
PROGRAMMING
UTILITY

UP-4120

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format as a rapid and complete means of keeping recipients
apprised of UNIVAC® Systems developments. The information presented
herein may not reflect the current status of the programming effort. For the
current status of the programming, contact your local Univac Representative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware and/or software changes and refinements. The
Univac Division reserves the right to make such additions, corrections,
and/or deletions as in the judgment of the Univac Di vision are required by
the development of its respective Systems.

®REGISTERED TRADEMARK OF THE SPERRY RAND CORPORATION PRINTED IN U.S.A.

C 1966- SPERRY RAND CORPORATION

UP-4120
UNIVAC 9200/9300

PROGRAMMING UTILITY MANUAL

CONTENTS

1. CONVENTIONS

1.1. STANDARD CARD, EBCDIC, AND PRINTER GRAPHIC CODES

1.2. CONSOLE DISPLAY CONVENTIONS

1.3. LABEL AND FORMAT CONVENTIONS FOR MAGNETIC TAPES
1.3.1. Standard Labels
1.3.2. Nonstandard Labels
1.3.3. Unlabeled
1.3.4. Data Format
1.3.5. Checkpoint Dump

2. UTILITY PROGRAMS AND SUBROUTINES

2.1. MULTIPLY /DIVIDE AND ED IT SUBROUTINES
2.1.1. Multiply/Divide Subroutine
2.1.2. Edit Subroutine
2.1.3. Hardware Compatability

2.2. STERLING CONVERSION ROUTINES

2.3. MEMORY DUMP ROUTINE

2.4. SQUEEZE

TABLES

1-1 INTERNAL CODE (EBCDIC)

2-1 STERLING NOTATION FORMAT

Contents
SECTION:

CONTENTS

1 to 1

1-1 to 1-8

1-1

1-1

1-6
1-6
1-7
1-8
1-8
1-8

2-1 to 2-9

2-1
2-1
2-3
2-4

2-4

2-6

2-8

1-2 to 1-5

2-5

1
PAGE:

UP-4120 UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL SECTION:

1
PAGE:

1. CONVENTIONS

The purpose of this manual is to describe the conventions used in the UNIVAC 9200/9300
System software package and to explain the general utility routines and programs provided
with the UNIVAC 9200/9300 System.

Certain uniform conventions and standards have been adopted in the UNIV AC 9200/9300
System to allow the system to be ope:rated in a con sis ten tly efficient manner.

Information necessary for an understanding of the material contained in this manual is
presented in the following documents:

UNIV AC 9200 System, System Description Manual - UP-4086

UNIVAC 9300 System, System Description Manual - UP-4119

UNIV AC 9200/9300 System Gangpunch-Reproduce Program, Reference Manual - UP-4089

UNIV AC 9200/9300 System Card Report Program Generator, Reference Manual - UP-4106

UNIVAC 9200/9300 System Card Assembler, Reference Manual - UP-4092

1 1
.1. • .L. STANDARD CARD, EBCDIC, AND PRINTER GRAPHIC CODES

Because of the many card codes and internal computer codes presently used in data
processing systems, and because of the interrelationships of these codes to each
other and to printer graphics, the UNIVAC 9200/9300 System permits data to be trans
lated whenever it passes from an input unit to the processor memory or from the memory
to an output unit. However, the design of the UNIVAC 9200/9300 software requires
standard card, internal, and printer graphic codes. These codes and their interrelation
ships are shown in Table 1-1.

1.2. CONSOLE DISPLAY CONVENTIONS

Indications of certain conditions within the computer are given to the operator by
means of a Halt and Proceed (HPR) instruction. This instruction causes the halfword
effective address (bits 16-31) of the instruction to be displayed on the console.

I o I ~~ts:;i I MESSAGE I
. 16 . 17 18_19 31

(1) Bit 16 is always zero to inhibit indexing.

(2) If bit 17 = 0, the display message is initiated by the problem program.

a. If bit 18 = 0, the message is initiated by the user.

b. If bit 18 = 1, the message comes from a Univac subroutine incorporated in
the problem program.

1

UP-4120

DIGIT

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

I 1010

1011

1100

1101

1110

1111

UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL

TWO MOST SIGNIFICANT BITS OF ZONE - 00

TWO LEAST SIGNIFICANT BITS OF ZONE

00 01 10

12-0-9-8-1 12-11-9-8-1 11-0-9-8-1

12-9-1 11-9-1 0-9-1

12-9-2 11-9-2 0-9-2

12-9-3 11-9-3 0-9-3

12-9-4 11-9-4 0-9-4

12-9-5 11-9-5 0-9-5

12-9-6 11-9-6 0-9-6

12-9-7 11-9-7 0-9-7

12-9-8 11-9-8 0-9-8

12-9-8-1 11-9-8-1 0-9-8-1

I 12-9-8-2 11-9-8-2 0-9-8-2

12-9-8-3 11-9-8-3 0-9-8-3

12-9-8-4 11-9-8-4 0-9-8-4

12-9-8-5 11-9-8-5 0-9-8-5

12-9-8-6 11-9-8-6 0-9-8-6

12-9-8-7 11-9-8-7 0-9-8-7

Table 1-1. Internal Code (EBCDIC), Sheet 1 of 4

1 2

SECTION: PAGE:

11

12-11-0-9-8-1

9-1

9-2

9-3

9-4

9-5

9·6

9-7

9-8

9-8-1

I 9-8-2
I

I
9-8-3

9-8-4

9-8-5

9-8-6

9-8-7

UP-4120

I

I

l

UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL

TWO MOST SIGNIFICANT BITS OF ZONE - 01

TWO LEAST SIGNIFICANT BITS OF ZONE
DlGIT

I 00 Oi 10

0000 12 11
0000 15 & -
0000
0001 12-0-9-1 12-11-9-1 0-1

I

0010 12-0-9-2 12-11-9-2 11-0-9-2

0011
I

12-0-9-3 I 12-11-9-3 11-0-9-3

0100 I 12-0-9-4 I 12-11-9-4 11-0-9-4

I I
0101

I
12-0-9-5

I
12-11-9-5 11-0-9-5

0110 12-0-9-6 12-11-9-6 11-0-9-6
I ' I ~ i ! !

0111 12-0-9-7 12-11-9-7 11-0-9-7

1000 12-0-9-8 12-11-9-8 11-0-9-8

1001 12-8-1 11-8-1 0-8-1

1010 12-8-2 11-8-2 12-11
¢

1011 12-8-3 11-8-3 0-8-3
$

1100 12-8-4 11-8-4 0-8-4
< * %

1101 12-8-5 11-8-5 0-8-5
()

1110 12-8-6 11-8-6 0-8-6
+ >

1111 12-8-7 11-8-7 0-8-7
I ? I --,

Tobie 7-1. Inferno/ Code (EBCDi CJ, Sheer 2 of 4

1 3
SECTION: PAGE:

11 1

12-11-0

12-11-0-9-1

12-11-0-9-2

12-11-0-9-3

12-11-0-9-4

12-11-0-9-5

12-11-0-9-6

I
12-11-0-9-7

12-11-0-9-8

8-1

8-2

8-3
/I:

8-4
@

8-5

8-6

8-7

"

UP-4120
UNIVAC 9200/9300

PROGRAMMING UTILITY MANUAL

TWO MOST SIGNIFICANT BITS OF ZONE - 10

TWO LEAST SIGNIFICANT BITS OF ZONE

DIGIT
00 01 10

0000 12-0-8-1 12-11-8-1 11-0-8-1

0001 12-0-1 12-11-1 11-0-1

0010 12-0-2 12-11-2 11-0-2

0011 12-0-3 12-11-3 11-0-3

0100 12-0-4 12-11-4 11-0-4

0101 12-0-5 12-11-5 11-0-5

0110 12-0-6 12-11-6 11-0-6

0111 12-0-7 12-11-7 11-0-7

1000 12-0-8 12-11-8 11-0-8

1001 12-0-9 12-11-9 11-0-9

1010 12-0-8-2 12-11-8-2 11-0-8-2

1011 12-0-8-3 12-11-8-3 11-0-8-3

1100 12-0-8-4 12-11-8-4 11-0-8-4

1101 12-0-8-5 12-11-8-5 11-0-8-5

1110 12-0-8-6 12-11-8-6 11-0-8-6

1111 12-0-8-7 12-11-8-7 11-0-8-7

Table 7- 7. Internal Code (EBCD/ C), Sheet 3 of 4

1 4
SECTION: PAGE:

11

12-11-0-8-1

12-11-0-1

12-11-0-2

12-11-0-3

12-11-0-4

12-11-0-5

12-11-0-6

12-11-0-7

12-11-0-8

12-11-0-9

12-11-0-8-2

12-11-0-8-3

12-11-0-8-4

12-11-0-8-5

12-11-0-8-6

12-11-0-8-7

UP-4120

i
I
I

UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL

TWO MOST SIGNIFICANT BITS OF ZONE - 11

TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT

I I

00 01 10

0000 12-0 11-0 0-8-2

0001 12-1 11-1 11-0-9-1
A J

0010 12-2 11-2 0-2

I
B

I
K

I
s

0011 12-3 11-3 0-3
c L T

0100 12-4 11-4 0-4
D M u

0101 12-5 11-5 0-5
E N v

0110 12-6 11-6 0-6
F 0 w

0111 12-7 11-7 0-7
G p x

1000 12-8 11-8 0-8
H Q " T

1001 12-9 11-9 0-9
R z

1010 12-0-9-8-2 12-11-9-8-2 11-0-9-8-2

1011 12-0-9-8-3 12-11-9-8-3 11-0-9 -8-3

1100 12-0-9-8-4 12-11-9 -8-4 11-0-9-8-4

1101 12-0-9-8-5 12-11-9-8-5 11-0-9-8-5

1110 12-0-9-8-6 12-11-9-8-6 11-0-9-8-6

1111 12-0-9-8-7 12-11-9-8-7 11-0-9-8-7

Table 1-1. Internal Code (EBCDIC), Sheet 4 of 4

1 5
SECTION: PAGE:

11

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

12-11-0-9-8-2

12-11-0-9-8-3

12-11-0-9-8-4

12-11-0-9-8-5

12-11-0-9-8-6

12-11-0-9-8-7

UP-4120 UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL SECTION:

1
PAGE:

(3) If bit 17 = 1, the message is initiated by either the Supervisor or an input/output
routine.

a. If bit 18 = 0, the message is from the Supervisor.

b. If bit 18 = 1, the message is from an input/output routine.

(4) Bits 19-31 contain the message.

In the case of input/output routines, the two-byte displays adhere to the following
conventions:

HEXADECIMAL ALLOWABLE
DIGIT VALUE REMARKS

Byte 1 MSD 6 Indicates 1/0 message

LSD 0, 1, 2, ••• F Device identification

Byte 2 MSD Any combination Message information

of two hexadecimal
LSD digits

The message information characters need not be used if the console display lights
give enough information for the operator to interpret the error. This convention keeps
the number of displays to a minimum.

Devices are identified by a hexadecimal digit in the least significant digit of byte 1.
Digit assignments for the system input/output devices are as follows:

HEXADECIMAL
DIGIT

1

2

3

5

DEVICE

Online card reader

Online serial read/punch

Online bar printer

1001 Card Controller

1.3. LABEL AND FORMAT CONVENTIONS FOR MAGNETIC TAPES

Tapes may have standard or nonstandard labels, or they may be unlabeled. Tape
data may have fixed or variable record lengths and may be in blocked or unblocked
format. Data may also be in an undefined format of variable-length records. One or
more files may appear on a tape.

1.3.1. Standard Labels

A tape with standard labels must have a header label and a trailer label. Tape
marks are used to separate data and labels. A tape with standard labels has the
following features:

• Volume Label - As many as eight volume labels may appear at the beginning

of a tape. A volume label is 80 bytes long; the first three bytes are VOL.

6

UP-4120 UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL SECTION:

1
PAGE:

• File Header Label - At least one file header label must, and as many as eight
may, appear at the beginning of a fiie on a tape. A fiie header iabei is 80 bytes
long; the first three bytes are HDR. The fourth byte of the first file header label
is a 1. A file identifier appears in bytes 5 through 12; a volume number in bytes
30 and 31 (volumes are counted from one); a generation number in bytes 36
through 39; a creation date in bytes 42 through 47; and an expiration date in
bytes 48 through 53. (The expiration date is the first date on which a magnetic
tape is to be considered a scratch.) Dates appear in the format 15YYDDD, where
YY are the two least significant digits of the year, and DDD are the day of the
year.

• User Header Label - As many as eight user header labels may follow the last
file header label. A user header label is 80 bytes long, and the first three bytes
are UHL.

"Ill

• Data - Data blocks follow the tape mark to indicate the end of the header labels.
The data format is explained under heading 1.3.4.

• End-of-Reel Trailer Label - If more data for a file is to follow on another tape,
at least one end-of-reel label must, and as many as eight may, appear after the
tape mark that indicates the end of the data. An end-of-reel label is 80 bytes
long, the first three bytes are EOV, and the fourth byte of the first end-of-reel
label is a 1. A file identifier appears in bytes 5 through 12; a volume number in
bytes 30 and 31; a generation num her in bytes 36 through 39; a creation date in
42 through 47; an expiration date in 48 through 53; and a block count in 55 through
60. Only data blocks are counted in the block count. Labels, checkpoint records,
and tape marks are not counted.

• End-of-File Trailer Label - If data for a file is completed on a tape, at least
one end-of-file label must, and as many as eight may, appear after the tape mark
that indicates the end of the data. An end-of-file label is 80 bytes long, the first
three bytes are EOF, and the fourth byte of the first end-of-reel label is a 1. A
file identifier appears in bytes 5 through 12, a volume number in bytes 30 and 31;
a generation number in bytes 36 through 39; a creation date in 42 through 47; an
expiration date in 48 through 53; and a block count in 55 through 60.

• User Trailer Label - As many as eight user trailer labels may follow the last
end-of-reel label or the last end-of-file label. A user trailer label is 80 bytes
long, and the first three bytes are UTL.

• Tape Mark - The tape mark is a hardware-produced configuration. A tape mark
follows the last header label, the last data block on the tape or the file, and
the last trailer label in an end-of-reel or end-of-file series. The tape mark fol
lowing the last trailer label on a tape is followed by a second tape mark.

1.3.2. Nonstandard Labels

A tape with nonstandard labels must have a header label and a trailer label with
a tape mark between the data and the trailer labels. A tape mark between the
header labels and the data is optional. A tape with nonstandard la be ls has the
following features:

• Nonstandard Header Label - Any number of nonstandard header labels may
appear at the beginning of a file. Their length and format are unrestricted.

7

UP-4120 UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL SECTION:

1

• Data - If there is a tape mark that indicates the last header label, data blocks
follow the tape mark. Otherwise, data blocks follow the last header label.

• Nonstandard Trailer Labels - Any number of nonstandard trailer labels may
appear after the tape mark which indicates the end of the data. Their length
and format are unrestricted.

• Tape Mark - The tape mark following the last header label is optional. One or
two tape marks may or may not follow the last trailer label. A tape mark must
follow the last data block on the tape or in the file.

1.3.3. Unlabeled

An unlabeled tape may or may not have a tape mark at the beginning of a file. If
a tape mark is used, data blocks follow the tape mark that indicates the beginning
of the file. Otherwise, the file begins with data blocks. One tape mark must, and
two tape marks may, follow the last data block in the file.

1.3.4. Data Format

Data may have fixed or variable record lengths and may be in blocked or unblocked
format. For fixed-length records, whether blocked or unblocked, only data is re
corded on tape.

For variable-length records, whether blocked or unblocked, the first four bytes of
a block are

nnbb

where nn is a binary num her which represents the num her of bytes in the block
including the first four bytes, and bb is reserved for system use.

For variable-length records, whether blocked or unblocked, the first four bytes of
a record are

nnbb

where nn is a binary number which represents the number of bytes in the record
including the first four bytes, and bb is reserved for system use.

Data may also be in an undefined format. Such data is of variable-length and un
blocked but need not conform to the conventions given for variable-length records.

All standard information recorded on tape by the IOCS is represented in standard
EBCDIC internal code.

1.3.5. Checkpoint Dump

A checkpoint dump may be made on 8n output file. The first and last blocks of the
dump begin with the following configuration:

I I /15CHKPT15 I I

The number of blocks in the dump, their length, and their format are unrestricted.

8
PAGE:

UP-4120 UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL SECTION:

2
PAGE:

2. UTILITY PROGRAMS
AND SUBROUTINES

This section contains a brief description of the various utility programs and subroutines
supplied with the UNIVAC 9200/9300 System software.

2.1. MULTIPLY /DIVIDE AND EDIT SUBROUTINES

The functions of multiplication, division, and editing are supplied optionally in the
9200 System. These options are offered as hardware instructions or as fixed, closed
subroutines which duplicate the functions of the instructions. The hardware instructions
are described in the UNIVAC 9200/9300 Hardware Reference Manual, UP-4139. The
subroutines are described under the following headings.

2.1.1. Multiply/Divide Subroutine

The multiply and divide functions are provided by one fixed, closed subroutine
which is in relocatable object code and which requires approximately 436 bytes
of memory. The multiply/divide subroutine is to be linked to the problem program.
To make the linking possible, the following source statement must be inserted
in the problem program:

Operation Operand

EXT RN MPDP

This source statement provides information which allows the Linker to insert the
address required for entering the subroutine. The MPDP symbol must not be defined
by the problem program. The Assembler supplies special information in the object
code of the program, which permits the subroutine to be entered directly by means of
the following coding:

Multiply
Operation Operand

BAL 15,MPDP

MP op l, op2

Divide

Operation Operand

BAL 15,MPDP

DP opl, op2

1

UP-4120 UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL SECTION:

2

The subroutine returns control to the program at the point immediately following
the multiply or divide instruction to be executed.

Labels for the BAL, MP, or DP instructions are permitted, but they are not used
by the subroutine. The operand addresses of the MP and DP instructions may be
indexed or direct. The contents of all registers except register 15 are preserved
by the subroutine. The condition code (CC) indicator is preserved and reset by
the subroutine.

Since the multiply/divide subroutine essentially duplicates the functions of the
hardware instructions, only differences in operation between the hardware in
structions and the subroutine are described here.

• In the hardware instructions, the length of operand 1 is determined by detection
of a sign which must be one of the following:

Plus

A(1010)

C(llOO)

E(l 110)

F(llll)

Minus

B(lOl 1)

D(llOl)

in the subroutine, operand 1 length must be specified in the instruction. Sign
position is thus determined by operand length, and any bit combination in this
position is treated as the sign.

• In the hardware instructions, maximum operand 2 length is 16 bytes. In the
subroutine, it is eight. If a larger length is specified, the subroutine reduces
it by eight.

• In the hardware instructions, a divide check error stops the processor. In the
subroutine, it causes a display of '29EE'.

PAGE:

• The operand identities for the multiplier and multiplicand are switched between
the hardware instructions and the subroutine, but the product is stored in operand
1 in both cases.

General timing formulas for the multiply I divide subroutine operations are as follows
(times are expressed in terms of memory cycles):

• Multiply

1950 + 19A + B + C + D + 775E + 388F

where:

A = the num her of bytes in the multiplicand

B = 10 if the multiplicand is indexed; otherwise, B = 0

C = 78 if the product is negative; otherwise, C = 0

D = 5 if the multiplier is indexed; otherwise, D = 0

E =the number of digits in the multiplier

F =the sum of the multiplier digits

2

UP-4120
UNIV AC 9200/9300

PROGRAMMING UTILITY MANUAL

• Divide

3695 + 19A + B + C + D + 962E + 640F + 6G

where:

A = the number of bytes in the dividend

B = 10 if the dividend is indexed; otherwise, B = 0

C = 78 if the quotient is positive; otherwise, C = 0

D = 5 if the di visor is indexed; otherwise, D = 0

E = one less than the number of digits in the quotient

F = the sum of the quotient digits

G =the number of bytes in the divisor

2.1.2. Edit Subroutine

2
SECTION:

The edit subroutine is handled in the same way by the problem program as the
multiply/divide subroutine. It is also a fixed, closed subroutine in relocatable
object code, and it requires approximately 356 bytes of memory. To make the link
between the problem program and the edit subroutine, the following source state
ment must be inserted into the problem program:

Operation Operand

EXT RN EDIT

This statement provides the Linker with information needed to insert the actual
entrance address of the subroutine. The EDIT symbol must not be defined by the
problem program. The Assembler provides special information in the object code
of the user program to permit the first of the following statements to be used for
entering the subroutine directly:

Operation

BAL

ED

Operand

15,EDIT

opl,op2

PAGE:

The subroutine returns control to the problem program at the point immediately following
the edit instruction. All registers except register 15 are also preserved by the sub
routine.

The operand addresses of the ED statement may be indexed or direct. Labels for
the BAL or ED instructions are permitted but not used by the subroutine.

The edit subroutine achieves the same result as the hardware instruction.

3

UP-4120
UNIVAC 9200/9300

PROGRAMMING UTILITY MANUAL

2.1.3. Hardware Compatibility

2
SECTION:

If a subroutine user upgrades his computer to include the multiply, divide, and edit
instructions, he can modify his programs as follows:

PAGE:

1. Remove all BAL 15,MPDP and BAL 15,EDIT instructions from his source code.

2. Reassemble the source code.

3. Do not link the multiply /divide and edit subroutines to the problem program.

2.2. STERLING CONVERSION ROUTINES

The sterling conversion routines convert sterling notation from card input to pence
notation for computer operation and convert the results back to sterling notation for
card punch or printer output.

The conversion routines assume that amounts in sterling notation are punched in the
input cards in Univac standard card code and are translated into Univac standard
EBCDIC code. In the input fields, leading zeros may be represented by blank columns.

The sterling con version routines are entered by way of a BAL instruction. General
register 15 is used as the return register. The routines use a common working storage
area. The num her of fractional pence decimal places is contained in a halfword
constant following the BAL instruction. The number may be 0 through 3. The routines
handle six different sterling notations (lA, lB, 2A, 2B, 2C, 2D) and a pence notation.
The formats for these notations as they appear in the common working storage area
are shown in Table 2-1.

4

en
...J

__ i ____ ,-t-.:=i· I rL[f hl~T-r,E1~-~LlTf Ef-TiiITTY~ 1_I __ 11._
4

__.._ Y_....__1
""'"·---I

lA

lA

lA

lA

18

18

18

18

2A, 28

2A, 28

2A, 28

2A, 28

2C, 20

2C, 20

0 unpkd 0 0 0 £ £ £ £ £ £ £ £ £ £ d x d

unpkd

2 unpkd

3 unpkd

0 pkd

0

0

£

0

£

£

£

£

£

£ £ £

£ £ £

£ £ £

0 0 0 £ ££ £ £ £ ££ £ £

£

£

£

£

£

£

d

pkd 0 0 £ £ £ £ £ £ £ £ £ £ s s d d
-----------··--------------------------~-----

2 pkd 0 £ £ £ £ £ £ £ £ £ £ s s d d

3 pkd

0 unpkd

unpkd

2 unpkd

3

0

unpkd

unpkd

££ £ £ ££ £ £ £ £ d

0

0

0

£

0

0

0

£

£

0

0

£

£

£

0

£ £

£ £

£ £

£

£

£

£

£

£

£ £ £ £ _" ______________________ -- - --

£ £ £ £

£

£

£

£

£

unpkd 0 0 £ £ £ £ £ £

£

£

£

d x

x

x

x

£

£
-- ----·· .. ---- -~

£

£

£

·---------------------·---
£

£

£

£

£

£

£

s

£

£

£

s

s d

£ x £

£

d d x

d d x

d x

d x
·-·-·--·-·-----·-··--------------------------··--------

£ £ s s d x
. ···--·-····--·----------------------------

£ s s d f f x
---··-----------·-- ---------------------------!

£ £ £ x £ d

£ £ £ £ s d x f
--···-----··------·-·-·---- ---- -----·- --------·---------·-·-----

2C, 20 2 unpkd 0 £

£

£

£

£

£

£ £

£

£ .£ £ £ £ s d f xf

pence

pence

pence

pence

--·--·· . ·-···· - . -·-···-·- -·----··--------·-···---·--------------i

u~p~~--- - £ £ £ £ £ £ s d f f x f ·--·-··--·-·-·- . ·-···- -·----· ··-·-- -----·- ·---···---------------1
0 pkd

okd

2 pkd

3 pkd

0 0 0 0 d d d d d d d d d d d d d x

0 0 0 d d d d d d d d

0 0 d d d d d d d d d d

0 d d d d d d d d d

£ POUND DIGIT

s SHILLING DIGIT

d PENNY INTEGER DIGIT

PENNY DECIMAL FRACTIONAL DIGIT

x SIGN

·------.. --···-·-··-- -·-····--·-··-····-··--·-----------· ·----··· ··- ·-·-·------------!

x
.. -·------··--·--- ---·-··--- ----·· ----------------------i

x

x
.. ·-· ··- --···--·- --- -·-----------··------- --·--------·-----------J

Table 2-1. Sterling Notation Format

.,,
:::::0
0
~
:::::0
)> c::
::: z
::: -_<
zl>
~n

c:: "'°
..... ~
-o
r-"-
- ..a -lw
-<g
:::
)>
z
c::
)>
r

Ul
[Tl

()

-l

0
z

1l
l>
Gl
[Tl

(J1

UP-4120
UNIVAC 9200/9300

PROGRAMMING UTILITY MANUAL SECTION:

2

In sterling notations 2A and 2D, ten pence is represented by an 11-punch; eleven
pen~e, by a 12-punch. In 2B and 2C, ten pence is represented by a 12-punch;
eleven pence, by an 11-punch. In 2C and 2D, ten shillings is represented by a 12-
punch, and eleven through nineteen shillings is represented by A-punches through
I-punches, respectively.

A minus sign is represented by an 11-overpunch. On input to the routines, a plus
sign is represented by no overpunch or a 12-overpunch; on output, a plus sign is
represented by a 12-overpunch.

There are eleven conversion routines to convert one format to another.

CONVERSION FORMAT

ROUTINES FROM TO

RlA 2A lB

RlB 2B lB

RlC 2C 1B

RlD 2D lB

R3 lB Pence

R4 Pence lB

RSA lB 2A

RSB lB 2B

RSC lB 2C

RSD lB 2D

R6 lB lA

Conversion routine R6 also suppresses leading zeros in the tens digit of the
shillings and pence fields.

2.3. MEMORY DUMP ROUTINE

The Memory Dump routine is used to obtain a printed record of the con tents of a
part or all of memory at some time during or after the execution of a program. The
Memory Dump may be either a closed subroutine or a self-loading program.

PAGE:

As a closed subroutine, the Memory Dump is combined with the problem program at
Assembler or Linker time and is executed when needed by means of a BAL instruction
in the problem program.

As a self-loading program, the Memory Dump is loaded in the form of an object code
deck from the card read unit. In this case, the Memory Dump begins to function auto
matically after the card deck is loaded.

6

UP-4120

UNIVAC 9200/9300
PROGRAMMING UTILITY MANUAL SECTION:

2
PAGE:

To minimize the time required to print a memory dump, the routine uses a second
ou.tput area in addition to the reserved printer output buffer area. In all other respects,
the space required by the Memory Dump routine is minimized, so that in the case of
the self-loading form, the amount of memory which must be altered to produce a mem=
ory dump is minimized.

The Memory Dump routine is completely self-contained. It incorporates its own printer
subroutine, and to minimize the size of this subroutine, the Memory Dump routine is
executed in I/O mode. When the Memory Dump is in the closed subroutine form, the
assumption is made that the subroutine was entered in processor mode, and that mode
is restored before control is returned to the problem program.

The Memory Dump routine is provided in the form of a macro. Whether the Preassembly
Macro Pass is to produce source code in the closed subroutine form or in the self
loading form is determined by parameter specifications. Parameter specifications also
determine the following:

(1) Whether the dump is to be made on a 96-, 120-, or 132-character printer,

(2) Whether the printer has a 63- or 48-character printer bar.

(3) At what memory location the dump begins.

(4) At what memory location the dump ends.

(S) For the self-loading routine -

a. whether the card read unit is the card reader or the 1001 Card Controller; and

b. where the Memory Dump routine is to be loaded.

After the source code deck is produced, it is still possible to change the parameters
which specify the beginning and ending locations of the dump by replacing two cards
in the source code deck. The beginning and ending dump locations may be further
changed by appropriate Replace (REP) cards even after the source code deck is
assembled. In the subroutine form, the REP cards may be used at Linker time. In
either the subroutine or self-loading form, the REP cards may also be used as input

to SQUEEZE, and that output is then placed at the end of the object code deck. In
the case of the subroutine form, the problem program may externally reference the
Memory Dump routine to change the beginning and ending dump locations.

The printout of a memory dump is as follows:

(1) Lines are doublespaced.

(2) The dump is printed in hexadecimal no ta ti on.

(3) The first line of print is the unmodified contents of the reserved printer output
buffer area.

7

UP-4120
2 8 UNIVAC 9200/9300

PROGRAMMING UTILITY MANUAL SECTION: PAGE:

(4) Each subsequent line of the dump has the following format:

a. The address of the first byte printed on the line is at the extreme left
followed by two spaces.

b. The contents of each byte are represented in two consecutive print positions:
the zone of the byte is in the left position, and the digit of the byte is in the
right position.

c. There are eight bytes to a group. Groups are separated by two spaces. Bytes
are not separated within groups.

(5) Following the printer output buffer area printout, the next four lines are a dump
of memory locations 0 through 127. Line 2 gives the contents of locations 0-31;
line 3, locations 32-63; line 4, locations 64-95; and line 5, locations 96-127.
These four lines have four groups to a line.

(6) The memory dump as specified begins at line 6.

(7) The number of groups per line of the memory dump depends on the number of print
positions used in the printer. For the 96-character printer, five groups are printed
per line; for the 120-character printer, six groups; for the 132-character printer,
seven groups.

(8) The four least significant bits of the beginning address of the dump are erased,
and the dump begins at the resulting address.

(9) During the memory dump, each halfword processed is compared to the immediately
preceding halfword, with the exception of the first halfword. If each halfword in a
line is equal to its predecessor, then instead of printing the line, the routine prints
a line of asterisks. After a line of asterisks, nothing is printed until a line is
detected in which some halfword is not equal to the immediately preceding half
word. The routine then returns to printing in normal output format. The last line
of the memory dump is always printed.

2.4. SQUEEZE

SQUEEZE provides a simple method for modifying absolute program decks. Input
consists of REP cards (as described for the Linker) and an END card (described
below). The user specifies at Linker time whether the card input is from the card
reader or the 1001 Card Controller. The translation table used for translating the
control cards is similarly determined by the user when SQUEEZE is linked.

For each REP card read, SQUEEZE produces a Text card containing the location
and text specified in the REP card. If possible, two or more REP cards are com
bined to produce one Text card. The process continues until the END card is read.
A count is maintained of the number of Text cards produced. On the basis of the
specifications given in the END card, SQUEEZE then produces a Transfer card and
halts.

UP-4120
UNIVAC 9200/9300

PROGRAMMING UTILITY MANUAL SECTION:

2
PAGE:

An END card contains the control card identifier END in columns 8-10. The speci
fications begin in column 14, are terminated by a blank, and have the foliowing form:

a,i

where "a" is the address in hexadecimal, to which control is transferred after
the updated element is loaded.

"i" is the increment, in hexadecimal, to be added to the cumulative count of
the Text cards produced by SQUEEZE. The final count is punched in the Trans
fer card.

If the Text cards produced by SQUEEZE are placed just before the Transfer card
in an absolute program deck, the text specified in the REP cards replaces the text
in the program deck at the location specified in the REP cards. The replacement
takes place when the absolute program deck is loaded.

The Transfer card produced by SQUEEZE may be used to replace the Transfer card
in an absolute program deck. A NO in the "a" specification prevents SQUEEZE
from producing a Transfer card.

SQUEEZE produces a listing of all REP and END cards processed. The user deter
mines at the time SQUEEZE is linked whether the listing is to be produced on the
63- or 48-character print bar printer.

If the UNIVAC 9200/9300 System is restarted after a SQUEEZE operation is com
pleted, the operation is reinitiated, and the system proceeds to process a new set
of input cards.

9

UP-4120

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	xBack

