
UNIVAC

SYSTEM
DESCRIPTION

SY-ST-EM

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIVAC ® Systems developments. The infor­
mation presented herein may not reflect the current status of the programming
effort. For the current status of the programming, contact your local Univac
Representative.

The Univac Division will issue updati~g packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of software changes and refinements. The Univac Division re­
serves the right to make such additions, corrections, and/or deletions as,
in the judgment of the Univac Division, are required by the development of
its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

Other tradem arks of Sperry Rand Corporation appearing in th e text of this
publication are:

© 1969 - SPERRY RAND CORPORATION

UNISERVO
UNISCOPE
FASTRAND
PAGEWRITER

PRINTED IN U.S.A

CONTENTS

1. INTRODUCTION

1.1. UNIVAC 494 Real-Time System

1.2. System Characteri sti cs

2. SYSTEM DESIGN CHARACTERISTICS

2.1. G ENE RA L

2.2. HARDWARE COMPONENTS
2.2.1. Central Processor
2.2.2. Primary Storage
2.2.3. On-site Peripheral Subsystems
2.2.4. Remote Peripheral Subsystems

2,3. SOFTWARE COMPONENTS
2.3.1. Executive Operation
2.3.2. Uti lity Packages
2.3.3. Application Packages
2.3.4. Language Processors

2.4. SYSTEM CONFIGURATIONS

3. SYSTEM HARDWARE COMPONENTS

3.1. GENERAL

3.2. CENTRAL PROCESSOR
3.2.1. Control and A rithmetic Section
3.2.1.1. A rithm etic Operations
3.2.1.2. Arithmetic Processing
3.2.1.3. Tirn ing Clocks
3.2.2. Instruction Words
3.2.2.1. Instruction Word Formats
3.2.2.2. Instruction Repertoire
3.2.3. Interrupts
3.2.3.1. U ncondi tional Interrupts
3.2.3.2. Conditional Interrupts
3.2.4. InpuVOutput Control Section
3.2.4.1. InpuVOutput Regi sters
3.2.4.2. Index Modes
3.2.4.3. External Equipment Control
3.2.4.4. Operator's Console (Alternate)
3.2.4.5. Operator's Display (CRT) Console

CONTENTS

i

2

4

4

5
5
6
6
7

8
9
9
10
10

10

13

13

14
14
16
19
19
20
20
21
23
24
25
26
26
27
29
29
30

i

ii

3.3. PRIMARY STORAGE
3.3.1. Storage Design
3.3.2. Storage Configuration
3.3.3. Storage Modules
3.3.4. Prima ry Sto rage Interface
3.3.4.1. Overlap
3.3.4.2. Interleave
3.3.5. Preassigned Storage Addresses

3.4. TRANSFER SWITCH

3~5. ON-SITE P~RIPHERAL SU BSYSTEMS
3 .. 5.1. Random Access Storage Subsystems
3.5.1.1. FH-432 Magnetic Drum Subsystem
3.5.1.2. FH-432/FH-1782 Magnetic Drum Subsystem
3.5.1.3. FH-880 Magnetic 0 rum Subsystem
3.5.1.4. FASTRAND II Subsystem
3.5.1.5. FASTRAND III Subsystem
3.5.2. Magnetic Tape Subsystems
3.5.2.1. UNISERVO VIII C Magnetic Tape Subsystem
3.5.2.2. UNISERVO VI C Magnetic Tape Subsystem
3 .. 5.3. Unit Record Subsystems
3.5.3.1. High Speed Printer Subsystem
3.5.3.2. Punched Card Subsystem
3 .. 5.3.3. UNIVAC lO04 System
3.5.3.4. UNIVAC 9300 System
3.5.4. Communication Terminal Modular Control Subsyster.l
3~5.4.1. Communi cation Term inal Modu Ie Controller
3.5.4.2. Communication Terminal Module (G.TM)
3 .. 5.4.3. Interface Modules (1M)
3.5.4.4. Communication Subsystem Configuration

3.6. REMOTE PERIPHERAL SU BSYSTEMS
3.6.1. OCT 2000 Data Communication Terminal
3.6.1.1. Contro I Un i t
3.6.1.2. Reader/Punch
3.6.1.3. Printer
3.6.2. UNISCOPE 300 Visual Communication Terminal
3.6.2.1. Basic Concepts
3.6.3. UNIVAC 9200/9300 Systems
3.6.3.1. UNIVAC 9200 System
3.6.3.2. UN IVAC 9300 System
3.6.3.3. Data Communication Subsystem
3.6.4. UNIVAC 1004 System
3.6.4.1. Remote UN IVA C 1004 System

32
32
33
33
35
35
36
36

39

40
40
41
43
47
49
53
56
58
60
62
62
65
68
70
71
72
72
74
74

75
75
76
78
79
80
80
83
84
85
85
87
88

4. OPERATING SYSTEM SOFTWARE

4.1. SOFTWARE DESIGN CONCEPTS AND CAPABILITIES
4.1.1. Software Design Concepts
4.1.2. System Capabilities

4.2. EXECUTIVE SCHEDULING AND CONTROL
4.2.1. Primary Input Stream
4.2.2. Input Cooperative
4.2.3. Job Control
4.2.3.1. Selection Routine
4.2.3.2. Task Execution
4.2.4. Element Li braries
4.2.4.1. Element Types
4.2.4.2. Library Types
4.2.5. Output Cooperatives

4.3. EXECUTIVE SERVICES
4.3.1. Executive Control Language
4.3.1.1. Organizational Control Statements
4.3.1.2. InpuVOutput Control Statements
4.3.1.3. Task Activation Control Statements
4.3.1.4. System Program Call Statements
4.3.2. Servi ce Control
4.3.2.1. Activity Control Service Requests
4.3.2.2. Termination Service Requests
4.3.2.3. Envi ronmental Control Service Requests
4.3.2.4. Date and Time Operations
4.3.2.5. Logical Switches
4.3.2.6. Primary Storage Allocation
4.3.2.7. Task Storage Extensions/Contractions
4.3.3. Console Control

4.4. DATA MANAGEMENT SYSTEM
4.4.1. Data Access Methods
4.4.2. Maintenance Functions
4.4.3. Assignment of InpuVOutput Subsystems
4.4.3.1. Peripheral Code
4.4.3.2. Fi Ie Code
4.4.3.3. Random Access Storage Assignment
4.4.3.4. UNISERVO Tape Assignment
4.4.4. Master File Directory
4.4.5. Devi ce Control
4.4.5.1. Data Format Considerations
4.4.5.2. Device Control Macros
4.4.5.3. Status Codes
4.4.5.4. Random Access Storage Macros
4.4.5.5. Magnetic Tape Macros
4.4.5.6. Unit Record Macros
4.4.6. Cooperative Control
4.4.6.1. Input Unit Record Routine
4.4.6.2. InpuVOutput Cooperative Control
4.4.6.3. Method of Operation

89

89
89
90

92
94
95
96
97
98
99
100
100
101

102
103
103
104
104
105
105
106
109
109
109
110
110
111
111

111
112
113
113
113
114
115
116
117
117
118
118
118
119
119
119
120
121
121
122

iii

iv,

4.5. REMOTE DEVICE CONTROL
4.5.1. Devi ce Control Elements
4.5.1.1. Externally Specified Index (ESI) Channel Control
4.5.1.2. Remote Line Handleis
4.5.1.3. Communications Director
4.5.1.4. Remote Facility Assignment
4.5.2. Levels of Interface
4.5.3. RelJ10te Facility Assignment
4.5.4. Remote Data Access Service Requests

4.6. PROGRAM DEVELOPMENT
4.6.1. Steps in Program Development
4.6.2. Source Routine
4.6.3. Language Processors
4.6.4. Loader
4.6.4.1. LOAD Statement
4.6.4.2. Secondary Control Statements

4.7. LIBRARY MAINTENANCE
4.8. TEST SYSTEM
4.8.1. Test Procedures
4.8.2. Logical Switches (Conditional)
4.8.3. TEST Statement
4.8.4. Secondary Control Language

4.9. UTILITY PACKAGES
4.9.1. File Control
4.9.1.1. Fi Ie 0 rganization
4.9.1.2. File Read
4.9.1.3. File Writing
4.9.2. Report Writer
4.9.2.1. Capabilities
4.9.2.2. REPORT Statement
4.9.2.3. Parameter Statements
4.9.3. Utility Generator
4.9.3.1. UTL Statement
4.9.3.2. Secondary Control Statements
4.9.4. Logging and Accounting
4.9.5. REXecutor
4.9.5.1. Restrictions
4.9.5.2. Control Cards
4.9.6. CONVAID
4.9.7. Random Storage File Handler

123
124
124
124
126
126
126
127
129

130
132
132
133
134
135
135

135
135
135
136
136
136

136
137
137
138
138
138
138
140
140
140
140
141
141
141
142
143
144
145

4.10. APPLICATION PACKAGES
4.10.1. SorVMerge
4.10.1.1. Basic Concepts and Operations
4.10.1.2. Cabab i I ities
4.10.2. Network Simulator
4.10.2.1. Design and Capabilities
4.10.3. Transaction Control System
4.10.3.1. TCS Control
4.10.3.2. Message Processing
4.10.3.3. File P rocessi ng
4.10.3.4. Recovery
4.10.4. Critical Path Method
4.10.5. Linear Programming

4.11. LANGUAGE PROCESSORS
4.11.1. 494 SPURT Assembler
4.11.2. 494 ASM Assembler
4.11.3. FORTRAN IV Compiler
4.11.3.1. Extensions
4.11.3.2. Utilization
4.11.4. COBOL Compiler

APPENDIX A. INSTRUCTION CODES AND i - k DESIGNATORS

FIGURES

1-1. UNIVAC 494 Real-Time System

2-1. System Configuration

3-1. Central Processor Operation, Block Diagram

3-2. Computer Word Formats

3-3. Clock Formats

3-4. Instruction Word Formats

3-5. Input Word Storage, Internally Specified Index (lSI) Mode Versus
Externally Specified Index (ESI) Mode

3-6. Operator's Display (CRT) Console

3-7. Memory Organization

3-8. Transfer Switch Configurations

3-9. FH-432 Magnetic Drum Subsystem

3-10. FH-432/FH-1782 Magneti c Drum Subsystem

3-11. FH-880 Magnetic Drum Subsystem

3-12. Type 6010-00 FASTRAND II Mass Storage Unit

3-13. Standard and Auxiliary Control Units for Simultaneous Operation
Magnetic Tape Subsystem

146
146
146
147
148
148
149
149
t50
151
151
152
153

154
155
155
156
157
158
158

160

12

15

17

19

20

28

30

34

39

41

44
47

50

56

v

3-14. UN ISERVO VIII C Magnetic Tape Unit 58

3-15. UNISERVO VI C Magnetic Tape Units 60

3-16. High Speed Printer 62

3-17. Type 0706 Card Reader 66

3-18. Type 0600 Card Punch 66

3-19. UNIVAC 1004 System 68

3-20. UNIVAC 9300 System 70

3-21. CTMC Communication Subsystem Configuration 74

3-22. OCT 2000 Terminal 75

3-23. UNIVAC 300 Terminal 80

3-24. UNIVAC 9200/9300 Systems 83

3-25. DCS Confi gu rations 86

4-1. Operating System Executive Routine 93

4-2. Job Deck Composition 94

4-3. Input Stream Cooperative Control 95

4-4. Control of Job Stack 96

4-5. Output Stream Cooperative Control 102

4-6. Example of Activity FORK Sequence 108

4-7. Remote Device Control Elements 125

4-8. Di rection of Message Flow 128

TABLES

3-1. Fixed Memory Locations 37

A-I. Instruction Repertoire 161

A-2. Interpretation of j Designator 164

A-3. Interpretation of k Designator 165

vi

1. INTRODUCTION

Figure 1-7. UNIVAC 494 Real- Time System

1.1. UNIVAC 494 REAL-TIME SYSTEM

The UNIVAC 494 Real-Time System is a versatile, high capacity computer system
with outstanding capability in efficient response to the demands of real time processing
for online application programs, while maintaining background activity in accomplishing
multiple batch oriented jobs. The system is based upon the extremely high operating
speed of the UNIVAC 494 computer and its ability to manipulate and communicate large
volumes of data in a multiprogram environment. Information from diverse on-site and
remote operations can be rapidly and effectively accessed and output through a variety
of user options. The system is applicable to scientific, commercial, and communications
oriented information handling operations.

1

2

1.2. SYSTEM CHARACTERISTICS

As the logical successor to the UNIVAC 490/491/492 Real-Time Systems, the UNIVAC
494 System embodies advanced concepts in computer design, system organization, and
programming technology. The UNIVAC 494 computer possesses higher speeds, larger
capacities, increased versatility, and other enhancements, providing greater power and

flexibility in program development and execution. Selective focUSing of system hardware
and software resources to the specific information and data processing needs of the
individual system user is a basic system concept. The modular structure of both hardware
and software provides a precise blend of system components for fulfilling processing
requirements in applications ranging from basic job shop operations to comprehensive,
large scale information systems. Under control of the UNIVAC 494 Operating System,
the system software permits maximum utilization of computer facilities and optimal
specification of information requirements with minimum user effort. Primary and auxiliary
storage, and peripheral subsystems, are designed for fast storage and retrieval of infor­
mation as needed, and are available in configurations which may be expanded from
medium to large scale as required. A variety of programming languages are accommodated
for program development. Information may be input and output through various subsystems
connected directly or indirectly to the computer. These subsystems include mass storage
and unit record devices, communications equipment, and satellite computer systems.
Inherent system compatibility provided in the hardware logic (490 operating mode) and
system software components permit the UNIVAC 494 System to accommodate programs
developed for, or oriented to, the UNIVAC 490/491/492 Systems.

Principal features of the UNIVAC 494 Real-Time System are summarized in the following
list:

• Random access primary storage, consisting of a ferrite core memory, expandable from
65,536 to 131,072 30-bit words with a complete cycle time of 750 nanoseconds. Parity
is maintained for each half-word during data transfers.

• Modular organization of primary storage, permitting memory overlap (the next sequential
instruction is read simultaneously with the last operand cycle of the present instruction).

• Twelve full-word input/output channels, field expandable to 24, in groups of four.

• Buffered input/output, providing capability for program execution to proceed con­
currently with I/O transfers.

• Program protection to prevent reference to primary storage addresses outside of the
defined limits of a worker program.

• Direct arithmetic operations on fixed-point binary single and double precision operands,
fixed-point binary coded decimal (BCD) double precision operands, and floating- point
binary double precision operands.

• A wide variety of peripheral subsystems including random access magnetic drums,
magnetic tape units, unit record devices, communication and display equipment, and
satellite computers.

• A highly efficient and flexible Operating System, including a comprehensive library of
programming languages, utility routines, and application packages.

• Multiprogram and multiactivity capability providing for a mix of real time and batch
oriented programs.

• A comprehensive set of programming languages including two assembler languages, and
FORTRAN IV and COBOL.

• Priority control network within the computer I/O logic which determines the order for
honoring data transfer requests (function priority) on the various I/O channels, and
for responding to system interrupts (interrupt priority), which control system contin­
gencies.

The following information and description will serve as introduction to the UNIVAC
494 Real-Time System design, organization, hardware components, and Operating System.
All software discussed in this document is operational 'rather than proposed.

An extensive library of hardware and programming documentation is published for the
system. As applicable, these publications will be referenced in the text.

3

4

2. SYSTEM DESIGN
CHARACTERISTICS

2.1. GENERAL

The UNIVAC 494 Real-Time System is user-oriented and is modular. The system com­
prises many and varied hardware and software components designed to increase the
system capability and to meet the information processing needs of individual system
users. An overview of the salient features of the system, hardware and software
characteristics, is presented in this section. The hardware is described in greater
detail in Section 3; the software is discussed in Section 4.

The UNIVAC 494 System provides a powerful and flexible information handling facility,
with capabilities extending the full range of computer applications. The system compo­
nents are fully complementary, and are designed for employment in configurations which
will provide optimum utility and efficiency for a particular installation. The components
function under control of the UNIVAC 494 Operating System, which imposes the coordina­
tion necessary for concurrent activities on multiple programs. The system design accom­
modates interchange and build- up of components in related classes or with related
functions so that the system may be operated initially at specified minimum capacity,
and may be expanded and upgraded to maximum capacity in accord with increases in
informational needs of a user.

The planning of a specific UNIVAC 494 System configuration, while viewing the system
itself as an entity, should, at the same time, consider the interrelationships, characteristics,
and controls provided by specific system components in selecting the most practical
installation.

2.2. HARDWARE COMPONENTS

The UNIVAC 494 System hardware provides highly sophisticated components for efficient
execution of a wide latitude of information processing requests through a minimum of
program specifications and operator intervention. The components are designed for full
exploitation by Univac- and user-.developed software, and permits the user to avail him­
self of the capabilities and speed of the main components, while permitting him great
selectivity in choice of other system equipment and functions. In the main components,
the power, speed and manipulative capabilities of the central processor unit (CPU) are
combined with equally fast primary storage facilities, which are easily accessible and
expandable, for efficient handling of both time and volume dependent activities. The
diverse functions of available input/output (I/O) and communication peripheral devices
and subsystems accommodate a variety of user input record formats, and furnish equally
varied output record forms and displays. Random access peripheral storage devices
provide high volume auxiliary storage with fast access times which, in combination with
primary storage, facilitate program and data relocation and movement necessary in a
real time, multiprogram environment. In addition, the random access storage facilities
serve as I/O buffer areas between the main hardware components and the relatively
slower peripheral units, allowing maximum utilization of the inherent speed of the system
in both real time and batch processing.

The major functional divisions of the UNIVAC 494 System hardware are discussed briefly
in this section under the following headings:

2.2.1. Central Processor

Central Processor

Primary Storage

On-site Peripheral Subsystems

Remote Peripheral Subsystems

The central processor (CPU) performs or controls all system activities, and is equipped
with all functions for the execution of instructions, including arithmetic, logical, and
input/ output control. In addition to arithmetic, communication, and indexing registers,
the CPU contains a unique system of program control and modification registers. Also
provided are up to 24 I/O channels, with capabilities for multiplexing and interleaving
of system elements on communication channels; a Day Clock; and a Real Time Clock
for time-orientation of computer activities. The CPU operations and interrupt features,
instruction repertoire, register formats, primary storage interface, and interface with
its control consoles are discussed in Section 3 of this manual, and in UN IV AC 494
Real-Time System Central Processor General Reference Manual, UP-4049 (current
version).

5

6

2.2.2. Primary Storage

Primary storage consists of continuous core memory, randomly addressable in multiple,
single; or partial word reference by the CPU. Primary storage contains instruction code
in the execution process and buffers data transfers to and from input/output devices.
With the exception of locations used in the CPU/primary storage interface, primary
storage is a separate component from the CPU, providing storage capacities of 65,536
or 131,072 30-bit words. Read/restore cycle time is 750 nanoseconds. Detailed features
of primary storage, including basic storage configurations and storage modules, are
discussed in Section 3 of this manual.

2.2.3. On-site Peripheral Subsystems

On-site peripheral subsystems are connected directly to an input/output channel of
the CPU. The peripheral subsystems perform various complementary functions in the
system including input/output, auxiliary storage, and data preparation and communi­
cation. The following types of on-site peripheral subsystems are available for use
with the UNIVAC 494 Real-Time System:

• MAGNETIC DRUM SUBSYSTEMS

The FH-432, FH-432/FH-1782, and FH-880 Magnetic Drum Subsystems comprise
random access, auxiliary storage units with average access times ranging from
4.33 to 17 milliseconds, and transfer rates of 60,000 to 240,000 words per second,
which are expandable from one to eight units (three to nine for the FH-432 Drum
Unit) per I/O channel, providing storage capacity of 786,432 to 16,777,216 30-bit
words, dependent upon the unit configuration.

• MASS STORAGE SUBSYSTEMS

The FASTRAND II and FASTRAND III Mass Storage Subsystems comprise random
access, auxiliary storage magnetic drum units with average access times ranging
from 35 to 92 milliseconds and with transfer rates of 50,688 to 76,032 words per
second, which are expandable from one to eight units per I/O channel, providing
storage capacity of 25,952,256 to 311,427,072 30-bit words.

• MAGNETIC TAPE SUBSYSTEMS

The UNISERVO VIII C and UNISERVO VI C Magnetic Tape subsystems provide
recording densities of 200-800 frames per inch, with transfer rates of 8,500 to
96,000 frames per second, dependent upon the unit and thereco-rding densily.
Fea tures include indus try-wide compa tibility, optional 9- or 7 -track formats·,
forward/backward read, and simultaneous and nonsimultaneous operation capa­
bilities. A maximum of 16 magnetic tape units per I/O channel is permitted.

• HIGH SPEED PRINTER SUBSYSTEMS

The High Speed Printer Subsystems, Type 0755 and Type 0758, are capable of
printing 700-1600 132-character lines per minute.

• PUNCHED CARD SUBSYSTEM

The Punched Card Subsystem, comprises the Type 0706 Card Reader which senses
80-column data at the rate of 900 cards per minute, and the Type 0600 Card Punch
which punches and stacks cards at the rate of 300 cards per minute.

• UNIVAC 1004 SYSTEM

The UNIVAC 1004 System is a self-contained computer system, having a CPU and
input/ output peripheral units, which may serve as an online or remote unit record
peripheral subsystem to the UNIVAC 494 System, and which may function as an
independent computer when not serving as part of the UNIVAC 494 System. The
UNIVAC 1004 System operates with plugboard programs, and can transfer and
receive data at high speeds. The UNIVAC 1004 System may also perform some
editing and manipulation operations on the data.

• UNIVAC 9300 SYSTEM

The UNIVAC 9300 System is a self-contained computer system, having a CPU
and input/output peripheral subsystems, which may serve as an online or remote
unit record peripheral subsystem to the UNIVAC 494 System, and which may"
function as an independent computer when not serving as part of the UNIVAC
494 System. The UNIVAC 9300 System is an internally programmed system which
transmits, processes, and receives data at higher speeds than the UNIVAC 1004
System. Greater storage capacities, processing capabilities, and peripheral
facilities also are provided.

• COMMUNICATION SUBSYSTEM

The Communication Terminal Modular Control (CTMC) Subsystem furnishes com­
munication capability to the UNIVAC 494 Real-Time System, and permits time­

shared data transfers between the UNIVAC 494 CPU and up to 64 diverse remote
terminals. The CTMC Subsystem serves as the interface between the central
processor and any device meeting the accepted Electronic Industries Association
(EIA) standards for serial data transmission.

• TRANSFER SWITCH

The transfer switch provides a means for switching peripheral units between 494
CPU's. The switch unit may be used to switch entire units to offline condition
for maintenance and to bring replacement units online to the system.

2.2.4. Remote Peripheral Subsystems

Remote peripheral subsystems perform complementary functions similar to the on-site
subsystems, and are connected to the UNIVAC 494 System through the Communication
Terminal Modular Control (CTMC) Subsystem. The remote peripheral units include the
following data exchange and display devices, and satellite computer systems:

• DATA COMMUNICATION TERMINAL (DCT) 2000

The Data Communication Terminal (DCT) 2000 is an input/output subsystem that
furnishes capability for sending and receiving large quantities of data in conjunction
with other subsystems or computers over common-carrier land lines in remote-site
operations. The DCT 2000 consists basically of a sending and receiving control
unit with facilities for printing, card reading, and punching.

7

8

• UNISCOPE 300 VISUAL COMMUNICATION TERMINAL

The UNISCOPE 300 Visual Communication Terminal transmits, receives, and
displays information for applications requiring direct interaction between the
operator and the central computer. The UNISCOPE 300 comprises a cathode-ray
tube (CRT) display, keyboard, and memory, and is available in single station and
multistation arrays of up to 48 units.

• UNIVAC 9200/9300 SYSTEMS

The UNIVAC 9200 System, and the UNIVAC 9300 System as mentioned for online
operation, are complete computer systems which may be linked to the 494 CPU
as unit record peripheral subsystems through the CTMC subsystem of the UNIVAC
494 System and the Data Communication System (DCS) of the UNIV AC 9200/9300
Systems (see 3.6.3), and which may serve as independent computers when not
connected with the UNIVAC 494 System. The UNIVAC 9200 System is an internally
programmed card-processing system; the UNIVAC 9300 System is an internally
programmed system supplying both card and magnetic tape facilities. Both systems
transmit and receive data at high speeds, and perform editing and manipulation
operations.

• UNIVAC 1004 SYSTEM

The UNIVAC 1004 System, as mentioned, may be used as either on- site or remote
unit record peripheral equipment to the UNIVAC 494 System, or may be used as
an independent computer system when not connected to the UNIVAC 494 System.

2.3. SOFTWARE COMPONENTS

The UNIVAC 494 System software is designed to control and to make full use of the
capabilities of the system hardware in the development and execution of user programs.
The software library, the 494 Operating System, is a set of integrated programs and
routines which furnish the control necessary for coordination and concurrent execution
of real time and batch processing operations. The executive routine or control program
provides a powerful and flexible control language for defining system operations and
for invoking system components in a multiprogram, real time and batch processing
environment. A variety of programming languages permit program development according
to the desires of different users. A system of program libraries, with ancillary file
directory and maintenance services, provides for effective storage, update, and re­
trieval of Univac- and user-supplied program elements and data. Random access
storage, which is used as the system operating base and as a buffer for primary input/
output devices in cooperative or controlled interfaces with monitor routines, significantly
reduces the time delays normally inherent in multiple activity operations involving job
equipment switching and discontinuous patterns of data inputs and outputs. The overall
effect of the executive routine on I/O operations, and on job scheduling and execution,
is to furnish the user with an efficient automatic information processing complex, re­
quiring minimum time and user effort.

The UNIVAC 494 System software is discussed briefly under the following topic headings
(for detailed information, see Section 4 of this manual and UNIVAC 494 Real-Time
System Operating System Programmers Reference, UP-7504, (current version):

2.3.1. Executive Operation

Executive Operation

Utility Package

Application Package

Language Processors

The user conveys information to the Operating System in the form of job decks
comprising ordered sequences of tasks. The job information includes scheduling
routines, limited data sets, program parameters, system processor calls, library
specifications, and other pertinent communications. The executive routine also
maintains a library system for storage and retrieval of programs or program com­
ponen ts, called elements, according to application. The elements are of three
types: Source, comprising input to language processors as the basis for programs;

R~lative Binary (RB), comprising language processor output as intermediate code
for synthesis into executable elements; and Load, comprising object or executable
programs. The element libraries are of three kinds: System, comprising elements
which are an integral part of the software system; Job, comprising elements collected
for a particular job; and Group, comprising elements with application to more than
one job.

The information from unit record and other external devices, together with information
from the libraries as required, is accepted in multiple streams through the Input
Cooperatives (see 4.2.2) of the Data Management section and placed on queues for
processing. In cooperative action between the Loader, which synthesizes the program
components into complete, executable programs, and J ob, Activity/Task, Remote
Device, and Service Control Mechanisms, jobs are scheduled for processing according
to priority; processor and peripheral facilities are assigned; jobs and tasks are selected
and activated; the program is executed; and the desired output is made through the
Output Cooperative, either to library storage media or to unit record devices. The
control language is open ended and expandable, permitting user direction of the system
through control statements and service requests, some of which may be submitted
through the control stream and others which may be submitted dynamically during job
processing.

2.3.2. Utility Packages

The software utility packages are incorporated in the UNIVAC 494 Operating System
for enlarging and enhancing the data processing procedures and the output information
offered to the user. The following list, which is not exhaustive and final, shows the
variety of utility programs and routines available in the UNIVAC 494 System. Detailed
information concerning utility packages is discussed in Section 4 of this manual.

9

10

2.3.3. Application Packages

File Control

Report Writer

Utility Generator

Logging and Accounting

REXecutor

CONVAID

Random Storage File Handler

The application packages are programs and routines included in the software library
to implement specific functions and uses of the UNIVAC 494 System. Currently
available application packages include the following:

2.3.4. Language Processors

Sort/Merge

Network Simulator

Transaction Control System

Critical Path Method

Linear Programming

Language processors convert symbolic language to machine amenable language; that
is, input programs written in source language are converted into intermediate output
code, producing RB elements. Currently available language processors comprise the
following two UNIVAC 494 System assemblers and two high-level compilers:

2.4. SYSTEM CONFIGURATIONS

UNIVAC 494 Assembler (ASM)

UNIV AC 494 SPURT Assembler

COBOL Compiler

FORTRAN Compiler

The variety of hardware characteristics and software controls afforded by the UNIVAC
494 System components provide an almost limitless number of possible system con­
figurations. A wide range of choice and a high degree of selectivity is permitted the
user in setting up a particular installation to meet his information requirements on the
basis of both present and future needs. Basic considerations in configuration planning
should include:

• the characteristics and volume of the input information, such as file size, record
formats, and record content, as for example, scientific information as opposed to
commercial information;

• the number, frequency, complexity, and time dependent relationships of queries and
other transactions, as in real time/communication applications, which may require
a large volume of rapid transactions utilizing much I/O and communication equipment
without great need for extensive storage facilities, in contrast to scientific applica­
tions, requiring generally complex operations with more need for storage facilities
than for I/O and communication facilities .

• the characteristics and volume of the desired output information, as in generation of
exception reports, tape files, displays, and other outputs requiring more, or less,
use of various peripheral subsystems as the application warrants.

For the foregoing reasons, a maximum system configuration is hardly specifiable, as
the entire system, including the number of CPU's and consequently the number of
primary storage units, may be expanded. A minimum configuration may be specified
on the basis of the hardware necessary for I/O transfers through the CPU and a 65K
primary storage unit, and for containing the basic system software. As shown in
Figure 2-1, a minimum configuration may use a UNIVAC 1004 Syst~m for I/O transfers,
providing also an additional computer system at low cost. The UNIVAC 1004 System
may be replaced by the UNIVAC 9200 or UNIVAC 9300 Systems, providing enhanced
computer facilities as well as I/O capability; or the punched card, high speed printer,
and punched paper tape subsystems may be used. In the same way, for higher process-
ing speeds, the FASTRAND Subsystem may be replaced by magnetic drum units furnishing
the same storage capacity.

11

I
11..------1
I r------,
II ADDITIONAL I
'-1 (UP TO FIVE)I

I UNISERVO I

I
I
I

L_~'-.:~...J

I r------,
: I ADDITIONAL I
: I (UP TO FIVE1
'-I UNISERVO I

I VI C'S I L ____ ~

I
I
I
I I ~-----------

l / \ ADDITIONAL \

I
I
I

--I I (UP TO SEVEN)

\~L __ ~:T~~~~':, __ /

l (...... -----------.
I I \ ADDITIONAL \
I. -i (UP TO SEVEN)

\) FASTRAND Ill's j '.J. __________ ~

r---------,
I OPERATOR'S 1-,
L_~~~~ __ J I

I
I

BANK 0 BANK 1

r-__ ...:6.:..5 ,;.;.K,W..::.O;..:.:RD:..:S ___ .- ___ ~~O~!.. ___ -,

PRIMARY PRIMARY PRIMARY I PRIMARY I
STORAGE STORAGE STORAGE I STORAGE I
MO~ULE MD~ULE MOD

2
ULE I MOD

3
ULE I

32,768 32,768 32,768 I 32,768 I
ADDRESSES ADDRESSES ADDRESSES I ADDRESSES I

I I
L-_,..-_-L_----,,-_-L __ , __ -L __ -,- __ J

~------''---___,r--_L ____ ...J

r--------,
i ONSITE AND :
I REMOTE

,-I PERIPHERAL :

UNIVAC 494 CENTRAL PROCESSOR UNIT

I I SUBSYSTEMS I

L..-__ I_/D_C_H_A_N_NE_L_S __ -+ __ ~~~~~~ ___ j -' l ________ j
12-23

CUS - CONTROL UNIT SYNCHRONIZER
U IA - UNIVERSAL INTERFACE ADAPTER

ICCU - INTER-COMPUTER CONTROL UNIT

DL T - DATA LINE TERMINAL

DCS - DATA COMMUNICATION SYSTEM

CTMC - COMMUNICATION TERMINAL MODULE CONTROL

CRT - CATHODE-RAY TUBE

--MINIMUM CONFIGURATION

--- OPTIONAL, EXPANDABLE, OR INTERCHANGEABLE

NOTE: 7 OR 9 TRACK TAPE MAY BE USED

Figure 2 -7. System Configuration

FASTRAND UNITS MAY BE REPLACED BY EQUIVALENT

FH-432, FH-880, OR FH-1782 UNITS

FH-432 UNITS MAY BE REPLACED BY EQUIVALENT

FH-1782 OR FH-880 UNITS

ONLINE UNIVAC 1004 MAY BE HEPLACED BY UNIVAC 9300

OR BY HIGH SPEED PRINTER AND CARD SUBSYSTEMS

CTMC

3. SYSTEM HARDWARE
COMPONENTS

3.1. GENERAL

The UNIVAC 494 System hardware components comprise four types of equipment based
upon functions within the system: the central processor unit (CPU), primary storage,
on-site peripheral subsystems, and remote peripheral subsystems. Each equipment
type embodies advanced design features for providing maximum utility and efficiency
in its particular function. In keeping with the modular, expandable system concept,

each component is compatible with similar units or with units having similar func­
tions in the system. In this way, a large selection of peripheral subsystems and
different storage capacities can be used in conjunction with the CPU to make the
system responsive to a wide range of business, scientific, and industrial applications.

The CPU is a word-addressable, multipurpose digital computer, which operates on
fixed-word length (double-, whole-, or half-word) data and instructions, and possesses
full capability for operation in a multiprogram environment. Primary storage, which is
separate from the CPU, is available in capacities of 65,536 30-bit words or 131,072
30-bit words, and is random access, linear select ferrite core memory. On-site magnetic
drum, magnetic tape, and unit record subsystems provide a variety of capacities, speeds,
and functions permitting selectivity in system configuration design. Remote communica­
tion subsystems and satellite computers provide a range of information exchange and
data handling capabilities, one of these being the ability of the satellite computers to
function as independent data processing systems when not operating with the UNIVAC
494 System.

Detailed information concerning the characteristics and capabilities of the system hard­
ware is presented in this section. Additional information about the peripheral subsystems
may be found in manuals written specifically for these subsystems. The 494 System
hardware components are discussed under the following headings:

Central Processor

Primary Storage

On-site Peripheral Subsystems

Remote Peripheral Subsystems

13

14

3.2. CENTRAL PROCESSOR

The UNIVAC 494 Central Processor Unit (CPU) is the principal component of the
UNIVAC 494 System, and is generally the component by which the entire 494 System
is identified. The CPU has the responsibility for accepting data and tasks from external
equipment, queuing tasks to meet the demands of the system, processing the tasks, and
returning the results to external equipment.

The CPU is characterized by a control section, arithmetic section, input! output section,
storage interface, and control console. The processor sections are completely indepen­
dent of memory with the exception of input/output control. Input/output requires the use
of fixed locations in primary storage (Buffer Control Registers) for control of input/output
and for interrupt locations. A block diagram of the various sections of the CPU is given
in Figure 3-1.

3.2.1. Control and Arithmetic Section

The control and arithmetic section provides the basic phasing .and logic for instruction
decoding and execution, and contains the following principal parts:

• A 17-bit Program Location Counter used for sequentially accessing instructions
residing in memory.

• A series of Instruction Registers used to contain the instruction during the decoding
and execution cycle.

• A Relative Index Register (RIR) which provides the base address bias or effective
address, for programs (relative addressing). The RIR permits a program to be entered
or moved to any location in memory without modification of the program code. A
second level of relative addreSSing (Dual Index Mode) is provided by the Lower Lock
address of the Program Lock-in Register in combination with the RIR. The Dual
Index Mode is used by programs which have instructions and data residing in dis­
tinctly separate areas of storage, such as common subroutines, and provides for
instructions to be biased by the RIR and data references to be biased by the Lower
Lock.

• An Operand Address Register and a Program Address Register (P register) used in
conjunction with the Program Location Counter, RIR, and index (8) registers in
establishing and accessing instruction locations in primary storage.

• A Memory Select Register (MSR) used for manual selection of addreSSing mode (see
3.3.3) by determining which primary storage module and memory bank will receive
instructions.

• A 30-bit Internal Function Register (IFR) used prinCipally to facilitate executive
routines. The IFR is used to specify: index mode, index register length, index
register set, and privileged or nonprivileged program execution mode (Guard Mode).
Guard Mode is activated to prevent operating programs from executing restricted
instructions, such as input/output and executive instructions, and to activate

memory limit checks.

- - - ---- -- - - - --- - ---- ---I

(PLR)
PROGRAM LOCK-IN REGISTER

PROGRAM BOUNDARIES

LOWER
LIMIT (LLI

LL INDEX
VALUE I

UPPER
LIMIT

CONTROL.

PROGRAM LOCATION COUNTER

RELATIVE INDEX
REGISTER (RIR)

1

INTERNAL FUNCTION II
REGISTER (IFR)

REGISTER
INDEX RI

RELATIVE

STORAGE

I

INDEX ADDER
I

I
I
I
I
I
I
I
I
I

- - - - - - - - - __ I

AUXILIARY A REGISTER

INTERMEDIATE A
PROCESSING

------------------------,
INPUT/OUTPUT I

AUXILIARY Q REGISTER

INTERMEDIATE Q
PROCESSING

INPUTI

CONTROL

SIGNALS

OUTPUT El
DATA

--1--------

I
I
I
I
I

Figure 3-7. Central Processor Operation, Block Diagram

16

• A Program Lock-in Register (PLR) used to define the upper (upper lock limit) and
lower (lower lock limit) storage address assigned to the program. The PLR prevents
concurrently operating programs from inadvertently referencing outside their assigned
memory locations.

• Fourteen addressable index (B) registers which provide for operand address modi­
fication, index codes, counters and modifier incrementation. The B registers comprise
two groups of seven registers: the executive set, which is reserved for the executive
routine when operating in a privileged mode, and the worker set, which is used by
programs operating in a nonpri vileged mode. Two options are provided in the use of
B registers: the length option which specifies that all registers operate as IS-bit
registers, or that three registers (B1, B2, and B3) operate as IS-bit registers and
four registers (B4, BS, B6, and B7) operate as 17-bit registers; and the bias option
which calls for bias of seven B registers by the RIR when used in an instruction
performing a data access, or bias of B1, B2, and B3 by the RIR and bias of B4, BS,
B6, and B7 by the PLR when used in an instruction performing a data access.

• An A (accumulator) and a Q (quotient) register, which are programmable registers
of 30 bits each, used by operating programs to perform arithmetic and logical
operations. The registers may be used as two distinct arithmetic registers or
combined to form a 60-bit (AQ) register. Auxiliary A and Q registers are also
used to store intermediate results in arithmetic operations.

• A number of communication registers, such as the X (arithmetic) and R (index)

registers, used for communicatin g between other registers.

• Other components include various adders for performing arithmetic operations and
establishing instruction addresses, and various counters and registers which perform

matrix shifting (K register) and other functions.

3.2.1.1. Arithmetic Operations

Arithmetic operations may be performed in the fixed-poin t binary coded decimal
(BCD) mode, floatin g-poin t mode, or in the fixed-point binary mode. Operations in
fixed-point binary may be either single or double precision.

• Fixed-Point Binary Formats

The format for a fixed-point binary single precision operand, shown in Figure

3-2, assigns three bit positions per octal digit, except for the most significant

digit which has two bit positions. The order of binary digits is from 00 to 29,
right to left, with position 00 containing the least significant digit. The sign
bit, contained in position 29, is 0 for a positive number, or 1 for a negative
number.

Fixed-point binary operands may also be half-words as indicated in Figure 3-2.

The format for a fixed-point binary double precision operand, shown in Figure
3-2, is 20 octal coded digits, requiring two consecutive memory locations for
storage and the use of both the A and Q registers for operations. The most
significan t portion of the operand (including the sign) appears in the accumulator
and/or the first of the two consecutive memory locations.

FIXED-POINT BINARY HALF-WORD OPERAND

S MSB LSB

2
9 28 15

FIXED-POINT BINARY SINGLE PRECISION OPERAND

FIXED-POINT BINARY DOUBLE PRECISION OPERAND

----------.... ------~ --------------------~------.. --------A REGISTER AND/OR ADDRESS Y Q REGISTER AND/OR ADDRESS Y+l

FLOATING-POINT OPERAND

S CHARACTERISTIC FIXED-POINT PART (MANTISSA)

5
30129 9 58 48 47 --- ~ ----- -....,......-

A REGISTER AND/OR ADDRESS Y Q REGiSTER AND/OR ADDRESS Y + 1

DECIMAL OPERAND

Z9 C9 Z8 C8 Z7 C7 Z6 C6 Z5 C5 Z4 C4 Z3 C3 Z2 C2 ZI Cl ~S
59 53 47 41 35 29 23 17 11

58 57 54 5251 48 46 45 42 40 39 36 34 33 30 28 27 24 22 21 18 16 15 12 10 9 6 5 4 3 --- -............- -------- -............-
A REGISTER AND/OR ADDRESS Y Q REGISTER AND/OR ADD RESS Y + 1

The S bit is the sign bit. MSB and LSB are most and least significant bits, respectively.
Z bits are zone bits associated with the character bits (C bits).

Figure 3 -2. Computer Word Formats

CO

0

0

17

18

• Fixed- Point Binary Coded Decimal (BCD) Format

Binary Coded Decimal (BCD) operations may be performed upon operands stored
in 30-bit combinations of anyone of a variety of six-bit zoned BCD forms: such
as Fieldata code. Because arithmetic operations are performed directly upon the
BCD characters, no programmed coding conversion is necessary to convert the
characters to straight binary characters. Ten decimal digits, including the sign,
may be stored and operated upon, requiring two consecutive memory locations
and/or the A and Q registers in combinations as shown in Figure 3-2.

The most significant characters (C) and zone bits (Z) are stored in the accumula­
tor and/or the first of the two consecutive addresses. Bit 04 denotes the sign(s)
of the number; 1 for positive and 0 for negative. In accord with standard Fieldata
code, the zone bits are both l's, and are ignored in all decimal operations, the
same as the original zone bits in the AQ register. After each BCD operation
(addition or subtraction) an indicator is set (or reset) to indicate a carry or borrow.
A decimal test instruction provides capability for testing the overflow indicator
and also for testing for positive/negative and zero/nonzero results .

• Floating-Point Format

The floating-point operand format uses 60 bits to express a positive or negative
number as a fixed-point part (the mantissa) multiplied by a power of 2 (the
characteristic). Two consecutive memory locations or the AQ register store the
floating-point number, as shown in Figure 3-2.

Bit 59 is the sign bit for the floating-point number; and is 0 for positive, or 1
for negative. A negative number is represented by the 60-bit ones complement
of the positive representation of the number (e.g., +210 is expressed as 2002.40

---0; -210 is expressed as 5775.37---7).

The characteristic is biased to represent both positive and negative powers of
2. The bias value is 20008 . An eleven bit biased characteristic can represent

any power of 2 from -20008 to +17778 (i.e., from -102410 to +1023
10

).

A floating-point number is normalized when the most significant bit of the man­
tissa (bit 48) is different from the sign bit of the number. A positive number may
be normalized by left shifting the mantissa until a 1 bit appears in the leftmost
bit position of the mantissa, and by decrementing the characteristic by the number
of bit positions shifted (e.g., 2003.20---0 and 2004.10---0 are nonnormalized repre­
sentations of the number +210). A normalized floating-point number in this format
can express any number, N, in the range 2-1025 ~N<2+1023, or between the approxi­
mate limits of 10-309 and 10+308 .

TEN

3.2.1.2. ArithmetIc Processing

Arithmetic operations are performed in the parallel mode with all bits of an operand
transferred to the arithmetic unit simultaneously for highest speed .. The arithmetic
required for effective and relative addressing is performed in the control section,
which is separate, to prevent interference with arithmetic operations in the arith­
metic section.

The UNIVAC 494 control and arithmetic section utilizes the operands shown in
Figure 3-2.

3.2.1.3. Timing Clocks

HOURS

The central processor unit contains two clocks that may be used for program timing:
the Day Clock and the Real Time Clock.

• The Day Clock is a twenty-four hour clock that records the time of day in hours,
minutes and hundredths of minutes. The updated Day Clock time value is auto­
matically stored every six hundred milliseconds in a fixed address of primary
storage and is also displayed at the operator's console. Approximately every
six seconds a Day Clock interrupt is generated to a fixed address where a routine,
conditioned by the time of day, may be started. The format of the Day Clock time,
as stored in primary storage, is shown in Figure 3-3 .

• The Real Time Clock is an 1S-bit counter contained in primary storage. The
counter is incremented every two hundred microseconds, and an interrupt is
generated when the counter overflows (i.e., recycles from all one bits to zero,
over a maximum of fifty-two seconds). The clock may be set by the program and
is used by the Operating System as an interval timer. The format of the Real
Time Clock is shown in Figure 3-3.

MINUTES HUNDREDTHS (OF MINUTES) ALL ZEROS

UNIT TEN UNIT TEN UNIT

29 28 27 24 23 20 19 16 15 12 11 8 7

DAY CLOCK FORMAT

NOT USED COUNTER

REAL TIME CLOCK FORMAT

Figure 3-3. Clo.ck Formats

0

19

20

3.2.2. Instruction Words

An instruction repertoire is provided in the UNIVAC 494 System which utilizes and
promotes the full power of the CPU in computer activities. The repertoire furnishes
a complete set of standard instructions for data transfers, shifting, sequence modi­
fication, address and operand modification, logical operations, tests, fixed decimal
and floating-point arithmetic, input/output control, and partial word selection. The
repertoire also includes instructions which permit fas t and simplified control by the
execu tive routine operating in a multiprogram mode.

3.2.2.1. Instruction Word Formats

Three instruction formats are used: the normal instruction word, the extended
instruction word, and the input/output (I/O) instruction word. Formats for the
instructions are shown in Figure 3-4. Each type of instruction word provides for
gi ven sets of designators for defining the operation, and specifies the operand

which will be affected.

NORMAL INSTRUCTION WORD

y

EXTENDED INSTRUCTION WORD

g y

490 MODE 1/0 INSTRUCTION WORD

y

Figure 3-4. Instruction Word Formats

• Normal Instruction Words

Normal instructions are subdivided into classes which are: read, store, and re­
place. A read class instruction transfers data from primary storage to an appro­
priate register. A store class instruction transfers data between registers or from
a register to primary storage. A replace class instruction, which is a combination
of read and store operations, reads the data from primary storage or a register,
performs an operation on the data, and places the result in primary storage or a
designated register.

The f designator is a six-bit function code that specifies the operation to be
performed. The j designator is a three-bit code that may be interpreted as a
skip designator, register designator, repeat modification, or jump designator
dependent upon the type of instruction. (See Table A-2 for interpretation of
j designators.) The k designator is a three-bit code which, together with the
class of the instruction, defines the portion (whole-word, upper half, or lower
half) of the operand which will be processed and specifies its source and/or
destination (see Table A-3), permitting the use of whole word operands of 30
bits or half-word operands of 1S bits. The y designator specifies the operand,
Y, or the operand address which will be processed. The b designator indicates
the index register (1-7), whose contents (Bb) are added to the 1~-bit y desig­
nator to form a 1S-bit or a 17 -bit effective operand (y designator) or to form a
primary storage address which, when added to the RIR or the lower portion of the
PLR, is the location of the operand or the location of the next instruction to be
performed.

• Extended Instruction Words

The extended instruction word· repertoire is applicable to worker and executive pro­
gram functions which have been added as standard features of the UNIVAC 494 CPU
beyond the standard functions of other computers in the 490 series. The functions
include a number of operations which were performed by earlier computers through
subroutines. In the extended repertoire, the f designator is 778 . Following the 77
is a six-bit g designator which, together with the f designator, defines the function

to be performed. The band y designators are similar to their counterparts in the
normal instruction word. No j or k designators can be used in the 77 instruction
set; therefore, interpretation of the operand is implicit in the instruction itself
and not by class .

• Input/Output Instruction Words

Input/output instructions alert the input/output (I/O) section of the central process­
or to begin operations on a specified channel. The processor is then free to execute
instructions while data is being transferred between primary storage and peripheral
equipment by the I/O section. The format of the 490 mode I/O instruction word
varies slightly from the normal instruction word format, as shown in Figure 3-4.
The j-field is expanded to four bi ts (bits 20-23) and the k-field is decreased to
two bits (bits 18-19), and are designated by the symbols J and k, respectively.
The I-field is used as a channel designator and the k-field defines the interpre­
tation of the operand.

3.2.2.2. Instruction Repertoire

'rhe complete 494 instruction repertoire is shown in Table A-I. The instructions
are listed by instruction type as follows:

Transfer instructions

Shift instructions

Compare instructions

Jump instructions

Sequence modifying instructions

Arithmetic instructions

Logical instructions

Input/Output instructions

21

22

The description of each instruction contains: the mnemonic code used in the
UNIVAC 494 assemblers, SPURT, and ASM, the function code (f) in octal notation,
the description of the operation, the class of instruction, and the execution time.
The interpretations of j designators are listed in Table A-2; k designator inter­
pretations are listed in Table A-3. Additional information concerning the instructions
may be found in UNIVAC 494 Real-Time System SPURT Programmers Reference,
UP-4090 (current version) and UNIVAC 494 Real- Time System Assembler Programmers
Reference, UP-4133 (current version).

• Transfer Instructions

Transfer instructions move data between primary storage and the CPU. All transfers
are nondestructive (the original source remains unchanged). Transfers may consist
of 60, 30, or 15 bits or, in the character packing and unpacking instructions, 6 bits,
as determined by the k designator of the instruction or the instruction itself. The
character packing instruction composes a 3~-bit word of five successive six-bit
characters, each in a different sequential address. Similarly, the character unpack­
ing instruction breaks up a 3D-bit word into five successive six-bit characters and
stores them in successive addresses of primary storage.

• Shift Ins tructions

Shift instructions move the contents of a selected register either to the left or
right by a specified number of positions. If the instruction is a right shift, all
bits shifted out are lost, and all vacated positi,ons may be zero filled or be fiUed
with the highest-order bit (sign-fill). A left shift is a circular shift; as a bit is
shifted out at the left, it is returned to the vacated bit position at the right. With
the exception of the Scale Factor Shift (7730) instruction, the number of shifts
is the six-bit binary number formed by the lowest-order six bits of the operand,
Y. The number of shifts by the 7730 instruction is determined through the normal­
izing associated with arithmetic instructions.

• Compare Instructions

Compare instructions test sets of register values against certain criteria with
skip or no-skip operations being performed by the program as the result of the
comparison. The comparisons may be performed in either the alphanumeric or
arithmetic mode, the difference being that the highest-order bit is not treated
as a sign in the alphanumeric mode, but as a binary 1 or O. This is especially
useful in the sorting of Fieldata characters. The compare instructions ma:y use
masking so that comparisons can be made only on specified bit positions of the
words involved.

• Jump Instructions

Jump instructions transfer control of the program from the next sequential address
or a specified address to an instruction at a specified primary storage address,
providing that the selected conditions (conditional jump) for the jump are satisfied,
or that certain program operations occur (unconditional jump).

• Sequence-Modifying Instructions

Sequence-modifying instructions cause repeated execution of an instruction a
specified number of times, or cause skips or jumps, while capturing the relative
P-value (address) for future reference in the case of jump operations.

• Arithmetic Instructions

Arithmetic instructions in the fixed-point, binary, single precision (integer) mode
handle 30-bit binary numbers with the highest-order digit (bit position 29) reserved
for sign (binary 0 = +, binary 1 = -) wit..h absolute value up to 3,777,777,7778 or

536,870,911 10 , A negative number is presented as the ones complement of the
same positive number (complement each binary digit). Arithmetic instructions in
the fixed-point double precision mode can handle operands with absolute value
up to 37,777,777,777,777,777,7778 or 576,460,752,303,423,48710 , Arithmetic
instructions in the fixed-point zoned BCD (decimal) mode can operate directly
upon numbers made up of ten decimal digits received as signed, zoned BCD
characters such as in the Fieldata code. The zone bits remain unchanged by
the arithmetic operation. Arithmetic instructions in the floating-point (exponential)
mode may be used to operate upon positive or negative numbers greater than or
equal to 2-1025 and less than 2+ 1023 (approximately 10-309 to 10+308).

• Logical Operations

Logical operations enable masking operations upon a word or upon selected bi ts
of a word. These operations are: logical product, which selects specified bits of
a word (leaving binary O's in unselected bit positions); selective set, which
forces binary 1 's into selected bit positions of the accumulator; selective clear,
which forces binary O's into selected bit positions of the accumulator; selective
complement, which selectively changes the bits (binary l's to O's, binary O's to
1 's); and selective substitute, which substitutes the bits in selected bit positions
into the corresponding bit positions of the accumulator.

3.2.3. Interrupts

The CPU is conditioned to respond to interrupt signals which may occur for various
reasons, including programming errors, hardware faults, notification of incoming data
or of the availability of peripheral units after completion of a previously scheduled
task, full or empty buffers, and other contingencies.

An interrupt sends the program to a fixed address for further action. The fixed address
contains an instruction which captures the relative address of the next instruction in
the interrupted program and then jumps to the applicable interrupt routine, temporarily
suspending further processing of the interrupted program. After the interrupt routine is
completed, the interrupted program is usually resumed. Two types of interrupts may
occur: an unconditional interrupt, which cannot be locked out, or a conditional inter­
rupt, which can be locked out by either another interrupt or by a Return Jump (octal
function code 64) instruction with j designator 0 or 1. A Return Jump instruction,
issued while in the guard mode, may not lock out interrupts for more than 100 micro­
seconds. Conditional interrupts are enabled by executing a Jump instruction (octal
function code 60) with a j designator of 0 or 1.

23

24

3.2.3.1. Unconditional Interrupts

Unconditional interrupts indicate program contingencies which require immediate
intervention, and include the following:

• Memory Parity Interrupt, caused by a parity error involving data which is not
related to buffer operation. A memory parity error sends the program to a fixed
address associated with the particular memory bank involved. When a memory
parity error is detected, the data is written back into memory (at the same
address) with the same incorrect parity, so that the interrupt routine can locate
and test operation at the same core memory address.

• Memory Protection or Timeout Interrupt, generated by an attempt to violate the
read and/or write protection mode in effect, or if interrupts are locked out for
more than 100 microseconds by a Return Jump instruction when operating in
guard mode.

• Executive Return Interrupt, caused by the Executive Return (7754) instruction
which sends the program to an interrupt routine enabling capture of the P value
of the program which is interrupting. This interrupt is the normal mode of program
entry to the Operating System.

• Test and Set Interrupt, caused by a Test and Set (7752) instruction which tests
for a 1 bit in bit position 14 at a selected core memory location. If this bit is
already set to 1, the interrupt is generated; if the bit is not set, bits 0-14 are
then set and no interrupt is generated.

• Floating-Point Underflow Interrupt, generated if the result of a floating-point
operation has a nonzero mantissa, and an exponent less than -102410,

• Floating-Point Overflow Interrupt, generated if the result of a floating- point
operation has an exponent greater than +102310 or if floating-point division by

zero is attempted.

• Illegal Instruction Interrupt, generated if an attempt is made to execute a priv­
iledged instruction when in the guard mode or to execute an instruction with a
function code of 00 or 7700.

3.2.3.2. Conditional Interrupts

Conditional interrupts indicate program contingencies which may not require immedi­
ate intervention, and include the following:

• BCR Parity Interrupt, caused by detection of a parity error when reading the word
contained in a Buffer Control Register (BCR). Each time that a data transfer is
made between the central processor buffer and external equipment, a Buffer
Control Word (BCW) is read by the I/O section, updated, and written back into
a BCR (see 3.2.4.1). Data Transfers may be made through I/O channels using
either the Internally Specified Index (ISI) or Externally Specified Index (ESI)
modes (see 3.2.4.2). If there is a parity error during the read cycle, the write
cycle will write all O's back into the BCR. An lSI channel will be terminated;
however, an ESI channel will not be terminated (to prevent loss of data from
other sources on the multiplexed channel).

• I/O Data Parity Interrupt, caused by detection of a parity error during I/O opera­
tions when reading a data word addressed by a BCW for output or ESI input
transfer. Data transfers will be completed and the channel will not be deactivated.

• Power Loss Interrupt, caused by detecting that the input line voltage has dropped
below a predetermined value. The interrupt routine has a fixed time of about five
milliseconds during which the CPU and primary storage power supplies will
furnish sufficient output to permit normal operations to store the state of the
program so that shutdown is orderly; and, when power is restored, the program
is supplied with an entry point for recovery in an orderly manner.

• External Interrupt, caused by a signal sent from a peripheral device to the CPU,
together with a status word on the data input lines. The interrupt routine contains
a Store Channel (17) instruction for storing the status word in primary storage.
The channel number is automatically entered into the Interrupt Address Storage
Register (IASR). The status word is then analyzed to condition operation of the
central processor.

• Monitor Interrupt, caused when a buffer activated with monitor is either filled
(input) or emptied (output).

• Day Clock Interrupt, generated approximately every 6 seconds, which permits
processing operations to be conditioned by the time of day.

• Real Time Clock Interrupt, generated each time that the real time clock recycles
from all 1 bits to all 0 bits. Since the recycling time can be program-controlled,
that is, the clock can be set to specify the length of time until the next recycle,
the interrupt can be used to measure the elapsed time of a program, as a timer
to prevent program looping, and for other functions.

25

26

3.2.4. Input/Output Control Section

The input/output control section of the CPU controls and multiplexes data flow
between primary storage and peripheral subsystems through the use of input/
output (I/O) channels. The processor has a basic set of 12 I/O channels, which
may be expanded in units of four to a maximum of 24 channels (channel 0 is
reserved for the operator's console and Day Clock). Each normal channel may

operate at a 30-bit word transfer rate of 555 KC. Compatible channels may operate
at 250 KC transfer rate.

3.2.4.1. Input/Output Registers

The input! output section contains the data paths and control registers used in the
transfer of data and in the processing of interrupts. The registers are as follows:

• Buffer Control Registers (BCR), each of which contains a Buffer Control Word
(BCW) as an index for control of transfer of data between a buffer area of core
storage and a peripheral device.

• Output Data Registers, which hold data being sent on the output data lines long
enough to meet the requirements of slow speed peripheral devices.

• Channel Select Register (CSR), which is referenced by I/O instructions during
normal operations to determine which channel to activate, deactivate, or test·

• Interrupt Address Storage ~gister (IASR), which contains the identifying
number of a channel receiving an external interrupt or monitor interrupt signal.
During the interrupt subroutine, the IASR is used in place of the CSR to specify
the channel. When the Store Channel Number instruction (7772) is executed, the
number of the IASR is stored in a memory location. The reference to the IASR
does not alter the contents of the CSR; after the subroutine is completed, the
I/O instructions again refer to the CSR. The IASR is enabled from the time the
interrupt is honored (enter subroutine) until the interrupt lockout is released.

NOTE: If interrupts are locked out under program control, the CSR rather than
the IASR, is referenced by I/O instructions.

• Parity Error Channel Storage Register (PECSR), which is used in error routines
initiated by a BCR parity error interrupt or I/O data parity error interrupt. The
number or the I/O channel being serviced at the time of the interrupt is auto­
matically stored in the PECSR. When the Store Channel Number instruction
(7772) is executed during the parity error routine, the contents of the PECSR
rather than the IASR or CSR are stored in a memory location. Within the BCR
or I/O data parity error routine, the CSR specifies which channel to activate,
deactivate, or test.

3.2.4.2. Index Modes

29

The Buffer Control Word (BCW) contained in a Buffer Control Register (BCR)
specifies the address of the next data word to be read or written and is the index
to an input/output operation. The address of the BCW (or index) may be specified
by either of two possible modes of operation when a peripheral subsystem requests
an input or output data transfer: Internally Specified Index (lSI) mode, used with
standard peripheral devices connected directly to I/O channels of the CPU; and
Externally Specified Index (ESI) mode, used with peripheral devices connected
to I/O channels of the CPU through a communications multiplexer.

• Internally Specified Index (lSI) Mode

The Internally Specified Index (ISI) mode provides a unique BCR for each
channel which serves a standard peripheral subsystem. Only one I/O subsystem
path is assigned to a channel, and the data to and from a peripheral is stored
in continuous -locations within a defined buffer (see Figure 3-5). Buffer control
of I/O operations is maintained by the BCW, which has been loaded into the
BCR at a fixed location internally specified by the CPU, through the I/O
initializing instructions. The BCW has the following format:

BUFFER CONTROL WORD (BCW) FORMAT

WORD COUNT FIRST ADDRESS OF BU FFER
(minus decrement) (plus increment)

18 17 16 0

Bits 00-16 Indicate the first address of the allotted buffer. As each data
transfer takes place, this address (in the BCR) is incremented by
1. Since 17 bit positions are available, all locations in primary
storage are accessible.

Bit 17 Not used.

Bits 18-29 Indicate the allotted word count. With each data transfer, this
count (in the BCR) is decremented by 1. The 12 bits made avail­
able for the count permit a maximum buffer length of 409610 words.
For data transfers greater than 409610 words, requests may be
segmented into several BCW's. When the count is equal to 0,
following a transfer, the buffer is terminated.

27

28

• Externally Specified Index (ESI) Mode

The Externally Specified Index (ESI) mode provides different buffer areas, each
defined by a separate BCR, or pair of BCR's, for each of a number of I/O devices
that are connected to th"e I/O channel by a multiplexer. Buffer control is main­
tained through the BCR, with the exception that more than one input BCR and
output BCR are used for an ESI channel. The index is externally specified by
the external subsystem (the CTMC) which gives a value to the CPU through I/O
channels, with each value given corresponding to a particular I/O device and
uniquely defining whether input or output is requested. The location of the
appropriate BCR is placed on the input data lines by the requesting peripheral
unit. Each input data word address is placed in bits 15-29 of the word in the
defined buffer. Each output data word address is taken from bits 00-14 of the
buffer. For accessing the full range of primary storage, two additional bits
are taken from the MSR. Input word storage for the ESI and lSI modes is com­
pared in Figure 3-5.

FROM STANDARD
1/0 DEVICE

FROM CTMC SUBSYSTEM

CHANNEL CHANNEL

CHANNEL I I r---------! ---
BUFFER

I WORD 1

I WORD 2

I WORD 3

I WORD 4

I WORD 5

I WORD 6

lSI MODE

NOTE: M = MESSAGE

W = WORD

I BUFFER 1

I MI-Wl I
I I MI-W21

I - ~"

I

I

I

BUFFER 2 BUFFER 3

I M2-Wl I I M3-Wl I
I M2-W2 I I M3-W2 I

..,
...-ttl"

ESI MODE

Figure 3-5. Input Word Storage, Internally Specified Index (lSI) Mode

Versus Externally Specified Index (ESI) Mode

____ J.. ___

,-------. i ______ J

,-------i ______ J
~-----~

3.2.4.3. External Equipment Control

External peripheral equipment control by the CPU is attained by function (control)
codes and status words conveyed over the data lines of I/O channels connected
to the peripheral equipment. A function code is sent by the CPU to a peripheral
unit to initiate a particular operation at the unit. The function code is distinguished
from a data word by activation of the External Function control line. The use of
function codes rather than a set of instructions makes the CPU independent of the
characteristics of the I/O unit, enabling connection of a variety of peripheral
equipment to the CPU with no modification to computer logic.

Following the receipt of a function word by a peripheral subsystem, and either
completion of the requested operation or detection of an error or abnormal condition
which prevents normal completion, a status word is sent to the CPU by peripheral
equipment to inform the computer program of the status of the equipment and the
readiness of the peripheral subsystem to initiate or terminate data transfer. A
status word is distinguished from a data word by activation of the External Inter­
rupt (EI) line. Activation of an EI line forces program control to a specific primary
storage address where the Operating System initiates a routine to analyze the
status word and to take the appropriate action.

3.2.4.4. Operator's Console (Alternate)

The Opera tor's Console, Type 0400, is an input/output system hardware component
which, when provided, is an integral part of the UNIVAC 494 System. Although sep­
arate from the CPU, the console functions as part of the I/O section of the CPU. The

console provides the means for operator communication with the system and for
monitoring of system operations. The console informs the operator when manual
intervention is needed and/or accomplished, particularly in readying peripheral
subsystems, performing special functions, and correcting abnormal operating
conditions.

The operator's console consists of a keyboard and printer, control and display
panel, and the Day Clock display (see 3.2.1.3), all of which share channel 0
of the CPU. The console may be replaced by the operator's display console
(see 3.2.4.5) for enhanced programming flexibility and the added feature of
a cathode-ray tube (CRT) display of messages .

• Keyboard and Printer

The keyboard and printer unit comprises a four-bank typewriter keyboard for
sending information to the CPU, and a printer for furnishing hard copy records
of the input and output of the console. The keyboard contains all of the necessary
keys and special symbols for encoding the 64-character Fieldata code, and has
an interrupt key for generating an EI Signal for gaining access to the CPU.
Program control characters, limited sets of data, and messages indicating oper­
ator initiation of certain procedures or operator response to CPU messages may
be input to the CPU through the console keyboard. The printer, in turn, contains
the necessary characters and symbols for printing Fieldata code messages. The
printer shows CPU replies to the keyboard input, prints messages indicating
system status or requests for actions to be taken, and outputs other information
as called for by the program or the operator.

29

30

The keyboard and printer unit also contains controls and indicators for monitor­
ing and directing its functions .

• Control and Display Panel

The control and display panel contains controls and indicators for monitoring
system operations and for making certain adjustments as desired. The indicators
show fault or abnormal conditions in both the hardware and the program being
executed, such as illegal instructions, improper switch settings, abnormal
power input, and disabled condition of equipment, which may affect the system
in program execution. They also show the orientation, or address and status,
of the program. Controls are provided for clearing and resetting the hardware
components, loading of program instructions, and stopping, starting, and se­
quencing of program execution, such as performance of jump instructions.

• Day Clock Display

The Day Clock display shows the time of day as carried by the CPU for use in
time orientation of the program. The time is given in hours, minutes, and hun­
dredths of minutes. Controls for clearing, stopping, starting, and setting the
Day Clock are contained on the console control and display panel.

3.2.4.5. Operator's Display (CRT) Console

The Operator's Display (CRT) Console, Type 4009-97, (see Figure 3-6) is an
input/output, visual communication, system hardware component which is an
integral part of the UNIVAC 494 System and which, although separate, functions
as part of the I/O section of the CPU. The display console provides a means
for operator communication with the system and for monitoring of system oper­
ations.

Figure 3-6. Operator Display (CRT) Console

In addition to the functions provided by the operator's alternate console (see
3.2.4.4), which are enhanced, the display console furnishes a cathode-ray tube
(CRT) display of the CPU and operator generated messages. Through both the
CRT display and printed output, the console informs the operator when manual
intervention is needed and/or accomplished, as in readying peripheral subsystems,
performing special functions, and correcting abnormal operating conditions. Selec­
tion of CRT display or printed output may be made through system software or by
manual intervention at the console.

The display console consists of a keyboard and CRT display unit, PAGEWRITER,
Day Clock display, and control and display panel, all of which share channel 0
of the CPU. The display console is the standard console for the UNIVA C 494
System. A detailed description of the display console is given in UNIVAC 494
Real-Time System Display Console Component Description, UP-7610 (current version) .

• Keyboard and CRT Display Unit

The keyboard and CRT display unit comprises a four- bank typewriter keyboard
for sending information to the CPU and a viewing screen component for display
of information from the CPU. The keyboard contains all of the necessary keys
and special symbols for encoding the 64 characters of the Fieldata code, and
eight interrupt keys for generating external interrupt signals (with a unique
status code for each key) for gaining access to the CPU, thus providing the
operator with more flexibility in program control than does the standard console.
Program control characters, limited sets of data, and messages indicating
operator initiation of certain procedures or operator response to CPU messages
may be input to the CPU through the console keyboard. The CRT component has
a 1024-character buffer memory and a disassembly register for receiving and
storing CPU messages after disassembly into six-bit character codes. The
CRT unit then reassembles the codes into 16-line, 64-character message display
formats, character addressable under program control. No direct communication
exists between the console keyboard and the CRT; all messages are handled
through the CPU. However, when a key is pressed, the corresponding character
is displayed on the CRT through cooperative action between the CPU and the
display console control program so that the input message may be edited before
its entry into the operative system.

The keyboard and CRT display unit also contains other controls and indicators
for monitoring and directing its functions.

• PAGEWRITER

The PAGEWRITER is an online printer unit, separate from the keyboard and
CRT display unit, and not in direct communication with either component. The
PAGEWRITER logs or records all transactions between the CPU or control
program and the operator, and is equipped to handle all of the characters and
symbols of the Fieldata code. The PAGEWRITER prints CPU replies to the
keyboard input, prints messages indicating system status or requests for
actions to be taken, and outputs other information as called for by the program
or the operator. Output messages are printed in the format 80 characters per
line (with horizontal spacing of 10 charac~ers per inch) and six lines per inch.
The printing rate is 25 characters per second.

31

32

The PAGEWRITER does not operate alltomatica11y or simultaneously with the
CRT display. Messages may be directed to the PAGE WRITER or to the CRT
display through the system software or by manual intervention at the console.

• Control and Display Panel

The control and display panel contains controls and indicators for monitoring
system operations and for making certain adjustments as desired, in the same
manner as the alternate console. Indicators and switches include Program Address
Counter, Disables, Modes, Faults, Select Jumps and Stops,Release Jumps and
Stops, System Controls, and Day Clock controls .

• The Day Clock display shows the time of day carried by the CPU in hours,
minutes, and hundredths of minutes, with controls on the control and indicator
panel. '

3.3. PRIMARY STORAGE

Primary storage, or main memory, is a major component of the UNIVAC 494 System,
separate from the CPU, and allocatable in the same manner as peripheral equipment.
Through efficient memory organization and deSign, in the interface with the CPU,
primary storage provides a high performance, immediate access facility for storage
and retrieval of instructions and data, and for accommodation of input/output buffer
areas.

Significant characteristics of primary storage include:

• 750 nanosecond read/restore time

• 65,536 or 131,072 30-bit word capacity

• Multiple word, single word, or partial word reference

• Parity checking/generating on all storage references

3.3.1. Storage Design

Primary storage is composed of 34-plane, coincident current, ferrite core arrays,
providing for 30-bit words with one parity bit for each half-word. Memory transactions
may transfer 60-bit double precision words, 30-bit whole words, IS-bit half-words, or
program selected bits of a word.

The primary storage unit is made up of independently accessible storage modules of
32,768-word capacity. Two modules are contained in one cabinet to form memory banks
providing 65,536-word ranges of addresses. Each module presents a continuous ad­
dressing structure to the CPU for increased processing efficiency. In normal system
operation, for decreaSing processing time, the memory banks use odd-even addreSSing,
with all odd .addresses in the 65,536-word range being referred to one module of a
bank and all even addresses being referred to the other (see Figure 3-7). In certain
applications, as for bypassing memory fault areas if necessary, straight addressing
can be selected manually, with all addresses, odd and even consecutively in a 32,768-
word range, being referred to one or the other module in the same bank.

3.3.2. Storage Configuration

Available storage configurations permit the use of one memory bank (cabinet contain­
ing two modules), providing the minimum system capacity of 65,536 words, or two
memory banks (four modules), providing maximum capacity of 131,072 words. The
growth increment from the minimum capacity is one memory bank.

3.3.3. Storage Modules

Storage modules are essentially passive elements which react with great speed and
efficiency to the demands of the CPU in furnishing random access core storage.
Each module contains the necessary controls and circuitry for performing the follow- -
ing functions:

Grant storage access to the CPU.

Accept an address from the CPU.

Store or retrieve a word at the address.

Check or generate parity on each access, and generate an interrupt signal to the
CPU if a parity error occurs.

Issue an acknowledgement signal indicating that a storage reference has been
completed.

Each module provides storage for 32,768 addressable words of 30 data bits, with
each word carrying a parity bit on a nonaddressable level for each half of the word.
With the exception of certain fixed locations reserved for system usage, all storage
areas are available to program assignments. Each storage module has the following
physical components:

• a 15-bit address register

• a 30-bit read/write register

• parity checking/generating circuits

• request! acknowledge circuits

• maintenance switches allowing the module to be removed for servicing

The 15-bit address register of each storage module provides a continuous addressing
structure of 32,768 words. The CPU generates a 17-bit address for each storage
reference, specifying which of 131,072 possible memory locations is involved. For
odd-even addressing, two of the address bits, 20 (representing the module) and 216

(representing the memory bank), are used by. the Memory Select Register (MSR) for
identification and selection of one or another of the four possible modules in the
memory configuration; for straight addressing, bits 216 and 215 , are used for the

memory bank and module, respectively. The remaining 15 bits are sent to the
address register of the selected module providing a unique set of addresses for
each module. This organization permits continuation of addressing from one module
to the next to attain the desired locations over the entire memory range (see Figure
3-7).

33

34

BANK 0 BANK 1

Module 0 Module 1 Module 2 Module 3

065,534 065,535 131,070 131,071

Even Odd Even Odd
Addresses Addresses Addresses Addresses
Only Only Only Only

000,000 000,001 065,536 065,537

Address Address Address Address
Form Form Form Form

Oxx .•• xx02 Oxx ... xx1 2 lxx .•. xx02 lxx ... xxI 2

20=0 20=1 20=0 20=1

216=0 216=0 216=1 216=1

ODD-EVEN ADDRESSING

BANK 0 BANK 1

Module 0 Module 1 Module 2 Module 3

032,767 065,535 98,303 131,071

Consecutive Consecutive Consecutive Consecutive
Addresses Addresses Addresses Addresses

000,000 032,768 65,536 98,304

Address Address Address Address
Form Form Form Form

00xx ... xx2 Olxx .•. xx2 10xx ... xx2 llxx ... xx2

216=0 216=0 216=1 216=1

215=0 215=1 215=0 215=1

STRAIGHT ADDRESSING

Figure 3-7. Memory Organization

Parity is checked (reading) or calculated (writing) on each 15- or 30-bit storage
access. If a parity error is' detected, the module issues a parity interrupt signal to
the CPU. The word in its incorrect form will be rewritten to memory, thereby
assuring that the word may again be located.

3.3.4. Primary Storage Interface

The interface between the CPU and primary storage is responsible for retrieving
and restoring data and instructions. The execution of each instruction by the CPU
may require two or more primary storage cycles, namely, an instruction cycle and
one or more fetch or result cycles as follows:

The speed and efficiency of memory transactions are enhanced by the ability of
the CPU to use independent paths to the storage modules, that is, two modules
may be cycled simultaneously. The capability of the storage modules to be cycled
independently is used to increase the frequency of use of facilities in memory
overlap and to promote processing performance, through interleaving, as in odd-even
addressing.

3.3.4.1. Overlap

Overlap occurs as the CPU requests the next sequential instruction word from
memory d~ring the last operand fetch or result storage cycle of the current in­
struction. If the next instruction lies in a memory module different from the
module of the current operand/result, the two words are retrieved from primary
storage in parallel. Overlap may be illustrated as follows:

TIME --...

The overlap technique may achieve up to a fifty percent performance increase over

other memory organization subject to the following conditions depending upon the
instruction involved (see Appendix A).

• If the current instruction is a read or store class instruction and a memory
reference is not required to obtain the operand (that is, a k-designator of 0, 4,
or 7), the next instruction is always retrieved during the operand cycle of the
current instruction.

• If the current instruc.tion is a read or store class instruction and the operand
cycle requires a memory reference (that is, a k-designator of 1, 2, 3, 5, or 6),
overlap occurs only if the current operand is in a memory module different from
that of the next sequential instruction.

• If the current instruction is a replace class instruction, overlap occurs when
the store address of the replace instruction is in a memory module different
from that of the next sequential instruction.

35

3&

• If the execution of the current instruction results in a jump or skip condition,
no gain in performance is achieved by the overlap feature because the next
sequential instruction (hardware, not program) is not the next instruction to be
executed; the next sequential instruction is discarded. The reading of the
instruction at the jump-to/skip-to address, is not initiated until completion of
the cycle to obtain the instruction which is discarded.

3.3.4.2. Interleave

Interleaving increases the probability of overlap which occurs when the current
operand and the next sequential instruction lie in different memory modules. In
the interleave technique (see odd-even addressing), two memory modules of
32,768 words each are merged so that all even addresses within 65,536 sequential
words are contained in one memory module, and all odd addresses are contained in
the other memory module. Thus, with the interleave technique, overlap is achieved
with significant frequency, so that data and instruction areas need not be separate
in order to take advantage of the overlap feature.

NOTE: Conclusions on the type of instruction to be used within a program should
not be necessarily drawn from the percentage gain described for overlap
and interleave techniques. The UNIVAC 494 instruction repertoire contains
many instructions which are equivalent to two separate but less powerful
instructions. For example, a replace instruction is equivalent to an enter
and store instruction. A load, store, or arithmetic operation plus a test
and conditional skip are combined in many individual instructions.

3.3.5. Preassigned Storage Addresses

A set of fixed memory locations is reserved for system usage in such functions as
information displays, interrupt subroutine entrance, lSI buffer control registers
(BCR), and clock data. The fixed memory locations are defined in Table 3-1.

ADDRESS

xOOOOO
xOOOOl
xOOOO2
xOOOO3
xOOOO4
xOOOO5
xOOOO6
xOOOO7

xOOO10
xOOOll
xOOO12
xOOO13
xOOO14
xOOO15
xOOO16
xOOO17

xOOO20
xOOO21
xOOO22
xOOO23
xOOO24
xOOO25
xOOO26
xOOO27

xOOO3{)
xOOO31

to xOOO37

xOOO40
xOOO41
xOOO42
xOOO43
xOOO44
xOOO45
xOOO46
xOOO47

FUNCTION

Illegal Instruction
Memory Protection or Timeout Interrupt
Power Loss Interrupt
Memory Parity Bank 0 Interrupt
Memory Parity Bank 1 ,Interrupt
BCW Parity Interrupt
I/O Data Parity Interrupt
Executive Return Interrupt

Floating Point Underflow Interrupt
Floating Point Overflow Interrupt
External Synchronization #1 Interrupt
External Synchronization #2 Interrupt
Real Time Clock Interrupt
Day Clock Interrupt
Day Clock Time
Real Time Clock

ESI External Interrupt
ES I Input Mon itor Interrupt
ESI Output Mon itor Interrupt
Memory Parity Bank 2 Interrupt
lSI External Interrupt
lSI Input Mon itor Interrupt
lSI Output Monitor Interrupt
Memory Parity Bank 3 Interrupt

Te,st and Set Interrupt
Not Used

Output BCW - Channel 0
Output BCW - Channell
Output BCW - Channel 2
Output BCW - Channel 3
Output BCW - Channe I 4
Output BCW - Channe I 5
Output BCW - Channe I 6
Output BCW - Channel 7

Table 3-1. Fixed Memory Locations
(Part 1 of 2)

37

ADDRESS

xOO050
xOO051
xOO052
xOO053
xOO054
xOOO55
xOOO56
xOO057

xOO060
xOOO61
xOO062
xOOO63
xOO064
xOO065
xOO066
xOO067

xOO070
to

xOOO77

xOOl00
xOOl0l
xOOl02
xOOl03
xOOl04
xOOl05
xOOl06
xOOl07

xOOll0
xOOlll
xOO112
xOO1l3
xOO1l4
xOO1l5
x00116
xOO1l7

xOO120
x00121
xOO122
x00123
x00124
x00125
x00126
xOO127

x = MSR

38

FUNCTION

Output BCW - Channel 8
Output BCW - Channel 9
Output BCW - Channel 10
Output BCW - Channel 11
Output BCW - Channe I 12
Output BCW - Channel 13
Output BCW - Channe I 14
Output BCW - Channel 15

Output BCW - Channel 16
Output BCW - Channel 17
Output BCW - Channel 18
Output BCW - Channel 19
Output BCW - Channel 20
Output BCW - Channel 21
Output BCW - Channel 22
Output BCW - Channel 23

Not Used

Input BCW - Channe I 0
Input BCW - Channel 1
Input BCW - Channel 2
Input BCW - Channe I 3
Input BCW - Channel 4
Input BCW - Channel 5
Input BCW - Channel 6
Input BCW - Channel 7

Input BCW - Channel 8
Input BCW - Channel 9
Input BCW - Channel 10
Input BCW - Channel 11
Input BCW - Channel 12
Input BCW - Channel 13
Input BCW - Channel 14
Input BCW - Channel 15

Input BCW - Channel 16
Input BCW - Channel 17
Input BCW - Channel 18
Input BCW - Channel 19
Input BCW - Channel 20
Input BCW - Channel 21
Input BCW - Channel 22
Input BCW - Channe I 23

Table 3-1. Fixed Memory Locations
(Part 2 of 2)

3.4. TRANSFER SWITCH

The transfer switch unit in an optional device which provides a means for switching
peripheral subsystems between CPU's. The switching is static rather than dynamic;
the subsystem is physically removed from the processor. Switching is accomplished
manually.

The switch unit may be used to take peripheral subsystems offline for maintenance
while switching standby subsystems to online condition.

The transfer switch may be used in an X, Y, or cascade configuration. Figure 3-8
illustrates these configurations.

X CONFIGURATION

CENTRAL
PROCESSOR

PERIPHERAL
SUBSYSTEM

Y CONFIGURATION

Figure 3-8. Transfer Switch Configurations

CASCADE CONFIGURATION

39

40

3.5. ON-SITE PERIPHERAL SUBSYSTEMS

On-site peripheral subsystems comprise one or more peripheral units of the same kind,
with the appropriate control unit(s), connected directly to the desired CPU input/output
channel(s). The peripheral subsystems perform diverse functions complementary to the
CPU according to the design characteristics of the peripheral equipment and the needs
of the system. The functions may include input/output, auxiliary storage, data prepar­
ation and comm unications, file handling, and such other activities as required.

The following types of peripheral subsystems are available for use on-site with the
UNIVAC 494 System:

• Random Access Storage Subsystems

• Magnetic Tape Subsystems

• Unit Record Subsystems

• Communication Subsystem

When an operating program requires access to a subsystem, the CPU issues control
signals which select the needed subsystem and initiate the desired a-ction. Program
execution by the CPU continues automatically until the subsystem has completed
the requested activity. The subsystem signals the CPU when the activity is completed,
and the CPU deals with the result of the action.

Each subsystem is controlled by a control unit which performs the following
functions:

- Interprets the control signals and instructions issued by the CPU.

- Effects the transfer of data to or from the selected unit and the CPU.

- Indicates the status or availability of the peripheral units to the CPU.

- Informs the CPU when errors or faults occur which affect the operation of the sub-
system.

3.5.1. Random Access Storage Subsystems

Random access .storage subsystems provide high speed auxiliary storage facilities
for program elements and libraries, sub~putines, and data which, for reasons of
economy and efficiency, may not be kept in primary storage, but which must be
called into the operating programs rapidly and/or often: as in program development
and control, and language translation operations. Available random access sub­
systems afford a variety of access times, transfer rates, and storage capacities to
meet the requirements of the individual user.

Each storage system comprises magnetic drum devices with read/write heads which
"fly" or £loa t on the boundary layer of air created by the rotation of the drum.

The following subsystems are included:

- FH-432 Magnetic Drum Subsystem

- FH-432/FH-1782 Magnetic Drum Subsystem

- FH-880 Magnetic Drum Subsystem

- FASTRAND II Mass Storage Subsystem

- F ASTRAND III Mass Storage Subsystem

• Control Units

Each subsystem has a control unites) which interfaces the subsystem with the
CPU, and which has the following principal functions:

Receives function words (control information) from the CPU, and translates this
information to control signals for the drum units.

Controls the orderly accessing of drum locations.

Assembles and disassembles data and control words for acceptance by the CPU
and drum units.

Requests and acknowledges data transfers, and synchronizes the flow of data
between the CPU and drum units.

Interprets signals from the drum units for both normal and abnormal conditions,
and notifies the CPU of the drum conditions.

3.5.1.1. FH-432 Magnetic Drum Subsystem

The FH-432 Magnetic Drum Subsystem (see Figure 3-9) is a high speed, large
capacity, random access storage medium consisting of one Type 6013 FH-432
Drum Control Unit (containing one FH-432 Drum Unit) and from two to eight Type
F0696 FH-432 Drum Units, or one Type 5012-02 FH-432/FH-1782 Control Unit
and up to eight Type 6016 FH-432 Drum Units (see 3.5.1.2). Each drum unit can
store 262,144 individually addressable 30-bit words wi th parity or the equivalent
of 1,310,720 alphanumeric cha racters. The average access time for any word in
the subsystem is 4.33 milliseconds.

Figure 3-9. FH-432 Magnetic Drum Subsystem

41

42

The FH-432 drum is a magnetic coated cylinder containing 432 recording tracks,
each equipped with a read/write head, of which 384 tracks are used for storing
data; the remaining tracks are used for spares and for timing purposes. Data and
parity bits are recorded on 128 three-track bands, each with a capacity of 2,048
words. Reading and writing functions occur in a three-bit parallel mode on the
three tracks of a band simultaneously at a maximum transfer rate of 240,000 words
or 1,200,000 characters per second.

The accuracy of data recording is verified by odd parity checking. When data is
recorded on the drum, three parity bits per word are generated by the control
unit and stored with the word. Parity is checked automatically when data is read
from the drum. If a parity error occurs, an external interrupt signal is generated.
and the CPU is notified of the address of the word in which the error was detected.

The control unit for the subsystem interfaces the FH-432 Drum Units to an I/O
channel of the CPU with principal functions as given in 3.5.1.

• Functions

The function repertoire of the FH-432 Drum Subsystem consists of the following:

Write

Terminate Without Interrupt

Terminate With Interrupt

Bootstrap Without Interrupt

Continuous Read

Search

Search Read

Bootstrap With Interrupt

Block Read

Block Search

Block Search Read

• Characteristics

Characteristics of the FH-432 Magnetic Drum Subsystem are given in the follow­
ing table. Detailed information may be found in UNIVAC 494 Real-Time System
FH-432 Magnetic Drum Subsystem Programmer/Operator Reference Manual,
UP-4102 (current version).

SPECIFICA TIONS
PARAMETERS

PER DRUM
MINIMUM MAXIMUM

CONFIGURATION CONFIGURA TION

Storage Capacity (30-bit words) 262,144 786,432 2,359,296

A Iphanumer ic Characters 1,310,720 3,932,160 11,796,480

Access Time

Minimum 120 microseconds

Average 4.33 milliseconds

Maximum 8.55 mill iseconds

Drum Speed 7120 RPM

Number of Read/Write Heads 432 (one per track)

Word Transfer Rate 240,000 words/second (maximum)

Character Transfer Rate 1,200,000 characters/second (maximum)

Number of Drums (per subsystem) 3 to 9

I/O Channels Required 1 channel

. ..

3.5.1.2. FH-432/FH-1782 Magnetic Drum Subsystem

The FH-432/FH-17~2 Magnetic Drum Subsystem (see Figure 3-10) is a high
speed, large capacity, random access storage medium consisting of one or two
Type 5012 Control Units, and from one to eight Type 6015 FH-1782 Drum Units
or Type 6016 FH-432 Drum Units, or a combination of both types not exceeding
eight drum units.

The hybrid subsystem provides both the fast access time of the FH-432 Drum
Subsystem and the large storage capabilities of the FH-1782 Drum Subsystem.
The combination affords nonvolatile random access storage with a maximum
transfer rate of 240,000 words per second, average access time as low as 4.33
milliseconds, and storage capacities as great as 2,097,152 data words per drum
unit.

43

44

Figure 3-10. FH-432/FH-1782 Magnetic Drum Subsystem

• Control Unit

The control unit interfaces the FH-432 and/or FH-1782 Drum Units to an I/O
channel of the CPU, and has the principal functions as given in 3.5.1.

With the use of two Type 5012 Control Units, fully simultaneous operation can
be achieved with this subsystem in a dual access configuration. One unit can
control the execution of any function on any drum while the other unit can
control any function on any other drum in the same subsystem. The two control
units" operating on separate CPU I/O channels, are completely independent,
providing backup capabilities.

The physical characteristics of the Type 6016 FH-432 Drum Unit are identical
to those of the Type F0696 FH-432 Drum Unit described in 3.5.1.1, with the
exception that the Type 6016 Drum Unit has 486 recording tracks, with a read/
write head for each.

The Type 6015 FH-1782 Drum Unit is a magnetic coated cylinder containing
1,890 recording tracks, each equipped with a read/write head, of which 1,556
are used for storing data; the remaining tracks are used for spares and for
timing purposes. Data and parity bits are recorded on 256 six-track bands
having a capacity of 8,192 words each, providing a total storage capacity of
2,097,152 words per drum. Reading and writing functions occur in a six-bit
parallel mode, simultaneously, at a maximum transfer rate of 240,000 words
or 1,200,000 characters per second.,. Each word is individually addressable with
an average access time of 17 milliseconds.

The accuracy of data recording is verified by odd parity checking. When data
is recorded on the drum, three parity bits per word are generated by the control
unit and stored with the word. The parity of each word is checked automatically
as it is read from the drum. If a parity error occurs, an external interrupt signal is
generated and sent to the CPU with a status code.

• Functions

The function repertoire of the FH-432/FH-1782 Magnetic Drum Subsystem con­
sists of the following:

- Automatic Bootstrap

- Continuous Write With Interrupt

- Continuous Write Without Interrupt

- Continuous Read With Interrupt

- Continuous Read Without Interrupt

- Block Read

- Block Search

- Block Search Read

- Read Early (parity error recovery)

- Read Late (parity error recovery)

- Search

- Search Read

- Send Angular Address

- Terminate With Interrupt

- Terminate Without Interrupt

45

46

• Characteristics

Characteristics of the FH-432 drum and FH-1782 drum are given in the following
table. Detailed information may be found in UNIVAC 494 Real-Time System
FH-432/FH-1782 Magnetic Drum Subsystem Programmer/Operator Reference,
UP-7630 (current version), and in UP-4102 (for the FH-432 drum) as previously
mentioned.

PARAMETERS SPECIFICATIONS

FH-432 DRUM FH-1782 DRUM

Storage Capacity (words per drum) 262,144 2,097,152

Drum Speed 7120 RPM 1770 RPM

Number of Read/Write Heads 486 1890

Recording Density (bits per inch) 889 750

Word Transfer Rate 240,000 words/second (maximum)

Character Transfer Rate 1,200,000 characters/second (maximum)

Access Time

Minimum 120 microseconds 200 microseconds

Average 4.33 mill iseconds 17 mill iseconds

Maximum 8.55 mill iseconds 34 milliseconds

Number of Drums (per subsystem) 8 maximum - any combination

I/O Channels Required 1 or 2 ch anne I s (0 ne for each contro I un it)

3.5.1.3. FH-880 Magnetic Drum Subsystem

The FH-880 Magnetic Drum Subsystem (see Figure 3-11) is a large capacity,
word-addressable, random access storage medium consisting of one Type 8103
Control Unit and from one to eight Type 7304-01 FH-880 Magnetic Drum Cabinets.
Each drum has the capacity to store 786,432 30-bit words plus parity, or the
equivalent to 3,932,160 alphanumeric characters. The average access time for
any word in the subsystem is 17 millisecQnds.

Figure 3-17. FH-880 Magnetic Drum Subsystem

The FH-880 drum is a magnetic coated cylinder containing 880 recording tracks,
each equipped with a read/write head, of which 768 are active data tracks, 32
are parity tracks, and the remainder are timing tracks and spares. The 768 tracks
are organized into 128 six-track bands, which are divided into 2,048 Angular
Addresses that are subdivided into three Angular Sections, each capable of
storing one 30-bit word.

When a word is written on the drum, the word is divided into five groups of six
data bits each, with each group being recorded in parallel mode on the six
tracks of a band, starting with bit positions 29 through 24 of the data word
followed by bit positions 23 through 18, and so on. A parity bit is generated so
that the total number of 1 bits recorded (data bits plus the parity bit) is an odd
number. The parity bit is recorded in a parity track location which is internally
associated with the data word location.

47

48

When a word is read from the drum, groups of six data bits each are read in
parallel mode from the band and are assembled to form a 30-bit word, the first
group in bit positions 29 through 24, the second in bit positions 23 through 18,
and so forth. An odd parity is calculated and checked against the previously
recorded parity bit. If the parity comparison is correct, the assembled data word
is made available to the CPU; if a parity error occurs, an external interrupt signal
is sent together with a status word to the CPU.

• Control Unit

The control unit is connected to both an I/O channel and the individual drum
units, and has the principal functions, as given in 3.5.1.

• Functions

The function repertoire of the FH-880 Drum Subsystem consists of the following:

- Write

- Terminate Without Interrupt

- Terminate With Interrupt

- Bootstrap Without Interrupt

- Continuous Read

- Search

- Search Read

- Bootstrap With Interrupt

- Block Read

- Block Search

- Block Search Read

• Characteristics

Characteristics of the FH-880 Magnetic Drum Subsystem are given in the follow­
ing table. Detailed information may be found in UNIVAC 491/492/494 Real-Time
System FH-880 Magnetic Drum Subsystem Programmer/Operator Reference
Manual, UP-7S33 (current version).

PARAMETERS SPECIFICATIONS

Storage Capacity (per drum)

30-bit Words 786,432

Alphanumeric Characters 3,932,160'

Access Time

Minimum 160 microseconds

Average 17 milliseconds

Maximum 34 miiiiseconds

Drum Speed 1770 RPM

Number of Read/Write Heads 880 (one per track)

Word Transfer Rate 60,000 words/second (maximum)

Character Transfer Rate 300,000 characters/second (maximum)

Number of Drums (per subsystem) 1 to 8

I/O Channels Required 1 channel

3.5.1.4. FASTRAND II Subsystem

The FASTRAND II Subsystem is a large capacity, sector-addressable, random access
storage medium consisting of one Type 5009 F ASTRAND Control Unit and from one
to eight Type 6010-00 FASTRAND II Mass Storage Units (see Figure 3-12). Each
mass storage unit can store up to 25,952,256 words of 30 data bits plus parity charac­
ters, or 129,761,280 alphanumeric characters. The average access time for any word
in the subsystem is 92 milliseconds.

Each FASTRAND II Mass Storage Unit contains two magnetic drums, mounted one
above the other, and having a total of 13,068 tracks around the drum surfaces. There

are 32 groups of 192 tracks on e~ch drum, totalling 6,534 tracks, of which 6,144
are used for storing data; the remaining 390 tracks are used for spares and for
special hardware timing purposes. Data tracks are divided into 64 sectors, with
a capacity of 33 words each. The read/write functions occur in bit-serial mode
at a maximum transfer rate of 37,040 words or 185,200 characters per second.

The accuracy of data recording is verified by odd longitudinal parity checking. A
parity character is produced 'by the control unit on the basis of the da ta recorded
within a particular sector and is then recorded at the end of the sector. When
data is read, pari ty is checked automa tically. If a parity error occurs, an appro­
priate status word and external interrupt signal are sent to the CPU.

49

50

The basic configuration of the F ASTRAND II Mass Storage Subsystem can use a
single I/O channel. The storage capacity of the subsystem can be expanded by
the optional addition of from one to seven mass storage units on the channel,
providing a maximum capacity of 207,618,048 30-bit words .

• Control Unit

The FASTRAND control unit interfaces the FASTRAND II unit with an I/O
channel of the CPU and has the principal functions, given in 3.5.1.

A special dual channel FASTRAND control unit is available, permitting com­
munication with the CPU over two I/O channels and access to two storage
units simultaneously, thereby providing reading or writing on two units, or
reading on one unit and writing on another at the same. time. Simultaneous
reading or writing from the same storage unit is impossible~ If both control
units a ttempt to gain access to the same unit simultaneously, one control
unit will have priority over the other. If one control unit gains access before
the other, the second control unit waits until the first is finished.

Figure 3-12. Type 6010-00 FASTRAND 11 Moss Storage Unit

There are 40 read/write heads used with each drum (or 80 heads per mass storage
unit). The spare and timing heads are mounted in fixed positions; each head has
access to only one track. The remaining 32 data heads and two special purpose
heads are movable on a boom that has 192 positions, giving each movable head
access to 192 tracks.

Each data track is divided into 64 sectors. Each sector contains 33 data words
of 30 bits each. When data words are written on the drum, bits are serially recorded
in the track. After the last word, a sentinel and parity character are written in the
appropriate place within the sector. The parity character is the result obtained
from the exclusive OR of all 165 data characters and the sentinel character. When
a sector of information is read from the drum, data bits are read serially and trans­
ferred to the control unit where parity is checked. If parity errors occur, an external
interrupt signal and status code are sent to the CPU .

• Functions

The function repertoire of the F ASTRAND II Subsystem consists of the following:

- Write With Interrupt

- Position Without Interrupt

- Terminate Without Interrupt

- Position With Interrupt

- Terminate With Interrupt

- Read

- Data Recovery Read

- Search First Word (long)

- Search First Word (short)

- Search All Words (long)

- Search All Words (short)

• Optional Capabilities

Optional features which may be obtained with the F ASTRAND II Subsystem are
Fastbands and write lockout.

- Fastbands

Fastbands are 24 additional data tracks at the end of the drums which are
accessed by fixed position heads and which are used for storing data to which
rapid access is required. Since no boom movement is required to position the
heads, the access time for the Fastbands is usually reduced to the drum latency
time. However; this reduced timing is effective only if a head boom positioning
operation is not in process on the specified mass storage unit, in which case
an additional delay of up to 86 milliseconds is added to the access time. Fast­
band tracks are exactly the same as regular data tra'cks except for reduced
access time. The Fastband storage capacity of a F ASTRAND drum unit is
50,688 words. Total Fastband capacity of a subsystem is 405,504 words.

- Write Lockout

The write lockout option protects selected drum tracks from erasure by over­
writing, thereby preventing the accidental loss of permanent data. A FAST­
RAND unit, so equipped, contains a key-controlled multiposition switch which,
if not in the OFF position, prevents writing on 1, 2, 4, 8, 16, 32, or 192 con­
tiguous tracks under each head, beginning with track 000. This feature, however,
does not interfere with read operations.

51

52

• Characteristics

Characteristics of the F ASTRAND II Subsystem are summarized in the following
table. Detailed information is given in UNIVAC 491/492/494 FASTRAND Mass
Storage Subsystem Programmer/Operator Reference Manual, U P-7528 (current version).

PARAMETERS SPECIFICATIONS

Storage Capacity (per FASTRAND II Mass 25,952,256 words (129,761,280 characters)
Storage Unit)

Record ing Mode Bit-serial

Latency Time
Average 35 milliseconds
Maximum 70 mill iseconds

Head Switching Time 20 microseconds

Head Boom Positioning Time
Minimum (one position move) 30 milliseconds
Average 57 milliseconds
Maximum 86 milliseconds

Access Time*
Average 92 milliseconds
Maximum 156 mi II iseconds

Effective Transfer Rate 31,000 ~ords (155,000 characters) per
for Multisector Operation second

Maximum Transfer Rate 37,000 words (185,000 characters) per
(within a Sector) second

I/O Channels Required
1 channel for nonsimultaneous operation
2 channels for simultaneous operation

Drum Speed 880 RPM

Number of Data Read/Write Heads (per 64 heads
FASTRAND II Mass Storage Unit)

Number of FASTRAND II Mass Storage 1 to 8
Units Per Subsystem

Number of FASTRAND Control Units 1 for nonsimultaneous operation

per Subsystem 2 or 2-channel unit for simultaneous
operation

Number of Fastband Heads per Mass 24

Storage Unit

Number of Fastband Tracks per Mass 24
Storage Unit

Fastband Storage Capacity per Mass 50,688 words
Storage Unit (253,440 characters)

Mean Access Time 35 milliseconds

Maximum Access Time 70 milliseconds

* Access Time: Latency Time Plus Head Boom Pos itioning Time.

3.5.1.5. FASTRAND III Subsystem

The FASTRAND III Subsystem is a large capacity, sector-addressable, random access
storage medium consisting of one Type 5009 FASTRAND Control Unit and one to
eight Type 6010-10 FASTRAND III Mass Storage Units. Each mass storage unit can
store up to 38,928,384 words of 30 data bits plus parity characters. The average
access time for any word in the subsystem is 92 milliseconds.

The FASTRAND III Subsystem has been developed to provide greater online storage
capacity than the FASTRAND II Subsystem (see 3.5.1.4). The FASTRAND III Mass
Storage Unit has the same general and physical characteristics, and provides the
same functions, as the F ASTRAND II unit; moreover, these functions have been
generally enhanced and the data storage capacity increased by 50 percent. The
F ASTRAND III unit may be used to replace the F ASTRAND II unit in existing
configurations for promoting system capabilities without programming change; FAST­
RAND III and FASTRAND II units may not, however, be intermixed in the same sub­
system.

The higher capacity and corresponding increase in data transfer rate for the FAST­
RAND III is developed through incorporation of a greater number of sectors on the
same number of tracks, 96 sectors as opposed to 64 sectors, and a higher recording
density, 1600 bits per inch rather than 1000 bits per inch, than for the F ASTRAND
II. Drum speeds and average access times for both units remain the same. However,
because of the increase in data available with each drum revolution, the size of
the index tables is reduced accordingly.

The basic configuration of the F ASTRAND III Subsystem can use a single I/O
channel. The storage capacity of the subsystem can be expanded by the optional
addition of one to seven mass storage units on the channel, providing a maximum
storage capacity of 311,427,072 30-bit words.

53

54

• Control Unit

The FASTRAND control unit for the FASTRAND III Subsystem has the same
functions as for the FASTRAND II Subsystem, with the dual channel feature
also available.

• Functions

The function repertoire of the F ASTRAND III Subsystem is the same as that of
the FASTRAND II Subsystem.

• Optional Capabilities

Optional features which may be obtained with the FASTRAND III Subsystem are
Fastbands and write lockout.

- Fastbands

The increased sector density of the F ASTRAND III results in a 50 percent
increase in the amount of data stored in the 24 tracks of the Fastband area.
However, the access time of 35 milliseconds remains the same as for FAST­
RAND II.

- Write Lockout

The number of tracks which can be locked out for FASTRAND III are the same
as for FASTRAND II. However, as more data is contained on each track, one
and one-half times as much data is under lockout protection on F ASTRAND
III.

• Characteristics

Characteristics of the F ASTRAND III Subsystem are summarized in the following
ta ble.

PARAMETERS SPECIFICATIONS

Storage Capacity (per FASTRAND III Mass Storage 38,928,384 words (194,641,920 characters)
Unit)

Recording Mode Bit-serial

Latency Time
Average 35 milliseconds
Maximum 70 milliseconds

Head Switching Time 20 microseconds

Head Boom Positioning Time
Minimum (one position move) 30 milliseconds
Average 57 milliseconds
Maximum 86 milliseconds

Access Time*
Average 92 mill iseconds
Maximum 156 milliseconds

Effective Transfer Rate 45,257 words (226,283 characters) per
for Multisector Operation second

Maximum Transfer Rate 55,560 words (277 ,800 characters) per
(within a Sector) second

I/O Channels Required 1 channel for nonsimultaneous
operation
2 channels for simultaneous
operation

Drum Speed 880 RPM

Number of Data Read/Write Heads (per 64 heads
FASTRAND III Mass Storage Unit)

Number of FASTRAND III Mass Storage 1 to 8
Units per Subsystem

Number of FASTRAND Control Units per 1 for nonsimultaneous operation
Subsystem 2 or 2-channel unit for simultaneous

operation

Number of Fastband Heads per Mass Storag.e 24
Unit

Number of Fastband Tracks per Mass Storage 24
Unit

Fastband Storage Capacity per Mass Storage 76,032 words
Unit (380,160 characters)

Mean Access Time 35 milliseconds

Maximum Access Time 70 milliseconds

* Access Time: Latency Time Plus Head Boom Positioning Time.

55

56

3.5.2. Magnetic Tape Subsystems

Magnetic tape subsystems provide high speed auxiliary storage media for program
elements and libraries, subroutines, and data which for various reasons may not
be kept in random access storage and which may be necessarily brought as input/
output, sort/merge, and file maintenance operations. Magnetic tape subsystems
consist of one or two Type 5008 Control Units, standard, or standard and auxiliary,
(see Figure 3-13) and 1 to 16 Type 0859 UNISERVO VIII C or Type 0858 UNISERVO
VI C Magnetic Tape Units, connected to either a compatible or a normal I/O channel
of the CPU. The UNISERVO VIII C and VI C units ha ve the same functions, the
difference being in appearance and timing, that is, tape speed, start/stop/time, and
other functions, and may be used in various combinations according to system con­
figuration design, and control unit options, in simultaneous or nonsimultaneous mode
operation.

Figure 3-13. Standard and Auxiliary Control Units for Simultaneous
Operation Magnetic Tape Subsystem

• Control Unit

The control unit interfaces the magnetic tape units with the CPU and has the
following principal functions:

- Receives function words (control information) from the CPU and translates
this information into control signals for the magnetic tape units.

- Requests and acknowledges data transfers, initiates tape movement on the
selected unit, and handles the data transfers and checking required.

- Assembles and disassembles data and control words for the CPU and magnetic
tape units.

- Sends a status code to the CPU indicating the completion or result of sub­
system activity and the condition of the subsystem.

In the nonsimultaneous mode of operation, the standard control unit is used, controlling
all of the rna gnetic tape units in the subsystem through one I/O channel. In the s imul­
taneous mode of operation, the standard control unit is connected to one I/O channel
and the auxiliary control unit is connected to another or two standard control units
may be used, each connected to its own I/O channel. In either case, both control
units are connected to all magnetic tape units in the subsystem, permitting all sub­
system units to be accessed from two I/O channels.

Simultaneous operation permits write functions on one magnetic tape unit in the system
through an I/O channel at the same time as read functions on another magnetic tape
unit in the same subsystem through another I/O channel.

During the execution of a write function, the control unit requests 30-bit data words
from the CPU, disassembles the words received into 6-bit groups, adds the appropriate
parity bit to each group, and sends the resultant 7-bit groups to be written on the
selected magnetic tape unit. The control unit also checks each write operation through
readback from the tape unit read head for proper lateral parity, and checks for provision
of even parity for each track by the longitudinal check frame.

During the execution of a read function, the control unit checks each 7 -bit frame read
from tape for proper parity, strips off the parity bit, assembles the resultant 6-bit
groups into 30-bit words, and makes each word available to the CPU. The control
unit also checks for provision of even parity for each track by the longitudinal check
frame .

• Functions

The magnetic tape subsystems are capable of performing the following functions:

- Write

- Skip/Write

- Read Backward

- Read Forward'

- Bootstrap

- Rewind To Load Point

- Rewind With Interlock

57

58

• Optional Features

Optional features which may be included in the Magnetic Tape Subsystem are the
translate, 9-track format, and the UNISERVO VI C feature.

- Translate

The optional translate feature provides the translation hardware which relieves
the program of the time- consuming task of translating from a six-bit processor
code to a tape code for equipment which utilizes different six-bit codes to
represent the various cha racters. The translate feature also provides hardware
translation from tape code to internal code. The eotion is available for both
nonsimultaneous and simultaneous operations.

- 9-Track Format

The optional 9-track format feature provides ability for reading tapes prepared
on IBM 2400 Series magnetic tape configuration at 800 bytes per inch and for
writing tapes which can be read on such equipment. The 9-track feature affords
increased data transfer rates and permits a configuration which includes both
9-track tape units and 7-track tape units. The 9-track format is available for
both non simultaneous and simultaneous operations.

- UNISERVO VI C Feature

The optional UNISERVO VI C feature is a hardware addition to the Magnetic
Tape Subsystem control unit which permits UNISERVO VI C Magnetic Tape
Units to be included in the same subsystem as the UNISERVO VIII C.

3.5.2.1. UNISERVO VIII C Magnetic Tape Subsystem

The UNISERVO VIII C Magnetic Tape Unit (see Figure 3-14) operates at 120
inches per second for read and write operations and at 240 inches per second for
rewind operations.

Figure 3-14. UNISERVO VIII C Magnetic Tape Units

Each UNISERVO VIII C Magnetic Tape Unit includes an operator's Control!
Indicator Panel, a tape supply reel hub, a permanently mounted tape take-up
reel, a photoelectric reflective marker detection system, a 7- or 9-track read/
write head, an erase head, and a write enable/disable facility.

• Characteristics

Characteristics of the UNISERVO VIII C Magnetic Tape Unit are given in
the following table. Detailed information may be found in UNIVAC 491/492/494
Real-Time System UNISERVO VIII C Magnetic Tape Subsystem Programmer/
Operator Reference Manual, UP-7523 (current version).

PARAMETERS SPECIF ICAT IONS

Number of Units per Subsystem 1 - 16

Tape Handling Speed 120 inches per second for data transfer
operations

Rec ord i ng De ns it ies 200, 556, or 800 frames per inch

Transfer Rates

200 frames per inch 24,000 frames per second
556 frames per inch 66,666 frames per second
800 frames per inch 96,000 frames per second

Rewind Speed 240 inches per second

Rewind Time (2400 foot reel of tape) 2.0 minutes

Tape Reversal Delay 12.5 mi lIiseconds

Interblock Gap Size .75 inches (7 channel)
.60 inches (9 channel)

Tolera~ce +.16 inch -.06 inch (7 channel)
+.15 inch -.1 inch (9 channel)

Start Time 2.5 mi II iseconds
Start Distance .10 - .19 inch

Stop Time 2.5 milliseconds
Stop Distance .11 - .16 inch

Tape Width 0.5 inches

Tape Thickness 1.5 mils

Tape Length 2400 feet

B lock Length variable

Channels on Tape 7 channels: 6 data, 1 parity
9 channels: 8 data, 1 parity

Read/Write Operation Read in forward or backward direction;
Write in forward direction

Compatibility Ability to read or write tapes in
Binary Coded Decimal (BCD) format

Write Enable Ring Manua Ily inserted ring in the tape
supply rAAI enab les the write
operation

59

60

3.5.2.2. UNISERVO VI C Magnetic Tape Subsystem

The UNISERVO VI C Magnetic Tape Unit (see Figure 3-15) operates at 42.7
inches per second for read and write operations and at 160 inches per second
for rewind operations. The UNISERVO VI C has two basic forms: a master unit
and a slave unit, which are identical in external appearance. A master unit
contains a power supply unit and electronic circuitry which are also shared by a
maximum of three sla ve units, with the group being referred to as a quad.

Figure 3-15. UN/SERVO V/ C Magnetic Tape Units

The master unit used in a simultaneous operation subsystem provides for con­
current communication between the two control units in the subsystem and any
two tape units in the quad. The slave units used in a nonsimultaneous operation
subsystem are identical to the slave units used in a simultaneous operation sub­
system.

Each UNISERVO VI C Magnetic Tape Unit includes an operator's Control Panel,
a tape supply reel hub, a permanently mounted tape take-up reel, a photoelectric
reflective marker detection system, a 7- or 9-track read/write head, an erase head,
and a write enable/disable facility •

• Characteristics

Characteristics of the UNISERVO VI C Magnetic Tape Unit are given in the

following table. Detailed information may be found in UNIVAC 491/492/494
Real-Time System UNISERVO VI C Magnetic Tape Subsystems Programmer/
Operator Reference Manual, UP-4101 (current version).

PARAMETERS SPECIFICATIONS

Number of Units per Subsystem 1 - 16

Tape Handling Speed 42.7 inches per second

Record ing Dens ities 200, 556, or 800 frames per inch

Transfer Rates
200 frames per inch 8,500 frames per second
556 frames per inch 23,720 frames per second
800 frames per inch 34,160 frames per second

Rew ind Speed 160 inches per second

Rewind Time (2400 foot reel of tape) 3.0 minutes

Tape Reversal Delay 25.0 milliseconds

Interblock Gap Size 0.75 inches (7 channel)
0.60 inches (9 channel)

Tolerance +.16 inches - .06 inches (7 channel)
+.15 inches - .1 inch (9 channel)

, Start Time 7.0 mi II iseconds
Start 0 istance .10 - .15 inches

Stop Time 5.0 mill iseconds
Stop 0 istance .09 - .16 inches

Tape Width 0.5 inches

Tape Thickness 1.5 mils

Tape Length 2400 feet

Block Length var iable

Channels on Tape 7 channel s: 6 data, 1 pa rity
9 channels: 6 data, 1 parity

Read/Wr ite Operation Read in forward or backward direction;
Write in forward direction

Compatibility Ability to read or write tapes in Binary
Coded Decimal (BCD) format

Wr ite Enable Ring Manually inserted ring in the tape
supply reel enables the write operation

61

62

3.5.3. Unit Record Subsystems

Unit record subsystems provide facilities for preparation, input, output, display, and
storage of information according to the design functions of the subsystem. Each
subsystem is governed by a control unit which is connected to an I/O channel of
the CPU.

The unit record subsystems available include the following:

• The High Speed Printer Subsystem, which furnishes capability for hard copy
printouts of program listings and program results.

• The Punched Card Subsystem, which prepares and submits input data and provides
punched card output of program listings and program res ults.

• The UNIVAC 1004 System, which is a satellite computer system that includes
peripheral devices for input and output of data to the UNIVAC 494 CPU. The
UNIVAC 1004 System uses its capabilities as a computer for performing certain
anc.illary functions such as editing, arithmetic, and logical operations on data
during transfer.

• The UNIVAC 9300 System is a satellite computer system that includes peripheral
devices for input and output of data to the UNIVAC 494 CPU. The UNIVAC 9300
System uses its capabilities as a computer for performing ancillary functions such
as editing, arithmetic, and logical operations on data during transfer. The system
provides faster, more flexible, and more powe rful processing facilities than the
UNIVAC 1004 System.

3.5.3.1. High Speed Printer Subsystem

Figure 3-16. High Speed Printer

The High Speed Printer Subsystem is an output unit which is capable of print­
ing single or multiple copies of data. Each line of output data may contain up
to 132 printed characters.

The subsystem comprises a High Speed Printer (see Figure 3-16), Type 0755,
or 0758, connected to a High Speed Printer Control Unit, Type 8120-02 or Type
5011 (for Type 0758 only). The Type 0755 High Speed Printer is capable of
printing from 700 to 922 lines per minute; Type 0758 High Speed Printer is
capable of printing from 1200 to 1600 lines per minute. The printing rate depends
upon the character set to be printed. The full character set is printed at the
lower speed. The maximum rate is attained by printing an alphanumeric subset
of the complete character set.

The printer contains 63 printable characters - the 26 letters of the alphabet, the
ten numerals, and 27 special characters. Different symbols may be factory supplied
upon order •

• High Speed Printer Control Unit

The high speed printer control unit may be connected to either a normal or
compatible I/O channel of the CPU. Output information is routed by the CPU
through the printer control unit to the printer. The printer control unit contains
a 132-character core buffer for accumulating a full line of information before
printing.

The control unit governs all the operations of the High Speed Printer Subsystem,
and has the following principal functions:

- Receives function words from the CPU and translates them into control signals
for the printer.

- Requests and acknowledges data transfers, and synchronizes the flow of data
between the processor and the printer.

- Accumulates a line of print in its buffer memory from the data transmitted by
the processor.

- Interprets signals, both normal and abnormal, from the printer and notifies the
processor of printer and control unit conditions •

• Characteristics

Characteristics of the High Speed Printer Subsystem are summarized in the
following table. Additional information is contained in the UNIVAC 491/492/494
Real-Time Systems High Speed Printer Subsystem Programmer/Operator Reference
Manual, UP-7571 (current version).

63

64

PARAMETERS

Pr inting Speed
(with single-line spacing)

Type 0755

Type 0758

Line Spac ing Speed
Type, 0755

Type 0758

Characters Per Line

Spac ing of Characters

Ribbon Feed

Type of Ribbon

Vertica I Line Spac ing

Number of Characters

Pr int Format

Paper Forms

Paper Container

*Trademark of DuPont Corporation

SPECIFICATIONS

700-920 lines per minute, depending upon
character set pr inted.
1200-1600 lines per minute, depending
upon character set pr inted.

20 ms for spac ing first line and for spac ing
each subsequent line as follows:

8 ms at 6 lines per inch
6 ms at 8 lines per inch

11.5 ms for spac ing first line and for
spac ing each subsequent line as follows:

5.1 ms at 6 lines per inch
5.7 ms at 8 lines per inch

132 characters (inc luding spaces) per line.

0.1 inch along print line.

Bidirectional, self-reversing, self­
correcting.

Fabric ribbon interchangeable with carbon
Mylar* ribbon (optional) for "one-time"
operation.

Manually se lected. Either 6 I ines per
inch or 8 lines per inch.

Up to 63 different characters: standard
font consists of alphabetic characters A-Z,
numeric characters 0-9, 27 punctuation marks
and symbols. Modified fonts available upon
request.

Full print width of 132 characters can be
placed anywhere on 16.5 inch form. With 22
inch width form, only central 13.2 inch portion
can be used. Format var iation under fu II
control of programming.

Continuous forms with standard edge sprocket
holes from 4 to 22 inches in width. Carbons
may be attached or unattached with multicopy
forms up to a maximum of six parts. Recommend­
ed pack thickness up to .0155 inch for optimum
print quality.

Maximum dimensions accommodated entirely
within pase of machine: 16 inches long, and
22.5 inches deep.

3.5.3.2. Punched Card Subsystem

The Punched Card Subsystem is an input/output system consisting of a Type
0706 Card Reader, and/or a Type 0600 Card Punch, and a Type 5010-01 Card

Control Unit. The control unit communicates with the CPU, and controls the
operation of both the card reader and the card punch.

The card reader senses 80-column data at the rate of 900 cards per minute
maximum, and transfers the data, column-by-column, to the card control unit.

The card punch receives data from the card control unit in the card image
format, and punches row-by-row, and stacks cards at the maximum rate of
300 cards per minute.

The control unit affords,the sensing and punching of data for 80-column cards
in the following formats:

• Translate - Each successive card column represents a character, or six
bits of a 30-bit word, providing for 16 5-cha racter data words per card.

• Card Image by Column - Each successive two and one-half card columns
represent a 30-bit data word, providing for 32 words per card.

• Card Image by Row - Each card row represents two successive 30-bit data
words and a third word with data in the 20 most significant bit positions,
providing for 36 words per card (the least significant 10 bits of 12 words
will be zerofilled on subsequent reading and ignored on punching).

The components of the Punched Card Subsystem are described in the following
paragraphs. More information may be obtained from UNIVAC 491/492/494 Real­
Time System Punched Card Programmer/Operator Reference Manual, UP-7S22
(current version).

• Card Control Unit

The card control unit decodes function words that are transmitted by the
CPU as instructions for the card reader or the card punch. The control
unit includes a buffer memory which collects the data characters read by
the card reader, and translates and sends the information to the CPU. In
the same way, data from the CPU is translated by the card control unit
and sent to the card punch.

The card control unit governs all the operations of the Punched Card Subsystem,
and has the following principal functions:

- Receives, from the CPU, function words that condition and prepare the sub~
system for different modes of operation and for data handling.

- Requests and acknowledges data transfers, and synchronizes the flow of
data between the CPU and the card reader or card punch.

- Accumulates the data to be punched, or the data being read from cards, in its
buffer memory.

- Interprets signals, both normal and abnormal, from the card reader or card

punch and notifies the CPU of conditions wi thin these units.

65

66

• Card Reader

The card reader, shown in Figure 3-17, reads cards into the buffer memory of
the Card Control Unit at a rate of up to 900 cards per minute, and stacks the
cards in the same order as originally fed. The card reader is equipped with a
control panel which is divided into two areas: the operator's control panel
which initiates and monitors operation, and the diagnostic panel which indicates
malfunctions.

Figure 3-17. Type 0706 Card Reader

• Card Punch

The card punch shown in Figure 3-18, feeds, punches, post-punch reads, and
stacks 80-column cards at a maximum rate of 300 cards per minute on command
from the CPU. The card punch is equipped with a control panel which is
divided into two areas: the operator's control panel which initiates and monitors
operation, and the diagnostic panel which indicates malfunctions.

Figure 3-18. Type 0600 Card Punch

• Characteristics

Punch Card Subsystem characteristics are summarized in the following table.
Detailed information may be found in UNIVA.C 491/492/494 Real-Time System
Punched Card Programmer/Operator Reference Manual, UP-7S22 (current version).

PARAMETERS

Card Orientation
Card Rate
Card Cycle

Input Hopper Capacity
Read Station Sens ing
Output Stacker Capac ity

Stacker - Normal
Stacker - Error

Card Orientation
Card Rate
Card Cycle

Input Hopper Capacity
Punch Station Punching
Read Check Station Sens ing
Output Stacker Capacity

Output Stacker - Normal
Output Stacker - Select

SPECIF ICA TlONS

TYPE 0706 CARD READER

Fed face down, 9-edge leading
900 cards per minute (max imum)
66.6 milliseconds per card cycle
at 900 cpm

300 cards
Column-by-column

2100 cards
100 cards

TYPE 0600 CARD PUNCH

Fed face down, 9-edge lead ing
300 cards per minute (maximum)
200 milliseconds per card cycle at
300 cpm
1000 cards
Row-by. row
Row-by-row

850 cards
850 cards

67

68

3.5.3.3. UNIVAC 1004 System

The UNIVAC 1004 System is a complete data processing system, with its own
peripheral units, which may be used online with the UNIVAC 494 System as a
peripheral subsystem to provide input/output facilities and to perform supplementary
processing of the transfer data.

The UNIVAC 1004 System shown in Figure 3-19, is a powerful processing unit
in its own right, with arithmetic, logical, and editing capabilities, allied to a
modular 961-character' core storage. Standard peripheral units are a 615 cpm card
reader, and a high speed printer operating at 600 lpm with a 63-character set and
132-character print line width.

Figure 3-79. UN/VA C 7004 System

The subsystem may be used online to the UNIVAC 494 CPU by the inclusion of
the U ni versal Interface Adapter. The adapter must include the 30-bit word transfer
option and the External Interrupt feature, for utilizing the full capability of the
peripheral subsystem.

Optional features supported by software are: a card punch (200 cards per minute),
a paper tape reader (400 characters per second), and a paper tape punch (110
characters per second).

A special plugboard, called the OMEGA plugboard, is required when the subsystem
is used online. The UNIVAC 1004 Subsystem retains its freestanding processing
power when used in this configuration. At any time, the 1004 Subsystem can be
switched to offline mode, and it then operates as an independent computer.

• Characteristics

UNIVAC 1004 Subsystem characteristics are summarized in the following table.
Detailed information may be obtained in UNIVAC 1004 Card Processor, 80 Column,
UT-2543 (current version) and UNIV A.C 494 Real-Time System Online 1004
Program Programmer/Operator Reference Manual, UP-7575 (current version).

PARAMETERS SPECIFICATIONS

REQUIRED FEATURES

External Interrupt
Punch Stacker Se lect (w ith Card Punch)
30-bit Word Transfer Interface

CARD OPERATIONS

Card Read ing Speed 615 cpm
Card Punching Speed 200 cpm
Card Read ing Modes SO-column Holler ith and

column binary
Card Punching Modes SO-column Hollerith and

column binary

PRINT OPERATIONS

Printing Speed 600 Ipm
Maximum Number of Characters per Line 132
Number of Printable Characters 63 (26 alphabetic, 10 numeric, and

27 special characters) plus space
Lines per Inch (Vertical) 6 or S (manually selected)

PAPER TAPE OPERATIONS

Read ing Rate 400 characters per second
Punching Rate 110 characters per second
Number of Channels 5, 6, 7, or S
Characters per Inch 10
Tape Speed 40 inches per second read ing

11 inches per second punching
Tape Width 11/16,7/8, or 1 inch

69

70

3.5.3.4. UNIVAC 9300 System

The UNIVAC 9300 System is a complete, internally programmed, data processing
system with its own peripheral subsystems, which may be used online with the
UNIVAC 494 System as a peripheral subsystem to provide input/output facilities
and to perform supplementary processing of the transfer data.

Figure 3-20. UNIVAC 9300 System

The UNIVAC 9300 System (see Figure 3-20) is a powerful and flexible high speed
computer system which provides card processing, magnetic tape handling, and
printing facilities as well as arithmetic, editing, I/O control" and data manipulation
functions. The UNIVAC 9300 CPU contains the necessary controls, instructions,
and synchronizers for directing its functions and the functions of up to seven
peripheral units on its Multiplexer I/O Channe 1. Data transfers with the UNIVAC
494 CPU are also made on the Multiplexer I/O Cpannel through the Inter-Computer
Control Unit (ICCU), which permits the UNIVAC 9000 Series computers to
communicate on-site in 30-bit word format. Primary storage or main memory for
the UNIVAC 9300 System is plated wire, with 600 nanosecond cycle time and
storage capacity of 8,192 bytes of eight bits each, expandable to 32,768 bytes.
Being a member of the UNIVAC 9000 Series, the UNIVAC 9300 System is compatible
with both the UNIVAC 9200 and UNIVAC 9400 Systems.

The card reader processes 80-column cards, with the Multi-Strobe Read feature
providing multiple sensing of card columns; and the printer outputs 132 character
lines.

• Characteristics

Characteristics of the UNIVAC 9300 System are given in the following list.
Detailed information may be found in UNIVAC 9300 System, System Description
U P-4119 (current version).

PARAMETERS SPECIF ICAT IONS

System Orientation Card/Tape

Basic Memory 8192 bytes
Maximum Memory 32,768 bytes

Memory Cycle Time 600 nanoseconds

Add (Dec ima I) Instruction 52 microseconds
Time (Two 5-digit Fields)

Multiply, Divide, and Edit Standard

Card Read-Basic Reader 600 cpm
1001 Card Controller 1000/2000 cpm

Card Punch-Column 75-2'00 cpm (depends on last column punched)

Row 200 cpm
Se lective Stacker Standard on Row Punch

Optional on Column Punch·

Read/Punch (for either punch) Optional

Print Speed (Alphanumeric) 600 Ipm

Numeric Printing (Optional) 1200 Ipm

Overlapped Input/Output Units Standard

Magnetic Tape Rate 34,160 bytes per second

Simultaneous Tape Read, Optiona I
Wr ite and Process

Multiplexer Channel (Standard 85,000 bytes per second transfer rate
for Tape Systems)

3.5.4. Communication Terminal Modular Control Subsystem

The Communication Terminal Modular Control (CTMC) Subsystem provides
communication capability to the CPU and provides for transfer of data between
the CPU and remote site devices. The subsystem serves as the interface between
the CPU and any device which meets the accepted standard for serial data trans­
mission. Each subsystem permits time shared data transfers between the CPU and
up to 32 diverse, remote terminals. The CTMC Subsystem is linked to the CPU by
a single I/O channel, and is housed in two central site cabinets each of which
contains: a Communication Terminal Module (CTM) Controller, which governs
the interface between the CPU and the subsystem components; up to 16 Com­
munication Terminal Modules (CTM's), which effect data transfers between the
CPU and communication lines through the CTMC; and Interface Modules (1M's), which
make the necessary conversion lines between the CTM's and communication lines
and equipment.

71

72

The elements of the CTMC Subsystem are described in the following paragraphs. De­
tailed information may be found in UNIVAC 418,490/491/492, and 494 and 1108 Systems
Communication Terminal Modular Control (CTMC) Subsystem Programmer/Operator
Reference Manual, UP-7519 (current version).

3.5.4.1. Communication Terminal Module Controller

The Communication Terminal Module (CTM) Controller responds to service requests from
the individual CTM's and, with the associated CPU, exchanges the signals required
to effect data transfer. Internal cabling connects the CTM Controller to a maximum
of 16 CTM's. External circuitry links the CTMC to the 494 CPU. One active CTM
Controller and one unconnected spare controller may be installed in the same sub­
system cabinet.

3.5.4.2. Communication Terminal Module (CTM)

The Communication Terminal Modules (CTM's) provide the logical interface between

the communication lines and the 494 CPU through the CTM Controller. Four basic
types of CTM's are available: low speed asynchronous, medium speed asynchronous,
high speed synchronous, and dial.

The CTM's arrange data in the format required by the CPU or in the format demanded
by the circuit with which the terminal is designed to operate. Incoming data is re­
ceived from the associated 1M's and arranged in bit-parallel character serial form
for submission to the CPU. Output traffic is formatted according to the requirements
of the associated communication circuit.

Each CTM has a service priority determined by its physical connection to the CTM
Controller and presents a service request to the CTM Controller when the CTM has
prepared a complete incoming character for transfer to the CPU ,or when the final
bit of a transmitted character has been submitted to the 1M. Many CTM's could
logically generate service requests simultaneously. The CTM Controller samples
all terminals requesting service and grants priority to the highest numbered position,
whether the CTM is an input or output terminal. After an acknowledge signal from
the CPU frees the CTM Controller from one terminal, all remaining service requests
will be evaluated and the CTM Controller will lock on the next terminal within 13
microseconds.

The CTM's are grouped into modules of two input terminals and two output terminals
(with the exception of the dial CTM, which has no input terminals and has up to
six output terminals per module). The terminals may be used in either simplex,
half duplex, or full duplex mode.

• Characteristics

Characteristics of the CTM's are as follows:

- Low Speed CTM

Transmission Mode: Bit-serial

Transmission Method: Asynchronous

Input Rate: Clock in each input CTM adjustable from 20 - 300 bits per second

Output Rate: Output timing provided by clock in the CTM Controller

Character Compatibility: 5, 6, 7, or 8 data bits (field option)

1M: Either relay or data set

- Medium Speed CTM

Transmission Mode: Bit-serial

Transmission Method: Asynchronous

Input Rate: Clock in each input CTM adjustable from 300 - 1600 bits per
second

Output Rate: Output timing provided by clock in the CTM Controller

Character Compatibility: 4, 5, 6, 7, or 8 data bits (field option)

1M: Data set

- High Speed CTM

Transmission Mode: Bit-serial

Transmission Method: Synchronous

Input and Output Rate: Established by clocks in user-supplied data sets
(up to 50,000 bits per second)

Character Compatibility: 5, 6, 7, or 8 data bits (field option)

1M: Data set

- Dial CTM

Transmission Mode: Bit-parallel

Transmission Method: Asynchronous

Input Rate: Dial CTM is an output device only

Output Rate: Determined by Bell System Automatic Calling Unit (ACU)
made available by user.

Character Compatibility: Four-bit (BCD) dial digits

1M: Dial

73

74

3.5.4.3. Interface Modules (1M)

The Interface Modules (1M's) make the necessary conversion between the electrical
operating levels of the CTM's and the levels of the particular external circuits
with which the 1M's are designed to operate. The terminations offered, electrical
potentials supplied, signals presented, and responses anticipated by each 1M,
conform to the Electronic Industries Association (EIA) standard for that type of
data communication. Different 1M's are required for anyone of the following
applications: printing telegraphs employing DC circuits, transmission rates
employing data sets, and specialized applications such as dialing. Data set 1M's
may be equipped with the Unattended Answering feature for responding to remotely
originated dial connections.

3.5.4.4. Communication Subsystem Configuration

The arrangement of the various elements within the comm unication s ubsys tern is
shown in Figure 3-21.

CTM
LOW

IN

1M

CTM
LOW
OUT

MODEM
OR

RELAY

CTM
MEt>
IN

1M

UNIVAC 494

CENTRAL PROCESSOR

1/0 CHANNEL

COMMUNICATION TERMINAL MODULE (CTM) CONTROLLER

CTM CTM
MED SYN
OUT IN

1M

CTM
SYN
OUT

CTM

IN

CTM CTM

OUT DIAL

1M 1M

UP TO 16 CTM's PER CTM
CONTROLLER

MOIJEM MODEM MODEM 801

CTM - COMMUNICATION TERMINAL MODULE

1M - INTERFACE MODULE

ACU - BELL SYSTEM AUTOMATIC CALL UNIT

ACU

Figure 3-27. Communication Subsystem Configuration

3.6. REMOTE PERIPHERAL SUBSYSTEMS

Remote peripheral subsystems are made up of devices which provide similar functions
as on-site peripheral units, but which usually transfer data some distance from the CPU
or transfer data through interfaces different from the CPU, and which are connected
to the CPU through the communication subsystem (see 3.5.4). Although some of these
devices may be physically present at the computer site, they are not considered on-site
subsystems as defined in 3.5.

The remote peripheral devices are connected to the Communication Terminal Modular
Control (CTMC) Subsystem through common carrier facilities. The type of facility
is dependent upon the particular remote device. In addition to individual control units,
each remote device is interfaced to a communication subsystem which connects to the
carrier facility connecting the CTMC Subsystems.

The remote devices included in this section are standard Univac products and adhere
to the accepted interface standard for serial data transmission, EIA spec ification
RS-232. The devices include the UNIVAC Data Communication Terminal (DCT) 2000,
UNIVAC UNISCOPE 300, UNIVAC 9200/9300 Systems and UNIVAC 1004 System.

3.6.1. DCT 2000 Data Communication Terminal

The UNIVAC Data Communication Terminal (DCT) 2000, shown in Figure 3-22,
is a combination printer and card reader/punch data transmission device designed
to transfer large quantities of data efficiently through voice-grade private line
or switched telephone network facilities. When tied into a network with com­
puters or other DCT 2000 Systems, the DCT 2000 can handle up to 250 blocks
per minute.

Figure 3-22. DCT 2000 Terminal

The basic components of the DCT 2000, including the control unit, the card reader/
punch, the bar printer, and the communic~tion interface are discussed in the follow­
ing paragraphs. Detailed information may be found in UNIVAC DCT 2000 General
Description Reference Manual, U P-7511 (current version).

75

76

3.6.1.1. Control Unit

The basic control unit is designed to handle the United States of America Standard
Code for Information Interchange (USASCII). An optional control unit provides
compatibility with a UNIVAC 1004 System equipped with a Data Line Terminal
(DL T 1 or DL T 3).

The control unit coordinates the transmit/receive operations within the UNIVAC
DCT 2000. In general, the control unit comprises buffer storage, control logic, and
data paths. The internal hardware is designed to perform a variety of functions such
as buffer-memory addressing, control-character decoding, peripheral/control unit
translation (USASCII/Hollerith), and error control.

Since the control unit is fully buffered, the terminal lends itself readily to re­
transmission techniques. These techniques are employed with the Error Detection
and Retransmission feature which also provides capability for generating character
and block parity, detecting errors in messages, preventing the loss of a data block,
and providing protection against receiving duplicate blocks of data.

A variety of optional control unit features available with the DCT 2000 Subsystem
are considered in detail in the following paragraphs. Separate consideration should
be given, however, to the two versions of the control unit, USASCII compatible and
Data Line Terminal (DL T) compatible .

• USASCII Control Unit

The USASCII Control Unit coordinates and manipulates data in USASCII code,
which is an eight-bit code that uses seven bits for alphabetics, numerics, special
symbols, and transmission control characters. The eighth bit is used for odd parity.
Within the control unit, the basic unit of seven information bits plus a parity bit
is called a character. Groups of characters are called a block or a message.
The DCT 2000 is designed to provide the operator with the option of specifying
message lengths of 80 and 128 characters by setting a lever switch on the
operator's console .

• Data Line Terminal (DLT) Compatible Control Unit

The DL T Compatible Control Unit is required for communication between the
DCT 2000 and UNIVAC 1004. Functionally, this control unit is the same as the
USASCII version, with the following major difference: all transmission control,
message control, and data characters appear in XS-3 code (the six-bit, internal
machine code of the UNIVAC 1004). A gain, for compatibility with the 1004,
the DCT 2000 transmits fixed block lengths only, but can receive fixed- or
variable-length messages. Also, Error Detection and Retransmission, as well
as Short Block Capability, are included as standard equipment at no extra cost.

• Control Unit Characteristics

Control unit technical characteristics and special features are summarized in
the following list.

PARAMETERS SPECIFICATIONS

Transmission Method Block by block

Transmission Mode Half duplex; 2 or 4 wire (non-
simultaneous; two-way transmission)

Transmission Faci lities Voice Grade Telephone Toll Exchange
or Private Line

Transmission Rate 2.4 KC (Private Line); 2 KC
(Switched Telephone Network)

Transmission Code USASCII
XS-3 (DL T Compatible)

Buffer Storage 256 Character Capacity
Two 128-Character Core Memory

I
Buffers

Translation Capabil ities ! Card Code/Transmission Code

I
Hollerith/USASC II
Hollerith/XS-3 (DL T Compatible)

SPECIAL FEATURES

Error Detection and Retransmission*

Telephone Alert

Select Character Capability

Short Block Capability*

Periphera I Input/Output Channel

Unattended Operation

*With the DLT Compatible Control Unit, Error Detection and Retransmission, and Short Block

Capability are included as standard equipment.

I

I

77

78

3.6.1.2. Reader/Punch

The DCT 2000 Reader/Punch Unit feeds, reads or punches, and stacks 80-column
cards. Read ~nd punch operations cannot be performed on the same card during
the same cycle. The punching rate of the unit is 75 cards per minute, and the
reading rate is 200 cards per minute.

Cards are fed through the reader/punch from an input hopper to a wait station.
When the preceding card has been completely read or punched, the next card is
moved from the wait station to the read station. If the card is to be read, the card
is sensed photoelectrically at the read station and passed unaltered to the output
stacker. If card punching is specified, the card passes through the read station
(read circuits inactive) to the punch station where it is punched two columns at
at a time and ejected to the output stacker.

• Characteristics

Characteristics and special features of the DCT 2000 Reader/Punch Unit are
summarized below. The reading and punching speeds given reflect the capabilities
of the unit; speeds attained in actual system use may be somewhat lower due to
the transmission facilities available.

PARAMETERS SPECIFICATIONS

Cards Standard 80-column cards

Reading Speed Maximum rate of 200 cards per minute.

Read ing Method P~otoelectric Read Station

Punching Speed Maximum Rate of 75 cards per minute
for 80-column punching.

Punching Method Two columns at a time.

Input Hopper Capacity 1200 cards

Output Stacker Capacity 700 cards

SPECIAL FEATURES

Punch Check Error and Reject Stacker

3.6.1.3. Printer

The DCT'2000 Bar Printer provides quality performance and economy while produc­
ing highly legible hard copy at the maximum rate of 250 lines per minute. Through
engineering innovation, particularly in the printing method employed, a variety of
cost avoidance features, such as the simplicity of operation and ease of maintenance,
can be offered to the UNIVAC DCT 2000 user.

• Characteristics

Characteristics and special features of the DCT 2000 Bar Printer are summarized
below. The printing speed given reflects the capability of the unit; speed attained
in actual system use may be somewhat lower due to the transmission facilities
available.

PARAMETERS SPECIF ICATIONS

Pr inting Speed Maximum rate of 250 lines of
alphanumeric characters per
minute.

Pr inting Method Removable type bar

Pr inting Pos itions 80

Printable Characters 63 different characters on an
alphanumeric type bar:

26 alphabetic capitals
10 numeric characters
27 punctuation marks and symbols

Paper Speed 25 lines per second (Form Skip
Speed)

Paper Spacing 6 lines per inch

Printing Flexibility Maximum continuous forms of 22 in-
ches in width and 14 inches in
length provide an original and up
to 5 copies.

SPECIAL FEATURES

Optional 128 print positions
Transmit/Receive Monitor
Offline listing
Form Control
Optional pri nt bars affording varied character sets

79

80

3.6.2. UNISCOPE 300 Visual Communication Terminal

The UNISCOPE 300, shown in Figure 3-23, is a visual communication terminal
designed for applications which require direct operator interaction with a central­
ized computer. Information generated by the operator is displayed on the UNISCOPE
prior to transmission to the computer so that the operator can make any required
changes or edit where necessary. Data transmitted from the computer is displayed
on the UNISCOPE for operator information and interpretation.

Figure 3-23. UNISCOPE 300 Terminal

3.6.2.1. Basic Concepts

The UNISCOPE subsystem consists of a cathode-ray tube (CRT) display,
keyboard, and memory designed to minimize communication and maintenance
costs. The UNISCOPE may be used in either a single or multi-station configura­
tion. In the single station arrangement, only one UNISCOPE containing its own
display memory and control section may be connected to a data set (modem). In
the multi-station arrangement, a Multi-Station Control Unit (MSCU), containing
the display memory for all its display units, is connected to the modem and
interfaces with up to 48 multi-station UNISCOPE display units. The components
of the single and multi-station configurations are discussed in the following
paragraphs. Detailed information may be found in UNIVAC UNISCOPE 300 Visual
Communications Terminal General Description Manual, UP-7619 (current
version).

The UNISCOPE Subsystem consists of a CRT display, keyboard, memory, and
control logic. The subsystem is designed for synchronous transmission at speeds
of 2,000 bits per second and higher, and interfaces a data set (modem) such as
the Bell System 201 Series or equivalent through the EIA standard interface
RS-232. In addition to operating individually on a private line, the subsystem
may be connected to a multipoint party line, and will respond to a poll code from
the central computer. Character and message parity are checked on each incoming
message and generated for each outgoing message. Erroneous blocks may be
retransmitted automatically upon request from the computer.

• Display Screen

The display screen is a cathode-ray tube (CRT) with a viewing surface 10
inches wide and 5 inches high. A format of 64 characters per line on 16 lines
per display is provided. The display uses a digital scanning technique, as
opposed to TV scanning, to provide excellent linearity. Spacing between
characters is consistent from end-to-end of the screen, and the size and shape
of each character does no~ change with its relative position on the screen. The
character style maximizes legibility and readability. Each character is .150
x .113 inches and is readable up to a distance of seven feet. The character
brightness may be varied by the operator from 70 percent brightness to full
brightness.

The presentation is such that no flicker or jitter is perceptible to the operator.
Each of the 1,024 characters is repainted on the display surface 60 times each
second. The regeneration is synchronized with the power source to eliminate
interference with the 60-cycle power supply.

• Display Memory

The display memory is a computer core memory providing the same reliability,
speed, and random access capability found in other Univac computer systems.
The use of a core memory also simplifies control hardware, since timing re­
strictions are not required on the reading or writing of data. Because the display
is regenerated from memory, the traffic between the UNISCOPE and the computer
is for the purpose of inputting or sending out new data only, and the lines are not
burdened by refreshing directly from the processor memory.

• Control Section

The control section of the UNISCOPE Subsystem directs all of the UNISCOPE
operations. The control section interprets all instructions and generates commands
to the other sections of the unit, including the sequence of I/O operations,
positioning of the cursor (position marker), addressing memory for painting
characters, and handling block moves of data.

• Keyboard

The keyboard is the interface with the UNISCOPE and the computer, by which
the operator can control the UNISCOPE, input data to the memory, and request
data from the computer. Each time that a key is depressed, a unique code is
sent to the keyboard control section which examines this code to see if it is
data or a function. Data is entered in the position indicated by the cursor. A
variety of cursor control and function keys are also provided on the keyboard.

81

82

• Characteristics

UNISCOPE 300 characteristics are summarized in the following table:

PARAMETERS

Display

Capacity
Viewing Area
Format
Character Size
Refresh Rate
Scan Method
Character Set
Character Generation

Keyboard

Memory

Single Station

Multi-Station

Code

Subsystem Size

Single Station
MUlti-Station

Interface

Power

Size

MSCU
Display

SPECIF ICAT IONS

1,024 or 512 Characters
10" Wide x 5" High
64 Characters per Line x 8 or 16 Lines
.150" High x .113" Wide
60 Cycles per Second
Digital
56,61, or 96 Symbols
Closed Stroke, Maximum 8 per Character

Bas ic A Iphanumer ic Typewr iter
9 Cursor Control Keys
5 (7 Functions) Editing Keys
0, 5, or 40 Function Keys
122 Possible Function Key Over lays

(Over 4,000 Functions are Possible)

1,024 Character Magnetic Core
7.2 Microseconds Cycle Time
8,192, 16,384, or 24,576 Character

Magnetic core
1.8 Microseconds Cycle Time
7-Bit Modified USASCII

1: 1,024 Characters
2-24: 1,024 Characters each
2-48: 512 Characters each

Communication (Telephone) Line, AT&T
201 Data Set or Equivalent, 2,000
Bits per Second or Higher

120 Volts + 10%
-15%

Single Phase
60 Cycles per Second ± .5 Cycle

36" x 24" x 64"
25" Wide
17" High
24" Deep

3.6.3. UNIVAC 9200/9300 Systems

The UNIVAC 9200 System, or the UNIVAC 9300 System as discussed in 3.5.3.4,
may be used as remote subsystems to the UNIVAC 494 computer. The UNIVAC
9200/9300 Systems are linked to transmission facilities through the Data Communica­
tion Subsystem (DCS), with the transmission facilities being connected to the
UNIVAC 494 computer through the CTMC Subsystem.

The remote UNIVAC 9200/9300 Subsystems, shown in Figure 3-24, provide inexpensive
and efficient means for transmitting data or job stream information to the UNIVAC
494 computer. Editing and data manipulation features of the 9200/9300 Systems
provide powerful tools in the preparation of data, thereby saving valuable transmission
time.

A valuable feature of the configuration is that the UNIVAC 9200/9300 Systems may
be used as independent computers when not engaged in remote transmissions. Another
outstanding feature of the systems is that they are compatible, being members of the
UNIVAC 9000 Series, which includes the UNIVAC 9400 System, providing for expansion
and growth from smaller to 1a'l'ger systems and configurations.

Figure 3-24. UNIVAC 9200/9300 Systems

83

84

3.6.3.1. UNIVAC 9200 System

The UNIVAC 9200 System is a compact, low priced, internally programmed computer
system, which is card oriented. T.he computer is equipped with ali functions for
the execution of instructions, including arithmetic and input/output control. An
integral card reader, card punch, and line printer are standard peripheral units. A
multiplexer channel is available for use as ·the communication channel.

Memory is organized into bytes consisting of eight data bits plus one parity bit.
Minimum memory size is 8,192 bytes and maximum memory size is 16,384 bytes.
Memory cycle time is 1.2 microseconds.

• Characteristics

Characteristics of the UNIVAC 9200 System are shown in the following table.
Detailed information may be found in UNIY AC 9200 System System Description
Manual, UP-4086 (current version).

PARAMETERS SPECIFICATIONS

System Orientation Card

Basic Memory 8192 bytes
Maximum Memory 16,384 bytes

Memory Cycle Time 1.2 microseconds

Add (Dec ima I) Instruction
Time (Two 5-digit Fields) 104 microseconds

Multiply, Divide, Edit Optional

Card Read - Basic Reader 400 cpm
1001 Card Controller 1000/2000 cpm

Card Punch 75-200 cpm (depends on last column
punched)

Read/Punch Optional
Selective Stacker Optional

Print Speed (A Iphanumeric) 250 Ipm
300 Ipm optional

Variable-Speed Printing 250/500 Ipm or
(Optional) 300/600 Ipm

Overlapped I/O Units Standard

Multiplexer Channel 85,000 bytes/sec. transfer rate
(Optional)

3.6.3.2. UNIVAC 9300 System

The UNIVAC 9300 System is an internally programmed computing system which
offers both a powerful 80-column card proces sing capability and a high speed
magnetic tape system. The computer is equipped with all functions for execution
of instructions including arithmetic and input! output control. The integral card
reader, card punch, and line printer offer higher speeds than those available on the
smaller UNIVAC 9200 System. The multiplexer I/O channel of the UNIVAC 9300 can
accommodate up to eight peripheral subsystems. Maximum memory size is 32,768
bytes of plated wire memory with a cycle time of 600 nanoseconds.

• Characteristics

Characteristics of the UNIVAC 9300 System are given in 3.5.3.4. Detailed
information may be found in UNIVAC 9300 System System Description
Manua 1, U P-4119 (current version).

3.6.3.3. Data Communication Subsystem

The Data Communication Subsystem (DCS) provides the UNIVAC 9200/9300
Systems with a versatile communication capability. The subsystem will inter­
face with private wire telegraph, public network and private wire voice grade,
and broad band facilities at all standard speeds, including Bell System Telpak
speeds.

The versatility of the DCS allows the UNIVAC 9200/9300 Systems to communicate
with the UNIVAC 494 computer in virtually any manner desired by the user. The
UNIV AC 9200 or UNIVAC 9300 may be used as a simple remote unit record device
for remote job or data entry; Of i in a more sophisticated application, the UNIVAC
9200 or UNIVAC 9300 System may be used to concentrate and preprocess remote
inputs (such as those from the UNISCOPE 300) at a remote site before transmission
to the UNIVAC 494.

The DCS. configuration may be varied to suit the particular installation. The modular
elements comprising the subsystem are the Line Terminal Controller (L TC)/(LT),
the Timing Assemblies (TA), and the Communication Interface Units (CIU).
Configurations with some of the more commonly used remote devices are shown
in Figure 3-25.

85

UNIVAC 9200/9300

MULTIPLEXER CHANNEL

COMMUNICATIONS ADAPTER

LINE TERMINAL CONTROLLER

LT
LOW

IN

LT
LOW
OUT

LT
MED
IN

LT
MED
OUT

LT LT
REMOTE REMOTE

LT
PARALLEL

LT LT
ALL ALL L T

COMPUTE COMPUTE TYPES TYPES
IN OUT IN OUT

ATA ATA STA ATA ATA OR STA DA --------r--------- r-------- ------- -------r--

t

r-- ----,
I

~ MODEM j !
I
I
I
I
I --- J I.----!

NO MODEM's
NEEDED FOR

TELEGRAPH l
LINES -,

1

r---l _--,
I I I I

I I MODEM I i
I I l___ __..J

TELEXt
TWX

28ASR
33 ASR
35 ASR
37 ASR

TELEDATAt
IBMt 1050
32 ASR - W.U.

CI CI CI

f MODEM j
I I

l
1

1 J

f MODEM I

DATASPEEDt 2
CRT - VARIOUS
BANK WINDOW SETS
COLLECTDATAt
TELEX
TWX

28 ASR
33 ASR
35 ASR
37 ASR

IBM 1050
32 ASR - W.U.

I MODEM I
, I

I I

I MODEM I

OCT - 2000
CRT - VARIOUS
UNIVAC 9400 PROCESSOR
UNIVAC 9300 PROCESSOR
UNIVAC 9200 PROCESSOR
UNISCOPE 300
UNIVAC 494

t TELEX - TRADEMARK OF WESTERN UNION TELEGRAPH CO.

TELEDATA AND COLLECTDATA - TRADEMARKS OF FRIDEN, INC.

IBM - REGISTERED TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORP.

DATASPEED - TRADEMARK AND SERVICE MARK OF A.T. & T. CO.

TOUCH·TONE - REGISTERED SERVICE MARK OF A.T. & T. CO.

CI

MODEM I
I I

MODEM I

TOUCH-TONEt
DIALING

Figure 3-25. DCS Configurations

86

CI CI

-

MODEM 801 j
DIALER

, I

LEGEND

ATA - ASYNCHRONOUS
TIMING ASSEMBLY

CI - COMMUNICATION
INTERFACE

DA - DIALER ADAPTER

J L T -LINE TERMINAL

r----'---'-'-., PAR - PARALLEL

I MODEM I STA - STYNCHRONOUS
IMING ASSEMBLY

ANY DEVICE USING
SWITCHED NETWORK
FACILITIES DEPENDING
ON L T CHOICE

REMOTE
LOW SPEED
DEVICES

• Line Terminal Controller

The Line Terminal Controller (LTC) interfaces the-UNIVAC 9200/9300 Multi­
plexer Channel with one or more Line Terminal (LT) devices. The LTC controls
and coordinates data transfers between the UNIVAC 9200/9300 Systems and the
LT's.

• Line Terminal

Line Terminals (LT's) provide the logical interface between the communication
facility and the 9200/9300 LTC by the system. The" L T's are simplex units
which may be interconnected to create half duplex or full duplex communications
environments. Several types of L T 's are available to provide low and medium
speed asynchronous operation or to meet synchronous high speed requirements.
Data characters may range from four to eight bits in size (level) depending upon
the model and mode of L T used.

Transfer rates of the various LT's are as follows:

- Low Speed:

- Med ium Speed:

- Synchronous

Voice Grade:

- Broad Band:

- Telpak C:

• Timing Assemblies

75-300 bits per second

300-2400 bits per second

2000-4800 bits per second

40,800 or 50,000 bits per second

230,400 bits per second

Timing Assemblies (TA's) provide a clock source for asynchronous line terminals.
Synchronous TA's are also available for operation with asynchronous modems or
where there is no external synchronizing clock.

• Communication Interface Unit

The Communication Interface Unit (CIU) is the electrical interface between the
line terminals and the common carrier lines. The available CIU meets both the
EIA RS-232B (Industry Standard Interface) and the MIL-STD-188B (Electrical
Circuit Compati~ility - Government) specifications. Each input/output line pair
requires one CIU.

3.6.4. UNIVAC 1004 System

The UNIVAC 1004 System, shown in Figure 3-19, is a complete data processing unit
which may be used as an online peripheral subsystem (see 3.5.3.3) or as a remote
peripheral subsystem to the UNIVAC 494 System.

87

88

3.6.4.1. Remote UNIVAC 1004 System

The UNIVAC 1004 System may be used for printing, reading, and punching (optional)
of 80-column cards in remote operation; paper tape handling facilities are not offered.
Interface to the communication lines is made by attaching a Data Line Terminal (DLT)
to the remote UNIVAC 1004. Synchronous transmission is used at speeds of 2000,
2400, or 40,800 bits per second depending upon the type of DL T and communication
facility employed.

A special plugboard, which is also dependent upon the type of DLT used, is required
when the UNIVAC 1004 is to be used as a remote subsystem to the UNIVAC 494
computer. The UNIVAC 1004 System retains its processing capability when used in
this configuration, and can be switched to an offline mode at any time for operation
as an independent computer.

• Characteristics

Characteristics of the remote UNIVAC 1004 Subsystem are the same as given for
the online UNIVAC 1004 Subsystem in 3.5.3.3, with the exception that the paper
tape parameters are not applicable. The reading, printing, and punching speeds
reflect the capability of the UNIVAC 1001'4 System; speeds attained in actual
remote use may be somewhat lower due to the transmission facility employed.
Detailed information may be found in UNIVAC 1004 Card Processor 80 Column
Reference Manual, UT-2543 (current version) and in UNIVAC 494 Real-Time
System Remote UNIVAC 1004 System, P. I. E. Bulletin 12, UP-4121.12.

• Data Line Terminals

A variety of Data Line Terminals (DLT's) are available for connection with a
remote UNIVAC 1004 Subsystem depending upon the transmission facilities and
speed required by the user. All DLT's employ synchronous transmission modes.

- DLT Type 1

The Type 1 DL T interfaces with the Bell System 201A or 201B Data Set or
equivalent for half duplex transmission over voice grade communication facilities
on either private line or the switched telephone network. Transmission speeds
are 2000 bits per second with the 201A, and 2400 bits per second with the 201B ..
Character and message parity are checked and generated by the DL T.

- DLT Type 1B

The Type 1B DL T interfaces with the. Bell System 301B Data Set and Telpak
facilities for half duplex transmission over broad band lines at a rate of 40,800
bits per second. Parity checking and generating is the same as for the Type 1
DLT.

- DLT Type 3

The Type 3 DLT interfaces with the 201A or 201B Data Set or equivalent for
half duplex transmission on the switched telephone network or a private line.
Parity features are included. In addition, the Type 3 DLT allows the remote
UNIVAC 1004 System to overlap processing with data transmission.

4. OPERATING SYSTEM SOFTWARE

4.1. SOFTWARE DESIGN CONCEPTS AND CAPABILITIES

The UNIVAC 494 Operating System is a comprehensive library of integrated programs
comprising a flexible and powerful executive control system and a collection of
programming languages, utility routines, and application packages. Through a versatile
and effective control language, the executive routine organizes and directs basic com­
puter operations and system activities to achieve maximum utility of computer facilities
with great system economy.

4.1.1. Software Design Concepts

The executive routine is a master control program which has been designed and
implemented to establish and to operate the efficient multiprogramming environment
needed for utilizing the full capabilities of the UNIVAC 494 Real-Time System.

The speed and hardware capabilities of the UNIVAC 494 System are used to maximum
advantage, and a given hardware configuration is used most effectively in the complex
internal operating environment created by the executive routine. This environment
must allow for the concurrent operation of many programs; for immediate reaction to
the inquiries, requests, and needs of many different users at remote and local stations
under the stringent demands of real time application; for storage, filing, retrieval,
and protection of large blocks of data; and for optimum use of all available hardware
facilities while minimizing job turnaround time.

The executive routine and other software of the UNIVAC 494 Operating System are
discussed in the following sections. Detailed information may be found in UNIVAC
494 Real-Time System Operating System Programmers Reference, UP-7504 (current
version).

Through central control of all of the activities of the UNIVAC 494 System, the
combined hardware and software capabilities are fully established and maintained
to satisfy the requirements of all applications. The responsibility for efficient and
flexible centralized control is borne by the executive routine. The comparatively
simple interface presented to the programmer by the executive routine allows the
programmer to use the system with reiative ease, while relieving him of concern for
the internal interaction between his program and other coexistent programs.

89

90

Design capabilities of the Operating System span a broad spectrum of data processing
activities. No penalties for inefficiency are imposed upon any of the activities by
the support provided for the others. Specific capabilities which are not desired by
a particular ins tallation may be elimina ted at systems generation time.

Ease of use by the programmer or the casual user is emphasized in the system. Work
to be performed by the system is described on control cards to minimize job turn­
around time, operator intervention, and decision requirements. At his desk, the user
may construct any logical combination of programs for a particular job by inserting
the proper control cards in his job deck.

Job decks can be collected and entered into the system from many sources, remote
or central. The executive routine controls the loading, allocation, and execution of
the described programs once they are entered into the system. Jobs which cannot .
be completed because of program error are automatically deallocated and purged
from the system with appropriate diagnostic information. The console operator is,
in effect, responsible only for mounting and labeling tapes under direction of the
executive routine.

4.1.2. System Capabilities

In summary, the UNIVAC 494 Operating System provides the following major features.
Particular functional capabilities of each feature are presented in subsequent
sections of this ma nual.

• Real Time/Online Processing

The executive routine efficiently responds to the demands of real time processing,
and gives preference to the operational needs of a real time program, these being
the most critical requirements of the system. Executive services which are appro­
priate to the construction and execution of real time programs are provided which
permit a real time program to exercise critical control over system service. The
contingencies of real time are supported by nonstop operation with procedures for
rollout of conflictin g user programs, system res tart, and other necessary functions.

• Batch Processing

Facility of job prepara tion and submissions, with minimiza tion of job turnaround
time, is a design feature of the system. A priority specification provides preferential
service for batch runs submitted by remote operation or where turnaround time is
cri tica 1.

The Operating System provides for high volume job shop operation. All jobs
entering the system are described by a control language. The user may specify
preferred service for certain jobs with no responsibility in planning schedules to
achieve machine optimization. Job descriptions are accepted from any specified
source and may be preregistered in referencing standard jobs. Automatic job-to-
job transition, communication within jobs, and associated services, such as logging
and accounting, are provided by the system.

• Program Development

The Operating System interfaces an inclusive set of source code language proces­
sors, enabling the programmer to use the languages COBOL, FORTRAN IV, 494
ASM (procedure-oriented assembler), and 494 SPURT. Independently processed
program elements are collected and combined into an integrated object program.
The collection provides an efficient and flexible facility for developing and
maintaining a complex program.

The system provides standardization of common functions, elimina tin g duplica tion
of these functions in separate user programs, and establishing a common program
and operator interface. Standardization con tributes to ins talla tion efficiency by
accommodating changes in machine configuration and operating procedures with­
out direct impact on user programs. Changes in one user program which tend to
infringe on other user programs are similarly minimized.

A test system provides the user with complete control over programs in the
debugging process and allows extraction and display of run-time information.
An object time, source-level, debugging mechanism common to all programs is
provided which eliminates the need for source-time planning of debugging strategy.
The system significantly reduces the time and expense associated with program
checkout.

• Automatic Operation

System operation is defined through a control language providing powerful and
flexible user direction. The control language is a formal description of the functions
preparatory to execution of a program. Operator participation is explicitly defined
and is minimized as much as possible.

Utilization of random access storage is the primary method for eliminating the
delays and errors attendan t upon operator in tervention and for increasing overall
system efficiency. Random access storage is used as a system buffering for the
job backlog accepted from sys tern input devices and for the resultant images for
system output devices shared among the executed jobs. The buffering allows the
sys tern to opera te independently of the essentially low-speed peripheral devices.
All executable programs are obtained from random access storage through a
system of libraries maintained by monitor routines. Temporary intermediate files
required in operation of a program are generally assigned to random access
storage rather than tape, to facilitate automatic operation.

A catalog of random access files, the Master File Directory (MFD), is maintained
by the system for files which transcend a particular job. The MFD facilitates
automatic operation and provides permanent file storage to a collection of individ-:
ual and independent users.

91

92

• Integrity

Complete system integrity is effected through hardware memory lock-out, guard
mode, and software validation of service requests. An errant program cannot
destroy either the system or other programs in the multiprogram environment.
Random access files are protected through the use of file codes and logical
file addressing. Comprehensive contingency procedures facilitate recovery from
error conditions.

Programmers, users, and engineers are essentially prevented from changing basic
options and from specifying other options which may influence operation of the
total system.

• Modularity

The Operating System is explicitly modular to facilitate future extensions,
expansion of particular functions, or selection of available variants of a basic
function. Modularity can be exercised during generation of a system so that
each user can create versions of the system which will operate more efficiently
for the system needs and configuration. A simple and flexible means of complete
systems generation and maintenance can be utilized at each installation.

4.2. EXECUTIVE SCHEDULING AND CONTROL

The integrated routines of the Operating System provide basic control for coordinating
and executing Univac- and user-provided programs, and for furnishing a flexible and
reliable foundation upon which the installation environment can build. The Operating
System is dependent upon random acces s storage as an operating base and upon a
primary input device as a source for work definitions of jobs to be run. The basic
output generated during execution of jobs is provided on appropriate system output
devices.

As the heart of the Operating System, the executive routine is. the vehicle for inter­
facing and controlling the systems environment. The executive routine contains elements
for the selection and activation of tasks (job control); elements for the control of
programs operating in a multiprogram environment (task/activity control); elements
to provide run-time service to operatin g programs (service control); elements for the
assignment, access, and manipulation of data files (data management); and elements
to provide for the assignment and access of remote devices. Figure 4-1 shows the
relationship of the major components of the executive routine.

SYSTEM UTILITIES
AND APPLICATION PACKAGES

• SORT/MERGE

• REPORT WRITER

• NETWORK SIMULATOR

• UTILITY PACKAGE

• REXECUTOR

iii ACCOUNTING

• SYSTEMS GENERATOR

JOB CONTROL

SERVICE
CONTROL

EXECUTIVE
ROUTINE

REMOTE DEVICE
CONTROL

ACTIVITY /TASK
CONTROL

DATA
MANAGEMENT

PERMANENT
FILES

&
MASTER FILE
DIRECTORY

\
\
\ ,
I
I
I

I
/

Figure 4-1. Operating System Executive Routine

PROGRAM DEVELOPMENT

• 494 SPURT

• FORTRAN IV

• COBOL

• 494 ASSEMBLER

• LOADER

• TEST SYSTEM

• SOURCE ROUTINE

• LIBRARY MAINTENANCE

ALLOCATABLE
RANDOM ACCESS

STORAGE FOR
TRANSIENT FILES

93

94

4.2.1. Primary Input Stream

The primary input stream conveys information to the system through scheduling
routines (input/output cooperative mechanism), This input includes control statements
specifying operations to be performed, limited data, source code for the language
processors, program parameters, and other information pertinent to a desired job.
The information is formed into job decks composed of an ordered sequence of
tasks. Each task is a logical step within the processing of the job and consists
of a number of interrelated activities. As an example, the job deck for assembly
and testing of an element of a program may be as represented in Figure 4-2.

TASK 3

STATEMENT

_ Control statements describing
posttest processing, for example,
dumps, elements to be saved, and
so forth

_ Optional data for program under test

_Control statements describing facility assignments,
test procedures and program

_ Marks the end of Input for Task?

_ Control statements describing the program collection

~ _____ ---' _Marks the beginning of a Job decK

Figure 4-2. Job Deck Composition

To each user, the system presents the singular function of performing the job
submitted by him as described by the executive control language.

4,2.2. Input Cooperative

The input cooperative is a collection of scheduling routines which operate through
the input/output cooperative mechanism (see 4.4.6) to accept the primary input
stream from system input devices. The primary function of the input cooperative is
to employ random access storage for buffering, to balance intermittent system utili­
zation with the slow rate of peripheral devices. The buffering also permits parallel
utilization of the input stream by jobs executed concurrently in the multiprogram
environment.

The input cooperative feeds multiple streams of primary input to the system (see
Figure 4-3). Access to the primary input stream data is by service request from the
active tasks. Supplementary streams may be introduced from specified auxiliary
sources. The supplementary streams may be used to merge and correct source code,
be extended by an installation to serve the need of user programs, or be used to
enter supplementary control s ta temen ts for job description. This feature is es pecially
advantageous to remote users of the system.

Each unit input routine scans the input stream to identify job decks which are queued
for job control upon entry to the system. The input queue is maintained in a common
storage pool (cooperative buffering) used by all system input/output cooperatives.
The common storage pool dynamically expands or contracts depending upon the
demands of the environmen t. The remote device scheduler accepts a control stream
through communications facilities in the same manner as locally submitted jobs. The
remote device scheduler provides the interface between the input/outp~t cooperatives
and remote equipment, and takes the place of an input/output routine to the unit
record devices.

UNIT INPUT

ROUTINE

UNIT INPUT

ROUTINE

UNIT INPUT

ROUTINE

REMOTE

SCHEDULER

SOURCE

MERGE SUPPLEMENTARY

PRIMARY INPUT

DATA MANAGEMENT

(I/O COOPERATIVE

CONTROL)

Figure 4-3. Input Stream Cooperative Control

" " "-
"-

OPERATING TASK

AND/OR SYSTEM

ELEMENT

OPERA TING TASK

AND/OR SYSTEM

ELEMENT

95

96

4.2.3. Job Control

Job control is a scheduling function which provides effective allocation of the hard­
ware configuration, and minimizes turnaround of batch programs operating as background
to the high priority real time program(s).

Each job deck recognized by primary input control is entered into the job stack on a
first in, first out basis as determined by the priorities allowed for standard production
and remotely originated jobs (see Figure 4-4). The job stack is processed by a se­
lection routine which determines which job is to be introduced next into the multi­
program environment and wh ich triggers preparatory functions for execution of that
job.

JOB N

JOB 8

JOB 7

JOB 6

JOB STACK 1------
I ~~

•
SELECTION

ROUTINE
~

I

l

INPUT QUEUE

JOB 5

JOB 4

JOB 3

JOB 2

JOB 1

LINK

3

TASK CONTROL

ACTIVE TASK

I

l

OPERATOR
COMMUNICATION

Figure 4-4. Control of Job Stack

----------------~

TERMINATION

I

I
I
I
I

4.2.3.1. Selection Routine

The selection routine has responsibility for determining which task from the job
stack is introduced into the mix of active programs.

Selection is initiated in the following sequence:

(1) An input stream job card is detected by the input cooperative: the job card
is entered into the job stack and selection is activated.

(2) An operating task within a job has terminated: the task is returned to the
job s tack and selection is activated.

(3) An operating task requests that a preformed job stream be entered into the
job stack. Preformed jobs are source elements containing complete job streams
and which may reside in a system library or in storage allocated to the requester.

(4) An operating task releases a facility (peripheral device, core, and similar
hardware): selection is activated to ascertain if the enlarged facility pool
will accommodate selection of another task.

In processing the job stack, the selection routine analyzes the job description to
determine the facility requirements of the next task within each job. Requirements
for system processors (such as Loader, library maintenance) are known to the
system and do not require format expression by the user. Facility requirements are
either expressed in the input stream or embedded as an information block associated
with the absolute program referenced.

The selection routine ascertains which tasks may be activated by criteria based
upon priority and the available. facilities. The prime criterion is priority. Within
a priority class, preference is given to tasks of a partially completed job, and to
tasks which involve the best utilization of available facilities and core. Tasks
which are bypassed in their normal order for lack of assignable facilities are
assigned an improved preference for subsequent selections. No task of a job is
initiated until all prior tasks of that job have been completed. Selection activates
as many tasks into the multiprogram environment as can be accommodated by the
existing system status, and continues until the job stack is exhausted.

The selection routine accesses the job input stream, and responds to system control
cards by performing the described function or by submitting a service request to
perform the function.

97

98

The selection routine unstrings the system control statements so that options and
entries in the specification list can be conveyed to the task being activated. Each
activated system or user task performs its function to completion. A completion
status is declared by a task termination entry or may be imposed by some non­
recoverable hardware or program contingency. Termination reactivates the job
stack for continued interpretation of the remaining job input stream. At this point,
the input stream may have been depleted of data by operation of the system or by
the user task. Cards of a noncontrol nature, acquired by an active task through an
I/O entry, may exist in the input stream, representing information processed by the
user task, source language utilized by language processors, or secondary language
used by utility programs. A task may be terminated without using all of the non­
control cards available to the task through an end of file (EO F) condition imposed by
the program. When a requester encounters a system control card in the job deck, an
EOF condition is returned, determining the end of input of task data, and no image
is presented. The task cannot force further input once the EOF condition is reached.
The EOF condition may be used by the program to determine the end of task data.
Reactivated selection simply ignores or discards the outstanding data until a control
card is detected.

Each successive task has independent facility requirements which must be evaluated
by selection; all facilities of the completed task are released except those explicitly
required for subsequent tasks.

When the end of the job input stream is detected, a system element for post-job
processing is initiated. The responsibilities of the post-job processing element
include production of an accounting record; deallocation of all temporary files,
records, and peripheral subsystems; and notification of the operator as to job
status, with directions for demounting of tapes and performing other operator­
controlled functions.

4.2.3.2. Task Execution

All system functions are integrated to effect complete execution of user or system
tasks. Execution is accomplished through a priority queuing function which provides
for time sharing of available facilities to achieve effective machine utilization
and optimized throughput of batch and real time programs.

Queues are maintained for CPU control, I/O control, peripheral and core assignments,
time intervals, shared programs, and other system needs. The queues are processed
in a manner responsive to both program priorities and system optimization procedures,
providing for maintenance of work backlogs to permit maximum parallel use of key
facilities.

A task is activated and controlled through a task addendum which is used by all
system elements in performing functions for the task. The operating task may
define parts of itself, called activities, to be executed concurrently in the multi­
program environment. An activity is controlled by an activity addendum which is
linked to the task addendum. Although the activity is in large part independent
from other activities of the task, the activity shares peripheral allocation, file
reference, and other facilities with other activities through a link to the task.
An activity may be executed asynchronously or in parallel mode with other
activities of the task.

Task control accepts service requests defining a function to be performed during
execution of a task. Service routines are characterized by direct control of the
computer. In general, the routines execute privileged instructions such as input;
output, operate without memory lockout, and access and directly manipulate the
entire storage. The routines are responsible for the integrity of the system and
for preventing interprogram destruction or conflict. A request initiated under control
of an activity is either satisfied immediately, with control returned to the requesting
activity, or queued for later service and subsequent reactivation of the requester.

Interrupt response and software/hardware contingencies are handled without
mandatory user participation. User specified alternatives to the standard fault
procedures may be employed by the system. Interrupts are processed as they occur
and generally result in the queuing, for CPU control, of an activity which analyzes
the interrupt. The critical functions for maximizing channel throughput are performed
by the executive routine at the time of in terrupt. Critical functions include buffer
swap, initiation of the next function to effect continuous mode, and similar operations.

Immediate response to interrupts achieves a smoothing effect such that interrupts
are actually processed at different priority levels and no interrupt precludes regis­
tration of another. Since the executive routine operates under the priority of the
requesting activities, control may generally be switched to a high priority activity
subsequen t to the occurrence of an interrupt.

4.2.4. Element Libraries

The library concept is basic to the system. The smallest logical unit of information
which may be entered into the system is an element. A collection of elements is
called an element library. Three logical levels of libraries are referenced: job, group,
and system. The levels are referenced in the stated order so that override may be
con trolled and predicted .

• Table of Contents (TOC)

To identify and locate the elements within the library, a table of contents (TOC)
is created and maintained by the system for each element within a library. The
TOC identifies elements by name, version, and type, and by control informa tion
unique to each particular type. The name is symbolic and is associated with the
element at the time of creation. A version may be associated with each relocatable
element to differentiate between variations of the same element, and to provide a
convenient reference when checking out large programs. A library may contain
alternate versions of the same program, with one version being outdated but work­
able, and the other being"in a test stage.

Elements within the library complex are manipulated in the system by the Program
Library Editor (PLE) which is a collection of maintenance routines (see 4.7).

99

100

4.2.4.1. Element Types

Three basic types of elements may comprise an element library:

• Source Element

A source element may be any collection of source statements. In addition to
the programming languages processed by COBOL, 494 SPURT, 494 Assembler,
and FORTRAN IV, the control languages processed by the system may be
stored as an element. The source element may contain any set of statements
which may appear in the primary input stream. Thus, job control statements,
secondary control statements, and limited data sets may be included as source
elements.

• Relative Binary (RB) Element

Relative or relocatable binary (RB) elements are intermediate output codes
produced by the language processors, COBOL, 494 SPURT, 494 Assembler,
and FORTRAN IV, and represent processed source language programs or
subprograms which may be complete or which may be dependent upon collection
with other RB elements before utilization in a program. An RB element must be
processed into load element by the Loader before it is executable as a program.

• Load Element

Absolute and relative load elements are produced by the Loader through the
collection and code modification process which combines RB elements. An
absolute element is an entity with all external references connected and
interconnected, cross references resolved, and relative locations assigned.
The absolute element can be entered into any continguous area of primary
storage by, essentially, a direct read operation from random access storage,
and is directly executable on machines operating in the 494 mode (with the
RIR) under control of the Operating System. A relative load element, which
may be modified as necessary at execution time, may be produced for machines
which operate in the 490 mode (without the RIR).

4.2.4.2. Library Types

The characteristics of the hierarchy of libraries are determinants of their functional
relationship to the system. Three basic types of libraries are used in the system.

• lob Library

The job library is a collection of elements created for a particular job. The
library is built as the job is executed, and is interrogated only to satisfy requests
associated with the job. The job library supports the continuity between tasks
within the job.

A job library is established by a library maintenance function (IN), or by elements
generated or referenced during job execution. Control language statements, there­
fore, explicitly and implicitly contribute to a job library. One job library exists
for each active job. A given job library is transient and remains only as long as
the job is active. Elements which are to be preserved must be output from a job
library by a library maintenance function (OUT) as part of the job.

• Group Library

The group library is a bridge between the impermanence of a job library and the
permanence of the system library. In effect, the group library is an independent
file established in the Operating System through the LINK statement and the
Master File Directory (MFD). For example, a set of elements unique to a par­
ticular programming or applications group at an installation may be established
in a group library with the Operating System rather than be repeatedly introduced
into job libraries. Since the group library need exist only once for the multi­
program execution of a series of jobs, both time and storage are conserved. A
group library may be registered with the Operating System, either permanently
or immediately before the group's machine utilization. The MFD provides a
convenient mechanism for registering group libraries for availability to the
system.

Once a group library is established through the LINK statement, the group library
remains within the library complex until all the group library has been released
by the user. Even if a group library is inactive (no users), it is maintained until
released.

• System Library

The system library is an integral and permanent part of the Operating System
and is resident on random access storage. The system library contains standard
RB elements, such as mathematical, utility, input/output, and editing routines,
which may contribute to cons truction of a program; standard absolute programs,
including system utility routines, transient elements of the Operating System,
internally registered job streams, standard production job descriptions, and
miscellaneous data file elements.

4.2.5. Output Cooperatives

Output cooperatives are a collection of routines which accept output ima ges from
operating tasks and provide for eventual writing on the appropriate output device.
An intermediate random access buffer is utilized by the system to serve the double
function of accepting output, independent of the writing rate of the output device,
and independent of its present allocation.

The primary output cooperatives accept print images from the Operating System or
user tasks, and buffer these to random access storage. Each job has a unique
output stream of chained random storage modules containing a variable number of
print images. The modules are retrieved by the appropriate unit output routine and
either printed, transmitted to a remote station, or recorded on magnetic tape.

The secondary output cooperative functions similarly to the primary output cooper­
ative with the exception that card images are accepted from operating tasks and are
ultimately processed by a card punch output routine or are recorded on magnetic tape.

The routines which control the input/output devices utilize device level. services
provided by the system. Devices for input, primary output, and secondary output are
defined when the system is generated. Figure 4-5 illustrates output cooperative
control.

101

102

OPERATING TASK
AND/OR SYSTEM

ELEMENT

•

•

•

OPERATING TASK
AND/OR SYSTEM

ELEMENT

DATA MANAGEMENT
(I/O COOPERA TlVE

CONTROL)

UNIT
OUTPUT
ROUTINE

UNIT
OUTPUT
ROUTINE

UNIT
OUTPUT
ROUTINE

REMOTE
LINE

HANDLER

Figure 4-5. Output Stream Cooperative Control

4.3. EXECUTIVE SERVICES

PRINT
DEVICE

Through the executive services, the Operating System furnishes to the user the means
for directing the follow in g functions:

Job Execution (Executive Control Language)

Job Communication (Service Control)

Activity Control

Environmental Control

Core Allocation

Console Control

4.3.1. Executive Control Language

The executive control language provides the user with the means for directing the
execu tion of the indi vidual tasks of a job and for relay ing opera tional information
concerning a job to the system. The language is open-ended and easily expanded,
so that features and functions may be easily added, as dictated by the specific needs
of different installations.

The construction of a job deck is performed by the user and may include supplementary
cards representing da ta, source code, or object code.

The basic form of the executive control language is the control statement which is
quite simple in forma t and is amenable to a large number of input devices. Control
statements are in card-image format, and are submitted through the primary input
stream, or, in some cases, internally as service requests. Each statement consists
of a leading character for recognition purposes, a function which categorizes the
statement's basic operation J options as desired, and a variable number of speci­
fications. Normally, for card input, the end of a statement is signified by the end
0: a card, or by a carriage return or its equivalent for other types of input devices.

The executive control language can be divided into four general categories: organi­
zational control, input/output control, task activation, and systems utility control.
The control statements are described in detail in UNIVAC 494 Real-Time System
Operating Sys tem Programmers Reference, U P-7504 (current version).

4.3.1.1. Organizational Control Statements

Organizational control statements are used to activate and control a job stream. In
general, this category of statements describes the job decks to be activated; supplies
informa tional data to the system, the operational personnel, and the program; or in
some manner activates a systems process not constituted as a task. These state­
ments are processed upon their occurrence in the job deck.

Organizational control statements include:

• JOB Identifies the job, specifies parameters, and delineates
tasks; begins job deck.

• START Schedules the execution of a job stream.

• COR (Correction) Applies corrections to an absolute element or to memory
locations.

• PRAM (Parameter) Submits operational parameters to a task at execution time.

• LOG Enters accounting information into the systems log.

• DUMP Makes diagnostic printouts or postmortem dumps of primary
and mass stora ge areas.

• MSG

• SOURCE

Communicates with and conveys instructions to the console
operator.

Enters supplementary source images, control statements,
or data to the primary input stream.

103

10,4

• CALL

II! READY

• END

• FIN

Schedules nonstandard output cooperative action; overrides
normal routing of output.

Identifies remote terminal requesting service; precedes job
runs from terminal.

Marks end of primary input for a task.

Indicates termination of input stream, end of tape, end of
transmission, and like conditions, from unit record equipment.

4.3.1.2. Input/Output Control Statements

Input/Output control statements assign and release peripheral unit record devices,
random access storage, and communication facilities to a task ..

Input/Output control statements include:

• ASG

• FREE

• SWITCH

• MFD

• LASG

• LFREE

Assigns an I/O or mass storage device to a task or logical
reference in a program,

Releases an assigned facility between job tasks to general
facility pool or MFD,

Establishes equivalence between file codes for successive
tasks using same facilities.

Catalogs, assigns, and releases files with the Master
File Directory (MFD).

Assigns a communications line to a task

Releases a file code and closes input and output
queues on a communications line.

4.3.1.3. Task Acti vation Control Statements

Task activation control statements are primary control statements which describe
an absolute program, produced by the Loader, and call for activation or initiation
of a routine for execution of the program.

Two forms of task activation statements are recognized by the system:

• System program call statements (see 4.3.1.4) - Activate system processor
utility routines.

• GO - Initiates the execution of a user absolute program prepared by the
Loader, and is the normal method for activating user-developed programs.

4.3.1.4. System Program Call Statements

System program call statements are task activation statements which call for
the execution of a system routine contained in the system library or user job
library. Each system routine is selected as a task and, in general, recognizes
a secondary control language and/or source code.

System program calls available are as follows:

• IN, OUT,
PRT,
LINK, DEL

• TEST

• LOAD

• UTL

• ELM

• REX

• REPORT

• SPURT

• ASM

• FOR

• COB

4.3.2. Service Control

Structure and access the job, group, and system libraries.

Calls the test system for testing and debugging program
areas.

Calls for the collection and allocation of an executable
program from RB elements.

Calls the utility system for distribution or collection of
data.

Calls element library maintenance.

Calls and activa tes the UNIVAC 490 REXecutor.

Calls and activates the UNIVAC 494 Report Writer.

Calls and activates the UNIVAC 494 SPURT Assembler.

Calls and activa tes the UNIVAC 494 ASM Assembler.

Calls and activates the FORTRAN Compiler.

Calls and activates the COBOL Compiler.

Service control is the interface by which an operating task communicates and
requests services from the executive routine. An operating task requests service
by a sequence of instructions which submits a parameter packet appropriate to the
request and generates an interrupt signal to the executive routine.

Since hardware guard mode is enforced against operating tasks, the special Executive
Entry instruction (EXRN) is used to submit a request.

The EXRN instruction causes an interrupt and, through its IS-bit field, identifies
the function requested. In many cases, operational registers A, Q, and B7 are also
used in communication of parameters for the request, and show the status or
condition of the system upon completion of the function. The calling sequences
are consistent with re-entrant programs since the sequences are restricted to the
operational registers.

105

106

The routines which perform the requested service are logically executed as an
extension of the requesting activity. This extension maintains CPU service at the
priority level assigned to the requester and provides for direct logging of CPU time

to the requesting task used in the execution of the function. Organization, which
furnishes interrupt capability for the extent of the function, is also achieved. Service
routines which are not permanently resident will be called and controlled by the
executive routine. Some functions are performed by re-entrant routines which service
simultaneous requests from several user or systems elements, such as input/output
handlers and the segment Loader.

Since service requests are executed as extensions of the calling activity, the caller,
under the current activity addendum, is delayed until completion of the request. If
the task has been fragmented previously, the task may be eligible for program control
under another activity addendum.

Essen tially all executive routine functions called upon during execution of a task
are service requests such as activity control, contingency control, and input/output.
Many of these requests which are related to these functions are explained in detail
in other sections of this manual. Service requests, which are contained in this
section, are miscellaneous functions that are not covered elsewhere.

4.3.2.1. Activity Control Service Requests

An activity is established by definition of an operating task or by another activity.
The function allows a dynamic declaration of parallel parts of a task,- thereby
achieving a multiprogram, multiactivity environment within the task. Activity
control of this type is particularly appropriate for use in real time processing
where activities are selected on the basis of the priority of data (transaction)
being processed. The batch programs may utilize activities to regain CPU control
during input/output waits for instruction executions, to decrease task turnaround
time and fully utilize the available CPU time.

Activities are established at execution time through the use of fragmentation
service requests by the operating task. Three forms of fragmentation requests are
provided by the system: Standard Activity Registration, Queue Process, and
Fork/Join.

Once established, all activities may make the same service requests as the
task from which they emanate, and share operational identity, primary coopera­
tive streams, facility allocation, logging and accounting with the task .

• Standard Activity Registration

Standard activity registration is normally used to register and activate an
independent program or subprogram When the program is activated, little or
no communication 'or synchronization exists between the requester and the
requested activity.

The standard activity registration service request defines a point of program
control within a task which is to be registered with the executive routine for
CPU control. Once the service request is executed by the task, the registered
activity is eligible for program control.

Optional parameters may specify the data area to be locked within the task,
priority, and abnormal index register setting. The activity may voluntarily
terminate through use of the RETURN, ERROR, or ABORT service requests.
At termination, the activity is deallocated and purged from the system.

• Queue Process Activity Registra tion

A queue process activity provides a method for controlling access to an inde­
pendent subprogram or process. The Queue Process Activity Registration
request is generally usefui where the subprogram or process is to be performed
serially or is not re-entrant because of complexity of code or data such as,
tables, files, and buffers.

Queue processing of an activity is a means for utilizing a task-permanent
activity to respond to a series of events. Transactions are accepted and queued
by the system, and the activity is executed when a queue entry exists and the
activity is dormant. The activity signals completion of a given transaction by
return of control through the RETURN service request. The executive routine
re-executes the activity if transactions remain on the queue.

Use of the queue process activity registration function allows the scheduling
of events at the time that the events occur. The function is appropriate where
no advantage can be gained from registration of concurrent executions by re­
entrant code. Two operators are associated with use of this function. The first
operator defines the activity; the second supplies the data to be queued and
causes activation of the fragment.

• FORK and JOIN

A FORK service request provides a method for establishing two points of program
control, and furnishes the ability for synchronizing a completion point for the
two, through the JOIN service request.

The FORK operator is applicable to general batch processing programs more
than to real time transactions, since it provides a higher level interface, and
synchronization is on a gross basis. An activity established by a FORK may,
in turn, establish other forks which provide additional levels on controlling
parallel paths. All FORK activities are considered integral to the requester,
and retain the same RIR, PLR, and index register modes of the requester.

The JOIN operator requests a wait for completion of all parallel activities
previously established by the FORK operator as indicated by the activity
completion operator, RETURN. A JOIN requests completion of all activities
directly emanating from the requesting activity, and when given by the origi­
nating task activity, waits on all outstanding forked activities within the task
since the original task activity is the base of all forking. A JOIN request by
subsequent activities waits on only those activities established either directly
by the activity or indirectly by forks from activities which are themselves direct

forks from the requester.

107

108

The following illustration, Figure 4-6, shows the sequence of three forks
executed from base activity A, causing the activation of activities B, C, and
D, and the subsequent points of synchronization. The code within activities
is described by at, a2' a3' a4 and (-E--) shows the point at which the code is
eligible for execution.

FORK(1)-------

FORK(2)---'

} ~
JOIN(2)" - --RETURN(l)

JOINl~- - RETURN(3)~ - -RETURN(2)

RETURN(4)

Figure 4-6. Example of Activity FORK Sequence

In the above illustration, coding contained in a4 is not executed until coding
contained in aI' a2' and a3 is completed, and activities B, C, and D have
executed a RE TURN signal request.

4.3.2.2. Termination Service Requests

Termination service requests are the formal me.ans for termination of an activity,
task, or job. At completion .of a scheduled operation, or if, for some reason, the
operation must be discontinued, the service requests are used to institute an
exit or termina tion procedure and to return control to the executive routine.

Termination service requests include:

• RETURN - Relinquishes program control a t the conclusion of an activity.

• ABORT - Causes voluntary release of the CPU by the operating task/activity.
The system purges all references to the task, including outstanding I/O and
service requests, with the exception of primary and secondary output which
are processed in t.lte normal manner to the point of the ABORT requesL This
entry is an indication of abnormal operation and implies that the entire job
is to be terminated.

• ERROR - Same as ABORT, except that only the task and its activities are
termina ted.

• RETURN1 - Same as RETURN, except that, when given by registered Queue
Process Activity, the activity together with all outstandin g references is
dealloca ted.

4.3.2.3. Environmental Control Service Requests

Environmental control service requests apply. to basically task related functions
and may be made by an activity or task during its execution.

Environmental control service requests include:

• Segment Call - Requests loading of a program segment or overlay defined
during collection by the Loader (see 4.6.4).

• Subroutine Call - Requests loading of a named absolute library program at a
specified location.

• Common Subroutine Linkage - Requests forms of dynamic segmentation which
allows concurrent tasks to utilize the same code.

• SEND/RECEIVE - Requests storing and transferring of limited data sets
between independent tasks and/or activities within a job.

4.3.2.4. Date and Time Operations

The Opera ting Sys tern provides date and time operations for both internal and
external uses. Timing functions for activity control and for activating programs
at a specific time of day are also provided. The following service requests are
used:

• Time of Day

• Elapsed Central Processor Time

• Date and Time

• Delay

109

110

4.3.2.5. Logical Switches

A set of logical switches is maintained by the system for each job entering the
system and the switches are referenced by each task within a job deck. A logical
switch provides a simple on/off parameter to be conveyed to each task, which
can be set externally to the program, The switches A through E are initially set
by the JOB control statement, from which point they may be changed or tested
dynamically by a task through service requests. The switches may be reset or
altered by the GO control statement. The on/off condition of the switches is
represented by binary 1 for on and binary 0 for off. The following requests are
used:

• Set Off

• Set On

• Test Switches

4.3.2.6. Primary Storage Allocation

The primary storage which is allocated for anyone task is always contiguous.
While the address range for a program is 32 K, the Relative Index Register (RIR)
allows the program to operate in any contiguous area in a 131 K memory.

All primary storage assigned to a task element and extensions are in multiple
units of 1008 words, allowing the Program Lock Register (PLR) to be effective
for the total area assigned to one task.

The initial limits for a task program are determined at selection time of the task.
The limits are specified in the preamble of the task element and in any optional
CORE sta temen ts used to extend the initial allocation. The preamble limits of
the task code are determined by the Loader at collection time. The optional
CORE statements may be collected with the task element or may be contained
in the control stream.

Once activated, the task program may dynamically expand and/or contract primary
storage assigned to it by a service request to the executive routine. Dynamic
expansion requests may cause either compaction of storage area and/or roll
out of a low priority task to provide the added area.

The Relative Index Register (RIR) makes it feasible to dynamically relocate
program elements. This relocation allows compacting or reordering of programs
so that a contiguous area of primary storage can be made available for selection
of a task or for expansion of an operating task. Compacting is only performed when
necessary, since the operation requires that the task(s) to be moved is temporarily
stable. Stability implies that all I/O transfers into the program code, common
subroutine, or service requests are completed.

4.3.2.7. Task Storage Extensions/Contractions

Four service requests are provided for the control of additional assignments of
contiguous primary storage to the task element. The CORE statement may be
submitted at the task selection time to attain optional storage without invoking
compaction procedures. The MADD and MREL service requests are provided to
allow dynamic expansion and/or contraction of primary storage assigned to the
task. The fourth service request is the TCORE operator which allows the oper­
ating task to obtain its physical location in memory and the amount of storage
assigned to the task.

4.3.3. Console Control

4.4.

The Operating System has been designed to minimize the extent to which the computer
operator must communicate with the system. However, certain operational information
must be made known to the operator, while another class of information must be made
known to the system by the computer operator.

The console printer is used by the Operating System and by operating activities
to inform the computer operator of an event or to solicit a reply from the operator as
to the completion of a requested action. Representative operator service requests
are included in the following list:

• MOUNT

• DEMOUNT

• CHANGE

• Unsolicited Task Input Messages

• Scheduler Dis play

• Interlock

• Central Processor Time Overflow

• Output Overflow

DATA MANAGEMENT SYSTEM

The Data Management System exercises centralized control over all peripheral resources
available on the UNIVAC 494: their assignment, usage, and access, as the basis for
efficient multiprogram operation. In addition, centralized control of facilities establishes
the procedures necessary for providing programmers and operational personnel with the
tools necessary for storage, retrieval, and manipulation of the large volume of data
and programs involved in utilization of the computing system.

To effectively utilize all hardware resources in the multiprogram environment, the
Data Management System performs three major roles: Assignment, File Access, and
File Manipulation. One of the major features of the Operating System is the efficient
assignment of the system resources, which is performed in such a manner that a relatively
simple interface is provided between the user and the physical device while a high
degree of device independence is achieved. Device independence permits flexibility
in the choice of peripheral devices assigned to the program at execution time without
need for changing the program.

111

112

References to random access storage or to peripheral devices within a user program
are symbolic so that the program may be compiled, collected, entered, and rolled out,
independent of assignments. The' association of physical device or area with symbolic
reference is made when the task programs are set up, without modifying the text of
the program.

4.4.1. Data Access Methods

Centralized control over data access provides the coordination necessary for full
utilization of the system by concurrent user programs. This control includes three
levels of user interface: device control, cooperative control, and file control. The
user of either device control or file control acquires assignment of required periph­
erals or random access storage prior to access. Assignment associates the physical
device or area with a unique alphabetic character (file) code as the symbolic ref­
erence for each data source contained in the program. The file code, in turn, is
presented with each data access either explicitly through device control or implicitly
through file control, and establishes the link between the task and device or area.

• Device Control

The device control level of interface provides for functional control of a particular
type of device or random storage area. The user submits parameter packets des­
cribing the functions to be performed, and assumes the responsibility for buffer,
item, and device strategies.

Packet requests are formatted for execution by common subroutines referred to
as input! output handlers. The Random Storage F He Handler is required by the
system and is a permanent resident. Other device handlers are maintained in
the systems library and are called into memory only when an assignment for the
type of associated device is made. All executive routine elements utilize this
level of data access.

• Cooperative Control

Cooperative control is inherent in the Operating Sys tem and is available for use
through direct service requests. Functions performed are requests for primary
input images, normally cards, included in the job stream; and submission of
print images and card images for processing by system output routines. No
assignment is required for utilization of cooperative control. Data requested or
conveyed to cooperative control is buffered to random access storage, and is
collected and distributed to system-allocated peripheral units, determined at
systems generation time.

• File Control

File control is a group of standard elements providing data handling operations
at the block or item level. These elements provide a high level, device-independent
interface which manages blocking and buffering while utilizing and augmenting
the system facility for storing and retrieving data. File control utilizes device
level input/output to perform its functions.

4.4.2. Maintenance Functions

The UNIVAC 494 Operating System contains elements used in the maintenance and
manipulation of data files or program libraries, and elements used to perform general
utility functions. These elements are provided with the Operating System, but are
not an intrinsic part of the system. In general, they are system processors and
utility routines activated by control card or service request to perform an explicit
function with minimal interface with the executive routine.

Data management maintenance routines fall into three categories: maintenance of
program libraries, maintenance of the file directory, and routines used for utility
functions.

4.4.3, Assignment of Input/Output Subsystems

The function of the assignment elements is to-maintain the status and availability
of assignable peripheral subsystems attached to the UNIVAC 494. To perform this
function, facility assignment maintains the peripheral and random access storage
requirements of all active tasks and elements by responding to their static and
dynamic, peripheral, and random access storage assignment requests.

The association of peripheral device or area of random storage to a task is specified
by the ASG control statement. The ASG statement contains specifications and
options for selecting and initializ ing a specific device, or a device from a general
class of subsystems, dependent upon availability. In addition to describ1ng the
desired subsystem, the ASG statement specifies the symbolic link which the
operating task uses at access time. The ASG statement is of the normal primary
control statement format and is amenable to many types of peripheral subsystems.
The variety of input/output devices available for the UNIVAC 494 makes it necessary
to describe the ASG statement according to the class of subsystems; for example,
random access storage, tape units, unit peripherals, and remote devices. The ASG
statement contains a peripheral code indicating the unit or type to be assigned,
a file code by which the unit is to be referenced, assignment specifications
appropriate to the type of device being assigned, and options indica tin g initiali­
zation parameters.

4.4.3.1. Peripheral Code

The peripheral code is the mnemonic name of the requested peripheral unit or
random storage assignment (for example, TAPE, UN6C, F880, and such other
devices). The permissible mnemonics for this field are determined by the names
applied by the installation at systems generation time to represent a particular
configuration and order of assignment. The choice of mnemonics is completely
open-ended. Several names may describe a single peripheral subsystem or a unique
name may specify a particular unit on a specific peripheral subsystem. The assign­
ment routines provide a mapping function of mnemonic names through which a
specific name may contain a number of alternate choices for assignment in a
preset order.

A request for a tape file (TAPE) limits the choice to magnetic tape units. Through
the specification of additional mnemonic names, the generality of assignment may
be further limited to a specific type of tape unit (UNISERVO VI C or UNISERVO
VIII C); to request a unit from a specific channel (UN6CA or UN6CB); or, to request

113

114

a specific unit on a channel (SPT). The assignment mapping element could be ad­
justed at systems generation time to allow the use of alternates to satisfy the
request. Alternates could specify that units from the UN8C and/or UN6CB group
can be assigned if units in the UN6CA group were not available.

In addition to specifying a physical device, peripheral code also implies the
device handler which is used in processing I/O requests by the operating task
to the assignment. Input/output handlers, for infrequently used devices or non­
standard I/O processing, are entered into primary storage and initialized only
when the device is assigned or when nonstandard processing is to take place.
The I/O handlers provide the follow ing features:

• The ability to conserve primary storage during periods when a particular I/O
handler is not required because of lack of assignment.

• The ability to utilize nonstandard I/O handlers for the shared usage of the
subsystem or a particular unit on the subsystem. That is, two or more tapes
or random access storage handlers may utilize a physical channel concurren tly.
This is particularly advantageous to the installation which requires special or
additional processing for a class of I/O access (for example, double queuing
of file updates and audit trails). Use of a nonstandard I/O handler also pro­
vides for the integrated subsystem test to operate concurrently with production
tasks, with little or no impact upon their functional requirements.

4.4.3.2. File Code

File code is the symbolic bridge by which an operating task accesses or references
the physical device or area assigned to it. Once the choice is made through the ASG
statement, the user conveys the file code with each device level I/O request or
other reference to the assigned peripheral device or area of random access storage.
This estilblishes a mapping arrangement whereby the task code does not require
modification at execution time for I/O access. File code also affords the user a
procedure through which a task cannot inadvertently access a unit or area of
random access storage which has not been previously equated to it through the
ASG statement.

File codes are established at the task level. That is, each task currently operating
within the sy~tem has a complete set of file codes eligible for its use. Hence, no
programming conventions are required by the user for specifying file codes, other
than those conventions required for intratask control of assignments. However,
it must be noted that all activities emanating from the task have shared usage of
all facilities assigned to the task.

Each task addendum is provided with a basic set of 25 file codes to which the
user may assign a peripheral device, area of random access storage, or communi­
'cation lines. These are symbolically referenced by an alphabetic character from
the set A through Y. In cases where 25 file codes are inadequate for the task, a
user may specify that a designated file code be fragmented into an additional set
of 26 file codes which have the same characteristics as the original set. For
example, if the file code B were fragmented, the new set would be referred to as
BA, BB ... BZ.

4.4.3.3. Random Access Storage Assignment

A request for the assignment of random access storage can be satisfied on anyone
of several subsystems available in the system. These subsystems include the mag­
netic drums FH-880, FH-432, FH-1782, and the FASTRAND II and FASTRAND III.
Each assignment request is satisfied by a multiple of the block size used to map
the subsystem. The block size for anyone type of subsystem is a practical mini-
mum number of words consistent with the characteristics of the device. On F ASTRAND,
for example, the block size is a multiple of a track.

The physical description of an assigned random access file may consist of
discrete noncontiguous areas acroSs available blocks of random access storage.
The noncontiguous areas may cross drums, channels, and even types of drum sub­
systems. As an example, a file may be composed of blocks from FH-880 drum and
FASTRAND. This may occur either through planned partitioning of a file or as the
result of successive extensions to a sequential or random file. However, to the
operating task, all random access storage assigned to a file code is word-address­
able and logically continuous.

File routines and the Random Storage File Handler provide the user with a word­
addressable interface for all types of random access storage through the use of
file code and logical increment. The logical incremen t is essentially a pseudo
drum address relative to the base of the assigned area. At execution time, the
task code submits the logical increment of the file segment being accessed along
with the desired I/O function. The Random Storage File Handler then maps the
logical increment to the physical address to perform the I/O function.

To summarize, random access assignment and data access elements provide the
user with the following important features necessary in a multiprogram environment:

• File Protection

The ability to protect random s tora ge files assigned to a task from inadvertent
destruction by concurrently operating tasks. At the same time, through use of
the file directory, two or more concurrently operating tasks and/or activities
may share usa ge of common files.

• File Expansion

Random storage files may be dynamically expanded and/or contracted without
the need for compaction to develop a physically contiguous area,

• Device Independence

T~is logical independence allows the program to be assigned word-addressable
drum or sector-addressable FASTRAND without impact upon code logic.

• Partitioned Files

Portions of a particular file which are frequently accessed may be assigned to
magnetic drum, whereas portions of the file which are infrequently accessed
may be assigned to FASTRAND, thereby minimizing task turnaround time within
the constraints of the configuration.

115

116

4.4.3.4, UNISERVO Tape Assignment

A request for the assignment of a tape is satisfied by the compatible magnetic
tape units, UNISERVO VI C and VNISERVO VIII C. The request for tape unit
assignment is submitted by the ASG statement. The ASG statement contains the
necessary specifications required to ready the unit for operation. The specifications
include: parity and density in which the unit is to be used, file code of assignment,
and operator mounting instructions.

A feature of the magnetic tape handler is automatic block numbering. Each block
of data recorded on a magnetic tape, load point being 0, is affixed with a sequential
binary number as its first word. The block numbering is performed without assist­
ance from the user task. No allowance for increased buffer specification is required
to accommodate the block number. The magnetic tape handler effects the reading
and writing of each tape through scatter read and gather write techniques to separe
ate block number from data. On each read request, the block number is returned to
the requesting activity in its binary form through the Q register.

The block numbering option is considered the normal mode of operation for all
system processors and user programs operating under control of the system. However,
when tapes recorded on other computers, or going to other computers, are processed
by routines under control of the executive routine, the block numbering option may
be disabled. This is because the block number is the first physical word on each
tape block. Otherwise, the source and/or object computer would have to be cognizant
of the block number feature and compensate for it through programming.

Block numbering provides the ability to verify block continuity on a tape, thereby
eliminating the possibility of undetected data loss during process functions. In
addition, block numbering simplifies error recovery and provides for a more
efficient checkpoint and restart procedure .

• Translate Feature

The Translate feature is optional hardware on the UNISERVO VI C and VIII C
control units. The feature provides for hardware translation of complete data
blocks transferred from tape to primary storage (read operations) and/or primary
storage to tape (write operations). The translation is from one six-bit code set
to another six-bit code set, normally Fieldata to/from Binary Coded Decimal
(BCD).

The Translate option is activated through an option on the ASG statement. Once
assignment is set for translation, all data directed to/from the assigned unit
undergoes translation .

• 9-Track Format Feature

The optional 9-Track Format feature for the UNISERVO VI C and VIII C tape
units provides the ability to read and/or write tapes prepared on or for the
UNIVAC 9200/9300 computers or the IBM 2400 Series Magnetic Tape Subsystem.
The main difference between the normal 7-Track Format and the 9-Track feature
is the method of recording the tape frame. The 9-Track fea ture provides for
nine bits in each tape frame while the 7-Track unit writes seven bits in each
frame. The nine bits in each frame consist of eight data bits plus a parity bit
which provides odd la teral pa rity for the frame.

4.4.4. Master File Directory

The Master File Directory (MFD) provides for registration of files which transcend
jobs and for acquisition of these files by subsequent jobs. The directory itself and
most registered files are stored on random access storage. Registered files may
also be contained on magnetic tape.

The MFD contains a physical description of each file cataloged. In the case of
random access storage files, several physically separate areas may constitute the
file. When a file is acquired from the directory, the description is read to memory
for reference by device I/O control during the period tha t the file is active.

Files are entered in the MFD by a user number and file number. The definition of
permissible users and the number of files to be accommodated for each user is
supplied by the installation. Each user may invoke a keyword protection mechanism
to establish privacy and access constraints for these files. Acquisition of a file
then requires as parameters the user number, the file number, and the keyword.
Cataloging and acquisition of files in the MFD is effected by executive routine
service requests. For magnetic tape files, the directory identifies the reels of the
file and the recording characteristics. All files, when cataloged, are associated
with a retention date to allow automatic discard or purge.

Access to a specific file may request logical lockout to prevent conflicting use by
another job in the multiprogram opera tion. Alternately, by logical lockout, the file
can be opened by coexistent programs which protect against conflicting use of
individual records or blocks. By this means, coexistent routines may reference, and
even update, a file without mutual interference.

Special utility routines are provided to perform installation ~anagement services
on the MFD, including listing, purging, compacting, deleting, copying, renaming,
and other functions.

4.4.5. Device Control

Device control is a "basic access method which is applicable to both randomly and
sequentially arranged data. Through the device control method, physical character­
istics of specific ?eri~heral e~uipment may be recogni~.ed fo~ more efficient utilization
than is generally possi~e with higher lev~l access methods. lIn addition, a degree of
device -independence may be maintained to the extent determined by the programmer.
Detailed knowledge of specific, I/O devices by the programmer is not required.

Data access using the device control method is accomplished by specifying macro
instructions, or macros, within the object program. These macros cause the gener­
ation of a parameter list and a function code which completely define the I/O requests.
The parameter list may be changed dynamically by the user to effect a variation in
blocking, buffering, and other operations.

The I/O operation is scheduled by executive routine at the time that the request
is received from the user program. The parameter list is checked for validity by
the system and, if all is found to be in order, the operation is performed. At the
completion of the operation, control is returned to the requester with an indication
of the success or failure of the operation. Supplementary information may also be
available at this time, depending upon the function performed.

117

118

The system attempts to recover from all error conditions encountered during the
performance of an I/O request. The data block is reread (or rewritten) a number of
times in an attempt to perform the operation without error. Only when all system
recovery attempts fail to produce a normal response from the device is an error
condition reported to the requester. The user may then take any action deS-ired
(that is, attempt his own recovery, use the data block in spite of the error, ignore
the block, a bort, or perform some other function).

4.4.5.1. nata Format Considerations

The device control method of data access deals with physical data blocks rather
than with individual logical records. The data blocks may consist of any number
of fixed- or variable-size records. Initial data block size is specified by the user
through the macro instructions; however, block size may be varied during operation.
For output operations, the block size represents the number of words to be trans­
ferred to the output device. For input operations, the block size represents the.
maximum number of words to be accepted from the input device. The system informs
the user of the number of words transferred so that short blocks may be successfully
processed.

Reference may be made to the peripheral unit only by file code, never by channel
and unit. Use of the file code procedure makes it impossible for a task to reference
a peripheral which has not been validly assigned to the task through the Operating
System. Random access storage is referenced through a file code and also through
a logical address. The file code refers to an area (or areas) of storage that has
been assigned to the task, and the logical address refers to the position within
the assigned area. Thus, two different tasks operating in a multiprogrammed
environment may be using the same file code and logical address, and yet be
referencing two completely separate and distinct areas.

4.4.5.2. Device Control Macros

The device control macros are source statements placed within the program by the
user. From the information contained in the macro statement, a macro call packet,
comprising a parameter list and the necessary control instructions, is generated
to perform the I/O operation specified. The general format of the macro statement
comprises an operator and an operand specification list. The operator defines the
function to be performed, and the specification list contains the necessary infor­
mation for performing the function, such as file code, buffer location and size,
logical address, and search identifier.

4.4.5.3. Status Codes

At the completion of each I/O operation, control is returned to the requester at
the line of coding following the Executive Entry (EXRN) instruction of the macro
call packet. At this time, the results of the operation are presented in the form of
a status code in the A register. The number of words transferred is also indicated
in the A register. The Q register contains supplementary information dependent
upon the type of peripheral referenced.

If the I/O operation is not completed successfully, or if an abnormal condition
exists at the end of the operation, an abnormal status code is returned to the
requester through the A register.

For magnetic tape read functions, an abnormal frame count is not considered an
error condition; the magnitude of the frame count error is always returned in the
Q register. The number of words transferred, as contained in the A register,
includes the partial word.

4.4.5.4. Random Access Storage Macros

The random access macros may be used for I/O operations on the magnetic drums,
FH-432, FH-1782, FH-880, and FASTRAND II and FASTRAND III. The system
provides for word addressability of random files, although the user may orient
himself to the 33-word sector size for write operations to minimize latency if the
file is allocated to F ASTRAND unit. When I/O functions are initiated, the data
transfers continue until the request is fulfilled according to the given specifications
or untii an unrecoverable error occurs. The activity is terminated and a status code,
with other pertinent information as applicable, is returned to the requester.

4.4.5.5. Magnetic Tape Macros

The magnetic tape macros may be used to effect I/O operations on the UNISERVO
VI C/UNISERVO VIII C Subsystems. All data transfers continue until the requested
activity is completed according to the given specification, or until an unrecoverable
error occurs. At completion, appropriate status information is returned to the requester.

4.4.5.6. Unit Record Macros

Device level control of unit record equipment may be exercised by the user, provided
that the peripheral has been duly assigned to the user by the system. Assignment can
be made if the unit is not currently being used for cooperative input and/or output.

For the purpose of device control, unit record equipment is classified on the basis
of data rather than peripheral type; that is, card input may be specified and the
peripheral assigned may be either an online UNIVAC 1004 or a Punched Card
Sub.system, whichever is available. The classifications made are card, printer, and
paper tape. I/O operations are complete.d according to specifications or carried
through until an unrecoverable error occurs. At termination of the activity, the
appropriate status information is returned to the requester.

• Punched Card Operations

Punched card operations may be effected through the Punched Card Subsystem
or through the online UNIVAC 1004 System. Available card processors accommodate
80-column cards which may be read and punched in either translate mode (card
code to Fieldata) or in column binary mode.

• Printer Operations

Print requests may be directed to either a High Speed Printer Subsystem or to an
online UNIVAC 1004 System. The system routines handling the UNIVAC 1004
printer have been designed to duplicate the functions of the High Speed Printer
Subsystem. Vertical form control is specified on the ASG statement in the form
of a top margin, bottom margin, and the number of printable lines per page.
This information is used to exercise basic form control during subsequent print
applications.

119

120

• Paper Tape Operations

Paper ta.pe read and punch requests may be directed either to a standard Paper
Tape Subsystem or to an online UNIVAC 1004 containing the appropriate paper
tape equipment.

Any code (5, 6, 7, or 8 Level) may be read or punched by the user with optional
parity.

4.4.6. Cooperative Control

Cooperative control is a collection of systems elements which retrieve and coordinate
all scheduling information in the form of control streams, and which submit accounting
and actions taken by the executive routine as the result of processing schedule
parameters.

The cooperative control mechanism, because of its scheduling role, is inherent to
the system and is responsible for controlling three data streams defined as follows:

• Primary Input

Primary input is used to contain system schedule parameters, limited user data,
source code to system compilers and assemblers, program parameters, and other
information.

• Primary Output

The primary output stream is a series of print images containing information
pertaining to each job. The system uses the primary output stream for printing
copies of such information as assembler and compiler output, accounting, control
cards, test mode dumps and traces, and limited data sets. This method of printing
is also available to the user. An image submitted to primary output is placed in the
stream as it occurs.

Full words of trailing spaces are deleted from the image by the system. The various
unit record routines create a complete print line by adding the necessary number of
trailing spaces to the image. The user need not specify a full print line when
submitting an image to the primary output stream; the rem.ainder of the line will
be space filled by the unit record routine.

An image may be submitted to the primary output stream through a macro call.

II Secondary Output

The secondary output stream is an optional stream which may be employed for
user data, assembler/compiler output, and other library output. An image sub­
mitted to secondary output is placed in the stream in the same manner as for
primary output.

Full words of trailing spaces are deleted from the image by the system. The
various unit record routines create a complet~ image, if required, by adding the
necessary number of trailing spaces. The user need not submit a complete image
to the secondary output stream; the remainder of the image is space-filled by the
system when, and if, required.

An image may be submitted to the secondary output stream through a macro call.

The cooperative mechanism is composed of input unit record routines, which are
responsible for accepting primary input streams from systems input devices; input/
output cooperative control, which performs staging for all three streams; and output
unit record routines, which are responsible for submitting primary and/or secondary
output streams to designated system devices. Figure 4-3 and 4-5 depict the
relationship and interaction between these three sets of elements.

4.4.6.1. Input Unit Record Routine

The input unit record elements are individual routines which accept the primary
input streams from their assigned devices and submit the I/O streams to coopera­
tive control for staging. Any number of type of unit record routines may con­
currently operate under control of the executive routine, allowing multiple streams
to enter the system. Each unit record routine scans the input stream to identify
job descriptions which are, in turn, queued for selection and activation.

Access to primary input data is by service request through I/O cooperative control
from the active task. Supplementary streams may be introduced from specified
auxiliary sources. The supplementary streams may be used to merge and correct

source code and may be used also to enter supplementary control statements for
job descriptions which are resident to the system.

A standard set of unit record routines is provided with the system. However,
because of their modularity and relatively simple interface, any device is an
eligible candidate as a unit record device.

4.4.6.2. Input/Output Cooperative Control

Input/Output cooperative control is a basic system element which is responsible
for staging of I/O streams to and from random storageas presented or requested
by unit record routines. In performing this function, the control element must
recognize and control overflow conditions which may occur. The second function
of I/O cooperative control is to process service requests for operating tasks or
systems elements for primary input, or for submission of primary or secondary
output.

Cooperative control utilizes random access storage as a staging area for the
streams, providing the system and user the following advantages and features:

• The staging of low speed iaput/output data to random storage to balance
intermittent system utilization with the slow rate of peripheral devices.

Staging allows the device to operate at full capacity within the controlled
constraints of the staging area. The buffering to mass storage permits the
parallel utilization of low speed devices by operating tasks in the multi­
program environment •

• Provision of a consistent mechanism to compilers and/or assemblers, system
processors, and user programs, which is independent of device characteristics,
for obtaining and submitting data. The mechanism feature purges system elements
of redundant code required to assign, recognize, and handle varied devices.

121

122

• Maintenance of the .staging area cooperative library is performed by coopera-
tive control, allowing multiple streams of primary and secondary data streams
to utilize the pooled library. Data for anyone stream is linked by chaining
techniques to the job. Cooperative control expands and contracts the cooperative
library as required to maintain the system. In addition to expansion of random
storage, cooperative control invokes temporary suspension to control overflow
conditions.

The user may obtain card image input to his program through the cooperative
control mechanism. This data must be contained in tIle primary input stream
for his job and located at the correct point within the stream. For example, the
images in the control stream follow the control card which starts the user
program (for example, the GO card).

The end of the user's image set may be determined by a unique image which the
user recognizes as a signal to stop requesting input, or the user may continue
requesting images until an end of file or end of input status is received as the
result of detecting an executive control statement.

4.4.6.3. Method of Operation

Primary input is entered into the system by the input unit record routines from a
variety of devices, including SO-column cards, paper tape, magnetic tape, and
random access storage (prestored job streams).

The appropriate unit record routine is activated in response to a keyboard entry
by the computer operator.

The input unit record routine begins reading images from its assigned facility.
When a JOB statement is encountered, a task addendum for the job is set up.
Subsequent images for this job are then staged to random access storage by
the cooperative control mechanism and are linked to the job through the task
addendum. When another JOB statement is encountered, the previous input stream
is closed off and another task addendum is created for the new job. This process
continues until a FIN statement is reached. At this time, the input stream is closed
off, the unit record routine is terminated, and its facility is released.

As soon as a task addendum has been created for a job, the job is eligible for
selection although its complete job stream has not as yet entered the system.
When the job has been selected, the system then performs the functions specified
by the control images in the order determined by the sequential arrangement of
the images. At this time, the primary (and possibly secondary) output stream is
initiated.

The primary output images generated for a job are staged to random access
storage by the I/O cooperative and are linked through the job's task addendum.
Any secondary output generated by the job is staged and linked in the same
manner as primary output.

Primary (and secondary) output images are allowed to accumulate on random
access storage until one of two contingencies occurs, as described below. At
this point, the appropriate output unit record routine is activated to retrieve the
output stream by cooperative control and to output the images to the chosen device

(such as, printer, magne~ic tape, paper tape, or punched cards). When the output
unit record routine senses that the end of an output stream has been reached, a
search is made to find another output stream which is ready to be processed. If
another stream for this unit record routine is not ready, the routine is deallocated
and its facility is released.

The two contingencies which trigger the activation of an output unit record
routine are:

- The complete job has been terminated.

- A preset output threshold has been exceeded. This threshold is an installation
parameter.

4.5. REMOTE DEVICE CONTROL

The Operating System provides a flexible environment for activating and controlling
the flow of remote communications data to and from the UNIVAC 494. This
environment is structured so that tasks may utilize remote communication facilities
concurrently in the multiprogram system.

• Scheduling Elements

Job control streams originating from a remote site are accepted and processed in
the same manner as streams originating from on-site equipment. Subsequent
primary and secondary output streams from the scheduled job are automatically
transmitted to the remote user, providing the remote site user with the same
scheduling abilities as that provided to an on-site user.

• Batch Programs

Regular batch programs may utilize one or more remote devices for input/output.
This is provided by a high level interface which permits the program to use simple
acquire, read, and write service requests, with the executive routine performing
required buffering, conversion, and transmission of data.

• Online Application Programs

The system provides an interface through which remote data based control programs
can operate without impact on other remote application programs or on other users
of remote site data. The type of application tasks assumed here include message
switching, transaction control, inventory control, and airline reservations requiring
a control program for the loading, activation, and termination of a small data-dependent
worker routine (where the called worker program is dependent upon the content of
the message).

12.3

124

4.5.1. Device Control Elements

The Operating System provides a remote communications interface which satisfies
all of the needs of the various program types. Essentially the interface is composed
of Externally Specified Index {ESI) channel control, remote line handlers, the
Communications Director, and Remote Facility Assignment. (See Figure 4-7 which
illustrates the logical flow of messages to and from the system through the various
elements.)

4.5.1.1. Externally Specified Index (ESI) Channel Control

The Externally Specified Index (£SI) channel control is composed of the basic
executive elements which control the physical hardware channel. The elements
are responsible for sending functions to the communication subsystem as directed
by a remote line handler; for allocating and switching buffers when an interrupt
occurs; and for activating remote line handlers on predetermined interrupt.

4.5.1.2. Remote Line Handlers

The remote line handlers operate as the interface between the ESI channel control
and the user task or Communications Director. Each handler is responsible for
directing hardware control of communication lines, and for accepting and trans­
mitting resultant data. Remote line handlers are written to control a particular
type of remote unit and, in general, perform the following functions in one form or
another:

- Initiate input transmission through polling techniques or by establishing an input
data buffer and for acknowledging receipt of input data from the remote device.

Perform, or request the performance of, required process functions to convert,
pack into message staging buffers, and detect end of message (EOM) on all
incoming communication data.

- Submit messages or message segments to the Communications Director or user
task.

- Accept from the Communications Director or user, task messages for output
transmission to a remote site. The handler unpacks and converts data contained
in staging buffer to communication buffers, and submits communication buffers
to ESI channel control for transmission.

Handlers will be supplied for remote UNIVAC 1004, DCT 2000, UNIVAC 9200/9300,
and UNISCOPE 300. User handlers can be written for special purpose devices or to
control remote devices in an installation prescribed manner. Remote handlers can be
written as re-entrant or not re~entrant, depending upon whether they are registered
with multiple activity addendums.

~ Staging
Externally Spedified rea

Index (ESI) Control Remote Hand ler

User A
Responsible for: • Accept, convert, pack and

Communications Director I r
I

determine EOM of input Level 2
J Interface • Executing hardware message • Stage remote messages to

commands I isted by • Unpack, convert, and and from drum on request
remote hand lers transmit output message

User B • Activate and control own
I

1
code options Level 2

I Interface

• Allocating and
swapping of input Remote Hand ler
communication
buffers

l.S-Remote .. • :....-----------Device

• Swapping and/or Assignment
dea Ilocatirig output
data communication • Assign remote units

Remote Handler • Establish handlers and
necessar y tab les and • Activating remote queues

hand ler as ind icated
by hand ler

User C

Levell interface -- utilizes assignment
to acquire devices

Figure 4-7. Remote Device Control Elements

126

4.5.1.3. Communications Director

The Communications Director provides a high level interface between multiple
user tasks and assigned remote devices. The functions of the Communications
Director are as follows:

• To accept messages from remote line handlers, stage them to random access
storage, and, on a READM service request, to transfer messages to a user
task from a communication line assigned to the task. Own code options are
available as data is transferred from handler to random access storage and
from random access storage to a user task •

• To accept messages from the user task on WRITEM service requests, stage
them to random access storage, and activate and/or transfer to remote line
handler messages which are transmitted across communication lines assigned
to a task. Own code options are available as messages flow from user to random
access storage and from random access storage to remote line handler.

4.5.1.4. Remote Facility Assignment

Remote facility assignment (see 4.5.3) is responsible for maintaining the status
of a user task, and for assignment of remote devices to the Communication Terminal
Module (CTM). Assignment is performed through the normal assignment control
statements and acquire service requests. The assignment statement dedicates the
physical CTM, forms applicable tables used in the interface, establishes the link
between the line handler and the CTM, and establishes output own code options.
The acquire service request activates the handler, and establishes input own code
options and input queues.

4.5.2. Levels of Interface

The Operating System provides the user task with two interface points in the control
of his remote environment as shown in Figure 4-7. For ease of description in sub­
sequent paragraphs of this section, the interface points are referred to as Level 1
(interface at ESI Control) and Level 2 (interface at the Communications Director).

Independent tasks operating under control of the executive routine may interface at
either of the points concurrently when remote facility assignment routines and table
structure are utilized.

• Level 1 Interface

The Level 1 interface allows the ta$k to interface directly with ESI channel control.
The interface assures the user task of a predictable elapsed time period between
the time when data enters the machine from communication lines and when the
task has control of the data. The user task has complete control of the hardware
by commands, which are given to ESI channel control which performs the actual I/O
hardware instructions as directed by the task.

The Levell user task performs all editing, translating, packing, unpacking, and
staging of messages to random access storage. The task is also responsible for
forming poll output messages, monitoring input poll replies, and effecting dial
connections. Any special control requirements of the various devices must be
recognized and provided for in the task program. In installations where both
Levell users and Level 2 users coexist, the Levell user is responsible for
obtaining communications from Remote Facility Assignment and utilizing the
standard CTM control blocks.

The Levell interface essentially fulfills the needs of specialized communication
tasks such as real time programs with time-critical response constraints, which
cannot be guaranteed through normal interface.

== Level 2 Interface

The Level 2 interface allows the task program to utilize simple READ/WRITE
macros to handle communication traffic. The system handles the details of
message buffering, translating, packing, unpacking, polling, and establishing
remote connections, as needed.

The user may include his own remote line handler for special units or networks
and still use the structure of the Level 2 interface. The user may also include
optional own code routines, which are activated by the system as messages that
are written and/or read from random access storage.

The flow of data through the Level 2 interface is illustrated in Figure 4-8.

4.S.3. Remote Facility Assignment

The remote facility assignment elements perform the necessary functions for
assigning remote units to a task and for forming the tables and linkages required
by the task to access its assigned units. Remote facility, assignment functions are:

• To maintain status and availability of remote units and/or lines. Remote facility
assignment maintains a map of all units eligible for direct access to the UNIVAC
494, together will all dial type lines. As units or lines are assigned to tasks or
marked as inoperable, the map is changed to reflect their current status. The user
is provided with the ability to load and activate multiple tasks which utilize
remote devices, with the executive routine applying the same task selection rules
in regard to remote units as those provided for on-site peripherals.

• To assign remote units or lines to a task by CTM. Remote facility assignment
dedicates theCTM's and establishes necessary linkage to the assigned line
prior to activation or during initialization of the requesting task.

• To load into core and register the remote line handler required for controlling
the assigned CTM.

• For users of Level 2 interface, remote facility assignment establishes random
storage staging queues to contain messages prior to processing (input) or prior
to transmission (output); and loads and establishes linkages for user own code
routines to edit or divert messages prior to processing or transmission.

127

128

Input queue control
by task fi Ie code

USER TASK

READM
COMMUNICATIONS
DIRECTOR

r- --,

(I OWN CODE \)
\ OPTION A I
'-_ _ J

,- -,
(I OWN CODE \)'
\ OPTION B
\ I
'-_ -....I

PUTM

REMOTE LINE
HANDLER

ESI CHANNEL
CONTROL

WRITEM

r- -,
<' OWN CODE \
\ OPTION C)
\ I '-_ _J

r- -,
\

{I OWN CODE \)
\ OPTION D

\ /
~ _ _ J

GETM

Figure 4-8. Direction of Message Flow

Output queue control
by CTM control block

In general, the user is responsible for performing the following functions required
to ready a unit or a line for access:

• Systems Generation Time

Participation in forming the remote facility map used to list all units eligible
for access by the system. Developed and/or included in the systems library
are all remote line handlers and own code routines required by the installation.

• Task Selection Time

Submission of LASG control statements as required to assign CTM's, establish
remote line handlers, and specify optional output own code routines.

• Task Initialization

Submission of the LACQ service request by users of Level 2 interface, during
the initialization phase, to activate the handler, establish the input queue, and
specify optional input own code routines. ,

• Task Termination

Release of the line by the LFREE control statement for use by the system or
other tasks when the user task has no further need for the CTM.

The following service requests and control statements are provided by remote
facility assignment:

• LASG (Line Assign) Statement

• LACQ (Line Acquire) Service Request

• LFREE (Line Free) Statement

• CTMFREE Service Request

• Remote Facility Update

• LUP (Line Up) Service Request

• LDOWN (Line Down) Service Request

4.5.4. Remote Data Access Service Requests

The following service requests are provided for transferring messages to and from
the UNIVAC 494. Service requests included are those used by the task program,
remote line handler, and own code routines. See Figure 4-8, which illustrates
the direction of message flow upon submission of the various service requests
executed by the task program and remote line handler.

• Read Message

The read message macros request that the next message contained in the specified
input queue be transferred from random access storage to the task program. The
own code routine, if specified by the LACQ request, is automatically activated
upon completion of message transfer from random access storage to primary
storage, but prior to return of program control to the requesting task activity.

129

130

Three read service requests are provided by the executive routine:

• READM Read

• READMW Read and Wait

• LOOKM Look Ahead

• Write Message

The write message macro requests the transfer of a message from the primary
storage buffer of the task to the indicated random access storage queue. The
random access message queue is associated with the CTM control block. The
output own code routine, if specified on the LASG statement, is activated prior
to the transfer of the message to the queue. Once the message transfer to the
output queue is completed, the message is eligible for retrieval and transmission
by the remote line handler.

• Get Message

The get message macros request the next message contained in the specified
output queue to be transferred from random access storage to the remote line
handler. The own code routine, if specified by the LASG state ment, is auto­
matically activated upon completion of the message transfer from random access
storage to primary storage, but prior to return of control to the handler.

Two Get service requests are provided by the executive routine:

• GETM Get

• GETMW Get and Wait

• Put Message

The put message macro requests the transfer of a message or message segment
from the specified handler's primary storage buffer to the indicated random access
queue. The random access message queue is associated with the CTM control
block. The own code option, if specified on the LACQ request, is activated prior
to the transfer of the message'to the queue. Once a complete message is trans­
ferred to the queue, the message is eligible for retrieval and transfer to the worker
task.

4.6. PROGRAM DEVELOPMENT

The Program Development System encompasses a variety of programs, utilities, and
procedures to provide the programmer and operational personnel with the tools
necessary for the development, checkout, and execution of programs. A variety of
of programming languages, including FORTRAN, COBOL, 494 SPURT, and 494 ASM,
are offered to provide the user a choice of the language best suited to programming
his specific problem.

To enhance the modularity of the Operating System, a standard set of routines is
provided; these routines interface the language processors with the executive routine.
Standardization provides the following features not otherwise obtainable:

• The ability to form programs as a combination of elements produced by various
language processors such as, 494 SPURT, COBOL, and FORTRAN.

• The ability to incorporate additional systems or language processors into the
Operating System with little or no change to the system software.

• The elimination of redundant elements used in the control of individual translators,
thereby simplifying usage and eliminating many idiosyncrasies inherent to individual
compiler or assembler control elements.

• Enhancement of installation efficiency by accommodating changes in machine
configuration and/or operating procedures without direct impact on user programs.
Changes in one user program which impact on other user programs are similarly
minimized.

The elements of the Program Development System are summarized below:

• The Source Routine

The Source Routine provides the capability for generating and/or updating source
elements.

• The Language Processors

Language Processors are system components which translate programming languages
into machine usable form. From source language statements, the Language Processors
produce intermediate output codes, or relative binary (RB) elements, which may be
collected and allocated with other program elements by the Loader prior to execution,
thus forming executable absolute or relative load programs.

• The Loader

The Loader is a systems routine which collects, allocates, and links the RB output
of the various language processors into an executable program.

• The Program Library Editor

The Program Library Editor (PLE) is a collection of file maintenance routines
activated by control statements or service requests and is responsible for main­
tenance and manipulation of the user job library. The editor routines also coordinate
and control elements in the group and system libraries which are used by the job
library.

• The Test System

The Test System provides the user with complete control over programs in the debug
process and allows run time information extraction and display. The test package
provides an object time source-level debugging mechanism common to all programs,
and eliminates the need for source-time planning of debugging strategy. This system
significantly reduces the time and expense associated with program checkout.

131

132

4.6.1. Steps in Program Development

Programs are composed of one or more Relocatable Binary (RB) elements. Each
element or subprogram is processed by a Language Processor as a separate entity
having its own and distinct source code input, call for translation, and subsequent
RB output and print listings. An RB element is not executable as such, and may
be thought of as a subprogram requiring the joining together (collection) with other
subprograms before the complete and executable program (object program) is obtained.

At collection time, subprograms may be contained in any of the random access
storage libraries recognized by the system, placed there as a result of language
translation or entered through the PLE. The joining together of subprograms provides
the user with two important aids in the program development: the capability for
compiling or assembling only those parts of his program which are in error or
require updating; and the ability to develop a program which is composed of sub­
programs produced by different processors such as FORTRAN, COBOL, and 494 SPURT.

4.6.2. Source Routine

The source routine is called upon to introduce a supplementary input stream
(control statements and/or source code, data, and similar information) into the
primary input stream. The function includes a merge against subsequent data
from the original input stream as a mechanism for correcting source code input to
language processors.

Source elements are entered from the user's job library by the SOURCE control
statement in the source deck. The SOURCE statement defines the element through
specifications and options which describe and locate the desired element in the
job library; indicates the corrections in the primary input stream which are to be
applied to the source element; calls for an updated source element to be entered into
user's job library; and indicates the point within the deck at which the element is
to be merged. The SOURCE statement may also be used to enter additional control
stream or user data.

Any source element within the job or system library may be corrected or modified
by the source image corrector. This processing may include correction of the source
element, submitting the source element to the primary input stream, constructing
a new updated source element, and other such functions. All corrections to the
source element are done by means of correction statements which immediately follow
the SOURCE statement. Any number of corrections may be made.

A source code element can be merged into the primary input stream from the job
library at translation time only if the element has been entered previously into the
job library. Individual elements can be entered into the job library through the
SOURCE statement. Once it is merged into the input stream, the source element
may be deleted from the job library through an option on the SOURCE statement
or by the use of the DELETE control statement following the language translation
task.

4.6.3. Language Processors

Language processors are the system components which translate programming
languages into machine amenable form. The primary output of a language processor
is a relative binary (RB) element which is an intermediate, relocatable element
used to form the object program. The language processor accepts source language,
or source element input, and produces RB code output through the retrieval, control,
and storage functions of the executive routine. The cooperative action of the language
processors and the executive routine allow access, update, and storage of source
language and object code within the library structure of the system.

Calls for activation of the language processors have similar formats which specify
the particular language processor to be used, the elements to be processed, and the
storage location, with various options for processing and modification of the element
as necessary. Within the framework provided by the Operating System, new processors
may be appended by specifying their names and characteristics during systems
generation. Language processors are discussed in more detail in 4.10 of this manual
and in UNIVAC 494 Real-Time Operating System Progra"mmers Reference, UP-7504
(current version). Concurrently available language processors for the 494 System
include the following:

• COBOL

The COBOL compiler was developed in accord with the extended COBOL-61
language, which permits program specification in relatively machine-independent,
human language-oriented terms. The compiler accepts source programs in COBOL
language and outputs intermediate object programs in RB code format, with source
elements defining the collection procedure for the RB elements in making up the
load or executable object program.

• Symbolic Language Assembler (494 SPURT)

The 494 SPURT assembler was developed from the SPURT II language, an extension
of the 490 SPURT language, which permits program specification in simple mnemonic
or symbolic terms. The assembler accepts source programs in SPURT language and
outputs intermediate object programs in RB code. Existing UNIVAC 490/491/492
SPURT programs may be converted or reassembled for compatible operations by
the 494 System utility routines.

• 494 Assembler (ASM)

The 494 ASM assembler is an outgrowth of the 1107 SLEUTH II language, which
permits succinct, yet mnemonic expressions, and which provides directives per­
mitting the programmer to define symbols which perform operations and define
other operative symbols, building a powerful programming structure. The assembler
accepts source code in the ASM language and outputs RB code.

• FORTRAN IV

The 494 FORTRAN compiler was developed in accord with the USASCII standards
for FORTRAN IV, with certain extensions, which permits program expression in
relatively machine-independent, problem-oriented language. The compiler accepts
source code in FORTRAN language and produces RB output.

133

134

4.6.4. Loader

The Loader is a system component which provides a flexible and efficient means
for synthesis or collection of independent relative binary (RB) elements into an object
program for execution as a task. An RB element normally contains references (external
references or XREF's) to other RB elements and may itself contain definitions
(external definitions or EDEF's), which are referenced by another RB element. The
Loader joins RB elements; generated from source statements expressed in FORTRAN,
COBOL,494 ASM, and 494 SPURT in the collection process. The Loader does not
actually load a program into memory for execution, but constructs the entity which
may be read and executed. The collection proces s facilitates compilation and
debugging of small parts of a total program and combination of these individual
parts for execution without recompiling the entire set of parts. The collected absolute
program is an entity with no unresolved references and may be read into any primary
storage area for execution without modification of instructions. The relocatability
of the program is inherent from the Relative Index Register (RIR) and is device
independent with regard to system references.

Separate elements existing in the job, group, or system libraries are collected in
constructing an object program. Elements are collected on the basis ofXREF's
in elements which ·can be satisifed by EDEF's within other elements. The Loader
may be directed to include or exclude specific elements by secondary control
statements.

The basic output of the Loader is an absolute object program. The program is entered
into the job library with the name specified by the user. Optional output includes
a list of labels and tags contained in the program for utilization in testing procedures.
Error messages and/or a storage layout listing may be obtained as a hardcopy record
of the collection process. The Loader can also transfer the secondary control language
as a job library element for subsequent reference.

Interlanguage compatibility is provided by the ability to mix, at collection time,
subroutines which may have been written in any set of languages. The languages
available, COBOL, FORTRAN, 494 SPURT, and 494 ASM, have differences in
terminology and functions which are passed on into the generated subroutines.

Basic compatibility between object subroutines is provided by the Loader which can
integrate any routines or subroutines produced in relative binary form, which is the
output form of the language processors.

Using a called program in one language, with a calling program written in another,
normally requires the transfer of data from one routine to the other. When transferring
data between assembly language routines, the programmer has complete and direct
control over the methods and conventions employed. The programmer can specify a
calling sequence between the routines; or he can allocate memory in any manner
which he desires, and make reference to items directly, using his knowledge of the
correct locations. In the case of compiler generated subprograms, the programmer has
only an indirect control over the machine instructions generated. Awareness of the
conventions followed by the compilers is necessary for the interchange of data.

4.6.4.1. LOAD Statement

The Loader is scheduled and activated in response to a LOAD control statement
in a job input stream. Information on the Load card is comprehensive enough to
direct the collection and loading of most programs and may consist of the following
items:

- The name and version of the RB element to be collected.

- The name and version to be given to the absolute element formed by t~e collection
process.

The name and version of a source element containing secondary control statements
necessary to direct the collection process.

4.6.4.2. Secondary Control Statements

Construction of segmented programs or particular collections are described by a
secondary control language which normally follows the LOAD statement.

The secondary control language recognized by the Loader allows description for
the most complex programs. The user can enter these control statements with the
input stream for each collection or he can reference a library element of control
statements.

4.7. LIBRARY MAINTENANCE

Maintenance of the system libraries provides capability for establishing, altering, and
preserving libraries. The Program Library Editor (PLE) is a systems element with the
ability to read, write, list, and otherwise manipulate job or group libraries and their
associated tables of contents. The PLE provides the mechanism for storage and re­
trieval of elements from the external devices, primarily tape, which support the random
access job and group libraries. Under direction of the library control language, elements
in source, relative binary, and absolute formats may be entered into a library, modified,
or transferred from one library to another.

The PLE functions through the IN, OUT, PRT (print), LINK, and DEL (delete) control
statements which specify the operations and elements involved, input/output source
or media as necessary, and optional parameters, such as disposition in case of error.
The PLE is discussed in detail in Section 4.7 of UNIVAC 494 Real-Time System
Operating System Programmers Reference, UP-7504 (current version).

4.8. TEST SYSTEM

The test system is a utility function designed to provide the programmer with a basic
set of procedures to aid program development and testing.

4.8.1. Test Procedures

The test package interpretively executes programs placed in a test mode and provides
a flexible means of dynamic c0ntrol of test procedures through control statements
and symbol tables. Symbol tables generated by compilers are accepted to provide
symbolic reference of test points and data areas. Relative reference is also provided
for testing of collected programs. Either means of reference allows definition of
test procedures, external to the program being tested. Test procedures can, therefore,
be employed at object time in contrast to source level, allowing the programmer to
vary test strategies without costly recompilations and collections~

135

136

Test .procedures provided fall into two general categories: conditional procedures
which regulate logical switches that are used to control activation and frequency
of functional procedures; and, functional procedures, themselves, used to perform
diagnostics. Functional procedures provided in the basic package are: snapshot
dump of primary storage and/or peripheral areas; store statements used either for
patches or to set test values; printing trace display; trap display; and exit used
for early termination.

4.8.2. Logical Switches (Conditional)

The test system contains a set of 26 logical switches, A through Z, which may
acquire a value of on or off. A conditional procedure logically operates the state
of a particular switch. The effect of successive conditional procedures is cumula­
tive. The purpose of conditional procedures and the logical switches is to establish
whether or not a functional procedure, contingent upon the state of the switches,
will be executed. This allows the user to employ debugging techniques responsive
to the dynamic execution of a program. Through use of multiple switches, the pro­
grammer may nest procedures to provide additional flexibility.

4.8.3. TEST Statement

The TEST statement is the primary control statement for the Test package. The
TEST statement activates the Test routine, specifies the program area and values
to be tested, and indicates the logical switches on the JOB statement which are
to be tested. These logical switches, A-E, are not the same logical switches
for establishing conditionality as mentioned in the previous paragraph.

4.8.4. Secondary Control Language

The secondary control language describes functions to be performed by the system
and immediately follows the TEST control statement.

4.9. UTILITY PACKAGES

Utility programs are auxiliary routines incorporated into the UNIVAC 494 Operating
System to provide ancillary support to the system and to provide a wider range of data
processing and information handling capabilities. The routines perform such functions
as file handling and manipulation, program updating and conversion, report generation,
and accounting.

4.9.1. File Control

File control is performed by the Basic File Handler (BFH), a high level, device
independent routine. The BFH provides form independent access to both random
and sequential files. Significant features of the routine include block or item level
access, blocking/deblocking, overlap buffering, and label and sentinel processing.
The BFH serves as an intermediary between the worker program and the device
control elements of the executive routine; requests read and write operations when­
ever required; and performs automatic label checks, checksum computations, unit
swapping, and other functions. These services are performed for files residing on
random access storage, magnetic tape, punched cards, and online printers. The BFH
is discussed in detail in UNIVAC 490/491/492/494 Real-Time System Basic File
Handler Programmers Reference Manual, UP-7573 (current version).

Through the BFH, characteristics of the file, which is to be processed, are defined
by the user in a File Description and Usage (FDU) Table. The table contains infor­
mation necessary for identifying and processing the file, such as file name and file
code, buffer location and usage, block and item structure, and similar parameters.
The BFH operates under control of the executive routine through basic file, read, and
write instructions.

4.9.1.1. File Organization

Data files are constructed in a variety of formats because of the differences in
pr9blems, the conflicting interests of space versus time, and real time access
applications. File control provides conventions through which a variety of files
may be described and handled. The conventions must be selected for describing
both blocks of data and items of data.

A data file consists of a collection of items which may be of either fixed or vari­
able size. Variable items contain a length field within the first word to allow file
control to handle the items. Except for this field, file control makes no reference
to the data within an item.

When variable-length items are necessary, fixed-length blocks may be retained by
using padded blocks or spanned files. Padded blocks waste space, and some items
may grow larger than the selected size for blocks. Such blocks have the advanta ge
that processing of the blocks in place is possible. Spanned files save space, elimin­
ate all conflict of item size and block size, but do not permit processing in place.

The addressing of a random file requires relative item addresses. The addresses
imply a user provided routine which transforms keys into relative file addresses,
either by formula manipulation or by privately maintained indices. Random files
are essentially unblocked, although a user imposes pseudo blocking by the buffer
sizes selected. For spanned files, items to be processed must be transferred to a
work space; they may not be processed in place.

Spanning is avoided on fixed item files by adopting buffers which are multiples of
item size. However, if any single item exceeds the buffer size, spanned files must be
used. Padding may be employed as a user option for nonspanned files.

137

138

4.9.1.2. File Read

The file read instruction repertoire of the BFH provides methods for transferring data
from input buffers to the worker program and also for automatic buffer monitoring;
block reading, sentinel testing, and unit swapping. The worker program may use these
services at the block and/or item level as desired.

4.9.1.3. File Writing

The write instructions of the BFH provide methods for loading output buffers with
data, and automatically perform buffer monitoring, block writing, sentinel insertion,
and tape unit swapping operations. The worker program may use these services at
the block and/or item level.

4.9.2. Report Writer

The UNIVAC 494 Report Writer is a system utility program which scans a file from
beginning to end, and prints a report conveying one set of information for each
accepted record in the file. The Report Writer processes files residing on magnetic
tape, random access storage, and punched cards. The Report Writer is discussed in
detail in UNIVAC 490/491/492/494 Real-Time Systems Report Writer Programmers
Reference, UP-76S0 (current version).

The Report Writer is designed for use with the UNIVAC 494 Basic File Handler
(see 4.9.1) which performs read, write, and other services in manipulation of the
file. The Report Writer is activated by the REPORT control statement as a task
under control of the executive routine. The user describes the file and the desired
report input by means of parameter cards. The program obtains records one by one
from the file and processes each record through a predetermined series of steps.
Consequently, user programming experience is not necessary, although some familiar­
ity with card and tape files is helpful.

The file which is to be processed must be composed of records that are recognizable

by the BFH. The records may be of variable size. The program handles those fields
in the records which are at fixed positions relative to the record start.

4.9.2.1. Capabilities

The Report Writer is designed to provide power, flexibility, and ease of use while
conforming to the concept that the user "describes the input file and describes the
report which he wants from it." Capabilities and restrictions of the Report Writer
are as follows:

• The prime utility of the Report Writer is its ability to move and manipulate fields
as designated by the user in generation of a report.

• The program makes one pass through the input file and produces one report which
is generated in input file sequence.

• The file may reside on magnetic tape, mass storage, or cards. The program pro­
vides an option permitting a card file to be read through the primary input as
well as from a secondary card reader.

• The input file is composed of records which are recognizable as such by the
BFH and are transferred one by one to a work space. In the case of primary
stream card file input, the record size may comprise 1 to 33 sixteen-word
card images.

• The program references fields within records. The locations of such fields are
specified by stating the number of bits of the record which must be skipped.
The sizes of the fields are specified by stating the number of bits to be used.

• Sequence checking is provided. One field of the record is checked against the
corresponding field of the previous record. If the specified sequence fails, the
program is terminated. The sequence may be specified as ascending or descend­
ing.

• A selective feature limits the report to acceptance of only those records which
pass certain tests which compare fields of the record to values provided by the
user. Eligibility of the record is determined on the basis of the results of the

comparison. The user may "and" several tests to form one rule. He may also
"or" several rules. On each test the user may specify:

- equal to or not equal to;

- less than or not less than;

- greater than or not greater than.

• When a record has been accepted for inclusion, a series of tests may be made
for breakpoints. A breakpoint is defined for the Report Writer as a condition
which occurs when a field is not equal to the same field of the previous record.
When a breakpoint occurs, a subtotal line/lines is printed, indicating the amounts
accumulated in one or more numeric columns. A maximum of 15 sets of totals may
be printed, allowing for 14 breakpoint fields (subtotals) plus the grand total line.
When an intermediate breakpoint is reached, all lower level subtotals are auto­
matically printed. A hierarchy of breakpoints may be arranged. For example, a
hierarchy might be region, state, and county. A state break would cause county
totals to be printed; then, state totals would be printed. Accumulators are reset
to zero after printing. All levels of subtota1.s, plus the grand total, are made
available for printing at end of file.

• Accumulation is done only on columns being printed in the "detail" lines of
the report.

• After printing any totals lines caused by breaks, the program prints a user­
specified detail group from th~ current record by directing the line number and
the column locations in which fields are to be printed. Additions are made to
accumulators, if any, and processing advances to the next record.

• One group of detail lines per accepted record is the rule. The detail group for­
mat is not variable during the run.

139

140

• Fields may be edited on the way to the print buffer by truncation, roundoff,
leading zero suppression, and decimal point insertion.

• The user may input page heading lines containing report title, column headings,
time information, and date/page package information as provided under the High
Speed Printe r basic write package of the BFH. Line spacing and lines per page
information are also selectable.

• User input is kept to a minimum. For example, absence of acceptance specifi­
cations means that all records are accepted; and absence of breakpoint specifi­

cations means that no breakpoints are desired, and no accumulator totals are
required.

4.9.2.2. REPORT Statement

The Report Writer Program is activated in response to the REPORT statement.
Options specified in the control statement determine the disposition of errors
encountered in the parameters and in the processing of the file.

4.9.2.3. Parameter Statements

Parameter statements describe the input file and its fields to be processed, page
and line format of the report, the nature of the report information, and special
options desired by the user. The parameter statements must follow the REPORT
statement in the control stream.

4.9.3. Utility Generator

The Utility Generator is a system utility program which provides a flexible and
device-independent means of generating and manipulating data files. Data may be
transferred to primary storage from a file or transferred from file to file. The Utility
Generator is a useful adjunct to the Test System, since it provides procedures for
the distribution of test data as a prelude to debugging, or for the collection and
display of data manipulated by the test run.

The Utility Generator operates as a task under control of the executive routine
through the UTL control statement. Secondary control statements describe the type
of file manipulation to be performed. These statements are processed by the Utility
Generator, and an absolute element is formed, capable of performing the actions
described. The element generated is placed in the job library with the name and
version specified by the user. The element may then be activated by means of the
GO statement, and/or the element may be retained for subsequent use through the
OUT statement. Files to be referenced must be assigned by the user prior to acti­

vation of the generated utility element. As an option, files that follow UNIVAC
490/494 data file conventions may be processed.

4.9.3.1. UTL Statement

The Utility Generator is activated in response to the UTL control statement.
Options .on the UTL statement determine the disposition of illegal control state­
ments and errors encountered during execution. The UTL statement also specifies
the name and version of the utility routine to be generated.

4.9.3.2. Secondary Control Statements

The secondary control statements of the Utility Generator describe the actions to
be performed by the generated element and are of two types: action statements and
test statements. The action statements provide for transfer of data, iteration, and
unconditional transfer of control. The test statements provide for condi tional transfer
of control based on predetermined contingencies. User own code subroutines may also
be called to process file data. System control statements may be included in the second­
ary control language; these statements are submitted internally during execution.

4.9.4. Logging and Accounting

The Operating System maintains a log for the collection of information pertinent to

a task or job and to the operation of the computer complex as a whole. This infor­
mation is gathered and logged by executive elements and is later processed by a

utility routine to provide accounting statements, on the UNIVAC 494 complex under
the user operational load.

Accounting information is sorted by charge number, summarized, and extended for
billing purposes by the installation. The accounting statement contains, by task,
the following pertinent information:

- Sign-on and sign-off time, date and charge number

- Amount of primary storage utilized and duration of time used

- Amount of CPU time used

- Peripheral Units: number and ?mount of time utilized

- Magnetic Tape Units: number and amount of time utilized

- Random access storage: amount, weighted by grade, and time utilized

- Communication Lines: number and length of time assigned for each line; including

the number of input/ output messages

- Number of drum modules used for primary and secondary input/output

- Optional summary of number and length of I/O transfers to random access storage

and magnetic tape units

- Number of activities within the task

- List of program and hardware contingencies experienced during execution of the job

- List of all LOG statements submitted by the user task and control statements

Other messages entered to the log are: hardware contingencies, console messages,
conventionalized user messages, and similar information.

4.9.5. REXecutor

The REXecutor is a utility package which is designed to load and execute REX
490 (UNIVAC 490 Real-Time Executive Routine) oriented programs under the UNI­
V AC 494 Operating System. The REXecutor loads and executes programs which
have been assembled by SPURTFD (490 SPURT) with simple relative (SPURT
output 321) or complex relative (SPURT output 322) object coding and standard

REX request packets.

141

142

The REXecuto.r is co.mpo.sed o.f two. co.mmo.n subro.utines; o.ne o.f which is re-entrant
and the o.ther is no.t re-entrant, and a 4008 wo.rd interface which is attached to. each
task. This o.rganizatio.n allo.ws co.ncurrent REXecuto.r executio.n o.f several indepen­
dent pro.grams.

The REX 490 wo.rker pro.gram is lo.aded into. primary sto.rage by the REXecuto.r. Once
the wo.rker pro.gram is lo.aded and initiated, the pro.gram is allo.wed to. run free. The
REXecuto.r is no.t an interpretive executo.r. The REXecuto.r is activated by the
SILRJP instructio.n to. the jump table at 140-146 (the RIL o.peratio.n is perfo.rmed
immediately by the REXecuto.r to. prevent interference with a real time enviro.nment).
The request is interpreted and either refo.rmatted fo.r submissio.n to. the executive
ro.utine o.r executed by the REXecuto.r itself, whichever is appro.priate. CKSTA T's
(status checking) and TAKEOVER's are executed in the same way as in REX.
Pro.per REX status wo.rds will be returned to. the requester. All return po.ints are
under REX co.nventio.ns.

4.9.5.1. Restrictio.ns

The REXecuto.r is able to. o.perate mo.st UNIVAC 490 wo.rker pro.grams; ho.wever,
so.me restrictio.ns are impo.sed:

• The REX request packets must co.nfo.rm to. standard 490 REX specificatio.ns.
Any packet written to. co.nfo.rm to. special site mo.dificatio.ns o.f REX will no.t
be executed properly, if at all.

• The REXecuto.r is no.t designed to. execute real time co.mmunicatio.ns pro.grams.

• Executio.n o.f hardware level I/O instructio.ns (privileged instructio.ns) will
cause a fault interrupt.

• Input/o.utput facilities canno.t be acquired during executio.n time and must be
assigned prio.r to. the selectio.n o.f the REXecuto.r task. The facilities will be
h~ld by the REXecuto.r until requested by a REX internal facility request.
Once a facility is released, it canno.t be acquired again.

• The binary time at which the REXecuto.r is initiated will be in wo.rd 147. This
time is in UNIVAC 494 fo.rmat and will no.t be updated by the REXecuto.r. The
date is in wo.rd 135.

• Only five I/O o.peratio.ns, with o.r witho.ut CKSTA T, are allo.wed to. be o.utstanding
at o.ne time. Requests in excess o.f this limit will be treated as a REX addendum
o.verflo.w.

• Because o.f the disparities between the REX addendum and the REXecuto.r pro.gram
interface, the 490 pro.gram sho.uld no.t co.ntain instructio.ns which mo.dify the REX
addendum.

• The fo.llowing REX loader requests will be igno.red and marked as co.mpleted
by the REXecutor. Where po.ssible, the request will be marked as no.t having
been fulfilled. All o.ther REX lo.ader service requests, including site utility,
will be considered erro.rs; the REXecuted pro.gram will be terminated.

REX Service Request

Real time initialization
Start slave
Rerun dump
Subroutine load
Real time extension
Internal load request
Core release
Random storage release

• The EXCHANGE request will be considered to be an error and will cause the
program to be terminated.

• Any subroutine employed by a REX 490 program must be defined by a PROG
statement and loaded at the same time as the primary program. The subroutines
must be activated by a jump or return jump. As noted below, subroutine load
packets will be ignored. This limitation does not apply to the loading of
secondary segments.

4.9.5.2. Control Cards

Execution of a program under the REXecutor is very similar to execution of any
other normal task under the executive routine. The REXecutor is activated by
the REX control statement.

When the task is selected and primary storage is allocated, the system will insert

the 4008 work interface into the beginning of the area for the exclusive use of the
REXecutor. All worker programs will be loaded above the interface. Control is given
to the interface, which will, in turn, call in the REXecutor proper.

When the REXecutor is activated, the program begins the reading of secondary
control cards through primary input.

• The MEANS Statement

All peripheral and random access storage assignments are made prior to task
activation by means of ASG control statements. There is no load time allocation
of peripherals as under REX. The assignment is equated to a specific peripheral
device in the worker program. The peripheral device is a unique channel/ unit as
defined by the SPURT MEANS, ASSIGN, and FACIL statements. Since the channel
and unit are not altered when the worker program is loaded, the channel/unit
specification appears as originally specified in the SPURT MEANS and ASSIGN
statements. The REXecutor does not examine the contents of the previously
submitted ASG control statement. This allows a degree of flexibility. For example,
a 490 program written for UNISERVO II A magnetic tape units, can now be run on
a UNIVAC 494 System with UNISERVO VIII C magnetic tape units without altera­
tion or reprogramming. The UNISERVO II A packet will be properly submitted for
UNISERVO VIII C magnetic tapes by the REXecutor.

143

144

• The PROG Statement

The PROG statement loads the REX 321 or REX 322 program into primary storage.
Any number of PROG statements may be submitted. to the REXecutor, one for each
program to be loaded. All subroutines are loaded before the primary program is
activated.

• A Card

The A card is used for errata in the same way that it is used in REX, and the
format is identical to the format used for the A card in REX. The addresses are
relative to the task base. This includes the 4008 word interface area.

• Band C Cards

The Band C cards are used for parameters exactly as they are used in REX.
Parameters are stored beginning at the address specified in the Executive In­
formation Region (EIR). The REXecutor supplies the count of the number of
parameter words. Band C cards must follow the PROG card which loads the
program that is receiving the parameters.

• The PS Statement

The PS statement is used to activate the worker program. All images in the primary
input stream between the PS statement and the END control statement will be
considered data for the worker program.

4.9.6. CONVAID

CONVAID is a system utility routine which assists in the conversion of a SPURTFD
(REX-Oriented) program to a SPURT4 (494 SPURT) program. CONV AID accepts a
source program written in the SPURTFD language and outputs a source element in
494 format with a flagged lis ting of the source element. Optional "own code" ele­
men,ts may be used with CONVAID.

The SPURTFD source language input may be contained in a symbolic card deck, a
SPURTFD 301 output tape, or on a library tape created by the REX utility routine,
RMASL. Provision has been made for multiple reel input. Card input may be entered
through the primary input stream or through a nonprimary card reader.

The output of CONVAID is a source element in the 494 Operating System format. The
element is placed in the job library and may be retained for further use by the OUT
control statement, and/or the element may be assembled by 494 SPURT through the
SOURCE control statement. A listing of the newly created source element is also
submitted to the primary output stream. Items in the element which will cause 494
SPURT assembly and/or run-time errors are flagged in the listing.

Own code routines may be collected with CONV AID to assist in the conversion pro­
cess. The own code routines may be used to insert, replace, or delete source images
and to modify the print images concerning the processed images.

Each individual installation has certain features common to many of the programs to
be converted. The own code routine may be written to take advantage of these features,
and can change REX code automatically to 494 executive routine code in an optimum
fashion. CONVAID is described in detail in UNIVAC 490/491/492/494 Real-Time
Systems CONVAID, P.I.E. Bulletin 4, UP-7S0S.4.

4.9.7. Random Storage File Handler

The UN IV AC 494 Random Storage File Handler (RSFH) is a routine which provides
the programmer with an efficient means of generating and utilizing files placed on
random storage. Through collection (a Systems Processor (Loader) function) with
the worker program, the RSFH offers a complete repertoire of re-entrant functions
to generate any number of files, and to search and update each file without program­
ming the extensive bookkeeping and I/O operations involved. Files of virtually any
size, with fixed· and/or variable·length records, containing keys (used for element

recognition) of any size, can be optimally handled through judicious selection of
the available s.ervices. Both searchable and nonsearchable files can be handled by
the system. Searchability is restricted to files composed of fixed-length records.
Files composed of variable-length records cannot be searched, but can be tied to
searchable files to obtain the related services. The worker program must establish for
each file a short descriptive table, work space reserves, and buffer reserves. Conse­
quently, primary storage utilization outside the RSFH program is dependent only upon
the particular user's facilities, needs, and applications.

The speed of the RSFH system is similarly dependent on user applications. The basic
factor for consideration is the average access time for any given record within a file.
This is governed primarily by the number of records entered into core storage per input
request, and by the I/O cycle time and latent access time of the peripheral random
storage device used. Since I/O operations are major time consumers, the system will
function faster if it requires fewer I/O requests for accessing a given record. For this
reason, the system provides two methods for handling searchable files, the key table
method and the pyramid method. The selection of the method to be utilized is deter­
mined by the user and is based on key size, file size, and available facilities.

The key table method is faster than the pyramid method, but for large files requires
considerable core storage to maintain a searchable table of keys. Through this
method, a key in core storage references each block of records on random storage.
Consequently, every record is available through only one I/O request.

The pyramid method, on the average, must issue more than one I/O request to access
a given record on random storage, but will handle files of any size without the need
for additional core storage. Through this method, records in higher level blocks point
to groups of records in lower level blocks, necessitating several I/O requests for
obtaining records in the lower level blocks of the file .. The fundamentals to be con­
sidered in selecting and utilizing the RSFH services for optimization of user applica­
tions are discussed in detail in the UNIVAC 494 Real- Time System Random Storage
File Handler, P.I.E. Bulletin 10, UP-4121.10.

145

146

4.10. APPLICATION PACKAGES

Application packages are ancillary programs which may be used by an installation to
perform specific functions or applications as extensions of the basic computer software.
When packages have been implemented in the UNIVAC 494 System to provide greater
system usage potential for the system user, the application packages operate under
control of the executive routine designed to be easily integrated into the 494 Operating
System. For each package, detailed discussion has been made in a separate reference
document.

4.10.1. Sort/Merge

The UNIVAC 494 Sort/Merge package is a generalized subroutine which is utilized
by a user's own code at load time to form a particular Sort program. The subroutine
approach is a new concept in sort design, giving the user greater control over both
the data to be sorted and the sorting process itself, and substantially increasing
his flexibility in the use of the sort. The Sort/Merge is designed for use with all
of the assembler and compiler languages of the system, including 494 SPURT,
494 Assembler, COBOL, and FORTRAN. The unordered input file is read by the
user's own code and transmitted in memory to the Sort subroutine, one record at a
time. The Sort/Merge is discussed in greater detail in UNIVAC 494 ReaI- Time
System SORT/MERGE Programmers Reference, UP-7S38 (current version).

4.10.1.1. Basic Concepts and Operations

Since the interface between own code and the Sort subroutine is strictly internal,
the external storage device and the external format of both the original input and
final output files is completely controlled by the user's own code. The user may
handle input/output by any means that he desires. The user's own specialized
input! output routines may be applied to formats unique to his installation; or,
for standard UNIVAC 494 formats, the UNIVAC 494 Basic File Handler is avail­
able (see 4.9.1). Communication between the Sort subroutine and the own code
routine is achieved by standard program linkages and by an internal parameter
table in the own code routine. The parameter table defines the format of the data
to be sorted and the hardware configuration available to the Sort subroutine. The
linkages are similar to those required for using a file control routine.

For a typical sort, only a few basic parameter entries and program linkages are
required for communication with the Sort subroutine. For more sophisticated usage,
additional parameters and linkages may be used to achieve greater control over the
sorting process. For example, one additional parameter to the basic set, together
with a few additional linkages, allows the user to have each pass own code for
data reduction. Another parameter allows the user to provide his own comparison
subroutine for sorting data on unusual key types which could not be handled by
the Sort subroutine. Other parameters allow splitting of a very long sort process
into several smaller runs.

The Sort subroutine is in no way fixed to a particular hardware configuration. Any
combination of drums, FASTRAND, and tapes may be used. Depending upon record
size and hardware facilities assigned, a variable amount of primary storage is re­
quired. Up to 32K, less the own code/Sort program, may be assigned. Although
use of the drum is optional, its utilization as an intermediate merging media is
recommended for achieving maximum speed. In general, sorting speed will increase
with the amount of primary storage and drum storage assigned.

For tape sorting, the Sort subroutine requires a minimum of three units for its own
use. Up to 14 units can be used. Tape units assigned to the Sort subroutine are
not available for use by own code; that is, units used by own code for reading
initial input and writing final output must be other than those assigned to the
Sort subroutine. For convenience to the user, Sort/Merge timing tables have been
derived for various equipment configurations and volumes of data. Also given are
formulas for deriving sorting times for configurations and volumes of data not
presented on the tables. This information may be found in UNIVAC 494 Real-Time
System Sort/Merge Timing Tables, P.l.E. Bulletin 2, UP-4121.2.

4.10.1.2. Capabilities

The Sort/Merge is a highly flexible subroutine providing features desired by very
sophisticated users, yet it is simple and easy to use for those sorting on a one­
time basis or whose requirements do not include a sophisticated own code. The
significant features of the Sort/Merge are as follows:

• The subroutine concept allows the sort to be called by a large and complex
own code in which the sort acts as a true subroutine. On the other hand, the
sort may be called by a few lines of standard coding which cause the sort to
be executed essentially as an independent program.

• Multicyc1e capability allows an unlimited volume to be sorted, either automatically
or in separate phases.

• Record size is limited only by the amount of primary storage available.

• Either fixed- or variable-length records may be sorted.

• Five different types of keys may be specified.

• Key fields may appear anywhere in the record for fixed size records. For variable
size records, all keys must be contained in the first link. There is no limit on
the number of fields which may be specified.

• Key fields may be sorted in ascending or descending sequence.

• The user may specify his own collating sequence.

• Both rerun and restart ability are provided.

• Data reduction own code may be executed.

• The user may provide his own comparison routine to handle special key types.

• A Merge subroutine, which is provided, will perform an internal merge of up to
26 files.

147

148

4.10.2. Network Simulator

The UNIVAC 494 Network Simulator (UNS) is a package designed to allow simulation
of communication networks, especially those networks built around a computer system
for operation of real- time systems. UNS is particularly applicable to the simulation of
reservation systems, communication systems, and so forth. UNS requires the building
of a logical model of a real or proposed network of interconnected components (nodes
and trunks). These components may create, modify, move, or remove the system work
load (transactions), in accordance with the users instructions.

4.10.2.1. Design and Capabilities

The input required to build the internal model for the UNS is provided through a
self-documenting series of English language sentences and parameters. The input
consists of a network configuration description specifying the various nodes and
the trunks connecting them, the capacities and other characteristics of the nodes
and trunks, the volume and other characteristics of the transactions (work load),
the logical decisions to be made, routing to be taken, and the statistical output
desired.

The simulation uses Monte Carlo techniques to generate transactions and initiate
various activities. Each transaction enters the system and, going from node to
node, proceeds through input, processing, output, and transfer stages. The input
and output stages are essentially measuring points for queuing and waiting. The
transaction which is to be processed depends upon priority, available processing
capacity, and similar factors. Processing time is based upon transaction length
processing node characteristics, or originating node characteristics. Transfer of
a transaction to another node depends upon completion of processing in the present
node, priority, available trunk capacity, and available next node capacity. The next
node may be selected in several ways depending upon the termination node. The
transaction may be forced into the next node, may ask permission to transfer to it,
or may wait for the next node to request it. The transfer time is based upon the
transaction length, trunk length, and trunk speed. System performance is recorded
with every change of state. Queuing and waiting statistics are collected for the
input and output stages. Utilization statistics are collected for the processing
and transfer stages. In addition, statistics on the total system performance are
collected.

The output of the simulator includes total system statistic tables showing distri­
bution of response times, waiting times, waiting frequencies, and activity levels.
Individual statistics are collected for each node and trunk. These tables show
distributions of input and output waiting times and frequencies, queuing, and pro­
cessing and trunk utilizations. The average and maximum response times of each
node, which originates transactions, are also given.

Special features of UNS include a stability check, decision rules, and a transaction
history. The stability check will determine if the system has reached, and is main­
taining, a certain level of activity. Sta,tistics prior to stability are discarded.
Statistics collected after stability are checked for excessive fluctuations and cycles.

UNS has seven decision ruies avaiiabie which allow the user to select a range of
values for each parameter (length, priority, processing time, and so forth) and also
allow UNS to make choices between alternative routings and courses of action.
These decision rules allow selections from a constant round robin sequence, discrete
distribution, or from a uniform, continuous, normal or negative exponential distribution.
The transaction history option provides a complete node to node trace of every trans­
action entering the system and of any event, such as waiting or processing, which
will increase the transaction response time. Detailed information on UNS can be
found in UNIVAC 494 Real-Time System Network Simulator Programmers Reference,
UP-7548 (current version).

4.10.3. Transaction Control System

A number of applications require a real time transaction-oriented system rather than
batch-oriented processing. These applications include airline reservation systems,
stock inquiry systems, message switching, management information systems, and
similar operations. In these types of applications, each message (transaction) must
be processed as soon as possible after it is received by the system. A transaction­
oriented system considers each message a discrete entity in itself and activates
segments to process the data. This is the main difference from batch-processing
systems in which programs are loaded in a determined sequence and the data is
passed against the program.

The main task of a transaction-processing system is accepting message input from
remote sites, processing this data, accessing and updating master files residing
on random storage as required, and generating a response to the message to be out­
put to one or many remote sites. A major part of the above process is involved in
protecting the integrity and providing recovery of the user's master files.

The UNIVAC 494 Transaction Control System (TCS) is a random storage, transaction­
oriented system made up of modular routines that have been designed to run under
the executive routines. In providing the services above, TCS is the controlling agent
between Transaction Processing Segments (TPS's) written by the user and the execu­
tive routine. TCS operates as a normal task, and communicates with the system in the
same manner as a batch program. This provides the ability for an installation to mix
transaction- and batch-oriented processing on the same computer at the same time.

4.10.3.1. TCS Control

TCS control of message flow through the system encompasses three main areas:
message startup, processing, and termination. The file recovery and restart feature
are integrated into the main areas and occur automatically unless specifically
inhibited.

The message startup routine is the first part of the TCS. Initialization of TCS
provides for user own code to assign and request terminal lines and to allow the
installation to call the various functions necessary for a particular configuration.

149

150

Control and queuing of messages is performed by system communication routines.
The system provides entries for user own code routines to classify messages and
assign priorities for queuing. The extent of the processing done at this level will

depend upon the needs of the installation. A user that interfaces directly with
Level 1 communication routines may also use TCS. This will require the particular
user to provide all functions necessary for moving message data to the TCS input
queue buffers and to or from the transaction area when necessary.

Message processing is the second part of TCS and is concerned with processing
of messages, updating of files, and obtaining information from the files to process
the messages. The tool used in processi"ng is a Transaction Processing Segment
(TPS) which is a program that runs as an activity under the TCS task. The TPS is
generated using any of the language processors available and is collected through
the standard procedures. Together with the TPS is a Transaction Area (TAR) which
is used as a control and scratch area for the transaction to hold the input message,
perform calculations, store intermediate results for subsequent TPS's, and build
output messages.

Message termination is the third part of TCS and is concerned with transaction
termination, which may come to an orderly completion or an abnormal completion.
In normal completion, the TPS and TAR associated with the transactions are de­
allocated and the starter routine is entered to search for a new transaction to
process. In abnormal termination, the TPS and TAR are deallocated and any files
updated by the aborted transactions are restored to their previous state. The ab­
normal termination method is discussed in subsequent paragraphs with file recovery
procedures.

4.10.3.2. Message Processing

In message processing, the message enters the system from a line terminal, and
is handled by the system communication routines and an optional user own code
routine. The own code routine may determine which random storage input queue of
the Communications Director will store the message.

At fixed-time intervals, and whenever a transaction is terminated, the starter searches
the input queues, beginning at the highest priority, for a queue that is not busy and
which contains a message. The starter activates the transaction,. and provides for a
user own code routine whose responsibility will be to assign a starter value to the
message.

The TCS starter is responsible for loading the correct TPS as indicated in the starter
control table, establishing the TAR to be used with this TPS, setting the RIR and
PLR limits, and finally registering the TPS and TAR as an activity. The processing
of each transaction is registered as 'a separate activity under the TCS task, permitting
multiple transactions to be processed concurrently.

The TPS acquires the message through a READM service request which transfers a
specified amount of the message into the requesting TAR working storage area. Sub­
sequent READM's will transfer the remaining part of the message into the TAR until
an end of message is reached.

The TPS processes the message using whatever service requests it needs. If another
TPS is required to process the message, the current TPS gives the required request
for calling the next TPS for processing.

When the processing of a message has been completed, the TPS initiates a function
(CLEAN UP) which ensures a proper completi"on of the transaction.

When the TPS has finished the processing and an output is required, a WRITEM
service request passes the output message from the TAR to a random storage output
queue. The WRITEM request also sets up a control block for this message indicating
the destination of the message and links the message to the other control blocks for
recovery. The message is transferred from the output queue to the output device
through an optional user own code routine. The amount of processing by the user
own code routine depends upon the needs of the particular installation.

4.10.3.3. File Processing

The TCS file accessing subroutines provide the user with the mechanism for accessing
file records and for deleting, creating, and expanding files. The created files are regis­
tered with the system MFD as perm~nent files, and are available through TCS by refer­
ence to their user number/file number. Records are addressed by specifying the user
number/file number and logical increment. The file accessing subroutines maintain
controls for the recovery subroutines.

• Duplex Files

User files which are assigned through TCS may be designated as duplex files. TCS
will then maintain two identical copies of the same file on two different subsystems.
If one subsystem fails or a section of one file becomes unreadable, the correct infor­
mation will be obtained from the alternate file. Write operations to the file are directed
to both copies by TCS.

• Logical Lock

A logical lock list is maintained by TCS to prevent different TPS's from accessing
and updating the same file area concurrently. Whenever a TPS reads a file area, that
area is made unavailable to other TPS's. Any other TPS attempting to reference the
locked area is delayed until the area has been released. The areas locked in this
manner by a transaction are maintained until the transaction terminates, and are
then made available to other TPS's.

4.10.3.4. Recovery

Two types of recovery are possible in TCS: file recovery and TCS system restart.

• File Recovery

The basic file recovery system used is to capture dumps of the files onto tape
and to record images of any portions of the files that have changed by writing
"after-look records" onto an audit trail tape. The file recovery procedure is a
combination of reloading the files up to a certain point and updating them with
any changes made after that time.

151

152

File recovery is also concerned with portions of the files that have become.
unreadable. In the case of duplex files, much of the recovery procedure is auto­
matically built into the error routines, where portions of files are re-created as
they are determined to be unreadable. In certain cases the unreadable files
are treated as simplex files and recovery procedures are initiated from the audit
trail.

The "before-look" file is another method of file recovery. An image of each
area of a file changed by a transaction is saved before the change is made.
When a transaction is aborted, the transaction "before-look" file is checked
and all modified areas are rewritten with the initial data.

• TeS Restart

Tes restart accomplishes program recovery through the use of checkpoint files.
As each transaction is started, its beginning TAR is written to the checkpoint
file, and as a transaction terminates, its final TAR is written to the checkpoint
file. When a contingency occurs requiring TCS to be restarted, the checkpoint
file is referenced to determine which transactions were in progress when the
contingency occurred. The transactions are then aborted, their files restored,
and new transactions are started.

4.10.4. Critical Path Method

The Critical Path Method (CPM) package provides a mathematically ordered system
for scheduling and coordinating complex projects such as large scale construction,
scientific research and development, introduction of new products, and analysis of
business control systems. The CPM is a management technique which permits speci­
fication and subsequent analysis of a project in terms of a network of activities,
each of which has a defined event as its starting point and a defined event as its
end point or result. The technique considers each activity of the project on the basis
of time, costs, and other factors required to complete the activity, providing a base
for evaluation of the effect of the activity on the total time and effort required to
complete the project. Through this analysis, the critical path of the project is de­
termined, that is, which activities must be performed and when the activities must
be performed for achieving optimum efficiency in completion of the project.

The CPM package consists of four separate programs. This separation permits greater
flexibility in CPM programming and allows a given CPM application to be processed
using less primary storage than would be needed if all four programs were required
to be resident in primary storage simuitaneousiy.

The first program, Calculations, computes durations, costs, and manpower require­
ments, and then calculates the free time in the network, as well as the earliest and
latest start and finish times of each activity in terms of elapsed working days. These
calculations are printed and recorded on magnetic tape for subsequent processing by
a calendar dating program. The Calculations program also checks the data input to
ensure that the data is in the prescribed order, that the num her of activities in a
network is not excessive, and that the network is complete.

The second program, Calendar Dating, uses the output of the 'Calculations program

and an internal calendar to produce an output report showing the calendar date of the
earliest and latest start and finish times of each activity and the "float" (free time)
of that activity.

The third program, Sequence, is provided as a tool for dealing with contingencies.
One contingency is that condition wherein the data violates the prescribed input
order requirement of the Calculations program. Providing the data supplied is other­
wise correct, Sequence renumbers the activities to meet the requirement and provides
an input suitable for Calculation. Sequence is also useful when two or more networks
are to be combined into one because it relieves the user of the necessity of completely
renumbering one or more of the networks in order to fulfill the input data order require­

ment.

The fourth program, Time-Sequence Plot, furnishes a graphic representation of the
interrelationships of the activities of the CPM network. Using information supplied
by the Calculations program, the Time-Sequence Plot program generates a bar chart

plot on a calendar day basis of the activity duration from scheduled early start to
scheduled early finish and the amount of total float. The plot can be used to monitor

project performance by drawing the actual start and completion dates of an activity
below the plotted dates.

4.10.5. Linear Programming

The linear programming package, the UNIVAC LP49X System, solves the standard
linear programming problem: minimization of a linear objective function subject to
a set of linear constraint expressions that are represented by a matrix and a right­
hand-side vector. A product-form revised composite simplex algorithm is used and
all data is contained completely in core. A vocabulary of 62 mnemonic six- character
words is used to control the execution of the LP49X System. The program operates
under control of the executive routine of the UNIVAC 494 Operating System, and,
with modifications, under the SEER 3 monitor routine of the UNIVAC 490/491/492
Systems.

The LP49X System operates in either of two modes: (1) CARD mode, in which con­
trol word and data input are by cards, or card images on magnetic tape; and (2)
CALL mode, in which the LP49X System becomes a subroutine that is called from
a user's independent FORTRAN program, with control words input by subroutine
call arguments and data input by cards. The LP49X System permits the user to change

from one mode to the other by control word to suit his needs.

When used as an independent program (in CARD mode), the LP49X System for the
UNIVAC 494 will attempt to solve any problem which has no more than 80 rows, no
more than 320 columns, and no greater than ten percent matrix density. When the
LP49X System is to be run on any other computer of the UNIVAC 490 Series, the
system must be configured by Systems Programming personnel in St. Paul to make
use of all available memory in a specific computer at a specific installation.

153

154

When used as a subroutine called by a user's independent program, two key elements,
subroutine LP and block data subprogram LPBD, may be used either without change,
if the user's independent program is less than 23508 core locations in length, or with
changes, as needed, to the dimension of array A and vaiues of parameters MRLIM, the
maximum number of rows, MCLIM, the maximum number of columns, and ITOTAL, the
number of core locations in array A.

The LP49X System is a modification of a system named MFOR, which was developed
by DuPont to run on a UNIVAC 1107. The DuPont version is a modification of an
earlier MFOR system that was developed by the Rand Corporation to run on IBM equip­

ment.

Modifications made in the LP49X System for operation on computers of the UNIVAC
490 Series are based on the following conditions:

(1) a word length of 30 bits instead of 36 bits

(2) use of two words for each floating-point number

(3) Operating System characteristics relating to the 494 clock and unsolicited console
input messages

The LP49X System requires a minimum of one card reader, one card punch, and one
magnetic tape unit for execution. Ordinarily the user will, if possible, use one tape
unit for the Operating System or SEER 3, and up to four tape units for the LP49X
System as determined by the user's requirements. These tapes are: (1) Alternate
Input Tape; (2) Alternate Output Tape; (3) Problem Library Tape; and (4) Dump-and­
Reload Tape.

Primary storage requirements for the control program and the LP49X System are 32K
words.

Detailed information for the LP49X System may be found in UNIVAC 490/491/492/494
Real-Time System LP49X Linear Programming System, P.I.E. Bulletin 5, UP-7505.5.

4.11. LANGUAGE PROCESSORS

The Operating System includes a variety of language processors for the development
of user programs. Two compilers (FORTRAN IV and COBOL) and two assembly
languages (494 SPURT and 494 ASM) are available.

The language processors operate within the control environment of the executive
routine. The processors are activated by control statements and obtain their input
source language from the primary input stream. The source language is translated
into one or more relative binary (RB) elements and placed into the user's job library.
All printer listings and diagnostic messages are submitted to the primary output
stream. The RB elements generated by the language processors are compatible; that
is, the RB elements of the diffe,rent processors may be collected together to form
a single load element.

4.11.1. 494 SPURT Assembler

The 494 SPURT assembly language is a development from the SPURTFD or SPURT
II languages used with the UNIVAC 490/491/492 computers. SPURT provides a
simple mnemonic method for representing the computer instructions to. be performed.
The basic one-for-one code generation is enhanced by polyoperations, general assem­
bler directives, and macro operations. Mnemonics for system service requests are also
provided. The SPURT mnemonic code corresponding to the instruction repertoire of
the 494 computer is given in Table A-1.

The 494 SPURT assembler utilizes two scratch files; one random access file, and
one sequen tial file. The sequential file may be specified on either random access
storage or on magentic tape. The assembler generates approximately 6600 instructions
per minute.

The output of the 494 SPURT assembler is a RB element which is placed in the
user's job library. A si~e-by-side listing of the source code and the object code is

produced unless specifically inhibited by the use of an option on the SPURT con­
trol statement. Other options provide for reference dumps, table expansion, and
various error recoveries.

Detailed information on the 494 SPURT assembler may be obtained in UNIVAC
494 Real-Time System SPURT Programmers Reference, UP-4090 (current version).

4.11.2. 494 ASM Assembler

The 494 ASM assembler is an assem bly language designed for the UNIVAC 494
Real-Time System and developed from the 1107 SLEUTH II language. The ASM
assembly Ian guage is a set of concise mnemonic codes combined with assembler
directives which the assembler translates from source images into RB elements.
The RB elements may be collected, together with other RB elements, to produce
an object code program for execution.

The user is given great freedom in the source image format; free field format is
allowed, enabling the user to design a source image for his particular problem.

Assembler directives which the user might employ include the FORM directive
which allows the user to describe a special word format. The word format may be
composed of fields of variable length within the word.

The two most powerful assembler directives available to the user are the PROC
and FUNC assembler directives. PROC and FUNC directives are used to define
often used sequences of coding which are not necessarily identical, but which
are similar enough so that repetition of the coding requires only the insertion of
parameters when the sequence is called.

The PROC directive differs from the FUNC directive in that the PROC directive
normally generates lines of object code at assembly time which are to be executed
at object time. The FUNC directive is executed at assembly time and stores its
results in the RB element produced. The FUNC directive calculates a value when
referenced and does not cause generation of object code.

155

156

A paraform (parameter reference form) is the means whereby an operation within
the PROC or FUNC can obtain values of parameters used in the operation from
the call line or entry point. This enables the same PROC or FUNC to be used
many times with the call line or entry point furnishing a different set of parameters
to specialize the PROC or FUNC.

The entry point is a line within a PROC or FUNC which may be referenced from
outside the PROC or FUNC. More than one entry point may exist in a PROC or
FUNC, and a parameter may be specified on the entry line so that the actual entry
point can be determined from the alternate entry points available.

The FUNC directive enables the user to obtain a value at assembly time contingent
upon a set of parameters. The FUNC directive causes certain predetermined lines of
coding to be saved when encountered during assembly, which, when referenced sub.
sequently, causes a computation to be made". The evaluated quantity is then substituted
for the reference call within the program.

In the case of the PROC directive, user defined and parameterized lines of coding
will be substituted for the call to the PROC in the user's program.

The ASM mnemonic codes corresponding to the instruction repertoire of the 494
computer are given in Table A-I. Detailed information on the 494 ASM assembler
may be found in UNIVAC 494 Real-Time System Assembler Programmers Reference,
UP-4133 (current version).

4.11.3. FORTRAN IV Compiler

The UNIVAC 494 FORTRAN compiler is an adaptation to the 494 System and an
extension of USASCII standards for FORTRAN IV, with which the compiler is in
full compliance. The compiler operates as a task under control of the executive
routine, and is called and activated by the FOR control statement.

FORTRAN IV (FORmula TRANslation) is a problem-oriented programming language
which provides a precise statement form for mathematical, scientific, engineering,
and data processing applications.

A FORTRAN source program consists of a set of statements for handling communi­
cation with external devices, and for description, definition, manipulation, and
computation of data. The 494 FORTRAN IV compiler translates FORTRAN source
statements or elements, and produces RB elements. The programmer may think in
terms of the problem to be solved and the method of solution, rather than think in
terms of the computer wh ich is used to solve the problem. While initially designed
for scien tific applications, FORTRAN has proved effective and convenient for many
commercial and industrial applications.

The UNIVAC 494 FORTRAN IV compiler contains all the features of the USASCII

FORTRAN. In addition, octal I/O editing codes, shift and bit manipulation, exten­
sions to allow for more flexible data handling, and many other valu"able extensions
have been implemented to minimize user programming efforts, and to significantly
increase the power and flexibility of the language.

4.11.3.1. Extensions

The significant additions to the 494 FORTRAN IV compiler are as follows:

• The 494 FORTRAN IV compiler utilizes the extended instruction repertoire
and the 494 hardware double precision features within:

(a) the 494 FORTRAN IV compiler itself

(b) all mathematical function routines (where appropriate)

(c) the I/O Conversion Program Package

• Mixed mode capability: variables of different types may occur in the same ex­
pression except that LOGICAL types can only be mixed with INTEGER types.

• I/O statements are extended to include PRINT and PUNCH statements.

• The DATA statement is extended to provide limited implied DO loops.

• A READ statement with no list may be used for skipping an input record.

• A logical unit 0 may be designated in READ statements. Such a statement
provides reread capability on input utilizing several different formats, allowing
inputs to dynamically designate the format specification to be used in inter­
preting the input.

• Debugging aids are provided, including a full label table, and run time error
walk back procedures leading to the specific SOURCE statement causing a
problem.

• Runs may be terminated optionally on any error, on I/O errors, on an unrecover­
able error only, or on a legal stop.

• The same COMMON blocks (blank or labeled) need not be the same size in each
of the program units. The size of a block is determined by the maximum required
size in any of the program units as fixed by a specification statement.

• The use of arithmetic and logical arguments and operators has been extended to
permit mixing of different types in a masking expression.

• Assignment statements have been extended in the General Assignment statement.
to permit use of masking expressions.

• The arithmetic IF statement has been extended to permit use of masking expres­
sions.

• The logical IF statement has been extended to permit use of masking expressions.

• The LOGICAL type variable has been extended so that it may represent all data
legal for the INTEGER type.

. • The following I/O editing codes have been added to the FORTRAN repertoire:

(a) The nOw code, for transfer of octal coded integers

(b) The $h1 ,h2 , ... ,hw$ code which is similar to the Hollerith code wHh 1,h2, ... ,hw
except that the field width need not be specified.

157

158

• The nLw editin g code has been extended so that, on output, TRUE or FALSE is

transferred provided that w is greater than 3 or 4, respectively .

• The library of external functions has been expanded (exceeding USASCn require­
ments) to permit full range of bit/word manipulation capabilities, including:

(a) The FLD function for manipulation of a specified field within a computer
word

(b) The logical OR, AND, COMPL ("NOT") and XOR (Exclusive OR) func­
tions

(c) The LSH and RSH functions for a left shift or a right shift, respectively, of
bits within a computer word.

4.11.3.2. Utilization

The basic design objective of the 494 FORTRAN IV compiler is to create a rapid
processor which, at the same time, will produce an object program optimized with
respect to both storage requirements and execution time. The compiler is drum
oriented and achieves its performance without the use of magnetic tape.

The UNIVAC 494 FORTRAN IV compiler translates FORTRAN source statements
into RB elements, which, as subprograms in the user's job library, under control
of facilities for interprogram communications, permit separately compiled programs
or subprograms to be linked together at load time. A job to be executed may be com­
posed of many subprograms (or elements). The program may be constructed and
executed, and any of its elements or constructions may be saved on appropriate
peripheral devices for later or additional executions. The 494 FORTRAN IV RB
is compatible with other processor output (such as, .SPURT, ASM,COBOL), promo­
ting subprogram generation in any language the user desires.

The 494 FORTRAN IV compiler utilizes the Elementary Mathematical Functions

Library which includes an extensive collection of basic mathematical subroutines
and functions. This collection includes all of the standard FORTRAN functions
and has been expanded to give the programmer coverage of the more often used
mathematical routines. Each of these mathematical routines has been carefully
developed to offer the programmer maximum accuracy range with minimum routine
size and execution time.

Full information concerning the UNIVAC 494 FORTRAN IV compiler and the
Elementary Mathematical Functions may be found in UNIVAC 490/491/492/494
Real-Time System FORTRAN IV Programmers Reference Manual, UP-4087 (current
version) and UNIVAC 490/491/492/494 Real- Time System Elementary Mathematical
Functions, UP-4150 (current version).

4.11.4. COBOL Compiler

The UNIVAC 494 COBOL compiler is an adaptation to the 494 System and an ex­
tension of COBOL-61 EXTENDED, as outlined by the CODASYL Maintentance
Committee, with which the compiler is in full compliance.

The compiler operates as a task under control of the executive rOll tine, and is
called and activated by the COB statement.

COBOL (Cammon Business Oriented Language), provides a method for stating
computer problems and solutions in English. The language comprises a basic set
of English words and symbols used to define and create a program. COBOL further
permits the definition and naming of data according to the individual dictates of
the user rather than the peculiarities of the computer, and forms a functional
language that is largely independent of the computer make or model.

The COBOL language program employs many types of words, including nouns which
are established by the programmer to name the various data elements upon which
the program will operate, verbs which are supplied by the COBOL system to direct
the manner in which the data will be treated, and certain selected words to improve
the readability of the language or to complete the meaning of a sentence or expression.

A COBOL source program consists basically of four divisions: the IDENTIFICATION
DIVISION which identifies the program, programmer, security, date written, and any
other information desired to describe the program; the ENVIRONMENT DIVISION
which specifically names the source and object computers used as well as the periph­
eral devices necessary for execution (this section is machine dependent as it describes
the interface between the compiler and the object program for a specific hardware con­
figuration); the DA T A DIVISION which contains a complete description of all data
elements including files for communication with peripherals, working areas, constant
areas, and common storage areas; and the PROCEDURE DIVISION which contains
the program logic as described in the procedural statements. The statements are
organized to form sections, paragraphs, and sentences which fully describe what the
programmer intends to accomplish. As in English, COBOL verbs designate the action
to be taken on the defined data to produce desired results.

Within the requirements of COBOL-61 EXTENDED, the UNIVAC 494 COBOL com­
piler adds and implements a considerable number of elective elements to aid the
programmer. Among the electives are the SORT, COMPUTE, and ENTER verbs;
the MOVE, SUBTRACT, and ADD verbs with CORRESPONDING option; the WRITE
verb with ADVANCING option; and SIGN OVERPUNCH handling capabilities.

To enhance the speed of compilation, the basic compiler design stresses inline
code rather than excessive subroutine linkages. Heavily used procedures, however,
may be implemented as object time subroutines. When activated, the compiler requests
additional primary storage and random access storage for tables and scratch files.
Compilation speed is to some extent dependent upon the amount of additional core
available and the grade of mass storage used, but, in general, compilation speed
is about 700 source statements per minute.

Compiler output consists of RB elements placed in the user's job library and a
source element describing the collection of the RB elements according to the user's
segmentation scheme.

Additional information describing the 494 COBOL compiler may be found in UNIVAC
490/491/492/494 Real-Time System COBOL Supplementary Reference, UP-7608
(current versiort).

159

160

APPENDIX A. INSTRUCTION CODES

AND j-k DESIGNATOR!S

The following tables list the instruction repertoire for the UNIVAC 494 Real-Time System,
and list the designators for modification of the instruction execution sequence and the
instruction operand.

Table A-I presents the instruction repertoire on the basis of instruction type, mnemonic
codes for both 494 SPURT and 494 ASM assembly languages, octal function codes, operations
performed, instruction class, execution time in nanoseconds, and variables or modifications.

Table A-2 presents the j designator, which specifies skip, jump, repeat, and other sequence
modifications, for normal and exception interpretation, in terms of octal and mnemonic codes
for the assembly languages, and shows the results of the operations.

Table A-3 presents the k designator, which specifies operand modification or formation of

the operand, Y, for both normal and exception interpretation, on the basis of instruction
class, portion of the operand affected, and the type of operation performed.

~ MNEMONIC CODE OCTAL

>- ~-_----~ CODE
I- ASM

lQ

lA

SPURT

ENT*Q

ENT*A

lB ENT*Bj
ZB Cl*Bj

NOP NO-OP

SQ

ZQ
NQ

SA

NA

ZA

SB

SZ

DPl

DPS

CPl

CPU

CUl

CUU

RSQ

RSA

RSAQ

lSQ
l­
lL lSA
::z:
U) lSAQ

lRSQ

lRSA

lRSAQ

TA

TQ

1&.1 TR
iii::
c(TlP
IL
:IE DPTE
o
(J DPTl

MATE

MATl

STR*Q

Cl*Q
CP*Q

STR*A

CP*A

CL*A

STR*Bj

Cl*Y

DPENT

DPSTR

CREl

CREU

CRSl

CRSU

RSH*Q

RSH*A

RSH*AQ

lSH*Q

lSH*A

lSH*AQ

lRSQ

lRSA

lRSAQ

COM*A

COM*Q

COM*AQ

COM*MASK

DPCME

DPCMl

MACE

MACl

JP

Ril

RILJP

10

11

12

12

12

14

Al~~1t
14

15

15

16

16

7721

7725

7731

7732

7735

7736

01

02

03

05

06

07

7751

7755

7756

04

04

04

43

7723

7727

7753

7757

60 or 61

-- -----1---
SLJ RJP 65

--1------
SLJT ~I~·S~C:JP 64

ER XQT 7737

lBPX EBJP*Bx 774x

OPERATION

Y -7 Q

Y-7A

Y -7 Bj

O's-7 Bj

NO OPERATION

Q-7Y

O's -7 Q
Q' -7 Q

A-7Y

A' -7 A

O's -7 A

(Bj) -7 Y

O's -7 Y

(Y,Y+l)-7 AQ

AQ-7 (Y,Y+l)

(Y)S-Q-7A29-24, ..• , (Y+4)S-Q-7AS-0

(Y)20-1s->A29-24, ••• , (Y+4)20-1S->As-0

A29-2~Y)5-0, .•• , As-o->{Y+4)S-0

A29-244Y)20-15 ••• AS-o->{Y+4}20-15

SHIFT Q RIGHT } WITH

SHIFT A RIGHT SIGN

SHIFT AQ RIGHT EXT.

~ I--.-;;;;.E;..;,XE;;;.C;;;.lJ~-T;..;,i.;;;.ON;".;....;T..:..:IM.:..:.;E=-(.:..:.N.:..;.AN.:..=O.;;.;SE=-C;;;.O;;...;;N..;..;::D;.;;;S",-) ~

-« Al TER- SAME BANK
..J NATE J---~----r------l
U BANK k = 0,4 k = 7

Rd 750

Rd 750

Rd 750/857

Rd

Rd

750

750

St 750

%d 750
St 750

St 750

St 750

Rd 750/857

St

St

Rd

750

750

1500

1500

3750
3750

3750

3750

750 750

750 750

750/857 750/857

750 750

750 750

750 1500

750
750

750

750

750

750

1500

750/857

1500

1500

2250

2250

4500
4500

4500

4500

k i 0,4,7

1500

1500

1500

1500

1500

1500

1500

1500

]500

750 1500

VARIABLES

NO CFl/CFlCD

k is 0

k is 4

Rd 750/964 1500/1714 j i 4, 5/j = 4, 5

Rd

Rd

Rd

964 1714

750/857 1500/1607 j i 2, 3/j = 2, 3 SHIFT Q lEFT} I BY
SHIFT A lEFT CIRCULARLY) Y

SHIFT AQ lEFT (POSITIONS Rd

750

750/964

964

750/857

750/857

1071

750

750

857

750

750/964

964

750/857

750/857

1071

750/857 1500/1607 j i 6, 7/j = 6, 7

1071 1R?1

SHIFT Q RIGHT } WITH)
SHIFT A RIGHT ZERO

SHIFT AQ RIGHT Fill

COMPARE Y TO A AND SKIP PER j

COMPARE Y TO Q AND SKIP PER j

Rd

Rd

SKIP PER j IF Y RANGES BETWEEN A AND Q Rd

COMPARE A TO lP(Y·Q) AND SKIP PER j Rd

SKIP IF AQ= (Y, Y + 1)

SKIP IF AQ< (Y, Y + 1)

SKIP IF lP(A·Q)=lP(Y·Q)(ALPHA TEST)@

SKIP IF lP(A·Q) < lP(Y·Q) (ALPHA TEST)®

750

750

750/964

750/964

1500

1500

750

750

750

750

750/964

750/964

1500

1500

1607

750 1500

750 1500

750/964 1500/1714 j = l/j = 4, 5

750/964 1500/1714 j=4,5,6,7/j=O,I,2,3

2250

2250

1500

1500

RELEASE INTERRUPT lOCKOUT 750/1500 I 750 I 1500 I 1500 k = 0, 4/k =P 0, 4

RELEASE INTERRUPT lOCKOUT AND Y-7P IF JUMP CONDITION NOT SATISFIED

Y-7P IF j CONDITION SATISFIED I Rd IF JVMP CONDITION SATI~FIED

I- ___________________ ~5O_ J_ ~50_ -'_ 2.50 __ L 1~~ ________ _

P + 1-7 Y, Y + 1-7 P PER j AND KEY Rd IF JUMP CONDITION SATISFIED

1500/22501 1500 I 2250 I 2250 k = 0, 4/k =P 0, 4

IF JUMP CONDITION NOT SATISFIED

I- _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ ..25£. _ L ~_ -' _ ~O _ J _1~0 ________ _

P + 1-7 Y, Y + 1-7 P PER j; Sil PER j Rd SAME AS 65 INSTRUCTION

(Y) = NI; RETURN IF NO SKIP OR JUMP AT NI - 750 750

P -7 Bx, Y -7 P

Table A-7. Instruct ion Repertoire
(Part 1 of 3)

750 750

161

TYPE MNEMONIC OCTAL
CODE CODE

ASM SPURT

" R RPT 70
z
> TBI BSK*Bj 71
"-
e JBD BJP*Bj 72
0
:::::E

1&.1
u
z
1&.1
:) TSET TSET 7752 0'
1&.1
II) EXRN EXRN 7754

A ADD*A 20

AQ ADD*Q 26

LAQ ENT*V+Q 30

SAQ STR*A+Q 32

RA RPL*A+V 24

RAQ RPL*V+Q 34
>
It: RI RPL*V +1 36
e(
z AN SUB*A 21
a::a
I- ANQ SUB*Q 27
z
0 LANQ ENT*V-Q 31
IL SANQ STR*A-Q 33
e
1&.1 RAN
><

RPL*A-V 25

"- RANQ RPL*V-Q 35

RD RPL*V-1 37

DPA DPADD 7722

DPAN OPSUB 7726

DPN OPCP 7724
u
i= M MUL 22
1&.1

D OIV 23 :::::E
x

SFS SGSH 7730 I- >
0: It:

e(
e(FA FADD 7701
z
iii FAN FSUB 7702
I- FM FMUL 7703 z
0 FO FDIV 7705 IL

" !:
l-
e(
0 FP FPP 7706
...J
"- FU FPU 7707

DT OTEST 7710

DA OADD 7711

...J DAC OADOC 7715
e(

!
u
1&.1 DAN OSUB 7712
e
I- OANB OSUBB 7716
Z

0
IL

Q ON DCP 7714
1&.1 DTE OCME 7713
~
"- DTL OCML 7717

OCL OCVl. 7733

OCU OCVU 7734

162

OPERATION II) EXECUTION TIME (NANOSECONDS)
II)

e(ALTER-
...J NATE u

BANK

REPEAT NI V TIMES; V 4 B7 Rd 1285/1500

I F(Bj}=V ,0'S4Bj SKIP; IF(BjMV,(Bj)+14 Bj Rd 750

IF (Bj)f:- 0, (Bj)-1 4 Bj AND JUMP Rd
750/1500 I IF (Bj)= 0, NI

750

IF V14=0, l's4VI4_0; IF VI4=1, INTERRUPT- 1821

INTERRUPT - 1285

A+V4A Rd 750/857

Q+V4Q Rd 750/857

V+Q4A Rd 750/857

A+Q4V,A St 1500

V+A4V, A Rp 1500

V+Q4V, A Rp 1500

V+14V,A Rp 1500

A-V4A Rd 750;857

Q-V4Q Rd 750/857

V-Q4A Rd 750/857
A-Q4V,A St 1500

A - V 4V, A Rp 1500

V-Q4V,A Rp 1500

V - 14 V, A Rp 1500

AQ+(V,V+l)4AQ - 1500

AQ - (V, V + 1) 4 AQ - 1500

CP (AQ)4AQ - 750

Q x V 4 AQ Rd 7277
(AQ/V) 4 Q. REMAINDER IN A Rd 7277

NORMALIZE A, SHIFT COUNT 4 Q - 857

AQFP + (V, V + I)FP 4 AQFP - 2356/2998

AQFP - (V, V + I)FP 4 AQFP - 2356/2998

AQFP x (V,V + I)FP 4 AQFP - 12093

AQFP / (V, V + I)FP 4 AQFP - 12200

12414

1607

(V)C AND AQM 4 AQFP - 857/1500

AQFP""; Vc AND A~ - 750

SKIP PER V - 750

AQO + (V, V + 1)0 4 AQO - 2035/2249

AQO + (V, V + 1)0 + CARRV 4 AQO - 2035
2249

AQO - (V, V + 1)0 4AQO - 2035/2249

AQO - (V I V + 1)0 - BORROW 4 AQO - 2035
2249

9's OR 10's COMPLEMENT (AQ)4 AQ PER V - 1285
SKIP IF AQO = (V, V + 1)0 - 1500

SKIP IF AQO < (V, V + 1)0 - 1500

(VO-5 THRU V + 40-5)0 4 AQBINARV - 3750

(VI5-20 THRU V + 415-20)0 4 AQBINARV - 3750

Table A-1. Instruction Repertoire
(Part2 of 3)

SAME BANK

k = 0,4 k = 7 k=O,4,7

1285 1285 1500

750 750 1500

JUMP
750 r 1500 11500

NO JUMP

1500 l 750 \1500

1821

1285

750/857 750/857 1500/1607

750/857 750/857 1500/1607

750/857 750/857 1500/1607

1500 - 2250

1500 1500 2250

1500 1500 2250

1500 1500 2250

750/857 750/857 1500/1607

750/857 750/857 1500/1607

750/857 750/857 1500/1607

1500 - 2250

1500 1500 2250

1500 1500 2250

1500 1500 2250

2250

2250

1500

7277 7277 8027

7277 7277 8027

1607

2891/3641

2891/3641

12843

12950

13164

2357

1607/2250

1500

1500

2785/2249

2785
2999

2785/2999

2785
2999

1500
2250

2250

4500

4500

VARIABLES

k = 0,4,7/k f:- 0,4,7

k = 0,4/k f:- 0,4

j f:-6,7/j =6,7

jf:-6,7/j=6,7

j f:- 6,7 /j = 6,7

j f:- 6,7 /j = 6,7

jf:-6,7/j=6,7

jf:-6,7/j=6,7

SUM = ±O/ t- ±O

OIF. = ±O/ f:- ±O

IMIAQ?IMlv, V+1
1M IAQ < I M I V, V + 1

I(V,V+l)I=O

AQ = ±O/AQ t- ±O

SIGNS = /SIGNS f:-

I~~ <JXN6+ 11 ® rr OR

®
AQ 2: I Y I V + 11

SIGNS = / SIGNS f:-
rIG~S 1:-1 OR I ® AQ < V, V + 11
SIGNS 1 AND I ® 1 AQ 12: v, V + 1

TYPE MNEMONIC OCTAL Ut EXECUTION TillE (NANOSECQNDS)
OPERATION Ut

CODE CODE C ALTER- SAllE BANK
..I NATE

ASM SPURT
u

BANK k::O,4 k=7 k = 0,4,7

LLP ENT*LP 40 LP (Y.Q) -+ A Rd 750/1071 750/1071 750/1071 1500/1820

SAND STR*LP 47 LP (Q'A)~Y St 750 750 - 1500

RLP RPL*LP 44 LP (Q'Y)'" Y,A ~p 1500 1500 1500 2250

ALP ADD*LP 41 LP (Y'Q) + A ... A Rd ~5O/857 750/857 750/857 1500/1607

RALP RPL*A+LP 45 LP (y.Q) + A ... Y,A Rp 1500 1500 1500 2250

ANLP SUB*LP 42 A-LP (y.Q) ... A Rd 964 964 964 1714
..J RANLP RPL*A-LP 46 A-LP (y.Q) ... Y,A Rp 1607 1607 1607 4357 c
~.

OR SEL*SET 50 IF An OR Yn :1, An "'" 1
<!J

Rd 750 750 750 1500
0 ROR RSE*SET 54 IF An OR Y n : 1, An = 1; A ... Y Rp 1500 1500 1500 2250 ..J

XOR SEL*CP 51 IF EITHER An OR Yn "'" 1, 1 ... An Rd 750 750 750 1500

RXOR RSE*CP 55 IF EITHER An OR Yn = 1, l"'An; A ... Y Rp 1500 1500 1500 2250

NOT SEL*CL 52 IF Yn = 1, CLEAR An Rd 750 750 750 1500

RNOT RSE*CL 56 IF Yn = 1, CLEAR An; 1.4 Y Rp 1500 1500 1500 2250

SSU SEL*SU 53 IF~=I. Yn"'An Rd 750 750 750 1500

RSSU RSE*SU 57 IF Q., "" 1, Y n'" An; A ... Y Rp 1500 1500 1500 2250

LC EXT-FCT 13 Y AND EXTERNAL FUNCTION ... CHCSR Rd 75O/288sQ 750/2889(;1)
"CO"Y

SC STR*CO*Y 17 INPUT CHIASR ... Y . St 750/288,.<3 750/2889<3>

JIC JP*Y* 62 y ... P IF INPUT CHCSR ACTIVE Rd IF JUMP CONDITION SATISFIED

CO* 750/1500 I 750/1500

ACTIVE IN IF JUMP CONDITION NOT SATISFIED

I- 1500 I 1500
~
IL JOC JP*Y* 63 y ... P IF OUTPUT CHCSR ACTIVE Rd IF JUMP CONDITION SATISFIED
I-
~ ACTIVE 750/1500 I 750/1500 0
....... OUT IF JUMP CONDITION NOT SATISIFED I-
~
IL 750 750
!:

DIC TERM*CO 66 TERMINATE INPUT CHCSR i Rd 750 750
DOC "INPUT 67 TERMINATE OUTPUT CHCSR Rd 750 750 TERM"CO

L1C OUTPUT 73 IN"CO"Y ACTIVATE INPUT CHCSR Rd 750/1500 750/2250
LOC

OUT"COQR
74 ACTIVATE OUTPUT OR EF CHCSR Rd 750/1500 750/2250 Ct"Y

IN"CO·Y
UCM ·MONITOR 75 SAME AS 73, WITH MONITOR Rd 750/1500 750/2250

OUT·COOR

LOCM Ct"Y·MON- 76 SAME AS 74. WITH MONITOR Rd 750/1500 750/2250 ITOR

LIFR EIFR 7761 Y ... IFR. (Y + 1) ... RIR - 1500 2250

@ LPLR EPLR 7762 Y ... PLR - 750 1500
SIFR SIFR 7765 IFR ... Y - 750 1500

It: LRIR ERIR 7766 Y ... RIR - 750 1500 ...
I&- lSi SSI 7770 SYNCHRONOUS INTERRUPT PER Y - 750 750 Ut
z
c LBW EWB 7771 (Y) ... B1 ••••• (Y + 6) ... B7 - 5250 6000
It:
I- SCN SCHN 7772 I/O CHIASR OR PECSR - 750 1500

LCSR ECSR 7773 Y4-Q"'CSR - 750 1500
SSW SWB 7775 B1 ... Y ••••• B7 ... (Y + 6) - 5250 6000

NOTES:

1

2

3

4

5

B CONFLICT ARISES WHEN Bj OF 12 INSTRUCTIONS ~ 0 AND Bb OF NI = Bj OF 12 INSTRUCTION.

ALPHA TEST MEANS THAT SIGN BIT IS TREATED AS PART OF ABSOLUTE VALUE OF WORD.

TIME LISTED IS MINIMUM VALUE.

PRIVILEGED INSTRUCTIONS FOR USE IN 494 MODE.

Ixl INDICATES ABSOLUTE VALUE OF x.

Tobie A-l. Instruction Repertoire
(Port 3 of 3)

VARIABLES

j ", 2,3/j "'" 2,3

j ~ 6,7/j : 6,7

k= O,l,2!k:: 3

k:: O,l.2!k:: 3

k :; 0/ k :: 1,2,3

k = 0/ k = 1. 2. 3

k =O,ESI/ k :: 3. lSI
k ::: O,ESI/ k :: 3, lSI

k :: 0, ESI/ k :: 3, lSI

k :: O. ESI/ k :: 3. lSI

163

OCTAL CODE

o
1

2

3

4

5

6

7

NORMAL j INTERPRETATION

MNEM.CODE

SKIP

QPOS

QNEG

AZERO

ANOT

APOS

ANEG

EXCEPTIONS

RESULT

NO SKIP

SKIP

SKIP IF (Q) POSITIVE

SKIP IF (Q) NEGATIVE

SKIP IF (A) = 0

SKIP IF (A) # 0

SKIP IF (A) POSITIVE

SKIP IF (A) NEGATIVE

TA/TQ/TR J, SLJ JT/SLJT ASM

SPURT OCTAL CO".A/COII'Q/COII.AQ JP,RJP JP/RJP
CODE~----~------------~-----r------T---------------4-------------~--------------------4-----~

liN Ell. RESULTS®

0 x

1 SKIP®

2 YLESS

3 YMORE

4 YIN

5 YOUT

6 YLESS

7 YMORE

OCTAL
CODE

IINEM.

0

1 SKIP

2 NOOF

3 OF

4 AZERO

5 ANOT

6 APOS

7 ANEG

OCTAL
CODE

MNEM.

0

1 SKIP

2 APOS

3 ANEG

4 QZERO

5 QNOT

6 QPOS

7 QNEG

164

liN Ell. RESULTS MNEM. RESULTS

x JUMP RIL/SIL0 RIL/SIL

SKIP KEY 1 JUMP IF KEY 1 SET RILJ P ISILRJPQ) RIL,JUMP/SIL,RETURN JUMP

x/SKIP IF Y~ Q/x KEY 2 JUMP IF KEY 2 SET QPOS JUMP IF (Q) POS.

x/SKIP IF Y>Q/x KEY 3 JUMP IF KEY 3 SET QNEG JUMP IF (Q) NEG.

x/x/SKIP IF A <Y,$Q STOP STOP AZERO JUMP IF (A) = 0

x/x/SKIP IF Y>Q OR Y,$A STOP 5 STOP IF KEY 5 SET ANOT JUMP IF (A) -/: 0

SKIP IF Y,$ A/x/x

SKIP IF Y>A/x/x

D

DIV

RESULTS

NO SKIP

SKIP

SKIP IF NO OVERFLOW

SKIP IF OVERFLOW

SKIP IF (A) = 0

SKIP IF {A) * 0

SKIP IF (A) POS.

SKIP IF (A) NEG

AQ,ANQ

ADD*Q, SUB*Q

RESUL TS 7

NO SKIP

SKIP

SKIP IF AS = +

SKIPIFAS=-

SKIP IF Q = +0

SKIP IF Q =1 +0

SKIP IF QS = +
SKIPIFQS=-

STOP 6 STO P IF KEY 6 SET APOS JUMP IF (A) POS.

STOP 7 STOP IF KEY 7 SET "ANEG JUMP If (A) NEG.

R LLP,RLP

RPT ENT·LP, RPL·LP

IINEII.Q) RESULT MNEM. RESULT

- NO SKIP YNE = Y -

ADV YNE = Y + 1 SKIP SKIP

BACK YNE = Y - 1 EVEN SKIP IF (A)=EVEN NO. OF 1 BITS

ADDB YN E=Y+nx (Bt» ODD SKIP IF (A)=ODD NO. OF 1 BITS

R - - AZERO SKIP IF (A) = 0 YNE =Y

ADVR ANOT SKIP IF (A) -/: 0 YNE = Y + 1

BACKRNE/BACKR@ YNE = Y - 1 APOS SKIP IF (A) POSITIVE

ADDBR

ASM

SPURT

Y N E= y+n x <Bt» ANEG SKIP IF (A) NEGATIVE

NOTES:

ill FOR SPURT, EQUIVALENT MNEMONICS ARE RILJP/SILRJP.

@ RIL = RELEASE INTERRUPT LOCKOUT; SIL = SET INTERRUPT LOCKOUT.

@ DESIGNATORS OF 0, I, 2, AND 3 USED WITH READ OR STORE CLASS INSTRUCTIONS.

DESIGNATORS OF 4,5,6, AND 7 USED WITH REPLACE CLASS INSTRUCTIONS.

YNE REPRESENTS l/y OF NEXT EXECUTION.
RESULT OF REPEATED REPLACE CLASS USING YNE IS STORED AT YNE + (B6).

@ ASM/SPURT

® X INDICATES ILLEGAL OR INVALID USE

® NOT USED IN SPURT

ill AS = SIGN BIT OF A: QS SIGN BIT OF Q (0 FOR POSITIVE, 1 FOR NEGATIVE)

Table A-2. Interpretation of i Designator

ASM

SPURT

NORMAL Y FORMATION BY k DESIGNATOR

k READ CLASS STORE CLASS REPLACE CLASS

o

1 L(x)

2 U(x)

4 X

5 LX(x) r.:::~=~:-:--=EXTE:-==~=Cl'"~-O-".,...;'·· 1,-' '...," _:;:: C P L(') ~ .•.•.•. 'rep:: LX(x) ~sm ~;.·.~;::r~~.~: :
; ; "d .0; M

~4-----------------J.----------+-------------------------__ ~ __________________________ ~

6 UX(x) :~ j£b .•..• ~: CPU(.) :. .#C~::: UX(.) ::2~.: :
7 A .: :

EXCEPTIONS

J, SU, RSQ, RSA, LB
SUT, RSAQ, LSQ, SA SB SQ R SAND ASM
JBD LSA, LSAQ j = 4,5,6,7 J= i=O

k 1.23
JP,RIL, RSH~9,

ENT*BJ RSH*A,
RJP, RSH*AQ,
SIL, LSH*~, j= STR·A STR-Bj STR-Q RPT STR-LP SPURT

LSH* , j = 4,5,6,7 1=0 BJB*Bj LSH*AQ 1,2,3
0 Y=y Y= YO-5 Y= YO-16 YL (Bj) ~ QL' ZERO FILL CP(Q)~Q Y=YO-16 LP~Q

1 ¥=("Y)L Y=("Y)O-5 Y=("Y)L, ZERO FILL \Y)L Y=(YlL LPL ~(YlL z
2 Y=(Y)u Y=("Y)15-20 Y=("Y)u, ZERO FilL (Ylu 0 Y=(Y>u LPL ~(Y>u t-
3 Y=(YlL Y=(Yl0-5 Y=(Y>O-16 (Y)l « (Bj)~ (Y>L Y=(Y>O-16 LP~iY>

0:::
4 Y=y Y= YO-5 Y= YL, SIGN EXT. Y UJ CP(A}~A (Bj)~AL' ZERO FILL Y=(YlL LP~A Q..

5 Y=("Y)l Y= YO-5 Y=(YlL' SIGN EXT. (YlL
0

Y=(Y>L CP(LP)L ~YlL 0

6 Y=(Ylu Y= Y15-20 Y=(Y>u. SIGN EXT. (Y>u z
Y=(Y>u CP(LP)L ~Y>u

7 Y=AL Y=Ao-5 Y=Ao-16 IAL CP(Bj)~ (YL)' SIGN EXT. Y=Ao-16 CP(LP) -+ <y)
NOTES:

1. M indicates word in memqry; R indicates word in register.

2. Designation Y is sum of (~) and y; designation (Y> is contents of word at location y.
3. ZL is lower 15 bits of word Z; Zu is upper 15 bits of word Z.

Table A-3. Interpretation of k Designator
165

UNIVAC

Il .~~

	00000
	00001
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	xBack

