
Since each A pollo manned space flight makes new demands on the 
computer configuration and operating system, data processing ef­
ficiency is tested before each flight by simulation described in this 
paper. 

Discussed is the dynamic gathering of operating system performance 
data during real-time simulation, achieved by incorporating appro­
priate routines in the Apollo controll'1'o{jTam. The data thus collected 
is used as input to improved system models. 

The effect of the statistics gathering routine on systems performance 
can be measured. 

Statistics gathering and simulation 

for the Apollo real-time operating system 
by W. I. Stanley and H. F. Hertel 

In monitoring Apollo manned space flights, National Aeronautics 
and Space Administration flight controllers must rely on a complex 
real-time computing system. Trajectory and telemetry data, pro­
viding both positional and environmental parameters of the space 
vehicle and the astronauts, must be processed immediately upon 
arrival at the Real Time Computer Complex (RTCC) via a world­
wide telecommunication network. Computers, peripheral equip­
ment, and programming support, as shown in Figure 1, must be 
efficient enough to avoid a backlog. 

In addition to their primary purpose of supporting manned 
space flights, RTCC computers support real-time space-flight simu­
lations. These simulations generate trajectory and telemetry data 
to test the mission support system and to train flight controllers in 
an environment that closely approximates an actual mission. 

Each Apollo mission presents the RTCC with a unique set of 
processing requirements. For example, real-time data sources may 
change in number, arrival rate, or message size. These and other 
such factors cause changes in the performance of real-time com­
puting systems. So that changes do not cause the systems to per­
form below acceptable limits, performance of current systems is 
measured and that of future systems is modeled. Performance 
measuring as well as design modeling and simulation are the main 
subjects of this paper. These techniques are a formal method of 

NO.2· 1968 STATISTICS GATHERING AND SIMULATION 85 



Figure 1 Real Time Computer Complex programming system 

DISPLAY MANUAL 
UPDATES REQUESTS 

processing 

requirements 

86 

DYNAMICALLY 
ALLOCATABLE 
FROM LCS 

L-________________ ~ ______ _ 

1 MEGABYTE 
MAIN MEMORY 

2 MEGABYTE 
LARGE CAPACITY 
STORAGE 

assuring that RTCC performance requirements are met in advance 
of computer system delivery. This paper introduces processing 
requirements and the operating system briefly. Later, performance 
measuring and modeling tec'hniques are discussed as they are used 
in studying the design of future systems. 

To date, the most important Apollo mission areas requiring 
modeling are the launch and orbit phases. The launch phase consists 
of two periods: powered flight and a brief period of computation, 
called "hold." Powered flight processing consists primarily of two 
asynchronous processing cycles (trajectory and telemetry) com­
peting for all system resources. During hold, go/no-go and abort 
computations operate as background to the higher-priority tra­
jectory and telemetry cycles. It is imperative that the response of 
the hold cycle be within certain allowable limits. At the same 
time, the responses of the two faster cycles, trajectory and telem­
etry, must not be seriously impacted. Because of the load of cyclic 
processing, the critical system resource during launch is the cen­
tral processing unit (cpu). Launch-phase modeling is primarily 
concerned with the evaluation of the ability of the computer to 
maintain all cyclic responses. 

In the orbit phase, telemetry and trajectory processing are done 
only when the spacecraft is in range of an adequately equipped 

STANLEY AND HERTEL IBM SYST J 



station. Even then, the processing magnitude of orbit phase is 
much smaller than that of the launch phase. However, other tasks 
are normally performed during orbit: mission planning (rendezvous 
computations and orbital changes), updating trajectory predictions, 
and calculating time-to-fire. In general, these tasks do not have 
severe response requirements and operate as background to orbit 
cyclic processing. Thus, they do not necessarily impose a heavy 
load on the system CPU. However, the program and data sizes 
associated with these tasks are quite large. Because a number of 
these tasks can be in process at anyone time, such tasks can make 
serious storage demands. Therefore, just as launch-phase modeling 
is centered on the evaluation of CPU capabilities, orbit-phase 
modeling primarily studies main storage and large-capacity storage 
availability. 

Support for the Apollo space flights consists of five SYSTEM/360 

l\1odel 75 computers and a modification of the SYSTEM/360 Oper­
ating System (OS/360). The decision to use OS/360 as a real-time 
operating system to support the stringent response requirements 
(real-time data messages arrive at rates of 50 messages per second) 
was not without problems. First, the performance of OS/360 had 
been essentially untried in an application of this magnitude. 
Second, RTCC controls the computer time sharing and peripheral 
I/O devices among many semi-independent jobs that operate 
asynchronously, but share or reference some of the same data. 
Third, the first system had to be operational by the last quarter of 
1966, which left little leeway for misjudgment of performance or 
miscalculation in design. 

The following introduces the RTCC real-time operating system 
(RTOS/360) and briefly describes how statistical and simulation 
methods are used to analyze its design and performance. 

RTOS/360 is basically OS/360 (multiprogramming with a variable 
number of tasks) with modifications to the nucleus to increase 
efficiency in the RTOS environment and to provide additional real­
time capabilities. Part of the deviations from OS/360 result from 
the need to effectively use a one-megabyte SYSTEM/360 Model 75 
with an additional two-megabyte Large Capacity Storage (LCS). 

Other modifications are: supervisor services that interface with 
specialized methods of data management, a modified definition for 
task management, and new receiving and routing logic for incom­
ing telecommunication data. The following items suggest the scope 
of RTCC changes to existing OS/360 routines that significantly im­
prove system performance when executing an RTCC real-time job 
step. Program fetch was modified to use LCS as a residence for 
load modules and real-time data tables. The capabilities of load­
ing LCS from a disk and loading main storage from LCS were added. 
The main storage supervisor (MSS) was modified to use LCS as an 
extension of main storage. The main storage supervisor was mod­
ified to include storage allocation algorithms tailored to the real­
time environment. Temporary storage for system control tables 
is obtained from fixed-size pools instead of from MSS. 

NO.2· 1968 STATISTICS GATHERING AND SIMULATION 

operating 

system 

87 



88 

Some design changes were necessary to allow several independ­
ent units of work to share computing resources. Thus, the concept 
of "independent task" was introduced. An independent task is a 
sub-job step that can share programs and data with other tasks 
and can be referenced by a symbolic task name, which allows a task 
to have a queue of work that it performs serially. An independent 
task has a dormant state that allows the task to remain known to 
the system although it has no current work. The dormant state 
permits cyclic processing since independent task resources are 
saved until the next data frame or processing cycle when the task 
becomes active again. Independent tasks may be created and de­
stroyed without affecting the operation of other independent tasks. 

Data tables were added to the data management services 
offered by OS/360. Data tables are referenced symbolically with a 
system name in much the same way as a load module. Data table 
services do not require OPEN or CLOSE macroinstructions to be 
executed. Data table macroinstructions are not access mechanisms 
to I/O devices; rather, they reference the named data or storage, 
which may be allocated in Les or in main storage. 

Control program services were added to control the RTOS/360 

logic that receives and routes real-time input data arriving over 
the telecommunication lines. This logic provides RTOS/360 with an 
efficient method of identifying input data by using parameters 
supplied by the application programs. Data is buffered and routed 
to a work queue of the proper independent task. These and other 
control program services modify OS/360 to form RTOS/360, which 
supports the RTCC real-time application systems created for the 
Apollo project. 

In deciding which design alterations and which i~plementation 
changes yield the best performance, two evaluation techniques 
are used. A Statistics Gathering System (SGs) obtains timing and 
frequency statistics on RTOS/360 control program services as well 
as all application programs. The General Purpose Simulation Sys­
tem (GPSS)1.2 predicts expected performance (given the SGS sta­
tistics) of both real-time job steps and job-shop operations. 

In an initial simUlation, actual performance statistics are gen­
erally not available.3 However, initial simulations can and should 
be performed during the systems design stage to evaluate the 
machine and basic program design together. Performance statis­
tics for models used in the initial simulation are based on perform­
ance statistics of similar systems. As the programming com­
ponent of the computer system is developed, actual performance 
statistics are gathered and added as refinements to the model. 
Thus, as the computer system is being developed, the model pro­
vides a more accurate evaluation of the programming design. 

Measuring system performance 

To measure the performance of a real-time system and monitor 
its execution, a comprehensive Statistics Gathering System (SGs) 

STANLEY AND HERTEL IBM SYST J 



was developed. SGS, a program and not a hardware device at­
tached to the computer, provides an accurate means of measuring 
performance on RTOS/360 by collecting: 

• Timing information on control program services and application 
programs 

• Percentage figures showing how definable system functions use 
the CPU resource 

• Elapsed-time figures showing task re8ponse time in a multi­
programming environment 

An interface with RTOS/360 enables sGS to record time, logic 
flow, and frequency statistics. Although SGS degrades performance, 
it does not push the processing load to the point of failure. SGS 

relies on the fact that a real-time system normally operates with 
enough idle time or surplus capacity to allow the system to handle 
peak load processing surges. (While statistics are being collected, 
some surplus capacity is used up; thus, the time to process a peak 
load is lengthened.) In the normal job-shop environment, where 
SGS monitors the FORTRAN compiler, assembler, or execution job 
step, the monitored job step takes longer to complete. In both the 
real-time and job-shop environments, SGS gives the percentage of 
computer capacity used by itself in collecting and reporting sta­
tistics. This feature allows the analyst to remove the effect of 
SGS from statistics on the actual system. 

The SGS design for RTOS/360 is patterned after an earlier version 
used with the Gemini 7094 executive control program. Experience 
shows that dividing the obtainable statistics into several inde­
pendently selected categories reduces the impact on normal per­
formance of the system. Six general categories of statistics have 
been defined for SGS: 

RTOS/360 statistics provide execution times and frequencies for con­
trol program functions, i.e., the control program services and other 
control program routines. 

Load module statistics provide execution times and frequencies for 
each load module and show the number, type, and CPU utilization 
for control program services used by each load module. 

Gross CPU utilization statistics provide the percent utilization of the 
CPU by RTOS/360 and by the application system, the percentage of 
capacity spent waiting for I/O operations, and the percentage of 
capacity spent idle, i.e., time when no work is in process and none 
is queued waiting to be processed. 

Independent-task statistics provide frequencies with which named 
tasks are executed, average response times for the tasks, and 
computer capacity used by them to perform assigned work. 

Ilo device statistics provide frequencies with which I/O devices 
are used. 

NO.2· 1968 STATIS'rICS GATHERING AND SIMULATION 

statistical 

categories 

89 



initialization 

90 

Logic traces provide the logic flow and CPU execution time of the 
logic required to satisfy an application program request for a 
control program service. 

SGS accounts for all CPU time. Symbolic clocks are kept on each 
program segment identified to SGS. Time not spent executing pro­
grams is tallied either as time spent waiting for I/O or as idle time. 
A notable characteristic of SGS timing statistics is that the meas­
ured execution time of the instruction logic of each system func­
tion is independent of other system functions. Elapsed times for 
r/o operations and execution of other functions are accrued sep­
arately. The statistics obtained are more nearly independent of 
the environment in which they are obtained. Therefore, timing 
statistics may be used in a model of a real-time system that sim­
ulates a different operating environment from the one in which 
the statistics were obtained. 

Statistics gathering is divided into three phases: initialization, 
collection, and reporting. A user may select one or more of the 
six categories of statistics by entering control parameters to start 
and stop the selected categories according to time or the initiation 
and termination of a job step. These control parameters, which are 
entered via the job stream or an on-line typewriter, are passed to 
the SGS independent task to start the initialization phase. All SGS 

logic is implemented as transient load modules to minimize the 
impact of size on storage allocation for an operational system. 

The first phase initializes the RTOS/360 nucleus enabling control 
to pass to SGS collection routines whenever the CPU begins executing 
instructions for a new or different system function. The definition 
of system function used by SGS is the change of processing pur­
pose implied by CPU interruptions. Since each purpose requires 
its own implementation, the implementation logic and purpose 
define a system function. The interface with RTOS/360 is via the 
new program status words (psw), which pass control to SGS upon 
each interruption of the CPU. 

There are five types of interruptions that cause a change in 
the psw: 

• I/O interruption - indicates the need to service an I/O channel 
• Program interruption - indicates a program error or excep­

tional result during execution 
• svc interruption - indicates a request for a control program 

service 
• External interruption - signals the computer to service an 

external device 
• Machine check interruption - indicates an error in computer 

hardware 

Each type of interruption has an assigned new psw and an old 
psw in main storage. Upon interruption, the old psw is saved and 
the new psw is loaded with the new contents of the instruction 
counter to give the starting address of an RTOS/360 interruption 

STANLEY AND HERTEL IBM SYST J 



handler. When SGS is in use, the new psw sets the instruction 
counter to the start of the SGS program that handles the particular 
type of interruption." After recording the statistics required, the 
SGS program passes control to the RTOS/360 interruption handler 
with all machine conditions set as though the interruption had 
proceeded there directly. 

An interruption is not associated with every change in system 
function, and, therefore, interruptions alone cannot define the 
complete SGS interface. For instance, a load psw (LPSW) instruc­
tion, which returns control of the CPU to an application program 
after completing a control program service, does not interrupt the 
CPU. Nevertheless, there is a definite change in functional purpose 
of the instructions being executed. The method of keeping SGS 

informed in cases like this is to force an interruption. Combined 
with the nucleus by the linkage editor is a small table of symbolic 
references to such special instructions as all LPSW's, entry to 
program fetch, and entry to the dispatcher. At SGS initialization 
time, the operation code of these instructions is replaced with an 
illegal operation code. Upon each execution thereafter, a program 
interruption occurs at these identifiable addresses. 

In the case of certain control program subroutines, SGS not 
only must recognize when the program is entered, but also must 
recognize when the program is exited. It is possible to take ad­
vantage of the fact that general register 14 (GR 14) is used as a 
standard return register. For example, assume program A wants 
to call subroutine B using the SYSTEM/360 assembly language 
instructions 

L 15, = V(B) 
BALR 14,15 

At address B, SGS gains control by means of an illegal operation 
code at the subroutine entry point. SGS then saves the contents of 
base register 14 and replaces the contents with an SGS address. 
Also, statistics gathering is stopped for A and started for B. Sub­
routine B is executed and then returns control via the address in 
base register 14 (BR 14). SGS gains control via the address in base 
register 14, then stops statistics on B, restarts statistics on A, 
restores base register 14, and branches to the intended return 
point in program A. 

During statistics initialization, SGS routines that obtain the 
selected categories of statistics are loaded into main storage. Until 
collection is terminated, these routines are entered each time there 
is a change in system function. 

The second phase in SGS consists of routines that record execu­
tion time, frequency counts, and logic flow. Statistics are collected 
in main-storage buffers that are linked to the proper job step, 
independent task, and load module. Note that most categories of 
SGS statistics do not report every statistical event, rather statis­
tics are averaged over a period of time and the average is reported 
for each system function. 

NO.2· 1968 STATISTICS GATHERING AND SIMULATION 

collection 

91 



reporting 

92 

Storage for statistics is obtained, as necessary, from the main 
storage supervisor. The size of SGS in main storage depends on the 
number and kind of statistical categories selected, and on the 
number of system functions in the selected categories for the 
application system being monitored. 

The statistics for each system function are identified by a 
symbol. Normally, these symbols are also used externally to SGS, 

such as: macroinstruction names for statistics on RTOS/360 control 
program services, load module names for application program 
statistics, and independent task names for statistics reported for 
each independent task and any of its dependent tasks. 

lVlultiprogramming is a basic ingredient in the SGS method of 
maintaining statistics. Each time RTOS/360 performs a task switch, 
SGS interrupts the collection of statistics for the current task and 
starts collecting statistics for the new task. Each time RTOS/360 

resumes a previous task, SGS resumes collecting statistics for that 
task. Any partially completed system function, which is tem­
porarily interrupted because of multiprogramming considerations, 
is recognized by SGS, and a partial set of statistics is saved until 
the function is resumed at a later time. 

To record accurate timing statistics, a clock with a ten-micro­
second resolution is used. Each time a program or routine is started, 
stopped, or interrupted, a logical clock with the appropriate sym­
bolic identification is updated accordingly. A typical sequence of 
SGS is as follows: 

1. Time is recorded, and the current function stops. 
2. Contents of all necessary registers are saved. 
3. Statistics for the interrupted routine are updated. 
4. Overlaid instructions are simulated. 
5. If the interrupt is a supervisor call (SVC), a symbolic clock is 

started, according to a control code in the SVc instruction. 
6. If the interruption is caused by illegal instructions resulting 

from the augmented SGS interface, a symbolic clock is started, 
according to a control code in an SGS table. 

7. Control returns to the normal RTOS/360 logic flow. 

The third phase of SGS is that of reporting, which may be called 
periodically to allow a requestor to record trends or changes in 
system performance. Programs associated with generating SGS re­
ports operate as transient load modules. The reporting phase runs 
as an independent task whose priority is adjusted to allow it to 
comp~te favorably for system resources. Since the reporting phase 
cannot stop the system to report the statistics collected, the report­
ing and collecting phases alternate. When a complete report is 
generated (normally in less than one second), the time and fre­
quency counts are reset to zero, and the collection phase begins 
again. Formatted reports are usually written on tape for off-line 
printing. 

Samples of the first statistics produced by the SYSTEM/360 

version of SGS are shown in Table 1 and are intended to provide 

STANLEY AND HERTEL IBM SYST J 



Table 1 Execution times for logical functions 

RTOS/360 logical function 

LINK* 

XCTL* 

LOAD* 

EXIT* 

Dispatcher 

GETMAIN* 

REGMAIN (get mode) 

FREEMAIN* 

REGMAIN (free mode) 

WAIT* 

POST* 

POST (branch entry point) 

BLDL* 

Program fetch 

Program fetch after 
I/O interruption 

EXCP* 

Input/output first-level 
interruption handler 

Interruption supervisor 

External first-level 
interruption handler 

Time routing 

Routing 

RTATTACH* 

OPEN* 

CLOSE* 

DELETE* 

STIMER* 

RTIME (243)* 

RTIME (250)* 

DTROUTE* 

RUATTACH 

DTWRITE* 

DTREAD* 

DTLOAD* 

DTDELETE* 

RTWRITE* 

Logging 

* RTOS/360 macroinstructions. 

Average time 
(microseconds) 

1693 

1760 

2026 

836 

498 

1186 

2427 

1133 

1253 

712 

804 

142 

700 

1760 

604 

1872 

347 

1053 

650 

232 

160 

2600 

3280 

2760 

1408 

1176 

460 

960 

1760 

840 

1190 

1140 

1410 

1040 

660 

1120 

Number of 
executions timed Description of function 

3 Passes control temporarily to a load module 

1 Passes control to a load module 

6 Requests a module be loaded and retained in 
main storage 

45 Passes control from current load module 

123 Passes control to tasks according to priority 

58 Allocates main storage for use by requesting 
program 

35 Allocates main storage in supervisor subpools 

3 Returns program-allocated main storage to a 
free pool 

67 Frees main storage from supervisor subpools 

30 Waits for a specified number of events to occur 

10 Sets a complete flag when an event has occurred 

38 Sets a complete flag for I/O supervisor 

2 Builds a special directory in main storage 

2 Reads a load module into main storage 

18 Reads a load module into main storage after 
I/O interruption 

38 Requests transmission to/from an I/O device 

49 Retains register contents of interrupted pro­
gram 

49 Performs I/O device control 

4 Retains register contents of interrupted pro-
gram and determines cause of interruption 

5 Creates a work request based on time 

5 Creates a work request based on time or data 

1 Enters a work request in task queue 

1 Prepares system for data transfer 

1 Restores system after data transfer 

5 Makes a load module eligible for purging 

5 Provides time control services 

2 Acquires Greenwich Mean Time 

1 Sets system to Greenwich Mean Time 

1 Creates a control block for routing 

2 Enters a work request in task queue (used by 
routing) 

12 Writes a data table from user load module 

2 Reads a data table for user load module 

12 Requests a data table to be allocated to main 
storage 

1 Makes a data table eligible for purging 

4 Transmits telecommunications data 

4 Records telecommunications data on a log 
tape 

Note: Average times for the RTOS/360 functions may vary depending upon the application system from which 
they are obtained and the level of SGS development. 

No.2· 1968 STATISTICS GATHERING AND SIMULATION 93 



operating 

system 

model 

94 

the reader with an insight into the level of detail that SGS yields. 
These statistics were obtained while running test cases on a 
SYSTEM/360 Model 50. The average time reported for each RTOS/360 

system function is the time to execute the instructions for that 
particular function only. The average times are the basic statistics 
with which system performance is analyzed at RTCC. 

It should be understood that the average times given in Table 
1 reflect only the time required to execute the basic routine. Pro­
viding the whole control program service may, in fact, require the 
execution of additional system functions. For example, the total 
time for the complex control service LINK, given in Table 1, can 
be calculated by including all additional logical functions, such 
as REGMAIN, to the basic LINK execution time. 

System functions marked with an asterisk in Table 1 are de­
rived from RTOS/360 control program macroinstructions and are 
thus directly available to the application programmer. Functions 
without the asterisk are used only by the RTOS/360 control pro­
gram and are unavailable for direct use by the application pro­
grammer. 

Simulating system performance 

The Real Time Computer Complex is not a project that is blessed 
with a firm definition of mission requirements. Results of each 
mission impose requirements for future missions and, thus, levy 
new demands for real-time support. It is essential to the orderly 
development of RTCC real-time systems to anticipate problems in 
computer system configuration or system program design that 
could impair the success of future missions. To analyze future 
system performance, RTCC uses models written in the language of 
the General Purpose Simulation System (GPSS/360).4 

The primary responsibility of the RTCC modeling effort is sys­
tem assurance. Models of particular missions are primarily devel­
oped to assure the RTCC project that both the machine configura­
tion and the system programs to be used will perform satisfactorily. 
Thus, the most frequent output of modeling is a prediction of 
systems performance for a particular mission. This prediction can 
be expressed in such ways as CPU load, cyclic response, and channel 
utilization. 

GPSS models designed for the RTCC are composed of four major 
components: 

1. The SYSTEM/360 computers and many of the peripheral I/O 

devices are modeled. This component defines the CPU, main 
storage, and I/O devices in terms of parameters that allow speed 
and size characteristics to be changed in order to model other 
computer configurations. 

2. The RTOS/360 nucleus component simulates significant RTOS/360 

and OS/360 control-program services. These services are modeled 
as subroutines so that new designs for operating-system logic 
may be tested. 

STANLEY AND HERTEL IBM SYST J 



3. Application systems are modeled in a manner analogous to 
programming the real-time system. Models of application­
system programs are combined with the computer and the 
RTOS/360 logic components to simulate a total real-time system. 

4. The world-wide telecommunication network model represents 
message size, arrival rate, and transmission-line speed of 
messages arriving at RTCC during an Apollo mission. 

Of these four components, the SYSTEM/360 and RTOS/360 nucleus 
models are relatively constant. Therefore, these models are sub­
routines in the GPSS/360 modeled operating system (GMOS). By 
using GMOS models of control program service routines, the analyst 
need only characterize the application programs and the tele­
communication data. GMOS includes current timing statistics and 
logic flow of the RTOS control program services. Therefore, the 
analyst who is studying a new application has a significant portion 
of his system accurately modeled. 

GMOS provides users with an easy interface to hardware models 
and models of control program service routines. A control program 
service is requested by the following format wherein TRANSFER 
and ASSIGN are GPSS macroinstructions: 

TRANSFER 
ASSIGN 
ASSIGN 
ASSIGN 
ASSIGN 
ASSIGN 

SBR, SVC, 12 
4, (service) 
4, (argument 1) 
4, (argument 2) 
4, (argument 3) 
4, (argument 4) 

More specifically, a request for a control program service (such 
as EXCP) that simulates a reference to an I/O device (such as 
TAPE) is written as follows: 

TRANSFER 
ASSIGN 
ASSIGN 
ASSIGN 
ASSIGN 

SBR, SVC, 12 
4, EXCP 
4, TAPE 
4,40 
4, ECB 

Service being simulated 
I/O device 
Number of bytes being transmitted 
Event control block 

When this sequence of instructions is executed by an application 
model, a TRANSFER is made to the GMOS logic that simulates an 
SVC interruption. CPU time is simulated for the instructions exe­
cuted in the first level interruption handler and the execute channel 
program (EXCP) logic. The RTOS/360 model then simulates a START 
I/O instruction, which initiates a model of a tape device. While 
simulating the time to transmit 40 bytes of data to or from tape, 
the CPU model passes control back to the application model (after 
the CPU time for exit logic). When the data-transfer time has 
elapsed, the CPU model is interrupted, and control passes to a 
model of the I/O interruption handler and to a model of the I/O 

supervisor. After the proper amount of CPU time is simulated and 
the event control block (ECB) is posted, GMOS logic proceeds to a 
model of the dispatcher and then, again, to the application model. 
A simple interface for the application modeler results in a com-

No.2· 1968 STATISTICS GATHERING AND SIMULATION 95 



application 

models 

96 

plex ·web of logic in much the same way that a simple control pro­
gram service initiates similar logic in RTOS/360 or OS/360. 

One of the most important parts of computer systems analysis 
is a good definition of the application program logic and processing 
requirements. Often, obtaining this information is not a trivial task. 

The modeler is concerned with expressing the system logic and 
processing requirements in terms of GMOS standard interfaces. At 
RTCC, the modeler defines input characteristics (frequency, mes­
sage size, routing procedure), obtained largely from NASA mission 
requirements. He then models the input in a series of predefined 
calls to GMOS input routines. The modeled input serves as a driver 
(i.e., initiates all processing) for the mission model just as the real 
input drives the system being modeled. 

Simulation involves the concept of mission logic, which refers 
to the logic within the many load modules that make up an Apollo 
mission plus a general description of all load modules and data 
tables used. The analyst gathers this information from mission 
programmers and then expresses the logic or refers to modeled 
data tables in a series of calls to GMOS routines. Each of these calls 
corresponds to a similar call in RTOS/360 and, in general, carries 
with it a similar set of arguments. The only exception to this 
generality is a special call representing the expenditure of enabled 
processing time within a load module. The load-module and data­
table descriptions are expressed as parts of a GPSS/360 FUNCTION. 

As an example, the following is a typical description of a load 
module on a GPSS function follower card: 

LMID 2000 626 BEG 8000 

Here, LMID is the predefined identification of a 2000-word-Iong 
load module resident in Large Capacity Storage (LCS). That the 
load module is serially reuse able is indicated by the GMOS code "1." 
The number 626 points to a location that identifies LCS. The load 
module has an entry point at BEG (defined in the model of the 
load module) and executes for 8000 time units. Sometimes, if the 
analyst is working in advance of actual implementation, this 
information is largely guesswork. If the load module is already in 
operation, however, the gathering of these characteristics is simple: 
SGS measures execution time, and all other items are available 
from the programmer. 

Occasionally, in preparing model-based predictions of system 
performance, it is found that the defined system is not capable of 
meeting mission requirements. In these cases, a model becomes a 
valuable tool for use in defining and evaluating possible solutions 
to the problem. 

A model of the GT-6 orbit phase (the first planned-rendezvous 
mission in the Gemini series) disclosed that the system would be 
unable to service program queues as fast as they were generated. 
The model was used to define two solutions to this problem: a more 
efficient program-priority arrangement, and an increase in the size 
of main storage. Also, the RTCC conversion from an IBM 7094-based 

STANLEY AND HERTEL IBM SYST J 



system to SYSTEM/360 was largely brought about by model pre­
dictions that the advanced Apollo requirements would far exceed 
the 7094 capacity. Both of these efforts utilized a GPSS model of 
the executive control program,5 the 7094 equivalent of RTOS/360. 

GMOS is expected to be used in much the same manner to evaluate 
SYSTEM/360 performance. It is now being used in the prediction of 
early Apollo 500 series mission performance and Apollo storage 
requirements. 

The very existence of a model has many times proved valuable 
in testing specific hardware or system program design alternatives 
(often on short notice). For example, an existing model of the 
Apollo simulation system for mission test and training (SCATS) 

was useful in evaluating several alternative main-storage purge 
algorithms. For such a study, the model is modified to run with 
each algorithm, and the most efficient algorithm is identified by a 
comparison of results. The same procedure can be followed to 
evaluate design alternatives in such areas as: system bulk storage 
devices, main storage allocation algorithms, data tables versus 
subpools, program linkages, and routing algorithms. 

In creating a model such as GMOS to simulate multiprogram- model 

ming systems as complex as those at RTCC, it is necessary to model statistics 

logic and to represent timing statistics with a reasonably high 
degree of accuracy. The logic modeled in GMOS represents all the 
unique services provided by RTOS/360 in the normal execution of a 
real-time job step. Decisions to use these services are based on 
the same parameters that would influence processing for an actual 
system. For example, if the LINK macroinstruction is executed, 
the logic modeled for the LINK routine executes a GETMAIN for 
an SVRB (supervisor request block) similarly to the way that the 
actual RTOS/360 does. If the requested load module is not in main 
storage, the GMOS model enters logic to simulate the program 
fetch. If program fetch simulates a GETMAIN for a transient area 
in which to place the load module and if the model of the main 
storage supervisor cannot find an area large enough, the purge 
routine removes unused load modules from a simulated main 
storage. Performance of each significant system function is sim-
ulated according to the same parameters and reacts to the same 
conditions that the RTOS/360 would if it were operating in the de-
fined computer system. 

SGS provides the timing statistics necessary to accurately assess 
the computer capacity required to execute each system function. 
Each function (GETMAIN, LINK, program fetch, etc.) uses CPU 

time according to the average execution-time statistics obtained 
by timing the actual system program with SGS. The statistics pro­
vided by GMOS show the analyst: 

• Elapsed time to perform an independent task 

• Percentage utilization of I/O devices and the number of accesses 

• Number of purges necessary 

NO.2· 1968 STATISTICS GATHERING AND SIMULATION 97 



model 

analysis 

three 

studies 

98 

• Number of times load modules and data tables are allocated to 
main storage 

• Number and kind of control program services requested 

• Percentage of CPU time used for: RTOS/360, application program, 
waiting for I/O, and idle time 

• Detailed CPU utilization statistics of RTOS/360 functions 

With knowledge (If how system capacity is being used, the analyst 
can spot performance problems, i.e., services for which too great ~ 
price is being paid for the work being accomplished. The perform­
ance of new logic design can be tested by modeling the new ideas, 
replacing the model of existing logic, and rerunning the total 
system model. 

Once a model is working successfully, a great amount of infor­
mation is available for analysis. For models of the Apollo launch 
phase, the analyst is interested in CPU utilization and its breakdown 
into such component parts as mission time and times for I/O super­
visor, task management, and storage management. A simple in­
sertion by the modeler of GPSS/360 TABULATE macroinstruction 
blocks at strategic points in the model produces detailed measure­
ments of response time for all cyclic work. Such response measure­
ments are indispensable to evaluating the successful completion 
of all cyclic processing. 

For models of the orbit phase, the analyst might be more inter­
ested in the number of times that each load module was fetched 
versus the number of times each load module was executed. (Both 
items are available in a GMOS table.) He might also be interested 
in the number of purges that were necessary in a given time (de­
rivable from block counts) and the degree of main storage fragmen­
tation at periodic intervals. The latter is available by forcing 
periodic output of a GMos-maintained storage map. 

In either case, the analyst might be interested in knowing the 
traffic volume on various real-time lines and system 110 channels, 
both available in standard GMOS output. Also produced by GMOS 
are tables showing the frequency of use of each of the standard 
RTOS/360 control program services. 

Thus, the analyst automatically receives a great amount of 
information through the use of GMOS. The great flexibility of 
GPss/360 allows the gathering of many additional statistics with 
only small modifications to GMOS or the application system model. 
One of the benefits of such an abundance of information has been 
the occasional discovery of an important fact from statistics that 
was not originally considered important. 

Three studies are presented here as examples of the variety of 
problems analyzed at the RTCC by means of GPSS/360 models. 

The first study was made to determine the significance of main 
storage to an Apollo real-time application system. While the size 
of the simulated main storage was varied, the response of a signifi­
cant calculation cycle was noted. Although this study was limited 

STANLEY AND HERTEL IBM SYST J 



to one Apollo real-time application, the results are expected to be 
typical of similar applications. LCS was used as a bulk storage device 
from which programs and data were loaded into main storage. The 
amount of main storage thus required is known to be sensitive to 
the ability of RTOSj360 to refresh storage dynamically in real time. 

In view of this, the general approach taken in this study was 
the following. First, consider improvements to the purge algorithm 
in RTOSj360 and select an algorithm independent of the specific 
application. Then consider the application system performance at 
several storage-required-to-storage-available ratios (SRI SA) when 
such an algorithm is used. With this, one can use the application­
system size estimates to determine the expected SRI SA ratio and 
the resulting performance. Curves relating measures of system 
performance to the SRI SA ratio are shO\vn in Figures 2 and 3. The 
following describes how these curves were obtained and how they 
are used. A base case was established using a storage size that was 
larger than the total size of the application program.plus RTOSj360. 

GMO~ was used in the simulation with a modified purge algorithm. 
The purge algorithm maintains "use counts" to decide which 

modules to purge. During a single execution of the purge program, 
all unused load modules and data tables having a use count equal 
to or below a threshold are purged. All modules having a use count 
higher than the threshold are retained, but their use counts are 
reduced to zero. Thus, use counts reflect only uses since the last 
purge. Data tables that have been updated must be written on 
an external storage device before being purged. In this study, 
thresholds of 1 and 2 were considered. In all cases, the threshold of 
1 yielded the better performance, and those results are used in 
this paper. 

The SRI SA ratio is a measure of the relative size of an applica­
tion system to a given main storage size. Storage required (SR) is 
taken as the total size of load modules, data tables, and subpools. 
Storage available (SA) is taken as the size of main storage, minus 
the total size of RTOSj360 plus system subroutines. Starting from 
a given SRISA ratio, an increase in the ratio reflects either a 
growth in application size requirements or a decrease in main­
storage available; a decrease in the ratio reflects either a lessening 
of application size requirements or an increase in available main 
storage. 

Figure 2 shows response times to one-second telemetry-cycle 
processing, which operates concurrently with half-second tra­
jectory processing. The SRISA ratio is plotted along the horizontal 
axis. The 1.0 value along this axis represents the base case for 
which no buffering is required (all programs and data just fit in 
main storage). The left boundary of the shaded area indicates 
performance based on initial size estimates. The right boundary 
shows the performance if this size estimate were increased by 20 
percent to account for errors in size estimations. 

Note the steep slope in Figure 2 between the first two points on 
the curve. At the first point, the telemetry cycle is completed 

NO.2· 1968 STATISTICS GATHERING AND SIMULATION 

Figure 2 Cyclic response versus 
storage ratio 

Figure 3 CPU load versus storage 
ratio 

w 
(/) 

~ 
u 
~ 
o 
.« 
g 
:0 
n. 
u 

99 



100 

before a trajectory cycle begins. Following the first point, a slight 
increase in the time required to process the telemetry cycle causes 
overlap with the next trajectory cycle. Since trajectory has greater 
priority, the telemetry response is lengthened by an amount 
roughly equivalent to the length of the trajectory cycle. The rela­
tion between telemetry response and the increase in CPU load can 
be seen by comparing Figure 3 to Figure 2. Figure 3 shows the 
relationship of CPU load to the SRI SA ratio. 

The second study, using a model of the FORTRAN-H compiler, 
was aimed at optimizing throughput by changing 110 device con­
figurations. At RTCC, performance of job-shop runs, SYSTEM/360 

assemblies, FORTRAN compilations, etc., are as important to the 
development of a real-time system as the execution of that system 
is to the support of an Apollo mission. Job-shop efficiency increases 
job-shop throughput and decreases turn-around time for debug 
runs. 

In the second study, a compilation was executed as an appli­
cation model with GMOS to determine how various I/O devices for 
SYSIN, SYSOUT, SYSPUNCH and SYSRES would change the 
time to compile a sample source deck of 436 statements using the 
FORTRAN-H compiler model. Since RTCC has LCS associated with 
each SYSTEM/360 Model 75, LCS was considered as an I/O device 
for certain system residence modules from SVCLIB and LINKLIB. 

Table 2 shows the parameters that were varied to produce the 
results; constant parameters are not shown. Production times for 
an object deck and listing are included in the table. One can see 
that I/O devices prevent good utilization of the l\1odel 75 CPU. (The 
IBM 2311 disk was the output device for object code to the linkage 
editor job step.) Comparing runs 1 and 4, one notices about a 
6-to-1 improvement over a standard I/O configuration (run 1) 

Table 2 Sample FORTRAN-H compilation results 

Model runs 
1 2 3 4 

Parameters 

SYSIN cards tape tape tape 
SYSOUT printer tape tape tape 
SYSPUNCH punch tape tape tape 
SYSRES disk (2311) disk (2311) drum (2301) LCS 

Results 

CPU 

utilization (%) 8 23 36 44 

I/O 
waiting (%) 92 77 64 56 

Elapsed 
compilation 
time (sec) 177 62 39 31 

STANLEY AND HERTEL IBM SYST J 



when tapes and LCS are used (run 4). Comparing runs 2 and 4, 
about a 2-to-l improvement is observed using LCS in place of the 
disk, under the assumption that input and output go to or from 
tape in an off-line process. A sequential job scheduler was assumed 
in this study. 

For the third study, a preliminary design analysis using GPSS/360 

model results and SGS timing statistics was made to determine what 
design changes might improve RTOS/360 performance. Continual 
emphasis was placed on producing an efficient real-time operating 
system at RTCC. Because of the frequency with which control pro­
gram services are used and because of the critical nature of the 
real-time processing, it is necessary to provide a reasonable margin 
of safety, so that peak processing loads do not degrade the response 
required to process in real time. The study determined which 
RTOS/360 services were heavy users of computer capacity, with the 
objective of planning ways to reduce the computer capacity re­
quired for these services. Frequency counts for use of control pro­
gram services were obtained from the GPSS/360 model of the Apollo 
launch system. Timing statistics were obtained with SGS. 

As a result of this study, several design changes were recom­
mended, resulting in CPU capacity savings ranging from fractions 
of a percent to twenty percent. One of the most significant changes 
proposed was the elimination of references to the main storage 
supervisor (MSS) for all control tables and temporary storage re­
quired by the RTOS/360 control program. It was calculated that if 
all references to GETMAIN, FREEMAIN, and REGMAIN were re­
placed by references to preallocated fixed-size buffers, storage still 
could be provided to control program services as required, with 
up to twenty percent decrease in CPU utilization. It was also noted 
that requirements for supervisor request blocks (SVRB) and pro­
gram request blocks (PRB) constituted over half of the demands 
on MSS by RTOS/360. Based upon these results, the cost of addi­
tional tailoring to the RTOS/360 environment seemed to be justified. 

Concluding remarks 

Experience and techniques used at RTCC to analyze computer 
system performance have evolved through long exposure to the 
problem of assuring workable system designs or problem solutions. 
The original development of the techniques discussed in this paper 
began in mid-1963 for use with Gemini systems and the 7094-II. 

'When problems in computer size or speed arose, new computers 
were simulated. When I/O devices caused delays in processing, 
different I/O devices were simulated to improve performance. 
When programming design seemed inefficient (either control or 
application programs), new designs were modeled. Results of these 
studies were presented for management decision. 

Present versions of SGS and GPSS/360 multiprogramming models 
are improvements over earlier versions, but essentially the same 
techniques are being successfully used to study the RTOS/360 pro-

NO.2· 1968 STATISTICS GATHERING AND SIMULATION 101 



102 

gramming systems for SYSTEM/360. Several attributes of these 
techniques at the RTCC are: 

• Measurements of system performance are acquired by using SGS 

• Current statistics are used in predictions of future system per­
formance via GMOS 

• Application systems are modeled and tested with relative ease 
by using GMOS 

This method of analysis has proved to be accurate and effective. 
Techniques discussed in this paper have been used to evaluate 
application systems that run under two major mUltiprogramming 
control programs: the RTCC executive control program for the 
7094-II and RTOS/360 for SYSTEM/360. Programming applications 
analyzed include: job-shop throughput performance, configuration 
studies, and real-time programming design. It seems reasonable 
to conclude that other programming applications might also bene­
fit from these modeling and measuring techniques. 

ACKNOWLEDGMENTS 

Implementation and use of the programs discussed in this paper 
were achieved by a group effort, which the authors are pleased to 
acknowledge. Special credit goes to T. A. Humphrey, who origi­
nated the computer systems analysis for the RTCC and who has 
managed this work since the early Gemini missions. 

CITED REFERENCES AND FOOTNOTES 

1. G. Gordon, "A general purpose systems simulator," IBM Systems Journal 
1, 18-32 (September 1962). 

2. R. Efron and G. Gordon, "A general purpose digital simulator and examples 
of its application, Part I, Description of the simulator," IBM Systems 
Journal 3, 1 22-34 (1964). 
C. R. Velasco, "Part II, Simulation of a telephone intercept system," 
ibid., 35-40. 
A. M. Blum, "Part III, Digital simulation of urban traffic," ibid., 41-50. 
D. F. Boyd, H. S. Krasnow, and A. C. R. Petit, "Part IV, Simulation of 
an integrated steel mill," ibid., 51-56. 

3. An exception to the availability of initial performance statistics occurs 
when the operating system is a measurable, working product and only the 
application programs are under development. 

4. The reader should be aware that the use of GPSS models, as described in 
this paper, is not the only alternative to good computer systems analysis. 
There are other simulation languages such as SIMSCRIPT and Computer 
System Simulator, which can be used. Work is also being done with analyti­
cal models such as queuing theory and Markov models, which have appli­
cation in computer systems analysis. See: H. M. Markowitz, et al., SIMSCRIPT 

-A Simulation Programming Language, Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, (1963), and A. L. Scherr, An Analysis of Time-Shared 
Computer Systems, The M. I. T. Press, Cambridge, Massachusetts (1967). 

5. The executive control program was implemented by IBM Houston Operations 
to support Gemini missions and the early Apollo mission in the IBM 7094-II 

computers. See: J. H. Mueller, "Aspects of the Gemini real-time operating 
system," IBM Systems Journal 6, 3, 150-162 (1967). 

STANLEY AND HERTEL IBM SYST J 


