i

CARD ASSEMBLER

UP-4092

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format as a rapid and complete means of keeping recipients
apprised of UNIVAC® Systems developments. The information presented
herein may not reflect the current status of the programming effort. For the
current status of the programming, contact your local Univac Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware and/or software changes and refinements. The
Univac Division reserves the right to make such additions, corrections,
and/or deletions as in the judgment of the Univac Division are required by
the development of its respective Systems.

® REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A.

©1966 - SPERRY RAND CORPORATION

UP-4092

UNIVAC 9200/9300
CARD ASSEMBLER

Contents
SECTION: PAGE:

1.

INTRODUCTION

1.1. THE PURPOSE OF AN ASSEMBLER

1.2. CARD ASSEMBLER FOR THE UNIVAC 5200
1.3. ASSEMBLY LANGUAGE CHARACTERISTICS

THE ASSEMBLER LANGUAGE
2.1. CHARACTER SET

2.2. STATEMENT FORMAT
2.2.1. Label Field

2.2.2. QOperation Field
2.2.3. Operand Field

2.2.4. Comments Field

2.3. EXPRESSIONS

2.3.1. Decimal Representation

2.3.2. Hexadecimal Representation

2.3.3. Character Representation

2.3.4. Location Counter

2.3.5. Relative Addressing

2.3.6. Symbols

2.3.7. Relocatable and Absolute Expressions
2.3.8. Length Attribute

2.4. MACHINE INSTRUCTIONS

2.4.1. RX - Register to Storage Instructions
2.4.2. Sl - Instruction to Storage Instructions
2.4.3. SS1 - Storage to Storage Instructions
2.4.4. SS2 - Storage to Storage Instructions

2.5. DATA AND STORAGE FORMATS
2.5.1. DC - Define Constant

2.5.1.1. Character Representation
2.5.1.2. Hexadecimal Representation
2.5.1.3. Expression Constants

2.5.2. DS - Define Storage

CONTENTS

1-1to1-4
1-1
1-2
1-4
2-1to 2-15
2-1

I

[N DG AT G)
I
NS = = b s

[R e R A B G I LG LN B]
I
O O B0 W W NN

NRO RO RN
I
— W 0o o O

N
{ |
—

— =1

2-12
2-12
2-13
2-13
2-14

UNIVAC 9200/9300 ‘

Contents
UP-4092 CARD ASSEMBLER SECTION: PAGE:

3. ASSEMBLER 3-1to 3-18

3.1. DIRECTIVES 3-1

3.1.1. Symbol Definition 3-1

3.1.2. Assembly Control 3-2

3.1.2.1. START - Program Start 3-2

3.1.2.2. END - Program End 3-3

3.1.2.3. ORG - Set Location Counter 3-3

3.1.3. Base Register Assignment 3-4

3.1.3.1. USING - Assign Base Register 3-4

3.1.3.2. DROP - Unassign Base Register 3-5

3.1.3.3. Direct Addressing 3-7

3.1.4. Program Linking 3-7

3.1.4.1. ENTRY - Externally Defined Symbol Declaration 3-8

3.1.4.2. EXTRN —~ Extemally Referenced Symbol Declaration 3-8

3.1.5. Assembler Program Listing 3-8

3.1.6. Assembler Control Card 3-14

3.2. SYSTEM CODES 3-14
4. OUTPUT 4-1to 4-5

4.1. ASSEMBLER CARD OUTPUT 4-1

4.1.1. Element Definition Card 4-2

4.1.2. Extemal Definition Card 4-3

4.1.3. Program Reference Card 4-3

4.1.4. Extemal Reference Card 4-4

4.1.5. Text Card 4-4

4.1.6. Transfer Card 4-5
5. LINKER 5-1 to 5-12

5.1. LINKER INPUT 5-2

5.2. LINKER CONTROL CARD FORMATS 5-2

5.2.1. CTL 5-3

5.2.2. PHASE 5-3

5.2.3. EQU 5-4

5.2.4. END 5-4

5.2.5. REP 5-5

5.3. EXAMPLE 5-5
APPENDIX A - PREASSEMBLY MACRO PASS A-1to A-12
APPENDIX B - INPUT OUTPUT CONTROL SYSTEM (IOCS) B-1 to B~19
APPENDIX C — CARD LOAD ROUTINE C-1to C-3

APPENDIX D - EXEC | D-1to D-3

UNIVAC 9200/9300

UP-4092 CARD ASSEMBLER A

ILLUSTRATIONS

1-1. Source-to-Object Code Translation with Assembles 1-1

1-2. 9200/9300 Assembiy System 1-3

2-1. Example of Source Code Statements 2-2

3-1. Example of Printer Output of a Program 3-9 to 3-13

5-1. Elements A and B Deck Structure 9-7

5-2. Linker Input 5-8

5-3. Header Processing 5-10

5-4. ESID Processing for Element A 5-11

5-5. ESID Processing for Element B 5-12

A-1. Schematic of Preassembly Macro Pass Operation A-1

TABLES

2-1. Instruction Mnemonics 2-6

Z-2. Symbois Used in Describing Operand Formats 2-8

2-3. Operand Specifications Using implied Base Register and Length Notation 2-11

2-4. Characteristics of the Various Constants 2-14

3-1. Internal Code 3-15to0 3-18

. UNIVAC 9200/9300 1
UP-4092 CARD ASSEMBLER SECTION: PAGE:

1. INTRODUCTION

Use of this manual presupposes a familiarity with the instruction repertoire and instruction
and data formats of the UNIVAC 9200/9300.

1.1. THE PURPOSE OF AN ASSEMBLER

An Assembler is one result of the many and continuing efforts to improve communica-
tions between computers and computer users. The general direction cof these efforts
has been towards an intermediate language which is close to the language of the user
and which relies heavily on the computer for translation into its language.

In an Assembler language all coding is represented in the form of statements which
are understandable to the programmer. The Assembler then converts these statements
into a binary form which is understandable to the computer. The programmer’s state-
ments, when keypunched, are called source code. The Assembler converts the source
code into object code, Figure 1—1 shows the general flow of source-to-object code
conversion with an Assembler.

PROGRAMMER

states the probiem in the
Language of the Assembler

SOURCE CODE

statements keypunched in
card code form

ASSEMBLY

translation to Object Code

OBJECT CODE

Binary Expressions
meaningful to the computer

Figure 1-1. Source-to-Object Code Translation with Assembler

LiP-4092

UNIVAC 9200/9300 1
CARD ASSEMBLER SECTION: PAGE:

1.2,

CARD ASSEMBLER FOR THE UNIVAC 9200/9300

The Card Assembler for the UNIVAC 9200/9300 System is an efficient, easy-to-use
software aid that satisfactorily handles most of the programming problems encountered
by the user. Each machine instruction and data form have simple, convenient repre-
sentations in the assembly language. The rules which govern the use of the language
are not complex; they may be learned quickly and applied easily.

A program in Card Assembler language for the 9200/9300 is written on a standard
UNIVAC coding form. The information on the form is keypunched, and the resulting
source deck is read twice by the Assembler. Output cards, or an object deck, are
produced by the Assembler in relocatable object code or absolute object code. The
object deck is ready for loading into the UNIVAC 9200/9300 by means of the Card
Program Loader routine. The basic flow of the 9200/9300 Card Assembler and asso-
ciated software is shown in Figure 1-2. Input to the Assembler is a card deck key-
punched from an Assembler coding form or is the output from the Preassembly Macro
Pass.

The macro library is in macro code. Parameters are established for the macros by means
of macro instructions. The Preassembly Macro Pass (described in Appendix A of this
manual) converts the macro code into source code in preparation for assembly.

The assembly operation is a conventional two-pass procedure which produces a card
deck in relocatable object code. The outputs of several separate assemblies may be
combined by means of a Linker. The Linker output is in absolute object code. When a
program is ready to be run, the relocatable or absolute object deck is loaded by a Card
Program Loader subroutine.

UNIVAC 9200/9300 1

UP-4092 CARD ASSEMBLER SECTION: PAGE:
MACRO
MACRO INSTRUCTION
LIBRARY DECK
PREASSEMBLY MACRO
MACRO PASS) CODE

.

MACRO SOURCE MACRO
CODE DECK SOURCE
CODE DECK
l v SOURCE
CODE

ASSEMBLER ASSEMBLER

/ \ _— %

' — |

RELOCATABLE RELOCATABLE
CODE CODE

N/

LINKER RELOCATABLE
CODE
OBJECT
CODE
ABSOLUTE
CODE DECK

o~

LOADER

Figure 1-2. 9200/9300 Assembly System

UP-4092

UNIVAC 9200/9300 1
CARD ASSEMBLER SECTION: PAGE:

1.3.

ASSEMBLY LANGUAGE CHARACTERISTICS

The succeeding sections of this manual describe in detail the use of the Assembler
coding form and the operational characteristics of the Assembler. These characteristics
are summarized briefly as follows:

Mnemonic Operation Codes — A fixed name, consisting of two, three, or four letters, is
assigned to each machine instruction. The name is chosen to suggest the nature
of the instruction, thereby helping the user to learn and remember the instruction.

Symbolic Addressing and Automatic Storage Assignment — Symbolic labels may be
assigned to instructions or groups of data. An instruction may then reference
the labeled data by label rather than by storage address. In many cases, other
data required by the instruction (such as operand length) may be supplied auto-
matically by the Assembler. Another major task of the Assembler is to keep
track of all storage locations used and to assign all incoming instructions and
data to specific locations. The Assembler also handles all base register and
displacement calculations,

Flexible Data Representation — Data may be represented in the Assembler in decimal,
hexadecimal, or character notation, thus allowing the programmer to choose the
most suitable form for each constant.

Relocatable Programs and Program Linking — Programs are prepared by the Assembler
in an absolute or relocatable form. In relocatable form, the actual storage loca-
tions to be occupied by a program need not be specified at assembly time, or if
specified, they may easily be altered before loading. Provisions are made for
linking together, loading, and running as one program the results of separate
assemblies, thereby reducing the machine time required to make changes to one
part of a program.

Program-Listing — One of the outputs of the Assembler is a printed listing of source
and object codes. This listing includes flags marking any errors detected by the
Assembler. Source code errors do not cause the Assembler to stall. The Assembler
continues to process the rest of the source code performing its usual error checks,
thus minimizing the number of assemblies required to produce error-free code.

UNIVAC 9200/9300 2
UP-4092 CARD ASSEMBLER SEC TION: PAGE:

2. THE ASSEMBLER LANGUAGE

2.1. CHARACTER SET

The character set used in writing statements in the Assembler language consists of:

Letters A, B,C,...,Z
Digits 0,1,2,...,9
Special Symbols * + -, () 'blank

2.2, STATEMENT FORMAT

Statements in the Assembler language are written on a standard coding form. Informa-
tion for the Assembler and comments are written in columns 1 through 71. Column 72
must be blank. Columns 73 through 80 may contain program identification and sequenc-
ing information. The information in columns 1 through 71 consists of the following
fields.

2.2.1. Label Field

The label field begins in column 1 and is terminated by a blank column. There may
be no embedded blanks. It may either be a blank field or contain a symbol whose
value is to be defined. More detailed information about symbols is contained under
headings 2.3.6. and 3.1.1.

2.2.2. Operation Field

The operation field begins with the first nonblank following the label field and is
terminated by a blank. It contains either the name of an assembler directive or the
mnemonic operation code for a machine instruction.

2.2.3. Operand Field

The operand field begins with the first nonblank following the operation field and
is terminated by a blank not contained in a character representation. This field con-
tains information which defines the operands of a machine instruction or which
supplies the specifications required with an assembler directive.

UP-4092

UNIVAC 9200/9300 2
CARD ASSEMBLER secTion: PacE:

2.2.4.

2.3.

2.3.1.

Comments Field

The comments field begins with the column following the blank terminating the
operand field and ends at column 71. It may contain any combination of characters
including blanks. It is not processed by the Assembler other than including it on
the assembly listing. It may contain remarks to clarify the purpose or operation of
the associated coding. A line may consist entirely of comments from columns 2
through 71 if column 1 contains an asterisk.

LABEL gPERATIQNE OPERAND 5
14

* O THESLHELS A ICIOMMENT, (LENE- | L L Ly
TAG . |]| BIALL | 15, TAG2 v v & v v v v b b by
. LH 15],|TAG3, . 1 ,THE, \OPERA[T! ON, |[CODE (I,S; ,LH . |
| LH | 15, TAG3 v vl v vl b Loy

S| I e by b by b by gy

.

w N =

&~

Figures 2—1. Example of Source Code Statements

Although the assembler language is free form, it is recommended that source code
statements be written with the first character of the operation code in column 8
and the first character of the operand field in column 14. Tabulating the statements
in this fashion creates a program listing which is neater in appearance and easier
to read. The standard coding form is ruled to conform to this convention. Thus,
although the statements on lines 3 and 4 of Figure 2—1 are equivalent to the
Assembler, the form of line 4 is preferred to that of line 3.

EXPRESSIONS
The operand fi
one or more expressions. Expressions are grouped by parentheses and separated by
commas. For example, the basic operand formats for computer instructions are shown
in Table 2-3. In this table, each subscripted letter represents an expression. An ex-
pression may be a single term or a number of terms connected by operators. The

ce loncitsasnn~ o
Ci 1aiiguagl &

permissible operators are a plus sign (+) representing addition and a minus sign (-)
representing subtraction. A leading minus sign is also allowed to produce the nega-
tive of the first term. All operations are performed in two’s-complement binary nota-
tion. A term may be one of the following:

A decimal, hexadecimal, or character representation of an actual value.
A location counter reference.

A symbol.

Decimal Representation

A value may be represented directly by a string of up to five digits, 0 through 9,
forming a decimal number from 0O through 32767. Such a number is converted to a
binary value occupying one or two bytes depending on the type of field for which it
is intended. Following are some decimal representations,

UNIVAC 9200/9300 2

UP-4092 CARD ASSEMBLER SECTION: PAGE:
Decimal Representation Binary Value
0 00000000
13 00001101
257 00060001 00000001
32767 01111111 11111111

2.3.2.

2.3.3.

2.3.4.

Hexadecimal Representation

A hexadecimal representation consists of a string of digits preceded by X' and
followed by ' (apostrophe). Each hexadecimal digit represents a half byte of in-
formation. The hexadecimal digits and their values are:

0 - 0000 8 — 1000
1 - 0001 9 - 1001
2 -~ 0010 A - 1010
3 — 0011 B - 1011
4 — 0100 c - 1100
5 - 0101 D - 1101
6 - 0110 E - 1110
7 — 0111 F - 1111

Some examples of hexadecimal representations and their values are:

Hexadecimal Representation Binary Value
X'D! 00001101
X101 00000001 00000061
X'7FFF! 01111111 11111111

Character Representation

A character representation consists of a string of characters preceded by C' and
followed by '. The following are valid character representations.

Character Representation EBCDIC Value
C'D’ 11000100
C'GROSS! 1100011111011001110101101110001011100010
co 11111001

Location Counter

An indication of the next storage location available for assignment is maintained as
a counter called the location counter. After the Assembler processes an instruction
or constant, it adds the length of the instruction or constant processed to the loca-
tion counter,

UP-4092

UNIVAC 9200/9300 2
CARD ASSEMBLER secTion:

2.3.5.

2.3.6.

Each instruction or address constant must have an address which is a multiple of
two. Such an address is said to fall on a halfword boundary. If the value of the lo-
cation counter is not a multiple of two when assembling such a constant or an in-
struction, a one is added to the location counter before assigning an address to the
current line. Storage locations reserved by this process receive binary zeros when
the program is loaded.

The current value of the location counter is available for reference in the Assembler
language and is represented by the single special character * (asterisk). If written
in a constant representation or in an instruction operand expression, this symbol is
replaced by the storage address of the leftmost byte allocated to that instruction or
constant. Thus the instruction

BC 15,%

represents a one-instruction loop.

Relative Addressing

An instruction may address data in its immediate vicinity in storage in terms of its
own storage address. This is called relative addressing and is achieved by an ex-
pression of the form *+n or *-n where n is the difference in storage addresses of
the referring instruction and the instruction or constant being accessed. Relative
addressing is always in terms of bytes, not words or instructions. For example, in
the coding

LABEL % OPERATIONS OPERAND %
11 | CH |, VWAL LMET b e b b L
o] IBG 7,002 | e L b
L | AH | | VW5, TWQ | b b
| BC | | USL =12 v b b b
11| MVG | AB b e b]

the address *+12 in the second line is the address of the instruction in the last
line and the address *-12 in the fourth line is the address of the instruction in the
first line since each of the first four instructions is four bytes long.

Symbols

A symbol is a group of up to four alphanumeric characters. The first, or leftmost,
must be alphabetic. Special characters or blanks may not be contained within a
symbol. The following are examples of valid symbols:

A LOSS

A72Z PRFT

CAT

UP-4092

UNIVAC 9200/9300 2
CARD ASSEMBLER SECTION: PAGE:

2.3.7.

The following ate not valid symbols for the reasons stated:

GROSS More than four characters
N PA Embedded blank
SR)N Special character

A symbol may be assigned any value from 0 through 32767. It is assigned a value,
or defined, when it appears in the label field of any source code statement other
than a comment, A symbol appearing in the label field of an EQU or ORG directive
is assigned the value of the expression in the operand field. In all other cases the
value assigned is the current value of the location counter after adjustment to a
halfword boundary, if necessary. The value is assigned to the current label before
the location counter is incremented for the next instruction, constant, or storage
definition. Thus, if a symbol appears in the label field of a statement defining an
instruction, constant, or storage area, the symbol is assigned a value equal to the
storage area address of that instruction, constant, or storage area.

Relocatable and Absolute Expressions

A single term may be either relocatable or absolute. Decimal, character, and hexa-
decimal representations are all absolute terms. A location counter reference within
a section of relocatable code yields a relocatable value. If a symbol is defined by
appearing in the label field of a source code statement within a section of relocat-
able code, its value will be relocatable.

An expression is relocatable in the following cases: if it consists of an absolute
expression plus a relocatable term; if it can be reordered to have that form; or if it
consists solely of a relocatable term. Some examples of relocatable expressions are:

R

A+R

R+A

R-R+A+R

where R represents a relocatable term and A an absolute term.

An expression is absolute if all of the terms in the expression are absolute or if it
consists only of absolute terms plus an even number of relocatable terms of which
exactly half are preceded by minus signs. Some examples of absolute expressions
are:

A

A+A-A

A-A+A+A

R+A-R

R-R+A

UP-4092

UNIVAC 9200/9300 2
CARD ASSEMBLER SECTION: PAGE:

2.3.8.

2.4.

An expression may be negatively relocatable under certain circumstances (see Data
Constants, heading 2.5.1). Such an expression consists of an absolute expression
minus a relocatable expression, or an expression which may be reordered to that
form. Some examples are as follows:

A-R A-R-R+R R-R+A-R

Length Attribute

The Assembler associates a length attribute with a symbol defined in the label field
of a source code line representing an instruction, constant, or storage definition.

The length attribute of such a symbol is the number of bytes assigned to the instruc-
tion, constant, or storage area involved. The length attribute of an expression is also
determined by the Assembler and is a function of the leading term of the expression.
If the first term of an expression is an absolute value, a length attribute of one byte
is assigned to the expression. If the leading term is a symbol, the number of bytes
attributed to the expression is the same as the length attributed to the symbol. Thus,
if TAG appears in the label field of an LH instruction (Load Halfword), it would have
a length attribute of 4 since LH is a 4-byte instruction. In referencing the same label,
the expression TAG + 195 also has a length attribute of 4; but the expression 195 +
TAG has a length attribute of 1 because the leading term is a constant.

MACHINE INSTRUCTIONS

A list of the standard machine instructions giving the numeric and hexadecimal opera-
tion codes with the instruction type is shown in Table 2-1.

The machine instruction format consists of a label (optional), a mnemonic operation
code, and an operand. If a symbol is used in the label field of a machine instruction,

it is assigned the address of the leftmost character of the instruction and receives

a length attribute equal to the length of that instruction. There are four types of in-
struction formats. These are shown below together with a brief explanation of the func-
tions performed by the instructions within each format type. Table 2—2 defines the sym-
bols used in the instruction type formats.

HEXADECIMAL
MNEMONIC FUNCTION OPERATION FORMAT
CODE
AH ADD HALFWORD AA RX
Al ADD IMMEDIATE A6 Si
AP ADD (PACKED) DECIMAL FA $S§2
BAL BRANCH AND LINK 45 RX
BC BRANCH ON CONDITION 47 RX
CH COMPARE HALFWORD 49 RX
CLC COMPARE LOGICAL CHARACTER D5 ss1
CL! COMPARE LOGICAL IMMEDIATE 95 SI

Table 2-1. [nstruction Mnemonics

UNIVAC 9200/9300 2
UP-4092 CARD ASSEMBLER SECTION: PAGE:
HEXADECIMAL
MNEMONIC FUNCTION OPERATION FORMAT
CODE

CcP COMPARE (PACKED) DECIMAL F9 $S2
DP DIVIDE (PACKED) DECIMAL FD $§2
ED EDIT DE SS1
HPR HALT AND PROCEED A9 Si
LH LOAD HALFWORD 48 RX
LPSC LOAD PROGRAM STATE CONTROL A8 Sl
MP MULTIPLY (PACKED) DECIMAL FC §§2
MVC MOVE CHARACTERS D2 Ss1
MVI MOVE IMMEDIATE DATA 92 Si
MVN MOVE NUMERICS D1 $S1
MVO MOVE WITH OFFSET Fl §S2
NC AND CHARACTERS D4 $S1
N1 AND IMMEDIATE DATA 94 St
oc OR CHARACTERS D6 SS1
Ol OR IMMEDIATE DATA 96 St
PACK PACK F2 $S2
SH SUBTRACT HALFWORD AB RX
SP SUBTRACT (PACKED) DECIMAL FB $§2
SPSC STORE PROGRAM STATE CONTROL A0 Si
SRC SUPERVISOR REQUEST Al St
.STH STORE HALFWORD 40 RX
TiO TEST 1/0 A5 St
™ TEST UNDER MASK 91 Si
TR TRANSLATE DC Ssl
UNPK UNPACK F3 §S2
XIOF EXECUTE INPUT/OUTPUT FUNCTION A4 SI
ZAP ZERO ADD (PACKED) DECIMAL F8 $S2

Table 2—1. Instruction Mnemonics {cont.)

UNIVAC 9200/9300 2

UP-4092 CARD ASSEMBLER secTion: o ace:
SYMBOL MEANING
R1 The number of the register addressed as operand 1
I, The immediate data or device address used as operand 2
of an S| instruction.
L The length of the operands *
L; The length of operand i *
Si The storage address of operand i
B, The base register for operand i
D; The displacement for operand i
* This is the true length of the operand, not the length less one, as required in object code. The
Assembler makes the necessary reduction of one in the length when converting source to object code.
Table 2—2. Symbols Used In Describing Operand Formats
2.4.1. RX — Register to Storage Instructions
REGISTER BASE REG. DISPLACEMENT
OP CODE RX
Ry By D,
0 7 8 11 12 15 16 19 20 31
Compiete Operands Form: R1,D9(,B9) 4-byte instruction
In general, instructions in this format are used to process data between registers
and storage, and include such functions as load, store, compare, add, subtract and
branch. The mnemonic codes for instructions using this type of format are:
AH Add Halfword
BAL Branch and Link
BC Branch on Condition
CH Compare Halfword
LH Load Halfword
SH Subtract Halfword
STH Store Halfword
2.4.2. SI — Instruction to Storage Instructions
IMMEDIATE OPERAND BASE REG. DISPLACEMENT
OP CODE S|
12 By D;
0 7 8 15 16 19 20 31

Compiete Operands Form: DI(BI),IZ

4-byte instruction

UNIVAC 9200/9300

UP-4092 CARD ASSEMBLER SECTION: PAGE:
In general, instructions with this format are used for processing with control data
contained in the instruction. The mnemonic codes for instructions using this type
of format are:

Al Add Immediate
CLI Compare Logical Immediate
HPR Halt and Proceed
LPSC Load Program State Control
MVI Move Immediate Data
NI AND Immediate Data
Ol OR Immediate Data
SPSC Store Program State Control
SRC Supervisor Request
TIO Test I/0
™ Test Under Mask
XIOF Execute I/0 Function
2.4.3. SS1 — Storage to Storage Instructions
o CODE OPERAND LENGTH BASE REG. DISPLACEMENT i .
L B, D
0 78 15 16 19 20 31
} BASE REG. DISPLACEMENT
| B, D,
32 35 36 47

Complete Operands Form: Dl(L,Bl),Dz(BZ)

6-byte instruction

The instructions with this format are used to process data in storage where the

operands are of equal length, and include such functions as comparing, transferring,
translating, and logical operations. The mnemonic codes for instructions using this

type of format are:

CLC
ED
MVC
MVN
NC
ocC
TR

Compare Logical Character
Edit

Move Characters

Move Numerics

AND Characters

OR Characters

Translate

UNIVAC 9200/9300 2 10

UP-4092 CARD ASSEMBLER SECTION: PAGE:
2.4.4. SS2 — Storage to Storage Instructions
OPERAND
LENGTH BASE REG. DISPLACEMENT
OP CODE $§2
Ly Ly By D;
0 78 15 16 19 20 31
BASE REG. DISPLACEMENT -*
By Dy
32 35 36 47
Complete Operands Form: Dl(Ll,Bl),DZ(LZ,Bz) 6-byte instruction

The instructions with this format are used to process operands of unequal length

and to process packed decimal values. The various functions include decimal opera-
tions (add, subtract, compare), shift operations, and pack and unpack operations.

The mnemonic codes for instructions using this type of format are:

AP
CP

DP
MP
MVO
PACK
SP
UNPK
ZAP

Add Packed Decimal
Compare Packed Decimal
Divide Packed Decimal
Multiply Packed Decimal
Move With Offset

Pack

Subtract Packed Decimal
Unpack

Zero Add Packed Decimal

Where an operand is described in terms of a storage address and a length, the ex-

pression used may be simplified from that shown in the instruction format by imply-
ing the base register and the length. Information supplied in the USING and DROP
directives enable the Assembler to separate a storage address into a base register
and a displacement. If a length attribute is associated with the expression but is

not specified in the statement, a value equal to the length of the operand is supplied
by the Assembler. Table 2—3 lists the complete specification for the operand referenc-

ing memory, applicable instruction types, and the operand format as it may be

written utilizing an implicit base register and/or length representations.

UP-4092

UNIVAC 9200/9300 2 11
CARD ASSEMBLER sEcTIoN:

2.5.

COMPLETE OPERAND SPECIFICATION USING
APPLICABLE | speciricATION
INSTRUCTION IMPLIED BASE IMPLIED BASE
TYPES FOR ONE REGISTER IMPLIED REGISTER
OPERAND NOTATION LENGTH AND LENGTH
RX D,(,B,) s, NA NA
sl D,(B,) s, NA NA
ss1 D,(L,B,) s, (L) D,(,B,) s,
ss1 D,(B,) S, NA NA
552 D,(L,,B,) S,(L,) D,(,B,) s,
552 D,(L,,B,) S,(L,) D,(,B,) s,

Table 2-3. Operand Specifications Using Implied Base Register And Length Notation

Example: To move 80 characters from the field labeled OPA defined as a 90-char-
acter field to the field labeled OPB and defined as an 80-character field,
the instruction could be written as

MVC OPB,0PA

If 90 characters were to be moved the instruction would be written

MVC OPB(90),0PA

DATA AND STORAGE FORMATS

The formats for data and storage statements are similar to that for a machine instruc-
tion. A symbol may be used in the label field. It is assigned the address of the left-
most character of the constant or storage area being specified and is attributed with
a length equal to that of the specified constant or storage area. The operation code
is either DC (Define Constant) or DS (Define Storage). The operand has various
formats which are explained below.

UP-4092

UNIVAC 9200/9300 2 12
CARD ASSEMBLER SECTION: | pace:

2.5.1.

DC — Define Constant

There are three types of constants: C for character representation; X for hexadecimal,;
and Y for expression. To define a constant, the assembly directive DC is written in
the operation field. The statement has the form:

LABEL OPERATION CODE OPERAND
Symbol DC tLa'c’
or
LABEL OPERATION CODE OPERAND
Symbol DC Y(e)
or
LABEL OPERATION CODE OPERAND
Symbol DC YL1(e)

where: n is a decimal number < 16 specifying the number of bytes the constant
is to occupy.

t is X or C denoting hexadecimal or character representation, respec-
tively,

c is the actual character or hexadecimal representation for the constant,
and

e is any acceptable expression as pieviously defined.

2.5.1.1. Character Representation

A character representation is a string of as many as 16 characters, including
blanks, enclosed by apostrophe marks. The apostrophe mark itself is represented
by two successive apostrophes and an ampersand by two successive ampersands,
In each of these cases the 2 characters count only as one towards the limit of 16.
Thus, to represent a character constant of 16 apostrophies, 32 successive apos-
trophies would be written, preceded by and ended with an apostrophe. The length
specification may be omitted, in which case the length of the constant is deter-
mined implicitly from the number of characters between the apostrophe marks. If
the number of characters in apostrophes is greater than the length n, the rightmost
characters are truncated to fit the field in the area reserved for it. If the number
of characters between apostrophes is less than the length, the value is padded
with blanks on the right to fill the field.

For example, the following lines each result in a two-byte constant consisting of
the letter A followed by blank. The third representation is flagged with an error
indication.

UP-4092

UNIVAC 9200/9300 2

CARD ASSEMBLER SECTION: PAGE:

13

2.5.1.2.

2.5.1.3.

LABEL 5 OPERATIONS® OPERAND 5
8 14

v | DG |, Cller\xA,II‘zjllzlil“':;|i|‘~"§L,,

Lo d DC | | C A L’l ; L,‘ DT IN VRO T S S U S NS TNU T IR ST SR S
| DKCLI CLLI L 1 | 1

4

. ;
[A U OO S O T N VU T SR S S S L

Hexadecimal Representation

A hexadecimal representation is a string of as many as 32 hexadecimal digits en-
closed by apostrophe marks. If the digit string is less than twice the length speci-
fication, the field is padded with hexadecimal zeros on the left. If more than twice
the length specification, the representation is truncated on the left to produce a
value equal to the length. The length specification may be omitted, in which case
the length of the constant is determined as the smallest number of bytes which
will contain the constant specified. If necessary, the field is padded on the left
with one hexadecimal zero.

The following illustrates the values of source statements which represent valid
hexadecimal constants, three bytes in length:

CONSTANT REPRESENTATION , VALUE
DC XL3'1' ' 00000000 00000000 00000001

DC X'123A5 00000001 00100011 10100101
DC X'1F3456! 00011111 00110100 01010110

Expression Constants

Constants of type Y provide a way to write a constant involving a relocatable

expression. If the length specification L1 is not present, the expression defining

an expression constant may have any value from — 32,768 to 32,767 inclusive and
may be absolute, relocatable, or negatively relocatable. (A negatively relocatable
expression consists of an absolute expression minus a relocatable expression,
or an expression that can be reordered to that form.) This type of expression con-
stant (one in which the length specification L1 is not present) provides a con-
venient notation for representing a complete storage address. It is for this reason
that constants of this type are called address constants.

An address constant always occupies two bytes of storage and location counter
adjustment to a halfword boundary is performed by the Assembler before storage
locations are assigned to the constant. No such adjustment is performed for
hexadecimal or character constants.

For example, an address constant designed to generate the address assigned to
the label ‘TAG’ would take the following form.

DC Y(TAG)

UP-4092

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION:

An expression constant in which the length specification L1 is present may have
any value from 0 through 255 and may be absolute, relocatable, or negatively re-
locatable. It always occupies one byte of storage, and no location counter adjust-
ment is made before assigning a memory location to the constant. It is useful when

an externally defined symbol is assigned to only one byte.

A summary of constant types, lengths, padding and truncation rules appears in

Table 2—-4.
CONSTANT EXPLICIT IMPLICIT TRUNCATION
TYPE LENGTH LENGTH OR PADDING

c variable maximum on right side
1-16 16

X variable maximum on left side
1-16 16

not 2 on left side

stated

Y

1 none on left side

Table 2—4. Characteristics Of The Various Constants

2.5.2. Define Storage

The format of the assembler language statement to reserve storage is:

or

LABEL OPERATION CODE OPERAND
Symbol (Optional) DS dCLn

LABEL OPERATION CODE OPERAND
Symbol (Optional) DS dH

where: d is a non-negative integer called the duplication factor, the number of

fields to be reserved (d may be a maximum of 256),

n is a decimal number representing the length of the field to be reserved

(n may be a maximum of 256),

H represents a field whose length is two bytes and whose storage

address must be on a halfword boundary.

The statement DS OH causes the location counter to be adjusted to a multiple of
two without reserving storage. A duplication factor of zero may be used with any
storage definition statement to define the address and length of a field without re-
serving storage for it. The duplication factor may be omitted, in which case a factor

of one is assumed.

UNIVAC 9200/9300 2 15
UP_4092 CARD ASSEMBLER SECTION: PAGE:
Thus:
CARD DS 0CL80
FRST DS CL40
LAST DS CL40

would define an 80-byte field named CARD, a 40-byte field named FRST whose
address is the same as that of CARD, and a field named LAST whose length is 40
bytes and whose address is 40 greater than that of CARD and FRST.

The location counter is not increased in assembling CARD (because duplication
factor is 0) but is with FRST and LAST. Therefore, 40 + 40 = 80 spaces ate reserved,
with FIRST and CARD assigned the starting location and LAST assigned the mid
point. When the duplication factor is specified, it defines the number of fields of
length n (for C) or the number of pairs of bytes (for H) to be reserved. For example,

TAG DS 13H

reserves 13 pairs of bytes. The symbol, TAG, refers to the first pair of bytes only
and not to the entire 26 bytes. TAG would have a length attribute of two in this
instance.

UNIVAC 9200/9300
UP-4092 CARD ASSEMBLER

SECTION: PAGE:

3. ASSEMBLER DIRECTIVES
AND SYSTEM CODES

3.1. DIRECTIVES

In addition to the representation of machine instructions, constants, and storage,
the assembler language includes several assembler directives. These are instructions

to the Assembler to perform certain functions and provide the user of the assembler
language with control of the operation of the Assembler.

The assembler directives, grouped by function, are as follows:

Symbol Definition
EQU
Assembler Control
START
END
ORG

Base Register Assignment
USING
DROP
Program Linking
ENTRY
EXTRN

Assembler directives, except START, may use a symbol in the operand field, and,

with the exception of ENTRY and EXTRN, the symbol must have appeared in the
label field of a previous statement,

3.1.1. Symbol Definition
EQU - Equate

The value and length attribute of a symbel may be defined explicitly. The statement
to accomplish this has the form

LABEL , OPERATION | OPERAND

Symbol I EQU | e, e,

where: e, and e, are expressions.

UNIVAC 9200/9300 3
UP-4092 CARD ASSEMBLER e Tion:

The symbol is defined to have a length attribute equal to the value of the second
expression in the operand. The second expression in the operand mav be omitted,
in which case the symbol is defined to have the length attribute of the first ex-
pression.

The symbol in the label field is defined to have the value of the first expression in
the operand field. If the value of the first expression in the operand field is not
between 0 and 32767, the statement will be flagged with an error indication and the
symbol will remain undefined.

Thus, if the value of the location counter is 2000 when the following lines are

encountered,

LABEL 5 OPERATION® OPERAND L
1 8 14
TAG | | DS |, 25CLYO0 ¢ b IR B
HIIDIEI | ELQLU[|]!0]01+l.rIAGI‘115|01 Lo v b v by v by g
SEEK | EQU TAGH270)—x | ;| vy v by g by v by

TAG has a relocatable value of 2000 and a length attribute of 10.
HIDE has a relocatable value of 2100 and a length attribute of 150.
SEEK has an absolute value of 20, and a length attribute of 10.

3.1.2. Assembly Control

Assembler directives are available to control the program name and initial location,
alter the location counter in a specified manner, and indicate the end of the program
statement and the instruction with which execution of the object program is to begin.

3.1.2.1. START - Program Start

The START directive defines the program name and tentative starting location.
It must precede all other program statements except comments. The format of the
START directive is

LABEL) OPERATION } OPERAND

Symbol ‘ START ‘ Decimal or Hexadecimal representation

The expression in the operand field is evaluated and incremented if necessary to
make it a multiple of four. The result becomes the initial setting of the location
counter and is the value of the symbol in the label field. This symbol becomes

the Program IDentification (PID) and is available as an entry point without being
separately defined as such (refer to Program Linking, heading 3.1.4.). Although the
operand of the START directive is an absolute value, it is treated as relocatable.

UP-4092

UNIVAC 9200/9300 3
CARD ASSEMBLER sEcTION: PAGE:

3.1.2.2.

3.1.2.3.

Thus the value of the location counter and the coding which follows a START
directive are both relocatable. Any one of the statements below would result in
the program having the name SORT, being assigned to locations starting at 1068,
and having the symbol SORT defined with the relocatable value 1068.

SORT START 1065
SORT START 1068
SORT START X+42C!

A START directive preceded by one or more statements other than comments is
ignored and flagged as an error, A START directive whose operand field does not
have a value from 0 to 32764 is ignored and flagged as an error. If there is no
valid START directive, the program name is left blank and the location counter
is set to 0.

END — Program End

The END directive indicates to the Assembler the end of the program being
assembled. The format of the END directive is

LABEL ’ OPERATION ‘ OPERAND

Symbol (optional) l END I Expression (optional)

With an END directive the Assembler stops reading cards, punches any remaining
data which has accumulated, and then punches a Transfer Card. If the operand
field of the END directive contains an expression, this expression is punched
into the Transfer Card to signify to the load routine the address at which to begin
program execution. If there is no expression in the operand field of the END
directive, the corresponding field of the Transfer Card is blank. In that case when
the load routine encounters the Transfer Card, it transfers control to the first

1 a1 1.1
10C4atlion l1oaaqed.

If a symbol appears in the label field of the END directive, it is assigned the
current value of the location counter. This is normally one greater than the high-
est address assigned to the program being assembled.

ORG - Set Location Counter

The ORG directive is used to set the location counter to a specified value. The
format of the ORG directive is

LABEL | OPERATION , OPERAND

Symbol (optional) I ORG , A single expression

UP-4092

UNIVAC 9200/9300 3
CARD ASSEMBLER SECTION: PAGE:

3.1.3.

The location counter is set to the value of the expression in the operand field.

If a symbol appears in the label field, its value is also the value of the expression
in the operand field and is assigned a length attribute of one. The expression in

the operand field must be either an absolute expression with a value between 0
and 32767 or a relocatable expression with a value between the initial location
counter setting and 32768. If the expression does not have a value within this
range, the ORG directive is ignored and the line is flagged with an error indica-
tion. With the ORG directive it is possible to set the location counter to a value
which is not a halfword boundary.

The ORG directive to set the location counter to a value 603 less than its current
setting would be

LABEL l OPERATION ! OPERAND

| ORG *-603
The ORG directive may be used to reserve a number of locations which are not
expressed as a single decimal integer. For example, to reserve A minus B bytes
of storage where A and B are previously defined symbols, the statement is written

LABEL I OPERATION OPERAND

|
' ORG l *+tA-B

Bytes of storage reserved either with a DS or ORG directive are not set to zero
when the program is loaded.

If the operand of an ORG directive is a relocatable expression, the value to which
the location counter is set and the coding that follows the ORG directive are both

relocatable. If the operand is an absolute expression, the value to which the loca-
tion counter is set and the coding that follows the ORG directive are both absolute.

Base Register Assignment

The Assembler assumes the responsibility for converting storage addresses to base
register and displacement values for insertion into instructions being assembled.
To do this the Assembler must be infocrmed of the available registers and the values
assumed to be in those registers. The assembly directives USING and DROP are
available for this purpose.

3.1.3.1.

USING — Assign Base Register

The USING directive informs the Assembler that a specified register is available
for base register assignment and that it contains a specified value. The format
of the USING directive is

LABEL l OPERATION I OPERAND

Symbol (optional) | USING I R,A

where: R is a relocatable expression and A is an absolute expression.

UP-4092

UNIVAC 9200/9300 3
CARD ASSEMBLER SECTION: | PasE:

3.1.3.2,

The first expression represents the value the Assembler assumes is in the speci-
fied register at object time. The second expression in the operand field must be
a number from 8 through 15 which denotes the general register specified.

DROP — Unassign Base Register

The format of the DROP directive is

LABEL ! OPERATION I OPERAND

Symbol (optional) DROP I Absolute expression

This directive informs the Assembler that the specified base register no longer
contains a value available to the Assembler for computing base register and dis-
placement values. The expression in the operand field of the DROP directive is

a number from 8 through 15 which denotes the general register no longer available.

The Assembler maintains a table of the available registers and the values they
contain at object time. This table is referred to as the USING table. A USING
directive adds a register and value to the USING table or revises the value for a
register already in the table. A DROP directive removes a register and its asso-
ciated value from the table. If the operands of a USING or DROP directive are not
valid, the directive is ignored, and the line is flagged with an error indication.

If an operand address is given as a relative address instead of as a base register
and displacement specification, the Assembler searches the USING table for a
value yielding a valid displacement, that is, a displacement of 4095 or less. If
there is more than one such value, that value which yields the smallest displace-
ment is chosen. If no value yields a valid displacement, the operand address is
set to zero and the line is flagged with an error indication. If more than one reg-

An absolute address with no base register indicated is treated as an absolute,
direct address.

The placement of a USING directive determines the instructions whose operand
addresses may be decomposed based on that USING statement. The first operand
of the USING statement determines the portion of the program which may be
addressed using the specified register. Thus, if a program contains the coding

LABEL OPERATION OPERAND
USING B,10
A LH 10,B
USING C,10
B DC Y(C)
C DS CL10

UP-4092

UNIVAC 9200/9300 3
CARD ASSEMBLER SECTION: PAGE:

the B2 and D2 fields of the instruction labeled A will contain 10 and 0, respec-
tively. Moreover, if the program contains no USING directives for register 10 other
than the ones shown, then the second line labeled A is the only line in the pro-
gram for which the Assembler would consider 10 as a register available for address-
ing the line labeled B.

The load routine stores in register 13 the starting address of the program just
loaded. All other registers must be loaded by the program itself in a manner con-
sistent with the information given to the Assembler in the USING directives. The
following example shows how this is done.

LABEL % OPERATIONS OPERAND *
[N USHING| JALIT3 v by v v by v by b v by
Ay LiH | W2y, B o by b b v v b b
Lyl SIHING| 16,1002 v b Lo by by by gy
NG| T vl e b b e e b by by
11 AR vl Ve b e b by by gy
v PRI PN N S T S T I ST A T S N MY S M S SO S
By 10 DG 1, YA€) v b b e b e e b
p o1 R e d v by e b v b e by e by gy
Loy | ST el v e e by b e b r Py g
Lo 1] R e b b b v e b gy
C iy | DS, | | Lo, v v v v v e v b b b
Lo | S v dv v e by b e b e b v e by
R P PR TR N T TN N AT N T N S TR U TN RS RUNN N AU SRR SN B TR BRI
v | R e b e b e e e by e e b e by v by
NN E,ND ALy by b e b e b e by

Lines two and three of the above example exemplify the following general rule:

An LH instruction to load a value into a general register must precede
the USING directive which informs the Assembler the value is available,

It is also possible to specify an absolute value for the first expression in the
operand of a USING directive. The entry in the USING table made in response to
such a USING directive is not used to decompose relative addresses. It is used
instead to decompose absolute addresses. For example, given the following coding

USING 4000,15
A LH 14,4096

B2 and D2 fields of the instruction labeled A will contain 15 and 96 respectively,

UNIVAC 9200/9300 3
UP-4092 CARD ASSEMBLER cecTion: e

3.1.3.3. Direct Addressing

The machine instruction format provides for either base register and displacement
addressing (indexed addressing) or direct addressing. Instructions using direct
addressing have a faster execution time, To facilitate error checking by the
Assembler, direct addressing is described to the Assembler in terms of the
pseudo base registers 0, 1, 2, 3, 4, 5, 6, and 7 which contain the values 0, 4096,
81902, 12288, 16384, 20480, 24576 and 28672, respectively. Thus, the direct
address 512 would be treated by the Assembler as an address consisting of a
reference to the pseudo base register 0 and a displacement of 512. The address
4098 would yield a base of 1 and a displacement of 2. The additional forms of the
USING directive which are available for direct addressing are, specifically

LABEL OPERATION OPERAND
USING *0
USING *,1
USING *7

The first line above makes direct addressing available for addresses in the range
0 to 4095. The second makes ditect addressing available for addresses in the
range 4096 to 8191, and so on. The DROP directive may also refer to the pseudo
tegisters 0 through 7 to terminate direct addressing.

A program involving direct addressing may still be relocatable,

The asterisk (¥) when used in the operand of the USING or DROP directive has
a unique meaning and does not have the normal connotation of the current value
of the location counter,

3.1.4. Program Linking

The Assembler provides, as part of its output, information which ailows the results
of separate assemblies to be linked together, loaded, and then executed as a single
program. Proper sectioning reduces the machine time required to make changes to an
existing program. If a change is required, only that part which is changed need be re-
assembled. The output is then linked with the remaining parts to produce the altered
program. Proper sectioning of a program also reduces the number of symbols required
in each of the separate assemblies.

A symbol defined in the label {ield of element A and addressed in eiement B is said
to be externally defined in element A and referenced in element B, Thus, by using
the ENTRY and EXTRN directives, proper linkage is supplied when the separate
elements are assembled. This information is handed on to the Linker program by the
External Definition Cards and the External Reference Card which are outputs of the
Assembler.

UP-4092

UNIVAC 9200/9300 3
CARD ASSEMBLER SECTION: PAGE:

3.1.4.1.

3.1.4.2.

ENTRY - Externally Defined Symbol Declaration

That portion of a program submitted as input to a single assembly is called an
element, Each element must declare the symbols defined within that element and
to which reference is made by other elements. Each symbol is referred to as being
externally defined and is declared by the ENTRY directive. The ENTRY directive
has the format

LABEL ' OPERATION l OPERAND

| ENTRY I Symbol

The symbol in the operand field is declared to be externally defined. Its name and
assigned value are included in the output of the Assembler as an External Defini-
tion Card.

EXTRN — Externally Referenced Symbol Declaration

The Assembler must also be informed of all symbols referred to in the element
being assembled but which are defined in some other element. A reference to
such a symbol is called an external reference, and such symbols are declared in
the EXTRN directive. The format of the EXTRN directive is

LABEL I OPERATION l OPERAND

| EXTRN l Symbol

The symbol in the operand field is declared to be a symbol defined in some other
element. A symbolic name and the External Symbol Indentification assigned by
the Assembler are included as input of the Linker as an Extemal Reference
Card.

3.1.5. Assembler Program Listing

Figure 3—1 is a comprehensive example of coding in 9200/9300 Assembler language.
The listing shown is a reproduction of an actual printout from the prototype 9200/
9300 System. The coding example is of a self-loading memory dump routine with a 132-

position printer and a 63-character print bar. The memory dump routine is described

in the ‘““UNIVAC 9200/9300 Programmer’s Utility Manual,’”’ UP-4120.

o00vl
gou2

000s
ouuy
00uS
Qoue
0ou7
oous
Qou9
001v
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
Qoee
0023
0024
voas
0026
0027
0028
0029
0030
00351
0032
0053
00354
0035

000A
000A
0014
001cC
0022
0026
002A
002E
0032
0036
003A
003E
0042

npoonoouo00LLooLLOLL
000000000000V000
N20100460042
02500045
A4010002
B770003k
A5010000
4720002t
Q1C00000
47800F7U
A90021C0

NF66

MDSLF

¥ OF X OF O X X XK OE O O X X X F R ¥ X x%®

=
C

START
USING
ORG
DC

nc
MVC
MVI

X I10F
RC
TIO
BC

™

BC
HPR
(8]

Figure 3~1.

THIS MEMORY DUMP ROUTINE IS ADJUSTED TO THE
MACHINE COMFIGURATIONS,

POS=132,CH=

63

THE FOLLOWING CODIMG IS EQUIVALENT TO THE SOQURCE CNDE
WHICH Ig GFNERATED BY THE ABOVE MACRO INSTRUCTION,

PARAMETER

PAR.1 POS
PAR.2 CH
PAR«3 BGN

PAR.4 END

PARS MEM

PAR.6 LOAD

PAR.7 RODR
0

*»0

10
XL10*1Ce
XLB8O"
70(2) 066
69,80

2¢1

7+62

(U}

2146
0rx*CO"*
By 3952
x'21C0',0
Y(3942)

(Sheet 1 of 5)

EXPLANATION

= 969120,0R 132 FOR PRINTER CHe POSITION,

= 63 OR 48 FOR AN ASSOCIATED PRINT BAR.

= BLANK OR 128 THROUGH 32767 FOR THF
LOCATION AT WHICH MEMORY NUMP IS TO BFGIN.

= BLANK OR 128 THROUGH 32767 FOR THE
LOCATION AT WHICH MEMORY DUMP IS TO END.

= BKe12K 16K AND 32Ky 1IF THE ENTIRE MEMORY
IS TO BE DUMPED AND THE ROUTINE IS TO BE
LOADED INTO THE HIGHEST MEMORY LOCATIONS,
OTHERWISE BLANK,

= 260 THROUGH 32190 FOR THE LOCATION
AT WHICH MEMORY DUMP IS TO BE LOADED,
BLANK IF MEM PARAMETER EXISTS,

= BLANK OR 1001 FOR AN ASSOCIATED READER,

LOADER SECTION 1ST CARD N
SET BASE ADNPR FOR 2MD CARD P
CON.1 SET 80 TO D.C. AREA P
READ CARD P
IS X10F ACCEPTED? DY
TEST 1/0 STATUS P
IS READER WORKING? DM
TEST STATUS BITS P
IS THERE ANY ERROR? 0y
READER OFF MORMAL RESTART H

ADDRESS FOR 2ND CARD

Example of Printer Qutput of a Program

MD
MD

MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD

10110
1020

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1149
1150
1169
1170
1180
1190
1200
2010
2011
2012
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
212n
213N

¢60b-dN

4I3TEWISSY QAVD

INOILD3S

i39ovd

00£6/00Z6 DVAINN

0056
Q0a7
Vo038
00359
aosu
0041
go42
Go43
0044
0045
U046
uo47
0048
0049
0050
00s1
0092
0053
ulb4
0055
0096
0007
0058
0059
0000
00ol
0062
0063
V004
0005
0006
007
N0o8
V009
go7u

0tun
OF70
0F70
OF 74
oF78
OF7C
0F80
OF8y4
OF8A
0F90
0F96
0F9C
OFAD
OFA6
OFAA
00BC
unNBC
00BE
00Co
0DCc2
uncy
0ncCe
0Dncs
0DD1
UDDA
UNDE
OVE2
ODES8
ODEC
0DF2
UDF6
00FA
UDFE
VEO2
0EO8

NODANOUL

950CO0FAF
47800FAC
a50A0F AF
47800F84
47FG0F96
N200V0F910FBU
N2010F920FB2
N20VOFACOFB8
N20100460FAA
47FU002e
D2010FALDFBC
47F0000UL
NFAL

noo0u
OFFF
no8u
nF8u
0FCO
OFFY

4OSCFOF1F2F 3FUF5F6
FTFEF9C1C2C3CHC5CH

0206005u
92000F6C
N2020F6LOF6C
UB8EUNF6C
N2010F6ADDCH
A4030001
B7800ELU
AS030F7u
u72000F2
N2000EOBO0F 7V
A9002300

MBGN
MEND
M?2Cc0

M?E

DC
ORG
CLI
8C
CLI
BC
BC
e
MvCe
MycC
MyC
RC
MvC
RC
DcC
ORG
DC
nc
(8]
DC
nc
8]
bc
8]
MVI
MVl
Mve
LH
MVC
X10F
BC
TIO
BC
MVC
HPR

XLU*0AOQuUE"
3952
+630X'0C
Rex+l4y
*+559 X QA"
Rex+8

15r %422
*+13(1),x+t4
*+8(2) e x+40
428(1) y+u0
T70(2)9%420
15934
*¥+B8(2) r %428
150

Y (*+4)

*=U496

Y(0o)

Y(409%5)

Y(128)

Y {(M?PPW+g)
Y(M2Pw+70)
Y(MAPW+132~10)
XLO'40SCFUFLF2F3FUFSF6"
XLOF7FEF9C1C2C3CHC5Ce6!
RO X*08Y
MPCN+210
MPCN+3(3) yM2CN+2
14 ¢M2CN42
MPCN(2) ¢ M2CO+Y
103

8yM?B0
M?CN+6+¢3

2/MPA

*+9(1) rMPCN+6
X12300',0

DEVICE CONTROL FOR 1ST CARD
LOADER SECTION 2ND CARN N

IS THIS A TYPE Y CARD? DM
IF Y CARD GO TO CONel ¢
IS THIS A TYPE @ CARD? DY
c
IF NO GO TO CON.5 c
SET LENGTH FOR LOAD
SET ADDRESS FOR LOAD
LOAD TEXT P
CON.5 SET BASE ADDRESS P
60 TO CON+1 (1ST CARD) A
CON+.4 SET START ADDRESS P
60 TO MEMORY DUMP B

ADDRESS FOR SUBSEQUENT CARD
MEMORY DUMP SECTION N
CONST, FOR REGINNING ADDRESS
CONST, FOR ENDING ADDRESS
CONSTANT 12R

STARTING ADDRESS FOR EDIT
ENDING ADDRFSS FOR EDIT

TRANSLATION TABLE FOR
63 CH BAR
M.D+ENTRY SET LINE ADV BIT P

SET VC B1,CleF1sAND K1i P
SET REG 14 TO ZERO P
SET LIMIT OF EDIT TO 4 6R, P
ISSUE PRINT ORDER 63 CH BAR P

IS ORDER ACCEPTED? [l
TEST I/0 STATUS P
IS PRINTER WORKING? DN
SET STATUS RITS FOR DISPLAY P
PRINTER OFF NORMAL H

Figure 3—1. Example of Printer Output of a Program (con't.)

(Sheet 2 of 5)

MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MO
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD

2140
2150
216N
2170
2180
2190
2200
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
313N
3un
3150
3160
3170
3180
3190
3200
4010
402n
4030
4oun
405n
u060
4070
4080

¢60y-dn

INOILD3S

:3A9vVd

YI3TAWISSY aQiIVD
00£6/0026 DVAINN

01

Vo771
po72
J073
D074
0075
no7e
a7y
0078
0079
00g0
0081
nose
0oud
0084
0085
vode
0087
0048
0049
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0iu2
01038
alus
0lud

0EOC
0EL1D
UELlY
UE18
OELC
VE22
0E26
0E2A
0E2E
0E32
0E36
0E3C
0E40
0E46
0E4C
VESO
VESY
0ES5A
0ESE
0E62
0E66
VE6A
OE6E
0E72
0E76
0E7A
0E7E
OE84
UE8S8
UEBC
UE90
0E96
0ESA
VE9E
OEA2

u7FO0DF
a5010F6L
478G0EBA
02EEOFTA
N2820F760F7A
a5010F6L
4780G0ECE
Q5020F6V
47800ECA
4gFu0DC2
F3420F7A003C
Q2EE0FTE
F3ETFOOUEQUL
F110FUOEEQU7
Q6FUFUO0L
A6F GFUOF
N2010FT7<EO06
A612003L
A608003C
471G0EAE
49ELO0DBe
472GNEAE
49F GOF 6A
47400840
49EQODLCU
47800E8C
N2050F740F72
Q2000F 6L
U7FUOF1le
92010F6L
N2010F6ANDCO
48E00DBC
AuFO003u
49E00DCU
47A0NF1e

Figure 3—1.

RC
cLI
RC
MVI
MyC
CLI
BC
CLI
BC
LH
UNPK
MV I
UNPK
MVO
ol
[¢D
MvC
Al
Al
BC
CH
ABC
CH
BC
CH
BC
MyC
MVI
BC
MVI
MvCe
LH
NI
CH
8C

15/ M?2A

M2CN+21

8yM282
M2PWeX'EE"
MPPW+1(132=1) »M2PW
MPCN+30

8yM2C2

M2CN+39 2

8yM2C3

15/M2C0+2
M?2PW(S) ,60(3)
M2PW+4 o X TEF Y
0(15¢15),0(8014)
14(2015)»7(1014)
14(15) ex kDY
15(159)rx'FOY
M2CN48(2)16(14)
62+18

608

1¢M?PH

14 MEND

29 MPH

15¢M2CN

Y rM20D

149M2C0

Br%+ly
MPCN+10(6) s MPCN+R
M?QN+Q00

15eM2L

MPCN+30)

M2CN(2) ,MPCO+6
14 ¢MBGN

6leX'FOY

14,M2CO

10M?L

GO TO A FOR R
IS vC B0 SET
IF YES GO TO
B1

CLEAR STANDBY
Co 1s vC Cp
IF YES GO TO
IS vC C0 SET
IF YES 6O TO
SET STARTING
EDIT ADDRESS

EDIT DATA 7 B
EDIT DATA 8TH

STORE PREDECE
R15 + 18 TO R
R14 + 8 TO R}
1IF Riy OVERFL

IS Riu EQUAL TO MEM LIMTIT?

IF YES GO TO

IS R15 EQUAL T0 EDIT LIMIT?

IF No GO TO D
IS R1y EQUAL

IF YES GO TO

EXTEND PREDEC
SET VvC FO TO

GO TO

SS SET V
SET LIMIT OF

SET BEGINNIMG ADDR TO Rtu

AND ERASE 4 L

1S BG,AD, SMALLER THAN 1282

IF NO GO TO L

Example of Printer Output of a Program {con't.)

(Sheet 3 of 5)

ECOVERY
T0 B2?
B2

P.BUFFER AREA

SET TO C2?
c2

T0 C3?

c3

ADDR OF EDIT

YTES
BYTE

SSOR BYTES
15

y

Ow GO TO H

]

TOo 1287

SS

ESSOR BYTES
F1

€ Co 10 €2
EDIT

SB

DN

DN

DN

T

O UV U U WU v O

o0
<

MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD

4090
4100
4110
hian
4130
4140
4150
416N
4170
4180
4190
4200
5010
5020
5030
5040
5050
5060
5070
5080
509N
5100
5110
5120
5130
5140
5150
5160
5170
5180
519N
520N
6010
6020
6030

¢60y-dn

SNCILD3S

Y3TAWIASSY QYYD
00£6/00Z6 DVAINN

11

01lve
01v7

01lus
01u9
0110
ulll
0112
0113
0lli4
gilld
glie
ul17
ulls
0119
glav
ulel
01e2
6123
0124
glebd
U126
0127
gles
6129
06130
¢131
uld2
0133
0l34
0135
ul36
0137
ulss
0139
0140

VEAS
OEAA
0EAE
vEB2
0EB6
UEBA
OEBE
0EC2
VEC6
OECA
0ECE
0ED2
0EDB
0EDC
UEEOD
OEEY
0OEES8
OEEC
OEFO
OEFu4
0EF8
VEFC
0F00
UFou
0Foa
0FO0C
UF12
OF18
0F1C
0F20
0F24
0F28
0F2C
0F30
0F34

48ELODCU
47FUOF12
92G10F6C
Q2010F6F
47FUOF1e
G2000F6C
47FO0F18
Q2020F6L
4IFQNE3L
4800003C
u8Fo0DCe
NS07000UNF72
47600E3L
A612003k
AGUB003A
47100E32
u9D00DBE
u7200E32
49FQOF6A
47400€ED2
U8EVOO03A
95010F6L
47800ECE
92010F6tL
Q2EFOF8Y
N2690F920F 80
NCB3OF7AOCDA
AS030F 7y
47200Flu
QlF90F70
47800F30
9201 0F6C
u7F00EOe
0501 0F6F
47800F4A

LH
3]

M2H MVI
MVI
BC
M?2B2 MV I
BC
M2C2 MV]
BC
M2C3 LH
LH
CcLC
RC
Al
Al
BC
CH
BC
CH
RC
LH
CLI
BC
MVI
MVI
MV
M2L TR
TIO
BC
™
aC
MV I
BC
MZK0 CLI
RC

149M2CO
15+ M20L
MP2CN+21
MPCN+50¢1
15,M2L
M2CN+2+ 0
15rM2L%+6
M?CN+392
15.M2C1
1360
15eM2CO+2
0(8013) ,M2CN+8
6oM2C1
62018
58+ 8
1,M2C1
13+ MEND
2¢M2C1
159 M2CN

U MPC3+8
1458
MP2CN+Us]
RIMPC3+y
MPCN+4 0y
MPPWH 14 X IFF?

MPPW+24 (132=26) 1MPPW+6

MPPW(132) yM?2TB=238
MPCN+6r 3

2 MPL+6
M2CN+6 X 'FO?
8rM2K0

MPCN+2r]

15/ M2E

M2CN+50 1

8e%+22

SET BEGINNIMG ADDR TO 128

GO TO L

SET vC RO TO B2
SET VvC KO TO kg
GO TO L

SET VC RO TO R1
GO TO TT

SET vCc Co T0 C3
GO TO0 C1

LOAD R13 FROM Ri4

PP SET ST.ADDRESS OF EDIT
Qe IS DATA EQUAL TO PRED?

IF NO GO TO C1t
R1S5 + 18 TO R15
R13 +8 TO R13

IF R13 OVERFLOW GO TO C1
IS R13 EQUAL TO MEM LIMIT?

IF YES GO TO Ci

IS R1S EQUAL TO EDIT LIMIT?

IF NO GO TO QO
LOAD R14 FROM R13

FO IS VC FO SET TO F2?

IF YES GO TO PP

Fl SET vC FO YO F2
FILL * INTO STANDBY
PRIMT BUFFER AREA
TRANSLATE

TT TEST I/0 STATUS

IS PRINTER WORKING?
IS THFRE ANY ERROR?
IF NO GO TO VC Ko
SET VC B0 TO B2

GO TO E

IS VC KO SET TO K2?
IF YES GO TO K2

Figure 3—1. Example of Printer Output of a Program (con't.)

(Sheet 4 of 5)

MD
MD

MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD
MD

6040
£050
6060
6070
6080
609N
6100
6110
6120
6130
614N
6150
6160
6170
618N
619n
6200
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180

¢60y-dN

Y3IT1IWIASSY QavD

INOILD3S

t39Vvd

00€6/00Z6 DVAINN

[4¢

0141 OF38 95020F6F CL1 M2CN+50 2 1S VC K0 SET TO K37 DN MD 7190
0142 UF3C u7800FSe BC BeM2KD IF YES GO TO K3 C MD 7200
0143 0F40 N28300800F7A M2K1 MVC 128(132) 1 M?PPW LOAD DATA INTO PRINT RUFFER P MD AO0L10
0144 OF46 4T7FUO0DFe RC 159,M24 GO TO A B MD a02n
0145 OF4A 92020F6F MVI M2CN+He 2 K2 SET VC KO 70O K3 P MD 8030
0146 OF4E 47F0OFu4U BC 15, M2K1 GO TO K1 B MD 8040
0147 UF52 923C0050 M2K3 MVI B0y X*3Cr SET LINE ADV BITS FOR H.P, P MD 805N
0148 0F56 A4030003 XIOF 33 AND PAPER FEED TO H+.P. POS C MD 8060
0149 UF5A AS5030F70 TIi0 MPCN+6¢ 3 IS PRINTER WORKING? DN MD 8070
0150 UFSE 47200F5A BC 20 k=i IF YES REPEAT TIO c MD 8080
0151 OF62 A9002FFF HPR X*2FFF*,0 SUCCESSFUL STOP H MD 809N
01d2 0F66 47FOO0LDA BC 159 MENT RETURN TO MENT B MD R100
0153 0F6A M2CN ns cLle WS FOR VC AND PREDEC, BYTES MD 8110
0154 OF7A MZPwW DS cL132 STANDBY PRINT BUFFER ARFA MD 8120
0155 00000A0VODDA END MENT MD B130

Figure 3—1. Example of Printer Output of a Program (con’t.)
(Sheet 5 of 5)

c60v-dN

d3TIWISSY QAVD
00€6/00Z6 JVAINN

INOIlD3s

i3o5vd

€l

UP-4092

UNIVAC 9200/9300 3 14
CARD ASSEMBLER sECTION: PAGE:

3.1.6. Assembler Control Card

3.2.

On the first pass, the source code deck may be preceded by a control card which
has the following form:

LABEL l OPERATION I OPERAND
| CTL | ABS, p, q

where ABS indicates the output element is to be in absolute code form, p is a
decimal number representing the largest address available on the computer on which
the assembly is being done, and q is a decimal number representing the largest
address available on the computer for which the element is being assembled. Any
field in the operand may be omitted. If ABS is omitted, the output element is in re-
locatable code form. If p is omitted, the memory size of the computer on which the
element is being assembled is assumed to be 16,384. If q is omitted, the memory
size of the computer for which the element is being assembled is assumed equal to
the memory size of the computer on which the assembly is being done. The CTL
card may be omitted, in which case the result is the same as indicated for each
field omitted.

SYSTEM CODES

Table 3—1 shows the relation the Assembler assumes between card code, internal
computer code, and printer graphic. The Assembler reads a source code card in com-
pressed form and then translates it to the internal code via the translation table shown
in Table 3—~1. If keypunch equipment is used which sets up a different relationship
between card code and printer graphic than the one shown in Table 3-1, a different
translation table may be substituted at linker time for use by the Assembler in trans-
lating source code cards. This translation table may set up any relation between card
code and printer graphic that is desired; however, the relation between internal code
and printer graphic shown in Table 3—1 must remain inviolate, since this is the only way
the Assembler can ‘‘read’’ the source code. The Assembler prints its listing directly
from the internal code. This operation, in effect, assumes a 63-character print bar.

If a 48-character print bar is used while assembling, the Assembler may be modified

at linker time to translate printer output from internal code to 48-character print bar
code before printing.

The Assembler punches all output cards in a compressed ‘‘object code’’ form which
may be handled directly by the Linker or the absolute loader.

Some users may provide programs via the Assembler to be used to process data rep-
resented in an internal code different from the one used by the Assembler. In such a
case, the user must take special care in the representation of his constants. For
example, the Assembler assigns the internal code 11000001 to the graphic ‘‘A’’. If,
at the time an object program is run, the internal code for the data assigns the code
11000000 to the graphic ‘“A’’, a test for equality against a constant represented as
C'A' in source code language may not be performed as desired.

In general, when data to be processed by an object program is represented in an in-
ternal ceode other than that used by the Assembler, all difficulties can be avoided
by representing all constants in the source code in hexadecimal.

UP-4092

UNIVAC 9200/9300
CARD ASSEMBLER

15

Table 3-1. Internal Code

SECTION: PAGE:
TWO MOST SIGNIFICANT BITS OF ZONE - 00
TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT
00 01 10 11
0000 12-0-9-8-1 12-11-9-8-1 11-0-9-8-1 12-11-0-9-8-1
0001 12-9-1 11-9-1 0-9-1 9-1
0010 12-9-2 11-9-2 0-9-2 9-2
0011 12-9-3 11-9-3 0-9-3 9-3
0100 12-9-4 11-9-4 0-9-4 9-4
0101 12-9-5 11-9-5 0-9-5 9-5
0110 12-9-6 11-9-6 0-3-6 $-6
0111 12-9-7 11-9-7 0-9-7 9-7
1000 12-9-8 11-9-8 0-9-8 9-8
1001 12-9-8-1 11-9-8-1 0-9-8-1 9-8-1
1010 12-9-8-2 11-9-8-2 0-9-8-2 9-8-2
1011 12-9-8-3 11-9-8-3 0-9-8-3 9-8-3
1100 12-9-8-4 11-9-8-4 0-9-8-4 9-8-4
1101 12-9-8-5 11-9-8-5 0-9-8-5 9-8-5
1110 12-9-8-6 11-9-8-6 0-9-8-6 9-8-6
1111 12-9-8-7 11-9-8-7 0-9-8-7 9-8-7

UP-4092

UNIVAC 9200/9300 3
CARD ASSEMBLER SECTION:

PAGE:

16

TWO MOST SIGNIFICANT BITS OF ZONE - 01

TWO LEAST SIGNIFICANT BITS OF ZONE

DIGIT
00 01 ic n
12 11 12-11-0
0000 5 a _
0001 12-0-9-1 12-11-9-1 0-1) 12-11-0-9-1
0010 12-0-9-2 12-11-9-2 11-0-9-2 12-11-0-9-2
0011 12-0-9-3 12-11-9-3 11-0-9-3 12-11-0-9-3
0109 12-0-9-4 12-11-9-4 11-0-9-4 12-11-0-9-4
0101 12-0-9-5 12-11-9-5 11-0-9-5 12-11-0-9-5
0110 12-0-9-6 12-11-9-6 11-0-9-6 12-11-0-9-6
0111 12-0-9-7 12-11-9-7 11-0-9-7 12-11-0-9-7
1000 12-0-9-8 12-11-9-8 11-0-9-8 12-11-0-9-8
{
§ 1001 12-8-1 11-8-1 0-8-1 8-1
1
3 1010 12-8-2 11.8.2 12-11 8.2
¢ ! ’
1011 12-8-3 11-8-3 0-8-3 8-3
$ 1 #
1100 12-8-4 11-8-4 0-8-4 8-4
< * % @
1101 12-8-5 11-8-5 0-8-5 8-5
() — !
1110 12-8-6 11-8-6 0-8-6 8-6
+ ; > =
1111 12-8-7 11-8-7 0-8-7 8-7
| —/ ? "

Table 3-1. Internal Code (cont.)

UP-4092

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION:
TWO MOST SIGNIFICANT BITS OF ZONE - 10
TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT
00 01 10 11

0000 12-0-8-1 12-11-8-1 11-0-8-1 12-11-0-8-1
0001 12-0-1 12-11-1 11-0-1 12-11-0-1
0010 12-0-2 12-11-2 11-0-2 12-11-0-2
0011 12-0-3 12-11-3 11-0-3 12-11-0-3
0100 12-0-4 12-11-4 11-0-4 12-11-0-4

: 0101 12-0-5 12-11-5 11-0-5 12-11-0-5

i 0110 12-0-6 i 12-11-6 11-0-6 12-11-0-6

: 0111 12-0-7 : 12-11-7 11-0-7 12-11-0-7
1000 12-0-8 | 12-11-8 11-0-8 12-11-0-8
1001 12-0-9 12-11-9 11-0-9 12-11-0-9
1010 12-0-8-2 12-11-8-2 11-0-8-2 12-11-0-8-2
1011 12-0-8-3 12-11-8-3 11-0-8-3 12-11-0-8-3
1100 12-0-8-4 12-11-8-4 11-0-8-4 12-11-0-8-4
1101 12-0-8-5 12-11-8-5 11-0-8-5 12-11-0-8-5

! 1110 12-0-8-6 12-11-8-6 11-0-8-6 12-11-0-8-6

: 1111 12-0-8-7 12-11-8-7 11-0-8-7 12-11-0-8-7

Table 3-1.

Internal Code {cont.)

UNIVAC 9200/9300 3 18
UP-4092 CARD ASSEMBLER SECTION: PAGE:
TWO MOST SIGNIFICANT BITS OF ZONE - 11
TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT
00 01 10 1
0000 12-0 11-0 0-8-2 0 0
1241 11-1 11-0-9-1 1
0001 A J 1
12-2 11-2 0-2 2
0010 B K N 2
12-3 11-3 0-3 3
0011 c L T 3
12-4 11-4 0-4 4
0100 D M U 4
. 12-5 11-5 0-5 5
0101 E N v 5
12-6 11-6 0-6 6
11
oiio F 0 w 6
127 11-7 0-7 7
0111 G P X 7
1060 12-8 11-8 0-8 8
! H Q Y 8
12-3 11-9 0-9 9
1001 | R z 9
1010 12-0-9-8-2 12-11-9-8-2 11-0-9-8-2 12-11-0-9-8-2
1011 12-0-9-8-3 12-11-9-8-3 11-0-9-8-3 12-11-0-9-8-3
1100 12-0-9-8-4 12-11-9-8-4 11-0-9-8-4 12-11-0-9-8-4
1101 12-0-9-8-5 12-11-9-8-5 11-0-9-8-5 12-11-0-9-8-5
1110 12-0-9-8-6 12-11-9-8-6 11-0-9-8-6 12-11-0-9-8-6
1111 12-0-9-8-7 12-11-9-8-7 11-0-9-8-7 12-11-0-9-8-7

Table 3-1. Internal Code (cont.)

UP-4092

UNIVAC 9200/9300 4
CARD ASSEMBLER SECTION: PAGE:

4.1.

4. OUTPUT

ASSEMBLER CARD OUTPUT

The object code produced by the Assembler is punched into six different card types:
Element Definition Cards, External Definition Cards, Program Reference Cards, Ex-
ternal Reference Cards, Text Cards, and Transfer Cards. These card types have the
following functions.

The Element Definition Card contains the name, the size, and the origin of the
element as assigned by the Assembler.

An External Definition Card specifies the value of a symbol which may be refer-
enced by other elements.
The

aram Reference Card co
siall RCTICITACT Lalil CO

p 1taing the name of the element and the number by
which this name is identified in the relocation information for the element.
An External Reference Card contains a label to which the element refers but which
it does not define. The card also contains a number by which this label is identified
in the relocation information for the element.

A Text Card contains the instructions and constants of the element, an address in-
dicating where the instructions and constants are to be loaded into memory for
execution, and the relocation information pertaining to the instructions and con-
stants. The loading address for the instructions and constants is assigned by the
Assembler to conform with the origin of the element as described in the Element
Definition Card. The relocation information performs two functions:

— It permits the relocation of the instructions and constants to an origin other
than the one given to the element by the Assembler.

— It provides the information required by the Linker to resolve any external ref-
erences made in the instructions or constants with the corresponding external
definitions made in other elements.

UP-4092

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION: PAGE:

4.1.1.

@ The Transfer Card is generated by the END assembler directive. If the END direc-
tive specifies the address at which execution is to begin, this address appears in
the Transfer Card.

The order and number of these cards in the Assembler object code output deck is as
follows. First there is a single Element Definition Card. Then there are as many Ex-
ternal Definition Cards as there are ENTRY assembler directives in the source code.
Then there is a single Program Reference Card followed by as many External Refer-
ence Cards as there are EXTRN assembler ditectives in the source code. Then there
are as many Text Cards as are required to contain the instructions and constants repre-
sented in the source code deck. Finally, there is a single Transfer Card.

If the output of an assembly contains no External Reference Cards, it may be loaded
directly into the UNIVAC 9200/9300 via the Card Program Loader. In this instance,
the text is loaded at the addresses indicated in the Text Cards, and job execution
begins at the point indicated in the Transfer Card. The Element Definition Card, any
External Definition Cards, the Program Reference Card, and the relocation information
in the Text Cards are ignored by the Program Loader.

The format of these assembler output cards is as follows.

Element Definition Card

COoL. FIELD NAME CONTENTS
1 Load Key 12-2-9 punch
2 Type A (Hollerith)
3 Length 17 (or number of columns used less one from Col.11).
6 Absolute/relocatable Absolute or relocatable program indication (12 punch
if absolute, blank otherwise).
7 Hole Count Sum of the bytes punched (columns 8 through 72).
8 Program ESID External Symbol ldentification assigned by the
Assembler to this program name.
13-16 Assembled Start Address The base of this program as assigned by the Assembler.
17-24 Name The name assigned to this program (the name is left
justified in the field and is punched in EBCDIC).
25-28 Program Length The number of bytes of memory needed by this program.

UNIVAC 9200/9300
CARD ASSEMBLER

SECTION: PAGE:

4.1.2. External Definition Card

CoL. FIELD NAME CONTENTS

1 Load Key 12-2-9 punch

2 Type H (Hollerith)

3 Length 13 (or number of columns used less one from Col. 11).

7 Hole Count Sum of the bytes punched (columns 8-72).

9 RLD Length Number of columns of RLD information on card (indi-
cates 3 or 0).

10 Last RLD Column 11 relative number indicating the most signifi-
cant column of the last item of RLD information on the
card. The value is 59 if there is relocation data; other-
wise zero.

14-16 Symbol address The Assembler assigned value of the symbol field.

17-24 Symbol Symbolic name to be referenced by other program(s)
(punched in EBCDIC),

70-72 RLD Relocation field. See the description of this field for
the Text Card. If present, column 72 contains a 3 and
the least significant digit of column 71 aiso contains
a 3 indicating that columns 14—16 are to be modified.

4.1.3. Program Reference Card

COL. FIELD NAME CONTENTS
1 Load Key 12-2-9 punch
2 Type J (Hollerith)
3 Length 13 (or number of columns used iess one from Col.11).
7 Hole Count Sum of fhe bytes punched (columns 8-72),
8 Program ESID External Symbol Identification assigned by the
Assembler to the program name.
13-16 Assembled Start Address The base of this program as assigned by the Assembler.
17-24 Name Element name (same as columns 17 through 24 of the
Element Definition Card).

UNIVAC 9200/9300 4

UP-4092 CARD ASSEMBLER

SECTION: PAGE:

4.1.4. External Reference Card

COoL. FIELD NAME CONTENTS

1 Load Key 12-2-9 punch

2 Type K (Hollerith)

3 Length 13 (or number of columns used less one from Col. 11).

7 Hole Count Sum of the bytes punched (columns 8-72).

8 Name ESID External Symbol Identification assigned by the
Assembler to this symbolic name.

17-24 Name Symbolic name being referenced by this card
(punched in EBCDIC).

4.1.5. Text Card

coL. FIELD NAME CONTENTS

1 Load Key 12-2-9 punch

2 Type Q (Hollerith)

3 Text Length Indicates the number of columns less one of text
information on the card.

4-6 Load Address The Assembler assigned location where the text is
to be loaded.

7 Hole Count Sum of the bytes punched (columns 8§-72).

8 Program ESID External Symbol Identification assigned by the
Assembler to the program name to which this load
address is relative.

9 RLD length Number of columns of RLD information on this card.

10 Last RLD Column 11 relative number indicating the most
significant column of the last item of RLD informa-
tion on the card. This number is 59 if there is RLD
data, otherwise zero.

11 TXT The value to be loaded at the load address. The TXT

& following field contains information from columns 11 through
11+n, where n is the number contained in column 3.

72 RLD RLD fields begin in column 72 and occur from right

& preceding to left on the card for the number of columns indicated
in column 9. Each RLD field is composed of three
columns.

Example of RLD field:

Column 70 contains a name ESID. This points to a value in the linker reference
table to be applied to the TXT on this card.

UNIVAC 9200/9300 4
UP-4092 CARD ASSEMBLER SECTION: PAGE:

Column 71 contains a flag. The four most significant bits indicate the operation.
All zero bits indicate that the reference table value is to be added to
the text value to obtain the new text value. If the four most significant
bits of the flag column are 0001, the reference table value is subtracted
from the card text value to obtain the new text value.

The three least significant bits of the flag column indicate (in binary)
the length of the text field in bytes. The remaining bit is a one if the
field to be modified contains an additional halfbyte. Thvs, the four
least significant bits would contain the value eight for a four-bit field.
If all four bits are zero, the field is four bits long and is in the left
halfbyte.

Column 72 contains column position. A binary number (relative to column 11) point-
ing to the most significant column of the text information to be modified.

4,1.6. Transfer Card

CoL. FIELD NAME CONTENTS

1 Load Key 12-2-9

2 Type Y (Hollerith)

3 Length S (or number of cojumns less one from Col. 11).

7 Hole Count Sum of the bytes punched (columns 8-72).

9 RLD Length Number of columns of RLD information on the card.

(Indicates 3 or 0).

10 Last RLD Column 11 relative number indicating the most signi-
ficant column of the last item of RLD information on
the card. (Contains 59 if there is relocation data,
otherwise 0.)

11-13 Card Count The number of reference type K or text type Q cards
which were produced by the assembler for this element.

14-16 Start Address The address to which control is given after loading
this element.

70-72 RLD Relocation field. Column 72 contains column 11
retative indicator of the first column of the start
address (indicates Col. 14). The most significant

4 bits in column71 are 0001 if the reference table
address is to be subtracted from the card start address
or 0000 if the reference table address is to be added
to the card start address to obtain the relocated start
address. The least significant 4 bits in column 71
indicate that the start address on the card is 3 bytes
long. Column 70 contains the ESID that points to the
value in the reference table to be applied to the card’s
start address fieid.

For all assembler output cards, the PID is left justified in columns 73-76, and a
sequence number is punched in columns 77-80. Both the PID and sequence number
are punched in Holierith.

UNIVAC 9200/9300
UP-4092 CARD ASSEMBLER SECTION: PAGE:

5. LINKER

When a job consists of more than one element, the elements, which are the output of sep-
arate Assembler runs, must be combined before they may be loaded as an executable object
program. This combining, or linking, is done by a utility program called the Linker. The
Linker inserts the storage addresses for references made from one element to another and
modifies addresses if an element is relocated.

A provision is included for dividing the output elements into separate loads or ‘‘phases’’
Another provision allows corrections, stated in hexadecimal, to be made to any of the
elements being linked. These corrections must be in terms of the ultimate absolute addresses
assigned to each field being changed.

Most of the input to the Linker consists of the output of one or more Assembler runs. How-
ever, control cards are supplied by the user to specify:

— the initial storage address to be allocated to the output element
(PHASE card)

— the start of a new phase of the output (PHASE card)
— additional external definitions (EQU card)
— corrections to one or more of the elements being linked (REP)

— the end of the input stream (END)
The Linker provides an output listing including:

— the control cards on its input,

— the names and external definitions of the elements being linked and
the values allocated to each, as well as the number of the phase in
which it is included. Phases are numbered consecutively from one in
the order in which they appear in the input.

Error indications are included in the listing, and most errors cause termination of the
punched output. The punched card output is in the same form as the assembler output
cards, except that no relocation data is punched. The output for each phase consists of
Text Cards and a Transfer Card.

The Linker increments, if necessary, the address to be assigned to each input element so
that the base address is a multiplie of four.

The Linker is capable of either a one or two-pass operation. At the end of pass one a stop
occurs with a display indicating readiness for pass two. At the end of pass two a stop
with a display requiring a reply occurs. When the start button is depressed, the Linker
interrogates this reply to determine its subsequent action, which is to process another
set of input or to terminate processing.

UP-4092

UNIVAC 9200/9300 5
CARD ASSEMBLER SECTION: PAGE:

The Linker is assembled separately from its input/output but is linked to the input/output,
allowing for input from the standard card reader or the 1001, output to serial or row punch,
and choice of input translation table and the option of a translation for the 48 character
printer.

5.1.

5.2.

LINKER INPUT

The major input to the Linker consists of the output of one or more assemblies. The
input to the Linker is normally formed by placing one element behind the other in

the order they are to have in storage. Then a PHASE card is placed at the beginning
of the deck to define the initial storage location and an END card at the end to signal
the end of the input. If the output element is to consist of more than one phase, each
input element must be entirely in one phase, with a PHASE card inserted in front of
the first Element Definition Card in the phase. Each such PHASE card indicates the
initial address to be allocated to that phase. When the Linker input is arranged in this
manner, all elements comprising one phase must follow the PHASE card defining that
phase and precede the PHASE card defining the next phase.

The order of the input must also be such that the element using an externally defined
symbol must precede all elements referring to that symbol. If there are any symbols
for which this is not possible, their definitions may be supplied by EQU cards. If
this is not desirable, the Linker provides the option of a two-pass operation. The
first pass recognizes the headers (Element Definition and External Definition Cards)
and stores the external definitions. The second pass processes the External Ref-
erence, Text, and Transfer Cards, and produces the output element.

If desired, a two-pass operation may be avoided by separating the headers of the
input elements and presenting them first. The procedure is as follows:

1. Put together the input elements as described above, but without
control cards;

Sort out the header cards (12 punch in column 2);
3. Place the header cards in front of the remaining deck;

4. Insert the required control cards,

Each PHASE card should precede the Element Definition Card for the first element
in the phase being defined. EQU cards follow a PHASE Card, Element Definition, or
External Definition Cards. REP cards must immediately precede the Transfer Card of
the element they are to alter.

LINKER CONTROL CARD FORMATS

The control card identifier (CTL, PHASE, EQU, REP, or END) is left justified in
columns 8-12. Columns 1 to 7 are blank except for the QU card on which columns

1 to 4 contain the symbol being defined. The specifications contained on each control
card begin in column 14 and are terminated by a blank.

UP-4092

UNIVAC 9200/9300 5
CARD ASSEMBLER SEC TION: PAGE:

5.2.1.

5.2.2.

CTL

The CTL card is the first card of the Linker input. The specifications consist of
two fields separated by a comma:

n,p

where n=1 one-pass operation of the Linker,
n=2 two-pass operation of the Linker,

p a decimal number representing the largest address available to the out-
put element.

Any field may be omitted. The effect is as follows:

n omitted : one-pass operation.

pomitted : maximum address to be allocated is not to change. The initial
value is 16383.

The CTL card may be omitted, in which case the result is the same as indicated
above for each field omitted.

If the Linker is to perform a two-pass operation and produce code for a 16K system,
the CTL card would be

CTL 2,16383

PHASE

A PHASE card defines the name and initial storage address for the output element
and must be the first or second card of the Linker input, preceded only by the CTL
card. A PHASE card also precedes the Element Definition Card (type A) for the
first element of each subsequent load. It specifies the name of the phase and its
starting address.

The specifications field has the fc;rm
phase-name, displacement, flag, symbol

where phase-name is a group of up to four alphabetic characters representing the
name of the phase

displacement is a decimal number (may be preceded by minus) or a hexa-
decimal number in the form X’nnnn’

flag is C or A for the first PHASE card and C, A, or L for any others.
C — load address equals the highest core address minus the
displacement field.
A — load address is the actual value given in the displacement
field.

L — load address is obtained by adding the displacement to the
value of the symbol.

symbol is any previously defined symbol.

UP-4092

UNIVAC 9200/9300 5
CARD ASSEMBLER SECTION:

5.2.3.

5.2.4.

EQU

An EQU card supplies the definition of a symbol which is not defined in any of the
elements being linked or which is defined in an element whose position in the input
deck is later than that of the first element containing a reference to the symbol.

The specification field of the EQU card has the form:

value
or
value, symbol

where value is a decimal number, a decimal number preceded by a minus sign,
or a hexadecimal number in the form X’nnnn’

symbol is any symbol which has been defined previous to the EQU card in
the input deck.

In the first form above, the binary value represented by the value field becomes the
value assigned to the symbol appearing in the label field of the EQU card. For an
EQU card with a specification field of the second form above, the value of the
previously defined symbol is added to this value to yield the value of the symbol
being defined.

An EQU card must follow a PHASE card, an Element Definition Card, an External
Definition Card, or another EQU card. It must precede the body of the first element
containing a reference to the symbol defined. The symbol, contained in the specifi-
cation field, must have been previously defined.

If the Linker control deck contains more than one EQU card defining the same

symbol, an error indication is made on the listing. However, such an error does
not terminate the punching of output. Instead, the Linker continues to treat the
definition given in the first such EQU card as the definition for the symbol.

END

The END card indicates the end of the input to the Linker and is the last card in
the deck.

The specification field has the same form as that of the EQU card, and is processed
in the same way to produce a single value which is interpreted as the address at
which to begin executing the last phase being produced by the Linker. As such,

this value is punched into the Transfer Card at the end of the output element.

If the output of the Linker consists of more than one phase, the transfer address
of each phase but the last is determined as follows:

1. Normally, the transfer address of the phase is the address from the first
Transfer Card in the input to the phase.

2. If no Transfer Card in the input contains an address, the transfer address
is the lowest address assigned to the phase.

UP-4092

UNIVAC 9200/9300 5
CARD ASSEMBLER SECTION: PAGE:

5.2.5.

5.3.

The specification field of the END card may alsc be blank. In this case the trans-
fer address punched into the terminal Transfer Card of the output element is the
address from the first Transfer Card of an input element in that phase containing
an address. If no Transfer Card of an input element contains an address, the
lowest address assigned to that phase is punched into the terminal Transfer Card.

REP

The REP (Replace) cards specify changes which are to be made to an assembled

element. The REP cards are placed immediately in front of the Transfer Card of

the element to be altered. Addresses and data are specified in hexadecimal in the

same form they are to have in the output element. No relocation or linking facilities

are provided by the Linker for this data.

The form of the specifications field is

address, data, data, ...

where address is a field of from one to four hexadecimal digits specifying the
storage address of the leftmost byte of data to be altered as a
result of this card.

data is a field of from one to four hexadecimal digits specifying data
to be right justified in a halfword of storage. The address field
is followed by a variable number of such data fields specifying
the contents of successive halfwords of memory. The fields are
separated by commas and terminated by a blank.
EXAMPLE

Assume two separately assembled elements, A and B. A was assembled at an origin
of 0 and has a length of 100, while B was assembled at an origin of 400 and has a
length of 200. Further, A externally defines one entry point M, which is assigned an
element relative address of 50, and makes external references to symbols X, Y and

Z. B on the other hand externally defines symbols X, Y, and Z and makes an external
reference to M. Symbols X and Y are entry points with relative addresses of 475 and
550, respectively, while Z is defined as having an absolute value of 25. Finally,
neither the A nor the B element Transfer Card specifies a starting address. The object
code decks for elements A and B have the following construction.

Element A

a. One Element Definition Card specifying that this element is named A and has an
origin of 0 and a length of 100.

b. One External Definition Card specifying M as an externally defined symbol with
an element relative value of 50.

c. One Program Reference Card specifying that this element is named A, that this
name has an External Symbol Identification (ESID) number of 1, and that element
A has an origin of 0.

d. Three External Reference Cards specifying that X, Y, and Z are externally ref-
erenced symbols which have ESIDs of 2, 3, and 4, respectively.

UP-4092

UNIVAC 9200/9300 5
CARD ASSEMBLER SECTION: Pacy:

e. Text Cards containing the instructions and constants of element A and the re-
location information for these instructions and constants. Two examples may
clarify the nature of this relocation information:

1. An instruction may refer to some other part of element A. This reference is
relative to the origin of the element. If the origin moves, the reference must
be adjusted accordingly. The associated relocation information indicates
where this reference is made in element A and specifies the ESID of element
A, indicating that this is an element relative reference.

2. An external reference may be made. In this case, the reference is undefined.
The associated relocation information indicates where in element A this
reference is made and specifies the ESID identifying the undefined symbol
referenced.

f. One Transfer Card.

Element B

a. One Element Definition Card specifying that this element is named B and has an
origin of 400 and a length of 200.

b. Three External Definition Cards.

1. One specifies that X is an externally defined symbol and that it has an element
relative value of 475.

2. One specifies Y with an element relative value of 550.

3. One specifies Z with an absolute value of 25.

c. One Program Reference Card specifying that the element is named B, that it has
an ESID of 1, and that it has an origin of 400.

d. One External Reference Card specifying M as an externally referenced symbol
with an ESID of 2,

e. Text Cards containing the instructions and constants of element B and the re-
location information for these instructions and constants.

f. One Transfer Card.

These two decks are represented schematically in Figure 5—1. Suppose elements A
and B are to be linked into one job having an origin of 1000 and whose initial execu-
tion address is to be the beginning of element A. The origin would be specified in a
PHASE card, the transfer address in an END card. The input to the Linker for a one-
pass operation would appear as shown in Figure 5-2.

The Linker reads the PHASE card and sets the location counter to 1000 in preparation
for creating a job to be loaded beginning at memory location 1000. The Linker then
reads the header cards and sets up the reference table. Each entry in the reference
table consists of three fields.

The name which this entry describes.
The location assigned to this name.

The relocation factor for this name. The relocation factor is the amount by
which the value assigned to the name by the Assembler must be adjusted to
arrive at the value to be assigned to the name by the Linker.

UNIVAC 9200/9300

UP-4092 CARD ASSEMBLER SECTION: PAGE:
TRANSFER TRANSFER
TEXT AND TEXT AND
RLD INFO RLD INFO
EXT REF Z EXT REF M
ESID 4 ESID 2
B ESID
ESID 3 / ORIGIN 400
EXT REF X EXT DEF Z
ESID 2 ABS VAL 25
NAME A
ESID 1 EXT DEF Y
ORIGIN 0 ELT REL 550
’/ EXT DEF M EXT DEF X
ELT REL 50 ELT REL 475
ELEMENT A ELEMENT B
ORIGIN O ORIGIN 400
LENGTH 100 LENGTH 200

Figure 5-1.

Elements A and B Deck Structure

UP-4092

UNIVAC 9200/9300 5
CARD ASSEMBLER sEcTion; PAGE:

END
START A

TRANSFER

ELEME
MENT B TEXT AND
BODY RLD INFO

EST REF M
ESID 2
NAME B
ESID 1
ORIGIN 400
TRANSFER

TEXT AND

RLD INFO
ELEMENT A EXT REF Z
ESID 4
BODY
EXT REF Y
ESID 3
EXT REF X
ESID 2
/ NAME A
ESID 1
l ORIGIN 0
EXT DEF Z
ABS VAL 25
EXT DEF Y
ELT REL 550
ELEMENT B
EXT DEF X HEADER
ELT REL 475
ELEMENT B
ORIGIN 400
LENGTH 200
EXT DEF M
ELT REL 50
ELEMENT A ELEMENT A
ORIGIN 0 HEADER
| LENGTH 100

PHASE

ORIGIN 1006 PHASE

Figure 5-2, Linker Input

‘UNIVAC 9200/9300 5 l
UP-4092 CARD ASSEMBLER SECTION:

PAGE:

For example, the name ‘“A’’ is to be assigned a value of 1000 by the Linker. It was
assigned a value of 0 by the Assembler; therefore, its relocation factor is 1000.

As a second example, consider the name ‘‘B”’.

1. Since element A begins in location 1000 and is 100 bytes long, the name
““B”’ is assigned a value of 1100 by the Linker.

2. While the body of element A is being processed, the name ‘‘B’’ has a
relocation factor of 1100, since the name ‘‘B’’ is undefined in element A.

3. While the body of element B is being processed, the name ‘‘B’’ has a
relocation factor of 700, since in element B the Assembler assigned a
value of 400 to the name ‘‘B”’.

The reference table produced as a result.of processing the header cards in Figure
5-2 is shown in Figure 5-3.

The Linker then reads the Program and External Reference Cards for element A.
The information from these reference cards is used by the Linker to build an ESID
table. Each entry in the ESID table consists of two fields:

1. The ESID from the reference card.

2. The reference table entry number of the symbol to which the ESID is
assigned.

The Program Reference Card is also used to determine the relocation factor for the
element name. The result of processing the reference cards is shown in Figure 5-4.

The Linker then processes the text of element A. For each instruction or constant
on the input text cards it produces an instruction or constant on an output Text
~ 1ot 1 at o o f e handk omin memdiand i A Vbnwnd Tha aAAdeaca ot
Lard. ine apsolute portions Or tne€ LeXt ait prouuccd uiiaiiticu. 11T auuitss at

which the text is to be loaded is adjusted by the relocation factor for element A.

If a portion of the text is relocatable, then there is associated with it relocation
information specifying an ESID of 1. In this case, the Linker looks up in the ESID
table the associated reference table entry number. It then looks up in the reference
table the relocation factor (1000) and adjusts the text by the relocation factor. The
input text is then relocated to the origin specified by the PHASE card, and this
relocated text is produced as output.

The Linker performs a similar function if a portion of the text makes an external
reference. (Assume the reference is made to the symbol Y.) There is associated with
this text relocation information specifying the ESID of the external reference (3).

The text is adjusted by the relocation factor (1250) determined by the relation be-
tween ESID and reference table entry number (5). This defines the external reference,
and the resolved text is produced as output.

UNIVAC 9200/9300 5

UP-4092 CARD ASSEMBLER SECTION: PAGE:
END
START A
TRANSFER
TEXT AND
ELEMENT B RLD INFO
BODY
EXT REF M
ESID 2
NAME B
ESID 1
ORIGIN 400
TRANSFER
TEXT AND
RLD INFO
ELEMENT A
EXT REF Z
BODY ESID 4
EXT REF Y
ESID 3
EXT REF X
ESID 2
NAME A
ESID 1
| ORiGiIN 0
EXT DEF Z
ABS VAL 25
REFERENCE TABLE
/ EXT DEF Y NEUNMTBREYR NAME VALUE Ri:ogﬁg;on
| ELT REL 550
ELEMENT B 1 A 1000 1000
EXT DEF X HEADER
ELT REL 475 2 M 1050 1050
ELEMENT B
ORIGIN 400 3 B 1100 1100
LENGTH 200
4 X 1175 1175
EXT DEF M
0
ELTRELS 5 Y 1250 1250
ELEMENT A
ELEMENT A
ORIGIN 0 HEADER 6 z 25 25
LENGTH 100
PHASE
ORIGIN 1000 PHASE

Figure 5-3. Header Processing

UNIVAC 9200/9300 5

UP-4092 CARD ASSEMBLER SECTION: PAGE:
/ END
| START A
/TRANSFER
|
TEXT AND
ELEMENT B l RLD INFO
J
BODY EXT REF M
‘ ESID 2
NAME B
ESID 1
ORIGIN 400
TRANSFER
TEXT AND
RLD INFO
ELEMENT A ESID TABLE
BODY EXT REF 2 ESID ENTRY
ESID 4 NUMBER
EXT REF Y 1 1
ESID 3
2 4
EXT REF X
ESID 2 3 5
/ NAME A
y ESID 1 4 6
| ORIGIN 0 /

REFERENCE TABLE

ENTRY RELOCATION
NUMBER NAME VALUE FACTOR

1 A 1000 1000

2 M 1050 1050

3 B 1100 1100

4 X 1175 1175

5 Y 1250 1250

6 z 25 25

Figure 5—4. ESID Processing for Element A

UP-4092

UNIVAC 9200/9300 5 12
CARD ASSEMBLER cecTion: -

The Linker recognizes the end of element A by means of the Transfer Card. It then
reads the Program and External Reference Cards for element B and adjusts the
reference and ESID tables accordingly. The result of this adjustment is shown in
Figure 5—-5. Note that the relocation factor for the name ‘‘B’’ is changed.

The Linker then uses the ESID and reference tables to process the text of element

B and produces the related output text completely relocated and with all external
references defined. In response to the END card, the Linker produces a Transfer
Card with a value of 1000 (the value of the name ‘“A’’) in it for a Transfer Address.
Thus, the output of the Linker is a deck of Text Cards with no relocation information,
followed by a Transfer Card.

If a third element were to follow element B as input to the Linker, the relocation
factor for the name ‘“B’’ would be set back to 1100 by the Linker before it processed
this third element.

END
START A
TRANSFER
ELEMENT B
BODY TEXT AND
RLD INFO ESID TABLE
ENTRY
EXT REF M) ESID NUMBER
| ESID 2
/ T,
NAME B
ESID 1
ORIGIN 400 2 2
REFERENCE TABLE
ENTRY RELOCATION
NUMBER NAME FACTOR | cAcTOR
1 A 1000 1000
2 M 1050 1050
3 B 1100 700
4 X 1175 1175
5 Y 1250 1250
6 z 25 25

Figure 5-5. ESID Processing for Element B

UNIVAC 9200/9300 Avoendix A
UP-4092 CARD ASSEMBLER Pp

SECTION: PAGE:

APPENDIX A. PREASSEMBLY
MACRO PASS

The preassembly macro pass of the UNIVAC 9200/9300 Card System is used in conjunction
with the Assembler to promote ease and efficiency in preparing programs for execution on

the UNIVAC 9200/9300. A schematic of the preassembly macro pass is shown in Figure
A-1.

MACRO
INSTRUCTION
DECK

O

MACRO
LIBRARY DECK

UNIVAC
9200/9300

AN
{
SOURCE CODE

DECK

READY FOR

ASSEMBLY

Figure A~1. Schematic of Preassembly
Macro Pass Operation

UP-4092

UNIVAC 9200/9300 Appendix A

CARD ASSEMBLER SECTION: PAGE:

The macro library is a card deck in which the macros in the library arte punched in a com-
pressed form to minimize both library passing time and memory storage space. The macro
library is read in first and is stored in memory. Then the card deck of macro instructions
is read in. This deck contains the patameters and controls required to generate a source
code deck in Assembler format. The output deck represents the selected library routines
modified as instructed. The source code deck may be combined with user source code
cards and assembled as one element, or it may be assembled as a separate element and
linked with other relocatable elements to make up a program.

Being a card deck, the library is separable, and only those routines called for during the
operation of a particular preassembly macro pass need be in the library for storage.

1. MACRO INSTRUCTION FORMAT

A macro instruction is similar in form to a source code instruction; it has a label
(optional), an operation code, and an operand consisting of one or more expressions
separated by commas. The prime difference is that the macra instruction causes the
generation of a series of source code instructions representing a number of Assembler
operations; whereas a source code instruction causes the Assembler to do one specific
operation.

The format for a macro instruction is as follows:
label operation P1,P5,P3,...,P, N{= Pn+1,N2=Pn+2,N3=Pn+3 sersNp=Pp

The label may be any symbol, but is not necessarily assigned the current value of the
location counter. The operation is the name of the macro routine to be selected from
the library. The operand, P through P, ., is a sequence of expressions specifying
parameters. The parameters are represented either as positional parameters or as key-
word parameters.

1.1. Parameters

Positional Parameters All positional parameters must be specified before any key-
word parameters may be specified. The order of the expressions in the operand
determines the order of the parameters specified. Parameter specifications are
separated by commas. When a positional parameter specification is omitted, the
comma must be retained to indicate the omission. Thus, if a macro has three
positional parameters and the second one is not specified, the operand appears

as follows:

Py,,P3

If the third parameter is not specified, instead of the second, the operand is written:
P1,Py

Thus, no trailing commas need be present.

Keyword Parameters The specification of a keyword parameter is as follows:

N=P

UP-4092

UNIVAC 9200,/9300 Aobendix A
CARD ASSEMBLER A o aces

where N is the name of the parameter {any symbol is a legitimate keyword parameter
name) and P is the parameter specification (a value or a character string). Keyword
parameter specifications are separated by commas; however, the comma need not

be retained if the specification is omitted. There must be a comma between the last
positional parameter and the first keyword parameter. The order of the keyword
parameter specifications is not significant. For example, if a macro has three key-

word parameters, the operand of the macro instruction might be:

1.12'.'31,1:2:?2,1?3:?3
or

N2—P2,N12P1,N3—p3
and so on

A macro may have positional and/or keyword parameters with commas separating the
specifications. For example, the operand of a macro instruction with three positional
and two keyword parameters might be as follows:

Pl,Pz,P3,N1=P4,N3=P5

The number of parameters which may be specified with one macro instruction depends on
how much space is required to store the specificatians. One macro instruction may normally
specify as many as 50 parameters in its operand. When the operand overflows the space
pravided on one card, provision is made to continue the operand on the following card by
putting a non blank in column 72. The continuation of the operand begins with the first non-
blank in or after column 14. The macro pass searches for a continuation card as soon as
one of the two following events occurs:

1. Information is taken from column 71 of the current card.

2. A comma followed by a space is detected in the current card.
Columns 1 through 13 of a continuation card must be blank.
If the information on a card is terminated prior to column 71 by means of a comma followed

by a space, comments may be written after the space. For example, a macro instruction
with three keyword parameters might be written as follows:

LABEL 5 gPERATlON 5 “ OPERAND COMMENTS 72
Loy | MACRO| IN1j=P1,, COMMENT , , v oy by b il oy 14X
L pal o N2=P2,, COMMENT , | v 10 by v d ey 1 |X
L1 | NI N3=P3, ICOMMENT . , | , , v (Lo bbb gl
L1 | IR b by b v b v by g v by by |

The specification of a parameter may be a character string or an expression. A character
string may not contain an equal sign or a comma and may have a maximum of seven
characters.

UP-4092

UNIVAC 9200/9300 Appendix A
CARD ASSEMBLER secTion: PacE:

2.

2.1,

2.3.

WRITING MACROS FOR THE LIBRARY

The routines for the macro library are written in standard assembler source code. They

are then passed through a special run to put them into the compressed form expected by
the preassembly macro pass. To distinguish one macro from another in the library, three
directives are used: PROC, NAME, END.

PROC Directive The first source code statement of a macro in the library is a PROC
directive, which has the following form:

label PROC (operand optional)

The label may be any symbol, but is optional, and when used the label in the macro
instruction calling on the macro is substituted for the PROC label whenever the
PROC label appears in the macro. For example, suppose the symbol MOVE were
specified for the label of a macro instruction, that the label of the PROC directive
of the associated macro was NAME, and that the macro contained the following line
of source code:

NAME MVC DEST,ORIG

Then, the source code generated by the preassembly macro pass would appear as
follows:

MOVE MVC DEST,ORIG

If the PROC directive does not have a label but the macro instruction does, the pre-
assembly macra pass assigns the label to the first line of source code generated in
processing the macro.

v a

NAME Directive The second iine of a macro library routine must be a NAME direclive
which has the form:

3

label NAME

This is the call name for the macro and is the same as that specified in the operation
field of the macro instruction. The name may have as many as five characters, the
first of which must be alphabetic, the other four alphanumeric.

END Directive The end of a macro library routine is indicated by an END directive.
It has no operand and requires no label.

If the following macro is in the library:
PROC
MOVE NAME

MVC DEST,ORIG

END

UP-4092

UNIVAC 9200/9300 Appendix A
CARD ASSEMBLER SEcTioN: crce:

3.

then the macreo instruction:
MOVE
is equivalent to the source code instruction:
MVC DEST,ORIG

Ncte that none of the macro directives (PROC, NAME, END) are produced as
output of the preassembly macro pass.

INCORPORATING PARAMETERS INTO MACRO CODING

The operand of a PROC directive, when used, has the following form:
p,n,N1,N9,N3,...,Np,

The first expression (p) in the operand is a symbol used to address the parameters for
the macro. This expression and its use are explained later in this section. The second
expression (n) is the number of positional parameters associated with the macro. The
series (N{,...N,) are the names of the keyword parameters. Any symbol is a legitimate
keyword name. Listing the keyword parameters in this way makes them, in effect, posi-
tional parameters to the macro. For example, suppose the PROC directive has the
following form:

PROC p,3,N1,N2,N3

The macro has three positional parameters, P1, P2, and P3. It also has three keyword
parameters, N1, N2, and N3. Thus, the keyword parameters become, in effect, positional
parameters P4, PS5, and P6.

The values specified for parameters are substituted in the macro coding for expressions
of the following form:

p(n)

whete p is the first expression in the PROC directive operand and n is the number of
the positional parameters. The first has a number of one, the second, two; and so forth.
As an example, if the following macro is in the library:

PROC P,0,DEST,LGTH,ORIG
MOVE NAME
MVC P(1)P(2),P(3)

END

UP-4092

UNIVAC 9200/9300 Appendix A
CARD ASSEMBLER sEc TION: PAGES

then the macro instruction
MOVE DEST=0UT,LGTH=16,0RIG=IN
after the preassembly macro pass operation, is equivalent to the source code instruction:
MVC - OUT(16),IN

If a parameter value is not specified, the preassembly macro pass assigns a value of
binary zero to the parameter.

4. DIRECTIVES

4.1. DO Directives

A DO directive has only one expression in its operand. It is equal to a value of
binary zero or binary one. A DO directive controls all lines following it up to its
associated ENDO directive. For example, in the following sequence of coding:

DO 1
2
DO 3
4
5
ENDO 6
7
8
ENDO 9

the first ENDO directive is associated with the second DO directive, the second

ENDO directive with the first DO directive. In other words, DO and ENDO directives
are paired to produce nests. Thus, the first DO directive controls lines 2 through 8, and
the second DO directive controls lines 4 and 5.

If the operand of a DO directive has a value of one, the lines it controls appear in
the source code produced by the macro pass; if the operand has a value of zero, the
lines it controls do not appear. For example, if the following macro is in the library:

PROC P,0,ACT
MOVE NAME

DO P(1)

MVC P,0,ACT

ENDO

END

UP-4092

UNIVAC 9200/9300 Appendix A
CARD ASSEMBLER SECTION: PAGE:

4.2

then the macro instruction
MOVE ACT=1
would produce the instruction
MVC DEST,ORIG
in the source code produced by the macro pass ; whereas, the macro instruction
MOVE ACT=0
would not produce the instruction in the source code.
(Note that the macro instruction
MOVE

would also cause the suppression of the instruction.)

GOTO Directive

The directive GOTO is used to direct the macro pass to transfer control in the
production of source code from a macro. A GOTO directive has one expression in
its operand, which must be a label. This label must be the label of a LABEL dir-
ective. For example, if the following macro is in the library:

PROC P,0,FOUR
MOVE NAME

DO P(1)

MVC DEST(4),0RIG

GOTO END

ENDO

MVC DEST(8),0RIG
END LABEL

END

then the macro instruction:

MOVE FOUR=1
would produce the instruction:

MvC DEST(4),0RIG
while the macro instruction:

MOVE
would produce the instruction:

MVC DEST(8),0RIG

UNIVAC 9200/9300 Aovendix A
UP-4092 CARD ASSEMBLER Al St bacE:

4.3. NAME Directive

More than one NAME directive may follow the PROC directive of a macro. (However,
all the NAME directives in a macro must immediately follow the PROC directive.)
Each such NAME directive specifies a different name for the same macro.

The object of giving a macro more than one name is to permit reference to different
versions of the procedure embodied in the macro. The versions are distinguished with-
in the macro by means of the operands of the NAME directives.

Only one expression may appear in the operand of a NAME directive and may be as-
signed a value ranging from zero through 216_1. This expression is essentially a
parameter of the macro; it may be addressed in the macro as:

p(0)
where p is the first expression in the PROC directive operand; and consequently, it may

be used to distinguish between versions of a macro. For example, if the following macro
is in the library:

PROC P

MVv4 NAME 4

MV8 NAME 8
MVC DEST(P(0)),0RIG
END

then the macro instruction
MV4
would produce the source code
MVC DEST(4),0RIG
while the macro instruction
MV8
would produce
MVC DEST(8),0RIG
If a NAME directive has no operand, the parameter p(0) is assigned a value of zero.

If a macro has no parameters and it makes no reference to the operand of any of its
NAME directives, then its PROC directive has no operand.

UP-4092

UNIVAC 9200/9300 Appendix A
CARD ASSEMBLER secTioN:

6.1

6.2.

RELATIONAL OPERATORS
The relational operators are:
= > <

A relational operator may be used to compare two terms. If the condition specified by
the operator holds between the terms, the value of the expression is one; otherwise the
value of the expression is zero. For example, given the expression:

P(1)=YES

if YES is specified for the first parameter of the macro, then the value of the
expression is one; otherwise it is zero.

SET VARIABLES

A set variable is a symbol set by the macro pass to a value defined by an expression.
Before a set variable may be set, it must first be declared by a GBL, or an LCL directive.

. GBL Directive

Set variables declared by a GBL directive are called global set variables. The format
for the GBL directive is as follows:

LABEL gPERATIONB OPERAND]
14

Lo | GBL! . G%ning b b e b b s L b

| TR ! e b v e v v bv e b by o b e b

The symbol, G%nn, in the operand is the set variable being declared and nn may vary
between 00 and 49. A maximum of 50 global set variables may thus be used in any one
macro library. Once declared, a global set variable remains declared for the remainder
of the macro pass operation.

LCL Directive

Set variables declared by an LCL directive are called local set variables. The format
is as follows:

LABEL & gPERATION‘B‘ OPERAND 5
4

111|IL1C1L11 Ll%nlnllL[lALlllllilllllllllllllllllil

| . ; ; ; . :
Lt HE B Y N Y NS NS T U T S S YT T T VY Y O W S S O N NSOV SO NS S N SR U

The symbol, L%nn, in the operand is the set variable being declared and nn may vary
between 00 and 49. A maximum of 50 local set variables may thus be used in any one
macro. The declaration of a local set variable is unique to the macro currently being
processed by the macro pass operation. Its subsequent use by another macro during
the same macro pass operation necessitates that it be declared and set again.

UP-4092

UNIVAC 9200/9300 Appendix A 10
CARD ASSEMBLER SECTION:

PAGE:

6.3.

SET Directive

The macro pass operation sets a set variable when it encounters a SET directive,
which has the following form:

LABEL % (a)PERATION‘B] OPERAND 5
1 4

symbol expression
el SET | T AT S S 0 U T T (NN OO S Y I T S U W U W OO0 NN S0 OO A A A

IIIII llII Illllllllll‘[lLll‘!Il\llllllll\llill

The symbol in the label field identifies the global or local set variable being set;
the expression in the operand is the value to which the set variable is to be set. The
value of the expression may range from zero through 216_1. Until a GBL or LCL var-
iable is set by a SET directive, it has a value of zero. Once it has been set to a
specific value by a SET directive, the set variable retains that value until it loses
its declaration or is set to another value by another SET directive.

Declaring a set variable does not affect its value. Moreover, it does no harm to de-
clare a set variable more than once if it is convenient to do so.

The following is an example of the use of a local set variable. If the following macro
is in the library:

PROC P,0,ACT
MOVE NAME
LCL L %00
L%00 SET P(1)=YES
DO L%00
MVC DEST,ORIG
ENDO
END

then the macro instruction
MOVE ACT=YES
would produce the source code instruction
MVC DEST,ORIG

while any other form of the MOVE macro instruction would suppress production of the
source code instruction.

UNIVAC 9200/9300 Appendix A 11
UP-4092 CARD ASSEMBLER SECTION: PAGE:

The following is an example of the use of a global set variable. Assume the following
two macros are in library:

PROC P,0,ACT
GIVE NAME

GBL G%00
G%00 SET P(1)=YES

DO G%00

MVC DEST,ORIG

ENDO

END

PROC
TAKE NAME

DO G%00

MVC ORIG,DEST

ENDO

END

If the only macro instructions in the macro instruction deck for a particular macro
pass are the foilowing:

GIVE ACT=YES
TAKE

in the order shown, then the following source code would be produced:

MVC DEST,ORIG
MVC ORIG,DEST

If the only macro instructions in the macro instruction deck for a particular macro
pass are the following:

GIVE
TAKE

no source code would be produced.
If the only macro instructions in the macro instruction deck are the following:

TAKE
GIVE ACT=YES

then the following source code would be produced:
MVC DEST,ORIG

Thus, the value of a global set variable is a function of the order of the macro
instructions in the macro instruction deck.

UP-4092

UNIVAC 9200/9300 Appendix A 12
CARD ASSEMBLER sECTION: PAGE:

LABELS USED IN UNIVAC PRODUCED MACROS

It should be noted that if the output of a macro pass is to be combined with user soutrce
code cards and assembled as one element, any symbol used as a label in a source code
instruction produced by the macro pass may not be used as a label in the user’s own code.
To avoid the necessity of the user checking a list of symbols used in Univac written
macros, a special feature has been incorporated in the Assembler to allow all such
symbols to incorporate as their second character a question mark.

MACRO INSTRUCTION DECK

Regardless of the order of the macro routines in the library, the macro instruction deck
may be in random order with respect to the library, and a particular macro may be ref-
erenced as many times as desired. The order of the macro instructions does determine the
sequence of the source code instructions generated as output of the macro pass operation.

During the macro pass operation, any cards in the macro instruction deck that are not
macro instructions referring to macros in the macro library are reproduced unchanged
in the output source deck. The macro pass operation recognizes the end of the macro
instruction deck by means of an END card which it reproduces and includes at the end
of the output source code deck.

UNIVAC 9200/9300 .
A dix B
UP-4092 CARD ASSEMBLER seenm oace:

APPENDIX B. INPUT OUTPUT CONTROL
SYSTEM (IOCS)

[y

GENERAL DESCRIPTICON

The Input Qutput Control System (IOCS) provides the user with tested input/output
routines to control the data which are the input or output of programs written in Assem-
bler language. IOCS consists of two parts:

(a) the input/output routines themselves which are macros and generated as a result
of macro calls. The macros used to generate the input/output routines are called
declarative macro instructions.

(b) The macro instructions used by the worker program to communicate with the input/
output routines. These macro instructions are called imperative macro instructions

2. GENERAL USAGE

1ig all input/output
operations required by the system. Since not every source program requires every
routine or its variable functions, Univac provides a Preassembly Macro Pass program
which in effect is a generator capable of adapting each input/output routine to the

tequirements of the user.

i y i let + ~f ik
The user is provided with a complete set of routines

The Preassembly Macro Pass first reads declarative macro instructions made by the
user describing the input/output operations required by the application. Based on these
instructions the Preassembly Macro Pass selects the required routines from the macro
library, develops them for the specific application, and punches them into cards in the
Assembler language format. They may then be assembled as part of the source program
or assembled separately and linked with the user program at load time. This function

is provided by the UNIVAC 9200/9300 Card Linker program.

The user communicates with the IOCS routines through use of macro calls (imperative
macros) in his main program. Typical imperative macro instructions are OPEN, CLOSE,
GET for an input file, and PUT for an output file. These imperative macro instructions
are related to the input/output routine to which they refer by means of a file name. The
same file name appears in the calling sequence of all of the imperative macro instruc-
tions referring to one file and also appears as the label of the declarative macro instruc-
tion generating the input/output routine for the file.

UP-4092

UNIVAC 9200/9300 Appendix B 2
CARD ASSEMBLER SECTION: | Pace:

3.1.

3.2.

DEFINITION STATEMENTS (DECLARATIVE MACROS)

The programmer must use definition statements to describe to the Preassembly Macro
Pass the characteristics of the particular input/output file to be processed. These
statements are then used by the macro pass to specialize the particular input/output
routine to meet the requirements of the file and the program.

Each input/output device required by the program must be defined by means of these
definitions. A definition statement is herein defined as consisting of one Header Entry
card and a number of Detail Entry cards. In a definition statement, each header and
detail entry card must have a character punched in column 72, except the final detail
entry card which must not contain this continuation character in column 72.

Header Entry Card

A header entry card is the first card of a definition statement and requires two items of
information. The first is the symbolic name of the file assigned by the user and is entered
in the label field of the card. The symbol may consist of as many as four characters and
must adhere to the Assembler language rules for labels. The other item is written in the
operation field and must be one of the following:

1. DTFCR - DEFINE THE FILE FOR THE CARD READER
2. DTFPR — DEFINE THE FILE FOR THE PRINTER
3. DTFRP — DEFINE THE FILE FOR THE READ/PUNCH

4. DTFCC — DEFINE THE FILE FOR THE CARD CONTROLLER

For example, the header entry card for a reader routine with a file named “MSTR”’
would appear as follows:

| |
LABEL | OPERATION l OPERAND

MSTR ‘ DTFCR '

Detail Entry Cards

The detail entry cards are used to define parameters such as mode of processing, buffer
area name, and print bar.

Each detail entry card is composed of a key word immediately followed by an equal (=)
sign which is in turn followed by one specification. A comma must immediately follow

the specification for each detail entry card in the definition statement except for the final
detail entry card. A given detail entry must be used only once in each definition statement.
Entries which do not apply to a particular application should be omitted. The summary of
detail entry cards listed in Appendix B, 4. gives the optional as well as the required
detail entry cards for a given peripheral device. The format for a detail entry card,

with the continuation character in column 72, is as follows:

LABEL ’ OPERATION i OPERAND I 72

' ; key word = specification, l X

UNIVAC 9200/9300 Appendix B
UP-4092 CARD ASSEMBLER

3.2.1. Block Size Entry (BKSZ)

This entry must be provided for all printer files. The key word is BKSZ. The allowable
specifications are 96, 120 or 132 as determined by the number of print positions avail-
able. The user-defined work area where print images are made available to IOCS must
contain the same number of bytes as there are print positions available. The key word
and specification for 132 print positions have the following form in the operand field:

BKSZ =132

3.2.2. Channel Entry (CHNL)

This entry is used to define the general purpose channel to which the UNIVAC 1001
Card Controller is connected. The key word is CHNL; the allowable specification is
one of the general purpose channels 5 through 12. The key word and specification for a
channel entry for general purpose channel five have the following form:

CHNL =5,
3.2.3. Control Entry (CNTL)

This entry must be provided for all files to which a CNTRL macro instruction is
directed in the main program.

The key word is CNTL. The specification is YES.
CNTL=YES,

CNTL is a detail entry card within a definition statement. CNTRL is an imperative
macro and its use is described in a later section.

3.2.4. End-of-File Address Entry (EOFA)

This entry is used to specify the symbolic name of the end-of-file routine provided
by the user. The key word is EOFA and the specification is the symbolic name of
the user end-of-file routine. The format for an end-of-file routine labeled END is as
follows:

EOFA=END,

When a GET macro instruction is issued for an input file, if the image to be delivered
is an end-of-file card, IOCS jumps unconditionally to the user end-of-file routine.

An end-of-file card contains a slash (/[0-1 punch]) in column one and an asterisk in
column two. (In actuality, the card system IOCS routines recognize an end-of-file card
by means of the slash in column one alone.) An end-of-file card must be followed by

other cards in the input hopper to avoid a hopper empty indication before the end-of-
file card is sensed. The following cards may be special if the user has some purpose
for them (such as an overlay to be loaded); otherwise, their content is not significant
and any cards the user wants may be used (such as blank cards or more end-of-file

cards).

UP-4092

UNIVAC 9200/9300 Appendix B
CARD ASSEMBLER SECTION: PAGE:

3.2.5.

3.2.6.

For the online card reader, when control is transferred to the user end-of-file address,
the end-of-file card image is in the work area and the image of the card immediately
following the end-of-file card is in the input area.

For the Card Controller, there is no specified input area, since the memory of the
Card Controller serves the purpose. When control is transferred to the user end-of-
file address, the end-of-file card image is in the work area. If the end-of-file card
image is delivered in response to a transfer function, the end-of-file card image is
also in the memory of the Card Controller, and the card immediately following the
end-of-file card is immediately in front of the read station. If the end-of-file card
image is delivered in response to a transfer-and-read function, the image of the card
immediately following the end-of-file card is in the memory of the Card Controller.

If the user is using only the send-and-receive functions of the Card Controller,
detection of end-of-file is a user responsibility. In all other cases, the end-of-file
address entry is mandatory for all input and combined files.

The Function Entry — 1001 Card Controller (FUNC)

This entry specifies the symbolic name of a one byte user-defined area where the
required function is stored before each GET or PUT macro instruction.

The key word is FUNC. The specification is the label of the one byte user area, and
for a function area labeled CCXF, has the following form:

FUNC=CCXF

Allowable Functions for the 1001 Card Controller

The following table illustrates the allowable hexadecimal values which may be
stored into the user-defined one byte area before each GET or PUT macro instruc-
tion is issued. Once set the area may remain the same or be altered as desired.

HEXADECIMAL VALUE FUNCTION SPECIFIED
08 Transfer and Read Primary
09 Transfer and Read Secondary
00 Transfer Primary
01 Transfer Secondary
02 Transfer Primary and Secondary
0A Transfer and Read Primary and Secondary
20 Send Data to 1001 (1001 code only)
10 Receive Data from 1001 (1001 code only)

The GET macro is used with all functions but ““Send Data to 1001°’. With this func-
tion a PUT macro is used.

UP-4092

UNIVAC 9200/9300 Appendix B
CARD ASSEMBLER SECTION: PAGE:

3.2.6.1.

3.2.6.2.

Transfer-and-Read Functions

The previous image read into the 1001 Card Controller is transferred into the
9200 memory and another image is read into the 1001. The function for the

first GET executed after opening a Card Controller file should be a transfer-
and-read function which, in contrast to the general case, causes the first card
in the feed specified to be read and transferred, and the second card to be read.

Send-and-Receive Data Functions

These functions are not available on the standard board. However they are pro-
vided for by IOCS in the event the user wishes to modify the standard board for
a particular application.

No translation is provided for these functions and they must be performed in 1001
mode only.

The user work area must contain one byte more than is required for the data to
be sent or received. The extra byte must be the first byte of the area and must
contain the number of characters to be transmitted. This first byte must not be
in 1001 mode, but must contain a binary number.

Typically, the data sent to the 1001 contains some function character the modified
board is to interpret, as well as data to be used in the execution of the function.

For example, assume the board has been modified to interpret the code of a hexa-
decimal value of 77 as a search primary for a name. The following steps implement
this function.

(1) Set function entry area to a send-data function.

(2) Store hexadecimal 77 into the second byte of the work area.

- e wmrmanls maa A wr b o PP o
(3) Store name (assume 6 characters) in work area bytes 3 through 8.

(4) Store a binary 7 (6+1 function) into first byte of the work area (the number
of characters to be transmitted).

(5) Issue a PUT macro instruction.

When the UNIVAC 9200/9300 program receives the data the 1001 has developed as
a result of performing this search, the following steps are taken.

(1) Set the function entry area to a receive-data function.

(2) Store the number of characters to be received in the first byte of the work
area.

(3) Issue a GET macro instruction.
The data will be received in byte 2 and the following bytes of the work area.

Typically, the data received from the 1001 contains some status character (find/no-
find, for example) and the data requested by the preceding send-data function.

UNIVAC 9200/9300 Appendix B
UP-4092 CARD ASSEMBLER SECTION: PAGE:

The nature of any function or status characters embedded in data to be sent or
received and the location of these characters in the data message is a user
responsibility. The IOCS system makes no attempt to control the information
content of data sent or received.

3.2.7. Input Area Entry (IOA1)

This entry specifies the name of the input buffer area. In the UNIVAC 9200/9300
Card System, it is used only for the reader file. The key word is IOA1. The speci-
fication is the symbolic name of the input buffer area assigned to the device. This
symbolic name must be the symbol used by the programmer in the DS statement de-
fining the area in his main program. '

IOA1=CARD,

The symbolic name assigned by this entry is never referenced directly by the pro-
grammer. Images are delivered by the input/output routines into a specified work
area.

3.2.8. Input Area Entry (INAR)

This entry is used to specify the symbolic name of the user-defined input buffer area
when the read feature of the read/punch unit is required. The key word is INAR. The
specification is the symbolic name of the area assigned to the read/punch unit as
defined by the programmer. The operand for a read/punch buffer area labeled INPC
has the following form.

INAR=INPC,

3.2.9. Input Translate Table Entry (ITBL)

This entry specifies the symbolic name of a tranglate table located in the main
t t

gram by which all records of a given input file are to be translated.
The key word is ITBL and the specification is the symbolic name assigned by the
programmer to the table. The operand for a translate table labeled CODE has the

following form:
ITBL=CODE,

3.2.10. Mode Detail Entry (MODE)

This entry is used to specify the mode of the input/output file and is required as
part of the definition statement for all devices but the printer. The key word of the
entry is MODE. The allowable specifications are:

UP-4092

UNIVAC 9200/9300

Appendix B
CARD ASSEMBLER

SECTION: PAGE:

3.2.11.

OPERAND FORM REMARKS

MODE=BINARY, For cards read and/or punched in column

binary mode (160 byte I/0 area required)
MODE=CC, For cards read and/or punched in compressed
code (80 byte I/0 area required)

For cards read in 1001 mode without trans-
lation (Card Controller only) (80 byte I/0
area required)

MODE=1001

MODE=TRANS, For cards to be read and/or punched trans-
lated by the table specified by the ITBL or
or OTBL entry

MODE=TRANSTC, For Card Controller only, if translation of
1001 code is required through the translation

table specified by the ITBL entry

There are two translation modes which may be defined with the 1001 Card Controller.

m TRANS, implies all cards read into the 9200 from the 1001 are translated from
compressed code by the translate table specified by the ITBL detail entry card.

m TRANSTC, implies all cards read into the 9200 from the 1001 are translated from
1001 code by the translate table specified by the ITBL detail entry card. This
mode is used when combined reading (both primary and secondary in one function)
is required, since basic 1001 memory capability is exceeded if two images are
read in in other than 1001 code.

For
into the input area in compressed code, moved to the work area, and translated there.
Thus, for example, when control is transferred to the user end-of-file address, the
image of the end-of-file card is in the work area in translated mode, and the image

of the card immediately following the end-of-file card is in the input area in com-
pressed code.

the online serial card reader nnorghng in translated mode

card images are read
serial card reader operatin ated mode, card im

gCo 4dic i1ad

For the Card Controller operating in translated mode, card images are read into the
work area in compressed code and are translated in the work area.
Output Area Entry (OUAR)

The entry specifies the symbolic name of the output buffer area as defined in the
main program when the punch function of the punch, read/punch unit is required.

The key word is OUAR. The specification is the symbolic name assigned by the
programmer in the DS statement defining the area. The operand for an output area

labeled OUPC has the following form:

OUAR =0UPC,

UP-4092

UNIVAC 9200/9300 Appendix B
CARD ASSEMBLER secTion:

3.2.12.

3.2.13.

3.2.14.

3.2.15.

3.2.16.

There is no need to define an output buffer area for the printer, since IOCS uses
the print buffer area in restricted memory.

Output Translate Table (OTBL)

The entry specifies the symbolic name of the translate table located in the main
program through which all output images are to be translated.

The key word is OTBL. The specification is the symbolic name assigned to the
table. The operand for a translate table labeled CRDC has the following form:

OTBL=CRDC,

Overlap Entry (ORLP)

This entry specifies that the read/punch unit file is to be processed in an overlap
mode and applies only to the read/punch unit when used as both a reader and a
punch. The entry is omitted when information is to be punched in a card which has
been read previously.

The key word of this entry is ORLP and the specification is YES. The operand has
the following form:

ORLP =YES,

Print Bar Entry (FONT)

The entry specifies the print bar the program expects to find in the user configura-
tion. The key word is FONT and the allowable specifications are 48 or 63. The
operand for a 63 character print bar has the following form:

Printer Advance Entry (PRAD)

This entry is used in conjunction with printer files and enables the programmer to
specify a standard advance of one or two lines.

The key word is PRAD. The allowable specifications are 1 or 2. The operand for
double spacing has the following form:

PRAD =2,

Punch Error Entry (PUNR)

This entry specifies that automatic error recovery, where possible, is to be provided
in the punch routine and applies only to that device. If it is not specified, all punch
errors bring the computer to a stop.

The key word is PUNR. The allowable specification is YES. The operand has the
following form.

PUNR =YES,

UP-4092

UNIVAC 9200/9300 Appendix B
CARD ASSEMBLER SECTION: PAGE:

)
=

Printer Overflow Entry (PROV)

This entry must be provided if the user wants any special action as a result of
form overflow on the printer. If the printer overflow entry is not provided, printer
spacing proceeds as directed by the printer advance detail entry and/or the CNTRL
macro specifying skipping or spacing.

The key word of the entry is PROV. The specification may be either YES or a label.
The operand has the following form:

PROV =YES
or
PROV =1label

If the specification is YES, an automatic skip to channel 7 (home paper) in the
paper tape loop is provided in response to form overflow.

If the specification is a label other than YES, control is transferred unconditionally
to the specified label in response to form overflow. The label specified should be
the symbolic name assigned to the user overflow routine provided to perform the
desired form overflow action.

The user indicates the point at which form overflow is to occur by a channel 1 punch
in the paper tape loop. The form overflow punch (channel 1 punch) is recognized
when spacing paper, either in response to a CNTRL macro specifying spacing before

printing or in response to a PUT macro after printing a line. {The form overflow punch
is not recognized during a printer skip operation.)

Response to recognition of a form overflow punch may be illustrated by the following
sequence of operations:

¢Y) PUT FILA
(or CNTRL FILA,SP,m,n m#£0)
- Process
(2) PUT FILA
(or CNTRL FILA,SP,m,n m £0)
- Process
(3) PUT FILA
(or CNTRL FILA,SP,m,n m#0)
RET

- Process

UP-4092

UNIVAC 9200/9300 Appendix B 10
CARD ASSEMBLER secTion:

3.2.18.

If the form overflow punch is recognized during the spacing associated with (1),
then after (3) is executed, the form overflow action specified is taken. If the action
is to transfer control to a user subroutine, then control goes to that subroutine
rather than to the label RET. The address of the label RET is in general register 14
when control is transferred to the form overflow subroutine.

Type of File Entry (TYPF)

This entry indicates whether the file is an input, output, or a combined file. It is
applicable only to the 9200/9300 read /punch unit.

The key word of the entry is TYPF. The allowable specifications are given below.

OPERAND FIELD COMMENTS
TYPF =INPUT, Reading only
=OUTPUT, Punching only

=COMBND, Reading and punching

UNIVAC 9200/9300 Appendix B
UP_4092 I CARD ASSEMBLER SECTION: | PAGE:

4. SUMMARY OF DETAIL ENTRY CARDS

OPERANDS FIELD APPLIES TO
o o T e
OWABLE 2 ;‘_J ég @z’é'
ALL L < E <O
KEY WORD SPECIFICATION Wl g2 |xa|o°8 REMARKS
BKSZ 96, 120 or 132 X Required for online printer
CHNL 5 thru 12 X Required for 1001
! CNTL |Yes X X X |Required if CNTRL macro is used
;
; EOFA Symbolic name of user X X X Applies to input files only
; end of file routine i
' FUNC Symbolic name of user X iRequired by card controller '
defined 1-byte area where '
; function is stored 5
i 10Al Symbolic name of user X i l ilf binary image requested, 160 byte area ;
: defined input buffer area required |
| i i t : }
INAR !Symbolic name of user ; ! X Required if reading in the read/punch file '
. ;defined input buffer area i | :
: b T .
‘ ITBL i Symbolic name of user X "X X Required if translation of input file desired ‘
: ‘defined input translate i ' !
; ; table ; r i '
I
)" MODE !See Appendix B,3.2.10 X X X
OUAR Symbolic name of user X Required for punch files and read/punch files
? idef‘ned output buffer area |
OTBL ;Symbolic name of user X X Required if translation of output file desired
-defined output transiate .
i table | | | |
3 h i i i
ORLP | Yes X | j
FONT 48 or 63 Cox ! ! ‘Specifies 48 or 63 character print font I
: % i I ; | ‘,
| i ! i | |
PROV ' Yes or symbolic name of ’ X ! ‘Required if form overflow action is to be taken |
tuser form overflow routinet ! ‘ ‘ ! i
f f t % ; v 5
: PRAD :lor2 i X ! ;Specifies standard print advance i
t x i . | .
; PUNR Yes ’ X ‘Automatic error recovery desired [
| TYPF Input ‘ j X iReading only
: ;Output * ‘ ‘Punching only
i ' Combnd ' JReading & punching

UNIVAC 9200/9300 Appendix B
UP-4092 CARD ASSEMBLER SECTION: PAGE:
5. DEFINITION STATEMENT EXAMPLES
5.1. Punch File Example Definition
LABEL 5 OPERATION® OPERAND CO’MMENTS
1 8 14 72 80
MST R | D, T.F| R P c b b by T B S A X |
[N T CNITL=Y.ElS, v 1 | I B S A X [L
[Ll MODE=TRIANS, | | | | AN B | X |
Lo | I OTBL=MTIGGC,, | | I A A | X | |
Lo ol OUAR=PUNG, | | I N X | !
o1 | I TYRE=ZQUTPUT [. AR I | |
5.2. Reader File Example Definition
LABEL 5 OPERATION® OPERAND COMMENTS
8 14 72 80
LNP U | DT, FICR [TR ST S R AT RN I R coa oy | X l 1
S| I EOFA=END,, , , [, , L e g | X | |
S| [1OA1=GARD,, | | | | [U IS A X | |
AR Lol I IBL=CTMG,, |, |, S AR | X I 1
b | Lol MODE=TRANS , | Lol | | I
5.3. Printer File Example Definition
LABEL B OPERATIONS OPERAND COMMENTS
1 8 14 72 80
L1ST | D TF PR S B TR B B SR A AN B R X | !
Lo | Ll CNTL=YES, , |, T B SR | X | 1
| Lt FONT=48,,, |, coa e e d X { I
| Ll PRAD=2,| s 11, RN AT A A A e X | !
[N | Ll PROV=YEBES . , + 1 | 1 AN A X | |
b1l Lol oOmBL=PB48,, |, , TR TR RN | X ! |
SRS | Lol BKSZ=1,312 |, , R B R i | |

UNIVAC 9200/9300 Appendix B 13
UP-4092 CARD ASSEMBLER SECTION: PAGE:
5.4. Read and Punch File Example
LABEL 1+ OPERATIONS OPERAND COMMENTS
1 8 14 72 80
Bl LL | DTFRP [TR SRR NN S SNE ST ST ol L X !
o Ll CNITL=YES , | e e by X L
RN Ll EOFRA=FRIIN | 1 |1, P AR BN R RTES L B SR
oo | Ll l:NlAuR,:anE|AlD,3 N ! l [| | X Ll
S| bl LTBL=CGTMG,, | | i AR SR . E G
LilLl 1 1 l 1 M|0IDIE:|T|RAN§’| I 1 L Il I 1 R | ! !) 1] X] L | 1 Il 1
1ol T QUAR=FUNG,, ;, |, cla e b Xy L
Lo | JR OTBL=MCTC,, , |, , I BRI ENENE L IR BT
L | I TY PF=COMBND | ol L1y Lo L1t
5.5. Card Controller File Example
LABEL % OPERATIONS OPERAND COMMENTS
8 14 72 80
SSALS | DT RACGC U S R B RS S A B B Cl e e b e X L
B T S I l 11 l i CINJ.rlLJ:|YlEISIII o1 I Il 1 1 L T | J | I N X [t x |
| TR EOFA=END,, ; | alr v by X\,
L] T LTBL=BGD,, |, A R B L L] L1
Lo T FUNG=REQS, |, | | I TR AR L A SR
i I | l 1 i I 1 quE:lTIRIANSl’I l 1 1 1 l I Lt 1 l 1 1 ! { X 1! I 1 { !
L1 | R GHINL=5 | oy v o4y ol v b L L1

6. I0CS MACRO INSTRUCTIONS (IMPERATIVE MACROS)

6.1.

This section describes the format, function, and use of the IOCS macro instructions
used to communicate with the input/output routines and to control their operations.
These symbolic instructions are used in the main program to provide the necessary
linkages to the IOCS routines previously defined by means of the definition statements

to the Preassembly Macro Pass. The handling of records into and out of I/0O areas is
performed by IOCS exclusively. Each file is processed in the manner dictated by the
definition statement.

Source programs using IOCS may not contain any Assembler I/0 instructions.

The format of the macro instruction follows the rules of the Assembler coding format.

The macro verb is the operation, and the operand field may contain up to four para-

meters as required by the particular macro. All macros may have a label. The impera-

tive macro instructions are not handled by the Preassembly Macro Pass, but are
processed by the Assembler itself.

GET Macro Instruction

The GET macro makes the next record available in the user-defined work area or
transfers control to the end-of-file address entry upon recognizing an end-of-file card

in an input file.

UP-4092

UNIVAC 9200/9300 Appendix B
CARD ASSEMBLER SECTION: PAGE:

14

6.2,

6.3.

6.4.

The GET macro has the following form

LABEL ! OPERATION , OPERAND

I GET l filename,workarea

where filename is the symbolic name defined in the label field of a DTF(XX) header
entry card.

workarea is the symbolic name of the user-defined storage area where the record
is to be delivered.

PUT Macro Instruction

The PUT macro transfers a record from the work area for printing, punching, or sending
to the 1001 and immediately frees the work area for main program use.

The PUT macro has the following form

OPERATION | OPERAND

PUT ‘ filename,workarea

where filename is the symbolic name defined in the label field of a DTF(XX) header
entry card.

workarea is the symbolic name of the usetr-defined storage area where the record is
made available for output.

Work Area Considerations

The imperative macro instructions, GET and PUT, require as a second parameter the
symbolic name of a work area for transferring records from and to input/output buffer
areas. Input/output areas (those assigned by IOA1l, INAR, and OUAR detail entry
cards) may not be used as work areas as they are used by IOCS to maintain standby
reserve areas.

The programmer must therefore provide, through the use of DS statements, work areas
where records are processed. These work areas may be common to more than one file
as efficiency demands, but must be as large as the largest record to be processed
therein.

Programming Considerations — Read/Punch Combined File

When the Overlap detail entry card is used for a read/punch combined file, the follow-
ing rule applies:

A PUT macro instruction causes punching into the card which follows the one
made available by the last GET macro instruction, because the card made avail-
able by the last GET macro is already past the punch station when the PUT
macro is given.

When the Overlap detail entry card is omitted for a read/punch combined file, a PUT
macro instruction causes punching into the card made available by the last GET macro
instruction.

UP-4092

UNIVAC 9200/9300
CARD ASSEMBLER

| {

| |

} Appendix B } i5
i

] I

SECTION: PAGE:

6.5.

(o))
[e)]

6.7.

6.7.1.

OPEN Macro Instruction

This macro instruction initializes the file and must be issued before any other macro
instruction pertaining to the same file.

The OPEN macro has the following form:

OPERATION l OPERAND
I

OPEN I filename

where filename is the symbolic name defined by the user in the label field of the
DTF(XX) header entry card.

An OPEN macro for a file may be executed at any time, even after the file has been
opened by a previous OPEN macro. In such a case, the input/output routine is set
back to an initial state. That is:

1. For an input file, the card image delivered in response to the first GET executed
after a second OPEN macro is the image immediately in front of the read station
at the time the second OPEN macrc is given.

2. For an output file, the first item transmitted after the second OPEN macro is the
item delivered by the first PUT executed after the reOPEN.

This macro instruction insures the proper closing of all files. The CLOSE macro has
the following form:

OPERATION OPERAND

CLOSE filename

where filename is the symbolic name defined in the label field of the DTF(XX) header
entry card.

CNTRL Macro Instruction

The CNTRL macro is used by the programmer for printer spacing, printer skipping,
stacker selection, numeric printing, and specifying the number of columns of card
punching.

Printer Spacing

The CNTRL macro for printer spacing has the following form:

OPERATION | OFPERAND

CNTRL filename,SP,m,n

UP-4092

UNIVAC 9200/9300 Appendix B 16
CARD ASSEMBLER SECTION: PAGE:

6.7.2.

6.7.3.

where filename isthe symbolic name of the file defined in the label field of the
DTFPR header entry card

SP, specifies spacing
m is the number of lines to space the form before printing (m =0, 1 or 2)

n is the number of lines to space the form after printing (n = 0, 1 or 2)

The programmer may omit m or n. If no CNTRL macro instruction specifying delayed
spacing (m omitted) is given before the next PUT macro for the printer file, the
printer advances the standard amount as specified in the PRAD detail entry card

of the definition statement.

If more than one CNTRL macro specifying paper movement after printing is given
between PUT macros to the printer file, only the last CNTRL macro is effective.

Printer Skipping

The CNTRL macro for printer skipping has the following form:

OPERATION | OPERAND

CNTRL ' filename,SK,m,n

where filename is the symbolic name of the file defined in the label field of the
DTFPR header entry card

SK, specifies skipping

m is the number of the tape channel the carriage is skipped to before printing

(m =1,2....7).
n is the number of the tape channel the carriage is skipped to after printing
(n=12..7).

The programmer may omit m or n. Between PUT macros, only the last CNTRL macro
specifying skipping after printing is effective.

Due to timing conditions, throughput is maintained at the best possible level if
delayed spacing and skipping are used where possible.

Stacker Select

The CNTRL macro for selecting other than the normal stacker on the serial punch,
read/punch, or for selecting any stacker on the card controller has the following
form:

OPERATION | OPERAND

CNTRL ’ filename,SS,n

where filename is the symbolic name of the file defined in the label field of the
header entry card.

SS, specifies stacker select

n is the stacker number where the card is to be selected on the card controller
only. Allowable values are specified in the following table.

UNIVYAC 9200/9300 Appendix B | 17
UP-4092 | CARD ASSEMBLER L SEcTION: | pace:
FEED
PRIMARY SECONDARY
Stacker 1 2 3 C 1 2 3 C
Specification (n) 1 2 3 4 5 6 7 8

6.7.4.

6.7.5.

NOTE: If this CNTRL macro is not given for the 1001, primary feeds are selected
to P1 and secondary feeds to S1.

The CNTRL macro for Card Controller stacker selection cperates under the following
rules. The card made available by a transfer-and-read from a particular feed is selected
on the next transfer-and-read from that feed. The card made available by a transfer

only from a particular feed is selected on the second following transfer-and-read from
that feed. If the user issues a CNTRL macro after receiving a particular card image, the
CNTRL macro governs the stacker selection for that particular card, regardless of the
sequence of operations following that CNTRL macro. If no stacker is selected from a
card in the manner described here, the card will be put in the normal stacker, which is
P1 for the primary feed and S1 for the secondary feed.

Numeric Printing

The CNTRL macro instruction for numeric printing enables the programmer to maintain
maximum printing speeds. Once set it remains set until and unless another numeric
print CNTRL macro is given specifying that alphanumeric printing is requested.

The CNTRL macro instruction for numeric printing has the following form:

OPERATION OPERAND
CNTRL filename, NP m

| name,NP,
i
where filename is the symbolic name of the file as defined in the label field of the
DTFPR header entry card.
NP, specifies a change in the mode of printing
m is mode of printing requested

m = 0, alphanumeric printing required

m = 1, numeric printing required

NOTE: Alphanumeric printing is assumed by IOCS if no CNTRL macro is given.

Specifying Columns to be Punched

The CNTRL macro instruction enables the programmer to vary or alter the number of
columns punched in the punch file. This function enables the punch to run at maximum
speed for the particular application. Once set by the macro the number of columns
punched remains the same unless or until another such macro is given. If no CNTRL
macro is given, IOCS assumes a full card is required.

UNIVAC 9200/9300 .
A dix B
UP-4092 CARD ASSEMBLER seappendix -

The CNTRL macro for punching has the following form

OPERATION OPERAND

CNTRL filename, NC,n

where filename is the symbolic name defined in the label field of the DTFRP
header entry card

NC, identifies a number-of-columns specification

n is the number of columns to be punched (an even number 2,4,6...80).

6.8. Summary of 9200/9300 Card System IOCS Imperative Macros

DEVICE ADDRESSED
LABEL | OPERATION OPERANDS READER PRINTER F'.‘S.j‘é’.i c ON‘;"‘?';‘ELER

OPEN filename X X X X
GET filename, workarea X X X
PUT filename, workarea X X X

OPTIONAL CLOSE filename - X X X X
CNTRL filename, SP, m, n X
CNTRL filename, SK, m, n X
CNTRL filename, NP, m X
CNTRL filename, NC, n X
CNTRL filename, SS, n X X

UP-4092

UNIVAC 9200/9300 A .
CARD ASSEMBLER Appendix B | 19

PROGRAMMING CONVENTIONS — PROGRAM REGISTERS

A user routine may be required in the main source program that is accessed by I0OCS
when certain checking features are required (for example, printer overflow). IOCS
automatically stores the program re-entry address in register 14 when the branch to

the user routine occurs. The user routine is therefore required to provide the necessary
return linkage to the main source program. If the user routine uses register 14, it must
therefore, preserve and restore register 14 before terminating. This must also be done

if any macro instruction is executed by the user routine, since all macros use program
registers 14 and 15. If register 14 is not preserved, the re-entry address is lost. Register
15 may also be used by the user routine and it need not be preserved. However, its con-
tents are altered by the execution of any macro instruction.

GENERAL PROCEDURE SUMMARY FOR USING IOCS

The programmer defines his input/output control routines and their associated files
through the use of definition statements presented to the Preassembly Macro Pass
program. The generated 1/0 routines are then either assembled as part of the main
source program or assembled separately and linked with the main program at load

time, During the execution of the main program, input/output functions are accomplished
through the imperative macro calls.

UP-4092

UNIVAC 9200/9300 Appendix C
CARD ASSEMBLER SECTION: PAGE:

APPENDIX C. CARD LOAD ROUTINE

GENERAL

The Card Load Routine for the basic card reader and the 80-column 1001 Card Control
consists of the following sections of coding:

1.

Bootstrap coding to read the Load Routine into memory. Before transferring control
to the Load Routine, the bootstrap coding sets the EBCDIC mode and enters the
processor state.

Coding to clear a selected portion of memory to a selected character. This coding
is executed before the Load Routine itself is read into memory. If the area specified
to be cleared includes the Load Routine and its read area, they are not cleared.

Coding to load a program in Assembler output format into the internal storage of

of the UNIVAC 9200/9300. The Load Routine performs a hole count check of each
termination of loading, the Loader compares the number of External Reference and
Text Cards (type K or Q) read with the number contained in cclumns 12 and 12 of
the Y card. If the numbers agree, the Load Routine loads register 13 with the ad-
dress at which to begin program execution and transfers control to that address.
This is the address contained in columns 15 and 16 of the Y card. If these columns
are blank, the transfer address used is that contained in columns 15 and 16 of the
program reference card (type J).

If the card count check fails, the Load Routine halts. At this point pressing the
Start switch causes the Load Routine to begin execution of the program just loaded.
Before transferring control to the program just loaded, the Card Load Routine sets
up the I/0 PSC for EXEC L.

PARAMETERS FOR THE LOAD ROUTINE

The Load Routine is maintained as an object code deck ready to be linked. Certain
labels exist as external references, defining these labels supplies the variable informa-
tion required by the Load Routine., Standard definitions for these labels are given on
EQU cards supplied with the Load Routine.

NOTE: All labels used by the Load Routine begin with the characters ““L?’’,

UNIVAC 9200/9300 Appendix C
UP-4092 CARD ASSEMBLER SECTION: PAGE:

The external labels, their meaning, and standard definitions are shown below.

LABEL MEANING STANDARD DEFINITION
L?AR Start of the read area for the Load 80
Routine.
L?PG Start of the coding of the Load L?AR+80
Routine.
L?LO First memory location to be 80
cleared.
L?HI Last memory location to be 8191
cleared.
L?CH Character with which to fill the X‘A9’ (HPR instruction)

area to be cleared.

L?AM The value assigned determines 4
whether alterations are to be
stored in memory location 4 or the
memory location specified in the
address switches. If the value as-
signed is four, alterations are
stored in location 4; if zero, in the
location specified by the memory
address switches.

As implied by the above table, the read area for the Load Routine does not have to be
contiguous with the coding of the Load Routine.

3. LOADING ADDITIONAL PROGRAMS

If the Load Routine is in memory, it may be used to load another program by entering
at the load routine’s initial location (represented by the tag L?PG). The program to
be loaded must not overlay the Load Routine or its read area.

A terminating program may also initiate the loading of a successor program if the suc-
cessor contains a load routine of its own. The program must read the first card (boot-
strap card) of the successor into a location in memory, set an address into register
15, and transfer to another address. The address chosen for the bootstrap card must
not overlap either the load routine of the successor program or the read area of the
Load Routine, The bootstrap card must be read in in compressed code and must not
be translated. This facility is possible only if the online card reader is being used

to load programs.

UNIVAC 9200/9300 Appendix C
UP-4092 CARD ASSEMBLER SEC TION: PAGE:

4. LOAD ROUTINE STOPS

DISPLAY MEANING ACTION
4300 Card count error Press START to begin
execution of program just
loaded.
61SS Reader malfunction or hole Refeed the error card.
count error. For hole count Ready the reader and
error SS is not significant. START.
For reader errors SS is the
status byte.

UNIVAC 9200/9300 Appendix D
UP-4092 CARD ASSEMBLER secTion: PacE:

APPENDIX D. EXEC |

1. GENERAL

EXEC I is designed for UNIVAC 9200/9300 Card System only and takes the form of a
relocatable element which must be included in the worker program at linker time. The
primary functions of EXEC I are to monitor interrupts, handle messages to and from
the operator, and provide restart communication.

2. MACRO INSTRUCTIONS

EXEC I provides the following macro instructions:

2.1. MESSAGE MACRO (MSG)

The message macro has the format given below.

OPERATION | OPERAND

MSG I Message, REPLY

The REPLY parameter is optional. Message may be any acceptable two-byte hexadeci-
mal expression.

This macro generates the following code:

OPERATION OPERAND
SRC 0,8
DC Y(message)
DC CL1%’
DC X’

Where message is the iwo-byte hexadecimal dispiay which appears in the HPR instruc-
tion. It takes the form of an assembler language expression.

x = A, if the parameter REPLY appears; x = a blank (EBCDIC code 01000000),
if it does not.

The one-byte reply, keyed-in by the operator into location 4, appears in the last
byte of the calling sequence.

UP-4092

UNIYAC 9200/9300 Appendix D
CARD ASSEMBLER SECTION: PAGE:

2.2,

EXEC I responds to this macro by doing a BAL, using register 15, to its own display
subroutine. This moves the message from the calling sequence of the SRC instruction
to the calling sequence of the BAL instruction before executing the BAL instruction.
The display subroutine sets location 4 to binary zero and displays the message via

an HPR instruction. When the Start switch is depressed, the display subroutine returns
control via register 15. EXEC I then moves the contents of location 4 to the reply
byte of the calling sequence and returns control to the worker program,

For example, if the user codes the following macro instruction,

DSPL MSG X‘FFF’,REPLY

the Assembler treats this macro instruction the same as the following source code.

DSPL SRC 0,8
DC Y(X‘FFF’)
DC CL1‘A’
DC X0’

When the object code produced from this source code is executed, the computer stops
with a display of 000111111111111. The operator may then answer this display via
the Data Entry and Alter switches. When the Start switch is subsequently depressed,
control is returned to the user’s coding at the instruction located at DSPL + 8. The
byte inserted into the computer by the operator via the Data Entry and Alter switches
is in location DSPL + 7. If the operator did not introduce any data via the Data Entry
and Alter switches, then on return of control to the user program, the byte in location
DSPL + 7 contains binary zeros.

The MSG macro instruction is not handled by the Preassembly Macro Pass, but is
processed by the Assembler itself.

RESTART MACRO

The restart macro has the following format

OPERATION l OPERAND

RSTRT Restart-Name

The restart-name is the label of a user-coded rcutine which is designed to handle a
restart operation.

This macro generates the following code:

OPERATION OPERAND

SRC 0,0

DC Y(Restart-name)

UP-4092

UNIVAC 9200/9300 Appendix D
CARD ASSEMBLER SECTION: PAGE:

In response to this macro instruction, EXEC I stores the address of the restart-name.
Restart is accomplished by a general clear followed by depression of the Start switch.
This causes the instruction in memory locations 22 through 25 to be executed in I/O
mode. EXEC I has a branch unconditional instruction in this location that allows it

to set the processor PSC to the restart-name and then go to RE-ENTRY. At RE-ENTRY,
EXEC I sets the device address byte to zero, resets (without destroying the SRC field)
the I/0 PSC in preparation for the next interrupt, and returns to processor state.

At the restart-name location the user must provide a restart routine. This routine must
re-establish variable information in the program and set initial conditions for all input/
output routines, (To aid the user in accomplishing this goal, the execution of the OPEN
macro resets the initial conditions for all IOCS routines.) The user must establish
conventions to reposition card decks and printer paper.

The RSTRT macro instruction is not handled by the Preassembly Macro Pass, but is
processed by the Assembler itself,

3. I/0 CONTROL ROUTINE MESSAGES

All IOCS routines operating in I/0 mode may display messages through direct access
to the display subroutine. After execution, if a reply is expected, the control routine
itself must examine the contents of location 4.

The following instructions are required to execute a display:

OPERATION l OPERAND
BAL 15,E?DS
DC XL2‘message’

where E?DS is the label for the first byte of the display routine.

Message is a two-byte hexadecimal expression.

e s

#
&
@

ERRREE Ry

UP-4092

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	xBack

