

This manual is published by the UNIVAC Division of Sperry Rand Corpo­
ration in loose leaf format as a rapid and complete means of keeping re­
cipients apprised of UNIVAC ® Systems developments. The UNIVAC
Division will issue updating packages, utilizing primarily a page-for-page
or unit replacement technique. Such issuance will provide notification of
hardware and/or software changes and refinements. The UNIVAC Division
reserves the right to make such additions, corrections, and/or deletions
as in the judgment of the UNIVAC Division, are required by the devel­
opment of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A.

UP-4032
UNIVAC494
SYSTEM DESCRIPTION 1 1

SECTION: PAGE:

1. CONTENTS

1. CONTENTS 1-1 to 1-2

2. INTRODUCTION 2-1 to 2-6

3. CENTRAL PROCESSOR 3-1 to 3-21

A. Instruction Repertoire 3-1

B. Main Memory And Addressing 3-11

c. Control Section 3-14

D. Arithmetic Section 3-15

E. Input/Output Section 3-17

F. Operators Console 3-20

G. Maintenance Panel 3-20

H. UNIVAC 490 Program Operation 3-21

4. OPERATING SYSTEM 4-1 to 4-11

A. OMEGA 4-1

B. Control Language 4-4

c. System L i bra r i es 4-6

D. Loader 4-8

E. File Control 4-9

F. Input/Output Cooperatives 4-9

G. Compilers And Assemblers 4-10

H. Test Sys tern 4-10

I. 0 n -L in e Ma in te n a n c e 4-11

J. System Log 4-11

K. Utility System 4-11

1 2
UNIVAC494
SYSTEM DESCRIPTION UP-4032

SECTION: PAGE:

s. PERIPHERAL SUBSYSTEMS 5-1 to 5-16

A. Random Access Storage 5-2

B. Magnetic Tape Subsystems 5-7

c. Punched Card Subsystem 5-9

D. High Speed Printer Subsystem 5-11

E. Paper Tape Subsystem 5-12

F. UNIVAC 1004 Subsystem 5-13

G. UNIVAC 494 Communications Su bsy stem 5---15

2
SECTION:

UNIVAC494
2 SYSTEM DESCRIPTION

PAGE:

A. CENTRAL PROCESSOR

The central processor has the following capabilities:

• Compatability with UNIVAC 490, 491, and 492 programs and peripheral equipment

• Program protection preventing interaction of unrelated programs

• 12 full-word (30-bit) send/receive simplex input-output channels, expandable in
increments of 4, to 24 input-output channels

• Multiplexing (time-sharing) on the simplexed communication channels, permitting
interleaving of messages on same channel

• Direct coupling to a series of standard peripheral devices

• Time orientation-to a day clock, enabling conditioning of computer operations
by the time of day; to an interval timer, for precision timing of computer operations
with unconditional interrupt; to a real time clocks, for timing without interrupt

• 750-nanosecond cycle-time ferrite core memory with capacity of 16,384 30-bit
words (plus internally-generated parity bit per half-word), field-expandable to
131,072 words

• Relative addressing providing relocation anywhere within memory, without changes
to program

• High-speed processing due to memory overlap (permitting next instruction to be
read from memory, simultaneously with last operand of current instruction), 14
index registers for effective addressing with effective and relative addressing
arithmetic circuits independent of main arithmetic circuits, and internal parallel
bit transfer of data

• Arithmetic operation in fixed-point binary mode (both single and double precision)
with optional fixed-point binary-coded-decimal (BCD) mode easily programmed for
multi-precision operations, and double-precision floating-point binary mode

• Representative times for a series of arithmetic instructions:

Fixed-point add to accumulator

Fixed-point multiply

Fixed-point divide

Floating-point add to AQ register

Floating-point multiply

Floating-point divide

750 nanoseconds

7.3 microseconds

7.4 microseconds

3.2 microseconds

12.5 microseconds

13 microseconds

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPT·IDN 2

SECTION:

B. OPERA TING SYSTEM

The Operating System for the UNIVAC 494 Real-Time System is a comprehensive set
of integrated programs to encompass the significant common tasks and functions met by
the user. The operating system through its basic concepts meets the objective of
providing a flexible and reliable foundation for the installation to build upon. The
system is an open-ended structure which will be added to by the user and by the
Systems Programmings taff of UNIVAC.

The major elements constituting the initial sys tern are listed below.

• The Executive System

The Executive System is that set of routine& which provide the basic control and
fundamental mechanisms of the operating system. Major elements of the operating
sys tern such as compilers, generators, and input/ output control routines are
executed and controlled by the Executive System. The Executive System is
responsible for the maintenance of a multi-program environment which makes the
most efficient use of the facilities available at any time according to a priority
structure which favors real time processing.

• A Symbolic Language Assembler (SPURT)

The assembler accepts source programs in the SPURT II Assembler language, a
continuation of the UNIVAC 490 SPURT Assembler language, and produces object
programs in UNIVAC 494 relocatable binary (RB) code format. This is standard
program input to the UNIVAC 494 Real-Time System. Ex is ting UNIVAC 490 SPURT
programs may be reassembled for compatible operation.

• FORTRAN IV

The FORTRAN language will conform to the ASA standard. The compiler will
operate under executive control in a multi-program environment, and will produce
the standard object code format suitable for collection with previously compiled
FORTRAN program elements or other elements produced according to system
standards.

• COBOL

The COBOL Compiler will be in accord with UNIVAC Standard COBOL and will
produce the standard object code format. This compiler will also operate under
executive control in a multi-program environment.

• Interpretive/Supervisor

The Interpretive/Supervisor provides complete control over programs in the debug
stage. Run time parameters control information extraction and display at a symbolic
level during operation of the program. An important feature is the protection of
operating programs in the multi-program environment.

3
PAGE:

2
SECTION:

UNIVAC494
4 SYSTEM DESCRIPTION

PAGE:

• Library Editor

The Library Editor provides the installation with the ability to establish and alter
libraries of programs, Programs may be entered into the library in source language
or relative and absolute object code. Library Control will modify programs within
a library or control the transfer of programs from one library to another.

• File Control

File Control consists of a File Processor and the File Control sub-library. An
input/output control language is provided which defines buffer and file structure
to the system. References to files may be made in source code by using macro
directives associated with file name. The File Control Processor establishes
resident programs to link the user program with the basic executive input/output
routines. Users who do not wish to use the File Control Processor may write calls
in their source code using standard parameters.

• Systems Library

A collection of routines which provide the user with a source of standard operations.
The library includes mathematical, statistical, editing, data communication
handling and miscellaneous general routines.

• On-Line Maintenance

A collection of hardware checking routines run by the executive in a multi-program
environment. These tests could reduce the fixed preventive maintenance period
normally associated with operation of an installation.

• PERT/COST

This applications tool is applicable to research and development projects in which
time and cost estimates cannot be predicted with adequate certainty. Probabilistic
concepts are used for time and cost reporting and control. Specifications are based
upon the framework provided by DOD/NASA Guide to PERT /COST System Design.

• Linear Programming

Linear Programming is an operations research technique widely used in manufacturing
and government to minimize costs or maximize efficiency in the production and
distribution of products. The algorithm in this application employs the "product
form of the inverse" method improved with an advanced path selection technique.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION SECTION:

• Network Simulator

This program provides a general class of communications networks out of which
the user can create a model to solve his specific problem. Models in this class
solve such problems as computer design and switching network.

• New Assembly Language

2

A new language will be developed specifically for the UNIVAC 494 Real-Time
System. This language will take full advantage of the power and flexibility of the
system.

C. PERIPHERAL SUBSYSTEMS

A subsystem consists of one or more peripheral units of the same type connected to an
available input/output channel. Each subsystem is controlled by a channel synchronizer/
control unit that interprets the control signals and instructions issued by the Central
Processor, effects the transfer of data to or from the selected unit and the Central
Processor, indicates to the Central Processor the status of the available peripheral
units, and informs the Central Processor when errors or faults that affect the operation
of the subsystem occur. The Central Processor and the subsystems have capabilities
which lead to great efficiency in their mutual operations.

When the main program requires that the Central Processor employ a subsystem, the
Central Processor issues control signals which select the proper subsystem and initiate
the desired action. Once this is done the execution of the main program automatically
continues until the subsystem has completed the required action. At this point the
subsystem signals the Central Processor that the action is complete and the Central
Processor now deals with the results of the action taken: for example the processing
of data transferred from the subsystem.

In similar manner a subsystem signals the Central Processor its state of readiness to
require action on the part of the Central processor, such as response to an inquiry, and
it also signals the Central Processor when its requirements have been met. These
characteristics not only provide almost instantaneous availability of the services of the
subsystems to the Central Processor, and those of the Central Processor to the sub­
systems, but they also reduce to at most a few thousandths of a second those Central
Processor delays ordinarily associated with drum latency periods, magnetic tape reading
or writing, or the employment of printing, punched card, or communications systems.

During the execution of input/output instructions the Central Processor proceeds with
the main program, taking action on results of the operation only on receipt of a signal
from the subsystem indicating that the operation is complete.

The following peripheral subsystems are available for use with th•e UNIVAC 494 Real­
Time System:

• Random Access Storage

Random access storage subsystems which offer a variety of access times, transfer
rates, and storage capacities are available to meet the individual needs of the user.

5
PAGE:

2
SECTION:

UNIVAC494
SYSTEM DESCRIPTION 6

PAGE:

• Magnetic Tape Subsystems

The magnetic tape subsystems that are available have the ability to read or write
tapes in binary coded decimal format.

• Card Subsys tern

• High Speed Printer Subsystem

• Paper Tape Subsystem

• Communication Subsystem

The communication subsystem allows the user•to utililize a wide variety of communi­
cation equipment.

• Univac 1004 Subsystem

• Other Data Processing Systems

Capabilities exist for on-line or remote linkage with other systems for time sharing
operations.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION 3

SECTION: PAGE:

3. CENTRAL PROCESSOR

The central processor receives data and instructions, processes the data in accordance
with the program of instructions, and either stores the result for further processing or
delivers the result to an external output device. Th~ principal elements of the central
processor are the core storage element, the control and interrupt processing element,
the arithmetic unit, and the input/output processing unit. This chapter describes the
repertoire of instructions, instruction word formats (including a sample instruction),
core storage memory and addressing, the control section, input/output section, operator's
console, and maintenance panel.

A. INSTRUCTION REPERTOIRE

The instruction repertoire (Table 3-1) of the UNIV AC 494 central processor consists
of 99 basic instructions which are listed by function and numeric order of instruction
code, together with the "class" of instruction. The class notation refers to the inter­
pretation of the "k" designator within the instruction word. This k designator may
have as many as eight (0-7) different values and partially determines the operand to
be used for that particular instruction. (The 77 xx instructions do not use k designators
and, therefore, require no class notation.) The instruction is further modified by the
"j" designator within the instruction word which is usually used to describe the
conditions for skipping the next sequential instruction. An operation initiated by a
sample instruction is described in this section.

The principal registers referred to in Table 3-1 are the following:

The accumulator ("A" register), a 30- bit register used in all arithmetic and internal
transfer operations. This register has incrementing and bit complementing
properties and may also be used as a shift register.

The Q register, a 30-bit auxiliary arithmetic register, used, mainly, to aid the
accumulator in multiplication, division, and logical operations. The Q register
also has incrementing and bit complementing properties and may be used as a
shift register.

The AQ register, a 60-bit register formed by the combined operation of the accumulator
and Q register. The AQ register is used in arithmetic operations involving double
precision, floating point, and decimal operands. The most significant portion
of the 60-bit word is contained in the accumulator.

The index registers ("B" registers) of which there are 14. These registers may be
incremented or decremented. The contents of an index register are added, when
called for by the instruction, to the address in the instruction word to determine
the "effective" address.

1

3
SECTION:

2
UNIVAC494
SYSTEM DESCRIPTION

PAGE:

Unless Table 3-1 indicates otherwise, an instruction is compatible with both UNIVAC 490
and 494 operation. Where differences are indicated, the 490/ 494 mode switch on
the maintenance panel must be appropriately set.

Instructions in Table 3-1 are grouped by function in the following sequence:

• Shift Instructions

A shift instruction shifts the word stored in a selected register a specified number
of bit positions. In a right-shift, the bits shifted out are lost; in a left-shift,
the bits shifted out are returned, in turn, to the vacated positions (circular shift)
unless specified otherwise.

• Transfer Instructions

A transfer instruction either transfers data contained in memory to a register or
transfers the contents of a register to a memory location. Unless otherwise specified,
the original source remains unchanged.

• Arithmetic Instructions

An arithmetic instruction performs an arithmetic operation upon a number in
standard binary code (single and double precision), floating point mode (double­
precision), or decimal mode. Included in this set of instructions are specific
instructions for comparing or testing the result.

• Jump Instructions

Jump instructions transfer program control to other sections of the program.

• Sequence-Modifying Instructions

Sequence-modifying instructions enable repetition of an instruction a specified
number of times, or skipping of the next instruction, or jumping to another
section of the program.

• Logical Instructions

Logical instructio.ns enable operations to be performed only upon selected bits
of a word. The term "logical product" associated with some of these instructions
means that only if both bits involved in the operation are l's the result is a l,
otherwise the result is a O.

• Input/Output Instructions

Input/output instructions are associated with the movement of data between the
central processor and external equipment such as the standard communication
subsystem and standard input/output devices.

• Interrupt Instruction

The interrupt instruction enables programmed generation of an interrupt to syn­
chronize operations with another computer or peripheral device.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

CODE

01

02

03

...
!!: 05
:c ...

06

07

7730**

10

11

12

14

15

16

7721**

7725*"'

7731**

7732**

"' 7735**
"' ,. ...
"' ...

7736**

7761••

7762**

7765**

7771**

7775•*

CLASS

Read

Read

Read

Read

Read

Read

Read

Read

Read

Store

Store

Store

FUHCTIOH

Right·shift content of Q retister by SPflCified number of bits and fill

vacated positions with sia:n bit.

Ri&ht-shift accumulator by specified number of bits and fill vacated
positions with sign bit.

Ria:ht-shift AQ reaister (accumulator and Q reaister treated as one
60-bit re1ister) by specified number of bits and fi II vacated position
with sign bit •

Left-shift, circularly, contents of Q re1ister by specified number of

bits.

Left-shift, circularly, contents of accumulator by specified number of
bits.

Left-shift, circularly, contents of AQ re&ister by specified number of
bits:

Left-shift, circularly, the accumblator until the two most sia:nificant
bits are unequal and record the number of shifts required in the Q
register. I

Load contents of specified source into Q re1ister.

Load contents of specified source into accumulator.

Load contents of specified source into specified index re1ister.

Store contents of Q re1ister at specified location.

Store contents of accumulator at specified location.

Store contents of specified index 1e1ister at lower half of specified
location, fillin1 upper half with O's.

Load the AQ registe1 with the contents of the two specified consecutive
locations, the first location into the accumulator.

Store the contents of the AQ re1ister at the specified two consecutive
locations, with the accumulator stored at the first location.

Load the accumulator in consecutive six-bit positions startin1 from the
left with bits 00-05 at each of the specified five consecutive locations.

Load the accumulator in consecutive six-bit positions starting from the
left with bits 20-15 of the contents at specified five consecutive
locations.

Store successive six·bit accumulator characters, one-by-one, startine
from left of accumulato1, into bit positions 00-05 at each of flve selected
consecutive addresses, clearing bit positions 06-14 to O's at each of
these addresses.

Store successive six-bit accumulator characters, one-by-one, into bit
positions 15-20 at each of five selected consecutive addresses, clearin1
bit positions 16-29 to O's at each of these addresses.

Load contents of specified address into Internal Function Reeiste1 {IFR)
to facilitate returnin1 to a repeat sequence in case this sequence has
been interrupted, to select a particular type of Guard mode, to indicate a
decimal overflow and/or a carry from a decimal operation, and/or to
condition operation of the index rea;isters.

Transfer contents of specified address to Memory Lock-In Rea:ister which,
by use of Guard mode desi1nator in the Internal Function Rea;ister,
specifies the memory lock-in area.

Store contents of Internal Function Rea:ister at specified address.

Transfer bits 06-17 of desi1nated memory address to Relative Index
Rea;ister (Rift). If IFl't desi1nator is set, the contents of the RIR bias all
core memery address references.

Transfer the least sianificant contents of seven successive
addresses (startin& from the specified address) to the seven "worker"
index rea:isters 81-87 in success ion.

Transfer the contents of the seven "w0tker" index rea;isters to the seven
successive core memory locations, startina; from Index Resister Bl and
the memory location specified in the instruction.

Table 3· 1. Instruction Repertoire

3 3
SECTION: PAGE:

UNIVAC494
3 4 SYSTEM DESCRIPTION UP-4032

SECTION: PAGE:

CODE CLASS FUNCTION

20 Read Add contents of specified·address to accumulator and store sum in
accumulator.

21 Read Subtract contents of specified address from accumulator and store
difference in accumulator.

22 Read Multiply contents of Q register by contents of denoted address and store
product in AQ reqister.

23 Read Divide contents of AQ register by contents of denoted address. Store
quotient in Q register and remainder in accumulator.

24 Replace Add the contents of a selected address to the contents of the accumulator
and store the sum in the selected address and the accumulator.

25 Replace Subtract the contents of a selected address from the contents of the
accumulator and store this difference in the accumulator and the selected
address.

26 Read Add contents of specified address to Q register and store sum in Q
register. Accumulator is undisturbed.

27 Read Subtract contents of specified address from Q register and store
difference in Q register. Accumulator is undisturbed.

30 Read Add contents of Q register to contents of specified address and store
sum in accumulator. Q 1egister is undisturbed.

u -..... 31 w Read Subtract contents of Q register from contents of specified address and
:,; store difference in accumulator. Q register is undisturbed.
::c -
°' 32 Store Add contents of Q register to accumulator and store this sum at
~ s pee ified address.

33 Store Subtract contents of Q register from contents of accumulator and store
this difference at specified address.

34 Replace Add the contents of a selected address to the contents of the Q register
and store this sum in the accumulator and the selected address.

35 Replace Subtract the contents of the Q register from the contents of a selected
address and store this difference in the accumulator and the selected
address.

36 Replace Add one to the contents of a selected address and store this sum in the
accumulator and the selected address.

37 Replace Subtract one from the contents of a selected address and store this
difference in the accumulator and the selected address.

7701** - Add the floating point number in the AQ register to the floating point
number contained in the specified two consecutive locations and store
the normalized sum in the AQ register.

7702** - Subtract contents of specified two consecutive locations from contents
of AQ register and store this difference in AQ register.

7703** - Multiply the signed floating point number in the AQ register by the
floating point number in the selected two consecutive addresses.

Table 3-1. Instruction Repertoire (continued)

UP-4032
UNIVAC494
SYSTEM DESCRIPT'IDN 3 5

SECTION: PAGE:

CODE cuss FUNCTION

7705•• - Divide the no1malized floating point numbe1 in the AQ register by the
floating point number in the selected two consecutive addressed
locations and store the normalized quotient in the AQ register, discarding
the remainder.

7706•• - Transfer the unsigned exponent part contained in a selected address to
the AQ register to make up a floating point number with the unnormalized
fixed-point part contained in the AQ register.

1101•• - Store the absolute value of the exponent part contained in the AQ register
in a specified location and fill these bit positions of the AQ register
with the sign bit of the fixed-point part.

7711•• - Add the IO-digit decimal number in the specified two consecutive
locations to the decimal num~er in the AQ register and store the sum in
the AQ register.

7712•• - Subtract the IO-digit decimal number in the specified two consecutive
locations from the decimal number in the AQ register and store the
difference in the AQ register.

77I4** - Change the decimal numbe1 in the AQ register to its decimal complement.
The decimal complement is the difference formed by a digit-by-digit
subtraction where the least significant decimal digit is subtracted from
10, (IO minus 0 = O, with no carry), and all higher-order digits from 9.

7715•• - Add the decimal number in the specified two consecutive locations to the
decimal number in the AQ register including, in this addition, any carry

~
from a previous decima I operation.

....
Ill 7716•• - Subtract the decimal number in the specified two consecutive locations
~

from the decimal number in the AQ register including, in this subtraction, ::c any borrows from a previous decimal operation.
Di:
<(

7722•• - Add the contents of the two specified consecutive locations to the
contents of the AQ register and store this sum in the AQ register (fixed·
point binary),

7724** - Complement each of the bits in the AQ register.

7726** - Subtract the contents of the two specified consecutive locations from the
contents of the AQ register and store this difference in the AQ register
(fixed-point binary).

04 Read Compare signed value of selected 30-bit operand with contents in
accumulator or Q register and skip next instruction if result of comparison
meets specified requirements.

1110•• - Test decimal number in AQ register for sign, overflow, and/or digit
values to determine if the next instruction shall be skipped.

7713** - Compare decimal number in AQ register and decimal number in specified
location; skip next instruction if AQ is equal.

77I 7** - Compare decimal number in AQ register and decimal number in specified
location; skip next instruction if AQ is less.

7723*• - Compare contents of AQ register with contents of specified location;
skip next instruction if both are equal.

7727•* - Compare contents of AQ register with contents of specified location;
skip next instruction if AQ is less.

Table 3-1. Instruction Repertoire (continued)

3 6
SEC Tl OH: PAQE:

CDDI CLASS

60

"
~ .. Read

... ftead

77340

.. 7737u z
;: ..
s
" 70 Read ..
u
z 71 Read ..
;

72 Read

40 ftud

41 Read

42 Read

" Read

44 Replace

45 Replace

" Replace

... " Store ...
u
g ... 50 Read

51 Read

52 Rud

53 Read

" Replace

" Replace

56 Replace

57 Replace

UNIVAC 4114
SYSTEM DESCRIPTION

fUMCTIOM

Ju111p to specified loc1tlen fot next in1t111ction if con9it11n1 of "j"

desip1to1 and either Q re1i1ter or 1ccu111ulat01 111 11ti1fiad; otherwlM
execute next sequential instiuction.

Ju., to specified lec.tiew 1t11••r c-.iditi9111 Ht by tM 1111flu1.lly set
JU• or STOP contnls; ottHirwlH execui. nut sect11oti1l instruction.

Store address of neir.t uquentitl Instruction at specified loe1tion and ju111p
to this specified loc1tion plus one for next instruction If jump conditions
are satisfied; otheiwise execute next sequenti1t instr'llction .

Sto11 1ddress of next sequent111 Instruction at specified location ind jump
to specified location plus one for ne:r.t instruction if manual
controls are set; otherwise execut. next sequential instruction.

lnteirupt pro1ram and jump to location 000007 enablln1 the exacutiont
pro1ram to store the next lnst1uction address of the pro11am which is
interruptin1 .

Execute the instruction stored at th• address specified by this
instruction and, if that instruction does not skip or Jump, return to the
next instruction of the main pro11am .

Repeat the next pro11ammed Instruction a specified numblr of times.

Compare the contents of a specified index re1ister ("J" desi1nation)with
th• operand. If they are equal, skip the next instruction and clea1 the
index re11stet1; if unequal, add one to the conte!'lts of the index re1ister
and perform the next Instruction.

If the content of the specified index re1ist11 is non•zero, jump to

specified address and decrement content of index reaister by one; if zero,
proceed to next sequential instruction.

Form bit·by·bit lo1ical product of Q 1e1iater contents and contents of a
specified location and store 101ical product In accumulator. (Wherever

l's are present in both correspondin1 bit positions, a I is stored;
wherav11 a 0 Is present in eithll coriespondin1 bit position, a 0 is
stored.)

Add the initial contents of the accumulator to the bit·by·blt lo1ical
product of the contents in the Q reaister and a specified location and
store this sum in the accumulator.

Subtract the lo&ical product of the contents In the Q re11ster and a
specified location from the initial contents of the accumulator and store
this diffi11ence in the accumulator.

Form 101lcal product of Q 111lstar and contents of a specified
instruction, subtract this lo1ical product from accumulator, and use this
diffe1ence as a criterion for skippln& the next Instruction, leavln&
accumulator unaltered.

Store the to1ical blt·by•bit product of the co!'ltents of a selected address
and the Q re1ister in the accumulator and the selected address.

Add the lo1ical product of the contents of a selected addiess and the Q
re1ister to the Initial contents of the accumulator and store this sum in
the specified address and accumulator.

Subtract the lo1ical bit·by•bit product of the contents of the Q re&lster
and the contents of a selected add11ss from the initial contents of the
accumulator and store this difference In Ute acC1.1mulator and in the
specified address.

Store bit•by•bit 101lcal product of'contents In Q 111ister and accumulator
in specified sto11111 address.

Fo1 each I bit of the selected wo1d, fo1ce a 1 bit into the correspondinl
position of the accumulator, teavin1 oth11 positions of the accumulator
unaltered.

For each 1 bit of the selected word, complement the correspondin& bit
of the accumulato1, l1avin1 other positions of the accumulator unaltered.

For each 1 bit of the selected word, fmce a 0 bit into th• correspondin1
position of the accumulato1, leav1n1 other positions of the accu111ulato1
unaltered.

For each I bit in the Q re11ster, force the co11espondln1 bit of a selected
word into the correspondin1 bit position of the accumulator, leavin1 the
other contents of tl'le accunrnlator unaltered.

For each 1 blt in the contants of a selected address force a I bit into the
correspondinl bit poaitlon of the accumulator, leavin1 the other
accumulato1 bits unaltered, and store thls result In the accumulato1 and
the selected adlilress.

For each 1 bit in the contents of a selected address complement the
co1respondin1 accumulator bit and store the result in the accumulator
and the selected address.

Fo1 each 1 bit in the contents of a selected address fo1ce a 0 into the
correspondin& bit position of the accumulato1, leevin1 the other
accumulator bits unaltared and store this 11sult in the accumulator and
the selected add1ess.

F1>r each I .bit in Q re1ister, t11nsfer the co11upondin1 bit at a selected
address into co11espondin1 bit position of the accumulator. Leave other
bits of the accumulator undletu1bed. llletain result in accumulato1 and
store at the selected address.

Table 3-1. Instruction Repertoire (continued)

UP-4032

UP-4032

.....
:::>
CL
.....
5
'-...
.....
:::>
CL
% -

..,:
%

UNIVAC494
SYSTEM DESCRIPTION 3

SECTION:

CODE CLASS FUHCTIOH

13* Read Transmit control word over channel specified by Channel Select Register
to peripheral equipment for control of 1/0 action.

17* Store Store, at designated address, the input word on specified channel and send
Input Ac know ledge s igna I.

62* Read Jump to specified location if the input buffer of a specified input channel

is active; otherwise execute next sequential instruction.

63* Read Jump to specified location for next instruction if specified buffer output
channel is active; otherwise execute next sequential instruction.

66* Read Terminate transfer of data to specified input buffer.

67* Read Terminate transfer of data from specified output buffer.

73* Read Activate input buffer without monitor on channel number as specified.

74* Read Activate output buffet or external function buffer on specified channel

number.

75* Read Activate input buffer with monitor on specified channel number.

76* Read Activate output buffer or external function buffer with monitor on specified
channel number.

7772** - Store channel number of interrupt being processed by 1/0 section at

indicated address.

7773** - Transfer the leasts ignificant five bits of the contents of the specified

address into the Channel Select Register (CSR) which indicates the

channel to be activated, deactivated, or tested •

7770** - Send synchronous interrupt to another computer or external device.

Table 3-1. Instruction Repertoire (continued)

NOTE: Instruction code 00 causes a jump to address 000000 and initiation of the fault interrupt

mode.

Indicates sli~ht differences between 490 and 494 instructions.

• * Indicates ins true tions unique to 494.

7
PAGE:

3
SECTION:

UNIVAC494
8

PAGE:
SYSTEM DESCRIPTION

1. Instruction Word Formats

x

29

I

j29

x

29

Three different instruction word formats are used as shown below.

f j k b y

x x x x x x x ~ x

23 120 17 14

f g b y

I I I I I x

lz3 17 14
;

f 1' ~ b y

x

23 19 17 14

The first instruction word format is the format most generally used. The function
code designator, f, indicates the operation to be performed. They designator is a
binary number which is added to the contents of the index register indicated by the
b designator. If the b designator is a zero, then the y designator is used as is,
since there is no Index Register O. This sum is either the effective operand (to be
used directly in the operation) or it is the effective address, indicating a location
in core memory which contains the operand to be used. Determination of whether

x

00

x

00

x

00

this su!11 is the effective operand or the effective address is made by the combina­
tion of k designator and class of instruction. Interpretation of the k designator falls
into one of three classes (read, store, and replace classes), described in Table 3-2.
For instance, a read class instruction with k designator of 0 or 4 uses the effective
operand in the operation; a read class instruction with j designator of 1, 2, 3, 5, or 6
uses the word contained in the effective address memory location; a read class
instruction with j designator of 7 would use the word in the accumulator. Table 3-3
describes the use of the j designator. All designators are described herein using
octal notation, to facilitate descriptions.

The second instruction word format is used with the "77" instructions. In these
instructions f = 77 8 (111111) and the two-digit code of the sub-function designator,
g, actually designates the function to be performed. The b and y designators have
the same functions as in the first instruction word format. No j or k designator can
be used with a 77 instruction.

The third instruction word format is the 1/0 instruction word format, used with
instructions 13, 17, 62, 63, 66, 67, 73, 74, 75, and 76. The1'designator is a
four-bit code specifying the 1/0 channel references., The~ designator is a two-bit
code controlling the source of the operand, storage of the operand, or both.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

SECTION:

READ CLASS STORE CLASS
A

k 01 k = 0 Upper half of operand= O's; lower half Store contents* in Q register, filling any
is effective operand. remaining Q register positions with O's.

k 01 ~ = 1 Upper half of operand= O's; lower half Store contents of index register or lower half
is lower half of memory word at effective of accumulator or Q register at lower half of
address. effective address, leaving upper half of

effective address contents undisturbed.

A
k 01 k = 2 Upper half of operand= O's; lower half Store contents of index register or lower ha If

is upper ha If of memory word at effective of accumulator or Q register at upper half of

address. effective address, leaving lower half of
effective address contents undisturbed.

A
k 01 k = 3 Operand is memory word at effective Store contents of accumulator, Q register,

address. S:elected channel, or index register at the
effective address.

k = 4 Lower half of operand is bits 00·14 of Store contents* in accumulator.
effective operand; upper ha If is filled
with bit"l4 of effective operand.

k = 5 Lower half of operand is bits 00·14 of Store bit-by-bit complementation of index
word at effective address; upper half is register or lower half of the accumulator or
filled with bit 14 of this word. Q register in lower half of word at effective

address, leaving upper half undisturbed.

k = 6 Lower half of operand is bits 29-15 of Store bit-by-bit complementation of index
memory word at effective address~ upper register or lower half of the accumulator or
half is filled with bit 29 of this word. Q register in upper half of word at effective

address, leaving lower half of word undisturbed.

k = 7 Operand is word in accumulator. Store bit-by-bit complementation of index
register, accumulator, or Q register into word
at effective address. If index register is stored,
fill upper half of affected word with sign bit
of original index register word.

REPLACE CLASS

k = 0 Not used.

k = 1 Only the low-order 15 bits of a register or memory location are used to form the replace-
ment word which is stored in the low-order portion at the register or effective ~ddress,
leaving the high-order portion undisturbed.

k = 2 The word used in forming the replacement word is made up of the addressed high-order
portion shifted to the low-order portion with zero-fill in the high-order portion. The
replacement word is stored in the high-order portion at the regi-ster and effective location,
leaving the low-order portion undisturbed.

k = 3 The full 30-bit words of a register or effective address are used to form the replacement
word which is then stored at an effective address or register.

k = 4 Not used.

k=5 The word used in forming the replacement word is made up of the low-order addressed
word with sign·fill (bit 14 of the addressed word) in the high-01de1 positions. The low·
order 15 bits of the replacement word are stored in the low-order positions of the
addressed word, leaving the high-order positions undisturbed.

k=6 The word used in forming the replacement word is made up of the addressed high·order
bits shifted to the low·order positions and the high·order positions filled with the sign of
the original word. The low-order bits of the replacement word are stored in the low-order
position of the address.

k=7 Not used.

Table 3-2. Interpretation of "k" Designator.
*Store class exceptions:

3

1: In the "14" instruction, "k"=O, the bit-by-bit complementation of the Q re~ister is stored.

2. In the "15" instruction, "k"=4, the bit·b.Y•bit complementation of the accumulator is stored.

9
PAGE::

3
SECTION:

UNIVAC494
10 SYSTEM DESCRIPTION

PAGE:

j FUNCTION

0 Perform next sequential instruction.

1 Skip next sequential instruction.

2 Skip next sequentia I instruction if Q register is positive.

3 Skip next sequential instruction if Q register is negative.

4 Skip next sequential instruction if accumulator is zero.

'
5 Skip next sequentia I instruction if accumulator is not zero.

6 Skip next sequential instruction if ace umu la tor is positive.

7 Skip next sequential instruction if accumulator is negative.

(Contents of this table describe most common use of j designator, applicable to instructions 01-03, 05-11, 14,

15, 20-25, 30-37. 41-43, 45-47 .)

Table 3-3. Interpretation of "J" Designator*

2. Sample Instruction

29

A sample instruction may be coded as follows:

f j k b y

2 0 6 3 3 0 0 5 0

23 20 17 14

a. The function code "f" is 20 8 , instructing the computer to add the operand to
the contents of the accumulator and store the sum in the accumulator.

b. The "y" designator indicates that the unmodified address of the operand is
005018 •

1

c. The "b" designator is a 3, 'indicating that the contents of index register 3 must
be added to "y" to find the effective address of the operand. If we assume that
index register 3 contains the number 631 8 , the effective 1iddress is 13328 , which
(we assume) contains the value + 13535353538 •

d. The "k" of 3 indicates that the operand is the entire contents of the effective
address. (See Table 3-3 for interpretation of "k" designator in read class in­
structions.) Therefore, if we assume that the accumulator initially contained
+ 0535353535 8 , the sum is + 21111111108 and this sum is stored in the
accumulator.

UP-4032

0

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

SECTION:

e. The "j" designator of 6 initiates a skip of the next sequential instruction
since the accumulator content is positive and we proceed to the instruction
following the skipped instruction. (See Table 3-3 for interpretation of "j"
designator.)

B. MAIN MEMORY AND ADDRESSING

3

The main memory is a 32-plane, coincident-current, ferrite core memory with maximum
storage of 131,072 30-bit words (plus one parity bit per half-word). Memory transactions
may transfer 15-bit half-words, 30-bit words, 60-bit double-precision words, or (by
means of the logical functions) program-selected bits of a word.

1. Memory Layout

Minimum memory capacity consists of one master unit containing 16,3S4 words
using continuous addressing. To obtain the advantages of the memory overlap
feature the addition of at least a second master unit containing 16,3S4 words is
required so that the odd-even addressing mode (Figure 3-1) can be used. Since
the master units can operate independently, it is possible for one master unit to
read the next instruction from memory while another master unit is simultaneously
reading the last operand of the current instruction from memory. Thus; the average
time per instruction for a series of one-operand instructions approaches one memory
cycle time. The memory can be expanded, in 16K increments to a maximum of 13 lK
with memory overlap. For each 16K increment, two SK modules are added. Each
added SK module-is either one half of a master unit or one half of a slave unit.
The odd-even addressing structure is the normal mode for expanded memory capacity.
The continuous addressing mode (selected manually for expanded memories) is
used when memory faults are detected.

2. Relative Addressing

Relative addressing permits a program to be moved about anywhere in memory and
then rerun without modification to the program. Another advantage of relative ad­
dressing is that it places a program in memory starting at an address specified by
the executive routine. The Relative Index Register contains the reference for all
instruction addresses and is loaded by instruction 7766 (see Instruction
Repertoire). An address within memory is first defined by the effective address
(addition of the contents of an index register to the address specified within the
instruction word) and this sum is then added to the contents of the Relative Index
Register to determine the absolute location within core memory to be used. This
means that, though a program is restricted to 32K locations, it is not restricted to any
one of the 32K memory banks and may even be located in two different banks. The
contents of the Relative Index Register do not modify the effective operand.

3. Preassigned Storage Addresses

A set of fixed core storage addresses are reserved for interrupt locations or
associated functions as listed in Table 3-4. These fixed locations are under
control of the executive routine and are programmed to contain entrances to
interrupt subroutines. (If the system is operating in the UNIVAC 490 mode, core
storage addresses 00070 - 00077 and 00130 - 00137 are also used as interrupt
subroutine entrances.)

11
PAGE:

UNIVAC494
3 12

SECTION: PAGE:
SYSTEM DESCRIPTION UP-4032

MEMORY 2 MEMORY 0

SLAVE 1t2 MASTER #2 BIT 16=0
MASTER 1t0 SLAVE 1t0

BIT 16=1
EVEN EVEN BIT 00=0 BIT 00=0 EVEN EVEN

......
ADDRESSES ADDRESSES ADDRESSES ADDRESSES --

98-131K 65-98K 0-32K 32-65K

BIT 15=1 BIT 15=0 UNIVAC BIT 15=0 BIT 15=1

MEMORY 3 494 MEMORY l

SLAVE 1t3 MASTER 1t3 BIT 16=1 BIT 16=0 MASTER ltl SLAVE ltl

ODD ODD BIT 00=1 BIT 00=0 ODD ODD
-- ~

ADDRESSES ADDRESSES ADDRESSES --- ADDRESSES

98-131 K 65-98K 0-32K 32-65K

BIT 15=0 BIT 15=0 BIT 15=0 BIT 15=1

CABINET 1t4 CABINET #3 CABINET ltl CABINET 1t2

ODD-EVEN ADDRESSING

MEMORY 2 MEMORY 0

SLAVE tt2 MASTER tt2 MASTER ttO SLAVE ttO

EVEN ADDRESS EVEN ADDRESS EVEN ADDRESS EVEN ADDRESS

81-98K 65-81K BIT 16=1 BIT 16=0 0-16K 16-32K
BIT 14=1 BIT 14=0 BIT 15=0 BIT 15=0 BIT 14=0 BIT 14=1 -- ~ --

ODD ADDRESS ODD ADDRESS ODD ADDRESS ODD ADDRESS
81-98K 65-81K 0-16K 16-32K

BIT 14=1 BIT 14=0 UNIVAC BIT 14=0 BIT 14=1

MEMORY 3 494 MEMORY l

MASTER #3 SLAVE 1t3 MASTER ltl SLAVE ltl

EVEN ADDRESS EVEN ADDRESS EVEN ADDRESS EVEN ADDRESS
114-131K 98-114K BIT16=1 BIT 16=0 32-48K 48-65K

BIT14=1 BIT14=0 BIT 15=1 BIT 15=1 BIT14=0 BIT 14=1
~

~

ODD ADDRESS ODD ADDRESS ODD ADDRESS ODD ADDRESS

114-131K 98-114K 32-48K 48-65K

BIT 14=1 BIT 14=0 BIT 14=0 BIT 14=1

CABINET 1t4 CABINET 1t3 CABINET ltl CABINET #2

CONTINUOUS ADDRESSING

Figure 3-1. Memory Address Layout

UP-4032
UNIVAC494
SYSTEM DESCRIPTION SECTION:

OCTAL ADDRESS

000000

000001

000002

000003

000004

000005

000006

000007

000010

000011

000012

000013

000014

000015

000016

000017

000020

000021

000022

000023

000024

000025

000026

000027

000040°000067

000100°000127

FUCTION

11 lega I Instruction

Guard Mode

Power Loss

Parity ErrorDMemory

Parity Error 0 Memory

Parity Error 0 Memory

Parity Error-Memory

Executive Return

Bank

Bank

Bank

Bank

Floating Point Underflow

Floating Point Overflow

Externa I Synchronizer 1tl

Externa I Synchronizer 1t2

Interval Timer Interrupt

Day Clock Interrupt

Day Clock Time

0

1

2

3

Real Time Clock/Interval Timer Update

E x te rn a I I n te rr u pt ES I

Input Monitor ESI

Output Monitor ES I

Buffer Control Word Parity Error

Ex te rn a I I n te r r up t IS I

Input Monitor ISi

Output Monitor ISi

1/0 Data Parity Error

Output Buffer Control Word Channels 00-23

Input Buffer Control Word Channels 00-23

Table 3-4. Preassigned Memory Addresses

4. Parity Error Protection

A parity bit is internally generated and inserted into core memory for each half­
word written into core memory. Parity is checked each time data is read from

3

core memory. A parity error interrupts the program to a preassigned memory
location where appropriate action can be initiated under program control. The
system fault alarm is activated. If recovery is unsuccessful, the addressing
structure can be manually switched from the odd-even addressing structure of
Figure 3-1 to the continuous addressing structure, so that a faulty memory unit
will not be used, and switch the preassigned interrupt locations to another module.

13
PAGE:

3
SECTION:

UNIVAC494
14 SYSTEM DESCRIPTION

PAGE:

C. CONTROL SECTION

The control section of the UNIVAC 494 Central Processor interprets and sequences computer
instructions, with each instruction involving a basic operation (add, subtract, etc.)
and modifiers which may specify one or more auxiliary operations to modify or extend
the basic operation. Other functions included within the control section are program
protection by the guard mode and fault interrupts.

1. Guard Mode

Program protection is afforded by the guard mode to ensure maximum protection
for the executive routine and prevent interaction of unrelated programs. Under
program control the Internal Function Register (IFR) can be loaded so that any of
the following three guard modes can be enabled (instruction 7761):

• Guard Mode-Read and Write.

• Guard Mode-Write with Instruction Protection.

• Guard Mode-Write without Instruction Protection.

The Guard Mode-Read and Write with Instruction Protection prevents reading,
writing, and jumping outside a fixed (lock-in) area within core storage. This mode
is the normal operating mode for all worker and customer-written programs. In this
mode all input/output instructions, and instructions with function codes in the
range 776X and 777X cannot be performed. Reading, writing, or jumping outside
the program lock-in area results in an interrupt to memory location 00001 where
program control is returned to executive routines for appropriate action. This
guard mode is normally enabled when leaving the executive routine and disabled
during performance of the executive routine.

The Guard Mode-Write with Instruction Protection guarantees that the worker
program does not modify the contents of addresses outside its limits but does
permit it to perform common subroutines shared by several programs. This mode
differs from the previous guard mode in that the program is permitted to read or
jump to any location in memory. Writing outside the lock-in area results in an
interrupt to location 00001, switching control to the executive routine. This mode
prevents execution of the instructions described in the preceding paragraph.

The Guard Mode-Write without Instruction Protection is similar to the preceding
guard mode in operation except that in this mode all instructions in the repertoire
can be executed.

2. Fault Interrupts

The fault interrupts are interrupt signals with first priority initiated as a result
of a fault, a programmed interrupt, or an arithmetic decision. A second group of
interrupts, the I/O interrupt group, is described in the Input/Output section. The
fault interrupts include the following:

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

3

SECTION:

• Illegal Instruction Interrupt

• Guard Mode Interrupt (already described in the section on guard modes).

• Executive Return Interrupt.

• Parity Interrupt.

• Floating Point Overflow Interrupt.

• Floating Point Underflow Interrupt.

The Illegal Instruction interrupt is initiated _when the instruction word has an
operation code of 774X, or 775X. If the option for decimal arithmetic is not
installed, operation code 771X will also initiate the Illegal Instruction interrupt.
If the option for floating point arithmetic is not installed this interrupt will also
be initiated by operation code 770X. All other interrupts are locked out and the
program is sent to address 000000 for executive action.

The Executive Return Interrupt is initiated by the 7734 instruction, routing the
program to address 000007. Guard Mode Protection, Relative Addressing, etc.,
are rendered inactive due to initiation of the interrupt sequence. All other 1/0
type interrupts are locked out.

The Parity Interrupt is the result of a parity error in a word or half-word read
from memory. The interrupt will route the program to an executive routine at
address 000003, 000004, 000005, or 000006. (For further details, see ~arity
Error Protection, Main Memory and Addressing Section.)

The Floating Point Overflow Interrupt is initiated when the result of a floating
point operation has an exponent part greater than 3777 8 or 4000 8 . This interrupt
is also caused if division by floating point number ± 0 is attempted. The program
is routed to address 000011.

The Floating Point Underflow Interrupt is initiated when the exponent part of the
result in a floating point add, subtract, divide, or multiply operation is less than
zero, as stored in the accumulator. The program is then routed to memory address
000010 which leads to an executive routine.

D. ARITHMETIC SECTION

The arithmetic section performs the arithmetic, logical, and compare instructions
required in a program. Arithmetic operations may be performed in fixed point binary
or binary-coded-decimal modes, double-precision,floating point mode, or double
precision binary mode.

1. Fixed Point Formats

The format for a binary coded single precision, fixed point data word, as shown
below,

1.: 1 .. 1 .. 1 .. 120 117 1 .. I., ~ 1. 1.

15

PAGE:

01

3
SECTION:

UNIVAC494
16

PAGE:
SYSTEM DESCRIPTION

assigns three bit positions per octal digit, except for the most significant digit
whiCh has two bit positions. The sign, contained in bit position 29 is a 0 for a
positive number, a 1 for a negative number. The order of digits is from 00 to 28,
with position 00 containing the least significant digit.

The format for a binary coded, double precision, fixed point data word, shown
below,

AQ REGISTER

1.: 1 .. 1 .. 1 .. 1.0 1.7 1 .. 1 .. 1 .. 1 .. 1.2

t. 126 123 120 1.7 I .. I,, l I. 12

uses 20 octal coded digits and requires two consecutive memory locations for
storage and the use of the accumulator and Q register for operations. The most
significant portion of the word (including sign) appears in the accumulator and/ or
the first of the two consecutive memory locations.

2. Decimal Format

Decimal operations may be performed upon data words stored in any six-bit
binary-coded-decimal form, such as Fieldata code. Table 3-5 shows the acceptable
coding of the first four bits for binary-coded-decimal digits. No other characters are
considered valid for decimal operations. Because arithmetic operations are per­
formed directly upon the decimal characters, no programmed coding conversion is
necessary to convert binary-coded-decimal characters to straight binary characters
for arithmetic processing. Ten decimal characters, including sign, may be stored
and operated upon, requiring two consecutive memory locations and/or the
accumulator and Q register placed in combination as shown below.

AQ REGISTER

Zg Cg Za Ca Z7 C7 Zs cs Zs cs

S9 S7 S3 S1 47 4S 41 39 s 33

z4 c4 Z3 c3 Z2 c2 z1 c1 Zo s Co

29 27 23 21 17 1S 11 9 s 4 3

NO. CODE NO. CODE

0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Table 3-5. BiparyaCoded-Declmal Digits

UP-4032

)

°'

0

UP-4032
UNIVAC494
SYSTEM DESCRIPTION 3

SECTION:

The most significant characters (C) and zone bits (Z) are stored in the accumulator
and/or the first of the two consecutive addresses. Bit 04 denotes the sign of the
number- a 1 for positive and 0 for negative. The word is right-justified with zero­
fill for unused portions (both characters and zones). In accordance with standard
Fieldata code, the zone bits are both l's. The zone bits are ignored in all
decimal operations and are the same as the original zone bits in the AQ register.,

3. Floating Point Format

The floating point word format uses 60 bits to express a number as a fixed-point
part (a fraction between .5 and 1) multiplied by a power of two (the exponent part).
Two consecutive memory locations and/or the AQ register store the floating point
number, as shown below.

AQ REGISTER

1.:1.. EXPONENT I., FIXED POINT

~29 FIXED POINT (continued)

The sign, S (which is the sign of the fixed point part), the exponent part and the
most significant part of the fixed point part 'are stored in the accumulator and/or
the first of the two consecutive locations. A 1 bit is always added to the most
significant bit of the exponent part so that the exponent part is always biased by
1024

10
, obviating the need to sign the exponent part (which must lie within the

limits of+ 1024 10). The fixed point part is normalized (left-justified until
a 1 appears as the most significant bit) for processing so that the fixed point
part is a fraction between .5 and l, due to the binary coding used.

4. Arithmetic Processing

Arithmetic operations are performed in the parallel mode with all bits of an operand
transferred to the arithmetic unit simultaneously for highest speed. The arithmetic
required for effective and relative addressing is done in a separate unit so as not
to tie up arithmetic operations. Due to the memory overlap feature, the average
time per operation for a series of basic fixed point arithmetic operations approaches
the cycle time of the main memory (750 nanoseconds).

E. INPUT /OUTPUT SECTION

Input/output channels are field-expandable, in number, from the basic 12 to a maximum
of 24, in modules of four each. The 24 channels are divided into three groups of eight
channels each. Each group may be operated at a 30-bit word transfer rate of 250 kc/s
or 555 kc/s. Operation at the compatible rate ensures compatibility with all standard
peripheral units. Channels are numbered from 00 to 23 (decimal). A unique feature of the
central processor is that input/output loading and unloading operations, once initiated,
do not disturb main program operation.

17

PAGE:

3
SECTION:

UNIVAC494
18 SYSTEM DESCRIPTION

PAGE:

1. Index Modes

All input/output operations use either one of the two following index modes:

• Internally Specified Index (ISi) mode, used with standard peripheral devices.

• Externally Specified Index (ESI) mode, used with communication equipment.

The ISi mode provides a unique buffer for each channel, which is, in turn,
serviced by a standard input/output peripheral subsystem. Since only one input/
output subsystem is assigned to a channel the data to and from the peripheral
will be stored in continuous locations within the buffer, as shown in Figure 3-2.
Buffer control of input/output operations is maintained by the BCW (Buffer Control
Word) loaded into a buffer control location, by .the input/output initializing in­
structions, in the following format:

• Bits 00-17 indicate the address of the current data transfer. As each data
transfer takes place, this address is incremented. Since 18 bit positions are
available, all memory locations are accessible.

• Bits 18-29 indicate the word count. With each data transfer, this count is
decremented. The 12 bits allotted for the count permit a maximum buffer
length of 4096 words. When the count is equal to zero, following a transfer,

10
the buffer is terminated.

FROM STANDARD
1/0 DEVICE

CHANNEL

FROM MODULAR CONTROLLER OF
COMMUNICATION SUBSYSTEM

CHANNEL

-.---
I

CHANNEL
BUFFER l 1 I ~--.....1....---,

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

WORD 6

ISi MODE

NOTE: M =MESSAGE

W =WORD

I
BUFFER 1 BUFFER 2 BUFFER 3 I

I

I I I I I I
r-----, I

Ml-Wl M2-Wl M3-Wl I I I L ____ .J
I
I

I I I I I I
r-----, I

Ml-W2 M2-W2 M3-W2 I I I
L ____ J I

I
~ ------ i.--- - ,, __ ,.J

ESI MODE

Figure 3-2. Input Word Storage, Internally Specified Index (ISi)

Mode vs. Externally Specified Index (ES/) Mode.

UP-4032

UP-4032
SECTION:

3
UNIVAC494
SYSTEM DESCRIPTION

The ESI mode provides different buffer areas for a number of input/output devices
that are oonnected to the channel by a multiplexer. Characters of different messages
are assigned oontinuous memory addresses within the buffer area allotted to each
message. Buffer control is maintained by a BCW similar to the BCW of the ISi mode.
Each data word loaded into the buffer uses bits 00-14 to specify the core memory
address of the BCW and bits 15-29 for the actual data. Each time data output is
unloaded from the buffer, the data is contained within bits 00-29 of the data word
and the memory address of the BCW is sent in on the lower 15 inp.ut channel lines.

2. External Equipment Control

External peripheral equipment control (by the central processor) is attained by
function ("control") words and interrupt words. A function word is sent by the
central processor to initiate a particular operation at a peripheral unit. The
function word is distinguished from a data word by activation of the External
Function control line. The use of function words rather than a set of instructions
makes the central processor independent of the characteristics of the input/output
unit, enabling connection of a variety of peripheral equipment with no modification
to computer logic.

Interrupt words are sent to the central processor by peripheral equipment to inform
the computer program of the status of the peripheral equipment, readiness to
initiate or terminate data transfer, etc. An interrupt is distinguished from a data
word by activation of the External Interrupt line. Activation of an External Interrupt
line initiates an unconditional jump to a main memory address where, at the pro­
grammer's discretion, the program may begin a subroutine to analyze the interrupt
word and take appropriate action.

3. Input/Output Priority

The priority network of the central processor determines which input/output
requests must be honored immediately and which requests are to be honored when
time is available. Input/output requests are assigned priorities in a two-level
system, by function and by interrupt, as shown in Table 3-6. Transfer of a word,
to or from the central processor, once initiated, is completed before the priority
system is re-examined.

The Real Time Clock is a free-running oscillator which updates address 000017
of memory once every millisecond, and decrements the Interval Timer as well.
The Real Time Clock may be used for a variety of program-timing purposes as
logging of periodic messages, preparation of statistical data dealing with the
frequency of certain transactions, etc. When the count in the Interval Timer is
zero (a maximum of approximately 4.1 seconds) the Interval Timer Interrupt is
generated. The time for the Interval Timer to interrupt can be controlled by the
insertion of a word into bits 18-29 of address 000017.

An External Interrupt is a program-interrupt originating in the peripheral device
and is usually accompanied by a status code which defines the reason for the
interrupt.

A Monitor Interrupt is caused when an active buffer has the word count portion
of its BCW set to zero, routing the program to the routine specified at the
appropriate fixed memory location.

19
PAGE:

3
SECTION: PAGE:

20

1/0 FUNCTION PRIORITY

Output Transfer Channel 15

Input Transfer Channe I 15

Output Transfer Channels 14-08

Input Transfer Channe Is 14-08

Output Transfer Channels 23-16

Input Transfer Channe Is 23-16

Output Transfer Channe Is 7-0

Input Transfer Channels 7-0

Real-Time Clock Update

UNIVAC494
SYSTEM DESCRIPTION

;

INTERRUPT PRIORITY

Buffer Control Word Parity Error

1/0 Data Parity Error

Power Loss

External Interrupt (ESI)

Input Monitor (ESI)

Output Monitor (ESI)

External Interrupt (ISi)

Input Monitor (ISi)

Output Monitor (ISi)

Day Clock

lnterva I Timer Interrupt

Externa I Sync. #1

Externa I Sync. 1t2

Table 3-6. I nput!Output Priority

The External Synchronizer interrupts are used when two or more central processors
are used in parallel within a system. These interrupts synchronize the timing
signals of the units.

F. OPERATOR'S CONSOLE

The Operator's Console contains indicators and switches, a keyboard, and a
printer furnishing hard copy. The indicators and switches are associated with the
day clock fault, abnormal temperature, stop, run, fault, automatic recovery, keyboard
status, and various program jumps and stops. The keyboard is a standard four-bank
keyboard. Also present on the operator's console is a group of indicators that informs
the operator of the status of the program in progress and a group of switches permitting
various manual operations to be performed. Keyboard, day clock, and printer share
channel 00.

G. MAINTENANCE PANEL

The maintenance panel contains a series of indicators showing the status of
various registers within the central processor and a series of switches that control
the program-step execution time, disconnect the Real Time Clock, and furnish other
aids in localization of a malfunction.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

3
SECTION:

H. UNIVAC 490 PROGRAM OPERATION

Most UNIVAC 490 programs will operate with but few changes. The UNIVAC 494 Real­
Time System provides increased capacity, higher speeds, and additional features. A
new executive routine will be written for the UNIVAC 494 Real-Time System. The
UNIV AC 490/ 494 Mode switch has been included on the maintenance panel to insure
that the UNIV AC 494 Real-Time System reacts as closely as possible for programs
originally written for the UNIV AC 490 Real-Time System. The following changes
must be made to UNIV AC 490 programs in order to run them on the UNIV AC 494
Real-Time System.

1. Day Clock

The day clock interrupt occurs every six secpnds to a fixed address (000015).
The time is not stored by the program during; interrupt subroutine but is automatically
stored every 600 milliseconds at address 0000016. The format of the time has been
changed to the following:

HOURS MINUTES HUNDREDTHS

TEN UNIT TEN UNIT TEN UNIT 0 0 0 0 0 0 0 0

29 27 23 19 15 11 7 5 0

2. Initial Load

The initial load is prewired so that it is not a customer option. A bootstrap
function is sent to a peripheral device on a channel selected by switches on the
maintenance panel. A 200 word block of data is then read into the computer under
hardware control.

3. Buffer Control Words

The Buffer Control Word of the UNIVAC 490 Real-Time System consisted of 15 bits for
for a current address and 15 bits for a terminating address. The Buffer Control Word
in the UNIVAC 494 consists of a 12 bit word count and an 18 bit current address. A
common subroutine in the Input/Output handler of the UNIVAC 494 can easily convert
UNIVAC 490 Buffer Control Words in the new format.

4. Real Time Clock

The lower half of address 0000017 remains unchanged, but the interval timer is
changed from a 15-bit incrementing count to a 12-bit decrementing count.

21

PAGE:

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

4

SECTION: PAGE:

4. OPERATING SYSTEM

The UNIV AC 494 Operating System is a canprehensive library of integrated programs
featuring powerful programming languages and a flexible control language for directing
basic computer operations. The system achieves maximum utilization of the computer
and peripheral devices, automatically executes programs, and organizes system tasks by
combining or utilizing elements from various sources.

The elements of the system are designed to permit each user to create a version of the
basic system that will be consistent with the needs of the individual installation. System
input is in the form of a control stream containing primary input, which defines and
initiates a job, and secondary input, which provides parameters and supplementary data
relevant to the execution of a job and its tasks.

An example of a job is the collection, loading, and execution of the programming units
(tasks) required to process a FORTRAN source program, execute the object program
that is produced in a test environment, and then include the program in a library. Tasks
will be reduced to smaller elements to take advantage of the multi-processing capabilities
of the system.

Figure 4-1 shows the relationship of some of the major elements in the system.

A. OMEGA

That set of routines which provide the basic control and fundamental mechanisms of
the operating system will be called Omega. As the heart of the operating system,
Omega is the vehicle for the implementation of the co.ncepts of the operating system.
The elements of Omega may be classified into external and internal control sections.

1. External Control

This set of executive elements is concerned with job-to-job transition, entry of
tasks into the system, and control and utilization of other elements of the operat­
ing system. External control is based upon a scheduling function which provides
for effeotive allocation of the facility configuration and minimizes turn-around time,
time between submission and completion, of batch programs operating as background
to high priority real-time processing.

External control accepts control language input streams from multiple devices.
Input/Output cooperatives are the system elements which effect the buffering of
system input and system output (primary and secondary) between the low speed
external devices and the system. Random access storage is used as the buffering
medium. Input/Output cooperatives include modular routines to interface directly
with the particular external devices in use. These routines buffer and format data
from the particular device and pass resultant images to a common control routine
which enters each job entity onto a job queue.

1

SECTION: 4 PAGE: 2

.------------;
/SECONDARY INPUTI
I AND PARAMETERS I

L PRIMARY
INPUT

STREAM

UNIVAC494
SYSTEM DESCRIPTION

LOADER

,-------------,-, -1----------...1.----------....... -,1----------------
: NETWORK SIMULATOR: : SPURT II

I LINEAR PROGRAMMING l : FORTRAN IV

: PERT/COST : I COBOL

I I I ASSEMBLY 1--------------1 I
I I OMEGA I
I I I

IFILE CONTROL PROCESSOR! 1----------------1
I I

I TEST SYSTEM : I ON·LINE MAINTENANCE I
I I I I

1---------------1 1----------------1
I I I I
I UTILITY SYSTEM I I SYSTEM LOG :

'----------·---' ·---------------'

I
I

I

\

JOB

LIBRARY

USER

LIBRARY

SYSTEM

LIBRARY

SYSTEM

BUFFERING

PRIMARY AND
SECONDARY

OUTPUT

PERMANENT\ TRANSIENT

MASTER!FILE
I

DIREC!TORY
I

;

ALLOCATABLE

RANDOM ACCESS

STORAGE

---------- -----------~===--------------------------------------... __ ------------------
JOB LI BRA RY -...... ·---~~~!~~~~A_R! __________ -.:.::.::::=-.~---S,!~_!~~-L~~~!-_RJ.:.:-:::..::.:.:==-··:::.-:-,

', '\. ', '\ '\ '\
DATAFILE

JOB CONTROL
STREAM FILE

SYSTEM DATA

\ ' DATA FILE ' ' ' DATA FILE \
\ \ \ \ \ I

1 \SOURCE LANGUAGE\ ~ \SOURCE LANGUAGE \
I Fl LE 1 I I Fl LE 1

RELATIVE\ ABSOLUTE~ IRELA TIVE IA BSOLUTE\ ~
BINARY ! I JOB CONTROL : BINARY : : JOB CONTROL :

(RB) l PROGRAM l STREAM FILE : (RB) I PROGRAM: STREAM FILE l
CODE ! / f CODE : : f

ELEMENTS' ELEMENTS/ SYSTEM DATA /ELEMENTS' ELEMENTS/ SYSTEM DATA '
1 I I I I !
I I I I I I

ECONDARY CONTRO / /SECONDARY CONTROL/ / /SECONDARY CONTROL/

'-~----'-----;..._-L_A_N_GU_A_G_E __ Fl_L_E_, ________ _,!_~------"t_:_~N_~~~:.~~-E~~'-------'~~----L--~~~~~~-~~:E_/

Figure 4-1. Ma;or System Elements

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

SECTION:

4

Jobs are queued for selection pending introduction into the multi-program en­
vironment for execution by internal control. Each successive task is introduced to
internal control when its characteristics satisfy the criterion utilized by selection.
Activated jobs are sequenced as described by the job description by integrating and
utilizing other elements of the operating system to perform functions required for
the next specific task. The system elements employed in execution of the job are
involved with compiling and constructing the task to be executed, satisfying
facility requirements, entering library elements to be referenced by the task and

initiating auxiliary system processors.

As each task completes its processing, the job is requeued with selection for
return submission of the next task cycle. When all tasks of a job are complete,
post-job processes are initiated including accounting output, facility deallocation,
operator communication, compacting of core dr random access memory as appropriate.
Primary and/or secondary system output generated during operation of the job are
initiated when there exist sufficient and complete task files and the output device
is available. Input/Output cooperatives control the retrieval of output from drum
and submission to and interface with the particular output devices.

2. Internal Control

This set of executive elements is concerned with control of the actual execution
of user or system tasks, cognizance and supervision of equipment status, and
schedule communications with operating personnel. Internal control is based upon
a queuing function which provides for time-sharing of available facilities for effective
machine utilization and through-put optimization for batch and real time programs
in a multi-program environment. Internal control routines are characterized by the
direct control of the computer. In general, they will execute privileged instructions,
such as input/output, operate without memory lockout, and access and directly
manipulate the entire storage. These routines are responsible for the integrity of
the system and for preventing inter-program destruction or conflicts.

Internal control accepts service requests during execution of a task defining the
function to be performed by Omega. A "service request" is an entry to the
executive conveying parameters to describe the requested function. The request
is either satisfied immediately and control returned to the requestor or queued for
later service and subsequent reactivation of the requestor. An active task is either
in control of the central processor, subject to interruption by internal control, or
queued at some service point. Queues are processed in a manner responsive to
both program priorities and procedures optimizing machine utilization. Maximum
parallel use of facilities is dependent on queues to maintain a work backlog for
key facilities. Queues are maintained for central processor control, peripheral and
core assignments, time intervals, shared programs, and other functions.

Interrupt response and contingencies are handled by internal control without
mandatory user participation. Standard fault procedures or a user specified alternate
will be employed by the system. Interrupts are processed as they occur and
generally result in the queuing with central processor control of an independent
activity which will analyze the interrupt. This immediate response achieves a
smoothing such that interrupts will actually be processed at different priority levels
and no interrupt will preclude registration of another. Since Omega in general is a
permanent task composed of independent activities, it may generally be "switched"
to a high-priority task subsequent to an interrupt occurrence.

3
... AGE:

4
SECTION: PAGE:

UNIVAC494
4 SYSTEM DESCRIPTION

Schedule communications allow the operator to alter internal functions, relay
messages, accept unsolicited operator requests, such as equipment status inquiry
or declaration, and task termination, suspension, or abortion. Logging of peripheral
usage and operational errors encountered is performed cumulatively for tasks of a
job as input to the accounting procedure.

B. CONTROL LANGUAGE

The construction and execution of a job is described by a series of control statements
prepared by the user. Control statements with supplementary cards representing data,
parameters, source code or object code, constitute the control stream. The control
stream is interpreted by Omega to schedule, sequence and operate the necessary
elements of the system. Control language statements can be divided into two categories.
Category one describes job organization and exe.cution. Category two describes control
of system processors such as the File Control ~rocessor or Test System.

1. Operational Control

These statements suffice to describe and activate a job which exists in the system
library. Control statements are interpreted and executed as a basic executive
function. Each statement is complete and is processed independently of other
control statements. Examples of category one statements are listed below.

JOB

CALL

LOAD

GO

ASSIGN

RELEASE

SOURCE

MSG

2. System Control

Identifies start of job description.

Names a job stream to be executed.

Directs construction of a program.

Initiates execution of existing program.

Associates internal input/output reference with physical unit.

Release input/output from job duration assignment.

Identifies source of supplementary control statements.

Controls operator direction and system logging.

System control statements must be employed in conjunction with category one
statements when a job must be constructed prior to execution, or established in a
user or job library, or when particular system procedures must be defined. The format
and content of a secondary control language is defined by the processor. A representa­
tive job sequence containing various statements is shown in Figure 4-2.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION

STATEMENT

JOB

ASSIGN

IN

SPURT

SOURCE

(DATA
CONTAINING
SOURCE
CORRECTrONS)

TEST

(SECONDARY
LANGUAGE
STATEMENTS)

LOAD

ASSIGN

ASSIGN

UTL

(SECONDARY
LANGUAGE
STATEMENTS)

GO

ASSIGN

OUT

COMMENTS

Identifies start of job description.

Associates logical unit A with tape containing

current versions of RB e le men ts required by

program in test.

Requests input of RB elements from logical unit

A into JOB library.

Requests Assembly of source code for program

in development.

Identifies source code to be used from an

external medium if other than primary input

stream.

Requests processing of secondary language

describing test strategy.

Constructs absolute program by combining RB

element just assembled with RB elements in

JOB, USER or SYSTEM library as required.

Associates logical unit with tape containing

test data.

Associates logical unit with random access

storage to be initialized with test data.

Requests processing of secondary language

describing distribution of test data.

Requests execution of existing absolute

program.

Associates logical unit A with tape to receive

the RB element for development program.

Requests output of RB element from JOB library.

..._ -- -1--- -- ---- ---- -

JOB Identifies start of next job description.

TASK
NO.

2

3

4

5

6

4
SECTION:

NOTES

Tasks #3 thru #7 may be bypassed if

error in assembly with option to abort

job specified.

Tasks #5 thru #7 may be bypassed if

construction encounters error flagged

elements and option to abort job is

specified.

Task #7 may be bypassed by operation

of interpretive supervisor (test system)

declaring an ABORT condition.

--

~----..-.~----------....... _________ ________________ -....___ J.....-..., _____ ...i.. ___ ...,,,,.~~---~--., -- --
Figure 4-2. Representative Job Deck Sequence

5
PAGE:

4
SECTION:

UNIVAC494
6 SYSTEM DESCRIPTION

PAGE:

C. SYSTEM LIBRARIES

The availability of random access storage in the system is exploited by a hierarchy of
libraries. These libraries allow run-time construction and structure of object programs
while avoiding the inefficiencies of set-up, searches, and implied order associated with
such external files as magnetic tapes and cards. These manipulative techniques are
also extended to data files which include internally registered job streams, secondary
language elements, and source programs. The operating system is therefore oriented
toward exclusive processing of random access storage files which are established by
control language direction from external media, primarily magnetic tape and cards.

The smallest logical unit of information that may be entered into the system is an
element and the collection of elements available to the user is called the element
library. The element library is divided into three fogical levels, the Job Library,
the User Library and the System Library. These libraries are searched in the stated
order whenever an element is referenced in execution of a job so that override may be
controlled and predicted.

The User and Job Libraries are established from external peripheral files. Statements
in the Library Maintenance Language provide for the entry of elements in the library
and recording of new library elements on external storage so that they will be present
at the next establishment of the library. The Systems Library may not be manipulated
by Library Maintenance Control statements.

1. Library Elements

Elements within a library are identified by their name, version and type. The name
is a symbolic name associated with the element at time of creation. A version may
be associated with each locatable element to differentiate versions of an element
when checking out large programs. A library may contain alternate versions of the

same program, one outdated but workable, the other in a test stage.

The basic types of elements composing an element library are:

a. Relative Binary (RB) Element

These elements are produced by the system compilers (SPURT, COBOL,
FORTRAN), and represent a processed source language program which may be
an entity or dependent on collection with other RB elements to become an
operable program.

b. Absolute Element

These elements result from the collection and loading process performed by the
Loader. An absolute program is an entity with all external references collected
and interconnected, cross references resolved, and relative locations assigned.
It can be entered into any contiguous core area without scanning the text.

c. Data Files

These elements conform to a standard data file format and include source
language (referenced by any compiler), job control streams (may be activated
externally or internally), secondary language elements (referenced by appro­
priate system processor), installation data files (manipulated by a task or file
control) and miscellaneous data files (retrieved at program execution time).

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION 4

SECTION:

2. System Library

The System library is an inherent part of the operating system which is resident on
random access storage at all times. The system library includes standard RB
elements (mathematical, utility, input/output, editing,) which may contribute to
construction of a program, standard absolute programs (including system processors,
transient elements of Omega, internally registered job streams and standard pro­
duction job description, and miscellaneous data file elements including a master
file directory and files. Only the system may modify this library.

3. Job Library

The Job library is a collection of elements created for each job. It is built as the
job is executed and is interrogated only. to satisfy requests associated with the
job. The Job Librai:y is established by a library maintenance function (IN) or by
elements generated or referenced during execution of the job. Control stream
directives, therefore, explicitly or implicitly contribute to this library.
The Job Library is transient and remains only as long as the job is active.
Elements to be preserved may be output by a library maintenance function (OUT).

4. User Library

A User library may be established by the installation or by a particular programming
or applications group within the installation. The User Library for each group has
a separate identity. A User Library may be used as a repository of programs or
data files developed by the programming group which have utility for the members
of the group. A Job Library may be linked to the User Library so that elements
from the User Library can be collected at load time or referenced during execution.
In effect the User Library is an extension of the Job Library which is shared by
simultaneous users.

A User Library is established in the storage by a library maintenance statement
(IN) contained in the job control stream. All of the jobs associated with the
programming group can reference one User Library through use of a control
statement (LINK). If the library is already resident, the call is considered
already fulfilled. A statement linking a Job Library and an existing User
Library sanctions references to the User Library and provides the mechanism for
maintaining the User Library in storage. Once established, the library remains
resident until there are no links to it; at that time it becomes non-permanent and
may be deleted. Deletion is not forced until a requirement exists for the storage.

S. Library Structure

Each library contained in the system is described by a table of contents. The
table of contents resides on random storage, and is a composite of tables which
serve various purposes in the manipulation of the library.

An element table contains one item for each element in the particular library.
It contains the name, version, type (relocatable, absolute, or data file) and link
to its text for each element. The linked text to an element may be broken into
several distinct pieces, each of which occupies a distinct but contiguous area
of drum. For example, an RB element consists of a preamble table, a text file
and a symbol table. For each distinct list, the element table contains an increment
to the list on drum.

7
PAGE:

4
SECTION: PAGE:

UNIVAC494
8 SYSTEM DESCRIPTION

An entry point table contains all externally defined symbols in all elements
contained in a library. The entry point table is used by the collector to simplify
the collection process.

6. The Library Editor

The Library Editor is a systems element with the ability to read, write, list
and otherwise manipulate the Job or User Library and their associated table of
contents. Library maintenance represents the mechanism for recording on external
devices processed elements from the Job or User Library.

Library maintenance functions are initiated through the control stream (IN, OUT,
LINK, PRINT). All control statements along with any diagnostic messages are
submitted to the primary output stream for subsequent printing. The library
maintenance function operates as a task of the job and references external
devices, through logical units previously defined by ASSIGN or HOLD statements.

D. LOADER

The Loader is a system processor which provides a flexible and efficient means of
collecting independent relocatable elements to produce an absolute object program for
execution as a task under control of Omega.

The Loader is scheduled and activated in response to a LOAD control statement in a
job input stream. Information on the LOAD card is comprehensive enough to direct the
collection and loading of most programs.

Construction of segmented programs or particular collections are described by a
secondary control language which normally follows the LOAD statement. The loader
or utility package can be directed, however, to place a set of statements into a job
library as an element. Subsequent execution of the Loader may utilize this element as
directed by the LOAD control statement.

Relocatable elements existing in the Job, User, or System Libraries are collected in
constructing an object program. Elements are collected on the basis of an external
reference in one element which can be satisfied by an external definition within a
second element. The Loader may be directed to include or exclude specific elements by
secondary control statements. Since all system compilers generate the relative binary
(RB) code, the Loader serves as a common focus which enables combination of coding
expressed in various program languages.

The basic output of the Loader is an absolute object program. The program is entered
into the Job Library by the name specified by the user. Optional output includes a list
of labels and tags contained in the program for utilization in testing procedures. Error
messages and/or a storage layout listing may be obtained as a printed record of the
collection process. The Loader can also transfer the secondary control language as a
Job Library element for subsequent reference.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPT·IDN 4

SECTION: PAGE:

E. FILE CONTROL

The control stream may include a secondary control language which defines to the File
Control Processor the nature of the file to be processed. File description is a task
level activity; the description is available to all activities of the task. A file used by
more than one task in a job sequence need be described only once, at the point of first
use.

Data files are constructed in a great variety of formats due to the inherent differences
in problems, the conflicting interests of space saving versus time saving, and the
urgency of ready access for real time applications. It is not the intent of file control
to limit services to files constructed to a single convention, but rather to provide
conventions by which a variety of files may be described and handled. These con­
ventions must be selected for describing b.oth blocks of data and items of data.

1. Tape Files

Tape files may have fixed item sizes and fixed blocks, fixed item sizes and
variable blocks, variable item sizes within fixed blocks, or variable item and
variable block sizes. The description of the file will designate the file organization.

The item and block services provided are intended to cover a variety of situations.
However, it is probable that a particular data processing center will wish to
standardize on certain conventions and avoid needless complications.

2. Random Files

There are a number of cross classifications for files which are maintained on random
access storage. These files may be sequential or random, semi-permanent or
transient. Semi-permanent files are considered to be resident in storage beyond the
activity range of any task or activity which refers to them. Transient files are files
established by the control stream of a particular job and exist only for the
duration of the job. Such transient local files are available only to tasks associated
with the job control stream. Permanent files are listed in a master file directory and
may be accessed by programs in independent job stream. Provision is also made for
the allocation of "scratch" drum area. File control tables for permanent files are
maintained in residence with the files.

A random file may be addressed by item key or by relative item address. Reference
by use of a key implies an index block associated with the file which relates the
key to a specific address or address range. Relative addressing implies a user
provided routine which transforms keys into relative file addresses, either by
formula manipulation or by privately maintained indices.

F. INPUT /OUTPUT COOPERATIVES

Input/Output cooperatives are a collection of routines which control multiple system
peripheral devices. Their primary function is to utilize intermediate random access
storage buffers to balance the intermittent data requirements of the system with the
slow but continuous transfer rate of the peripheral device. The cooperatives also
enable tasks which have apparently conflicting need for a peripheral device to operate
concurrently. This is accomplished by the intermediate buffering which functionally

9

SECTION: 4

UNIVAC494

PAGE: 10 SYSTEM DESCRIPTION

makes the device simultaneously addressable. Each cooperative maintains its own
control for buffering on random access storage. A common storage pool is used by all
cooperatives which dynamically extends or contracts depending on the demands of the
environment. Counts of drum modules used by a cooperative are kept for job accounting.

The input cooperatatives supply multiple streams of primary input to the system.
Primary input is used for control information and to provide limited quantities of data.
References to data within the input stream are made by a service request entry sub­
mitted for system or user programs. Provision is made to merge supplementary data into
a primary input stream from an auxiliary source. This feature is normally used to merge
and correct source code submitted to the system processors. The function may be
extended by an installation to serve the need of user programs and may also be used to
enter supplementary control statements for jo~ description.

The primary output cooperatives accept print images from operating system or user tasks
and buffer these to random access storage. Each job has a unique output stream of
chained random storage modules containing a fixed num her of print images. The modules
are retrieved by the appropriate unit output routine and either printed, transmitted to a
remote station, or recorded on magnetic tape.

The secondary output cooperative functions in a similar manner except that card images
are accepted from operating tasks and ultimately processed by a card punch output
routine, or recorded on magnetic tape.

G. COMPILERS AND ASSEMBLERS

These are the major system components which translate the programming languages
accepted by the system into a machine amenable form. A primary output of compilers
and assemblers will be relative binary (RB) elements acceptable as input to the Loader.
These routines exist in the system library in absolute form.

The source language input and object code output by the compilers and assemblers are
handled through the program storage and retrieval functions of the system. These
elements may be retrieved or manipulated by library maintenance. The cooperative
action of the compilers and assemblers and the system allow the updating and storage
of source language and object code within the system storage area.

H. TEST SYSTEM

The test system is a processor which provides a set of basic functions designed to aid
the programmer during program development and test.

The package interpretively executes programs in test to provide a flexible means of
obtaining dynamic control of test procedures. Symbol tables generated by compilers
are accepted to provide symbolic reference of test points and data areas. Relative
reference is also provided for testing absolute programs. Either means of reference
allows definition of test procedures external to the program to be tested. Test strategy
can therefore be employed at object time in contrast to source level. Test procedures
include snapshot dumps controlled by conditional procedures, a set value procedure
for either patches or setting test condition values, and postmortem dumps of core or
specific logical units. Each of the functions is activated and described by secondary
control statements contained in the input stream and/or symbol tables generated by
system processors.

UP-4032

UP-4032
UNIVAC494
SYSTEM DESCRIPTION 4

SECTION:

I. ON-LINE MAINTENANCE

The operating system includes a set of integrated maintenance tests intended for
automatic, and operator selected, execution to serve as an effective tool for the
discovery and reporting of malfunctions. These tests provide the following significant
advantages:

• on-line execution of maintenance tests with consequent reduction of fixed scheduied
maintenance periods and down time from application or production

• automatic confidence checks as permanent background activity when customer or
system is temporarily idle

• semi-permanent cumulative record of abnormal conditions for historical, statistical,
and machine diagnosis

• single set of maintenance tests operated independently, in a controlled maintenance
environment, or in the multi-program environment.

J. SYSTEM LOG

The System automatically maintains a log of accounting information and data acquired
for use in preventive maintenance. Error information is submitted by the integrated
maintenance routine or input/output handlers through the normal pressure of handling
input/ output requests. Accounting information is collected for each job as it progresses
through the system. At job termination time, a facility usage statement is submitted to
the primary output stream of the job and is entered into the log table.

K. UTILITY SYSTEM

This system processor provides a basic set of utility functions to facilitate the transfer
of data from one peripheral medium to another. Options are provided to establish the
transferred data with the system as a data file for access by file control.

Specifications for operation are given by a secondary control language. The control
language and any diagnostic messages incurred during processing are recorded in the
primary output stream for each job.

11
PAGE:

UP-4032
SECTION:

UNIVAC494
SYSTEM DESCRIPTION 5

5. PERIPHERAL SUBSYSTEMS

A large variety of standard peripheral subsystems Qtay be utilized to accomplish the
transfer of data to or from the central processor. ~hese subsystems may be grouped as
follows:

• RANDOM ACCESS STORAGE

- FH-880 Magnetic Drum

- FH-432 Magnetic Drum

- F ASTRAND IA Mass Storage

- F ASTRAND II Mass Storage

- F ASTRAND Modular Mass Storage

• MAGNETIC TAPE SUBSYSTEMS

- UNISERVO VIC

- UNISERVO VIIIC

• CARD SUBSYSTEM

- Card Reader

- Card Punch

• PRINTER SUBSYSTEM

- High Speed Printer

• PAPER TAPE SUBSYSTEM

- Paper Tape Reader

- Paper Tape Punch

• UNIVAC 1004 SUBSYSTEM

- With appropriate channel adapter

• COMMUNICATIONS SUBSYSTEM

- A large variety of communications equipment may be connected to the
central processor. Input/Output from many units may be interleaved by the
use of a channel multiplexer.

1
PAGE:

UP-4032
UNIVAC494
SYSTEM DESCRIPTION 5

SECTION:

G. UNIVAC 494 COMMUNICATIONS SUBSYSTEM

The UNIVAC 494 Communication Subsystem enables the UNIVAC 494 Real-Time
System to receive and transmit data via any common carrier in any of the standard
codes and at any of the standard rates of transmission up to 4800 bits per second. It
is the only communication system which can receive data from or transmit data to low
speed, medium speed, or high speed lines in any combination.

The subsystem consists of two principal elements, the Communication Terminal Modules
(CTM's),which make direct connection with the communication facilities, and the
Communication Modular Controller through which the CTM's deliver data to and receive
data from the Central Processor. A Modular Controller may be connected to any general
purpose computer channel or two or more controllers may be connected to two or more
channels. If required, a num her of controllers may be connected through a Scanner
Selector to the same general purpose channel. The total number of controllers which
can be connected to a general purpose channel is dependent on the number and speed
of the communication systems linked to the controller by their CTM's.

1. Communication Terminal Modules (CTM's)

There are three basic kinds of input and output CTM's: low speed (up to 300 bps*),
medium speed (up to 1600 bps) and high speed (200 - 4800 bps). Each is easily
adjusted to the speed and other characteristics of the type of line with which it is
to operate. Each CTM accomodates two full duplex communication lines or two
input and two output simplex communication lines. A CTM requires one position of
the Communication Modular Controller.

2. Communication Line Terminals (CL T's)

The CL T - Dialing is an output CLT which is employed to enable the Central
Processor automatically to establish communications with remote points via the
common carrier's switching network. In addition, a special parallel input and
output CL T is provided for transmission of bit parallel data up to 75 cps.

3. Communication Modular Controller

The Communication Modular Controller functions as the link between the processor
and the CTM's. In each of the CTM modules, two input and output positions are
provided. A Communication Multiplexer can accommodate up to 16 CTM's.

The CTM's may request access to the Central Processor via the Controller in
random sequence, or several, or conceivably, all CTM's might request access
simultaneously. The Communication Controller automatically assigns priorities
among CTM's requesting access and identifies to the Central Processor the
particular CTM granted access.

*bits per second

15
PAGE:

5 16

SECTION: PAGE:

COMMUNICATION
CONTROLLER

COMMUNICATION

CONTROLLER

UNIVAC494
SYSTEM DESCRIPTION

UNIVAC 494

SCANNER SELECTOR

COMMUNICATION
CONTROLLER

COMMUNICATION
CONTROLLER

CTM CTM

UP TO 16 CTM'S UP TO 16 CTM'S

One Communication Controller

per General Purpose Channel

CTM ------ CTM CTM ------ CTM

UP TO 16 CTM'S UP TO 16 CTM'S

Multiple Communication Controllers per General

Purpose Channel using Scanner Selector

CHARACTERISTICS

COMMUNICATIONS
COMMUNICATIONS TERMINAL MODULES (CTM'S) LINE TERMINALS (CL T'S)

NAME LOW SPEED MEDIUM SPEED HIGH-SPEED tCL T DIALING CL T PARALLEL

CODE 5, 6,7, or 8 LEVEL 5,6,7,or8 LEVEL 5,6, 7,or 8 LEVEL 4 LEVEL 8 LEVEL

*ASYNCHRONOUS ASYNCHRONOUS **SYN CH RONOUS ***TIMING SIGNAL TIMING SIGNALS
MODE

BIT SERIAL BIT SERIAL BIT SERIAL BIT PARALLEL BIT PARALLEL

SPEED UP TO 300 bps UP TO 1600 bps 2000-4800 bps VARIABLE UP TO 75 cps

Types of Communication Service proviclecl:

PRIVATE LINE TELETYPEWRITER
TELEX

WIDE AREA TELEPHONE SERVICE (WATS)
PRIVATE LINE TELEPHONE

TELETYPEWRITER EXCHANGE SERVICE (TWX) DIRECT DISTANCE DIALING (DDD)

t CLT-Dialing - This is an output CLT employed when the Central Processor is automatically to establish
communications with remote points via the common carrier's switching network.

*ASYNCHRONOUS - Employs start and stop bit with each character to establish timing.

**SYNCHRONOUS - Uses timing characters at pre-determined intervals between data characters.

***TIMING SIGNAL - Indicates the presence of a character at a Data Set.

UP-4032

UNIVAC
DIVISION OF SPERRY RAND CORPORATION

UP-4032

	000
	001
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	xBack

