
CENTRAL
PROCESSOR
UNIT

UP·4049 Rev. 2

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIV AC ® Systems developments. The infor­
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent­
ative.

The Univac Division will issue updating packages,· utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are:

UNISERVO VI C

© 1966 and 1969 - SPE RRY RAND CORPORA TION PRINTED IN U.S.A.

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIV AC ® Systems developments. The infor­
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent­
ative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIV AC is a registered trademark of Sperry Rand Corporation.

Other trademarks of Sperry Rand Corporation appearing in the text of this
publication are:

UNISERVO VI C

© 1966 anid 1969 - SPEI~RY RAND CORPORATION PRINTED IN U.S..A.

UP--4U09
Rev. 2 .. _-_.- ,----------------,

UNIVAC 494
CENTRAL PROCESSOR UNIT

CONTENTS

1. INTRODUCTION

1.1. GENERAL

1.2. CENTRAL PROCESSOR UNIT CHARACTERISTICS

2. CENTRAL PROCESSOR OPE RA TION

2.1. GENERAL

2.2. EXTERNAL INTERFACE

2.3. INTERNAL OPERATION
2.3.1. Interpretation Step
2.3.2. Execution Step

'2.4. IN PUT IOU TPUT OPE RATIONS
2.4.1. lSI Input Mode
2.4.2. lSI Output Mode
2.4.3. ESI Input Mode
2.4.4. ESI Output Mode

2.5. EXECUTIVE CONTROL

2.6. PROGRAM PROTECTION
2.6.1. Guard Mode Protection
2.,6.2. Program Protection Modes

2.}. INDEX REGISTERS

2.,8. MEMORY OVERLAP

2.,9. RELATIVE ADDRESSING

2,,10. FIXED ADDRESSES

2..11. DAY AND REAL-TIME CLOCKS
2 .. 11.1. Day Clock
2,,11.2. Real-Time Clock

I Contents I
-----L----'--5EC~TION: _---J..~PAGE: _

1

CONTENTS

1 to 4

1-1 to 1-3

1-1

1-2

2-1 to 2-24

2-1

2-1

2-3
2-3
2-5

2-7
2-12
2-12
2-13
2-13

2-14

2-14
2-15
2-15

2-16

2-17

2-17

2-18

2-18
2-18
2-19

UP-4049 L UNIVAC 494

_R_e_v_, _2 __ ,_, __ C_E_N_T_R_A_L_P_R_O_C_E_S,SO RUN IT

2.12. INTERRUPTS
2.12.1. Unconditional (Fault) Interrupts
2.12.1.1. Memory Parity Interrupt
2.12.1.2. Program Protection or Timeout Interrupt
2.12.1.3. Executive Return Interrupt
2.12.1.4. Test and Set Interrupt
2.12.1.5. Floating-Point Underflow Interrupt
2.12.1.6. Floating-Point Overflow Interrupt
2.12.1.7. Illegal Instruction Interrupt
2.12.2. Conditional Interrupts
2.12.2.1. Buffer Control Word (BCW) Parity Interrupt
2.12.2.2. I/O Data Parity Interrupt
2.12.2.3. Power Loss Interrupt
2.12.2.4. External Interrupt
2.12.2.5. Monitor (Interna I) Interrupt
2.12.2.6. Day Clock Interrupt
2.12.2.7. Real-Time Clock Interrupt
2.12.2.8. Synchronizing Interrupt
2.12.3. I/O Interrupt Registers

3. WORD FORMATS

3.1. GENERAL

3.2. INSTRUCTION WORDS
3.2.1. Normal Instruction Word
3.2.2. 77 Instruction Word
3.2.3. I/O Instruction Word

3.3. REGISTER FORMATS
3.3.1. Internal Function Register (IFR) Format
3.3.2. Program Lock-In Register (PLR) Format
3.3.3. Relative Index Register (RIR) Format
3.3.4. Buffer Control Register (BCR) Format

3.4. ARITHMETIC OPERANDS
3. 4.1. I n te g e r, Sin g I e Pre cis ion
3.4.2. Integer, Double Precision
3.4.3. Dec i ma I
3.4.4. Ex pan entia I (F loa ti ng-Po int)

4. INSTRUCTIONS

4.1. GENERAL

4.2. SHIFT INSTRUCTIONS

4.3. TRANSFER INSTRUCTIONS

4.4. ARITHMETIC INSTRUCTIONS
4.4.1. Integer Addition and Subtraction
4.4.2. Integer Multiplication and Division
4.4.3. Exponentia I (Floating-Point) Arithmetic
4.4.4. Decimal Arithmetic

I Contents
SECTION:

2-19
2-20
2-21
2-21
2-21
2-21
2-22
2-22
2-22
2-22
2-23
2-23
2-23
2-23
2-23
2-23
2-24
2-24
2-24

I PAGE,

3-1 to 3-11

3-1

3-1
3-2
3-3
3-3

3-5
3-5
3-7
3-7
3-8

3-9
3-10
3-10
3-10
3-11

4-1 to 4-31

4-1

4-3

4-4

4-8
4-8
4-9
4-11
4-11

2

UP-4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT ________ --.1""--.--______________ _

4.5. LOGICAL INSTRUCTIONS

4.6. COMPA RISON INSTRU CTIONS

4.7. JUMP INSTRUCTIONS

4.8. SEQUENCE - MODIFYING INSTRUCTIONS

4.9. IN PUT/OUTPUT INSTRUCTIONS

APPENDIXES

A. ABBREVIATIONS AND SYMBOLS

B. REPERTOIRE OF INSTRUCTIONS

C. INTEGER ADDITION AND SUBTRACTION

C.l. INTEGER ADDITION

C.2. INTEGER SU BTRACTION

D. EXECUTION TIME OF INSTRUCTIONS

FIGURES

1-1. UNIVAC 494 Central Processor Unit, with Operator's Display
Console and Primary Storage Unit

2-1. Central Processor Unit Interface

2-2. Central Processor Operation, Block Diagram

3-1. Instruction Word Formats

3-2. Register Formats

3-3. Arithmetic Operand Formats

4-1. Basic Decimal Arithmetic

4-2. Operation of Typica I Return Jump Instruction

4-17

4-20

4-21

4-25

4-27

A-I to A-l

B-1 to B-!5

C-l to C-:2

C-l

C-2

D-l to D-3

1-1

2-1

2-4

3-1

3-5

3-9

4-10

4-23

3

UP-4049 L
Rev. 2 ____ 0, __ _

UNIVAC 494
CENTRAL PROCESSOR UNIT

TABLES

2-I. Fixed Address Locations (Octa I-Coded)

:2-2. Input/Output Priority

.3-l. Interpretation of j Designators

3-2. Interpretation of k Designators

3-3. BCD Cod ing

4-l. Operand Designation for Read Class Instructions

____ ~ __________ ~I_S_E_CC_T_:_~~.~_n_ts __ ~_4 __

2-8

2-10

3-4

3-6

3-10

4-2

4-2. Transfer of y to Primary Storage for Replace Class Instructions 4-2

4-3. Enter Bj Instruction 4-5

4-4. Decimal Test 4-15

4-5. Interpretation of j Designator for Repeat Instruction 4-26

A-I. Abbreviations and Symbols A-I

B-l. Repertoire of Instructions B-1

D-l. Instruction Execution Time 0-1

Rev. 2 I SECTION,
1

UNIVAC 494
CENTRAL PROCESSOR UNIT UP'.4U49

... _-_.- ._---------------, ,----,

1. INTRODUCTION

Figure 1-1. UNIVAC 494 Central Processor Unit, with Operafor's Display
Console and Primary Storage Unit

1.1. GENERAL

The UNIVAC 494 Real-Time System is a large scale information handling system
with proven outstanding capabilities in multiprogram operations involving real time
communications and data processing activities. As an enhanced successor to the
UNIVAC 490 and 491/492 Real-Time Systems, the UNIVAC 494 System combines
advanced system hardware and software design concepts and characteristics to
fulfill the demands of real time applications while performing background batch
processing jobs efficiently. The system is designed around the capabilities of the
UNIVAC 494 Central Processor Unit (CPU), shown in Figure 1-1, which is a high
speed, powerful digital computing unit. The CPU operates with a flexible frame­
work of interrupts and a comprehensive repertoire of instructions under executive
control by the UNIVAC 494 Operating System. The CPU is equipped to handle all
of the' message, and data transfers and manipulations, including logic, arithmetic,
and queue processing called for by the system software; and controls all systems
activities and functions. In cooperative interaction with primary storage providing
65 to 131K word capacity, the CPU utilizes a wide variety of peripheral devices and
subsystems, including other CPU's and satellite computer systems, in on-site and
remote applications to furnish various system configurations and functions according
to the specific needs of a particular installation. Inherent system modularity and
compatibility in both hardware and software facilitate future additions, expansions,
and variations of functions.

1
PAGE:

UP-4049 UNIVAC 494 I I
Rev_._2 ____ ~ ________________ C_E_N_T~R_A_L __ P __ ROCESSOR ___ U_N __ IT _______ ~ ____________ ~s_E_c_T_,o_N_: _____ 1~ ______ 2

Through executive control provided by the system software, the CPU and other hard­
ware components, functioning on a multilevel priority scheme, achieve an optimum
program mix in which noncritical programs may be interrupted to permit concurrent
execution of real time programs in which time is more critical. All functions asso­
ciated with selection, initiation, and termination of program elements are also per­
formed under executive control, achieving maximum utility in the system.

Overall system characteristics for both hardware and software are discussed in
UN1VAC 494 Real-Time System System Description, UP-4032 (current version).

System software characteristics and logic are discussed in detail in UN IV A C 494
Real-Time System Operating Sysfem Programmers Reference, UP-7504 (current
version).

Characteristics of peripheral hardware components and subsystems are discussed
in detail in Systems Programming Library Service publications covering the specific
components or subs yste ms of interest.

1.2. CENTRAL PROCESSOR UNIT CHARACTERISTICS

The CPU provides a variety of features and capabilities which are of advantage to
the system user:

• compatibility with an inclusive complement of peripheral subsystems.

• a minimum of 12 input/output (I/O) channels, field-expandable (in increments of
four) to a maximum of 24, each of which may carry a complete peripheral subsystem,
including I/O devices, communications equipment, or other computers.

• input/output channel operation in the Internally Specified Index (lSI) or Externally
Specified Index (ESI) mode for all channels, with the exception of channel 0 which
accommodates the operator's console and Day Clock.

• compatibility with UNIVAC 490/491/492 programs and programming techniques.

• read/restore cycle time of 750 nanoseconds.

• interface with a random access ferrite core primary storage (memory) facility
having a minimum capacity of 65K 30-bit words (plus a parity bit for each half­
word), in two 32K modules which may be cycled independently, expandable in
65K increments to 131K maximum, and with cycle time of 750 nanoseconds and
read access time of 400 nanoseconds.

• memory overlap and interleaving capability, permitting the next instruction to be
read from memory simultaneously with the reading from or writing into memory of
the last operand, for reduced instruction read times.

• relative addressing capability, enabling flexible placement and relocation of
programs anywhere within memory.

• buffered input/output, providing capability for program execution concurrently
with I/O transfers.

UP .. 4049 UNtVAC 494
_---Be~v.~2~ __ ~ ____________ C_E_N_T_R_A_L __ P_R_O_C_E_SS_O_R __ U_N_1_T_ I SEC nON,

1

• time orientation to a 24-hour Day Clock and an l8-bit Real-Time Clock, which
generate interrupts at specified intervals for program monitoring, loading of
instructions, and dealing with contingencies.

• direct arithmetic operations on fixed-point binary single and double precision
operands, fixed-point binary coded decimal (BCD) double precision operands,
and floating-point binary double precision operands.

• priority control network within the computer I/O logic which determines the
order for honoring data transfer requests (function priority) and for responding
to system contingencies (interrupt priority).

• response to a flexible and efficient Operating System, comprising the executive
routine, utility routines, application packages, assemblers, and compilers.

3
PAGE:

~~'~~i19~ PROCESSOR UNIT .-L, ____L.I_S_EC_T_IO_N_: _~ ___ 1

2. CENTRAL PF~OCESSOR
OPERATION

2.1. GENERAL

The UNIVAC 494 central processor unit (CPU) is the prime component of the
UNIVAC 494 Real-Time System. The CPU has the responsibility for accepting
data and jobs from input/output equipment, queuing and executing jobs in confor­
mance with the demands of a real-time system, and executing and returning the
processed results to the system user. The interface between the CPU and the
external peripheral equipment is described in this section together with the
functional operation and unique processing features of the CPU. These features
include the Day Clock and Real-Time Clock, memory overlap and interleaving
organization, dual configuration of index registers, and a system of interrupts for
control of I/O operations and contingencies.

2.2. EXTERNAL INTERFACE

The CPU is designed to operate with a variety of I/O devices and may be equipped
with a maximum of 24 I/O channels. A standard subsystem may be tied directly to
each channe I of the CPU for operating in the Internally Specified Index (lSI) mode,
or a communications subsystem may be used between a channel and the I/O sub­
system for operating in the Externally SpeciHed Index (ESI) mode (ESI and lSI
operations are discussed in subsequent sections of this manual). Each channe.l has
a set of functional lines connected to the external equipment. The external inter­
connecting lines constitute the external interface, as indicated in Figure 2-1, which
implements the exchange of data and control signals .

FROM

EXTERNAL

EQUIPMENT

FROM OTHER}
CENTRAL

PROCESSORS

... ..
~ -- ~ ,..

30 INPUT DATA BIT LINES 30 OUTPUT DATA BIT LINES

.... -----+-,.
- I/O CLEAR -----+-CENTRAL

OUTPUT DATA REQUEST PROCESSOR OUTPUT DATA ACKNOWLEDGE .. ,..
INPUT DATA REQUEST INPUT DATA ACKNOWLEDGE

~ ,.
EXTERNAL INTERRUPT EXTERNAL FUNCTION .. ,.

SYNCHRONIZING INTERRUPT itO SYNCHRONIZING INTERRUPT itO .. ,.
SYNCHRONIZING INTERRUPT 1t1 SYNCHRONIZING INTFRRIIPT 1t1

,. ..
Figure 2-7. Central Processor Unit Interface

TO

EXTERNAL

EQUIPMENT

}

TO OTHER

CENTRAL

PROCESSORS

UP-4049 UNIVAC 494 I I
____ R_e_v_,_2 ____ ~, __________ , _____ C_E_N __ T_R_A_L __ P_R_O __ C_E __ SS,OR __ U_N_I_T ______ ~ _____________ ~_S_E._C_T_IO_N_: ___ 2 __ ~ _____ 2_

The I/O controls and their functions are as follows:

The Synchronizing Interrupt signal, which is programmed, causes an interrupt (at
the receiving CPU) which transfers control to an interrupt routine. A maximum IQf
two output and two input Synchronizing Interrupt lines may be used per CPU.

The Output Data Acknowledge signal indicates that the CPU has placed a data
word on the output word lines.

The External Function signal informs the peripheral device that the output word is
a function word rather than a data word. A function word is decoded at the output
device to initiate a particular action (read a block of data from magnetic tape, for
example). Provision is made within the repertoire of instructions for sending the
External Function signal even though an Output Data Request signal (see following
paragraph) may not be present.

The Input Data A cknowl edge signal indicates that the central processor has stored
an input word.

The I/O Clear signal is a master clear instruction transmitted by all I/O channels
to the external dev ices, and is generated when a control at the CPU is manually
pressed while the CPU is stopped.

The 0 utpu t Data R eque s t signal indicates to the CPU that the output device is
ready to receive an output data word.

The Input Data Request signal indicates that the input device has placed a data
word on the input data lines.

The External In terrup t (EI) signal indicates that the input device has placed a
status word on the input word lines, rather than a data word The channel number
is immediately stored in a five-bit Interrupt Address Storage register (IASR) and
an interrupt is generated transferring control to an executive routine. This routine
normally includes an instruction (Store Channel instruction) to store the status
word in core memory so that it can be analyzed.

The I/O channels for the CPU are numbered 0-23. Channel 0 can operate in the
lSI mode only. The other channels may operate in either lSI or ESI mode and may
be changed from lSI to ESI operat ion or from ESI to lSI operation by a physical
change to an I/O printed circuit card. Channel 0 accommodates the operator's
console and the day clock. Each group of eight channels (0-7, 8-15,16-23) can
operate in either the compatible mode or in the normal mode. A channel in the
normal mode operates at an I/O transfer rate of 555 kHz (kilocycles per second).
A channel in the compatible mode operates at a transfer rate of 250 kHz for com­
patibility with UNIVAC 490 peripheral equipment.

UNIVAC 494

Rev. 2 2
PAGE: CENTRAL PROCESSOR U~HT

UP .. 40~9 ._-_ ... - ------_._-----

2.3. INTERNAL OPERATION

2.3.1.

An instruction requires two steps: the interpretation step and the execution step.
During the interpretation step, an instruction word is analyzed to set up the logic
circuits for the specific functions called for. During the execution step, the
specified functions are performed.

The basic substeps involved in an interpretation step are as follows:

(1) A 30-bit instruction word is read from memory.

(2) Portions of the instruction word are analyzed to determine ~he operand.

(3) Portions of the instruction word are analyzed to determine the operations
to be performed and to condition the logic circuits involved.

The basic substeps involved in an execution step are as follows:

(1) The operand is read from memory (if required).

(2) The indicated logic or arithmetic operation is performed.

(3) The result is written back into memory (if required).

The functional blocks of the CPU which carry out the steps of interpretation and
execution steps are shown in Figure 2-2.

Interpretation Step

As par t of the initial loading procedure, the address of the first instruction is
placed in the Program Location Counter. The contents of the Program Location
Counter are transferred to the 17-bit Program (P) register and then to primary
storage. The instruction word is read from the indicated address of primary
storage into the Instruction register, the word contents are analyzed for operand
and function, and the execution cycle is started. Normally, as the execution step
starts, the number in the Program Location Counter is increased by 1 and this new
value is inserted into the P register. If a skip is indicated during execution, the
Program Location Counter will again be incremented by 1 in time to change the
contents of the P register before the next interpretation is initiated. If the instruc­
tion is a Jump instruction and conditions are satisfied, the new absolute address
will be transferred to the P register. (If the instruction is a Repeat instruction,
the 17-bit effective address of the instruction is stored in the Internal Function
register (IFR) and address transfers to the IFR will be inhibited until the Repeat
instruction is completed; if the instruction is a Jump instruction, the 17-bit P
value will be stored in the IFR.) Instruction word analysis and conditioning is
accomplished as follows:

(1) The basic address contained in the instruction word is added to the c.ontents
of an index register, specified by a designator in the instruction word, tD form
the re lative address. Depending upon the activated index register configuration
and the index register chosen (see 2 .. 7), the relative address may be either 15
bits or 17 bits.

(PLR)
PROGRAM LOCK·IN REGISTER

PROGRAM
BOUNDARIES

GUARD MODE

CONTROL

----- - ---- --I

PROGRAM LOCATION COUNTER
INTREE~~:iE~U(7i:)ION I

!
I
I

I_I

I
L-__________ ~~----~-~+I ~

OPERAND

ADDRESS

RELATIVE INDEX
REGISTER (RIR)

INDEX REGISTERS

Bl - Bl EXEC

INDEX REGISTERS

Bl - B7 WORKER

STORAGE

BANK

o
BANK BANK

1 2

OUTPUT DATA

I

«
>­

BANK «

3 ~I+----

L--~_--'I

ABSOLUTE ADDRESS I
I
I
I ,
I

AUXILIARY A REGISTER

INTERMEDIATE A
PROCESSING

INPUT/OUTPUT

10 CONTROL

OUTPUT DATA REGISTER

OUTPUT DATA

ARITHMETIC

INTERMEDIATE Q
PROCESSING

- - ______ -- ______ 1 ________________________ J

Figure 2-2. Central Processor Operation, Block Diagram

nc
mZ

III
[TJ
()

-I

Z<
-I~
;;an
~,I:a..

r-~
"'U
::u
o
n
m
'" '" o
;;a

c:
Z

-I

o
Z

r

UNIVAC 494

Rev. 2 CENTRAL PROCESSOR UNIT
UP'-404~

------,- ----------------_._---~, _________ I_S_EC_T_IO_N_: ____ 2~_p_AG_E_: ______ 5

2.3,,2.

(2) The relative address is added to the relative index (R i) to form the 17-bit
absolute memory address containing the operand. The re lative index is either
the contents of the Relative Index register (RIR) or the lower boundary or
lower lock limit (LL) in the Program Lock-In register (PLR). Bit 27 in the
IFR and the b designator of the instruction determine the choice.

(3) The absolute address is loaded into the Operand Address register and is
checked to determine that it lies within the program boundaries.

Execution Step

The operand is determined by the 30-bit contents of the Instruction register. In
some cases, the operand is part of this instruction word and, if this is so, the
operand is sent directly to the X register of the arithmetic circuits, after modifi­
cation by an index register. In other cases, the instruction word specifies the
memory location which contains the operand, and the operand is obtained in the
following sequence after the conditioning described in 2.3.1 has been completed:

(1) The absolute address is sent to the memory and the operand is read from
memory into the applicable register.

(2) The logic circuits, conditioned by timing and execution controls, process the
operand, usually retaining the res ult in one of the arithmetic registers.

(3) If required by the instruction, the result is also stored in a memory location
specified by the instruction word.

All primary storage address references pass through the relative addressing cir­
cuits except those references generated by normal sequential operation (including
skips) of the P register and those which reference the "fixed" addresses (see 2.10),
a group of addresses set aside for interrupt operations. The IFR establishes pro­
gram protection to ensure that programs do not operate outside the boundaries
defined in the Program Lock-In register (PLR), and also es tablishes Guard Mode
to ensure that certain privileged instructions are not executed.

The interpretation and execution steps are essentially limited by the primary storage
cycle time. With memory overlap, the last operand of the current instruction may be
read simultaneously with the next instruction, eliminating one memory cycle time
between instructions and significantly decreasing the running time required for a
program.

The X register is a 30-bit register, handling all communication between arithmetic
circuits and primary storage. The register is also capable of furnishing the ones
complement (changing 1 bits to 0 bits, and vice versa) of data which it stores.

The accumulator (A register) is the principal arithmetic register and is used in
most arithmetic operations. The accumulator is a 30-bit register with complemen­
tation capability.

UP-4049 L
Rev. 2

-------- -----------------------,
I SECTION,

2
UNIVAC 494
CENTRAL PROCESSOR UNIT

The Q register has the same capability as the accumulator. Q assists A in multi­
plication, division, and logical operations. The A and Q registers are sometimes
combined to form one 60-bit register, the AQ register, for double precision and
BCD arithmetic operations. Auxiliary 30-bit registers are associated with the A
and Q registers, and are used for storage of intermediate results in arithmetic
operations.

The shift matrix (K register) enables the contents of the A and/or Q registers to
be shifted, at one time, as many positions as required, instead of one bit position
at a time.

The Output Data registers hold data on the data output lines long enough to meet
requirements of comparatively slow speed I/O devices.

The Buffer Control register (BCR) with one input and one output for each channel
minimum, holds the Buffer Control word (BCW) and controls I/O transfers between
primary storage buffers and external equipment. The Channel Select register, the
Interrupt Address Storage register, and the Parity Error Channel Storage register
are concerned with I/O operations; their uses are described in 2.12.

The Internal Function register (IFR) is a 30-bit register used principally to
fac ilitate executive routines. The IFR performs the following functions:

• captures the P register value for Jump instructions;

• captures the relative address of a Repeat instruction and its j designator
(see Section 3);

• determines the partic ular type of program protection to be used;

• indicates overflow or carry for decimal arithmetic;

• specifies whether the executive set or the worker set of index registers is the
active index register set;

• determines the bit capacity of the active index register configuration;

• activates one of the two re lative addressing modes.

The Program Lock-In register (PLR) defines the upper and lower memory address
limits to be used in the particular type of program protection selected by the IFR.
The lower limit (LL) may be used as the Relative Index for operands.

The Relative Index register (RIR) is used as a dynamic bias for operand and/or
instruction addresses to enable the execution of programs anywhere within memory
without modification to these programs. The IFR, PLR, and the RIR are loaded
by programmed instructions under executive control.

6
PAGE:

UP-4049
Rev. 2 ... _-_._---_ -

UNIVAC 494 I J
CENTRAL PROCE~SO~_~~._ •• -.L~ ____ . . SECTION:

2 b_7 _

2.4 . INPUT/OUTPUT OPERATIONS

Input/ output operations effect the transfer of data and control signals between the
CPU and peripheral equipment. A buffer is a specified number of sequential core
storage addresses, starting from a specified address, set aside as required for
storing input or output data before it is processed by the CPU or sent to the peri­
pheral device. The 24 (maximum) I/O channels can operate with standard peripheral
devices (drums, tapes, printers, etc.) or with multiplexed communication subsystems.

Transfers with multiplexed communication subsystems use the ESI mode. Channel 0
is reserved for, and can only be used through, the operator's console. Transfers
with standard peripheral devices use the lSI mode. An lSI channel has one input
buffer control register (BCR) and one output BCR (located at the fixed addresses
listed in Table 2-1) per channel. For ESI operation, each of the multiplexed I/O
devices on a channel is assigned its own input and output ESI location.

All I/O operations are governed by a multilevel priority scale which resolves
situations when two or more channels attempt to communicate with the CPU simul­
taneously. The priority scale uses the fixed priority assigned to each request or
interrupt. Function priority determines which of the data requests has the highest
priority; interrupt priority determines which of the various I/O interrupts has the
highes t priority. F unction priority and interrupt priority operate independently of
each other and each one is a primary level of priority. Both function and interrupt
priorities are shown in Table 2-2. Within each of these primary levels there is a
secondary level which resolves priority when the same situation exists in two or
more channels of the same channel group (15-8, 23-16, and 7--0). In such a cnse,
the highest numbered channel within the group has the highest priority. (The
interrupts shown in Table 2-2 are the I/O (conditional) interrupts described in 2.12.)

UP-4049
Rev. 2

UNIVAC 494

CENTRAL PROCESSOR UNIT I SECTION, 2

-----------------_ .. _--_._---_._ .. _ _-- _. __ .. _.- -----------
ADDRESS FUNCTION

490 MODE .. -----------+-------------------- I 000000

000001
000002
000003

000004

000005

000006
000007

000010
000011
000012
000013
000014
000015

000016
000017

000020
000021
000022

000023

000024

000025

000026
000027

000030

000031

000032

000033
000034
000035
000036
000037

FAULT ADDRESS

MEMORY PROTECTION
POWER LOSS
MEMORY PARITY BANK #0

MEMORY PARITY BANK #1

BCR PARITY ERROR

I/O DATA PARITY

REAL TIME CLOCK INTERRUPl

DAY CLOCK INTERRUPT
DAY CLOCK TIME UPDATE
REAL TIME CLOCK UPDATE

EXTERNAL INTERRUPT CHANN
EXTERNAL INTERRUPT CHANN
EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN
EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN

EXTERNAL INTERRUPT CHANN
EXTERNAL INTERRUPT CHANN
EXTERNAL INTERRUPT CHANN
EXTERNAL INTERRUPT CHANN
EXTERNAL INTERRUPT CHANN

EL 0
EL 1
EL 2

EL 3

EL 4
EL 5

EL 6
EL 7

EL 8
EL 9

EL 10

EL 11
EL 12
EL 13
EL 14
EL 15

-------f-----------------.-.. --.--

000040 INPUT INTERRUPT CHANNEL 0

000041 INPUT INTERRUPT CHANNEL 1

000042 INPUT INTERRUPT CHANNEL 2
000043 INPUT INTERRUPT CHANNEL 3
000044 INPUT INTERRUPT CHANNEL 4

000045 INPUT INTERRUPT CHANNEL 5
000046 INPUT INTERRUPT CHANNEL 6
000047 INPUT INTERRUPT CHANNEL 7

--------_._----------_.-
000050

000051

000052
000053
000054

INPUT INTERRUPT CHANNEL 8

INPUT INTERRUPT CHANNEL 9
INPUT INTERRUPT CHANNEL 1
INPUT INTERRUPT CHANNEL 1
INPUT INTERRUPT CHANNEL 1

000055 INPUT INTERRUPT CHANNEL 1

000056 llNPUT INTERRUPT CHANNEL 1
000057 INPUT INTERRUPT CHANNEL 1

------ ---------------

0
1
2

3
4
5

494 MODE

ILLEGAL INSTRUCTION

PROGRAM PROTECTION OR TIMEOUT

POWER LOSS
MEMORY PARITY BANK #0

MEMORY PARITY BANK #1

BCR PARITY ERROR
I/O DATA PARITY ERROR

EXECUTIVE RETURN

FLOATING-POINT UNDERFLOW
FLOATING-POINT OVERFLOW
SYNCHRONIZING INTERRUPT #0
SYNCHRONIZING INTERRUPT #1

REAL TIME CLOCK INTERRUPT

DAY CLOCK INTERRUPT
DAY CLOCK TIME UPDATE
REAL TIME CLOCK UPDATE

EXTERNAL INTERRUPT ESI

INPUT MONITOR ESI
OUTPUT MONITOR ESI

MEMORY PAR ITY BAN K #2

EXTERNAL INTERRUPT lSI

INPUT MONITOR lSI

OUTPUT MONITOR lSI
MEMORY PARITY BANK #3

TEST AND SET

OUTPUT BCR CHANNEL 0

OUTPUT BCR CHANNEL 1

OUTPUT BCR CHANNEL 2
OUTPUT BCR CHANNEL 3
OUTPUT BCR CHANN EL 4

OUTPUT BCR CHANNEL 5
OUTPUT BCR CHANNEL 6
OUTPUT BCR CHANNEL 7

OUTPUT BCR CHANNEL 8
OUTPUT BCR CHANNEL 9

OUTPUT BCR CHANNEL 10
OUTPUT BCR CHANNEL 11
OUTPUT BCR CHANNEL 12

OUTPUT BCR CHANNEL 13
OUTPUT BCR CHANNEL 14
OUTPUT BCR CHANNEL 15

Table 2-1. Fixed Address Locations (Octal-Coded)
(Port 1 of2)

8
PAGE:

UP~4049 UNIVAC 494 I SEC T[O", .. _--E..~'_v_. 2 ______ . _____ C_E_N_T_R_A_L_P_R_O_C-E-S-S-O-R-U-N-1 T_,

ADIDRESS

000060

000061

000062

000063

000064

000065

0100066

0130067

0130070

0130071

000072

000073

000074

000075

000076

000077

000100
000101

000102

000103

000104

000105

000106

000107

000110

000111

000112

000113

000114

000115

000116

000117

000120

000121

000122

000123

000124

000125

0010126

0010127

1---.

0010130

000131

000132
0010133

000134

0010135

0010136

000137

-
FUNClrlON

--
490 MODE 494 MODE

OUTPUT INTERRUPT CHANNEL 0 OUTPUT BCR CHANNEL 16

OUTPUT INTERRUPT CHANNEL 1 OUTPUT BCR CHANNEL 17

OUTPUT INTERRUPT CHANNEL 2 OUTPUT BCR CHANNEL 18

OUTPUT INTERRUPT CHANNEL 3 OUTPUT BCR CHANNEL 19

OUTPUT INTERRUPT CHANNEL 4 OUTPUT BCR CHANNEL 20
OUTPUT INTERRUPT CHANNEL 5 OUTPUT BCR CHANNEL 21

OUTPUT INTERRUPT CHANNEL 6 OUTPUT BCR CHANNEL 22

OUTPUT INTERRUPT CHANNEL 7 OUTPUT BCR CHANNEL 23

--
OUTPUT INTERRUPT CHANNEL 8

OUTPUT INTERRUPT CHANNEL 9

OUTPUT INTERRUPT CHANNEL 10

OUTPUT INTERRUPT CHANNEL 11

OUTPUT INTERRUPT CHANNEL 12

OUTPUT INTERRUPT CHANNEL 13

OUTPUT INTERRUPT CHANNEL 14

OUTPUT INTERRUPT CHANNEL 15

INPUT BCR CHANNEL 0 INPUT BCR CHANNEL 0

INPUT BCR CHANNEL 1 INPUT BCR CHANNEL 1

INPUT BCR CHANNEL 2 INPUT BCR CHANNEL 2

INPUT BCR CHANNEL 3 INPUT BCR CHANNEL 3

INPUT BCR CHANNEL 4 INPUT BCR CHANNEL 4

INPUT BCR CHANNEL 5 INPUT BCR CHANNEL 5

INPUT BCR CHANNEL 6 INPUT BCR CHANNEL 6

INPUT BCR CHANNEL 7 INPUT BCR CHANNEL 7

INPUT BCR CHANNEL 8 INPUT BCR CHANNEL 8

INPUT BCR CHANNEL 9 INPUT BCR CHANNEL 9

INPUT BCR CHANNEL 10 INPUT BCR CHANNEL 10

INPUT BCR CHANNEL 11 INPUT BCR CHANNEL 11

INPUT BCR CHANNEL 12 INPUT BCR CHANNEL 12

INPUT BCR CHANNEL 13 INPUT BCR CHANNEL 13

INPUT BCR CHANNEL 14 INPUT BCR CHANNEL 14

INPUT BCR CHANNEL 15 INPUT BCR CHANNEL 15

OUTPUT BCR CHANNEL 0 INPUT BCR CHANNEL 16

OUTPUT BCR CHANNEL 1 INPUT BCR CHANNEL 17

OUTPUT BCR CHANNEL 2 INPUT BCR CHANNEL 18

OUTPUT BCR CHANNEL 3 INPUT BCR CHANNEL 19

OUTPUT BCR CHANNEL 4 INPUT BCR CHANNEL 20

OUTPUT BCR CHANNEL 5 INPUT BCR CHANNEL 21

OUTPUT BCR CHANNEL 6 INPUT BCR CHANNEL 22

OUTPUT BCR CHANNEL 7 INPUT BCR CHANNEL 23

-
OUTPUT BCR CHANNEL 8

OUTPUT BCR CHANNEL 9

OUTPUT BCR CHANNEL 10

OUTPUT BCR CHANNEL 11

OUTPUT BCR CHANNEL 12

OUTPUT BCR CHANNEL 13

OUTPUT BCR CHANNEL 14

OUTPUT BCR CHANNEL 15

Table 2-7. Fixed Address Locations (Octal-Coded)
(Part 2 of 2)

PAGE: 9

UP-4U09
Rev. 2 -----

UNIVAC 494 I I
, _____ C_E_N __ T_R_A_L __ P __ R_O_C_E __ S_S_O_R __ U_N __ IT ________ ~ __________ ~~s_E_c_T_,_oN_: ___ 2 ___ ~,_1_0 __ _

I/O fUNCTION PRIORITY

Output Tr ansfer Channel 15

Input Transfer Channel 15

13 or 17 Instruction

Output Tr ansfer Channe Is 14-08

Input Transfer Channels 14-08

Output Transfer Channels 23-16

Input Transfer Channels 23-16

Output Tr ansfer Channels 7-0

Input Transfer Channels 7-0

Day Clock Update

Real Time Clock Update

INTERRUPT PRIORITY

Buffer Control Word Par ity Error

I/O Data Parity Error

Power Loss

External Interrupt (ESI)

Input Monitor (ESI)

Output Monitor (ESI)

External Interrupt (lSI)

Input Monitor (lSI)

Output Monitor (lSI)

Day Clock Interrupt

Real Time Clock Interrupt

Synchronizing Interrupt #0
Synchronizing Interrupt #1

Table 2-2. InpudOutput Priority

The assignment of buffers is programmed by a buffer instruction (73, 74, 75, or 76),
except that an ESI input operation must always be initiated with monitor (75).
These instructions activate a buffer and place a buffer control word (BCW) into a
BCR. The channel number is obtained from the five-bit Channel Select register
(CSR) which was previously loaded by an Enter CSR (7773) instruction. When the
buffer is activated, control of I/O transfers is taken over by the BCW so that the
CPU is free to process its own program. The BCW defines the first address in the
buffer (see Figure 3-2) and specifies the number of consecutive addresses allotted
to the buffer. With each transfer, the current buffer address is increased by 1 and
the word count is decreased by 1. When the word count reaches 0, the buffer is
terminated.

In an input buffer operation, each transfer (updating the BCW and loading the input
data into a buffer location) is initiated by the Input Data Request signal. In an
output buffer operation, the transfer is initiated by the Output Data Request signal.

When an External Interrupt signal is received on a channel, the channel number is
loaded into the five-bit Interrupt Address Storage register (IASR), but the status
word on the data lines is not automatically stored. An interrupt is generated and
the interrupt routine references the IASR, rather than the CSR, for the channel
number. A Store Channel (17) instruction must be used to transfer the status word
from the input data lines to primary storage and to send an Input Acknowledge (IA)
signal to the subsystem as recognition of the External Interrupt (EI).

Basically, four modes of normal I/O data transfer operation are available:

• lSI mode (input)

• lSI mode (output)

• ESI mode (input)

• ESI mode (output)

UP-4049
Rev. 2 I SECTION, 2

UNIVAC 494
CENTRAL PROCESSOR UN,IT

The lSI modes use fixed addresses (see Table 2-1) for BCR's; the ESI modes can
use any memory address as an ESI location (but once specified and wired for a
particular I/O device it remains fixed for that I/O device). Actually, the number
of ESI buffers which may be active op any lOne channel is restricted by the amount
of primary storage available, the maximum allowable I/O cable length, and the
overall transfer rate (which cannot exceed that of the CPU I/O logic).

On ESI input, the peripheral equipment sends an Input Data Request (IDR) aliQng
with a 30-bit word in the following format:

Is, 6, 7 or 8-bit character (right-justified)

~ 15 14

ESI address l
,---~

The I/O logic of the CPU uses the ESI address (plus the two bits provided by the
MSR) as the ESI location. The BCW is extracted from the ESI location, has its
current address (see Figure 3-2) incremented, its word count decremented, and is
replaced in the ESI location. Then the I/O logic stores the data on the uppe:r 15
data input lines into the last previous current address (right-justified in the upper
15 bits with zero-fill; the lower 15 bits are undisturbed and may be used for any
purpose).

On ESI output, the peripheral device must be connected to both the input and out­
put channels. When the peripheral device sends the computer a request for an
output data word, the peripheral device places the address of the corresponding
output ESI BCW on the lower 15 bits of the input data lines. I/O logic uses this
address (plus contents of the MSR) as the location of the assigned output ESI
location. The BCW is fetched, updated, and replaced. Then the word at the last
previous current address is sent by way of the 30 output data lines.

Upon termination of an ESI output, the ESI location address is automatically stored
in the lower 15 bits of the lSI output BCR for that channel (see Table 2-1). An
example of ESI output termination would be: xxxxx 00542 located in address 056.
This implies that the peripheral device on position 42 of a communication multi­
plexer presented ESI address 00542 on channel 14 10 (168) along with the Output
Data Request (ODR) signal. The data transfer took place, the word count WHS

decremented to 0, and BCR 056 received the ESI location address as an output
termination of an ESI channel.

The termination of an ESI input operation differs from the ESI output operation in
that the ESI location address is not automatically stored. Upon termination, a
monitor interrupt must occur to initiate a subroutine which stores the ESI location
address at address Y by means of a Store Channel (17) instruction.

11

UP-4049
Rev. 2

2.4.1.

UNIVAC 494 I I
C E N T RA L P ROC E SSO R _U_N_IT ____ --..... _____ "-S..._E __ C T--.I_ON.-.: __

2 _~~_2_

lSI Input Mode

The basic sequence for lSI input is:

(1) Program activates input buffer for channel specified by CSR (73 or 75
instruction).

(2) Peripheral unit places data on the 30 input data lines along with IDR signal.

(3) CPU responds to IDR as soon as possible.

(4) CPU updates BCW in assigned BeR.

(5) CPU stores a 30-bit input word at last previous 17-bit current address and
sends Input Acknow ledge (IA) signal.

(6) Peripheral unit senses IA signal and drops IDR and data signals.

Steps (2) through (6) are repeated for every data word until the number of words
specified by the BCW have been transferred. The channel is deactivated during
the transfer of the last word of the buffer.

2.4.2. lSI Output Mode

The basic sequence for lSI output is:

(1) Program activates output buffer for channel specified by CSR (74 or 76
instruction).

(2) Peripheral unit sends ODR, indicating that peripheral is ready to receive
data.

(3) CPU responds to ODR when possible.

(4) CPU updates BCW in assigned BCR.

(5) CPU reads out data from the last previous current address in the BCR.

(6) CPU transmits 30-bit data along with Output Acknowledge (OA) signal.

(7) Peripheral equipment senses OA signal and stores 30-bit data.

(8) Peripheral equipment drops ODR signal.

Steps (2) through (8) are repeated for every data word until the number of words
specified in the BCW have been transferred. The channel is deactivated when
the CPU receives the ODR following the last data transfer of the buffer.

UP··4049 L
Rev. 2 .. _-_._----, ._--- ~:;~~PROCE~O~ ___ .~I~s_E_CT_I_ON_: __ 2_~I_p_A_G_E: __ 1_3

2.4.3. ESI Input Mode

2.4.4.

The basic sequence for ESI input is:

(1) CPU activates input buffer for given channel (75 instruction).

(2) Peripheral unit places data on input lines along with IDR signal.

(3) CPU responds to IDR signal by updating BCW at location specified in input
(plus MSR).

(4) CPU stores input data at upper half of last previous current address in ESI
location and sends IA signal.

(5) Peripheral unit responds to IA signal by dropping IDR and input data signals.

Steps (2) through (5) are repeated for every data word until the number of words
specified in the BCW have been transferred. The channel is deactivated as the
last word is read into the CPU.

ESI Output Mode

The basic sequence for ESI output is:

(1) CPU activates output buffer for given channel (74 or 76 instruction).

(2) Peripheral unit sends address of output ESI location on lower 15 input data
lines along with ODR signal.

(3) CPU responds to ODR signal when]possible.

(4) CPU updates BCW at output ESI location.

(5) CPU reads out data from last previous current address in ESI location.

(6) CPU transmits 30-bit output data along with OA signal.

(7) Peripheral unit senses OA signal and stores data.

(8) Peripheral unit drops ODR signal.

Steps (2) through (8) are repeated for every data word until the number of words
specified in the BCW have been sent. The channel is deactivated as the last
word of the buffer is transferred out. At step (6) when the word count in the BCW
is 0, the ESI location address on the lower 15 data input lines w ill be stored in
the output BCR for that channel.

UP-4049 L UNIVAC 494 I
__ R_e_v_" ___ 2_______ ____ C __ E_N_T_R __ A_L __ P_R_O_C __ E_S_S_O_R __ U_N __ IT ________ ~ __________ ~~s_E_c_T_,o_N_: ___ 2 __ ~_p_A_G_E_: ___ l_4 __

2.5. EXECUTIVE CONTROL

Executive control is maintained by a set of routines, the UNIVAC 494 Operating
System, which is concerned with selection and execution of worker programs. The
executive and other routines control the basic machine facilities and provide fol'
utilization by the worker program within a multiprogram environment.. The executive
routine is loaded into the CPU as part of the system-initializing procedure, and,
from that point on, may be regarded as a programmed extension of the CPU. The
routine enforces such basic control as program protection, facility allocation, relo­
cation in memory, etc., and employs essential features of the computer design in
effecting its functions.

An executive routine is activated by the occurrence of an interrupt. A special
interrupt is generated by the Executive Return instruction enabling a worker program
to request service provided by the executive. Interrupt processing is facilitated by
the automatic deactivation of RIR and IFR. With IFR inactive, no guard mode or
write protection is effective and the executive index registers are active in the 17-
bit mode. Executive index registers are used to retain values used in controlling
the worker program. With relative addressing inactive, the executive routine can
span a 131K memory through the 17-bit index registers. During execution of the inter­
rupt routine, transfers of P to the IFR are inhibited. A Store IFR instruction within
the interrupt routine will capture the IFR contents for restoration when the worker
is reactivated.

An executive routine required in processing a service request will be activated from
an interrupt routine or scheduled for subsequent activation. The interrupt processing
is therefore usually limited to a switching or scheduling function so that interrupt
processing of input/output, etc., will not be delayed. The interrupt routine will
activate RIR, IFR, and release interrupt lockout when control is either switched or
returned to the interrupted program. The Enter IFR instruction loads IFR and RI.R
from successive memory locations Y and Y+1. The relative index established will
affect operands of following instructions so that a Jump instruction will normally
be direct by an executive index register. Write protection limits established by a
previous Load Program Lock-In register instruction and Guard Mode become effective
with the activation of IFR. The index register configuration is active prior to the
Enter IFR instruction and is effective during the execution step of the next instruc­
tion; the interpretation step, however, will be controlled by the new IFR. RIR may
be activated independently by IFR by the Enter RIR instruction in special switch
situations effected by the executive.

2.6. PROGRAM PROTECTION

Program protection prevents interference between worker programs or program
elements. The IFR may select one of three different modes of program protection,
or no program protection, to govern the operation of worker programs. (Program
protection is automatically disabled for executive routines.) The protection
modes are:

• l~ead and Write Protection with Guard Mode

• Write Protection with Guard Mode

• Write Protection without Guard Mode

UNIVAC 494 I
2

PAGE:

UP-4049 1
Rev. 2 .. __ . ,_ _-, ._--- CENTRAL PROCESSO_~_UNIT ._ •• ~ __ I SECTION,

2.6.1.

2.6.2.

The Guard Mode is concerned with illegal instructions, and the program protection
mode deals with program overextensions:, or violations of program limits defiined
in the PLR.

Guard Mode Protection

The Guard Mode ensures that certain instructions cannot be executed in the course
of a worker program. These instructions are: all I/O instructions (13, 17, 62, 63,
66,67, 73, 74, 75, and 76), and instructions 7760 through 7767, 7770, 7772, 7773,
7774, 7776, and 7777 (instructions restricted to executive routines such as loading
of the RIR or IFR). In the Guard Mode. Stop instructions will be executed with any
applicable jump, but the stop condition will be inhibited. If the Guard Mode is
enabled, any attempt to read the privileged instructions will cause an Illegal
Instruction interrupt. The Guard Mode also checks to assure that interrupts are
not locked out for a period exceeding 100 microseconds.

Program Protection Modes

Read and Write Protection with Guard Mode uses all the protective features of the
Guard Mode and, in addition, will cause a Program Protection or Timeout interrupt
if reading, writing, or jumping outside the limits set by the PLR is attempted.

Write Protection with Guard Mode also uses all the protective features of the
Guard Mode and will also cause a Program Protection interrupt if writing is
attempted outside the limits set by the PLR. However, reading and jumping to
any area in primary storage are permitted and are not limited by the PLR.

Write Protection without Guard Mode willl cause an interrupt only if writing is
attempted outside the limits set by the PLR. Reading and jumping to any location
in primary storage are permitted. All instructions in the repertoire can be executed.
The Guard Mode is not activated.

Read and/or Write Protection is not applicable on references made by way of the
P register. Therefore, a normal P advance or skip outside the limits set by the
PLR is not detected. Attempts to reference an instruction outside the lock-in
area by a Jump or Execute Remote instruction will be detect~d and any such
reference w ill not be executed. Also, Read and/or Write Protection is not appli­
cable to I/O data transfers between the CPU and peripheral equipment, since this
type of storage protection is effected by Buffer Control words.

15

UP-4049
Rev. 2 I SECTION,

2
UNIVAC 494

CENTRAL PROCESSOR UNIT

2.7. INDEX REGISTERS

Fourteen addressable index (B) r€!gisters are available. These registers provide for
operand address modification, index codes, counters, and modifier incrementation.
These registers are divided into two groups so that each group consists of seven
registers. The intention is that one set be used by executive interrupt answering
routines and the other set by all other programs.

Only one set of B registers is active at anyone time and is selected by the IFR.
The executive set is activated when the processor is master cleared and whenever
an interrupt occurs. Under program control the executive routine must load the IFR
to activate the worker set when leaving the executive routine to enter a worker
program. The worker program, in turn, returns to an executive routine by way of an
interrupt, there by activating the executive set.

Each set of B registers can operate in one of two modes. In one mode all seven
registers will operate as ls-bit registers. In the other mode three registers (B 1,
B2, and B3) w ill operate as ls-bit registers and four registers (B4, Bs, B6, and
87) will operate as 17-bit registers. To determine which mode is active, a second
bit in the IFR is used.

When the CPU is master-cleared or an interrupt occurs, the CPU will operate with
the executive set of registers and will have three IS-bit registers and four 17-bit
registers. As the executive routine jumps to a worker program, the IFR register is
loaded with the appropriate bits to select the worker set of index registers and to
select the desired bit mode.

Normal operation for a worker program is the IS-bit length for all index registers"
permitting complete access to all data within a 32K memory area. This natural

limitation is imposed because ls-bit half-words are normally used for address
genera tion. Any given program inc luding instructions and data will then be con­
tained within a 32K memory area. Using the RIR, the absolute starting address of
the 32K area can be varied throughout the 131 K memory in increments of 64 words.

The purpos e of the 17 -bit B registers is to allow a program to reference data outside
the 32K limit. The instructions of the program are still1imited to the 32K words
following the value in RIR, but the data can be stored anywhere in the 131K memory
and can then be referenced directly by the program.

When transferring data into and out of the 17-bit B registers, full-word transfers
should be used. To enter a 17-bit 8 register, the lower 17 bits of a 30-bit location
are transferred while a full-word store instruction stores the 17-bit value into the
lower 17 bits of a 3D-bit location with the upper 13 bits cleared to D's. Half-word
transfers into or out of a 17-bit register cause the highest order bits to be set to O.

PAGE:

Instructions 7741 through 7747 transfer (P-RIR) to B and jump to Y. This is normally
a ls··bit value and it can be entered into any 8 register.

In the instructions which enter and store the worker set of index registers (7771, 7775),
a full-word of memory is used; that is, 15 bits are transferred to and from 81, B2" and
B3 and 17 bits are transferred to and from B4, 85, 86, and 87 with remaining upper
bits written to 0 on a Store instruction. The executive routine uses this instruction
whenever it is necessary to save a program environment.

16

UP·4049
... _~.v_';....;;.2 __r.. __ ~~~;~~PROCE~OR UNIT ~,~~~_~_S_E_C_TI_O_N:~_:_2~J_P_A_G_E_:~_17~_

2.8. MEMORY OVERLAP

The memory overlap mode capability is achieved by independent operation of the
memory banks which make up the primary storage. For a series of one-operand
instructions, the time per instruction approaches one memory cycle time, since
successive memory references can use alternate memory banks. A manually con­
trolled selector switch (MSR) provides either odd-even addressing or continuous
addressing. In the odd-even mode, odd memory references use one memory bank;
even memory addresses use another memory bank, minimizing the programming effort
necessary for obtaining maximum memory overlap. Odd-even addressing is the nor­
mal mode of operation. The continuous mode is used to avoid storage in a particular
memory bank (in case of a memory fault, for example). Memory overlap can be ob­
tained in the continuous mode but requires greater programming effort.

2.9. RELATIVE ADDRESSING

Relative addressing permits access to memory locations on the basis of a relative
index value, Ri. Two modes of relative addressing are available for worker programs;
interrupt routines do not use telative addressing (or, in effect, Ri is +0). In the dual
relative index mode, either the RIR or the lower limit (LL) of the program boundary
in the PLR may be used for Ri for operand addresses; in the RIR relative index mode,
only the RIR may be used for Ri for operand addresses. In both modes, instruction
address memory references shall be relative to the RIR (except for fixed addresses).
The dual relative index mode facilitates programming where instructions are located
in one primary storage area and operands are located in another. An example of dual
indexing is the common subroutine which is entered into primary storage only once
but which may operate on data (operands) in several primary storage areas.

Bit 27 of the IFR determines the relative index mode. If bit 27 is 0, the RIR rela­
tive index mode is activated; if bit 27 is 1, the dual relative index mode is activated.
When an interrupt occurs, the IFR and RIR are deactivated. When the executive rou­
tine transfers control to the worker program, the Enter IFR instruction may activate
either the dual relative index mode or the RIR mode. The RIR must be entered anew
before the jump to the worker program.

In the dual relative index mode, the b designator (see Section 3 for instruction word
formats) determines the R i as follows:

• If the b designator is 0, 1, 2, or 3, Ri is the contents of the RIR .

• If the b designator is a 4, 5, 6, or 7, Ri is the LL in the PLR.

An Enter B and Jump instruction (774-) or the capture of a relative address by a
Return Jump instruction (64 or 65) will store the value of P minus the value of the
RIR. Therefore, P values must be relative to the RIR. For example, an executive
routine is usually terminated by an arithmetic: jump instruction (60) which activates
the IFR after the indexing operation. If the jump is direct (the k designator is 0
or 4), any b designator may be used although the dual relative index mode is acti­
vated, and P values will be relative to the RIR. However, if the jump is indirect
(the k designator is not a 0 or 4) and the b designator is 4, 5, 6, or 7, the RIR
would be used to obtain the "jump to" address, the LL would be used to obtain
the first worker instruction, and all subsequent values of P would be relative to
the LL. In the latter case, the captured re lative address (P minus RIR) would not
be the true relative address.

UP-4049
l~ev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT 2

PAGE:

,------------------------,------------------
I SECTION>

2.10. FIXED ADDRESSES

Addresses 000000-0001378 are reserved for entrances to specific interrupt routines
and I/O buffer control. Entrance to these audresses is the result of an interrupt or
is accomplished automatically during I/O operations. Reference to these addresses
is obtained by an original IS-bit address which is modified by the Memory Select

register (MSR) to form a 17-bit address. The MSR can be manually set on the main­
tena!1ce panel to 00, 01, 10, or 11 to select any of the four primary stora ge modules
in the two memory banks. Normally this re gis ter is set to 00, and is set to another
position usually as the result of a fault in the first memory bank, which setting
must be accompanied by a change to the continuous address ing mode instead of the
odd-even addressing mode if an MSR setting of 01 or 11 is to be used. Odd-even
addressing can be retained if the MSR is set to 10 and the entire second bank is
being used.

Relative addressing circuits do not modify fixed address references in the same way
as the circuits modify other primary storage addresses. Assignment of fixed addresses
is shown in Table 2-1. The MSR)s used for bank selection when referencing fixed
addresses, for address bias when re lative indexing is deactivated, and for bank selec­
tion during the initial loading of the CPU.

2.11. DAY AND REAL-TIME CLOCKS

The CPU has two clocks that may be used for program timing: the Day Clock and
the Real-Time Clock. The Day Clock is a twenty-four hour clock that records the
time of day in hours, minutes, and hundredths of minutes. The Real-Time Clock is
an 18-bit counter that is incremented every two hundred microseconds.

2.11.1. Day Clock

The Day Clock time is stored in primary storage at address 000016 in the
follow ing format:

·LENS ~ UNITS oJo : HUNDREDTHS 0 0 0 0 0

16 15 12:11 8 7

----------------~---------------

Time is displayed in hours, minutes, and hundreths of a minute on the operator's
console. Every 600 milliseconds, the Day Clock sends a data request signal
through the lowest priority input/output channel (channel 00) to update the time
contained at address 000016 (bits 08-29). Du ring each input transfer, the data
is placed on the 22 upper input data lines. E very six seconds, a Day Clock
interrupt occurs, routing the program to main memory address 000015, where the
system may start a subroutine conditioned by the time of day.

18

UP··4049
Rev. 2 I SECTION,

2
UNIVAC 494
CENTRAL PROCESSOR UNIT

2.11.2. Real-Time Clock

The Real-Time Clock updates the word at: the fixed memory address 000017 every
200 microseconds. The word stored at memory address 000017 has the following
format:

" 0 0 0 0 0 0 0 0 0 0 0 0 I ~ 1817

REAL-TIME CLOCK COUNT

Each automatic update adds 1 to the low order IS-bit portion of the word. The
high order 12-bit portion of the word will be all O's after each update operation.
As the Real-Time Clock count is recycled from its maximum (all 1 bits) to its
minimum (all 0 bits), the Real-Time _Clock interrupt is generated, sending the
program to fixed memory address 000014 for a subroutine to determine further
action. The Real-Time Clock interrupt will be generated approximately every 52
seconds unless the contents of memory address 000017 are changed by a programmed
instruction. The contents of this word may be used, for example, as an interval
timer. To set the Real-Time Clock for a desired interval (in multiples of 200 micro­
seconds), a 30-bit word is entered into address 000017 having, in bits 0-17, the ones
complement of the desired interval. Thus, for a 200-microsecond interval, the word
will be xxxxxxxxxxxx111111111111111110; for a I-second interval,
xxxxxxxxxxxxllll10110001110111.

2.12. INTERRUPTS

Interrupts are signals which temporarily suspend operation of the program being pro­
cessed and initiate process ing of a routine which has an entrance at one of the fixed
addresses. Interrupts are generated by programmed instructions, faults, clock opera­
tion, or I/O transfer operations.

An interrupt is either unconditiona 1, requiring immedia te a tten tion, or conditiona 1,
which may not require immediate attention. An unconditional interrupt is never
locked out and always locks out conditional interrupts. An interrupt lockout is
defined as the condition whereby conditional interrupts may be locked out. This
condition can be set up by execution of a R'eturn Jump with j designator of 0 01

1 (SIL) or by processing of any interrupt. The interrupt lockout is in effect until
released by a Jump with j designator of 0 or 1 (RIL) or until the machine is master­
cleared. There are also temporary I/O interrupt lockouts imposed by the hardware
during these instructions. The lockouts are:

• The period between reading of a Repeat instruction from memory and initiation of
the first execution of the repeated instruction. This is a period of two memory
cycles.

~ DUring all cycles (except the last) of instructions requiring more than one memory
cycle. As an example: .the Enter B-Worker (7771) requires seven operand references
and locks out I/O interrupts for six memory cycles.

19

UP-4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT I SECTOON,

2

• The execution of an Enter IFR and RIR instruction (7761) locks out I/O interrupts
for six memory cycles.'

• The execution of an Enter RIR instruction (7766) locks out I/O interrupts for two
memory cycles.

When an interrupt sends the program to a fixed address, the P register is not affected
by the fixed address. The P register w ill contain the 17 -bi t absolute address of the
next instruction in the interrupted program, except in the case of a Memory Parity
interrupt. Because the Memory Parity interrupt can be generated at any time in the
operation of an instruction, the P register will contain either the address of the in­
struction being performed or the address of the next instruction. It is important to
note that if a Guard Mode fault or a Memory Parity fault occurs as a result of an
operand read operation for a Jump instruction, the absolute address of the Jump
instruction plus 1 will have been captured by the IFR.

The fixed address will usually contain either a Return Jump-Arithmetic or an Enter B
and Jump (774-) instruction which captures P minus RIR, a relative address, for use
in resumption of the interrupted program. If the relative address is a 17-bit value,

PAGE:

the value must be stored in a 17-bit index register, otherwise the two highest order
bits will be lost. If the program was interrupted in a Repeat sequence, the 17-bit
current relative address of the repeated instruction with the j designator of the Repeat
instruction will automatically have been stored in the IFR, together with a designator
indicating the Repeat mode. For Jump instruction of the worker program, the 17-bit
P value will have been stored in the IFR. On nonjump instructions, the value in the
R register is stored in the IFR; the R register value will be a 17-bit absolute oper­
and address or will be an operand dependent upon the operand source of the current
ins truction.

If an interrupt occurs during a Repeat sequence, address transfers to the IFR are
inhibited until the interrupt is processed. The hardware retains this address in the
IFR so that a Store IFR (7765) instruction can be executed. The IFR will remain
undisturbed until an Enter IFR (7761) instruction is executed. Since the IFR may
contain a Repeat designator and address, another Repeat instruction must not be
attempted until the Store IFR instruction is executed. (See Repeat instruction,
Section 4, for further details.)

2.12.1. Unconditional (Fault) Interrupts

Unconditional interrupts include:

• Memory Parity

• Program Protection or Timeout

• Executive Return

• Test and Set

• Floating-Point Underflow

• Floating-Point Overflow

• Illegal Instruction

20

UP-4049
Rev. 2

2.12.1.1.

2.12.1.2.

2.12.1.3.

2.12.1.4.

UNIVAC 494
CENTRAL PROCESSOR UNIT I SECTION, PAGE:

2

Memory Parity Interrupt

The Memory Parity interrupt is caused by an error in a read or write operation.
As a 30-bit word is written into primary storage, two parity bits (one for each
half-word) are written along with the word. As a IS-bit half-word is written into
primary storage, a parity bit is automatically generated and written into primary
storage along with the half-word. When the contents of a primary storage address
(either half-word or full-word) are read, the parity bites) are checked to assure
that an odd number of bits have not been added or lost from the half-words orig­
inally written into memory. As a half.-word is written into memory, the other
half-word at the same address is automatically checked in a test read operation.
Thus, a memory parity error can be detected in a memory read operation of a
half-word write operation. A Memory Parity Error interrupt can occur in the in­
terpretation or execution cycle of an instruction, resulting in the "uncertain"
P value. Parity errors associated with I/O operations cause conditional
interrupts and are discussed further in this section. Parity errors associated
with internal transfer of data ca use the Memory Parity interrupt, and a different
fixed address is assigned to each of the four memory banks.

When a memory parity error occurs, the data is written back into the same
address with the parity bit(s). Therefore, further references to the same address
will produce another parity interrupt. If the error indicates a malfunction in a
memory bank, the fixed locations can be moved to another bank and operation
switched to continuous addressing by manual controls.

Pro gram Protection or Timeou t Interrupt

The Program Protection interrupt is generated when the program protection mode
in effect (see 2.6) is violated. A Timeout interrupt is generated if a worker pro­
gram, running with IFR21 = 1, has been locked-out through a Set Interrupt Lockout
(SIL) instruction for more than 100 microseconds.

Executive Return Interrupt

The Executive Return interrupt is caused by the Executive Return (77S4 or
EXRN) instruction, which sends the program to a fixed address leading to a
routine enabling capture of the P value of the program which is interrupting.
The P register will contain the address of the instruction following the EXRN
in the program when the interrupt is generated. The IFR will contain a (y+b)
value produced by the executive routine.

Test and Set Interrupt

The Test and Set interrupt is the result of a Test and Set instruction (7752)
which tests bit 14 that is stored at a selected primary storage location. H
bit 14 is already set when the testis made, the interrupt is generated and an
interrupt routine takes over; if bit 14 is not set; bits 0 through 14 are then set,
no interrupt is generated, and the next sequential instruction in the program is
executed. The P register will contain the address of the instruction following
the Test and Set instruction in the program when the interrupt is generated.

21

UP-4049 L
Rev. 2 ----,----

UNIVAC 494
CENTRAL PROCESSOR UNIT I SECTION,

2
PAGE:

2.12.1.5. Floating-Point Underflow Interrupt

The Floating-Point Underflow interrupt is generated when the result of the
exponential arithmetic operation has an exponent less than -102410 (see
arithmetic instructions in Section 4). For multiplication and division, this
exponent is also checked in the operands.

2.12.1.6. Floating-Point Overflow In terrupt

The Floating-Point Overflow interrupt is generated when the result of an
ex ponential arithmetic operation has an exponent greater than + 1023 1 0 or if
exponential division by 0 is attempted, or if any of the exponential operands
in multiplication or division has an exponent greater than +1023 10 •

2.12.1. 7. I Uegal Instruction Interrupt

The Illegal instruction interrupt is generated if the Guard Mode is activated and
an attempt is made to violate the Guard Mode by privileged instructions. The
interrupt is also generated if an attempt is made to execute an instruction with
a function code of 00 or 7700. Instructions using unassigned function codes are,
in effect, No Operation instructions. No interrupt will be generated; these codes
should not be used. If 77xx instructions are attempted with the CPU in the 490
mode, the interrupt will be generated.

2.12.2. Conditional Interrupts

Conditional interrupts are associated with equipment faults, and clock, synchro­
nizing, and I/O operations. Where two interrupts occur simultaneously, channel
priority (where applicable) is used as a secondary level in the following order:
15---8, 23---16, 7---0, with channel 15 having highest priority and channel 0 having
the lowest priority. Conditional interrupts include:

• BCW Parity

• I/O Data Parity

II Power Loss

• External Interrupt (ESI)

II Input Monitor (ESI)

.. Output Monitor (ESI)

.. External Intetrupt (lSI)

.. Input Monitor (lSI)

.. Output Monitor (lSI)

.. Day Clock Interrupt

.. Real-Time Clock Interrupt

• Synchronizing Interrupt #0

• Synchronizing Interrupt # 1

22

UP-4049 L UNIVAC 494
.. ___ R.:,_v_. _2 __ ; . ___ . __ C_E_N_T_R_A_L PROCESSOR UNIT ~, _______ ~I~S_E_CT_IO_N_: ___ 2 ___ ~P_A_GE_: ___ 2_3_

2.12.2.1.

2.12.2.2.

2.12.2.3.

2.12.2.4.

2.12.2.5.

2.12.2.6.

Buffe~ Control Word (BCW) Parity Interrupt

The BCW Parity interrupt is generated to indicate a parity error in the BeW as
it is read from a BCR or ESI location. Every data transfer between a CPU
buffer and external equipment involves reading of the BCW, updating the BCW
and writing the BCW back into memory. Only during the read cycle can a parity
error be detected and the interrupt be generated. If the parity error is detected,
the write cycle will write all O's (parity incorrect) in the BCW. In a buffer input
operation, no data word will be stored. The Input Data Acknowledge is sent
only on an ESI channel. In a buffer output operation, the data will be sent as
all 1's together with the Output Data Acknowledge signal. If the error occurs
on an lSI channel, the channel will be deactivated; if an error occurs on an ESI
channel, the channel will not be deactivated.

I/O Data Pa rity Interrupt

The I/O Data Parity interrupt indicates a parity error during I/O operations
when reading an output data word or writing half-word data (ESI input) as part
of I/O operations. Transfers of the data will be completed and channels will
not be deactivated. The BCW will be updated and the Output Data Acknowledge
signal will be sent.

Power Loss Interrupt

The Power Loss interrupt indicates that the input line voltage has dropped
below "80 percent of nominal value (which still permits operation). The interrupt
routine then has a fixed time of 5 milliseconds to store the status of the program
so that when power is restored, the program is supplied with an entry point and
can recover in an orderly manner. If the program is operating after this interval,
the loss was transient and the program can be resumed with no loss of data.

External Interrupt

The External interrupt (EI) is a signal sent from external equipment to CPU
together with a status word on the data input lines. The interrupt routine will
contain a Store Channel (17) instruction for storing the status word in primary
storage. The channel number will automatically be stored in the Interrupt
Address Storage register. After the status word has been stored, the Input
Data Acknowledge signal will be sent as a result of execution of the Stop
Channel instruction.

Monitor (Internal) Interrupt

The Monitor interrupt (also termed internal interrupt) occurs when a buffer,
activated with monitor, has been either filled or emptied. The interrupt is
generated after the write operation (output) or read operation (input) with this
one exception: the buffer must receive the next Output Data Request sign.al
before generating the interrupt on an lSI output channel.

Day Clock Interrupt

The Day Clock interrupt is generated every 6 seconds, enabling processing
operations to be conditioned by the time of day.

UP-40LL9
Rev. 2

UNIVAC 494 I I·
, ___ C_E N TRA L PROC ESSOR_U_N_IT ____ ______ ...&._S_E __ C_TI_O_N_: __ 2 ~~

2.12.2.7. Real-Time Clock Interrupt

The Real-Time Clock interrupt is generated every time the contents of the
Real-Time Clock recycle from all 1 's to all O's and may be used for interrupt
routines which perform statistical analyses of CPU operations, or for time­
outs to prevent program "looping", etc.

2.12.2.8. Synchronizing Interrupt

There are two Synchronizing Interrupt signals: Synchronizing Interrupt #0
and Synchronizing Interrupt #1. The Synchronizing Interrupt signals are sent
from one CPU (as the result of a programmed instruction) to another CPU, and
cause an interrupt at the receiving CPU. When a Synchronizing Interrupt #0
occurs, the CPU program takes the next instruction from location 012 8 ; if a
Synchronizing Interrupt # 1 occurs, the CPU program takes the next instruction
from location 013 8 ,

2.12.3. I/O Interrupt Registers

The registers which are used by I/O interrupt routines are the Channel Select
register (CSR), the Interrupt Address Storage register (IASR), and the Parity
Error Channel Storage register (PECSR).

In normal operations, I/O instructions refer to the CSR to determine which channel
to activate, deactivate, or test. (The CSR must have been loaded previously by an
Enter Channel Select register instruction (7773).)

The IASR contains the number of the channel on which a monitor interrupt signal
or an External Interrupt (EI) signal occurs. During the interrupt subroutine, the
IASR is used in place of the CSR to specify the channel. When the Store Channel
Number (7772) is executed, the number in the IASR is stored. The use of the
IASR does not alter the CSR; after the subroutine is completed, I/O instructions
again refer to the CSR. The use of the IASR is enabled from the time the interrupt
is honored (enter subroutine) until the interrupt lockout is released. It should be
noted that if interrupts are locked out under program control, the CSR will be
referenced.

The PECSR is used in error routines initiated by a BCR Parity Error interrupt or
I/O Data Parity Error interrupt. The channel number of the interrupt is automati­
cally stored in the PECSR. When the Store Channel Number (7772) is executed,
the contents of the PECSR will be stored. Within the BCR or I/O Data Parity
E.rror routine, the CSR is used to specify which channel to activate, deactivate,
or test.

UP·4049
.. _---B..c:v. 2

I UNIVAC 494
~. _____ C_E_N_T_R_A_L_P_R_O_C_E_S_S_OR, UNIT I SECTION,

3

3. WORD FORMATS

3.1. GENERAL

The CPU uses three types of words for internal manipulation: instruction words,
register words (the data contained in the registers of Figure 2-2), and arithmetic
operands. The variations within each of these types are described in the following
paragraphs. Detailed descriptions, where applicable, are furnished in Section 4.
(Abbreviations and special symbols used in the text are listed and defined in
Table A-I.)

3.2. INSTRUCTION WORDS

The instruction word formats (Figure 3-1) used for internal operations are: the
normal instruction word, the 77 instruction word, and the I/O instruction word. An
instruction word indicates the operation to be performed and the operand to be used;
and may also indicate the condition for a skip (skip next instruction in the program)
or a jump operation. A NO OP instruction is a variation of an instruction in the
repertoire and does not initiate any particular operation but permits a time delay
between two ins tructions.

NORMAL INSTRUCTION WORD

[f

J23 21
k

J17
b

11
Y J

77 INSTRUCTION WORD

[I f

21
g

18L s:c-___ y] 1 1

I/O INSTRUCTION WORD

~ f
24123

~

2ol}J7
b

J4] J Y

Figure 3-1. Instruction WeIrd Formats

1
PAGE:

UP-4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT I SECTION,

3
PAGE:

3.2.1. Normal Instruction Word

The normal instruction word format is applicable to all instructions of the insbuc­
tion repertoire except the 77 and I/O instructions. The term "normal" is used to
indicate that the word is applicable to a wide range of instructions. The instruc­
tions are further subdivided into "classes," as shown in the instruction repertoire,
which condition interpretation of the k designator of the word. These classes are:
read, store, and replace.

A read class instruction transfers data from primary storage to an appropriate
register.

A store class instruction transfers data between registers or from a register to
primary storage.

A replace class instruction replaces the data in primary storage with the result
of an operation performed upon this data and is a combination of read and store
class.

The repertoire of instructions, Table B-1, indicates the 'class of each instruction,
where applicable.

The f designator is a six-bit code (two octal digits) that specifies the operation
to be performed.

The j designator is a one-digit (octal) code that may be interpreted as a skip
designator, register designator, repeat modification, or jump designator. The
most common interpretation (instructions 01-03, 05-11, 14, 15, 20,21,24,25,
30-37,41,42, and 45-57) is a skip designator (see Table 3-1) together with a
special application for instructions, 04, 12, 16,22,23,26,27,40,43,44,60,
61,64,65, and 70.

The k des ignator, together with the class of instruction defines the source of the
operand or its destination (see Table 3-2). The k designator permits use of hal£­
word operands of 15 bits with the remaining 15 bits filled either with O's (zero··fill)
or with the highest order bit of the transferred half-word (sign-fill).

The b designator indicates an index register (1-7) whose contents (Bb) are added
to the IS-bit y designator to form either a IS-bit or 17-bit effective operand or
re.Lative primary storage address which (when added to Ri) is the location of the
operand or (as in a Jump instruction) is the location of the next instruction to be
performed. If the b designator is a 0, then all O's are used in the addition to form
the re lative address so that the y designator, in this case, is either the relative
address or effective operand. As an example: a read class instruction with a k
de'signator of 0 or 4 uses the effective operand in the instruction; a read class
instruction with k designator of 1, 2, 3, 5, or 6 uses the word (or instruction) at
the relative address; a read class instruction with k designator of 7 uses the word
in the accumulator as the operand.

2

UP-4049
Rev. 2

3.2.2.

3.2.3.

1 SECTION,
3

UNIVAC 494
CENTRAL PROCESSOR UNIT

The relative address or effective operand is formed by the addition y + (Bb)'
Both numbers are treated as unsigned positive numbers. This addition is always
performed in the end-around carry mode: any carry generated at the highest-·order
bit position is carried around for addition at the lowest-order bit position. If the
IS-bit index re gister configuration is activated by the IFR, a IS-bit addition will
occur. If the dual-index register configuration is activated and B4, BS, B6, or B7
is referenced, this addition will be a 17-bit addition; otherwise, a IS-bit addition
is performed. It is not possible to generate an address (or operand) of all binary
zeros unless y is all binary zeros and either BO is referenced or the contents of
the referenced 'index register is all binary O's. The following examples illustrate
both IS-bit and 17-bit additions with an end-around carry (using octal notation):

15.BIT ADDITION 17·BIT ADDITION

y 77777 y 77777
(Bb) 00001 (Bb) 300001

00000 000000
1 1

Y 00001 Y 000001

77 Instruction Word

The 77 instruction words extend the range of functions of the 494 System above
the functions of the 490/491/492 Systems, and also handle I/O functions.

In the format for 77 instruction words, the f designator is 778. The g designator
(two octal digits) actually defines the operation to be performed. The band y
designators are similar in function to theh counterparts in the normal instruction
word. Since no k designator is used in the format, the term "class", which
defines interpretation of the k designator, is not applicable.

I/O Instruction Word

The I/O instruction word is used for instructions governing transfer of data to
and from peripheral equipment (tapes, drums, printers, etc.) and communication
subsystems, and acts as the I/O function word for 490 mode operation. The
I/O instruction word format is applicable to the 13, 17,62,63,66,67,73,74,
7S, and 76 instructions.

The f, b, and y designators are functionally similar to their counterparts in the
A.

normal instruction word format. The j de:s. i gnator is a four-bit code limited to a
value of 0 or 1 in the 74 and 76 instruction, and to a value of 0 (causing no modi­
fication) in the other I/O instructions. In the 74 and 76 instructions, a 0 indicates

A
that data is to be sent; a 1 indicates that a function word is to be sent. The Ie:

designator (since these are read class instructions) interpretation is the sa.me as
k designator for read class instructions, but is limited to certain specific values
presented in the detailed description of I/O instructions.

3

UP·-4049
Rev. 2 CENTRAL PROCESSOR UNIT L UNIVAC 494

....... - ,--,

INSTRUCTION

j DESIGNATOR NORMAL** 04 12,72 16

0 no skip no skip no op Store O's
f--.

1 Skip Skip Bj = B1 Bj = B1
f--.

2 Skip if sign in (Q) is + Skip if Y$,(Q) Bj = B2 Bj = B2
.----.

3 Skip if sign in (Q) is- Skip if Y>(Q) Bj = B3 Bj = B3
f--. -----

4 Skip if (A) is + 0 Skip if (A)<Y $.(Q) Bj = B4 Bj = B4
1---'

5 Skip if (A) is not +0 Skip if Y>(Q)or Y«A) Bj = B5 Bj = B5
1---.

6 Skip if sign in (A) is + Skip if Y ::; (A) Bj = B6 Bj = B6
f--.

7 Skip if sign in (A) is- Skip if Y> (A) Bj = B7 Bj = B7

22

no skip

Skip

No Overflow

Overflow

Signed prod.::: 31 bits

Overflow

Skip

no skip

**Normal interpretation: 01-03, 05-11, 14, 15, 20, 21, 24, 25, 30-37, 41, 42, an d 45-47 instructions •

..--'
INSTRUCTION

j DESIGNATOR 40,44 43 60,64 61, 65

60-clear lock-out
0 no skip no skip no jump; 64-lock-out Jump

interrupts --t-
60-clear lock-out

I SECTION,
3

PAGE:

23 26, 27

no skip no skip

Skip Skip

Overflow Skip if sign in (A) is +

No Overflow Skip if sign in (A) is-

Remainder =+ 0 Skip if (Q) is + 0

Remainder i+ 0 Skip if (Q) is not + 0

Remainder=-tOr+O Skip if siign in (Q) is +

Remainder= or-O Skip if sign in (Q) is-

70 71

Skip if
Next Y= Y Yis+O

1 Skip Skip Jump; 64-lock-out Jump if key 1 is set Next Y=Y+ 1 Bj = B1

1--.
interrupts

2 Skip if(A)even no.of l's (Q)=+ Jump if sign in (Q) is + Jump if key 2 is set Next Y=Y-1
~.

3 Skip if(A)odd n o.ofl's (Q)=- Jump if sign in (Q) is - Jump if key 3 is set Next Y=Y+(Bb)

4 Skip if (A) is + 0 (A)-LP(Y. Q)=+O Jump if (A) is + 0 Jump and stop Next Y= Y[+(Bs)]*

5 Skip if (A) is not + 0 (A)-LP(Y· Qr/+O Jump if (A) f. + 0
Jump; stop if key 5

Next Y = Y+ 1[+(Bs)]* is set

6 Skip if sign in (A) is + (A)-LP(Y' Q)= + Jump if sign in (A) is +
Jump; stop if key 6

Next Y=Y-1[+(Ss)]* is set

7 Skip if sign in(A) is- (A)-LP(Y·Q)+- Jump if (A) f. + 0
Jump; stop if key 7

Next Y= Y+(Bb) [+(B6)]* is set
~'-----'-----

Table 3-7. Interpretation of J Designators

*If instruction bein~ repeated is Replace (Rp) class instruction. result is stored at Y+(B 6), wl1ere Y is

the prevailin~ Y of the current execution.

Bj = B2

Bj = B3

Bj = B4

Bj = B5

Bj = B6

Bj = B7

4

UP-4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT

3.3. REGISTER FORMATS

This paragraph describes the formats of those registers which condition the operating
environment for worker programs- the IFR, the Program Lock-In register (PLR~, and
the RIR - and the Buffer Control register (BCR) which controls buffer operations
between CPU and peripheral equipment (see Figure 3-2).

IFR FORMAT

r;r
~

x

28

f8

27

f7 f6 f5

26 25 24

f4 f3 f2

23 22 21 20

a
18 17 16

f1 I
---~

PL,R FORMAT

100 0 0 I
~ 26 25

UPPER LIMIT ~)oO
2~ 1110

LOWER LIMIT (LL) I
-~

RIIR FORMAT

~ NOT USED 1811~L INDEX VALUE NOT USED I
06 05 ~

BCR FORMAT (BCW)

C ADDRESS COUNT J;I: CURRENT ADDRE-~--------~
~

NOTE: X ind icates not used.

Figure 3-2. Register Formats

3.3.1. Internal Function Register (IFR) Format

The IFR is loaded, under executive contrOll, by an Enter IFR (7761.) instruction
to condition worker program environment and aid in recovery procedures.

The contents of field f1 are determined by whether a repeat sequence is interrupted
(field 9 is set) or whether a nonrepeat sequence is interrupted or being executed.
On interruption of a repeat sequence:

(1) If a Fault interrupt occurs between the time that the operand for an Enter IFR
(with bit 29 = 1) instruction is read from memory and the first execution for
the reinitiated Repeat instruction, fi,e Id f1 is the fie Id f1 read from memory.

(2) If an I/O interrupt occurs during any cycle but the last of a repeated instruc­
tion, field f1 cor..tains the relative address, y, to be used for the next execu-,
tion of the repeated instruction.

(3) If a Fault interrupt occurs during any cycle of a repeated instruction, field fl
holds either the absolute address, y + (RIR), on which the fault occurred or
the effective operand, y, depending upon the use of y in the instruction.

k

2

5

6

3

0

4

7

UNIVAC 494
CENTRAL PROCESSOR UNIT

~ ..•.

READ

ZERO­
FILL

ARITHMETIC

ARITHMETIC

SIGN-
FILL

ARITHMETIC

ARITHMETIC

MEM ,ORY

ARITHMETIC

CZERO-
FILL

ARITHMETIC

ARITHMETIC

ARITHMETIC

STORE"''''

MEMORY

MEMORY

C.
MEMORY

MEMORY

MEMORY

ARITHMETIC

ARITHMETIC

MEMORY

'"

Table .3-2. Interpretation of k Designators

\ SECTION.
3 6

PAGE:

REPLACE

'" CP is ones complement
"'''' Exceptions:

1. f = 14, k = 0: CP(Q) --"Q
2. f = 15, k = 4: CP(A) --"A

3. f = 16, k = 0: (B j) ~QL' zero-fill

k = 3: (Bj)--"(Y)L

k = 4: (Bj)~AL' zero-fill

k = 7: CP(Bj)-.... (Y)L' Sign-fill
4. f = 47, k = 0: LP---""Q

k = 4: LP--+-A

k = 7: not used

UNIVAC 494 L J ~
CENTRAL PROCESSOR UNIT 3

SECTION: PAGE: _________ I't ••• __ ., ___ .. ___ _ _____ , •

On nonrepeat instructions:

(1) On all nonjump instructions, field n lContains either the effective operand or
absolute address, y + (RIR), of the instruction. This value is retained upon
occurrence of a Fault or I/O interrupt.

(2) On jump instructions, the absolute value of the next instruction (the absolute
value of the current instruction plus one) is placed in field fl and retained if
a Fault or I/O interrupt occurs. The one exception to this is a Jump following
an Enter IFR with bit 29 == 1, which was previously described.

Field f2 is the j designator of a Repeat instruction when the Repeat sequence is
interrupted. Field f3 determines the program protection mode. If this field is 00,
there is no Guard Mode and no write prote~ction; if 01, there is Guard Mode with
read and write protection; if 10, there is wI'ite only protection; if 11, there is Guard
Mode with write protection but no read prot,ection. Field f4 indicates an end·,off
borrow from a previous decimal subtraction. Field f5 indicates an end-off carry from
a previous decimal addition. When field f6 is a 0, the executive set of index regis­
ters is used by an instruction; when 1, the worker set is used. When field f7 is a 1,
the active Index registers 1, 2, and 3 act as 15-bit registers, and Index registers 4,
5,6, and 7 act as 17-bit registers; when a 0, all active index registers are 1!;-bit
registers: W'hen field f8 is a 1 and the b designator of an instruction is 4,5,6, or
7, the Ri uses LL to form the absolute address; for all other cases, the Ri m;es the
index value in the RIR. Bit 28 is not use~d. Field f9, when a 1, indicates that a
Repeat sequence was interrupted and that field f1 contains an effective address;
when a 0, it indicates that field f1 contains an absolute address. At the end of an
executive routine when control is transferred back to the worker program, the Repeat
will be reinitiated if this bit is a 1. When this field is clear, it indicates tha.t field
f1 contains an absolute value.

3.3.2. Program Lock-In Register (PLR) Format

The PLR defines the upper and lower memory limits for program protection and
provides the lower limit (LL) for the Ri' The register is loaded by a Load PLR
(7762) instruction under executive control. When this register is used in the
worker program, bits 00 through 10 are the 11 high order bits of a 17-bit number
for the LL; the six low order bits are assumed to be O's. In the Upper Limit. the
six lowest order bits are assumed to be 1 '8. The LL used for the Ri is also a
17 -bit num ber formed by this procedure. If both the Upper Limit and the Lower
Limit are the same as, for example, 12348, protection will be furnished for
addresses 1234008 through 1234778 , Bits 11-14 and 26-29 are always written to O's.

3.3.3. Relative Index Register (RIR) Format

The RIR is used in relative addressing and is loaded under executive control by ,an
Enter RIR (7766) or the Enter IFR and RIR (7761) instruction. The 11 bits (06-16)
are the high order bits of a 17 -bit number for the Ri . The six low order bits are
O's. Bits 00-05 and 18-29 are not used and are usually written to O's.

7

UP-4049 L UNIVAC 494
____ Re_v~,_2__ _ CE~_TRAL PROCESSOR UNIT ____ ~ __________ I_S.E_C_T_IO_N_: _____ 3 ~_8 ___

3.3.4.

An interrupt or fault condition will deactivate the RIR. Memory references beginning
with the start of the interrupt routine will not be biased by the RIR. The contents
of the RIR are retained to be used by a Return Jump or an Enter Bx and Jump instruc­
tion, contained in the fixed address for the particular type of interrupt, to store a
relative address. When this is completed, the RIR is cleared. During the time that
no relative addressing is used in the interrupt routine, the Memory Select register
(see 2.10) furnishes the two highest order bits to make up a 17-bit address and
thereby selects the memory bank to be used.

The hardware locks out I/O interrupts from the time the Enter RIR instruction or
Enter IFR and RIR instruction is read from memory until the RIR contains the new
value. Therefore, an interrupt which occurs after an Enter RIR will capture a rela­
tive P register value relative to the new RIR.

The absolute memory address reference for an instruction is obtained by adding the
relative address to the relative index (R i) and is then loaded into the P register.
The relative index may come from either the LL in the PLR or from the RIR. This
addition is always a 17-bit addition and any carry at the highest order bit position
is discarded. This makes possible generation of an absolute address equal to
000000 as shown in the following (using octal notation):

y

Ri

absolute address

77000

301000

000000

This relative addressing makes possible "going around the end of memory,"
that is, a sequence of absolute addresses in a program might be ... 377777,
000000, 000001 . . . When an effective address is to be captured as in an inter-
rupt routine, it is obtained by subtracting the contents of the RIR from the contents
of the P register. Obviously, such a procedure is useless when absolute addressing
goes around the end of memory. In this case, all O's are captured.

Buffer Control Register (BCR) Format

A buffer control register (BCR) is used to control I/O transfer operations between
a portion of primary storage used as a buffer and the data peripheral equipment. A
buffer control word (BCW) is loaded into a BCR as part of the I/O routines. Initially,
the lower 17 bits of the Bew define the first address of a buffer; the upper 12 bits,
the number of primary storage addresses allotted to the buffer. The address portion
permits access to any primary storage address; the 12 bits of the address count
portion limit a buffer to 409610 addresses. As each data transfer between buffer
and. peripheral equipment takes place, the current address is increased by 1 and
the address count is decreased by 1. When the address count is 0, the buffer is
terminated and the current address will be one more than the last address used.
Buffer control register is the term used for that memory location holding a Bew
during lSI (internally specified index) I/O data transfers. The memory register for
the BCW which governs an ESI (externally specified index) I/O data transfer is
termed an ESI location. The formats of the BCW in the BCR and the ESI location
are identical.

I SEC TlON,
3

UP-4049 UNIVAC 494
.. _--B.~;..;.v.;...' ..;;;.2 __ "'--_______ C_E_N_T_RA_L_P_R_O_C_E_S_S_O_R_U_N_I_T_

3.4. ARITHMETIC OPERANDS

Four types of operand formats are used (Figure 3-3), depending upon the type of
arithmetic operand:

• Integer, single precision

• Integer, double precision

• Decimal

• Exponential

INTEGER, SINGLE PRECISION

1~12,_8 __ , _________ __ , ___ J
INTEGER, DOUBLE PRECISION

1~1~,~i8 __________________________________ A_O_R_A_D_D_R_E __ SSY,_' _____________________________ ::)

r Q OR ADDRESS Y + 1 I
~-------- -------,~

DEC:IMAL

A OR ADDRESS Y

15:
9

5
C9 Z8 C8

8 57 54 53 5251

Q OR. ADDRESS Y + 1

L9Z

\

C4 Z3 C3
827 24 23 22 21

EXPONENTIAL (FLOATING-POINT)

A OR ADDRESS Y

48

18

Z7 C7 Z6 C6 Z5 C5

47 46 45 4~ ! 41 40 39 36 35 34 33

Z2 C2
17 16 15

[1. EXPONENT FIXED-POINT PART :)

59 58 (CHARACTERISTIC) 48 47 (MANTISSA) 30
,-----------------------------------

Q OR: ADDRESS Y + 1

r FIXED-POINT PART I
~, __ (M_A_N_T_I_S_SA_) __________________________________ ~·

Figure 3-3. Arithmetic Operand Formats

9
PAGE:

UP-404U
Rev. 2 -_._--- -

3.4.1.

3.4.2.

.3.4.3.

UNIVAC 494
CENTRAL PROCESSOR UNIT I SECTION, PAGE:

3

Integer, Single Precision

The operand used in integer, single-precision arithmetic operations is a 30-bit word
which may be stored in a register or memory location. The k designator permits the
use of half-word operands from memory by filling in the vacated 15-bit positions, as
required. Bit 29 indicates the sign of the operand: a 0 for positive, a 1 for negative.

Because ones complement arithmetic is used in the CPU, a negative number is the
ones complement of the same positive number. A + 0 would be presented as all 0
bits, while a -0 would be presented as the ones complement of +0, which is all 1
bits (77777777778)' The absolute value of a 30-bit operand may not exceed
37777777778 (which is 53687091110); a half word, 1638310'

Integer, Double Precision

Results to 20 octal digits are obtained through integer, double-precision operations.
The- sign and high order bits are stored in the accumulator (or at a primary storage
address) with the low order bits stored in the Q register (or at the next successive
primary storage address). Positive and negative operands are presented and stored
in the same manner as for the single-precision counterpart.

Decimal

Decimal operands are used when inputs arrive as a succession of 10 six-bit char­
acters in conf~rmance with a code similar to the Fieldata code. The "2" (zone)
bits shown in the format are arbitrary and are determined by the code itself,
playing no part in the arithmetic operation. The 2 (zone) bits are unchanged by
the arithmetic operation. However, the lowest order digit must indicate the sign
in its fifth-bit: a 1 for positive, a 0 for negative. The C (character) fields, which
actually represent the binary coded decimal (BCD) digit, must be encoded as shown
in Table 3-3. No other encoding is acceptable for the BCD arithmetic instructions
in the instruction repertoire. A positive decimal operand is exactly the same as
the negative decimal operand (havi ng the same absolute value) except for the siign
bit.

DIGIT CODING DIGIT CODING

0 0000 5 0101

0001 6 0110

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001

------------------ '------------------------'

Table 3-3. BCD Coding

10

~ u:~-:.oU ___ _ UNIVAC 494 L ~ ~ CENTRAL PROCESSOR UNIT :3 11
SECTION: PAGE: • ____ .. _, _____ ~"_IR1B .. _"'. ... ____ • ____ • ____ _

3.4.4. Exponential (Floating-Point)

The exponential operand is used in those arithmetic operations where the operand
is expressed as a fraction (fixed-point part) multiplied by 2n, where n is the expo­
nent in the format shown in Figure 3-3. The exponent is always an integer. Two
successive memory addresses and/or the AQ register are required for floating-point
operations. The sign bit represents the sign of the fixed-point part and therefore
represents the sign of the floating-point number (a 0 for positive, a 1 for negative).
The characteristic is biased by 20008' A positive exponent is added to this bias
to determine its machine representation; a negative exponent, is subtracted. This
bias eliminates the need for a sign but limits the value of the exponent to
102310 2 E .2: 102410' The fixed-point part is usually "normalized" (shifted
left until its highest order bit is a 1) so that it represents a fraction between 0.5
and 1.0. A negative floating-point number is represented as the 60-bit ones com­
plement of the equivalent positive floating-point number. An exception is that
the number 0 is represented as all 0 bits in floating-point format.

The octal-coded machine representation for different signed combinations of
0.7510 x 23 is:

0.75 x 23 {j§3 6000000000~)~~000 I

-0.75 x 23 [5"774 1777777777~~i777?J -,-----_ .. _---

0.75 x 2-3
1

1775 6000000000~~~~000 I
-0.75 x 2-3

1
6002 17777777777~7777 I

UP~4049 1
Rev. 2 . __ ._, ~~I~~~:~ PROCESSOR ~~_~~_E_: __ 1_

4. INSTRUCTIONS
4.1. GENERAL

The instruction repertoire (Table B-1) of the central processor is composed of:

• Shift instructions

• Transfer instructions

• Arithmetic instructions

• Logical instructions

• Compare instructions

• Jump instructions

• Sequence-modifying instructions

• Input/output (I/O) instructions

Abbreviations and special symbols used in this text are defined in Table A-1.
Table B-1 lists instructions by function and by function code. The class of each
instruction (read, store, replace) is also indicated in Table B-1. The class of the
instruction indicates the proper interpretation of the k designator in the instruction
in order to derive the operand, Y. Unless otherwise specified in the detailed
description of an instruction, the class of instruction is read class and is inter­
preted as shown in Tables 3-2 and 4·-1. Unless the detailed description states
otherwise, the j designator is interpreted as shown in the "normal" column of
Table 3-1. An example of a read class instruction with normal j interpretation is
an Enter A (11) instruction.

Shift instructions move the contents of a selected register to the right or left as
many positions as specified. Transfer inshuctions move data between a primary
storage location and a register. Arithmetic instructions perform arithmetic in four
modes (see 3.4): (1) integer, single precision, (2) integer, double precision,
(3) decimal, and (4) exponential. Logical instructions provide the means for opera­
tion upon and editing selected bits of a word" Comparison instructions are either
algebraic or alphanumeric, comparing two words at a time. Jump instructions
transfer control from the next sequential instruction of the program to any specified
area within primary storage. Sequence.modiif1fing instructions enable repetitions,
conditional skips, programmed interrupts, and the use of programmed "electronic
switches". The I/O in struction s initiate I/O functions for transferring data and
control signals.

Some instructions within the above classifications may be arbitrary. An instruc­
tion such as Replace Y + Q (34) is both an arithmetic and a transfer instruction,
but since the more important function of the instruction is arithmetic, it is listed
under arithmetic instructions. Another simp1:ification used in this section is the
effective address where, from a technical point of view, absolute address would
seem appropriate. The reason for this is that a worker program operating under
executive program control has no control over the relative index, Ri, which deter­
mines where in memory the program or partially executed program will be stored.
The relative index is used to assure most efficient use of primary storage and does
not disturb the sequence of instructions and data in the worker program.

U:_:_:_~_~_9 ____ ~ _____ ~_~_~_~_~_1_~_4_p_R_O._C_E_S_S_O_R_U __ N_IT ________ ~ __________ .I~s_EC~T_I~ON~: ____ 4~_2 __

k

Application of the j designator (see Table 3-1) is described in detail, with an
instruction where required. The general application of the k designator is shown
in Table 3-2 and requires a knowledge of the class of instruction. The class of
an instruction is shown in the repertoire of instructions, Appendix B, where
necessary for k interpretation.

Most instructions are Read class ,instructions. In descriptions of the instructions
in this section, the k designator determines the source of an operand, Y, as per
Read class instructions (Figure 4-1) unless otherwise specified. A Read class
instruction usually reads an operand from primary storage and retains the result
in a register. A Store class instruction usually obtains the operand from a register
and writes ("stores") the result in primary storage. The interpretation of the k
designator for Store class instructions is presented with each Store class instruction
in this section. A Replace class instruction is a combination of both Read and
Store classes; an operand is read from primary storage, and unless the Replace
class instruction is immediately preceded by a Repeat (70) instruction, is then re­
placed in primary storage by the result of the instruction. The operand, Y, is read
from primary storage in accordance with the k designator for Read class instructions
(Table 4-1). The result is then stored in primary storage in accordance with the
rules outlined in Table 4-2. If the Replace class instruction is operating in the
Repeat mode, the storage is governed by the rules outlined in 4.8. For Replace
instructions, k designators of 0, 4, and 7 are not used.

DESIGiNATOR

0*

1

2

3

4

5

6

7

OPERAND, Y

Y u is all O's. Y L is effective operand, y+ (Bb), or y.

Yu is all O's. YL is lower half of contents at

relative address, (Y)L

Yu is all O's. YL is upper half of contents at
relative address, (Y)u

Y is contents at relative address, (y).

Y u is sign-filled-y 14' Y L is y.

Y u is sign-filled-(y)14' Y L is ("Y)L'

Y u is sign-filled-(y)29' Y L is (Y)u.

Y is contents of accumulator, (A).
~------------------~--------,------,--~
• For k = 0 and (Bb) = 17 bits, YL = 17 bits andYU = 13 bits

Table 4-7. Operand Designation for Read Class Instructions

k DESIGNATOR STORAGE OF Y

1 or 5 (A)L--~""'~(Y)L with (Y)u unchanged

2 or 6 (A)L - (Y)u with (Y)L unchanged

3 (A) --... (y)
~___________ __ _______________ , __ , ________________________ --10

Note: L. k desi~nators of 0. 4, and 7 not usee'.

2. Stora~e of Y is modified if this instn,lction is preceded by a Repeat (70) instruction.

Table 4-2. Transfer of Y to Primary Storage for Replace Class Instructions

UP;~4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT ----'-__ ~,_4_I_PA_GE: _3

4.2. SHIFT INSTRUCTIONS

Shift instructions move the contents of a selected register either to the right (lr left
by as many positions as required. If the instruction calls for a right shift, all bits
shifted out of the register are lost and all vacated positions are sign-filled. The
term "logical right shift" is reserved for right shifts with zero-fill. A left shift is
a circular shift. All bits shifted out of the register at the left are returned, in turn,
at the right to fill the vacated positions. Except for the Scale Factor Shift (7730)
instruction, the number of shifts (the "shift count") is the six-bit binary number
which is the lowest order six bits of the operand, Y. A shift count greater tha.n
5910 may not be used. The other bits of the operand are not used in the instruction.

RIGHT SHIFT Q (01)

Shift contents of Q register to the right the number of positions specified by the
shift count. If the shift count is greater than 2810 and less than 6010, the Q register
will be filled with the original sign bit (bit 29).

RIGHT SHIFT A (02)

Shift contents of the accumulator to the right the number of positions specified by
the shift count. If the shift count is greater than 2810 and less than 6010 , the
accumulator will be filled with the original sign bit.

RIGHT SHIFT AQ (03)

Shift contents of the AQ register to the right the number of positions specified by
the shift count. If the shift count is 5910, the AQ register will be filled with the
original sign bit (bit 59); if less than 5910 and greater than 28 10 ' the accumulator
will be filled with the original sign bit.

LEFT SHIFT Q (05)

Shift contents of the Q register to the left the number of positions specified by the
shift count. If the shift count is 3010' the final state of the Q register will be the
same as its initial state.

LEFT SHIFT A (06)

Shift contents of the accumulator to the left the number of positions specified by
the shift count. If the shift count is 3010' the final state of the accumulator will
be the same as its initial state.

LEFT SHIFT AQ (07)

Shift contents of the AQ register to the left the number of positions specified by
the shift count. If the shift count is 3010, the contents of accumulator and Q
regis ter will be interchanged.

LOGICAL RIGHT SHIFT Q (7751)

Shift contents of the Q register to the right: by the number of positions specified
in the shift count with zero-fill.

4
UNIVAC 494
CENTRAL PROCESSOR UNIT PAGE:

lJP-404U
Rev. 2 ------ - I SECTION,

LOG I CAL R I GH T S HI F T A (7755)

Shift contents of the A register to the right by the number of positions specified
in the shift count with zero-fill.

LOGICAL RIGHT SHIFT AQ (7756)

Shift contents of the AQ register to the right by the number of positions specified
in the shift count with zero-fill.

SCALE FACTOR SHIFT (7730)

Shift contents of the accumulator to the left until the two highest order bits are
different, and record the number of snifts required in the Q register. When all
bits in the accumulator are equal, a shift count of 2810 is recorded and the accumu-·
lator remains unchanged.

4.3. TRANSFER INSTRUCTIONS

Transfer instructions are used to move data within the CPU. All transfers are non­
destructive in that the original source of data remains unchanged except in Replace
class instructions. Transfers may consist of 60, 30, 1S bits, or in character packing
and unpacking, 6 bits, as determined by the k designator or the instruction itself.
In addition, transfers involving index registers may consist of 17 bits if the 17-bit
index register mode is activated by the IFR. Normally, for worker programs, the
1S-bit index register mode is activated. Use of the j designator is shown in Table 3-l.
The operand, Y, is described in Table 4-1, except where otherwise specified.

ENTER Q (10)

Transfer the operand, Y, to the Q register.

ENTER A (11)

Transfer Y to the accumulator. If the k designator is 7, the accumulator remains
unchanged.

ENTER B j (12)

Transfer Y to the active (executive or worker) index register (1-7) specified by the
j designator (Table 3-1). This instruction may not be used immediately following
an Enter IFR (7761) or Enter RIR (7766) instruction. Since the j designator speci­
fies an index re gis ter, it cannot be used to program a skip. The combination of j
and k designators conditions operation as shown in the follow ing tabulation
(Table 4-3).

4

UP-4U09
Rev. 2

... _-_.- ,------------------
UNIVAC 494
CENTRAL PROCESSOR UNIT ---'--__ ~_4_L_AGE_: _S_

r------ --~-------- ~-------------

j
DESIGNATOR

j = 4,

S,6,

or

7

k
DESIGNATOR

o 17-bit Y-Bj

RESULT

1 IS-bit (Y)L--" B j with zero-fill at high end of Bj

2 IS-bit (y)u-.. Bj with zero-fill at high end of Bj

3 17-bit (Y)O-16 --_Bj

4 1S-bit y-Bj with sign-extension

S IS-bit (Y)L-" Bj with sign-extension

6 IS-bit (y)U - Bj with sign-extension

_____ -I-_. __ 7 ____ --4_1_7 __ -_b.l_·t __ (._A __)O_-_1~6 ~=:--~ ___________ _
o 1S-bit Y -Bj

1 IS-bit (Y)L-" Bj

j = 1, 2 IS-bit (y)U -Bj

2,or3 3 1S-bit (Y)O-14 ---B j

4 IS-bit y -Bj

S IS-bit (Y)L-.. Bj

6 ~S-bit (y)U - .. Bj

7 IS-bit (A)O-14 --Bj
------------~-.----------~-------------

j = 0 NO OPERATION

--- ----------------------

TobIe 4-·3. Enter Bj Instruction

STORE Q (14)

Store contents of Q register (or its ones complement) at Y. The k designator
determines Y and the portion of the Q register contents to be stored, as follows:

• k is 0: CP(Q)---+Q

• k is 1: (Q)L ~(Y)L' (y)U remains undisturbed

• k is 2: (Q)L • (y)u , (Y)L remains undisturbed

• k is 3: (Q) • (y)

• k is 4: (Q) ~(A)

• k is S: CP(Q)L ---+(Y)L, (y)U remains undisturbed

• k is 6: CP(Q)L -+(y)U' (Y)L remains undisturbed

II k is 7: CP(Q) ----+(y)

UP-40U9 •
Rev. 2 ----.

UNIVAC 494

CENTRAL PROCESSOR UNIT 4

STORE A (15)

Store the contents of the accumulator (or its ones complement) at Y. The k
designator determines Y and the portion of the accumulator contents to be stored
as follows:

• k is 0: (A) .(Q)

• k is 1: (A)L • (Y)L' (y)U remains undisturbed

• k is 2: (A)L • (y)U , (Y)L remains undis turbed

• k is 3: (A) • (y)

• k is 4: CP(A)---+(A)

• k is 5: CP(A)L -+(Y)L, (y)U remains undisturbed

• k is 6: CP(A)L --+(y)U ' (Y)L remains undisturbed

• k is 7: CP(A)--+(y)

STORE B j (16)

Store the contents of an index register (1-7) at y. The j designator indicates the
index register chosen (Table 3-1). If the j designator is 0, and k is 3, all O's will
be stored at Y. If j is 0, and k is 7, all ones will be stored at Y. Before referring
to the use of the k designator which determines the destination, a full-word (30-bit)
transfer is necessary to store the contents of an active 17-bit Index register (refer
to Index registers, Section 2). The b designator functions as usual and may result
in a 17 -bit effective address, y. The k designator functions as follows:

• If k is 0: (B j) • (Q)L - lowest 15 or 17 -bit pos itions. Remainder of (Q) is
filled with 0 's .

• If k is 1: (Bj) • (Y)L - lowest 17-bit positions. (y)U remains undisturbed.

• If k is 2: (Bj) • (Y)U - highest IS-bit positions. (Y)L remains undisturbed.

• If k is 3: (B j) ~ (Y)L - highest 15 or 17-bit positions. Remainder of (y) is
filled with O's .

• If k is 4: (Bj) .. (A)L - lowest 15 or 17 bits. Remainder of (A) is filled
with O's.

• If k is 5: CP(Bj)--+(Y)L - lowest 15 bits. Remaining 15 bits of (y) are un­
disturbed.

• If k is 6: CP(Bj)-+(Y)U - highest 15 bits. Remaining 15 bits of (y) are un­
disturbed.

• If k is 7: CP(Bj)'-" (Y)L - lowest 15 or 17 bits. Remainder of (y) is filled
with bits similar to the highest order bit.

6
PAGE:

UP~4049

._~:v. 2 L
ENTER AQ (7721)

UNIVAC 494 I J
CENTRAL PROCESSOR ~~._.-.L,___ SECTION:

Transfer the 60-bit operand (y) and (y + 1) to the AQ register. Transfer (y) to A
and (y + 1) to Q.

STORE AQ (7725)

Store the 60-bit contents of the AQ register at (y) and (y + 1). Store (A) as (y) and
(Q) as (y + 1).

CHARACTER PACK LOWER (7731)

Transfer, into the accumulator, the six bits (00-05) in each of five successive
primary storage locations so as to make up a full-word in the accumulator. (y)00-05---+

(A)24-29, nr + 1)00-05~(Ahs-23' (y + 2)00-05~(Ah2-17' (y+ 3)00-05 ----'(A) 06-11,

(y + 4)00 -0 5 -+ (A)O 0 -0 5' This instruction is most useful when data is received from
peripheral equipment as successive five or six-bit characters in successive buffer (primary
storage) locations. The successive characters are then read into the accumulator to
form a 30-bit word.

CHARACTER PACK UPPER (7732)

Transfer, into the accumulator, the six bits (15-20) in each of five successive primary
storage locations so as to make up a full-word in the accumulator. CY)15-20--.(Ah4-29,

(y + 1h5-20~(A)1S-23' (y + 2)15~20---'(Ah2-17' ('1 + 3h5-20 ---.(A)06-11,

(y + 4)15-20---+,(A)00-05' This instruction is similar to the Character Pack Lower (7731)
instruction except that the incoming five or six-bit characters must have been stored in
the upper half of successive buffer locations.

CHARACTER UNPACK LOWER (7735)

Transfer, into bit positions 00-05 at each of five successive primary storage locations,
the successive sets of six bits in the accumulator starting from the high end of the

accumulatoJr. (Ah4-29~(Y)00-05' (Ahs-23-'(Y + 1)00-05, (A)12-17 ---+(y + 2)00-05,

(A)06-11-+(Y + 3)00-05' (A)00-05 -+(y + 4)00-05' At each of the five successive
primary storage locations, bits 06-14 are cleared to O's. This instruction is used
principally to break up a 30-bit word into successive sets of 5 six-bit characters and
load these characters into the low end of five successive output buffer locations.

CHARACTER UNPACK UPPER (7736)

Transfer, into bit positions 15-20 at each of five successive primary storage locations,
the successive sets of six bits in the accumulator starJing from the high end of the

accumulatolr. (Ah4-29---+(Vh5-20,(Ahs-23---+(y + 1)15·-20, (Ah2-17-+(Y + 2h5-20~

(A)06-11--+(Y + 3h5-20, (A)00-05 --+(y + 4hs-20' At each of the successive
primary storage locations, bits 21- 29 are cleared to 0 's. This instruction is similar
to the Character Unpack Lower instruction, except that the data is located in the
upper half of successive output buffer locations.

ENTER IFR AND RIR (7761)

Transfer the 30-bit word at the relative address to the IF~~ and bits 06-16 of the
next address (after the effective address) to the RIR. The contents of the RIR
become effective for execution of the next instruction; the contents of the IFR
are used fOIr the execution of the next instruction plus 1.

4 7
PAGE:

UP-4049 UNIVAC 494 I I 8
_R_e_v_. _2 ____ , ________ C_E_N._T_R_A_L_P_R_O_C_E_SS,OR _U_N_IT __ ._.......I~ _____ _S_E_C_TI_O_N_: __ 4~ __

LOAD PLR (7762)

Transfer the 30-bit word at the relative address to the PLR. The format for this
transferred word is shown in Figure 3-2. This instruction is intended for executive
routines. The program storage limits are deactivated by an interrupt and activated by
the Enter IFR instruction to set the limits for the worker program operating under
control of the executive routine.

STORE IFR (7765)

Transfer the contents of the IFR to the relative address. This instruction is used
principally in executive routines to store the contents of the IFR in primary storage
before a new word is transferred to the IFR.

ENTER RIR (7766)

Transfer bits 06-16 of the contents at the relative address to the RIR. This instruction
is used principally in executive routines. The P register will not be biased by the new
RIR value until a Jump instruction to the worker program is executed. Relative
addressing is not used in an interrupt routine. The interrupt routine must enter the
RIR before the RIR can become effective in the following worker program.

ENTER B-WORKER (7771)

Transfer the lowest order bits at each of seven successive primary storage locations
(starting from the relative address y) to the seven worker index registers, in turn.

('1)00-14 ---+B1, ('1 + 1)00-14 ---+B2, (y + 2)00-14 ---+B3, (y + 3)00-16 ----+
B4, (y + 4)00-16 ---+B5, (y + 5)00-16 ---+B6, (y + 6)00-16 -----'B7.

STORE B-WORKER (7775)

Transfer the contents of the worker index registers, in turn, to the low order bit
positions of seven successive primary storage locations, starting from y. B 1---+('1),
B2~(y + 1), etc. These transfers are 30-bit transfers with unused portions (either
bits 15-29 for IS-bit registers or bits 17-29 for 17-bit registers) filled with O's.

4.4. ARITHMETIC INSTRUCTIONS

All arithmetic operations in the CPU use the 60-bit parallel adder shown in the
block diagram, Figure 2-2. Subtraction, multiplication, and division are performed
by this basic adder. As a result of internal processing, the results will conform
to the common algebraic rules for each arithmetic operation.

4.4 .1. Integer Addition and Subtraction

The actual operations and examples of the addition and subtraction processes are
described in Appendix B. The following characteristics of these operations are of
interest to the programmer:

• The programmer must guard against overflow conditions. For single precision
operations, the absolute value of the operands and results may not exceed
2 29 - 1; for double precision operations, 259 - 1. In the event of an overflow,
the result will be incorrect. No indication is present for an overflow condition.

UNIVAC 494

Rev. 2 CENTRAL PROCESSOR UNIT 4 UPOA04U
.. _-_.- --------------------- I SECTION'

• A sum of negative zero cannot be generated unless both augend, (A), and
addend, Y, are both negative zeros. A difference of negative zero cannot be
generated unless the minuend, (A), is a negative zero and subtrahend, Y, is
a positive zero. In all other cases involving negative zero, the same result
will be obtained as if a positive zero were used.

4.4 .2. Integer Multiplication and Division

Integer multiplication and division are performed as a series of addition and/or sub­
traction processes. The results of interest to the programmer can be summarized as
follows:

• Multiplication results in the normal algebraic sign. Where the signs are like,
the result will be positive; where the signs are different, the result will be
negative. In division,except for division by zero, the quotient (which will be
in the Q register) will have its sign algebraically determined; the remainder
(in the accumulator) will have the same sign as the quotient.

• In multiplication, the entire product will be in the Q portion of the AQ register if
bit position (28-n) of the multiplier is a sign bit, where n is the most significant
hit position of the multiplicand. The most significant bit of a positive number is a
1; of a negative number, O. The entire plroduct may be in the Q portion if bit posi­
tion (28-n) of the multiplier is the most significant bit. The entire product will not
be contained in the Q portion if bit position (29-n) of the multiplier does not contain
a sign bit.

• In division, the quotient is entered into the Q portion of the AQ register. An over­
flow will not occur if the dividend has no significant bits past bit position n + 28,
where n is the most significant bit position of the divisor; overflow will occur if
the dividend has a significant bit past bit position n + 29. An overflow may occur
if the most significant bit of the dividend is in bit position n + 29. If overflow
occurs, the quotient will appear as +0 (if divisor and dividend had like signs) or
as -0 (if the signs were different). However, for j interpretation, Q w ill appear as
-0 when there is an overflow.

A negative zero in the A or Q portion of the AQ register may have an adverse effect
on further calculations. Negative zero will result from the following conditions:

• The dividend is an integral multiple of the divisor (within the limits of resolution),
the signs of both are different, and both values are not 0 (+ or -). The quotient will
be correct but A will be -0. For j-sensing, Q will appear as the absolute value of
the quotient and A will be +0.

• The absolute value of the divisor is greater than the absolute value of the dividend,
signs are different, and both are nonzero. In this case, Q will be -0 and A will be
the complement of the absolute value of the dividend. For j-sensing, Q is +0 and
A is the absolute value of the dividend.

9

,_u_:_e_~_~_~9 ____ ~ _____ ~_~_~_~_~_1_9_~_P_R_O_C __ E_SS_O_R __ U_N_I_T __ , ____ ~ __________ ~I~SE~C~T~IO~N~: ___ 4 ~10
Division by +0 or -0 has the following results:

• If a positive number is divided by +0, Q will contain -0 and the remainder in A
will be the initial Q value. For j-sensing, the final Q and A are used.

• If a negative number is divided by +0, Q will be +0 and the remainder in A will
be the initial Q value. For j-sensing, Q will be -0 and A will be the complement
of initial Q.

• If a positive number is divided by -0, Q will be +0 and the remainder in A will be
the complement of initial Q. For j-sensing, Q will be -0, and A will be initial Q.

• If a negative number is divided by -0, Q 'will be -0 and the remainder in A will be
the complement of initial Q. For j-sensing, the final Q and A are used.

[

ADD

AUGEND TO

ADDEND

YES

RESULT IS TRUE SUM

NO

ADD
ADDEND TO

TENS COMPLEMENT
OF

AUGEND

NO WITH SIGN DifFERENT I-._..:.Y.=,ES::.-('

c: SET

END-OFF CARRY

INDICATOR

IN IFR

NOTE: AUGEND = (AQ)
ADDEND= (Y. Y + 1)

[:

DD SUBTRAHEND
TO

TENS COMPLEMENT
OF

MINUEND

YES

FROM AUGEND SIGN

RESU L T IS TRUE

SUM WITH SIGN

SAME AS SIGN

OF AUGEND

'g DECIMAL
SUB~RACTION

RESULT IS

TRUE

DIFFERENCE

WITH SIGN OF MINUEND

NO

CONVERT RESULT TO RESULT IS TRUE
TENS COMPLEMENT FOR DIFFERENCE

TRUE DIFFERENCE WITH WITH SIGN DIFFERENT
SIGN OF MINUEND FROM MINUEND SIGN

NOTE: MINUEND = (AQ)

SUBTRAHEND = (y. y + 1)

NO

CONVERT RESULT TO
TENS COMPLEMENT FOR

TRUE SUM WITH
SIGN OF AUGEND

ADD

MINUEND TO

SUBTRAHEND

SET

END-OFF BORROW

INDICATOR

IN IFR

Figure 4-7. Basic Decimal Arithmetic

UP-4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT 4

---------------~---
,'ECTION' , PAGE,

4.4.3. Exponential (Floating-Point) Arithmetic

In exponential arithmetic, the following items are of interest to the programmer:

• The floating-point overflow interrupt will be generated in ~ny part of an exponential
operation where the exponent part of an operand exceeds 1.02310 or when division
by a floating-point ± 0 is attempted.

• The floating-point underflow interrupt will be generated if a floating-point number
has an exponent part less than -1023 10 .

4.4.4. Decimal Arithmetic

Basic decimal operations (addition and subtraction) are performed as shown in the
flowcharts of Figure 4-1. The following terms are used in the description of decimal
arithmetic: the end-off carry is a carry generated by the addition at the highest order
BCD digit positions, the nines complement of a BCD number is obtained by subtracting
each BCD digit from 9, the tens complement of a BCD number is obtained by adding an
arithmetic 1 to the nines complement (performing all carries).

The following examples illustrate the use of the flowchart:

(1) Addend = + 1234567890
Augend = - 9123456789

Since the signs are different, the tens complement of the augend is used.

1234567890
0876543211

2111111101

Since there is no end-off carry, the tens complement of this result is used.

Sum = -7888888899, the sign being taken from the original augend.

(2) Minuend = -3062918521
Subtrahend = +9732802954

-2795721475 True result since signs are different

1 End-off carry, retained in the IFR for use in
multiprecision decimal operations

Multiprecil?ion decimal addition and subtraction differ from basic decimal arithmetic
in that: (1) whenever it is necessary to generate a complement, the nines complement
is used instead of the tens complement; and (2) the end-off carry from the previous
add or subtract is introduced as a carry into the least significant decimal digit position.

ADD A (20). (Integer, single preCision)

Add the 30-bit operand, Y, to (A) and retain this sum as the final (A). The Q register
remains unchanged. Wherever the j designator refers to (A), the final (A) is used.

11

UP-4049
Rev. 2

UNIVAC 494

CENTRAL PROCESSOR UNIT iSecTION' 4

SUBTRACT A (21). (Integer, single precision)

Subtract the 30-bit operand, Y, from (A) and retain this difference as the final (A).
Where the k designator is 7, the final (A) will be +0. Where the j designator refers
to (A), the final (A) is used.

MULTIPLY (22). (Integer, single precision)

PAGE:

Multiply (Q) by the 3D-bit operand, Y, and retain this product as the final (AQ). The
designator k of 7 may be used only if the initial (Q) is a positive number, otherwise,
the product in (AQ) will be the ones complement of the true product. The least sig­
nificant portion of the product is always stored in the Q portion of the AQ register.
If the product (including sign) exceeds the 30-bit capacity of the Q register, an over­
flow condition exists. The j designator defines a skip condition (see Table 3-1).
Note that if a skip occurs on j = 4, it may be necessary to obtain the sign of the
product from (A).

DIVIDE (23). (Integer, single precision)

Divide (AQ) by 30-bit operand, Y, and retain the quotient as (Q) and the remainder
as (A). A k des ignator of 7 may not be used. The j designator is interpreted as
shown in Table 3-1, and may use the presence of a remainder to condition program
sequence.

REPLACE A + Y (24). (Integer, single precision)

Add 3D-bit operand, Y, to (A). Retain sum as (A) and replace operand as indicated
in Figure 4-2. For the addition, the operand, Y, is determined by the k designator,
as shown in Table 4-1. Wherever the j designator refers to (A), the final (A) is used.

REPLACE A - Y (25). (Integer, single precision)

Subtract the 3D-bit operand, Y, from (A). Retain difference as (A) and store it as
indicated in Table 4-2. For the subtraction, the 3D-bit operand, y, is determined
by the k designator, as shown in Table 4-1. Wherever the j designator refers to
(A), the final (A) is used.

ADD Q (26). (Integer, single precision)

Add 30-bit operand, Y, to (Q). Retain sum as (Q). Wherever the j designator
refers to (Q), the final (Q) is used. Refer to Table 3-1 for j interpretation.

SUBTRACT Q (27). (Integer, single precision)

Subtract 30-bit operand, Y, from (Q). Retain difference as (Q). Wherever the j

designator refers to (Q), the final (Q) is used. Refer to Table 3-1 for j interpretation.

ENTER Y + Q (30). (Integer, single precision)

Add the 30-bit operand, Y, to (Q) and retain the sum as (A). The contents of the Q
register remain unchanged. Wherever the j designator refers to (A), the final (A)
is used.

12

Rev. 2 I SECTION'
4

UNIVAC 494
CENTRAL PROCESSOR UNIT

PAGE:

UP-40U4 ·

"n ___ ._ , ___________________ _

EN T E R Y - Q (31). (I n te g e r, sin g Ie pre Ie is ion)

Subtract (Q) from the 30-bit operand, Y, and retain the difference as (A). The
contents of the Q register remain unchanged. Wherever the j designator refers to
(A), the final (A) is used.

STORE A + Q (32). (Integer, single precision)

Add the 30-bit (A) to the 30-bit (Q), retaining the result as the final (A) and (except
when the k designator is 0 or 4) storing it: in primary storage. Except for the k
designator of 0, the Q register remains unchanged. The k designator governs storage
of the sum as follows:

k = 0: Retain the sum also as the final (Q)

k = 1: (A)L --+ (Y)L with (y)u remaining unchanged

k = 2: (A)L ----+- (y)U with (Y)L remaining unchanged

k= 3: (A)--+(y)

k = 4: The sum is retained only as the final (A)

k = 5: CP(A)L --+(Y)L with (y)U remaining unchanged

k = 6: CP(A)L --+(y)U with (Y)L remaining unchanged

k = 7: CP(A) --+(y)

Wherever the j and k designators refer to (Q) and (A), the final (Q) and (A) are used.

STORE A - Q (33). (Integer, single precision)

Subtract the 30-bit (Q) from the 30-bit (A), retaining the difference as the final (A)
and (except when the k designator is a 0 or 4) storing it in primary storage. The
j and k designators are used in exactly the same manner as used in the Store
A + Q (32) instruction previously described, except that the difference is u.sed
instead of the sum.

REPLACE Y + Q (34). (Integer, single precision)

Add the 30-bit operand, Y, to (Q), retaining this sum as (A) and store it in primary
"storage. Table 4-1 describes the 30-bit operand, y, and Table 4-2 describes the
replacement operation. The Q register remains unchanged. The k designators of
0,4, or 7 may not be used.

REPLACE Y - Q (35). (Integer, single precision)

Subtract the 30-bit (Q) from the 30-bit operand Y, retaining this difference as (A)
and store it in primary storage. Table 4-·1 describes the 30-bit operand, Y, and
Table 4-2 describes the storage operation. The Q register remains unchanged.
The k designators of 0, 4, or 7 may not be used.

13

UP-4049 L UNIVAC 494 I
__ R __ e_v_,_2_____ , ______ C_E_N_T--...R_A_L __ P_R_O __ C_E_S_S_O_R, ___ U_N_I_T ______ ~ ____________ ~_s_E_c_T_,o_N_: __ 4 __ , ___ ~p_A_G_E_: ___ 14 __ _

f;!EPLACE Y + 1 (36). (Integer, single precision)

Add an arithmetic 1 to the 30-hit operand, Y, retaining this sum as (A) and store
it in primary storage. Table 4-,-1 describes the 30-bit operand, y, and Table 4-2
describes the storage operation. The k designators of 0, 4, or T may not be used.

REPLACE Y - 1 (37). (Integer, single precision)

Subtract an arithmetic 1 from the 30-bit operand, Y, retaining this sum as (A) and
store it in primary storage. Table 4-1 describes the 30-bit operand, y, and Table
4-2 describes the storage operation. The k designators of 0, 4, or 7 may not be used.

ADD AQ (7722). (Integer, double precision)

Add the signed 60-bit (y, Y + 1) to the signed 60-bit (AQ) and retain the 60-bit sum
as the final (AQ).

COMPLEMENT AQ (7724). (Integer, double precision)

Convert the 60-bit (AQ) to its ones complement (changing binary 1 's to O's and O's
to 1 's) and retain the complement as the final (AQ).

SUBTRACT AQ (7726). (Integer, double precision)

Subtract the signed 60-bit ('1, y + 1) from the signed 60-bit (AQ) and retain the 60-bit
difference as the final (AQ). The contents of y + 1 and the Q register are the least
significant portions; the contents of y and the accumulator are the most significant
portions.

FLOATING·POINT ADD (770n. (Exponential)

Add the signed floating-point number in (y, y + 1) to the signed floating-point number
(AQ), and retain the normalized floating-point sum as the final (AQ). Floating-point
operands need not be normalized for this instruction. Operation is checked for
floating-point overflow and underflow.

FLOATING.POINT SUBTRACT (7702). (Exponential)

Subtract the signed floating-point number in (y, y + 1) from the signed floating-point
(AQ), and retain the normalized difference as the final (AQ). Floating-point operands
need not be normalized for this instruction. Operation is checked for floating··point
overflow and underflow.

FLOATING·POINT MULTIPLY (7703). (Exponential)

Multiply the signed floating-point (AQ) by the signed floating-point number in
(y;, y + 1) and retain this product as the final (AQ). This product, (AQ), will be
normalized and correct only if the original operands were normalized. Operation
is checked for floating-point overflow and underflow.

FLOATING.POINT DIVIDE (7705). (Exponential)

D iv ide the signed, normalized floating-point (AQ) by the signed, normalized floating­
point number in (y, Y + 1) and store the signed, normalized floating-point quotient
as the final (AQ). Any remainder w'ill be discarded. Operation is checked for
floating-point overflow and underflow.

,._
URP~::'-V4 '. no 42 .n9 I . ______ U_N_I_V_A_C_4_9_4 _________ , ,;!~ CENTRAL PROCESSOR UNIT I I SECTION'

4
PAGE:

FLOATING-POINT PACK (7706). (Expclnential)

Pack the biased exponent in (Y)00-10 with the unnormalized fixed-point part, (AQ),
to make up a floating-point operand. The 11 bits from (y) are treated as a positive
number. The final floating-point operand thus formed as (AQ) is normalized and
signed with its exponent adjusted for 'nolcmalization.

FLOATING-POINT UNPACK (7707). (Exponential)

Store the absolute magnitude of the exponent in AQ as (Y)OO-10 and fill (yh 1-14
with O's. Extend the sign of the fixed-point part in (AQ) to fill the II-bit portion
allotted to the exponent.

DECIMAL TEST AQ (7710). (Decimal)

Test the BCD number (AQ) for sign, ovelLflow, and/or comparison of signs as indi­
cated. in Table 4-4. Wherever a binary 1 is present in the instruction word, a test
is made. If any, or all, of the test conditions are satisfied, the next sequential
instruction is skipped. Bits 11-17 of the instruction word are not used.

~.---------------.,----------------.-------.-

BIT POSITION

o
1

2

3

4

5

6

7

8

9

10

CONDITION

Skip if decimal overflow designator is set in IFR ,_

Skip if decimal overflow designator is clear in IFR.

Skip if sign is +, sign test only.

Skip if number is 0, disregarding sign.

Skip if sign is -, sign test only.

Skip if sixth decimal digit is unequal to O.

Skip if seventh decimal digit is unequal to O.

Skip if eighth decimal digit is unequal to O.

Skip if ninth decimal digit is unequal to O.

Skip if tenth decimal digit is unequal to O.

Skip if (AQ) 1= 0 (neglect sign).

NOTE: Bit positions 5-9 may be used by the programmer to detect a result that
exceeds the normal data field length.

Table 4-4. Decimal Test

DECIMAL ADD (7711). (Fixed-point zoned BCD double precision)

Add the zoned and signed 10-digit (AQ) to the zoned and signed 10-digit (y, y + 1).
The BCD sum, the sign of the sum, and the zone bits originally in (AQ) will be re­
tained as the final 10-digit (AQ). This addition is performed as shown in Figure 4-1.

DECIMAL SUBTRACT (7712). (Fixed·-point zoned BCD double precision)

Subtract the zoned and signed 10-digit (:Y', y + 1) from the zoned and signed 10-digit
(AQ). The BCD difference, the sign of the difference, and the zone bits originally
in (AQ) will be retained as the final 10-digit (AQ). This subtraction is performed
as shown in Figure 4-1.

15

UP-4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT I SECTION,

4

DECIMAL COMPLEMENT AQ (7714). (Fixed-point zoned BCD double precision)

Convert the la-digit (AQ) to its decimal complement. Retain the original zone
bits and sign. If y is odd, the decimal complement is the nines complement (each
digit is replaced by its difference from 9). If Y is even, the decimal complement
is the tens complement (the complete nines complement plus 1).

DECIMAL ADD WITH CARRY (7715). (Decimal, multiprecision)

PAGE:

Add the zoned and signed la-digit (AQ) together with any end-off carry from the
previous BCD addition to the zoned and signed la-digit (v, V + 1). The BCD sum,
the sign of the sum, and the zone bits originally in (AQ) will be retained as the
final 10~digit (AQ). This addition is similar to the addition shown in Table 4-1
except that nines complements are used in place of tens complements.

DECIMAL SUBTRACT WITH BORROW (7116). (Decimal, multiprecision)

Subtract the zoned and signed la-digit (y, V + 1), together with any end-off borrow
from a previous BCD subtraction, from the zoned and signed la-digit (AQ). The
BCD difference, its sign, and the zone bits originally in (AQ) will be retained as
the final (AQ). This subtraction is similar to the subtraction shown in Table 4-1
except that the overflow is introduced as a carry into the least significant digit
position during the addition performed directly after the sign comparison. In addi­
tion, where Figure 4-1 uses tens complements, this instruction us es nines comple­
ments.

DECIMAL CONVERT LOWER (7733). (Decimal)*

Convert the five-digit decimal number made up of the lowest BCD-coded digit (bits
a through 3) in each of five successive memory locations (starting from y) to binary
form and store the result at the low end of the AQ register. The maximum binary
number that can be stored in the AQ register by this transformation is

234 -1 (17,179,869,183 10). Therefore, precautions must be taken prior to using
this instruction so this value is never exceeded. Assuming the AQ register wa:s
initially cleared, 9999910 is the maximum number that can be converted and stored
for one execution of the instruction. However, two successive instructions could
be used since the maximum number thus converted and stored would be 9,999,999,999
and this is less than the maximum permissible number.

DECIMAL CONVERT UPPER (7734). (Decimal)*

This instruction operates exactly as does the Decimal Convert Lower previously
described, except that the five- digit decimal number to be converted and stored is
taken from bits 15 through 18 at the five successive memory locations.

* The nonsigni'ficant bits in Y through Y + 4 of the half-words to be converted (bits 6 to 14 for 7733 and bits
21 to 29 for 7734) must be 0 prior to execution of the 7733 or 7734 instruction. The Character Unpack
instruction will properly format the data to be corrected.

16

UNIVAC 494

Rev. 2 CENTRAL PROCESSOR UNIT 4 UP-40U4
OH ___ O_ , ____________________ , I SECTION,

4.5. LOGICAL INSTRUCTIONS

Logical instructions provide the programmer with the means of operating upon specific
bits of a word. These logical operations are the logical product (LP), the selective
set, selective clear, selective complement, and the selective substitute. Except for
the selective complement, two words are involved in a logical operation. The logical
operation is performed upon the bits in the same corresponding bit positions of each
of the words to form the resulting word. For all j interpretations which use the contents
of a register to determine a skip, the final state of the register is always used.

The logical product is generally used for umasking" (lifting the selected bits of a
word and using 0 bits for unselected positions). This is accomplished by placing
1 's in the mask to select bits and O's for the other bits. Wherever there is a 1 in
the mask, the corresponding bit of the operand will appear in the logical product.
Wherever there is a 0 in the mask, a 0 will appear in the logical product. Thus, the
logical product corresponds to the AND function - the logical product is a 1 when
the mask and the operand are both 1 's; otherwise, it is a O. The following example
illustrates the logical product:

Mask

Operand

LP

111 000 001 010 011 100 101 110 111 000

010 100 110 000 001 011 110 111 101 100

010 000 000 000 001 000 100 110 101 000

The selective set is used to force 1 's into selected bits of the accumulator. Where­
ever there is a 1 in the operand, a 1 is forced into the accumulator. If the accumulator
bit is already a 1, it remains undisturbed. Wherever there is a 0 in the operand, the
accumulator bit remains undisturbed. Thus, the selective set corresponds to the
inc Ius ive OR function: the res uIt is a 1 if the accumulator bit is a 1 or the operands
bit is a 1, or both. The following example illustrates operation of the selective set.

Operand 010 100 110 000 001 011 110 111 101 100

Accumulator (initial) 111 000 001 101 011 100 101 110 111 000

Accumulator (final) 111 100 111 101 011 111 111 111 111 100

The selective clear forces O's into selected bits of the accumulator. Wherever there
is a 1 in the operand, a 0 will be forced into the accumulator. If the acc umulator bit
is a 0, it remains undisturbed. Wherever there is a 0 in the operand, the accumulator
bit remains undisturbed. The selective clear can also be regarded as a modified
masking operation. Wherever there is a 0 in the operand (mask), the corresponding
bit of the accumulator is lifted and placed in the final result. The following example
illustrates operation of the selective clear:

Operand 010 100 110 0100 001 011 110 111 101 100

Accumulator (initial) 111 000 001 101 011 100 101 110 111 000

Accumulator (final) 101 000 001 101 010 100 001 000 010 000

17

UP-4049 L
Rev. 2 ----,----

UNIVAC 494
CENTRAL PROCESSOR UNIT I 'ECTION,

4

The selective complement operates upon selected bits of the accumulator. Where­
ever there is a 1 in the operand, the accumulator bit is ones-complemented. The
following example illustrates operation of the selective complement.

Operand 010 100 110 000 001 011 110 111 101 100

Accumulator (initial) 111 000 001 101 011 100 101 110 111 000

Accumulator (final) 101 100 111 101 010 111 011 001 010 100

The selective substitute replaces selected bits in the accumulator with the corre­
sponding bit of the operand. Selection is performed by the Q register - for each
1 bit in the Q register, the substitution is made. The following example illustrates
operation of the selective substitute:

Q register 101 010 000 111 100 011 110 001 110 011

Operand 010 100 110 000 001 011 110 111 101 100

Accumulator (initial) 111 000 001 10l 011 100 101 110 111 000

Accumulator (final) 010 000 001 000 011 111 111 111 101 000

ENTER LOGICAL PRODUCT (40)

In the accumulator, form and retain the logical product of the operand, Y, and the con-
tents of the Q register (Q). If the number of l's in (A) is even, a j designator of 2
will cause a skip; if odd, a j designator of 3 will cause a skip (Table 3-2).

ADD LOGICAL PRODUCT (41)

Add the logical product of Y and (Q) to the contents of the accumulator and retain
this sum in the accumulator. The contents of the Q register are not changed by this
instruction.

SUBTRACT LOGICAL PRODUC:T (42)

Subtract the logical product of (Q) and Y from the contents of the accumulator and
store this difference in the accumulator. The Q register remains unchanged.

RE:PLACE LOGICAL PRODUC~' (44)

Form the logical product of Q and Y in the accumulator and store the logical product
in the location from which Y was obtained. The j designator is a skip indicator which
may, when j = 2 or 3, indicate a skip depending upon the number (odd or even) of binary
1 's in the logical product (Table 3-2). The operand Y is derived as shown in Table 4-1
and the logical product is stored as shown in Table 4-2. The Q register remains unchanged

by this instruction.

18

UNIVAC 494

Rev. 2 CENTRAL PROCESSOR UNIT
UP~-049 .

------ --
I SECTION, 4 I PAGE,

REPLACE A + LOGICAL PRODUCT (45)

Add the logical prod uct of Y and (Q) to (A). Retain this sum as (A) and store it at Y.
The operand, Y, is derived as shown in Table 4-1, and the sum is stored in primary
storage as shown in Table 4-2.

REPLACE A - LOGICAL PRODUCT (46)

Subtract the logical product of Y and (Q) from (A). Retain this sum as (A) and store it
in primary storage as indicated by the k designator. The operand, Y, is derived as
shown in Table 4-1, and the difference is stored in primary storage as shown in
Table 4-2.

STORE LOGICAL PRODUCT (47)

Store the logical product of (A) and (Q) at Y, as follows:

k::::: 0:
k ::::: 1:

k ::::: 2:

k == 3:
k::::: 4:

k::::: 5:

k = 6:

k::::: 7:

SELECTIVE SET (50)

LP --+(Q) with (A) undisturbed
(LP)L---'(Y)L with (Q), (A), and (y)U undisturbed

(LP)L--'(Y)U with (Q), (A), and (Y)L undisturbed

LP --+(y) with (Q) and (A) undisturbed
LP --+A, with (Q) undisturbed. The band y designators are
not used.
CP (LP)L ---"(Y)L with (Q), (A), and (y)U undisturbed

CP (LP)L --+(y)U with (Q), (A), and (Y)L undisturbed

Not used

Force binary 1 's into (A) wherever there is a binary 1 in the operand Y, leaving the
other bits of (A) undisturbed. A k designator of 7 may not be used.

S E L E C TI V E C OM P L EM E N T (5 1)

For every binary 1 in the operand Y, complement the corresponding bit in (A). For
k == 7, (A) will become + O.

SELECTIVE CLEAR (52)

For every binary 1 in the operand Y, force a binary 0 into the corresponding bit
position of (A). A k designator of 7 may not be used.

SELECTIVE SUBSTITUTE (53)

Wherever (Q) has a binary 1, replace the clOrrespondingbit in (A) with the
corresponding bit of the operand, Y. A k designator of 7 may nlOt be used with
this instruction.

REPLACE SELECTIVE SET (54)

Wherever the operand, Y, has a binary 1, set the corresponding bit in (A) to a binary
1, leaving the other bits of (A) unchanged. I~etain the result as (A) and store it in
primary storage. The operand, Y, is derived as shown in Table 4-1, and the result
is stored in primary storage as shown in Table 4-2.

19

UP-4049 UNIVAC 494 I I 0
_R ___ ev_. ___ 2 ____ ~, __________ . ____ C __ E_N_T_R_A __ L __ P_R_O_C __ E __ SS,OR_U_N __ IT _____ , ____ ~ ____________ ~S_E_C_T_IO_N_: ____ 4_~ 2

REPLACE SELECTIVE COMPLEMENT (55)

Wherever the operand, Y, has a binary 1, complement the corresponding bit in (A),
leaving the other bits of (A) unchanged, Retain the result as (A) and store it in primary
storage, The operand, Y, is derived as shown in Table 4-1, and the result is stored
as shown in Table 4-2.

REPLACE SELECTIVE CLEAR (56)

Wherever the operand, Y, has a binary 1, clear the corresponding bit of (A) to binary
0, leaving the other bits of (A) unchanged. Retain the result as (A) and store it in
primary storage. The operand, Y, is derived as described in Table 4-1, and the result
is stored as shown in Table 4-2.

REPLACE SELECTIVE SUBSTITUTE (57)

Wherever (Q) has a binary 1, transfer the corresponding bit of Y to the corresponding
position in (A), leaving the other bits of (A) unchanged. Retain the result as (A) and
store it in primary storage. The operand, Y, is derived as shown in Table 4-1, and the
result is stored as shown in Table 4-2.

4.6. COMPARISON INSTRUCTIONS

Comparisons may be performed, within a narrow range, for most read class instructions
by means of the j designator to determine a skip condition (see Table 3-1). The
following comparison instructions greatly extend the range of comparisons. Comparisons
may be either alphanumeric or arithmetic, the difference being, that alphanumeric in­
structions perform absolute comparisons, treating the highest order bits as part of the
absolute values being compared. Arithmetic comparisons are algebraic comparisons
which recognize the sign bit so that a positive number is recognized as being greater
than a negative number. Thus, in an alphanumeric comparison, -0 (all l's) is greater
than +0 (all O's), but in an arithmetic comparison, -0 is less than +0 since a bina:ry 1
is always greater than a binary 0 in alphanumeric comparisons. Alphanumeric compari­
sons are especially useful in sorting and collating programs where both numbers and
characters are involved.

MASI<ED ALPHANUMERIC EQUAL (7753)

Wherever there is a binary 1 in (Q), compare the corresponding bits of Cy) and (A),
using O's in the unselected bits of (A) and (y). If the masked accumulator word is
equal to the masked primary storage word, skip the next sequential instruction; if
unequal, execute the next sequential instruction.

MASI<ED ALPHANUMERIC LESS (7757)

Using (Q) as the mask, compare the masked (A) with the masked Cy). If the masked (A)
is less, skip the next sequential instruction; if not, execute the next sequential
instruction.

COMPARE (04)

Compare the signed Y with the signed (A) and/or (Q) and skip the next instruction as
determined by the j designator (Ta ble 3-1). This comparison can be used on fixed­
point or floating-point binary operands, but may not be used for operands in the zoned
BCD mode.

UNIVAC 494 I I
C EN T RA L PRO C E S~O R_~~_~~_ .. , __ .---.L _____ "",,_S_E_C_T_I O_N_: ___ 4_",--P_A_G_E_: __ 2_1_

COMPARE MASKED (43)

Subtract the logical product of Y and (Q) from (A) and skip the next sequential in­
struction if the condition specified by the j designator (Table 3-1) is satisfied. Both
(Q) and (A) remain unchanged by this instI'w::tion.

COMPARE AQ EQUAL (7723)

Compare the signed (AQ) with (y), (y+l) and skip if equal; if unequal, perform the
next sequential instruction. The sign and most significant portion of the double­
precision words will be in (A) and (y). The AQ register and the primary storage
locations remain unchanged. This instruction is not intended for zoned BCD operands.

COMPARE AQ LESS (7727)

Compare the signed (AQ) with (y), (y+1) and skip if (AQ) is less. If (AQ) = (y),
(y+l), perform the next sequential instruction. The sign and most significant portion
of the double-precision words will be in (A) and (y). The AQ register and the primary
storage locations remain unchanged. This instruction is not intended for zoned BCD
operands.

DECIMAL COMPARE EQUAL (7713)

Compare the signed 10-digit zoned BCD number of (AQ) with the signed 10-digit zoned
BCD number in (y), (y+l) and skip if equal; if unequal, perform the next sequential
instruction. All zone bits (but not the sign bit) are ignored in the comparison. The AQ
register and the primary storage locations remain unchanged.

DECIMAL COMPARE LESS (7717)

Compare the signed 10-digit zoned BCD number of (AQ) with the signed 10-digit zoned
BCD number in (y), (y+l) and skip if the nu.mber in (AQ) is less; if equal, perform the
next sequential instruction. All zone bits, but not the sign bit, are ignored in the
comparison. The AQ register and the primary storage locations remain unchanged.

4.7" JUMP INSTRUCTIONS

A Jump instruction transfers control of the program from the next sequential instruction
to the instruction at a programmed address, provided the conditions for the jum pare
satisfied. Jump instructions conditioned by I/O operations are described in the
subsequent paragraph on I/O instructions; this paragraph covers arithmetic and manual
jumps, and those jumps which implement interrupt and executive routines by capture of
P register values.

In Jump instructions, the operand, Y, is the address of the next instruction to be
executed or the address of a memory location which, in turn, contains the address of
the next instruction to be executed if jump conditions are satisfied. The address is
determined by the k designator and is the lower 15 or 17 bits of the operand shown in
Table 4-1. The j designator Crable 3-1) sets up the requirements for the jump.

UP-4049 ~
. __ R_e_v ~,_2 __ --,1_.

UNIVAC 494

CENTRAL PROCESSOR UNIT I SECTION, PAGE:

4

JUMP - ARITHMETIC (60)

If the jump conditions specified by the j designator (Table 3-1) are satisfied, E~xecute
instruction at address Y; otherwise, execute next sequential instruction. Conditions
for this jump are determined by (A) or (Q). If the j designator is 0 or 1, the interrupt
lockout will be cleared. The address is the lower 15 or 17 bits of the operand shown
in Table 4-1.

JUMP - MANUAL (61)

If jump conditions, as determined by manually controlled switches and the j designator
(Table 3-1) are satisfied 1 jump to address Y; otherwise, execute next sequential
instruction. The instruction will cause a jump and stop if j values of 4, 5, 6, or 7
are used. This will cause the CPU to halt with the P register set to Y. If j is 0, ~n
unconditional jump to address Y will be executed. The address, Y, is the lower 15 or
17 bits of the operand shown in Table 4-1.

RETURN JUMP - ARITHMETIC (64)

If jump conditions are satisfied, as determined by (Q) or (A), store the relative
address of the next sequential instruction (P-RIR) in the lower half of address Y and
jump to address Y + 1 for the next instruction to be executed; otherwise, execute the
next sequential instruction. The address Y is the lower 15 bits of the operand shown
in Table 4-1. If j = 0 or 1, the interrupt lockout will be set (see Interrupts, Section 2).
The address that is stored at Y is relative address (P-RIR). If this relative address
is 17 bits, the two highest-order bits w ill be lost. (To store a 17-bit re lative address,
an Enter B and Jump instruction - 7744, 7745, 7746, or 7747 - must be used.) This
instruction is usually the instruction stored at a fixed address, accessed by an
interrupt.

A typical use of this instruction in an interrupt routine is shown in Figure 4-2.

(1) After execution of the second instruction in the main program, an interrupt
sends the program to a Return Jump-Arithmetic instruction.

(2) The Return Jump-Arithmetic instruction stores the relative address of the
third instruction of the main program at y and jumps to y+l for the next
instruction.

(3) The interrupt subroutine is executed, starting from address y+ 1, and then a
Jump-Manual (61) instruction is executed.

(4) The Jump-Manual instruction sends the interrupt routine to (Y)L for the
address of the next instruction to be executed.

(5) This relative address is the relative address of the third instruction of the
main program, and thus the main program is resumed after the interrupt.

22

UP-4049 UNIVAC 494
.. _--BJ; v _2 __ ~ _______ C_E_N_T_R_A_L_P_R_O_C_E_S_S_O_R __ U_N_I T_, I SECTION'

4 23
PAGE:

MAIN PROGRAM

FIRST INSTRUCTION

/\ddress (P-l) - RIR

SECOND INSTRUCTION INTERRUPT

Address y ------------'--c= --------~--P--R-IR---I~

Address P - R IR Address y + 1

THIRD INSTRUCTION C~IRST INSTRUCTION -SUBROUTINE

1 (3

CLAST INSTRUCTION-SU BROUTIN E

~Manual

~ 1 __ ' _O ____ O ____ , __ y ________ ~

NOTE: KEYED NUMBERS INDICATE SEQUENCE OF OPERATION

Figure 4-2. Operation of Typical RE~tU'rn Jump Instruction

UP 4049 I UNIVAC 494 I 4 24
____ R_e_~_.~ ______________ C __ E_N_T __ R_A_L __ P_R_O_C __ E_S_S_O_R_,_U_N __ IT _______ ~ ____________ ~:_S_EC_T_I_O_N_: ______ ~P_A_G_E: ______ __

RETURN JUMP - MANUAL (6!i)

If jump conditions are satisfied, as determined by the j designator and settings of
manual switches (Table 3-1), store the relative address of the next seque~tial
instruction at the lower half of address Y and jump to address Y + 1 for the next
instruction. If no jump occurs, execute the instruction immediately following the
R,eturn jump-Manual instruction. Where a stop is to be executed, as determined by
the j designator, the address of the next sequential instruction will be stored at
address Y. When the program is again started, it will start with the instruction at
address Y + 1. As in the Return jump-Arithmetic (64) instruction, a IS-bit relative
address (P-RIR) is stored, and the same precautions should be observed for a
17-bit relative address (P-RIR). The address Y is the lower IS bits of the operand
shown in Table 4-1.

EXECUTE REMOTE (7737)

Execute the instruction located at memory address y. If the instruction in y is not a
jump or skip instruction, return to the instruction immediately following the Execute
Remote instruction. If the instruction in y is a jump instruction, execute the jump.
If the instruction in y indicates a skip, skip the instruction immediately following
the Execute Remote instruction and execute the next sequential instruction.

Et~TER BO AND JUMP (7740)

jump, unconditionally, to y.

ENTER B1 AND JUMP (7741)

Transfer P-RIR to B 1 and jump to y (using original contents of Bb)' This instruction
can only be used for a IS-bit (P-RIR). If P-RIR is 16-17 significant bits, the
highest order bits will be lost.

ENTER B2 AND JUMP (7742)

Transfer P-RIR to B2 and jump to y (using original contents of Bb)' This instruction
can only be used for a IS-bit (P-RIR). If P-RIR is 16-17 significant bits, the
highest order bits will be lost.

E~ITER B3 AND JUMP (7743)

Transfer P-RIR to B3 and jump to y (using original contents of Bb)' This instruction
can only be used for a IS-bit (P-RIR). If P-RIR is 16-17 significant bits, the
highest order bits will be lost.

E"ITER B4 AND JUMP (7744)

Transfer P-RIR to B4 and jump to y (using original contents of Bb)' This instruction
will enter a 17-bit (P-RIR) regardless of IS-bit or 17-bit activation by the IFR and
is used in place of a Return jump instruction.

ENTER B5 AND JUMP (7745)

Transfer P-RIR to BS and jump to y (using original contents of Bb)' This instruction
w ill enter a 17 -bit (P-RIR) regardless of IS-bit or 17 -bit activation by the IFR and
is used in place of a Return jump instruction.

UNIVAC 494

Rev. 2 CENTRAL PROCESSOR UNIT 4
UP-~049

.. ---. ----------------------, I SECTION,

ENTER B6 AND JUMP (7746)

Transfer P-RIR to B6 and jump to y (using the original contents of Bb)' This
instruction will enter a 17-bit (P-RIR) regardless of IS-bit or 17-bit activation by
the IFR and is used in place of a Return Jump instruction.

ENTER B7 AND JUMP (7747)

Transfer P-RIR to B7 and jump to y (using original contents of Bb)' This instruction
will enter a 17-bit (P-RIR) regardless of lS-bit or 17-bit activation by the IFR and
is used in place of a Return Jump instruction.

4.8. SEQUENCE - MODIFYING INSTRUCTIONS

Sequence-modifying instructions can cause repeated execution of an instruction a
specified number of times, and can cause a skip or a jump to another portion of the
program.

REPEAT (70)

Execute the next sequential instruction Y (the repeat count) times successively and
then proceed to the instruction immediately after the repeated instruction. The repeat
count is the lower 15 or 17 bits of the operand defined by the k designator per
Table 4-1, and may have a maximum of 17 significant bits. Just before the first
execution, Y is stored in B7 as a 17-bit number, regardless of IS-bit or 17-bit:
activation by the IFR. If a IS-bit number :is transferred, three O's will be added at
the high order portion. With each ~xecution of the repeated instruction, the number
stored in B 7 is decremented by 1. If this number is initially 0, or becomes 0 because
of the repeated executions, the program proceeds to the second instruction after the
Repeat instruction. Any repeated incrementation or decrementation of the instruction
being repeated due to interpretation of the .i designator are stored in an intermediate
register so that the instruction being repeated remains unchanged at its original
address. The Repeat instruction may not immediately follow an Enter IFR (7'165) or
Enter RIR (7766) instruction.

There are several instruct~ons for which a repeat is not valid. When any of th.ese
instructions is preceded by a Repeat instru.ction, it w ill be executed only once if
the repeat count is initially unequal to 0 and the program will advance to the next
sequential instruction; if the repeat count is initially 0, the· instruction will be
skipped. The forbidden instructions are:

• Illegal Instruction (00 or 7700)

• Enter B j (12)

• Send External Function (13)

• Store Channel (17)

• All Jump, Buffer Activation and Termination (60 through 76)

• All 77 instructions

25

UP-4049 l
Rev. 2 -

UNIVAC 494

CENTRAL PROCESSOR UNIT I SECTION, 4~,_26
The j des ignator of the Repeat instruction modifies the operqnd, Y, of the instruction
being repeated, as shown in Table 4-5 ...

------_._----_ .. -.--- - -----------------------_.----,
OPERATION

o or 4* Y remains unchanged with each execution of the instruction.

1 or 5* Y is increased by one after each execution.

2 or 6* Y is decreased by one after each execution.

3 or 7* Y is increased by (Bb) after each execution.

* Desi~nators of 4, 5, 6, or 7 are reserved for Replace class instructions. The result is stored

at address Y+(B 6) where Y is the operand in effect when the instruction is executed.

Table 4-5. Interpretation of j Des ignator for Repeat Instruction

A Repeat instruction may be interrupted by either a Fault or I/O interrupt. If execution
of the repeated instruction is interrupted, the value in the P register is decreased by
1 so that the value is the address of the repeated instruction. This value can be captured
by a Return Jump instruction or by an Enter Bx and Jump instruction. The f1 field of the
IFR contains either an address or operand (see 4.3). If an I/O interrupt halts the Repeat
instruction and field f1 of the IFR holds a relative address, the Repeat can be
reinitiated. When the interrupt occurs, the value in the P register must be stored
first, then the contents of the IFR must be stored. At the end of the interrupt routine,
the sequence must be Enter IFR followed by a Jump to the value captured at the
beginning of the routine. If a Fault interrupt halts the Repeat execution, the Repeat
cannot be reinitiated. In this case, field f1 of the IFR holds an absolute address for
use in error diagnosis. Bit 29 in the IFR must be cleared before the Ente:r IFR is
executed at the end of the fault routine. When a repeat operation is interrupted by an
I/O interrupt, the count value at the point of interrupt is retained in B7 for reinitiation
of the repeat operation and must not be modified during the interrupt routine if correct
reinitiation of the repeat operation is to occur.

B SKIP ()N Bj (71)

If the operand, Y, is not equal to the contents of the index register specified by the
j designator (Bj), add 1 to (Bj), and execute the next sequential instruction; if equal
to (Bj), clear (Bj), and skip the next sequential instruction. The number of bits in
the index register (Bj) is determined by the j designator and the bit mode indicated by
the IFR (see Register Formats, Section 3). However, if the k designator is 4, 5, or
6, the B value for the comparison will be the lowest 15 bits in the index register
with the 15th bit extended through bit 29, regardless of the IFR setting. The k
designator, which determined Y, determines the bit length of Y to be used in the
comparison as follows:

k = 0, 3, or 7: The bit length of Y (starting from the lower end) w ill be
matched to the bit length of (Bj). If (IFRh6 is a binary 1,
and j = 4, 5, 6, or 7, Y w ill be 17 bits; if neither condition
exists, Y will be 15 bits.

UP~~4049
Rev. 2

UNIVAC 494
CENTRAL PROCESSOR UNIT

--------------------------------------- ___ ~ 4 I PAGE,

k = 4, 5, or 6: Y will be 30 bits, with bits 15-29 an extension of bit 14.

k = 1 or 2: Y will be 15 bits. In this case, the programmer must ensure
that (Bj) contains only 15 significant bits, or that j is a 1,
2, or 3, or that (lFR)26 is a binary O.

Since the j designator is used to specify the index register to be used for the com­
parison, it cannot be used for indicating a skip condition, except where j = 0 (see
Table 3-1). If j = 0 and k = 0, skip the next sequential instruction. This instruction
may not immediately follow an Enter IFR ('7765) or Enter RIR (7766) instruction.

B JUMP ON Bj (72)

If (B j):f + 0, subtract 1 from its contents and jump to Y for the next instruction; if
(Bj) = + 0, or if the j designator is a 0, e~cecute the next sequential instruction.
The significant number of bits in (Bj) is determined by (IFR)26, the j designator
(Table 3-1), and the actual number in (8 i). This instruction may not immediately
follow an Enter IFR (7765) or Enter RIR ~7766) instruction.

TEST AND SET (7752)

Test the bit 14 at y. If this bit is a 0, sc~t bits 0 through 14 to 1 and proceed to the
next sequential instruction; if the bit is a 1, generate the Test and Set interrupt which
leads to an interrupt routine at a fixed address. This bit is a programmable "electronic
switch" which can be turned either on or off, with its state conditioning further program
action.

EXECUTIVE RETURN (7754)

Interrupt the program to a fixed address for an executive routine (see Executive
Control, 2.5).

4. 9. INPUT/OUTPUT INSTRUCTIONS

Input/output instructions cause data and control signals to be transferred between
the CPU and peripheral equipment through I/O channels controlled by a multilevel
priority scale and through buffers assigned to the CPU according to the modl~ (ESI
or lSI) of the transfer (see 2.4 for details of I/O operations). The instructions
activate and terminate buffers and channels, and perform various functions for
keeping the system informed of data availability, program status, and other activities.

The following. typical examples illustrate lUse of the I/O instructions with the
UNISERVO VI C: Magnetic Tape Subsystem (a detailed description of the instructions
is furnished after the three following examples). A description of the required function
codes and status words is presented in the manuals for the individual I/O dE~vices.

Sample 1. Rewind unit 7 on channel 12 with interrupt. This requires two instructions:
the Enter Channel Select register (7773) and the Send External Function
(13) instructions. (In most cases, an Activate Output Buffer Without Moni­
tor (74) with a jdesignator of 1 can be substituted for the Send External
Function (13) instruction.)

27

UP-4049 UNIVAC 494 I . I
__ R_e_v_._2 ________________ . _____ C_E_N __ T_R_A_L __ P __ R_O_C_E_S_S_O_._R .. __ U_N_I_T ________ ~ ____ ~ _______ S_EC_T_I_O_N_: ____ 4 ~ __ ~

Enter Channel Select Register: 7773027654

The lowest order f!,ve bits at address 27654 are 01100, corresponding
to a decimal 12 or octal 14.

Send External Function: 1303012345

The function code at address 12345 would appear as: 0000300007

Instead of the Send External Function instruction, an Activate Output Buffer Without
Monitor (74) could have been substituted as follows:

Activate Output Buffer Without LVIonitor: 7407034567

(Since four bits are allotted to J and two to k, the combination of J = 1
/:'..

and k = 3 would appear as octal-coded 07, as shown above.) The buffer
control word at address 34567 (loaded into the BCR) would be:
0001012345 and the function code at address 12345 would be sent.

Sample 2. Write on logical unit 11, channel 5 with interrupt. Three instructions are
required: the Enter CSR, the Send External Function, and the Activate
Output Buffer With Monitor (76).

Enter Channel Select Register: 7773034567

Send External Function: 1303001010

The function code at address 01010 would be 0000500011.

Activate Output Buffer With Monitor: 7603001020

The buffer control word at address 01020 would be 1.0aded into the
BCR and the successive transfers would take place until the buffer
was emptied.

Sample 3. Read forward 3778 words from logical unit 6, channel 6, starting from
buffer address 20000, with interrupt. Three instructions are required:
the Enter CSR, the Activate. Input Buffer Without Monitor (73), and the
Send External Function.

Enter Channel Select Register: 7773023456

Activate Input Buffer Without Monitor: 7303001022

The input BCR for channel 6 would be loaded with: 0377020000

Send External Function: 1303001016

The function code at address 01016 would contain: 0000600006.

When the buffer is filled with the 3778 words, an interrupt will be generated
within the central processor. The BCR will contain: 0000020400.

NOTE: In the above examples, the Output Data Buffer was activated after the EXFCT
for output while the Input Data Buffer was activated before the EXFCT for in­
put. This convention must be followed.

UNIVAC 494

Rev. 2 CENTRAL PROCESSOR UNIT. 4
PAGE:

UP-~449
._-_. ._--_._---- I SECTIONI

SEND EXTERNAL FUNCTION (13)

Send the one function word (51) together with the External Function signal on the
channel specified by the eSR. No Output Data Request from the peripheral device
need be present for the function word to be sent. The J designator must be 0
(therefore no skip condition can be programmed in this instruction) and the 'f{
designator must be 3, so that a 30-bit transfer can take place. If 'f{ f:. 3, no transfer
can occur. If'f{ f 0, the operator's console audio signal is enabled if Y2 = 1 or
disabled if Y3 = 1. (The instruction uses y + Bb bits if 'f{ = 0.) If 'f{ = 1 or 2, no
operation results. Note that execution of this instruction is governed by I/O func­
tion priority.

STORE CHANNEL (17)

Store, as (y), the status word on the input data lines which accompanies the External
Interrupt signal on the channel specified by the Interrupt Address Storage register.
After the status word is stored in primary storage, send the Input Data Acknow ledge
signal to the input device. The J designator must be 0, and the'f{ designator m1llst be
3. If 1{ = 0, 1, or 2, no operation results. This instruction should be executed as
soon as feasible after the External Interrupt. Note that execution of this instruction
is governed by I/O function priority.

JUMP ON ACTIVE INPUT BUFFER (62)

Jump to Y for the address of the next instruction if the channel specified by the eSR
is in an active input buffer state. A channel is in an active input buffer st~te if the
input BCR associated with the channel is active. The j designator must be O. The

1{ designator is interpreted as follows:

k= 0: Y is y

k= 1 or 3: Y is (Y)L

k= 2: Y is (y)U

JUMP ON ACTIVE OUTPUT BUFFER (63)

Jump to Y for the address of the next instruction if the channel specified by the eSR
is in an active output buffer state. A channel is in an active output buffer state if an
output BeR associated with the channel is active. The t designator must be O. The

A
k designator is interpreted as follows:

k = 0: Y is Y

k 1 or 3: Y is (Y)L

k 2: Y is (~;)U

TERMINATE INPUT BUFFER (66)

Terminate the active input buffer state of the channel specified by the CSR. Both
J and k designators must be O. The band y designators have no effect in this
instruction. Any input transfer in effect at the time of this instruction will be
completed but further input transfers on this channel will be inhibited. No monitor
interrupt will be generated, even though an input buffer may have been activated
with monitor, and the buffer filled.

29

UP-4049 L UNIVAC 494 I I
Rev,_o_2______ ____ C __ Eo_N_T_R_A __ L_P __ R_O_C_E_S_S_O_R ____ U_N_I_T ______ ~ ____________ ._S_E_CT_I_O_N_: ____ 4~~

TERMINATE OUTPUT BUFFER (67)

Terminate the active output buffer state of the channel specified by the CSR. Both
J and ~ designators are normally O. The band y designators have no effect in this
instruction. Any output transfer currently in effect will be completed but further
output transfers will be inhibited on this channel. No monitor interrupt will be
generated, even though an output buffer on the channel may have been activated
with monitor, and the buffer empties by the current transfer. A 67 instruction with

A-
k :: 3 is a No Op in the 494 mode; in the 490 mode it is similar to the 7772 instruction.

ACTIVATE INPUT BUFFER WITHOUT MONITOR (73)

Activate an input buffer on the channel specified by the CSR. Because the input
buffer is activated without monitor, no interrupt will be generated when the buffer is
filled, even though the buffer is deactivated when the word count becomes O. There­
fore, this instruction is normally restricted to lSI input, since the ESI input operation
requires an interrupt to store the ESI location address when the buffer is filled. The
j designator is not used and is normally O. In the lSI mode, the k designator is
normally 3 which causes transfer of a BCW into the input BCR for the channel when
the input channel is activated. A k designator of 0 is used only for ESI operation
but no BCW is moved. In this case, the band y designators are not used. (The BCW
must have been loaded into the ESI location by a prior instruction.) This manner of
ESI input operation requires that the peripheral equipment send an External Interrupt
signal for storage of the ESI location address when the buffer is filled. Possible

A
variations for lSI operation are: a k designator of 1, (Y)OO-14 are transferred to bit

A-
positions 00-14 of the input BCR; a k designator of 2, (Y)15-29 are transferred to bit
positions 15-29 of the input BCR.

ACTIVATE OUTPUT OR EXTERNAL FUNCTION BUFFER WITHOUT MONIIOR (74)

Activate an output or External Function buffer on the channel specified by the CSR.
Because the buffer is activated without monitor, no interrupt is generated when the
buffer is deactivated (word count is 0) as the buffer is emptied. For lSI operation:
an odd-valued J designator indicates an External Function buffer; an even-valued
jdesignator, a data huffer. If an External Function buffer, an External Function
signal is sent with the information on the data output lines; if a data buffer, the
Output Data Acknowledge (aDA) signal accompanies the information on the data
lines. For ESI operation, a j designator of 0 is required thereby preventing trans­
mission of ESI function codes with this instruction. This instruction is different
from the Send External Function instruction (13) in that an ODR is required before
the first function code can be sent and may be used for sending a chain of function

A
codes. In the lSI mode, a k designator of 3 is normally used to transfer a BCW from
y to the output BCR. In the ESI mode, a ~ designator of 0 is required. No BeW is

A-
moved in this case. Possible variations for lSI operation are: a k designator of 1,
(Y)OO-14 is transferred to bit positions 00-14 of the output BCR; a i{ designator of
2, (yh 5-29 is transferred to bit positions 15-29 of the output BCR.

ACTIVATE INPUT BUFFER WITH MONITOR (75)

This instruction is similar to the Activate Input Buffer Without Monitor except that
when the buffer is filled and terminated (the address count in the BCR is 0), a
monitor interrupt will be generated and control will be transferred to an interrupt
routine for further processing, and therefore, it can be used in the ESI mode.

UNIVAC 494

Rev. 2 CENTRAL PROCESSOR UNIT
UP~4049

----- ,--------...--...----...---....----------------...--------
1.0CTlo",

ACTIVATE OUTPUT BUFFER WITH MONITOR (76)

This instruction is similar to the Activate Output Buffer Without Monitor except
that when the buffer is emptied and terminated (the address count in the BCR is 0),
a monitor interrupt will be generated upon Jreceipt of an ODR signal and control will
be transferred to an interrupt routine for further processing.

INITIATE SYNCHRONIZING INTERRUPT (7770)

Send an interrupt signal to either of two collocated central processors working
together. If bit 10 of the y designator is aI, send the interrupt on Synchronizing
Interrupt #0 line (see Figure 2-1); if bit 1 of y + b is a 1, send the interrupt on
Synchronizing Interrupt # 1 line.

STORE CHANNEL NUMBER (7772)

This instruction is valid only within an interrupt subroutine. When this instruc­
tion is used in the Buffer Control Word or)[/0 Data Parity Error subroutine, the
channel number will be stored at y from the Parity Error Channel Storage register
(PECSR). When this instruction is used in an External Interrupt subroutine, the
channel number will be stored from the Interrupt Address Storage register (IASR).
If the instruction is used outside of an interrupt subroutine, a value of 378 will be
stored in Ya .

ENTER CHANNEL SELECT REGISTER P773)

Transfer the lowest order five bits of (y) to the Channel Select register (CSR).

3:

UP-4049
Rev. 2

UNIVAC 494 I Appendix A
CENTRAL PROCESSOR UNIT SEC TION:

APPENDIX A. A.13BREVIATION~3
AI'JO SYMBOLS

A table of abbreviations and symbols used in this manual throughout the text is shown in

Table A-l.

ABBREVIATION
OR

SYMBOL.

A
AQ
B

BCD
BCR

BCW
CP (x)

CPU

CSR
DEC

EI

ESI

EX

EXFCT
EXRN
FP

IASR

IDA

IDR

I/O
lSI

IFR
. ~
J or J

kart

LP(M and N)
MSR

NI

ODA
ODR

P
PECSR

PLR
Q
Rd

Ri
RIR

Rp
St
y
y

y

(Z)

(z)i

(zlt
(z)n

MEAINING

The 30-bit accumulator register
The 60-bit AQ register - a combination of p, and Q registers

Index register
An ind icator in an instruction word, refen ing to an index register

Binary-coded decimal number
Buffer Control register

Buffer Control Word

The ones complement of the quantity within the parentheses

Central Processor Unit
Channe I Select register

Decimal
External Interrupt

Externally specified index mode of chann'91 operation, generally used with multiplexed

communication equipment

Exponent portio n of a floating-point number wh ich cons ists of an exponent and a
fixed-point part

External Function
Executive Return

Fixed-point part of a floating-point number
Interrupt Address Storage register

Input Data Acknowledge

Input Data Request

Input/Output

Internally specified index mode of channel operation, generally used with standard
peripheral equipment such as drums, card readers, etc.

Internal function register
An instruction sequence modification indicator within an instruction word, generally

specifying the conditions for a skip (j'used in I/O instruction word)

An operand modification indicator within an instruction word, generally defi.ning the

source and/or destination of the operand in the instruction (k'used in I/O instruction word)

The logical product of (M) and (N); the nth bit is a binary 1 if (M)n and(N)n are both binary l's.
Memory Select register

Next Sequential Instruction

Output Data Acknowledge

Output Data Request

Program register, containing the address of Hither the current or the next instruction

Parity Error Channel Storage register

Program Lock-In register
Quotient register
Read class instruction

Relative index
Relative index register

Replace class instruction

Store class instruction

The low order 15 bits of an instruction word
The sum of y and the contents of the index r'9gister specified by b. Depending upon the
other contents of the instruction word, y may be a directly used effective operand or a

relative address (containing the operand of the instruction).
The operand of an instruction, from whatever source derived. This operand is determined
by the instruction, y, and/or the k designator of the instruction.

The contents of the regi ster or memory location denoted by z.

The initial contents of z (before execution of instruction)
The final contents of z (after execution of instruction)
The nth bit of the contents of z, starting from 0 at the right or least significant position
Direction of data tr ansfer

'--________ L-_______________ ._. ________________________ _

Table A -7. Abbreviations and Symbols

1
PAGE:

w FUNCTION
Q.

CODE INSTRUCTION CLASS >-
t-

(OCTAL)

01 Right Shift Q Rd

02 Right Shift A Rd

03 Right Shift AQ Rd
t-
u. 05 Left Shift Q Rd
:t: 06 Left Shift A Rd en

07 Left Shift AQ Rd

7751 Logical Right Shift Q -
7755 Logical Right Shift A -
7756 Logical Right Shift AQ -
7730 Scale Factor Shift -

10 Enter Q Rd

11 Enter A Rd

12 Enter Bj Rd

I 14 Store Q St

I
15 Store A St

16 Store B j St

I
7721 Enter AQ -
7725 Store AQ -
7731 I Character Pack Lower I -

a:::
w
U.
en 7732 Character Pack Upper z
-c
a:::
t-

7735 Character Unpack Lower

7736 Character Unpack Upper

7761 Enter I FR and RI R

7762 Load Program Lock-In Register

7765 Store IFR

7766 Enter RIR

7771 Enter B-Worker

7775 Store B-Worker

OPERATION

Shift Q register right with sign-fill

Shift A right with sign-fill

Shift AQ right w'ith sign-fill
by YOO-05 positions

Circular-shift Q to left

Circular-shift A to left

Circular-shift AQ to left

Shift Q to right with zero-fill

Shift A to right with zero-fill

Shift AQ to right with zero-fill

Circular-shift A to left until bit 29., bit 28

y---.Q

Y---'A

Y --. ~; if j = 0, no operation

Q---'Y; if k = 0, CP(Q)~ Q

A----'Y; if k = 4, CP(A) ~A

(Bj)~Y; if j = 0, O's~Y

(Y)---'A and (y+l)~Q

A~(y) and Q~(y+l)
- - - -(y)00.Q5--+A 24_29, (y+l)OO{!S~A18-23' (y+2)Oo-OS--..A12-17 , (y+3)00-{)5~A06~1l' I

(y+4)00-05 ~ A 00-05

(y)15-20--+A24-29' (ytl)15-20--+AI8-23' (yt2)15-20~A12-17' (yt3)15-20---"'A06-11'

(y+4)15-20--+AOo-05

A24-29~(Y)OO-05' A18-23 --+(y+l)00-05' AI2_17--+(yt2) 00-05' A 06-11--' (yt3)OO-Q5,

AOO-o5--+ (y+4)00-05

A24-29 ---. (Y)15-20' A 18-23--' (ytl)15-20' A12-17~(yt2)15-20' A06-11 --+(yt3)15-20,

AOO-DS--'{yt4)15-20
(y)-.IFR, (ytl) --.. RIR (executive mode only)

06-16
{Y)--..... Program Lock-In Register (executive mode only)

IFR---.(y) (executive mode only)

(y)06-17---..RIR (executlve mode only)

(y)L ---...B1, (yt1)L ~ B2, (yt2) L ~ 83, (yt3)L ----. B4, (y+4) L---...B5, (yt5) L---.B6,

(YtG)L B7

Bl---",(y)L' B2--'(yt1)L' B3--.....(Yt2)L' B4---'(yt3) L,---'B5---.(Y+4)L'

B6--.....(Yt5)L' B7---...(Yt6)L

Table B-7. Repertoire of Instructions
(Part 7 of 5)

:t>
""0
1]
m
Z
o
X
[D

nc
mz
Z<
-t>
:::an
>.1:0-.:
."
:::a
o
n
m
va
va
o
:::a
c
z
-I

UI
f!1
n
-i

o
Z

1)

»
G)

fT1

FUNCTION

TYPE , - CODE INSTRUCTION

(OCTAL)

I
20 Add A

21 Subtract A

22 Multiply

23 Divide

24 Replace A -I- Y

25 Replace A - Y
z 26 Add Q

I
wQ
..JV') 27 Subtract Q et: C)-

W z~ 30 Enter Y t Q

I C) Viet:
W Il.. 31 Enter Y - Q l-

I z 32 Store A + Q -
33

I
Store A - Q

u 34 Replace Y + Q -
t- 35 Replace Y - Q
w 36 Replace Y + 1
~
:I: 37 Replace Y - 1
t-

~.z 7722 Add AQ -
et: UlW~

7724 Complement AQ ;:)0::1.1) < 00..-o U 7726 Subtract AQ

...I 7701 Floating-Point Add
<

7702 Floating-Point Subtr act ~
z 7703 Floating-Point Multiply w
z 7705 Floating-Point Divide
0
Il.. 7706 Floating-Point Pack x
w 7707 Floating-Point Unpack

7710 Decimal Test

...I 7711 Decimal Add
< 7712 Decimal Subtract ~

u 7714 Decimal Complement AQ w
0 7715 Decimai Add With Carry

7716 Decimal Subtract With Borrow

7733 Decimal Convert Lower

7734 Decimal Convert Upper

CLASS OPERA TlON

Rd

I
Y + Ai --+- At

Rd Y - Ai --+- Af

Rd (Q) (Y) --+- AQ

Rd (AQ)i /Y --+- (AQ)f; Quotient --+- Q, Remainder --.. A

Rp Ai t Yi --.. Af and Yf
Rp Ai : Yi --.. At and Yf
Rd Qi + Y --. Qf
Rd Qi - Y --+- Qf
Rd Y+Q--..A

Rd Y-Q~A

St Ai + Q ~ Af and Y
St Ai - Q --+- Af and Y
Rp Yi + Q --+- Yf and A

Rp Yi - Q ---.-Yf and A

I Rp Yi t l~Yf and A

Rp Yi - l~Yf and A

- (AQ)i t (y, Y t 1) ---+-(AQ)f

- CP(AQ)i --+- (AQ)f
- (AQ)j - (y,ytl) ---'-(AQ)f

- (AQ)i t (y, y+l)---..(AQ)f

- (AQ)i Q (Y. ytl)---..(AQ)f

- (AQ)i (y, ytl)---..(AQ)f

- (AQ)i /(y, y+l)~(AQh with remainder discarded

- Y EX and (AQ)F X P ~(AQ)f as floating-point number

- (AQ)EX~Y

- Sk.ip as indicated by BCD test

- (AQ) i t (y, ytl)-----..(AQ)f

- (AQ)i - (Yo itl) -----.. (AQ)f

- Y even, tens CP(AQ)j • (AQ)t; y odd, nines CP(AQ)j

- (AQ)j t (y, ytl) t previous carry ~(AQ)f

- (AQ)j - (y, y+l) - previous borrow~(AQ)f

- (Y)0-3' (Ytl)O_3'·· . , Cy+4)0-3 BCD ~AQBINARY

- (Y)15-l8' CYtl)15_l8'···' (yt4\5_18 BCD--+--AQBINARY

Table B-1. Repertoire of Instructions
(Part 2 of 5)

• (AQ)f

nc
m Z
Z<
-t»
;;an
~~
r-~
'"tJ
;;a
o
n
m
(I'
(I'

o
;;a

c
Z
-t

III
[11

~ ::r>
o '0
Z 'g

::l
0..
x
to

, .
w FUNCTION
a.. CODE >-.... (OCTAL)

40

41

42

44

45
46
47

..J 50 «
u 51
t5
0 52
..J

53 I

I 54
I
I 55
!
I 56

I 57

I 04 I
43

7713 w
~ 7717 «
a.. 7723
~
0 7727 u

7753

7757

INSTRUCTION CLASS OPERATION

Enter Logical Product Rd LP(Y.Q)---+-A

Add Logica I Product Rd A t LP(Y.Q)~A

Subtract Logical Product Rd A - LP(Y.Q)~A
Replace Logical Product Rp LP(Y.Q)~Y and A

Replace A t Logical Product Rp A t LP(Y.Q)~Y and A
Replace A - Logical Product Rp A ~ LP(Y.Q)~Y and A
Store Logical Pr·oduct St LP(A.Q)~Y

Selective Set Rd Set (A)n to 1 where (Y)n = 1

Selective Complement Rd Ones-complement (A)n where (Y)n = 1

Selective Clear Rd Clear (A)n to 0 where (Y)n = 1

Selective Substitute Rd (Y)n~(A)n where (Q)n = 1

Replace Selective Set Rp Set An= 1 where Yn = l;~ (Y}f and (A)f

Replace Selective Complement Rp Ones-complement (A)n where (Y)n = 1 ;~Yf and (A)f
Replace Selective Clear Rp Clear An to 0 where Yn= 1;~Yf and (A)f
Replace Selective Substitute Rp Yn~An where Qn = 1;~Yf and (A)f

Compare i Rd I Compare Y to A and lor Q to deteimine skip (algebraic)

Compare Masked Rd Compare A to LP(Y.Q) to determine skip (algebraic)

Decimal Compare Equal - Skip NI if (AQ) BCD = (y, ytl) BCD- neglecting zones (algebraic)

Dec imal Compare Less - ·Skip NI if (AQ)BCD < (y, ytl) BCD neglecting zones (algebraic) ,
Compare AQ Equa I - Skip NI if AQ = (Y, ytl) (algebraic)

Compare AQ Less - Skip NI if AQ < (Y, ytl) (algebraic)

Masked Alphanumeric Equal - Skip NI if LP(A and Q) = LP(Y and Q) (alphanumeric sign not recognized)
Masked Alphanumeric Less - Skip NI if LP(A and Q) < LP(Y and Q) (alphanumeric sign not recognized)

Table 8-7. Repertoire of Instructions
(Part 3 of 5)

i

I

FUNCTION w
Q. CODE INSTRUCTION >-... (OCTAL)

60 Jump- Ar ithmetic

61 jump-Manual

64 Return Jump-Ar ithmetic

65 Return Jump-Manual

7737 Execute Remote

7740 Unconditional Jump
Q.

~ 7741 Enter Bl and Jump
:::l
~ 7742 Enter B2 and Jump

7743 Enter B3 and Jump

7744 Enter B4 and Jump

7745 Enter 65 and Jump

I I
7746

I
Enter 66 and Jump

7747 Enter 67 and Jump

. 70 Repeat
We.!)

71 6 Skip on 6 j UZ z-w>- 72 6 Jump on B j
:::l~
00 7752 Test and Set
wO
V'I~ 7754 Executive Return

CLASS OPERATION

Rd Y'--" P ; if j = 0 or 1 release interrupt lockout (RIL)

Rd y~ P ; dependent upon keys

Rd (P - RIR)~ YL and jump to Y + 1 ; if j = 0 or 1 set interrupt lockout (SIL)

Rd (P - RIR)---+--YL and jump to Y + 1 ; dependent upon keys

- Execute instruction at y and then return to P + 1 (conditional)

- Jump to Y

- (P - RIR) ---. Bl and jump to Y

- (P - RIR)---. B2 and jump to Y

- (P - RIR)~B3 and jump to Y

- (P - RIR)---+-- B4 and jump to Y

- (P - RIR)~ B5 and jump to Y

-

I
(P - RIR)--.. 66 and jump to Y

- (P - RIR)--.. B7 and jump to Y

Rd Repeat NI (Y) times

Rd If (Bj) = Y , ~kip NI and clear Bj; if (Bj) =1= Y, advance (Bj) and execute NI

Rd Jump to Y if (Bj) f. +0, (Bj)f = (Bj)i - 1; if (Bj) = +0, execute N I

- If switch is set, interrupt; if not set, then set and execute NI

- Interrupt

Table B-7. Repertoire of Instructions
(Part 4 of 5)

I

nc
m Z
Z<
-4~
:;vn
~~ .-:
."
:;v
o
n
m
CIt
CIt
o
:;v

c
Z

-4

III
(T\
(j

I ~ >
"0
"0 ,- Q

I ::s
a..

I
....
X

to

'tI
)-

G'l
(T\

I
I
I
I

I

w
~

>-
I-

I-
~
~
I-
~
0
"-
l­
=:;
~
z

FUNCTION

CODE

(OCTAL)

13

17
62
63
66
67
73
--
74

75
76
7770
7772
7773

INSTRUCTION

Send External Function

Store Channel

Jump On Active Input Buffer

Jump On Active Output Buffer

Terminate Input Buffer

Terminate Output Buffer

Activate Input Buffer Without Monitor
- -- - - -- . . ~ - ~ --Activate uutput tsuner Wltnout MOnitor

Activate Input Buffer With Monitor

Activate Output Buffer With Monitor

Initiate Synchronizing Interrupt

Store Channel Number

Enter Channel Select Register

CLASS OPERATION

Rd (y)---.. external equipment with External Function signal

St Status word ----.. Y

Rd Y ~ PifChj active

Rd y~ P ifChj active

Rd Terminate buffer

Rd Terminate buffer

Rd Activate buffer
-- .

Ra Activate Duffer

Rd Activate buffer

Rd Activate buffer

Send interrupt (Executive mode only)

IASR or PECSR ~ Y (Executive mode only)

Y ~ (Channel Select Register) (Executive mode only)

Table B-7. Repertoire of Instructions
(Part 5 of 5)

I

L71 c:: I AI 'T'1

I
,ro .-

<: ,J::..
• 0

i

tv ,J::..
\0

Oc:
mZ
Z<
-I>
:::on
>~ r:
"tJ
:::0
o
o
m
CI'
CI'
o
:::0

c:
Z
-I

~
I
i

UNIVAC 494
UP-4U09
Rev. 2

.. _-_.- ,---------------------,
CENTRAL PROCESSOR UNIT

1 Appendix C I
__ --~ ___________ ~SE_C_T_I_O_N_: ___ ~._E_:..._ ___ _

APPE~DIX C. INTEGER ADDITIOr\l
ANC) SUBTRACTION

The following description of integer addition and subtrac:tion in the UNIVAC 494 CPU is included
for interest to the programmer.

C. L INTEGER ADDITION

The adder uses subtractive-type logic internally ac:cepting operands (A) and Y directly
for addition. The result is formed by two half-subtracts. The first half-subtract results
in a ones-complemented difference and (possibly) a borrow which is propagated until
it is "satisfied" by a stage where (A)n = Y n. A borrow is generated only at a stage
where (A)n = Y n is equal to O. If the borrow is not satisfied or if a borrow is generated
at the highest order bit positions, the borrow becomes an end-around borrow and is
propagated from the lowest order bit positions until satisfied. If it cannot be satisfied,
it is propagated around back to the point where it: was generated. The following truth
table describes generation of the complemented difference and generation of a borrow
at each bit position for the first half-subtract:

Yn
COMPILEMENTED

BORROW (A)n
DIFFERENCE

0 0 1 1
0 1 0 0
1 0 0 0
1 1 1 0

.. --------_._----

The second half-subtract subtracts all borrows from the result of the first half-subtract.
It is a bit-by-bit subtract, generating only a difference (no borrow). The following
examples illustrate the operation of the addition IProcess (using nine-bit numbers with
highest order bit reserved for sign):

1. (A) = +3438
Y = - 1158

+2268

2. (A) = -3348
Y = +2628

-0528

(A) 0 1 1
Y 110

100
110

011
010

01010 1 110
1;++ 1-

010 010 110

100 1 0 0
o 1 0 1 1 0

011
010

00110 1 110
r+-+ 1--i- 1- 1-+-.
• I
I I

Sum I 1 1 1 0 1 0 1 0 1 I
~------------------------~

Complemented difference
Propagated borrows

Second half-subtract and
final sum

UP-4049
Rev. 2

C.2.

I

Appendix C
• SECTION: PAGE:

2 UNIVAC 494
CENTRAL PROCESSOR UNIT

INTEGER SUBTRACTION lj'
Integer subtraction is similar to integer addition except that the operand Y is first ones-
complemented before being inserted into the adder in place of Y. The same truth table
governs operation except that CP(Y)n is used in place of Y n' The following examples
illustrate operation of the subtraction process:

1. (A) = +000 (A) 0 0 0 0 0 0 0 0 0
Y = +000 CP(Y) = 1 1 1 1 1 1 1 1 1

+000 0 0 0 0 0 0 0 0 0 First half-subtract
(N 0 borrows)

0 0 0 0 0 0 0 0 0 Difference

2. (A) = +3438 (A) 0 1 1 1 0 0 0 1 1
Y = +1158 CP(Y) 1 1 0 1 1 0 0 1 0

+2268 0 1 0 1 0 1 1 1 0 First half-subtract
1 1 1 Borrows

----.-
0 1 0 0 1 0 1 1 0 Difference

3. (A) = -251.8 (A) 1 0 1 0 1 0 1 1 0
Y = -2418 CP(Y) 0 1 0 1 0 0 0 0 1

-0108 0 0 0 0 0 1 0 0 0 First half-subtract

I 1 1 1---4--1-1- 1 1 1 1 Borrows
I ----I I

1 : Difference I 1 1 1 1 o 1 1 1 ~ ________________________ J

FUNCTION

CODE

01

02

03

04

05

06

07

10,11

12

I 13

I 14, 15, 16
I

17

20,21

2 ~ ,23

24;25
I ?I=: ?, ~n '<1 I _v.;~:~;.v.
34,35,36,37

40

41

42

43

44,45

46

47

50,51,52,53

54,55,56,57

60,61

MODIFYING CONDITIONS

(j1'4,5)/0=4,5)

014,5)/(j=4,5 and first test
determines skip or no skip)

U=4,5 and both tests required to
I determine skip or no skip

I
!
I
I

I

01'2,3)/0=2,3)

(j 1'6,7)/0=6,7)

Bj=O or Bj;::(Bb of NI)

BlO and Bj=(~ of N I)

k=3/k13

(j;i 6,7)/(j=6, 7)

(j #6 ,7) / (j =6 , 7)

0;::2,3)/0=2,3)

01'6,7)/0=6,7)

(j =0, 1,2,3)/(j=4 ,5,6,7)

Jump satisfied: k=0,4;t0,4

Jump not satisfied

NOTE: All time in nanoseconds.

AL TERNATE BANK SAME BANK TIME

T!ME k=0,4 ! k=7

750 750 750

750/964 750/964 750/964

964 964 964

750/857 750/857 750/857

964 964 964

I
750/857 750/857 750/857

750/857 750/857 750/857

1071 1071 1071

750 750 750

750 750 750

857 857 857

2889 min./750 2889 min./750 2889 min./750

750 750 1500

2889 min. 2889 min. 2889 min.

750/857 750/857 750/857

7277 7277 7277

1500 1500 1500

750/857 750/857 750/857

1500 1500

1500 1500 1500

750/1071 750/1071 750/1071

750/857 750/857 750/857

964 964 964

750/964 750/964 750/964

1500 1500 1500

1607 1607 1607

750 750

750 750 750

1500 1500 1500

750/1500 750 1500

750 1500 750

Table D-7. Instruction Execution Time
(Part 7 of 3)

k=1,3,5,6

1500

1500/1714

1714

1500/1607

1714

1500/1607

1500/1607

1821

1500

1500

1500

2889 min./750

1500

2889 min.

1500/1607

8027

2250

! 1500/1607

i 2250

2250

1500/1820

1500/1607

1714

1500/1714

2250

1

4357

1500

1500

2250

1500

1500

() ,....,..
~

0 ~ III ::l 0 0"
~O ...-
c:"O ro
o CD Cj
::l '"1 I
m III I--'-

c:~

I

~ ::l ~ ::r'C1tl ::r' (;. 3 (;. » ::r'&::r'
3 CD

-U III m 0 nc:
'<,,-....:::::: mz
3 00

-U Z< o 0.. ~
o..o..m -I>

I ~ ;:::on ~. CD m <: ~.IIo. '< CD ~
'"1 r: ,....,..

::l ::l Z ::r' 00' CD III "0 0.. ::r' m 0.. CD 0
~

"0 '"1 m 0 CD CD
CD m ,....,.. n
0.. m ::r' m 5' CD

X 0 CD CI'
"""C1tl

~ CI'
CD III CD 0
~ ::l () ;:::0 CD 0.. ~ () ,....,.. 0 ~ () o· c: ,....,..

0 o· ::l ::l Z
?

,....,.. ,....,..
5" s" -I
~ m 0 CD 0 ~ 0 m ~

X III CD " 0.. III
0.. () m '"1 ::r' CD
m 5" - n m

Z 5" m ,....,..

C1tl '"1

C s::" ()

CD ,....,.. ,....,..
0 0" -t C1tl -t CD ::l ,....,..

5" -::r'
CD lJ 0 '"1 CD

~"
III
()

C Z ,....,.. ::r' III
::r'

0
JT1

III, n 0

::l ,....,.. -i >
'< ::r' 0 "0

CD

~ -t z "0
CD - ::l

n "7 ~
:<

U ~ Cj

Z m
en "0

»
(i)

JT1

FUNCTION
CODE

MODIFYING CONDITIONS

...
62,63 Chj active:k=O/~O

Chj inactive

64,65 Jump satisfied: k=0,4/"i 0,4

Jump not satisfied

66,67

70 k=0,4,7/k~0,4,7

71

72 Jump satisfied: k=0,4HO,4

I Jump not satisfied

I 73,74,75,76 k=0/k=3

7701,7702

I
Sum=±O/sum~±O

7703

7705 I I mantissalAQ'::: Imant~ Y ,Y +1

I
Imant·IAQ < Imant.1 Y, Y +1

ly,y+lI=o

7706 (AQ)=!O/(AQ)#O

7707,7710

7711 Like signs/un like signs

7712 Unl ike signs /Iike signs

7713

7714

7715 Like signs OR AQ < Iy ,Y +11

Unlike signs AND AQ .:::Iy ,Y+11

7716 Unlike signs OR AQ < (Y ,Y+1)

Like signs AND AQ .::: (Y,Y+1)

NOTE: All time in nanoseconds.

I

I

AL TERNATE BANK
TIME k=0,4

...
750/1500 750(no k=4)

750 1500

1500/2250 1500

750 1500

750 750

11285/1500 1285

I 750 750

I 750/1500 750

750 1500 I 750/1500
...

750 (no k=4)

I 2356/2998

112093 I
12200

12414

1607

857/1500

750

2035/2249

2035/2249

1500

1285

2035

2249

2035

2249

Table D-l. Instruction Execution Time
(Part 2 of 3)

SAME BAN K TIME
k=7

no k=7

2250

750

750

1285

750

1500

750

no k=7

2991/3641

12843 I
12950

13164

2357

1607/2250

1500

2785/2999

2785/2999

2250

1500

2785

2999

2785

2999

k= 1 ,3,5,6

...
1500 (no k=5,6)

1500

2250

1500

750

1500

1500

1500

1500 ...
2250 (k=3 on Iy)

i

nc:
mz
%<
-f~
:;an
>A r::
'"til
:;a
o
n
m
CIt
CIt
o
:;a

c:
%

-f

FUNCTION

CODE

7717,7721,

7722,7723

7724

7726,7727

7730

7731,7732,
7733,7734,
7735,7736

7737,7740,
7741,7742,
7743,7744,
7745,7746,

7747

7751

7752

775.3

7754

7755

7756

7757

7761

7762,7765,7766

7770

7771

7772,7773

7775

MODIFYING CONDITIONS
AL TERNATE BANK

TIME

1500

750

1500

857

3750

750

750

1821

750

1285

750

857

750

1500

750

750

5250

750

5250

NOTE: A II time in nanoseconds.

Table D-7. Instruction Execution Time
(Part 3 of 3)

SAME BANK TIME

2250

1500

2250

1607

4500

750

1500

1821
,rnn
~\)VV

1285

1500

1607

1500

2250

1500

750

6000

1500

6000

I

I ~ c:

I'.~ ! ·0
N~

\0

~

nc
m Z
Z<
-4>
:;:00
~~

.... :

."
:;:0

o
n
m
CIt
CIt
o
:;:0

c:
Z
-4

Ul
(!l
()

-t >
o "0
Z "0

('1)
:l
p,.
X

o

UP-4049 Rev. 2

	0000
	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	D-01
	D-02
	D-03
	xBack

