
CARD ASSEMBLER 

U P-4092 



This manual is published by the Univac Division of Sperry Rand Corporation 
in loose leaf format as a rapid and complete means of keeping recipients 
apprised of UNIV AC® Systems developments. The information presented 
herein may not reflect the current status of the programming effort. For the 
current status of the programming, contact your local Univac Representative. 

The Univac Division will issue updating packages, utilizing primarily a 
page-for-page or unit replacement technique. Such issuance will provide 
notification of hardware and/or software changes and refinements. The 
Univac Division reserves the right to make such additions, corrections, 
and/or deletions as in the judgment of the Univac Division are required by 
the development of its respective Systems. 

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A. 

@ 1966- SPERRY RAND CORPORATION 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

1. INTRODUCTION 

1.1. THE PURPOSE OF AN ASSEMBLER 

1.2. CARD ASSEMBLER FOR THE UNIVAC 9200/9300 

1.3. ASSEMBLY LANGUAGE CHARACTERISTICS 

2. THE ASSEMBLER LANGUAGE 

2.1. CHARACTER SET 

2.2. STATEMENT FORMAT 
2.2.1. Label Field 
2.2.2. Operation Field 
2.2.3. Operand Field 
2.2.4. Comments Field 

2.3. EXPRESSIONS 
2 .3.1. 
2.3.2. 
2.3.3. 
2.3.4. 
2.3.5. 
2.3.6. 
2.3.7. 
2.3.8. 

Hexadecimal Representation 
Character Representation 
Location Counter 
Relative Addressing 
Symbols 
Relocatable and Absolute Expressions 
Length Attribute 

2.4. MACHINE INSTRUCTIONS 
2.4.1. RX - Register to Storage Instructions 
2.4.2. SI - Instruction to Storage Instructions 
2.4.3. SSl - Storage to Storage Instructions 
2.4.4. SS2 - Storage to Storage Instructions 

2.5. DATA AND STORAGE FORMATS 
2.5.1. DC - Define Constant 
2 .5.1. l. Character Representation 
2.5.1.2. Hexadecimal Representation 
2.5.1.3. Expression Constants 
2.5.2. OS - Define Storage 

Contents 
SECTION: PAGE: 

CONTENTS 

1-1 to 1-4 

1-1 

1-2 

1-4 

2-1 to 2-15 

2-1 

2-1 
2-1 
2-1 
2-1 
2-2 

2-2 
2-2 
2-3 
2-3 
2-3 
2-4 
2-4 
2-5 
2-6 

2-6 
2-8 
2-8 
2-9 
2-10 

2-11 
2-12 
2-12 
2-13 
2-13 
2-14 

1 



UP-4092 

3. ASSEMBLER 

UNIVAC 9200/9300 
CARD ASSEMBLER 

3.1. DIRECTIVES 
3.1.1. Symbol Definition 
3.1.2. Assembly Control 
3.1.2.1. START - Program Start 
3.1.2.2. END - Program End 
3.1.2.3. ORG - Set Location Counter 
3.1.3. Base Register Assignment 
3.1.3.1. USING - Assign Base Register 
3.1.3.2. DROP - Unassign Base Register 
3.1.3.3. Direct Addressing 
3.1.4. Program Linking 
3.1.4.1. ENTRY - Externally Defined Symbol Declaration 
3.1.4.2. EXTRN - Externally Referenced Symbol Declaration 
3.1.5. Assembler Program Listing 
3.1.6. Assembler Control Card 

3.2. SYSTEM CODES 

4. OUTPUT 

4.1. ASSEMBLER CARD OUTPUT 
4.1.1. Element Definition Card 
4.1.2. External Definition Card 
4.1.3. Program Reference Card 
4.1.4. External Reference Card 
4.1.5. Text Card 
4.1.6. Transfer Card 

5. LINKER 

5.1. LINKER INPUT 

5.2. LINKER CONTROL CARD FORMATS 
5.2.1. CTL 
5.2.2. PHASE 
5.2.3. EQ U 
5.2.4. END 
5.2.5. REP 

5.3. EXAMPLE 

APPENDIX A - PREASSEMBLY MACRO PASS 

APPENDIX B - INPUT OUTPUT CONTROL SYSTEM (IOCS) 

APPENDIX C - CARD LOAD ROUTINE 

APPENDIX D - EXEC I 

Contents 
SECTION: PAGE: 

3-1 to 3-18 

3-1 
3-1 
3-2 
3-2 
3-3 
3-3 
3-4 
3-4 
3-5 
3-7 
3-7 
3-8 
3-8 
3-8 
3-14 

3-14 

4-1 to 4-5 

4-1 
4-2 
4-3 
4-3 
4-4 
4-4 
4-5 

5-1 to 5-12 

5-2 

5-2 
5-3 
5-3 
5-4 
5-4 
5-5 

5-5 

A-1 to A-12 

B-1 to B-19 

C-1 to C-3 

D-1 to D-3 

2 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Contents 
SECTION: PAGE: 

ILLUSTRATIONS 

1-1. Source-to-Object Code Translation with Assemble! 

1-2. 9200/9300 Assembiy System 

2-1. Example of Source Code Statements 

3-1. Example of Printer Output of a Program 

5-1. Elements A and B Deck Structure 

5-2. Linker Input 

5-3. Header Processing 

5-4. ESID Processing for Element A 

5-5. ESID Processing for Element B 

A-1. Schematic of Preassembly Macro Pass Operation 

2-1. Instruction Mnemonics 

2-2. Symbois Used in Describing Operand Formats 

2-3. Operand Specifications Using Implied Base Register and Length Notation 

2-4. Characteristics of the Various Constants 

3-1. Internal Code 

1-1 

1-3 

2-2 

3-9 to 3-13 

5-7 

5-8 

5-10 

5-11 

5-12 

A-1 

TABLES 

2-6 

2-8 

2-11 

2-14 

3-15 to 3-18 

3 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

1 
PAGE: 

1. INTRODUCTION 

Use of this manual presupposes a familiarity with the instruction repertoire and instruction 
and data formats of the UNIVAC 9200/9300. 

1.1. THE PURPOSE OF AN ASSEMBLER 

An Assembler is one result of the many and continuing efforts to improve communica­
tions between computers and computer users. The general direction of these efforts 
has been towards an intermediate language which is close to the language of the user 
and which relies heavily on the computer for translation into its language. 

In an Assembler language all coding is represented in the form of statements which 
are understandable to the programmer. The Assembler then converts these statements 
into a binary form which is understandable to the computer. The programmer's state­
ments, when keypunched, are called source code. The Assembler converts the source 
code into object code. Figure 1-1 shows the general flow of source-to-object code 
conversion with an Assembler. 

PROGRAMMER 

states the problem in the 
Language of the Assembler 

.. 

SOURCE CODE 

statements keypunched in 
card code form 

.. 

ASSEMBLY 

translation to Object Code 

OBJECT CODE 

Binary Express ions 
meaningful to the computer 

J 
Figure 7-7. Source-to-Object Code Translation with Assembler 

1 



UP--H192 
UN IV AC 9200/9300 
CARD ASSEMBLER 

1.2. CARD ASSEMBLER FOR THE UNIVAC 9200/9300 

SECTION: 

1 
PAGE: 

The Card Assembler for the UNIVAC 9200/9300 System is an efficient, easy-to-use 
software aid that satisfactorily handles most of the programming problems encountered 
by the user. Each machine instruction and data form have simple, convenient repre­
sentations in the assembly language. The rules which govern the use of the language 
are not complex; they may be learned quickly and applied easily. 

A program in Card Assembler language for the 9200/9300 is written on a standard 
UNIV AC coding form. The information on the form is keypunched, and the resulting 
source deck is read twice by the Assembler. Output cards, or an object deck, are 
produced by the Assembler in relocatable object code or absolute object code. The 
object deck is ready for loading into the UNIVAC 9200/9300 by means of the Card 
Program Loader routine. The basic flow of the 9200/9300 Card Assembler and asso­
ciated software is shown in Figure 1-2. Input to the Assembler is a card deck key­
punched from an Assembler coding form or is the output from the Preassembly Macro 
Pass. 

The macro library is in macro code. Parameters are established for the macros by means 
of macro instructions. The Preassembly Macro Pass (described in Appendix A of this 
manual) converts the macro code into source code in preparation for assembly. 

The assembly operation is a conventional two-pass procedure which produces a card 
deck in relocatable object code. The outputs of several separate assemblies may be 
combined by means of a Linker. The Linker output is in absolute object code. When a 
program is ready to be run, the relocatable or absolute object deck is loaded by a Card 
Program Loader subroutine. 

2 



UP-4092 

MACRO 
LIBRARY 

MACRO SOURCE 
CODE DECK 

ASSEMBLER 

RELOCATABLE 
CODE 

UNIVAC 9200/9300 
CARD ASSEMBLER 

PREASSEMBLY 

MACRO PASS 

RELOCATABLE 
CODE 

LINKER 

ABSOLUTE 
CODE DECK 

SECTION: 

MACRO 
INSTRUCTION 

DECK 

KEYPUNCH 
MACRO 

SOURCE 
CODE DECK 

ASSEMBLER 

/ 
RELOCATABLE 

CODE 

LOADER 

Figure 1-2. 9200/9300 Assembly System 

1 3 
PAGE: 

I MACRO 

CODE 

) 

SOURCE 

CODE 

OBJECT 

CODE 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

1.3. ASSEMBLY LANGUAGE CHARACTERISTICS 

SECTION: 

1 
PAGE: 

The succeeding sections of this manual describe in detail the use of the Assembler 
coding form and the operational characteristics of the Assembler. These characteristics 

are summarized briefly as follows: 

Mnemonic Operation Codes - A fixed name, consisting of two, three, or four letters, is 
assigned to each machine instruction. The name is chosen to suggest the nature 
of the instruction, thereby helping the user to learn and remember the instruction. 

Symbolic Addressing and Automatic Storage Assignment - Symbolic labels may be 

assigned to instructions or groups of data. An instruction may then reference 
the labeled data by label rather than by storage address. In many cases, other 
data required by the instruction (such as operand length) may be supplied auto­
matically by the Assembler. Another major task of the Assembler is to keep 
track of all storage locations used and to assign all incoming instructions and 
data to specific locations. The Assembler also handles all base register and 
displacement calculations. 

Flexible Data Representation - Data may be represented in the Assembler in decimal, 
hexadecimal, or character notation, thus allowing the programmer to choose the 
most suitable form for each constant. 

Relocatable Programs and Program Linking - Programs are prepared by the Assembler 

in an absolute or relocatable form. In relocatable form, the actual storage loca­

tions to be occupied by a program need not be specified at assembly time, or if 
specified, they may easily be altered before loading. Provisions are made for 
linking together, loading, and running as one program the results of separate 
assemblies, thereby reducing the machine time required to make changes to one 
part of a program. 

Program Listing - One of the outputs of the Assembler is a printed listing of source 
and object codes. This listing includes flags marking any errors detected by the 
Assembler. Source code errors do not cause the Assembler to stall. The Assembler 
continues to process the rest of the source code performing its usual error checks, 
th us minimizing the number of assemblies required to produce error-free code. 

4 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

' 

2 
PAGE: 

2. THE ASSEMBLER LANGUAGE 

2.1. CHARACTER SET 

The character set used in writing statements in the Assembler language consists of: 

Letters 

Digits 

Special Symbols 

2.2. STATEMENT FORMAT 

A, B, C, ... ,z 
0, 1, 2, ... '9 

* + - , ( ) ' blank 

Statements in the Assembler language are written on a standard coding form. Informa­
tion for the Assembler and comments are written in columns 1 through 71. Column 72 
must be blank. Columns 73 through 80 may contain program identification and sequenc­
ing information. The information in columns 1 through 71 consists of the following 
fields. 

2.2.1. Label Field 

The label field begins in column 1 and is terminated by a blank column. There may 
be no embedded blanks. It may either be a blank field or contain a symbol whose 

value is to be defined. More detailed information about symbols is contained under 
headings 2.3.6. and 3.1. l. 

2.2.2. Operation Field 

The operation field begins with the first nonblank following the label field and is 
terminated by a blank. It contains either the name of an assembler directive or the 
mnemonic operation code for a machine instruction. 

2.2.3. Operand Field 

The operand field begins with the first nonblank following the operation field and 
is terminated by a blank not contained in a character representation. This field con­
tains information which defines the operands of a machine instruction or which 
supplies the specifications required with an assembler directive. 

1 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

2.2.4. Comments Field 

SECTION: 

2 
PAGE: 

The comments field begins with the column following the blank terminating the 

operand field and ends at column 71. It may contain any combination of characters 

including blanks. It is not processed by the Assembler other than including it on 
the assembly listing. It may contain remarks to clarify the purpose or operation of 
the associated coding. A line may consist entirely of comments from columns 2 
through 71 if column 1 contains an asterisk. 

1. 

2. 

3. 

4. 

LABEL ti OPERATION 1i OPERAND 
8 14 

* THI I S A 

TAG 
LH 

Figures 2-1. Example of Source Code Statements 

Although the assembler language is free form, it is recommended that source code 
statements be written with the first character of the operation code in column 8 

and the first character of the operand field in column 14. Tabulating the statements 

in this fashion creates a program listing which is neater in appearance and easier 

to read. The standard coding form is ruled to conform to this convention. Thus, 
although the statements on lines 3 and 4 of Figure 2-1 are equivalent to the 
Assembler, the form of line 4 is preferred to that of line 3. 

2.3. EXPRESSIONS 

The operand field of a statement in the assembler language ordinarily consists of 
one or more expressions. Expressions are grouped by parentheses and separated by 
commas. For example, the basic operand formats for computer instructions are shown 
in Table 2-3. In this table, each subscripted letter represents an expression. An ex­
pression may be a single term or a number of terms connected by operators. The 

permissible operators are a plus sign ( +) rep res en ting addition and a minus sign (-) 

representing subtraction. A leading minus sign is also allowed to produce the nega­

tive of the first term. All operations are performed in two's-complement binary nota­
tion. A term may be one of the following: 

A decimal, hexadecimal, or character representation of an actual value. 

A location counter reference. 

A symbol. 

2.3.1. Decimal Representation 

A value may be represented directly by a string of up to five digits, 0 through 9, 
forming a decimal number from 0 through 32767. Such a number is converted to a 

binary value occupying one or two bytes depending on the type of field for which it 
is intended. Following are some decimal representations. 

2 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Decimal Representation 

0 

13 

257 

32767 

2.3.2. Hexadecimal Representation 

Binary Value 

00000001 

01111111 

00000000 

00001101 

00000001 

11111111 

2 
SECTION: 

A hexadecimal representation consists of a string of digits preceded by X' and 
followed by ' (apostrophe). Each hexadecimal digit represents a half byte of in­
formation. The hexadecimal digits and their values are: 

0 0000 8 1000 

1 0001 9 1001 

2 0010 A 1010 

3 0011 B 1011 

4 0100 c 1100 

5 0101 D 1101 

6 0110 E 1110 

7 0111 F 1111 

Some examples of hexadecimal representations and their values are: 

Hexadecimal Representation 

x·101 • 

X 1 7FFF 1 

2. 3 .3. Character Represen ta ti on 

Binary Value 

00001101 

00000001 OOOOOOGl 

01111111 11111111 

A character representation consists of a string of characters preceded by C' and 

followed by '. The following are valid character representations. 

Character Representatio EBCDIC Value 

C 1 D' 11000100 

PAGE: 

C 1 GROSS 1 100011111011001110101101110001011100010 

C 1 9' 11111001 

2.3.4. Location Counter 

An indication of the next storage location available for assignment is maintained as 
a counter called the location counter. After the Assembler processes an instruction 
or constant, it adds the length of the instruction or constant processed to the loca­

tion counter. 

3 



UP-4092 
2 UNIVAC 9200/9300 

CARD ASSEMBLER SECTION: PAGE: 

Each instruction or address constant must have an address which is a multiple of 
two. Such an address is said to fall on a halfword boundary. If the value of the lo­
cation counter is not a multiple of two when assembling such a constant or an in­
struction, a one is added to the location counter before assigning an address to the 
current line. Storage locations reserved by this process receive binary zeros when 
the program is loaded. 

The current value of the location counter is available for reference in the Assembler 
language and is represented by the single special character* (asterisk). If written 
in a constant representation or in an instruction operan.d expression, this symbol is 
replaced by the storage address of the leftmost byte allocated to that instruction or 
constant. Thus the instruction 

BC 15,* 

represents a one-instruction loop. 

2.3.5. Relative Addressing 

An instruction may address data in its immediate vicinity in storage in terms of its 
own storage address. This is called relative addressing and is achieved by an ex­
pression of the form *+n or *- n where n is the difference in storage addresses of 
the referring instruction and the instruction or constant being accessed. Relative 
addressing is always in terms of bytes, not words or instructions. For example, in 
the coding 

LABEL 15 OPERA TIOH ti OPE RAMO 1J 
1 8 14 

.1-.l _i -1 l C.i Hi l i I 1-15 j, ib._M I _i T1 -1 -1 -1 -1 l -1 _i ..L .1 l -1 _i .1 .1 l _i -1 -1 _i l .1 -1 -1 -1 l _i 

I I I B1C1 I _L_L_L .. I I 11 I I* I+ I 11 21 I I I I I I I I I I I I I I I I I I I I I I 

~: : : : 11~~~ : I IE~ T:~~ : : : 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I • 

I I I I 

the address *+ 12 in the second line is the address of the instruction in the last 
line and the address *-12 in the fourth line is the address of the instruction in the 
first line since each of the first four instructions is four bytes long. 

2.3.6. Symbols 

A symbol is a group of up to four alphanumeric characters. The first, or leftmost, 
must be alphabetic. Special characters or blanks may not be contained within a 
symbol. The following are examples of valid symbols: 

A 

A72Z 

CAT 

LOSS 

PRFT 

I 

4 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

The following are not valid symbols for the reasons stated: 

GROSS 

N PA 

SR)N 

More than four characters 

Embedded blank 

Special character 

2 
SECTION: 

A symbol may be assigned any value from 0 through 32767. It is assigned a value, 
or defined, when it appears in the label field of any source code statement other 

PAGE: 

than a comment. l).~ symbol appearing in the iabei field of an EQU or ORG directive 

is assigned the value of the expression in the operand field. In all other cases the 
value assigned is the current value of the location counter after adjustment to a 
halfword boundary, if necessary. The value is assigned to the current label before 
the location counter is incremented for the next instruction, constant, or storage 
definition. Thus, if a symbol appears in the label field of a statement defining an 
instruction, constant, or storage area, the symbol is assigned a value equal to the 
storage area address of that instruction, constant, or storage area. 

2.3. 7. Relocatable and Absolute Expressions 

A single term may be either relocatable or absolute. Decimal, character, and hexa­
decimal representations are all absolute terms. A location counter reference within 
a section of relocatable code yields a relocatable value. If a symbol is defined by 
appearing in the label field of a source code statement within a section of relocat­
able code, its value will be relocatable. 

An expression is relocatable in the following cases: if it consists of an absolute 
expression plus a relocatable term; if it can be reordered to have that form; or if it 
consists solely of a relocatable term. Some examples of relocatable expressions are: 

R 

A+R 

R-R+A+R 

where R represents a relocatable term and A an absolute term. 

An expression is absolute if all of the terms in the expression are absolute or if it 
consists only of absolute terms plus an even number of relocatable terms of which 
exactly half are preceded by minus signs. Some examples of absolute expressions 
are: 

A 

A+A-A 

A-A+A+A 

R+A-R 

R-R+A 

s 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

2 
PAGE: 

An expression may be negatively relocatable under certain circumstances (see Data 
Constants, heading 2.5.1). Such an expression consists of an absolute expression 
minus a relocatable expression, or an expression which may be reordered to that 
form. Some examples are as follows: 

A-R A-R-R+R R-R+A-R 

2.3.8. Length Attribute 

The Assembler associates a length attribute with a symbol defined in the label field 
of a source code line representing an instruction, constant, or storage definition. 
The length attribute of such a symbol is the number of bytes assigned to the instruc­
tion, constant, or storage area involved. The length attribute of an expression is also 
determined by the Assembler and is a function of the leading term of the expression. 
If the first term of an expression is an absolute value, a length attribute of one byte 
is assigned to the expression. If the leading term is a symbol, the number of bytes 
attributed to the expression is the same as the length attributed to the symbol. Thus, 
if TAG appears in the label field of an LH instruction (Load Halfword), it would have 
a length attribute of 4 since LH is a 4-byte instruction. In referencing the same label, 
the expression TAG + 195 also has a length attribute of 4; but the expression 195 + 
TAG has a length attribute of 1 because the leading term is a constant. 

2.4. MACHINE INSTRUCTIONS 

A list of the standard machine instructions giving the numeric and hexadecimal opera­
tion codes with the instruction type is shown in Table 2-1. 

The machine instruction format consists of a label (optional), a mnemonic operation 
code, and an operand. If a symbol is used in the label field of a machine instruction, 
it is assigned the address of the leftmost character of the instruction and receives 
a length :::ittribute equ:::il to the length of th:::it instruction, There :::ire four types of in­

struction formats. These are shown below together with a brief explanation of the func­
tions performed by the instructions within each format type. Table 2-2 defines the sym­
bols used in the instruction type formats. 

HEXADECIMAL 
MNEMONIC FUNCTION OPERATION FORMAT 

CODE 

AH ADD HALFWORD AA RX 

Al ADD IMMEDIATE AG SI 

AP ADD (PACKED) DECIMAL FA SS2 

BAL BRANCH AND LINK 45 RX 

BC BRANCH ON CONDITION 47 RX 

CH COMPARE HALFWORD 49 RX 

CLC COMPARE LOGICAL CHARACTER D5 SSl 

CLI COMPARE LOGICAL IMMEDIATE 95 SI 

Tabfe 2-1. fnstruction Mnemonics 

6 



UP-4092 

MNEMONIC 

CP 

DP 

ED 

HPR 

LH 

LPSC 

MP 

MVC 

MVI 

MVN 

MVO 

NC 

NI 

oc 

01 

PACK 

SH 

SP 

SPSC 

SRC 

,STH 

TiO 

TM 

TR 

UNPK 

XIOF 

ZAP 

UNIVAC 9200/9300 
CARD ASSEMBLER 

FUNCTION 

COMPARE(PACKED)DECIMAL 

DIVIDE (PACKED) DECIMAL 

EDIT 

HALT AND PROCEED 

LOAD HALFWORD 

LOAD PROGRAM STATE CONTROL 

MULTIPLY (PACKED) DECIMAL 

MOVE CHARACTERS 

MOVE IMMEDIATE DATA 

MOVE NUMERICS 

MOVE WITH OFFSET 

AND CHARACTERS 

AND IMMEDIATE DATA 

OR CHARACTERS 

OR IMMEDIATE DATA 

PACK 

SUBTRACT HALFWORD 

SUBTRACT (PACKED) DECIMAL 

STORE PROGRAM STATE CONTROL 

SUPERVISOR REQUEST 

STORE HALFWORD 

TEST 1/0 

TEST UNDER MASK 

TRANSLATE 

UNPACK 

EXECUTE INPUT /OUTPUT FUNCTION 

ZERO ADD (PACKED) DECIMAL 

Table 2-7. Instruction Mnemonics (cont.) 

2 7 
SECTION: PAGE: 

HEXADECIMAL 
OPERATION FORMAT 

CODE 

F9 SS2 

FD SS2 

DE SSl 

A9 SI 

48 RX 

AS SI 

FC SS2 

D2 SSl 

92 SI 

Dl SSl 

Fl SS2 

D4 SSl 

94 SI 

D6 SSl 

96 SI 

F2 SS2 

AB RX 

FB SS2 

AO SI 

Al SI 

40 RX 

AS SI 

91 SI 

DC SSl 

F3 SS2 

A4 SI 

F8 SS2 



UP-4092 

0 

0 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

SYMBOL MEANING 

R, The number of the register addressed as operand 1 

12 The immediate data or device address used as operand 2 
of an SI instruction. 

L The length of the operands * 

Li The length of operand i * 

Si The storage address of operand i 

Bi The base register for operand i 

Di The displacement for operand i 

2 

* This is the true length of the operand, not the length less one, as required in object code. The 
Assembler makes the necessary reduction of one in the length when converting source to object code. 

Table 2-2. Symbols Used In Describing Operand Formats 

2.4.1. RX - Register to Storage Instructions 

OP CODE 
REGISTER 

Rl 
7 8 11 12 

BASE REG. 

B2 

15 16 19 20 

D1SP LAC EMENT 

D2 

31 
Compiete Operands Form: Ri,D2LB2) 4-byte instruction 

2.4.2. 

OP CODE 

In general, instructions in this format are used to process data between registers 
and storage, and include such functions as load, store, compare, add, subtract and 
branch. The mnemonic codes for instructions using this type of format are: 

AH Add Halfword 

BAL Branch and Link 

BC Branch on Condition 

CH Compare Halfword 

LH Load Halfword 

SH Subtract Halfword 

STH Store Halfword 

SI - Instruction to Storage Instructions 

IMMEDIATE OPERAND BASE REG. DISPLACEMENT 

12 B1 Dl 

7 8 15 16 19 20 31 

Complete Operands Form: D1(B 1 ),1 2 4-byte instruction 

8 

PAGE: 

RX 

SI 



UP-4092 

0 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

2 

In general; instructions with this format are used for processing with control data 
contained in the instruction. The mnemonic codes for instructions using this type 

of format are: 

AI Add Immediate 

CLI Compare Logical Immediate 

HPR Halt and Proceed 

LPSC Load Program State Control 

MVI Move Immediate Data 

NI AND Immediate Data 

OI OR Immediate Data 

SPSC Store Program State Control 

SRC Supervisor Request 

TIO Test I/O 

TM Test Under Mask 

XIOF Execute I/O Function 

2.4.3. SSl - Storage to Storage Instructions 

OPERAND I C::l\lf"'TU 
L-~11Ulll 

OP CODE 
L 

7 8 

C/\C'C:: CC::f"' 
UM.JL I\ L \.1, 

B1 

15 16 19 20 

l BASE REG. I 
t s2 

32 35 36 

n1cn1 /\f"'LnnLl\11 
LJl.Jo L/"\\JLIVIC:.ll I 

D1 

DISPLACEMENT 

6-byte instruction 

) 

31 

47 

PAGE: 

SSl 

The instructions with this format are used to process data in storage where the 
operands are of equal length, and include such functions as comparing, transferring, 
trans la ting, and logical operations. The mnemonic codes for instructions using this 
type of format are: 

CLC 

ED 

MVC 

MVN 

NC 

oc 
TR 

Compare Logical Character 

Edit 

'.'v1ove Characters 

Move Numerics 

AND Characters 

OR Characters 

Translate 

9 



UP-4092 

0 

UNIVAC 9200/9300 
CARD ASSEMBLER 

2.4.4. SS2 - Storage to Storage Instructions 

OPERAND 
LENGTH BASE REG. 

OP CODE I L1 L2 Bl 

7 8 15 16 19 20 

32 35 36 

2 
SECTION: 

) 
DISPLACEMENT ~ 

D1 
) 

31 

DISPLACEMENT 

47 

6-byte instruction 

The instructions with this format are used to process operands of unequal length 

PAGE: 

and to process packed decimal values. The various functions include decimal opera­
tions (add, subtract, compare), shift operations, and pack and unpack operations. 

The mnemonic codes for instructions using this type of format are: 

AP Add Packed Decimal 

CP Compare Packed Decimal 

DP Divide Packed Decimal 

MP Multiply Packed Decimal 

MVO Move With Offset 

PACK Pack 

SP Subtract Packed Decim::d 

UNPK Unpack 

ZAP Zero Add Packed Decimal 

Where an operand is described in terms of a storage address and a length, the ex­
pression used may be simplified from that shown in the instruction format by imply­
ing the base register and the length. Information supplied in the USING and DROP 
directives enable the Assembler to separate a storage address into a base register 
and a displacement. If a length attribute is associated with the expression but is 
not specified in the statement, a value equal to the length of the operand is supplied 
by the Assembler. Table 2-3 lists the completes pecification for the operand referenc­
ing memory, applicable instruction types, and the operand format as it may be 

written utilizing an implicit base register and/or length representations. 

10 

SS2 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

COMPLETE 
APPLICABLE SPECIFICATION 
INSTRUCTION FOR ONE 

TYPES OPERAND 

RX 02(,82) 

SI 0
1
(6

1
) 

SSi D1 (L,B 1 ) 

SSl 02(62) 

SS2 D 1 (L 11 6 1 ) 

SS2 D2(L2' 62) 

2 

SECTION: 

OPE RAND SPECIFICATION USING 

IMPLIED BASE IMPLIED BASE 
REGISTER IMPLIED REGISTER 
NOTATION LENGTH AND LENGTH 

s2 NA NA 

s, NA NA 

S
1
{L) D1 (,B 1 ) s, 

s2 NA NA 

S1 (L 1 ) 0 1 (,6 1 ) s, 

S2(L2) 02(,62) s2 

Table 2-3. Operand Specifications Using Implied Base Register And Length Notation 

PAGE: 

I 

Example: To move 80 characters from the field labeled OPA defined as a 90-char­
acter field to the field labeled OPB and defined as an 80-character field, 
the instruction could be written as 

MVC OPB,OPA 

If 90 characters were to be moved the instruction would be written 

MVC OPB(90),0PA 

2.5. DATA AND STORAGE FORMATS 

The formats for data and storage statements are similar to that for a machine instruc­
tion. A symbol may be used in the label field. It is assigned the address of the left­
most character of the constant or storage area being specified and is attributed with 
a length equal to that of the specified constant or storage area. The operation code 
is either DC (Define Constant) or DS (Define Storage). The operand has various 
form a ts which are explained below. 

11 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

2 
PAGE: 

2.5.1. DC - Define Constant 

There are three types of constants: C for character representation; X for hexadecimal; 
and Y for expression. To define a constant, the assembly directive DC is written in 
the operation field. The statement has the form: 

LABEL OPERATION CODE OPERAND 

Symbol DC tLn'c' 

or 

LABEL OPERATION CODE OPERAND 

Symbol DC Y(e) 
or 

LABEL OPE RATION CODE OPERAND 

Symbol DC YLl(e) 

where: n is a decimal number ~ 16 specifying the number of bytes the constant 
is to occupy. 

t is X or C denoting hexadecimal or character representation, respec­
tively, 

c is the actual character or hexadecimal representation for the constant, 
and 

e is any acceptable expression as p.:eviously defined. 

2.5.1.1. Character Representation 

A character representation is a string of as many as 16 characters, including 
blanks, enclosed by apostrophe marks. The apostrophe mark itself is represented 
by two successive apostrophes and an ampersand by two successive ampersands. 
In each of these cases the 2 characters count only as one towards the limit of 16. 
Thus, to represent a character constant of 16 apostrophies, 32 successive apos­
trophies would be written, preceded by and ended with an apostrophe. The length 
specification may be omitted, in which case the length of the constant is deter­
mined implicitly from the number of characters between the apostrophe marks. If 
the number of characters in apostrophes is greater than the length n, the rightmost 
characters are truncated to fit the field in the area reserved for it. If the number 
of characters between apostrophes is less than the length, the value is padded 
with blanks on the right to fill the field. 

For example, the following lines each result in a two-byte constant consisting of 
the letter A followed by blank. The third representation is flagged with an error 
indication. 

12 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

LABEL t OPERATIONt; 
8 14 

OPERAND 

2 
SECTION: PAGE: 

I i ' ' _1_i__l_ l __ __:__~· ~'~' ~I __ _..__.l_ .. L_ 

L 1 - L __ L _;_l_ __ _i_ - J___l___ .. - .._ __ ...___ ;._ __ ..._ ___ L_ L __ J._ . ..L .L-....!... __ 

2.5.1.2. Hexadecimal Representation 

A hexadecimal representation is a string of as many as 32 hexadecimal digits en­

closed by apostrophe marks. If the digit string is less than twice the length speci­

fication, the field is padded with hexadecimal zeros on the left. If more than twice 
the length specification, the representation is truncated on the left to produce a 
value equal to the length. The length specification may be omitted, in which case 
the length of the constant is determined as the smallest number of bytes which 

will contain the constant specified. If necessary, the field is padded on the left 

with one hexadecimal zero. 

The following illustrates the values of source statements which represent valid 
hexadecimal constants, three bytes in length: 

CONSTANT REPRESENTATION 

DC 

DC 

DC 

XL3 1 l 1 

X 1123A5 1 

X 1 1F3456' 

2.5.1.3. Expression Constants 

00000000 

00000001 

00011111 

VALUE 

00000000 

00100011 

00110100 

00000001 

10100101 

01010110 

Constants of type Y provide a way to write a constant involving a relocatable 

expression. If the length specification Ll is not present, the expression defining 
an expression constant may have any value from - 32, 768 to 32, 767 inclusive and 
may be absolute, re locatable, or negatively re lo ca table. (A negatively relocatable 
expression cons is ts of an absolute express ion minus a re lo ca table expression, 

or an expression that can be reordered to that form.) This type of expression con­

stant (one in which the length specification Ll is not present) provides a con­

venient notation for representing a complete storage address. It is for this reason 

that constants of this type are called address constants. 

An address constant always occupies two bytes of storage and location counter 
adjustment to a halfword boundary is performed by the Assembler before storage 

locations are assigned to the constant. No such adjustment is performed for 
hexadecimal or character cons tan ts. 

For example, an address constant designed to generate the address assigned to 
the label 'TAG' would take the following form. 

DC Y(TAG) 

13 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

2 
PAGE: 

An expression constant in which the length specification Ll is present may have 
any value from 0 through 255 and may be absolute, relocatable, or negatively re­
locatable. It always occupies one byte of storage, and no location counter adjust­
ment is made before assigning a memory location to the constant. It is useful when 
an externally defined symbol is assigned to only one byte. 

A summary of constant types, lengths, padding and truncation rules appears in 

Table 2-4. 

CONSTANT EXPLICIT IMPLICIT TRUNCATION 
TYPE LENGTH LENGTH OR PADDING 

variable maximum on right s id e c 1-16 16 

x variable maximum on left side 
1-16 16 l not 

2 on left side 

y sta:ed 

none on left side 

Tobie 2-4. Characteristics Of The Various Constants 

2. 5.2. Define Storage 

The format of the assembler language statement to reserve storage is: 

LABEL OPERATION CODE OPERAND 

Symbol (Optional) DS dCLn 

or 

LABEL OPERATION CODE OPERAND 

Symbol (Optional) DS dH 

where: d is a non-negative integer called the duplication factor, the number of 
fields to be reserved (d may be a maximum of 256), 

n is a decimal number representing the length of the field to be reserved 
(n may be a maximum of 256), 

H represents a field whose length is two bytes and whose storage 
address must be on a halfword boundary. 

The statement DS OH causes the location counter to be adjusted to a multiple of 
two without reserving storage. A duplication factor of zero may be used with any 
storage definition statement to define the address and length of a field without re­

serving storage for it. The duplication factor may be omitted, in which case a factor 
of one is ass um ed. 

14 



UP-4092 

Thus: 

UNIVAC 9200/9300 
CARD ASSEMBLER 

CARD 

FRST 

LAST 

DS 

DS 

DS 

OCL80 

CL40 

CL40 

SECTION: 

2 

would define an 80-byte field named CARD, a 40-byte field named FRST whose 
address is the same as that of CARD, and a field named LAST whose length is 40 
bytes and whose address is 40 greater than that of CARD and FRST. 

PAGE: 

The location counter is not increased in assembling CARD (because duplication 
factor is 0) but is with FRST and LAST. Therefore, 40 + 40 == 80 spaces are reserved, 
with FIRST and CARD assigned the starting location and LAST assigned the mid 
point. When the duplication factor is specified, it defines the number of fields of 
length n (for C) or the number of pairs of bytes (for H) to be reserved. For example, 

TAG DS 13H 

reserves 13 pairs of bytes. The symbol, TAG, refers to the first pair of bytes only 
and not to the entire 26 bytes. TAG would have a length attribute of two in this 
instance. 

15 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

3 
PAGE: 

3. ASSEMBLER DIRECTIVES 
AND SYSTEM CODES 

3.1. DIRECTIVES 

In addition to the representation of machine instructions, cons tan ts, and storage, 
the assembler language includes several assembler directives. These are instructions 
to the Assembler to perform certain functions and provide the user of the assembler 
language with control of the operation of the Assembler. 

The assembler directives, grouped by function, are as follows: 

Symbol Definition 

EQU 

Assembler Control 

START 

END 

ORG 

Base Register Assignment 

USING 

DROP 

Program Linking 

ENTRY 

EXTRN 

Assembler directives, except START, may use a symbol in the operand field, and, 
with the exception of ENTRY and EXTRN, the symbol must have appeared in the 
label field of a previous statement. 

3.1.1. Symbol Definition 

EQU - Equate 

The ·value and length attribute of a symbol may be defined explicitly. The statement 
to accomplish this has the form 

LABEL OPERATION OPERAND 

Symbol EQU 

where: e, and e 2 are expressions. 

1 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

3 

The symbol is defined to have a length attribute equal to the value of the second 
expression in the operand. The second expression in the operand may be omitted, 
in which case the symbol is defined to have the length attribute of the first ex­

pression. 

PAGE: 

The symbol in the label field is defined to have the value of the first expression in 
the operand field. If the value of the first expression in the operand field is not 
between 0 and 32767, the statement will be flagged with an error indication and the 
symbol will remain undefined. 

Thus, if the value of the location counter is 2000 when the following lines are 
encountered, 

LABEL 15 OPERATION 1i OPERAND 
8 14 

1 5 0 

* I I 

TAG has a relocatable value of 2000 and a length attribute of 10. 

HIDE has a relocatable value of 2100 and a length attribute of 150. 

SEEK has an absolute value of 20, and a length attribute of 10. 

3.1.2. Assembly Control 

I I 

Assembler directives are available to control the program name and initial location, 
alter the location counter in a specified manner, and indicate the end of the program 

statement and the instruction with which execution of the object program is to begin. 

3.1.2.1. START - Program Start 

The START directive defines the program name and tentative starting location. 
It must precede all other program statements except comments. The format of the 
START directive is 

LABEL OPERATION OPERAND 

Symbol START Decimal or Hexadecimal representation 

The expression in the operand field is evaluated and incremented if necessary to 

make it a multiple of four. The result becomes the initial setting of the location 

counter and is the value of the symbol in the label field. This symbol becomes 

the Program IDentification (PID) and is available as an entry point without being 
separately defined as such (refer to Program Linking, heading 3.1.4.). Although the 

operand of the START directive is an absolute value, it is treated as relocatable. 

2 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

3 

PAGE: 

Thus the value of the location counter and the coding which follows a START 
directive are both relocatable. Any one of the statements below would result in 
the program having the name SORT, being assigned to locations starting at 1068, 
and having the symbol SORT defined with the relocatable value 1068. 

SORT 

SORT 

SORT 

START 

START 

START 

1065 

1068 

X1 42C 1 

A START directive preceded by one or more statements other than comments is 
ignored and flagged as an error. A START directive whose operand field does not 
have a value from 0 to 32764 is ignored and flagged as an error. If there is no 
valid START directive, the program name is left blank and the location counter 
is set to 0. 

3.1.2.2. END - Program End 

The END directive indicates to the Assembler the end of the program being 
assembled. The format of the END directive is 

LABEL OPERATION OPERAND 

Symbol (optional) END Expression (optional) 

With an END directive the Assembler stops reading cards, punches any remaining 
data which has accumulated, and then punches a Transfer Card. If the operand 
field of the END directive contains an expression, this expression is punched 
into the Transfer Card to signify to the load routine the address at which to begin 
program execution. If there is no expression in the operand field of the END 
directive, the corresponding field of the Transfer Card is blank. In that case when 
the load routine encounters the Transfer Card, it transfers control to the first 
location loaded. 

If a symbol appears in the label field of the END directive, it is assigned the 
current value of the location counter. This is normally one greater than the high­
est address assigned to the program being assembled. 

3.1.2.3. ORG - Set Location Counter 

The ORG directive is used to set the location counter to a specified value. The 
format of the ORG directive is 

LABEL OPERATION OPERAND 

Symbol (optional) ORG A single expression 

3 



LTP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

3 

The location counter is set to the value of the expression in the operand field. 

PAGE: 

If a symbol appears in the label field, its value is also the value of the expression 
in the operand field and is assigned a length attribute of one. The expression in 
the operand field must be either an absolute expression with a value between 0 

and 32767 or a relocatable expression with a value between the initial location 
counter setting and 32768. If the expression does not have a value within this 

range, the ORG directive is ignored and the line is flagged with an error indica­
tion. With the ORG directive it is possible to set the location counter to a value 
which is not a halfword boundary. 

The ORG directive to set the location counter to a value 603 less than its current 
setting would be 

LABEL OPERATION OPERAND 

ORG *-603 

The ORG directive may be used to reserve a number of locations which are not 
expressed as a single decimal integer. For example, to reserve A minus B bytes 

of storage where A and B are previously defined symbols, the statement is written 

LABEL OPERATION OPERAND 

ORG *+A-B 

Bytes of storage reserved either with a DS or ORG directive are not set to zero 
when the program is loaded. 

If the operand of an ORG directive is a relocatable expression, the value to which 
the location counter is set and the coding that follows the ORG directive are both 
relocatable. If the operand is an absolute expression, the value to which the loca­
tion counter is set and the coding that follows the ORG directive are both absolute. 

3.1.3. Base Register Assignment 

The Assembler assumes the responsibility for converting storage addresses to base 
register and displacement values for insertion into instructions being assembled. 
To do this the Assembler must be informed of the available registers and the values 
assumed to be in those registers. The assembly directives USING and DROP are 
available for this purpose. 

3.1.3.1. USING - Assign Base Register 

The USING directive informs the Assembler that a specified register is available 
for base register assignment and that it contains a specified value. The format 

of the USING directive is 

LABEL OPERATION OPERAND 

Symbol (optional) USING R,A 

where: R is a relocatable expression and A is an absolute expression. 

4 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

3 

PAGE: 

The first expression represents the value the Assembler assumes is in the speci­
fied register at object time. The second expression in the operand field must be 
a number from 8 through 15 which denotes the general register specified. 

3.1.3.2. DROP - Unassign Base Register 

The format of the DROP directive is 

LABEL OPERATION OPERAND 

Symbol (optional) DROP Absolute expression 

This directive informs the Assembler that the specified base register no longer 
contains a value available to the Assembler for computing base register and dis­
placement values. The expression in the operand field of the DROP directive is 
a number from 8 through 15 which denotes the general register no longer available. 

The Assembler maintains a table of the available registers and the values they 
contain at object time. This table is referred to as the USING table. A USING 
directive adds a register and value to the USING table or revises the value for a 
register already in the table. A DROP directive removes a register and its asso­
ciated value from the table. If the operands of a USING or DROP directive are not 
valid, the directive is ignored, and the line is flagged with an error indication. 

If an operand address is given as a relative address instead of as a base register 

and displacement specification, the Assembler searches the USING table for a 
value yielding a valid displacement, that is, a displacement of 4095 or less. If 
there is more than one such value, that value which yields the smallest displace­
ment is chosen. If no value yields a valid displacement, the operand address is 
set to zero and the line is flagged with an error indication. If more than one reg­
ister contains the value yielding the smallest displacement, the highest numbered 

An absolute address with no base register indicated is treated as an absolute, 
direct address. 

The placement of a USING directive determines the instructions whose operand 
addresses may be decomposed based on that USING statement. The first operand 
of the USING statement determines the portion of the program which may be 
addressed using the specified register. Thus, if a program contains the coding 

LABEL 

A 

B 

c 

OPERATION 

USING 
LH 
USING 

DC 
OS 

OPERAND 

B,10 
10,B 
C,10 

Y(C) 

CLlO 

5 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

3 

PAGE: 

the B2 and D2 fields of the instruction labeled A will contain 10 and 0, respec­
tively. Moreover, if the pro gram contains no USING directives for register 10 other 

than the ones shown, then the second line labeled A is the only line in the pro­

gram for which the Ass em bl er would consider 10 as a register available for address­
ing the line la be led B. 

The load routine stores in register 13 the starting address of the program just 

loaded. All other registers must be loaded by the program itself in a manner con­

sistent with the information given to the Assembler in the USING directives. The 

following example shows how this is done. 

LABEL 1! OPERATION 15 OPERAND 
8 14 

NG A 1 3 

A 

B 

c 

I I I I I • 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

I : : : : : 11~: N: ~ : 11 ~ :::-:rn: : : : : : : : : : : : : : : : : : : : : : : : : : 
Lines two and three of the above example exemplify the following general rule: 

An LH instruction to load a value into a general register must precede 

the USING directive which informs the Assembler the value is available. 

It is also possible to specify an absolute value for the first expression in the 
operand of a USING directive. The entry in the USING table made in response to 
such a USING directive is not used to decompose relative addresses. It is used 
instead to decompose absolute addresses. For example, given the following coding 

A 

USING 

LH 

4000,15 

14,4096 

B2 and D2 fields of the instruction la be led A will contain 1 S and 96 respectively. 

6 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

3.1.3.3. Direct Addressing 

SECTION: 

3 

PAGE: 

The machine instruction format provides for either base register and displacement 
addressing (indexed addressing) or direct addressing. Instructions using direct 
addressing have a faster execution time. To facilitate error checking by the 
Assembler, direct addressing is described to the Assembler in terms of the 
pseudo base registers 0, 1, 2, 3, 4, 5, 6, and 7 which contain the values 0, 4096, 

8192, 12288, 16384, 20480, 24576 and 28672, respectively. Thus, the direct 

address 512 would be treated by the Assembler as an address consisting of a 
reference to the pseudo base register 0 and a displacement of 512. The address 
4098 would yield a base of 1 and a displacement of 2. The additional forms of the 
USING directive which are available for direct addressing are, specifically 

LABEL OPERATION OPERAND 

USING *,O 

USING *,l 

USING *,7 

The first line above makes direct addressing available for addresses in the range 
0 to 4095. The second makes direct addressing available for addresses in the 
range 4096 to 8191, and so on. The DROP directive may also refer to the pseudo 

registers 0 through 7 to terminate direct addressing. 

A program involving direct addressing may still be relocatable. 

The asterisk (*) when used in the operand of the USING or DROP directive has 
a unique meaning and does not have the normal connotation of the current value 
of the location counter. 

3.1.4. Program Linking 

The Assembler provides, as part of its output, information which allows the results 
of separate assemblies to be linked together, loaded, and then executed as a single 
program. Proper sectioning reduces the machine time required to make changes to an 
existing program. If a change is required, only that part which is changed need be re­
assembled. Tl:e output is then linked with the remaining parts to produce the altered 
program. Proper sectioning of a program also reduces the number of symbols required 
in each of the separate assemblies. 

A symbol defined lH the la.bel field of element A and addressed in eiement ts is said 
to be externally defined in element A and referenced in element B. Thus, by using 

the ENTRY and EXTRN directives, proper linkage is supplieci when the separate 
elements are assembled. This information is handed on to the Linker program by the 

External Definition Cards and the External Reference Card which are outputs of the 

Assembler. 

7 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

3.1.4.1. ENTRY - Externally Defined Symbol Declaration 

SECTION: 

3 

PAGE: 

That portion of a program submitted as input to a single assembly is called an 
element. Each element must declare the symbols defined within that element and 
to which reference is made by other elements. Each symbol is referred to as being 
externally defined and is declared by the ENTRY directive. The ENTRY directive 
has the format 

LABEL OPERATION OPERAND 

ENTRY Symbol 

The symbol in the operand field is declared to be externally defined. Its name and 
assigned value are included in the output of the Assembler as an External Defini­
tion Card. 

3.1.4.2. EXTRN - Externally Referenced Symbol Declaration 

The Assembler must also be informed of all symbols referred to in the element 
being assembled but which are defined in some other element. A reference to 
such a symbol is called an external reference, and such symbols are declared in 
the EXTRN directive. The format of the EXTRN directive is 

LABEL OPERATION OPERAND 

EXTRN Symbol 

The symbol in the operand field is declared to be a symbol defined in some other 
element. A symbolic name and the External Symbol Indentification assigned by 
the Assembler are included as input of the Linker as an External Reference 

Card. 

3.1. 5. Assembler Program Listing 

Figure 3-1 is a comprehensive example of coding in 9200/9300 Assembler language. 
The listing shown is a reproduction of an actual printout from the prototype 9200/ 
9300 System. The coding example is of a self-loading memory dump routine with a 132-
position printer and a 63-character print bar. The memory dump routine is described 
in the "UNIVAC 9200/9300 Programmer's Utility Manual," UP-4120. 

8 



OOUl * THIS MEMORY DUMP ROUTINE IS ADJUSTED TO THE MD 1011'! 
OOU2 * MACHIN~ CONFIGURATION. MD 1020 
UOOJ * MOSLF POS:1;s2,cH:63 MD 10:30 
OUU4 * THE FOLLOWING CODJl"IG I~ E'QllIVALENT TO THE SOURCE CODE MD 1040 
ouu~ * WHICH IS GF.NERATED BY THE ABOVE ~ACRO INSTRUCTION• MD 1051'1 
OOU6 * PARAME"fER E XPLANA Tl Ot-4 MD 1060 
UUU7 * PAR.l POS ::: 9~r120rOH 132 FOR PRINTER CH. POSITION. MD 101n 
OOUB * PARo2 CH = 6-3 OR 48 ~OR AN A5SOCIATED PRINT RAR. MD 108'1 nc 
OOU9 * 1-'AR.3 BGN = BLANK OR 12A THROUGH 32767 FOR THF MO 1090 >Z 

:::o-
OOlU * LOCATION AT WHICH MEMORY nuMP IS TO BF'GIN. MO 1100 c< > 
UOll * PAR.4 END = BLANK OR 121\ THROUGH :32767 FOR 'rHE MO 1 un >n 

"' "'° 0012 * LOCATION AT WHICH MEMORY DUMP IS TO E~m. MD 112n "' "' mo 
0013 * PARo5 MFM = 8Kr12K,16~rAND 32Kr IF THE ENTIRE MfMORY MD 1130 3:: 0 

OJ .......... 
0014 * IS TO BE UU~PfD ANO THE ROUTINE IS TO BE MD 1141'! r- "'° 
OOlo * LOAOEn INTO THE HIGHEST MF.MORY LOCATIONS. MD 11sn m~ 

:::oo 
OOib * OTHERWISE. BLANK. MD 116".'l 
OOl.7 * PAR16 LOAD = 260 THROUGH 3?190 FOR THE LOCATION MD 1170 
·OOH~ * AT WHICH ME~ORY OUIVIP rs TO BE LOAOED, MD 1180 
U0l9 * BLANK IF ~E~ PARAMETER EXISTS, MD 1190 
002U * PAR.7 RDR = BLANK OR 1001 FOR AN ASSOCIATED REAOEP. MD 1200 
OU21 MO START 0 MD 2010 
U022 USING *,fl MD 2011 
U0~.3 OOOA ORG 10 MD 201,, 
0024 OOOA nooooooooooouooooo1~ DC XLl0 1 lC• LOADER SECTlON !ST CARO N MD 2020 
U02o 0014 ooooououoooouooo DC XLA'O' MO 2031) 
0026 UOlC 020100460042 MVC 70<2Jr66 SET BASE AOnR FOR 2ND CARD p MD 204n 
0027 0022 Q2500045 MVI 69r80 C0Ne1 SET 80 TO o.c. AREA p MD 2050 
0028 0026 A4010002. XIOF 2r1 READ CARO p MD 2060 
OOZ9 002A 4770003E. RC 7r62 IS XIOF ACCEPTED? DY MO 2070 
QUjU 002E A501000U TIO Orl TEST I/O STATUS 

UI 
p MD 2080 fTl 

n 
QQjl 0032 4720002t. BC 2,46 IS READER WORKING? DM MD 2090 -i 

QOj2 0036 CllCOOOOIJ TM o.x•co• 
0 

TEST STATUS BITS p MO 2100 z 

00j3 003A 47800F71J RC a,3952 IS THERE ANY ERROR? nv MD 2110 
QOj'+ 003E l\90021CU HPR x•21co•,o READER OFF MORMAL RfSTART H MD 

w 
2121'! 

Q0j5 0042 OF66 DC Y(3942l ADDRESS FOR 2ND CARD MO 2130 

Figure 3-1. Example of Printer Output of a Program ll 
:1> 
G') 

(Sheet 1 of 5) fTl 

\0 



UOjb 

OO.:»i7 

1.)0.38 

00.39 

0040 

00'+1 

00'+2 

001.t.3 

00'+4 

00'+!:> 

00-+b 

1)1.)'+ 7 

1.)048 

0049 

UO!:>O 

UO!:>l 

00~2 

00:>.3 

U0!:>4 

00!:>!:> 

OO:::>b 

00:;,7 

0008 

OU!:>9 

0000 

OOol 

00b2 

OOb.3 

l)0o4 

00o5 

OUbb 

1)0b7 

00t>8 

1J009 

007U 

OOl.P~ OQOA004b 
OF70 

OF70 C150COFAF 

OF74 47800FAU 

OF78 Q50AOFAF­

OF7C 47800F84 

OF80 47FuOF9b 

OF84 n2000F9lOF~U 

OF8A n2010F9,0FB2 

OF90 n2000FACOFB8 

OF96 n20l004bOFAA 

OF9C '+7FU0022 

OFAO 020l0FA~OFHC 

OFA6 47FOOOOU 

OFAA nFAE 

ODBC 

unsc nooo 
ODBE !lFFF 

UlJCO 0080 

ODC2 OF8U 

UDC4 OFCO 

ODC6 OFF4 

ODC8 4Q!:>CFOFlF2F.3F4F5F6 

ODDl F7F8F9ClC2C3C4C!:>C6 

UODA 020b005U 

ODDE q2000F6C 

OUE2 n2020r6UOFbC 

UOEB 48EOOF6C 

ODEC n201UF6AODC4 

OOF2 A403000l 

OOF6 1l7BOOE1U 
ODFA A5030F7u 

UOFE 47200DF2 

UE02 020UUE0bOF7U 

OE08 A90U2.30U 

MBGl\I 

MENO 

M".?l.O 

M?TR 

ME.NT 

M?A 

M?E 

DC 

ORG 

CLI 

RC 

CLI 

HC 

RC 

MVC 
MVC 
MVC 

MVC 

F3C 

MVC 

AC 

UC 

OHG 

DC 

DC 

DC 
DC 

oc 
DC 

DC 

DC 

MVI 
MVI 

~~vc 

LH 

MVC 

XlOF 

AC 

TIO 

BC 

MVC 
HPR 

XL4'0A0048' 
3952 

•+63rX'OC• 

Ar*+44 

*+55' X' Oil' 

A•*+B 

1 ~,, *+22 

*+L3 ( l>, •+44 

•+Al2)•*+40 

*+2B<l>r*+'+O 

7012)•*+20 

10•34 

*+AC2)•*+2R 

15•0 

Y(•+4) 

•-496 

y (0) 

Yl4095) 
Y(128) 

Y(M?PW+6) 

Y l M".?PW+70) 

Y(M?PW+132-10) 

XL9'405CFUF1F2F3F4F5F6' 

XLq•F7~8F9ClC2C3C4C5C6' 

AO•X•OB• 

M?CN+2•0 

M?CN+3(3)1M?CN+2 

14rM?CN+2 

M?CNC2>rM?C0+4 

1, 3 

81M?BO 

M?CN+6•3 

2rM?A 

•+9(l)•M?CN+6 

x•2300•,o 

DEVICE CONTROL FOR 1ST CARD 
LOADER SECTION 2ND C~Rn N 

IS THIS A TYPE Y CARD? ON 

MO 2140 
MD 215n 

MD 216" 

IF Y CARD GO TO C0Ne4 C MD 

IS THIS A TYPE Q CARO? DY MD 

C MO 
IF NO GO TO CONt5 C MD 

SET LENGTH FOR LOAD MO 

SET ADDRESS FOR LOAD MD 
LOAO TEXT P MD 

CON.5 SET BASE ADDRESS P MD 
GO TO CON,1 ClST CARD> A MD 

C0No4 SET START AD[)RESS P MD 

GO TO MEMORY DUMP A MD 

ADDRESS FOR SUBSEQUENT CARO MD 

MEMORY DUMP SECTION N MD 
CONST, FOR REGINNING AOnRESS MD 

CONST, FOR ENDING ADDRESS MO 
CONSTANT 12R MD 
STARTING ADDRESS FOR EDIT MD 
ENDING AOORFSS FOR EDIT MD 

MD 

TRANSLATION TABLE FOR MD 

63 CH BAR MD 

~17" 

21ao 

2190 

2200 

3010 

3020 

3030 

3040 

3050 

3060 

3070 

3080 

3ogn 

31on 

311n 
3120 

313'1 
~14'1 

315" 

3160 

3170 

M.D.ENTRY SET LINE ADV AIT P 

SET VC Bl1ClrFl1AND Kl P 

SET REG 14 TO ZERO P 

MD '.15180 
MD 3190 

MD 320'1 

MO 4010 

SET LIMIT OF EDIT Tn 4 r,R, p MD 

ISSllE PRINT ORDER 63 CH AAR P MO 

IS ORDER ACCEPTED? ON MD 

TEST I/O STATUS P MD 

IS PRINTER WORKING? ON MO 

SET STATUS RITS FOR DISPLAY P MD 

402'1 

4030 

4040 

405'1 

4060 

4070 

PRINTER OFF NORMAL H MD 4080 

Figure 3-1. Example of Printer Output of a Program (can't.) 

(Sheet 2 of 5) 

nc: ,.. z 
=io-
o < ,.. 
>- n 
~ "'° m""" 
~g 
OJ' 
r- "'° m~ 
;ioo 

UI 
rr1 
n 
-l 

0 
z 

ll 
:I> 
Gl 
rr1 



uO 71 
lJO 72 

1JO/J 

1JO 74 

IJ07~ 

1)0 lb 

uon 
1)078 

0079 

(J0d0 

OOdl 

00d2 

(JQdj 

()084 

OOd!:> 

llOdo 

0087 

00tl8 

OOdY 

0090 

0091 

0092 

(1093 

0094 

(10':15 

0096 

0097 

0098 

00';19 

OlUO 

0101 

Olu2 

OlUJ 

OlU4 

OlU~ 

OEOC 1i 7FUOUFC:: 
OElO Q5010F6C. 

UE14 4781JOEBA 

IJE18 f"l2EUJF7A 

OElC n2820F7bOF7A 

UE22 Cl50lOF6u 

OE26 478liOEC2 

OE2A Cl5020F6U 

OE2E 4 78l10ECA 

OE32 48FllODC2 

OE36 F3420F7A003C 

OE3C 02E~.OF7l:. 

OE40 F3E7FOOUEOOU 

OE46 FllUFOOl:.E007 

OE4C 06FIJFUOl 

UE50 Cl6FOFUOF­

IJE54 n201nF7~EOOb 

OE5A A612'003l:. 

OESE A60B003C. 

OE62 47lvOEAt:.. 

OE66 49EuODBt. 

IJE6A 47200E.At. 

OE6E 49FOOF6A 

OE72 474UOE4(J 

OE76 49EUOUCU 

OE7A 478UOEB<.. 

OE7E r20~0F740F72 

OE84 C12UOOF6t. 

UE88 47FUOF1C:: 

OEBC q2010F61.i 

OE90 n20lOF6AOUCb 

OE96 48EOOOB<.. 

OE9A 94F00031.1 

UE9E 49EUOOCU 

OEA2 47AUOF12 

M?l;H1 

M?C.1 

M?U 

RC 

CLI 

AC 

MVI 

MVC 

CLI 

AC 

CL.I 

AC 

LH 
llNPK 

MVI 

UNPK 

MVO 

OI 

OI 

MVC 

AI 

Al 

AC 

CH 

AC 

CH 

BC 
CH 

BC 
MVC 

MVI 

RC 

MVI 

MVC 

LH 

NI 
CH 

BC 

15,,.'1?A 

M?CN+2•1 

flrM?C\2 

~?PW•X'EE' 

~?PW+ll132-l),M?PW 

,.,,?CN+3•1 
Pr1V'?C2 

M?CN+.3•2 
8rM?CJ 

15rM?C0+2 
M?PW(5lr60(3) 

,.,,?PW+4•X'l:.F.:' 

0(15'15) •IJl8•14) 

14<2•1!'.>> •7<1•14> 

14(15)•X'F0• 

loll!:>) •X'Ff1' 

,.,,?CN+8<2> ,6(14> 

62•18 

60•8 

lr~?H 

14•Mt:NO 

?•IV?H 

15•M?CN 
4rM?D 

14rM?CO 

8••+18 

M?CN+lll (6:11M?CN+fl 

~A?C:N+4, 0 

15•M?L 

M?CN+J•l 

f.l?CN < 2 > , Mi~CO+b 

14rM8GN 

6l•X'Fll• 

141M?CO 

lOrM?L 

GO TO A FOR RECOVERY 
IS VC 80 SET TO 82? 

IF YES GO TO A2 

Bl 

B 
ON 

c 
N 

CLEAR STANDBY P,AUFFEP AREA P 

CO IS VC CO SET TO C2? DN 
IF YES GO TO C2 C 
IS VC CO SET TO C3? DN 

IF YES GO TO C3 C 

SET STARTING AODR OF EDIT P 
EDIT ADnRESS P 

EDIT DATA 7 BYTES P 
EDIT DATA BTH BYTE P 

STORE PREDECESSOR BYTFS P 

R15 + 18 TO R15 P 

R14 + 8 TO R14 P 

IF R14 OVERFLOW GO TO H DN 
IS R14 EQUAL TO MEM LIMJT? nN 

IF YES GO TO H C 

IS R15 EQUAL TO EDIT LIMIT? nY 
IF NO GO TO D C 

IS Pl4 EQUAL TO 128? ON 

IF Y~S GO TO SS C 

EXTF.NQ PREDECESSOR AYTES P 

SET vc FO TO Fl p 

GO TO L B 

SS SET VC CO TO C2 P 

SET LIMIT OF EDIT P 
SET BEGINNING ADDR TO R14 P 

AND ERASE 4 LSB C 

IS RG,AO, SMALLER THAN 128? DY 

IF NO GO TO L C 

Figure 3-7. Example of Printer Output of a Program (con't.) 

(Sheet 3 of 5) 

MD 
MO 

MO 
MO 

MD 
MD 
MD 

MO 

MO 

MD 

MD 

MD 

MO 
MD 

MO 

MD 

409!'1 
410,, 

411,, 

412" 

413" 

4140 

415!'l 
416,, 

417,, 

4180 

4190 

4201"1 

5010 

so2n 
5030 

501f.0 

MD -=i050 

MD 5060 

MD 5070 

MO 5080 

MO 5090 

MD !5100 

MD 15110 

MD 5120 

MO 

MO 
MD 

MD 

MO 

MD 

MD 

MD 

MD 

MD 

MD 

5130 

514!'l 

5150 

5160 

5170 

s1an 
5191"1 

520'1 

60l!'l 

6020 

603'1 

nc= 
>z 
:::0 -
o< > >n 
V' 

V' "'° 
m "' ~g 
IJJ .......___ 

•"'° m~ 
:;:oo 

Ill 

rn 
n 
-l 

0 
z 

ll 
J> 
Gl 
rn 

w 



OlUb 

0107 

OlU8 

01U9 

0110 

0111 

0112 

Oll.3 

u l.L4 

Ollb 

0 l.Lb 

u l.l. 7 

u 1.1. 8 

0119 

0120 

Ul2l 

0122 

0123 

0124 

Ol2b 

Ul2b 

0127 

0128 

0129 

ouu 
01.H 

ulj2 

01J3 

OlJ4 

ouo 
OUb 

OU7 

01~8 

Olj9 

0140 

UEA6 48EUODCU 
OEAA 47FUOF12 

OEAE q2Gl0F6C 

UEB2 C!2Ul0F6t­

OEB6 47FUOF12 

UEBA q2000F6<.. 

OEBE 47FOOF18 

OEC2 Q2020F6l.I 

OEC6 47FOOE:32 

OECA 4800003(; 

OECE 48FOODC2 

OE02 ~5070UOUOF72 

OED8 47600E32 

OEDC A6120031:. 

OEEO A6080U3~ 

OEE4 47lOOE32 

OEE8 49lJOOUBI:. 

OEEC '~72UOE32 

OEFO 49FUOF6A 

OEF4 474UOED2 

OEF8 48EUOU3A 

OEFC Q5010F6t. 

OFOO 47800ECI:. 

UF04 q2Ul0F6t. 

OF08 q2EFOF8b 

UFOC nzo90F920F80 

OF12 nC830F7AOCOA 

OF18 A5030F7U 

OFlC 1n200Flb 

OF20 q1F90F7U 

OF24 47800F3U 

OF28 Q2010F6C 

OF2C 47FOOE02 
OF30 050l0F6F 
OF34 47800F4A 

M?ti 

M?b2 

M?l.2 

M?C.:3 

M?L 

M?KO 

LH 
BC 

MVI 

MVI 

BC 

MVI 

BC 

MVI 

BC 

LH 

LH 

CLC 

AC 

AI 
AI 
AC 

CH 
AC 

CH 

AC 

LH 

CLI 

AC 

MVI 

MVI 

MVC 

TR 

TID 

HC 

TM 

AC 

MVI 

AC 

CLI 
AC 

14,M?CO 
15,M?L 

r.Ji?CN+2' 1 

~?CN+5,1 

l ~HM?L 

M?CN+2•0 

lb•M?L+6 

M?CN+3•2 

15•M?Cl 

13•60 

l!:uM?C0+2 

O(Ad3l ,M?CN+8 

6•""?Cl 

62•18 

58•8 

l•""?Cl 

13' Ml:..NU 

2,M?Cl 

l5•M?CN 

4•M?C3+8 

14,58 

M?CN+4•l 

A•M?C3+4 

M?CN+4•1 

M?PW+l4,X•F'F' 

~?PW+24(132-26>•M?PW+6 

~?PW(132)•M?TB•238 

~·?CN+6 • 3 
?1M?L+b 

~?CN+o•x•F<l• 

81M?KO 

IVl?CN+2'1 

15•M?E. 

M?CN+5•1 

8••+22 

SET BEGINNING ADOR TO l'R 
GO TO L 

SET VC RO TO R2 

SET VC KO TC'I 1<2 

GO TO L 

SET VC RO TO Al 

GO TO TT 

SET VC CO TO C3 

GO TO Cl 
LOAD Rl3 FROM R14 

p 

B 

p 

p 

B 
p 

R 

p 

R 
p 

PP SET ST.ADDRESS OF FnIT P 

QQ IS DATA EQUAL TO PRED? DY 

IF NO GO TO Cl C 

Rl5 + lA TO R15 P 

R13 +A TO R13 P 

IF R13 OVERFLOW GO TO C1 DN 

IS P13 EQUAL TO MEM LIMIT? Dt-1 
IF YES GO TO Cl C 

IS R15 EQUAL TO EDIT LIMIT? DY 

IF NO GO TO QQ C 

LOAD R14 FROM R13 P 

FO IS VC FO SET TO F2? DN 

IF YES GO TO PP C 

Fl SET VC Fn TO F? P 

FILL * INTO STANDBY P 
PRil'IT BUFFER AREA C 

TRANSLATE P 

·TT TEST I/O STATUS P 

MD 6040 
MD M5n 

MD 606" 

MD 6070 

MD 6080 

MD 6091'1 

MD FilOt"l 

MD ~Un 

MO 612" 
MO 613"1 

MD 614n 

MD 6150 

MD 616" 
MD 617n 

MD 618"1 
MD 619n 

MD 6200 
MD -,010 

MD 7020 

MD -,030 

MD 7040 

MD 7050 

MD 706n 

MD 7070 

MD 7080 

MD 7090 

MD 7100 

MO 7110 

IS PRINTER WORKING? 
IS THFRE ANY ERROR? 

IF NO GO TO VC KO 

SET VC BO Tn B2 
GO TO E 

IS VC KO SET TO K2? 

IF YES GO TO 1<2 

DP..1 MD 

DY MD 

C MD 

P MD 

B MD 
DM MD 

C MD 

712" 

71.30 

714" 

715n 

716" 

7170 

?tan 

Figure 3-1. Example of Printer Output of a Program (con't.) 

(Sheet 4 of 5) 

n c: 
>Z 
:::o­
c < > 
>n 
"' '° Cl' IV 
mo 
~o 
CD'-.. 
r- '° m~ 
:::oo 

v. 
fT1 
n 
-t 

0 
z 



0141 OF38 Q5020F6F 
01'+2 OF3C 47800F52 

0143 OF'+O n28300800F7A 
0144 OF'+6 47FOODF2 
014~ OF'+A q2020F6f 

01'+6 OF'+E 47FOOF'+O 
01'+7 OF52 Q23C0050 

01'+8 OF56 A'+0.30003 

01'+9 OF5A A5030F70 

Ol!::>O OF5E 47200F5A 

0151 OF62 A90U2FFF 

01!:>2 OF66 47FOOUDA 

015.3 OF6A 

01!:>'+ OF7A 

0155 OOOOOAOuOOIJA 

CLI M?CN+~>• 2 IS VC KO SET TO K3? 
BC f', M?K~~ IF YES GO TO K3 

M?Kl MVC 128(1~~2) rM?PW LOAD DATA INTO PRINT BUFFER 
AC 15rM?ll GO TO A 

MVI M?CN+~>• 2 K2 SET VC KO TO K3 

BC 15, M?~;l GO TO Kl 
M?K3 MVI f\OrX•JCt SET LINE ADV AITS FOR H.P, 

XIOF 3,3 AND PAP£R FEED TO H,P, POS 

TIO ,_.,?CN+6•3 IS PRINTER WORKING? 
BC ?•*-4 IF YES REPEAT TIO 
HPR X '2FFF •, 0 SUCCESSFUL STOP 
BC 15rMt.NT RETURN TO MENT 

M?CN OS CL16 WS FOR VC AND PREOEC, BYTES 
M?PW OS CL132 STANDBY PRINT BUFFER AREA 

END MEl'·JT 

Figure 3-1. Example of Printer Output of a Program (con't.) 

(Sheet 5 c>f 5) 

ON MD 7190 
c MD 7200 
p MO 8010 

B MD A02n 

p MD 8030 

B MD A040 

p MD ansn 
c MO 8060 

ON MO 8070 

c MD 8080 

H MO 8090 

B MO F\100 

MO R110 

MO 8120 

MO R130 

c:: 
"O 
I 

.i:.. 
0 
\0 
N 

nc: 
»z 
~-c< 

)> 
»n 
Ci' 
Ci' "'° m ....,, 
~g 
OJ ........... 
r- "'° 
m~ 
~o 

Ill 
fll 
n 
-i 

0 
z 

1l 
)> 
G) 

fll 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

3.1. 6. Ass em bl er Control Card 

3 
SECTION: 

On the first pass, the source code deck may be preceded by a control card which 
has the following form: 

LABEL OPERATION OPERAND 

CTL ABS, p, q 

PAGE: 

where ABS indicates the output element is to be in absolute code form, p is a 
decimal number representing the largest address available on the computer on which 
the assembly is being done, and q is a decimal number representing the largest 
address available on the computer for which the element is being assembled. Any 
field in the operand may be omitted. If ABS is omitted, the output element is in re­
locatable code form. If p is omitted, the memory size of the computer on which the 

element is being assembled is assumed to be 16,384. If q is omitted, the memory 
size of the computer for which the element is being assembled is assumed equal to 

the memory size of the computer on which the assembly is being done. The CTL 
card may be omitted, in which case the result is the same as indicated for each 
field omitted. 

3.2. SYSTEM CODES 

Table 3-1 shows the relation the Assembler assumes between card code, internal 

computer code, and printer graphic. The Assembler reads a source code card in com­
pressed form and then translates it to the internal code via the translation table shown 
in Table 3-1. If keypunch equipment is used which sets up a different relationship 
between card code and printer graphic than the one shown in Table 3-1, a different 
translation table may be substituted at linker time for use by the Assembler in trans­
lating source code cards. This translation table may set up any relation between card 

code and printer graphic that is desired; however, the relation between internal code 

and printer graphic shown in Table 3-1 must remain inviolate, since this is the only way 
the Assembler can "read" the source code. The Assembler prints its listing directly 
from the internal code. This operation, in effect, assumes a 63-character print bar. 
If a 48-character print bar is used while assembling, the Assembler may be modified 
at linker time to translate printer output from internal code to 48-character print bar 

code before printing. 

The Assembler punches all output cards in a compressed "object code" form which 
may be handled directly by the Linker or the absolute loader. 

Some users may provide programs via the Assembler to be used to process data rep­
resented in an internal code different from the one used by the Assembler. In such a 
case, the user must take special care in the representation of his constants. For 

example, the Assembler assigns the internal code 11000001 to the graphic "A". If, 
at the time an object program is run, the internal code for the data assigns the code 
11000000 to the g-raphic "A", a test for equality against a constant represented as 
C 'A 1 in source code language may not be performed as desired. 

In general, when data to be processed by an object program is represented in an in­
ternal code other than that used by the Assembler, all difficulties can be avoided 
by representing all constants in the source code in hexadecimal. 

14 



UP-4092 

DIGIT 

0000 

0001 

I 0010 

I 
I 0011 

I 
0100 

I 0101 

I 0110 I 

I 0111 

I 
1000 

1001 

1010 

I 
1011 

1100 

1101 

1110 

1111 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TWO MOST SIGNIFICANT BITS OF ZONE - 00 

TWO LEAST SIGNIFICANT BITS OF ZONE 

00 01 10 

12-0-9-8-1 12-11-9-8-1 11-0-9-8-1 

12-9-1 11-9-1 

I 
0-9-1 

12-9-2 I 11-9-2 0-9-2 

I 
I 

12-9-3 11-9-3 I 0-9-3 

12-9-4 

I 
11-9-4 I 0-9-4 

I 
12-9-5 i 11-9-5 I 0-9-5 

: i 

12=9=6 
I 

11=9=6 I n. n !:! 

I 
I 

v·;;i·o 

12-9-7 I 11-9-7 0-9-7 

I I 
12-9-8 11-9-8 0-9-8 

12-9-8-1 11-9-8-1 0-9-8-1 

12-9-8-2 11-9-8-2 0-9-8-2 

12-9-8-3 11-9-8-3 0-9-8-3 

12-9-8-4 11-9-8-4 0-9-8-4 

12-9-8-5 11-9-8-5 0-9-8-5 

12-9-8-6 11-9-8-6 0-9·8·6 

12-9-8-7 11-9-8-7 0-9-8-7 

Table 3-1. Internal Code 

3 15 
SECTION: PAGE: 

11 

12-11-0-9-8-1 

9-1 

I 9-2 I 
I I 

9 .. 3 I 
I 

9-4 

I 
9-5 I 

I 

I 9-6 l 

I 9-7 

9-8 

9-8-1 

9-8-2 

9-8-3 I 
9-8-4 

9·8-5 

9·8·6 

9-8-7 



UP-4092 

DIGIT 

0000 

0001 

0010 

0011 

0100 

0101 

-' 
0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TWO MOST SIGNIFICANT BITS OF ZONE - 01 

TWO LEAST SIGNIFICANT BITS OF ZONE 

00 01 10 

12 11 
0 & -

12-0-9-1 12-11-9-1 0-1 
I 

12-0-9-2 12-11-9-2 11-0-9-2 

12-0-9-3 12-11-9-3 11-0-9-3 

12-0-9-4 12-11-9-4 11-0-9-4 

12-0-9-5 12-11-9-5 11-0-9-5 

12-0-9-6 12-11-9-6 11-0-9-6 

12-0-9-7 12-11-9-7 11-0-9-7 

12-0-9-8 12-11-9-8 11-0-9-8 

12-8-1 11-8-1 0-8-1 

12-8-2 11~8"2 12-11 
¢ ! 

12-8-3 11-8-3 0-8-3 
$ ' 

12-8-4 11-8-4 0-8-4 
< * % 

12-8-5 11-8-5 0-8-5 
( ) -

12-8-6 11-8-6 0-8-6 
+ I > 

12-8-7 11-8-7 0-8-7 

! -, ? 

Table 3-1. Internal Code (cont.) 

3 16 

SECTION: PAGE: 

1 1 I 

12-11-0 

12-11-0-9-1 

12-11-0-9-2 

12-11-0-9-3 

12-11-0-9-4 

12-] 1-0-9-5 

12-11-0-9-6 

12-11-0-9-7 

12-11-0-9-8 

8-1 

8-2 

I 
8-3 I # I 

I 
l 

8-4 I 
! 

@ I 

I 
8-5 I 

I I 
I 

8-6 I 
= 

I 
I 

8-7 .. _J 



UP-4092 

DIGIT 

0000 

0001 

0010 

0011 

0100 

0101 

I I 
I 

n11n 
' V.LJ.V 

! 

I 

0111 
I 

! 
1000 i 

I 

1001 

1010 

1011 

1100 

I 
1101 

1110 

1111 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TWO MOST SIGNIFICANT BITS OF ZONE - 10 

TWO LEAST SIGNIFICANT BITS OF ZONE 

00 01 10 

12-0-8-1 12-11-8-1 11-0-8-1 

12--0-1 12-11-1 11-0-1 

12-0-2 l 12-11-2 11-0-2 
I 

12-0-3 I 12-11-3 11-0-3 I 
I 

12-0-4 

I 
12-11-4 11-0-4 

12-0-5 12-11-5 11-0-5 
I 
I 

1,., n c 11"") 11 c_ 11 n c 
.L ,-v-u J.L•J. .L•o .1. .1.·u·u 

12-0-7 ! 12-11-7 11-0-7 
j 

I 
12-0-8 12-11-8 11-0-8 

12-0-9 12-11-9 11-0-9 

12-0-8-2 12-11-8-2 11-0-8-2 

12-0-8-3 12-11-8-3 11-0-8-3 

12-0-8-4 12-11-8-4 11-0-8-4 

12-0-8-5 12-11-8-5 11-0-8-5 

12-0-8-6 12-11-8-6 11-0-8-6 

12-0·8-7 12-11-8-7 11-0-8-7 

Table 3-1. Internal Code (cont.) 

3 17 
SECTION: PAGE: 

11 

12-11-0-8-1 

12-11-Q-1 

12-11-0-2 

12-11-0-3 
; 

12-11-0-4 i 
I 

12-11-0-5 
I 
I 

1,., 11 _n c .1.L·.1..1.·v·u 

' 12-11·0·7 
' ; 

12-11-0-8 

12-11-0-9 

12-11-0-8-2 

I 
12-11-0-8-3 

12-11-0-8-4 

12-11-0-8-5 

12-11-0-8-6 

12-11-0-8-7 



UP-4092 

DIGIT 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

I 
0111 

I 

I 
1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TWO MOST SIGNIFICANT BITS OF ZONE - 11 

TWO LEAST SIGNIFICANT BITS OF ZONE 

00 01 10 

12-0 11-0 0-8-2 

124 11-1 11-0-9-1 
A J 

12-2 11-2 0-2 
B K s 

12-3 11-3 0-3 
c L T 

12-4 11-4 0-4 
D M u 

12-5 11-5 0-5 
E N v 

12-6 11-6 0-6 
F 0 w 

12-7 11-7 0-7 
G p x 

12-8 I 11-8 0-8 
H Q y 

12-9 11-9 0-9 
I R z 

12-0-9-8-2 12-11-9-8-2 11-0-9-8-2 

12-0-9-8-3 12-11-9-8-3 11-0-9-8-3 

12-0-9-8-4 12-11-9-8-4 11-0-9-8-4 

12-0-9-8-5 12-11-9-8-5 11-0-9-8-5 

12-0-9-8·6 12·11--9-8-6 11-0-9-8-6 

12-0-9-8-7 12-11-9-8-7 11-0-9-8-7 

Table 3-1. Internal Code (cont.) 

3 18 

SECTION: PAGE: 

11 

0 
0 

1 
1 

2 
2 

3 
3 

4 
4 

5 
5 

6 
6 

7 
7 

I 

I I 8 

I 8 
I 

9 
9 

12-11-0-9-8-2 

12-11-0-9-8-3 

12-11-0-9-8-4 

12-11-0-9-8-5 

12-11-0-9-8-6 

12-11-0-9-8-7 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

4 

PAGE: 

4. OUTPUT 

4.1. ASSEMBLER CARD OUTPUT 

The object code produced by the Assembler is punched into six different card types: 

Element Definition Cards, External Definition Cards, Program Reference Cards, Ex­

ternal Reference Cards, Text Cards, and Transfer Cards. These card types have the 

following functions. 

• The Element Definition Card contains the name, the size, and the origin of the 
element as assigned by the Assembler. 

• An External Definition Card specifies the value of a symbol which may be refer­

enced by other elements. 

!! The Program Reference Card contains the name of the element and the number by 
which this name is identified in the relocation information for the element. 

• An External Reference Card contains a label to which the element refers but which 

it does not define. The card also contains a number by which this label is identified 

in the relocation information for the element. 

• A Text Card contains the instructions and constants of the element, an address in­
dicating where the instructions and constants are to be loaded into memory for 
execution, and the relocation information pertaining to the instructions and con­

stants. The loading address for the instructions and constants is assigned by the 

Assembler to conform with the origin of the element as described in the Element 
Definition Card. The relocation information performs two functions: 

It permits the relocation of the instructions and constants to an origin other 
than the one given to the element by the Assembler. 

It provides the information required by the Linker to resolve any external ref­
erences made in the instructions or cons tan ts with the corresponding external 
definitions made in other elements. 

1 



UP-4092 
4 UNIVAC 9200/9300 

CARD ASSEMBLER SECTION: PAGE: 

• The Transfer Card is generated by the END assembler directive. If the END direc­
tive specifies the address at which execution is to begin, this address appears in 
the Transfer Card. 

The order and number of these cards in the Assembler object code output deck is as 
follows. First there is a single Element Definition Card. Then there are as many Ex­
ternal Definition Cards as there are ENTRY assembler directives in the source code. 
Then there is a single Program Reference Card followed by as many External Refer­
ence Cards as there are EXTRN assembler directives in the source code. Then there 
are as many Text Cards as are required to contain the instructions and constants repre­
sented in the source code deck. Finally, there is a single Transfer Card. 

If the output of an assembly contains no External Reference Cards, it may be loaded 
directly into the UNIVAC 9200/9300 via the Card Program Loader. In this instance, 
the text is loaded at the addresses indicated in the Text Cards, and job execution 
begins at the point indicated in the Transfer Card. The Element Definition Card, any 
External Definition Cards, the Program Reference Card, and the relocation information 
in the Text Cards are ignored by the Program Loader. 

The format of these assembler output cards is as follows. 

4.1.1. Element Definition Card 

COL. FIELD NAME CONTENTS 

1 Load Key 12-2-9 punch 

2 Yype A ( H o 11 er i th ) 

3 Length 17 (or number of columns used less one from Col.11 ). 

6 Absolute/relocatable Absolute or relocatable program indication (12 punch 
if absolute, blank otherwise). 

7 Hole Count Sum of the bytes punched (columns 8 through 72). 

8 Program ESID I External Symbol Identification assigned by the 
Assembler to this program name. 

I 

I 

13-16 Assembled Start Address The base of this program as assigned by the Assembler. I 

17-24 Name The name assigned to this program (the name is left 
justified in the field and is punched in EBCDIC). 

25-28 Pro gr am Length The number of bytes of memory needed by this program. 
I 
I 

2 



UP-4092 

4.1.2. 

r 
I 

I 

UNIVAC 9200/9300 
CARD ASSEMBLER 

External Definition Card 

COL. FIELD NAME 

Load Key 

2 Type 

3 Length 

7 Hole Count 

9 RLD Length 

10 Last RLD 

14-16 Symbol address 

17-24 Symbol 

70-72 RLD 

4.1.3. Program Reference Card 

I COL. FIELD NAME 

Load Key 

2 Type 

3 Length 

I 7 
Hole Count 

I a 
Program ESI D 

I 13-16 Assembled Start Address 

117-24 Name 

4 

SECTION: PAGE: 

CONTENTS 

12·2·9 punch 

H (Hollerith) 

13 (or number of columns used less one from Col. 11). 

~11m n.f tho hu+ot'- n11n,...harl /,...nl11mnr- Q '7')\ 
W"t..1111 v1 t.11v uy 1.v..;> tJUll\,llVU \""v1u11111.o> u-1 LI• 

Number of columns of RLD information on card (indi· 
cates 3 or 0 ). 

Column 11 relative number indicating the most signifi· 

cant column of the last item of RLD information on the 

card. The value is 59 if there is relocation data; other· 
wise zero. 

The Assembler assigned value of the symbol field. 

Symbolic name to be referenced by other program(s) 
(punched in EBCDIC). 

Relocation field. See the description of this field for 
the Text Card. If present, column 72 contains a 3 and 
the least significant digit of column 71 also contains 
a 3 indicating that columns 14-16 are to be modified. 

CONTENTS 

12·2·9 pun ch 

J (Hollerith) 

13 (or number of columns used less one from Col.11 ). 

Sum of the bytes punched (columns 8-72). 

E.xternal Symbol Identification assigned by the 
Assembler to the program name. 

The base of this program as assigned by the Assembler. 

Element name (same as columns 17 through 24 of the I 
Element Definition Card). , 

3 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

4.1.4. External Reference Card 

COL. FIELD NAME 

1 Load Key 

2 Type 

3 Length 

7 Hole Count 

8 Name ESID 

17-24 Name 

4.1.5. Text Card 

COL. FIELD NAME 

1 Load Key 

2 Type 

3 Text Length 

4-6 Load Address 

7 Hole Count 

8 Program ESID 

9 RLD length 

10 Last RLD 

11 TXT 
& following 

72 RLD 
& fJ(eceding 

Example of RLD field: 

4 
SECTION: PAGE: 

CONTENTS 

12-2-9 punch 

K (Hollerith) 

13 (or number of columns used l1~ss one from Col. 11). 

Sum of the bytes punched (columns 8-72). 

External Symbol Identification assigned by the 

Assembler to this symbolic name. 

Symbolic name being referenced by this card 
(punched in EBCDIC). 

CONTENTS 

12-2-9 punch 

Q (Hollerith) 

Indicates the number of columns I ess one of text 
information on the card. 

The Assembler assigned location where the text is 
to be loaded. 

Sum of the bytes punched (columns 8-72). 

External Symbol Identification assigned by the 
Assembler to the program name to which this load 

address is relative. 

Number of columns of RLD information on this card. 

Column 11 relative number indicating the most 
significant column of the last item of RLD informa­
tion on the card. This number is 59 if there is RLD 
data, otherwise zero. 

The value to be loaded at the load address. The TXT 
field contains information from columns 11 through 

ll+n, where n is the number contained in column 3. 

RLD fields begin in column 72 and occur from right 
to left on the card for the number of columns indicated 
in column 9. Each RLD field is composed of three 
columns. 

Column 70 contains a name ESID. This points to a value in the linker reference 
table to be applied to the TXT on this card. 

4 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

4 

Column 71 contains a flag. The four most significant bits indicate the operation. 

PAGE: 

All zero bits in di ca te that the reference table value is to be added to 
the text value to obtain the new text value. If the four most significant 
bits of the flag column are 0001, the reference table value is subtracted 
from the card text value to obtain the new text value. 

The three least significant bits of the flag column indicate (in binary) 
the length of the text field in bytes. The remaining bit is a one if the 
field to be modified contains an additional halfbyte. Thrs, the four 

least significant bits would contain the value eight for a four-bit field. 
If all four bits are zero, the field is four bits long and is in the left 
halfbyte. 

Column 72 contains column position. A binary number (relative to column 11) point­
ing to the most significant column of the text information to be modified·. 

4.1.6. Transfer Card 

COL. 

1 

2 

I 
3 

I 
7 

9 

10 

111-13 I 

I I 114-16 I 

I 
I 10-72 I 

' I I 

FIELD NAME 

Load Key 

Type 
i 

Length 
: 

i 
Hole Count 

RLD Length 

Last RLD 

Card Count 

Start Address 

RLD 

CONTENTS 

12-2-9 

Y (Hollerith) 

5 (or number of coJumns less one from Col. 11). 

Sum of the bytes punched (columns 8-72). 

Number of columns of RLD information on the card. 
(Indicates 3 or 0). 

Column 11 relative number indicating the most signi­
ficant column of the last item of RLD information on 
the card. (Contains 59 if there is relocation data, 
otherwise 0.) 

The number of reference type K or text type Q cards 

which were produced by the assembler for this element. 

The address to which control is given after loading 
this e~ement. 

Relocation field. Column 72 contains column 11 

relative indicator of the first column of the start 

address (indicates Col. 14). The most significant 
4 bits in column 71 are 0001 if the reference table 
address is to be subtracted from the card start address 
or 0000 if the reference table address is to be added 
to the card start address to obtain the relocated start 
address. The least significant 4 bits in column 71 
indicate that the start address on the card is 3 bytes 

long. Column 70 contains the ESID that points to the 

value in the reference table to be applied to the card's 
s ta rt add res s f i e Id . 

For all assembler output cards, the PIO is left justified in columns 7 3-76, and a 
sequence number is punched in columns 77-80. Both the PID and sequence number 
are punched in Hoiierith. 

5 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

5 

PAGE: 

5. LINKER 

When a job consists of more than one element, the elements, which are the output of sep­
arate Assembler runs, must be combined before they may be loaded as an executable object 
program. This combining, or linking, is done by a utility program called the Linker. The 
Linker inserts the storage addresses for references made from one element to another and 
modi fies addresses if an element is relocated. 

A provision is included for dividing the output elements into separate loads or "phases" 
Another provision allows corrections, stated in hexadecimal, to be made to any of the 
elem en ts being linked. These corrections must be in terms of the ultimate absolute addresses 
assigned to each field being changed. 

Most of the input to the Linker consists of the output of one or more Assembler runs. How­
ever, control cards are supplied by the user to specify: 

- the initial storage address to be allocated to the output element 
(PHASE card) 

the start of a new phase of the output (PHASE card) 

additional external definitions (EQU card) 

corrections to one or more of the elements being linked (REP) 

the end of the input stream (END) 

The Linker provides an output listing including: 

- the control cards on its input, 

- the names and external definitions of the elements being linked and 
the values allocated to each, as well as the number of the phase in 
which it is included. Phases are numbered consecutively from one in 
the order in which they appear in the input. 

Error indications are included in the listing, and most errors cause termination of the 
punched output. The punched card output is in the same form as the assembler output 
cards, except that no relocation data is punched. The output for each phase consists of 
Text Cards and a Transfer Card. 

The Linker increments, if necessary, the address to be assigned to each input element so 
that the base address is a muitiple of four. 

The Linker is capable of either a one or two-pass operation. At the end of pass one a stop 
occurs with a display indicating readiness for pass two. At the end of pass two a stop 
with a display requiring a reply occurs. When the start button is depressed, the Linker 
interrogates this reply to determine its subsequent action, which is to process another 
set of input or to terminate processing. 

1 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

5 

PA;:>E: 

The Linker is assembled separately from its input/output but is linked to the input/output, 
allowing for input from the standard card reader or the 1001, output to serial or row punch, 
and choice of input translation table and the option of a translation for the 48 character 
printer. 

5.1. LINKER INPUT 

The major input to the Linker consists of the output of one or more assemblies. The 
input to the Linker is normally formed by placing one element behind the other in 
the order they are to have in storage. Then a PHASE card is placed at the beginning 
of the deck to define the initial storage location and an END card at the end to signal 
the end of the input. If the output element is to consist of more than one phase, each 
input element must be entirely in one phase, with a PHASE card inserted in front of 
the first Element Definition Card in the phase. Each such PHASE card indicates the 
initial address to be allocated to that phase. When the Linker input is arranged in this 
manner, all elements comprising one phase must follow the PHASE card defining that 
phase and precede the PHASE card defining the next phase. 

The order of the input must also be such that the element using an externally defined 
symbol must precede all elements referring to that symbol. If there are any symbols 
for which this is not possible, their definitions may be supplied by EQU cards. If 
this is not desirable, the Linker provides the option of a two-pass operation. The 
first pass recognizes the headers (Element Definition and External Definition Cards) 
and stores the external definitions. The second pass processes the External Ref­
erence, Text, and Transfer Cards, and produces the output element. 

If desired, a two-pass operation may be avoided by separating the headers of the 
input elements and presenting them first. The procedure is as follows: 

1. Put together the input elements as described above, but without 
control cards; 

2. Sort out the header cards (12 punch in column 2); 

3. Place the header cards in front of the remaining deck; 

4. Insert the required control cards. 

Each PHASE card should precede the Element Definition Card for the first element 
in the phase being defined. EQU cards follow a PHASE Card, Element Definition, or 
External Definition Cards. REP cards must immediately precede the Trans fer Card of 
the element they are to alter. 

5.2. LINKER CONTROL CARD FORMATS 

The control card identifier (CTL, PHASE, EQU, REP, or END) is left justified in 
columns 8-12. Columns 1 to 7 are blank except for the SQU card on which columns 
1 to 4 contain the symbol being defined. The specifications contained on each control 
card begin in column 14 and are terminated by a blank. 

2 



UP-4092 

5.2.1. CTL 

UNIVAC 9200/9300 
CARD ASSEMBLER 

5 

SECTION: 

The CTL card is the first card of the Linker input. The specifications consist of 
two fields separated by a comma: 

n,p 

where n=l one-pass operation of the Linker, 

n =2 two-pass operation of the Linker; 

p a decimal number representing the largest address available to the out­
put element. 

Any field may be omitted. The effect is as follows: 

n omitted 

p omitted 

one-pass operation. 

maximum address to be allocated is not to change. The initial 
value is 16383. 

The CTL card may be omitted, in which case the result is the same as indicated 
above for each field omitted. 

PAGE: 

If the Linker is to perform a two-pass operation and produce code for a 16K system, 
the CTL card would be 

CTL 2,16383 

5.2.2. PHASE 

A PHASE card defines the name and initial storage address for the output element 
and must be the first or second card of the Linker input, preceded only by the CTL 
card. A PHASE card also precedes the Element Definition Card (type A) for the 
first element of each subsequent load. It specifies the name of the phase and its 
starting address. 

' 
The specifications field has the form 

phase-name, displacement, flag, symbol 

where phase-name is a group of up to four alphabetic characters representing the 
name of the phase 

displacement is a decimal number (may be preceded by minus) or a hexa­
decimal number in the form X'nnnn' 

flag 

symbol 

is C or A for the first PHASE card and C, A, or L for any others. 

C - load address equals the highest core address minus the 
displacement field. 

A - load address is the actual value given in the displacement 
field. 

L - load address is obtained by adding the displacement to the 
value of the symbol. 

is any previously defined symbol. 

3 



UP-4092 

5.2.3. EQU 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

5 
PAGE: 

An EQU card supplies the definition of a symbol which is not defined in any of the 
elements being linked or which is defined in an element whose position in the input 
deck is later than that of the first element containing a reference to the symbol. 

The specification field of the EQU card has the form: 

value 
or 

value, symbol 

where value is a decimal number, a decimal number preceded by a minus sign, 
or a hexadecimal number in the form X'nnnn' 

symbol is any symbol which has been defined previous to the EQU card in 
the input deck. 

In the first form above, the binary value represented by the value field becomes the 
value assigned to the symbol appearing in the label field of the EQU card. For an 
EQU card with a specification field of the second form above, the value of the 
previously defined symbol is added to this value to yield the value of the symbol 
being defined. 

An EQU card must follow a PHASE card, an Element Definition Card, an External 
Definition Card, or another EQU card. It must precede the body of the first element 
containing a reference to the symbol defined. The symbol, contained in the specifi­
cation field, must have been previously defined. 

If the Linker control deck contains more than one EQU card defining the same 
symbol, an error indication is made on the listing. However, such an error does 
not terminate the punching of output. Instead, the Linker continues to treat the 
definition given in the first such EQU card as the definition for the symbol. 

5.2.4. END 

The END card indicates the end of the input to the Linker and is the last card in 
the deck. 

The specification field has the same form as that of the EQU card, and is processed 
in the same way to produce a single value which is interpreted as the address at 
which to begin executing the last phase being produced by the Linker. As such, 
this value is punched into the Transfer Card at the end of the output element. 

If the output of the Linker consists of more than one phase, the transfer address 
of each phase but the last is determined as follows: 

1. Normally, the transfer address of the phase is the address from the first 
Transfer Card in the input to the phase. 

2. If no Transfer Card in the input contains an address, the transfer address 
is the lowest address assigned to the phase. 

4 



UP-4092 
UN IV AC 9200/9300 
CARD ASSEMBLER SECTION: 

s 

The specification field of the END card may also be blank. In this case the trans­
fer address punched into the terminal Transfer Card of the output element is the 
address from the first Transfer Card of an input element in that phase containing 
an address. If no Transfer Card of an input element con ta ins an address, the 
lowest address assigned to that phase is punched into the terminal Transfer Card. 

S.2.S. REP 

The REP (Replace) cards specify changes which are to be made to an assembled 
element. The REP cards are placed immediately in front of the Transfer Card of 

PAGE: 

the element to be altered. Addresses and data are specified in hexadecimal in the 
same form they are to have in the output element. No relocation or linking facilities 
are provided by the Linker for this data. 

The form of the specifications field is 

address, data, data, ... 

where address is a field of from one to four hexadecimal digits specifying the 
storage address of the leftmost byte of data to be altered as a 
result of this card. 

data is a field of from one to four hexadecimal digits specifying data 
to be right justified in a halfword of storage. The address field 
is followed by a variable number of such data fields specifying 
the contents of successive halfwords of memory. The fields are 
separated by commas and terminated by a blank. 

S.3. EXAMPLE 

Assume two separately assembled elements, A and B. A was assembled at an origin 
of 0 and has a length of 100, while B was assembled at an origin of 400 and has a 
lF>noth of ?00 FnrthPr A PYtPrn::illu rlPfinPc:: nnP Pntru nnint M whirh ic:: ::ic::c::ionPrl ::in ----o--- -- ---· - -------, -- -----------J ----··-- -··- --·-·J r--··- ... , ····--·· -- ----o··-- -·· 
element relative address of SO, and makes external references to symbols X, Y and 
Z. B on the other hand externally defines symbols X, Y, and Z and makes an external 
reference to M. Symbols X and Y are entry points with relative addresses of 47S and 
SSO, respectively, while Z is defined as having an absolute value of 25. Finally, 
neither the A nor the B element Transfer Card specifies a starting address. The object 
code decks for elements A and B have the following construction. 

Element A 

a. One Element Definition Card specifying that this element is named A and has an 
origin of 0 and a length of 100. 

b. One External Definition Card specifying M as an externally defined symbol with 
an element relative value of SO. 

c. One Program Reference Card specifying that this element is named A, that this 
name has an External Symbol Identification (ESID) number of 1, and that element 
A has an origin of 0. 

d. Three External Reference Cards specifying that X, Y, and Z are externally ref­
erenced symbols which have ESIDs of 2, 3, and 4, respectively. 

s 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

5 

e. Text Cards containing the instructions and constants of element A and the re­
location information for these instructions and constants. Two examples may 
clarify the nature of this relocation information: 

1. An instruction may refer to some other part of element A. This reference is 
relative to the origin of the element. If the origin moves, the reference must 
be adjusted accordingly. The associated relocation information indicates 
where this reference is made in element A and specifies the ESID of element 
A, indicating that this is an element relative reference. 

2. An external reference may be made. In this case, the reference is undefined. 

The associated relocation information indicates where in element A this 
reference is made and specifies the ESID identifying the undefined symbol 
referenced. 

f. One Transfer Card. 

Element B 

a. One Element Definition Card specifying that this element is named B and has an 
origin of 400 and a length of 200. 

b. Three External Definition Cards. 

1. One specifies that X is an externally defined symbol and that it has an element 
relative value of 475. 

2. One specifies Y with an element relative value of 550. 

3. One specifies Z with an absolute value of 25. 

c. One Program Reference Card specifying that the element is named B, that it has 
an ESID of 1, and that it has an origin of 400. 

d. One External Reference Card specifying M as an externally referenced symbol 
with an ES!D of 2. 

e. Text Cards containing the instructions and constants of element B and the re­
location information for these instructions and constants. 

f. One Transfer Card. 

These two decks are represented schematically in Figure 5-1. Suppose elements A 
and B are to be linked into one job having an origin of 1000 and whose initial execu­
tion address is to be the beginning of element A. The origin would be specified in a 
PHASE card, the transfer address in an END card. The input to the Linker for a one­
pass operation would appear as shown in Figure 5-2. 

The Linker reads the PHASE card and sets the location counter to 1000 in preparation 
for creating a job to be loaded beginning at memory location 1000. The Linker then 
reads the header cards and sets up the reference table. Each entry in the reference 
table consists of three fields. 

1. The name which this entry describes. 

2. The location assigned to this name. 

3. The relocation factor for this name. The relocation factor is the amount by 
which the value assigned to the name by the Assembler must be adjusted to 
arrive at the value to be assigned to the name by the Linker. 



UP-4092 

ELEMENT 
A 

UNIVAC 9200/9300 
CARD ASSEMBLER 

TRANSFER 

TEXT AND 

RLD INFO 

EXT REF Z 

ESID 4 

EXT REF Y 

ESID 3 

EXT REF X 

ESID 2 

NAME A 
ESID 1 

ORIGIN 0 

EXT DEF M 

EL T REL 50 

ELEMENT A 
ORIGIN 0 

LENGTH 100 

5 
SECTION: PAGE: 

TRANSFER 

ELEMENT 
B 

TEXT AND 

RLD INFO 

EXT REF M 

ESID 2 

NAME B 
ESID 1 

ORIGIN 400 

EXT DEF Z 

ABS VAL 25 

EXT DEFY 

EL T REL 550 

EXT DEF X 

EL T REL 475 

ELEMENT B 
ORIGIN 400 

LENGTH 200 

Figure 5-7. Elements A and B Deck. Structure 

7 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

ELEMENT A 

BODY 

ELEMENT B 

BODY 

TEXT AND 

RLD INFO 

ESID 4 

EXT REF Y 

ESID 3 

EXT REF X 

ESID 2 

NAME A 
ESID 1 

ORIGIN 0 

EXT DEF Z 

ABS VAL 25 

EXT DEFY 

EL T REL 550 

EXT DEF X 

EL T REL 475 

ELEMENT B 
ORIGIN 400 

LENGTH 200 

ELEMENT B 

HEADER 

EL T REL 50 

PHASE 

ORIGIN lOOG PHASE 

ELEMENT A 

HEADER 

Figure 5-2. Linker Input 

5 
SECTION: 

TEXT AND 

RLD INFO 

ESID 2 

NAME B 
ESID 1 

400 

END 

START A 

TRANSFER 

8 
PAGE: 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER SECTION: 

5 
PAGE: 

For example, the name "A" is to be assigned a value of 1000 by the Linker. It was 
assigned a value of 0 by the Assembler; therefore, its relocation factor is 1000. 

As a second example, consider the name "B". 

1. Since element A begins in location 1000 and is 100 bytes long, the name 
"B" is assigned a value of 1100 by the Linker. 

2. While the body of element A is being processed, the name "B" has a 
relocation factor of 1100, since the name "B" is undefined in element A. 

3. While the body of element B is being processed, the name "B" has a 
relocation factor of 700, since in element B the Assembler assigned a 
value of 400 to the name "B". 

The reference table produced as a result. of processing the header cards in Figure 
5-2 is shown in Figure 5-3. 

The Linker then reads the Program and External Reference Cards for element A. 
The information from these reference cards is used by the Linker to build an ESID 
table. Each entry in the ESID table consists of two fields: 

1. The ESID from the reference card. 

2. The reference table entry number of the symbol to which the ESID is 
assigned. 

The Program Reference Card is also used to determine the relocation factor for the 
element name. The result of processing the reference cards is shown in Figure 5-4. 

The Linker then processes the text of element A. For each instruction or constant 
on the input text cards it produces an instruction or constant on an output Text 
Card. The absolute portions of the text are produced unaltered. The address at 
which the text is to be loaded is adjusted by the relocation factor for element A. 

If a portion of the text is relocatable, then there is associated with it relocation 
information specifying an ESID of 1. In this case, the Linker looks up in the ESID 
table the associated reference table entry number. It then looks up in the reference 
table the relocation factor (1000) and adjusts the text by the relocation factor. The 
input text is then relocated to the origin specified by the PHASE card, and this 
relocated text is produced as output. 

The Linker performs a similar function if a portion of the text makes an external 
reference. (Assume the reference is made to the symbol Y.) There is associated with 
this text relocation information specifying the ESID of the external reference (3). 
The text is adjusted by the relocation factor (1250) determined by the relation be­
tween ESID and reference table entry number (5). This defines the external reference, 
and the resolved text is produced as output. 

9 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

ELEMENT B 

ELEMENT A 

BODY 

EL T REL 475 

ELEMENT B 
ORIGIN 400 

LENGTH 200 

EXT DEF M 

ELT REL 50 

ELEMENT A 
ORIGIN 0 

LENGTH 100 

PHASE 

ORIGIN 1000 PHASE 

ESID 2 

ELEMENT A 

HEADER 

BODY 

TEXT AND 

RLD INFO 

ESID 4 

TEXT AND 

RLD INFO 

ESID 2 

NAME B 
ESID 1 

ENTRY 
NUMBER 

1 

2 

3 

4 

5 

6 

Figure 5-3. Header Processing 

SECTION: 

END 

START A 

5 

PAGE: 

REFERENCE TABLE 

NAME VALUE 
I RELOCATION 

FACTOR 

A 1000 1000 

M 1050 1050 

B 1100 1100 

x 1175 1175 

y 1250 1250 

z 25 25 

10 



UP-4092 

ELEMENT A 

BODY 

UNIVAC 9200/9300 
CARD ASSEMBLER 

ELEMENT B 

BODY 

TEXT AND 

RLD INFO 

ESID 4 

EXT REF Y 

ESID 3 

EXT REF X 

ESID 2 

ES!D l 
ORIGIN 0 

TEXT AND 

RLD INFO 

EXT REF M 

ESID 2 

NAME B 
ESID 1 

ORIG IN 400 

) 
( 

I 
I 

ENTRY 

NUMBER 

1 

2 

I 
3 

4 

5 

l 6 

I 

5 
SECTION: 

END 

START A 

ESID TABLE 

ENTRY 
ESID 

NUMBER 

2 4 

3 

4 6 

REFERENCE TABLE 

NAME VALUE 

A 1000 

M 1050 

B 1100 

x I 1175 

y 1250 

z 25 

RELOCATION 
FACTOR 

1000 

1050 

1100 

1175 

1250 

l 25 

Figure 5-4. ESID Processing for Element A 

11 
PAGE: 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 5 EC TION: 

5 
PAGE: 

The Linker recognizes the end of element A by means of the Transfer Card. It then 
reads the Program and External Reference Cards for element B and adjusts the 
reference and ESID tables accordingly. The result of this adjustment is shown in 
Figure 5-5. Note that the relocation factor for the name "B" is changed. 

The Linker then uses the ESID and reference tables to process the text of element 
B and produces the related output text completely relocated and with all external 
references defined. In response to the END card, the Linker produces a Transfer 
Card with a value of 1000 (the value of the name "A") in it for a Transfer Address. 
Thus, the output of the Linker is a deck of Text Cards with no relocation information, 
followed by a Transfer Card. 

If a third element were to follow element B as input to the Linker, the relocation 
factor for the name "B" would be set back to 1100 by the Linker before it processed 
this third element. 

TEXT AND 
RLD INFO 

ES!D 2 

NAME B 
ESID 1 

ORIGIN 400 

END 
START A 

TRANSFER 

) 

I 
ENTRY 

NUMBER 

1 

2 

3 

4 

5 

6 

ESID TABLE 

ESID 

2 

ENTRY 
NUMBER 

3 

2 

REFERENCE TABLE 

NAME FACTOR 

A 1000 

M 1050 

B 1100 

x 1175 

y 1250 

z 25 

Figure 5-5. ES/D Processing for Element B 

RELOCATION 
FACTOR 

1000 

1050 

·100 

1175 

1250 

25 

12 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 
SECTION: PAGE: 

APPENDIX A. PREASSEMBLY 
MACRO PASS 

The preassembly macro pass of the UNIVAC 9200/9300 Card System is used in conjunction 
with the Assembler to promote ease and efficiency in preparing programs for execution on 
the UNIVAC 9200/9300. A schematic of the preassembly macro pass is shown in Figure 
A-1. 

/ 

MACRO 
INSTRUCTION 
DECK 

MACRO 
LIBRARY DECK 

UNIVAC 
9200/9300 

SOURCE CODE 
DECK 

READY FOR 
ASS EMBLY 

Figure A- 1. Schematic of Preassembly 

Macro Pass Operation 

1 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 
SECTION: 

The macro library is a card deck in which the macros in the library are punched in a com­
pressed form to minimize both library passing time and memory storage space. The macro 
library is read in first and is stored in memory. Then the card deck of macro instructions 
is read in. This deck contains the parameters and controls required to generate a source 
code deck in Assembler form.at. The output deck represents the selected library routines 
modified as instructed. The source code deck may be combined with user source code 
cards and asser.:tbled as one element, or it may be assembled as a separate element and 
linked with other relocatable elements to make up a program. 

Being a card deck, the library is separable, and only those routines called for during the 
operation of a particular preassem bly macro pass need be in the library for storage. 

1. MACRO INSTRUCTION FORMAT 

PAGE: 

A macro instruction is similar in form to a source code instruction; it has a label 
(optional), an operation code, and an operand consisting of one or more expressions 
separated by commas. The prime difference is that the macro instruction causes the 
generation of a series of source code instructions representing a num her of Assembler 
operations; whereas a source code instruction causes the Assembler to do one specific 
operation. 

The format for a macro instruction is as follows:. 

The label may be any symbol, but is not necessarily assigned the current value of the 
location counter. The operation is the name of the macro routine to be selected from 
the library. The op er and, P 1 through P n +m, is a sequence of expressions specifying 
parameters. The parameters are represented either as positional parameters or as key­
word parameters. 

1.1. Parameters 

Positional Parameters All positional parameters must be specified before any key­
word parameters may be specified. The order of the expressions in the operand 
determines the order of the parameters specified. Parameter specifications are 
separated by comm.as. When a positional parameter specification is omitted, the 
comma must be retained to indicate the omission. Thus, if a macro has three 
positional parameters and the second one is not specified, the operand appears 
as follows: 

If the third parameter is not specified, instead of the second, the operand is written: 

Thus, no trailing commas need be present. 

Keyword Parameters The specification of a keyword parameter is as follows: 

1\T-T'l H-r 

2 



UP-4092 
Appendix A UNIVAC 9200/9300 

CARD ASSEMBLER SECTION: PAGE: 

where N is the name of the parameter (any symbol is a legitimate keyword parameter 
name) and P is the parameter specification (a value or a character string). Keyword 
parameter specifications are separated by commas; however, the comma need not 
be retained if the specification is omitted. There must be a comma between the last 
positional parameter and the first keyword parameter. The order of the keyword 
parameter specifications is not significant. For example, if a macro has three key­
word parameters, the operand of the macro instruction m.ight be: 

or 

and so on. 

A macro may have positional and/or keyword parameters with commas separating the 
specifications. For example, the operand of a macro instruction with three positional 
and two keyword parameters might be as follows: 

The number of parameters which may be specified with one macro instruction depends on 
how much space is required to store the specifications. One macro instruction may normally 
specify as many as 50 parameters in its operand. When the operand overflows the space 
provided on one card, provision is made to continue the operand on the following card by 
putting a non blank in column 72. The continuation of the operand begins with the first non­
blank in or after column 14. The macro pass searches for a continuation card as soon as 
one of the two following events occurs: 

1. Information is taken from column 71 of the current card. 

2. A comma followed by a space is detected in the current card. 

Columns 1 through 13 of a continuation card must be blank. 

If the information on a card is terminated prior to column 71 by means of a comma followed 
by a space, comments may be written after the space. For example, a macro instruction 
with three keyword parameters might be written as follows: 

LABEL ~ OPERATION~ OPERAND COMMENTS 
8 14 

The specification of a parameter may be a character string or an expression. A character 
string may not contain an equal sign or a comma and may have a maximum of seven 
characters. 

12 

3 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

2. WRITING MACROS FOR THE LIBRARY 

Appendix A 
SECTION: PAGE: 

The routines for the macro library are written in standard assembler source code. They 
are then passed through a special run to put them into the compressed form expected by 
the pre assembly macro pass. To distinguish one macro from another in the library, three 
directives are used: PROC, NAME, END. 

2.1. P ROC Directive The first source code statement of a macro in the library is a PROC 
directive, which has the following form: 

label PROC (operand optional) 

The label may be any symbol, but is optional, and when used the label in the macro 
instruction calling on the macro is substituted for the PROC label whenever the 
PROC label appears in the macro .. For example, suppose the symbol MOVE were 
specified for the label of a macro instruction, that the label of the PROC directive 
of the associated macro was NAME, and that the macro contained the following line 
of source code: 

NAME MVC DEST,ORIG 

Then, the source code generated by the preassembly macro pass would appear as 
follows: 

MOVE MVC DEST,ORIG 

If the PROC directive does not have a label but the macro instruction does, the pre­
assem bly macro pass assigns the label to the first line of source code generated in 
processing the macro. 

2.2. NAME Directive The second iine of a macro library routine must be a NAME <liredive, 
which has the form: 

label NAME 

This is the call name for the macro and is the same as that specified in the operation 
field of the macro instruction. The name may have as many as five characters, the 
first of which must be alphabetic, the other four alphanumeric. 

2.3. END Directive The end of a macro library routine is indicated by an END directive. 
It has no operand and requires no label. 

If the following macro is in the library: 

PROC 

MOVE NAME 

MVC DEST.ORIG 

END 

4 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

then the macro instruction: 

MOVE 

is equivalent to the source code instruction: 

MVC 

Appendix A 
SECTION: 

DEST,ORIG 

Note that none of the macro directives (PROC, NAME, END) are produced as 
output of the preassembly macro pass. 

3. INCORPORATING PARAMETERS INTO MACRO CODING 

The operand of a PROC directive, when used, has the following form: 

PAGE: 

The first expression (p) in the operand is a symbol used to address the parameters for 
the macro. This expression and its use are explained later in this section. The second 
expression (n) is the num her of positional parameters associated with the macro. The 
series (N1, ... Nm) are the names of the keyword parameters. Any symbol is a legitimate 
keyword name. Listing the keyword parameters in this way makes them, in effect, posi­
tional parameters to the macro. For example, suppose the PROC directive has the 
following form: 

PROC p,3,Nl,N2,N3 

The macro has three positional parameters, Pl, P2, and P3. It also has three keyword 
parameters, Nl, N2, and N3. Thus, the keyword parameters become, in effect, positional 
parameters P4, PS, and P6. 

The values specified for parameters are substituted in the macro coding for expressions 
of the following form: 

p(n) 

where p is the first expression in the PROC directive operand and n is the number of 
the positional parameters. The first has a number of one, the second, two; and so forth. 
As an example, if the following macro is in the library: 

PROC P ,O,DEST ,LGTH,ORIG 

MOVE NAME 

MVC P(l)(P(2)),P(3) 

END 

5 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

then the macro instruction 

MOVE 

Appendix A 
SECTION: PAGE: 

DEST=OUT,LGTH=16,0RIG=IN 

after the preassembly macro pass operation, is equivalent to the source code instruction: 

MVC - OUT(16),IN 

If a parameter value is not specified, the preassembly macro pass assigns a value of 
binary zero to the parameter. 

4. DIRECTIVES 

4.1. DO Directives 

A DO directive has only one expression in its operand. It is equal to a value of 
binary zero or binary one. A DO directive controls all lines following it up to its 
associated ENDO directive. For example, in the following sequence of coding: 

DO 1 

2 

DO 3 

4 

5 

ENDO 6 

7 

8 

ENDO 9 

the first ENDO directive is associated with the second DO directive, the second 
ENDO directive with the first DO directive. In other words, DO and ENDO directives 
are paired to produce nests. Thus, the first DO directive controls lines 2 through 8, and 
the second DO directive controls lines 4 and 5. 

If the operand of a DO directive has a value of one, the lines it controls appear in 
the source code produced by the macro pass; if the operand has a value of zero, the 
lines it controls do not appear. For example, if the following macro is in the library: 

MOVE 

PROC 

NAME 

P,0,ACT 

DO P(l) 

MVC P,0,ACT 

ENDO 

END 

6 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

then the macro instruction 

MOVE ACT=l 

would produce the instruction 

MVC DEST,ORIG 

Appendix A 
SECTION: 

in the source code produced by the macro pass wnereas, the macro instruction 

MOVE ACT=O 

would not produce the instruction in the source code. 

(Note that the macro instruction 

MOVE 

would also cause the suppression of the instruction.) 

4. 2. GOTO Directive 

The directive GOTO is used to direct the macro pass to transfer control in the 
production of source code from a macro. A GOTO directive has one expression in 

its operand, which must be a label. This label must be the label of a LABEL dir-
ective. For example, if the following macro is in the library: 

PROC P,0,FOUR 

MOVE NAME 

DO P(l) 

MVC DEST(4),0RIG 

GOTO END 

ENDO 

MVC DEST(8),0RIG 

END LABEL 

END 

then the m aero instruction: 

MOVE FOUR=l 

would produce the instruction: 

MVC DEST(4),0RIG 

while the macro instruction: 

MOVE 

would produce the instruction: 

MVC DEST(8),0RIG 

7 
PAGE: 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

4.3. NAME Directive 

Appendix A 
SECTION: PAGE: 

More than one NAME directive may follow the PROC directive of a macro. (However, 
all the NAME directives in a macro must immediately follow the PROC directive.) 
Each such NAME directive specifies a different name for the same macro. 

The object of giving a macro more than one name is to permit reference to different 

versions of the procedure em bodied in the macro. The versions are distinguished with­

in the macro by means of the operands of the NAME directives. 

Only one expression may appear in the operand of a NAME directive and may be as­
signed a value ranging from zero through 2 16-1. This expression is essentially a 
parameter of the macro; it may be addressed in the macro as: 

p(O) 

where p is the first expression in the PROC directive operand; and consequently, it may 
be used to distinguish between versions of a macro. For example, if the following macro 
is in the library: 

PROC P 

MV4 

MV8 

NAME 

NAME 

MVC 

END 

then the macro instruction 

MV4 

4 

8 

DEST(P(O)),ORIG 

would produce the source code 

MVC DEST( 4),0RIG 

while the macro instruction 

MV8 

would produce 

MVC DEST(8),0RIG 

If a NAME directive has no operand, the parameter p(O) is assigned a value of zero. 

If a macro has no parameters and it makes no reference to the operand of any of its 
NAME directives, then its PROC directive has no operand. 

8 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

5. RELATIONAL OPERATORS 

The relational operators are: 

= > < 

Appendix A 
SECTION: PAGE: 

A relational operator may be used to compare two terms. If the condition specified by 
the operator holds between the terms, the value of the expression is one; otherwise the 
value of the expression is zero. For example, given the expression: 

P(l)=YES 

if YES is specified for the first parameter of the macro, then the value of the 
expression is one; otherwise it is zero. 

6. SET VARIABLES 

A set variable is a symbol set by the macro pass to a value defined by an expression. 
Before a set variable may be set, it must first be declared by a GBL, or an LCL directive. 

6.1. GBL Directive 

Set variables declared by a GBL directive are called global set variables. The format 
for the GBL directive is as follows: 

LABEL 15 OPERATION 15 OPERAND 
8 14 

%"n n 

The symbol, G%nn, in the operand is the set variable being declared and nn may vary 
between 00 and 49. A maximum of SO global set variables may thus be used in any one 
macro library. Once declared, a global set variable remains declared for the remainder 
of the macro pass operation. 

6. 2. LCL Directive 

Set variables declared by an LCL directive are called local set variables. The format 
is as follows: 

LABEL 15 OPERATIOH1s OPERAND 
8 14 

The symbol, L%nn, in the operand is the set variable being declared and nn may vary 
between 00 and 49. A maximum of SO local set variables may thus be used in any one 
macro. The declaration of a local set variable is unique to the macro currently being 
processed by the macro pass operation. Its subsequent use by another macro during 
the same macro pass operation necessitates that it be declared and set again. 

9 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

6. 3. SET Directive 

Appendix A 

SECTION: 

The macro pass operation sets a set variable when it encounters a SET directive, 
which has the following form: 

LABEL 'ti OPERATION1i OPERAND 
8 14 

symbol SET 

The symbol in the label field identifies the global or local set variable being set; 

PAGE: 

the expression in the operand is the value to which the set variable is to be set. The 
value of the expression may range from zero through 216_ l. Until a G BL or LCL var­
iable is set by a SET directive, it has a value of zero. Once it has been set to a 

specific value by a SET directive, the set variable retains that value until it loses 
its declaration or is set to another value by another SET directive. 

Declaring a set variable does not affect its value. Moreover, it does no harm to de­
clare a set variable more than once if it is convenient to do so. 

The following is an example of the use of a local set variable. If the following macro 
is in the library: 

PROC P,O,ACT 

MOVE NAME 

LCL L%00 

L%00 SET P(l)=YES 

DO L300 

MVC DEST,ORIG 

ENDO 

END 

then the macro instruction 

MOVE ACT=YES 

would produce the source code instruction 

MVC DEST,ORIG 

while any other form of the MOVE macro instruction would suppress production of the 
source code instruction. 

10 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix A 
SECTION: PAGE: 

The following is an example of the use of a global set variable. Assume the following 

two macros are in library: 

GIVE 

G%00 

TAKE 

PROC 

NAME 

GBL 

SET 

DO 

MVC 

ENDO 

END 

PROC 

NAME 

DO 

MVC 

ENDO 

END 

P,0,ACT 

G%00 

P(l)=YES 

G%00 

DEST,ORIG 

G%00 

ORIG,DEST 

If the only macro instructions in the macro instruction deck for a particular macro 

pass are the following: 

GIVE 

TAKE 

ACT=YES 

in the order shown, then the following source code would be produced: 

MVC 

1\11' l Tr< 
lV1 V\..,, 

DEST,ORIG 

f"'\DTI""' T"\DC"T' 
VJ.'\.J.U,LIL..J J. 

If the only macro instructions in the macro instruction deck for a particular macro 

pass are the following: 

GIVE 

TAKE 

no source code would be produced. 

If the only macro instructions in the macro instruction deck are the following: 

TAKE 

GIVE ACT=YES 

then the following source code would be produced: 

MVC DEST,ORIG 

Thus, the value of a global set variable is a function of the order of the macro 

instructions in the ma.cw instruction deck. 

11 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

7. LABELS USED IN UNIVAC PRODUCED MACROS 

Appendix A 
SECTION; PAGE: 

It should be noted that if the output of a macro pass is to be combined with user source 
code cards and assembled as one element, any symbol used as a label in a source code 
instruction produced by the macro pass may not be used as a label in the user's own code. 
To avoid the necessity of the user checking a list of symbols used in Univac written 
macros, a special feature has been incorporated in the Assembler to allow all such 
symbols to incorporate as their second character a question mark. 

8. MACRO INSTRUCTION DECK 

Regardless of the order of the m aero routines in the library, the macro instruction deck 
may be in random order with respect to the library, and a particular macro may be ref­
erenced as many times as desired. The order of the macro instructions does determine the 
sequence of the source code instructions generated as output oft he macro pass operation. 

During the macro pass operation, any cards in the macro instruction deck that are not 
macro instructions referring to macros in the macro library are reproduced unchanged 
in the output source deck. The macro pass operation recognizes the end of the macro 
instruction deck by means of an END card which it reproduces and includes at the end 
of the output source code deck. 

12 



UP-4092 

UN IV AC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: PAGE: 

APPENDIX B. INPUT OUTPUT CONTROL 
SYSTEM (IOCS) 

1. GENERAL DESCRIPTION 

The Input Output Control System (IOCS) provides the user with tested input/output 
routines to control the data which are the input or output of programs written in Assem­
bler language. IOCS consists of two parts: 

(a) the input/output routines themselves which are macros and generated as a resuit 
of macro calls. The macros used to generate the input/output routines are caiied 
declarative macro instructions. 

(b) The macro instructions used by the worker program to communicate with the input/ 
output routines. These macro instructions are called imperative macro instructions 

2. GENERAL USAGE 

The user is provided with a complete set of routines foi contiolling all input/output 
operations required by the system. Since not every source program requires every 
routine or its variable functions, Univac provides a Preassembly Macro Pass program 
which in effect is a generator capable of adapting each input/output routine to the 
requirements of the user. 

The Preassembly Macro Pass first reads declarative macro instructions made by the 
user describing the input/output operations required by the application. Based on these 
instructions the Preassembly Macro Pass selects the required routines from the macro 
library, develops them for the specific application, and punches them into cards in the 
Assembler language format. They may then be assembled as part of the source program 
or assembled separately and linked with the user program at load time. This function 
is provided by the UNIVAC 9200/9300 Card Linker program. 

The user communicates with the IOCS routines through use of macro calls (imperative 
macros) in his main program. Typical imperative macro instructions are OPEN, CLOSE, 
GET for an input file, and PUT for an output file. These imperative macro instructions 
are related to the input/output routine to which they refer by means of a file name. The 
same file name appears in the calling sequence of all of the imperative macro instruc­
tions referring to one file and also appears as the label of the declarative macro instruc­
tion generating the input/output routine for the file. 

1 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

3. DEFINITION STATEMENTS (DECLARATIVE MACROS) 

Appendix B 
SECTION: 

The programmer must use definition statements to describe to the Preassembly Macro 
Pass the characteristics of the particular input/output file to be processed. These 
statements are then used by the macro pass to specialize the particular input/output 
routine to meet the requirements of the file and the program. 

PAGE: 

Each input/output device required by the program must be defined by means of these 
definitions. A definition statement is herein defined as consisting of one Header Entry 
card and a number of Detail Entry cards. In a definition statement, each header and 
detail entry card must have a character punched in column 72, except the final detail 
entry card which must not contain this continuation character in column 72. 

3.1. Header Entry Card 

2 

A header entry card is the first card of a definition statement and requires two items of 
information. The first is the symbolic name of the file assigned by the user and is entered 
in the label field of the card. The symbol may consist of as many as four characters and 
must adhere to the Assembler language rules for labels. The other item is written in the 
operation field and must be one of the following: 

1. DTFCR DEFINE THE FILE FOR THE CARD READER 

2. DTFPR DEFINE THE FILE FOR THE PRINTER 

3. DTFRP DEFINE THE FILE FOR THE READ/PUNCH 

4. DTFCC DEFINE THE FILE FOR THE CARD CONTROLLER 

For example, the header entry card for a reader routine with a file named "MSTR'' 
would appear as follows: 

LABEL OPERATION OPERAND 

MSTR DTFCR 

3.2. Detail Entry Cards 

The detail entry cards are used to define parameters such as mode of processing, buffer 
area name, and print bar. 

Each detail entry card is composed of a key word immediately followed by an equal ( =) 
sign which is in turn followed by one specification. A comma must immediately follow 
the specification for each detail entry card in the definition statement except for the final 
detail entry card. A given detail entry must be used only once in each definition statement. 
Entries which do not apply to a particular application should be omitted. The summary of 

detail entry cards listed in Appendix B, 4. gives the optional as well as the required 
detail entry cards for a given peripheral device. The format for a detail entry card, 
with the continuation character in column 72, is as follows: 

LABEL OPERATION OPERAND 72 

key word :: s pee if ica ti on, x 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

3.2. L Block Size Entry (BKSZ) 

Appendix B 
SECTION: PAGE: 

This entry must be provided for all printer files. The key word is BKSZ. The allowable 
specifications are 96, 120 or 132 as determined by the number of print positions avail­
able. The user-defined work area where print images are made available to IOCS must 
contain the same number of bytes as there are print positions available. The key word 
and specification for 132 print positions have the following form in the operand field: 

BKSZ =132 

3.2. 2. Channel Entry (CHNL) 

This entry is used to define the general purpose channel to which the UNIV AC 1001 
Card Controller is connected. The key word is CHNL; the allowable specification is 
one of the general purpose channels 5 through 12. The key word and specification for a 
channel entry for general purpose channel five have the following form: 

CHNL =5, 

3.2.3. Control Entry (CNTL) 

This entry must be provided for all files to which a CNTRL macro instruction is 
directed in the main program. 

The key word is CNTL. The specification is YES. 

CNTL=YES, 

CNTL is a detail entry card within a definition statement. CNTRL is an imperative 
macro and its use is described in a later section. 

3.2.4. End-of-File Address Entry (EOF A) 

This entry is used to specify the symbolic name of the end-of-file routine provided 
by the user. The key word is EOF A and the specification is the symbolic name of 
the user end-of-file routine. The format for an end-of-file routine labeled END is as 
follows: 

EOFA=END, 

When a GET macro instruction is issued for an input file, if the image to be delivered 
is an end-of-file card, IOCS jumps unconditionally to the user end-of-file routine. 

An end-of-file card contains a slash(/ [0-1 punch]) in column one and an asterisk in 
column two. (In actuality, the card system IOCS routines recognize an end-of-file card 
by means of the slash in column one alone.) An end-of-file card must be followed by 
other cards in the input hopper to avoid a hopper empty indication before the end-of­
file card is sensed. The following cards may be special if the user has some purpose 
for them (such as an overlay to be loaded); otherwise, their content is not significant 
and any cards the user wants may be used (such as blank cards or more end-of-file 
cards). 

3 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: PAGE: 

For the on line card reader, when control is t::ansferred to the user end-of-file address. 
the end-of-file card image is in the vvork area and the image of the card immediately 
following the end-of-file card is in the input area. 

For the Card Controller, there is no specified input area, since the memory of the 
Card Controller serves the purpose. When control is transferred to the user end-of­
file address, the end-of-file card image is in the work area. If the end-of-file card 
image is delivered in response to a transfer function, the end-of-file card image is 
also in the memory of the Card Controller, and the card immediately following the 
end-of-file card is immediately in front of the read station. If the end-of-file card 
image is delivered in response to a transfer-and-read function, the image of the card 
immediately following the end-of-file card is in the memory of the Card Controller. 

If the user is using only the send-and-receive functions of the Card Controller, 
detection of end-of-file is a user responsibi.lity. In all other cases, the end-of-file 
address entry is mandatory for all input and combined files. 

3.2.5. The Function Entry - 1001 Card Controller (FUNC) 

This entry specifies the symbolic name of a one byte user-defined area where the 
required function is stored before each GET or PUT macro instruction. 

The key word is FUNC. The specification is the label of the one byte user area, and 
for a function area labeled CCX F, has the following form: 

FUNC=CCXF 

3.2.6. Allowable Functions for the 1001 Card Controller 

The following table illustrates the allow able hexadecimal values which may be 
stored into the user-defined one byte area before each GET or PUT macro instruc­
tion is issued. Once set the area may remain the same or be altered as des ired. 

HEXADECIMAL VALUE FUNCTION SPECIFIED 

08 Transfer and Read Primary 

09 Transfer and Read Secondary 

00 Trans fer Primary 

01 Transfer Secondary 

02 Transfer Primary and Secondary 

OA Transfer and Read Primary and Secondary 

20 Send Data to 1001 (1001 code only) 

10 Receive Data from 1001 (1001 code only) 

The GET macro is used with al.1 fur-ictio'1s but "Send Data to 1001 q. With this func­
tion a PUT m8cro is used. 

4 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

3.2.6.1. Transfer-and-Read Functions 

Appendix B 
SECTION: 

The previous image read into the 1001 Card Controller is transferred into the 
9200 memory and another image is read into the 1001. The function for the 
first GET executed after opening a Card Controller file should be a transfer­
and-read function which, in contrast to the general case, causes the first card 
in the feed specified to be read and transferred, and the second card to be read. 

3.2.6.2. Send-and-Receive Data Functions 

These functions are not available on the standard board. However they are pro­
vided for by IOCS in the event the user wishes to modify the standard board for 
a particular application. 

PAGE: 

No translation is provided for these functions and they must be performed in 1001 
mode only. 

The user work area must contain one byte more than is required for the data to 
be sent or received. The extra byte must be the first byte of the area and must 
contain the number of characters to be transmitted. This first byte must not be 
in 1001 mode, but must contain a binary number. 

Typically, the data sent to the 1001 contains some function character the modified 
board is to interpret, as well as data to be used in the execution of the function. 

For example, assume the board has been modified to interpret the code of a hexa­
decimal value of 77 as a search primary for a name. The following steps implement 
this function. 

(1) Set function entry area to a send-data function. 

(2) Store hexadecimal 77 into the second byte of the work area. 

(3) Store name (assume 6 characters) in work area bytes 3 through 8. 

(4) Store a binary 7 (6+1 function) into first byte of the work area (the number 
of characters to be transmitted). 

(5) Issue a PUT macro instruction. 

When the UNIV AC 9200/9300 program receives the data the 1001 has developed as 
a result of performing this search, the following steps are taken. 

(1) Set the function entry area to a receive-data function. 

(2) Store the number of characters to be received in the first byte of the work 
area. 

(3) Issue a GET macro instruction. 

The data will be received in byte 2 and the following bytes of the work area. 
Typically, the data received from the 1001 contains some stat us character (find/no­
find, for example) and the data requested by the preceding send-data function. 

5 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: 

The nature of any function or status characters embedded in data to be sent or 
received and the location of these characters in the data message is a user 
responsibility. The IOCS system makes no attempt to control the information 
content of data sent or received. 

3.2. 7. Input Area Entry (IO Al) 

PAGE: 

This entry specifies the name of the input buffer area. In the UNIVAC 9200/9300 
Card System, it is used only for the reader file. The key word is IOAl. The speci­
fication is the symbolic name of the input buffer area assigned to the device. This 
symbolic name must be the symbol used by the programmer in the DS statement de­
fining the area in his main program. 

IOAl=CARD, 

The symbolic name assigned by this entry is never referenced directly by the pro­
grammer. Images are delivered by the input/output routines into a specified work 
area. 

3.2.8. Input Area Entry (INAR) 

This entry is used to specify the symbolic name of the user-defined input buffer area 
when the read feature of the read/punch unit is required. The key word is INAR. The 
specification is the symbolic name of the area assigned to the read/punch unit as 
defined by the programmer. The operand for a read/punch buffer area labeled INPC 
has the following form. 

INAR=INPC, 

3.2.9. Input Translate Table Entry (ITBL) 

This entry specifies the symbolic name of a translate table located in the main pro­
gram by which all records of a given input file are to be translated. 

The key word is ITBL and the specification is the symbolic name assigned by the 
programmer to the table. The operand for a translate table labeled CODE has the 
following form: 

ITBL=CODE, 

3.2.10. Mode Detail Entry (MODE) 

This entry is used to specify the mode of the input/ output file and is required as 
part of the definition statement for all devices but the printer. The key word of the 
entry is MODE. The allowable specifications are: 

6 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

OPERAND FORM 

MODE=BINARY, 

MODE=CC, 

MODE=lOOl 

MODE=TRANS, 

MODE=TRANSTC, 

Appendix B 
SECTION: 

REMARKS 

For cards read and/or punched in column 
binary mode (160 byte 1/0 area required) 

PAGE: 

For cards read and/or punched in compressed 
code (80 byte 1/0 area required) 

For cards read in 1001 mode without trans-
lation (Card Controller only) (80 byte 1/0 
area required) 

For cards to be read and/ or punched trans­
lated by the table specified by the ITBL or 
or OTBL entry 

For Card Controller only, if translation of 
1001 code is required through the translation 
table specified by the ITBL entry 

There are two translation modes which may be defined with the 1001 Card Controller. 

• TRANS, implies all cards read into the 9200 from the 1001 are translated from 

compressed code by the translate table specified by the ITBL detail entry card. 

• TRANSTC, implies all cards read into the 9200 from the 1001 are translated from 
1001 code by the translate table specified by the ITBL detail entry card. This 
mode is used when combined reading (both primary and secondary in one function) 
is required, since basic 1001 memory capability is exceeded if two images are 
read in in other than 1001 code. 

For the online serial card reader operating in translated mode, card images are read 
into the input area in compressed code, moved to the work area, and translated there. 
Thus, for example, when control is transferred to the user end-of-file address, the 
image of the end-of-file card is in the work area in translated mode, and the image 
of the card immediately following the end-of-file card is in the input area in com­
pressed code. 

For the Card Controller operating in translated mode, card images are read into the 
work area in compressed code and are translated in the work area. 

3.2.11. Output Area Entry (OUAR) 

The entry specifies the symbolic name of the output buffer area as defined in the 
main program when the punch function of the punch, read/punch unit is required. 

The key word is OUAR. The specification is the symbolic name assigned by the 
programmer in the OS statement defining the area. The operand for an output area 
labeled OUPC has the following form: 

OUAR =OUPC, 

7 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: 

There is no need to define an output buffer area for the printer, since IOCS uses 
the print buffer area in restricted memory. 

3.2.12. Output Translate Table (OTBL) 

The entry specifies the symbolic name of the translate table located in the main 
program through which all output images are to be translated. 

The key word is OTBL. The specification is the symbolic name assigned to the 
table. The operand for a translate table labeled CRDC has the following form: 

OTBL= CRDC, 

3.2.13. Overlap Entry (ORLP) 

PAGE: 

This entry specifies that the read/punch unit file is to be processed in an overlap 
mode and applies only to the read/punch unit when used as both a reader and a 
punch. The entry is omitted when information is to be punched in a card which has 
been read previously. 

The key word of this entry is ORLP and the specification is YES. The operand has 
the following form: 

ORLP =YES, 

3 .2.14. Print Bar Entry (FONT) 

The entry specifies the print bar the program expects to find in the user configura­
tion. The key word is FONT and the allowable specifications are 48 or 63. The 
operand for a 63 character print bar has the following form: 

FONT= 63, 

3.2.15. Printer Advance Entry (PRAD) 

This entry is used in conjunction with printer files and enables the programmer to 
specify a standard advance of one or two lines. 

The key word is PRAD. The allowable specifications are 1 or 2. The operand for 
double spacing has the following form: 

PRAD = 2, 

3.2.16. Punch Error Entry (PUNR) 

This entry specifies that automatic error recovery, where possible, is to be provided 
in the punch routine and applies only to that device. If it is not specified, all punch 
errors bring the computer to a stop. 

The key word is PUNR. The allowable specification is YES. The operand has the 
following form. 

PUNR =YES, 

8 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

3.2.17. Printer Overflow Entry (PROV) 

Appendix B 
SECTION: 

This entry must be provided if the user wants any special action as a result of 

PAGE: 

form overflow on the printer. If the printer overflow entry is not provided, printer 
spacing proceeds as directed by the printer advance detail entry and/ or the CNTRL 
macro specifying skipping or spacing. 

The key word of the entry is PROV. The specification may be either YES or a label. 
The operand has the following form: 

PROV =YES 
or 

PROV= label 

If the specification is YES, an automatic skip to channel 7 (home paper) in the 
paper tape loop is provided in response to form overflow. 

If the specification is a label other than YES, control is transferred unconditionally 
to the specified label in response to form overflow. The label specified should be 
the symbolic name assigned to the user overflow routine provided to perform the 
desired form overflow action. 

The user indicates the point at which form overflow is to occur by a channel 1 punch 
in the paper tape loop. The form overflow punch (channel 1 punch) is recognized 
when spacing paper, either in response to a CN TRL macro specifying spacing before 
printing or in response to a PUT macro after printing a line. (The form overflow punch 
is not recognized during a printer skip operation.) 

Response to recognition of a form overflow punch may be illustrated by the following 
sequence of operations: 

(1) 

(2) 

(3) 

(or 

(or 

(or 

RET 

PUT 
CNTRL 

Process 

PUT 
CNTRL 

Process 

PUT 
CNTRL 

Process 

FILA 
FILA,SP,m,n m l-0) 

FILA 
FILA ,SP ,m ,n m ,i 0) 

FILA 
FILA,SP ,m,n m I- 0) 

9 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: 

If the form overflow punch is recognized during the spacing associated with (1), 

PAGE: 

then after (3) is executed, the form overflow action specified is taken. If the action 
is to transfer control to a user subroutine, then control goes to that subroutine 
rather than to the label RET. The address of the label RET is in general register 14 
when control is transferred to the form overflow subroutine. 

3.2.18. Type of File Entry (TYPF) 

This entry indicates whether the file is an input, output, or a combined file. It is 
applicable only to the 9200/9300 read/punch unit. 

The key word of the entry is TYPF. The allowable specifications are given below. 

OPERAND FIELD COMMENTS 

TYPF =INPUT, Reading only 

=OUTPUT, Punching only 

= COMBND, Reading and punching 

10 



UP-4092 

r 

r 
I 
I 
I 

i 
I 

i 

! 
i 
i 

UNIVAC 9200/9300 
CARD ASSEMBLER 

4. SUMMARY OF DETAIL ENTRY CARDS 

OPERANDS FIELD 

KEY WORD 
ALLOWABLE 

SPECIFICATION 

BKSZ 96, 120 or 132 

CHNL 5 thru 12 

i I 
CNTL jYes 1 
EOFA -, Symbolic name of user l end of file routine I 
FUNC I Symbolic name of user 

i defined I-byte area where i 
! function is stored ! '. . . .. . . I 

! ~ 
I 

IOAl I Symbolic name of user 
l defined input buffer area 

!N AR Symbolic name of user 

ITBL 

1 defined input buffer area 
i 

!Symbolic name of user 
defined input translate 

1 table 

I 
MODE j See Appendix B,3.2.10 

OUAR '.Symbolic name of user 

: defined output buffer area I 
OTBL ; Symbolic name of user 

ORLP 

FONT 

PROV 

PRAD 

PUNR 

TYPF 

defined output translate 
t table 

: Yes 

: 48 or 63 

l 
Yes or symbolic name of 

1 user form overflow routine! 

· 1 or 2 

: Yes 

Input 

Output 

' Combnd 

Il C::: c::: 0::: 
UJ L.Ll ~010·~ 0 t- <CZ 0:::5_1 
<( z 

UJ::> I ~(.)O UJ 0::: 
0::: c.. o:::c.. I ~ 

I 

x I 
I 

x 

I 

x x I x 
l 

x x 1 x 
I 

x 

x 

x 

x x x 

x x x 

x 

x x 

x 

x ' 

x 

x 

x 

x 
x 
x 

Appendix B 11 
SECTION: PAGE: 

APPLIES TO 

REMARKS 

Required for online printer 

I Required for 1001 

jRequired if CNTRL macro is used 
i 

!Applies to input files only 

I 
I 
! 
!Required by card controller 
i 
i 

H binary image requested, 160 byte area 
required 

Required if reading in the read /punch file 

Required if translation of input file desired 

jRequired for punch files and read/punch files 

i 
I 
;Required if translation of output file desired 

'Specifies 48 or 63 character print font 

'Required if form overflow action is to be taken 

Specifies standard print advance 

!Automatic error recovery desired 

•Reading only 

Punching only 
1Reading & punching 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

5. DEFINITION STATEMENT EXAMPLES 

5.1. Punch File Example Definition 

LABEL 15 OPERATION 15 
8 14 

5.2. Reader File Example Definition 

LABEL 15 OPERATIOtO 
8 14 

5.3. Printer File Example Definition 

OPERAND COMMENTS 

OPERAND COMMENTS 

COMMENiS 

Appendix B 12 
SECTION: PAGE: 

72 80 

x 
x 
x 
x 
x 

72 80 

12 80 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

S.4. Read and Punch File Example 

LABEL 11 OPERA TIOH 11 
8 14 

OPERAND COMMENTS 

I I I 

Appendix B 13 
SECTION: PAGE: 

72 80 

x 

YES , _i_J_L-...J--'---'--'----'--__l_-'-'--+-x----'-__._'----'--__l_--'--'----L~ 
=.FI N, I I 

x 

I I I I I I I I I I I I I I I I x I ' I ' I ' ' 

x 
x 
x 
x 

S.S. Card Controller File Example 

LABEL 11 OPERATION 1> OPERAND COMMENTS 
8 14 72 80 

s AL s I I I I x 

_L_l_L__J_-'--'--'-L----'---'--'-~x-l-'----'--__l_--'--------l_l_~ 
EOFA=END, x 
I TBL=B D, x 

6. IOCS MACRO INSTRUCTIONS (IMPERATIVE MACROS) 

This section describes the format, function, and use of the IOCS macro instructions 
used to communicate with the input/output routines and to control their operations. 
These symbolic instructions are used in the main program to provide the necessary 
linkages to the IOCS routines previously defined by means of the definition statements 
to the Preassembly Macro Pass. The handling of records into and out of I/O areas is 
performed by IOCS exclusively. Each file is processed in the manner dictated by the 
definition statement. 

Source programs using IOCS may not contain any Assembler I/O instructions. 

The format of the macro instruction follows the rules of the Assembler coding format. 
The macro verb is the operation, and the operand field may contain up to four para­
meters as required by the particular macro. All macros may have a label. The impera­
tive macro instructions are not handled by the Preassembly Macro Pass, but are 
processed by the Assembler itself. 

6 .1. GET Macro Instruction 

The GET macro makes the next record available in the user-defined work area or 
transfers control to the end-of-file address entry upon recognizing an end-of-file card 
in an input file. 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

The GET macro has the following form 

LABEL OPERATION 

GET 

Appendix B 
SECT ION: PAGE: 

OPERAND 

filename, workarea 

where filename is the symbolic name defined in the label field of a DTF(XX) header 
entry card. 

workarea is the symbolic name of the user-defined storage area where the record 
is to be delivered. 

6.2. PUT Macro Instruction 

The PUT macro transfers a record from the work area for printing, punching, or sending 
to the 1001 and immediately frees the work area for main program use. 

The PUT macro has the following form 

OPERATION OPERAND 

PUT filename, workarea 

where filename is the symbolic name defined in the label field of a DTF(XX) header 
entry card. 

workarea is the symbolic name of the user-defined storage area where the record is 
made available for output. 

6.3. Work Area Considerations 

The imperative macro instructions, GET and PUT, require as a second parameter the 
symbolic name of a work area for transferring records from and to input/output buffer 
areas. Input/output areas (those assigned by IOAl, INAR, and OUAR detail entry 
cards) may not be used as work areas as they are used by IOCS to maintain standby 
reserve areas. 

The programmer must therefore provide, through the use of DS statements, work areas 
where records are processed. These work areas may be common to more than one file 
as efficiency demands, but must be as large as the largest record to be processed 
therein. 

6.4. Programming Considerations - Read/Punch Combined File 

When the Overlap detail entry card is used for a read/punch combined file, the follow­
ing rule applies: 

A PUT macro instruction causes punching into the card which follows the one 
made available by the last GET macro instruction, because the card made avail­
able by the last GET macro is already past the punch station when the PUT 
macro is given. 

When the Overlap detail entry card is omitted for a read/punch combined file, a PUT 
macro instruction causes punching into the card made available by the last GET macro 
ins true ti on. 

14 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

6. 5. OPEN Macro Instruction 

I 

I 
I Appendix B 
i SECTION: PAGE: 

This macro instruction initializes the file and must be issued before any other macro 
instruction pertaining to the same file. 

The OPEN macro has the following form: 

OPERATION OPERAND 

OPEN filename 

where filename is the symbolic name defined by the user in the label field of the 
DTF(XX) header entry card. 

An OPEN macro for a file may be executed at any time, even after the file has been 
opened by a previous OPEN macro. In such a case, the input/output routine is set 
back to an initial state. That is: 

1. For an input file, the card image delivered in response to the first GET executed 
after a second OPEN macro is the image immediately in front of the read station 
at the time the second OPEN macro is given. 

2. For an output file, the first item transmitted after the second OP EN macro is the 
item delivered by the first PUT executed after the reOPEN. 

6.6. CLOSE Macro Instruction 

This macro instruction insures the proper closing of all files. The CLOSE macro hHs 

the following form: 

OPERATION OPERAND 

CLOSE filename 

where filename is the symbolic name defined in the label field of the DTF(XX) header 
entry card. 

6. 7. CNTRL Macro Instruction 

The CNTRL macro is used by the programmer for printer spacing, printer skiooin!!. 
stacker selection, numeric printing, and specifying the number of columns of card 
punching. 

6. 7 .1. Printer Spacing 

The CNTRL macro for printer spacing has the following form: 

OPERATiON OPERAND 

CNTRL filename, SP ,m ,n 

15 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix B 
SECTION: PAGE: 

where filename is the symbolic name of the file defined in the label field of the 
DTFPR header entry card 

SP, specifies spacing 

m is the number of lines to space the form before printing (m = 0, 1 or 2) 

n is the number of lines to space the form after printing (n = 0, 1 or 2) 

The programmer may omit m or n. If no CNTRL macro instruction specifying delayed 
spacing (m omitted) is given before the next PUT macro for the printer file, the 
printer advances the standard amount as specified in the PRAD detail entry card 
of the definition statement. 

If more than one CNTRL macro specifying paper movement after printing is given 
between PUT macros to the printer file, only the last CNTRL macro is effective. 

6. 7.2. Printer Skipping 

The CNTRL macro for printer skipping has the following form: 

OPERATION OPERAND 

CNTRL filename,SK,m,n 

where filename is the symbolic name of the file defined in the label field of the 
DTFPR header entry card 

SK, specifies skipping 

m is the number of the tape channel the carriage is skipped to before printing 
(m = 1,2 .... 7). 

n is the number of the tape channel the carriage is skipped to after printing 
(n = 1;2,,,,7), 

The programmer may omit m or n. Between PUT macros, only the last CNTRL macro 

specifying skipping after printing is effective. 

Due to timing conditions, throughput is maintained at the best possible level if 
delayed spacing and skipping are used where possible. 

6. 7. 3. Stacker Select 

The CNTRL macro for selecting other than the normal stacker on the serial punch, 
read/punch, or for selecting any stacker on the card controller has the following 
form: 

OPERATION OPERAND 

CNTRL filename, SS,n 

where filename is the symbolic name of the file defined in the label field of the 
header entry card. 

SS, specifies stacker select 

n is the stacker number where the card is to be selected on the card controller 
only. Allowable values are specified in the following table. 

16 



UP-4092 

Stacker 

UNIVAC 9200/9300 
CARD ASSEMBLER 

PRIMARY 

1 2 3 c 

Specification (n) 1 2 3 4 

FEED 

1 

5 

PAGE: 

SECONDARY 

2 3 c 

6 7 8 

NOTE: If this CNTRL macro is not given for the 1001, primary feeds are selected 
to P 1 and secondary feeds to S 1. 

The CNTRL macro for Card Controller stacker selection operates under the following 
rules. The card made available by a transfer-and-read from a particular feed is selected 
on the next transfer-and-read from that feed. The card made available by a transfer 
only from a particular feed is selected on the second following transfer-and-read from 
that feed. If the user issues a CNTRL macro after receiving a particular card image, the 
CNTRL macro governs the stacker selection for that particular card, regardless of the 
sequence of operations following that CNTRL macro. If no stacker is seiected from a 
card in the manner described here, the card will be put in the normal stacker, which is 
P 1 for the primary feed and Sl for the secondary feed. 

6.7.4. Numeric Printing 

The CNTRL macro instruction for numeric printing enables the programmer to maintain 
maximum printing speeds. Once set it remains set uptii and unless another numeric 
print CNTRL m aero is given specifying that alphanumeric printing is requested. 

The CNTRL macro instruction for numeric printing has the following form: 

OPERATION OPERAND 

CNTRL filename,NP j m 

where filename is the symbolic name of the file as defined in the label field of the 
DTFPR header entry card. 

NP, specifies a change in the mode of printing 

m is mode of printing requested 

m = 0, alphanumeric printing required 

m = 1, numeric printing required 

NOTE: Alphanumeric printing is assumed by IOCS if no CNTRL macro is given. 

6. 7. 5. Specifying Columns to be Punched 

The CNTRL macro instruction enables the programmer to vary or alter the number of 
columns punched in the punch file. This function enables the punch to run at maximum 
speed for the particular application. Once set by the macro the number of columns 
punched remains the same unless or until another such macro is given. If no CNTRL 
macro is given, IOCS assumes a full card is required. 

17 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

The CNTRL macro for punching has the following form 

OPERATION 

Appendix B 
SECTION: 

OPERAND 

CNTRL filename, NC,n 

where filename is the symbolic name defined in the label field of the DTFRP 
header entry card 

NC, identifies a number-of-columns specification 

n is the number of columns to be punched (an even number 2,4 ,6 ... 80). 

6.8. Summary of 9200/9300 Card System IOCS Imperative Macros 

DEVICE ADDRESSED 

READ/ 

PAGE: 

CARD LABEL OPERATION OPERANDS READER PRINTER 
PUNCH CONTROLLER 

OPEN filename x x x x 

GET filename, workarea x x x 

PUT filename, work area x x x 

OPTIONAL 
CLOSE filename · x x x x 

CNTRL filename, SP, m, n x 

CNTRL f 1 lename, SK, m, n x 

CNTRL filename, NP, m x 

CNTRL filename, NC, n x 

CNTRL filename, SS, n x x J 

18 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

7. PROGRAMMING CONVENTIONS - PROGRAM REGISTERS 

Appendix B 
SECTION: PAGE: 

A user routine may be required in the main source program that is accessed by IOCS 
when certain checking features are required (for example, printer overflow). IOCS 
automatically stores the program re-entry address in register 14 when the branch to 
the user routine occurs. The user routine is therefore required to provide the necessary 
return linkage to the main source program. If the user routine uses register 14, it must 
therefore, preserve and restore register 14 before terminating. This must also be done 

19 

if any macro instruction is executed by the user routine, since all macros use program 
registers 14 and 15. If register 14 is not preserved, the re-entry address is lost. Register 
15 may also be used by the user routine and it need not be preserved. However, its con­
tents are altered by the execution of any macro instruction. 

8. GENERAL PROCEDURE SUMMARY FOR USING IOCS 

The programmer defines his input/output control routines and their associated files 
through the use of definition statements presented to the Preassembly Macro Pass 
program. The generated I/O routines are then either assembled as part of the main 
source program or assembled separately and linked with the main program at load 
time. During the execution of the main program, input/ output functions are accomplished 
through the imperative macro calls. 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix C 
SECTION: PAGE: 

APPENDIX c. CARD LOAD ROUTINE 

1. GENERAL 

The Card Load Routine for the basic card reader and the 80-column 1001 Card Control 
consists of the following sections of coding: 

1. Bootstrap coding to read the Load Routine into memory. Before transferring control 
to the Load Routine, the bootstrap coding sets the EBCDIC mode and enters the 
processor state. 

2. Coding to clear a selected portion of memory to a selected character. This coding 
is executed before the Load Routine itself is read into memory. If the area specified 
to be cleared includes the Load Routine and its read area, they are not cleared. 

3. Cod.ing to load a program in Assembler output format into the internal storage of 
of the UNIVAC 9200/9300. The Load Routine performs a hole count check of each 
card used. Upon encountering a Transfer Card {a card with Y in column 2) signifying 
termination of loading, the Loader compares the number of External Reference and 
Text Cards (type Kor Q) read with the number contained in columns 12 and 13 of 
the Y card. If the numbers agree, the Load Routine loads register 13 with the ad­
dress at which to begin program execution and transfers control to that address. 
This is the address contained in columns 15 and 16 of the Y card. If these columns 
are blank, the transfer address used is that contained in columns 15 and 16 of the 
program reference card (ty'pe J). 

If the card count check fails, the Load Routine halts. At this point pressing the 
Start switch causes the Load Routine to begin execution of the program just loaded. 
Before transferring control to the program just loaded, the Card Load Routine sets 
up the I/O PSC for EXEC I. 

2. PARAMETERS FOR THE LOAD ROUTINE 

The Load Routine is maintained as an object code deck ready to be linked. Certain 
labels exist as external references, defining these labels supplies the variable informa­
tion required by the Load Routine. Standard definitions for these labels are given on 
EQU cards supplied with the Load Routine. 

NOTE: All labels used by the Load Routine begin with the characters "L?' '. 

1 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix C 
SECTION: PAGE: 

The external labelis, their meaning, and standard definitions are shown below. 

LABEL 

L?AR 

L?PG 

L?LO 

L?HI 

L?CH 

L?AM 

MEANING 

Start of the read area for the Load 
Routine. 

Start of the coding of the Load 
Routine. 

First memory location to be 
cleared. 

Last memory location to be 
cleared. 

Character with which to fill the 
area to be cleared. 

The value assigned determines 
whether alterations are to be 
stored in memory location 4 or the 
memory location specified in the 
address switches. If the value as­
signed is four, alterations are 
stored in location 4; if zero, in the 
location specified by the memory 
address switches. 

STANDARD DEFINITION 

80 

L? AR+80 

80 

8191 

X 'A9' (HPR instruction) 

4 

As implied by the above table, the read area for the Load Routine does not have to be 
contiguous with the coding of the Load Routine. 

3. LOADING ADDITIONAL PROGRAMS 

If the Load Routine is in memory, it may be used to load another program by entering 
at the load routine's initial location (represented by the tag L?PG). The program to 
be loaded must not overlay the Load Routine or its read area. 

A terminating program may also initiate the loading of a successor program if the suc­
cessor contains a load routine of its own. The program must read the first card (boot­
strap card) of the successor into a location in memory, set an address into register 
15, and transfer to another address. The address chosen for the bootstrap card must 
not overlap either the load routine of the successor program or the read area of the 
Load Routine. The bootstrap card must be read in in compressed code and must not 
be translated. This facility is possible only if the online card reader is being used 
to load programs. 

2 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

4. LOAD ROUTINE STOPS 

DISPLAY 

4300 

61SS 

MEANING 

Card count error 

Reader malfunction or hole 
count error. For hole count 
error SS is not significant. 
For reader errors SS is the 
status byte. 

Appendix C 
SECTION: PAGE: 

ACTION 

Press ST ART to begin 
execution of program just 
loaded. 

Refeed the error card. 
Ready the reader and 
START. 

3 



UP-4092 

1. GENERAL 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix D 
SECTION: PAGE: 

APPENDIX D. EXEC 

EXEC I is designed for UNIV AC 9200/9300 Card System only and takes the form of a 
relocatable element which must be included in the worker program at linker time. The 
primary functions of EXEC I are to monitor interrupts, handle messages to and from 
the operator, and provide restart communication. 

2. MACRO INSTRUCTIONS 

EXEC I provides the following macro instructions: 

2.1. MESSAGE MACRO (MSG) 

The message macro has the format given below. 

OPERATION OPERAND 

MSG Message, REPLY 

The REPLY parameter is optional. Message may be any acceptable two-byte hexadeci­
mal expression. 

This macro generates the following code: 

OPERATION 

SRC 

DC 

DC 

DC 

OPERAND 

0,8 

Y(message) 

CLl'x' 

X'O' 

Where message is the two-byte hexadecimai dispiay which appears in the HPR instruc­
tion. It takes the form of an ass em bier language expression. 

x = A, if the parameter REPLY appears; x = a blank (EBCDIC code 01000000), 
if it does not. 

The one-byte reply, keyed-in by the operator into location 4, appears in the last 
byte of the calling sequence. 

1 



UP-4092 
UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix D 
SECTION: PAGE: 

EXEC I responds to this macro by doing a BAL, using register 15, to its own display 
subroutine. This moves the message from the calling sequence of the SRC instruction 
to the calling sequence of the BAL instruction before executing the BAL instruction. 
The display subroutine sets location 4 to binary zero and displays the message via 
an HPR instruction. When the Start switch is depressed, the display subroutine returns 
control via register 15. EXEC I then moves the contents of location 4 to the reply 
byte of the calling sequence and returns control to the worker program. 

For example, if the user codes the following macro instruction, 

DSPL MSG X'FFF', REPLY 

the Assembler treats this macro instruction the same as the following source code. 

DSPL SRC 
DC 

0,8 
Y(X'FFF') 

DC CLl'A' 
DC X'O' 

When the object code produced from this source code is executed, the computer stops 
with a display of 000111111111111. The operator may then answer this display via 
the Data Entry and Alter switches. When the Start switch is subsequently depressed, 
control is returned to the user's coding at the instruction located at DSPL + 8. The 
byte inserted into the computer by the operator via the Data Entry and Alter switches 
is in location DSPL + 7. If the operator did not introduce any data via the Data Entry 
and Alter switches, then on return of control to the user program, the byte in location 
DSPL + 7 contains binary zeros. 

The MSG macro instruction is not handled by the Preassembly Macro Pass, but is 
processed by the Assembler itself. 

2.2. RESTART MACRO 

The restart macro has the following format 

OPERATION OPERAND 

RSTRT Restart-Name 

The restart-name is the label of a user-coded rcutine which is designed to handle a 
restart operation. 

This macro generates the following code: 

OPERATION OPERAND 

SRC 0,0 

DC Y(Restart-name) 

2 



UP-4092 

UNIVAC 9200/9300 
CARD ASSEMBLER 

Appendix D 
SECTION: PAGE: 

In response to this macro instruction, EXEC I stores the address of the restart-name. 
Restart is accomplished by a general clear followed by depression of the Start switch. 
This causes the instruction in memory locations 22 through 25 to be executed in 1/0 
mode. EXEC I has a branch unconditional instruction in this location that allows it 
to set the processor PSC to the restart-name and then go to RE-ENTRY. At RE-ENTRY, 
EXEC I sets the device address byte to zero, resets (without destroying the SRC field) 
the 1/0 PSC in preparation for the next interrupt, and returns to processor state. 

At the restart-name location the user must provide a restart routine. This routine must 
re-establish variable information in the program and set initial conditions for all input/ 
output routines. (To aid the user in accomplishing this goal, the execution of the OPEN 
macro resets the initial conditions for all IOCS routines.) The user must establish 
conventions to reposition card decks and printer paper. 

The RSTRT macro instruction is not handled by the Preassembly Macro Pass, but is 
processed by the Assembler itself. 

3. 1/0 CONTROL ROUTINE MESSAGES 

All IOCS routines operating in 1/0 mode may display messages through direct access 
to the display subroutine. After execution, if a reply is expected, the control routine 
itself must examine the contents of location 4. 

The following instructions are required to execute a display: 

OPERATION 

BAL 

DC 

OPERAND 

15,E?DS 

XL2'message' 

where E?DS is the label for the first byte of the display routine. 

Message is a two-byte hexadecimal expression. 

3 



U P-4092 


	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	xBack

