
System performance analysis techniques have been applied to 
support the development of a data-communication, data-base 
system. These techniques have been applied continuously from 
the system planning phase through system testing. 

Computer simulative models and computer measurement tools 
were used in this analysis. 

Performance analysis for the Skylab 
terminal system 

94 

by R. J. Mancini 

The National Aeronautics and Space Administration (NASA) 
required computing systems for ground 'support of the Skylab 
space station project (1) for controlling the intricate aspects of 
manned space flight as in the Apollo missions, (2) for scheduling 
mission activities, and (3) for processing a large variety of spe­
cialized experimental data. The system for processing experimen­
tal data, the Skylab Terminal System, is discussed in this paper. 
This system permitted scientists and engineers to view telemetry 
data (i.e., data transmitted from the spacecraft by radio signals 
to receiving ground stations) after the data have been processed 
and formatted for output. 

The Skylab spacecraft data were transmitted from the orbit­
ing laboratory and received by remote tracking sites. From these 
sites, the data were transmitted over communication lines to 
the Goddard Space Flight Center for relay to the Mission Con­
trolCenter in Houston~ Texas. At Houston the data were re­
ceived by a front-end UNIVAC 494 Communications Process 
Computer. This computer functioned as a message switch that 
routed the data to the Skylab Terminal System within one or 
more of the five IBM System/360 Model 75 computers in the 
Mission Control Center. In the Skylab Terminal computers, the 
data were routed by the Terminal Support System to the Data 
RetrievalSystelll as shown in Figure 1. Data were transmitted 
to the CDC CYBER 73 Data Base Computer System for storage 
by using the Data Storage Sub~ystem. Data are retrieved from 
the Data Base Computer System in response to terrp.inal requests 
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Figure 1 Interactive scientific system for the Skylab project 
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by using the Data Retrieval Subsystem. Scientific and engineer­
ing application programs were part of the Data Retrieval and 
Data Storage Subsystems. Included in this paper is an analysis of 
the Skylab Terminal System and its interfaces with the CYBER 
73 Data Base Computer, and with the UNIVAC 494 Communi­
cations Process Computer. 

The system software within the IBM System/360 Model 75 com­
puter represents a three-year development project by IBM. The 
resultant large, complex system (approximately 2.5 million bytes 
of code) . is required to receive and transmit large volumes of 
telemetry data according to time constraints concurrently with 
the requirement to responsively process terminal user requests. 
Therefore, continued performance evaluations were essential 
throughout the planning, design, implementation, and testing 
phases (summarized in Table 1) to determine whether the given 
hardware configuration and the software design satisfactorily 
meet the operational system objectives. Such evaluations bene­
fit the developers through improved system design, and benefit 
the project through a reduction in the amount of development 
rework to meet system objectives. The intent of this paper is to 
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Table 1 System development and evaluation phases 

Development phases 

Planning 

Design 

Implementation 

System testing 

Functions of phases 

Define requirements 

Develop architecture 
Develop baseline design 

Create integrated program 
system 

Verify system meets 
requirements 

Performance evaluation 

System feasibility 
Configuration alternatives 
System performance 

verification 
Design feasibility 
Identify problems 
Compare implementation 

with requirements 
Verify system performance 
Tune system 

demonstrate the benefits of using performance evaluation tech­
niques throughout a specific system development. Therefore, 
the paper uses examples that illustrate how these techniques can 
influence the software design and development rather than em­
phasizing the description of the application or the specific tech­
niques used. The use of such techniques does not guarantee that 
all performance problems can be identified early and precluded. 
However, continuing system analysis does aid in producing a 
system more capable of meeting system requirements within the 
schedule constraints than otherwise might be possible. 

Growing and changing requirements were a characteristic of the 
Skylab Terminal System development project. An example of 
this was that although the initial terminal capabilities were en­
visioned as limited, quick looks at incoming scientific (and tra­
jectory) data, the final sytem had extensive terminal support. 
Included in the added support was the capability of entering batch 
requests for large amounts of processing, and Input/Output (I/O) 
from a terminal. The fact that application requirements changed 
points to an increased need for performance analysis of the sys­
tem to evaluate the impact of such changes on the total system. 

Both modeling and measurement techniques were used to sup­
port the performance analysis effort. The techniques that were 
used are categorized here according to the terminology defini­
tions listed by Pomeroy.1 

Self-driven simulative models were used during the project plan­
ning, design, and implementation phases. During each successive 
phase, more detailed application design information was included 
in the simulative models, ranging from the functional design level 
to the individual program level of information. Both Stanlel and 
Seaman3 have illustrated some specific uses of this technique. 

in the area of measurement techniques, both hardware and soft­
ware monitors were used during the project implementation and 
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testing phases. Hook-catching software monitors! were used to 
measure Central Processor Unit (CPU), Input/Output (I/O), and 
main storage usage, as well as transaction response time. Activ­
ity was measured down to the task, program, and control program 
service levels. A statistical sampling software monitor! was used 
to measure Large Capacity Storage (LCS). Stanley,2,4 Bonner,5 
Hobgood,6 and Margolini have illustrated some uses of these 
measurement techniques. 

System planning phase 

Every system development goes through a transition period dur­
ing which raw ideas, needs, and concepts are formulated and 
translated into one or more general functional embodiments that 
satisfy the requirements. Even during this early system planning 
phase, we found it to be both possible and practical to make pre­
dictive evaluation analyses of proposed systems and, thereby, 
to make a positive contribution to the success of the project. 

The scientific nature of the Sky lab project established a require­
ment for an interactive terminal and data base system for the use 
of ground-based scientists and other mission personnel. Since a 
data base system was not available, much of the performance 
analysis work done during the planning phase was the evaluation 
of data base configuration options that were based, in turn, on a 
conceptualized system design. 

Cost versus performance tradeoffs were used in deciding among 
data base configuration options. Because 'of a requirement to 
randomly access a data base of over one billion bytes, direct ac­
cess disk storage was selected as the data base storage medium. 
It was also known at this time, however, that at least thirty scien­
tific and engineering terminal users were to access the data 
base with an average expected response time of five seconds 
for the quick-look requests for data. The lowest cost configura­
tion option was simply to add sufficient disk storage devices to 
the existing System/360 Model 75 computer systems. What was 
not known was whether this configuration wold be responsive to 
the terminal users. As a consequence, the following study of this 
option, compared to a more costly configuration option, was un­
dertaken. 

Two principal data base configuration options (designated A and 
B) were considered. Configuration option A would obtain the 
necessary data base system at minimal cost by using existing 
System/360 Model 75s to manage the planned data base and by 
connecting additional disks through selector charmels to make up 
the required storage capacity. The data base disks would then be 
switchable to anyone of the System/360 Model 75 computers. 
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Figure 2 Data base access response time 
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With the use of a two-channel switch, the disks could also be 
dynamically shared between any two of the computers. The 
choice among various types of disks was limited to those types 
that were compatible with the given computer system. 

Configuration option B specified a separate data base computer 
that would be linked to the System/360 Model 75 by way of a 
selector channel. The B configuration would be a more open­
ended approach relative to performance considerations. The 
disks could be selected for superior performance capabilities, 
~ince they would be required only to be compatible with the con­
figuration B data base computer. Greater flexibility in channel 
configurations would also be available. Configuration B could 
thereby offer improved performance characteristics over those 
of configuration A, but only at added cost. A second data base 
computer would be required for a backup in configuration B be­
cause there would be no existing system to fall back on. 

The approach used in our data base configuration evaluation had 
two basic parts: (1) to estimate and compare the expected per­
formance of the data base hardware devices and configuration 
options; and (2) to estimate the expected performance of both 
configuration options relative to the terminal response require­
ments for the total systems. The data base hardware evaluation 
was necessary to gain insight irito the advantages, limitations, 
and maximum data access capability of each data base configura­
tion to handle a storage requirement of one billion bytes of data. 
Generalized disk usage assumptions, such as that of the use of 
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Figure 3 Data base channel usage 
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random seek functions, were made for the first part of the anal­
ysis. Also, an exponential distribution of data base request in­
terarrival times was assumed in the hardware study so as to 
determine the overall capability and flexibility of each data base 
configuration. The scope of the second half of the study included 
the total data retrieval system, with a definition of projected ter­
minal activity, to determine the distribution and frequency of 
disk activity. Simulation models were used in both parts of the 
study. 

For the data base hardware analysis, a fixed data-request size 
and a variable request rate were used for each data base con­
figuration. The maximum request rate capability for configura­
tion option A was greater than fifty requests per second, but, as 
the request rate increased beyond forty requests per second, the 
request response time rapidly increased to a half second per 
request. The configuration A access response time function is 
shown by the dotted line in Figure 2. The steep increase in re~ 
sponse time was caused by channel busy times that approached 
one hundred percent, as shown by the dotted line in Figure 3. 

The request rate for configuration option B reached nearly two 
hundred requests per second before the response time approached 
one-half second. This request rate was nearly four times that 
achieved by configuration option A. For a request rate offorty 
accesses per second, the response time was 42 milliseconds for 
option B as compared with 135 milliseconds for option A. 
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There would have been little advantage to adding more disk 
packs to design A, because of the high channel loading (69 per­
cent at 40 accesses per second). More disks could be added to 
Design B because the channel would be only 40 percent occupied 
at the peak request rate as shown in Figure 3. In design B the 
high utilization of the disks was the limitiilg factor. More disks, 
however, would provide improved performance. 

Two aspects of the configuration behavior are clear: First, con­
figuration option B is always more responsive to data base re­
quests than is configuration option A; and, second, configuration 
option B permits a far greater data base request rate than con­
figuration option A, should the terminal workload require it. 
Since we have gained an understanding of the basic behavior of 
the two data base configuration options, it is necessary to decide 
which one t6 select for development. Even though data base con­
figuration option A performs less well than option B, it is less 
costly and could be selected if it provides proper response to 
terminal users. 

System evaluation information about terminal user requests 
and computer resources required to handle those requests was 
collected to evaluate the performance of the data base configura­
tions in context with the total system performance. Only a best­
estimate type of information could be obtained during the plan­
ning phase. A simulation model was designed to represent a 
gross computer system design that would be necessary to service 
the terminal workload. Further, the simulation model included 
representations of human interaction at terminals, transmission 
of remote data, and other factors that might influence total system 
performance. 

The procedure to study the performance of data base configura­
tion options A and B in the total system environment was that 
of a sensitivity analysis. The number of terminals to be supported 
by the system was progressively increased and the average re­
sponse time was determined. The terminal response function for 
configuration option A is shown as a dotted line Figure 4 and as 
a dashed line for configuration B in the same figure. If the system 
supports 30 terminals with configuration option A, the average 
response time would be 46 seconds. This is unsatisfactory rela­
tive to the five-second terminal response requirement. On the 
other hand, configuration option B could easily support 30 ter­
minals and still meet the response requirement. In light of this 
study, a decision was made to use a separate data base computer, 
as reflected by data base configuration option B. 

The terminal response sensitivity study not only showed the 
resultant effect on the terminal user, but also provided insight 
into planning the organization of the data base. The initial con-
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Figure 4 Terminal response sensitivity analysis 
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cept of organizing the data was based on the chronological se­
quence in which it was generated aboard the Skylab spacecraft. 
It was also assumed that there would be greater interest by 
users in the more recently acquired data. Our evaluation of the 
simulation results showed that data organized by time of origin 
could lead to potential performance problems with either of the 
candidate design configurations. Disks with the more recently 
acquired data would tend to be more heavily used than disks 
with older data. The predicted result was that there would be 
access contention for the recent data. Therefore, the plan to 
organize data solely by time was dropped to avoid such perfor­
mance problems. 

System design phase 

With the aid of _ planning-phase study results, system planners 
were able to define the system in more formal terms. When the 
system developers received the formal system requirements, 
basic design work was begun. Although additional requirements 
would follow, the basic system architectural design could pro­
ceed, based on the set of baseline requirements derived from the 
planning phase. A major part of the system architecture within 
the System/360 Model 75 was-planned to be a Terminal Support 
System. The Terminal Support System was to provide interac­
tive terminal services (e.g., paging, terminal output queueing, 

No.2' 1974 PERFORMANCE EVALUATION 101 



task 

structure 

102 

and temporary report storage) for the various systems to be 
supported. Another major architectural decision was to split 
the Data Retrieval System into two separate subsystems - the 
Data Storage and the Data Retrieval Subsystem. The Data 
Base Computer System would interface with these subsystems. 

The Data Storage Subsystem was designated to process incoming 
telemetry data and transmit the data to the Data Base Computer 
for storage. The data would be processed to detect incorrect data 
points and would then be logically organized to facilitate retrieval. 
The Data Retrieval Subsystem \vould retrieve data from the data 
base and process it in response to specific terminal users' re­
quests. Requested data would be processed by performing cer­
tain tests such as limit checking on the data points before doing 
special mathematical computations. Results would then be pre­
pared for output in the form of tables or plots. To provide for data 
base integrety, only one system would be able to store in the data 
base; the majority of terminal users would be able to retrieve 
data only. This design would also provide the flexibility to run 
the Data Base Storage and Retrieval Subsystems in separate 
computers for possible load sharing or multijobbing with other 
applications. 

Performance evaluation during the system design phase focused 
on system architecture and software functional design. The pur­
pose of the analysis was to assist the designers in assessing the 
implications of their design decisions on software design ade­
quacy relative to total system performance constraints. Further­
more, early identification of potential problems provided manage­
ment with information on which to base decisions to change 
design, with the intention of avoiding the complications of making 
changes after designs had reached a firming-up stage. These 
evaluations covered such areas as task structure, disk I/O, and 
computer-to-computer interfaces. Analytical support was pro­
vided by a simulation model that included representations of the 
multicomputer configuration, the proposed system hardware and 
architecture, and the projected software design. System require­
ments for terminal inputs and data transmission from the remote 
sites were used to drive the model. 

Evaluations of system performance revealed potential perform­
ance bottlenecks related to worker task management. Worker 
tasks service terminal user requests to generate reports via the 
Data Retrieval Subsystem. Analysis of terminal response times 
showed that, in a multitermimil environment, users might ex­
perience excessive response times. If the number of available 
worker tasks was low, requests from terminals would be delayed 
unnecessarily while waiting for a task to become free. This would 
be upsetting to the terminal user. On the other hand, a large num­
ber of tasks would place excessive demands on other system re-
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sources. Since the final terminal workload and the precise com­
puter resource available to the Sky lab Terminal System were 
not known at this time, the final design provided an optional num­
ber of worker tasks to be created at system initialization time. 

Another task problem showed up during the evaluation of tele­
metry message inputs from remote sites. Experienced judgement 
indicated that the amount of processing done by the Terminal 
Support System to handle input messages was large compared 
to the work accomplished. Detailed performance data showed 
that almost one half of the CPU resources were being used by the 
terminal task. This task had been designed to handle communica­
tions with each terminal, but it would serve no functional use for 
telemetry input messages other than routing them to the appro­
priate subsystem. As a result of this study, its inadequacy to 
handle high speed cyclic telemetry messages became obvious. 
The projected CPU usage was reduced by modifying the task 
design. 

The Terminal Support System also had potential local disk I/o 
performance problems. This disk would be used to store com­
pleted reports and allow terminal users to retrieve them on re­
quest. The disk would also provide a temporary storage facility 
for each terminal user. Simulation results revealed that, with 
multiple terminals active, this disk could become the most highly 
used system resource. Disk-busy time was greater than eighty 
percent, which was an unacceptable design level. For certain 
terminal requests, disk I/O waiting time became the largest single 
component of overall terminal response time. The remedy pro­
vided early in the design process was the use of a larger data 
blocking factor, which would avoid significant device contention. 

, 
A two-task structure to facilitate temporary disk storage was 
developed for the Data Storage Subsystem to service the incom­
ing telemetry data. Through this design, a system requirement 
could be met to examine the input telemetry data in context with 
the previously received data to filter out incorrect data points. 
A local disk, accessed directly by the System/360 Model 75, 
was used as a buffer to accumulate each group of data before the 
final processing could be done. The first pass task would do the 
initial processing on the messages and temporarily store them on 
the local disk. When a group of data were completed, the second 
pass task would do the final processing on the data and then trans­
mit the data to the Data Base Computer for permanent storage. 

It was found that the proposed design for the Data Storage Sub- disk 

system could have potential performance problems related to I/O 

the flow of telemetry messages. An average of twelve messages 
per second for sustained periods of time was expected, but this 
rate could go as high as twenty-seven messages per second. To 
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assure the flow of messages through the system, an analysis was 
made of contention for the channel, control unit, and disks to 
determine whether the proposed system could handle the re­
quired telemetry rates. Results showed that the proposed design 
would be feasible if first a direct access method was used; i.e., 
if first, no indices were used, and second, if the telemetry mes­
sages were blocked (grouped together) with a minimum block­
ing factor. 

Potential performance problems were investigated for both the 
interface of the Skylab Terminal System in ine System/360 
Model 75 computer to the Communications Processor COIl!­
puter and to the Data Base Computer System. The performance 
of these interfaces had to be understood in order to design the 
interface routines and establish computer interface performance 
requirements. On the Communications Processor interface, per­
formance analysis showed that an output message handling con­
vention then being considered would unnecessarily throttle the 
outputs from the System/360 Model 75 computer. This would 
be particularly critical in the case of a system requirement to 
transmit large volumes of data from Houston to Huntsville. The 
convention was that successive output messages could not be 
sent from the System/360 Model 75 computer destined for a 
particular terminal or remote site until a demand message had 
been received from the communications processor. A perfor­
mance problem would arise if a heavy volume of input telemetry 
messages was being received at the same time the System/360 
Model 75 computer was trying to transmit messages to another 
remote site. These longer telemetry messages would have caused 
heavy usage of the input channel to the computer, which could 
result in high channel contention between input telemetry mes­
sages and the demand messages needed to enable the output. This 
situation was subsequently corrected to give the shorter demand­
message channel priority over the longer telemetry messages 
without any noticeable ill effects. 

The design of routines used by the Data Storage and Data Re­
trieval Subsystems that would interface with the Data Base 
Computer System were also analyzed. One design possibility 
would be to project potential performance improvement on the 
basis that tasks within the System/360 Model 75 computer could 
continue processing while they had unsatisfied data base re­
quests. The inclusion of such an overlap capability appeared to 
be desirable, but it would require a more sophisticated design. 
An evaluation was made to determine the potential performance 
improvements that would be attributable to the additional capa­
bility. The results showed that the design of the Data Storage 
Subsystem could be expected to keep up with the volume of input 
telemetry messages only if its data storage requests could be 
overlapped. In the case of the Data Retrieval Subsystem, certain 
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classes of terminal requests showed improvement when their 
I/o requests were overlapped. Some performance degradations 
resulting from increased device and CPU contention in the data 
base system would be expected, but the overall performance 
was projected to improve. On balance, the evaluation indicated 
the desirability of incorporating the overlap capability into the 
data base system interface design. 

Implementation phase 

After completing a preliminary design review, design imple­
mentation could begin. The goal of this phase was to create an 
integrated-program system that was ready for system testing. 
Along with the system implementation, tracking was required to 
be sure that system requirements were being met in a manner 
that was consistent with the system design and ultimately with a 
fully operational system. Changing operational requirements and 
system definitions also had to be dealt with throughout this 
phase. 

During system implementation, detailed design information was 
available at the load module level. For example, the design of the 
Data Retrieval Sybsystem would now specify the various load 
modules required to support the required functions. Terminal 
requests would pass through the Terminal Support System and 
would then be processed by the message processor load module. 
If data were required from the data base, the parameter fetch 
load module would communicate with the Data Base System 
through interface logic to retrieve the data. As the data segments 
were retrieved, the parameter fetch module would search for and 
collect the requested parameters. Other load modules would 
then perform the various data manipulations requested and pre­
pare the data for output via the terminal support system. An un­
derstanding of the functional relationships and design of each 
component was necessary to evaluate the system and to address 
the performance problems likely to arise during the implementa­
tion phase. A similar level of detail was also available for the 
Data Storage Subsystem. 

This increased level of design detail was incorporated into the 
simulation model to describe load module structure and interac­
tion. As components of the system were implemented, computer 
monitors provided current information on the use of such re­
sources as the CPU and I/O by the load modules as they came on­
line. These monitors also provided information on interactions 
among the load modules so as to verify the original system design 
and to understand the performance implications of these inter­
actions. The appropriate use of the simulation model and the 
computer monitor made it possible to track both the projected 

No.2' 1974 PERFORMANCE EVALUATION 105 



terminal 

activity 

106 

and the current uses of the system. We now discuss the evalua­
tion of particular system functions during the implementation 
phase. 

The terminal response time that a user would experience was the 
most visible means of assessing the effectiveness of the system 
design. A user forms his opinion of an interactive system on the 
basis of his expectations of terminal response time. Therefore, 
it was necessary to thoroughly investigate interactive system 
behavior. Since the terminal workload characteristic had been 
defined originally several months prior to this time, a comprehen­
sive reevaluation was made of the intended use of terminals to 
access scientific and engineering data stored in the Data Base 
Computer System. We discovered that only one quarter of the 
terminal requests were expected to be the quick-look type; the 
other three quarters were to be batch processing requests that 
would involve significantly more CPU and I/O resources. 

Resplts then showed that the System/360 Model 75 computer 
would become computation bound because of the high number 
of batch requests entered at terminals. Since all terminal requests 
were to be considered and handled with equal priority, batch re­
quests significantly degraded the simulated system performance 
for quick-look terminal transactions. As system loading by batch 
requests increased, simulated response times grew to as high as 
ten minutes when, under more favorable conditions, they could 
have taken only ten to fifteen seconds. Such degraded system 
response was judged to be unsatisfactory to meet the needs of 
those terminal users. 

Given the response problems, the Data Retrieval Subsystem de­
sign was reexamined. In addition, a study was undertaken to de­
termine the characteristics of a terminal workload that still met 
the basic requirements of the terminal user but did not impose 
such a severe process load on the Skylab Terminal System. A 
new terminal load was defined to include the following charac­
teristics: (1) only one-half of the terminal users would make 
batch requests; (2) the scope of the batch request requirements 
would be reduced; and (3) the number and frequency of termi­
nals making quick-look requests would be increased so that the 
total number of terminal users being serviced would remain con­
stant. Also, quick-look requests were simulated as being pro­
cessed at a higher priority than batch requests. The system model 
was run on the basis of these new conditions, and showed system 
performance and terminal response to have returned to within 
reasonable ranges. Under these conditions, the model projected 
an average CPU utilization of less than fifty percent. At this point 
two recommendations were made: first, operational procedures 
should be initiated that would constrain terminal user requests, 
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so as to process the terminal workload in a single System/360 
Model 75; and second, quick-look requests should be handled 
at a higher priority than batch requests. 

The advantages of using Large Capacity Storage (LCS) were 
the higher-speed peripheral storage capability available as an 
alternative to disk storage, and the extension of main storage at 
slightly reduced speed. Both load modules and data buffers could 
be placed in LCS. However, misuse of this capability could cause 
unnecessary performance degradation beca~se the LCS cycle 
time was between four and eight times slower than that of main 
storage. The LCS evaluation effort provided general LCS usage 
guidelines. As the development proceeded, the specific LCS­

related performance problems of each application were studied. 
Examples of some of the studies follow. 

A general study was made of the ways in which specific LCS con­
figurations affect program execution, and guidelines were pro­
posed for avoiding performance degradation. Since these studies 
were basic to developing the system, they were covered in the 
system design phase. It was found that loa4 modules should not 
be indiscriminately placed in LCS for execution simply to reduce 
main storage requirements. The best load module candidates 
should have exceptional characteristics such as low CPU usage 
relative to size, infrequent execution, and minimal response cOIl­
straints. This study also provided designers with an easy-to-use 
analytical technique for estimating the increased CPU usage that 
would result from executing load modules in LCS or from placing 
data buffers in LCS. Although this analysis could only be used for 
rough estimates of actual increases in CPU usage, it was a valu­
able design guide and an aid in obtaining performance evaluation 
tradeoffs before the system components were implemented. 

This LCS analysis information was used in the performance tuning 
of the Data Retrieval Subsystem to determine possible reductions 
in CPU usage due to improper placement of data buffers in LCS. 

A study was made of the major application load modules to de­
termine the effect of LCS buffer placement. In the case of batch 
terminal requests that would require buffering, there was a trip­
ling of instruction execution time, as shown in Figure 5. Informa­
tion from the simulation of the frequency of execution of each 
load module, along with a breakdown of the components of each 
type of terminal request, were used to recommend the placement 
of specific load module buffers in main storage. 

LCS analysis was also applied to a performance problem in the 
Data Storage Subsystem. In this case, there was a question of the 
system's real-time ability to handle the flow of telemetry data 
from the remote sites. CPU measurements had been taken from 
an early version of the system when there was a low message in-
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Figure 5 LCS buffering of a batch terminal request 
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put rate from remote sites. Analysis showed that, at a nominal 
loading rate of 18 messages per second (an increased require­
ment), there would not be adequate CPU capability to handle the 
load. This was caused by the initial placement of buffers and 
tables in LCS because of their anticipated massiveness. To correct 
this situation, analysts and designers worked together to identify 
critical buffers and tables of reasonable size to be moved into 
main storage. Measurements were taken on the modified system, 
and the CPU usage was found to have been reduced to acceptable 
levels. 

The expected performance of the Data Storage Subsystem had to 
be continually tracked as the implementation proceeded, because 
of the requirement to handle a real-time flow of data from remote 
sites. An added complexity was the occurrence of such specific 
events as the selection of new sites, the discontinuation of other 
sites, and periodic deletions of data frpm the data base. Event 
analysis was done to determine the effect of these occurrences 
on the capability of the Data Storage Subsystem to handle real­
time data flow. The objective of the ,malysis was to determine 
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Figure 6 Input message queuing during site selection 
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the performance of both a first-pass task and a second-pass task, 
since each was affected differently by the events being studied. 
Because of the requirement to transmit data to the Data Base 
Computer System, the analysis of the second pass task had to 
consider data base interface performance. 

The purpose of the first-pass task was to store the input data on 
a local disk in an organized format. This established a rate 
equivalent to the flow of messages into the computer. The task 
worked on one message at a time. If the task was busy, addition­
al messages coming into the computer would be placed in an LCS 

storage buffer. The number of messages queued in this buffer 
could not exceed the capacity of the buffer or there could be a 
loss of messages. (Manual intervention would then be required.) 
Since loss of messages had to be avoided, events- such as site 
selection - that required the exclusive use of the first-pass task 
were a particular concern of the analysis. 

The analysis revealed that site selection was the most critical 
event that could affect the performance of the first pass task. A 
method of studying the dynamic nature of site selection was to 
simulate the event in a multitasking system environment with 
typical message rates (18 messages per second) and the worst 
case (27 messages per second). Results of site selection simula­
tion in terms of the buildup of messages in the input buffer are 
shown in Figure 6. We concluded from the analysis that a signifi­
cant buildup of messages c;ould be expected during site selec­
tion. This buildup was used to establish the size of the input 
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buffer. We also concluded that the task as designed could work 
off the buildup of input messages and store them on disk well 
before another site selection event. 

The purpose of the second pass task was to retrieve data from a 
local disk, do secondary processing, and then transmit the data 
to the Data Base Computer System. The execution of this 
t~sk was asynchronous with the input message rate in that data 
were retrieved only after a complete grouping of the data that 
were to reside there. Because of this type of execution, a sepa-
--+- __ ...... l .. 7+~,..H, .. ,.1 ...... __ ...... "'o,.....h ",n.C'I ...... oarlorl t'"' rlotor'1'Y\;no ''11ht3thor th,:a, 
lC1l~ C1UC11YU\"C11 C1PP1VC1\"H VVUO:> .U,",,",u,",u .. v u'"' .. '"'~~~u .. ..., H .. ...," .. ...,~ " .. ..., 

design could maintain the over-all input flow through the system. 
By simulating the design in a typical multitasking environment, 
it was found that the second pass task, once activated, could 
service input data at a rate equivalent to 33 messages per sec­
ond. This rate appeared to be satisfactory because it was well 
above the worst-case message loading rate. However, there 
remained a question of performance relative to such events as 
site selection, site discontinuation, and data-base deletion. A 
determination was made of the rate at which the second pass 
task must handle messages to be sure that the system could ser­
vice the nominal rate of input, even when these events were 
occuring simultaneously. To answer this, various events were 
simulated to provide information needed to establish a" design 
acceptance rate at which the second pass task must be able to 
perform. This acceptance rate was set at 30 message~ a second. 
The then current evaluations showed that, in a normal case, the 
design could exceed this performance acceptance rate. 

System testing phase 

System testing was the final and independent evaluation of the 
Skylab Terminal System in a near-operational environment. All 
components had to be integrated into a working system. Accep­
tance testing was also performed to be "sure that the system satis­
fied all the functional requirements. During this period, future 
operating personnel were being trained. Because additional sys­
tem capabilities being implemented much of the testing period 
was overlapped with development and integration activities. 

Performance is key to testing because a system should perform 
the way the user requires. System performance monitoring and 
evaluation in parallel with system testing can answer perfor­
mance questions. During the testing phase, much of the perfor­
mance analysis activity was directed toward the tracking of 
known potential resource problems, checking out specific prob­
lems, and analyzing operational procedures that might affect per­
formance. A study of the operational environment was macie to 
determine the compatibility of the subsystems with other appli­
cations in Houston that would be sharing the same resources. 
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Tracking the CPU usage of the Data Storage Subsystem was of 
particular importance because of the requirements to handle 
input messages in real time. The projected CPU usage also var­
ied with the input message rate and the specific type o'f data being 
transmitted. Analysis of the first system test series showed that 
CPU usage would increase by an unexpected 30 percent at the 
nominal message input rate as compared with previous projec­
tions. 

This CPU usage increase was traced to extensive use of a special 
facility to determine the Greenwich Mean Time for tagging in­
put messages. Time tagging had required little programming 
effort, and it had quickly become part of the system. But this 
minor modification had been made without considering its per­
formance implications. Analysis of the time tagging method re­
vealed that the facility to determine time had not been designed 
to be executed at a rate equivalent to the input message rate. 
Further 'investigation revealed that this time tagging was a dupli­
cation of a similar time tagging already being done by the Termi­
nal Support System with much less CPU usage per tag. As a 
result of the analysis, the system was modified so that the orig­
inal time tagging operation could serve the new requirement as 
well. Although the solution was obvious after the problem had 
been discovered, the implications of a seemingly minor program­
ming change can easily be overlooked in a large development 
effort. System performance tracking during system integration, 
and testing can be a safety check on such changes. 

CPU usage projections for the Data Storage Subsystem were 
based on early measurements of a partic"ular type of data. There­
fore, it was necessary to determine whether the CPU usage 
would vary significantly with other types of input data. Analysis 
and measurements resulted in CPU projections at nominal'load­
ings for various types and mixes of data. The projected CPU 

usage for one type of input data was high enough that special 
operational restrictions were established to handle it. 

One of the functions performed during acceptance testing was to 
identify discrepancies so that they could be corrected. System 
funcitonal capabilities and responsiveness to users' requests 
were both assessed. In one case, computer measurements 
showed that two load modules were looping - giving control to 
one another -,and thereby causing excessive CPU usage. Correc­
tive programming was initiated as a result of ana lysis. 

A different type of performance problem arose with an applica­
tion that was designed to send a large volume of data over a 
transmission line to a remote location. The application control­
lers said they could not drive the transmission line at the capaci­
ty they wanted. Three major causes of performance degradation 
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were identified and the degree of each degradation was deter­
mined. Inefficient coding and program logic errors were found 
and corrected. Also, the then current method of display output 
that monitored the progress of data transmission was found to be 
reducing system performance. An immediate solution was a re­
laxation of a stringent cyclic display update requirement. A long­
range solution that was implemented was to redesign the display 
task structure. It was also found that the computer to computer 
interface response time was limiting the transmission efficiency. 

An anaiysis of certain of the operationai procedures of the sys­
tem showed that the user himself could cause performance deg­
radiation. In the Data Storage Subsystem, the user could indirect­
ly cause cyclic displays to be generated in excess of those re­
quired, thereby increasing CPU usage unnecessarily by five to ten 
percent. Operational procedures that induced the extra use of the 
CPU were subsequently modified to eliminate such problems. An­
other operational procedure that involved the logging of input and 
output messages was analyzed. Computer'resources required for 
the logging option were identified and put in perspective with the 
use of those same resources for vital processing. With this infor­
mation, the user could evaluate his need to log data during criti­
cal time periods against the total system objectives. A decision 
was taken to eliminate data logging during critical mission sup­
port periods. 

Investigations were made of all applications using the five avail­
able System/360 Model 75 computers, to determine their most 
efficient usage. Both the data storage and data retrieval subsys­
tems had to be analyzed to determine the ability of each subsys­
tem to run with one or more other applications in one computer. 
Prime areas considered in the study were computer resources, 
modes of operation, and performance requirements of each of 
the applications. Results of this study were presented in a co­
user matrix that showed which modes of operation for each ap­
plication were compatible with other applications. Supporting 
information was accumulated to back up this matrix, such as 
resource and performance requirements for each application and 
each proposed combination of applications. The co-user matrix 
provided an easy-to-use source of information to develop com­
puter scheduling options and alternatives. 

Performance evaluation done in parallel with testing aided in 
producing a system that was highly tuned to the user's opera­
tional requirements. It also provided a method of answering the 
user's questions about hypothetical or actual performance prob­
lems. Computer monitors were the principal' tools used for the 
performance evaluations. Simulation models, when used, played 
a more limited role when the operational system was available 
for testing. Simulation models would be valuable in the system 
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testing phase to simulate operational environments that could 
not be tested directly, such as the full complement of terminal 
users who would want to use the system. 

Concluding remarks 

Analytical techniques applied throughout the development cycle 
can contribute significantly to the development of a successful 
computer system. In this paper, we have tried to illustrate the 
value of doing the appropriate level of performance evaluation 
at each stage of a development cycle. The particular types of 
techniques used depend on the level of complexity and perfor­
mance considerations associated with a particular project. A sim­
ple pencil and paper approach with observations of program exe­
cution may suffice for a small project. On a large system develop­
ment project where the performance of more complex computers 
and other resources are critical, more extensive techniques are 
usually required. Here it may be necessary to judge the adequacy 
of system design, details of software design, and computer con­
figurations in the expected total system environment. The anal­
yst, using the techniques of digital simulation models and com­
puter system monitors, can take this perspective. This was the 
course followed in the development of the Skylab Terminal Sys­
tem described in this paper. 

The preventive nature of performance analysis often makes it 
difficult to assign actual cost savings for performance problems 
that are avoided. This paper has tried, through an illustrative 
system development example, to show how one can improve the 
visibility and control of a system development effort by applying 
performance evaluation and analysis. Experience with the Sky lab 
Terminal System shows that system developers can depend on 
predictive techniques and the kind of analyses described to guide 
complex system development efforts. 
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