
I

t

CARD
UTILITY
PROGRAMS

I I
I I

UP·4120 Rev. 2

This manual is published by the Univac Division of Sperry Rand Corporation
in loose leaf format. This format provides a rapid and complete means of
keeping recipients apprised of UNIV AC® Systems developments. The infor­
mation presented herein may not reflect the current status of the product.
For the current status of the product, contact your local Univac Represent­
ative.

The Univac Division will issue updating packages, utilizing primarily a
page-for-page or unit replacement technique. Such issuance will provide
notification of hardware or software changes and refinements. The Univac
Division reserves the right to make such additions, corrections, and/or
deletions as, in the judgment of the Univac Division, are required by the
development of its Systems.

UNIVAC is a registered trademark of Sperry Rand Corporation.

0 1970 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

UP-4120
,, Rev. 2
!' ·.

I
I,

CONTENTS

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

1. INTRODUCTION

1.1. GENERAL

1.2. MACRO INSTRUCTIONS
1.2.1, Declarative Macro Instructions
1.2.2. Imperative Macro Instructions

1.3. STATEMENT CONVENTIONS

2. MUL Tl PLY /DIVIDE AND EDIT SUBROUTINES

2.1. GENERAL

2.2. MULTIPLY/DIVIDE SUBROUTINE
2.2.1. Instruction Format
2.2.2. Timing Formulas for Multiply/Divide Subroutine

2.3. EDIT SUBROUTINE
2.3.1. Timing Formula for Edit Subroutine

2.4. HARDWARE COMPATIBILITY

3. STERLING CONVERSION ROUTINES

3.1. GENERAL
3.1.1. Format lA
3.1.2. Format 1 B
3.1.3. Format 2
3.1.3.1. Shillings
3.1.3.2. Pence
3.1.3.3. Format 2 Types
3.1.3.4. Signs
3.1.3.5. Leading Zeros
3.1.4. Pence Format

3.2. CONVERSION ROUTINES

3.3. USING CONVERSION ROUTINES
3.3.1. Common Work Area
3.3.2. Converting Data

3.4. INCLUSION OF ROUTINES INTO THE PROBLEM PROGRAM
3.4.1. Joint Assembly
3.4.2. Separate Assembly

Contents
SECTION:

CONTENTS

1 to 3

1-1 to 1-2

1-1

1-1
1-2
1-2

1-2

2-1 to 2-5

2-1

2-1
2-2
2-3

2-4
2-5

2-5

3-1 to 3-9

3-1
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5

3-6

3-6
3-6
3-7

3-7
3-8
3-8

1
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

4. MEMORY DUMP ROUTINE

4.1. GENERAL

4.2. CONTENTS OF CONTROL AREA

4.3. PRINT FORMAT

4.4. MAIN STORAGE REQUIREMENTS

4.5. CHARACTERISTICS OF CLOSED SUBROUTINE FORM OF MEMORY
ROUTINE

4.5.1. Memory-Dump-Subroutine (MDSBR) Declarative Macro Instruction
4.5.2. END Imperative Macro Instruction
4.5;3. Instructions Required for Execution of Closed Subroutine

4.6. CHARACTERISTICS OF SELF-LOADING FORM OF MEMORY DUMP
ROUTINE

4.6.1. Memory-Dump-Self-Loading-Form (MDSLF) Declarative Macro Instruction
4.6.2. END Imperative Macro Instruction
4.6.3. Programming Considerations
4.6.4. Operating Instructions
4.6.5. Display Stops

5. SNAPSHOT ROUTINE

5.1. GENERAL

5.2. MAIN STORAGE REQUIREMENTS

5.3. SNAP DECLARATIVE MACRO INSTRUCTIONS

5.4. INSTRUCTIONS REQUIRED FOR ENTERING SNAPSHOT ROUTINE
5.4.1. Branch-and-Link (BAL) Instruction
5.4.2. Define-Constant (DC) Statement

5.5. REQUIREMENTS FOR PRINTING SNAPSHOT DUMP
5.5.1. Print Format of Snapshot Dump

6. SQUEEZE PROGRAM

6.1. GENERAL

6.2. CARD INPUT
6.2.1. START Card
6.2.2. Replace (REP) Card
6.2.3. END Card

6.3. OUTPUT
6.3.1. Text Card
6.3.2. Transfer Card
6.3.3. Print Output

Contents

SECTION:

I

4-1 to 4-15

4-1

4-2

4-2

4-3

4-4
4-4
4-6
4-6

4-8
4-8
4-12
4-12
4-13
4-15

5-1 to 5-4

5-1

5-1

5-2

5-2
5-3
5-3

5-3
5-4

6-1 to 6-13

6-1

6-1
6-1
6-2
6-2

6-3
6-3
6-4
6-5

2

PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

6.4. LINKING SQUEEZE PROGRAM MODULES
6.4.1. Phase Control Card
6.4.2. External Definition (EQU) Cards
6.4.3. Arrangement of Modules in Input Deck
6.4.3.1. Card Load Routine
6.4.3.2. Squeeze Module
6.4.3.3. EXEC I
6.4.3.4. Card Read Routine
6.4.3.5. Card Punch Routine
6.4.3.6. Print Routine
6.4.4. END Control Card

6.5. OPERATING INSTRUCTIONS

7. SYMBOLIC LIST PROGRAM

7.1. GENERAL

7.2. PROGRAM REQUIREMENTS

7.3. LINKING SYMBOLIC LIST PROGRAM
7.3.1. Phase Control Card
7.3.2. External Definition (EQU) Card
7 .3.3. Arrangement of Modules in Input Deck
7 .3.3.1. Card Load Routine
7 .3.3.2. SY M Mo du le
7 .3.3.3. EXEC I
7 .3.3.4. Ca rd Read Routine
7.3.3.5. Print Routine
7.3.4. END Control Card

7.4. OPERATING INSTRUCTIONS FOR USING THE SYM PROGRAM

APPENDIX

A. STANDARD-CARD, EBCDIC, AND PRINTER-GRAPHIC CODES

FIGURES

Contents
SECTION:

6-5
6-5
6-6
6-6
6-6
6-6
6-7
6-7
6-9
6-11
6-13

6-.13

7-1 to 7-7

7-1

7-1

7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-3
7-5
7-7

7-7

A-1 to A-4

3-1. Linking Sequence, Format 2A to Format lB 3-7

3-2. Coding the Problem Program for Separate Assembly of the Sterling Routines 3-9

TABLES

3-1. Sterling Notation Format 3-2'

3-2. Maximum Sizes of Sterling Notation Formats 3-3

3-3. Sterling Amounts Expressed in Available Formats of Notation 3-3

3-4. Summary of Sterling Notation Formats 3-5

3-5. Conversion Routines 3-6

4-1. Display Stops 4-15

3
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

1

1. INTRODUCTION

1.1. GENERAL

The purpose of this manual is to describe the card utility programs supplied as part
of the software package provided with the UNIV AC 9200/9200 II/9300/9300 II Card
Systems. Descriptions of the macro instructions used to initiate and generate these
utility routines and programs as well as descriptions of the displays resulting from
or associated with the routines and programs are also included.

A knowledge of the UNIV AC 9200/9200 ll/9300/9300 ll Systems Central Processor
and Peripherals Programmers Reference, UP-7546 (current version) and the UNIVAC
9200/9200 ll/9300/9300 ll Systems Card Assembler Programmers Reference, UP-4092
(current version) is helpful in using this manual.

Section 1 of this manual defines the declarative and imperative macro instructions
and their parameters as used in this manual. A description of the statement conven­
tions used to illustrate the statements in this manual is also provided in this section.

The remainder of the manual is arranged as follows:

• Section 2 contains information pertaining to multiply/divide and edit subroutines.

• Section 3 contains information pertaining to sterling conversion routines.

• Section 4 contains information pertaining to the memory dump routine.

• Section 5 contains information pertaining to the snapshot dump routine.

• Section 6 contains information pertaining to the squeeze program.

• Section 7 contains information pertaining to the symbolic list program.

1.2. MACRO INSTRUCTIONS

A macro instruction is similar in format to a source code instruction. It may or may
not contain an entry in the label field, but it must contain an operation code in the
operation field and one or more parameters in the operand field. The macro instruc­
tions described in this document are classified as either declarative macro instruc­
tions or imperative macro instructions. The declarative and imperative macro instruc­
tions differ in three aspects: the purpose for which they are used, the format of the
parameters specified in their operand fields, and the type of coding they generate.

1

PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

1.2.1. Declarative Macro Instructions

1
SECTION:

Declarative macro instructions used keyword parameters to describe all the aspects
of the file to be processed by the system. These aspects include parameters, con­
stants, storage areas, special conditions, status, and options. Essentially, the
declarative macro instruction defines each file required by the problem program.
The code generated by the declarative macro instruction is nonexecutable and
therefore should be separated from the inline file processing code.

The term "keyword parameter" refers to parameters which can be written in any
order within the operand field. Keyword parameters must be separated by commas,

PAGE:

but it is not required that the omission of a keyword be indicated. Keyword parameters
are recognizable by their format, which consists of a word or code immediately fol­
lowed by an equals sign, which is in turn followed by one specification.

1.2.2. Imperative Macro Instructions

Imperative macro instructions are used to point to the files described by the de­
clarative macro instructions. In addition, imperative macro instructions are also
used in providing additional details specifying the processing action to be taken.
When executed, the imperative macro instruction generates many lines of inline,
executable code.

The parameters contained in the operand field of the imperative macro instruction
are positional parameters rather than the keyword parameters used in the declara­
tive macro instruction. Positional parameters, as signified by their name, must be
written in the order specified and separated by commas. When a positional parameter
is omitted, the comma must be retained to indicate the omission except in the case
of omitting trailing parameters.

1.3. STATEMENT CONVENTIONS

The conventions used to illustrate statements in this manual are as follows:

• Capital letters and punctuation marks (except braces, brackets, and ellipses)
are information that must be coded exactly as shown.

• Lowercase letters and terms represent information that must be supplied by the
programmer.

• Information contained within braces represents the necessary entries, one of which
must be chosen.

• Information contained within brackets represents the optional entries that (depend­
ing on program requirements) are included or omitted. Braces within brackets
signify that one of the entries must be chosen if that operand is included.

• An ellipsis indicates the presence of a variable number of entries.

Commas are required after each parameter, except after the last parameter specified.
When a positional parameter is omitted from within a series of parameters, the comma
must be retained to indicate the omission.

2

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

SECTION:

2

2. MULTIPLY/DIVIDE AND
EDIT SUBROUTINES

2.1. GENERAL

The functions of multiplication, division, and editing are supplied optionally in the
9200 System. These options are offered as hardware instructions or as fixed, closed
subroutines which duplicate the functions of the instructions. These subroutines are
supplied as relocatable card decks and must be linked to the problem program in which
they are used. The subroutines are described in the paragraphs that follow.

2.2. MULTIPLY /DIVIDE SUBROUTINE

The multiply and divide functions are provided by one fixed, closed subroutine which
is in relocatable object code and which requires approximately 436 bytes of memory.
To utilize the multiply/divide subroutine, it is necessary to link this subroutine to
the problem program in which it is used. This is accomplished by use of the EXTRN
source statement which must be inserted into the problem program. The multiply/
divide subroutine symbol (MPDP) specified in the operand of this source statement
provides the information which allows the linker to insert the address required for
entering the subroutine. The MPDP symbol, however, must not be defined by the
problem program. The format of the EXTRN source statement used for linking the
multiply/divide subroutine is as follows:

LABEL 15OPERATION15 OPERAND

unused EXTRN MPDP

The multiply/divide subroutine is entered from the problem program by means of two
instructions: the branch-and-link (BAL) instruction and the multiply-pack (MP)
instruction for a multiplication function, or the BAL instruction and the divide-packed
(DP) instruction for a division function. The BAL instruction performs two functions:
it stores in processor register 15 the address used to return control to the problem
program and it provides the mnemonic symbol MPDP for entering the multiply/divide
subroutine. The specific operation to be performed (multiply or divide) and values to
be used by the subroutine are specified by the appropriate MP and DP instructions.
Examples of the coding format required to enter the multiply/divide subroutine into
the program are as follows:

1

PAGE:

UP-4120
Rev. 2

Multiply

LABEL

unused
unused

Divide

LABEL

unused
unused

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

1> OPERATION 1>

BAL
MP

1i OPERATION 1i

BAL
DP

OPERAND

15,MPDP
op l,op2

OPERAND

15,MPDP
opl,op2

2
SECTION:

Upon completing the execution of the multiply or divide subroutine, control is
returned to that point of the problem program immediately following the multiply or
divide instruction.

Labels for the BAL, MP, or DP instructions are permitted, but they are not used by
the subroutine. The operand addresses of the MP and DP instructions may be in­
dexed or direct. The contents of all registers except register 15 are preserved by
the subroutine. The condition code (CC) indicator is preserved and reset by the
subroutine.

2.2.1. Instruction Format

The multiply/divide subroutine essentially duplicates the functions of the system
hardware instructions. (Both the hardware instructions and the subroutine instruc­
tions are of the storage-to-storage (SS2) format type.) Differences, however, exist
in the manner in which operational conditions are specified in these two instruction
versions. Therefore, only the differences between the hardware instructions and the
subroutine instructions are described herein.

• In the hardware instructions, the length of operand 1 is determined by detection
of a sign byte. The sign byte for the decimal numbers contained in operand 1 is
represented by hexadecimal digits A through F, where A, C, E, or F represents
a plus sign and B or D represents a minus sign.

In the subroutine instructions, the length of operand 1 must be specified within
the instruction. The sign of the operand is therefore defined by its position in
an operand of a given length. Any bit configuration in this position is inter~
preted as the sign of the operand.

• In the hardw.are instructions, the maximum length of operand 2 is 16 bytes. In
the subroutine instructions, the length is limited to eight bytes. If a length
larger than eight bytes is specified, the subroutine reduces the specified length
to eight bytes.

• In the hardware instructions, a divide check stops processor ogerations. In the
subroutine instructions, it causes a display of '29EE' to be presented on the
control console.

2
PAGE:

r

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS SECTION:

2

• The operand identities for the multiplier and the multiplicand of the subroutine
multiply instruction are the reverse of the operand identities specified for the
hardware instruction. That is, in the subroutine instruction, the multiplier is
specified in operand 2 and the multiplicand is specified in operand 1. The result­
ing product, however, is stored in the location specified by operand 1 for both
versions of the instruction.

2.2.2. Timing Formulas for Multiply/Divide Subroutine

Timing for multiply/divide subroutine operations can be calculated by the use of
two general timing formulas. These two formulas (one for multiply operations and
one for divide operations) provide times that are expressed in terms of memory
cycles. The timing formulas are as follows:

• Multiply Operation

1950 + 19a + b + c + d + 775e + 388£

where:

a = the number of bytes in the multiplicand

b = 10 if the multiplicand is indexed; otherwise, b = 0

c = 78 if the product is negative; otherwise, c = 0

d = 5 if the multiplier is indexed; otherwise, d = 0

e = the number of digits in the multiplier

f = the sum of the multiplier digits

• Divide Operation

3695 + 19a + b + c + d + 962e + 640f + 6g

where:

a = the number of bytes in the dividend

b = 10 if the dividend is indexed; otherwise, b = 0

c = 78 if the quotient is positive; otherwise, c = 0

d = 5 if the divisor is indexed; otherwise, d = 0

e = one less than the number of digits in the quotient

f = the sum of the quotient digits

g = the number of bytes in the divisor

3
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

2.3. ·EDIT SUBROUTINE

2
SECTION:

, The edit subn;rntine is handled in the same way by the problem program as the
multiply I divide,.subroutine, It is also a fixed, closed subroutine in relocatable
objectco!le, and .it requires approximately 356 bytes of memory. To make the link
between the problem program and the edit subroutine, the following EXTRN source
statement must be inserted into the problem program:

LABEL ti OPERATION ti OPERAND

unus~d EXTRN EDIT

This statement provides the linker with information needed to insert the actual
entrance address of the subroutine. The EDIT symbol must not be defined by the
problem program.

To enter the edit subroutine, it is necessary to execute a BAL instruction. Execu­
tion of this instruction performs two functions: It stores into processor register 15
the address used to return control to the problem program, and it identifies the edit
subroutine by specifying the EDIT symbol. The format of the BAL instruction for
entering the subroutine is as follows:

LABEL ti OPERATION ti OPERAND

unused BAL 15,EDIT

The parameters to which the edit subroutine must function are provided by the
operands of the edit (ED) instruction which follows the BAL instruction in the
problem program. The format of the ED instruction is as follows:

LABEL ti OPERATION ti OPERAND

unused ED opl,op2

Execution of the edit instruction transfers data from the bytes specified by operand
2 (op2) to the bytes specified by operand 1 (op 1). The data format of op2 is changed
from packed decimal to unpacked decimal, zone bits and editing symbols are inserted,
and leading zeros are suppressed as part of the editing process which takes pl'ace
during the data transfer. This editing process is controlled by the editing mask in
op 1 which is overlaid by execution of the instruction. Operand 2 must be a packed
decimal field, and op 1 must contain the editing mask to avoid unpredictable results
from the execution of this instruction.

Upon coqipletion of the subroutine, control is returned to the problem program at the
point immediately following the edit (ED) instruction. All registers except register
15 are preserved by the subroutine.

4
PAGE:

UP-4120
Rev. 2

2 UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAM SECTION:

The operand addresses of the ED statement may be indexed or direct. Labels for
the BAL or ED instructions are permitted but not used by the subroutine.

The edit subroutine achieves the same result as the hardware instruction.

2.3.1. Timing Formula for Edit Subroutine

The formula for calculating an approximate timing for the edit routine is as
follows: (Times are expressed in memory cycles.)

766 + a + b + c + 17 4d + 14e + 86f + 172g + 254h + 326i + 390j +

472k + 3701+316m + 426n

where:

a = 202 if operand 2 is indexed; otherwise, a = 0

b = 202 if operand 1 is indexed; otherwise, b = 0

c = 52 if the data value is nonzero; otherwise, c = 0

d = the number of data digits

e = the integral part of d/2

f =the number of ANSCII minus signs in the data

g = the number of EBCDIC minus signs in the data

h = the number of plus signs in the data

= the number of digit select bytes for which suppression is performed

= the number of digit select bytes for which digits are selected

k = the number of significant start bytes

1 = the number of edit pattern bytes that are suppressed

m = the number of edit pattern bytes that are not suppressed

n = the number of field separator bytes

2.4. HARDWARE COMPATIBILITY

If a subroutine user upgrades his computer to include the multiply, divide, and edit
instructions, he can modify his programs as follows:

(1) Remove all BAL 15,MPDP and BAL 15,EDIT instructions from his source code.

(2) Reassemble the source code.

(3) Do not link the multiply/divide and edit subroutines to the problem pro&ram.

5
PAGE:

UP-4120
Rev. 2

UMIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

3

3. STERLING CONVERSION
ROUTINES

3.1. GENERAL

Sterling notation is the expression of monetary fields in terms of pounds, shillings,
and pence. One pound is equal to 20 shillings; one shilling equals 12 pence.

The sterling conversion routines convert sterling notation from card input to pence
notation for computer operation and convert the results back to sterling notation for
card punch or printer output.

PAGE:

Sterling notation is punched in the input cards in UNIV AC 9200/9200 11/9300/9300 II
Systems standard card code and is translated into EBCDIC internal code (Appendix A).
The output of the routines is also in EBCDIC code. In the input fields, leading zeros
may be represented by blank columns.

The sterling conversion routines use a common working storage area. The routines
handle six different sterling notations (lA, lB, 2A, 2B, 2C, 2D) and a pence notation.
The formats for these notations as they appear in the common working stotage area
are shown in Table 3-1.

1

"' ...I
LEFT-HAND EDGE OF COMMON WORKING STORAGE AREA I- ~ c(

:E u

l l l l l l l 1 l l l l a::
BYTE 0 1 2 3 4 5 6 7 8 9 0 0

u.. .. l l l l l l l l 1 l
lA 0 unpkd 0 0 0 £ £ £ £ £ £ £ £

lA 1 unpkd 0 0 £ £ £ £ £ £ £ £ £

lA 2 unpkd 0 £ £ £ £ £ £ £ £ £ £

lA 3 unpkd £ £ £ £ £ £ £ £ £ £ s

lB 0 pkd 0 0 0 £ £ £ £ £ £ £ £ £ £ s s d d x

lB 1 pkd 0 0 £ £ £ £ £ £ £ £ £ £ s s d d f x

lB 2 pkd 0 £ £ £ £ £ £ £ £ £ £ s s d d f f x

lB 3 pkd £ £ £ £ £ £ £ £ £ £ s s d d f f f x

2A,2B 0 unpkd 0 0 0 £ £ £ £ £ £ £ £

2A, 26 1 unpkd 0 0 £ £ £ £ £ £ £ £ £

2A, 26 2 unpkd 0 £ £ £ £ £ £ £ £ £ £

2A, 26 3 unpkd £ £ £ £ £ £ £ £ £ £ s

2C, 2D 0 unpkd 0 0 0 £ £ £ £ £ £ £ £

2C, 2D 1 unpkd 0 0 £ £ £ £ £ £ £ £ £

2C, 2D 2 unpkd 0 £ £ £ £ £ £ £ £ £ £

2C, 20 3 unpkd £ £ £ £ £ £ £ £ £ £ s

pence 0 pkd 0 0 0 0 d d d d d d d d d d d d d x

pence 1 pkd 0 0 0 d d d d d d d d d d d d d f x

pence 2 pkd 0 0 d d d d d d d d d d d d d f f x

pence 3 pkd 0 d d d d d d d d d d d d d f f f x

£ POUND DIGIT

s SHILLING DIGIT

d PENNY INTEGER DIGIT
,

f PENNY DECIMAL FRACTIONAL DIGIT

x SIGN

Tab/e.3-1. Sterling Notation Format

((

l 1 l 11 12 13 14

l 1 1 1
£ £ s

£ s s

s s d

s d d

£ x £ s

£ s s

s s d

s d f

£ x £ s

£ s d x

s d f x

d f f x

l l 15

1
s d x

d d x

d f x

f f x

s d

d x f

f x f

f x f

d

f

f

f

16

l
d

f

f

f

(

~ c::
CD 'ti
:= ~
~ ~

0

n c:
>z
;o <
0>

n
c: '°
-I "' -o ro
-~
-I "' -< g
"'CJ:
;o~
Ow
ag
;o~
>w
~g
Cit_

..
Ill
n
-I

0
z

11
)>

GI
Ill

w

~

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

3.1.1. Format lA

3
SECTION:

This format is used if the output is to be printed. Format lA represents sterling
amounts in the standard notation of pounds, shillings, and pence, including decimal
fractions of a penny.

Format lA permits a maximum of 10 positions for pounds, 2 positions for shillings,
2 for pence, and 3 for decimals. Table 3-2 illustrcftes format lA maximum sizes.

FORMAT

lA

2A, 28

2C, 2D

Pence

£ pound digit

s shilling digit

d penny digit

POUNDS(£) s

££££££££££ SS

HHHHH SS

££££££££££ s

d d d d d d d d d d d d d

penny fractional digit

d DECIMALS (f) USE

dd fff PRINTING (OUTPUT)

d fff
READING/PUNCHING

(INPUT /OUTPUT)

d fff
READING/PUNCHING

(IN PUT /OUTPUT)

fff COMPUTATION
(INTERNAL)

Table 3-2. Maximum Sizes of Sterling Notation Formats

Table 3-3 shows examples of sterling amounts written in Format lA.

STERLING AMOUNT

UNSIGNED NEGATIVE POSITIVE
FORMAT

POUNDS

lA 0

2A 0

2B 0

2C 0

2D 0

Pence

17 11
SHILLINGS PENCE

19 11

19 +
19 -
I -
I +

239

.155 123
DECIMAL POUNDS

155

155

155

155

155

155

123

123

123

123

123

+ 12 punch

- 11 punch

8 10 .123 456 10
SHILLINGS PENCE DECIMAL POUNDS SHILLINGS

08 10 12L 456 10

08 - 12L 45F 10

08 + 12L 45F 10

8 + 12L 45F +
8 - 12L 45F +

29626 12L 10956G

Table 3-3. Sterling Amounts Expressed in Available Formats of Notation

7
PENCE

OG

7

7

7

7
'

DECIMAL

3
PACiE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

3.1.2. Format lB

3
SECTION:

Format lB is the same as format lA except that the information is packed rather
than unpacked.

3.1.3. Format 2

Format 2 is used for both input and output. Input cards are read and output cards
punched in this format.

PAGE:

Format 2 permits a maximum of 10 positions for pounds and 3 positions for decimals.
Shillings and pence may be represented in either the British Standards Institution
(BSI) or the Hollerith code.

3.1.3.1. Shillings

• BSI Code

A single column is used to represent the shillings field. Amounts of 0 through 9
are indicated by the punches 0 through 9. Ten shillings are represented by a
12 punch in the column. Eleven through 19 shillings are represented by the A
through I punches, respectively.

• Hollerith Code

Two columns are used to represent the shillings field. Decimal notation is used,
the first column representing the tens position (that is, it contains either 0 or 1)
and the second representing the units (digits 0 through 9).

3.1.3.2. Pence

• BSI Code

The pence field is represented by a single column. Amounts of 0 through 9 are
indicated by the punches 0 through 9. Ten pence are represented by a 12 punch;
11 pence by an 11 punch.

• Hollerith Code

The Hollerith code is similar to the BSI code in that both use a single column
to represent pence. Amounts of 0 through 9 are indicated by the punches 0 through
9. However, 10 pence are represented by an 11 punch; 11 pence by a 12 punch.

3.1.3.3. Format 2 Types

Format 2 may be used in any of the following combinations of BSI and Hol!erith
code.

TYPE OF FORMAT SHILLINGS PENCE

Format 2A Hollerith code Hollerith code
Format 2B Hollerith code BSI code
Format 2C BSI code BSI code
Format 2D BSI code Hollerith code

Table 3-2 illustrates the maximum sizes of format 2. Refer to Table 3-3 for examples
of sterling amounts written in format 2.

4

lJP-4120
Rev. 2

3.1.3.4. Signs

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS
3

SECTION:

The sign is found in the least significant digit of the decimal portion of a sterling
field. However, if no decimal fractions of a penny exist in the field, the zone
punch identifying the sign is placed in the units position of the pounds field.

The sign codes are as follows:

- (minus)= 11 punch

+ (plus) = 12 punch or blank

NOTE: An 11 punch always requires a digit underpunched in the same column.
A 12 punch in the appropriate position is always used to signify positive
output amounts.

3.1.3.5. Leading Zeros

Leading zeros can be represented by blanks in sterling input fields.

3.1.4. Pence Format

The pence format is a "pence only" notation of a sterling amount; all pound and
shilling fields are converted to pence.

Pence format allows for a maximum of 16 positions: 13 positions for pence and 3
decimal positions.

Table 3-2 illustrates the maximum size of the pence format. Refer to Table 3-3
for an example of sterling amounts in pence format.

The pence notation is operated on with decimal arithmetic instructions.

A summary of sterling notation formats is given in Table 3-4.

PRINTING FORMAT CARD READING/PUNCHING FORMAT

FIELDS FORMAT lA FORMATS 2A, 28 FORMATS 2C, 2D

Pounds 1-10 positions 1-10 positions 1-10 positions

Shillings 2 positions (contents 2 positions (contents 1 position
not to exceed 19) not to exceed 19)

Hollerith code BSI code
'

Pence 2 positions (contents 1 position 1 position
not to exceed 11) BSI or Hollerith code BSI or Hollerith code

Decimals 0-3 positions 0-3 positions 0-3 positions

Table 3-4. Summary of Sterling Notation Formats

5
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

3

PAGE:

3.2. CONVERSION ROUTINES

3.3.

There are 11 routines to convert one format to another. Table 3-5 lists the conversion
routines and shows the relationship of the routines to the individual formats.

CON· CONVERSION APPROX. APPROX. MAXI· FORMAT
VERSION NUMBER MUM TIME FOR

ROUTINES FROM TO OF BYTES EXECUTION* INPUT OUTPUT

RlA 2A lB 94 1.2 16 bytes 9 bytes
unpacked packed

RlB 2B lB 94 1.2 16 bytes 9 bytes
unpacked packed

RlC 2C lB 116 1.4 15 bytes 9 bytes
unpacked packed

RlD 20 lB 116 1.4 15 bytes 9 bytes
unpacked packed

R3 lB Pence 126 5.0 9 bytes 9 bytes
packed packed

R4 Pence lB 118 5.8 9 bytes 9 bytes
packed packed

RSA lB 2A 78 1.0 9 bytes 16 bytes
packed unpacked

R5B lB 2B 78 1.0 9 bytes 16 bytes
packed unpacked

RSC lB 2C 110 1.3 9 bytes 15 bytes
packed unpacked

R50 lB 20 110 1.3 9 bytes 15 bytes
packed unpacked

R6** lB lA 56 1.0 9 bytes 17 bytes
packed unpacked

*In milliseconds
**Conversion routine R6 also suppresses leading zeros in the tens digit of the shillings

and pence fields.

Tobie 3-5. Conversion Routines

USING CONVERSION ROUTINES

Any one of the routines may be used individually or in conjunction with others to
meet any user's requirement.

3.3.1. Common Work Area

The problem program delivers data to be processed by a sterling conversion routine
by storing the data in a common work area. The sterling conversion routine also
uses the common work area to deliver the converted data to the problem program.
This common work area must be supplied by the problem program, must be 24 bytes
long, and must be labeled SWKA.

6

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

3.3.2. Converting Data

3
SECTION:

When the problem program requires conversion of data, it places the data in SWKA
and then enters the sterling conversion routine by means of a BAL instruction that
uses register 15 and that branches to the name of the routine. The BAL instruction
should be immediately followed by a half-word constant containing, right justified
in binary notation, the number of fractional pence decimal places in the data to be
converted. The number may be 0 through 3. When the sterling conversion routine has
finished the conversion, it stores the converted data in SWKA and returns control to
the instruction immediately following the constant specifying the number of decimal
places.

Register 14 is used by the routines as a working register. The sterling routines do
not save the contents of register 14. Therefore, the problem program should not
have usable information in register 14 when linking to the sterling routines.

Figure 3-1 illustrates a typical use of the routine R lA, converting format 2A to
format lB. The letter x in the DC directive must be replaced by one of the digits
0, l, 2, or 3 to indicate the number of decimal positions required.

LABEL 11 OPERATION 11 OPERAND
10 16

Figure 3-1. Linking Sequence, Format 2A to Format 7 B

3.4. INCLUSION OF ROUTINES INTO THE PROBLEM PROGRAM

The user may incorporate sterling conversion routines into his problem program in
either of two ways. He may include the sterling routines in his source program for
joint assembly, or he may assemble the sterling routines separately and link them
to the problem program.

The sterling conversion routine R3 requires multiplication. The sterling conversion
routine R4 requires division. These two routines are written on the assumption that
they are to be used with a configuration that does not include the multiply and
divide instructions. Therefore, the following is required:

PAGE:

a. If the assumption is true, then whenever routine R3 or R4 is included in a program,
the multiply/divide subroutine named MPDP must also be included.

7

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAM 3
SECTION:

b. If the assumption is false, then the BAL instructions with the following format
should be removed from routines R3 and R4 before they are assembled. There are
two such instructions in each of these routines.

LABEL 1S OPERATION 15 OPERAND

unused BAL 15,MPDP

3.4.1. Joint Assembly

If the user desires to assemble the sterling routine(s) together with his source
program, he incorporates the work area definition (SWKA) and the sterling routines
in the source program. The sterling routine object program becomes an integral
part of the object program.

3.4.2. Separate Assembly

For separate assembly of the sterling routine package, which is composed of the
desired sterling routines and an END statement, the user must include the follow­
ing in the problem program:

• The name of the common work area (SWKA) must be identified by means of an
ENTRY statement.

• The names of all the sterling routines used must be identified by means of
EXTRN statements.

• SWKA must be defined.

Figure 3-2 illustrates the coding for the main program for separate assembly of
sterling routines.

The letter x in the operand field of the DC statement in the calling sequence shown
in Figure 3-2 must be replaced by one of the digits 0, 1, 2, or 3 to indicate the
number of decimal positions required.

8
PAGE:

UP-4120
Rev. 2

LABEL

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

1i OPERA TIOM ti OPERAND
10 16

3
SECTION:

NOTE: Those sterling routines denoted by EXTRN statements must also be assembled separately
and then linked with the problem program.

Figure 3-2. Coding the Problem Program for Separate Assembly

of the Sterling Routines

9
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

4. MEMORY
4.1. GENERAL

4
SECTION:

DUMP ROUTINE

The memory dump routine is a means of printing the entire contents of main storage
or a specified portion of it. The routine is provided in compressed code format and,
by use of appropriately prepared macro instructions in the preassembly macro pass,
can be generated in the form of a closed subroutine or in the form of a self-loading
card deck.

In the closed subroutine form, the source code generated by the preassembly macro
pass may be incorporated into the problem program at assembly time or may be
assembled separately from the program and incorporated into the program at linker
time. The routine may then be executed by a BAL instruction in the problem program.

In the self-loading form, the source code generated by the preassembly macro pass
should be assembled as an independent program. The object code of the self-loading
memory dump routine can then be loaded from the online card reader or the 1001 card
controller when a program ends or aborts. The routine, if loaded into an area which
will not be cleared or overlayed by a subsequent program, can remain resident and
can be accessed manually from the control console as often as required.

The beginning and ending locations of the main storage area to be dumped are defined
by two type Y define-constant (DC) statements labeled MBGN and MEND. The follow­
ing is an example of the format of these two statements.

LABEL

MBGN
MEND

where:

15 OPERATION o
DC
DC

OPERAND

Y(c)
Y(c)

c, the constant subfield, represents either an absolute or a relocatable main
storage address

The dump locations specified in these DC statements may be changed by replacing
the appropriate cards contained in the source code deck generated by the pre­
assembly macro pass. This method applies to the closed subroutine and the self­
loading forms of the memory dump routine. If the source deck has been assembled,
then the beginning and ending dump locations are changed by submitting appropriately
prepared replace (REP) cards to the squeeze routine. (Refer to Section 6 for a
detailed discussion of the purpose and function of the squeeze routine.) The REP
cards can also be used at linker time if the subroutine form of the memory d\lmP is
being incorporated into the problem program by the linker routine.

Finally, in the case of the subroutine form, the problem program can externally
reference the memory dump routine in order to change the beginning and ending
dump locations at execution time.

In addition to the data contained between the beginning and ending memory dump
locations specified by the routine, the memory dump routine always prints the
contents of the fixed hardware output area and the control area (address 0 through
127).

1
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

4.2. CONTENTS OF CONTROL AREA

4
SECTION:

The portions of the control area used by the memory dump routine during its execu­
tio.n are the input/output program-state-control (1/0 PSC) word, 1/0 registers 13
through 15, and the line advance control byte (location 80). These areas are altered
by the memory dump routine. However, the subroutine form of the memory dump routine
preserves the initial contents of these areas before beginning its dump execution
proper. These preserved contents can be found at the following locations:

• MD+8 through MD+ 11 for the 1/0 PSC

• MD+12 through MD+17 for 1/0 registers 13 through 15

• MD+18 for the line advance control byte

• MD+24 for the processor PSC

The beginning and ending locations of the dump can be found at the following
locations:

• MD+2 through MD+3 for the MBGN constant

• MD+4 through MD+5 for the MEND constant

MD is the first location of the routine loaded into main storage. In the self-loading
form of the routine, the contents of the part of control area stored in addresses 0
through 79 are destroyed by the loader when the routine is loaded.

4.3. PRINT FORMAT

The print format of the memory dump is as follows:

• Lines are double-spaced.

• Contents of the fixed-hardware-printer output area are dumped first and printed on
print line 1 without format modification.

• Contents of the control area (locations 0 through 127) are dumped next and are
printed on print lines 2 through 5 in the format described in this paragraph.

• Contents of the memory dump proper are dumped last. This portion of the dump
begins on print line 6 in the format described in this paragraph.

• The print format for the memory dump, with the exception of print line 1, which
contains the fixed-hardware-printer output area, is as follows:

The address of the first byte printed on each line is presented in hexade_cimal
notation, positioned at the left margin of the line, and separated from the rest
of the line by two spaces.

The contents of each byte are represented in two consecutive print positions.
The left position represents the zone of the byte and the right position repre­
sents the digit of the byte. Both positions are expressed in hexadecimal
notation.

Bytes are formed into eight-byte groups (16 printed characters). Groups are
separated by two spaces. However, bytes within each group are not separated.

2

PAGE:

UP-4120
Rev. 2

UNfVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS SECTION:

4

Four eight-byte groups are printed on each of the four print lines (2 through 5)
containing the contents of the control area.

PAGE:

The number of eight-byte groups printed for each line of the memory dump proper
depends upon the printer used. That is, for a printer with 96 print positions,
five eight-byte groups are printed per line; a printer with 120 print positions
prints six eight-byte groups per line; and a printer with 132 print positiorts
prints seven eight-byte groups per line.

Under certain conditions, an entire print line of asterisks may appear in the
printing of the memory dump proper. The printing of these asterisks indicates
that each half-word contained in the line is equal to the last half-word of the
previous line. After a line of asterisks has been printed, no more output is
produced until a line in which a half-word not equal to the last half-word of the
previous line is detected. With this line, the routine returns to producing lines
of print in the norma 1 output format. The last line of the memory dump proper
is always printed.

• The paper is automatically skipped to the home paper position after the memory
dump has been completed.

4.4. MAIN STORAGE REQUIREMENTS

The main storage requirements of the memory dump routine are based upon the form
of the routine. If the routine is in the self-loading form, the storage requirement is
fixed at 590 bytes. If the routine is in the closed subroutine form, the storage re­
quirements are determined by the number of print positions specified in the print
position keyword parameter of the memory-dump-subroutine (MDSBR) and the memory­
dump-self-loading-form (MDSLF) macro instructions. The number of bytes and their
associated POS parameter values are as follows:

622 bytes when MDSBR POS=96

646 bytes when MDSBR POS=l20

658 bytes when MDSBR POS= 132

3

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

4

4.5.' CHARACTERISTICS OF CLOSED SUBROUTINE
FORM OF MEMORY DUMP ROUTINE

A description of the macro instructions used for the closed subroutine form of the
memor'.Y dump, as well as a sample of the problem program coding used to produce a
memory dump, is provided in the paragraphs that follow.

4.5.1. Memory-Dump-Subroutine (MDSBR) Declarative Macro Instruction

The· MDSBR declarative macro instruction consists of four keyword parameters
which define the number of print positions per line, the character set of the print
bar, and the beginning and ending locations of the dump. The format of the MDSBR
macro instruction is as follows:

LABEL ti OPERATION o OPERAND

unused MDSBR POS = { i~o},

• Print Position (POS) Keyword Parameter

CH =

132

J48 l
t63f

[,BGN=nnnnn]

[,END=nnnnn]

The POS keyword parameter defines the maximum number of valid print positions
·to appear in a line of print for a specific routine generated. If the maximum
number of print positions of the printer being used exceeds that specified by
the POS parameter, the remaining print positions of the line should be dis­
regarded. The formats of the POS parameter are as follows:

POS=96

This format of the keyword parameter limits the number of print positions per
line to 96.

POS=120

This format of the keyword parameter limits the number of print positions per
line to 120.

POS=l32

This format of the keyword parameter limits the number of print positions
per line to 132.

• Character Set (CH) Keyword Parameter

The CH keyword parameter is used to specify the character set of the print bar
to be used. Since two character sets are available, the CH keyword parameter
can be specified in the one to be used. The CH keyword has the following
formats:

4
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

CH=48

4

SECTION:

This format of the CH keyword parameter specifies a print bar with 48 valid
characters.

CH=63

This format of the keyword parameter specifies a print bar with 63 valid
characters.

• Dump Beginning Address (BGN) Keyword Parameter

The BGN keyword parameter specifies the main storage location at which the
dump is to begin. The use of the BGN is optional. If the BGN parameter is
omitted, a main storage location of 256 is assumed by the routine, and the
memory dump will start at that location. The format of the BGN parameter is
as follows:

BGN=nnnnn

The value for nnnnn can be any number from 256 th.rough 32767. It should be
noted that the memory dump routine erases the four least significant bits of the
beginning address when it starts to produce the memory dump. Therefore, the
address which is nearest to but less than the specified address and which is
an integral multiple of 16 is adopted by the routine as the actual beginning
address for the memory dump.

• Dump Ending Address (END) Keyword Parameter

The location at which the memory dump is to end is specified by the END key­
word parameter. The use of the END parameter is also optional. However, the
value of 8191 is adopted by the routine as the ending address if the END
parameter is omitted. The format of the END keyword parameter is as follows:

END=nnnnn

The value for nnnnn can be any number from 256 through 32767. The actual
ending location of the memory dump may exceed that specified by the END
parameter. This is due to the fact that the routine always produces the memory
dump in groups of eight bytes including the entire eight bytes in which the
specified ending location is contained. (Refer to 4.3 for information concern­
ing print format for the memory dump.) If the calculation of the address of the
last eight bytes to be dumped produces an address that is beyond the memory
limits of the machine, the memory dump terminates in a processor abnoqnal
condition.

5
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 11

CARD UTILITY PROGRAM

4.5.2. END Imperative Macro Instruction

4
SECTION:

The END imperative macro instruction must follow the MDSBR macro instruction,
which is described in 4 .5.1. The function of the END macro is to define the com­
pletion or end of the closed subroutine having the name specified by the symbol
contained in the operand of this instruction. The format for the END macro in­
struction used with the closed-subroutine form of the memory dump is as follows:

LABEL l> OPERATION l> OPERAND

unused END MENT

4.5.3. Instructions Required for Execution of Closed Subroutine

The closed subroutine for memory dump is executed when the properly coded BAL
instruction is encountered in the problem program. The entry point to the closed
subroutine is defined by the MENT symbol contained in the operand field of the
BAL instruction. Also contained in the operand field of the BAL instruction is
the parameter that specifies processor register 15 as the return register. The
branch from the problem program to the closed subroutine can be made by use of
the following coding:

LABEL 1i OPERATION 1i OPERAND

unused BAL 15,MENT

The memory dump routine is designed to be entered in processor mode, and it
returns to processor mode before returning control to the problem program. The
memory dump itself is executed in I/O mode. Three symbols, MBGN, MEND, and
MENT, are declared by ENTRY directives in the closed-subroutine form of the
memory dump routine. Thus, the memory dump routine and problem program can
each be assembled separately and still be linked togethei by EXTRN directives,

. which are declared in the problem program.

When the memory dump is in the form of a closed subroutine, it may be necessary
to change the beginning and ending locations of the dump in the problem program
at running time. Accordingly, the memory dump routine has the following symbols
for the constant areas that specify beginning and ending locations:

• MBGN for BGN address constant area. The length is a half-word.

• MEND for END address constant area. The length is a half-word.

A sample of the problem program coding which produces a memory dump from loca­
tions 1000 through 2000 is as follows:

6
PAGE:

UP-4120
Rev. 2

\\,,,_../

LABEL

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

ti OPERA TIOH 1i
10 16

1000)

SECTION:

OPERAND

Since MBGN and MEND are placed in adjacent main storage locations, the

preceding coding can also be written as follows:

4 7
PAGE:

UP-4120.
Rev. 2

UN I VA C 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

4.6. CHARACTERISTICS OF SELF-LOADING
FORM OF MEMORY DUMP ROUTINE

4
SECTION:

The following paragraphs contain descriptions of the macro instructions, programming
considerations, and operating instructions for the self-loading form of the memory
dump routine.

4.6.1. Memory-Dump-Self-Loading-Form (MDSLF) Declarative Macro Instruction

The MDSLF declarative macro instruction contains eight keyword parameters. These
parameters define the line length and character set of the memory dump printout, as
well as the location at which the routine is to be loaded, and which card reader unit
is to be used. The beginning and ending locations of the memory dump are also
provided as keyword parameters of this macro instruction. The format of the MDSLF
macro instruction is as follows:

LABEL 15 OPE RATION 1i

[name] MDSLF POS = ~i~o t,
/132\

OPERAND

[~
,BG N =nnnnn, END=nnnnn~J
,BGN=nnnnn ,LOAD=nnnnn
,END=nnnnn

• Print Position (POS) Keyword Parameter

The POS keyword parameter defines the maximum number of valid print positions
to appear in a line of print for a specific routine generated. If the maximum number
of print positions of the printer being used exceeds that specified by the PQS
parameter, then the remaining print positions of the line are filled with hash and
are to be disregarded. The formats of the POS parameter are as follows:

POS=96

This format of the keyword paramter limits the number of print positions per
line to 96.

8
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

POS=120

4
SECTION:

This format of the keyword parameter limits the number of print positions per
line to 120.

POS=132

This format of the keyword parameter limits the number of print positions per
line to 132.

• Character Set (CH) Keyword Parameter

The CH keyword parameter is used to specify the character set of the print bar
to be used. Since two character sets are available, the CH keyword parameter
is used to specify the one to be used. The formats for the CH keyword parameter
are as follows:

CH=48

This format specifies a print bar with 48 valid characters.

CH=63

This format specifies a print bar with 63 valid characters.

• Dump Beginning Address (BGN) Keyword Parameter

The BGN keyword parameter is an optional parameter used to specify the main
storage location at which the memory dump is to begin. The value specified in
this parameter may be any number from 256 through 32767. It should be noted,
however, that this parameter must be omitted if the MEM parameter is used in
this instruction. If both the BGN parameter and the MEM parameter are omitted
from the instruction, the memory address 256 is adopted as the beginning address
of the memory dump. The format for the BGN keyword parameter is as follows:

BGN=nnnnn

The value of nnnnn can be any number from 256 through 32767. The actual
beginning location, however, must be an address which is an integral multiple
of 16. Therefore, if the address specified by the BGN parameter is not an
integral multiple of 16, the dump starts at the next lower address that is a
multiple of 16.

• Dump Ending Address (END) Keyword Parameter

The END parameter is also an optional parameter. It is used to specify the main
storage location at which the memory dump is to end. The value specified in
this parameter may be any number from 256 through 32767. The END parameter
must be omitted if the MEM parameter is used in the instruction. If both the END
parameter and the MEM parameter are omitted from the instruction, a memory
address of 8191 is adopted as the ending address of the memory dump. The
format for the END keyword parameter is as follows:

END=nnnnn

9
~PAGEi

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAM

4
SECTION:

The value of nnnnn can be any number from 256 through 32767. The actual
ending location of the dump must be an address which is an integral multiple
of 8. Therefore, if the address specified by the END parameter is not an i!ltegral
multiple of 8, the dump ends at the next higher address that is a multiple of 8.

• LOAD Keyword Parameter

The LOAD keyword parameter specifies the beginning main storage location
into which the memory dump routine is to be loaded. The value specified in
this parameter may be any number from 260 through 32100. The LOAD parameter
must be omitted if the MEM parameter is used in this instruction. The format
of the LOAD instruction is as follows:

LOAD=nnnnn

The value of nnnnn can be any number from 260 through 32100.

• Memory (MEM) Keyword Parameter

The MEM keyword parameter is used to specify the main storage size for a
routine that is to dump the entire contents of main storage. It also indicates
that the memory dump routine is to be loaded into the highest locations of main
storage. If the BGN·, END, or LOAD parameters are used in the macro instruc­
tion, then the MEM parameter must be omitted. The formats of the MEM parameter
used for the various sizes of main storage are as follows:

MEM=8K

This format of the MEM parameter is used when the entire contents of an 8K
main storage are. to be dumped.

MEM=12K

This format of the MEM parameter is used when the entire contents of a 12K
main storage are to be dumped.

MEM=16K

This format of the MEM parameter is used when the entire contents of a 16K
main storage are to be dumped.

MEM=24K

This format of the MEM parameter is used when the entire contents of a 24K
main storage are to be dumped.

MEM=32K

This format of the MEM parameter is used when the entire contents of a 32K
main storage are to be dumped.

10
PAGE:

-

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

• Reader (RDR) Keyword Parameter

4
SECTION:

The RDR keyword parameter is an optional parameter that is used only when the
UNIVAC 1001 Card Controller is used as the routine load device as opposed to
the on line card reader. If the routine is to be loaded from the on line card reader,
then the RDR parameter and its associated CHAN parameter must be omitted
from the instruction. The format for the RDR parameter is as follows:

RDR=1001

• Channel (CHAN) Keyword Parameter

PAGE:

The CHAN keyword parameter is an optional parameter which is used to specify
the number of the channel to which the card controller is attached. This para­
meter, therefore, is only used when the RDR parameter is included in the instruc­
tion format. If the RDR is omitted, then the CHAN keyword parameter must also
be omitted. The formats for the CHAN keyword parameter are as follows:

CHAN=7

This format, specifies that the 1001 card controller is connected to channel
number 7.

CHAN=8

This format specifies that the 1001 card controller is connected to channel
number 8.

CHAN=9

This format specifies that the 1001 .card controller is connected to channel
number 9.

CHAN=lO

This format specifies that the 1001 card controller is connected to channel
number 10.

A program name may be defined for the memory dump by entering a valid name
in the label field of the MDSLF macro instruction. The use of the label field
is optional. However, if its use is desired, it may contain any valid symbol
desired, except that the characters Y or Q may not be used as the second
character in the symbol. If the symbol is omitted, a label defined as MD is
assigned as the program name by the macro library when the routine is
generated.

11

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

4.6. 2. END Imperative Macro Instruction

4
SECTION:

The END imperative mac:;ro instruction must follow the MDSLF instruction in the
card deck. The format of the ENE> macro instruction for the self-l~ading memory
dump routine is the same .as that which follows the MDSBR instruction used for
the closed-subroutine form. The END macro instruction identifies the end of the
routine and specifies the ilatne of the routine. The format of the END macro
instruction is as follows:

LABEL 1i OPERATION 1i OPERAND

unµsed END MENT

4 .6 .3. Programming Considerations

After the source code has been generated by the preassembly macro pass, it is
assembled to produce a self-~oading object deck. Before loading the object deck,
the A and J cards (first and second cards of the object deck) must be removed
so that the first card to be loaded contains a Q in column 2 ..

If a problem program is expected to abort or to require a memory dump subsequent
to running, it is preferable to load the memory dump routine prior to the execution
of the problem program,. The routine is therefore resident in memory during the exe­
cution of the problem prog~am and can be accessed by manual operation at the con­
trol console after the problem program aborts. When using this method, make certain
that the problem program does not overlay the memory routine or clear the storage
area in which the routine resides. As a precautionary measure the following steps
should be taken:

a. Assemble a dump routine which is loaded into the high order areas of main
storage.

b. Set the limits of the problem 'program sb that the highest location used corre­
sponds to the following:

Location ~Hexadecimal) Main Storage Size

1DB2 8K

2DB2 12K

3DB2 16K

SDB2 24K

7DB2 32K

c. When linking the problem program to a loader, set the L?HI-labeled EQU
directive to the appropriate hexadecimal limit specified in step b. This
defines the last location of main storage to be cleared.

12
PAGE:

UP-4120
Rev, 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS SECTION:

4

d. When linking the problem program to a loader, set the L? AR-labeled EQU
directive to the appropriate hexadecimal limit specified in step b minus 340
if the online reader is used as the loading device or to minus 444 if the card
controller is used as the loading device. The resulting value for L? AR
specifies the beginning of the read area for the load routine.

NOTE: If the problem program is written in RPG, the requirements specified in
steps b, c, and d are satisfied by placing the character D in column 80
of the RPG header control card.

4.6.4. Operating Instructions

A programmer may determine the status of the processor by performing the
operations specified in the following paragraphs. This must be accomplished
prior to the performance of the memory dump since the status conditions stored
are destroyed once the memory dump is initiated. The operations required to
obtain the status of the processor are initiated from the operator's panel of the
control console.

NOTE: Make certain that the CLEAR switch is not set prior to performing this
procedure.

a. Check for error conditions as follows:

(1) Set PROC 1/0 switch to position PROC.

(2) Press and release switch A; observe DISPLAY SELECT indicators. If
the third DISPLAY SELECT indicator from the left is on, an address
error exists. If the fourth indicator from the left is on, a memory parity
error exists.

b. Determine processor state as follows:

(1) Set PROC 1/0 switch to position PROC.

(2) Press and release switch B; observe DISPLAY SELECT indicators. If
the third indicator from the left is on, the central processor unit is in the
1/0 state and the 1/0 state location counter points to the next instruc­
tion to be executed. (The processor state control points to one instruction
beyond the point at which the processor left the processor state.) If the
third indicator from the left is off, the processor is in the processor state
and the processor state location counter points to the next instruction to
be executed. The 1/0 state location counter is normally reinitialized by
the supervisor when an exit from the 1/0 state takes place.

c. Press and release the CLEAR switch.

d. If the memory dump routine is not resident, display the contents of the follow­
ing locations which are destroyed by the operation of the memory dump loader.

PA G'E:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAM

Location (Hexadecimal)

2-3

12-13

20-2F

30-3F

42-43

4
SECTION:

Data Displayed

Contents of processor state location
counter

Contents of I/O state location counter

Contents of processor state registers

Contents of I/O state registers

Device status and device address

e. If the memory dump routine is resident, display the contents of the following
locations which are destroyed by the execution of the memory dump.

Location (Hexadecimal)

12-13

3C-3F

42-43

f. Execute the memory dump as follows:

Data Displayed

Contents of I/O state location counter

Contents of 1/0 registers 14 and 15

Device status and device address

(1) If memory dump routine is not resident, load the routine by use of the normal
card loading procedure.

(2) If memory dump routine is resident, alter locations 16 and 17 (hexadecimal)
to indicate 47FO, and alter locations 18 and 19 (hexadecimal) as follows:

Hexadecimal Value Memory Size

lDD2 8K

2DD2 12K

3l:>D2 16K

5DD2 24K

7DD2 32K

(3) Press and release CLEAR switch. This places the CPU in the I/O state

PAGE:

and makes the instruction at locations 16 through 19 the next to be accessed.
(This will be an unconditional branch to MENT .)

(4) Press and release the START switch. The resident memory dump routine is
accessed.

14

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS
4

SECTION:

4.6.5. Display Stops

A list of the various displays which may appear in the panel of the control console
during the execution of a memory dump is provided in Table 4-1. A listing of the
cause and, if required, the action to be taken is provided for each display.

DISPLAY CAUSE AND ACTION
(hexadecimal)

61CO Reader off (norma I during load operation). Restart from initial
procedure.

63xx Printer off (normal during memory dump). The error status bits are
indicated by xx. Correct the indicated error condition and press
and release the START switch to continue operation.

lFFF Successful stop for the self-loading form of memory dump routine.

650C Card controller off (normal during load operation). Reload routine
and run again.

Table 4-1. Display Stops

15
PAGE:

UP-4120
Rev. 2

t'.

·\.___/

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

5

5. SNAPSHOT ROUTINE

5.1. GENERAL

The snapshot routine provides a means of printing, during program execution, the
contents of processor registers 8 through 15 and the contents of a specified area of
main storage. Generation of the snapshot routine is accomplished by a call on the
SNAP declarative macro instruction. This generation may be assembled as part of
the user's program at assembly time or it may be assembled separately and incorpo­
rated into the user's program at linker time. If the routine is to be linked, the user
program must define by means of EXTRN directives the labels ZXMP and ZXPT.
These two labels represent, respectively, the symbolic address of the snapshot
dump routine and the address of the PUT instruction used for printing the dump.

The snapshot routine is entered from the user program by means of a calling sequence
consisting of a branch-and-link (BAL) instruction and two define-constant (DC) state­
ments. The purpose of this calling sequence, which appears as coding in the user
program, is to specify the address to which the program must branch in order to ob­
tain the snapshot routine and to define the parameters that specify the starting and
ending addresses of the memory locations to be dumped. It should be noted that the
processor registers used by the snapshot routine (registers 8 through 15) are always
dumped upon execution of the snapshot routine and that the contents of these registers
are destroyed when the dump occurs. Since the routine operates in the processor
state, it must not be used for dumping privileged areas of main storage.

The snapshot routine uses a PUT instruction to print the lines of the dump. The
actual printing is accomplished by use of the bar printer. The IOCS for the printer,
however, must be defined by use of the appropriately coded DTFPR declarative
macro instruction in the user program. The user must also open the print routine
prior to entering the snapshot routine.

Since the PUT instruction is used to print the lines of the dump, the snapsoot
routine will use whatever printer forms overflow provisions have been made in the
print routine. The user, therefore, must be particularly observant of this fact if he
has written his own forms-overflow routine.

5.2. MAIN STORAGE REQUIREMENTS

The snapshot routine requires 200 bytes of main storage. When assembling the snap­
shot routine, the user should make certain that the base address of the routine
starts at a location greater than 240. This is to avoid the possibility of creating
covering errors during assembly time.

1

UP-4120
Rev. 2

UN I VAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

5.3. SNAP DECLARATIVE MACRO INSTRUCTION

5
SECTION:

The SN AP declarative macro instruction, when called upon, generates the snapshot
dump routine. SN AP contains two \<eyword parameters, BKSZ and REG.

The format of the SN AP declarative macro instruction is as follows:

LABEL ti OPERATION ti OPERAND

unused SNAP BKSZ=n,REG:.:n

• Blocksize (BKSZ) Keyword Parameter

This keyword parameter specifies the number of characters that are to appear in.
each line printed by the printer. The mini.mum number of characters specified by
this parameter must be equal to or greater than 40 and must be an even number.
The maximum number of characters specified is limited by the maximum number
of print positions per line of the printer. The format of the BKSZ parameter is as
follows:

BKSZ=n

where: n may be any even decimal number between the values of 40 and 132.

• Register (REG) Keyword Parnmeter

This required keyword parameter is used to specify the number of a processor
register to be used by the snapshot routine. The processor register selected by
this parameter is used in addition to processor registers 14 and 15, which are
always used by the snapshot routine. The format of the REG keyword parameter
is as follows:

REG=n

where: n may be any decimal number between 8 and 13. The number specified
corresponds to the number of the processor register selected.

5.4. INSTRUCTIONS REQUIRED FOR ENTERING SNAPSHOT ROUTINE

The snapshot routine is entered from the problem program by means of a calling
sequence consisting of a BAL instruction and two DC 'Y' statements. The format
of these instructions and a description of their use are provided in the paragrayhs
which follow.

2
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

S.4.1. Branch-and-Link (BAL) Instruction

s
SECTION:

The BAL instruction is the instruction which specifies the address of the routine
to which the program must branch.

The format of the BAL instruction used for calling the snapshot routine is as
follows:

t:; OPERATION t:; OPERAND

[name] BAL 14,ZXMP

S.4.2. Define-Constant (DC) Statement

The calling sequence for the snapshot routine requires the use of two DC 'Y'
statements. One of the statements is used to define the main storage address at
which the main storage dump proper is to begin. The other statement defines the
main storage address at which the main storage dump proper is to end. The format
for the DC 'Y' statements is as follows:

LABEL

unused

unused

ti OPERATION 15

DC

DC

OPERAND

Y (start)

Y (end)

where: "start" is either an absolute or relocatable expression representing the
main storage address at which the dump is to begin and "end" is an absolute
or relocatable expression representing the main storage address at which the
dump is to end.

PAGE:

If the address specified by the start parameter is greater than the address specified
by the end parameter, then the contents of processor registers 8 through lS only
will be dumped. A dump of main storage does not occur.

S.S. REQUIREMENTS FOR PRINTING SNAPSHOT DUMP

The printing of the snapshot dump is accomplished by means of a PUT instruction.
This instruction must be stored by the user into locations ZXPT through ZXPT+S
prior to entering the snapshot routine. The parameters of the PUT instruction are
user supplied since the IOCS for the printer is defined by the DTFPR macro in­
struction included as part of the user program. The symbolic name of the print
routine specified in the PUT instruction must, therefore, agree with the name of
the file defined in the label field of the DTFPR declarative macro instruction. The
following is an example of the coding which might be executed when using the PUT
instruction to print the snapshot dump.

LABEL 11 OPERATION 1i OPERAND
10 16

3

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

5

In the example shown, the print routine labeled PRNT transfers the contents of the
work area labeled LINE for printing.

5.5.1. Print Format of Snapshot Dump

The print format of the snapshot dump consists of an address followed by a dump
of a specified number of bytes. The address printed is the address of the first byte
to appear in the associated line of print. The first line printed contains the address
0020 and a dump of eight half-words. Each half-word represents, respectively, the
cqntents of processor registers 8 through 15 at the time that the snapshot routine
was entered. The remaining lines of print contain the contents of those locations
in main storage according to the address specified in the DC 'Y' statements. All
information printed is formatted in hexadecimal notation.

4

I> AGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

6

B. SQUEEZE PROGRAM

6.1. GENERAL

The squeeze program is a utility program which enables a user to modify the contents
of absolute program decks. The modification is accomplished by means of specially
prepared input replace cards which specify in hexadecimal format the new. data or
text to be used in program n odification and the storage locations in which the new
data are to be placed. The input cards to the squeeze program may be read from
either the online serial card reader or the 1001 card controller. In either case, the
user must specify at linker time the device to be used. The output produced by the
squeeze program consists of output cards punched by either the online serial
reader/punch or the row reader/punch. (The specific device used must also be
specified by the user.) The output punch cards produced by squeeze are formatted
so that they are acceptable to the loader but still contain the new data and storage
locations required for program modification.

To allow the user to punch input statement cards in any code that he desires, the
squeeze program utilizes a user-supplied translation table for code translations. The
code produced by the translation is assumed to be EBCDIC. If the input cards are
punched in Hollerith code, then the user may use the Hollerith-to-EBCDIC transla­
tion table supplied as part of the systems software package.

In addition to producing output punch cards, the squeeze program also prepares a
printer listing of all ST ART, REP, and transfer cards processed. Descriptions of
the card inputs, the card outputs, and the module linking required to compose the
squeeze program are provided in the paragraphs that follow.

6.2. CARD INPUT

The card input to the squeeze program consists of the START card, REP cards, and
the END card. These cards are described in the following paragraphs in the sequence
in which they must be read.

6.2.1. STARTCard

The ST ART card is optional and not generally used. If used, the three-character
expression contained in the operand field of the directive will be punched in
columns 73-75 of each output text card and each transfer card generated by the
squeeze program. If the START card is omitted, the PID in the output text card
and the transfer card will be blank. The format of the START card is as follows:

LABEL "D OPERATION "D OPERAND

[name] START p

where: p equals the program identification (PID) in decimal or hexadecimal
representation.

1
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

6

SECTION:

6.2.2. Replace (REP) Card

The REP card is used when it is desired to make changes or corrections to the
assembled elements being linked. The contents of the REP card consist of the
address of the leftmost byte of the data to be altered and the new data to be
incorporated. When read, the contents of tl\e REP card are used by the squeeze
program to produce text cards which are placed immediately in front of the trans­
fer card of the element to be altered. Where possible, the squeeze program com­
bines the contents of two or more REP cards into one text card. The process
described continues until an END card is read. A count is maintained of the
number of text card produced by the squeeze program. The format of the REP
card is as follows:

LABEL 15OPERATION15 OPERAND

unused REP a, t, t, t, .. ., to

where:

a represents a field of one to four hexadecimal characters specifying the
storage address of the leftmost byte of data that is to be altered as a
result of the contents of this card. If less than four hexadecimal characters
are specified, they are to be right justified and zeros are to fill the field.

t represents a field of one to four hexadecimal characters denoting the data
that is to be right justified in the half-word storage address specified
above. The number of data fields which may appear in the operand of the
REP card is variable; however, they do specify the contents of successive
half-words of storage. Fields are separated by a comma, and the last
field must be followed by a blank column. (Column 71 is the last card
column that may contain data; column 72 must be blank.)

6.2.3. END Card

The END card indicates that the last card of the program has been encountered.
The format of the END card is as follows:

LABEL 15 OPERATION 1> OPERAND

unused END ~ ~~ress~ ,n

• Positional Parameter 1

address - a one to four character hexadecimal address specifying the address
to which control is to be transferred after elements of the REP card
are loaded. An address must be provided if the squeeze program is
to produce a transfer card.

NO - used when squeeze program is not to produce a transfer card.

PAGE:

UP-4120
Rev. 2

\,_/

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

• Positional Parameter 2

6

SECTION:

n - a one to four character hexadecimal number specifying an increment
to be added to the count of text cards previously accumulated by the
squeeze program. The results of the incrementation become the card
count punched into the transfer card produced by the squeeze program.

NOTE: The hexadecimal values presented in both positional parameter 1 and
positional parameter 2 are right justified and, if necessary, the field is
zerofilled.

In practice, the END card specification is usually NO. The squeeze program,
however, produces text cards, which must be inserted into the card deck that is
to be modified. These text cards are inserted immediately preceding the transfer
card ('y' card) for the program. When the modified program is loaded, a card count
error will be encountered since the count in the old 'y' card is no longer valid.
This error condition may be bypassed and the program executed.

Alternatively, a new 'y' card may be generated as described in the preceding
paragraph. Positional parameter 2 of the END card is then equal to the card
count from the old 'y' card (the 'y' card replaced by the new card generated by
the squeeze program).

6.3. OUTPUT

The output of the squeeze program consists of text cards, transfer cards, and a
printed listing of all the START, REP, and transfer cards processed by the program.
A description is provided for each output type produced by the squeeze program.

6.3.1. Text Card

The text cards produced by the squeeze program contain the instructions and con­
stants of an element, an address indicating the location in which the instructions
and constants are to be loaded into storage for execution, and the relocation
information pertaining to the instructions and constants. If the text cards are
placed before the transfer card in an absolute program deck, the text specified
in the REP cards replaces the text in the program deck at the location specified
in the REP cards. The replacement takes place at the time that the absolute pro­
gram deck is loaded. The format of the text card is as follows:

3
PAGE:

UP-4120
Rev. 2

6.3.2.

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

CARD COL. FIELD NAME

1 Load key

2 Type

3 Text length

4-6 Load address

7 Hole count

11-72 Text

73-75 PID

Transfer Card

6
SECTION:

CONTENTS

12-2-9 punch

Q (Hollerith)

The number of columns of text information
contained on this card

The assigned location where the text is
to be loaded

Sum of the bytes punched

The value to be loaded at the load address
specified

Program identification (as indicated on
ST ART card, if present)

The transfer card produced by the squeeze program can be used to replace the
transfer card in an absolute program deck. The following is the format of the
transfer card.

CARD COL.

1

2

3

7

11-13

14-16

73-75

FIELD NAME

Load key

Type

Length

Hole count

Card count

Transfer address

PID

12-2-9 punch

Y (Hollerith)

CONTENTS

Number of bytes of card information

Sum of the bytes punched

Count of output text cards punched
added to the card count field of the
END card

Address where control is to be trans­
ferred after loading

Program identification (as indicated on
ST ART card, if present)

4

PAGE:

UP-4120
Rev. 2

6 UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

6.3.3. Print Output

The printed output produced by the squeeze program consists of a listing of all
START, REP, and transfer cards processed. At the time when the squeeze program
is linked, the user determines whether the printer producing the list is to have a
63-character or a 48-character print bar.

The format of the listing is as follows:

Columns 1-4 Columns 6-85

Error Codes Contents of input cards

The error codes and the reasons for their display are as listed.

Error Code

EDER

CDER

Reason

Edit error (format error)

Card error (refers to card other than
START, REP, END, or blank)

When the squeeze program encounters one of the errors listed, the punching of text
cards is terminated. The squeeze program will, however, continue to process the
remaining input cards.

6.4. LINKING SQUEEZE PROGRAM MODULES

The squeezf' program comprises several separately assembled modules which must
be linked by means of a linker run in order to produce a loadable squeeze program.
The order in which control cards are arranged in the input deck, as well as the order
in which the modules are arrnnged in the input deck, is described in the following
paragraphs.

6.4.1. Phase Control Card

The PHASE control card defines the name and initial storage address for the out­
put element. The PHASE card used by the squeeze program contains three positional
parameters and has the following format:

LABEL 15 OPERATION Ti OPERAND

unused PHASE SQZ,260,A

• Positional Parameter 1

SQZ - alphabetic characters denoting the squeeze program as the phase name

• Positional Parameter 2

260 - decimal number representing the starting address in which the squeeze
program will be loaded into main storage

• Positional Parameter 3

A specifies that the load address provided in positional parameter 2 is an
actual value

5
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS SECTION:

6

6.4.2. External Definition (EQU) Cards

The EQU card supplies the definition of a symbol which is not defined in any of
the elements being linked or which is defined in an element whose position in the
input deck is later than that of the first element containing a reference to the
symbol. The EQU cards used in linking the squeeze program include those for
the card load routine. These cards should be placed after the phase card and must
have the following format.

LABEL 1i OPERATION o OPERAND

L?AR EQU 6000
L?PG EQU 6080
L?HI EQU x
L?LO EQU 80
L?CH EQU 0
L?AM EQU 4

The definition of each of the symbols used in the label field of the EQU card is
provided in the following list.

LABEL

L?AR

L?PG

L?HI

L?LO

L?CH

L?AM

MEANING

Start of the read area (storage address 6000) for the card load
routine

Start of the coding of the card load routine (storage address 6080)

Last of highest storage address to be cleared (x=8191 for 8K
main storage; 12,287 for 12K main storage; 16,833 for 16K main
storage; 24,575 for 24K main storage; and 32,767 for 32K main
storage)

First or lowest storage address (80) to be cleared

Character with which to fill areas to be cleared (zero)

Specifies the storage area (location 4) where alterations are to
be stored

6.4.3. Arrangement of Modules in Input Deck

6.4.3.1. Card Load Routine

The card load routine must be the first module in the input deck. The name of
this routine is determined by the device from which the input deck is loaded.
That is, if the online is used to load the input deck, the routine is labeled LD.
If the 1001 card controller is the device used, the routine is labeled LDCC.

6.4.3.2. Squeeze Module

The squeeze module (labeled SQZ) must be the last module of the input deck.
The remaining modules comprising the squeeze program may appear in any order
desired between the card load routine and the SQZ module.

6
PAGEi

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS SECTION:

6

6.4.3.3. Exec I

Exec I module, named EXEC, may appear in any position between the card load
routine and the SQZ module. The primary function of this routine is to monitor
interrupts, handle messages to and from an operator, and provide restart
communications.

6.4.3.4. Card Read Routine

This routine applies to either the online serial reader or the 1001 card controller
and must be generated by use of the Preassembly Macro Pass and the card
assembler. If the online serial reader is used, the routine is generated by means
of the DTFCR declarative macro instruction. If the 1001 card controller is used,
the routine is generated by means of the DTFCC declarative macro instruction.
The iormat for these two declarative macro instructions is provided as follows:

• DTFCR Declarative Macro Instruction

LABEL

CRDR

1> OPERATION 1> OPERAND

DTFCR SENT=NO,MODE=TRANS,ITBL=TBRD,IOAl=REWA

End-of-File (SENT) Keyword Parameter

This keyword parameter specifies whether or not the end-of-file sentinel
is to be recognized. The format of the SENT parameter is as follows:

SENT=NO

This format of the SENT parameter indicates that an end-of-file sentinel
is not to be recognized.

MODE Keyword Parameter

This parameter specifies that the cards are to be read after the translation
specified by the ITBL keyword parameter of this instruction has been
performed.

The format of the MODE parameter is as follows:

MODE=TRANS

This format specifies that the translation must be performed.

Input Translation Table (ITBL) Keyword Parameter

This parameter specifies the name of the translation table to be used. If
this table is the EBCDIC input translation table that is included as a
relocatable module in the card libraries of the UNIV AC 9200/9300 software
package, then the following format is used.

ITBL=TBRD

7

PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAM SECTION:

6

This format specifies that the Univac-supplied input translation table is
to be used. If the user desires to use his own translation table, the ITBL
parameter has the following format:

ITBL=name

where: name is the user-supplied name consisting of one to four alpha­
betical characters.

Input/Output Area (IOAl) Keyword Parameter

This parameter specifies the address of the input buffer area.

The format of the IOAl parameter is as follows:

IOAl=REWA

• DTFCC Declarative Macro Instruction

LABEL

CRDR

. 15 OPERATION 15 OPERAND

DTFCC MODE=TRANS,ITBL=TBRD,FUNC=FUNC,CHNL=n

MODE=TRANS Keyword Parameter

This parameter specifies that the cards are to be read after the trans­
lation specified by the ITBL keyword parameter of this instruction has
been performed.

The format of the MODE parameter is as follows:

MODE=TRANS

This format specifies that the translation must be performed.

Input Translation Table (ITBL) Keyword Parameter

This parameter specifies the name of the input translation table to be used.
If the EBCDIC input translation table included as a relocatable module in
the card libraries of the UNIV AC 9200/9200 II/9300/9300 II Systems soft­
ware package is to be used, the format of the ITBL parameter is as follows:

ITBL=TBRD

If the user desires to utilize his own input translation table, the format of
the ITBL is as follows:

ITBL=name

where: name is the user-supplied name consisting of one to four alpha­
betical characters.

8

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

Function (FUNC) Keyword Parameter

6
.SECTION:

This parameter identifies the function area labeled FUNC as the area
where the user-supplied function code is stored.

The format of the FUNC parameter is as follows:

FUNC=FUNC

Channel (CHAN) Keyword Parameter

This keyword par'aineter specifies the channel number to which the 1001
card controller is connected. The format of the CHAN parameter is as

follows:

CHAN=n

The value of n may be any decimal number from 5 to 12.

6.4.3.5. Card Punch Routine

This routine can be a routine for either the online serial read/punch unit or the
row read/punch unit and must be generated by use of the Preassembly Macro
Pass and the card assembler. If the online serial read/punch unit is used, the
module is generated by means of the DTFRP declarative macro instruction. If
the row read/punch unit is used, then the module is generated by means of the
DTFRW declarative macro instruction. The format for these two instructions

is as follows:

• DTFRP Declarative Macro Instruction

LABEL 1> OPERATION 1> OPERAND

PAGE:.

CRPH DTFRP MODE=CC,OUAR=PUTX,PUNR=YES,TYPE=OUTPUT

MODE Keyword Parameter

This parameter specifies that the cards are to be read in compressed

card code.

The format for the MO.DE parameter is as follows:

MODE=CC

where: CC represents compressed code.

Output Area (OUAR) Keyword Parameter

This parameter identifies the output buffer area. The format for the OU AR

parameter is as follows:

OUAR=PUTX

This format specifies that the output buffer area is labeled PUTX.

9

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

Punch Error (PUNR) Keyword Parameter

6
SECTION:

This parameter specifies that the punch will make five attempts to punch
after a punch error is detected. The format of the PUNR parameter is as
follows:

PUNR=YES

Type of File (TYPE) Keyword Parameter

This parameter is needed to define the type of file since the serial read/
punch unit can be used as an input or output device. The format of the
TYPE parameter is as follows:

TYPE= OUTPUT

This format of the TYPE parameter defines the file as an output file.

• DTFRW Declarative Macro Instruction

LABEL

CRPH

li OP ERA Tl ON 15 OPERAND

DTFRW MODE=CC ,OUAR=PUTX, TYPE=OUTPUT ,CHNL=n

MODE Keyword Parameter

This required parameter specifies that the cards are read in compressed
card code. The format of the MODE parameter is as follows:

MODE=CC

where: CC represents compressed code.

Output Area (OUAR) Keyword Parameter

This required parameter identifies the output buffer area labeled PUTX.
The format for the OUAR parameter is as follows:

OUAR=PUTX

This format identifies PUTX as the label of the output buffer area.

Type of File (TYPE) Keyword Parameter

This keyword parameter defines the type of file. It is required because the
row read/punch unit can be used as either an input or an output device.
The format of the TYPE parameter is as follows:

TYPE=OUTPUT

This format of the TYPE parameter defines the file as an output file.

10
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

Channel Number (CHNL) Keyword Parameter

6
SECTION:

The CHNL keyword parameter is used to specify the number of the channel
to which the row read/punch unit is connected. The format of the CHNL
parameter is as follows:

CHNL=n

The value of n may be any decimal number from 5 to 12.

6.4.3.6. Print Routine

This module is generated from a call on the DTFPR declarative macro instruc­
tion. The format for this macro instruction is as follows:

• DTFPR Declarative Macro Instruction

LABEL

PRTR

1i OPERATION 1i OPERAND

DTFPR BKSZ=96,

FONT={:~~,
PROV=YES,

PRAD= g~

[oTBL= {~~;P\)

Block Size (BKSZ) Keyword Parameter

This keyword parameter specifies the number of bytes that are to be moved
from the work area of storage to the printer buffer area. The format of the
BKSZ parameter is as follows:

BKSZ=96

FONT Keyword Parameter

This keyword parameter specifies the print bar requirements of the print
routine. If the routine requires a 48-character printer bar, the FONT param- ·
eter must indicate a 48 and the output translation table (OTBL) parameter
must be specified. The format of the FONT parameter for a 48-character
print bar is as follows:

FONT=48

If a 63-character print bar is to be used in the printer, then the FONT
parameter must indicate a 63, and the OTBL parameter must be omitted
from the macro instruction. The format of the FONT parameter for a 63-
character print bar is as follows:

FONT=63

11
PAGE:

UP-4120
_Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

Output Translation Table (OTBL) Keyword Parameter

6
SECTION:

This parameter specifies that the output file is to be translated by means
of the TBRP translation table supplied as part of the UNIV AC software
package. This parameter must be included whenever the FONT=48 param­
eter is used. If the user does not desire to use the TBRP translation
table supplied, he must provide an EBCDIC-to-48-character print cod·e
translation table and include this table in the linker input deck.

The format of the OTBL parameter for a user-supplied output translation
table is as follows:

OTBL=name

where: name may be one to four alphabetical characters representing the
name of the user-supplied output translation table.

The format of the OTBL parameter for the UNIVAC-supplied translation
table is as follows:

OTBL=TBRP

Printer Overflow (PROV) Keyword Parameter

This keyword parameter specifies that the overflow routine provided by the
IOCS is used if an overflow condition occurs. When this parameter is speci­
fied, make certain that a paper loop containing form overflow and home
paper punch holes is in the printer. The format of the PROV parameter is
as follows:

PROV=YES

Printer Advance (PRAD) Keyword Parameter

This parameter specifies the number of lines that the printer advances
after completing a line of print. If the printer is to advance one line after
each line of print, the PRAD parameter has the following format:

PRAD=l

If the printer is to advance two lines after e·ach line of print, the PRAD
parameter has the following ·format:

PRAD=2

12
PAGE:

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

6.4.4. END Control Card

6
SECTION:

The END control card is used to identify the end of the squeeze program. The
format of the END control card is as follows:

LABEL 1> OPERATION 1> OPERAND

unused END 0,SQZ

6.5. OPERATING INSTRUCTIONS

Operating instructions pertaining to the squeeze problem are stated in general terms
and in the sequence in which they are to be performed.

a. Place squeeze program in the reader followed by the input cards.

b. Load cards. Completion of run is signified by a 'lFFF' display on the con,trol
console.

c. To process another set of input cards, place input in reader and press and release
START switch.

13
PAGE:

,
/

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

7. SYMBOLIC

7.1. GENERAL

7.
SECTION I

LIST PROGRAM

The symbolic list (SYM) program is used to generate a printed listing of the informa­
tion contained on program input source cards. This program also generates a printed
listing of all the symbolic tags used within the source deck.

The cards of the input source deck may be read from either of two read devices:
the online serial card reader or the 1001 card controller. The user, however, must
specify at linker time the specific device that is going to be used.

The format of the input source cards to the program is read in compressed code.
This code must be translated before the contents of the card can be processed. The
translation may be accomplished by use of a user-supplied input translation table
or, in the case of cards punched in Hollerith code, by the Hollerith-to-EBCDIC input
translation table supplied as part of the Univac-supplied software package. The
results of the translation always are assumed to be in EBCDIC code.

To aid in a clearer understanding of the symbolic list program, descriptions of the
requirements of the program, of the modules comprising the program, as well as the
linking of these modules, are presented in this section. Information concerning the
macro instruction used for generating the various modules of the symbolic list

program is also provided.

7 .2. PROGRAM REQUIREMENTS

The input to the symbolic list routine consists of program source cards. The source
card handling capability of the SYM program consists of approximately 600 source
cards for an SK main storage system, 1400 cards for a 16K system, 2200 cards for a
24K system, and 3000 cards for a 32K system. Prior to being processed, these source
cards must be translated to EBCDIC code. Once translated to EBCDIC code and
processed, the contents of these cards will be listed by the printer. The print list
will contain a line number followed by the entire contents of one input source card.
The program prints the contents of one line per source card read. Therefore, a
printer having a minimum of 96 print positions is required for this program.

Following the source card listing is a summary listing of all the symbolic tags used
in the source card statements. This information is formatted so that each four­
character symbol is printed followed by the line number iri which the symbol first
occurred and the line numbers in which the symbol is referenced. The symbolic
summary is printed in an alphanumeric sequence by symbol.

1
PAGE1

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

7.3. LINKING SYMBOLIC LIST PROGRAM

7
SECTION:

The symbolic list program comprises several separately assembled modules which
must be linked together by means of a linker in order to produce a loadable symbolic
list program. The control cards and modules comprising the symbolic list program,
as well as their arrangement in the input deck, are described in the paragraphs which
follow.

7.3.1. Phase Control Card

The SYM program has one phase. It utilizes the PHASE control card to define the
name and initial storage address for the output element of the program. The format

PAGE:

of the PHASE card depends upon the device from which the program is to be loaded.
That is, if the input deck is read from the online serial card reader, the SYM program
must be linked to the card load (LD) routine and the PHASE card must have the
following format:

LABEL 15 OPERATION 15 OPERAND

unused PHASE SRM,410,A

If the input deck is read from the 1001 card controller, the SYM program must be
linked to the card controller load (LDCC) routine, and the PHASE card must have
the following format:

LABEL 15 OPERATION 1> OPERAND

unused PHASE SCM,500,A

7.3.2. External Definition (EQU) Card

The EQU card supplies the definition of a symbol which is not defined in any of
the elements being linked or which is Q.Ot defined in an element whose position in
the input deck is later than that of the first element containing a reference to that
symbol. The EQU card used in linking the SYM program is required for the input
translation table. The purpose of the EQU card is to equate the input translation
table to the label TRN. If the input translation table is user-supplied, then the
format of the EQU card is as follows:

LABEL 15OPERATION1> OPERAND

TRN EQU O,name

where:

name is one to four alphabetic characters representing the name of the
user-supplied input translation table

2

I

v

UP-4120
Rev .• 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAM
SECTION:

7

If the user elects to use the supplied Hollerith-to-EBCDIC input translation table,
then the format of the EQU card is fixed as follows:

LABEL ti OPERATION li OPERAND

TRN EQU O,TBRD

7 .3.3. Arrangement of Modules in Input Deck

The arrangement of modules in the input deck is discussed in the following
paragraphs.

7 .3.3.1. Card Load Routine

The first element in the input deck must be the card load routine. The program
name for this routine is LD when the online serial card reader is used to load
the SYM program being linked. If the 1001 card controller is being used to load
the SYM program, the name of the load routine is labeled LDCC.

7.3.3.2. SYM Module

The SYM module must be the last element in the input deck. The remaining
modules comprising the SYM program may appear in any order between the card
load routine and the SYM module.

7.3.3.3. Exec I

Exec I module, named EXEC, may appear in any order between the card load
routine and the SYM module. The primary function of the Exec I module is to
monitor interrupts, handle messages to and from an operator, and provide
restart communications.

7.3.3.4. Card Read Routine

This routine may also appear in any order between the card load routine and the
SYM module. The card read routine applies to either the online serial card
reader or the 1001 card controller. The format of the declarative macro instruc­
tion generating the card read routine depends upon the device from which the
input cards are read. For example, the card read routine is generated by means
of DTFCR declarative macro when the input cards are loaded from the online
serial card reader. A DTFCC declarative macro instruction is used when the
1001 card controller is used to load the input cards. The format for both the
DTFCR and the DTFCC is as follows:

• DTFCR Declarative Macro Instruction

LABEL li OPE RATION t; OPERAND

CRDR DTFCR MODE=CC,SENT=NO,IOAl=IOAl,FUNC=FUNC

3

- ~"~ -

, UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

- MODE Keyword Parameter

7
SECTION:

This parameter specifies the mode in which the cards are to be read. The
format of the MODE parameter is as follows:

MODE=CC

The format specifies that the cards are to be read in compressed code.

- End-of-File (SENT) Keyword Parameter

This parameter specifies whether or not an end-of-file sentinel is to be
recognized. The format of the SENT parameter is as follows:

SENT=NO

This format indicates that the end-of-file sentinel is not recognized by the

card read routine.

- Input/Output Area (IOA 1) Keyword Parameter

PAGE:

This keyword parameter specifies the name of the address for the input/output
buffer area. The format of the IOA 1 parameter is as follows:

IOAl=IOAl

- Function (FUNC) Keyword Parameter

4

This keyword parameter specifies that the function area labeled FUNC is the J
area where the user-supplied function code is stored. The format of the FUNC

parameter is as follows:

FUNC=FUNC

• DTFCC Declarative Macro Instruction

LABEL

CRDR

1i OPERATION 1i OPERAND

DTFCC MODE=CC,CHNL=n,FUNC=FUNC

- MODE Keyword Parameter

This keyword parameter specifies that the cards are to be read in co111pressed
code. The format of the MODE parameter is as follows:

MODE=CC

In this format, CC signifies compressed code.

'----" .

-
\....__,,

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS

- Channel (CHNL) Keyword Parameter

7
SECTION:

This keyword parameter specifies the channel number to which the 1001
card controller is connected. The format for the CHNL parameter is as
follows:

CHNL=n

In this format, the value of n may be any decimal number from 5 to 12.

- Function (FUNC) Keyword Parameter

This keyword parameter identifies the label assigned to the function area
in which the user-supplied function code is stored. The format for the FUNC
parameter is as follows:

FUNC=FUNC

In this format, the function area containing the user-supplied function code
is labeled FUNC.

PAGE::

7 .3.3.5. Print Routine

This routine is placed anywhere between the card load routine and the SYM module.
The print routine is generated from a call on the DTFPR declarative macro instruc­
tion. The format for this macro instruction is as follows:

LABEL

PRNT

-

15 OPERATION 15 OPERAND

DTFPR BKSZ=96,
PROV=YES,

PRAD= {;},

FONT={:~}
[-{name ~] ,OTBL- TBPRJ

Block Size (BKSZ) Keyword Parameter

This keyword parameter specifies the number of bytes to be moved from the
work area of storage to the printer buffer area. The format of the BKSZ param­

eter is as follows:

BKSZ=96

In this format, 96 bytes are moved to the printer buffer area.

- Printer Overflow (PROV) Keyword Parameter

This keyword parameter specifies that the overflow routine provided by the
IOCS is used if an overflow condition occurs. When this parameter is specified,
make certain that a paper loop containing form overflow and home punch holes
is in the printer. The format for the PROV parameter is as follows:

PROV=YES

5

UP-4120
Re,v. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

- Printer Advance (PRAD) Keyword Parameter

7
SECTION:

This keyword parameter specifies the number of lines that the printer advances
after completing a line of print. PRAD may specify a one-line or two-line
advancement. When a one-line advancement is specified, the PRAD parameter
has the following format:

PRAD=l

When a two-line advancement is specified, the PRAD parameter has the follow­
ing format:

PRAD=2

- FONT Keyword Parameter

This keyword parameter specifies the type of print bar to be used in the printer.
The print bar specified by this parameter should agree with the print bar used
in the printer during linker execution. If a 48-character print bar is to be used,
the FONT parameter must equal 48, and the output translation table parameter
OTBL must also be specified. The format of the FONT parameter for a 48-
character print bar is as follows:

FONT=48

When a 63-character print bar is to be used in the printer, the format of the
FONT parameter is as follows:

FONT=63

PAGE:

The OTBL parameter is not required when the 63-character print bar is specified.

- Output Translation Table (OTBL) Keyword Parameter

The OTBL parameter is used·whenever the FONT parameter equals 48. The
OTBL parameter specifies that the output file must be translated by means of
a user-supplied translation table or by the Univac-supplied translation table
labeled TBPR. If the translation is performed by the user-supplied translation
table, the format of the OTBL parameter is as follows:

OTBL=name

where:

name may be one to four alphabetical characters representing the name of
the user's output translation table.

If the translation is accomplished by means of the Univac-supplied TBPR
output translation table, then the format of the OTBL parameter is as follows:

OTBL=TBPR

6

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

7.3.4. END Control Card

7
SECTION:

The END control card is used to identify the end of the SYM. program. The format
of the END control card is as folluws:

LABEL o OPERATION 15 OPERAND

unused END 0,BEGN

If desired, blank cards may be inserted between the modules in the input deck.
This is a convenient method of separating the modules since the linker ignores
blank cards.

7.4. OPERATING INSTRUCTIONS FOR USING THE SYM PROGRAM

The operating instructions provided are expressed in general terms and are given in
the sequence in which they are to be performed.

(1) Place the SYM program in the read device selected, followed by the source.

(2) Feed and load the SYM program deck. An OFOO display appears on the control
console after the SYM program has been loaded.

(3) Perform the following, according to the main storage size of the particular
system being operated.

• If main storage equals 8K, key lF into the location assigned to TBEA symbol
by the linker; then press and release RUN switch on control console.

• If main storage equals 16K, press and release the RUN switch on the control
console.

PAGE:

• If main storage equals 24K, key SF into the location assigned to TBEA symbol
by the linker; then press and release RUN switch on control console.

• If main storage equals 32K, key 7K into the location assigned to TBEA symbol
by the linker; then press and release the RUN switch on the control console.

(4) Observe HALT DISPLAY on the control console. If all allotted storage has been
used by the SYM program, the stop display lFlF will be displayed on the control
console. Press and release the RUN switch; this prints the symbolic summary of
all the source cards processed.

(5) The end of job is indicated by the lFFF display on the control console.

7

UP-4120
Rev. 2

UNIVAC 9200/9200 11/9300/9300 II

CARD UTILITY PROGRAMS
Appendix A

SECTION:

APPENDIX A. STANDARD - CARD
EBCDIC, AND
PRINTER - GRAPHIC
CODES

A.1. GENERAL

UNIVAC 9200/9200 II/9300/9300 II software is designed to use the standard-card,
EBCDIC, and printer-graphic codes shown in the tables covering the two most signif­
icant bits of zones 00, 01, 10, and 11.

TWO MOST SIGNIFICANT BITS OF ZONE - 00

TWO LEAST SIGNIFICANT BITS OF ZONE
DIGIT

00 01 10 11

0000 12-0-9·8·1 12·11·9·8·1 11·0·9-8·1 12·11·0-9-8·1

0001 12·9·1 11-9-1 0-9-1 9·1

0010 12-9·2 11·9·2 0·9·2 9·2

0011 12·9·3 11-9-3 0-9·3 9•3

0100 12-9·4 11 ·9·4 0·9·4 9·4

0101 12·9-5 11 ·9·5 0-9-5 9·5

0110 12-9-6 11-9-6 0·9-6 9·6

0111 12·9·7 11 ·9·7 0·9·7 9-7

1000 12-9-8 11-9-8 0-9-8 9-8

1001 12-9-8-1 11-9-8-~ 0-9-8-1 9-8-1

1010 12-9-8-2 11-9-8-2 0-9-8-2 9-8-2,

1011 12-9-8-3 11-9-8-3 0-9-8-3 9-8-3

1100 12-9-8-4 11-9-8-4 0-9-8-4 9-8-4

1101 12-9-8-5 11-9-8-5 0-9-8-5 9-8-5

1110 12-9-8-6 11-9-8-6 0-9-8-6 9-8-6

1111 12-9-8-7 11-9-8-7 0-9-8-7 9-8-7

1

PAGE:

-_):;'f~

UP-4120 UNIVAC 9200/9200 11/9300/9300 II Appendix A 2
Rev. 2 CARD UTILITY PROGRAMS SECTION: PAGE:

TWO MOST SIGNIFICANT BITS OF ZONE - 01

'-./
TWO LEAST SIGNIFICANT BITS OF ZONE

DIGIT
00 01 10 11

12 11 12-11-0
0000 'Ii & -

0001
12-0·9·1 12·11·9·1 0-1 12·11·0·9·1

I

0010 12-0-9-2 12-11-9-2 11 ·0·9·2 12·11·0·9·2

0011 12-0·9·3 12-11·9·3 11-0-9-3 12-11-0-9-3

0100 12·0·9·4 12·11·9·4 11·0·9·4 12-11·0·9·4

0101 12·0-9·5 12·11·9·5 11·0·9·5 12·11·0·9·5

0110 12·0+6 12·11-9-6 11-0-9-6 12·11·0·9·6

. 0111 12·0·9·7 12·11-9-7 11·0·9·1 12-11·0·9·7

1000 12·0·9·8 12·11·9·8 11-0-9-8 12·11·0·9·8

1001 12·8·1 11 ·8·1 0-8-1 8-1

1010 12-8-2 11-8-2 12-11 8-2
¢ !

1011 12-8-3 11-8-3 0-8-3 8-3 '-./
$, 1t .

1100 12-8-4 11-8-4 0-8-4 8-4

< * % @

1101 12-8-5 11-8-5 0-8-5 8-5
() - I

1110 12-8-6 11-8-6 0-8-6 8-6
+ . > =

1111 12-8· 7 11-8-7 0-8-7 8-7

I I ? "

'

.

'..__,/

~

UP-4120
Rev. 2

DIGIT

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAMS

TWO MOST SIGNIFICANT BITS OF ZONE - 10

TWO LEAST SIGNIFICANT BITS OF ZONE

00 01 10

12-0-8-1 12-11-8-1 11-0-8-1

12-0-1 12-11-1 11-0-1

12-0-2 12-11-2 11-0-2

12-0-3 12-11-3 11-0-3

12-0-4 12-11-4 11-0-4

12-0-5 12-11-5 11-0-5

12-0-6 12-11-6 11-0-6

12-0-7 12-11-7 11-0-7

12-0-8 12-11-8 11-0-8

12-0-9 12-11-9 11-0-9

12-0-8-2 12-11-8-2 11-0-8-2

12-0-8-3 12-11-8-3 11-0-8-3

12-0-8-4 12-11-8-4 11-0-8-4

12-0-8-5 12-11-8-5 11-0-8-5

12-0-8-6 12-11-8-6 11-0-8-6

12-0-8-7 12-11-8-7 11-0-8-7

Appendix A 3
SECTION: PAGE:

11

12-11-0-8-1

12-11-0-1

12-11-0-2

12-11-0-3

12-11-0-4

12-11-0-5

12-11-0-6

12-11-0-7

12-11-0-8

12-11-0-9

12-11-0-8-2

12-11-0-8-3

12-11-0-8-4

12-11-0-8-5

12-11-0-8-6

12-11-0-8-7

UP-4120
Rev. 2

DIGIT

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

UNIVAC 9200/9200 11/9300/9300 II
CARD UTILITY PROGRAM

TWO MOST SIGNIFICANT BITS OF ZONE - 11

TWO LEAST SIGNIFICANT BITS OF ZONE

00 01 10

12-0 11-0 0-8-2

12-1 11-1 11-0-9-1
A J

12-2 11-2 0-2
B K s

12-3 11-3 0-3
c L T

12-4 11-4 0-4
D M u

12-5 11-5 0-5
E N v

12-6 11-6 0-6
F 0 w

12-7 11-7 0-7
G p x

12-8 11-8 0-8
H Q y

12-9 11-9 0-9
R z

12-0-9-8-2 12-11-9-8-2 11-0-9-8-2

12-0-9-8-3 12-11-9-8-3 11-0-9-8-3

12-0-9-8-4 12-11-9-8-4 11-0-9-8-4

12·0-9-8-5 12-11-9-8-5 11-0-9-8-5

12-0-9-8-6 12-11-9-8-6 11-0-9-8-6

12-0-9-8-7 12-11-9-8-7 11-0-9-8-7

Appendix A 4
SECTION: PAGE:

,,,,.-"

\.__,/

11

0
0

1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

"-.../
9

9

12-11-0-9-8-2

12-11-0-9-8-3

12-11-0-9-8-4

12-11-0-9-8-5

12-11-0-9-8-6

12-11-0-9-8-7

UP-4120 Rev. 2

