is — or — 0.

1 I
£

i}
~ o9

REPLACEY - Q

CLASS: Replace

FUNCTION CODE: 35

MNEMONIC: RPL 'Y - Q

OPERATION. Y —(Q)=—>Y and A

4-10

DESCRIPTION: This instruction subtracts the
contents the Q-register from a 30-bit operand,
retains the difference that is formed in the A-
register, and stores this difference in the storage
location from which the operand was obtained.

k DESIGNATORS: The operand that the contents
of the Q-register are subtracted from and the
difference that is stored in the storage location
from which the operand was obtained are derived
as follows:

k=0, 4, and 7: not used.

k=1:Y, - (Q)—>A4, (A),—7Y, ;Y is un-
disturbed. The lower half of the operand is
the low-order 15 bits contained in the storage
location at address ¥; the upper half is all 0’s.
After the differénce is formed in the A-register
the low-order 15 bits of this difference are
stored in the lower half of the storage location
from which the operand was obtained; the
upper half of the storage location is
undisturbed.

k=2: YU — (Q)—+4, (A)E—>YU ;Y is un-
disturbed. The lower half of the operand is
the high-order 15 bits contained in the storage
location at address y; the upper half is all
0’s. After the difference is formed in the A-
register, the low-order 15 bits of this difference
are stored in the upper half of the storage
location from which the operand was obtained;
the lower half of the storage location is
undisturbed.

k=3:Y — (Q)=—>»A, Y. The operand is the 30
bits contained in the storage location at ad-
dress y: After the difference is formed in the
A-register, it is stored in the storage location
from which the operand was obtained from.

k=35: XY, — (Q)=>A, (A)j™>Y, Y, is
undisturbed. The lower half of the operand is
the low-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 14 of the
storage location is a 0, or it will be all 1’s if
bit 14 is a 1. After the difference is formed in
the A-register, the low-order 15 bits of this
difference are stored in the lower half of the
storage location from which the operand was
obtained; the upper half of the storage location
is undisturbed.

k=6: Xy, - Q)=—=4, (A);™>Y ;Y is
undisturbed. The lower half of the operand is
the high-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 29 of the
storage location is a 0, or it will be all 1’s if
bit 29 is a 1. After the difference is formed in
the A-register, the low-order 15 bits of this
difference are stored in the upper half of the
storage location from which the operand was
obtained; the lower half of the storage location
is undisturbed.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j=0: no skip.

j=1: skip NI

j= skip NI if (Q) is + or + O.
3. skip NI if (Q) is — or — 0.
4: skip NI if (Apis + 0.
5
6

~N

"

skip NI if (Af) is not + 0.
. skip NI if (Af) is + or + 0.
j=7: skip NI if (Ay) is — or — 0.

i
j
]
j
j

REPLACE Y +1

CLASS: Replace
FUNCTION CODE: 36

MNEMONIC: RPL *Y +1
OPERATION: Y+ 1=—>Y and A

DESCRIPTION: This instruction adds a binary
1 to a 30-bit operand, retains the sum that is
formed in the A-register, and stores this sum in
the storage location from which the operand was
obtained.

k DESIGNATORS: The operand that a binary 1
is added to and the sum that is stored in the
storage location that the operand was obtained
from are derived as follows:

k=0, 4, and 7: not used.

~k=11Y, +1=—>A4, (A)—=Y, ;Y, is un-
disturbed. The lower half of the operand is the
low-order 15 bits contained in the storage
location at address y, the upper half is all 0’s.

After the sum is formed in the A-register, the

low-order 15 bits of this sum is stored in the
lower half of the storage location from which
the operand was obtained; the upper half of
the storage location is undisturbed.

k=2: YU + 1—>A, (A)L—> YU ;YL is un-
disturbed. The lower half of the operand is
the high-order 15 bits contained in the storage
location at address y; the upper half is all 0’s.
After the sum is formed in the A-register, the
low-order 15 bits of this sum is stored in the
upper half of the storage location from which
the operand was obtained; the lower half of
the storage location is undisturbed.

k=3:Y + t—>A, Y. The operand is the 30-
bits contained in the storage location at ad-
dress y. After the sum is formed in the A-
register, it is stored in the storage location
from which the operand was obtained.

k=5: XY, + 1—A4, (A)L——>YL ;YU is un-
disturbed. The lower half of the operand is
the low-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 14 of the
storage location is a 0, or it will be all 1’s if
bit 14 is a 1. After the sum is formed in the A-
register, the low-order 15 bits of this sum are

stored in the lower half of the storage lo-

-cation from which the operand was obtained;

the upper half of the storage location is un-
disturbed.

k=6: XY, + 1—=A, (A))Y, ;Y is un-
disturbed. The lower half of the operand is
the high-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 29 of the
storage location is a 0, or it will be all 1’s if
bit 29 is a 1. After the sum is formed in the
A-register, the low-order 15 bits of this sum
are stored in the upper half of the storage
location from which the operand was obtained;
the lower half of the storage location is
undisturbed.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

no skip.

skip NI.

skip NI if (Q) is + or + 0.
skip NI if (Q) is — or — 0.
skip NI if (A)sis + 0.

skip NI if (A)f is not + 0.
skip NI if (A)sis + or + 0.
skip NI if (A)f is — or - 0.

I 0] 1§ It

—. —
1 H
-~ O W N = O

]=
REPLACE Y -1
CLASS:
FUNCTION CODE: 37

Replace

MNEMONIC:
OPERATION:

RPL Y -1

Y —1—>Y and A4

DESCRIPTION: This instruction subtracts abin-
ary 1 from a 30-bit operand, retains the difference
that is formed in the A-register, and stores this
difference in the storage location from which the
operand was obtained.

k DESIGNATORS: The operand that a binary 1
is subtracted from and the difference that is
stored in the storage location from which the
operand was obtained are derived as follows:

k=0,4, or 7: not used.
is un-

k=0:Y, - 1=—>4, (4),—/Y ;Y
disturbed. The lower half of the operand is the
low order 15 bits contained in the storage
location at address y; the upper half is all
0’s. After the difference is formed in the A-
register, the low-order 15 bits of this dif-
ference are stored in the lower half of the
storage location from which the operand was
obtained; the upper half of the storage lo-
cation is undisturbed.

k=2: Y, = 1=—>4, (AT ; Y is nun-
disturbed. The lower half of the operandis the
high-order 15 bits coantained in the storage
location at address y; the upper half is all
0’s. After the difference is formed in the A-
register, the low-order 15 bits of this dif-
ference are stored in the upper half of the
storage location from which the operand was
obtained; the lower half of the storage locaticn
is undisturbed.

k=3:Y — 1=>A, Y. The operand is the 30
bits contained in the storage location at ad-
dress y. After the difference is formed in the
A-register, it is stored in the storage lo-
cation from which the operand was obtained.

k=5 XY, ~ 1—4, (A) ™Y, ;Y, is un-
disturbed. The lower half of the operand is the
low-order 15 bits contained in the storage
location at address y; the upper half is an
an extension of the sign bit. The upper halfof
the operand will be all 0’s if bit 14 of the
storage location is a 0, or it will be all 1’s if
bit 14 is a 1. After the difference is formed
in the A-register, the low-order 15 bits of this
difference atre stored in the lower half of the
storage location from which the operand was
obtained; the upper half of the storage lo-
cation is undisturbed.

k=6: XY - l=—A, (A)j—>Y, ;Y is un-
disturbed. The lower half of the operand is
the high-order 15 bits contained in the storage
location at address y; the upper half is an
extension of the sign bit. The upper half of
the operand will be all 0’s if bit 29 of the
storage location is a 0, or it will be all 1’s if
bit 29 is a 1. After the difference is formed
in the A-register, the low-order 15 bits of this
difference is stored in the upper half of the
storage location from which the operand was
obtained; the lower half of the storage lo-
cation is undisturbed.

j DESIGNATORS:

mined as follows:

The skip conditions are deter-

j=0: no skip.

j=1: skip NI

i=2: skip NI if (Q) is + or + 0.

j=3: skip NI if (Q)is — or — 0.

j=4: skip NI if (A)pis + 0.

j=9: skip NI if (A)f is not + 0.

j=6: skip NI if (A)f is + or + 0,

j=1: skip NI if (A)f is — or — 0.
MULTIPLICATION

Multiplication is performed with positive numbers,
If a multiplication involves any negative numbers,
they are made positive by complementing them
ptior to performing the multiplication. After the

positive product is formed in the AQ-register, the
sign of this product is corrected by complementing
the contents of the AQ-register, if one, but not
both, of the original numbers was negative.

The following rules apply for multiplication:

m If a positive number is multiplied by a
positive number or a negative number by a
negative number, the product will be positive.

m If a positive number is multiplied by a nega-
tive number or a negative number by a
positive number, the product will be negative.

m If positive 0 is multiplied by positive 0 or
negative 0 by negative 0, the product will
be positive 0.

m If positive 0 is multiplied by negative 0 or
negative 0 by positive 0, the product will
be negative 0.

If the range of the multiplicands and multipliers
is known, it is possible to determine if the entire
product will be in the Q-register or it part of it
will be inthe A-register by applying the following
rules:

m If the most significant bit (the most signifi-
cant 1 in a positive number or the most
significant 0 in a negative number) of the
multiplicand is in bit position n, the entire
product will be in the Q-register if bit
position 28-n cof the multiplier contains a
sign bif.

m If the most significant bit of the multiplicand
is in bit positicn n, the entire product may
be in the Q-register if the most significant
bit of the multiplier is in bit position 28-n.

w If the most significant bit of the multiplicand
is in bit position n, the entire product will
not be in the Q-register if bit position 29-n
of the multiplier does notcontain a sign bit.

The following examples illustrate theze rules:

m The entire product will be contained in the
Q-register. :

00000000006006600000C00001010 (multiplicand)
000900090000000009000000901000 (multiplier)
000000660000000000000001610000 (product)

in the Q-register

0G0000000000000000000066300000
in the A-register

s The entire product may be contained in the
Q-register.

000000000000000000000000000010 (multiplicand)
001000000000000000000000000000 (multiplier)
010000000000000000000000000000 (product)

in the Q-register

001111111111111111111111111111 (multiplicand)
000000000000000000000600000011 (multiplier)
101111111111111111111111111101 (product)

in the Q-register

000000000000000000000000000000
in the A-register

000000000000000000000000000000
in the A-register

m The entire product will not be contained in
the Q-register.

011111111111111111111111111111 (multiplicand)
100000000000000000000000000000 (multiplier)
111111111111111111111111111110 (preduct)

in the Q-register

110000000000000000000000000000
in the A-register

MULTIPLY

CLASS: Read
FUNCTION CODE: 22
MNEMONIC: MUL -
OPERATION: (0) x Y—>A0

DESCRIPTION: This instruction multiplies the
contents of the Q-register by a 30-bit multiplier
and retains the 60-bit product that is formed in
the AQ-register. The interpretation of the j
designator is made prior to final sign correction.

Kk DESIGNATORS: Themultiplierthatthe contents
of the Q-register are multiplied by is derived as
fellows:

k=0:y x (Q)=—>49Q. The lower half of the
multiplier is y — the low-order 15 bits contained
in ihe instruction word after B-register modifi-
cation; the upper half is all 0’s.

k=1: ¥, x (Q)—>AQ. The lower halfof the
multiptier is the low-order 15 bits contained
in the sicrage location at address y; theupper
half is all 0’s.

k=2:7, = (0)=340. The lower half of the
muitiplier is the high-order 15 bits
ir the storage locaticn at address ¥; the upper
half is all 0’s.

contained

k=3:¥ x (Q)=»AQ. The multipiier is the
30-bits contained in the storage location at
address 7.

4-13

k= 4: Xy x (Q)=»AQ. The lower half of the
multiplier is y — the low-order 15 bits contained
in the instruction word after B-register modifi-
cation; the upper half is an extension of the
sign bit. The upper half of the multiplier will
be all 0’s if bit 14 of y is a 0, or it will be all
1’s if bit 14 is a 1.

k=5 XY, x (Q)=—>AQ. The lower half of the
multiplier is the low-order 15 bits contained
ii the stoiage location at addiess y; the uppei
half is an extension of the sign bit. The upper
half of the multiplier will be all 0’s if bit 14
in the storage location is a 0, or it will be all

1’s if bit 14 is a 1.

k=6: XY, x (Q)=—>AQ. The lower half of the
multiplier is the high-order 15 bits contained
in the storage location at address y; the upper
half is an extension of the sign bit. The upper
half of the multiplier will be all 0’s if bit 29
in the storage location is a 0, or it will be
all 1’s if bit 29 is a 1.

k=7:(A) x (Q)=»AQ. The multiplier is the
30 bits contained in the A-register. This value
for k may be used if (Q), is a positive number.
If (Q)i is a negative number, a complemented
product will result.

i DESIGNATORS: The skip conditions are deter-

mined as follows:

j=0: no skip.
j=1: skip &L

j=2: skip NI if (Q) is + or + 0 prior to final
sign correction, If a skip does not occur, a
double length product is indicated since there
is a significant bit in bit position 29 of the
Q-register.

j=3: skip NI if (Q) is — or — O prior to final
sign correction. If a skip occurs, a double
length product is indicated since there is a
significant bit in bit position 29 of the
Q-register.

j=4: skip NI if (A) is + O prior to final sign
correction. If a skip occurs, it indicates that
the product has 30 or less significant bits,
and that the A-register contains only sign bits.
This does not mean that the Q-register contains
the correct product, since bit position 29 of
the Q-register may contain a significant bit
of the product, thus making bit position 0 of

the A-register the first sign bit. If a skip does
not occur, it indicates that significant bits of
the product are in the A-register.

j=35: skip NI if (4) is not + O prior to final
sign correction. If a skip occurs, it indicates
that significant bits of the product are in the
A-register. If a skip does not occur, it in-
dicates the same situation that is present
when a skip occurs with j = 4.

i=6: skip NI if (A) is + or + O prior to final
sign correction. A Skip should always occur
since (A) should always be a positive number
prior to final sign correction.

j=1: skip NI is (4) is — or — O prior to final
sign correction. A skip should never occur
since (A) should never be a negative number
prior to final sign correction.

DIVISION

Division is also performed with positive numbers.
If a division involves any negative numbers, they
ate made positive by complementing them prior to
performing the division. After the positive quo-
tient and remainder are formed in the Q- and A-
register respectively, the signs of the quotient
and remainder are corrected by complementing the
contents of the Q- and A-registers if one, but not
both, of the original numbers was negative.

The following rules apply for division:

» Ifa positive number is divided by a positive
number or a negative number by a negative
numbet, the quotient and remainder will be
positive numbers.

m If a positive number is divided by a negative
number or a negative number by a positive
number, the quotient and remainder will be
negative numbers.

Negative Zero Quotients and Remainders

Division, if handled improperly, may generate a
negative 0 quotient or remainder that can have an
adverse affect on further calculations. This situ-
ation can occur in the following cases:

Even Division Where The Dividend and Divisor

Have Unlike Signs and Are Non-Zero

The result of such a division is that the correct
quotient will be in the Q-register and the re-
mainder in the A-register will be a negative 0.

When the interpretation of the j-designator is
made, the Q-register will contain the absolute
value of the quotient and the A-register will
contain a positive 0. For example:

000000000000000000000000000000 0G0000000000000001010011100101 (dividend)
111111111111111110101100011010 (divisor)

%0000000000000000000000000000lU (quotient in the Q-register)

At | interpretation
000000000000000000000000000000 (remainder in the A-register)

111111111111111111111111111101 (quotient in the Q-regisier)
Final Result

111111111111111111111111111121 (remainder in the A-register

Division Where The Absolute Value Of The
Divisor Is Greater Than The Absolute Value Of
Dividend, The Signs Are Unlike, And Both Are

Non-Zero

When division is performed in this case, the quo-
tient in the Q-register will be a negative 0 and
the remainder in the A-register will be the
complement of the absolute value of the dividend.
At the time the interpretation of the j-designator
is made, the Q-register will contain a positive 0
and the A-register will contain the absolute value
of the dividend. For example:

000000000000000000000006000000 000000000000000000000000000011 (dividend)
111111111111111111111111111010 (divisor)

3000UUUDUUUUOUOOOUUUGDUUUDUUUUU (quotient in the Q-register)

At j interpretation
000000000000000000000000000011 (remainder in the A-register)

111111111111111111111111111111 (quoti ent in the Q-register)
Final Result i

111111111111111111111211111100 (remainder in the A-register)

Division By Positive Or Negative Zero
The following rules apply in these cases:

m If a positive number is divided by positive
0, the quotient in the Q-register will be a
negative 0 and the remainder in the A-
register will be the initial contents of the
Q-register. At the time interpretation of the
j-designator is made, the contents of the
Q- and A-registers will be the same as the
final contents.

m If a negative number is divided by positive
0, the quotient in the Q-register will be a
positive 0 and the remainder in the A-
register will be the initial contents of the
Q-register. At the time interpretation of the
j-designator is made, the Q-register will

contain a negative 0 and the A-register will
contain the complement of the initial
contents of the Q-register.

m If a positive number is divided by negative
0, the quotient in the Q-register will be a
positive 0 and the remainder in the A-
register will be the complement of the
initial contents of the Q-register. At the
time the j-designator is interpreted, the Q-
regis ter will contain a negative 0 and the
A-register will contain the initial contents
of the Q-register.

s If a negative number is divided by negative
0, the quotient in the Q-register will be a
negative 0 and the remainder in the A-
register will be the complement of the initial
contents of the Q-register. At the time the
j-designator is interpreted, the contents of
the Q- and A-registers will be the same as
the final contents

The following examples illustrate these rules:
® A positive number divided by positive 0.

000000000000000000000000000001 000000000000000000000000000001 (dividend)
000000000000000000000000000000 (divisor)

-111111111111111111111111111111 (quotient in the Q-register)
At j interpretation {
000000000000000000000000000001 (remainder in the A-register)

111111111111111111111111111111 (quotient in the Q-register)
Final Result %

000000000000000000000000000001 (remainder in theA—register)

® A negative number divided by positive 0.

LTI 1011031001 111001011311112110111111111110 (dividend)
000000000000000000000000000000 (divisor)
i111111111111111111111111111111 (quotient in the Q-register)

At | interpretation
000000000000000000000000000001 (remainder in the A-fegister)
000000000000000000000000000000 (quotient in the Q-register)

Final Result
111111111111111111111111311110 (remainder in the A-register)

& A positive number divided by negative 0.

01011111111111111111111111111 11011111111111111111111111111 (dividend)
HITNININNTNIIINIILL (divisor)

s]11111111111111111111111111111 (quotient in the Q-register)

At j inferpretation
}110111111111111111111111111111 (remainder in the A-register)
3000000000000000000000000000000 (quotient in the Q-register)

Final Resuit
001000000000000000000000000000 (remainder in the A-register)

® A negative number divided by negative 0.

1001111111111 11111111111111111 - 110111111111111111111111111111 (dividend)

111111111111111111111111111111 (divisor)

111111111111111111111111111111 (quotient in the Q-register)
At j interpretation
001000000000000000000000600000 (remainder in the Q-register)

111111111111111111111111111111 (quetient in the Q-register)
Final Resuft

001000000000000000000000000000 (remainder in the A-register)

EN

oy

Division Of Positive Or Negative Zero By aNon-
Zero Divisor With An Unlike Sign

When division is performed in this case, the
quotient in the Q-register and the remainder in
the A-register will be a negative 0. At the time
interpretation of the j-designator is made both
the Q- and A-register will contain a positive 0.
The following examples will illustrate this:

000000000000000000000000000000 000000000000000000000060000090 (dividend)

110111111112111111111111211110 (divisor)
{UOUGDUDG0000000000000000000000 (quotient in the Q-register)

At j interpretation
000000006000002000000600000000 (remainder in the A-register)

THIII11121111138 134011111131 (quotient in the Q-register)
Final Result
1111110111110 111110111 (remainder in the A-register)
TN I IR 243010 130RRDER00000200004E 111011111 (dividend}
000000000000006000000000000001 (diviscr)
{000000ﬂ00000000000000000000000 (guotient in the Q-register)

At j interpretation
000000080000000C00000CC00G0000 (remainde; in the A-register)

. IHEE 2101011311011 14T (quotient in the Q-register
Final Res‘u!t
I IIITI0 0L (remainder in the A-register:
Divide Overflow With Non-Zero Divisor and
Dividend
In diviscn, the dividend in the AQ-register may

have up to 5% significant bits while the divisor
may have as few as 1. In these cases, a quotient
may be geunerated that has as many as 5Y signifi-
cant bits, Since the Q-register has a 30-Lit
capacity, an overflow situation will result when
a quotient is generated that has more than 29
significant bits. If overflow does occux, the
quotient in the Q-register will be a positive ¢ if
the divisor and dividend have unlike signs, or it
will be a negative 0 if the signs were the same.
At the time the j-designator is interpreted the Q-
register will always contain a negative 0.

The following rules govern the occurrence of a
divide overflow:

w If the most significant bit of the divisor is
in bit position n, a divide overflow will not
occur if the dividend Las no significant bits
beyond Lit positica n ¢+ 28,

w If the most significant bit of the divisor is
in bLit positice w#, a divide overfiow will
occur if the dividend has a significant bit
in bit positios n + 30 or beyoad.

m If the most significant hit of the divisor is
in bit position n, a divide

if the most significant hit of

dividend is in kit nositicn n + 28,

overflow mey

occur the

[

The following examples illustrate these rules:
s No overflow.

000000000000600000000000000000 000000060000000010110001011100 (dividend)
000000000000000000001010011100 (divisor)

{0UUOODUDOUUODODUGOU00000010001 (guotient in the Q-register)

At | interpretation
00000060000000000000000000000C (remainder in the A-register)

{000000000000000000000000010001 (quotient in the Q-register)

Fina! Result
006000000000000006000000000000 (remainder in the A-register)

® Overflow occurs.

000000000009600100011001100011 010011110111100111100110101011 (dividerd)
00000006G00000001600000100006G (divisor)

{1111]1111111!11111111111111111 (quotient in the Q-fegister)

At j interpretation
010011110111100001100111101011 (remainder in the A-register)
111111111101110111 11111113111 (auotient in the Q-register)
Final Resuit
010011110111100001100111161011 (remainder in the A-register)

8 Overflow may occur.

1011000010000120610001200i11111 (dividend)
0066000606606060104560001000009 {divisor)
{}.H?fll]1113!'&1311.‘3111]]1?1!1 (gnotient in the Q Tegister)

111311111111111011100103011100

At j interpretation
0061116 131607 1112001100060D Gumaindas in the Q-register)

DIGECOSLNI00IGE0RGRR0000U0G00 (wuotient in the Q-register)

Final Resuit
$0: 1000 0UEAI 1050 011063001 (emaintar in the Avegiskr)

In this examrple, cverflow occurs.

000000000006656000600000060001 665000006600000C00000000000001 (uiviuend)
00000006000000000000000000008 (i ivisor)

{OUODIUDU‘UOUIDO{H@OBOIHIOEIO! (notient in the jregister)

At j interpreiztion
000006G35CAG90GC0000000000001 (:emainder in iie A-regisisr)

0060100016063 00610000111103101 {quetient in the Q-register;
Final Resuit
0000000000809G00000000000C0021 (remainder in the A-register)

In this examnple, overflow does not ocenr.

n is difficelt to
the value of suvclh information,
when obtained, is questionahle. The rules that
are stated below are valid at least in the above
examples. They should not, however,
sidered universal rules.

The remainder in overflow divisic

determine ant

be coii-

m If the dividend and diviso: are positive
numbers, add the dividend and divisor. The
renainder in the 4-register will be the low-
order 30
the tince
contents

bits of thie sum that is formad. At
e f-designeator is intarpreied, the
of tie 4-register

Le iz same

as tne Tinal contenis.

a If the dividend and divisor are negative
numbers, complement the dividend and
divisor, and then add them. The remainder
in the A-register will be the low-order 30
bits of the sum that is formed. At the time
interpretation of the j-designator is made,
the contents of the A-register will be the
same as the final contents.

w If the dividend is a positive number and the
divisor is a negative number, the divisor
should be complemented and then added to
the dividend. The final remainder in the 4-
register will be the complement of the low-
order 30 bits of the sum that is formed. At
the time interpretation of the j-designator is
made, the contents of the A-register will be
the low-order 30 bits of the sum that is
formed.

m If the dividend is a negative number and the

divigor is 2 nosgitive number
glviser 1s a posilive number,

complement
the dividend should be complemented and
then added it to the divisor. The final re-
mainder in the A-register will be the com-
plement of the low-order 30 bits of the sum
that is formed. At the time the j-designator
is interpreted, the contents of the A-register
will be the low-order 30 bits of the sum that

is formed.
DIVIDE
CLASS: Read
FUNCTION CODE: 23
MNEMONIC: DIV.
OPERATION: (AQ) + Y —» @, Remainder—»4

DESCRIPTION: This instruction divides the
contents of the AQ-register by a 30-bit divisor
and retains the quotient and remainder that are
formed in the Q- and A-registers respectively.
The interpretation of the j-designator is made
prior to final sign correction.

k DESIGNATORS:
of the AQ-iegister are divided by
follows:

The divisor that the contents
is derived as

k=0: (AQ) + y—»Q, R~»A. The lower half
of the divisor is ¥y — the low-order 15 bits con-
tained in the instruction word after B-register
modification; the upper half is all (’s.

k=1:(AQ) = Y —0, R—>A. The lower half
of the divisor is the low-order 15 bits con-
tained in the storage location at address y; the
upper half is all 0’s.

k=2:(AQ) = YU—>Q, R—=>A. The lower half
of the divisor is the high-order 15 bits con-
tained in the storage location at address ¥; the
upper half is all 0’s.

k=3: (AQ0) + Y=—>Q@, R—=A. The divisor
is the 30 bits contained in the storage location
at address y.

k=4: (4Q) + Xy —Q, R—>A. The lower
half of the divisor is ¥ — the low-order 15 bits
contained in the instruction word after B-
register modification; the upper half is an ex-
tension of the sign bit. The upper half of the
divisor will be all 0’s if bit 14 of ¥ is a 0, or
it will be all 1’s if bit 14 is a 1.

k=5: (4Q) + XY —=Q, R—>A. The lower
half of the divisor is the low-order 15 bits
contained in the storage location at address
y; the upper half is an extension of the sign
bit. The upper half of the divisor will be all
0’s if bit 14 of the storage location is a 0, or
it will be all 1’s if bit 14 is a 1.

K=6: (AQ) + XY,—>0Q, R—>A. The lower
half of the divisor is the high-order 15 bits
contained in the storage location at address
y; the upper half is an extension of the sign
bit. The upper half of the divisor will be all
0’s if bit 29 in the storage location is a 0,
or it will be all 1’s if bit 29 is a 1.

k=7: not used.

j DESIGNATORS:

mined as follows:

The skip conditions are deter-

j=0: no skip.
j=1: skip NI

j=2: skip NI if (Q) is + or + 0 prior to final
sign correction. If a skip does not occur, a
faulty divide is indicated.

i=3: skip NI if (Q) is — or — 0 prior to final
sign correction. if a skip occurs, a faulty
divide is indicated.

j=4: skip NI if (A) is + 0 prior to final sign
correction. If a skip occurs, no remainder is
indicated.

j=5: skip NI if (A) is not + 0 prior to final
sign correction. If a skip occurs, a remainder
is indicated.

j=6: skip NI if (A) is + or + 0 prior to final
sign correction. If a skip occurs, a legitimate
divide with or without remainder is indicated.

j=17: skip NI if (A) is — or — 0 prior to final
sign correction. If a skip occurs, a faulty
divide is indicated.

COMPARE

CLASS:

Read

FUNCTION CODE: 04

MNEMONIC:
OPERATION:

DESCRIPTION:

COM . A . Q, . AQ

Compare (A) and/or (Q) with
Y to determine skip.

This instruction compares the

signed value of a 30-bit operand with the signed
value of the contents of the A-register and/or the
contents of the Q-register.

k DESIGNATORS: The operand that the contents
of the A-register and/or the Q-register are com-
pared with is derived as follows:

k=0:Y =y. The lower half of the operand is
y — the low-order 15 bits contained in the in-
struction word after B-register modification;
the upper half is all 0’s.

k=1:7 = Y . The lower half of the operand is
the low-order 15 bits contained in the storage
location at address y; the upper half is all 0’s.

k=2:Y =Y,. The lower half of the operand is
the high-order 15 hits contained in the storage
location at address y; the upper half is all 0’s.

k=3:Y =Y. The operand is the 30 bits con-
tained in the storage location at address y.

k=4:Y = Xy, The lower half of the operand is
y — the low-order 15 bits contained in the in-
struction word after B-register modification;

j DESIGNATORS:

mined as follows:

the upper half is an extension of the sign bit.
The upper half of the operand will be all 0’s
if bit 14 of y is a 0, or it will be all 1’s if bit
14 isa 1, .

k=5:Y = XYL. The lower half of the operand
is the low-order 15 bits contained in the storage
location at address y; the upper half is an ex-
tension of the sign bit. The upper half of the
operand will be all 0’s if bit 14 of the storage

3 3 P s d ~ 1 1 if LI 14
lccaticn is 2 0, or it will be all 1's if bit 14

is a 1.

k=6:Y = XI%. The lower half of the operand
is the high-order 15 bits contained in the
storage location at address y; the upper half
is an extension of the sign bit. The upper
half of the operand will be all 0’s if bit 29 of
the storage location is a 0, or it will be all
1’s if bit 29 is a 1,

k=7:Y=(A). The operand is the 30 bits con-
tained in the A-register.

The skip conditions are deter-

no skip.

skip NI.

skip NI if ¥ < (Q).

skip NI if ¥ > (Q).

skip NI if (A)< Y<(Q).

skip NI if ¥ > (Q) or if ¥<(A).
skip NI if Y<(A).

skip NI if ¥ > (A).

1)
- O e W N =S

—
1

Negative Zero in Compare Operations

Negative 0 has the following properties in com-
pare operations;

-0 = -0.
-0 # +0.
-0 < +0.
~Y<-0ifyY # 0.

W N

To summarize, if Y #0, =Y < -0< +0< + 7.

Shift instructions shift the contents of a selected
tegister, ¥ bit positions right or left. The shift
count, Y, is always treated as a 6-bit positive
number regardless of the configuration of the
other 24 bits.

RIGHT SHIFT Q

CLASS: Read

FUNCTION CODE: 01

MNEMONIC: RSH . @

OPERATION: Shift (Q) right ¥ bit positions.

DESCRIPTION: This instruction shifts the con-
tents of register Q, Y bit positions to the right.
The bits that are shifted off the right end are lost
and sign bits fill in on the left end in those bit
positions that were vacated. If ¥ > 5910, an in-
correct shift will result. If 29<Y <59), all bit
positions of the Q-register will contain the original
sign bit.

k DESIGNATORS: The shif’g count, Y, is deter-

mined as follows:

k=0 or 4: X = y. The shift count is the low-
order 6 bits of y; that is, the low-order 6 bits
contained in the instruction word after B-
register modification.

k=1, 3, 0r5:7 = YL. The shift count is the
low-order 6 bits contained in the lower half
of the storage location at address y.

5. SHIFT INSTRUCTIONS

k=2 0r6:Y =Y . The shift count is the low-
order 6 bits contained in the upper half of the
storage location at address y.

k=7:Y = A,. The shift count is the low-order
6 bits contained in the A-register.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

no skip.

skip NI.

skip NI if (Q)pis + or + 0.

skip NI if (Q)gis — or — 0.

skip N1 if (4) if + O.

: skip NI if (A) is not + 0.

: skip NI if (A) is + or + 0.

. skip NI if (A) is — or — 0.

1} 1} n 1}

—_—
]

I
ENUEEY o » JR S 2 T S JU T N B N o |
. . e .o .o .

—
"

E xamples:

1. (Q); = 100100101111111011100001110101
Y=8
10

(Q) = 111111111001001011111110111000

2. (Q); = 001111111101111011110001110111
Y=29
10

(Q)s = 000000000000000000000000000000

RIGHT SHIFT A

CLASS: Read
FUNCTION CODE: 02

MNEMONIC: RSH . A

OPERATION: Shift (A) right ¥ bit positions,

A A T e oA A

DESCRIPTiION: This instruction shifts the con-
tents of the A-register Y bit positions to the right.
The bits that are shifted off the right end are lost
and sign bits fill in on the left end in those bit
positions that were vacated. If ¥ > 5910, an in-
correct shift will result. If 294 YL 5910, all bit
positions of the A-register will contain the original
sign bit.

k DESIGNATORS: The shift count, Y, is derived

as follows:

k=0 or4:Y = y. The shift count is the low-
order 6 bits of y; that is, the low-order 6 bits
contained in the instruction word after B-
register modification.

k=1, 3, 0r 5: Y = ¥;. The shift count is the
low-order 6-—bits contained in the lower half
of the storage location at address y.

k=2 or6:Y = YU. The shift count is the low-
order 6 bits contained in the upper half of the
storage location at address 7.

k=7: Y = A, . The shift count is the low-
order 6 bits contained in the A-register.

j DESIGNATORS: The skip conditions are detet-
mined as follows:

no skip.

skip N1I.

skip NI if (Q) is + or + 0.
skip NI if (Q) is — or — 0.
skip NI if (A); is + 0.

skip NI if (A)s is not + 0.
skip NI if (A); is + or + 0.
skip NI if (A); is — or — 0.

i 1 0 n

—
]

— —
il i

N oY OB W N = O

. .o .o . .o

—
"

RIGHT SHIFT AQ

CLASS: Read
FUNCTION CODE: 03
MNEMONIC: RSH . AQ

OPERATION:

DESCRIPTICON: This instruction shifts the con-
tents of the AQ-register, ¥ bit positions to the
right. The bits that are shifted off the right end
of the Q-register are lost, the bits that are shifted
off the right end of the A-register fill in on the
left end of the Q-register in those positions that
were vacated, and the left end of the A-register
is filled in with sign bits. (The sign bit in this
case is the bit in bit position 29 of the A-register.)

Shift (AQ) right Y bit positions.

If vy > 5910, an incorrect shift will result. If
Y22910, all bit positions of the A-register will
contain a sign bit. If ¥ = 59 0’ all bit positions
of both the A- and Q-registers will contain a
sign bit.

k DESIGNATORS: The shift count, ¥, is derived
as follows:
k=0 or4: Y = y. The shift count is the low-
order 6 bits of y; that is, the low-order 6 bits
contained in the instruction word after B-
register modification.

k=1, 3, 0r 51 ¥ = ¥, . The shift count isthe
low-order 6 bits contained in the lower half
of the storage location at address y.

k=2 or 6: Y = Y,. The shift count is the

low-order 6 bits contained in the upper half
of the storage location at address y.

k=7: Y =A,. The shift count is the low-
order 6 bits contained in the A-register.

j DESIGNATORS:

mined as follows:

The skip conditions are deter-

j=0: no skip.

j=1: skip NI.

j=2: skip NI if (Q)f is + or + 0.
i=3: skip NI if (Q)f is — or — 0.
j skip NI if (A); is + 0.

j skip NI if (A); is not + 0.
skip NI if (A)fis + or + 0.
. skip NI if (A); is — or — 0.

i
~ o U
.o . .

j
j

—
il

E xamples:

(R) Q

1. (AQ)i =111010011111111111011010001100 001110101101010010100011001001

Y=12

10 (R) Q

(AQ); = 111111111111111010011111111111 011010001100001110101101010010
(A) Q)

2. (AQ);= 101111000011101010000000000001 111111111100000101010101010101
Y- 59‘0 (R))

(AQ) = 1111111111111111111111 11110111
LEFT SHIFTQ

LN

CLASS: Read
FUNCTION CODE: 05
MNEMONIC: LSH . Q

OPERATION: Shift (Q) left ¥ bit positions,
end around.

DESCRIPTION: This instruction shifts the con-

tents of the Q-register, ¥ bit positions tc the left.

The bits that are shifted off the left end fill in on
the right end in the bit positions that were vacated.
If ¥y > 5910, an incorrect shift will result. If
Y = 3010, the Q-register will be restored to its
initial condition.

k DESIGNATORS:

as follows:

The shift count, ¥, is derived

k=0 or4: Y =y, The shift count is the low-
order 6 bits of y; that is, the low-order 6 bits
contained in the instruction word after B-
register modification.

k=1, 3, 0r5:Y =Y. The shift count is the
low-order 6 bits contained in the lower half
of the storage location at address y.

k=2 0r6:Y = Y,. The shift count is the low-
order 6 bits contained in the upper half of the
storage location at address y.

k=7:Y = A,. The shift count is the low-
crder 6 bits contained in the A-register.

j DESIGNATORS:

mined as follows:

The skip conditions are deter-

j= 0: no skip
j=1: skip NI.
j=2: skip NI if (Q)fis + or + 0.

j=3: skip NIif (Q); is — or — 0.
i=4: skip NI'if (A) is + O.

j=5: skip NI if (A) is not + 0.
i=6: skip NIif (A)is + or + Q.
j=17: skip NI if (A) is — or — 0.

E xamples:

1. (Q); = 001110101101010010100011001001
Y =15

10

(Q) = 010100011001001001110101101010

2. Q) =111010011111111111011010001100

Y = 3010
(Q)f =111010011111111111011010001100
LEFT SHIFT A
CLASS: Read

FUNCTION CODE: 06

MNEMONIC: LSH . A

OPERATION: Shift (A) left ¥ bit positions,
end around.

DESCRIPTION: This instruction shifts the con-

tents of the A-register ¥ bit positions to the left.
The bits that are shifted off the left end fill in
on the right end in the bit positions that were
vacated., If ¥ > 59 107 @0 incorrect shift will result.
IfY = 30,/ the A-register will be restored to its
initial condition.

k DESIGNATORS:
as follows:

The shift count, ¥, is derived

k=0or4:Y =y. The shift count is the low-
order 6 bits of y; that is, the low-order 6 bits
contained in the instruction word after B-
register modification.

k=1, 3, 0r5:7 = Y. The shift count is the
low-order 6 bits contained in the lower half
of the storage location at address y.

k=2 0r6:Y =Y,, The shift count is the low-
order 6 bits contained in the upper half of the
storage location at address y.

k=7.Y = AL. The shift count is the low-order
6 bits contained in the A-register.

j DESIGNATORS: The skip conditions are deter- k=0 or 4:Y =y. The low-order 6 bits of ¥;
mined as follows: that is, the low-order 6 bits contained in the
instruction word after B-register modification.

0: no skip.
1: skip NI. k=1, 3, 0r 5: Y = Y.
2: skip NIif (Q) is + or + 0. location at address y.
j=3: skip NI if (Q) is — or — 0.
4
5 skip NI if (A)s is not + 0.
6: skip NI if (A); is + or + 0.
I

at addrace ¥
uuuuuuuuu Y.

in the A-register.

LEFT SHIFT AQ

The low-order 6 bits

contained in the lower half of the storage

skip NI if (A); is + 0. k=2 or 6: Y =Y . The low-order 6 bits con-
tained in the upper half of the storage location

skip NI if (A)f is — or — 0. k=7:Y = AL. .The low-order 6 bits contained

j DESIGNATORS: The skip conditions are deter-

CLASS: Read mined as follows:
FUNCTION CODE: 07 j=0: no skip.

tents of the AQ-register ¥ bit positions to the ' i . .
left. The bits that are shifted off the left end = 7t skip NIif (A)g is
of the A-register fill in on the right end of the Q- E xamples:

j=1: skip NI.
MNEMONIC: LSH . AQ - 2: skip NI if (@) is
OPERATION: Shift (AQ) left Y bit positions, j=3: skip NIif (Q); is
end around. j=4: skip NI if (A); is
j=5: skip NI if (A);.is
DESCRIPTION: This instruction shifts the con- j-6: skip NI if (4); is
|

register in the bit positions that were vacated, (A)
and the bits that are shifted off the left end of 1. (AQ) - 1110100111)1111111011010001100
register Q fill in similarly on the right end of the Y5,)

A-register. If ¥ > 5910, an incorrect shift will
result. If ¥ = 30__, the contents of the A-register
-regi ill be i) (A)
and the Q-register will be interchanged 2. (AQ), - 101111101010001100010011101101

k DESIGNATORS: The shift count, ¥, is derived Y=30,, (A)
as follows: (AQ); = 000000011111111010101010011001

(AQ) = O11111111111011010001100001110

+or + 0.
— or — 0.
+ 0.
not 0.
+ or + 0.

—or — 0.

Q
001110101101010010100011001001

Q
101101010010100011001001111010
000000011111111010101010011001

()]
101111101010001100010011101101

Logical instructions are based upon five opera-
tions: logical product, selective set, selective
clear, selective complement, and selective sub-
stitute. They operate on the individual bit posi-
tions of the operands; that is, the condition of a
specific bit position in the result is determined by
the condition of the corresponding bit positions in
the operands.

LOGICAL PRODUCT, L [Y(Q)]

Logical product operations are generally used for
masking; that is, lifting out a selected portion of
an operand and leaving the unwanted portions be-
hind. This is accomplished by placing a mask in
the Q-register consisting of 1’s in the desired bit
positions and 0’s in the others. The logical product
formed will contain those bits of the operand that
correspond to the 1’s in the Q-register. All other
bits of the logical product will be 0’s. Simply stated,
in logical product operations the following rules

apply:

Qp=0110
Y = 1010
n R
nth bit of LIY(0)] = 0 0 1 0

6. LOGICAL

The following examples illustrates these rules:

{Q)= 000000000000000000111000111000

Y 0000000000000000000010100111200
LIY(Q)] 000000000000000000001UOUU%&H’%B'
i\ j0eC

it

it

SELECTIVE SET. (A) v Y

Selective set operations are used to force 1’s into
selected bit positions of the A-register. The bit
positions that 1’s are forced into are determined
by the condition of the corresponding bit posi-
tions in the operand; that is, if either or both of
these bit positions contain a 1, the result will be
a 1. If both contain a 0, the result will be a 0.
Simply stated in selective set operations the fol-
lowing rules apply:

A=0110190

n

Yn= 1010
nthbitof (A) vY=11120

The following example illustrates these rules:

B
It

000000000000000000001010011100
000000000000000000100100100100
000000000000000000101210111100

i

=
<
—<
i

INSTRUCTIONS

SELECTIVE CLEAR. (A) A N

Selective clear operations are used to force 0’s
into selected bit positions of the A-register. The
bit positions that 0’s are forced into are determined
by the presence of 1’s in the corresponding bit
positions of the operand; that is, if a bit posi-
tion in the operand contains a 1, the result will be
a 0. Simply stated, the following rules apply in
selective clear operations:

Ag= U 110
1010
0100

Y!'I
nth bit of (A)A Y

The following example illustrates these rules:

(A)=111111111111111111101110010111
Y = 000000000000000000100100100100
(A) AY = 111111111111111111001010010011

It should be noted that selective clear operations
also perform a zero-masking function. If the above
example is examined, this soon becomes apparent
since in each case where a bit position of the
operand contains a 0, the bit in the corresponding
bit position in the A-register is lifted out and
placed in the result.

SELECTIVE COMPLEMENT. (A)®Y

Selective complement operations are used to com-
plement the bits in selected bit positions of the
A-register. The bit positions that are to be com-
plemented are determined by the presence of 1’s
in the corresponding bit positions of the operand;
that is, if a bit position in the operand contains a
1, the bit in the corresponding bit position of the
A-register will be complemented. Simply stated,

the following rules apply in selective complement
operations:

Apb=011°0

Yo= 1010

nth bit of (AY® Y= 110 0

The following example illustrates these rules:

(A)y = 000000000000000000100101110111
Y = 000000000000000000111000111000
(A)®Y = 000000000000000000011101001111

SELECTIVE SUBSTITUTE. L [(A)(Q)] + L[Y(Q)]

Selective substitute operations are used for re-
placing bits in selected bit positions of the A-
register with bits from the corresponding bit posi-
tions of an operand. The bits of the operand that
will replace those in the A-register are specified
by 1’s in the Q-register. For example:

FIRST:
(Q)’ = 660000000000000000111000111000
(A) = 000000000000000000001101011110
L[(A)(Q)'] = 000000000000000000001000011000
SECOND:
(Q) = 111111111111111111000111000111
Y = 000000000000000000110010101100
LLY (Q)] =000000000000000000000010000100
FINALLY:
LI(A)Q)'] = 000000000000000000001000011000
LIY (Q)] = 000000000000000000000010000100

LIAXQ'T_ 400000000000000000001010011100
+ LIY(Q)

ENTER LOGICAL PRODUCT

CLASS: Read
FUNCTION CODE: 40
MNEMONIC: ENT « LP
OPERATION: L{Y@Q)l—A

DESCRIPTION: This instruction forms the logical
product of the contents of the Q-register and a 30-
bit operand and retains it in the A-register,

k DESIGNATORS: The operand in the logical pro-
duct operation is derived as follows:

k=0: L[7(Q)]=» A. The lower half of the oper-
and is ¥ — the low-order 15 bits contained in
the instruction word after B-register modifica-
tion; the upper half is all 0’s.

k=1: L[Y, (Q)]=—> A, The lower-half of the oper-
and is the low-order 15 bits contained in the
storage location at address y; the upper half is
all 0’s.

k=2:L[Y,(Q)]=A. The lower-half of the oper- ADD LOGICAL PRODUCT
and is the high-order 15 bits contained in the

storage location at address y; the upper half is CLASS: Read

all 0’s. FUNCTION CODE: 41

k=3: L[Y(Q)]=—> A. The operand is the 30 bits MNEMONIC: ADD- LP ,
contained in the storage location at address 7. OPERATION: (A) + LIY(Q)]—4

k=4: L[X5(Q)lA. The lower half of the oper- DESCRIPTION: This instruction adds the contents
and is ¥ — the lower-order 15 bits contained in ©f the A-register to the logical product of the con-
the instruction word after B-register modifica- tents of the Q-register and a 30 bit operand and re-
tion; the upper half is an extension of the sign tains the sum that is formed in the A-register.

b:t° ‘Th? upper Ea‘lf of the ?perénd will be a'll k DESIGNATORS: The operand in the logical pro-
0’s if bit 14 of ¥ is a 0, or it will be all 1’s if . . .
duct operation is derived as follows:

bit 14 is a 1.

k=10: (A)+L[¥(Q)]—> A. The lower half of the
operand is y — the low-order 15 bits contained
in the instruction word after B-register modifica-
tion; the upper half is all 0’s.

k=5: L[XYL (Q)]=—> A. The lower half of the
operand is the low-order 15 bits contained in
the storage location at address y; the upper
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 14 in
the storage location is a 0, or it will be all 1’s
if bit 14 is a 1.

k=1: (A)+L{Y, (Q)]J=A. The lower half of
the operand is the low-order 15 bits contained
in the storage location at address y; the upper-

k=6: L[XY,(Q)]—>A. The lower-half of the half is all 0s.

operand is the high-order 15 bits contained in
the storage location at address y; the upper-
half is an extension of the sign bit, The upper-
half of the operand will be all 0’s if bit 29 in
the storage location is a 0, or it will be ali 1’s
if bit 29 is a 1.

k=2: (A)+LlY, (Q)]—>A. The lower half of
the operand is the high-order 15 bits contained
in the storage location at address y; the upper-
half in all 0’s.

k=3: (A)+L[Y(Q)]—A. The operand is the
30 bits contained in the storage location at ad-

k=7: LI(AXQ)]—> A. The operand is the 30 dress 7.

bits contained in the A-register.

k=4: (A)+L[X3(Q0)]—>A. The lower- half of
the operand is ¥y — the low-order 15 bits con-
tained in the instruction wotd after B-register
modification; the upper-half is an extension of
the sign bit. The upper-half of the operand will
be all 0’s if bit 14 of y is a 0, or it will be all
1’s if bit 14 is a 1.

i DESIGNATORS: The skip conditions are deter-
mined as follows:

J=0: no skip.

j=1: skip NL

k=5: (A)+L[XY, (Q)]—>A. The lower half of

the operand is the low-order 15 bits contained

in the storage location at address y; the upper-

j = 3. skip NI if (A)f contains an odd number half is an extension of the sign bit. The upper-
of 1’s. half of the operand will be all 0’s if bit 14 in

j = 4: skip NI if () is + 0. the storage location is a 0, or it will be all 1’s

if bit 14 is a 1.
i =15 skip NI if (A)s is not + 0.

j=2: skip NI if (A)f contains an even number
of 1’s, all 1’s, or all 0’s.

k=6: (4)+L[XYy (Q)]—= A. The lower-half of
the operand is the high-order 15 bits contained
J=7: skip NI if (A)fis — or - 0. in the storage location at address y; the upper

i=6: skip NI if (A)f is + or + 0.

half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 29 in
the storage location is a 0, or it will be all 1’s
if bit 29 is a 1.

k=7: (A)+L[(A)Q)]— A. The operand is the
30 bits contained in the A-register.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j =0: no skip.

j=1: skip NI

j=2: skip NI if (Q) is + or + 0.

j=3: skip NI if (Q) is — or — 0.

j=4: skip NI if (A)fis + 0.

j =15 skip NI if (A); is not + 0.

j=06: skip NI if (A);is + or + 0.

j=7: skip NI if (A)f is — or — 0.

SUBTRACT LOGICAL PRODUCT

CLASS: Read

FUNCTION CODE: 42

MNEMONIC: SUB - LP
-OPERATION: (A) - LIY(Q)]—=A

DESCRIPTION: This instruction subtracts the
logical product of the contents of the Q-register
and a 30-bit operand from the contents of the A-
register and retains the difference that is formed
in the A-register.

k DESIGNATORS: The operand in the logical pro-
duct operation is derived as follows:

k=0:(4) — L{F0)] = A. The lower half of the
operand is y — the low- order 15 bits contained
in the instruction word after B-register modifi-
cation; the upper-half is all 0’s.

k=1: (A) — L[¥. (Q)] —A. The lower halfof
the operand is the low-order 15 bits contained
in the storage location at address y; the upper-
half is all 0’s.

k=2:(4) — L[Y, (Q)] == A. The lower half of
the operand is the high-order 15 bits contained
in the storage location at address y; the upper-
half is all 0’s,

k=3: (A) — LIY(Q)l—=A. The operand is the
30-bits contained in the storage location at
address y.

k=4:(A) — L[Xy(Q)]—»A. The lower half of
the operand is ¥y — the low-order 15 bits con-
tained in the instruction word after B-register
modification; the upper half is an extension of
the sign bit. The upper half of the operand will
be all 0’s if bit 14 of y is a 0, or it will be all

PR cr 1 e, 44 s 1
1S 11 DIt 14 1S5 da 1.

k=5:(A) — LIXY. (Q)]—> A. The lowerhalf of
the operand is the low-order 15 bits contained
in the storage location at address y, the upper
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 14 in
the storage location is a 0, or it will be all 1’s
if bit 14 is a 1.

k=6:(A) — LIXYy (Q)] =™ A. The lower-half of
the operand is the high-order 15 bits contained
in the storage location at address y, the upper-
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 29 in
the storage location is a 0, or it will be all 1’s
if bit 29 is a 1.

k=7:(A) — L[(A)Q)l|— A. The operand is the
30 bits contained in the A-register,

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j=0: no skip.

j=1: skip NI

j=2: skip NI if (Q)is + or + 0.
i=3: skip NI if (Q) is — or — 0.
j=4: skip NI if (A)fis + 0.
j=5: skip NI if (A)f is not + 0.
j = 6: skip NI if (A)f is + or + 0,
j=7: skip NI if (A)f is — or — O.

SELECTIVE SET

CLASS: Read

FUNCTION CODE: 50

MNEMONIC: SEL - SET

OPERATION: Av y=»A; i.e.,Set (A) n for
Yn=1.

DESCRIPTION: This instruction forces 1’s into
selected bit positions of the A-register. The bit
positions that 1’s are forced into are determined
by the condition of the corresponding bit positions
in the operand; that is, if either or both of these
bit positions contain a 1, the result will be a 1.
If both contain a 0, the result will be a 0.

k DESIGNATORS: The operand is derived as fol-
lows:

k=0:(A) v y=—+A. The lower half of the oper-
and is y — the low-order 15 bits contained inthe
instruction word after B-register modification;
the upper-half is all 0’s.

k=1:(A) v Y;—>A. The lower-half of the oper-
and is the low-order 15 bits contained in the
storage location at address ¥; the upper-half is
all 0’s.

k=2:(A) v Yy=>A. The lower-half of the oper-
and is the high-order 15 bits contained in the
storage location at address y; the upper-half
is all 0’s.

k=3:(A) v Y=—> A, The operand is the 30 bits
contained in the storage location at address 7.

k=4:(A) v Xy~ A. The lower-half of the oper-
and is y — the low-order 15 bits contained in
the instruction word after B-register modifica-
tion; the upper-half is an extension of the sign
bit. The upper-half of the operand will be all
0’s if bit 14 of y is a 0, or it will be all 1’s if
bit 14 is a 1.

k=5: (A) v XY, —» A. The lower-half of the
operand is the low-order 15 bits contained in
the storage location at address y; the upper-
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 14 in
the storage location is a 0, or it will be all 1’s
if bit 14 is a 1.

k=6: (A) v XY, — A. The lower-half of the
operand is the high-order 15 bits contained in

. the storage location at address ¥y; the upper-
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 29 in
the storage location is a 0, or it will be all 1’s
if bit 29 is a 1.

k=17: not used.

| DESIGNATORS: The skip conditions are dete:-

mined as follows:
j =0:
f=1: skip NI.

no skip.

j=2: skip NI if (Q) is + or + O.
j=3: skip NI if (Q) is — or — 0.
j=4: skip NI if (A)gif + 0.

} = 9: skip NI if (A)f is not + 0.
j=6: skip NI if (A)fis + or + 0.

: skip NI if (A)fis — or — 0.

SELECTIVE COMPLEMENT

CLASS: Read

FUNCTION CODE: 51

MNEMONIC: SEL - CP

OPERATION: (A)EHY=>A; i.e.,complement

(A)n for ¥n = 1.

DESCRIPTION: This instruction complements the
bits in selected bit positions of the A-register.
The bit positions that are to be complemented are
determined by the presence of1’s inthe correspond-
ing bits positions of -the operand; that is, if a bit
position in the operand contains a 1, the bit in the
corresponding bit position of the A-register will be
complemented.

k DESIGNATORS: The operand is derived as fol-

lows:

k=0: (A)®y—>A. The lower-half of the operand
is ¥ — the low-order 15 bits contained in the
instruction word after B-register modification;
the upper half is all 0’s.

k=1: (A) ® Y, — A. The lower-half of the
operand is the low-order 15 bits contained in

the storage location at address y; the upper-
half is all 0’s.

k=2: (A) ® Y, — A. The lower-half of the
operand is the high-order 15 bits contained in
the storage location at address y; the upper-
half is all 0’s.

k=3:(A)®Y—> A. The operand is the 30-bits
contained in the storage location at address ¥.

k=4:(A)®Xy—A. The lower-half ofthe oper- DESCRIPTION: This instruction forces 0’s into
and is ¥ — the low-order 15 bits contained in the selected bit position of the A-register. The bit
instruction word after B-register modification; positions that 0’s are forced into are determined
the upper-half is an extension of the sign bit. by the presence of 1’s in the corresponding bit
The upper-half of the operand will be all 0’s if positions of the operand.

bit 14 of ¥ is a 0, or it will be all 1’s if bit

14 is a 1. k DESIGNATORS: The operand is derived as fol-
lows:
k=5: (A)® XY, = A. The lower-half of the k=0: (A) A y—A. The lower-half of the oper-

the operand is the low-order 15 bits contained
in the storage location at address y; the upper-
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 14 in

t‘he .storajge location is a 0, or it will be all 1’s k=1:(A) A Y= A. The lower-half of the oper-
if bit 14 is a 1. and is the low-order 15 bits contained in the
storage location at address y; the upper-half is

and is ¥ — the low-order 15 bits contained in
the instruction word after B-régister modifica-
tion, the upper-half is all 0’s.

k=6: (A)® XY, — A. The lower-half of the all 0’s.
operand is the high-order 15 bits contained in
the storage location at address y, the upper- k=2:(A) A Y,—> A. The lower-halfof the oper-

half is an extension of the sign bit. The upper- and is the high-order 15 bits contained in the

half of the operand will be all 0’s if bit 29 in storage location at address ¥; the upper-half
the storage location is a 0, or it will be all 1's is all 0’s.

bit 29 is a 1.

k=3:(A) AY=—> A, The operand is the 30 bits

k=7: (A)® (A)— A. The operand is the 30 contained in the storage location at address ¥.

bits contained in the A-register. (A)f will con-

tain +0 when this value for k is used. k=4: (A) A Xy—>A. The lower-half of the oper-
and is ¥ — the low-order 15 bits contained in
the instruction word after B-register modifica-
tion; the upper-half is an extension of the sign
bit. The upper-half of the operand will be all
0’s if bit 14 of ¥ is 0, or it will be all 1’s if
bit 14 is a 1,

i DESIGNATORS: The skip conditions are deter-
mined as follows:

j = 0: no skip.
j=1: skip NI
. . . . k=5:(A)AXY.—>A. The lower-half of the oper-
= 2: skip NI .

J= 20 skip i(Q)is +or + 0 and is the low-order 15 bits contained in the
j = 3: skip NI if (Q) is — or — 0. storage location at address y; the upper-half is
. . . . i f the sign bit. The upper-half of

-4 NI A . an extension O g
J= & skip if (A)pis + 0 the operand will be all 0’s if bit 14 in the stor-

j=15: skip NI if (A);is not + 0. age location is a 0, or it will be all 1’s if bit
j= 6 skip NIif (A)zis + or + 0. 14 is a L.
j=17: skip NI if (A)fis — or — 0. k=6. (A) A XY — A. The lower-half of the

operand is the high-order 15 bits contained in
the storage location at address y; the upper-

SELECTIVE CLEAR half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 29 in
CLASS: Read the storage location is a 0, or it will be all 1’s

if bit 29 is a 1.
FUNCTION CODE: 52

MNEMONIC: SEL + CL k=7: not used.

OPERATION: (A)NY—>A; i.e., clear (A)n] DESIGNATORS: The skip conditions are deter-
for Yn = 1. mined as follows:

j = 0: no skip.

j=1: skip NI,

j=2: skip Nl if (Q) is + or + 0.
= 3: skip NI if (Q) is — or — 0.
j = 4: skip NI if (A)sis + 0.

j = 5: skip NI if (A) is not + 0.
j=6: skip NI if (A)fis + or + 0.
j=7: skip NI if (A)f is — or — 0.

SELECTIVE SUBSTITUTE

CLASS: Read

FUNCTION CODE: 53

MNEMONIC: SEL - SU

OPERATION: LI(AXQ)'] + LIY(Q)]l—>4;

1

ie., Ya—==(A)n for (Q)n = 1.

DESCRIPTION: This instruction replaces bits in
selected bit positions of the A-register with bits
from the corresponding bit positions of an operand.

The bits of the operand that will replace those in

the A-register are specified by 1’s in register §, Q

k DESIGNATORS: The operand that contains the
bits that will replace the bits in the selected bit
positions of the A-register is derived as follows:

contained inthe instruction word after B-register
modification; the upper-half is an extension of
the sign bit. The upper half of the operand will
be all 0’s if bit 14 of y is a 0, or it will be all
1’s if bit 14 is a 1.

k=5:L[(A)Q)] + LIXY, (Q)]—>A. The lower-
half of the operand is the low-order 15 bits
contained in the storage location at address ¥;
the upper-half is an extension of the sign bit.
The upper-half of the operand will be all 0’s if
bit 14 in the storage location is a 0, or it will
be all 1’s if bit 14 is a 1.

k=6:L[(A)XQ)’] + LIXY, (Q)]=—>A. The lower-
half of the operand is the high-order 15 bits
contained in the storage location at address ¥;
the upper-half is an extension of the sign bit.
The upper half of the operand will be all 0’s if
bit 29 in the storage location is a 0, or it will
be all 1’s if bit 29is a 1.

k=7:

j DESIGNATORS: The skip conditions are deter-

not used.

mined as follows:

. no skip
. skip NI
. skip NI if (Q) is + or + 0.

k=0:LI[(A)XQ)] + LIF(Q)]=—> A. The lower-half
of the operand is ¥ — the low-order 15 bits con-
tained in the instruction word after B-register
modification; the upper-half is all 0’s.

k=1: LI(A)Q)] + LIY, (0)]=>A. The lower-
half of the operand is the low-order 15 bits
contained in the storage location at address ¥;
the upper half is all 0’s.

k=2: L[(A)Q)] + LIY, (Q)]=> A. The lower-
half of the operand is the high-order 15 bits
contained in the storage location at address y;
the upper half is all 0’s.

k=3: LI(A)Q)] + LIY(Q)]—=A. The operand
is the 30 bits contained in the storage location
at address 7.

k=4: LI(A)Q)] + LIX7(Q)]—> A. The lower-
half of the operand is ¥ — the low-order 15 bits

. skip NIif (Q)is — or — O.
. skip NI if (A)f is + 0.

. skip NI if (A)f is not + 0.

. skip NI if (A) is + or + 0.
: skip NI'if (A)fis — or - 0.

REPLACE LOGICAL PRODUCT

CLASS: Read REPLA CE
FUNCTION CODE: 44

MNEMONIC: RPL - LP
OPERATION: L{Y(Q)] = Y and 4

DESCRIPTION: This instruction forms the logical
product of the contents of the Q-register and a 30

bit operand, retains the logical product in the A-
register, and stores this logical product in the
storage location that the operand was obtained form.

k DESIGNATORS: The operand in the logical pro-
duct operation and the logical product that is
stored in the storage location that the operand
was obtained from are derived.as follows:

k=0, 4, or 7: not used.

k= l;L[YL (Q)1—=4, (A)p>Y,; Y, is undisturbed.
The lower-half of the operand is the low-order
______ in the storage location at
address y; the upper-half is all 0’s. After the
logical product is formed in the A-register, the
low-order 15 bits of this product are stored in
the lower-half of the storage location from which
the operand was obtained; the upper-half of the
storage location is undisturbed.

contained

k=2: LIYy(Q)1=A, (A) /»Yy; Y, is undisturbed.
The lower-half of the operand is the high-order
15 bits contained in the storage location at
address ¥; the upper half is all 0’s. After the
logical product is formed in the A-register,
the low-order 15 bits of this product are stored
in the upper-half of the storage location from
which the operand was obtained; the lower-
half of the storage location is undisturbed.

k=3: LIY(Q)]=> A, Y. The operand is the 30
bits contained in the storage location at ad-
dress y. After the logical product is formed in
the A-register, it is stored in the storage loca-
tion from which the operand was obtained.

k=5: LIXY, (Q)1=A, (A)7>Y,,; ¥, is undisturbed.

The lower-half of the operand is the low-order
15 bits contained in the storage location at ad-
dress ¥, the upper-half is an extension of the
sign bit. The upper-half of the operand will be
all 0’s if bit 14 in the storage location is a 0,
or it will be all 1’s if bit 14 is a 1, After the
logical product is formed in the A-register, the
low-order 15 bits of this product are stored in
lower-half of the storage location from which
the operand was obtained; the upper-half of the
storage location is undisturbed.

k=6; LIXY/(Q)I*A, (A)>Y,; Y, is undisturbed.
The lower-half of the operand is the high-order
15 bits contained in the storage location at
address 7; the upper-half is an extension of the
sign bit. The upper-half of the operand will be
all 0’s if bit 29 in the storage location is a 0,
or it will be all 1’s if bit 29 is a 1. After the
logical product is formed in the A-register, the

low-order 15 bits of this product are stored in
the upper-halfof the storage location from which
the operand was obtained; the lower-half of the
storage location is undisturbed.

] DESIGNATORS: The skip conditions are deter-
mined as follows:

j=0: no skip.
j=1: skip ¥I.
j = 2: skip NI if (A)f contains an even number

of 1’s, all 1’s or all 0’s.

. skip NI if (A)fcontains an odd number
of 1’s,

j=4: skip NI if (A)sis + 0.
=95 skip NI if (A)fis not + 0.
j=6: skip NI if (A)fis + or + 0.
j=17: skip NI if (A)fis — or — 0.

REPLACE A + LOGICAL PRODUCT

CLASS: Replace

FUNCTION CODE: 45

MNEMONIC: RPL. A +LP
OPERATION: (A) + LIY(Q)]=>=Y and A.

DESCRIPTION: This instruction forms the logical
product of the contents of the Q-register and a 30-
bits operand, adds this product to the contents of
the A-register, retains the sum that is formed in
the A-register, and stores this sum in the storage
location from which the operand was obtained.

k DESIGNATORS: The operand in the logical pro-
duct operation and the sum that is stored in the
storage location from which the operand was ob-
tained are derived as follows:

k=0, 4, or 7: not used.

k=1:(A) + LIY, (Q))=A,(A)p> Y., ¥, is un-
disturbed. The lower-half of the operand is
the low-order 15 bits contained in the storage
location at address ¥7; the upper-half is all 0’s.
After the sum is formed in the A-register, the
low-order 15 bits of this sum are stored in the
in the lower-half of the storage location from
which the operand was obtained; the upper-half
of the storage location is undisturbed.

k=2:(A)+L[Y, (Q)]=A, (A);>Y,; Y, is un-
disturbed. The lower-half of the operand is the
high-order 15 bits contained in the storage loca-
tion at address ¥; the upper-half is all 0’s,
After the sum is formed is the A-register, the
low-order 15 bits of this sum are stored in the
upper-half of the storage location from which
the operand was obtained; the lower-half of the
storage location is undisturbed.

k=3: (A) + L[Y(Q)l—» A, Y. The operand is
the 30 bits contained in the storage location at
address y. After the sum is formed in the A-
register, it is stored in the storage location
from which the operand was obtained.

k=5:(A)+L[XY.(Q)1—=A, (A),—>Y,; Yy is
undisturbed. The lower-half of the operand is
the low-order 15 bits contained in the storage
location at address ¥; the upper-half is an ex-
tension of the sign bit. The upper-half of the
operand will be all 0’s if bit 14 in the storage
location is a 0, or it will be all 1’s if bit 14
is al. After the sum is formed in the A-register,
the low-order 15 bits of this sum are stored in
the lower-half of the storage location from which
the operand was obtained; the upper-half of the
storage location is undisturbed.

k=6: (A)+LIXY,(Q)]1—=A, (A)/=Y,; Y, |is
undisturbed. The lower-half of the operand is
the high-order 15 bits contained in the storage
location at address ¥, the upper-half is an ex-
tension of the sign bit. The upper-half of the
operand will be all 0’s if bit 29 in the storage
location is a 0, or it will be all 1’s if bit 29 is
a 1, After the sum is formed in the A-register,
the low-order 15 bits of this sum are stored in
the upper-half of the storage location from which
the operand was obtained; the lower-half of the
storage location is undisturbed.

j DESIGNATORS: The skip conditions are deter-

mined as follows:

j=0: no skip.

j=1: skip NI.

j=2: skip NI if (Q) is + or + 0.
i=3: skip NI if (Q)is — or — 0.
j=4: skip NI if (A)gis + 0.
j=5: skip NI if (A)fis not + 0.

j=6. skip NI if (A)gis +or + 0.
j=17: skip NI if (A)f is — or — 0.

REPLACE A - LOGICAL PRODUCT

CLASS: Replace

FUNCTION CODE: 46

MNEMONIC: RPL+ A - LP
OPERATION: (A) — LIY(Q)]=Y and A.

DESCRIPTION: This instruction forms the logical
product of the contents of the Q-register and a 30-
bit operand, subtracts this product from the con-
tents of the A-register, retains the difference in the
A-register, and stores it in the storage location from
which the operand was obtained.

k DESIGNATORS: The operand in the logical pro-
duct operation and the difference stored in the
storage location from which the operand was ob-
tained are derived as follows:

k=20:4,0r7: not used.

k=1:(A)-LIY_L(Q)l=A, (A);>Y, ; Y, is un-
disturbed. The lower-half of the operand is the
low-order 15 bits contained in the storage loca-
tion at address ¥; the upper half is all 0’s.
After the difference is formed in the A-register,
the low-order 15 bits are stored in the lower-
half of the storage location from which the
operand was obtained; the upper-half of the
storage location is undisturbed.

k=2:(A) -~ LIYy(Q)l—A4, (A)>Y,; Y, is un-
disturbed. The lower-half of the operand is the
high-order 15 bits contained in the storage
location at address ¥; the upper half is all 0’s,
After the difference is formed in the A-register,
the low-order 15 bits are stored in the upper-
half of the storage location from which the
operand was obtained; the lower-half of the
storage location is undisturbed.

k=3:(4) — L[Y(Q)]—= A, Y. The operand is
the 30 bits contained in the storage location at
address 7. After the difference is formed in the
A-register, it is stored in the storage location
from which the operand was obtained .

k=5: (A) - LIXY,(Q)l—A, (A);~>Y,; Y, is
undisturbed. The lower-half of the operand is
the low-order 15 bits contained in the storage
location at address ¥; the upper-half is an ex-
tension of the sign bit. The upper-half of the
operand will be all 0’s if bit 14 in the storage
location is a 0, or it will be all 1’s if bit 14
is a 1. After the difference is formed in the A-
register, the low-order 15 bits are stored in the
lower-half of the storage location from which
the cperand wag obtained; the upner-half of the
storage location is undisturbed.
k=6:(4) - LIXYy(Q)]= A4, (A);>Y,; Y, is
undisturbed. The lower-half of the operand is
the high-order 15 bits contained in the storage
location at address ¥, the upper-half is an ex-
tensicn of the sign bit, The upper-half of the
operand will be all 0’s if bit 29 in the storage
location is a 0, or it will be all 1’s if bit 29
is a 1. After the difference is formed in the A-
register, the low-order 15 bits are stored in the
upper-half of the storage location from which
the operand was obtained; the lower-half of the
storage location is undisturbed.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j=0: no skip.

j=1: skip NI

j=2: skip NI if (Q)is + or + 0.

j=3: skip NIif (Q)is — or — 0.

j=4: skip NI if (A)fis + 0.

j =15 skip NI if (A)f is not + 0.

j=6: skip NI if (A)fis + or + 0,

j=1: skip NI if (A)fis — or — 0,

STORE LOGICAL PRODUCT

CLASS: Store
FUNCTION CODE: 47
MNEMONIC: STR « LP
OPERATION: LI(AQN—Y

DESCRIPTION: This instruction forms the logical
product of the contents of the Q-register and the A-
register and stores this product in a storage loca-
tion,

k DESIGNATORS: The product that is stored in
the storage location is derived as follows:

k=0: LI(A)Q)]=> Q. The logical product is
stored in the Q-register. With the exception of
this value for k, the Q-register is undisturbed
by this instruction.

k=1: LI(AXQ)] =Y. ; Y, is undisturbed,
The low-order 15 bits of the logical product are
stored in the lower-haif of the storage location
at address y; the upper-half of the storage loca-
is undisturbed.

k=2: LI(AXQ)]==>Y,; Y, is undisturbed.
The low-order 15 bits of the logical product are
stored in the upper-half of the storage location
or address ¥; the lower-half of the storage loca-
tion is undisturbed.

k=3: LI(AXQ)]=>Y. The logical product is
stored in the storage location at address 7.

k=4: LI(A}Q)]— A. The logical product is
stored in the A-register. With the exception of
this value for k, the A-register is undisturbed
by this instruction.

k=5: The complement of LI(A)Q)}=>Y.; ¥ is
undisturbed, The low-order 15 bits of the com-
plement of the logical product are stored in the

. lower-half of the storage location at address y;

the upper-half of the storage location is undis-
turbed.

k=6: The complement of L[(A)(Q)1=>Y,; Y, is
undisturbed. The complement of the low-order
15 bits of the logical product are stored in the
upper-half of the storage location at address y;
the lower-half of the storage location is undis-
turbed,

f=7

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j = 0: no skip.

j=1: skip NI,

j=2: skip NI if (Q)f is + or + 0,
j=3: skip NI if (Q)f is — or — 0.
j=4: skip NI if (A)s is + 0.
i=5: skip NI if (A)f is not + 0.

j=6:
j=1:

skip NI if (A)f is + or + O,
skip NI if (A)f is — or — 0.

REPLACE SELECTIVE SET

CLASS: Replace

FUNCTION CODE: 54

MNEMONIC: RSE =« SET
OPERATION: (A) v Y=Y and A; i.e., set

(A)n for Yn=1=—> Y and A.

DESCRIPTION: This instruction forces 1’s into
selected bit positions of the A-register. The bit
positions that 1’s are forced into are determined
by the presence of 1’s in the corresponding bit
positions of the operand. After the selective set
operation is performed, the result is retained in
the A-register and stored in the storage location
from which the operand was obtained.

k DESIGNATORS: The operand in the selective
set operation and the result that is stored in the
storage location from which the operand was ob-
tained are derived as follows:

k=0, 4, or 7. not used.

k=1:(A4) v YA, (A);> Y, ; Y, is undisturbed.

The lower-half of the operand is the low-order
15 bits contained in the storage location at
address ¥, the upper-half is all 0’s. Afterthe selec-
tive set operation is performed, the low-order
15 bits of the result are stored in the lower-half
of the storage location from which the operand
was obtained; the upper-half of the storage
location is undisturbed.

k=2:(A) v Yyy>A, (A)7>Y,; Y, is undisturbed.

The lower-half of the operand is the high-order
15 bits contained in the storage location at
address ¥; the upper-half is all 0’s. After the
selective set operation is performed, the low-
order 15 bits of the result are stored in the
upper-half of the storage location from which
the operand was obtained; the lower-half of the
storage location is undisturbed.

k=3: (A) v Y=—» A, Y. The operand is the 30
bits contained in the storage location at ad-
dress y. After the selective set operation is
performed, the result is stored in the storage
location from which the operand was obtained
from.

o
k=5: (A)‘é’ A, (A)p>Y,; Yy is undisturbed.
The lower-half of the operand is the low-order
15 bits contained in the storage location at
address ¥y, the upper-half is an extension of
the sign bit. The upper-half of the operand will
be all 0’s if bit 14 in the storage location is a
0, or it will be all 1’s if bit 14 is a 1. After
the selective set operation is performed, the
low-order 15 bits of the result are stored in the
lower-half of the storage location from which
the operand was obtained from; the upper-half

of the storage location is undisturbed.

k=6: (A)vXYy—>A, (A),>Yy; Y, is undisturbed.
The lower-half of the operand is the high-order
15 bits contained in the storage location at
address y; the upper-half is an extension of the
sign bit. The upper-half of the operand will be
all 0’s if bit 29 in the storage location is a 0,
or it will be all 1’s if bit 29 is a 1. After the
selective set operation is performed, the low-
order 15 bits of the result are stored in the
upper-half of the storage location from which
the operand was obtained, the lower-half of the
storage location is undisturbed.

i DESIGNATORS: The skip conditions are deter-
mined as follows:

j=10: no skip.

j=1: skip NI

j=2: skip NI if (Q) is + or + 0,

j=3: skipNIif (Q)is — or = 0.
j=4: skip NI if (A)f is + 0.

j =5 skip NI if (A)f is not + 0,

j=06: skip NI if (A);is + or + 0.
j= 1. skip NI if (A)f is — or — 0.

REPLACE SELECTIVE COMPLEMENT

CLASS: Replace

FUNCTION CODE: 55

MNEMONIC: RSE +« CP
OPERATION: (A)DY—Y and 4, i.e.,

complement (A)n for Yn=1
—» Y and A.

DESCRIPTION: This instruction complements the
bits in selected bit positions of the A-register.
The bits complemented are determined by the
presence of 1’s in the corresponding bit positions
of the operand. After the selective complement
operation is performed, the resultis retained in the
A-register and stored in the storage location from
which the operand was obtained.

k DESIGNATORS: The operand in the selective
complement operation and the result stored in the
storage location from which the sperand was ob-

tained are derived as follows:
k=0, 4, or 7: not used.

k=1:(A)DY A, (A)>Y, ; Yyis undisturbed.

The lower-half of the operand is the low-order
15 bits contained in the storage location at
address ¥; the upper-half is all 0’s. After the
selective complement operation is performed,
the low-order 15 bits of the result are stored
in the lower-half of the storage location from
which the operand was obtained; the upper-
half of the storage location is undisturbed.

k=2:(A)® Yo ™A, (A)r>Yy; Y. is undisturbed.
The lower-half of the operand is the high-order
15 bits contained in the storage location at
address ¥, the upper-half is all 0’s. After the
selective complement operation is performed,
the low-order 15 bits of the result are stored in
the upper-half ofthe storage location from which
the operand was obtained; the lower-half of the
storage location is undisturbed.

k=3: (A)@®Y—> A, Y. The operand is the 30
bits contained in the storage location at ad-
dress y. After the selective complement opet-
ation is performed, the result is stored in the
storage location from which the operand was
obtained.

k=5: (A)DXY>A, (A)P>Y,; Y, is undisturbed.
The lower-half of the operand is the low-order
15 bits contained in the storage location at
address y. The upper-halfis an extension of the
sign bit, The upper-half of the operand will be
all 0’s if bit 14 in the storage location is a 0,
or it will be all 1’s if bit 14 is a 1. After the
selective complement operation is performed,
the low-order 15 bits of the result are stored in
the lower-half of the storage location from which
the operand was obtained; the upper-half of the
storage location is undisturbed.

k=6: (AXDXY5™A, (A)>Y,; Y, is undisturbed.
The lower-half of the operand is the high-order
15 bits contained in the storage location at
address ¥; the upper-half is an extension of the
sign bit, The upper-half of the operand will be
all 0’s if bit 29 in the storage location is a 0,
or it will be all 1’s if bit 29 is a 1. After the
selective complement operation is performed,
the low-order 15 bits of the result are stored
in the upper-half of the storage location from
the operand was obtained, the lower-half of the
storage location is undisturbed.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j=0: no skip.

j=1: skip NL

j=2: skip NI if (Q)is + or + O.
j=3: skip NI if (Q)is — or - 0.
j=4:. skip NIif (A)sis + 0.
j=98: skip NI if (A);is not + 0.
j=06: skip NI if (A)sis + or + 0.
j=17: skip NI if (A)fis -~ or = 0.

REPLACE SELECTIVE CLEAR

CLASS: Replace

FUNCTION CODE: 56

MNEMONIC: RSE » CL

OPERATION: (A)AY=>Y and A; i.e.,

clear (A)n for Yn=1—->»Y
" and A.

DESCRIPTION: This instruction forces 0’s into
selected bit positions of the A-register. The bit
positions that 0’s are forced into are determined
by the presence of 1’s in the corresponding bit
positions of the operand. After the selective clear
operation is performed, the result is retained in
the A-register and stored in the storage location
from which the operand was obtained.

k DESIGNATORS: The operand in the selective
clear operation and the result that is stored in the
storage location from which the operand was ob-
tained are derived as follows:

k=0, 4, or 7. not used.

k=1:(A)ANY>A, (A)>Y,; ¥, is undisturbed.
The lower-half of the operand is the low-order
15 bits contained in the storage location at
address ¥, the upper-half is all 0’s. After the
selective clear operation is performed, the low-
order 15 bits of the result are stored in the
lower-half of the storage location from which
the operand was obtained; the upper-half of
the storage location is undisturbed.

k=2:(A)A Yy>A, (A)>Y,; Y, is undisturbed.
The lower-half of the operand is the high-order
15 bits contained in the storage location at
address ¥, the upper-half is all 0’s. After the
selective clear operation is performed, the
low-order 15 bits of the result are stored in the
upper-half of the storage location from which
the operand was obtained; the lower-half of
the storage location is undisturbed.

k=3: (A) A Y—> A, Y. The operand is the 30
bits contained in the storage location is ad-
dress y. After the selective clear operation is
performed, the result is stored in the storage
location from which the operand was obtained.

k=5:(A)ANXY™A, (A)f> Y, Yy is undisturbed.
The lower-half of the operand is the low-order
15 bits contained in the storage location at
address 7; the upper-half is an extension of
the sign bit. The upper-half of the operand will
be all 0’s if bit 14 in the storage location is a
0, or it will be all 1’s if bit 14 is a 1. After
the selective clear operation is petformed, the
low-order 15 bits of the result are stored in the
lower-half of the storage location from which
the operand was obtained; the upper-half of the
storage location is undisturbed.

k=6: (A)AXYg>A, (A)> Yy, Y. is undisturbed.

The lower-half of the operand is the high-order
15 bits contained in the storage location at

address y; the upper-half is an extension of the
sign bit. The upper-half of the operand will be
all 0’s if bit 29 in the storage location is a 0,
or it will be all 1’s if bit 29 is a 1. After the
selective clear operation is performed, the low-
order 15 bits of the result are stored in the
upper-half of the storage location from which
the operand was obtained from; the lower-half
of the storage location is undisturbed.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j=0: no skip.

j=1: skip NI

j=2: skip NI if (Q)is +or + O,
i=3: skip Nl if (Q)is — or — Q.
= 4: skip NI if (A)f is + 0.
j=5: skip NI if (A)f is not + 0.
j=6: skip NI if (A)sis 4 or 4 0.
j=7: skip NI if (A)fis m or 0.

REPLACE SELECTIVE SUBSTITUTE

CLASS: Replace

FUNCTION CODE: 57

MNEMONIC: RSE « SU

OPERATION: LI(AXQ)1+ LIY(Q)]=>Y and

A; i.e.,Yn—=(A)n for (Q)n = 1
—» Y and A.

DESCRIPTIQON: This instruction replaces bits in
the selected bit positions of the A-register with
the bits in the corresponding bit positions of the
operand. The bits that are to replace those in the
A-register are determined by the presence of 1’s
in the Q-register. After the selective substitute
operation is performed, the result is retained in
the A-register and stored in the storage location
from which the operand was obtained.

k DESIGNATORS: The operand in the selective
substitute operation and the result that is stored
in the storage location from which the operand was
obtained are derived as follows:

k=0, 4, or 7: not used.

k=1: LI(AXQ)1+ LY. (Q)]>A, (A), > Y,; Y,
is undisturbed. The lower-half of the operand
is the low-order 15 bits contained inthe storage
location at address y; the upper-half is all 0’s.
After the selective substitute operation is per-
formed, the low-order 15 bits of the result are
stored in the lower-half of the storage location
from which the operand was obtained; the upper-
half of the storage location is undisturbed.

k=2: LI(A)XQ))+ LIY,(Q)) A, (A) > Y, : Y,
is undisturbed. The lower-half of the operand
is the high-order 15 bits contained in the
storage location at address y; the upper-half

is all 0’s. After the selective substitute oper-
ation is performed, the low-order 15 bits of the
result are stored in the upper-half of the stor-
age location from which the operand was ob-
tained from; the lower-half of the storage loca-
tion is undisturbed.

k=3: L{(AXQ) 1+LIY(Q)l=> A, Y. The operand
is the 30 bits contained in the storage location
at address 7. After the selective substitute
operation is performed, the result is stored in
the storage location from which the operand
was obtained.

k=5: LICAXQ)1+LIXYL(Q)]=> A, (A)>Y1; Yy
is undisturbed. The lower-half of the operand
is the low-order 15 bits contained in the stor-
age location at address y; the upper-half is an
extension of the sign bit. The upper-half of the
operand will be all 0’s if bit 14 in the storage
location is a 0, or it will be all 1’s if bit 14
is a 1. After the selective substitute operation
is performed, the low-order 15 bits of the result
are stored in the lower-half of the storage loca-
tion that the operand was obtained from; the
upper-half of the storage location is undisturbed.

k=6: LIA)Q)]1+LIXY,(Q)]=> A, (A)p>Y,; ¥,
is undisturbed. The lower-half of the operand
is the low-order 15 bits contained in the stor-
age location at address ¥; the upper-half is an
extension of the sign bit. The upper-half of the
operand will be all 0’s if bit 29 in the storage
location is a 0, or it will be all 1’s if bit 29
is a 1. After the selective substitute operation
is performed, the low-otder 15 bits of the result
are stored in the upper-half of the storage loca-
tion from which the operand was obtained; the
lower-halfof the storage location is undisturbed.

j DESIGNATORS: The skip conditions are deter-

mined as follows:

j=10: no skip.

j=1: skip NI.

j=2: skip NIif (Q)is +or + 0.
j=13: skip Nl if (Q)is ~or -0
j=4: skip NI if (A)fis + 0.
j=5: skip NI if (A)f is not + 0.
j=6: skip NI if (A)f is + or + 0.
j=7: skip NI if (A)f is — or — 0.

COMPARE MASKED

CLASS: Read

FUNCTION CODE: 43

MNEMONIC: COM - MASK

OPERATION: (A) - LIY(Q)] = D; test D to
determine skip.

DESCRIPTION: This instruction compares the

contents of the A-register to a masked operand.
The comparison is made by forming the logical
product of the Q-register and a specified operand,
subtracting this logical product from the contents
of the A-register, and then examining D, the differ-
ence that is formed. The contents of the A-register
are undisturbed by this instruction.

k DESIGNATORS: The operand in the logical pro-
duct operation is detrived as follows:

k=0:(A) — L[$(Q)] = D. The lower-half of the
operand is y — the low-order 15 bits contained
in the instruction word after B-register modi-
fication; the upper-half is all 0’s.

k=1: (A) — L[Y, (Q)] = D. The lower-half of
the operand is the low-order 15 bits contained

in the storage location at address y, the upper-
half is all 0’s.

k=2: (A) ~ L[Yy(Q)] = D. The lower-half of
the operand is the high-order 15 bits contained

in the storage location at address ¥; the upper-
half is all 0’s.

k=3: (A) -~ L[Y(Q)] = D. The operand is the
30 bits contained in the storage location at
address y.

k=4:(A) = LIX7(Q)] = D. The lower-half of the
operand is y, the low-order 15 bits contained in
the instruction word after B-register modifica-
tion; the upper-half is an extension of the sign
bit. The upper-half of the operand will be all
0’s if bit 14 of ¥ is a 0, or it will be all 1’s if
bit 14 is a 1.

k=5:(A) — LIXY,(Q)] = D. The lower-half of
the operand is the low-order 15 bits contained
in the storage location at address ¥; the upper-
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 14 in
the storage location is a 0, or it will be all 1’s
if bit 14 is a 1.

k=6:(A) ~L[XY({Q)] = D. The lower-half of
the operand is the high-order 15 bits contained
in the storage location at address ¥; the upper-
half is an extension of the sign bit. The upper-
half of the operand will be all 0’s if bit 29 in
the storage location is a 0, or it will be all 1’s
if bit 29 is a 1.

k=7:(A) — L[(A)XQ)] = D. The operand is the
30 bits contained in the A-register.

j DESIGNATORS: The skip conditions are deter-
mined as follows:

j=1:
j=2:
j=3:
j=4:
j=35:
j=6:
j=1:

no skip.

skip NI,

skip NI if (Q)is + or + 0.
skip NI if (€)is — or - 0.
skip NI if D is + 0.

skip NI if D is not + 0.
skip NI if D is + or + O.
skip NI if D is — or — O,

6-15

7. MODIFYING INSTRUCTIONS

Modifying instructions cause the program to take
one of three actions:

m Execute the following instruction the number
of times specified.

m Skip the next instruction and continue in
sequence.

m Jump to another portion of the program.

REPEAT

CLASS: Read

FUNCTION CODE: 70

MNEMONIC: RPT-
OPERATION: Repeat NI Y times

DESCRIPTION: This instruction repeats the in-
struction immediately following it Y times. The
repeat counter, Y, is a 15 bit positive number
where 0 < ¥ < 3276719 . Y is determined by the
k-designator in the Repeat instruction. After
k interpretation is made, Y is stored in B-register
7. If Y =0, the instruction immediately following
the Repeat instruction is skipped. If ¥ # 0, the
repeat mode, as specified by the j-designator of
the Repeat instruction, is initiated. It should be
noted that during the repeat mode, modification of
v takes place in the U-register; therefore, the re-
peated instruction, as stored in the Computer, is
not altered. All interrupts are locked out during
the repeat mode,

k DESIGNATORS: The repeat counter, Y, is de-

rived as follows:

k=0 or 4: ¥ = 7. The repeat counter is ¥, the
low-order 15 bits contained in the instruction
word after B-register modification.

k=1, 3, of 5: Y = Y, . The repeat counter in the
low-order 15 bits contained in the storage loca-
at address 7.

k=2 or 6: Y = ¥Y,. The repeat counter is the
high-order 15 bits contained in the storage
at address .

k=7: Y = AL. The repeat counter is the low-
order 15 bits contained in the A-register.

] DESIGNATORS: The repeat mode is determined
as follows:

j=0 or 4: If the repeated instruction is a re-
place instruction, the result is replaced at
address ¥ + (B)s rather than ¥. For all other
repeated instructions, this value for j does not
cause any modification.

j =1 or 5: If the repeated instruction is a re-
place instruction, the result is replaced at ad-
dress ¥ + (B)s rather than 7. For all repeated
instructions, including replace instructions, ¥
is increased by 1 following each execution.

j = 2 or 6: If the repeated instruction is a re-
place instruction, the result is replaced at
address ¥ + (B)¢ rather than 7. For all re-
peated instructions, including replace instruc-
tions, ¥ is decreased by 1 following each
execution.

j = 3 or 7: If the repeated instruction is a re-
place instruction, the result is replaced at
address 7 + (B)o rather than y. For all repeated
instructions, including replace instructions,
the initial B-register modification specified in
the instruction is performed priorto each execu-
tion; that is, for the Mth execution of the re-

peated instruction, ¥y =y + M x (B)j.

The repeat mode is terminated if one of the follow-
ing conditions occurs:

1. The repeated instruction has been executed
Y times. In this case the repeat mode is
terminated with (B); = 0.

If a skip occurs at the Mth execution of the
repeated instruction. In this case the re-
peat mode is terminated with (B)7 =Y - M.

. Il a jump instruction is repeated, the P-
register will be set Y times. After the final
execution, the jump will occur and the re-
peat mode will be terminated with (B); = 0.

B SKIP ON Bj

(92}

CLASS: Read

FUNCTION CODE: 71

MNEMONIC: BSK « Bn

OPERATION: Skip NI if (B)j = Y. If (B)j# Y,

add one to (B)j and execute NI.

DESCRIPTION: This instruction compares the con-
tents of the specified B-register with a 15-bit
operand. If the contents of the B-register are not
equal to the operand, 1 is added to the contents
of the B-register and the program executes the
next instruction. If they are equal, the B-register
is cleared to 0 and the next instruction is skipped.

k DESIGNATORS:

follows:

The operand is derived as

k=0o0r4:Y =75. The operand is the low-order

15 bits contained in the instruction word after
B-register modification.

k=1,3,0r5:Y =Y, . The operand is the low-
order 15 bits contained in the storage location
at address y.

k=2or6:Y = Yy. The operand is the high-
order 15 bits contained in the storage location
at address ¥.

k =7:Y = A, . The operand is the low-order
15 bits contained in the A-register,

j DESIGNATORS: The B-register is specified as
follows:

j = 0: B-register 0, skip NI if ¥ = +0.
j = 1: B-register 1.
j=2: B-register 2,

j=3: B-register 3.
j = 4. B-register 4.
J=195: B-register 5,
] = 6: B-register 6.
j=17: B-register 7.
B JUMP ON Bj
CLASS: Read
FUNCTION CODE: 72
MNEMONIC: BJP - Bn
OPERATION: If (B)j # 0, subtract 1 from (B)j
and jump to address Y.If (B)j=
0, execute NI.
DESCRIPTION: This instruction examines the

contents of the specified B-register to determine
whether or not they are equal to 0. If the specified
B-register contains a 0 or if j equals 0, execute
the next instruction, If j is unequal to 0, 1 is sub-
tracted from the contents of the B-register and a
jump to address Y is made,

k DESIGNATORS: The address to which the jump
is made, Y, is derived as follows:

k =0 or 4: Y = 7. The address is ¥, the low-
order 15 bits contained in the instruction word
after B-register modification.

k=1,3,0r5: Y =Y, . The address is the low-
order 15 bits contained in the storage location
at address ¥.

k=2o0r6:Y =Y,. The address is the high-
order 15 bits contained in the storage location
at address ¥.

k =7:Y = A, . The address is the low-order
15 bits contained in the A-register.

j DESIGNATORS: The B-register is specified as
follows:

j=0: B-register 0.
j=1: B-register 1.
j=12: B-register 2.
] =3: B-register 3.
j=4: B-register 4.
j=15: B-register 5.
j=6: B-register v.

B-register 7.

Jump instructions are used to transfer program
control to other sections of the program.

JUMP (arithmetic)

CLASS: Read

FUNCTION CODE: 60

MNEMONIC: jP«,RIL - , RILJP*
OPERATION: Jump to address Y if the jump

condition is satisfied. If the jump condition is not
satisfied, execute NI.

DESCRIPTION: This instruction transfers program
control to another section of the program depending
upon the condition of the contents of either the A-
or Q-register. If a jump condition is satisfied, a
jump is made to address Y. If the condition is not
satisfied, the instruction immediately following
the jump instruction is executed.

k DESIGNATORS: The address to which the jump
is made, Y, is derived as follows:

k=20,0r4:Y =5y The address is y — the low-
order 15 bits contained in the instruction word
after B-register modification.

8. JUMP INSTRUCTIONS

k=1,3,0r5:Y =Y,. The address is the low-
order 15 bits contained in the storage location
at address ¥.

k=2or6:Y =Y,. The address is the high-
order 15 bits contained in the storage location
at address 7.

k = 7:Y = Ap. The address is the low-order
15 bits contained in the A-register.

] DESIGNATORS: The jump conditions are deter-
mined as follows:

Do not jump; clear bootstrap and inter-
rupt modes.

j=1: Execute jump; clear bootstrap and inter-
rupt modes.
j=2: Execute jump if (Q)is + or + 0.

] =3: Execute jump if (Q) is — or — 0.
j=4: Execute jump if (4) is + 0.

J = 5. Execute jump if (4) is not + 0.
j=6: Execute jump if (4)is + or + 0.
j=7: Execute jump if (4) is — or — 0.

JUMP (manual)

CLASS: Read

FUNCTION CODE: 61

MNEMONIC: jp-

OPERATION: Jump to address Y if the jump

condition is satisfied. If the jump condition is not
satisfied, execute NI.

n
v

SCRIPTION: This insiruction transiers program
control to another section of the program as direct-
ed by the key setting on the maintenance panel,
If a jump condition is satisfied, a jump will be
made to address Y. In certain casesthe key setting
will cause a jump and stop operation if the jump
condition is satisfied. In these situations, the
Computer stops with the P-register set to execute
the instruction stored at address Y. In all cases
where the jump condition is not satisfied, the in-
struction immediately following the jump instruc-
tion is executed.

m™M

k DESIGNATORS: The address to which the jump
is made, Y, is derived as follows:
k = 0or4:Y =y The address is 7, the low-
order 15 bits contained in the instruction word
after B-register modification.

k=1,3,0r5:Y=Y,. The
15 bits contained
location at address y.

address is the

low-order in the storage

k =2o0r6:Y =Yy. The address is the high-
order 15 bits contained in the storage location
at address 7.

k = 7. Y = Ap. The address is the low-order
15 bits contained in the A-register.

i DESIGNATORS: The jump conditions are detet-
mined as follows:

j=0: Execute jump regardless of key settings.

j = 1: Execute jump if JUMP 1 key is set.

j = 2. Execute jump if JUMP 2 key is set.

j = 3: Execute jump if JUMP 3 key is set.

j = 4. Execute jump and stop regardless of key
settings.

| =5: Execute jump. Stop if STOP 5 key is

set.

Execute jump. Stop if STOP 6 key is
set.

Execute jump. Stop if STOP 7 key is
set.

RETURN JUMP (arithmetic)

CLASS: Read

FUNCTION CODE: o4

MNEMONIC: RJP

OPERATION: Jump to address Y + I and

P + =Y. if the jump condition is satisfied.
If the jump condition is not satisfied, execute NI.

DESCRIPTION: This instruction, depending upon
the condition of the contents of either the A- or
Q-register, transfers program control to another
section of the program and stores the address at
which the original sequence of instructions may
be resumed. If a jump condition is satisfied, a
jump is made to address ¥ + 1 and the address of
the instruction immediately following the Return
Jump instruction, P + 1, is stored in the lower-
half of the storage location at address Y. If the
jump condition is not satisfied, the instruction
immediately, following the Return Jump instruc-
tion is executed.

k DESIGNATORS:The address of the storage loca-
tion, ¥, the lower-half of which will contain ad-
dress P + 1, is derived as follows:

k=20or4:Y =9y The address is ¥ — the low-
order 15 bits contained in the instruction word
after B-register modification.

k=1,3,0r5:Y=Y,. The address is the low-
order 15 bits contained in the storage location
at address y.

k=2o0r6:Y =Yy,. The address is the high-
order 15 bits contained in the storage location
at address y.

k =7:Y = ArL. The address is the low-order
15 bits contained in the A-register.

j DESIGNATORS: The jump conditions are deter-
mined as follows:

Do not execute return jump. Set interrupt
lockout.

Execute return jump. Set interrupt lock-

out.
j = 2: Execute return jump if (Q)is + or + 0.
j=3: Executereturnjump if (Q)is — or — 0.
] = 4. Execute returnjumpif (4) is + 0.
] = 5. Execute returnjumpif (A) is not + 0.
j = 6: Execute returnjumpif (A) is + or + 0.
j=7: Execute returnjumpif (4) is — or — 0.
RETURN JUMP (manual)
CLASS Read
FUNCTION CODE: 65
MNEMONIC: RJP »
OPERATION: Jump to address ¥ + I and

P + 1=—Y; if the jump condition is satisfied.
If the jump condition is not satisfied, execute NI.

DESCRIPTION: This instruction, as directed by
the key settings on the maintenance panel and/or
operator console, transfers program control to
another section of the program and stores the ad-
dress at which the original sequence of instruc-
tions may be resumed. If a jump condition is
satisfied, a jump is made to address Y + 1 and
the address of the instruction immediately follow-
ing the Return Jump instruction, P + 1, is stored
in the lower-half of the storage location ataddress
Y. In certain cases the key setting will cause a
jump and stop operation if the jump condition is
satisfied. In these situations, the Computer stops
after address P + 1 has been stored at address Y
with the P-register set to execute the instruction
stored at address Y + 1. In all cases where the
jump condition is not satisfied, the instruction
immediately following the Return Jump instruc-
tion is executed.

k DESIGNATORS: The address of the storage
location, Y, the lower-half of which will contain
P +1, is derived as follows:

k=20or4:Y =y. The address is ¥ — the low-
order 15 bits contained in the instruction word
after B-register modification.

k=1,3,0r5:Y=Y,. The address is the low-
order 15 bits contained in the storage location
at address 7.

k=2or6:Y =Y,. The address is the high-
order 15 bits contained in the storage location
at address y.

k =7:Y =A;. The address is the low-order
15 bits contained in the A-register.

j DESIGNATORS: The jump conditions are deter-
mined as follows:

j = 0: Execute return jump regardless of key
settings.

j = 1: Execute return jump if JUMP 1 key is
set.

} = 2. Execute return jump if JUMP 2 key is
set.

] = 3: Execute return jump if JUMP 3 key is
set.

i = 4: Execute return jump and stopregardiess
of key settings.

} = 5. Execute return jump. Stop if STOP 5
key is set.

| = 6: Execute return jump. Stop if STOP 6
key is set,

| = 7: Execute return jump. Stop if STOP 7

key is set.

UTILIZING RETURN JUMP INSTRUCTIONS

Return jump instructions can be used to cause a
program to jump to a subroutine, execute the sub-
routine, and jump back to resume the original
sequence of instructions after the subroutine has
been completed. This process canbe accomplished
if the exit jump precedes the first instruction in
the subroutine and immediately following the last
instruction there is a jump instruction that causes
a jump to the exit. The following example illus-
trates this concept:

Main Program

Address

L XXXXXXXXXX First Instruction
L+1 XXXXXXXXXX Second Instruction
L +2 64000(S) Reference Subroutine
L +3 XXXXXXXXXX Third Instruction

Subroutine 1. After instructions at addresses L and L + 1
in the main program are executed, the P-

Address register contains address L + 2 (assuming
that the instruction at L + 1 did not cause

S 00000 (P) Exit Jump a skip or a jump).

S+1 XXXXXXXXXX First Instruction

2. The 64 instruction at address L + 2 causes
. d address L + 3 to be stored in the lower-
half of the storage location at address S

and a jump to be made to address S + 1.

S+n—1 XXXXXXXXXX Last Instruction 3. The instructions at addresses S + 1 through
S +n — 1 are executed.
S+n 61010(C S) Jump to S,
4, The instruction at address S +n is executed
In this example the operation proceeds as follows: causing a jump to be made to address S .

9. INPUT-OUTPUT INSTRUCTIONS

Input-output instructions are used to facilitate the
transfer of data between the Computer and the
various peripheral subsystems.

INPUT-OUTPUT INSTRUCTION WORD

The format for input-output instruction words is
shown in Figure 9-1,

f R y
29 2423 207 |17 1514 0
Figure 9-1. Input-Output Instruction Word

f-DESIGNATOR

The function code designator, f, is a 6-bit code
that specifies the operation to be performed.

y-DESIGNATOR

The operand-designator, y, is a 15-bit code that
represents either the operand or the operand ad-
dress.

-DESIGNATOR

The channel designator, _/1\, is a 4-bit code that
specifies the input or output channel that the
instruction refers to.

A
k-DESIGNATOR

A
The operand-interpretation designator, %, is a 2-
bit code that controls where the operand is pro-
cured from or where it is stored, or both.

AA
j Kk COMBINATIONS

A A

As shown in Figure 9-1, j and k together occupy
the same bit positions as j and k in all other in-
structions; however, j and k¥ are 4 bits and 2 bits
as opposed to 3 bits and 3 bits for j and k. When
input-output instruﬁtions are written, the 6-bits
that represent the j combination appear as two
octal digits as do the 6-bits representing j k in
all other instructions. In the case of input-output
instructions, these octal digits are considered as
a unit that represents a specific j k combination
rather than having one digit represent j and one
represent k. The octal digits that represent the
] combination are shown at the intersections
A . .
of the 7 value rows and k value columns in Figure
9-2.

For example, assume that an input-output instruc-
tion is to be written with the requirement that j =5
andA = 3. An examination of the intersection of
the j = 5 row and the k = 3 column in the diagram
will show that 27 is the 2-digit octal combination
that meets this requirement.

j-k COMBINATIONS FOR 1/0 FUNCTIONS

k=0 k=1 k=2 k=3
j=0 00 01 02 03
j=1 04 05 06 07
j=2 10 11 12 13
j =3 14 15 16 17
j =4 20 21 22 23
j=5 24 25 26 27
i =6 Ell ki) 22 33
j=7 34 35 36 37
8p = 10g 40 41 42 43
9 =118 44 45 46 47
10p =12g 50 51 52 53
11p =13 54 55 56 57
12p = ldg 60 61 62 63
13p = 154 64 65 66 67
Figure 9-2. JA % Combination For Input-Output

Instructions

b-DESIGNATOR

The operand address modification designator, b,
a 3-bit code, specifies the B-register con-
taining a quantity that is added to the operand
address.

INPUT-OUTPUT BUFFERS

An input buffer is a block of consecutive storage
locations into which a peripheral subsystem, con-
nected to an input channel, places data. Con-
versely, an output buffer is a block of consecutive
storage locations from which a peripheral sub-
system, connected to an output channel, receives
data. The assignment of the buffers is made by
the buffer instructions (73, 74, 75, and 76). These
instructions activate a buffer and place a control
word in the appropriate buffer-control register.
The control word contains two addresses that de-
fine the size and location of the buffer. Figure
9-3 shows the format of the control word.

LAST ADDRESS FIRST ADDRESS
OF BUFFER OF BUFFER

29 1514 0
Figure 9-3. Control Word

As shown in the diagram, the high-order 15 bits of
the control word contain the address of the last
word in the buffer and the low-order 15 bits con-
tain the address of the first word.

There are 14 input channels numbered 0 through 15
(octal) and 14 output channels numbered 0 through
15 (octal). Channels 0 and 1 are reserved for com-
puter-to-computer communication. For each of
these channels a fixed storage location is desig-
nated as a buffer-controlregister. The input buffer-
control registers are located at octal addresses
00100 through 00115 and the output buffer-control
registers at octal addresses 00120 through 00135,
The buffer-control register for a particular channel
is determined by the j designator in the buffer in-
struction. Since 0 <]A_<_ 15, the input buffer-con-
trol register for channel ?is at address 00100 +f‘
and the output buffer-control register is at address
00120 + 7.

At the time a buffer is activated, the lower-half of
the appropriate buffer-control register contains the
first address of the buffer and the upper-half con-
tains the last address. For example, if data is
transferred on input channel 12 to a five-word
input buffer located at addresses 01000, 01001,
01002, 01003, and 01004, the input buffer-control
register, forthis channel, located at address 00112,
contains 0100401000.

As the buffer operates, 30-bit data words are trans-
ferred to or from the consecutive addresses in the
buffer at a rate determined by the peripheral sub-
system attached to the input or output channel.
The first transfer is made to or from the storage
location whose address is contained in the lower-
half of the buffer-control register. When the first
transfer is completed, the lower-half of the buffer-
control register is incremented by 1 to contain the
address to which the next data word will be trans-
ferred to or from. These operations continue to
transfer and increment until the buffer is filled
or emptied. At this point the buffer operation is
terminated and the lower-half of the buffer-control
register contains the address of the first storage
location beyond the buffer; that is, the last ad-
dress of the buffer + 1.

For example, data is being transferred from a
peripheral subsystem on input channel 11 to a 5-word
input buffer located at addresses 01000, 01001,

01002, 01003, and 01004. In this case, the buffer
operation would be as follows:

1. The initial contents of the input buffer-
control register at address 00112 will be
0100401000,

2. Thirty-bit data words will be transferred to
addresses 01000 through 01004 and the
buffer-control register will be incremented
following each transfer.

3. When the buffer mode is terminated, the
input buffer-control register will contain
0100401005.

ACTIVATE INPUT BUFFER WITHOUT MONITOR

CLASS: Read

FUNCTION CODE: 73

MNEMONIC: IN - Cn

OPERATION: Activate input buffer on input
channel j without monitor.

DESCRIPTION: This instruction activates an

input buffer on input channel jA and sets up the
appropriate input buffer-control register by plac-
ing a control word that defines the size and loca-
tion of the buffer, at address 00100 + 7.

A
k DESIGNATORS: The input buffer control regis-
ter is set up as follows:

Q = 0: ¥, the low-order 15 bits contained in the
instruction word after B-register modification,
is placed in the lower-half of the control regis-
ter thus establishing the first address of the
buffer. The upper-half of the control register is
undisturbed; consequently, the high-order 15
bits contained there represent the last address
of the buffer.

Q = 1: Y., the low-order 15 bits containedin
the. storage location at address ¥, is placed in
the lower-half of the control register thus es-
tablishing the first address of the buffer. The
upper-half of the controlregister is undisturbed;
consequently, the high-order 15 bits contained
there represent the last address of the buffer.

ﬁ = 2: Not used.

f(\ = 3. Y, the 30 bits contained in the storage
location at address ¥, is placed in the control
register thus establishing the first and last
address of the buffer.

A A
j-DESIGNATORS: All values for j are permissible
with this instruction.

Tk COMBINATIONS: Refer to Figure 9-2.

ACTIVATE OUTPUT BUFFER WITHOUT MONITOR

CLASS: Read
MNEMONIC: OUT -« Cn

OPERATION: Activate output buffer on output
channel j without monitor.

DESCRIPTION: This instruction activates an out-
put buffer on output channel _Ii\and sets up the ap-
propriate output buffer-control register by placing
a control word that defines the s/i\ze and location
of the buffer at address 00120 + j,

A
k DESIGNATORS: The output-buffer-control regis-
ter is set up as follows:

Q= 0:y, the low-order 15 bits contained in the
instruction word after B-register modification,
is placed in the lower-half of the control regis-
ter thus establishing the first address of the
buffer. The upper-half of the control register
is undisturbed; consequently, the high-order 15
bits contained there represent the last address
of the buffer. '

’l\(= 1: Y., the low-order 15 bits contained in the
storage location at address ¥, is placed in the
lower-half of the control register thus estab-
lishing the first address of the buffer. The
upper-half of the control register is undisturb-
ed; consequently, the high-order 15 bits con-
tained there represent the last address of the
buffer.

A
k=2: Not used.

A -

k = 3. Y, the 30 bits contained in the storage
location at address ¥, is placed in the control
register thus establishing the first and last

address of the buffer.

A
| DESIGNATORS: All values for ; are permissible
with this instruction.

AA
i k COMBINATIONS: Refer to Figure 9-2.

ACTIVATE INPUT BUFFER WITH MONITOR

CLASS: Read

FUNCTION CODE: 75

MNEMONIC: IN - Cn - MONITOR
OPERATION: Activate input buffer on input

channel j with monitor,

DESCRIPTION: This instruction activates an in-
put buffer on input channel j and sets up the ap-
propriate input buffer-control register by placing a
control word that defines the size and location of
the buffer at address 00100 + J. When the buffer
is filled, an internal interrupt will occur on input
channel j.

A
k DESIGNATORS: The input buffer control regis-

ter is set up as follows:

A
K =

instruction word after B-register modification,
is placed in the lower-half of the control regis-
ter thus establishing the first address of the
buffer. The upper-half of the control register
is undisturbed; consequently, the high-order
15 bits contained there represent the last ad-
dress of the buffer.

AL = e . . .= L. « e s . 1
U. y, the 1ow=-0Oraer 1> conrainea D1its In wne

ﬁ = 1: ¥Yp, the low-order 15 bits contained in
the storage location at address y, is placed in
the lower-half of the control register thus es-
tablishing the first address of the buffer. The
upper-half of the controlregister is undisturbed;
consequently, the high-order 15 bits contained
there represent the last address of the buffer.

A
k = 2. Not used.

A
k = 3: ¥, the 30 bits contained in the storage

location at address y, is placed in the control
register thus establishing the first and last
address of the buffer.

j DESIGNATORS: All values for ;'\are permissible
with this instruction.

f K COMBINATIONS: Refer to Figure 9-2.
ACTIVATE OUTPUT BUFFER WITH MONITOR

CLASS: Read

FUNCTION CODE: 76

MNEMONIC: OUT - Cn - MONITOR
OPERATION: Activate output buffer on out-

put channel j with monitor.

DESCRIPTION: This instruction activates an out-
put buffer an output channel j and sets up the ap-
propriate output buffer-control register by placing

a control word that defines the size and location

of the buffer at address 00120 +]A When the buffer
is emptied, an internal interrupt will occur on
output channel ?

Q DESIGNATORS: The output buffer-control regis-
ter is set up as follows:

‘l; = 0:y, the low-order15 bits contained in the
instruction word after B-register modification,
is placed in the lower-half of the control regis-
ter thus establishing the first address of the
buffer. The upper-half of the control register
is undisturbed; consequently, the high-order 15
bits contained there represent the last address
of the buffer.

ﬁ = 1: Y., the low-order 15 bits contained in
the storage location at address ¥, is placed in
the lower-half of the control register thus es-
tablishing the first address of the buffer. The
upper-half of the control register is undisturb-
ed; consequently, the high-order 15 bits con-
tained there represent the last address of the
buffer.

ll; = 2: Not used.

ﬁ = 3: Y, the 30 bits contained in the storage
location at address ¥, is placed in the control
register thus establishing the first and last
address of the buffer,

] DESIGNATORS: All values for ; are permissible
with this instruction.

A

i k COMBINATIONS: Refer to Figure 9-2.

JUMP ON ACTIVE INPUT BUFFER

CLASS: Read

FUNCTION CODE: 62

MNEMONIC: JP « Cn -« ACTIVEIN
OPERATION:

Jump to address Y if the in-
put buffer on input channel j is active. If the in-
put buffer is not active, execute NI.

DESCRIPTION: This instruction transfers program
control to another section of the program if the
input buffer on input channel f is active. If the
input buffer is active, a jump will be made to
address Y. If the input buffer is not active, the
instruction immediately following the Jump in-
struction is executed.

k DESIGNATORS: The address to which the jump
is made, Y, is derived as follows:

A

k=0:Y =5, The address is y — the low-order
15 bits contained in the instruction word after
B-register modification.

l'(\4= 1 or 3: Y = ¥, . The address is the low-
order 15 bits contained in the storage location
at address ¥.

k=2:Y = Y,. The address is the high-order
15 bits contained in the storage location at
address y.

f DESIGNATORS: All values for fare permissible
with this instruction.

A

{ kK COMBINATIONS: Refer to Figure 9-2.

JUMP ON ACTIVE OUTPUT BUFFER

CLASS: Read

FUNCTION CODE: 63

MNEMONIC: JP ¢ Cn ¢ ACTIVEOUT
OPERATION: Jump to address Y if the out-

put on output channel 7 is active. If the output
buffer is not active, execute NI.

DESCRIPTION: This instruction transfers program
control to another section of the program if the
output buffer on output channel fis active. If the
output buffer is active, a jump will be made to
address Y. If the output buffer is not active, the
instruction immediately following the Jump in-
struction is executed.

K DESIGNATORS: The address to which the jump

is made, Y, is derived as follows:

A

k=0:Y =¥, The address is ¥y — the low-order
15 bits contained in the instruction word after
B-register modification.

l: =1o0r3:Y =Y . The address is the low-
order 15 bits contained in the storage location
at address y.

A

k =2:Y =Yy. The address is the high-order
15 bits contained in the storage location at
address y.

j DESIGNATORS: All values for f are permissible
with this instruction.

j k COMBINATIONS: Refer to Figure 9-2.

TERMINATE INPUT BUFFER

CLASS: Read

FUNCTION CODE: 66

MNEMONIC: TERM « Cn - INPUT

OPERATION: Terminate inAput buffer on in-
put channel j.

DESCRIPTION: This instruction terminates the

input buffer on input channel ;A The transfer cur-
rently in process is completed and no further
transfers are made to the buffer. If the buffer was
activated with monitor, the internal interrupt that
would normally follow after the buffer was filled
will not occur. The last buffer address to which a
transfer was made can be determined by examining
the lower-half of theAinput buffer-control register
at address 00100 + j and subtracting 1 from the
address that it contains. ’IA’he low-order 20 bits of
the instruction word, the %, b, and y designators,
do not affect the execution of this instruction.

k DESIGNATORS: All values for % are permissible
with this instruction.

| DESIGNATORS: All values for] are permissible
with this instruction.

A A

| Kk COMBINATIONS: Refer to Figure 9-2.

TERMINATE OUTPUT BUFFER

CLASS: Read

FUNCTION CODE: 67

MNEMONIC: TERM + Cn - OUTPUT

OPERATION: Terminate output buffer on
output channel j.

DESCRIPTION: This instruction terminates the

output buffer on output channel j. The transfer
currently in process is completed and no further
transfers are made from the buffer. If the buffer
was activated with monitor, the internal interrupt
that would normally follow after the buffer was
emptied will not occur. The last buffer address
that a transfer was made from can be determined
by examining the lower-half of the output-buffer
control register at address 00120 + ; and sub-
tracting 1 from the address that it contains. The
low-order 20 bits of the instruction word, the %, b,
and y-designators, do not affect the execution of
this instruction.

A
k DESIGNATORS: All values fork are permissible
with this instruction.

A
J DESIGNATORS: All values for 3\ are permissible
with this instruction.

A

A
j k COMBINATIONS: Refer to Figure 9-2.

FUNCTION WORDS

Function Words are commands that are sent to a
peripheral subsystem thatis connected to a particu-
lar channel. These Function Words cause the
initiation or termination of some action by the
peripheral subsystem.The formats of the Function Words
for the various peripheral units are shown below:

Drum

The format of the Function Word for the drum is
shown in Figure 9-4.

29 24123122 18|17

F AS C AA
Figure 9-4. Drum Function Word

As shown in the diagram, bit positions 0 through 10
(the AA portion) specify the angular address, bit
positions 11 through 17 (the C portion) specify the
channel, bit positions 18 through 22 (the AS por-
tion) specify the angular section, and bit positions
24 through 29 (the F portion) specify the function
code., Bit 23 is not utilized; consequently, a 0
or a 1 may be placed in this bit position.

Magnetic Tape

The format of the Function Word for magnetic tape
is shown in Figure 9-5.

29 24123 12 11 0

F U
Figure 9-5. Magnetic Tape Function Word

As shown in the diagram, bit positions 0through1l
(the U portion) specify the unit, and bit positions
24 through 29 (the F portion) specify the function
code. Bit positions 12 through 23 are not utilized,;
consequently, any combination of bits may appear
in these bit positions.

Card

The format of the Function Word for punched
cards is shown in Figure 9-6.

29 24123 1817 12 |11 65 0

F u
Figure 9-6. Punched Card Function Word
As shown in the diagram, bil positions Z4 through
29 (the F portion) specify the function code. Bit
positions 0 through 23 are not utilized; con-
sequently, any combination of bits may appear in
these bit positions,

High-Speed Printer

The format of the Function Word for the High-
Speed Printer is shown in Figure 9-7,

29 24123 1817 12111 615 0

F PS U
Figure 9-7. High-Speed Printer Function Word

As shown in the diagram, bit positions O through
5 (the U portion) specify the unit, bit positions
18 through 23 (the PS portion) specify the paper
spacing (0 through 63 lines), and bit positions 24
through 29 (the F portion) specify the function
code. Bit positions 6 through 17 are not utilized;
consequently, any combination of bits may appear
in these bit positions.

Paper Tape

The format of the Function Word for paper tape is
shown in Figure 9-8.

T

29 24|23 18(17 12111 615 0

F FC !
Figure 9-8. Paper Tape Function Word

As shown in the diagram, bit positions 0 through 5
(the U portion) specify the unit, bit positions 18
through 23 (the FC portion) specify the format con-
trol (6 or 8 level), and bit positions 24 through 29
(the F portion) specify the function code. Bit
positions 6 through 17 are notutilized; consequent-

ly, any combination of bits may appear inthese bit
positions,

Function Codes

The function codes (the F portions in the Function
Words) determine the action that a peripheral unit
will take. Figure 9-9 provides a listing of these
codes and the actions they perform.

OCTAL
CODE

01

DESCRIPTION OF FUNCTION

. Write one block on magnetic tape at 12.5kc.

. Punch Paper Tape.

. Write one block on magnetic tape at 25kc.

. Print on line printer at 6 lines per inch.

. Write continuously on Magnetic Drum.

. Punch on Card Punch Unit

. Punch on Paper Tape Punch with parity.

03 . Print on line printer at 8 1. p. i.(Model 151 only)

1 Same as 01 function word except at end of function, an
EXT.INT. will be sent to computer,

S
ololalo|lo|le]|o(w

Same as 02 function word except at end of function, an

12 EXT.INT. will be sent to computer.

20 a. Rewind Magnetic Tape.

21 a. Rewind Magnetic Tape with interlock.
23 a. Terminate present function.

30,31, Same as 20,21, except: EXT.INT. will be sent
to computer at end of function.

Automatic Bootstraps
a. Magnetic Tape

40 b. Drum
c. Paper Tape
3 a. Read Forward Magnetic Tape one biock, low gain,
b. Read forward Paper Tape
a. Read Forward Magnetic Tape, normal gain.
b. Read continuously, Magnetic Drum.
42 ¢. Read Paper Tape - check parity
d. Read from Typewriter
¢. Read from Card Reader.
43 a. Read.Forward Magnetic Tape, high gain,
a. Search Read Mag. Tape. After ““find” read block, low gain.
45 b. Search on Magnetic Drum and transfer address of “‘find" word
of “find” word.
a. Search Read Magnetic Tape. After *“find”’, read block,
16 normal gain.
b. Search Read Magnetic Drum,
4 a Search Read Magnetic Tape. After “find", read block,
* high gain.
50,51,52, | Same as 40 series except EXT.INT. sent to computer at
53,55,56, | end of function. On Magnetic Drum means present function
57 will be ended by end-of-block word.
a. Read Magnetic Tape backward at low gain.
61 b. Read Paper Tape backward.
62 a. Read Magnetic Tape backward, normal gain,
b. Read Paper Tape backward checking parity.
63 a. Read Magnetic Tape backward, high gain.
65 a. Search read on Magnetic Tape backward, low gain.
66 a. Search read on Magnetic Tape backward, normal gain.
67 a. Search read on Magnetic Tape backward, high gain.
71,72,73 | Same as corresponding 60 series except that at the
completion of the function, at EXT. INT. is sent to
the computer.
Figure 9-9. Input-Output Function Codes

INTERNAL INTERRUPT

An internal interrupt occurs when a buffer that
was activated with monitor is filled or emptied.
At this point, the program is interrupted and in-
stead of executing the next instruction in the
program, an instruction contained in the appropri-
ate internal interrupt entrance register is executed.
The input internal interrupt entrance registers are
located at addresses 00040 through 00055, and the
output internal interrupt entrance registers are
located at addresses 00060 through 00075. Since
0 <_f < 15, the input internal interrupt entrance
register for channel j is at address 00040 + j and
the output internal interrupt entrance register is
at address 00060 + j. These registers should con-
tain instructions that will transfer control to a
subroutine that petforms the action required by the
internal interrupt and when this action has been
completed causes the program to be resumed at
the point where it was interrupted.

Since the program address register, P, contains
the address of the next instruction at the time
that the interrupt occurs, the process described
above can be accomplished if the programmer has
previously stored a 65 instruction with j, k, and

= 0 in the appropriate internal interrupt entrance
register,

When an internal interrupt occurs, all other in-
terrupts other than error interrupts will be locked-
out until a 60 instruction with j = 0 or 1 has been
executed.

EXTERNAL INTERRUPT

An external interrupt is a program interrupt initiat-
ed by an external device. A peripheral subsystem

connected to any one of the input channels (chan-
nels O through 15) may interrupt the current pro-

gram by sending an external interrupt of the Com-

puter. When this occurs, the current program is

interrupted and instead of executing the next in-

struction inthe current program an instruction con-

tained in the appropriate external interrupt en-

trance register is executed. The external interrupt

registers are located at addresses 00020 through 00035.

Since 0 <] < 15 the external interrupt register for
channel —][15 located at address 00020 +]A

When an external interrupt occurs, the procedure
outlined for internal interrupts applies with the
exception that the subroutine to which control is
transferred should contain a 17 instruction.

External interrupts like internal interrupts cause
all (except error) interrupts to be locked-out until
a 60 instruction with j = 0 or 1 is executed.

External Function

CLASS: Read

FUNCTION CODE: 13

MNEMONIC: Ei:fgor I, EX + FCT - Cn
-0, TEST - CO; C1

OPERATION: If /4 0orl, Y—=Cj.

If /=0 or 1, skip NI if input
buffer on channel j is active;
if inactive, execute NI.

DESCRIPTION: If ; + 0 or 1, this instruction
transmits a 30-bit Function Word via the selected
output channel to a peripheral subsystem. The
Function Word will cause the initiation or termina-
tion of some action by the peripheral unit that is
connected to the particular output channel. If j =0
or 1, this instruction will determine if the input
buffer for the selected computer-to-computer chan-
nel is active. If the buffer is active, the instruc-
tion immediately following the External Function
instruction is skipped; if inactive this instruction
is executed. When y= 0 or 1 bit positions 0through
18, the k- and y-designators, do not affect the
execution of this instruction; consequently, any
combination of bits may appear in these bit posi-
tions.

Q DESIGN‘{\TORS: In both cases only k = 3 is per-
mitted. If j #0 or 1, the 30-bit Function Word con-
tained in the storage location at address ¥ is
transmitted via the selectelc\i channel to a peri-
pheral unit. If j = 0 or 1, kK = 3 is required for
timing purposes.

A
) DESIGNATORS: All values for J/"are permissible
with this instruction.

A

X COMBINATIONS: Refer to Figure 9-2.

Store C Channel

CLASS: Store
FUNCTION CODE: 17
MNEMONIC: STR « Cn
OPERATION: (C)j—>Y

DESCRIPTION: This instruction stores a 30-bit

. . A .
external interrupt code for input channel j in a
storage location, It should only be used following
an external interrupt.

A

k DESIGNATORS: Only % = 3 is permitted with
this instruction. The external interrupt code for
channel j will be stored in the storage location at
address 5.

i DESIGNATORS: All val:

" Vo w Py 94

may be used with this instruction,
A A
i k COMBINATIONS: Refer to Figure 9-2,

INPUT-OUTPUT PRIORITY STRUCTURE

The cycle that transfers one 30-bit word from or
to the Computer via a channel is called a buffer
action. Only one buffer action can be performed at
a time; however, several operating channels may
simultaneously request buffer action. Therefore,
the input-output control logic assigns different
priorities to each of the buffer actions. The buffer
actions in order or priority from highest to lowest
are lis}ed below:

1. Incremental Interrupt Clock Update: This
action occurs approximately once each milli-
second and requires one memory cycle dur-
ing which time no other buffer action may
take place.

2. External Interrupt: The Computer program

will process this interrupt ignoring all other

interrupts until a 60 instruction with j = Oor

1 is executed, Other data transfer requests

on the same channel cannot be made until

a 17 instruction is executed which allows

the interrupting device to drop its inter-

rupt signal.

Interrupt: All other inter-
rupts are ignored until a 60 instruction with
j =0 or 1 is executed. Other data transfer
requests cannot be made on this channel
until a buffer instruction that activates the
transfer logic is executed,

3. Output Internal

4, Input Internal Interrupt: All other interrupts
are ignored until a 60 instruction with j =0
or 1is executed., Other data transfer requests
cannot be made on this channel until a
buffer instruction that activates the trans-
fet logic is executed.

5.

Qutput Buffer Word Transfer: This action,
when started, allows the transfer of a single
word out of the Computer memory during
which time no other buffer actions may take
place.

Input Buffer-Word Transfer: This action,
when started, allows the transfer of a single
word into the Computer memory during which
time no other buffer action may take place.

Computer-To-Computer-Output Transfer:This
action allows the transfer of one word out

of one of the two computer-to-computer
channels before re-examining the priority
status of other input-output operations.

8. Programmed Input-Outputinstructions: These
instructions, when initiated, lock out other
input-output operations for the duration of
the instruction.

Each of the above operations has an additional
priority associated with it; that is, the operation
with the highest priority that is present on the
highest numbered channel will be performed first.

PRomington Rand Univac

DIVISION OF SPERRY RAND CORPORATION

SMINTEG
n uT2452

[FENS

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	7-01
	7-02
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	xBack

