
System performance analysis techniques have been applied to
support the development of a data-communication, data-base
system. These techniques have been applied continuously from
the system planning phase through system testing.

Computer simulative models and computer measurement tools
were used in this analysis.

Performance analysis for the Skylab
terminal system

94

by R. J. Mancini

The National Aeronautics and Space Administration (NASA)
required computing systems for ground 'support of the Skylab
space station project (1) for controlling the intricate aspects of
manned space flight as in the Apollo missions, (2) for scheduling
mission activities, and (3) for processing a large variety of spe­
cialized experimental data. The system for processing experimen­
tal data, the Skylab Terminal System, is discussed in this paper.
This system permitted scientists and engineers to view telemetry
data (i.e., data transmitted from the spacecraft by radio signals
to receiving ground stations) after the data have been processed
and formatted for output.

The Skylab spacecraft data were transmitted from the orbit­
ing laboratory and received by remote tracking sites. From these
sites, the data were transmitted over communication lines to
the Goddard Space Flight Center for relay to the Mission Con­
trolCenter in Houston~ Texas. At Houston the data were re­
ceived by a front-end UNIVAC 494 Communications Process
Computer. This computer functioned as a message switch that
routed the data to the Skylab Terminal System within one or
more of the five IBM System/360 Model 75 computers in the
Mission Control Center. In the Skylab Terminal computers, the
data were routed by the Terminal Support System to the Data
RetrievalSystelll as shown in Figure 1. Data were transmitted
to the CDC CYBER 73 Data Base Computer System for storage
by using the Data Storage Sub~ystem. Data are retrieved from
the Data Base Computer System in response to terrp.inal requests

MANCINI IBM SYST J

Figure 1 Interactive scientific system for the Skylab project

MISSION CONTROL CENTER

~o"'mlo"
~TELEMETRY INPUTS

~0Sl
COMMUNICATIONS / •

COMPUTER
PROCESS ~.

UNIVAC 494 , .. ~ ~

SKYLAB TERMINAL SYSTEM J
SYSTEM/360 t
MODEL 75S

TERMINAL
SUPPORT
SYSTEM

DATA BASE
COMPUTER

SYSTEM
CYBER 73

by using the Data Retrieval Subsystem. Scientific and engineer­
ing application programs were part of the Data Retrieval and
Data Storage Subsystems. Included in this paper is an analysis of
the Skylab Terminal System and its interfaces with the CYBER
73 Data Base Computer, and with the UNIVAC 494 Communi­
cations Process Computer.

The system software within the IBM System/360 Model 75 com­
puter represents a three-year development project by IBM. The
resultant large, complex system (approximately 2.5 million bytes
of code) . is required to receive and transmit large volumes of
telemetry data according to time constraints concurrently with
the requirement to responsively process terminal user requests.
Therefore, continued performance evaluations were essential
throughout the planning, design, implementation, and testing
phases (summarized in Table 1) to determine whether the given
hardware configuration and the software design satisfactorily
meet the operational system objectives. Such evaluations bene­
fit the developers through improved system design, and benefit
the project through a reduction in the amount of development
rework to meet system objectives. The intent of this paper is to

No.2· 1974 PERFORMANCE EVALUATION 95

96

Table 1 System development and evaluation phases

Development phases

Planning

Design

Implementation

System testing

Functions of phases

Define requirements

Develop architecture
Develop baseline design

Create integrated program
system

Verify system meets
requirements

Performance evaluation

System feasibility
Configuration alternatives
System performance

verification
Design feasibility
Identify problems
Compare implementation

with requirements
Verify system performance
Tune system

demonstrate the benefits of using performance evaluation tech­
niques throughout a specific system development. Therefore,
the paper uses examples that illustrate how these techniques can
influence the software design and development rather than em­
phasizing the description of the application or the specific tech­
niques used. The use of such techniques does not guarantee that
all performance problems can be identified early and precluded.
However, continuing system analysis does aid in producing a
system more capable of meeting system requirements within the
schedule constraints than otherwise might be possible.

Growing and changing requirements were a characteristic of the
Skylab Terminal System development project. An example of
this was that although the initial terminal capabilities were en­
visioned as limited, quick looks at incoming scientific (and tra­
jectory) data, the final sytem had extensive terminal support.
Included in the added support was the capability of entering batch
requests for large amounts of processing, and Input/Output (I/O)
from a terminal. The fact that application requirements changed
points to an increased need for performance analysis of the sys­
tem to evaluate the impact of such changes on the total system.

Both modeling and measurement techniques were used to sup­
port the performance analysis effort. The techniques that were
used are categorized here according to the terminology defini­
tions listed by Pomeroy.1

Self-driven simulative models were used during the project plan­
ning, design, and implementation phases. During each successive
phase, more detailed application design information was included
in the simulative models, ranging from the functional design level
to the individual program level of information. Both Stanlel and
Seaman3 have illustrated some specific uses of this technique.

in the area of measurement techniques, both hardware and soft­
ware monitors were used during the project implementation and

MANCINI IBM SYST J

testing phases. Hook-catching software monitors! were used to
measure Central Processor Unit (CPU), Input/Output (I/O), and
main storage usage, as well as transaction response time. Activ­
ity was measured down to the task, program, and control program
service levels. A statistical sampling software monitor! was used
to measure Large Capacity Storage (LCS). Stanley,2,4 Bonner,5
Hobgood,6 and Margolini have illustrated some uses of these
measurement techniques.

System planning phase

Every system development goes through a transition period dur­
ing which raw ideas, needs, and concepts are formulated and
translated into one or more general functional embodiments that
satisfy the requirements. Even during this early system planning
phase, we found it to be both possible and practical to make pre­
dictive evaluation analyses of proposed systems and, thereby,
to make a positive contribution to the success of the project.

The scientific nature of the Sky lab project established a require­
ment for an interactive terminal and data base system for the use
of ground-based scientists and other mission personnel. Since a
data base system was not available, much of the performance
analysis work done during the planning phase was the evaluation
of data base configuration options that were based, in turn, on a
conceptualized system design.

Cost versus performance tradeoffs were used in deciding among
data base configuration options. Because 'of a requirement to
randomly access a data base of over one billion bytes, direct ac­
cess disk storage was selected as the data base storage medium.
It was also known at this time, however, that at least thirty scien­
tific and engineering terminal users were to access the data
base with an average expected response time of five seconds
for the quick-look requests for data. The lowest cost configura­
tion option was simply to add sufficient disk storage devices to
the existing System/360 Model 75 computer systems. What was
not known was whether this configuration wold be responsive to
the terminal users. As a consequence, the following study of this
option, compared to a more costly configuration option, was un­
dertaken.

Two principal data base configuration options (designated A and
B) were considered. Configuration option A would obtain the
necessary data base system at minimal cost by using existing
System/360 Model 75s to manage the planned data base and by
connecting additional disks through selector charmels to make up
the required storage capacity. The data base disks would then be
switchable to anyone of the System/360 Model 75 computers.

No.2' 1974 PERFORMANCE EVALUATION

data base

configuration

options

97

98

Figure 2 Data base access response time

~~ /

8 / ~ 200 I- .:/ CONFIGURATION A

~ / ~ r- - - -7{. /
~ I /'
(j) 1001- /
6 I- I
~ I-
a:: 70 I- I ~ CONFIGURATION B

~ I- I ---
o ___

~ 501- I __ ---
~ 40 I- -----r
8J
~ I

30 I- I

20 I-
I
I
I
I

O~ _____ ~I~I ____ ~I ____ ~I ______ ~I ______ ~I ______ ~I ____ ~
o 30 60 90 120 150 180 210

REQUEST RATE (ACCESSES/SECOND)

With the use of a two-channel switch, the disks could also be
dynamically shared between any two of the computers. The
choice among various types of disks was limited to those types
that were compatible with the given computer system.

Configuration option B specified a separate data base computer
that would be linked to the System/360 Model 75 by way of a
selector channel. The B configuration would be a more open­
ended approach relative to performance considerations. The
disks could be selected for superior performance capabilities,
~ince they would be required only to be compatible with the con­
figuration B data base computer. Greater flexibility in channel
configurations would also be available. Configuration B could
thereby offer improved performance characteristics over those
of configuration A, but only at added cost. A second data base
computer would be required for a backup in configuration B be­
cause there would be no existing system to fall back on.

The approach used in our data base configuration evaluation had
two basic parts: (1) to estimate and compare the expected per­
formance of the data base hardware devices and configuration
options; and (2) to estimate the expected performance of both
configuration options relative to the terminal response require­
ments for the total systems. The data base hardware evaluation
was necessary to gain insight irito the advantages, limitations,
and maximum data access capability of each data base configura­
tion to handle a storage requirement of one billion bytes of data.
Generalized disk usage assumptions, such as that of the use of

MANCINI IBM SYST J

Figure 3 Data base channel usage

100~----------~----------------------------------~

90 r-

80 I-

... CONFIGURATION A
70 I=- - - - -/

60,"

50 I-

40 c-

30 -

20 -

--------10 - ----

...------­...----
____ ~NFIGURATION B

---l
OL-_----____ ~I~I ____ ~I ____ ~I ______ ~I ______ ~I _______ L_I ____ ~

o 30 60 90 120 150 180 210
REQUEST RATE (ACCESSES/SECOND)

random seek functions, were made for the first part of the anal­
ysis. Also, an exponential distribution of data base request in­
terarrival times was assumed in the hardware study so as to
determine the overall capability and flexibility of each data base
configuration. The scope of the second half of the study included
the total data retrieval system, with a definition of projected ter­
minal activity, to determine the distribution and frequency of
disk activity. Simulation models were used in both parts of the
study.

For the data base hardware analysis, a fixed data-request size
and a variable request rate were used for each data base con­
figuration. The maximum request rate capability for configura­
tion option A was greater than fifty requests per second, but, as
the request rate increased beyond forty requests per second, the
request response time rapidly increased to a half second per
request. The configuration A access response time function is
shown by the dotted line in Figure 2. The steep increase in re~
sponse time was caused by channel busy times that approached
one hundred percent, as shown by the dotted line in Figure 3.

The request rate for configuration option B reached nearly two
hundred requests per second before the response time approached
one-half second. This request rate was nearly four times that
achieved by configuration option A. For a request rate offorty
accesses per second, the response time was 42 milliseconds for
option B as compared with 135 milliseconds for option A.

No.2· 1974 PERFORMANCE EVALUATION

data base

system

evaluation

99

100

There would have been little advantage to adding more disk
packs to design A, because of the high channel loading (69 per­
cent at 40 accesses per second). More disks could be added to
Design B because the channel would be only 40 percent occupied
at the peak request rate as shown in Figure 3. In design B the
high utilization of the disks was the limitiilg factor. More disks,
however, would provide improved performance.

Two aspects of the configuration behavior are clear: First, con­
figuration option B is always more responsive to data base re­
quests than is configuration option A; and, second, configuration
option B permits a far greater data base request rate than con­
figuration option A, should the terminal workload require it.
Since we have gained an understanding of the basic behavior of
the two data base configuration options, it is necessary to decide
which one t6 select for development. Even though data base con­
figuration option A performs less well than option B, it is less
costly and could be selected if it provides proper response to
terminal users.

System evaluation information about terminal user requests
and computer resources required to handle those requests was
collected to evaluate the performance of the data base configura­
tions in context with the total system performance. Only a best­
estimate type of information could be obtained during the plan­
ning phase. A simulation model was designed to represent a
gross computer system design that would be necessary to service
the terminal workload. Further, the simulation model included
representations of human interaction at terminals, transmission
of remote data, and other factors that might influence total system
performance.

The procedure to study the performance of data base configura­
tion options A and B in the total system environment was that
of a sensitivity analysis. The number of terminals to be supported
by the system was progressively increased and the average re­
sponse time was determined. The terminal response function for
configuration option A is shown as a dotted line Figure 4 and as
a dashed line for configuration B in the same figure. If the system
supports 30 terminals with configuration option A, the average
response time would be 46 seconds. This is unsatisfactory rela­
tive to the five-second terminal response requirement. On the
other hand, configuration option B could easily support 30 ter­
minals and still meet the response requirement. In light of this
study, a decision was made to use a separate data base computer,
as reflected by data base configuration option B.

The terminal response sensitivity study not only showed the
resultant effect on the terminal user, but also provided insight
into planning the organization of the data base. The initial con-

MANCINI IBM SYST J

Figure 4 Terminal response sensitivity analysis

80~---'

601-

! CONFIGURATION A

r-- - - - - - --:

40 I-

20 -

-----0----1-1 I

..............

20 40

/
~

I
60

/cONFIGURATION B

I
80 100

NUMBER OF TERMINALS

cept of organizing the data was based on the chronological se­
quence in which it was generated aboard the Skylab spacecraft.
It was also assumed that there would be greater interest by
users in the more recently acquired data. Our evaluation of the
simulation results showed that data organized by time of origin
could lead to potential performance problems with either of the
candidate design configurations. Disks with the more recently
acquired data would tend to be more heavily used than disks
with older data. The predicted result was that there would be
access contention for the recent data. Therefore, the plan to
organize data solely by time was dropped to avoid such perfor­
mance problems.

System design phase

With the aid of _ planning-phase study results, system planners
were able to define the system in more formal terms. When the
system developers received the formal system requirements,
basic design work was begun. Although additional requirements
would follow, the basic system architectural design could pro­
ceed, based on the set of baseline requirements derived from the
planning phase. A major part of the system architecture within
the System/360 Model 75 was-planned to be a Terminal Support
System. The Terminal Support System was to provide interac­
tive terminal services (e.g., paging, terminal output queueing,

No.2' 1974 PERFORMANCE EVALUATION 101

task

structure

102

and temporary report storage) for the various systems to be
supported. Another major architectural decision was to split
the Data Retrieval System into two separate subsystems - the
Data Storage and the Data Retrieval Subsystem. The Data
Base Computer System would interface with these subsystems.

The Data Storage Subsystem was designated to process incoming
telemetry data and transmit the data to the Data Base Computer
for storage. The data would be processed to detect incorrect data
points and would then be logically organized to facilitate retrieval.
The Data Retrieval Subsystem \vould retrieve data from the data
base and process it in response to specific terminal users' re­
quests. Requested data would be processed by performing cer­
tain tests such as limit checking on the data points before doing
special mathematical computations. Results would then be pre­
pared for output in the form of tables or plots. To provide for data
base integrety, only one system would be able to store in the data
base; the majority of terminal users would be able to retrieve
data only. This design would also provide the flexibility to run
the Data Base Storage and Retrieval Subsystems in separate
computers for possible load sharing or multijobbing with other
applications.

Performance evaluation during the system design phase focused
on system architecture and software functional design. The pur­
pose of the analysis was to assist the designers in assessing the
implications of their design decisions on software design ade­
quacy relative to total system performance constraints. Further­
more, early identification of potential problems provided manage­
ment with information on which to base decisions to change
design, with the intention of avoiding the complications of making
changes after designs had reached a firming-up stage. These
evaluations covered such areas as task structure, disk I/O, and
computer-to-computer interfaces. Analytical support was pro­
vided by a simulation model that included representations of the
multicomputer configuration, the proposed system hardware and
architecture, and the projected software design. System require­
ments for terminal inputs and data transmission from the remote
sites were used to drive the model.

Evaluations of system performance revealed potential perform­
ance bottlenecks related to worker task management. Worker
tasks service terminal user requests to generate reports via the
Data Retrieval Subsystem. Analysis of terminal response times
showed that, in a multitermimil environment, users might ex­
perience excessive response times. If the number of available
worker tasks was low, requests from terminals would be delayed
unnecessarily while waiting for a task to become free. This would
be upsetting to the terminal user. On the other hand, a large num­
ber of tasks would place excessive demands on other system re-

MANCINI No.2' 1974

sources. Since the final terminal workload and the precise com­
puter resource available to the Sky lab Terminal System were
not known at this time, the final design provided an optional num­
ber of worker tasks to be created at system initialization time.

Another task problem showed up during the evaluation of tele­
metry message inputs from remote sites. Experienced judgement
indicated that the amount of processing done by the Terminal
Support System to handle input messages was large compared
to the work accomplished. Detailed performance data showed
that almost one half of the CPU resources were being used by the
terminal task. This task had been designed to handle communica­
tions with each terminal, but it would serve no functional use for
telemetry input messages other than routing them to the appro­
priate subsystem. As a result of this study, its inadequacy to
handle high speed cyclic telemetry messages became obvious.
The projected CPU usage was reduced by modifying the task
design.

The Terminal Support System also had potential local disk I/o
performance problems. This disk would be used to store com­
pleted reports and allow terminal users to retrieve them on re­
quest. The disk would also provide a temporary storage facility
for each terminal user. Simulation results revealed that, with
multiple terminals active, this disk could become the most highly
used system resource. Disk-busy time was greater than eighty
percent, which was an unacceptable design level. For certain
terminal requests, disk I/O waiting time became the largest single
component of overall terminal response time. The remedy pro­
vided early in the design process was the use of a larger data
blocking factor, which would avoid significant device contention.

,
A two-task structure to facilitate temporary disk storage was
developed for the Data Storage Subsystem to service the incom­
ing telemetry data. Through this design, a system requirement
could be met to examine the input telemetry data in context with
the previously received data to filter out incorrect data points.
A local disk, accessed directly by the System/360 Model 75,
was used as a buffer to accumulate each group of data before the
final processing could be done. The first pass task would do the
initial processing on the messages and temporarily store them on
the local disk. When a group of data were completed, the second
pass task would do the final processing on the data and then trans­
mit the data to the Data Base Computer for permanent storage.

It was found that the proposed design for the Data Storage Sub- disk

system could have potential performance problems related to I/O

the flow of telemetry messages. An average of twelve messages
per second for sustained periods of time was expected, but this
rate could go as high as twenty-seven messages per second. To

IBM SYST J PERFORMANCE EVALUATION 103

computer

interface

104

assure the flow of messages through the system, an analysis was
made of contention for the channel, control unit, and disks to
determine whether the proposed system could handle the re­
quired telemetry rates. Results showed that the proposed design
would be feasible if first a direct access method was used; i.e.,
if first, no indices were used, and second, if the telemetry mes­
sages were blocked (grouped together) with a minimum block­
ing factor.

Potential performance problems were investigated for both the
interface of the Skylab Terminal System in ine System/360
Model 75 computer to the Communications Processor COIl!­
puter and to the Data Base Computer System. The performance
of these interfaces had to be understood in order to design the
interface routines and establish computer interface performance
requirements. On the Communications Processor interface, per­
formance analysis showed that an output message handling con­
vention then being considered would unnecessarily throttle the
outputs from the System/360 Model 75 computer. This would
be particularly critical in the case of a system requirement to
transmit large volumes of data from Houston to Huntsville. The
convention was that successive output messages could not be
sent from the System/360 Model 75 computer destined for a
particular terminal or remote site until a demand message had
been received from the communications processor. A perfor­
mance problem would arise if a heavy volume of input telemetry
messages was being received at the same time the System/360
Model 75 computer was trying to transmit messages to another
remote site. These longer telemetry messages would have caused
heavy usage of the input channel to the computer, which could
result in high channel contention between input telemetry mes­
sages and the demand messages needed to enable the output. This
situation was subsequently corrected to give the shorter demand­
message channel priority over the longer telemetry messages
without any noticeable ill effects.

The design of routines used by the Data Storage and Data Re­
trieval Subsystems that would interface with the Data Base
Computer System were also analyzed. One design possibility
would be to project potential performance improvement on the
basis that tasks within the System/360 Model 75 computer could
continue processing while they had unsatisfied data base re­
quests. The inclusion of such an overlap capability appeared to
be desirable, but it would require a more sophisticated design.
An evaluation was made to determine the potential performance
improvements that would be attributable to the additional capa­
bility. The results showed that the design of the Data Storage
Subsystem could be expected to keep up with the volume of input
telemetry messages only if its data storage requests could be
overlapped. In the case of the Data Retrieval Subsystem, certain

MANCINI IBM SYST J

classes of terminal requests showed improvement when their
I/o requests were overlapped. Some performance degradations
resulting from increased device and CPU contention in the data
base system would be expected, but the overall performance
was projected to improve. On balance, the evaluation indicated
the desirability of incorporating the overlap capability into the
data base system interface design.

Implementation phase

After completing a preliminary design review, design imple­
mentation could begin. The goal of this phase was to create an
integrated-program system that was ready for system testing.
Along with the system implementation, tracking was required to
be sure that system requirements were being met in a manner
that was consistent with the system design and ultimately with a
fully operational system. Changing operational requirements and
system definitions also had to be dealt with throughout this
phase.

During system implementation, detailed design information was
available at the load module level. For example, the design of the
Data Retrieval Sybsystem would now specify the various load
modules required to support the required functions. Terminal
requests would pass through the Terminal Support System and
would then be processed by the message processor load module.
If data were required from the data base, the parameter fetch
load module would communicate with the Data Base System
through interface logic to retrieve the data. As the data segments
were retrieved, the parameter fetch module would search for and
collect the requested parameters. Other load modules would
then perform the various data manipulations requested and pre­
pare the data for output via the terminal support system. An un­
derstanding of the functional relationships and design of each
component was necessary to evaluate the system and to address
the performance problems likely to arise during the implementa­
tion phase. A similar level of detail was also available for the
Data Storage Subsystem.

This increased level of design detail was incorporated into the
simulation model to describe load module structure and interac­
tion. As components of the system were implemented, computer
monitors provided current information on the use of such re­
sources as the CPU and I/O by the load modules as they came on­
line. These monitors also provided information on interactions
among the load modules so as to verify the original system design
and to understand the performance implications of these inter­
actions. The appropriate use of the simulation model and the
computer monitor made it possible to track both the projected

No.2' 1974 PERFORMANCE EVALUATION 105

terminal

activity

106

and the current uses of the system. We now discuss the evalua­
tion of particular system functions during the implementation
phase.

The terminal response time that a user would experience was the
most visible means of assessing the effectiveness of the system
design. A user forms his opinion of an interactive system on the
basis of his expectations of terminal response time. Therefore,
it was necessary to thoroughly investigate interactive system
behavior. Since the terminal workload characteristic had been
defined originally several months prior to this time, a comprehen­
sive reevaluation was made of the intended use of terminals to
access scientific and engineering data stored in the Data Base
Computer System. We discovered that only one quarter of the
terminal requests were expected to be the quick-look type; the
other three quarters were to be batch processing requests that
would involve significantly more CPU and I/O resources.

Resplts then showed that the System/360 Model 75 computer
would become computation bound because of the high number
of batch requests entered at terminals. Since all terminal requests
were to be considered and handled with equal priority, batch re­
quests significantly degraded the simulated system performance
for quick-look terminal transactions. As system loading by batch
requests increased, simulated response times grew to as high as
ten minutes when, under more favorable conditions, they could
have taken only ten to fifteen seconds. Such degraded system
response was judged to be unsatisfactory to meet the needs of
those terminal users.

Given the response problems, the Data Retrieval Subsystem de­
sign was reexamined. In addition, a study was undertaken to de­
termine the characteristics of a terminal workload that still met
the basic requirements of the terminal user but did not impose
such a severe process load on the Skylab Terminal System. A
new terminal load was defined to include the following charac­
teristics: (1) only one-half of the terminal users would make
batch requests; (2) the scope of the batch request requirements
would be reduced; and (3) the number and frequency of termi­
nals making quick-look requests would be increased so that the
total number of terminal users being serviced would remain con­
stant. Also, quick-look requests were simulated as being pro­
cessed at a higher priority than batch requests. The system model
was run on the basis of these new conditions, and showed system
performance and terminal response to have returned to within
reasonable ranges. Under these conditions, the model projected
an average CPU utilization of less than fifty percent. At this point
two recommendations were made: first, operational procedures
should be initiated that would constrain terminal user requests,

MANCINI IBM SYST J

so as to process the terminal workload in a single System/360
Model 75; and second, quick-look requests should be handled
at a higher priority than batch requests.

The advantages of using Large Capacity Storage (LCS) were
the higher-speed peripheral storage capability available as an
alternative to disk storage, and the extension of main storage at
slightly reduced speed. Both load modules and data buffers could
be placed in LCS. However, misuse of this capability could cause
unnecessary performance degradation beca~se the LCS cycle
time was between four and eight times slower than that of main
storage. The LCS evaluation effort provided general LCS usage
guidelines. As the development proceeded, the specific LCS­

related performance problems of each application were studied.
Examples of some of the studies follow.

A general study was made of the ways in which specific LCS con­
figurations affect program execution, and guidelines were pro­
posed for avoiding performance degradation. Since these studies
were basic to developing the system, they were covered in the
system design phase. It was found that loa4 modules should not
be indiscriminately placed in LCS for execution simply to reduce
main storage requirements. The best load module candidates
should have exceptional characteristics such as low CPU usage
relative to size, infrequent execution, and minimal response cOIl­
straints. This study also provided designers with an easy-to-use
analytical technique for estimating the increased CPU usage that
would result from executing load modules in LCS or from placing
data buffers in LCS. Although this analysis could only be used for
rough estimates of actual increases in CPU usage, it was a valu­
able design guide and an aid in obtaining performance evaluation
tradeoffs before the system components were implemented.

This LCS analysis information was used in the performance tuning
of the Data Retrieval Subsystem to determine possible reductions
in CPU usage due to improper placement of data buffers in LCS.

A study was made of the major application load modules to de­
termine the effect of LCS buffer placement. In the case of batch
terminal requests that would require buffering, there was a trip­
ling of instruction execution time, as shown in Figure 5. Informa­
tion from the simulation of the frequency of execution of each
load module, along with a breakdown of the components of each
type of terminal request, were used to recommend the placement
of specific load module buffers in main storage.

LCS analysis was also applied to a performance problem in the
Data Storage Subsystem. In this case, there was a question of the
system's real-time ability to handle the flow of telemetry data
from the remote sites. CPU measurements had been taken from
an early version of the system when there was a low message in-

No.2' 1974 PERFORMANCE EVALUATION

LCS usage

107

event

analysis

108

Figure 5 LCS buffering of a batch terminal request

80

70 f-
OUTPUT ~

SEARCH

-

60 r-
RETRIEVAL

50 ;- -

40 r-

FETCH

30 r-

= OUTPUT

20 f- _ SEARCH

RETRIEVAL
-

10 r- FETCH

WITHOUT BUFFERING WITH BUFFERING

put rate from remote sites. Analysis showed that, at a nominal
loading rate of 18 messages per second (an increased require­
ment), there would not be adequate CPU capability to handle the
load. This was caused by the initial placement of buffers and
tables in LCS because of their anticipated massiveness. To correct
this situation, analysts and designers worked together to identify
critical buffers and tables of reasonable size to be moved into
main storage. Measurements were taken on the modified system,
and the CPU usage was found to have been reduced to acceptable
levels.

The expected performance of the Data Storage Subsystem had to
be continually tracked as the implementation proceeded, because
of the requirement to handle a real-time flow of data from remote
sites. An added complexity was the occurrence of such specific
events as the selection of new sites, the discontinuation of other
sites, and periodic deletions of data frpm the data base. Event
analysis was done to determine the effect of these occurrences
on the capability of the Data Storage Subsystem to handle real­
time data flow. The objective of the ,malysis was to determine

MANCINI IBM SYST J

Figure 6 Input message queuing during site selection

120r---------------,

100 - 18 MESSAGES PER SECOND

80 -

..... 4
60f- r \

I \
I \

40 r- I \
I \
I \
I 20'-t \
I \ 1\
I \ / \

I \ I /1 I \ °0~---4~~~8~~~12~~~16

-

1\
1 \ 27 MESSAGES PER SECOND

I \
1 \
I \

- I \ /~
I \ / \
I ~ \
I \

f- I \
I \
I \

f- I \
1 \

/ \
'-I \ t
1 \ / \
I \ I \ //

[[\I \ /
4 8 12 16

SIMULATED ELAPSED TIME (SECONDS)

the performance of both a first-pass task and a second-pass task,
since each was affected differently by the events being studied.
Because of the requirement to transmit data to the Data Base
Computer System, the analysis of the second pass task had to
consider data base interface performance.

The purpose of the first-pass task was to store the input data on
a local disk in an organized format. This established a rate
equivalent to the flow of messages into the computer. The task
worked on one message at a time. If the task was busy, addition­
al messages coming into the computer would be placed in an LCS

storage buffer. The number of messages queued in this buffer
could not exceed the capacity of the buffer or there could be a
loss of messages. (Manual intervention would then be required.)
Since loss of messages had to be avoided, events- such as site
selection - that required the exclusive use of the first-pass task
were a particular concern of the analysis.

The analysis revealed that site selection was the most critical
event that could affect the performance of the first pass task. A
method of studying the dynamic nature of site selection was to
simulate the event in a multitasking system environment with
typical message rates (18 messages per second) and the worst
case (27 messages per second). Results of site selection simula­
tion in terms of the buildup of messages in the input buffer are
shown in Figure 6. We concluded from the analysis that a signifi­
cant buildup of messages c;ould be expected during site selec­
tion. This buildup was used to establish the size of the input

NO.2· 1974 PERFORMANCE EVALUATION 109

110

buffer. We also concluded that the task as designed could work
off the buildup of input messages and store them on disk well
before another site selection event.

The purpose of the second pass task was to retrieve data from a
local disk, do secondary processing, and then transmit the data
to the Data Base Computer System. The execution of this
t~sk was asynchronous with the input message rate in that data
were retrieved only after a complete grouping of the data that
were to reside there. Because of this type of execution, a sepa-
--+- __ l .. 7+~,..H, .. ,.1 __ "'o,.....h ",n.C'I oarlorl t'"' rlotor'1'Y\;no ''11ht3thor th,:a,
lC1l~ C1UC11YU\"C11 C1PP1VC1\"H VVUO:> .U,",,",u,",u .. v u'"' .. '"'~~~u, H,",~ ",

design could maintain the over-all input flow through the system.
By simulating the design in a typical multitasking environment,
it was found that the second pass task, once activated, could
service input data at a rate equivalent to 33 messages per sec­
ond. This rate appeared to be satisfactory because it was well
above the worst-case message loading rate. However, there
remained a question of performance relative to such events as
site selection, site discontinuation, and data-base deletion. A
determination was made of the rate at which the second pass
task must handle messages to be sure that the system could ser­
vice the nominal rate of input, even when these events were
occuring simultaneously. To answer this, various events were
simulated to provide information needed to establish a" design
acceptance rate at which the second pass task must be able to
perform. This acceptance rate was set at 30 message~ a second.
The then current evaluations showed that, in a normal case, the
design could exceed this performance acceptance rate.

System testing phase

System testing was the final and independent evaluation of the
Skylab Terminal System in a near-operational environment. All
components had to be integrated into a working system. Accep­
tance testing was also performed to be "sure that the system satis­
fied all the functional requirements. During this period, future
operating personnel were being trained. Because additional sys­
tem capabilities being implemented much of the testing period
was overlapped with development and integration activities.

Performance is key to testing because a system should perform
the way the user requires. System performance monitoring and
evaluation in parallel with system testing can answer perfor­
mance questions. During the testing phase, much of the perfor­
mance analysis activity was directed toward the tracking of
known potential resource problems, checking out specific prob­
lems, and analyzing operational procedures that might affect per­
formance. A study of the operational environment was macie to
determine the compatibility of the subsystems with other appli­
cations in Houston that would be sharing the same resources.

MANCINI IBM SYST J

Tracking the CPU usage of the Data Storage Subsystem was of
particular importance because of the requirements to handle
input messages in real time. The projected CPU usage also var­
ied with the input message rate and the specific type o'f data being
transmitted. Analysis of the first system test series showed that
CPU usage would increase by an unexpected 30 percent at the
nominal message input rate as compared with previous projec­
tions.

This CPU usage increase was traced to extensive use of a special
facility to determine the Greenwich Mean Time for tagging in­
put messages. Time tagging had required little programming
effort, and it had quickly become part of the system. But this
minor modification had been made without considering its per­
formance implications. Analysis of the time tagging method re­
vealed that the facility to determine time had not been designed
to be executed at a rate equivalent to the input message rate.
Further 'investigation revealed that this time tagging was a dupli­
cation of a similar time tagging already being done by the Termi­
nal Support System with much less CPU usage per tag. As a
result of the analysis, the system was modified so that the orig­
inal time tagging operation could serve the new requirement as
well. Although the solution was obvious after the problem had
been discovered, the implications of a seemingly minor program­
ming change can easily be overlooked in a large development
effort. System performance tracking during system integration,
and testing can be a safety check on such changes.

CPU usage projections for the Data Storage Subsystem were
based on early measurements of a partic"ular type of data. There­
fore, it was necessary to determine whether the CPU usage
would vary significantly with other types of input data. Analysis
and measurements resulted in CPU projections at nominal'load­
ings for various types and mixes of data. The projected CPU

usage for one type of input data was high enough that special
operational restrictions were established to handle it.

One of the functions performed during acceptance testing was to
identify discrepancies so that they could be corrected. System
funcitonal capabilities and responsiveness to users' requests
were both assessed. In one case, computer measurements
showed that two load modules were looping - giving control to
one another -,and thereby causing excessive CPU usage. Correc­
tive programming was initiated as a result of ana lysis.

A different type of performance problem arose with an applica­
tion that was designed to send a large volume of data over a
transmission line to a remote location. The application control­
lers said they could not drive the transmission line at the capaci­
ty they wanted. Three major causes of performance degradation

No.2' 1974 PERFORMANCE EVALUATION

CPU usage

problem

checkout

111

operation

aspects

112

were identified and the degree of each degradation was deter­
mined. Inefficient coding and program logic errors were found
and corrected. Also, the then current method of display output
that monitored the progress of data transmission was found to be
reducing system performance. An immediate solution was a re­
laxation of a stringent cyclic display update requirement. A long­
range solution that was implemented was to redesign the display
task structure. It was also found that the computer to computer
interface response time was limiting the transmission efficiency.

An anaiysis of certain of the operationai procedures of the sys­
tem showed that the user himself could cause performance deg­
radiation. In the Data Storage Subsystem, the user could indirect­
ly cause cyclic displays to be generated in excess of those re­
quired, thereby increasing CPU usage unnecessarily by five to ten
percent. Operational procedures that induced the extra use of the
CPU were subsequently modified to eliminate such problems. An­
other operational procedure that involved the logging of input and
output messages was analyzed. Computer'resources required for
the logging option were identified and put in perspective with the
use of those same resources for vital processing. With this infor­
mation, the user could evaluate his need to log data during criti­
cal time periods against the total system objectives. A decision
was taken to eliminate data logging during critical mission sup­
port periods.

Investigations were made of all applications using the five avail­
able System/360 Model 75 computers, to determine their most
efficient usage. Both the data storage and data retrieval subsys­
tems had to be analyzed to determine the ability of each subsys­
tem to run with one or more other applications in one computer.
Prime areas considered in the study were computer resources,
modes of operation, and performance requirements of each of
the applications. Results of this study were presented in a co­
user matrix that showed which modes of operation for each ap­
plication were compatible with other applications. Supporting
information was accumulated to back up this matrix, such as
resource and performance requirements for each application and
each proposed combination of applications. The co-user matrix
provided an easy-to-use source of information to develop com­
puter scheduling options and alternatives.

Performance evaluation done in parallel with testing aided in
producing a system that was highly tuned to the user's opera­
tional requirements. It also provided a method of answering the
user's questions about hypothetical or actual performance prob­
lems. Computer monitors were the principal' tools used for the
performance evaluations. Simulation models, when used, played
a more limited role when the operational system was available
for testing. Simulation models would be valuable in the system

MANCINI IBM SYST J

testing phase to simulate operational environments that could
not be tested directly, such as the full complement of terminal
users who would want to use the system.

Concluding remarks

Analytical techniques applied throughout the development cycle
can contribute significantly to the development of a successful
computer system. In this paper, we have tried to illustrate the
value of doing the appropriate level of performance evaluation
at each stage of a development cycle. The particular types of
techniques used depend on the level of complexity and perfor­
mance considerations associated with a particular project. A sim­
ple pencil and paper approach with observations of program exe­
cution may suffice for a small project. On a large system develop­
ment project where the performance of more complex computers
and other resources are critical, more extensive techniques are
usually required. Here it may be necessary to judge the adequacy
of system design, details of software design, and computer con­
figurations in the expected total system environment. The anal­
yst, using the techniques of digital simulation models and com­
puter system monitors, can take this perspective. This was the
course followed in the development of the Skylab Terminal Sys­
tem described in this paper.

The preventive nature of performance analysis often makes it
difficult to assign actual cost savings for performance problems
that are avoided. This paper has tried, through an illustrative
system development example, to show how one can improve the
visibility and control of a system development effort by applying
performance evaluation and analysis. Experience with the Sky lab
Terminal System shows that system developers can depend on
predictive techniques and the kind of analyses described to guide
complex system development efforts.

ACKNOWLEDGMENT

The author is pleased to acknowledge the supportive assistance
of his colleauges who have who have contributed to the overall
system evaluation effort discussed in this paper. He especially
wishes to acknowledge Wayne Stanley.

CITED REFERENCES

1. J. W. Pomeroy, "A guide to programming tools and techniques," IBM Sys­
temsJournalll, No.3, 234-254 (1972).

2. W. I. Stanley and H. F. Hertel, "Statistics gathering and simulation for the
Apollo real-time operating system," IBM Systems Journal 7, No.2, 85 -102
(1968).

NO.2· 1974 PERFORMANCE EVALUATION 113

114

3. P. H. Seaman and R. C. Soucy, "Simulating operating system," IBM Systems
Journal 8, No. 4,264-279 (1969).

4. W. I. Stanley, "Measurement of system operational statistics," IBM Systems
Journal 8, No.4, 299-308 (1969).

5. A. J. Bonner, "Using system monitor output to improve performance," IBM
Systems Journal 8, No.4, 290-298 (1969).

6. W. S. Hobgood, "Evaluation of an interactive-batch system network," IBM
System Journal 11, No.1, 2-15 (1972).

7. B. H. Margolin, R. P. Parmelee, and M. Schatzoff, "Analysis of free storage
algorithms," IBM Systems Journal 10, No.4, 283-304 (1971).

MANCINI IBM SYST J

