
I

COBOL

s

U P-7709

Rev. 2

This document contains the latest information available at the time of publi­
cation. However, the Univac Division reserves the right to modify or revise its
contents. To ensure that you have the most recent information, contact your
local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation in this publication are:

UNISERVO

© 1969, 1970, 1971, 1972 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

UNIVAC 9400 System
COBOL Supplementary Reference
UP-7709 Rev. 2

UPDATING PACKAGE F

File pages as specified below

DESTROY FORMER
SECTION PAGES NUMBERED

Front Cover & Disclaimer t

Page Status Summary N. A.

Contents 1 Rev. 1 and 2 Rev. 1
7 Rev. 1 and 8 Rev. 1

Appendix p N. A.

Index 1 Rev. 1 and 2 Rev. 1
3 Rev. 1 thru 8 Rev. 1
9 Rev. 1 and 10 Rev. 2
11 Rev. 2 and 12 Rev.
13 Rev. 1 and 14 Rev.

t Destroy old cover and file new cover

** These are new pages

1
1

February 1973

FILE NEW
PAGES NUMBERED

t

PSS-1 and PSS-2

1 Rev. 2 and 2 Rev. 1
7 Rev. 1 and 8 Rev. 2

l** thru 18**

1 Rev. 1 and 2 Rev. 2
3 Rev. 2 thru 8 Rev. 2
9 Rev. 2 and 10 Rev. 3
11 Rev. 3 and 12 Rev. 2
13 Rev. 2 and 14 Rev. 2

All the technical changes in an update are denoted by an arrow (-) in the margin. A downward pointing arrow (~) next to a
line indicates that technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizon­
tal arrow (-) pointing to a line indicates a technical change in only that line. A horizontal arrow located between two consecu­
tive lines indicates technical changes in both lines or deletions.

UNIVAC 9400 System
COBOL Supplementary Reference
UP-7709 Rev. 2

UPDATING PACKAGE E

File pages as specified below.

SECTION

Section 2

Section 3

Section 4

Section 5

Section 6

Section 10

Appendix D

Appendix G

Appendix I

Appendix J

Appendix K

Appendix L

DESTROY FORMER
PAGES NUMBERED

5 Rev. 1 & 6 Rev. 2

1 Rev. 1 & 2

3 Rev. 1 & 4 Rev. 1

9 Rev. 1 & 10 Rev. 1
11 Rev. 2 & 12 Rev. 2
12a & 12b
13 Rev. 1 & 14
15 & 16
21 Rev. 1 & 22

15 Rev. l& 16 Rev. 1
17 Rev. 1 & 18 Rev. 2
21 Rev. 1 & 22 Rev. 2
25 & 26 Rev. 1
47 Rev. 2 & 48 Rev. 2

1 Rev. 1 & 2 Rev. 1

13 & 14
17 & 18 Rev. 1

1 & 2 Rev. 1

5 & 6 Rev. 1
7 Rev. 1 & 8 Rev. 1
9 & 10

45 & 46 Rev. 1

3 Rev. 1 & 4
5 Rev. 2 & 6 Rev. 2

3 & 4

August 1972

FILE NEW
PAGES NUMBERED

5 Rev. 1 & 6 Rev. 3

1 Rev. 1 & 2 Rev. 1

3 Rev. 2 & 4 Rev. 1

9 Rev. 1 & 10 Rev. 2
11 Rev. 2 & 12 Rev. 3
12a Rev. 1 & 12b
13 Rev. 1 & 14 Rev. 1
15 Rev. 1 & 16 Rev. 1
21 Rev. 2 & 22

15 Rev. 2 & 16 Rev. 1
17 Rev. 2 & 18 Rev. 2
21 Rev. 2 & 22 Rev. 2
25 & 26 Rev. 2
47 Rev. 3 & 48 Rev. 3

1 Rev. 2 & 2 Rev. 1

13 Rev. 1 & 14
17 & 18 Rev. 2

1 & 2 Rev. 2

5 & 6 Rev. 2
7 Rev. 2 & 8 Rev. 2
9 & 10 Rev. 1

45 & 46 Rev. 2

3 Rev. 2 & 4
5 Rev. 3 & 6 Rev. 3

3 Rev. 1 & 4 Rev. 1

All the technical changes in an update are denoted by an arrow (-+-) in the margin. A downward pointing arrow (+) next to a
line indicates that technical changes begin at this line and continue until an upward pointing arrow (+) is found. A horizon­
tal arrow (-) pointing to a line indicates a technical change in only that line. A horizontal arrow located between two consecu­
tive lines indicates technical changes in both lines or deletions.

.,___,

"'----'.

UNIVAC 9400 System February 1972
COBOL Supplementary Reference
UP-7709 Rev. 2

UPDATING PACKAGE D
File pages as specified below

DESTROY FORMER FILE NEW
SECTION PAGES NUMBERED PAGES NUMBERED

Front Cover & Disclaimer t t

Contents 3 Rev. 2 and 4 Rev. 2 3 Rev. 3 and 4 Rev. 3

Section 1 1 and 2 Rev. 3 1 and 2 Rev. 4

Section 2 5 and 6 Rev. 1 5 Rev. 1 and 6 Rev. 2
9 9 Rev. 1

Section 4 1 Rev. 1 and 2 1 Rev. 2 and 2 Rev. 1
11 Rev. 2 and 12 Rev. 2 11 Rev. 3 and 12 Rev. 2

Section 5 3 Rev. 1 and 4 Rev. 2 3 Rev. 2 and 4 Rev. 2
9 Rev. 1 and 10 9 Rev. 1 and 10 Rev. 1
N. A. lOa**

Section 6 5 and 6 Rev. 1 5 and 6 Rev. 2
9 Rev. 1 and 10 9 Rev. 2 and 10
11 and 12 Rev. 1 11 and 12 Rev. 2
13 and 14 Rev. 1 13 and 14 Rev. 2
N. A. 14a**
35 and 36 35 and 36 Rev. 1
46a and 46b 46a Rev. 1 and 46b Rev. 1

Section 7 1 and 2 1 Rev. 1 and 2 Rev. 1
N. A. 3**

Section 9 1 and 2 Rev. 1 1 and 2 Rev. 2
3 and 4 3 Rev. 1 and 4

Section 10 1 and 2 1 Rev. 1 and 2 Rev. 1

Appendix B 1 Rev. 1 and 2 Rev. 1 1 Rev. 1 and 2 Rev. 2

Appendix E 1 Rev. 2 1 Rev. 3

Appendix J 13 and 14 13 and 14 Rev. 1
15 Rev. 1 and 16 15 Rev. 2 and 16
23 Rev. 1 and 24 23 Rev. 1 and 24 Rev. 1
37 and 38 37 and 38 Rev. 1
43 and 44 43 and 44 Rev. 1

Appendix K 1 Rev. 1 and 2 1 Rev. 1 and 2 Rev. 1

Appendix M 3 Rev. 1 and 4 3 Rev. 2 and 4

Index 9 Rev. 1 and 10 Rev. 1 9 Rev. 1 and 10 Rev. 2
11 Rev. 1 and 12 Rev. 1 11 Rev. 2 and 12 Rev. 1

tDestroy old cover and file new cover.
r **These are new paqes.
All the technical changes in an update are denoted by an arrow(-) in the margin. A downward pointing arrow (~) next
to a sentence indicates that technical changes begin at this line and continue until an upward pointing arrow (t) is found. A
horizontal arrow (-) pointing to a sentence indicates a technical change in only that sentence. A horizontal arrow located
between two consecutive sentences indicates technical changes in both sentences or deletions.

'---'.·

UNIVAC 9400 System
COBOL Supplementary Refererv:;e
UP-7709 Rev. 2

S.SCTIOl'J ------
Contents

Section l

Section 4

Section 5

Section 6

Section 8

Section 9

Appendix B

Appendix E

*These are new pages

UPDATIN'.:J PACKAGE "C" -------------

DESTROY FORMER
PAGES NUMBERED

l and 2
3 Rev. l and 4 Rev. 1
5 and 6 Rev. 2
7 and 8
N. A.

l and 2 Rev. 2
3 Rev. l

7 Rev. l and 8
ll Rev. 1 and 12 Rev. l
13 Rev. l

3 an::l 4 Rev. l
5 Rev. l and 6
7 and 8
9 and 10
11 Rev. 1 and 12 Rev. l
N. A.
21 and 22
23 and 24 Rev. 1
25

3 and 4 Rev. 1
13 :ind 14
17 and 18 Rev. 1
21 and 22 Rev. 1
39 Rev. l and 40
N. A.

41 an-J 42 Rev. 1
43 and 44 Rev. 2
45 Rev. 1 and 46
N. A.
47 Rev. 1 and 48
49

3

l and 2

1 and 2

1 Rev. 1

Rev. 1

Rev. l

Rev. 1

Page 1 of 2

December 10, 1971

FILE NJ.:w
PAGI:S NUM3ERED
--~-------

l Rev. l and 2 Rev. l
3 Rev. 2 and 4 Rev. 2
5 and 6 Rev. 3
7 Rev. l and 8 Hev. l
9*

1 and 2 Rev. 3
3 Rev. 2

7 Rev. l and 8 Rev. l
11 Rev. 2 and 12 Rev. 2
13 Rev. 2

3 Rev. l and 4 Rev. 2
5 Rev. 2 and 6 Rev. l
7 Rev. 1 and 8 Rev. 1
9 Rev. 1 and 10
11 Rev. 2 and 12
12a* and 12b-lf-
21 Rev. 1 and 22
23 an::l 24 Rev. 2
25 Rev. l and 26*

Rev.

3 Rev. 1 and 4 Rev .• 1
13 an::l 14 Rev. 1
17 Rev. 1 and 18 Rev.
21 Rev. 1 and 22 Rev.
39 Rev. 2 and 40 Rev.
40a* thru 40d*

41 and 42 Rev. 2
43 and 44 Rev. 3
45 Rev. 2 and 46 Rev.
46a* and 46b·*
47 Rev. 2 and 48 Rev.
49 Rev. 1

3 Rev. 1

1 and 2 Rev. 1

1 Rev. 1 and 2 Rev. 1

1 Rev. 2

2

2
2
2

2

2

UNIVAC 9400 System
COBOL Supplementary Reference
UP-T109 Rev. 2

UPDATING ?ACKAGE "C"

SECTION

Appen:::lix F

Appendix I

Appendix J

Appendix K

Appen:::lix L

Appe:1d ix N

Appendix 0

Index

*These are new pages

DESTROY FORMSR
PAGES NUM!3ERED

1 an::! 2
5 and 6

3 and 4
5 and 6
13 and 14

9 and 10 Rev.
11 Rev. 1 and
17 and 18
19 and 20 Rev.
21 a;Jd 22
23 and 24
25 and 26
27 and 28

1
12 Rev.

1

29 Rev. 1 and 30
39 and 40
41 and 42

5 Rev. 1 and 6 Rev. 1

1 and 2
5 Rev. 1

N. A.

N. A.

1 and 2
3 and 4
5 an::! 6
7 and 8
9 an::! 10
11 and 12
13 and 14

1

DeceJTu~er 10, 1971

FILE NCW
PAGES NUMSERED
----~-----

1 Rev. 1 an::! 2 Rev.
5 Rev. 1 and 6 Rev.

3 Rev. 1 and 4
5 and 6 Rev. 1
13 and 14 Rev. 1

9 and 10 Rev. 2

1
1

11 Rev. 2 and 12 Rev.
17 an:l 18 Rev. 1
19 Rev. 1 and 20 Rev.
21 Rev. 1 and 22 Rev.
23 Rev. 1 and 24
25 and 26 Rev. 1
27 Rev. 1 and 28
29 Rev. 2 and 30
39 and 40 Rev. 1
41 Rev. 1 and 42

5 Rev. 2 and 6 Rev. 2

1 and 2 Rev. 1
5 Rev. 2

l* thru g-:t

l* and 2-)(-

1 Rev. 1 and 2 Rev. 1
3 Rev. 1 and 4 Rev. 1
5 Rev. 1 and 6 Rev. 1
7 Rev. 1 and 8 Rev. 1
9 Rev. 1 and 10 Rev.
11 Rev. 1 and 12 Rev.
13 Rev. 1 and 14 Rev.

1

2
1

1
1
1

All the technical changes in an update are denoted by an arrow (_.) in the margin. A downward pointing arrow (~) next
to a sentence indicates that technical changes begin at this line and continue until an upward pointing arrow (t) is found. A
horizontal arrow (_.) pointing to a sentence indicates a technical change in only that sentence. A horizontal arrow located
between two consecutive sentences indicates technical changes in both sentences or deletions.

Page 2 of 2

UNIVAC 9400 System
COBOL Supplementary Reference
UP-7709 Rev. 2 October 10, 1971

··--

UPDATING PACKAGE "B"

File pages as specified below

DESTROY FORMER FILE NEW
SECTION PAGES NUMBERED PAGES NUMBERED

Contents 3 and 4 3 Rev. 1 and 4 Rev. 1
5 and 6 Rev. 1 5 and 6 Rev. 2

Section 1 1 and 2 Rev. 1 1 and 2 Rev. 2
3 3 Rev. 1

Section 2 3 and 4 3 and 4 Rev. 1
5 and 6 5 and 6 Rev. 1
7 and 8 7 Rev. 1 and 8

Section 3 1 and 2 1 Rev. 1 and 2

Section 4 1 and 2 1 Rev. 1 and 2
3 Rev. 1 and 4 3 Rev. 1 and 4 Rev. 1
7 and 8 7 Rev. 1 and 8
9 Rev. 1 and 10 9 Rev. 2 and 10 Rev. 1
11 and 12 11 Rev. 1 and 12 Rev. 1

'-....-··

13 13 Rev. 1

Section 5 3 and 4 3 and 4 Rev. 1
5 and 6 5 Rev. 1 and 6
11 and 12 11 Rev. 1 and 12 Rev. 1
13 and 14 13 Rev. 1 and 14
23 and 24 23 and 24 Rev. 1

Section 6 3 and 4 3 and 4 Rev. 1
5 an'.:l 6 5 an'.:l 6 Rev. 1
7 and 8 7 and 8 Rev. 1
9 and 10 9 Rev. 1 and 10
11 and 12 11 and 12 Rev. 1
l~ and 16 15 Rev. 1 and 16 Rev. 1
17 and 18 17 an::l 18 Rev. 1
19 Rev. 1 and 20 19 Rev. 2 and 20 Rev. 1
21 and 22 21 and 22 Rev. 1
27 and 28 27 Rev. 1 and 28 Rev. 1
29 and 30 29 and 30 Rev. 1
31 and 32 31 Rev. 1 and 32 Rev. 1
37 and 38 37 Rev. 1 and 38 Rev. 1
39 and 40 39 Rev. 1 and 40 Rev. 1
41 and 42 41 and 42 Rev. 1
43 and 44 Rev. 1 43 and 44 Rev. 2
45 and 46 45 Rev. 1 and 46 Rev. 1
47 and 48 47 Rev. 1 and 48 Rev. 1

(Continued)

Page 1 of 2

UNIVAC 9400 System
COBOL Supplementary Reference
UP-7709 Rev. 2

SECTION

Section 9

Section 10

Appendix D

Appendix E

Appendix G

Appendix I

Appendix J

Appendix K

Appendix L

Appendix M

**This is a new page.

UPDATING PACKAGE "B" CONTINUED

File pages as specified below

DESTROY FORMER
PAGES NUMBERED

5 and 6

1

1 and 2
3 and 4
17 and 18

1

1 and 2

7 and 8

9 and 10
11 and 12
15 and 16
19 and 20

5 and 6

5

1 and 2

October 10, 1971

FILE NEW
PAGES NUMBERED

5 Rev. 1

1 and 2**

1 Rev. 1 and 2
3 and 4 Rev. 1
17 and 18 Rev.

1 Rev. 1

1 and 2 Rev. 1

7 Rev. 1 and 8

9 and 10 Rev. 1

Rev.

1

Rev.

1

1

11 Rev. 1 and 12 Rev. 1
15 Rev. 1 and 16
19 and 20 Rev. 1

5 and 6 Rev. 1

5 Rev. 1

1 Rev. 1 and 2 Rev. 1

All the technical changes in an update are denoted by an arrow (-+-) in the margin. A downward pointing arrow (~) next
to a sentence indicates that technical changes begin at this line and conti"nue until an upward pointing arrow (t) is found. A
horizontal arrow (-+-) pointing to a sentence indicates a technical change in only that sentence. A horizontal arrow located
between two consecutive sentences indicates technical changes in both sentences.

Page 2 of 2

--._,·

·._...-,

UNIVAC 9400 System
COBOL Supplementary Reference
UP-7709 Rev. 2

July 6, 1971

UPDATING SUMMARY SHEET "A"

This announces the release and availability of Updating Package "A" to UP-7709 Rev. 2,
"UNIVAC 9400 System COBOL Supplementary Reference,"

DESTROY FORMER FILE NEW
SECTION PAGES NUMBERED PAGES NUMBERED --·--
Front Cover & Disclaimer t t

Contents 5 and 6 5* and 6 Rev. l

Section l 1 and 2 l* and 2 Rev. 1

Section 4 3 and 4 3 Rev. 1 and 4*
9 and 10 9 Rev. l and 10*

Section 6 19 and 20 19 Rev. l and 20*
25 and 26 25* and 26 Rev. l
43 and 44 43* and 44 Rev. 1

Appendix D 7 and 8 7 Rev. 1 and 8*
15 and 16 15* and 16 Rev.l

Appendix J l and 2 1 Rev. 1 and 2*
29 and 30 29 Rev. 1 and 30*
45 and 46 45* and 46 Rev. 1

Appendix K l and 2 1 Rev. 1 and 2*
3 and 4 3 Rev. 1 and 4*

Appendix M 1 and 2 l* and 2 Rev. 1
3 and 4 3 Rev. 1 and 4*

tDestroy old cover and file new cover.
*These pages are backups of revised pages and remain unchanged.

-----·

UP-7709
Rev. 2

Section

Cover/Disclaimer

PSS

Acknowledgmen

Contents

1

2

3

4

5

6

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

PAGE STATUS SUMMARY

ISSUE: Update F to UP-7709 Rev. 2

Page Update
Number Level Section

Page Update
Number Level

F 7 Orig.
8 B

1, 2 F 9 D
10, 11 Orig.

1 Orig. 12 D
13 Orig.

1 F 14, 14a D
2 c 15 E
3,4 D 16 B
5 Orig. 17 E
6, 7 c 18 c
8 F 19,20 B
9 c 21 E

22 c
1 Orig. 23 thru 25 Orig.
2 D 26 E
3 c 27,28 B

29 Orig.
1 thru 3 Orig. 30 thru 32 B
4 B 33 thru 35 Orig.
5 D 36 D
6 E 37,38 B
7 B 39,40 c
8 Orig. 40a thru
9 D 40d c

41 Orig.
1 B 42 c
2 E 43 Orig.

44 thru 46 c
1, 2 D 46a,46b c
3 E 47,48 E
4 B 49 c
5,6 Orig.
7 B 7 1 thru 3 D
8 c
9, 10 B 8 1, 2 Orig.
11 D 3 c
12, 13 c f---·

9 1 Orig.
1, 2 Orig. ' 2,3 D
3 D 4 Orig.
4 thru 9 c 5 B
10 E
10a D 10 1 E
11 c 2 D
12, 12a E r--
12b c Appendix A 1 Orig.
13 B 2 B
14 thru 16 E
17thru20 Orig. Appendix B 1 c
21 E 2 D
22,23 Orig.
24 thru 26 c Appendix C 1 thru 3 Orig.

1, 2 Orig. Appendix D 1, 2 B
3 c 3 Orig.
4 B 4 B
5 Orig. 5,6 Orig.
6 D 7 A

PSS 1
SECTION: PAGE:

Section
Page Tupdate

Number Level

8 thru 12 Orig.
13 E
14, 15 Orig.
16 A
17 Orig.
18 E

Appendix E 1 D

Appendix F 1, 2 c
3,4 Orig.
5,6 c

Appendix G 1 Orig.
2 E
3 Orig.

!------·

Appendix H 1 thru 3 Orig.

Appendix I 1, 2 Orig.
3 c
4,5 Orig.
6 thru 8 E
9 Orig.
10 E
11 thru 13 Orig.
14 c

Appendix J 1 A
2 thru 9 Orig.
10, 11 c
12 B
13 Orig.
14, 15 D
16, 17 Orig.
18 thru 23 c
24 D
25 Orig.
26, 27 c
28 Orig.
29 c
30 thru 37 Orig.
38 D
39 Orig.
40, 41 c
42,43 Orig.
44 D
45 Orig.
46 E

Appendix K 1 A
2 D
3 E
4 Orig.
5,6 E

Appendix L 1 Orig.
2 c
3,4 E

UP-7709
Rev. 2

Section

Appendix M

Appendix N

Appendix 0

Appendix P

Index

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Page
Number

5

1
2
3
4

1 thru 8

1, 2

1 thru 18

1

2 thru 14

Update
Level

c

B
A
D

Orig.

c

c

F

c

F

PAGE STATUS SUMMARY

ISSUE: Update F to UP-7709 Rev. 2

Section
Page

Number
Update
Level

PSS

SECTION:

Section
Page

Number

PAGE:

Update
Level

2

•

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Acknowledgment 1

SECTION: PAGE:

ACKNOWLEDGMENT

This manual is based on American National Standard COBOL, X3.23 - 1968 developed
by the American National Standards Institute (ANSI, formerly USASI). In response to their
request the following acknowledgment is reproduced in its entirety:

"Any organization interested in using the COBOL specifications as the basis for an
instruction manual or for any other purpose is free to do so. However, all such organi­
zations are requested to reproduce this section as part of the introduction to the
document. Those using a short passage, as in a book review, are requested to men­
tion 'COBOL' in acknowledgment of the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL Com­
mittee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in
connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should be directed to the Executive Committee of
the Conference on Data Systems Languages.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the
UNIVAC®! and II, Data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis­
Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL speci­
fications in programming manuals or similar publications.

This complete USA Standard edition of COBOL may not be reproduced without per­
mission of the USA Standards Institute."

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

PAGE STATUS SUMMARY

ACKNOWLEDGMENT

CONTENTS

1. INTRODUCTION

1.1. SCOPE

1.2. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

1.3. UNIVAC 9400 COBOL

1.4. UNIVAC 9400 COBOL COMPILER OPTIONS

2. GENERAL SPECIFICATIONS

2.1. UNIVAC 9400 COBOL CHARACTER SET
2.1.1. Characters Used for Words
2.1.2. Characters Used for Punctuation
2.1.3. Characters Used in Relational Expressions
2.1.4. Characters Used in Arithmetic Operations
2.1.5. Characters Used in Editing

2.2. TYPES OF WORDS
2.2.1. User-Supplied Words
2.2.2. Reserved Words

2.3. QUALIFICATION

2.4. SUBSCRIPTING AND INDEXING

2.5. THE CODING FORM

3. IDENTIFICATION DIVISION

3.1. GENERAL

Rev. 2 Contents
SECTION:

CONTENTS

1 to 1

1 to 9

1-1to1-3

1-1

1-1

1-2

1-3

2-lto2-9

2-1
2-2
2-2
2-2
2-3
2-3

2-3
2-3
2-3

2-7

2-8

2-8

3-1 to 3-2

3-1

1
PAGE:

UP-7709
Rev. 2

4.

s.

6.

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

ENVIRONMENT DIVISION

4.1. GENERAL

4.2. CONFIGURATION SECTION
4.2.1. SOURCE-COMPUTER
4.2.2. OBJECT-COMPUTER
4.2.3. SPECIAL-NAMES

4.3. INPUT-OUTPUT SECTION
4.3.1. FILE-CONTROL
4.3.2. 1-0-CONTROL

DATA DIVISION

5.1. GENERAL
5.1.1. Data Definition

5.2. FILE SECTION
5.2.1. File Description
5.2.1.1. BLOCK CONTAINS
5.2.1.2. RECORD CONTAINS
5.2.1.3. LABEL RECORDS
5.2.1.4. RECORDING MODE
5.2.1.5. VALUE OF
5. 2.1.6. DATA RECORDS
5.2.2. Sort File Description

5.3. DATA DESCRIPTION
5.3.1. Level Number and Unqualified-data-name/FILLER
5.3.2. REDEFINES
5.3.3. OCCURS
5.3.4. PICTURE
5.3.5. USAGE
5.3.6. SYNCHRONIZED
5.3. 7. JUSTIFIED
5.3.8. VALUE IS
5.3.9. BLANK WHEN ZERO
5.3.10. MAP
5.3.11. RENAMES
5.3.12. Condi tion·N ame
5.3.13. SIGN

5.4. WORKING-STORAGE SECTION
5.4.1. lndep en dent Entries
5.4.2. Record Description

5.5. LINKAGE SECTION

PROCEDURE DIVISION

6.1. GENERAL
6.1.1. USING

6.2. DECLARATIVES

6.3. SECTIONS

6.4. PARAGRAPHS

Rev.l Contents 2
SECTION: PAGE:

4-1 to 4-13

4-1 · . ._./

4-1
4-2
4-2
4-3

4-8
4-8
4-11

5-1 to 5-25

5-1
5-2

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-8
5-9

5-10
5-11
5-11 ..___,,.

5-12
5-13
5-18
5-19
5-19
5-20
5-21
5-21
5-22
5-22
5-24

5-25
5-25
5-26

5-26

6-1 to 6-49

6-1
6-1

6-2

6-3
.__/

6-4

UP-7709
Rev. 2

.,_ __ _,

'-.,_...-·

7.

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

6.5. STATEMENTS AND SENTENCES
6.5.1. Imperative Statements
6.5.2. Conditional Statements
6.5.3. Compiler-Directing Statements

6.6. VERB TYPES
6.6.1. A rith meti c Verbs
6.6.2. Procedure Branching Verbs
6.6.3. Data Movement Verbs
6.6.4. In puV 0 utput Verbs
6.6.5. Ending Verb
6.6.6. Conditional Verb
6.6.7. Compiler-Directing Verbs

6.7. VERBS
6. 7.1. ACCEPT
6.7.2. ADD
6.7.3. ALTER
6.7.4. CALL
6.7 .5. CLOSE
6.7 .6. COMPUTE
6.7.7. COPY
6.7.8. DISPLAY
6. 7.9. DIVIDE
6. 7 .10. ENTER
6.7.11. ENTRY
6.7.12. EXAMINE
6.7.13. EXIT
6.7.14. GO TO
6. 7 .15. IF
6. 7 .16. INSERT
6.7.17. MOVE
6.7.18. MULTIPLY
6. 7 .19. NOTE
6.7.20. OPEN
6.7.21. PERFORM
6.7 .22. READ
6.7.23. RELEASE
6. 7 .24. RETURN
6. 7 .25. REWRITE
6.7 .26. SEARCH
6.7 .27. SEEK
6.7 .28. SET
6.7.29. SORT
6.7 .30. STOP
6.7 .31. SUBTRACT
6.7.32. TRANSFORM
6.7 .33. USE
6.7 .34. WRITE

SEGMENTATION

7 .1. GENERAL

7.2. PROGRAM SEGMENTS
7 .2.1. Fixed Portion
7 .2.2. Independent Segments

Rev. 3 Contents 3
SECTION: PAGE:

6-4
6-4
6-5
6-5

6-6
6-6
6-8
6-8
6-8
6-9
6-9
6-9

6-9
6-9
6-10
6-11
6-12
6-12
6-13
6-14
6-15
6-15
6-17
6-18
6-19
6-20
6-20
6-22
6-27
6-28
6-30
6-30
6-31
6-32
6-37
6-38
6-38
6-39
6-40
6-40c
6-40d
6-42
6-44
6-45
6-46
6-46b
6-48

7-1 to 7-3

7-1

7-1
7-1
7-1

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

7 .3. SECTION

7.4. RESTRICTIONS
7.4.1. The ALTER Statement
7.4.2. The PERFORM Statement

8. TABLE HANDLING

8.1. GENERAL

8.2. DEFINING A TABLE

8. 3. TABLE REFERENCE

8.4. SUBSCRIPTING

8.5. INDEXING

8.6. SEARCHING

9. SORTING

9.1. GENERAL

9.2. ORGANIZATION OF A SORT PROGRAM

9.3. SORT STATEMENT FORMATS
9.3.1. Sort File SELECT Statement
9.3.2. Sort File Description
9.3.3. RELEASE

9.3.4. RETURN

9.3.5. SORT

9.4. USE OF THE SORT FEATURE IN THE EXTENDED COMPILER

10. LIBRARY

10.1. GENERAL

10.2. USING THE COPY STATEMENT

APPENDIXES

A. UNIVAC 9400 SYSTEM CHARACTER SET

A.1. GENERAL

B. UNIVAC 9400 SYSTEM COBOL RESERVED WORDS

B. l. GENERAL

C. SOURCE AND COPY LIBRARY INPUT SPECIFICATIONS

C.l. GENERAL

Rev. 3

C.2. BASIC COMPILER SOURCE LIBRARY INPUT/COPY LIBRARY INPUT

C.3. EXTENDED COMPILER SOURCE LIBRARY INPUT/COPY LIBRARY
INPUT

Contents 4
SECTION: PAGE:

7-2

7-2
7-2
7-3

8-1 to 8-3

8-1

8-1

8-2

8-2

8-3

8-3

9-1 to 9-5

9-1

9-1

9-2
9-2
9-2
9-3
9-3
9-3

9-4

10-1 to 10-2

10-1

10-1

A-1 to A-2

A-1

B-1 to B-2

B-1

C-1 to C-3

C-1

C-2

C-3

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

D. 9400 COBOL PROCESSING TECHNIQUES FOR DIRECT ACCESS DEVICES

D.1. INTRODUCTION

D.2. FILE ORGANIZATION
D.2.1. ORGANIZATION IS SEQUENTIAL

D.2.2. ORGANIZATION IS RELATIVE

D.2.3. ORGANIZATION IS DIRECT

D.2.4. ORGANIZATION IS INDEXED

D.3. FILE ACCESS MODES

D.4. FILE PROCESSING TYPES

D.5. KEY CLAUSE AND USAGE
D.5.1. ORGANIZATION Clause
D.5.2. APPLY Clause

D.6. FILE PROCESSING TECHNIQUES
D.6.1. ORGANIZATION IS SEQUENTIAL

D.6.2. ORGANIZATION IS RELATIVE

D.6.2.1. Type 2 - ACCESS IS SEQUENTIAL

D.6.2.2. Type 4 - ACCESS IS RANDOM

D.6.3. ORGANIZATION IS DIRECT

D.6.3.1. Type 3 - ACCESS IS SEQUENTIAL

D.6.3.2. Type 5 - ACCESS IS RANDOM

D.6.4. ORGANIZATION IS INDEXED

D.6.4.1. Type 6 - ACCESS IS SEQUENTIAL

D.6.4.2. Type 7 - ACCESS IS RANDOM

D.7. SUMMARY OF AT END/INVALID KEY/ERROR CONDITIONS

E. EXTENDED COMPILER FEATURES

E.1. GENERAL

F. CALLING AND CALLED PROGRAMS

F.1. GENERAL

F.2. TREATMENT 0 F DATA ITEMS

F.3. LINKING

F.4. UNIVAC 9400 COBOL CALL/ENTRY INTERFACE

Contents
SECTION:

D-1 to D-18

D-1

D-1
D-1
D-1
D-2
D-2

D-2

D-2

D-3
D-3
D-4

D-6
D-6
D-7
D-7
D-8
D-9
D-10
D-11
D-12
D-13
D-14

D-15

E-1 to E-1

E-1

F-1 to F-6

F-1

F-1

F-2

F-2

5
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

G. COMPILER OPTIONS

G.l. GENERAL

G.2. LIST OPTIONS

G.3. OUTPUT OPTIONS

G.4. SOURCE LIBRARY INPUT

G.5. COPY LIBRARY INPUT

G.6. OBJECT MODULE VERSION/REVISION NUMBER

H. INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS

H.1. GENERAL

H.2. ADD AND SUBTRACT STATEMENTS

H.3. EXPRESSIONS

I. JOB CONTROL STREAM

1.1. GENERAL

1.2. SAMPLE JOB STREAMS

Rev, 3

1.3. DATA MANAGEMENT INTERFACE AND JOB CONTROL INFORMATION

1.4. LINKER CONSIDERATIONS

1.5. SEQUENTIALLY ORGANIZED DISC CONTROL STATEMENTS

1.6. DIRECT OR RELATIVE ORGANIZATION DISC CONTROL STATEMENTS

1.7. INDEXED SEQUENTIAL DISC FILE CONTROL STATEMENTS

1.8. USE OF THE COMPILER PATCHING FACILITY

1.9. COMPILATION STATUS INDICATORS

J. COMPILER DIAGNOSTICS AND CONSOLE MESSAGES

J.1. GENERAL

J.2. COMPILE TIME DIAGNOSTICS

J.3. CONSOLE MESSAGES

K. COMPILER LISTINGS

K.l, SOURCE CODE LISTING

K.2. DATA DIVISION STORAGE MAP AND CROSS REFERENCE LISTING

K.3. PROCEDURE DIVISION STORAGE MAP AND CROSS REFERENCE LISTING

K.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES

Contents 6
SECTION: PAGE:

G-1 to G-3

G-1

G-1

G-2

G-3

G-3

G-3

H-1 to H-3

H-1

H-1

H-2

1-1 to 1-14

1-1

1-1

1-4

1-5

1-6

1-8

1-11

1-14

1-14

J-1 to J-46

J -1

J-1

J-46

K-1 to K-6

K-1

K-2

K-3

K-3

~~

UP-7709
Rev. 2

___,

'--'

"-._....-

UNIVAC 9400 COBOL
SU PP LE ME NT ARY REF ER ENCE

L. USE OF ACCEPT AND DISPLAY STATEMENTS

L.1. GENERAL

L.2. ACCEPT FROM JOB STREAM

L.3. ACCEPT FORMATS

L.4. ACCEPT IDENTIFIER FROM SYSDATE

L.5. ACCEPT IDENTIFIER FROM SYSTIME

L.6. ACCEPT IDENTIFIER FROM SYSSWCH

L.7. ACCEPT IDENTIFIER FROM SY SCOM

L.B. DISPLAY IDENTIFIER UPON SYSCONSOLE

L.9. DISPLAY IDENTIFIER UPON SYSSWCH

L.10. DISPLAY IDENTIFIER UPON SYSSWCH·n

L.11. DISPLAY IDENTIFIER UPON SYSCOM

L.12. DISPLAY IDENTIFIER UPON SYSLST

M. DEBUGGING LANGUAGE

M.l. GENERAL

M.2. READY TRACE

M.3. RESET TRACE

M.4. EXHIBIT

M.5. THE DEBUGGING PACKET

N. ASCII PROCESSING

N.1. GENERAL

N.2. FIGURATIVE CONSTANTS

N.3. COMPUTATIONAL ITEMS

N.4. SIGNED ITEMS

N.5. APPLY ASCII

N.6. RECORDING MODE

N.7. CONSTANTS AND LITERALS

N.8. CONDITIONAL TEST

N.9. DISPLAY

N.10. ACCEPT

N.11. SORT

Rev.1 Contents 7
SECTION: PAGE:

L-1 to L-5

L-1

L-1

L-2

L-3

L-3

L-4

L-4

L-4

L-4

L-4

L-5

L-5

M-1 to M-4

M-1

M-1

M-2

M-2

M-4

N-1 to N-8

N-1

N-1

N-1

N-1

N-1

N-2

N-2

N-2

N-2

N-2

N-3

UP-7709
Rev. 2

t

o.

P.

N.12.

N.13.

N.14.

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

CONVERSION OF DISPLAY ITEMS

ASCII FILE DECLARATION

RECORDING MODE CLAUSE

RERUN CLAUSE

0.1. GENERAL

0.2. THE RERUN CLAUSE

0.3. CHECKPOINTING

0.4. RESTARTING

0.5. NOTES AND RESTRICTIONS

CONVERSION MODE

p .1. GENERAL

P.2. CONVERSION MODE OPERATION

P.3. CONVERSION MODE SYNTAX

P.4. PRINTER FILE SUPPORT

P.5. DISC FILE SUPPORT

INDEX

FIGURES

2-1. The COBOL Programming Form

6-1. PERFORM Logic: Varying Two Identifiers

6-2. PERFORM Logic: Varying Three Identifiers

6-3. SEARCH Logic

D-1. SYSERR·n Setting ORGANIZATION IS INDEXED

F-1. Example of CALLing Program

F-2. Example of CALLed Program

F-3. Example of CALLed Assembly Subprogram

N-1. ASCII Physical Tape Formats

Rev. 2 Contents 8
SECTION: PAGE:

N-3

N-3 .___,,

N-4

0-1 to 0-2

0-1

0-1

0-1

0-2

0-2

P-1

P-1

P-2

P-14

P-15

1 to 14

·..____./

2-8

6-35

6-36

6-40

D-17

F-3

F-4

F-5

N-4

-._ ..

,_.

UP-7709
Rev. 2

TABLES

1-1.

2-1.

2-2.

2-3.

4-1.

5-1.

5-2.

5-3.

5-4.

5-5.

5-6.

6-1.

6-2.

6-3.

A-1.

D-1.

E-1.

F-1.

N-1.

N-2.

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

UNIVAC 9400 COBOL Module/Level Implementation

Types of User-Supplied Words

Types of Reserved Words

Programming Form Column Usage

Rules for SPECIAL-NAMES

Allowable Memory Size

Block Size Ranges

Record Size Ranges

PICT U RE Sy m bo Is

Precedence Rules in PICTURES

Source and Receving Fields

Logical Operator/Condition Relationships

Logical Operator/Condition Combinations

Sending and Receving Fields

UNIVAC 9400 System Character Set

Summary Chart of COBOL Disc Processing Techniques

Extended Compiler Features

Program/Subprogram Rel a ti on ships

Characteristics of Tape Files Available to COBOL Users

ASCII/EBCDIC Conversion

Contents
SECTION:

1-2

2-4

2-6

2-9

4-7

5-2

5-4

5-5

5-15

5-16

5-17

6-23

6-23

6-29

A-1

D-18

E-1

F-2

N-5

N-6

9
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

1
PAGE:

1. INTRODUCTION

1.1. SCOPE

This supplementary reference manual describes the usage of COBOL with the UNIVAC
9400 System. It is intended for the experienced COBOL programmer who is already
familiar with the basic information contained in the UNIVAC Fundamentals of COBOL
Series, UP-7503 (current version)o The information provided in this manual is therefore
generally restricted to those phases of COBOL of interest to the UNIVAC 9400 COBOL
programmero

For an understanding of file processing facilities available on the 9400 System, refer to
UNTVAC 9200·ll/9300 ll/9400 Systems P.l.E ttl 8411 Disc File Direct Access Subsystem
Concepts, UP-7704.1; and UN TV AC 9400 System Data Management System Programmers
Reference, UP-7629 (current version).

Appendix D contains an explanation of UNIVAC 9400 System COBOL disc procedures.

1.2. SYMBOLS, RULES, AND NOTATIONS USED IN THIS MANUAL

The various language elements that comprise a COBOL program must be written in
formats that adhere to fixed and precise rules of presentation. Each format statement
indicates the following information:

• order of presentation;

• words that are requisite to the proper functioning of the statement;

• words that are optional and are included at the discretion of the user;

• information which must be supplied by the user:

• elements in the statement that involve a choice by the user;

• functions of the statement that are optional.

In accordance with the above, the following conventions are used in this manual:

(1) The order of presentation is indicated by the format statement itself.

(2) All words inherent or built into the UNIVAC 9400 COBOL language are printed in
upper case (COBOL reserved words). Appendix B lists all UNIVAC 9400 COBOL
reserved words.

(3) All uppercase words that are underlined are key words. Key words must be present
when the functions of which they are a part are used. Those uppercase words not
underlined are optional and may be included at the user's discretion to improve
readability (no compiler action). All uppercase words, whether underlined or not,
are part of the COBOL language and must be spelled exactly as indicated.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 4 1
SECTION:

(4) All lowercase words in italics represent generic terms to be supplied by the
user when the functions of which they are a part are used.

PAGE:

(5) Elements of a statement involving a choice, one of which must be chosen, are
enclosed in braces (! !). If one of the choices within the braces has no key words,
it is a "default option"; i.e., if none of the elements within the braces is specified,
the action will be the same as if the default option had been specified.

(6) Optional functions which may be included or omitted at the user's discretion
are enclosed in brackets ([]) .

(7) In some statements, certain portions may be used as many times as needed by the
programmer. This repeatability is indicated by the ellipsis (...). Brackets or
braces are used as delimiters to indicate the portion of the statement which is
repeatable.

1.3. UNIVAC 9400 COBOL

Both a basic compiler and an extended compiler have been implemented for UNIVAC
9400 COBOL. Each conforms to the specifications of the American National Standards
Institute (ANSI), entitled American National Standard COBOL, XJ.23-1968. The ANSI
modules and levels implemented for each are shown in Table 1-1.

MODULE LEVEL

BASIC EXTENDED

Nucleus 1 2

Table Handling 2 3

Sequential Access 1 2

Random Access - 2

Sort - 2

Segmentation 1 2

Library 1 2

Table 1-1. UNIVAC 9400 COBOL Module/Level Implementation

The minimum system configuration required for each compiler is:

BASIC

3 work tapes+ 1 system tape or disc

1 card reader or substitute device

1 printer or substitute device

1 reader

32,768 byte memory*

EXTENDED

3 disc work areas+ 1 system disc

1 card reader or substitute device

1 printer or substitute device

65,536 byte memory**

The basic compiler is a true subset of the extended compiler. All subsequent references
to "the compiler" in this manual are applicable to both the basic and extended compilers.
Appendix E lists the features found only in the extended compiler.

*Compiler requires 20K

**Compiler requires 40K

2

•

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 1
SECTION: PAGE:

Those features of UNIVAC 9400 COBOL which exceed ANSI requirements are noted
where they occur. All references in this manual to "ANSI requirements" refer to ANSI
X3.28 - 1968.

3

The compiler and all compiler-produced object programs normally operate on data represent- _..,
ed in EBCDIC (Extended Binary Coded Decimal Interchange Code) under control of the
UNIV AC 9400 Operating System.

A COBOL source program can be entered into the compiler from the card reader or from a
tape or disc library file. The compiler produces, as its final output, a relocatable object
program on tape (basic COBOL) or disc (extended COBOL). This output must be
processed by the linker utility program (described in UNIV AC 9400 System Linkage
Editor Programmers Reference, UP-7703 current version) for production of loadable,
executable object code.

1.4. COBOL 9400 COBOL COMPILER OPTIONS

The following compiler options are available to the user and are discussed in Appendix
G.

(1) Ambiguous reference checking

(2) Source listing

(3) Object program listing

(4) Data Division map

(5) Procedure Division map

(6) Cross-reference listing

(7) Suppress precautionary diagnostics

(8) Inhibit source sequence number check

(9) Inhibit transfer address generation in object module (subprogram)

(10) Inhibit generation of all Linker control cards in object modules produced by compiler

(11) Inhibit generation of object modules

(12) Specify source program input from tape/disc library file

(13) Specify COPY input from tape/disc library file

(14) Single space source listing

(15) Suppress printer mismatch during compilation or object program execution .

I

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

2
PAGE:

2. GENERAL SPECIFICATIONS

2.1. UNIVAC 9400 COBOL CHARACTER SET

The UNIVAC 9400 COBOL character set is a 52 character subset of the UNIVAC 9400
System character set which contains 256 characters.

The COBOL character set consists of the following characters:

0,1, .. .,9

A,B, ... ,Z

Blank or space (written on coding form as li, or a blank space)

Period

< Less than

(Left parenthesis

+ Plus sign

$ Currency sign

* Asterisk (if used in column 7 indicates that the entire source statement is commentary)

) Right parenthesis

Semi-colon

Minus sign or hyphen

Comma

> Greater than

Apostrophe (alternate character for quotation mark)

= Equal sign

11 Quotation mark (see apostrophe)

I Slash

The collation sequence for these characters is given in Appendix A.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE SECTION:

2
PAGE:

The UNIVAC 9400 COBOL character set may be used anywhere in a program; however,
the additional characters, which together with the COBOL set make up the system set,
may be used only in the following instances:

• Anywhere in the Identification Division except in the Program-ID clause.

• In the NOTE statement of the Procedure Division.

• Nonnumeric literals.

The apostrophe is the alternate character for the quotation mark in UNIVAC 9400
COBOL, and either one or both may be used to designate nonnumeric literals. Any
UNIVAC 9400 computer character except the apostrophe and the quotation mark may
be used within a nonnumeric literal.

The following paragraphs describe the general usage of the various UNIVAC 9400
COBOL characters.

2.1.L Characters Used for Words

A COBOL word is a sequence of not more than 30 of the following characters:

A,B,. .. ,z

(hyphen)

A word may neither begin nor end with a hyphen nor contain a space.

2.L2. Characters Used for Punctuation

COBOL punctuation characters are:

Apostrophe (alternate character for quotation mark)

(Left parenthesis

) Right parenthesis

Blank or space (written on coding form as o, or a blank space)

Period

Comma

Semicolon

" Quotation mark (see apostrophe)

2.1.3. Characters Used in Relational Expressions

The COBOL characters used to represent relational operators are:

= Equals

> Greater than

< Less than

2

.... _.-

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

2.1.4. Characters Used in Arithmetic Operations

The characters used in arithmetic operations are:

+ Plus sign (addition)

Minus sign (subtraction)

* Asterisk (multiplication)

I Slash (division)

** Two asterisks (exponentiation)

2.LS. Characters Used in Editing

The characters used in editing consist of the following:

B Blank or space insertion

0 Zero insertion

+ Plus sign

Minus sign

CR Credit

DB Debit

Z Zero suppression

* Check protection

$ Currency symbol

Comma

Decimal point

2.2. TYPES OF WORDS

There are two types of words in UNIV AC 9400 COBOL:

• User-Supplied and

• Reserved.

These are described in the following paragraphs.

2. 2.1. User-Supplied Words

2
SECTION: PAGE:

Certain words in COBOL fall into the general classification of user-supplied words.
These are listed and defined in Table 2-1.

2.2.2" Reserved Words

Reserved words are used for syntactical purposes and may not appear as user-defined
words. The various types of reserved words are described in Table 2-2. Appendix B
contains a complete list of UNIVAC 9400 COBOL reserved words.

3

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 2
SECTION:

USER-SUPPLIED WORD RULES

Data·name (1) 1 to 30 characters.

(2) Permissible characters are 0 through 9, A
through Z, and hyphen(-).

(3) Must include at least one alphabetic character.

(4) Hyphen (-)cannot be the first or last character.

(5) May be qualified; may not be subscripted.

Unqualified (1) Rules 1 through 4 for data-name.

Data-name
(2) May not be qualified; may not be subscripted.

Identifier (1) Rules 1 through 4 for data-name.

(2) May be qualified and/or subscripted.

Condition-name (1) Rules 1 through 4 for data-name.

(2) Value may be established in a Jevel·88 entry
or in a SPECIAL-NAMES switch status
dee laration.

(3) Referenced only in conditions.

Conditional (1) Rules 1 through 4 for data-name.

Variable
(2) Data-name immediately followed by one or more

associated level-number 88 entries.

Procedure-name (1) Rules 1, 2, and 4 for data-name.

(2) Must precede each referenced paragraph.

(3) A procedure-name is a section·name if it is
followed by the word SECTION.

(4) May be composed solely of numeric characters.

Externa l·name (1) A nonnumeric literal of 1 to 8 characters.

(2) A user-supplied label which duplicates the LFD name
used in the job control stream to name COBOL file.

Tobie 2-1. Types of User-Supplied Words (Port 1 of 2)

4
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 2
SECTION:

USER-SUPPLIED WORD

lndex·name

Index Data Item

Numeric Literal

Nonnumeric Literal

RULES

(1) Rules 1 through 4 for data·name.

(2) Value of index·name correspond'.i to an occurrence
number for a table dimension.

(3) Initialized and modified only by the SET statement.

(4) Defined by the INDEXED BY clause.

(5) Table references using indexing are specified by
the data-name of the table element fol lowed by
parentheses including an index-name for each
tab le dimension.

(6) Storage areas assigned by compiler.

(1) Rules 1 through 3 for index-name.

(2) Defined by USAGE IS INDEX clause.

(3) May be part of a group referred to in a MOVE or
I ·O s ta teme nt.

(1) A string of not more than 20 characters including
0 through 9, sign (+or -), and decimal point.

(2) Must contain at least one and not more than 18
digits plus a sign and a decimal point.

(3) May contain only one sign which must be leftmost

character. If unsigned, I itera I is pas i tive.

(4) May contain only one decimal point, which is
treated as an assumed decimal point. If no
decimal point, the literal is an integer.

(5) Decimal point cannot be the last character in a
numeric literal.

(6) When a literal is restricted to numeric, the only
figurative constant permitted is ZERO.

(1) A string of any of the UNIVAC 9400 System char·
acter set excluding quotation mar ks and the
apostrophe. Reserved words may be used.

(2) Must contain at least one and not more than 132
characters.

(3) Must be enclosed within quotation marks or
apostrophes.

(4) Any spaces enclosed in the quotation marks are
part of the literal and, therefore, are part of the
value.

(5) All nonnumeric literals are in the alphanumeric
category.

(6) A figurative constant can be used wherever a
nonnumeric literal appears in the format.

Table 2-1. Types of User-Supplied Words (Part 2 of 2)

5
PAGE:

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

Rev. 3 2
SECTION:

RESERVED WORD

Verbs

Key Words

Optional
Words

TALLY

Figurative
Cons tan ts

Connectives

RULES

(1) Denote actions performed by the object program or
the COBOL compiler.

(1) A word which must be present in a particular clause.

(2) Key words are indicated by underlining where they
appear in the general formats.

(1) Used in COBOL to improve readability.

(2) Presence or absence does not alter hand I ing of
statement during compilation or execution of
program.

(3) Not underlined when shown in generalized format.

(1) TALLY is the name of a special register designated
by the com'piler whose implicit description is that
of a COMPUTATIONAL integer of five digits without
an operational sign.

(2) TALLY holds the count produced by the EXAMINE
statement.

(3) TALLY may also be used in the PROCEDURE DIVISION

as a data-name wherever an elementary data item of

integral value may appear.

(I) ZERO, ZEROS or ZEROES generate one or more
O's.

(2) SPACE or SPACES generate one or more spaces.

(3) HIGH-VALUE or HIGH-VALUES generate one or
more hexadecimal FF characters (all l's). This
character has the highest value in the 9400 collating
sequence.

(4) LOW-VALUE or LOW-VALUES generate one or more
hexadecimal 00 characters (all O's). This character
has the lowest value in the 9400 collating sequence.

(5) QUOTE or QUOTES generate one or more apostrophes
('),hexadecimal code 7D. QUOTE(S) cannot be used
in place of quotation marks (") or an apostrophe to
bound a non·numeric literal.

(6) The ALL literal generates one or more of the literals
following the ALL. The literal must be either a non­
numeric literal or a figurative constant other than the
word ALL. When a figurative constant is used, the
word ALL is redundant and is used for readability
only. The ALL literal may not be used with DISPLAY,
EXAMINE, STOP, or COPY.

(1) The qualifier connectives OF and IN are used
to associate a data-name or paragraph-name with
its qualifier.

(2) The logical connectives AND, OR, OR NOT, and
AND NOT are used to form compound conditions
(extended compiler only).

(3) A series connective is the comma which links
two or more consecutive operands or statements.
The use of a series connective is optional,

Table 2-2. Types of Reserved Words

6
PAGE:

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

2.3. QUALIFICATION

Rev. 1 2
SECTION: PAGE:

Every name used in a COBOL source program must be unique either because of different
spelling or because of qualification.

Definition:

7

Qualification is a means of making a name within a hierarchy unique by appending a ..,.
prepositional phrase containing the name of a higher level of the hierarchy. It is accom­
plished by appending one or more phrases composed of a qualifier preceded by IN or OF
to a data-name or paragraph-name. IN and OF are logically equivalent.

Rules:

(1) The name associated with the highest level entry in an hierarchy is the highest level
qualifier available for a data-name within that hierarchy.

(2) Each qualifier must be of a successively higher level and within the same hierarchy
as the name it qualifies.

(3) The same name may not appear at two different levels in the same hierarchy.

(4) If a data-name or condition-name is assigned to more than one item, it must be
qualified each time it is referenced.

(5) A data-name cannot be subscripted when it is being used as a qualifier.

(6) A paragraph-name must not be duplicated within a section.

(7) Only a section-name can qualify a paragraph-name; the word SECTION must not
appear.

(8) A paragraph-name need not be qualified when referred to from within the same
section.

(9) A name may be qualified even though it does not require qualification.

(10) Level indicator names and section-names must be unique in themselves as they
cannot be qualified.

(11) A data name being qualified may be subscripted or indexed. The subscripts/indices t
must appear to the right of the last qualifier name.

Example:

data-name-1 [I ~:) data-name-2 J ... [(sub-1 [sub-2 [. sub 3 l]) J

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE SECTION:

2
PAGE:

2.4. SUBSCRIPTING AND INDEXING

Definition:

Subscripting and indexing are techniques used to refer to individual table elements
within a table of like elements that have not been assigned individual data-names.

Rules:

(1) Up to three levels of subscripting or indexing are permitted.

(2) Subscripted or indexed data-names may not be used as qualifiers.

(3) When condition-names are assigned to items requiring subscripting or indexing,
these condition-names must be subscripted or indexed when referenced.

(4) Relative indexing (index-name ± integer) is permitted.

(5) Table handling is discussed in Section 8.

2.5. THE CODING FORM

Figure 2-1 shows the layout of the COBOL programming form. On this form the program­
mer enters all information needed by the COBOL compiler, observing the rules of format
and content defined in this manual. Each line of written information represents the infor­
mation to be entered into one 80-column punched card. Table 2-3 explains the several
divisions of the form.

UNIVAC CDBDL 72 80

PROGRAMMING FORM PROGRAM l.D. I I I I j I I I I I
PROGRAM ________ _ PROGRAMMER _______ _ DATE ______ PAGE __ OF __ PAGES

SEQUENCE A B NUMBER TEXT---
I 6 7 8 1112 20

rr;CONTINUA TION

50 60
IDENTIFICATION

72 80

J. J.

J. J.
_l _l

_l J.

Figure 2-1. The COBOL Progromming Form

8

UP-7709
Rev. 2

·-·

COLUMNS

1-6

7

7

8-72

73-80

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 2
SECTION:

DESIGNATION CONTENTS

SEQUENCE NUMBER A numeric entry, used only by the programmer (not the
COBOL processor) to establish a sequence among the
various lines of coding (optional).

CONTINUATION A hyphen (·)is used when an entry extending past one
noncomment line has a break occurring in the middle of
a word. The hyphen is written in column 7 of the next
contiguous line on which the word is completed. A word
may be interrupted in any column, the rest of the line
space filled, and completed on the next line. If the
continued line contains a nonnumeric literal without a
closing quotation mark, the first nonblank character in
Area B of the continuation line must be a quotation
mark, and the continuation starts with the character
immediately after that quotation mark.

COMMENT An asterisk(*) in column 7 signifies a comment line
which will be printed but ignored by the compiler.
A comment may appear anywhere in the program and
can contain any printable combination of characters
including reserved words. If a comment entry extending
past one I ine has a break occurring in the middle of a
word, the continuation line must contain an asterisk in
column 7. (The hyphen is only used for noncomment
continuation lines.)

TEXT All COBOL-formatted information, in the form of names,
statements, information, instructions, etc., that is to
be compiled into the object program.

Note that two left-margin limits designated "A" and
"B" are shown. These are needed for program alignment.
Major definitive names are begun at margin A (column 8).
Margin B (column 12) is used for subordinate items and
for continuations of entries from the last preceding line.

IDENTIFICATION Card deck information (optional).

Table 2-3, Programming Form Column Usage

9
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1
SECTION:

3
PAGE:

3. IDENTIFICATION DIVISION

3.L GENERAL

The IDENTIFICATION DIVISION identifies or labels the source program and provides
other pertinent inform a ti on concerning the program. A 11 inform a ti on given in this div is ion
is listed by the printer during compilation; however, only the PROGRAM-ID clause will
affect the object program.

Format:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] . ..]

[INSTALLATION. [comment-entry] . ..]

[DATE-WRITTEN. [comment-entry] . ..]

[DA TE-COMPILED. [comment-entry] . ..]

[SECURITY. [comment-entry] . ..]

[REMARKS. [comment-entry] . ..]

Rules:

(1) IDENTIFICATION DIVISION must be present in all source programs.

(2) PROGRAM-ID must always be present as the first paragraph of the IDENTIFICA­
TION DIVISION. Program-name may consist of 1 to 30 alphabetic or numeric
characters, the first character being alphabetic. The sequence formed by the

first six characters must be unique since it will identify the source program,
object program elements, and associated documents. Hyphens within the first
6 characters are removed by the compiler due to 9400 System naming conventions.

1

t
•

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1
SECTION:

3
PAGE:

If the program name is not supplied or not accepted because of an error, the compiler
automatically supplies the program name COBOBJ.

(3) AUTHOR is for documentation only.

(4) INSTALLATION is for documentation only.

(5) DATE-WRITTEN is for documentation only.

(6) DATE-COMPILED is for documentation only. Date of compilation appears on
listing regardless of whether this paragraph is present. Comment-entry is printed
when this paragraph is present.

(7) SECURITY is for documentation only.

(8) REMARKS is for documentation only.

(9) A comment entry can consist of any printable combination of characters including
reserved words.

2

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2
SECTION:

4
PAGE:

4. ENVIRONMENT DIVISION

4.1. GENERAL

The Environment Division specifies those elements of the COBOL program which depend
upon the physical aspects of the UNIVAC 9400 System.

Format:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNIYAC-9400.
OBJECT-COMPUTER. UN IVAC-9400

[{

WORDS ~
MEMORY SIZE integer CHARACTERS [, SEGMENT-LIMIT

MODULES

[SPECIAL-NAMES. entry.)

[

INPUT-OUTPUT SECTIONJ
FILE-CONTROL .1 entry. f
1-0-CONTROL. entry.]

Rules:

IS priority-number] .

(1) The Environment Division must be present in all source programs. It may have
to be rewritten when a program is to be compiled or executed on a different computer
configuration.

(2) Section and paragraph headers are required when their associated entries are present.

4.2. CONFIGURATION SECTION - -

Definition:

The Configuration Section specifies the characteristics of the source and object computers
and relates implementor-names to user-names.

Format:

CONFIGURATION SECTION.

SOURCE-COMPUTER. entry.

OBJECT-COMPUTER. entry.

[SPECIAL-NAMES. entry.]

1

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

4.2.1. SOURCE-COMPUTER

Function:

Rev. 1 4
SECTION: PAGE:

To name the computer that will compile the source program.

Format:

SOU RCE·COMPU TE R. UNI VAC-9400.

Rule:

The SOURCE-COMPUTER entry is for documentation only and has no effect on the
object program.

4.2.2. OBJECT-COMPUTER

Function:

To specify the computer that will execute the object program and its memory size.

Format:

OBJECT.COMPUTER. UNIVAC.9400

[)

WORDS (]
MEMORY SIZE integer CHARACTERS

MODULES

[, SEGMENT-LIMIT ~ priority-number].

Rules:

(1) The OBJECT-COMPUTER entry has no effect on the object program unless
the SEGMENT-LIMIT clause is specified.

(2) MEMORY SIZE is an optional clause defining memory as an integer number
(no sign, comma, or decimal point permitted) of WORDS, CHARACTERS, or
MODULES. The equivalent number of bytes for each is as follows:

• CHARACTER = 1 byte

• WORD = 4 bytes

• MODULE = 16,384 bytes

(3) The SEGMENT-LIMIT priority number must be an integer ranging in value
from 1 through 49.

(4) When the SEGMENT-LIMIT clause is specified, only those sections having
priority-numbers from 0 up to, but not including, the priority number
designated as the limit, are•considered as part of the fixed permanent
segment.

(5) Sections having priority numbers from the SEGMENT-LIMIT through 49 are
considered as fixed overlayable segments.

(6) When the SEGMENT-LIMIT clause is omitted, all sections having priority
numbers from 0 through 49 are considered as belonging to the fixed permanent
segment.

(7) The SEGMENT-LIMIT clause is available only in the extended compiler. In
the basic compiler, an implicit SEGMENT-LIMIT of 50 is always in effect.

2

·.____.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

4.2.3. SPECIAL-NAMES

Function:

Rev. 2 4
SECTION: PA GE:

Provides a method of relating implementor-names to user~supplied mnemonic-names.

Format:

SPECIAL-NAMES.

[CURRENCY SIGN~ literal]

[DECIMAL-POINT ~COMMA]

[SYSCOM !§. mnemonic-name-1 I
[SYSDATE L§. mnemonic-name-2]

[SYS TIME ~ mnemonic-name-3]

[SYSCONSOLE !§. mnemonic-name-4]

[SYSCHAN-t !§. mnemonic-name-5]

[SY SL ST .L§.. mn emonic-nam e-7]

[
SYSERR[~]

JON STATUS!§. condition-name-]

lOFF STATUS L§. condition-name-4

SYSSWCH[-n]

[,OFF STATUS!§. condition-name-41}] · · ·

[,ON STATUS !§. condition-name-3]

. [ON STATUS~ condition-name-5
[ISmnemonic-name-7] OFF STATUS IS d. . 6 - , con 1tlon-name- ~

-- [,OFF STATUS~ condition-name-6]

[,ON STATUS ~ condition-name-5]

ON STATUS ~ condition-name-7 [,OFF STATUS!§. condition-name-8]

OFF STATUS IS condition-name-8 [,ON STATUS L§. condition-name-7]

NOTES: t = any digit 4 through 15

m = any digit 0 through 15

n = any digit 0 through 7

Rules:

(1) A comma or semicolon may separate each entry, and a period must follow the
last entry. Each entry must begin on a new line.

(2) The CURRENCY clause literal is used in the PICTURE clause to represent the
currency syrnboL Absence of this clause specifies that $ is the currency symbol.
The literal must be a nonnumeric; literal consisting of one character from the
COBOL character set and must not be one of the following characters.

• Digits: 0 through 9

• Alphabetic characters: A, B, C, D, P, R, S, V, X, Z, or space

• Special characters: *, + - • ; () "

3

r

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1
!SECTION:

4

(3) The DECIMAL-POINT IS COMMA clause causes the functions of the decimal
point and the comma to be interchanged in PICTURE clause character strings
and in numeric literals.

Examples:

SPECIAL-NAMES. CURRENCY SIGN IS 1 F 1 DECIMAL-POINT IS COMMA.

Source PICTURE Source Data Receiving Field PICTURE Receiving Field Result

9{6)V99

9{5)V99
9(9)V9(4)

00003232 FFFFFF ,99

1234567 F**·***,99
0000098211289 Z(3).ZZ9,9(4)

1i1iDF32,32
F12.345,67
009.821,1289

(4) SYSCOM permits accessing the communications region in the preamble of the
job in which the object program is being executed via user-supplied mnemonic­
name-1. See UNIV AC 9400 System Supervisor Programmers Reference, U P-7689
(current version) for an explanation of data,

(5) SYSDATE permits access to current date via the user-supplied mnemonic-name-2.

Mnemonic-name-2 may not appear in a DISPLAY statement. Date may be set or
changed in the job control stream.

(6) SYSTIME permits access to time-of-day via a mnemonic-name-3. Mnemonic­
name-3 may not appear in DISPLAY statement.

(7) SYSCONSOLE permits access to the console typewriter (using ACCEPT or
DISPLAY statement) via mnemonic-name-4.

(8) SYSCHAN-t equates a particular channel (t) on the printer loop to mnemonic­
name-5. Mnemonic-name-5 may appear only in a WRITE statement. SYSCHAN 9
and 15 are normally used for form overflow and top-of-page, respectively.

(9) SYSERR[-m] permits access to system error codes. The status of a particular error
(m) or the presence of any error can be checked with the ON/OFF STATUS option.
SYSERR[-m] is a feature of the extended compiler, random access module.
Condition-names in ON/OFF STATUS phrases are defined and equated with ON
or OFF as required by the compiler and should not be defined elsewhere in the
COBOL program.

(10) SYSSWCH and its various options permit the programmer to access all or part
of the User Program Switch Indicator (UPSI) byte, .The eight bits in the UPSI
byte (bits 0 through 7) constitute a set of eight programmable software switches,
SYSSWCH-0 through SYSSWCH-7. The status of these switches can be set to ON
or OFF, altered, or interrogated as required. A switch containing a 1 bit is ON;
a 0 bit is OFF. The following examples show the various ways of using SYSSWCH.

4

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

4
PAGE:

(a) TC? set or change the contents of SY SSW CH, the DISPLAY verb may be used
as follows:

ENVIRONMENT DIVISION.
SPECIAL-NAMES.

SYSSWCH IS SWITCH
SYSSWCH-3 IS SWITCH-3.

PROCEDURE DIVISION.

DISPLAY 00010001 UPON SWITCH.

DISPLAY 1 UPON SWITCH-3.

DISPLAY identifier UPON SWITCH.

SYSSWCH will now contain 00010001.

SYSSWCH-3 will now contain 1;
the other switches remain unchanged.

The eight switches in SYSSWCH (0
through 7) are set ON or OFF, depending
on the contents of the 8-character
identifier.

NOTE: Any character other than a hexadecimal FO will set a switch to ON.

(b) An individual switch can be interrogated by using condition-name in the
ON/OFF STATUS option. For instance, in the following example control
will be transferred to procedure-name-1 if switch 5 is ON.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SYSSWCH-5 ON STATUS IS FIVON, OFF STATUS IS FIVOFF.

PROCEDURE DIVISION.

IF FIVON GO TO procedure-name-1.

In essence, SYSSWCH-5 is a conditional variable with the condition-names
FIVON and FIVOFF which are similar to level-88 entries.

The condition-names FIVON and FIVOFF are defined and equated with
ON and OFF, respectively, by the COBOL compiler and must not be defined
elsewhere in the COBOL program. The compiler uses the hexadecimal
characters FO and Fl, respectively, to represent the OFF and ON status
of a switch.

(c) The entire UPSI byte may be interrogated by use of the ACCEPT verb. This
is shown in the following example where procedure-name-1 will be PERFORMed
if the SYSSWCH-2, SYSSWCH-4, and SYSSWCH-6 switches are ON and the others
are OFF.

ENVIRQNJ\1ENT DIVISION.

SPECIAL-NAMES.

SYSSWCH IS mnemonic-name-1.

DATA DIVISION.

identifier PICTURE X(8).

5

UP-7709
Rev. 2

UN1V AC 9400 COBOL
SUPPLEMENT ARY RE FERENCE

PROCEDURE DIVISION.

ACCEPT identifier FROM mnemonic-name-I.

IF identifier= 00101010 PERFORM procedure-name-1.

(d) Another way to interrogate switches is:

SPECIAL-NAMES.

SYSSWCH ON STATUS IS OK, OFF STATUS IS NIX.

PROCEDURE DIVISION.

IF OK GO TO procedure-name-1.

4
SECTION: PA GE:

In this example, if any switch is set to 1 the program will GO TO procedure­
name-1.

(e) The mnemonic-name option allows the user to equate his mnemonic-name with
the implementor-name SYSSWCH[-n]. For instance:

SPECIAL-NAMES.

SYSSWCH IS MYSW ITCH, ON STATUS IS MYSWITCHON.

or

SYSSWCH-4 IS TAKETAX, ON STATUS IS LOFICA; OFF STATUS IS EQFICA.

The mnemonic-name option is for use with the ACCEPT or DISPLAY verbs
only.

(f) The UPSI switches can also be accessed by the following job control
statements:

• SET statement - used to set switches ON or OFF (1 or 0).

• SKIP statement - used to conditionally bypass control statements. If
the UPS! switch settings match the bit pattern specified in the SKIP
statement, the specified number of statements will be skipped.

The format and usage of these statements are shown in the UNlVAC 9400
System Job Control Programmers Reference, U P-7585 (current version).

(11) Table 4-1 shows how SPECIAL-NAMES are handled by the compiler. Note that
if the PICTURE clause is other than shown in the IMPLIED DESCRIPTION
column in the table, the rules for the MOVE statement determine the storing
of the result. The effect is that of a MOVE in which the sending item is
described as shown in the STORED AS column and the receiving item description
is that supplied by the user for identifier when ACCEPTing. The sending
and receiving fields are reversed when DISPLA Ying.

(12) SYSLST permits access to the printer by way of mnemonic-name-7 for DISPLAY
functions.

6

UP-7709
Rev. 2

SPECIAL-NAME

SYSCOM

SYSDATE

SYSTIME

SYSCONSOLE

SYSCHAN·t@

SYSERR[-m]

SYSSWCH

SYSSWCH·n

SYSLST

ON STATUSCD

OFF STATUS

CD

NOTES:

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

USABLE WITH

STORED AS ACCEPT DISPLAY FORMAT

12 YES YES 12 EBCDIC
alphanumeric characters
characters

6 YES NO YYMMDD
numeric
characters

8 numeric YES NO hhmmOOOO
characters

variable YES YES For DISPLAY:
length alpha- 59 char/line,
numeric 4092 max.
characters For ACCEPT:

60 char. max.

not NO NO not
applicable applicable

NA NO NO not
applicable

8 YES YES 8 EBCDIC
a I phanumer ic characters
characters

l NO YES 1 EBCDIC
alphanumeric character
character

variable NO YES 132 char/line
length
alphanumeric
characters

not NO NO not
applicable applicable

not NO NO not
applicable applicable

~
Can be used only in conditional variable tests.
Can be used only in ADVANCING clause of WRITE statement.
See 4.2.3, rule 11.

Rev.1

IMPLIED DESCRIPTION

FOR ACCEPT OR

DISPLAY@

PIC X(l2)

PIC 9(6)

PIC 9(8)

PIC X(n)

not
applicable

not
applicable

PIC X(8)

PIC X

PIC X (n)

not
applicable

not
applicable

Table 4-1. Rules for SPECIAL-NAMES

4 7
SECTION: PAGE:

EXPLANATION

See Supervisor manual, UP-7689

Current Day

Time Of Day

Typewriter Console

To assign name to printer loop
channe I

Refer to Appendix D

To ca II or change UPSI bits

To change UPSI bits individually

Printer with LFD name of SYSLST

To interrogate user program
switch indicators (UPSI) for
ON or OFF condition

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

4.3. INPUT-OUTPUT SECTION

Definition:

Rev. 1 4
SECTION: PAGE:

This section of the Environment Division is used to specify the input/output media for
the files used by the source program and to provide information needed for most efficient
transmission of data between this media and the object program.

Format:

[

INPUT-OUTPUT SECTION. J
FILE-CONTROL. {entry.}· ..

[1-0 CONTROL. entry.]

4.3.1. FILE-CONTROL

Function:

To name each file, identify the hardware medium which contains it, permit specific
hardware assignments for the program, and specify alternate input/output areas.
The clauses following the SELECT and ASSIGN statements under FILE CONTROL
may be specified in any order.

Format:

Fl LE-CONTROL. ~ SELECT [OPTIONAL] file-name

ASSIGN TO [external-name][integer-1] implementor-name-l[OR implementor-name-2]

[FOR MULTIPLE {~~~TL}]

[
' RESERVE {integer-

2
}AL TERNATE [AREA J]

NO AREAS

['{FILE-LIMIT~ } {d~ta-name-1} THRU{d~ta0name-2}
FILE-LIMITS ARE ltteral-1 -- literal-2

[
' {data-name..J} TH RU {data-name-4 }] .. ·]

literal-3 -- literal-4

l ACCESS MODE 1s{RANDOM }] t - SEQUENTIAL

[,PROCESSING MODE~ SEQUENTIAL]

[{

RELATIVE lJ DIRECT
I ORGANIZATION IS SEQUENTIAL

INDEXED

[{
ACTUAL KEY IS data-name-5 }]
RELATIVE KEY~ data-name-6

[SYMBOLIC KEY IS data-name-7]
[,RECORD KEY IS data-name-8]. t.

8

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rules:

Rev. 2 4
SECTION:

(1) The comma or semicolon may separate each entry, and a period must follow
the last entry.

(2) SELECT clause must be specified for the following:

• All files which are the subject of an FD or SD must also be the subject
of a SELECT.

• A SELECT clause must be supplied for a RERUN (external-name operand)
for which no FD or SD is supplied.

PAGE:

• The key word OPTIONAL is required for files that are not necessarily present
each time the object program is run. The status of the OPTIONAL file at run
time is determined by the job control stream. The file must be opened in the
program. If the file is not present in the job stream, control takes the AT END
path on the first READ statement. The OPTIONAL key word can be applied to
INPUT files only.

(3) The ASSIGN clause designates a particular hardware device, or class of devices,
to which a specific file is ASSIGN ed. External-name is a nonnumeric literal (1 to
8 characters) which is associated with a file. This is the name used in the job
control stream to assign devices to the file (using the// LFD card; see UNlVAC
9400 System job Control For Disc Systems Programmers Reference, UP-7585
(current version)). The external name must be unique within a job. If external-name

9

is omitted, the first eight characters of file-name are assumed for external-name.
Integer-1 serves as documentation only, referring to the number of devices associated
with the file. UNIVAC 9400 COBOL assigns the following implementor-names:

DEVICE

51-column card reader

66-column card reader
80-column card reader
card punch
line printer
disc (nonspecific)

8411 disc
8414 (disc)

UNISERVO VI-C
all other tapes

IMPLEMENTOR-NAME

CARD-READER-51
CA RD-READE R-66
CARD-READER
CARD-PUNCH
PRINTER
DISC (DISC and DISC-8411
are equivalent)
DISC-8411
DISC-8414
TAPE-6
TAPE

The implementor-name, DISC, specifies an assignment to the 8411 disc. Because
of track size differences, the user must insure that the proper implementor-name is
used when ASSIGNing discs.

(4) The MULTIPLE clause, when present, specifies that the file exists on more than

one volume. This clause is accepted for documentation purposes only, since
the actual function is provided via the job control stream.

(5) The RESERVE clause indicates the number of additional 1/0 areas desired.
The NO option causes no additional 1/0 areas to be reserved. The integer-2
option reserves one additional I/O area. Integer-2 must be a 1; if not and the
word NO is not specified, a warning diagnostic will be issued. Omission of
this clause may result in the allocation of one additional 1/0 area as indicated
in the following chart:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

DEVICE

CARD-READER

CARD-PUNCH

PRINTER

TAPE

ORGANIZATION
SEQUENTIAL
(or omitted)

DISC
ORGANIZATION

{RELATIVE}
DIRECT
INDEXED

Rev. 1 4
SECTION:

NO. OF ADDITIONAL
1/0 AREAS RESERVE
ALLOCATED IF INTEGER
CLAUSE NOT SPECIFIED ALLOWED

1

1

1 YES

1

1

0 NO

(6) FILE-LIMIT clause serves as documentation only.

PAGE:

(7) ACCESS MODE specifies the manner in which the records of a file are read
and/or written. Random access mode is an extended compiler feature. Absence
of this clause results in assumption of sequential access.

(8) PROCESSING MODE clause is for documentation only. Sequential processing
is always assumed, regardless of the absence or presence of this clause.

(9) The ORGANIZATION clause designates the physical structure of the file.
Sequential organization is assumed if the clause is omitted. This clause is
an extension to American National Standard COBOL.

(10) ACTUAL KEY data-name-5 is used with direct and relative file organizations.
When used in conjunction with a relative file, the location associated with

data-name-5 contains a relative record number (i.e, record 1, 2, 3, ...). When
used in conjunction with a direct file, the location associated with data-name-5

contains a file relative track address. For direct organization files, SYMBOLIC
KEY, is used in conjunction with ACTUAL KEY. Data-name-5 must be defined
as an unsigned integer according to the rules for numeric items.

For compatibility with 9300 COBOL, ACTUAL KEY may be specified in place
of SYMBOLIC KEY when used with indexed file organizations.

(11) SYMBOLIC KEY data-name-7 is used with direct and indexed file organizations
to supply the record identification. For i·ndexed-sequential files, the information

associated with the RECORD KEY clause must be identical to the information
associated with the SYMBOLIC KEY clause. Data-name-7 must be described as
an alphabetic, alphanumeric, or a numeric (display) item with a length not

greater than 255 characters (may be numeric computci'ional if used with an
indexed file). This clause is an extension to American National Standard
COBOL.

10

UP-7709
Rev. 2

'----·

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 3
SECTION:

4
PAGE:

(12) RELATIVE KEY data-name-6 is used with relative organization files to _.
supply the physical position of a record with respect to the beginning of
the file. Records in a relative organization file are addressed as record
1, 2, 3, and so on. As noted in Rule (10), the ACTUAL KEY clause may
be substituted for the RELATIVE KEY clause. Data-name-6 must be defined
as an unsigned numeric integer according to the rules for numeric items. This
clause is an extension to American National Standard COBOL.

(13) RECORD KEY data-name-8 is used for indexed-organized files to supply the
record identification field. Data-name-8 must be described as alphabetic,
alphanumeric, or numeric item consisting of 3 to 255 characters. If data-name-8
is defined as numeric computational, it must contain at least 4 digits (3 bytes).
This clause is an extension to American National Standard COBOL.

A detailed explanation of the various keys and types of file organization is given in
Appendix D.

4.3.2. 1-0-CONTROL

Function:

To specify the following:

• input/output techniques,

• memory area shared by various files,

• location of each file on multiple-file reel, and

• intervals at which rerun is to be established.

Format:

1-0-CONTROL.

[
;RERUN ON external-name J
EVERY integer-I RECORDS OF file-name-I[, fi1e-name-2J .. .

I; SAME [RECORD] AREA FOR file-name-3 I, file-name-.+ I ...] .
SORT

j; MULTIPLE FILE TAPE CONTAINS file-name-5

LJPOSITION integer-2IG file-name-6[POSITION inlL'ger-3!]. .] ...

[

APPLY RESTRICTED SEARCH OF~ ALL.
1
}] •••

--- \integer-.,

TRACKS ON file-name-7 \, file-name-nl ...

[APPLY VERIFY ON file-name-8 \, file-name-nl· ·] ..

[APPLY BLOCK-COUNT ON { file-name-~l'p~~c-namc-JO\.'' }J · ·
[APPLY MASTER-INDEX ON file-namC'-I~e-namc-12\· · J · · ·
[APPLY CYLINDER-INDEX AREA OF rnteger-5 INDICES ON file-name-Li

I, file-name-1.+I· · J · · ·
[APPLY CYLINDER-OVERFLOW AREA OF int"ger-6 PERCENT ON file-name-15

I. file-name-16\· · J · · ·
[APPLY EXTENDED-INSERTION AREA ON file-name-17 I. file-name-18\· · J · ·
[APPLY FILE-PREPARATION ON file-name-191. fi!t'-name-20\· ·} - · ·

[APPLY ASCII [w1TH BUFFER-OFFSET jFOR BLOCK-LENGTH-CHECK ll]
l OF integer CHARACTERS

ON file-name-21 \,filename-22] .•.] ...

11

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

Rev. 2 4
SECTION: PAGE:

(1) The comma or semicolon may separate each. entry, and a period must follow the
last entry.

(2) RERUN specifies that checkpoint records are to be written on the disc or tape
unit specified by external-name. A checkpoint record is the recording of the
status of the computer at a given point during the execution of the object pro­
gram. All the information required to restart the program at that point is contain­
ed in the checkpoint record. These records will be written whenever integer-1
records occur for file-name-1. File-name-1, file-name-2 ... can appear in only
one RERUN statement; external-name can appear in any number of RERUN
statements. The allowable range of integer-1 is 1 to 9,999,999.

(3) SAME AREA specifies that two or more files are to use the same memory area
during processing. When the key word RECORD is omitted, the area being shared
includes all storage areas assigned to the files; therefore, only one file may be
OPEN at a time. If RECORD is specified, any number of files may use the same
storage area for processing the current logical record (the record format of
such files must not conflict). The SAME RECORD AREA clause should be
used only when necessary as it reduces efficiency.

If the SAME SORT AREA clause is used, at least one of the file-names must be
an SD. Storage area assigned to files that are not sort files will be allocated in
the sort file area if they appear in this clause. These files must not be OPEN
during the execution of a SORT.

Files that appear in a SAME AREA and a SAME SORT AREA clause share the
same space within the sort file area. If any nonsort file is mentioned in both
clauses, all files in the SAME AREA clause must appear in the SAME SORT
AREA clause.

(4) The MULTIPLE FILE clause is for documentation only. This feature is supported
by] ob Control (see Appendix I).

(5) APPLY RESTRICTED SEARCH is used with direct organization disc files to
permit searching for a record through ALL tracks or integer-4 tracks on file-name-7.
When a record cannot be located for a READ command, the INVALID KEY option
will be executed. If this clause is omitted, the ALL option is assumed. The
allowable range of integer-4 is 1 to 254.

(6) The APPLY VERIFY clause requests verification (READ after WRITE) of disc
records after they have been written. Absence of this clause results in no veri­
fication of records written.

(7) The APPLY BLOCK-COUNT causes a three-byte block number to be inserted at
the beginning of each block on tape for each file-name designated. If the TAPES
option is specified, all tape files present are affected. This clause must be
present for all input files which contain a BLOCK-COUNT.

(8) The APPLY FILE-PREPARATION clause indicates that the tracks allocated
to a relative or direct organized file are to be recorded with initializing data
prior to creation of a file. The track initialization occurs after an OPEN OUTPUT
is issued. (Refer to Appendix D for more detailed information.)

12

.. _/

UP-7709
Rev. 2

UN1V AC 9400 COBOL
SUPPLEMENTARY RE FERENCE

Rev. 2 4
SECTION:

(9) The APPLY MASTER-INDEX clause, used only with indexed files, indicates
that a master index is to be generated when an indexed file is created.

PAGE:

(10) The APPLY CYLINDER-INDEX integer-5 clause, used only with indexed files,
indicates that sufficient main storage area is to be allocated to contain integer-5
cylinder index entries.

(11) The APPLY CLINDER-OVERFLOW integer~6 clause, used only with indexed­
sequential files, indicates that integer-6 percent of each cylinder in the prime
data area is to be reserved for the purpose of cylinder overflow. If this clause

is omitted, 20 percent of the cylinders specified are automatically allocated. If
no overflow is desired, 0 percent should be specified. Integer-6 is an unsigned
number.

(12) The APPLY EXTENDED INSERTION clause, used only with indexed files,
indicates that sufficient main storage is to be allocated to contain all records
on a prime data area track. This area is used when records are inserted into
a file. The use of the main storage area reduces the number of accesses
necessary to complete the insertion process.

Integer-6 should be specified in percentages that indicate whole tracks. For an
8411 disc, integer-6 should be in multiples of 10 percent. For an 8414 disc,
integer-6 should be in multiples of 5 percent. If integer-6 is not specified as
such it will be rounded to the nearest appropriate multiple.

(13) The APPLY ASCII clause identifies each file that contains or receives ASCII
data. See Appendix N.

NOTE: APPLY clauses (rules 5 through 13) are extensions to American National

13

•

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

5
PAGE:

5. DATA DIVISION

5.1. GENERAL

Every data item referenced in the Procedure Division must be described in the Data
Division, except for the special register TALLY, index-names, figurative constants,
and literals. File structures are described by File Description entries; data items and
records are described by Record Description or single item entries.

Format:

DA TA DIVISION.

WORKING-STORAGE SECTION.

Rules:

(1) The header DATA DIVISION must be present in all COBOL programs.

(2) Sections are written in the order shown; if a section is not required, it may be
omitted entirely.

(3) Data~names used in FD, SD, or 77 level entries must be unique since they cannot
be qualified. The same is also true for data-names used in 01 entries within the
Working-Storage and Linkage Sections of the source program.

1

'I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

5.1.1. Data Definition

SECTION:

5
PAGE:

Table 5-1 shows the allowable sizes of data items in UNIVAC 9400 COBOL. Data
type is determined by the PICTURE clause. See 5.3.4 for legal PICTURE character
for each data type.

DATA TYPE
COBOL CHARACTERS AREA IN BYTES

MINIMUM MAXIMUM MINIMUM MAXIMUM

GROUP (WORKING- 1 65,535 1 65,535
STORAGE)

GROUP (FILE or 1 4092 1 4092
LINKAGE SECTION)

ALPHANUMERIC 1 4092 1 4092

ALPHABETIC 1 4092 1 4092

ALPHABETIC EDITED 2 132 2 132

NUMERIC EDITED 2 132 2 132

NUMERIC DISPLAY 1 18 1 18

NUMERIC COMP 1 (plus sign) 18 (plus sign 1 10

INDEX NAME ITEM N/A N/A 8 8

INDEX DATA ITEM N/A N/A 8 8

Table 5-1. Allowable Memory Size

5.2. FILE SECTION

The File Section consists of:

• File Description (FD) entries describing the structure of all files and naming the
data records contained in each.

• Record description entries immediately follow each File Description entry describing
in detail each record format used in the file.

2

UP-7709
Rev. 2

Format:

UNIVAC 9400 COBOL
SUPPLEMENT ARY RE FERENCE

FD file-name-1 (file description clauses)

01 record-name-1 (record description clauses)

[01 record-name-m (record description clauses)]

[D fde-name-n]

5.2.1. File Description

Function:

Rev. 2 5
SECTION:

To provide information concerning the physical structure, labeling, and record
names of a given file,

Format:

FD file-name

[
. . {RECORDS t] ; BLOCK CONTAINS [znteger-1 TO] znteger-2 CHARACTERS f

[;RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

. LABEL{ RECORDS ARE} { 6i~~ft~D
I -- RECORD IS

data-name-1 [,

[RECORDING MoDrn f UJ
data-name-21 •.• }

[

\ j data-name-3 f /
; VALUE OF/ unqualified-data~name IS I literal-] I~

[;DATA { mg~gSl~RE} data-namc4 I. datanamc51 .• J.
SD file-name

[; RECORD CONTAINS [integer-5 TO I integcr-6 CHARACT E RSI

l RECORDING MOOE IS { ~ }]

[DATA : : ~ ~g:~SI ~RE : da la-nam c-7 I, da la-camc-8 I · -}

3
PA GE:

UP-7709
Rev. 2

Rule:

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rev. 2

The various clauses may appear in any order after file-name.

5.2.Ll. BLOCK CONTAINS

Function:

To specify the size of a physical record.

Format:

BLOCK CONTAINS [integer-I TO] integer-2 ~ ~~;~:g~E RS ~
Rules:

SECTION:

(I) Integer-I and integer-2 must be unsigned integers other than zero.

5
PAGE:

(2) When RECORDS is specified, this clause specifies the number of records per
block.

(3) When CHARACTERS is specified, this clause specifies the number of characters
(bytes) per block. This number does not include the three bytes added when the
APPLY BLOCK-COUNT clause is used, but does include the block and record
length characters that are present when RECORDING MODE V is specified.

(4) When CHARACTERS and RECORDS are both omitted, CHARACTERS is assumed.

(5) When this clause is omitted, it is assumed that records are recorded one per
block and the record size is fixed.

(6) If integer-I and int:=ger-2 are both specified, they refer to the minimum and
maximum number of characters or records per block. Block size ranges are
given in Table 5-20

HARDWARE DEVICE BYTES PER BLOCK

AND IMPLEMENTOR-NAME MINIMUM MAXIMUM

UNISERVO Vl-C TAPE 18 4096

(TAPE-6)

UNI SERVO Vl-C TAPE 18 4092

(TAPE-6) WITH BLOCK NUMBERING

OTHER TAPE 18 32,767

(TAPE)

OTHER TAPE 18 32, 763

(TAPE) WITH BLOCK NUMBERING

PRINTER 1 132

CARD-READER 1 80

CARD-PUNCH 1 80

CARD-READER-51 1 51

CARD-READER-66 1 66

8411 DISC (DISC or DISC-8411) 1 3625

8414 DISC (DISC-8414) 1 7294

Table 5-2. Block Size Ranges

4

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

5.2.1.2. RECORD CONTAINS

Function:

To specify the size of data records.

Format:

Rev. 2

RECORD CONTAINS [integer-I TO] integer-2 CHARACTERS

Rules:

SECTION:

(1) Integer-I and integer-2 must be unsigned integers other than zero;
integer-2 must be greater than integer-I.

5
PA GE:

(2) The size of each data record is completely defined within the Record
Description entry; the re fore, this clause is optional. When present, however,
the following notes apply:

(a) If integer-2 is used alone, all the data records in the file must have the
same size. In this case, integer-2 represents the exact number of characters
in the data record.

(b) If integer-I and integer-2 are both shown, they refer to the minimum and
maximum size data record. Record size ranges are given in Table 5-3.

BYTES PER RECORD

MINIMUM MAXIMUM
HARDWARE DEVICE AND

FIXED OR VARIABLE
IMPLEMENTOR-NAME

UNDEFINED RECORD
RECORD FORMAT FORMAT

UNISERVO Vl-C TAPE 18 4092 4088
(TAPE-6)

UNISERVO Vl-C TAPE 18 4092 4084

(TAPE-6) WITH BLOCK NUMBERING

OTHER TAPE 18 4092 4092

(TAPE)

PRINTER 1 132 132

CARD-READER 1 80 N/A

CARD-PUNCH 1 80 80

CARD-READE R-51 1 51 N/A

CARD-READER-66 1 66 N/A

8411 DISC (DISC or DISC-8411) 1 3625 3617

8414 DISC (DISC-8414) 1 4092 4092

Table 5-3, Record Size Ranges

5

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

5.2oL3o LABEL RECORDS

Function:

Rev. 1 5
SECTION:

To enable the compiler to cross-reference the description of a label record with
its associated file.

Format:

LABEL\ RECORDS AREl I RECORD IS ~ {

STANDARD }
OMITTED
data-name-1 [, data-name-2] .••

Rules:

PAGE:

(1) OMITTED specifies that no standard labels exist for the file or the device
to which the file is assigned. Any nonstandard labels must be described and
processed as data records.

(2) STANDARD specifies that standard file labels exist for the file or the device
to which the file is assigned, and the labels conform to UNIVAC 9400 label
specifications. Standard user labels may also be present, but STANDARD
specifies that they are not to be checked on input file, or written on output
files.

(3) Data-name-1 [data-name-2] •.•. specifies that standard labels are to be checked
(or created), and that standard user labels are present. User labels must conform,
in content and format, to the Univac 9400 standard user label specifications.

The following rules apply when da ta-nam e-1 is specified:

(a) Data-name-1 [data-name-2]. .. must have a record description subordinate
to this file description.

(b) For input files, Data Management prov ides access to standard user label
information in the area described by da ta-name-1.

(c) For output files, the user moves user label information into the area described
by data-name-1 for Data Management to write to the output file.

(d) User label records can be referenced only in USE procedures in the Declara­
tives portion of the Procedure Division"

6

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 5
SECTION:

(4) The label record specifications for the various device types are as follows:

LABELS LABELS
DEVICE OMITTED STANDARD

PRINTER

CARD-READER YES NO

CARD-PUNCH

TAPE YES YES

ORGANIZATION
SEQUENTIAL

ORGANIZATION
RELATIVE NO YES

DISC
ORGANIZATION
DIRECT

ORGANIZATION
INDEXED

5.2.1.4. RECORDING MODE

Function:

To specify the format of the logical record comprising the file.

Format:

RECORDING MODE IS {if
Rules:

LABELS
DATA-NAME

NO

YES

YES

YES*

YES*

NO

PA GE:

(1) The F mode (fixed-length format) is specified when all the logical records in
the file are of the same length.

(2) The U mode (undefined format) states that the records of this file are not
blocked and may vary in length.

(3) The V mode (variable-length format) is specified when records within a file
vary in length.

(4) The D mode may be specified for ASCII tape files with variable-length records. t
(5) The following chart describes the recording mode assumed when the clause !

is omitted: it

*Only BEGINNING user labels are al/owed

7

UP-7709
Rev. 2

UN1V AC 9400 COBOL
SUPPLEMENTARY REFERENCE

DEVICE

PRINTER

CARD-READER

CARD-PUNCH

TAPE

ORGANIZATION
SEQUENTIAL

ORGANIZATION
RELATIVE

DISC
ORGANIZATION
DIRECT

ORGANIZATION

INDEXED

Rev. 1 5
SECTION: PAGE:

ASSUMED
FORMAT

F

v

F

(6) RECORDING MODE is an extension to American National Standard COBOL.

5.2.1.5. VALUE OF

Function:

To describe a particular item in the stan·dard file label record associated with a
file. This clause serves as documentation only in the UNIVAC 9400 and is also
accepted for compatibility with the UNIVAC 9300.

For mot:

VALUE OF ~unqualified-data-name IS j data-name-] l (...
/) literal-1 J \

5.2.1.6. DATA RECORDS

Function:

To specify the names of the logical records in a file.

Format:

DATA\ RECORDS AREl data-name-1 [, data-name-2] ... --1 RECORD IS \

8

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

Rev. 1

(1) This clause is optional and serves as documentation only.

5
SECTION:

(2) Each data-name specified must appear at a 01 level number following the FD
en try.

5.2.2. Sort File Description

Function:

To identify the beginning of a Sort File Description (SD) and supply the name of
the file.

Format:

SD file-name

[;RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS!

[RECORDING MODE IS{~}]

[DATA J RECORD IS l. data-name-1 r_, data-name-2] .• J
I --) RECORDS ARE J

Rules:

(1) An SD clause is required for each file to be sorted.

(2) Each data-name specified must appear as a 01 level-number following the SD
en try.

PAGE:

(3) The RECORD CONTAINS, RECORDING MODE, and DATA RECORD clauses are
described under the FD Entry.

(4) Recording mode V is assumed when the RECORDING MODE clause is omitted.

(5) File-name may appear only in the SORT and RETURN statements within the
Procedure Division, and only those file-names which appear in SD entries may
be used in those statements.

(6) A summary of the UNIVAC 9400 COBOL SORT formats is given in Section 9.

9

UP-7709
Rev. 2

t

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

5.3. DAT A DESCRIPTION

Function:

To define the characteristics of a particular data item.

Formats:

Format 1:

I I b {
unqualilied-data-name-ll

eve -num er F Ill ER j

[;REDEFINES unqualified-data-name-2]

Format 1:

Rev. 2
SECTION:

. [l ASCENDING (; OCCURS mteger-2 TIMES DESCENDING\ KEY IS data-name-2

5

[, data-name-3) .. J ... [INDEX ED BY index-name-1 [, index-name-2) ... J
Format 2:

; OCCURS [integer-1 TO] integer-2 TIMES DEPENDING ON data-name-1

[l ASCENDING l l
DESCENDING~ KEY IS data-name-2 [, data-name-3) .. J ...

[INDEXED BY index-name-1 [, index-name-2) ...]

[
. { p IC l 1 S •] • l PfCTU RE j character-strrn~

COMP
COMPUTATIONAL
COMP-3

; [USAGE IS] COMPUTATIONAL-3
DISPLAY
INDEX

!; MAP IS integer-2 CHARACTERS!

f {SYNC I [LEFT]~ l SYNCHRONIZED f RiGHT LJ

[{ iliNIFIED} RIGHT]

[; VALUE IS literal]

[; BLANK WHEN ZERO]

Format 1:

5LEADING t
[SIGN IS] I TRAILING 5 SEPARATE CHARACTER

Format 2:

[SIGN IS] TRAILING

10
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY RE FERENCE

5.3.1. Level Number and Unqualified-data-name/FILLER

Function:

Rev. 2 5
SECTION: PAGE:

The level number shows the hierarchy of data within a logical record. In addition, it
is used to identify entries for condition-names, noncontiguous working-storage items,
and the RENAMES clause.

Format:

level-number ~ unqualified-data-name l
~FILLER f

Rules:

(1) A level number is required as the first element in each data description entry.

(2) Level-numbers 01 through 09 can be expressed without the leading zeros.

(3) Level-number 01 identifies the first entry in each Record Description.

(4) Level numbers start at 01 for records, and become successively higher
for subsets of records, such as group and elementary items. The maximum
level-number permitted is 49, except for 66, 77, 88.

(5) Level-number 66 is used only for the RENAMES clause.

(6) Level-number 77 is used in the Working-Storage Section to describe noncontiguous
data items and constants.

(7) Level-number 88 is assigned to entries which define condition-names associated
with a conditional variable.

(8) FILLER may be used to name an elementary item in a record. Under no circum­
stances can a FILLER item be referred to directly. Also, FILLER must not be used
with a level-number 88, but may be used to name the associated conditional variable.

5.3.2. REDEFINES

Function:

11

To allow the same area of computer memory to be described by different data descriptions.

Format:

!eve I-number unqualdied-data-name-1 [; REDEFINES unqua lified-data-name-21

Rules:

(1) The REDEFINES clause must immediately follow unqualified-data-name-1.

(2) The level numbers of unqualified-data-name-1 and unqualified-data-name-2 must
be identical, and may not be 66 or 88.

(3) REDEFINES must not be applied to level 01 entries in the File Section, although
this is permissible in the Working-Storage Section.

(4) Redefinition begins at unqualified-data-name-2 and continues until a level number

less than, or equal to, that of unqualified-data-name-2 is encountered. A RE­
DEFINES clause may be used within the range of another REDEFINES with a
maximum of five levels permitted.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFER ENCE

Rev. 3
SECTION:

5
PA GE:

(5) When the level number being redefined is other than 01, unqualified-data-name-1
must specify a storage area equal to the storage area for unqualified-data-name-2.

(6) Unqualified-data-name-2 must not contain, or be subordinate to, and OCCURS
clause.

(7) Entries described under unqualified-data-name-1 must not contain VALUE clauses
except in condition-name entries (level-number 88).

(8) Multiple redefinition of the same storage area is permitted. The entries giving the
new descriptions of the storage area must follow the entries defining the area

being REDEFINEd; no intervening entries defining new storage are permitted.
Multiple redefinitions of the same storage area must use the data-name of the
entry that originally defined the area.

5.3.3. OCCURS

Function:

To eliminate the need for separate entries for repeated data, and to supply information
required for the application of subscripts or indices.

Formats:

Format 1:

. [l ASCENDING l OCCURS rnteger-2 TIMES DESCENDING\ KEY IS data-name-2

[, data-name-31 .. .J . .. [INDEXED BY index-name-1 [, index-name-2} . .. J
Format 2:

OCCURS [integer-I TO] integer-2 TIMES DEPENDING ON data-name-I

[~ ASCENDING ~
DESCENDING

KEY IS data-namc-2 [, data-name-3] J ...
[INDEXED BY index-name-I[, index-name-21 . ..]

Rules:

12

(1) The OCCURS clause is used in defining tables and other homogeneous sets of repeated
data items. Whenever the OCCURS clause is used, the data-name which is the subject
of this entry must be either subscripted or indexed whenever it is referred to in a
statement other than SEARCH. Further, if the subject of this entry is the name of a
group item, all data-names belonging to the group must be subscripted or indexed
whenever they are used as operands.

(2) An INDEXED BY clause is required if the subject of this entry, or a group item within
it, is to be referenced by indexing. Index-name is not defined elsewhere by the user,
because its format is dependent on the hardware and storage is allocated by the compiler.

(3) The data description clauses associated with an item whose description includes an
OCCURS clause apply to each repetition of the item described.

/ ---

UP-7709
Rev. 2

·"'-...--·

Rev. 1 5 UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE SECTION:

(4) The OCCURS clause cannot be specified in a data description entry that:

(a) Has an 01, 66, 77, or an 88 level-number.

(b) Describes an item of variable size. The size of an item is variable if the data
description of any subordinate item contains format 2 of the OCCURS clause.

(5) Three levels of subscripting and indexing are permitted.

(6) Data-name-1, data-name-2, data-name-3, ••• may be qualified.

(7) The KEY IS phrase indicates that the repeated data is arranged in ascending or
descending order according to the values contained in data-name-2, data-name-3,
etc. The data-names are listed in their descending order of significance.

(8) Data-name-2 must be either the name of the entry containing the OCCURS clause or
the name of an entry subordinate to the entry containing the OCCURS clause. If
data-name-2 is not the subject of this entry, then:

PAGE:

(a) All of the items identified by the data-names in the KEY IS phrase must be within
the group item which is the subject of this entry.

(b) None of the items identified by data-names in the KEY IS phrase can be described
by an entry which either contains an OCCURS clause or is subordinate to an entry
which contains an OCCURS clause.

(9) Data-name-3, etc. must be the name of an entry subordinate to the group item which
is the subject of this entry.

(10) In format 1, the value of integer-2 represents the exact number of occurrences. The
area allocated multiplied by the number of occurrences cannot exceed 65,535.

12a

(11) Format 2 specifies that the subject of this entry contains a variable number of occurrences.
The value of integer-2 represents the maximum number of occurrences and the value of
integer-1 represents the minimum number of occurrences. This does not imply that the
length of the subject is variable but that the number of occurrences is variable. Integer-2
must be a positive or unsigned integer (not zero). The area allocated, multiplied by the
number of occurrences, cannot exceed 65,535. Integer-1 may be positive or zero but
must be less than integer-2. If integer-1 is not specified, a value of zero is assumed
for the minimum number of occurrences. Integer-I is required in ANS COBOL.

(I2) A data description entry containing format 2 of the OCCURS clause may be followed
only, within that record description, by data description entries subordinate to it.

(I3) Any entry which contains, or has a subordinate entry which contains, format 2 cannot
be the object of the REDEFINES clause.

(I4) In format 2, the data item defined by data-name-I must not occupy a computer
storage position within the range of the first computer storage position defined
by the data description entry containing the OCCURS clause and the last
computer storage position defined by the record description entry containing
that OCCURS clause.

(I5) The value of data-name-I is the count of the number of occurrences of the
subject and its value must fall within the range integer-I through integer-2.
Reducing the value of data-name-I makes the contents of data items, whose
occurrence number now exceeds the value of data-name-I, unpredictable. The
data description of data-name-I must describe a positive integer.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

5
SECTION:

(16) When a group item, having subordinate to it an entry that specifies format 2
of the OCCURS clause, is referenced, only that part of the table area that is
specified by the value of data-name-1 will be used in the operation.

(17) Format 2 is available only in the extended compiler.

(18) The DEPENDING option (format 2) is only required, and should only be used,
when the end of the occurrences cannot otherwise be determined.

PAGE:

(19) The VALUE clause must not be stated in a data description entry which contains
an OCCURS clause or in any entry which is subordinate to an entry containing
an OCCURS clause. This rule does not apply to condition-name entries.

12b

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

5.3.4. PICTURE

Function:

Rev.1 5
SECTION: PAGE:

To describe the general characteristics and editing requirements of an elementary
data item.

Format:

{
PIC } p ICTUR E IS character-string

Rules:

(1) PICTURE clause can be present only with an elementary item.

(2) Character-string can consist of one to 30 characters.

(3) There are five categories of data which can be described with a PICTURE clause:

• Alphabetic

• Numeric

• Alphanumeric

• Alphanumeric Edited

• Numeric Edited

Table 5-4 lists the allowable PICTURE symbols and the rules for their usage.

(4) To define an item as alphabetic:

(a) Its PICTURE character-string may consist of only the symbol A.

(b) Its contents, when represented in standard data format, must be any combina­
tion of the 26 letters of the alphabet and the space.

(c) Maximum number of character positions allowed is 4092.

(5) To define an item as numeric:

(a) Its character-string may consist of only the symbols 9, P, S, V, and H.

(b) The character-string must contain at least one 9.

(c) The maximum number of digits permitted in a numeric item is 18.

(d) The maximum number of occurrences of the symbol Pin a picture-string is 17.

(e) Its contents, when represented in standard data format, must be any combina­
tion of the numerals 0 through 9, and the item may include an operational sign.

(f) H in a picture-string specifies that the USAGE of this item is COMP. H is an
extension to ANS COBOL.

13

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

(6) To define an item as alphanumeric:

Rev. 1 5
SECTION: PAGE:

(a) Its character-string is restricted to X's or at least two of the symbols A, X,
and 9, and is treated as if the picture-string were X's.

(b) Its contents, when represented in standard data format, are any combination
of characters in the UNIVAC 9400 System character set.

(c) Maximum number of permitted character positions is 4092.

(7) To define an item as alphanumeric edited:

(a) Its character-string is restricted to combinations of the symbols A X 9 B 0
and must contain:

• at least one B and one X

• at least one zero and one X

• at least one zero and one A

• at least one B and one A

(b) Its contents, when represented in standard data format, are any combination
of characters in the UN IV AC 9400 Sys tern character set.

(c) Maximum number of character positions permitted is 132.

(8) To define an item as numeric edited:

(a) Its character-string is restricted to certain combinations of the following
symbols:

B P V Z CR DB 9 , • * + - 0 (zero) $ (currency sign)

The allowable combinations are determined by the sequence in which the
symbols appear, and by the editing rules. The number of digit positions
must not exceed 18.

(b) The maximum number of P's permitted is 17.

(c) Its contents, when represented in standard data format, must consist only of
the numerals 0 through 9, plus editing symbols indicated.

(d) Maximum number of permitted character positions is 132.

(9) The following symbols may appear only once in a given picture-string.

S V. CR DB H

(10) An integer enclosed in parentheses and following any of the symbols A , X 9
P Z * B 0 + - $ indicates the number of consecutive occurrences of the symbol.

(11) The order of precedence for characters used as symbols in a character-string
is listed in Table 5-5.

(12) Examples of Source Fields and Receiving Fields are listed in Table 5-6.

14

I

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

PICTURE
REPRESENTS

CAN BE USED IN

SYMBOL COMBINATION WITH

9 A numeric character Any other symbol

s An operational sign 1s associated PV9H

with the data item.

v Assumed decimal point in data Any symbol fxcept: AX

item. and is redundant w1 th P ..

p Assumed decimal point outside of Any symbol except: AX

data item. Each P represents one

character position.

A An alphabetic character or space. X 9 B 0

x An alphanumeric character A 9 B 0

z Suppression of leading O's Any symbol except: *A
(replaced by blanks or spaces). XS H or more than one:

$ + -

* Check protection, replaces leading Any symbol except: Z A

O's with asterisks. XS Hor more than one:
$ - +

Insert comma in character position Any symbol except: AX

(comma) unless the preceding posttion has S H
been blanked.

Actual decimal point to be inserted Any symbol except: AX

I period) ·1n character position unless P VS H

following positions have been

blanked.

B Insert a blank or space in charac- Any symbol except: SH
ter position.

CR Insert the two characters CR if Any symbol except: AX

data item 1s of negative value; t - S DB H

insert two blanks or spaces If

value is positive.

DB Insert the two characters DB If Any symbol except: A X

data item 1s of negative value; + - S CRH

insert two blanks if value is
pos1t1ve.

$ Insert$ sign 1n character Any symbol except: one

(currency position. If more than one, $cannot be used with:

SI gn) 1nd1cates floating$ sign. AX SH; more than one

$cannot be used with:

S H A X * Z or more
than one+ -

0 Insert 0 1n character position. Any symbol except: SH

(zero I

+ Insert+ in character pos 1t1on if Any symbol except: one

data item value positive: - if + cannot be used with:

value negative. lf more than one AX-SCRDBH,more

+,indicates floating sign. than one+ cannot be used
with A X · S CR DB Z H *

or more than one$ sign.

- Insert - 1n character pos1t1on 1f Any symbol except: one -
(m 1 nus) data item value negative, blank cannot be used with: AX

1f pos1t1ve. If more than one + S CR DB H, more than
indicates floating sign. one - cannot be used with:

A X + S CR DB * Z H or
more than one $ s1 gn.

H Com putat1 ona I-usage s p v 9

Table 5-4. PICTURE Symbols

Rev. 1 5 15
SECTION; PA GE:

SPECIAL PICTURE
POSITION

None

Can be preceded
only by H. Only one

Sis pe1m1tted.

Only one 1s permitted,
can precede leading P
or follow trailing P.

Must be first or last
symbol or symbols of
PICTURE except for

S, CR, DB, V or single

+, - or $ but cannot be
both first and last,

None

None

Can be preceded only
by: V . , $ + - P B 0
(zero)

Can be preceded only

by: V • , $ + - P B 0
(zero)

None

None

None

Must be last symbol

except for P or V

Must be last symbol

except for P or V

Must be first symbols

when more than one
except for single+

or - PBO (zero). If
only one used, 1t can
only be preceded by

+ - or P or V

None

If only one+, must be
either first or last
except for P or V. If

more than one t, must
be first symbol except
for$ sign.

If only one· , must be
either first or last
except for P or V. If

more than one - , must
be first symbol except
for$ sign.

None

UP-7709
Rev. 2

z
0 -
I-
et::
w .,.,
z -
0
w
x -
11..

.,.,

...J
0
co
::E
>-.,.,
et::
w
:I:
I-
0

8

0

.

{~}
{~}
~g~]

cs

A x
p

p

s
v

{~}
{ ~}

9

{ :}
{ ~}

cs

cs

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

FIXED INSERTION

B 0 • {:} {:} {CR~ ,DBJ cs ~~}
x x x x x x x
x x x x x x x
x x x x x x

x x x x x

x x x x x

x x x x x
x

x x x

x x x x x x x

x x x x x

x x x x x

x x x x x x

x x x x x x x

x x x x

x x x x x

x x x x

x x x x ·x

NOTES:

Rev. 1 5
SECTION:

OTHER SYMBOLS

p p s v { ~} { ~} 9 {~} {~} cs cs

x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x

x x x x x

x

x x x x x x x

x x x x x x x
x x

x

x x x

x x x x x x

x x x x x x

x

x x x x

x x x x x x x

x

x x x x

x

x x x x

1. This chart shows the order of precedence when using characters as symbols in a character-string.

PAGE:

An X at an intersection indicates that the symbol(s) at the top of the column may precede, in a
given character-string, the symbol(s) at the left of the row. Arguments appearing in braces indicate
that the symbols are mutually exclusive. The currency symbol is indicated by the symbol cs.

2. At least one of the symbols AX Z 9 *or at least two of the symbols+ - or cs must be present in
a PICTURE string.

3. P, fixed insertion+ and - appear twice. The first occurrence represent their use to the left of the
PICTURE's numeric character positions and the second their use to the right of the PICTURE's
numeric character positions.

4. Z *non-fixed insertion cs+ and - appear twice. The first occurrence represents the use before the
decimal point position, the second the use after the decimal point position.

Table 5-5. Precedence Rules in PICTURES

16

UP-7709
Rev. 2

--~·

PICTURE

9(5)V99

9(5)

9(4)V99

9(4)

59(4)

59(4)

59(4)V99

S9999V99

59(4)

59(4)

S999V99

9999

9(5)

X(5)

A(5)

9(4)

9(5)

9V9(5)

AA

A(5)

99PPP

VPPP99

V9(5)

V9(5)

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

s

SOURCE FIELD RECEIVING FIELD

DATA TO BE MOVED PICTURE DATA AFTER MOVE

1234500 ZZ,ZZZ.99 12,345.00

00123 ZZ,ZZZ.99 123.00

123 4 56 $$,$$$.99 $1,234.56

0012 $$,$$$.99 $12 .00

+1234 $$,$$$.99DB $1,234.00

-1234 $$,$$$.9908 $1,234.00DB

+001209 $$,$$$.99CR $12.09

-000123 $$,$$$.99CR $1.23CR

+1234 tt,ttt.99 +1,234.00

-0010 --, ---.99 -10.00

001234 $**** .99 $**12.34

1234 990099 12 003 4

12345 9B9B9B99 11i21l3M5

Al B2C XBXOOXXX Ao100B2C

ABC DE ABBOAAAOBX A1rti0 BCD OtlE

1234 9(5) 01234

12345 999.99 345.00

123456 9(5).99 00001 .23

AB A(5) ABmm

ABC DE AA AB

12 9(5) 12000

12 .9(5) .00012

12345 Z(5).99 mrti1J1i .1 2

12345 9(5).999 00000.123

Tobie 5-6. Source and Receiving Fields

17
PAGE:

UP-7709
Rev. 2

.----

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

5.3.5. USAGE

Function:

Specifies the format of a data item in memory.

Format:

[USAGE IS]

Rules:

COMP
COMPUTATIONAL
COMP-3
COMPUTATIONAL-3
INDEX
DISPLAY

5
SECTION: PAGE:

(1) The USAGE clause can be written at any level. At a group level, it applies to
each elementary item in that group. The USAGE clause of an elementary item
cannot contradict the USAGE clause stated for the group to which the item
belongs. The USAGE clause of an elementary item cannot contradict the
PICTURE clause for that item.

(2) The DISPLAY option specifies that the item is stored in character form, one
character per byte.

(3) An elementary item described with the USAGE IS INDEX clause is called an
index data item and contains a value which corresponds to the occurrence
number of a table element. PICTURE clause must not be present in this instance.

(4) An INDEX data item can be referred to directly only in a SET statement or in
a relation condition. Also, an INDEX data item can be part of a group which is
referred to in a MOVE or an l/O statement, in which case no conversion will
take place.

(5) Except for the level number and data-name necessary for definition, no additional
clauses are used to describe INDEX data items.

(6) COMP and COMP-3 specify packed decimal format, where:

(a) If the number of digits in the item is odd, the object program memory area
allocated for this item is an even number of half-bytes.

Example: PIC H999 VALUE 123.

Memory: 1 2 3 F

byte 1 byte 2

(b) If the number of digits in an item is even, there will be an extra half-byte
in the object program memory allocated for this item. The item's PICTURE
is unchanged.

Example: PIC H99 VALUE 12.

Memory: 0 1 2 F

byte 1 byte 2

18

'"-..._.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REF ER ENCE SECTION:

5
PAGE:

The compiler ensures that the unused half-byte is always set to zero when
information is stored in this item. The compiler assumes that when the
item is referenced it will contain a valid packed decimal number, with
zero in the leftmost half-byte.

(7) If the USAGE clause is omitted, DISPLAY is assumed unless the PICTURE
clause contains an H in its character-string.

5.3.6. SYNCHRONIZED

Function:

To specify the positioning of data items within a computer word or words.

Format:

{
SYNC
SYNCHRONIZED}

Rule:

[
LE FT]
RIGHT

The SYNCHRONIZED clause has no effect on the object program in UNIV AC 9400,
however, it is acceptable to the compiler for compatibility purposes.

5.3.7. JUSTIFIED

Function:

To specify nonstandard positioning of data within a receiving data item.

Format:

{
JUST }
JUSTIFIED RIGHT

Rules:

(1) JUSTIFIED may be specified only at the elementary item level.

(2) This clause may not be used for numeric or numeric-edited data, since numeric
data is aligned by its decimal point, when present, or right JUSTIFIED when not
present.

(3) Alphabetic, alphanumeric, and alphanumeric-edited data is left JUSTIFIED with
space fill when the JUSTIFIED clause is not specified.

(4) When the receiving data item is described with the JUSTIFIED clause and the
sending data item is larger, the leftmost characters are truncated. When the
receiving data item is JUSTIFIED and larger than the sending data item, the
data is aligned at the rightmost character position in the data item with space
fill.

19

r

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

5.3.8. VALUE IS

Function:

5
SECTION:

To define the initial VALUE of a Working-Storage item, or to specify the values
associated with a condition-name.

Formats:

Format 1:

VALUE IS literal

Format 2:

\VALUEIS (. . t VALUES ARE~ lzteral-1 [THRU lzteral-2]

[, literal-3 [THRU literal-4]].

Rules:

(1) Format 1 is used to specify the initial VALUE of a data item in the Working­
Storage Section. The following rules apply to format 1:

(a) This option causes the item to assume the specified VALUE at the start
of the object program. If the VALUE clause is not used in an item
description, the initial value may be unpredictable.

(b) The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the hierarchy of
the item.

(c) In the File Section and the Linkage Section, the VALUE clause must not
be used except for condition-name entries.

PAGE:

(d) The VALUE clause cannot be used in a Record Description entry containing
a REDEFINES clause or in an entry subordinate to an entry containing a
REDEFINES clause.

(e) The VALUE clause must not be stated in a Record Description entry contain­
ing an OCCURS clause or in an entry subordinate to an entry containing an
OCCURS clause.

(f) The VALUE clause must not be specified for a group item containing items
with descriptions including JUST, SYNC, USAGE COMP, or USAGE INDEX.

(g) If the VALUE clause is used in an entry at the group level, literal must be
a figurative constant or a nonnumeric literal, and the group area is initialized
without consideration for the individual elementary or group items contained
within this group. The VALUE clause must not be stated at the subordinate
levels within the group.

20

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rev. 2 5
SECTION:

(2) Format 2 can be used only in a condition-name entry, and is available only in
the extended compiler. Format 1 is used for condition-names when compiling
with the basic tape compiler. The following rules apply to format 2:

(a) All condition-name entries are level-number 88. See 5.3.12 for a full
description of condition-name.

PAGE:

(b) When the THRO option is used, literal-1 must be less than literal-2, literal-
3 less than literal-4, and so on.

(3) In the File Section, only the VALUE clause(s) stated for condition-name entries
is valid.

(4) A figurative constant may be substituted in either format 1 or format 2 when
a literal is specified.

(5) During compilation, a diagnostic is issued when the VA LUE and PICTURE
clauses conflict in any manner. Compilation continues with the VALUE clause
ignored. (Exception: unsigned VALUE with signed PICTURE gets a+ sign.)

5.3.9. BLANK WHEN ZERO

Function:

Causes the value of a receiving item to be set to space when the value of the sending
i tern is zero.

Format:

BLANK WHEN ZERO

Rules:

(1) This clause can be specified only at the elementary item level, and can be used
only with a numeric or numeric-edited item. When used with a numeric item, the
category of the item is considered numeric-edited.

(2) The effect is not necessarily the same as zero suppression editing via the
PICTURE clause, because the item is affected only when its numeric value is
zero.

5.3.10. MAP

Function:

Specifies the memory size of a data item in bytes.

Form at:

MAP IS integer, CHARACTERS

Rule:

The MAP clause has no effect on the object program in the UNIVAC 9400 System;
however, it is acceptable to the compiler for compatibility purposes.

21

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

5.3.11. RENAMES

Function:

SECTION:

Permits alternate, possibly overlapping, groupings of elementary items.

Format:

66 unqualified-data-name-I ;RENAMES data-name-2 LTHRU data-name-3]

Rules:

5
PAGE:

(1) All RENAMES entries associated with a given logical record must immediately
follow its last data description entry.

(2) Data-name-2 and data-name-3 must be names of elementary items or groups of
elementary items in the associated logical record, and cannot be the same
data-name.

(3) Level-numbers 66, 77, 88, and 01 cannot be RENAMEd.

(4) Neither data-name-2 nor data-name-3 may have an OCCURS clause in its data
description, nor can it be subordinate to an entry with an OCCURS clause.

(5) Data-name-2 must precede data-name-3 in the Record Description.

(6) Data-name-3 cannot be subordinate to data-name-2.

(7) Data-nam e-2 and data-name-3 may be qualified.

(8) One or more RENAMES entries can be written for a logical record.

5.3.12. Condition-name

Function:

To assign a name for a specific value or range of values. The condition-name with
multiple values, including the THRU option, is implemented only in the extended
compiler.

Format:

88 condition-name;{~~~ ~~Sl~R E} literal-I [THR U literal-2]

[literal-3 [TH RU literal-4] J ...

22

UP-7709
Rev. 2

'._..

''----.

UN1V AC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

(1) The VALUE clause is used as described in 5.3.8.

5
SECTION: PAGE:

(2) Each condition-name requires a separate entry with a separate level-number 88.

(3) The condition-name entries for a particular conditional-variable must immediately
follow the entry describing the conditional-variable item with which the condition­
name is associated.

(4) A condition-name may be associated with any group or elementary item except
a level-number 66 item, or an index data item.

(5) Examples of use of condition-name:

(a) Elementary item:

02 data-name-1.

03 data-name-2 PIC XX.

88 condition-name VALUE 'AB'.

02 data-name-3.

PROCEDURE DIVISION.

IF condition-name GO TO procedure-name.

Instead of:

IF data-name-2 = 1 AB 1 GO TO procedure-name.

(b) Group Item:

02 data-name-1.

88 condition-name VALUE is 1 20 1 THRU 1 25 1
•

03 data-name-2 PIC 9.

03 data-name-3 PIC 9.

02 data-name-4.

PROCEDURE DIVISION.

IF condition-name GO TO procedure-name.

Instead of:

IF data-name-1 NOT< •20' AND NOT> •25' GO TO
procedure-name.

23

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

5.3.13. SIGN

Function:

Rev.2 5
SECTION:

Specifies the position and the mode of representation of the optional sign when it
is necessary to describe these properties explicitly.

Formats:

Format 1:

l LEADING (
[SIGN IS] TRAILING~

Format 2:

[SIGN IS] TRAILING

Rules:

SEPARATE CHARACTER

PAGE:

(1) The SIGN clause may be specified only for a numeric data description entry
whose PICTURE contains the character 'S', or a group item containing at least
one such numeric data description entry.

(2) The numeric data description entries to which the SIGN clause applies must be
described, either explicitly or implicitly, as USAGE IS DISPLAY.

(3) At most, one SIGN clause may apply to any given numeric data description
entry.

(4) If format 1 is used, the letter 'S' in the PICTURE is counted in determining the
size of the item. The operational signs for positive and negative are the
characters '+' and '-' respectively.

(5) If the optional SEPARATE CHARACTER clause is not present, the letter 'S'
in the PICTURE is not counted in determining the size of the item. Format 2
specifies that the operational sign is in the zone portion of the least signifi­
cant digit position of the item. A positive sign is represented by a hexadecimal
'C', a negative sign by a hexadecimal 'D'.

(6) A numeric data item whose PICTURE contains the character 'S', but to which
no optional SIGN clause applies, has an operational sign in the zone portion
of the least significant digit position. The sign representation is as described
for format 2 of the SIGN clause.

24

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

5.4. WORKING-STORAGE SECTION

Definition:

Rev. 1 5
SECTION:

That section of the Data Division used to describe areas of memory which are to
contain intermediate results of processing and other temporarily stored data at
object program run time, as well as named constants.

Format:

WORKING-STORAGE SECTION.

[77 (name and dosc,iptfon of sfogle-Uem arnaj

01 (record-name and description)

03 (name and description of group item)

nn (name and description of elementary item)

[66 data-name ;RENAMES data-name-n]

[01 (rnc o'd-na me and des ai pt fon)J

[88 (condition-name entry J]

5.4.1. Independent Entries

Function:

PAGE:

To describe noncontiguous single items in Working-Storage, each of which is neither
subdivided nor a subdivision of another data-name.

Format:

. jPIC }is. . 77 unqua Ii hed-data-name; !_Pi(TUR E p1cture-s trrng

Rules:

(1) Level-number 77 is assigned only to single item areas.

(2) Each independent entry must have a unique data-name.

(3) All level-number 77 entries should be grouped together in the beginning of the
Working-Storage Section.

(4) The VALUE clause may be used to specify the initial or constant value of any
level-number 77 entry.

25

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

5.4.2. Record Description

Function:

To describe contiguous data areas which are not part of a file.

Format:

01 record-name

(subordinate data items and clauses)

Rules:

5
SECTION:

(1) Data elements in Working-Storage which bear a definite relationship to each
other may be grouped into records. This is done through the same descriptive
clauses used in Data Description entries in the File Section, including the
OCCURS and REDEFINES clauses.

(2) Each record-name must be unique since it cannot be qualified by a file-name
or section-name. Subordinate data-names need not be unique if they can be
qualified.

S.S. LINKAGE SECTION

Definition:

PAGE:

That section of the Data Division used to describe data that is available in a CALLing
program, but is referenced in both the CAL Ling and the CALLed programs.

Rules:

(1) Organization and structure follow the rules described under the Working-Storage
Section, with one exception: the VALUE clause may not be specified for other
than 88 level entries.

(2) Record Description entries in the LINKAGE SECTION provide names and
descriptions, but storage within the program is not reserved since the data exists
elsewhere.

(3) The LINKAGE SECTION is required in any program containing an ENTRY statement
with a USING option or Procedure Division USING.

(4) See Appendix F for examples of CALLing and CALLed programs.

26

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY RE FERENCE SECTION:

6
PAGE:

S. PROCEDURE DIVISION

6.1. GENERAL

The Procedure Division contains the instructions or steps necessary to solve a given
problem.

Format:

PROCEDURE DIVISION [USING {data-name!. .•].

DECLARA Tl YES.

(declarative sections)

END DECLARATIVES.

[section-name-I SECTION [priority-number] .]

paragraph-name-I.

sentence-I.

sentence-n.

paragraph-name-2.

[section-name-n SECTION [priority-number] •]

6.1.1. USING

Function:

USING immediately following the header PROCEDURE DIVISION serves as an entry
point declaration and can appear only in a CAL Led subprogram.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Format:

USING unqua Ii f ied-dat a-nam e-1 l unqua Ii fied-data-name-2]. ..

Rules:

6
SECTION:

(1) If USING is present, the external symbol (ENTRY name) associated with this
entry point is the same as PROGRAM-ID.

(2) If USING is not present, the beginning of the PROCEDURE DIVISION is not
one of the entry points in this particular subprogram.

(3) Data-names present refer to data items described in this subprogram. Their
level numbers are restricted to 01 or 77, and they must be defined in the

Linkage Section.

6.2. DECLARATIVES

Function:

PAGE:

The Declaratives Section of the Procedure Division contains compiler-directing
statements that specify the circumstances under which a procedure is to be executed.

Format:

DECLA RA Tl VE S.

section-name-1 SECT ION.

dee Iara tive-sentence-1.

paragraph-name-I.

sentence-1.

[sentence-n.]

[section-name-n SECTION.].

END DECLARATIVES.

Rules:

(1) Declarative Sections are grouped at the beginning of the Procedure Division.

(2) The key word DECLARATIVES must immediately follow the header PROCEDURE
DIVISION on a separate line. The key words END DECLARATIVES must follow
the last line of the declaratives on a separate line.

(3) Each Declarative Section must begin with a section-name, followed by a USE
sentence. The remainder of the section consists of one or more procedural

paragraphs.

(4) No priority number is allowed on section-names in the Declaratives.

2

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.3. SECTIONS

Definition:

Rev. 1 6
SECTION: PAGE:

The most inclusive procedural unit in the Procedure Division to which a procedure

name can be assigned.

Format:

section-name SECT ION [priority-number].

paragraph-name.

Rules:

(1) The Procedure Division must be divided into sections with appropriate priority
numbers when the program is to be segmented or when the Declarative Section

is present.

(2) Priority-number must be an unsigned integer ranging in value from 0 through 99.

(3) Section priority-numbers must be in ascending sequence, and sections with the
same priority-number must be contiguous.

(4) Sections belonging to the Declaratives portion of the Procedure Division are
associated with the fixed segment, and must not contain priority numbers in their

section headings.

(5) Priority numbers 0 through 49 are used for the fixed segment, and priority numbers
50 through 99 designate independent segments. (See Section 7 for a complete
discussion on segmentation.)

(6) Sections comprising the fixed segment, if any, must precede all sections with

priority numbers greater than 49.

3

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.4. PARAGRAPHS

Definition:

Rev. 1 6
SECTION:

A body of one or more procedural sentences with a procedure name by which it may
be identified and referenced.

Format:

paragraph-name.

s entence-1.

[sentence-2.]

Rules:

PAGE:

(1) A paragraph must contain at least one sentence, and may consist of any practical
number of sentences. It must be headed by an identifying procedure name, since
transfer references within the Procedure Division are made to entire paragraphs.

(2) Any practical number of paragraphs may be combined into a section.

(3) Generally, the object coding for a single sentence must be less than 4096 bytes.

6.5. STATEMENTS AND SENTENCES

Def in it ion:

A statement consists of a verb and any other reserved words and user-supplied words
necessary to fulfill one of the valid verb formats.

A sentence consists of one or more statements terminated by a period.

Format:

statement-I [! statement-2\ .•.].

6.5.1. Imperative Statements

Definition:

4

Statements which indicate specific unconditional actions to be taken by the object program.

Format:

verb word-string.

Rules:

(1) Verb must be one of the allowable UNIVAC 9400 COBOL verbs listed in 6.6.

(2) Word-string consists of all words (reserved words, names, literals, and punctuation)
necessary to complete a valid format for that verb.

·---

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY RE FERENCE

6.5.2. Conditional Statements

Definition:

6
SECTION: PAGE:

Statements which begin with the verb IF and specify alternative courses of action,
depending upon the outcome of a test or comparison.

The AT END conditional is discussed with the READ and RETURN verbs; the ON
SIZE ERROR conditional is discussed with the arithmetic verbs; and the INVALID
KEY conditional is discussed with the READ, WRITE, REWRITE, and INSERT
statements.

Format:

. . j statement-I l f JELSE l j statement-2 J
!£ conditwn; 1 NEXT SENTENCE~ l OT'H'E:RWISE*~ 1 NEXT SENTENCE ~

Rules:

(1) Condition can be simple or compound. A simple conditional expression would
contain only one of the following: a relational expression, condition-name, or
item class test. A compound conditional expression would contain more than
one condition. Compound conditions are not permitted in the basic compiler.

(2) All other rules for format and application of conditional and compound conditional
statements are discussed under the IF and PERFORM verbs.

6.5.3. Compiler-Directing Statements

Def in it ion:

Statements which direct the compiler to take certain actions at compilation time.

For mat:

verb word-string.

Rules:

(1) All rules for compiler-directing statements are stated in the discussion of the
following verbs:

COPY, ENTER, NOTE, USE

(2) Word-string consists of all reserved words and user-supplied words necessary
to complete a valid format for that verb.

(3) Compiler-directing statements must not appear within conditional statements.

*OTHERWISE is an extension to American National Standard COBOL.

5

UP-7709
Rev. 2

UN1V AC 9400 COBOL
SUPPLEMENT ARY RE FERENCE

6.6. VERB TYPES

Definition:

Rev. 2 6
SECTION:

A verb is a reserved word used in the Procedure Division that denotes action to be
performed by the computer or the compiler. There are seven general categories of

PAGE:

verbs in UNIVAC 9400 -COBOL. These categories, and the verbs in each, are as follows
(*denotes extended compiler only):

• Arithmetic: ADD, DIVIDE, MULTIPLY, SUBTRACT, COMPUTE*

• Procedure Branching: ALTER, GO TO, PERFORM, EXIT

• Data Movement: EXAMINE, MOVE, SET, TRANSFORM

• Input-Output: ACCEPT, CLOSE, DISPLAY, INSERT*, OPEN, READ, RELEASE*,
RETURN*, REWRITE*, SEEK*, SORT*, WRITE

• Ending: STOP

• Conditional: IF, SEARCH

• Compiler Directing: COPY, ENTER, NOTE, USE

A description of the various categories and the verbs contained in each, is presented
in the ensuing paragraphs.

6.6.1. Arithmetic Verbs

The arithmetic verbs permit basic calculations to be performed on the data. Four
verbs corresponding to the four basic arithmetic operations are provided: ADD,
SUBTRACT, MULTIPLY, and DIVIDE. In the extended compiler only, a fifth verb,
COMPUTE, is provided to allow the programmer to specify arithmetic calculations
through the use of arithmetic expressions.

Appendix H describes the manner in which intermediate results of arithmetic operations
are handled by the compiler.

Rules:

(1) All data items referenced in arithmetic statements must represent numeric
elementary data items previously defined in the Data Division.

(2) All literals used in arithmetic statements must be numeric.

(3) The maximum size of each operand is 18 decimal digits. The composite of
operands (the data item resulting from the superimposition of all operands,
aligned by decimal points) must not contain more than 18 digits.

(4) The data descriptions (PICTURE) of the operands may differ from each other.
Decimal point alignment is supplied automatically throughout computations.
Conversion of items with unlike usage is also automatic.

6

UP-7709
Rev. 2

'-.....-··

~-

~-

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6

(5) The PICTURE of any arithmetic operand cannot contain editing symbols. An
appropriate error diagnostic will be issued during compilation if this occurs.

PAGE:

0 perational signs and implied dee im al points are not considered editing symbols.
When the GIVING option is used, data items to the right of the word GIVING may

contain editing symbols.

(6) If, after decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is greater than the number of places provided for the
fraction of the resultant identifier, truncation is relative to the size provided for
the resultant identifier. When the ROUNDED option is used, the absolute value of
the resultant identifier is increased by one whenever the most significant digit of
the excess is equal to or greater than five.

(7) If, after decimal point alignment, the value of result exceeds the largest value
that can be contained in the associated resultant identifier, a size error condition
exists. In the event of a size error condition, one of two possibilities will occur,
depending on whether the ON SIZE ERROR option has been specified.

(a) In the event that ON SIZE ERROR is not specified, and a size error condition
arises, the effect is unpredictable.

(b) If ON SIZE ERROR has been specified, and a size error condition arises, the
value of the resultant identifier will not be altered. The imperative-statement
associated with the ON SIZE ERROR option will be executed after the last
resultant identifier is considered.

(8) The CORRESPONDING option may be used with the ADD and SUBTRACT verbs.
In the following paragraphs, d 1 and d 2 refer to the group items involved. A pair of
data items, one from each group item, CORRESPOND if the following conditions

exist:

(a) A data item in dl and a data item in d2 have the same name and qualification

up to, but not including, d 1 and d2,

(b) Both of the data items are elementary numeric items.

(c) Neither d1 nor d 2 can be a data item with level number 66, 77, or 88.

(d) A data item subordinate to dl or d2 and containing a RENAMES, REDEFINES,
or OCCURS clause is ignored. However, d 1 and d2 may have REDEFINES
or OCCURS clauses, or be subordinate to data items with REDEFINES or

OCCURS clauses.

(9) Statements having multiple results are considered by the compiler as though

they were written in the following manner:

(a) As a statement which performs all the arithmetic necessary to arrive at the
result to be stored in the receiving items, and stores that result in a
temporary storage location.

7

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 6
SECTION:

(b) As a sequence of statements transferring or combining the value of this
temporary location with a single result. These statements are considered
to have been written in the same left to right sequence in which the
multiple results are listed. For example, the result of the statement

ADD A, B, C TO C, D(C), E

is equivalent to

ADD A, B, C GIVING temp

ADD temp TO C

ADD temp TO D(C)

ADD temp TO E

where: temp is an intermediate result item.

6.6.2. Procedure Branching Verbs

PAGE:

Normally,. the statements in the Procedure Division are executed consecutively in
order of their appearance. This is also true of the execution of each paragraph and
section. However, it is often necessary to alter this normal sequence of operation
and branch to a different point in the program to execute a number of statements
before returning to the next statement. The procedure branching verbs permit this
sequencing of logical operations:

ALTER, GO TO, PERFORM, EXIT

6.6.3. Data Movement Verbs

Three verbs are provided by UNIVAC 9400 COBOL for the specific purpose of moving
or manipulating data:

EXAMINE, MOVE, SET

This is in addition to the several verbs which have, as a secondary function, the ability
to move or manipulate data in some manner. For example, an arithmetic verb may
cause some data movement and/or manipulation. This, however, is secondary to its
main function of effecting an arithmetic calculation.

6.6.4. Input/Output Verbs

In any data processing application, quantities of data passed between storage and

external media such as card, tape, or disc devices. The input/output verbs control
and coordinate the flow of data, enabling the COBOL programmer to obtain records
for processing and return the processed record to the external media. The input/output
verbs are:

ACCEPT, CLOSE, DISPLAY, OPEN, READ, WRITE

In addition to these verbs, the extended compiler contains the

INSERT, RELEASE, RETURN, REWRITE, SEEK, and SORT verbs,

8

. ___ /

UP-7709
Rev. 2

.'"-""'.

UNIVAC 9400 COBOL
SUPPLEMENT ARY RE FERENCE

6.6.5. Ending Verb

Rev. 2 6
SECTION: PAGE:

The STOP verb is used to halt execution of the object program either permanently
or temporarily.

6.6.6. Conditional Verb

Conditional expressions are used in situations where the outcome of a test will
determine the next logical step to be performed. The verb IF is the principal conditional
verb used with conditional expressions to determine the truth or falsity of a statement
or comparison. (See also PERFORM statement, 6.7.21.)

6.6.7. Compiler-Directing Verbs

Certain verbs direct the compiler to perform a specific action and do not directly
cause any object coding to be produced. These verbs affect the object program
indirectly, except for the verb NOTE which has absolutely no effect on the object
program.

The compiler-directing verbs are:

COPY, ENTER, NOTE, USE.

6.7. VERBS

Each UNIVAC 9400 COBOL verb is described in alphabetical order in this section.

6.7.1. ACCEPT

Function:

Causes low volume data to be read from an appropriate hardware device, system
memory location, or UPSI switch (user program switch indicator).

Format:

ACCEPT identifier [FROM mnemonic-name]

Rules:

(1) The ACCEPT statement causes the next set of data available at the mnemonic­
name to replace the contents of the data item named by the identifier.

(2) The job stream is assumed to be the input source when the FROM option is
not specified. The description of identifier determine the number of cards
ACCEPTed. One card from the job stream contains up to 80 characters. The
maximum length specified by identifier is 4095 characters, which would require
52 cards.

(3) To indicate that input is to be accepted from the console typewriter, the
following message is displayed:

CA10 ACCEPT READY.

Program operation is suspended until a typein occurs (CAlO indicates a £0BOL

~CCEPT).

9

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6

(4) The mnemonic-name must be associated with an implementor-name in the
SPECIAL-NAMES paragraph of the Environment Division. SPECIAL-NAMES
that can be the source of ACCEPTed data are:

SYSCOM

SYSDATE

SYSTIME

SYSCONSOLE

SYSSWCH

See Table 4-1 for specific interpretation of implementor-names.

6.7.2. ADD

Function:

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

Formats:

Format 1:

ADD{i~entifier-1} [' i~entifier-21 ... TO identifier-m [ROUNDED]
-- lzteral-1 , lzteral-2 J -

[, identifier-n [ROUNDED]] [;ON SIZE ERROR imperative-statement]

Format 2:

AD D{i~en tifier-1 }' {i~en tifier-2 }
-- lzteral-1 lzteral-2 [

, i~entifier-3 J ... GI YING
, lzteral-3

identifier-n [ROUNDED][; ON SIZE ERROR imperative-statement]

Format 3:

ADD{~ESPONDING} identifier-I TO identifier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

10
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

6
SECTION:

(1) In formats 1 and 2 each identifier must refer to an elementary numeric item
except for identifiers to the right of the word GIVING which may contain
editing symbols.

(2) Each literal must be a numeric literal.

(3) The maximum size of each operand is 18 decimal digits. The composite of
operands, which is that data item resulting from the superimposition of all
operands, excluding the data items that follow the word GIVING, aligned on
their decimal points, must not contain more than 18 digits.

PA GE:

(4) If format 1 is used, the values of the operands preceding the word TO are
added together, then the sum is added to the current value in each identifier,
identifier-m, identifier-n, ... , and the result is stored in each resultant
identifier, identifier-m, identifier-n, ... , respectively.

(5) If format 2 is used, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of identifier-n,
which is the resultant identifier.

(6) If format 3 is used, data items in identifier-1 are added to, and stored in,
corresponding data items in identifier-2.

(7) For a description of the ROUNDED, SIZE ERROR, and CORRESPONDING
options, see paragraph 6.6.1, Arithmetic Verbs.

6.7.3. ALTER

Function:

The ALTER statement modifies a predetermined sequence of operations.

Format:

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] . ..

Rules:

(1) Procedure-name-1, procedure-name-3, ... is the name of a paragraph that
contains only one sentence consisting of a GO TO statement without the
DEPENDING ON option.

(2) Proced ure-name-2, proced ure-name-4,
section in the Procedure Division.

is the name of a paragraph or

(3) During execution of the object program, the ALTER statement modifies the
GO TO statement in the paragraph named procedure-name-1, procedure-name-3,
... replacing the object of the GO TO by procedure-name-2, procedure-name-4,
... , respectively.

11

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 6
SECTION:

(4) A GO TO statement in a section whose priority is equal to or greater than
SO must not be referred to by an ALTER statement in a section with a
different priority.

6.7.4. CALL

Function:

Used in conjunction with the ENTER verb in the main program to communicate
with subprogram entry points.

Format: t] file-name
data-name

CALL entry-name USING{ d J ... proce ure-name

R I sort-name
u e:

See the ENTER verb, paragraph 6.7.10 for information regarding use of CALL.

6.7.5. CLOSE

Function:

PAGE:

Terminates the processing of one or more input or output reels, units, or files with
optional rewind with or without lock.

Format:

CLOSE file-name-1 [~~~TL] [WITH { ~gCRKEWIND} J

[
. [REEL] [{NO REWIND}] J hle-name-2 UNIT WITH LOCK

Rules:

(1) File-name must not be the name of a SORT file.

(2) After a CLOSE statement without a REEL/UNIT phrase has been executed for
a file, an OPEN statement must be executed before any other reference can be
made to the file.

(3) The REEL/UNIT option is used to effect reel or unit swapping in a sequential
file process. If the reel/unit is to be dismounted from the device, the LOCK
option should be employed.

(4) The UNIT option is only applicable for direct access files when ACCESS MODE
IS SEQUENTIAL is specified.

(5) The REEL, NO REWIND, and LOCK options are only applicable to magnetic
tape files and are meaningless when operating with any other device.

(6) When the LOCK option is specified for REEL, the current reel of the tape file
is rewound and unloaded. When the LOCK option is specified for the entire file,
the file may not be OPENed again in the object program.

(7) Each file-name refers to an FD name in the Data Division.

12

I

UP-7709
Rev. 2

·'.... ..

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6
PAGE:

(8) If neither LOCK nor NO REWIND is specified, the current reel of the file is
rewound and all other reels belonging to the file are rewound. However, this rule
does not apply to those reels controlled by a prior CLOSE REEL entry.

(9) If the NO REWIND option is specified, the current reel of the file remains in
whatever position it is in at the time the CLOSE is given.

6. 7 .6. COMPUTE

Function:

The COMPUTE statement assigns to a data item the value of a numeric data item,
literal, or arithmetic expression. COMPUTE is available only with the extended
compiler.

Format:

{

identifier-2 }
COMPUTE identifier-I [ROUNDED]_::._ lit~ral . .

arzthmetzc-express zon

[;ON SIZE ERROR imperative-statement]

Rules:

(1) Literal must be a numeric literal.

(2) Each identifier must refer to an elementary numeric item.

Only identifier-I may contain editing symbols.

(3) The arithmetic-expression option permits the use of any meaningful combination
of identifiers, numeric literals, and arithmetic operators, parenthesized as

required.

(4) The maximum size of each operand is 18 decimal digits.

(5) The identifier-2 and literal options provide a method for setting the value of

identifier-1 equal to the value of identifier-2 or literal.

(6) The final result of operations evaluated in the arithmetic-expression is placed
in identifier-1.

(7) The arithmetic-expression option allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items
imposed by the arithmetic statements.

13

(8) Intermediate results are possible in a COMPUTE statement containing multiple
operands. The compiler treats a statement as a succession of operations, and
reserves memory areas for required intermediate results. The compiler also determines

the number of integer and decimal places reserved for intermediate results. The
ON SIZE ERROR option applies only to final results. See Appendix I for a

discussion of how the compiler handles intermediate results.

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

(a) Arithmetic operators character representation:

Addition +

Subtraction

Multiplication *
Division I

Exponentiation **

Rev. 2 6
SECTION: PAGE:

(b) Parentheses may be used to specify the order in which elements are to be
evaluated. Expressions within parentheses are evaluated first; within a nest
of parentheses, evaluation proceeds from the least inclusive set to the most
inclusive set.

(c) When parentheses are not used or parenthesized expressions are at the same
level of inclusiveness, the following order of evaluation is implied:

unary + and - signs

**

*and I

+and -

6.7.7. COPY

Function:

The COPY statement permits copying text from the COBOL library into the source
program. The extended compiler provides the facility for copying text from the
library into the source program with a capability for word substitution as text is
copied. See Format 2.

Format l:

COPY library-name

Format 2:

COPY librncy-name [REPLACING wocd-1 BY
{

word-2 }
identifier-I
literal-1

[, word-3 BY { ~C::n~-i~ier-2}] .. J.
literal-2

Rules:

(1) The COPY statement may appear as follows:

(a) in any of the paragraphs in the Environment Division;

(b) in any level indicator entry (FD, SD) or an 01 level number entry in the
Data Division;

(c) in a section or a paragraph in the Procedure Division.

14

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

(2) The library-name may be composed of no more than eight alphanumeric
characters and a hyphen; the name must contain at least one alphabetic

6

. .___... character.

(3) No other statement or clause may appear in the same entry as the COPY
statement.

(4) The copying process is terminated by the end of the library text.

(5) Both the COPY statement and the statements of the library text to which it
refers, will appear on the output listing.

(6) The text contained on the library must not contain any COPY statements.

(7) If the REPLACING phrase is used, each occurrence of word-1, word-3, etc.,
in the text being copied from the library is replaced by the word, identifier,
or literal associated with it in the REPLACING phrase.

(8) Use of the REPLACING option does not alter the material as it appears on
the library.

(9) Word-1, word-2, etc., may be a data-name, procedure-name, condition-name,
mnemonic-name, file-name or sort-name.

(10) The literal-n may be numeric or nonnumeric, or any figurative constant
except the ALL literal.

14a
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6. 7 .8. DISPLAY

Function:

Rev. 2 6
SECTION:

The D ISP LAY statement causes low volume data to be written to an appropriate
hardware device or system memory location. It can also be used to set the UPSI
switches. (Refer to Appendix L for a detailed explanation of DISPLAY statement
usage.)

Format:

DI SP LA y{ ~itera.I-~ }f' !iter~I~2 J
zdentzher-1 I_, zdentdzer-2

[UPON mnemonic-name1

Rules:

PAGE:

(1) When the UPON option is omitted, the data is written on the console typewriter.

(2) When the UPON option is specified, the mnemonic-name must be associated with
an implementor-name in the SPECIAL-NAMES paragraph (4.2.3) in the Environment

Division.

(3) Those SPECIAL-NAMES which may be associated with the DISPLAY statement
via mnemonic-name are:

SYSCOM, SYSCONSOLE, SYSSWCH, SYSSWCH-n, SYSLST. See Table 4-1
for more detailed information.

(4) Console DISPLAYs are in 59-character multiples; each multiple is followed
by a hyphen and preceded by CDlO which indicates a £0BOL .QISPLA Y (see
Appendix L). For signed numeric items, a separate sign character is displayed
immediately following the operand.

(5) The number of printer characters displayed are in multiples of 132. An advance
of one line precedes each line of output. Each operand displayed is limited to
4092 characters. For signed numeric items, a separate sign character is dis­
played immediately following the operand.

6.7.9. DIVIDE

Function:

The DIVIDE statement divides one numeric data item into another and sets the

value of a data item equal to the results.

Formats:

Format 1:

DIVIDE j identifier-l l INTO identifier-2 [ROUNDED]
/ literal \

[;ON SIZE ERROR imperative-statement]

Format 2:

DIVIDE~ i~entifier-l l INTO l i~entifier-2 l GIVING identifier-3 [ROUNDED]
/ tzteral-1 \ -- lzteral-2 \

[; ON SIZE ERROR imperative-statement]

15

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Format]:

Rev. 1 6
SECTION:

DIVIDE~ i~entifier-l l BY ~ i~entifier-2 l GIVING identifier-3 [ROUNDED]
j Izteral-1 \ - j Iiteral-2 \

[;ON SIZE ERROR imperative-statement]

Format 4:

DIVIDE~ i.dentifier-1 l INTO~ i.dentifier-2 l GIVING identifier-3 [ROUNDED]
j Izteral-1 \ -- /11teral-2 \

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

Format 5:

DIVIDE~ i~entifier-1 l BY~ i~entifier-2 l GIVING identifier-3 [ROUNDED]
l l1teral-l \ - j Iiteral-2 \

REMAINDER identifier-4 [;ON SIZE ERROR imperative-statement]

Rules:

PAGE:

(1) Each identifier must refer to a numeric elementary item except in formats 2 and 3,

where identifiers to the right of the word GIVING may contain editing symbols.

(2) Each literal must be a numeric literal.

(3) The maximum size of each operand is 18 decimal digits.

(4) When format 1 is used, the resulting quotient replaces identifier-2.

(5) When either format 2 or 3 is used, the result is stored in identifier-3.

(6) For a description of the ROUNDED and SIZE ERROR options, see paragraph
6.6.1, Arithmetic Verbs.

(7) The composite of operands, which is the data item resulting from the superimposition

of all receiving data items aligned on their decimal points, must not contain more

than 18 digits.

(8) Formats 4 and 5 are used when a remainder from the division operation is
desired, namely identifier-4. A remainder in COBOL is defined as the result
of subtracting the product of the quotient and the divisor from the dividend.
If the ROUNDED option is specified, the quotient is rounded after the remainder
is determined.

16

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.7.10. ENTER

Function:

Rev. 2 6
SECTION: PAGE:

The ENTER statement is used in conjunction with the CALL or ENTRY statements
to permit run-time communications between the main COBOL program and COBOL
or any other language subprograms. ENTER may also be used with the EXIT
PROGRAM or RETURN options.

Formats:

Format 1:

ENTER LINKAGE.

CALL entry-name! USING Pf~locedure-name •.• J
f

data-name }

L 1 e-name
sort-name

ENTER COBOL.

Format 2:

ENTER LINKAGE.

ENTRY entry-name [USING ~unqualified data-name} ..• 1.

ENTER COBOL.

Format 3:

ENTER LINKAGE.

{
EXIT PROGRAM.}

RETURN.

ENTER COBOL.

Rules:

(1) Format 1 causes control to be transferred from one object program to another

within the run unit.

(a) Entry-name must be the external symbol of an entry point in the subprogram

being CALLed.

(b) Each of the identifiers in the USING clause of the CALL statement must
be a reference to a 77- or 01-level data item in the File, Working-Storage,
or Linkage Section of the CALLing program.

(c) Procedure-name, file-name, and sort-name can be used only if the CALLed sub­
program is written in a language other than COBOL.

(d) If the subprogram is written in COBOL, there are two ways to CALL the

subprogram, depending on the entry point of the subprogram:

17

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2
SECTION:

6
PAGE:

• If the entry point is the beginning of the Procedure Division (USING after
the division header), then entry-name in format 1 must be the same as the
PROGRAM-ID of the CALLed subprogram.

• If the entry point in the subprogram is designated by the ENTRY statement

(format 2), then the entry-name in format 1 must be the same as the entry­

name in format 2.

(e) If the CALLed program is written in assembler language, entry points are
labels specified by assembler directive ENTRY or labels of START and
CSECT assembler directives.

(2) Format 2 is used in the CALLed subprogram to designate an ENTRY point;
it may not appear in the Declaratives portion.

(a) If the CALLing program is written in COBOL, entry-name in format 2
must be the same as entry-name in format 1.

(b) Data-name can be neither qualified nor subscripted.

(c) Data-names are the names of 01- or 77-level data items specified in the
Linkage Section of this particular subprogram.

(d) The sequence of appearance of the operands in the two USING clauses
is extremely significant since corresponding operands refer to a single
common data item, i.e., correspondence is by position and not by name.
Each reference to an operand in the CAL Led program's USING clause
is treated as if it were a reference to the corresponding operand in the
USING clause of the CALLing program.

(3) Format 3 is used in the CALLed subprogram to return control to the CALLing

program.

(a) All COBOL subprograms must contain this clause.

(b) Control returns to the point in the CALLing program immediately following

the CALL statement.

(c) The EXIT PROGRAM or RETURN options are equivalent. RETURN is
included for compatibility with other COBOL implementations.

(4) See Appendix F for sample CALLing and CALLed programs.

6.7.11. ENTRY

Function:

The ENTRY statement is used in conjunction with the ENTER statement in a
CALLED program to establish an entry point.

Format:

ENTRY entry-name [USING unqualified data-name .. .J.

Rules:

See 6.7.10.

18

·--_../

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.7.12. EXAMINE

Function:

Rev. 2 6
SECTION:

The EXAMINE statement replaces or counts the number of occurrences of a given
character in a data item.

Format:

PAGE:

TALLYING LEADING literal-1 [REPLACING BY
{

ALL ~ literal-2]

UNTIL FIRS ---
EXAMINE identifier

litera 1-3 BY lit era 1-4
{

ALL }
REPLACING LEADING

[UNTIL] FIRST
'. ---

Rules:

(1) The description of the identifier must be such that USAGE IS DISPLAY
(explicitly or implicitly).

(2) Each literal must consist of a single character belonging to a class consistent

with that of identifier. A literal may be any figurative constant except ALL.

(3) Examination of identifier proceeds as follows:

(a) Nonnumeric: Examination starts at the leftmost character and proceeds to
~-~ the right; each character is examined individually.

(b) Numeric: Examination starts at the leftmost character and proceeds to
the right. Each character except the sign (which is ignored) is examined
individually.

(4) The count derived as a result of the TALLYING option is placed in a special
register called TALLY. Depending upon which option is selected, the count
represents the following:

(a) ALL option: The number of occurrences of literal~I.

(b) LEADING option: The number of occurrences of literal-I prior to encountering
a character other than literal-1.

(c) UNTIL FIRST option: The number of occurrences of characters not equal
to literal-I encountered before the first occurrence of literal-I.

(5) When either of the REPLACING options is used, the replacement rules are
as follows:

(a) ALL option: Literal-2 or literal-4 substituted for each occurrence of
literal-I or literal-3.

(b) LEADING option: The substitution of literal-2 or literal-4 terminates as
soon as a character, other than literal-1 or literal-3, is encountered.

19

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1
SECTION:

6
PAGE:

(c) UNTIL FIRST option: The substitution of literal-2 or literal-4 terminates
as soon as literal-1 or literal-3 is encountered.

(d) FIRST option: The first occurrence of literal-1 or literal-3 is replaced by
literal-2 or literal-4.

6.7 .13. EXIT

Function:

The EXIT statement provides a common end point for a series of procedures, or
marks the logical end of a called program.

Format:

EXIT [PROGRAM]

Rules:

(1) The EXIT statement must be preceded by a paragraph-name and be the only
sentence in the paragraph. The EXIT statement must appear in a sentence
by itself.

(2) The point to which control is transferred may be at the end of a range of
procedures governed by a PERFORM or at the end of a Declarative Section.
The EXIT statement is provided to enable a procedure-name to be associated
with such a point.

(3) If control reaches an EXIT statement without the optional word PROGRAM,
and no associated PERFORM or USE statement is active, control passes
through the EXIT point to the first sentence of the next paragraph.

(4) If control reaches an EXIT PROGRAM statement while operating under the
control of a CALL statement, control returns to the point in the.calling program
immediately following the CALL statement.

6.7 .14. GO TO

Function:

The GO TO statement causes control to be transferred from one part of the Procedure

Division to another. GO TO (format 3) is used as a special exit from a USE
procedure.

Formats:

Format 1:

GO TO [procedure-name]

Format2:

GO TO procedure-name-1 [, procedure-name-2] ... , procedure-name-n

DEPENDING ON identifier

Format 3:

GO TO MORE-LABELS

20

-----·

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rules:

Rev. 2 6
SECTION: PAGE:

(1) Each procedure-name is the name of a paragraph or section in the Procedure
Division of the program.

(2) Identifier is the name of a numeric elementary item described without any
positions to the right of the assumed decimal point.

(3) When format 1 is used, control is transferred to procedure-name or to another
procedure-name if the GO TO statement has been affected by an ALTER

statement.

(4) If procedure-name is omitted in format 1, an ALTER statement referring to this

GO TO statement must be executed prior to execution of this GO TO statement.

(5) In order for a GO TO statement to be ALTERable, it must be the only statement in
a paragraph. Only format 1 may be AL TERed.

(6) When a GO TO statement is AL TE Red, control is transferred to the new procedure­
name each time the GO TO statement is executed, until the GO TO statement is
AL TERed again with a different procedure-name.

(7) When format 2 is used, control is transferred to procedure-name-1, procedure-name-2,
... Jprocedure-name-n, DEPENDING ON the value of identifier being 1, 2, ... , n.
If the value of identifier is greater than n or equal to zero, control is passed to
the sentence following this statement.

(8) Format 3 causes control to be transferred from a USE procedure to the I-0

control system. The following rules apply to the GO TO MORE-LABELS
option:

(a) Format 3 can appear only within a label-processing section in the
declarative portion.

(b) When an input file is being processed, format 3 is a request to the I-0
control routine to make the next standard user label record available, and
transfer control to the beginning of the USE procedure. If there are no more
labels to be processed, control is returned to the Procedure Division.

(c) When an output file is being processed, format 3 requests the I-0 control
routine to write the label in the user label area and return control to the
first statement in the USE procedure so as to permit another label record
to be created in the user label area.

21

UP-7709
Rev. 2

6.7.15. IF

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Function:

Rev. 2 6
SECTION:

The IF statement causes a condition to be evaluated. The subsequent action of
the object program depends on whether the value of the condition is true or false.

Format:

22
PAGE:

!£condition; [THEN] {~t~~e;~~~TENCE} [; {~RWISE*} { ~t:~e;~n~~2TENCE}]
Rules:

(1) Statement-1 and statement-2 represent either a conditional statement or an
imperative statement.

(2) The NEXT SENTENCE phrase may be omitted if it immediately precedes the
terminal period of the sentence.

(3) Execution of an IF statement takes the following action:

(a) Condition TRUE: Statements immediately following the condition
(statement-1) are executed; control then passes implicitly to the next
sentence.

(b) Condition FALSE: Either statement-2 is executed or, if ELSE is
omitted, the next sentence is executed.

(4) Statement-1 and statement-2 may contain an IF statement, and the IF is
considered nested. IF statements within IF statements are considered as paired
IF and ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered is considered to apply to the immediately preceding IF that has
not been already paired with an ELSE.

(5) When control is passed to the next sentence, it is transferred to the next
sentence as written or to a return mechanism of a PERFORM or a USE
statement.

(6) The condition in an IF statement causes the object program to select between
alternate control paths, depending on the truth value of a test. There are five
possible types of conditions:

• relation condition

• class condition

• condition-name (restricted in basic compiler, see 5.3.12)

• switch-status condition

• sign condition

These conditions are discussed under rules 7 through 11.

*OTHERWISE is an extension to American National Standard COBOL.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6

The logical opera tors (extended compiler only) used in combination with
these conditions are:

• OR

• AND

• NOT

PAGE:

Table 6-1 indicates the relationship between the logical operators and conditions
A and B.

CONDITION CONDITION AND VALUE

A B IF A AND B IF A OR B IF NOT A

TRUE TRUE TRUE TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE TRUE FALSE

FALSE FALSE FALSE FALSE TRUE

Table 6-1. Logical Operator/Condition Relationships

The ways in which conditions and logical operators may be combined are shown

in Table 6-2.

FIRST SECOND SYMBOL

SYMBOL condition OR AND NOT ()

condition no yes yes no no yes

OR yes no no yes yes no

AND yes no no yes yes no

NOT yes no no no yes no

(yes no no yes yes no

) no yes yes no no yes

Table 6-2. Logical Operator/Condition Combinations

(7) Relation Condition

A relation condition causes a comparison of two operands, each of which may
be an identifier, a literal, or an arithmetic expression. General format for a
relation condition is:

{

identifier-1
litera 1-1

arithmetic-ex press ion-1
} rn laUona 1-opornlot {

identifier-2 }
literal-2
arithmetic-ex press ion-2

23

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6

The first operand is called the subject of the condition; the second operand
is called the object of the condition. The subject and object may not both be
literals. The relational-operator specifies the type of comparison to be made
in a relational condition. The relational-operators and the format in which
they are used is:

1
[NOT] GREATER THANf 1s-
[NOTl >

24
PAGE:

{

identifier-1 }
IF literal-1

arithmetic-ex press 10n-l

ISl[NOT] LESS THAN i
[NOT] .s_ ~

~ [NOT] EQUAL TO f 1s- -
{

identifier-2 }
litera 1-2
arithmetic-ex press ion-2

[NOT]~

EQUALS*
UNEQUAL*
EXCEEDS*

When relation conditions are written in a consecutive sequence, any relation
condition except the first may be abbreviated by:

(a) The omission of the subject of the relation condition, or

(b) The omission of the subject and relational operator of the relation condition.

Within a sequence of relation conditions both forms of abbreviation may be
used. The effect of using such abbreviations is as if the omitted subject
was replaced by the last preceding stated subject, or the omitted relational
operator was replaced by the last preceding stated relational operator.

Ambiguity may result from using NOT in conjunction with abbreviations.

In this event, NOT will be interpreted as a logical operator rather than as part
of a relational operator. Thus:

A> B AND NOT> C OR D

is equivalent to:

A> B AND NOT A> C OR A> D

or

A> B AND (NOT A> C) OR A> D

Comparison of the various types of operands is accomplished as follows:

(a) Numeric Operands

For numeric operands comparison is made with respect to the algebraic
value of the operands. The number of digits in the operands is not
significant. Zero is considered a unique value regardless of the sign.

*American National Standard COBOL extensions.

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6

Comparison of these operands is permitted regardless of their usage.
Unsigned numeric operands are considered positive for purposes of
comparison.

(b) Nonnumeric Operands

For nonnumeric operands or one numeric and one nonnumeric operand, a
comparison is made with respect to a specified collating sequence of
characters.

PAGE:

The size of an operand is the total number of characters in the operand.

Numeric and nonnumeric operands may be compared only when their usage
is the same. The two cases to be considered are operands of equal size
and operands of unequal size.

• Operands of Equal Size

Corresponding character positions are compared, starting from the high

order end and continuing until either a pair of unequal characters is
encountered or the low order end of the item is reached, whichever
comes first. The items are determined to be equal if all pairs of characters
are equal.

The first encountered pair of unequal characters is compared for
relative location in the UNIVAC 9400 collating sequence (see Appendix
A for hexadecimal values of characters). The operand which contains
that character which is positioned higher in the UNIVAC 9400 collating
sequence is determined to be the greater operand.

• Operands of Unequal Size

Comparison proceeds as though the shorter operand was extended on

the right by sufficient spaces to make the operands of equal size.

(c) Index-Names and/or Index Data-Items

• Two Index-Names

The result is the same as if the corresponding occurrence numbers are
compared.

• Index-Name and Data-Item or Literal

The occurrence number that corresponds to the value of the index-name
is compared to the data-item or literal, both of which must be elementary
unsigned integers.

• Index Data-Item and Index-Name or Two Index Data-Items

The actual values are compared without conversion.

The result of the comparison of an index data-item with any data-item or

literal not specified above is undefined.

25

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL Rev. 2 6
SU PPLEMEHT ARY REF EREHCE SECTION: PAGE:

(8) Class Condition

The class condition determines whether the operand is numeric or alphabetic.
The general format for the class condition is:

The operand being tested must be described, implicitly or explicitly, as
USAGE IS DISPLAY.

• Numeric Test

26

Identifier can be described as alphanumeric or numeric. If the record description
of the item being tested does not contain an operational sign, the item is con­
sidered numeric only if the contents are numeric and a sign is not present.

• Alphabetic Test

Identifier must be described as alphabetic. The item being tested is con­
sidered alphabetic only if the contents consist of any combination of the
characters A through Z and the space.

(9) Condition-Name Condition

A conditional variable is tested to determine whether its value is equal to one
of the values associated with a condition-name. In the extended compiler a
condition-name may be associated with a range(s) of values; the conditional
variable is then tested to determine whether its value falls within this range
of values.

The format for a condition-name condition is:

..!£. [NOT] condition-name

(10) Switch-Status Condition

Determines the ON or OFF status of a switch as described in 4.2.3 (10). The
condition-name specified in the ON or OFF STATUS IS option is tested in the
following format:

IF [NOT] condition-name - --
(11) Sign Condition

Determines whether the algebraic value of a numeric operand is less than,
greater than, or equal to zero. An operand is positive if its value is greater
than zero, negative if its value is less than zero, and zero if its value is
equal to zero. The format for a sign condition is:

!.E {id~ntifie: . } IS [NOT]
ar1thmet1c-express1on -- {

POSITIVE }
NEGATIVE
ZERO

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6. 7.16. INSERT

Rev. 1 6
SECTION:

The INSERT statement is available in the extended compiler only and is an
extension to American National Standard COBOL.

Function:

The INSERT statement is used to add a logical record to indexed and direct
access files.

Format:

INSERT record-name [FROM identifier-I] INVALID KEY imperative-statement

Rules:

PA GE:

(1) The INSERT verb can be used only when ACCES-5 IS RANDOM and ORGANI­
ZATION IS DIRECT or INDEXED.

(2) A file must be OPENed prior to execution of the first INSERT statement for
that file.

(3) The record-name is the name of a logical record in the File Section of the
Data Division and must not be part of a sort file.

(4) When the FROM option is used, data is moved from identifier-1 to record-name
according to the rules specified for the MOVE verb without the CORRESPOND­

ING option.

27

(5) After the INSERT is executed, information in record-name is no longer available, ~

but identifier-I information is available.

(6) The INVALID KEY is used for processing direct access files. In random
access mode, the INSERT performs the function of a SEEK statement prior
to writing. The imperative-statement is executed when the contents of the
KEY(s) being used to locate the record is found to be invalid.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY RE FERENCE

6.7.17. MOVE

Function:

Rev. 1 6
SECTION: PAGE:

The MOVE statement transfers data, in accordance with the rules of editing, to one
or more data areas.

Formats:

Format 1:

MOVE l i~entifier-l l TO identifier-2 [, identifier-3] ...
--- lzteral-J ~

Format 2:

MOVE~ CORRESPONDING i identifier-I TO identifier-2
-- /CORR (

Rules:

(1) If the CORRESPONDING option is used, selected items within identifier-1
are moved to selected items within identifier-2 according to rule (8) in 6.6.1
except that identifiers need not be numeric and may be either

(a) both elementary items, or

(b) one elementary item and one group item.

Only one identifier may appear to the right of the word TO, and the results
are the same as if the user had referred to each pair of corresponding identi­
fiers in separate MOVE statements.

(2) When moving to more than one area, the data designated by literal-1 or identifier-I
is moved first to identifier-2, then to identifier-3, etc.

(3) Any MOVE in which both the sending and receiving items are elementary items
is an elementary MOVE. Every elementary item belongs to one of the following
categories:

• numeric

• alphabetic

• alphanumeric

• numeric edited

• alphanumeric edited

28

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE SECTION:

Table 6-3 shows legal categories of sending and receiving fields:

RECEIVING

SENDING

6

Numeric Alphanumeric
Numeric Alphabetic A I phanumer ic Edited Edited

Numeric YES NO YES* YES YES*

Alphabetic NO YES YES NO YES

Alphanumeric YES YES YES YES YES

Numeric Edited NO NO YES NO YES

A I phanumer ic

Edited NO YES YES NO YES

*A numeric item whose implicit decimal point is not immediately to the right of the least

significant digit must not be moved to an alphanumeric or alphanumeric edited data item.

Table 6-3. Sending and Receiving Fields

(4) The following rules apply to legal elementary moves:

PAGE:

(a) When the receiving field is alphanumeric edited, alphanumeric, or alpha­
betic, justification and any necessary spacefilling takes place as defined
under the JUSTIFIED clause. If the size of the sending item is greater

than the size of the receiving item, the excess characters are truncated
after the receiving item is filled.

(b) When the receiving field is a numeric or numeric edited item, alignment
by decimal point and any necessary zerofilling takes place, except where

zeros are replaced because of editing requirements. If the receiving item

has no operational sign, the absolute value of the sending item is used.
Truncation occurs if the sending item has more digits to the left or right
of the decimal point than the receiving item can contain. The result at
object time is undefined if the sending item contains any nonnumeric
characters.

(c) Any necessary conversion of data from one form of internal representation
to another takes place during the move, along with any specified editing in
the receiving item.

(d) When the sending field is an edited item, it will be treated as an alphanumeric
item.

(e) An index data item cannot appear as an operand in a MOVE statement.

(5) Any MOVE that is not an elementary MOVE is treated as if it were an alpha­
numeric to alphanumeric elementary MOVE, except that there is no conversion
of data from one form of internal representation to another.

(6) The figurative constant ZERO (ZEROS, ZEROES) belongs to the numeric
category. The figurative constant SPACE (SPACES) belongs to the alphabetic
category. All other figurative constants belong to the alphanumeric category.

29

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.7.18. MULTIPLY

Function:

Rev. 1 6
SECTION:

The MULTIPLY statement causes numeric data items to be multiplied and sets
the value of a data item equal to the results.

F ormots:

Format I:

MULTIPLY

[;ON SIZE

Format 2:

) identifier-I
(literal-I

f BY identifier-2 [ROUNDED]

ERROR imperative-statement]

MUL TIPL y j identifier-I (BY l identifier-2 l
f literal-I \ - literal-2 \

GIVING identifier-3 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

Rules:

(1) Only identifier-3, in format 2 may refer to a data item that contains editing
symbols. All other identifiers must refer to numeric elementary items.

(2) Each literal must be a numeric literal.

PAGE:

(3) When format 1 is used, the initial value of identifier-1 is multiplied by the
initial value of identifier-2. The value of the multiplier (identifier-2) is replaced
by the product resulting from operation on that identifier.

(4) When format 2 is used, the initial value of identifier-1 or literal-1 is multiplied
by identifier-2 or literal-2, and the result is stored in identifier-3.

(5) The maximum size of each operand is 18 decimal digits.

(6) For a description of the ROUNDED and SIZE ERROR option, see 6.6.1.

6.7.19 NOTE

Function:

The NOTE sentence allows COBOL programmers to write commentary which will
be produced on the listing, but not compiled.

Format:

NOTE character-string.

30

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

Rev. 1 6
SECTION:

(1) Any combination of the characters from the UNIVAC 9400 System character
set may be included in the character-string.

PAGE:

(2) If a NOTE sentence is the first sentence of the paragraph, the entire paragraph
is considered to be part of the character-string,whereas a comment line. (see
Table 2-3) is not.

(3) If a NOTE sentence appears as other than the first sentence of a paragraph, the
commentary ends with the first occurrence of a period followed by a space.

6.7.20. OPEN

Function:

The OPEN statement initiates the processing of both input and output files. It

initiates checking and/or writing of labels and other input-output operations.

Format:

OPEN
OUTPUT 'file-name fWITH NO REWIND] l.
. i - \

1-0 !file-name I ...

Rules:

(1) At least one of the options INPUT, OUTPUT, or I-0 must be specified.
These options may appear in any order.

(2) The I-0 option pertains only to mass storage files.

(3) The REVERSED and NO REWIND options apply only to sequential single
ree 1 processing.

(4) The OPEN statement must be applied to all files except sort files.

(5) File-name refers to the FD name in the File Section of the Data Division.

(6) The OPEN statement for a file must be executed prior to the first READ,
INSERT, REWRITE, SEEK, or WRITE statement for that file.

(7) A second OPEN statement for a file must not be executed prior to the
execution of a CLOSE statement for that file.

(8) The OPEN statement does not obtain or release the first data record. When
checking or writing labels, the user's beginning label subroutine will be ex­

ecuted if one has been specified by a USE statement.

31

UP-7709
Rev. 2

~-----

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.7.21. PERFORM

Function:

Rev. 1 6
SECTION: PAGE:

This verb permits a temporary departure from the normal sequence of execution in
order to execute one or more procedures, either a specified number of times or until
a specified condition is ',satisified, after which control is automatically returned to
the normal sequence. Formats 3 and 4 are available only in the extended compiler.

Formats:

Format 1:

PER F 0 RM procedure-name-1 [TH RU procedure-name-2]

Format2:

PERFORM procedure-name-I [THRU procedure-name-2] ~!dentifier-ll TIMES
finteger-1 ~

Format 3:

PERFORM procedure-name-1 [TH RU procedure-name-2] UNTIL condition-1

Format 4:

PER FORM procedure-name-1 [TH RU procedure-name-2]

VARY ING .I ~ndex_-~ame-l · FROM literal-2
r . ·l {index-name-2}

lzdentdier-1 J 'd .1. 2 I entz zer-

(literal-3 l I ..
BY 't 'd .1.

3
(UNT L condztzon-1

- 1 entz zer- J ---

!AFTER (~ndex:~ame-4 -~FROM r--- l zdentzfzer-4 j ---

f index-name-5)
\literal-5 \
!. identifier-5)

{
literal-6 } .. BY .d ·t· 6 UNTIL condztwn-2

- 1 entz zer-

~
f . . { index-name-8'}

AFTER '~ndex_-~ame-7 t, FROM literal-8 l zdentzfzer-7 J --- 'd 'f' 8 . 1 entz zer-

By j literal-9 l
- l. identifier-9 r
Rules:

LINT I l condWon-~]

(1) Each procedure-name is the name of a section or paragraph in the Procedure

Division.

(2) Each identifier represents a numeric elementary item described in the Data
Division. In format 2, and format 4 with the AFTER option, each identifier
represents a numeric item with no positions to the right of the assumed decimal

point.

32

UP-7709
Rev. 2

UNIVAC 940.0 COBOL
SUPPLEMENT ARY RE FERENCE

(3) Each literal represents a numeric literal.

SECTION:

6
PAGE:

(4) When the PERFORM statement is executed, control is transferred to the first
statement after procedure-name-1. An automatic return to the statement following
the PERFORM statement is established as follows:

(a) If procedure-name-1 is a paragraph-name and procedure-name-2 is not specified,
return is after the last statement of procedure-name-1.

(b) If procedure-name-1 is a section name and procedure-name-2 is not specified,
return is after the last statement of the last paragraph in procedure-name-1.

(c) If procedure-name-2 is a:

• paragraph-name, return is after the last statement of the paragraph,

• section-name, return is after the last sentence of the last paragraph in

the section.

(5) If there are two or more direct paths to a return point in a group of procedures

being PERFORMed, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all these paths must lead. If control
passes to these procedures by means other than a PERFORM statement,
regardless of use of EXIT, control passes through the last statement of the
procedure to the following statement.

(6) Format 1 is the basic PERFORM statement. A procedure referred to by this type
PERFORM is executed once after which control is passed to the statement
following the PERFORM statement.

(7) Format 2 is the TIMES option. When the TIMES option is used, the procedures
are PERFORMed the number of times specified by identifier-1 or integer-1.
Control is then transferred to the statement following the PERFORM statement.
The value of identifier-1 or integer-1 must not be negative, and if the value is
zero, control passes immediately to the statement following the PERFORM
statement. Once the PERFORM statement has been initiated, any reference to
identifier-1 has no effect in varying the number of times the procedures are

executed.

(8) Format 3 is the UNTIL option. The specified procedures are PERFORMed
until the condition specified by the UNTIL option is true. Then, control is
transferred to the statement following the PERFORM statement. Note that
if the condition specified by the UNTIL option is true at the beginning of
the execution of the PERFORM statement, control passes to the statement
following the PERFORM statement.

(9) Format 4 is the VARYING option. This option is used to change the value of
one or more identifiers or index-names during the execution of a PERFORM
statement. When index-names are used, the FROM and BY clauses have the
same effect as in a SET statement. In rules 10 through 12, reference to iden­
tifier as the object of VARYING and FROM phrases also refers to index-name.

33

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

(IO) When one identifier is varied:

6
SECTION:

(a) Identifier-I is set to its initial value, either identifier-2 or literal-2.

PAGE:

(b) If condition-I is false, the sequence of procedures is executed once, and
the value of identifier-I is incremented or decremented by identifier-3 or

literal-3, and condition-I is evaluated again. This cycle continues until
condition-I is true, after which control is passed to the statement following
the PERFORM statement.

(c) If condition-I is true at the beginning of execution of the PERFORM
statement, control passes directly to the statement following the PERFORM
statement.

(11) When two identifiers are varied:

(a) Identifier-I and identifier-4 are set to their initial values, identifier-2 and
identifier-5, respectively. During execution, these initial values must be
positive.

(b) Condition-I is evaluated. If true, control is passed to the statement following
the PERFORM statement. If false, condition-2 is evaluated.

(c) If condition-2 is false, the sequence of procedures is executed once, after
which identifier-4 is changed by identifier-6, and condition-2 is evaluated
again. This cycle continues until condition-2 is true.

(d) When condition-2 is true, identifier-4 is set to its initial value (identifier-5),
identifier-I is changed by identifier-3, and condition-I is reevaluated.

(e) The PERFORM statement is completed when condition-I is true; if false,
the cycle continues until condition-I is true.

(f) Figure 6-I illustrates the logic of the PERFORM statement when two
identifiers are varied:

In = identifier

Ln = literal

en = condition

Pn =procedure-name

(g) At the termination of this PERFORM statement, identifier-4 contains its
initial value, while identifier-I contains a value that differs from the last
used setting by an increment or decrement depending on identifier-3. If
condition-I was true when the PERFORM statement was initiated, identifiers-I
and -4 contain their initial values.

34

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

SET

t1 to 12 [L2]

14 to 15 [L 5]

EXECUTE

VARY

Figure 6-1. PERFORM Logic: Varying Two Identifiers

(12) When three identifiers are varied:

6
SECTION: PAGE:

VARY

(a) Logic is the same as for two identifiers, except that identifier-7 goes
through a complete cycle each time identifier-4 is changed by identifier-6
which, in turn, goes through a complete cycle each time identifier-I is
varied.

(b) Figure 6-2 illustrates the logic of the PERFORM statement when three
.identifiers are varied:

In = identifier

Ln = literal

en= condition

P n = procedure-name

At the termination of this PERFORM statement, identifier-4 and identifier-7
contain their initial values, while identifier-1 contains a value that differs
from the last used setting by an increment or decrement depending on
identifier-3. If condition-1 was true when the PERFORM statement was
initiated, identifier-1, identifier-4, and identifier-7 each contains its
initial value.

35

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 6
SECTION:

(13) A PERFORM statement within a section which has a priority number less
than the SEGMENT-LIMIT can have within its range only the following:

(a) Sections with priority numbers of less than 50.

(b) Sections wholly contained in a single segment whose priority number
is greater than 49.

PAGE:

(14) A PERFORM statement that appears in a section which has a priority number
greater than the SEGMENT-LIMIT can have within its range only the
following:

(a) Sections with the same priority number as the section containing the
PERFORM statement.

(b) Sections with a priority number less than the SEGMENT-LIMIT.

(15) Independent segments are made available in their initial state. Fixed
overlayable segments are made available in their last used state.

SET

11 to 12 or L
2

14 to 15 or L 5
17 to1 8 orL 8

EXECUTE

pl I THRU P2i

[-~ VARY

_ ~~ by 18 or L 8

TRUE

TRUE

TRUE
EXIT

INITIALIZE

-J VARY

t4 byl
6

orL
6

INITIALIZE

Figure 6-2. PERFORM Logic: Varying Three Identifiers

VARY

36

·-..........-

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 6
SECTION:

(16) If a sequence of statements referred to by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with
the included PERFORM must itself either be totally included in, or totally
excluded from, the logical sequence referred to by the first PERFORM.
Thus, an active PERFORM statement, whose execution begins within the
range of another active PERFORM statement, must not allow control to
pass to the exit of the other PERFORM statement; furthermore, two or more
such active PERFORM statements may not have a common exit.

6.7.22. READ

Function:

PAGE:

For sequential file processing, the READ statement makes available the next
logical record from an input file and allows performance of a specified imperative­
statement when end of file is detected.

For mass storage files in the random access mode, the READ statement makes
available a. specific record from a direct access device, and allows performance
of a specified imperative-statement if the contents of the associated KEYS are
found to be invalid.

Format:

(AT END I
READ file-name RECORD [INTO identifier] ·I INVALID KEYJ imperative-statement

Rules:

(1) An OPEN statement must be executed for a file prior to the execution of the
first READ statement for that file.

(2) When a file consists of more than one type of record, the records automatically

share the same storage area.

(3) If, while processing a sequential file, the logical end of the file is reached
during the execution of a READ statement, the statement specified in the AT
END phrase is executed. After the execution of this phrase, a READ statement

for that file must not be initiated without prior execution of a CLOSE and an
OPEN statement for that file.

(4) If an OPTIONAL file is not present, the imperative-statement in the AT END
phrase is executed on the first READ.

(5) The READ statement performs the functions of the SEEK statement implicitly for
random access files.

(6) If a direct access file (INPUT or 1-0) in the random access mode is contained
on more than one physical unit, any end of unit procedures are the responsibility
of the user.

(7) The INTO option may be used only when the input file contains just one size

record, and file.-name cannot be the name of a sort file. Moving INTO will be

performed according to the rules specified for the MOVE verb, without the
·.._. CORRESPONDING option.

(8) Data items of a logical record cannot be accessed prior to the READ of the
associated record. (The record area may not be accessed prior to a READ.)

37

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.7.23. RELEASE

Function:

Rev. 1 6
SECTION: PA GE:

The RELEASE statement, available with the extended compiler only, transfers records

to the initial phase of a sort operation.

F ormot:

REL EASE record-name [FROM identified

Rules:

(1) Record-name must be named in the DATA RECORDS clause of its associated

sort file.

(2) Identifier in the FROM option must refer to a data item in Working-Storage or

in an input record area.

(3) The identifier and record-name must name different data items.

(41 If the FROM option is used, the contents of identifier is moved to record-name,
then the contents of record-name is released to the sort file. Moving takes place
according to the rules specified for the MOVE statement without the CORRESPOND•­
ING option. The information in the record area is no longer available, but the

information in identifier is available.

6.7.24. RETURN

Function:

The RETURN statement, available with the extended compiler only, obtains
sorted records from the final phase of the sort operation.

Format:

RETURN file-name RECORD [INTO identifier] AT END imperative-statement

Rules:

(1) File-name must be a sort file with an SD entry in the Data Division.

(2) A RETURN statement may only be used within the range of an output procedure

associated with a SORT statement for file-name.

(3) The identifier in the INTO option must be the name of a Working-Storage area
or output record area, and the output file must. contain only one type of record.

The data is available in both the output record area and the identifier area.

(4) The execution of a RETURN statement causes the next record to be made
available in the order specified by the KEYs listed in the SORT statement for

processing in the record area associated with the sort file.

(S) Moving is performed according to the rules specified for the MOVE statement
without the CORRESPONDING option.

(6) After execution of the AT END phrase, no RETURN statements may be exe­
cuted within the current output procedure.

38

-~-··

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6. 7 .25. REWRITE

Function:

Rev. 2 6
SECTION:

This verb is an extension to American National Standard COBOL. It performs the
same function as the WRITE statement and is provided for compatibility only.

Formats:

Format 1:

REWRITE record-name [FROM identifier]

Format 2:

REWRITE record-name[~ identifier] INVALID KEY imperative-statement

Rules:

(1) A file must be OPENed prior to execution of the first REWRITE statement
for that file.

(2) The record-name is the name of a logical record in the File Section of the
Data Division and must not be part of a sort file.

PAGE:

(3) When the FROM option is used, data is moved from identifier-1 to record-name
according to the rules specified for the MOVE verb without the CORRESPOND­
ING option.

(4) After the REWRITE is executed, information in record-name is no longer
available, but identifier-1 information is available.

(5) The INVALID KEY option in format 2 is used for processing direct access files.

(a) In sequential access mode, the imperative-statement is executed when the
end of the last segment of the file is reached and an attempt is made to
execute a REWRITE for that file.

(b) In random access mode, the REWRITE performs the function of a SEEK
statement prior to writing. The imperative-statement is executed when
the contents of the KEY(s) being used to locate the record is found to be
invalid.

39

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

6.7.26. SEARCH

Function:

Rev. 2 6
SECTION: PAGE:

The SEARCH statement is used to search a table for a table-element that satisfies
the specified condition and to adjust the associated index-name to indicate that
table-element.

Formats:

Format 1:

SEARCH identifier-1 [VARYING l ·inde~-~ame-l l]
zdentzher-2 \

[; AT END imperative-statemen t-1]

WHEN d .t. 1 l imperative-statement-2 l
con 1 zon= NEXT SENTENCE \

d . . 2 j imperative-statement-3 l J
con ztzon- l NEXT SENTENCE \ l WHEN

Format 2:

SEARCH ALL identifier-1 [; AT END imperative-statement-1]

d .t. 1 j imperative-statement-2 l
; WHEN con z zon- l NEXT SENTENCE \

Rules:

(1) In both formats 1 and 2, identifier-1 must not be subscripted or indexed, but its
description must contain an OCCURS clause and an INDEXED BY clause. The
description of identifier-1 in format 2 must also contain the KEY IS phrase in
its OCCURS clause.

(2) Identifier-2, when specified, must be described as USAGE IS INDEX or as a
numeric elementary data item without any positions to the right of the assumed
decimal point.

(3) In format 1, condition-1, condition-2, etc., may be any condition as described
in 6. 7 .15.

(4) In format 2, condition-1 may consist of a relation condition incorporating the
relation EQUALS or EQUAL TO or equal sign, or a condition-name condition,
where the VALUE clause that describes the condition-name contains only a
single literal. Alternatively, condition-1 may be a compound condition formed
from simple conditions of the type just mentioned, with AND as the only
connective. Any data-name that appears in the KEY clause of identifier-1
may appear as the subject or object of a test or be the name of the conditional
variable with which the tested condition-name is associated; however, all
preceding data-names in the KEY clause must also be included within condition-1.
No other tests may appear within condition-1.

40

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE SECTION:

6
PAGE:

(5) If format 1 of the SEARCH is used, a serial type of search operation takes place,
starting with the current index setting.

(a) If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-1 contains a value that corresponds to an
occurrence number that is greater than the highest permissible occurrence
number for identifier-1, the SEARCH is terminated immediately. Then, if
the AT END phrase is specified, imperative-statement-1 is executed; if
the AT END phrase is not specified, control passes to the next sentence.

(b) If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-1 contains a value that corresponds to an
occurrence number that is not greater than the highest permissible occurrence
number for identifier-1 the SEARCH statement operates by evaluating the
conditions in the order that they are written, making use of the index settings,
wherever specified, to determine the occurrence of those items to be tested.
If none of the conditions are satisified, the index-name for identifier-1 is
incremented to obtain reference to the next occurrence. The process is
then repeated using the new index-name settings unless the new value of
the index-name settings for identifier-1 corresponds to a table element
which exceeds the last element of the table by one or more occurrences, in
which case the search terminates as indicated in Sa. If one of the conditions
is satisfied upon its evaluation, the search terminates immediately and the
imperative statement associated with that condition is executed; the index­
name remains set at the occurrence which caused the condition to be
satisfied.

(6) In a format 2 SEARCH, the results of the SEARCH ALL operation are predictable
only when the data in the table is ordered in the same manner as described in
the ASCENDING/DESCENDING KEY clause associated with the description of
identifier-1.

(7) If format 2 of the SEARCH is used, a nonserial type of search operation takes
place, in which case the initial setting of the index-name for identifier-1 is
ignored and its setting is varied during the search operation using a binary
search technique.

If condition-1 cannot be satisfied for any setting of the index within this
permitted range, control is passed to imperative-statement-1 when the AT
END phrase appears, or to the next sentence when this phrase does not
appear; in either case the final setting of the index is set to the first occur­
rence. If condition-1 can be satisfied, index indicates an occurrence that
allows condition-1 to be satisfied and control passes to imperative-statement-2.

(8) After execution of an imperative-statement-1, imperative-statement-2, or impera­
tive-statement-3 that does not terminate with a GO TO statement, control passes
to the next sentence.

(9) In format 2, the index-name that is used for the search operation is the first
(or only) index-name that appears in the INDEXED BY clause of identifier-1.
Any other index-names for identifier-1 remain unchanged.

40a

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6
PAGE:

(10) In format 1, if the VARYING phrase is not used, the index-name that is used
for the search operation is the first (or only) index-name that appears in the
INDEXED BY clause of identifier-1. Any other index-names for identifier-1
remain unchanged.

(11) In format 1, if the VARYING index-name-1 phrase is specified, and if index­
name-1 appears in the INDEXED BY clause of identifier-1, that index-name
is used for this search. If this is not the case, or if the VARYING identifier-1
phrase is specified, the first (or only) index-name given in the INDEXED BY
clause of identifier-1 is used for the search. In addition, the following opera­
tions will occur:

(a) If the VARYING index-name-1 phrase is used, and if index-name-1 appears
in the INDEXED BY clause of another table entry, the occurrence number
represented by index-name-1 is incremented by the same amount as, and
at the same time as, the occurrence number represented by the index-name
associated with identifier-1 is incremented.

(b) If the VARYING identifier-2 phrase is specified, identifier-2 is incremented
by the same amount as, and at the same time as, the occurrence number
represented by the index-name associated with identifier-1 is incremented.
If identifier-2 has a USAGE IS INDEX clause, it is assumed to contain a
value appropriate as an index setting for identifier-1.

(12) If identifier-1 is a data item subordinate to a data item that contains an OCCURS
clause (providing for a two- or three-dimensional table), an index-name must be
associated with each dimension of the table through the INDEXED BY phrase
of the OCCURS clause. Only the setting of the index-name associated with
identifier-1 (and the data item identifier-2 or index-name-1, if present) is modi­
fied by the execution of the SEARCH statement. To search an entire two- or
three-dimensional table it is necessary to execute a SEARCH statement several
times. Prior to each execution of a SEARCH stat~ment, SET statements must
be executed whenever index-names must be adjusted to appropriate settings.

(13) Format 2 is available only in the extended compiler.

A diagram of the Format 1 SEARCH operation containing two WHEN phrases follows.

40b

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

INDEX SETTING: >
HIGHEST PE RMI SSI BL E ,__ ___ A_T_E_N_D_* __ -i

OCCURRENCE
NUMBER

<

CONDITION-1

FALSE

CONDITION°2

FALSE

INCREMENT INDEX­
NAME FOR IDENTI­

FIER-I (INDEX-NAME-I
IF APPLICABLE).

INCREMENT INDEX­
NAME-1 (FOR A

DIFFERENT TABLE)
OR IDENTI Fl ER-2.

TRUE

TRUE

*

*

IMPERATIVE­
STATEMENT0l

IMPERATIVE­
STA TEMEN T-2

IMPERATIVE­
STATEMENT-3

6
SECTION:

*These operations are options included only when specified in the SEARCH statement.

** Each of these control transfers is to the next sentence unless the imperative-statement
ends with a GO TO statement.

Figure 6-3. SEARCH Logic

6.7.27. SEEK

Function:

PAGE:

**

The SEEK statement initiates access of a mass storage data record for subsequent
reading or writing and is available only in the extended compiler.

Format:

SEEK file-name RECORD

40c

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

SECTION:

(1) A SEEK statement pertains only to the disc files as specified in the
following chart.

ORGANIZATION ACCESS
SEEK ALLOWED

TYPE METHOD

SEQUENTIAL SEQUENTIAL NO

SEQUENTIAL
RELATIVE

RANDOM

SEQUENTIAL YES
DIRECT

RANDOM

SEQUENTIAL
INDEXED

RANDOM NO

6
PAGE:

(2) The value of the identifier in the ACTUAL KEY clause is used by SEEK to
determine the location of the record to be accessed when ORGANIZATION is
RELATIVE or DIRECT. When ORGANIZATION IS INDEXED, the value of
the identifier in the ACTUAL or SYMBOLIC key clause is used.

(3) Two SEEK statements for the same file may logically follow each other. Any
validity check associated with the first SEEK is negated by the execution of

a second SEEK statement.

6.7.28. SET

Function:

The SET statement establishes reference points for table handling operations by
setting index-names associated with table elements.

Formats:

Format 1:

1
. index-name-1 }'

SET identifier-1

. rndex-data-item-1 [

index-name-2 J
identifier-2

index-da ta-item-2
TO

f
literal-1 t' index-name-3
identifier-]

\ index-data-item-3

Format 2:

SET index-name-1 [' index-name-2] ... {UP BY } {literal-l } DOWN BY identifier-1

40d

UP-7709
Rev. 2

·---··

UN1V AC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6
PA GE:

Rules:

(1) All identifiers must be either index data items or numeric elementary items
described as unsigned without any positions to the right of the assumed decimal

point, except that identifier-1 in format 2 must not be an ind ex-data-item.

(2) All literals must be positive integers.

(3) All index-names are considered related to a given table and are defined by
being specified in the INDEXED BY clause.

(4) In format 2, the contents of index-name-1, index-name-2 ... are incremented
(UP BY) or decremented (DOWN BY) by a value that corresponds to the number
of occurrences represented by the value of identifier-I or literal-1.

(5) The following paragraphs explain the allowable combinations of choices in the
SET statement:

(a) SET index-name-1 TO index-name-2

The occurrence number value of index-name-2 is used to compute a new
displacement value for index-name-1. Also, the occurrence number value
of index-name-2 replaces that of index-name-1. If "length of one occurrence"
is the same for both, no computation is necessary.

(b) SET index-name TO index-data-item

(c)

Same as (a), except that no computation takes place. If the value contained
in the index-data-item does not correspond to an occurrence number of an
element in the table indexed by index-name, the result is undefined.

SET index-name TO j 11.~tentilfier l -- --1 r era \

When identifier or literal is a numeric data item and USAGE is not INDEX.
The value of identifier or literal is treated as an occurrence number and is

used to compute a new displacement value for index-name. Identifier or
literal must be elementary unsigned integer. Also, the value of identifier
or literal replaces the occurrence number value of index-name.

(d) SET index-data-item-1 TO j ~nddex-ndamt e 't
2
l -- --1 rn ex- a a-1 em- \

MOVE with no conversion is executed. Index-data-item-1 has no associated
table element length; therefore, there is no unique displacement value for a
given occurrence number value.

(e) SET identifier TO index-name

The value of the occurrence number of index-name replaces the value of
identifier with appropriate conversion to the data type of identifier; i.e.,
conversion of binary occurrence number to packed decimal. Rules for MOVE
statement with integer numeric sending field apply. Identifier must be a
numeric data item, an alphanumeric data item, or a group item.

41

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2

(6) Internal format of index-name and index-data-item:

DESCRIPTION OCCURRENCE NUMBER DISPLACEMENT
OF CONTENTS IN BINARY IN BINARY

format 32 bi ts 32 bi ts

range 0 to 65,535 0 to 65,535

M111~~----- 8 bytes --------~1

6
SECTION:

Index-name items are word aligned, but index-data-items are not aligned.

(7) Formula for calculating displacements for index-name:

Displacement = (occurrence-number-1) X (length of one occurrence)

6.7 .29. SORT

Function:

The SORT statement creates a sort file by executing input procedures or by
transferring records from another file. It sorts the records in the sort file on a
set of specified keys, and makes each record from the sort file (in sorted order)
available to some output procedures or to an output file. SORT is available only
with the extended compiler.

For mat:

SORT file-name-1 ON j DESCENDING}
lASCENDING

KEY f data-name-1} .,

[{
DESCENDING} { } , ON ASCENDING KEY data-name-2 . J ...

{
INPUT PROCEDURE IS section-name-1 [THRU section-name-2]}
USING file-name-2

{
OUTPUT PROCEDURE IS section-name-3 [THRU section-name-4]}
GIVING file-name-3

Rules:

(1) F ile-name-1 must be described in an SD entry in the Data Division.

PAGE:

(2) Each data-name must represent data items described in records associated
with file-name-1. Numeric display key items may not exceed 16 digits; other
key items must not exceed 256 characters. Key data-names may not be des­
cribed with an OCCURS clause nor may they be subordinate to an entry which
contains an OCCURS clause.

(3) Section-name-1 and section-name-3 are names of an input and output procedure,
respectively.

(4) F ile-name-2 and file-name-3 must be described in an FD entry in the Data
Division. They may not be described in an SD entry. However, the record
format of file-name-2 and/or file-name-3 must be that specified for the sort
file. The size of the logical record(s) described for file-name-2 and file-name-
3 must be equal to the size of the logical record(s) described for file-name-1.
File-name-2 and file-name-3 may not be described as containing undefined
format records (RECORDING MODE IS U).

42

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

6
PAGE:

(5) A SORT statement may appear more than once in the Procedure Division of a
program, but may not appear in the Declarative Section or in the input and

output procedures associated with a SORT statement.

(6) INPUT PROCEDURE

(a) Must consist of one or more consecutive sections that do not form a part of
any output procedure.

(b) Must include at least one RELEASE statement in order to transfer records
to the sort file.

(c) RELEASE statements in the input procedure have no meaning unless they
are controlled by a SORT statement; therefore, control must not be passed
to the input procedure except when a related SORT statement is being
executed.

(d) The input procedure can include any procedures needed to select, create,
or modify records.

(e) The input procedure must not contain any SORT statements.

(f) ALTER, GO TO, and PERFORM statements are not permitted to refer to
procedure-names outside the input procedure.

(g) ALTER, GO TO, and PERFORM statements in the remainder of the Procedure
Division must not refer to procedure-names within the input procedure.

(7) OUTPUT PROCEDURE

(a) Must consist of one or more consecutive sections that do not form a part
of any input procedure.

(b) Must include at least one RETURN statement in order to make sorted
records available for processing.

(c) RETURN statements in the output procedure have no meaning unless they
are controlled by a SORT statement; therefore, control must not be passed
to the output procedure except when a related SORT statement is being
executed.

(d) The output procedures can include any procedures needed to select, modify,
or copy the records that are being returned one at a time in sorted order, from
the sort file.

(e) Rules 6 (e), 6 (£), and 6 (g) also apply to the output procedures.

(8) When the ASCENDING clause is used, the sorted sequence is from lowest
value of KEY to highest value according to the UNIV AC 9400 System character
collating sequence shown in Appendix A. The sorted sequence is reversed when
the DESCENDING clause is used. In the format, data-name-1 is the most signifi­
cant key, data-name-2 is the next most significant key, and so on.

43

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 3
SECTION:

6 44
PAGE:

(9) The Record Description for every sort file must contain the KEY items data-name-1,
data-name-2, and so on. When the KEY item appears in more than one record, the ·-.____/
data descriptions must be equivalent and their starting position must always be the
same number of character positions from the beginning of each record. Numeric
display key items must not exceed 16 digits. Other key items must not exceed 256
characters.

(10) If INPUT PROCEDURE is specified, control is passed to section-name-1 before
file-name-1 is sequenced by the SORT statement. When control passes the last
statement of the input procedure, the records that have been released to file­

nam e-1 are so rt ed.

(11) If the USING option is specified, all the records in the file-name-2 are transferred
to the file-name-1. The SORT statement automatically performs the function of
the OPEN, READ, USE, and CLOSE statements for file-name-2. File-name-2
must be a sequential access file.

(12) If OUTPUT PROCEDURE is specified, control passes to section-name-3 after
file-name-1 has been sequenced by the SORT statement. When control passes
the last statement of the output procedure, the sort is terminated and control
is passed to the next statement after the SORT statement. The RETURN
statements in the output procedure are the requests for the next sorted record.

(13) If the GIVING option is specified, all the sorted records in file-name-1 are
transferred to file-name-3 as the implied output procedure for this SORT
statement. File-name-3 is automatically opened before transferring the records
and closed after the last record in the sort file is returned. File-name-3 must
be a sequential access file.

6.7.30. STOP

l - ·--------

Function:

To halt the object program permanently or temporarily, with or without a display of

a literal.

Format:

STOP j literal (

--1 RUN I
Rules:

(1) Literal may be numeric or nonnumeric, or any figurative constant except ALL.

(2) Literal is communicated to the operator through the typewriter console, and
continuation of the program begins with the execution of the next statement
after the STOP statement. The literal option is equivalent to a DISPLAY
statement, but requires a reply from the operator to continue the program.

For example, the error routine

SEQ-ERROR.
STOP 'CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE

CARDS IN READER, ANSWER R WHEN READY'.

will cause the literal to be DISPLAYed as follows:

CDlO CARDS OUT OF SEQUENCE, CORRECT SEQUENCE, REPLACE
CARDS IN - CDlO READER, ANSWER R WHEN READY.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

This will be followed by

CAlO ACCEPT READY

Rev. 2

and program operation is suspended pending operator reply.

6
SECTION:

(3) When the RUN option is used, the object program is halted permanently;
therefore, when this option appears in an imperative statement, it should
appear as the only, or the last, statement in a sequence of imperative state­
ments.

6.7.31. SUBTRACT

Function:

The SUBTRACT statement allows the programmer to subtract one, or the sum of
two or more, numeric data items from one or more items, and to set the values of
one or more items equal to the results.

Formats:

Format 1:

SUBTRACT { literal-1 } [' literal-2 J
identifier-1 , identifier-2 · ' '

FROM identifier-m [ROUNDED][identifier-n [ROUNDED]]

[;ON SIZE ERROR imperative-statement]

Format 2:

SUBTRACT { ~itera:-: } [' ~itera:-~ J
1dent1her-l , 1dentdier-2 '' ·

FROMf.litera.l~m } GIVING identifier-n [ROUNDED]
---i1dent1her-m

[; ON SIZE ERROR imperative-statement]

Format 3:

SUB TRACT { ~ESPONDING} identifier-1

FROM identifier-2 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

Rules:

(1) When format 1 is used, all literals and identifiers preceding the word FROM

PA GE:

are added together and this total is subtracted from identifier-m, identifier-n,
etc., and the result of the subtraction is stored as the new value in identifier-m,
identifier-n, etc.

45

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 6
SECTION:

(2) The maximum size of each operand is 18 decimal digits. The composite of
operand, which is that data item resulting from the superimposition of all
operands, excluding the data item that follows the word GIVING, aligned on
their decimal points, must not contain more than 18 digits.

PAGE:

(3) In format 2, identifier-n may refer to a data item that contains editing symbols.
All other identifiers must refer to numeric elementary items.

(4) When format 2 is used, all literals or identifiers preceding the word FROM are
added together, and this total is subtracted from literal-m or identifier-m; then
the .result of the subtraction is stored as the new value in identifier-n.

(5) If format 3 is used, data items under identifier-1 are subtracted FROM and
stored in CORRESPONDING data items under identifier-2.

(6) For a description of the ROUNDED, SIZE ERROR, and CORRESPONDING
options, see 6.6.1.

6.7.32. TRANSFORM

Function:

The TRANSFORM statement may be used to alter characters of an identifier accord­
ing to a user-defined transformation rule or table. It may also be used to effect
code base translation between EBCDIC and ASCII via compiler supplied tables.

Formats:

Format 1:

TRANSFORM identifier-3 [, identifier-4] . .. CHARACTERS

l
identifier-I f

FROM nonnumeric-literal-1
figurative-cons tan t-1 l

identifier-2 f
TO nonnumeric-literal-2

figurative-cons tan t-2

Format 2:

TRANSFORM identifier-3 [, identifier-4] . •. CHARACTERS

l EBCDIC TO ASCII i
FROM ASCII TO EBCDIC\

Format 3:

TRANSFORM identifier-3 [, identifier-4] . .. CHARACTERS

l ~~ f identifier-5

46

___ ./

UP-7709
Rev. 2

·--···

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

Rev. 1
6

SECTION:

(1) All identifiers used in this statement must be described either explicitly or
implicitly as USAGE IS DISPLAY. Identifier-1, identifier-2, or identifier-5
may not be variable length operands.

PAGE:

(2) The least significant digit position of a signed numeric DISPLAY item without
a SEPARATE SIGN clause is treated as a single character, not a signed digit.

(3) In format 1, identifier-1 and identifier-2 must not exceed 256 characters in
length. The length of identifier-2 must be either equal to the length of
identifier-1, or have a length of 1 character.

(4) In format 1, nonnumeric-literals must be enclosed in quotation marks (or
apostrophes).

(5) In format 1, all figurative-constants are permitted except ALL nonnumeric­
literal.

(6) In format 1, a character must not be duplicated in identifier-1 or in nonnumeric­
literal-1.

(7) In format 3, identifier-5 must have a length of 256 characters.

(8) The following paragraphs explain the allowable combinations of choices in
the TRANSFORM statement.

(a) The following rules apply to these combinations in format 1:

identifier-1 TO identifier-2

identifier-1 TO nonnumeric-literal-2

nonn umeric-literal-1 TO iden tifier-2

nonnumeric-literal-1 TO nonnumeric-literal-2

nonnumeric-literal-1 TO figurative-constant-2

identifier-1 TO figurative-constant-2

• If the FROM and the TO operands have the same length, any occurrence in
identifier-3, identifier-4, and so on, of a character (or the single character)
in operand-1 is replaced by the character in the corresponding position (or
the single character) of operand-2.

• If the FROM operand exceeds one character and the TO operand is only
one character, any occurrence in identifier-3, identifier-4, and so on, of
any character in operand-1 is replaced by the single character in operand-2.

(b) The following rule applies to these combinations in format 1:

figurative-constant-1 TO identifier-2

figurative-constant-1 TO nonnumeric-literal-2

figurative-cons tan t-1 TO figurative-cons tant-2

• Length of operand-1 and operand-2 is one character. Any occurrence in
identifier-3 of the single character in operand-1 is replaced by the single
character in operand-2.

46a

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

(c) The following applies to format 2:

Rev. 1 6

SECTION:

• Identifier-3 is transformed from ASCII to EBCDIC or from EBCDIC to
ASCII depending on the FROM and TO operands according to the table
contained in Appendix N.

(d) The following rules apply to format 3:

• Identifier-3 may be described as any length up to a maximum of
65,535 characters.

• Identifier-5 is a 0-255 binary value positional translate table, i.e.,
any character in identifier-3 with a binary value of 0, will be
transformed to the character in the first position of identifier-5; any
character in identifier-3 with a binary value of 1, will be transformed
to the character in the second position of identifier-5, etc.

(9) The TRANSFORM verb is an extension to ANS COBOL.

6.7.33. USE

Function:

PAGE:

The USE statement specifies procedures for input-output label and error handling
that are in addition to the standard procedures specified by the input-output system.
The three format options available are:

• Label writing and checking

• Error checking

• Printer form-overflow

Format 3 is an extension to American National Standard COBOL.

Formats:

Formatl:

USE J BEFORE l STANDARD [BEGINNINGl FILE , [REELJ
-).AFTER j ENDING J UNIT

{

file-name-1 [, file-name-2] •• ·i
INPUT

LABEL PROCEDURE ON OUTPUT •

1-0

Format 2:

1
file-name-1 r, file-name-2] •• ·t.

USE AFTER STANDARD ERROR PROCEDURE ON ~N:TUPTUT
U>

46b

__ ,.,/

'---"'
Format 3:

USE FOR FORM-OVERFLOW ON file-name-1.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rules:

Rev. 3 6
SECTION: PAGE:

(1) A USE statement must immediately follow a section header in the Declaratives
portion of the Procedure Division, and must be followed by a period. The remainder
of the section must consist of one or more procedural paragraphs that define the
procedures to be used.

(2) The USE statement defines the conditions calling for the execution of the USE
procedures, and the USE statement itself is never executed.

(3) When format 1 is used:

(a) If the file-name option is present, the FD entry for file-name-1 must contain
a LABEL RECORDS ARE data-name clause.

(b) If BEGINNING or ENDING is omitted, the designated procedures are
executed for both beginning and ending labels. Ending is not applicable
for direct access files whose organization is other than sequential.

(c) If the REEL/UNIT clause is used, the designated procedures are executed
for each new REEL or UNIT of a file but not for the start or end of the file
itself. If UNIT, REEL, FILE clause is omitted, the designated procedures
are executed for the REEL or UNIT, whichever is applicable, and the FILE.
The REEL option is not applicable to mass storage files and the UNIT option
is not applicable to files in the random access mode.

(d) When the INPUT, OUTPUT, or 1-0 option is specified, the USE procedure
refers to all appropriate files except those described with the LABEL
RECORDS OMITTED or STANDARD clause.

(e) The BEFORE option is not applicable to the UNIVAC 9400 System, but
is accepted for compatibility. The BEFORE option is processed as if
AFTER were specified.

(4) When format 2 is used, the USE procedure will be initiated when system standard
1-0 error recovery procedures have been exhausted.

(5) When format 3 is used, control will be transferred to the USE procedure when
a printer carriage overflow condition is detected. The carriage tape channel
9 is used to indicate overflow. Format 3 is an extension to the COBOL standard.

Overflow is detected during the print and space functions of the printer. If
form positioning by means of the paper tape loop is specified (advancing
mnemonic name), a form overflow condition does not occur.

(6) File-name must not represent a sort file in any format.

(7) Input-output statements are not allowed inside USE procedures except for
the following verbs:

(a) ACCEPT

(b) DISPLAY

(c) WRITE to a printer within a FORM-OVERFLOW procedure.

NOTE: At least one DISPLAY to SYSLST must be performed in the non­
declarative portion of the PROCEDURE DIVISION before any are
performed with the DECLARATIVE portion. ACCEPTs from
SYSCONSOLE or the job stream are not permitted inside a
USE for LABEL PROCEDURE.

47

UP-7709
Rev. 2

UN1V AC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rev. 3 6
SECTION:

(8) CALL and ENTRY statements are not allowed within USE procedures.

PAGE:

(9) Within a USE procedure, there must not be any reference to any non-declarative
procedures. Conversely, in the non-declarative portion there must be no
reference to procedure-names that appear in the declarative portion, except
that PERFORM statements may refer to a USE declarative or to the
procedures associated with such a USE declarative.

6.7.34. WRITE

Function:

The WRITE statement releases a logical record for an output file. It can also be
used for vertica 1 positioning of the printer. The WRITE statement perm its performance
of a specified imperative statement if the contents of the associated KEYS are found
to be invalid.

Formats:

Format I:

WRITE record-name [FROM identifier-I]

{AFTER }ADVANCING integer. LINES
[

BEFORE {identifier-2 LINES}]

mnemonic-name

Format 2:

WRITE record-name [FROM identifier-I] INVALID KEY imperative-statement

Rules:

(1) A file must be OPENed prior to execution of the first WRITE statement for that
file.

(2) The record-name is the name of a logical record in the File Section of the Data
Division and must not be part of a sort file.

(3) When the FROM option is used, data is moved from identifier-1 to record-name
according to the rules specified for the MOVE verb without the CORRESPONDING
option.

(4) After the WRITE is executed, information in record-name is no longer available,
but identifier-1 information is available.

The record area associated with an output file may not be accessed prior to
the open for that file. (After a WRITE is executed the record is no longer
available.)

(5) The INVALID KEY option in format 2 is used for processing direct access files.

(a) In sequential access mode, the imperative-statement is executed when the
end of the last segment of the file is reached and an attempt is made to
execute a WRITE for that file.

(b) In random access mode, the WRITE performs the function of a SEEK state­
ment prior to writing. The imperative-statement is executed when the
contents of the KEY(s) being used to locate the record is found to be
invalid.

48

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 6
SECTION:

(6) The ADVANCING option allows control of the vertical positioning of each
record on the printed page. If this option is omitted for a printer file, the
printer will automatically advance one line before printing. Any form of the
ADVANCING option overrides this automatic advance.

(a) The content of identifier-2 and the value of integer must not exceed 127.
A value of O is permissible (where overprinting is desired).

(b) Mnemonic-name specifies a channel in the forms control paper tape loop.
This channel is identified in the SPECIAL-NAMES paragraph of the
Environment Division, using SYSCHAN-t IS mnemonic-name, where tis
the cha nne 1.

PAGE:

(7) The USE FOR FORM-OVERFLOW clause in the Declaratives portion of the
Procedure Division permits the programmer to perform special procedures
when a form overflow condition exists. Form overflow is detected during the
print and space functions of the printer. If form positioning by means of paper
tape loop is specified (ADVANCING mnemonic-name), form overflow condition
does not occur.

(8) Printer speed can be increased by as much as 100% in printer-bound COBOL
object programs if the WRITE statement to the printer is:

WRITE RECORD-NAME [FROM identifier]

BEFORE ADVANCING integer LINES

This statement allows printing and advancing to be done with one command
to the printer.

Because of the nature of the commands which the printer hardware can accept,
if a WRITE AFTER ADVANCING is used, object code will be generated causing
two commands to the printer: the first to space the printer form, and the second
to perform the printing. Note that the COBOL WRITE statement without an
ADVANCING option specified is defined to be a WRITE AFTER ADVANCING
1 LINE. Therefore, the WRITE statement without an ADVANCING option
results in the slower printer speed.

49

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 7
SECTION:

7. SEGMENTATION

7.1. GENERAL

PAGE:

Segmentation provides a method of communication with the compiler to specify object
program overlay requirements. Since UNIVAC 9400 COBOL deals just with segmentation
of procedures, only the Procedure Division is considered in determining segmentation
requirements for an object program.

7 .2. PROGRAM SEGMENTS

When segmentation is used, it is mandatory that the Procedure Division be written in
sections. Each section must be classified as belonging to either the fixed portion or
to one of the independent segments of the object program. Segmentation does not negate
the need to qualify procedure-names in order to ensure uniqueness.

7.2.1. Fixed Portion

In the basic compiler, the fixed portion is that part of the object program which
is always in memory. This portion of the program cannot be overlaid by any other
part of the program.

In the extended compiler, the fixed portion is that part of the object program which
is logically treated as if it were always in memory. This portion of the program is
composed of two types of segments, the fixed permanent segment and the fixed
overlayable segments.

A fixed permanent segment is a segment in the fixed portion which cannot be over­
laid by any other part of the program. A fixed overlayable segment is a segment in
the fixed portion which, although logically treated as if it were always in memory,
can be overlaid by another segment to optimize memory utilization. Variation of
the numbe.r of fixed permanent segments in the fixed portion can be accomplished
by using a special facility called the SEGMENT-LIMIT clause (see 4.2.2). Such a
segment, if called for by the program, is always made available in its last used
state.

In the basic compiler, an implicit SEGMENT-LIMIT of SO is always in effect. If
the SEGMENT-LIMIT clause is not specified in the extended compiler, an implicit
SEGMENT-LIMIT of SO is also in effect.

7.2.2. Independent Segments

In the basic compiler, an independent segment is a part of the object program which
can overlay, and can be overlaid by another independent segment. An independent
segment is in its initial state whenever control is transferred to that segment from
a segment with a different priority-number.

In the extended compiler, an independent segment is part of the object program
which can overlay, and can be overlaid by either a fixed overlayable segment or
another independent segment. An independent segment is in its initial state when­
ever control is transferred to that segment from a segment with a different
priority-number.

1

t

UP-7709
Rev. 1

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

7 .3. SECTION

Function:

Rev. 1 7

SECTION:

Segment classification is accomplished by means of a system of priority-numbers
which are included in the section header.

Format:

section-name SECT ION [priority-number].

Rules:

(1) The priority-number must be an integer ranging in value from 0 through 99.

(2) If priority-number is omitted from the section header, the priority is assumed to
be 0.

(3) Sections in the Declaratives must not contain priority-numbers m their section
headers.

(4) The logical sequence of the object program execution is the same as the
physical sequence of the source program except for specific user supplied
transfers of control. Sections with the same explicit or implicit priority-number,

however, physically comprise a single object program segment.

(S) In the basic compiler, sections with priority-number 0 through 49 constitute the
fixed permanent segment of the object program. Sections with priority-number
SO through 99 constitute independent segments. All sections with the same
priority-number must appear together in the source program.

PAGE:

In the extended compiler, sections with priority-number 0 up to, but not including,
the SEGMENT-LIMIT priority-number constitute the fixed permanent segment of
the object program. Sections with priority-numbers ranging from the SEGMENT­
LIMIT to 49 are fixed overlayable segments. Sections with priority-number SO
through 99 constitute independent segments. Sections with the same priority-
num her need not be grouped together in the source program.

7.4. RESTRICTIONS

When Segmentation is used, the following restrictions are placed on the ALTER and
PERFORM statements.

7.4.1. The ALTER Statement

Any GO TO statement in a fixed segment (priority-number 49 or less) can be
AL TERed by an ALTER statement located in any other segment of the program.
A GO TO statement in an independent segment (priority-number SO or greater) can
only be AL TERed by an ALTER statement located in the same segment as the
GO TO statement.

2

UP-7709
Rev. 2

... _.'

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

7.4.2. The PERFORM Statement

7
SECTION:

(1) A PERFORM statement that appears in a section with a priority-number less
than the implicit or explicit SEGMENT-LIMIT priority-number can have,
within its range only the following:

(a) Sections with a priority of less than 50.

(b) Sections wholly contained in a single segment whose priority-number is
greater than 49.

PAGE:

(2) A PERFORM statement that appears in a section with a priority-number equal
to or greater than the implicit or explicit SEGMENT-LIMIT priority-number can
have, within its range, only the following:

(a) Sections with the same priority-number as that containing the PERFORM
statement.

(b) Sections with a priority-number less than the implicit or explicit
SEGMENT-LIMIT priority-n um her.

3

t

_ __,,

·-·

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

8
PAGE:

B. TABLE HANDLING

8.1. GENERAL

The table handling module provides a means of defining contiguous data items in a
tabular form, thereby permitting easy access to any item regardless of its position
in the table.

This section contains the methods of table definition and referencing that are
available to the UNIVAC 9400 COBOL user. For a complete discussion of table
handling see Fundamentals of COBOL - Table Handling, UP-7503.2 (current
version).

8.2. DEFINING A TABLE

Each data item in a table (called a table element) must be the subject of an OCCURS
clause in the data description. This clause specifies the number of times that the

table element appears in the table.

To define a one-dimensional table, an OCCURS clause is written as a part of the
data description for the repeated item. Any practical number of occurrences may
be specified (see 5.3.3 rule 4).

Defining a one-dimensional table within each occurrence of a table element gives
rise to a two-dimensional table. This is done by writing an OCCURS clause for a
data item subordinate (i.e., having numerically larger level number) to another item
for which an OCCURS clause was written. Tables with up to three dimensions can
be defined in this manner in UNIVAC 9400 COBOL. Each dimension must be defined
by an OCCURS clause, and must be defined on a different hierarchal level.

The OCCURS clause is fully explained in 5.3.3 of this manual.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

8.3. TABLE REFERENCE

SECTION:

8
PAGE:

To reference a table element, it is necessary to specify which occurrence of the table
element is intended.

Occurrence numbers are specified by one of two methods: subscripting or indexing.
In either method, the reference is made by immediately following the data-name with
a set of occurrence specifications (subscripts or index-names) enclosed in parentheses.

Up to three subscript or index levels may appear in the reference, depending upon
the number of dimensions involved. There must be one subscript or index-level for

each OCCURS clause in the defined hierarchy which contains the element name,
including the one for the element name. Multiple subscripts and index-names
are written left to right in descending order of inclusiveness.

8.4. SUBSCRIPTING

Definition:

An integer value which specifies the occurrence number of a table element is a

subscript.

Format:

data-name (subscript-I [, subscript-2 [, subscript-3]])

Rules:

(1) The subscript value must be a positive or unsigned integer and may be represented
as a numeric literal or as a data-name defined elsewhere as an elementary numeric
data item with no character positions to the right of the assumed decimal point.
Data-name subscripts may be mixed with numeric literal subscripts within a reference.

(2) The lowest valid subscript is l; the highest valid subscript is the number of item
occurrences specified in the OCCURS clause. The area allocated, multiplied by
the number of occurrences cannot exceed 65,535.

(3) References are made to individual items within a table of homogeneous elements
by specifying the name of the table, followed by one or more spaces, followed by
its related subscript(s) in parentheses. A left parenthesis may not be followed by a
space, nor may a right parenthesis be preceded by a space.

2

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

8.5. INDEXING

Def in it ion:

Rev.1 8
SECTION: PAGE:

A technique used to refer to individual table elements within a table of like elements
that have not been assigned individual data-names. An index-name contains the occurrence
number of a table element which can be used for:

• Direct indexing by using the index-name as a subscript.

• Relative indexing by appending to the index-name the +or - operator followed by
an unsigned integer.

Format:

data-name (index-name-1 U±l integer-I]

[, index-name-2 [! ±l integer-2]]

[, index-name-3 [! ±l integer-3]])

Rules:

(1) Index-names are defined by use of the INDEXED BY option in the OCCURS clause.
Further data description is not used because allocation and format are hardware­
dependent. The index-name may be used only in reference to the table element
described by the OCCURS clause or to one of its subordinate items.

(2) Index-names are initialized and modified in the object program by means of the
SET statement.

(3) References are made to individual items within a table of homogeneous elements
by specifying the name of the table element, followed by its related index-name(s)
in parentheses.

(4) A data item in a file can be described by a USAGE IS INDEX clause. This data
item value can then be transferred to an index-name without conversion, by means
of the SET statement.

8.6. SEARCHING

Definition:

Data that has been arranged in the form of a table is often searched. In COBOL the
SEARCH statement provides facilities, through its two options, for producing serial
and nonserial (binary) searches. In using the SEARCH statement the programmer may
vary an associated index-name or an associated data-name. This statement also
provides facilities for execution of imperative statements when certain conditions
are true and includes an AT END phrase (see 6.7.26).

t

3

-._,..

I

UP-7709
Rev. 2

UN1V AC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION:

9
PAGE:

9. SORTING

9.1. GENERAL

The UNIVAC 9400 COBOL SORT feature offers the user an efficient means of sorting
records against a set of specified keys in addition to a variety of processing consid­
erations, such as adding or deleting records, or modification of records within the
file. Sorting is included in the extended compiler only.

9.2. ORGANIZATION OF A SORT PROGRAM

A sort file, like any other file, is a set of records. It is described in the Data Division
by a special type of File Description called a Sort File Description. The sort file may
be thought of as an internally contained intermediate representation of the file, following
the initial input of unsorted records and preceding the final output of sorted records.

A COBOL program may contain any number of sort operations. In general, a sort
operation proceeds as follows:

(1) Control passes to a SORT statement. The SORT statement specifies the sort
file to be created and the data keys that guide the sort operation. It either identi­
fies the input procedure and output procedure or names the source of the unsorted
input records and those files which are to receive the sorted output records.

(2) The input procedure, if named in the SORT statement, is executed. This input
procedure must contain at least one RELEASE statement. If no INPUT PROCEDURE
is specified, the input file is named in the USING option of the SORT statement.
The effect of either option is to make input records available to the sort operation.

(3) The records made available to the sort operation are sorted on a set of specified
keys as shown in the KEY clause.

(4) The SORT statement passes control to the output procedure, if one is named. The
output procedure must contain at least one RETURN statement, the effect of which
is to move sorted records from the sort file to the output file. If no output procedure
is used, the GIVING option must specify the output file.

(5) The operation of the SORT statement is terminated and control passes to the next
statement in sequence.

When the input procedure or an output procedure is in control, all transfers of control
must refer to procedures contained within that input procedure or output procedure.
Conversely, control cannot be transferred into an input or output procedure from points
in the Procedure Division outside the physical limits of that given input or output
procedure. Neither an input nor an output procedure may contain a SORT statement.

For a detailed discussion of COBOL sorting consult Fundamentals of COBOL - Sorting,
UP-7503.3 (current version).

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

9.3. SORT STATEMENT FORMATS

Rev. 2 9
SECTION: PAGE:

The following paragraphs summarize the statements used in UNIVAC 9400 COBOL sorts.

9.3.1. Sort File Select Statement

Function:

The SELECT statement is used to name the sort file and to identify the hardware
storage medium used during the sorting process.

Format:

SELECT filename ASSIGN TO [external-name] [integer-1] implementor-name-1

[0 R imp I emen tor-nam e-2]

Rules:

(1) The SELECT statement is discussed in detail on 4.3.1.

(2) The external name is not required in the sort file SELECT statement, as
fixed external names are used.

(3) Tape or disc are the only applicable devices for a sort file. Note that regard­
less of which device is specified, the temporary storage medium used is
determined at execution time using the external name (SMOl, SM02, SM03, ... ,
SM06 for tape; DMOl, ... , DM08 for disc).

(4) The optional OR clause serves only as documentation since the actual tempo­
rary medium is determined at execution time through the job control stream.

9.3.2. Sort File Description

Function:

The Sort File Description (SD) defines the structure of the file to be sorted.

Format:

SD file-name

[; RECORD CONTAINS [integer-5 TO] integer-6 CHARACTERS]

[RECORDING MODE IS{~}]

[; DAT A { ~ ~~g~~Sl~RE}data-name-1 [, data-name-2] .. J
Rules:

Paragraph 5.2.2 lists the rules applicable to this statement.

2

.__..,

'--"

UP-7709
Rev. 2

UN IV AC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

9.3.3. RELEASE

Function:

Rev. 1 9
SECTION:

RELEASE is used in the input procedure of a SORT statement to transfer records
to the initial phase of a sort operation.

Format:

REL EASE record-name [FROM identifier]

Rules:

This statement is discussed in detail in 6.7.23.

9.3.4. RETURN

Function:

RETURN is used in the output procedure of a SORT statement to obtain sorted
records from the final phase of a sort operation.

Format:

RETURN file-name RECORD [INTO identifier] AT END imperative-statement

Rules:

This statement is discussed in detail in paragraph 6.7.24.

9.3.5. SORT

Function:

The SORT statement controls the creation of the sort file by specifying the means
of input, the sorting keys, and the means of output.

Format:

So T ON f DESCENDING! KEY d 1 [d 2] __ R_ file-name-1 l ASCENDING f ata-name- , ata-name- ..•

f (DESCENDING} J l ON tASCENDING KEY [data-name-3]. .. •••

f IN PUT PROCEDURE IS section-name-1 [THRU section-name-2]}

l USING file-name-2

f OUTPUT PROCEDURE

t GIVING file-name-3

Rules:

IS sect;on-name-3 [THRU secUon-name-4]}

The rules governing this format are discussed in detail in 6. 7 .29.

3
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

9.3.6. Use of Sort Feature in the Extended Compiler

SECTION:

9
PAGE:

The extended compiler provides the COBOL user with the following optional sort
features:

• The 9400 COBOL compiler generates linkage code to the standard system sort/
merge facilities for all SORT statements. A detailed description of the sort/merge
facility is available in UNIV AC 9400 System Sort/M errJe Programmers Reference,
U P-7664 (current version).

• The following information is provided to clarify the various options of the sort/
merge available to the COBOL programmer. COBOL object programs normally
utilize the small volume sort facilities of the sort/merge program; therefore, no
operator intervention (except console typeins) is required. The programmer may,
however, request the use of the large volume sort facilities. Internal, tape-only,
disc-only, and tape/disc sorts are all possible, depending on record volumes
and environment.

(1) Record Size

The maximum COBOL record size of 4092 characters may be sorted.

(2) Record Format

Record format may be fixed (F) or variable (V). For variable format, the
BIN size (subrecord size used for internal sort purposes, see UNIV AC
9400 System Sort/Merge Programmers Reference, UP-7664 (current version))
specified by the program will be the size of the smallest record described
in the sort description (SD).

NOTE: If the USING/GIVING option of the SORT statement is used, the
record format of the USING/GIVING files must agree with the SD
record form at.

(3) Storage Allocation

The compiler ensures that the object program contains the minimum storage
required for sorting by including in the generated output module a RESERVE
linker control statement. Linking the compiler output then produces an object
program which includes an area reserved to satisfy the minimum sort needs.
This area is referenced within the object program modules by an external
reference (EXTRN) to label KE$ALP.

NOTE: If the programmer inhibits the compiler generation of linker control
statements (Option OUT =L), he must satisfy this area requirement

in constructing linker control specifications.

The method employed by the compiler ensures that the sort area is the last
storage associated with the object program. If the programmer allocates
additional storage for program execution (RUN command parameter), all
storage from KE$ALP to the end of the program storage is used by the
sort/merge for internal processing. Additional storage can greatly increase
the efficiency of the sort operation and should be allocated when possible.

4

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

(4) Device Allocation

Rev. 1 9
SECTION: PAGE:

If the storage allocated for sorting is not adequate to allow an internal sort,
external devices must be allocated for intermediate storage. Magnetic tape
and/or disc devices may be assigned for this purpose through job control
statements. Tapes are assigned using fixed sort filenames of SMOl, SM02,
... , SM06. If tapes are assigned, a minimum of three are required, and a
maximum of six may be used. Disc devices (maximum of 32, four per filename),
which must contain SYSPOOL area, are assigned usign fixed sort filenames
of DMOl, DM02, ... , DM08.

(5) Control Stream Parameters

When the sort is executed by the object program, the presence of control
stream parameters are questioned using a console typeout. This feature
allows the programmer to override the parameters specified in the object
program (i.e., sharing of tape devices with small volume sorts, request
for automatic execution of large volume sort, etc.). For details, see
UNIVAC 9400 System Sort/Merge Programmers Reference, UP-7664
(current version).

(6) Multiple Sorts

The 9400 COBOL compiler does not restrict the programmer from using
multiple SORT statements which refer to the same SD (sort file description),
or using multiple SORT statements which refer to different sort descriptions.
Only one SORT statement may be active at any one time.

NOTE: A SORT statement may not appear in an input or output procedure
of another SORT statement. If an object program attempts to execute
a sort during a previous sort operation, a console message is dis­
played.

5

I-

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rev. 2
SECTION:

10
PAGE:

10. LIBRARY

10.1. GENERAL

The Library module provides the capability of specifying text that is to be copied
from the COBOL Library which contains text that is available to a source program
at compile time. The effect of the compilation of library text is the same as if the
text were actually written as part of the source program. COBOL Library text is
placed in the COBOL Library as a function independent of the COBOL program.

This section contains library information as applicable to the UNIV AC 9400 COBOL
user. For a complete discussion of the COBOL Library module see Fundamentals
of COBOL - Language UP-7503.1 (current version).

10.2. USING THE COPY STATEMENT

The COBOL Library may contain text for the Environment Division, the Data Division
and the Procedure Division available through the use of the COPY statement. The
rules for the COPY statement are given in 6.7.7 of this manual.

The COPY statement may be written in any of the following forms:

In the Environment Division:

SOURCE-COMPUTER. COPY statement.
OBJECT-COMPUTER. COPY statement.
SPECIAL-NAMES. COPY statement.
FILE-CONTROL. COPY statement.
1-0-CONTROL. COPY statement.

In the File Section:

FD file-name COPY statement.
SD sort-file-name COPY statement.
01 data-name COPY statement.

In the Working-Storage Section:

01 data-name COPY statement.

In the Procedure Division:

5 paragraph-name. l
/section-name SECTION [priority-number]. f COPY statement.

1

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1
SECTION:

10
PA GE:

In addition to referencing the library module through the COPY statement, the
programmer must define the device and file which contain the library module in
his job control stream. The LFD name given to this file must also be present
on a pa ram card with keyword LIN.

The compiler performs no editing of library modules. Whatever is contained in
the library under the specified library-name is copied into the program. Lines
of code taken from the library are marked with a C to the right of the line number
on the source listing if the text is copied without replacement. Lines of code
which have one or more words of text replaced are marked with an R.

Example:

If a COBOL program contains the following lines of code:

FILE SECTION.
FD FILEOl COPY LIB-FDOl REPLACING DN-1 BY TAX-A.
01 TAX-A.

and the assigned library file contains a module named LIB-FDOl with the lines:

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA RECORD IS DN-1.

at compile time the source listing would be as follows:

LINE NO.

00033
00034
00035 c
00036 c
00037 R
00038

SOURCE STATEMENT

FILE SECTION.
FD FILEOl COPY LIB-FDOl REPLACING DN-1 BY TAX-A

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 1 RECORD
DATA RECORD IS DN-1

01 TAX-A.

The effect on the program is the same as if the programmer had written:

FILE SECTION.
FD FILEOl

LABEL RECORDS ARE STANDARD

BLOCK CONTAINS 1 RECORD.
DAT A-RECORD IS TAX-A.

01 TAX-A.

PARAM cards for use with the COPY statement are defined in Appendix C.

2

UP-7709
Rev. 2

UNIVAC 9400 COBOL Appendix A
SU PPLEMEHT ARY RE FE REHCE SECTION: PAGE:

APPENDIX

A.1. GENERAL

A. UNIVAC 9400 SYSTEM
CHARACTER SET

Table A-1 shows the character set of the UNIVAC 9400 System m collating sequence.

CHARACTER CODES
CONSOLE

KEYBOARD
HEXA- SO· COLUMN CODE

DECIMAL DECIMAL EBCDIC CA
0

RD CODE (EBCDIC)

0 Q{) NUL 12-0-9-8-1
I 01 12-9-1
2 02 12-9-2
3 03 12·9·3
4 04 PF 12-9-4
s OS HT 12-9-5
6 06 LC 12-9-6
7 07 DEL 12-9-7
8 08 12-9-8
9 09 12-9-8-1
10 OA 12-9--8·2
11 OB 12-9.S-3
12 oc 12·9-8-4
13 OD 12-9-8-5
14 OE 12-9·8-6
IS OF 12·9-8-7

IG 10 12-11-9-8-1
17 11 11-9-1
18 12 11-9·2
19 13 11-9-3
20 14 RES 11-9-4
21 IS NL 11-9-5 CARR. RET(CR)

22 16 BS 11-9-6
23 17 IL 11-9-7
24 18 11-9-8
2S 19 11-9-8-1
26 IA 11-9·8-2
27 IB 11-9-8-3
28 IC 11-9-8-4
29 ID 11-9-8-5
30 IE 11·9·8·6
31 IF 11-9·8·7
32 20 OS 11-0-9-8-1
33 21 sos 0-9-1
34 22 FS 0-9-2

3S 23 0-9-3
3G 24 BYP 0-9·4
37 25 LF Q.9-5 LINE FEED(Lf}

38 2G EOB 0-9-6
39 27 PRE 0·9-7
40 28 0-9·8
41 29 Q.9-8·1
42 2A SM Q.9-8-2
43 2B Q.9-8·3

44 2C 0-9·8-4
45 20 0-9-8-S
4G 2E 0.9-8..S

47 2F 0-9-8-7

48 30 12·11-0.9-8-1
49 31 9-1
so 32 9-2
SI 33 9-3
52 34 PN 9-4
53 35 RS 9-S
54 36 UC 9-6
55 37 EDT 9·7 @(EOM)

S6 38 9-8
57 39 9-8-1

58 3A 9-8·2

59 3S 9-8·3

60 3C 9-8-4

GI 30 9-8-S
G2 3E 9-8-6

G3 3F 9·8·7

64 40 SP NO PUNCHES SPACE (SP)

GS 41 12·0-9'-l

GG 42 12-0-9-2

G7 43 12-0-9-3

68 44 12-0-9-4

Q) Punch patterns used to store the corresponding hexadecimal
tep:esentation in the indicated bit positions of a byte.

7-TRACK COMPRESSED
TAPE CARO

(BCOIC) CDOE(j)

NO PUNCH
3j 12
41 ll
1112,11

s:o
2, 12,0
7111,0
6:12,11,0
918

9,318,12
9,418,11
9,1:a.12,11
9,s1a,o
9,218,12,0

~:~: ~:g:~1.o

!T t
B

I I
T T

p p
0 0
s s
I I
T T
I I
0 0
N N
s s

0, 4,
I, 5,

" G,
3. 7

Table A-1. UNIVAC 9400 System Character Set
(Part 1 of4)

CONSOLE
KEYBOARD 7-TRACK

HEXA-
EBCDIC0

80-COLUMN CODE TAPE
DECIMAL DECIMAL CARD CODE (EBCDIC) (BCDIC)

69 45 12-0-9-5
70 4G 12-0-9-6
71 47 12-0-9·7
72 48 12-0-9-8
73 49 12·8-l ¢
74 4A ¢ 12-8-2
7S 4B 12-8-3

<
BAS 21

7G 4C < 12-8·4 BA 8 4
77 40 I 12-8-5 (BA84 I
78 4E + 12-8-6 + BA842
79 4F !(Vert. Bar) 12+7 I (Vert, Bar) BAS 42 1
80 50 & 12 & BA
81 SI 12-11-9-1
82 52 12-11-9-2
83 S3 12-11-9-3
84 54 12-l1·9-4
SS 55 12-ll-S.5
86 SG 12-11-9-6
87 S7 12-11-9-7
88 S8 12-11-9-8
89 59 11-8-1

~or OR
90 SA ' 11·8·2
91 SB $ 11-8-3 $ B 8 21
92 SC . 11-8-4

. B 8 4
93 SD I 11-8-S I B 8 4 I
94 SE

I
1

(Not)
11·8·6 B 842

9S SF 11-8-7 -i(Not) B 8421

96 60 - 11 - B
97 61 I O·I I A I
98 G2 11-0-9-2
99 63 11-0-9-3

100 G4 11-0-9-4
IOI GS 11-0-9-5
102 G6 11-0-9-6
103 67 11-0-9-7
104 68 11-0-9-8
IOS G9 0-8-1
106 GA \ 12-11
107 GB ,(Comma) 0-8-3 ,(Comma) AS 2 I

108 6C % 0-8-4 % A84

109 GO _(Underscore) 0-8-5 -(Underscore) A84 I

110 GE > 0-8-6 > A842

Ill GF ' 0-8-7 ' A 8 42 I

112 70 12-11-0
113 71 12-ll-0-9-1

114 72 12-11-0-9-2

ll5 73 12-11-0-9-3

l16 74 12-11-0-9-4

117 7S 12-11-0-9-5

118 7G 12-11-0-9--6

119 77 12-11-0-9-7
120 78 12-11-0-9-8

121 79 8·1
122 7A 8-2 A

123 7B ' 8·3 ' 8 21

124 7C @ 8·4 @ 84

125 70 '(PrimeorApos) 8-5 '(PrimeorApos. 84 I

126 7E = 8·6 = 8 4 2

127 7F "(Quotes) 8·7 "(Quotes)
8421

128 80 12-0-8·1
129 81 a 12-0-1

@Lower case letters are an industry standard and are not printable on tile
UNIVAC 9400 Printer.

Table A-1. UNIVAC 9400 System Character Set
(Part 2 of 4)

1

UP-7709
Rev. 2

HEXA-

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

CONSOLE
KEYBOARD 7-TRACK

BO-COLUMN SET TAPE
DECIMAL DECIMAL EBCDIC@ CARD CODE (EBCDIC) (BCDIC)

130 82 b 12-0-2
131 B3 c 12-0-3
132 B4 d 12-0-4
133 S5 e 12-0-5
134 B6 f 12-0-6
135 B7 g 12-0-7
136 88 h 12-0-8
137 B9 ' 12-0-9
13B BA 12-0-8-2
139 BB 12-0-8-3
140 BC 12-0-8-4
141 BO 12-0-8-5
142 BE 12-0-8-6
143 BF 12-0-8-7
144 90 12-11-8-1
l4S 91 I 12-11-1
146 92 k 12-11-2
147 93 I 12-11-3
14B 94 m 12-11-4
149 9S " 12-11-5
ISO 96 0 12-11-6
!Sl 97 p 12-lH
152 98 q 12-11-8
1S3 99 ' 12-11-9
IS4 9A 12-11-8-2
!SS 9B 12-11-8-3
1S6 9C 12-11-8-4
1S7 90 12-11-8-5
!SB 9E 12-11-8-6
1S9 9F 12-11-8-7

160 AO 11-0-8-1
161 Al 11-0-1
162 A2 s 11-0-2
163 A3 t 11-0-3
1G4 A4 u 11-0-4
16S AS ' 11-0-5
166 AG w 11-0-6
167 A7 x 11-0-7

lGS A8 y 11-0-8
169 A9 ' 11-0-9
170 AA 11-0-8-2
171 AB 11·0-S-3
172 AC 11-0-8-4
173 AD 11-0-S-S
174 AE 11-0·S·G

17S AF lHl-8-7
176 BO 12-11-0-8-1
177 Bl 12-11-0-1

17S B2 12-11-0-2
179 83 12-11-0-3
lSO 84 12-11-0-4

lSl BS 12-11-0-5
1S2 86 12-11-0-6

1S3 B7 12-11-0-7

1S4 88 12-11-0-8
lSS B9 12-11-0-9
lSG BA 12-11-0-8-2
1S7 BB 12-11-0-8-3

!SS BC 12-11-0-8-4

189 BO 12-11-0-8-5
190 BE 12-ll-0-8-6
191 BF 12-11-0-8-7

@Lower case letters are an industty standard and are not p1intable on
the UNIVAC 9400 P1inter.

Tobie A-1. UNIVAC 9400 System Character Set
(Part3 of4)

Appendix A

SECTION: PAGE:

CONSOLE
KEYBOARD 7-TRACK

HEXA- SO-COLUMN SET TAPE
DECIMAL DECIMAL EBCDIC CARD CODE (EBCDIC) (BCDIC)

192 co PZ 12·0 BAS 2
193 Cl A 12-1 A BA 1
194 C2 B 12-2 B BA 2
19S C3 c 12·3 c BA 21
19G C4 D 12-4 D BA 4
197 cs E 12-S E BA 4 1
19S CG F 12-G F BA 4 2
199 C7 G 12-7 G BA 421
200 CB H 12-8 H BAS
201 C9 I 12-9 I BAS 1
202 CA 12-0-9-8-2
203 CB 12-0-9-8-3
204 cc 12-0-9-8-4
20S CD 12-0-9-8-5
20G CE 12-0-9-8-6
207 CF 12-0-9-8-7
20S DO MZ 11·0 B s 2
209 Dl J 11-1 J B 1
210 02 K 11-2 K B 2
211 03 L 11-3 L B 21
212 04 M 11-4 M B 4
213 OS N 11-S N B 4 I
214 DG 0 11-G 0 B 42
21S D7 p 11·7 p B 42 l
21G OS Q 11-S Q B s
217 09 R 11·9 R B s l
21S DA 12-11-9-S-2
219 DB 12-11-9-S-3
220 DC 12-11-9-S-4
221 DD 12-11·9-S·S
222 DE 12-11-9-S·G
223 OF 12-11-9-S-7
224 EO O·S-2 AS 2
225 El 11-0-9-1
226 E2 s 0-2 s A 2
227 E3 T 0-3 T A 2 l
22S E4 u 0-4 u A 4
229 ES v O·S v A 4 1
230 EG w 0-6 w A 42
231 E7 x 0-7 x A 421
232 ES y o-s y AS
233 E9 z 0-9 z AS 1
234 EA ll-0-9·S-2
23S EB ll·0-9·S·3
23G EC 11-0-9-8-4

237 ED 11·0-9-S·S
23S EE 11-0-9-S-G

239 EF 11-0-9-S-7
240 FO 0 0 0 s 2
241 Fl 1 l l 1

242 F2 2 2 2 2
243 F3 3 3 3 2 l

244 F4 4 4 4 4

24S FS s s s 4 l

24G F6 6 6 6 42
247 F7 7 7 7 42 1

24S FS s s s s
249 F9 9 9 9 s 1

2SO FA 12-11-0-9-S-2
2Sl FB 12-ll-0-9·S·3
2S2 FC 12-11-0-9-S-4
2S3 FD 12·11-0-9-S-5
2S4 FE 12-11-0-9-S-6
2SS FF 12-11-0-9-8-7

Table A-1. UNIVAC 9400 System Character Set
(Part 4 of 4)

2

. __ ,.-·

'-......-·

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

APPENDIX B. UNIVAC
COBOL
WORDS

B.1. GENERAL

Rev. 1
Appendix B 1

SECTION: PAGE:

9400 SYSTEM
RESERVED

Reserved words are part of the COBOL language structure and cannot be used for
data or procedure names.

ACCEPT CONTAINS FILLER MODULES
ACCESS COPY FIRST MONITOR
ACTUAL CORR FOR MORE-LABELS
ADD CORRESPONDING FORM-OVERFLOW MOVE
ADVANCING CURRENCY FROM MULTIPLE
AFTER CYLINDER-INDEX GENERATE MULTIPLY
ALL CYLINDER-OVERFLOW GIVING NAMED
ALPHABETIC DATA GO NEGATIVE
ALTER DATE-COMPILED GREATER NEXT
ALTERNATE DATE-WRITTEN HIGH-VALUE NO
AND DECIMAL-POINT HIGH-VALUES NOT
APPLY DECLARATIVES I-0 NOTE
ARE DEPENDING 1-0-CONTROL NUMERIC
AREA DESCENDING IDENTIFICATION OBJECT-COMPUTER
AREAS DIRECT IF OCCURS
ASCENDING DISC-8411 IN OF
ASCII DISC-8414 INDEX OFF ~

ASSIGN DISC INDEXED OMITTED
AT DISPLAY INDICES ON
AUTHOR DIVIDE INITIATE OPEN
BEFORE DIVISION INPUT OPTIONAL
BEGINNING DOWN INPUT-OUTPUT OR
BLANK EBCDIC INSERT ORGANIZATION
BLOCK ELSE INSTALLATION OTHERWISE
BLOCK-COUNT END INTO OUTPUT
BLOCK-LENGTH-CHECK ENDING INVALID PERCENT
BUFFER-OFFSET ENTER IS PERFORM
BY ENTRY JUST PIC
CALL ENVIRONMENT JUSTIFIED PICTURE
CARD-PUNCH EQUAL KEY POSITION
CARD-READER EQUALS LABEL POSITIVE
CARD-READER-51 ERROR LEADING PRINTER
CARD-READER-66 EVERY LEFT PROCEDURE
CHARACTERS EXAMINE LESS PROCEED
CHANGED EXCEEDS LINE PROCESSING
CLOSE EXHIBIT LINES PROGRAM
COBOL EXIT LINKAGE PROGRAM-ID
COMMA EXTENDED-INSERTION LOCK QUOTE
COMP FD LOW-VALUE QUOTES
COMP-3 FILE LOW-VALUES RANDOM
COMPUTATIONAL FILE-CONTROL MAP READ
COMPUTATIONAL-3 FILE-LIMIT Mt\ STER-INDEX READY
COMPUTE FILE-LIMITS MEMORY RECORD
CON FIGURATION FILE-PREPARATION MODE RECORDING

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

RECORDS SIZE
REDEFINES SORT

REEL SOURCE-COMPUTER

RELATIVE SPACE

RELEASE
SPACES

REMAINDER
SPECIAL-NAMES

REMARKS
STANDARD

RENAMES
STATUS

REPLACING
STOP

RERUN
SUBTRACT

RESET
SYMBOLIC
SYNC

RESERVE SYNCHRONIZED
RESTRICTED SYSCHAN-4
RETURN SYSCHAN-5
REVERSED

SYSCHAN-6
REWIND SYSCHAN-7
REWRITE SYSCHAN-8
RIGHT SYSCHAN-9
ROUNDED SYSCHAN-10
RUN SYSCHAN-11
SAME SYSCHAN-12
SD SYSCHAN-13
SEARCH SYSCHAN-14
SECTION SYSCHAN-15
SECURITY SYSCOM
SEEK SYSCONSOLE
SEGMENT-LIMIT SYSDATE
SELECT SYSERR
SENTENCE SYSERR-0
SEPARATE SYSERR-1
SEQUENTIAL SYSERR-2
SET SYSERR-3
SIGN SYSERR-4

Rev. 2 Appendix B 2
SECTION: PAGE:

SYSERR-5 TIMES
SYSERR-6 TO
SYSERR-7 TRACE -~---"'

SYSERR-8 TRACKS

SYSERR-9 TRAILING
SYSERR-10 TRANSFORM
SYSERR-11 UNEQUAL
SYSERR-12 UNIT
SYSERR-13 UNIVAC-9400
SYSERR-14 UNTIL
SYSERR-15 UP
SYSLST UPON
SYSSWCH USAGE
SYSSWCH-0 USE
SYSSWCH-1 USING
SYSSWCH-2 VALUE
SYSSWCH-3 VALUES
SYSSWCH-4 VARYING
SYSSWCH-5 VERIFY
SYSSWCH-6 WHEN
SYSSWCH-7 WITH
SYS TIME WORDS
TALLY WORKING-STORAGE
TALLYING WRITE
TAPE ZERO
TAPE-6 ZEROES
TAPES ZEROS
TERMINATE ___ .,,,
THAN
THEN
THROUGH
THRU
TIME

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Appendix C 1
SECTION: PAGE:

APPENDIX C. SOURCE AND COPY
LIBRARY INPUT
SPECIFICATION

C.1. GENERAL

This appendix describes the method of reading a source program from either the
control stream or from a tape or a disc library.

The formats for the source and copy library PARAM statements are presented in
the following paragraphs.

Source Library Input:

Format:

II PARAM IN=program-namelfile-name

program-name

file-name

1- to 8-character name of source program to be compiled.

1- to 8-character name used to identify the file on which the source
program resides. This name must appear on the LFD control card
used to define the device to the Job Control program.

If the file-name is omitted, the following name will automatically
be supplied:

Name when using basic system - SYSRES
Name when using extended system - SORS$

NOTE: When only four tapes are available for compilation, source input should;be
mounted on SCR2. The compiler console message:

DISMOUNT SCR2. MOUNT A SCRATCH TAPE ON SCR2.

will appear when tape is to be changed.

Copy Library Input:

Format:

II PARAM LIN=file-name

file-name 1- to 8-character name used to identify the file on which the COPY
library resides. This name must appear on the LFD control card
used to define the device to the Job Control program.

If the file-name is omitted, the following name will automatically
be supplied:

Name when using basic system - SYSRES
Name when using extended system - COPY$

The COPY element-name is supplied in the source program via the
COPY clause.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFER ENCE

Appendix C 2

SECTION: PAGE:

C.2. BASIC COMPILER SOURCE LIBRARY INPUT AND COPY LIBRARY INPUT

The source program may be read from tne job stream or from a tape library. Any
copy library modules referenced in the source program may be read from a tape library.
Any library structure to be accessed by the compiler must be created by the UNIVAC
9400 tape librarian,

Any library tapes to be accessed by the compiler must be defined in the job stream
and on PARAM cards (keyword IN for the source library; LIN for the copy library),
If the source program does not reference any copy library modules, the copy library
file need not be defined.

Examples:

(1) Source library and copy library:

II DVC 10
11 DVC 11

II VOL SPxxxx
II VOL SPxxxx

with PARAM cards:

LFD FILE-NAME-1
LFD FILE-NAME-2

II PARAM IN=PROGRAM-NAMEIFILE-NAME-1
II PARAM LIN=FILE-NAME-2

(2) Source library and copy library on the same tape:

II DVC 10 II VOL SPxxxx II LFD FILE-NAME-1

with PARAM cards:

II PARAM IN=PROGRAM-NAMEIFILE-NAME-1
II PARAM LIN=FILE-NAME-1

(3) Source from the job stream and copy library:

II DVC 10 II VOL SPxxxx II LFD FILE-NAME-1

with PARAM card:

II PARAM LIN=FILE-NAME-1

In the above exampl~s: FILE-NAME-1 and FILE-NAME-2 are programmer-supplied
names. PROGRAM-NAME is the name of the source library module which contains
the source program.

Either the source library, the copy library, or both libraries on the same tape may be
defined as SCR2. If so, SCR2 must be assigned in the job stream and on the PARAM
cards. When the source program and any referenced copy library modules have been
read, a console message is printed instructing the operator to demount the library tape
on SCR2 and mount a scratch tape.

----__./

UP-7709
Rev. 2

... _~

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix C 3
SECTION: PAGE:

C.3. EXTENDED COMPILER SOURCE LIBRARY INPUT AND COPY LIBRARY INPUT

The source program may be read from the job stream, a tape library, or a disc library.
Any copy library modules which are referenced by the source program may be read
from a tape library or a disc library. Any library structures to be accessed by the
compiler must have been created by the UNIVAC 9400 tape or disc librarian.

Any library structures to be accessed by the compiler must be defined in the job
stream and their LFD names must appear on PARAM cards (keyword IN for the source
library; LIN for the copy library). If there are no copy library modules referenced by
the source program, the copy library need not be defined.

Examples:

(1) Source and copy library on disc:

DVC 20 II VOL DSPxxx
LBL FILE-ID-1,DSPxxx
DVC 20 II VOL DSPxxx
LBL FILE-ID-2,DSPxxx

with PARAM cards:

II
II

LFD FILE-NAME-1

LFD FILE-NAME-2

II PARAM IN=PROGRAM-NAMEIFILE-NAME-1
II PARAM LIN=FILE-NAME-2

(2) Source library tape and copy library disc:

II DVC 10 II VOL SPxxxx II LFD FILE-NAME-1
II DVC 20 /I VOL DSPxxx
II LBL FILE-ID-1,DSPxxx II LFD FILE-NAME-2

with PARAM cards:

II PARAM IN=PROGRAM-NAMEIFILE-NAME-1
II PARAM LIN=FILE-NAME-2

(3) Source from the job stream and copy library tape:

II DVC 10 II VOL SPxxxx II LFD FILE-NAME-1

with PARAM card:

II PARAM LIN=FILE-NAME-1

(4) Source and copy from the same library tape:

II DVC 10 II VOL SPxxxx II LFD FILE-NAME-1

with PARAM cards:

II PARAM IN=PROGRAM-NAMEIFILE-NAME-1
II PARAM LIN=FILE-NAME-1

In the above examples, FILE-NAME--1 and FILE-NAME-2 are programmer-supplied
names. FILE-ID-1 and FILE-ID-2 are file-id names that were used at the time the
disc library was created. PROGRAM-NAME is the name of the source library module
that contains the source program.

'-·'

---·

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix D 1
SECTION: PAGE:

APPENDIX D.

D.1. INTRODUCTION

9400 COBOL

PROCESSING
TECHNIQUES FOR
DIRECT ACCESS
DEVICES

This appendix describes the different processing techniques available to the 9400
COBOL programmer for processing files assigned to direct access devices. The
technique chosen to process a particular file is dependant upon the file organ-
ization and the manner in which the file is to be accessed. Each processing technique
has its particular advantages and disadvantages. In selecting a processing technique,
one must consider such factors as device characteristics,file size, file activity, file
growth potential, etc. For more information, see UNlVAC 9200 ll/9300 ll/9400 Systems
P.l.E. 8411 Disc File Direct Access Subsystem Concepts, UP-7704.1 (current version).

D.2. FILE ORGANIZATION

A file organization is specified by the ORGANIZATION clause in the SELECT statement
for the file. UNIVAC 9400 COBOL provides four classes of file organization:

(1) sequential

(2) relative

(3) direct

(4) indexed

Each file organization requires a specific number and kind of control field (KEY) to
locate records within the file. Due to the use of keys, ·no two file organizations are
compatible. For example, a sequentially organized file cannot be read if described as
a file with organization indexed.

D.2.1. ORGANIZATION IS SEQUENTIAL

When sequential file organization is used, the logical record of a file will be recorded
sequentially in order of their creation. Records in a sequential file are read in the
order they were written.

D.2.2. ORGANIZATION IS RELATIVE

Relative file organization is characterized by the use of relative record addressing
to locate logical records within the file. Prior to the actual creation of a file with
relative organization, the entire file must be initialized so that it contains a physical
record in every possible record position (see D.5.2). The address of any logical
record in the file is determined by its position relative to the first record of the file.
A unique data item, defined by the ACTUAL or RELATIVE KEY clause, is used to
specify the RELATIVE record number being processed. The RELATIVE record
number contained in the key area is converted by Data Management programs into
the physical record address.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

D.2.3. ORGANlZA TION IS DIRECT

Rev. 1 Appendix D
SECTION: PAGE:

Direct file organization is characterized by the use of relative track addressing and
record identification keys to locate logical records within the file. Prior to the actual
creation of a file with direct organization, the entire file area must be initialized such
that every track is erased and its capacity record is normalized (see D.5.2). The
address of any logical track in the file is determined by its position relative to the
first track of the file. A unique data item, defined by the ACTUAL KEY clause, is
used to specify the logical track number being processed. The RELATIVE track
number contained in the key area is converted by Data Management programs into
the physical track address. Another data item, defined by the SYMBOLIC KEY clause,
is used to identify the desired record within the RELATIVE track.

D.2.4. ORGANIZATION IS INDEXED

When indexed file organization is used, the logical records of the file are initially
recorded (loaded) sequentially into the prime data area of the file. Each logical
record must contain an embedded record identification field, defined by the RECORD
KEY clause. All records presented for loading must have their RECORD KEY value in
presorted ascending sequence. During file load, a hierarchy of indexes, based on
the value of each RECORD KEY and the record's physical address, is created in
the index areas of the file. These indexes are used, in subsequent file processing,
to physically locate the referenced record. When ACCESS IS RANDOM, a unique
data item, defined by the SYMBOLIC KEY clause, is used to specify the RECORD
KEY value of the record being processed.

D.3. FILE ACCESS MODES

The ACCESS MODE clause defines the order in which data may be transferred to or
from the direct access storage device. The two modes of accessing data are:

ACCESS IS SEQUENTIAL

or

ACCESS IS RANDOM

• Sequential Access

The reading and writing of records in a file is done in a sequential (serial) manner.
The order of referencing records is implicitly determined by the physical position
of the records in the file.

• Random Access

Perm.its the reading and writing of records in a file in the order specified by the
COBOL programmer through keys associated with the file.

D.4. FILE PROCESSING TYPES

The combination of the ORGANIZATION and ACCESS MODE clauses defines a file
processing technique. The following chart outlines the seven types of file processing
techniques supported by 9400 COBOL and their relationship to file organization and
record access mode.

2

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

ACCESS FILE ORGANIZATION
MODE

SEQUENTIAL RELATIVE DIRECT

SEQUENTIAL type 1 type 2 type 3

RANDOM type 4 type 5

Appendix D 3
SECTION: PAGE:

INDEXED

type 6

type 7

Processing type 1 is assumed when the ORGANIZATION clause is omitted and the
ACCESS MODE clause is either SEQUENTIAL or omitted.

Processing type 4 is assumed when the ORGANIZATION clause is omitted and the
ACCESS MODE clause is RANDOM.

D.S. KEY CLAUSE AND USAGE

The following paragraphs describe the key clauses and their use.

D.5.1. ORGANIZATION Clause

(1) ORGANIZATION IS SEQUENTIAL

No keys are required for this file organization.

(2) ORGANIZATION IS RELATIVE

The ACTUAL KEY or RELATIVE KEY clause is required and is used to contain a
relative record number. The logical records of a relative file are addressed by
their logical position relative to the start of the file. The relative record number
is reported in ACTUAL or RELATIVE KEY clauses after a READ or WRITE when
ACCESS IS SEQUENTIAL. If ACCESS IS RANDOM, the value specified in the
key by the programmer is used to determine the physical address of that logical
record. ACTUAL KEY and RELATIVE KEY are synonymous. Whichever key is
used must be defined as an unsigned integer according to the rules for numeric
items. However, no more than seven digits are used to represent the relative
record number. The ACTUAL or RELATIVE KEY may not be defined as part
of the data description of the file to which it is associated,

(3) ORGANIZATION IS DIRECT

Both ACTUAL KEY and SYMBOLIC KEY clauses are required to address records.
The ACTUAL KEY clause contains a relative track number. The relative track
number is reported in the ACTUAL KEY clause after a READ or WRITE when
ACCESS IS SEQUENTIAL. When ACCESS IS RANDOM, the value specified in the
ACTUAL KEY clause by the programmer is used to determine the physical address
of the logical track number. ACTUAL KEY must be defined as an unsigned integer
according to the rules for numeric items. However, no more than seven digits are
used to represent the relative track number. The SYMBOLIC KEY clause contains
a record identifier used to distinguish each record on a track or series of tracks.
from all other records on a track or series of tracks. The record identifier is re
reported in SYMBOLIC KEY clause after a READ when ACCESS IS SEQUENTIAL.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix D

SECTION: PAGE:

When ACCESS IS RANDOM, the record identifier specified in the SYMBOLIC KEY
clause by the programmer is used as a search argument to locate the record. The
SYMBOLIC KEY must be defined as an alphabetic, alpharrnmeric, or numeric item
with a length not greater than 255 characters. The ACTUAL or SYMBOLIC KEY
may not be defined as part of the data description of the file to which it is associated.

(4) ORGANIZATION IS INDEXED

The RECORD KEY clause is required and is used as a record identifier to distinguish
each record in the file from all other records in the file. The data area defined by
the RECORD KEY clause must exist within the record area described for the file.

The RECORD KEY clause must appear in each record description and its displace­
ment in each, relative to the first character of the record, must be the same.

The record identifier is delivered in the RECORD KEY clause, as part of the
record, whenever a record is read. The RECORD KEY must be described as an
alphabetic, alphanumeric, or numeric item with a length of 3 to 255 character
positions. The use of SYMBOLIC KEY is optional when ACCESS IS SEQUENTIAL,
and required when ACCESS IS RANDOM. When ACCESS IS SEQUENTIAL, the
SYMBOLIC KEY may be used to specify a RECORD KEY value to be used as
the starting point of a processing sequence. When ACCESS IS RANDOM, the
SYMBOLIC KEY value specified by the programmer is used as a search argument
to locate the record with the corresponding RECORD KEY value. When the
SYMBOLIC KEY clause is used, it must not be defined as part of the record, but
its description must be identical to the description of the file's RECORD KEY.

D.5.2. APPLY Clause

UNIVAC 9400 COBOL offers the user various APPLY clauses which permit specified
input-output techniques to be applied to selected files, Since the APPLY clauses are
related to file organization, they are discussed on that basis.

(1) ORGANIZATION IS SEQUENTIAL

APPLY VERIFY ON file-name •••

The APPLY VERIFY clause directs that each record written to the file is to
be check-read. If specified for a file that is only OPEN INPUT, the clause has
no effect.

(2) ORGANIZATION IS RELATIVE

APPLY VERIFY ON file-name •••

Same as for sequential organization.

APPLY FILE-PREPARATION ON file-name •••

Before a record can be physically written in a relative organized file, a pre­
recorded record, of the same length as the record being written, must already
exist on the device. The APPLY FILE-PREPARATION clause is used to create
a dummy record in each relative record area in the file prior to writing the first
real record. A dummy record contains HIGH-VALUE in the first character position,

followed by LOW-VALUE in each remaining character position, for a maximum

of 256 character positions. File-preparation may be omitted if the file presently
exists in prepared form, having either been previously created or prepared by
other means.

4

.... _-·

--

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

(3) ORGANIZATION IS DIRECT

APPLY VERIFY ON file-name •••

Same as for sequential organization.

APPLY FILE-PREPARATION ON file-name •••

Appendix D
SECTION:

Before a direct organization file can be created, obsolete data previously
recorded in the physical file area must be erased. The APPLY FILE­
PREPARATION clause is used to erase each track and write a "record-

PAGE:

zero,'' or capacity record, on each track of the file. Record zero reflects
space, in bytes, remaining on the track for additional records. File preparation
takes place when the file is OPENed for OUTPUT. Once a direct organized
file has been created, and file preparation is not employed, any and all logical
records written to the file will be placed after the current records already on
the track specified. If the file is not OPENed for OUTPUT, this clause has
no effect.

APPLY RESTRICTED SEARCH OF integer TRACKS ON file-name

This clause is permitted only if ACCESS MODE IS RANDOM. It defines the
number of tracks to be searched in order to locate a requested record. If this

clause is not applied to the file, ALL TRACKS is assumed to be the search
integer.

(4) ORGANIZATION IS INDEXED

APPLY VERIFY ON file-name •••

Same as for sequential organization.

APPLY MASTER-INDEX ON file-name •••

This clause is meaningful only when the file is being initially created (loaded).

Its use results in the generation of a master cylinder index for the file.

APPLY CYLINDER-OVERFLOW AREA OF integer PERCENT ON file-name

This clause is meaningful only when the file is being initially created (loaded).

Its use reserves, in each cylinder of the prime data area, the specified percentage

of tracks to be used for cylinder overflow area. If the clause is not applied to the
file, 20 percent of each cylinder will be reserved for cylinder overflow area. This

represents two tracks on a UNIVAC 8411 Disc Subsystem, and four tracks on a
UNIVAC 8414 Disc Subsystem. If no cylinder overflow area is desired, specify
0 PERCENT in the APPLY clause,

APPLY CYLINDER-INDEX AREA OF integer INDICES ON file-name •••

This clause is meaningful only if ACCESS MODE IS RANDOM. Its use reserves,
in object time memory, an area sufficient to contain the specified number of
cylinder index entries. One cylinder index entry exists for each cylinder

in the prime data area. (The specified integer is incremented by three to allow
for control fields required by indexed sequential Data Management).

5

UP-7709
Rev. 2

. ~-------

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

APPLY EXTENDED-INSERTION AREA ON file-name ...

Appendix D 6

SECTION: PAGE:

This clause is meaningful only if ACCESS MODE IS RANDOM and the INSERT

verb is being used. This clause reserves, in object time memory, an 1-0 area

large enough to contain all data recorded on a prime data track.

D.6. FILE PROCESSING TECHNIQUES

D.6.1. ORGANIZATION IS SEQUENTIAL

File processing type 1 is the only processing technique available when ORGANI­
ZATION IS SEQUENTIAL. Keys can not be associated with type 1 files.

A file that is created with sequential organization must be referred to only with
sequential organization.

Type 1 allows three record formats: RECORDING MODE IS U, V, or F. With record
format F or V, records may be blocked or unblocked.

File preparation is not necessary with sequential organization.

• Output file

An OPEN OUTPUT statement prepares the file for output operation. Standard
labels are written. The USE for BEGINNING LABEL procedure is executed
if user labels are specified,

A WRITE statement causes the specified record to be written into the next
sequential area of the file after blocking, as required, is effected.

A CLOSE statement causes orderly termination of file processing.

• Input file

An OPEN for INPUT statement prepares the file for input operation. Standard

labels are checked and user labels, if specified, are made available to the USE
for BEGINNING LABEL procedure,

A READ statement causes the next sequential record in the file to be made
available after deblocking, as required, is effected.

A CLOSE statement causes orderly termination of file processing.

• 1/0 file

An OPEN for 1-0 statement prepares the file for input and output operation.
Label processing is the same as when OPEN for INPUT, User labels may not
be updated.

The READ statement's operation is the same as when OPENed for INPUT.

Each WRITE statement must be preceded by a READ statement. The WRITE
statement causes the updated record to be rewritten onto the same physical
area from which the record was read. Alteration of record length, insertion of
new records, or deletion of existing records is not permitted •

·-

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix D 7
SECTION: PAGE:

The CLOSE statement causes orderly termination of file processing.

D.6.2. ORGANIZATION IS RELATIVE

Two file processing types are available with relative organization: type 2 when
ACCESS IS SEQUENTIAL, and type 4 when ACCESS IS RANDOM.

The logical records of a file with relative organization are identified by relative
record numbers. The contents of the item specified in the ACTUAL KEY clause
indicates the position of the logical record relative to the beginning of the file,
starting with the value of 1 for the first record.

A file that is created with relative organization must be referred to only with
relative organization.

Relative organization allows only RECORDING MODE IS F. Records cannot be
blocked nor can an ALTERNATE AREA be assigned to the file.

Before processing a newly allocated (or newly extended) relative file, each track
of the file must be completely filled with physical records that have the same length
as the data records to be written on the file. The APPLY FILE-PREPARATION
clause may be used to write dummy records on each uninitialized track of the file.
File preparation takes place during OPEN processing when the COBOL programmer:

(1) Writes an APPLY FILE-PREPARATION clause for the file in the I-0 CONTROL
paragraph of the Environment Division.

(2) Sets the value of the ACTUAL KEY data item to one, if the file is new, or to the
record number of the first record of the new extent(s) when the file is being
extended.

(3) Executes an OPEN OUTPUT statement after the ACTUAL KEY value has been
set. File preparation occurs each time an OPEN OUTPUT statement is executed.

D.6.2.1. Type 2 - ACCESS IS SEQUENTIAL

• Output file

An OPEN for OUTPUT statement prepares the file for output operation. The
file is formatted if the APPLY FILE-PREPARATION clause is specified.
Standard labels are written. The USE for BEGINNING LABEL procedure is
executed if user labels are specified. The content of ACTUAL KEY is effectively
initialized to 1, indicating the first record of the file.

The WRITE statement records the logical record sequentially on the file,
implicitly associating a record number with each of the logical records
written. The record number is reported in the ACTUAL KEY item after the
record is written. Record numbers start at 1 or, when a SEEK statement
follows OPEN, with the programmer-supplied value in ACTUAL KEY, and
are incremented sequentially with each WRITE statement.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix D 8

SECTION: PAGE:

The SEEK statement positions the direct access device to the track containing
the relative record number indicated by the programmer-supplied ACTUAL KEY
value. The key value will be used as the relative record number for the next
WRITE. Following each WRITE statement, the record number is incremented
sequentially until either another SEEK statement is executed or processing is
terminated.

The CLOSE statement causes orderly termination of file processing.

• Input file

An OPEN for INPUT statement prepares the file for input operation. Standard
labels are checked and user labels, if specified, are made available to the USE
for BEGINNING LABEL procedure. The contents of ACTUAL KEY is effectively
initialized to l, indicating the first record of the file.

The READ statement retrieves the logical records sequentially from the file,
reporting the relative record number associated with the record in the ACTUAL

KEY item. Record numbers start with 1 or, when a SEEK statement follows OPEN,
with the value in the ACTUAL KEY item, and are incremented sequentially with
each READ statement.

The SEEK statement's operation is the same as when the file is OPENed for
OUTPUT except that READ replaces WRITE.

The CLOSE statement causes orderly termination of file processing.

• I-0 file

An OPEN for I-0 statement prepares the file for input and output operation.
Label processing and key initialization is the same as when the file is
OPENed for INPUT.

The READ statement's operation is the same as when the file is OPENed
for INPUT.

The WRITE statement's operation is the same as when the file is OPENed
for OUTPUT except that the ACTUAL KEY item is not incremented.

The operation of the SEEK statement is the same when the file is OPENed
for INPUT.

The CLOSE statement causes orderly termination of file processing.

D.6.2.2. Type 4 - ACCESS IS RANDOM

I Output file

An OPEN for OUTPUT statement prepares the file for output operation. The
file is formatted if the APPLY FILE-PREPARATION clause is specified.
Standard labels are written. The USE for BEGINNING LABEL procedure is
executed if user labels are specified.

The WRITE statement causes the logical record to be written onto the file
based on the user-supplied relative record number in the ACTUAL KEY item.

UP-7709
Rev. 2

UNIVAC 9400 COBOL Appendix D 9
SU PPLEMEHT ARY REF ER ENCE SECTION: PAGE:

The SEEK statement positions the direct access device to the track containing
the relative record number indicated by the programmer-supplied ACTUAL KEY
value.

The CLOSE statement causes orderly termination of file processing.

• Input file

An OPEN for INPUT statement prepares the file for input operation. Standard
labels are checked and user labels, if specified, are made available to the
USE for BEGINNING LABEL procedure.

The READ statement retrieves the logical record from the file based on the user­
supplied relative record number in the ACTUAL KEY item.

The SEEK statement's operation is the same as when the file is OPENED for
OUTPUT.

The CLOSE statement causes orderly termination of file processing.

• I-0 file

An OPEN for I-0 statement prepares the file for input and output operation.
Label processing is the same as when the file is OPENed for INPUT.

The READ statement's operation is the same as when the file is OPENed for
INPUT.

The WRITE and SEEK statement's operation is the same as when the file is
OPENed for OUTPUT.

The CLOSE statement causP.s orderly termination of file processing.

D.6.3. ORGANIZATION IS DIRECT

Two file processing types are available with direct organization: type 3 when
ACCESS IS SEQUENTIAL, and type 5 when ACCESS IS RANDOM.

The logical records of a file with direct organization are identified by a relative
track number and by symbolic record identifying information. The contents of the
item specified in the ACTUAL KEY clause indicates the position of the logical
track relative to the beginning of the file, starting with the value of 1 for the first
track. In type 5, the APPLY RESTRICTED SEARCH clause defines the number of
tracks to be searched in order to READ or WRITE a requested record. A search
of the complete file is performed when the RESTRICTED SEARCH clause is
omitted for a type 5 file. The contents of the item specified in the SYMBOLIC KEY
clause defines the record identification value of the requested record.

A file that is created with direct organization must be referred to only with direct
organization.

Direct organization allows RECORDING MODE IS F or U. Records cannot be blocked
nor can an ALTERNATE AREA be assigned to the file.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix D 10
SECTION: PAGE:

Before processing a newly allocated (or newly extended) direct file, a new capacity
record must be written on each uninitialized track of the file and the remainder of
the track must be erased. The FILE-PREPARATION clause may be used to perform
the above function. File preparation takes place during OPEN processing when the
COBOL programmer:

(1) Writes an APPLY FILE-PREPARATION clause for the file in the 1-0-CONTROL
paragraph of the Environment Division.

(2) Sets the value of the ACTUAL KEY data item to 1, if the file is new, or to
the number of the first track in the new extent(s) when the file is being extended.

(3) Executes an OPEN OUTPUT statement after the ACTUAL KEY value has been

set. File preparation occurs each time an OPEN OUTPUT statement is executed.

D.6.3.1. Type 3 - ACCESS IS SEQUENTIAL

• Output File

An OPEN for OUTPUT statement prepares the file for output operation. The file
is formatted if the APPLY FILE-PREPARATION clause is specified. Standard
labels are written. The USE for BEGINNING LABEL procedure is executed if
user labels are specified. The contents of ACTUAL KEY is effectively initialized
to 1, indicating the first track of the file.

The WRITE statement records the logical record in the next available sequential
position in the file. The contents of the SYMBOLIC KEY item is recorded with
the data for the purpose of specific record identification during subsequent
retrieval or update functions. The relative track number of the record is reported
in ACTUAL KEY after the record is written. Track numbers start at 1 or, when a
SEEK statement follows OPEN, with the programmer-supplied value in ACTUAL
KEY, and are incremented sequentially as each track is filled.

The SEEK statement positions the direct access device to the track specified by
the programmer-supplied ACTUAL KEY value. This track number is used by each
WRITE statement until the track is filled, at which time the track number is
incremented sequentially. The track number is advanced in this manner until
either another SEEK statement is executed or file processing is terminated.

The CLOSE statement causes orderly termination of file processing.

• Input File

An OPEN for INPUT statement prepares the file for input operation. Standard
labels are checked, and user labels, if specified, are made available to the
USE for BEGINNING LABEL procedure. The contents of ACTUAL KEY is

effectively initialized to 1, indicating the first track of the file.

The READ statement retrieves the next available sequential record from the file.
After the READ, the relative track number of the retrieved record is reported
in the ACTUAL KEY item and the record identification information is reported
in the SYMBOLIC KEY item. Track numbers start with 1 or, when a SEEK
statement follows OPEN, with the value in the ACTUAL KEY item, and are
incremented sequentially as each track is emptied.

____ ,

UP-7709
Rev. 2

UN1V AC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix D 11
SECTION: PAGE:

The SEEK statement's operation is the same as when the file is OPENed for
OUTPUT except that READ replaces WRITE.

The CLOSE statement causes orderly termination of file processing.

• I-0 file

An OPEN for I-0 prepares the file for input and output operation. Label pro­
cessing and key initialization is the same as when the file is OPENed for
INPUT.

The READ statement's operation is the same as when the file is OPENed for
INPUT.

Each WRITE statement must be preceded by a READ statement. The WRITE
statement causes the updated logical record to be rewritten onto the same
physical area that the record was read from. The SYMBOLIC KEY value is not
rewritten. The ACTUAL KEY value for the WRITE is defined by the previous
READ. Consecutive WRITE's to the file alter the same physical record position.

The operation of the SEEK statement is the same as when the file is OPENed
for INPUT.

The CLOSE statement causes orderly termination of file processing.

D.6.3.2. Type 5 - ACCESS IS RANDOM

• Output file

An OPEN for OUTPUT statement prepares the file for output operation. The file
is formatted if the APPLY FILE-PREPARATION clause is specified. Standard
labels are written. The USE for BEGINNING LABEL procedure is executed if
user labels are specified.

The WRITE statement records the logical record in the next available position
of the restricted track extent specified by the programmer-supplied ACTUAL
KEY value (relative track number) and the APPLY RESTRICTED SEARCH
clause (number of tracks in extent.) The contents of the SYMBOLIC KEY item is
recorded with the record for the purpose or specific record identification during
subsequent retrieval or update functions.

The SEEK statement positions the direct access device to the track specified by
the programmer-supplied ACTUAL KEY value.

The CLOSE statement causes orderly termination of file processing.

• Input file

An OPEN for INPUT statement prepares the file for input operation. Standard
labels are checked, and user labels, if specified, are made available to the USE
for beginning LABEL procedure.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Appendix D 12
SECTION: PAGE:

The READ statement retrieves from the restricted track extent the logical record
whose recorded record identification information is equal to the programmer-supplied
value in the SYMBOLIC KEY item. The restricted track extent to be searched is
specified by the ACTUAL KEY value (relative track number) and the APPLY
RESTRICTED SEARCH clause (number of tracks in extent).

The SEEK statement's operation is the same as when the file is OPENed for
OUTPUT.

The CLOSE statement causes orderly termination of file processing.

• I-0 file

An OPEN for I-0 statement prepares the file for input and output operation.

Label processing is the same as when the file is OPENed for INPUT.

The READ statement's operation is the same as when the file is OPENed for
INPUT.

Each WRITE statement must be preceded by a READ statement. The WRITE
statement causes the updated record to be rewritten onto the same physical
area that the record was read from. The SYMBOLIC KEY value is not rewritten.
The ACTUAL KEY value for the WRITE is defined by the previous READ.

Consecutive WRITE's to the file alter the same physical record position.

The operation of the SEEK statement is the same as when the file is OPENed
for OUTPUT.

The INSERT statement allows new records to be added to the file. The INSERT
statement's operation is the same as a WRITE when the file is OPENed for
OUTPUT.

The CLOSE statement causes orderly termination of file processing.

D.6.4. ORGANIZATION IS INDEXED

Two file processing techniques are available with indexed organization: type 6
when ACCESS IS SEQUENTIAL, and type 7 when ACCESS IS RANDOM. Type 6 must
be used to initially create a file or extend an existing file. Type 7 must be used to
add records into (INSERT) an existing file.

The logical records of a file with indexed organization are identified by the value
contained in an embedded identification field specified by the RECORD KEY clause.

A file that is created with indexed organization must be referred to only with indexed
organization.

Indexed organization allows only RECORDING MODE IS F. An AL TERN ATE AREA
cannot be assigned to an indexed file. Records may be blocked or unblocked. The
recorded format of unblocked records varies depending on the position of the RECORD
KEY within the record. If the RECORD KEY is the first item described within the
record, the physical record format is:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

RECORD
KEY

Rev. 1 Appendix D
SECTION:

If the RECORD KEY is not the first item described within the record, the physical
record format is:

RECORD
KEY

DATA
RECORD

KEY

In either case, the RECORD KEY value is delivered on a READ statement !ls part
of the record.

File preparation is not necessary with indexed organization.

D.6.4.1. Type 6 - ACCESS IS SEQUENTIAL

• Output file

DATA

An OPEN for OUTPUT statement prepares the file for output operation. File
creation (load) is assumed unless the file already exists, in which case file
extension is implied. Standard labels are written. User labels are not permitted.

The WRITE statement records the logical record sequentially in the prime
data area of the file after blocking, as required, is effected. The RECORD
KEY value of the previous logical record. If the file is being extended, the
RECORD KEY value of the first logical record written must be higher than
the RECORD KEY value of the last logical record written during the previous
file load or extension process.

The CLOSE statement causes orderly termination of file processing. Standard
labels are written.

• Input file

An OPEN for INPUT statement prepares the file for input operation. Standard
labels are checked.

A READ statement causes the next sequential record in the file to be made
available after deblocking, as required, is effected. The RECORD KEY value
is delivered as part of the logical record.

The SEEK statement causes the programmer-supplied value in the SYMBOLIC KEY
item to specify the RECORD KEY value of the next record to be read. If no record
is found with that KEY, positioning is made to the record with the next higher KEY.
Following the READ, records are again retrieved sequentially until another SEEK
statement is executed or file processing is terminated.

The CLOSE statement causes orderly termination of file processing. Standard
labels are written.

13
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

• I-0 file

Appendix D 14
SECTION: PAGE:

An OPEN for I-0 statement prepares the file for input and output operation.
Label processing is the same as when the file is OPEN ed for INPUT.

The READ statement's operation is the same as when the file is OPENed for
INPUT.

Each WRITE statement must be preceded by a READ statement. The WRITE
statement causes the updated record to be rewritten onto the same physical
area that the record was read from. The RECORD KEY value must not be changed.

The operation of the SEEK and CLOSE statements is the same as when the file
is OPEN ed for INPUT.

D.6.4.2. Type 7 - ACCESS IS RANDOM

• Input file

An OPEN for INPUT statement prepares the file for input operation. Standard
labels are checked.

The READ statement retrieves the logical record from the file whose RECORD KEY
value is the same as the programmer-supplied value in the SYMBOLIC KEY item
after deblocking, as required, if effected.

The CLOSE statement causes orderly termination of file processing. Standard
labels are written.

• I-0 file

An OPEN for I-0 statement prepares the file for input and output operation.
Label processing is the same as when the file is OPENed for INPUT.

The READ statement's operation is the same as when the file is OPENed for
INPUT.

Each WRITE statement must be preceded by a READ statement. The WRITE
statement causes the updated record to be rewritten onto the same physical
area from which record was read. The RECORD KEY must not be changed.

An INSERT statement causes the new logical record to be added into the file.
The position of the inserted record is determined by its RECORD KEY value.
Since all prime data area tracks are fully loaded (dense) during file load or file
extension, an overflow area must be provided for INSERT's. The overflow area
may be a cylinder overflow area (APPLY CYLINDER-OVERFLOW clause) and/or
an independent overflow area (specified via the job control stream when the file
is allocated). If both overflow areas exist, the cylinder overflow area is used
first.

The CLOSE statement's operation is the same as when the file is OPEN for
INPUT.

~

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

D.7. SUMMARY OF AT END/INVALID KEY/ERROR CONDITIONS

(1) ORGANIZATION IS SEQUENTIAL

Appendix D 15
SECTION: PAGE:

The AT END imperative statement is executed when an end-of-file record is
detected.

The INVALID KEY imperative statement is executed when there is no space
left on the file for the record to be written.

(2) ORGANIZATION IS RELATIVE or DIRECT

For type 2 and type 3 files, the AT END imperative statement is executed when
an access to a record which is beyond the file is attempted.

For type 2 through type 5 files, the INVALID KEY imperative statement is executed
when the relative record number or relative track number is beyond the file extents.
The INVALID KEY imperative statement is also executed for a type 5 file if the
record being processed is not located, or cannot be placed into, the current
restricted track extent.

The following error conditions are reported in SYSERR for type 2 through type 5
files:

SYSERR-1 Wrong Length Record
SYSERR-4 No Room Found
SYSERR-8 Data Check Count Area
SYSERR-9 Track Overrun
SYSERR-10 End of Cylinder
SYSERR-11 Data Check in Key or Data
SYSERR-12 Record Not Found
SYSERR-13 End of File Record detected
SYSERR-14 End of Volume
SYSERR-15 Record not in specified File Extents

Additional information can be found in Table 4-1 of UNTVAC 9400 Data Management
System Programmers Reference, U P-7629 (current version).

The USE FOR ERROR procedure, if specified, is executed if any file error exists
that did not cause an AT END or INVALID KEY condition.

When executing a USE FOR ERROR procedure, if SYS ERR is OFF, a major hardware
failure or major logic error is indicated.

(3) ORGANIZATION IS INDEXED

For type 6 files, the AT END imperative statement is executed when the logical
end of file is reached.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix D 16
SECTION: PAGE:

For type 6 or type 7 files, the INVALID KEY imperative statement is executed
if:

(a) during file creation or extension, a RECORD KEY value is found to be out
of sequence;

(b) a duplicate RECORD KEY value is detected; or
(c) the RECORD KEY value cannot be found.

The following error conditions are reported in SYSERR for indexed files:

SYSERR-0
SYSERR·2
SYSERR-3
SYSERR-5
SYSERR-6
SYSERR-7

Unrecoverable device error
Prime data area full
Index area too small/record not found
Duplicate KEY
Records out of sequence/overflow area full
Record retrieved from overflow area

Additional information can be found in Table F-1 of UNlVAC 9400 Data Management
System Programmers Reference, UP-7629 (current version).

The USE for ERROR procedure, if specified, is executed if any file error exists
that did not cause an AT END or INVALID condition.

When executing a USE for ERROR procedure, if SYSERR is OFF, a major hardware
failure or major logic error is indicated.

Figure D-1 summarizes available SYSERR-n settings for ORGANIZATION IS INDEXED.
The SYSERR-n column states the condition causing the setting of the corresponding
SYSERR-n. The order column headings are self explanatory. The following is an
example of the use of the figure.

ACCESS IS RANDOM, ORGANIZATION IS INDEXED, and a file that has been opened
for INPUT is being READ. The programmer wishes to know which SYSERR number(s)
is meaningful during INVALID KEY processing. He must find in the figure the paths
which satisfy all conditions of the problem to obtain the applicable SYSERR number(s).
In this example, SYSERR-3 is the only path that contains INVALID KEY, RANDOM,
INPUT, and READ. SYSERR-3 will be set if no record is found when using SYMBOLIC
KEY.

Table D-1 summarizes the COBOL dis~ processing techniques.

·~._...-

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

MEANINGFUL ACCESS
TYPE SYSERR·n DURING OPEN FOR

INPUT

NORMAL SEQUENTIAL OUTPUT

1-0

SEQUENTIAL
INPUT

VERBS

SEEK

~U~S=E,,...,,....,FO=-=-R~-t-tJ ll-+-+--o_u_T_P_U_T~++-R_E_A_D~,_W_R_IT~E·~
ERROR L RANDOM J INSERT

2 ---H

3 -+-

NORMAL

1
USE FOR J

ERROR

NORMAL

USE FOR
ERROR

INVALID KEY

NORMAL

USE FOR

ERROR

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

RANDOM

SEQUENTIAL

SEQUENTIAL

SEQUENTIAL

5
INVALID KEY j

L RANDOM

INVALID KEY SEQUENTIAL

6 -tl USE FOR

ERROR

RANDOM

SEQUENTIAL

1-0

OUTPUT WRITE

OUTPUT OPEN

OUTPUT WRITE

INPUT

READ, WRITE
1-0

INPUT
SEEK

1-0

INPUT

1-0 READ, WRITE

OUTPUT WRITE

1-0 INSERT

OUTPUT WRITE

1-0 INSERT

INPUT

Appendix D 17
SECTION: PAGE:

SYSERR DEFINITION

UNRECOVERABLE DEVICE ERROR

PRIME DATA AREA FULL*

INDEX AREA TOO SMALL

NO RECORD FOUND USING

SYMBOLIC KEY

DUPLICATE KEYED RECORD

OUT OF SEQUENCE

OVERFLOW AREA FULL

7
READ NORMAL j RECORD RETRIEVED FROM

~-r-~~~~~--i~L~R_A_N_D_o_M~--+~~-1--0~~_:+-~~~~~-1-~~~~~~~~~~~~~~
OVERFLOW AREA

*If prime data area is full on first WRITE, SYSERR-2 should be tested during NORMAL processing.
If prime data area is full for any subsequent WRITE, SYSERR-2 should be tested in USE ERROR
PROCEDURE processing.

Figure D-1. SYSERR·n Settings for ORGANIZATION IS INDEXED

--

(

PROCESSING TECHNIQUE

ORGANIZATION ACCESS

SEQUENTIAL SEQUENTIAL

OR OR
OMITTED OMITTED

RELATIVE SEQUENTIAL
OR

OMITTED

-uiRECT SEQUENTIAL
OR

OMITTED

RELATIVE RANDOM
OR

OMITTED

DIRECT RANDOM

INDEXED SEQUENTIAL

INDEXED RANDOM

CD ANSI language element extension

@ Extended compiler only

TYPE
ADDRESSING
TECHNIQUE

1

RELATIVE
2 RECORD

CD@ ®

RELATIVE
3 TRACK

CD@ ®

RELATIVE
4 RECORD

@ ®

RELATIVE
5 TRACK

CD@ ®

6

CD@

7

CD@

@ Requires preformatting of entire file prior to wnting

REQUIRED
OPEN ALLOWABLE 1-0 REQUIRED RECORD OPTIONAL RESTRICTED

KEY
FORMAT© VERB STATEMENTS CLAUSES CLAUSES CLAUSES

CLAUSES

NONE F INPUT READ AT END SELECT ASSIGN SELECT OPTIONAL, APPLY RESTRICTED SEARCH,
ALLOWED

OUTPUT WRITE INVALID KEY
MULTIPLE UNIT, APPLY FILE-PREPARATION,

LABEL RECORDS RESERVE, SAME IRECORDI APPLY MASTER-INDEX, APPLY
u 1-0 READ AT END {STANDARD l AREA, BLOCK CONTAINS, CYLINDER-OVERFLOW, APPLY

v WRITE INVALID KEY ARE DATA-NAME RECORD CONTAINS, DATA EXTENDED-INSERTION, APPLY - RECORDS, APPLY VERIFY, CYLINDER-INDEX AREA CLOSE
USE LABEL, USE ERROR,
CLOSE UNIT, READ INTO,
WRITE FROM

ACTUAL INPUT READ AT END, SEEK
OR F - OUTPUT WRITE INVALID KEY,

RELATIVE SEEK

SAME I RECORD! AREA, APPLY RESTRICTED SEARCH,
1-0 READ AT END, WRITE([) RECORD CONTAINS, BLOCK RESERVE INTEGER, OPTIONAL

INVALID KEY, SEEi\&) CONTAINS 1 RECORD, DATA BLOCK CONTAINS ,1 RECORD,
RECORD, APPLY VERIFY, USE ENDING LABEL, APPLY

ACTUAL INPUT READ AT END, SEEK
APPLY FILE-PREPARATION MASTER-INDEX, APPLY

AND F
CYLINDER-OVERFLOW, - OUTPUT WRITE INVALID KEY, USE LABEL, USE ERROR,

SYMBOLIC u SEEK RESERVE NO ALTERNATE APPLY EXTENDED-INSERTION

READ AT END, WRITE@ AREA, READ INTO, WRITE APPLY CYLINDER-INDEX
1-0 FROM, INSERT FROM AREA

INVALID KEY, SEEK@

ACTUAL INPUT READ INVALID KEY,
OR SEEK

RELATIVE F
OUTPUT WRITE INVALID KEY,

SEEK

1-0 READ INVALID KEY,
WRIT~INVALID KEY,
SEEK 6

ACTUAL INPUT READ INVALID KEY, SEEK
AND

L. SYMBOLIC
OUTPUT WRITE INVALID KEY,

u SEEK (SAME AS ABOVE) !SAME AS ABOVE!
AND APPLY RESTRICTED EXCEPT

1-0 READ INVALID KEY, SEARCH APPLY RESTRICTED SEARCH

WRIT~ IS ALLOWED
INVAL KEY, INSERT

INVALID KEY, SEE"@

RECORD (j) INPUT READ AT END, SEEK SELECT /ASSIGN SAME IRECORDI AREA,

I SYMBOLIC! L. OUTPUT WRITE INVALID KEY RECORD CONT Al NS, BLOCK

1-0 READ AT END, WRITE@ LABEL RECORDS CONTAINS, DATA RECORDS,

ARE STANDARD RESERVE NO, APPLY VERIFY,
INVALID KEY, SEEK APPLY MASTER-INDEX,

APPLY CYLINDER-OVERFLOW,
USE ERROR, INTO, FROM APPLY RESTRICTED SEARCH,

APPLY FILE-PREPARATION,

CLOSE RESERVE INTEGER, OPTION-
RECORD INPUT READ INVALID KEY AL, USE LABELS, LABEL
ANO F

1-0 READ INVALID KEY, RECORDS OMITTED OR DATA-
SYMBOLIC -

WRITE([) NAME USE ENDING LABEL
!SAME AS ABOVE) AND APPLY

INVALID KEY, INSERT
EXTENDED-INSERTION,

INVALID KEY
APPLY CYLINDER-INDEX
AREA

@) Default RECORD FORMAT 1s underlined

® REWRITE accepted as synonym for WRITE

(j) ACTUAL key may be used in place of SYMBOLIC key for UNIVAC 9300
System compat1b1 l1ty.

® SEEK not permitted between READ and WRITE

Table D-1. Summary of COBOL Disc Processing Techniques

(

:::tl c:::
Cl) 'tl
<: I

. :j
1-.J 0

I.Cl

"' c:
'"ti
'"tic:

~z
~<
m~
zn
-t '° ~~
:::0 0
-<o
:::o n
mO
"T1 DI
mO
:::0 r­
m
z
n
m

:::tl
Cl)

<

1-.J

~ :;i;..
() 'O
-; 'O
- Cl)
0 ;:J

z e:

1l
)>

Gl
IT\

~

Cl

......
00

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

APPENDIX E.

E.1. GENERAL

EXTENDED

FEATURES

Rev. 3 Appendix E
SECTION: PAGE:

COMPILER

As previously stated in 1.3 of this manual, the basic compiler is a true subset of the
extended compiler. The features that are contained only in the extended compiler are
summarized in Table E-1, with appropriate references to the text.

EXTENDED COMPILER FEATURE REFERENCE

SD 5 .2 .2

compound conditions 6.5.2

COMPUTE verb 6.6, 6.6.1, 6.7 .6

condition-name, with multiple values or THRU option only 5.3 .12

COPY REPLACING 6. 7. 7

IF statement condition associated with range of value 5 .3 .12

INSERT 6.7 .16

OCCURS DEPENDING 5 .3.3

PERFORM statement, formats 3 and 4 6.7 .21

RELEASE verb 6.7 .23

RETURN verb 6.7 .24

REWRITE 6. 7 .25

SEARCH 6.7 .26

SEEK verb 6.7 .27

SEGMENT ·LIMIT 4 .2 .2

SORT verb 6.6, 6.7.29

VALUE IS statement, format 2 5.3.8

CORRESPONDING option for ADD, SUBTRACT, and 6.7.2, 6.7.31, 6.7.17
MOVE verbs

Random Access Features

ACCESS IS RANDOM 4.3.1
ORGANIZATION 4 3 .1
KEYS 4.3.1
APPLY VERIFY 4.3 2
APPLY MASTER-INDEX 4.3.2
APPLY CYLINDER-INDEX AREA 4 3.2
APPLY CYLINDER-OVERFLOW AREA 4.3.2
APPLY EXTENDED-INSERTION 4 3.2
APPLY FILE-PREPARATION 4.3.2
SY SERR, SYS ERR(-n] 4.2.3

Table E-1. Extended Compiler Features

1

t

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1

APPENDIX F.

F .1. GENERAL

CALLING AND
PROGRAMS

Appendix F
SECTION:

CALLED

Run-time communication between a main COBOL program and any other separately

compiled or assembled subprogram is accomplished by use of the ENTER statement
together with its associated statements:

• CALL

• ENTRY

• EXIT PROGRAM or RETURN

• USING clause with PROCEDURE DIVISION header

Actual transfer of control from a CALLing program to a CALLed program is via a
CALL statement whose entry-name is identical to the entry-name in the ENTRY
statement of the CALLed program. Return of control to the CALLing program is
effected by the execution of an EXIT PROGRAM statement in the CALLed program.
Control is returned to the statement following the CALL statement in the CA LLing

program.

Note that a CALLed program need not be a COBOL program. In such cases, the
COBOL CALLing program may include procedure-names in its USING argument
list. All lines in the examples containing an asterisk(*) in the continuation
area (column 7) are commentary lines.

F .2. TREATMENT OF DATA ITEMS

Data items which are declared in the CALLing program and are referenced in the
CALLed program are described in the File or Working Storage Section in the Data
Division of the CALLing program. In the CALLed program, these data items are
described, once again, but in the LINKAGE SECTION. Items described in the
LINKAGE SECTION are not allocated computer storage by the compiler since these
items already occupy storage in the CALLing program which furnishes their
addresses to the CALLed program at object time.

PAGE:

Data items common to both programs are shared by means of corresponding USING
clauses in each program. The operands in the USING clause of the CALLing program
name the data items contained in the Data Division which are to be shared with the
CALLed program. The USING clause in the CALLed program can either follow the
PROCEDURE DIVISION header or be contained in an ENTRY statement. The operands
must name data items described by 01 or 77 level entries in the LINKAGE SECTION.

The sequence of appearance of the operands in the two USING clauses is extremely
significant since corresponding operands refer to a single common data item, i.e.,
correspondence is by position and not by name. Each reference to an operand in the
CALLed program's USING clause is treated as if it were a reference to the correspond-
ing operand in the USING clause of the CALLing program. The CALLing program is
responsible for ensuring physical data alignment if the description of a LINKAGE SECTION
data item implies a hardware alignment requirement.

It should be noted that a CALLed program may also be a CALLing program sharing
common data items in its Data Division (including LINKAGE SECTION items) with
still another CALLed program.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rev.1 Appendix F 2
SECTION: PAGE:

F .3. LINKING

A sample linker job stream for CALLing and CALLed programs follows:

/$

/*

LOADM
INCLUDE
INCLUDE
INCLUDE

CALL XX
CALLER,*
CALLED,*
ADDROUT,*

F .4. UNIVAC 9400 COBOL CALL/ENTRY INTERFACE

ROUTINE

CALLER

CALLED

The following example is provided to illustrate the use of CALL and ENTRY state­
ments. The example consists of a COBOL program (CALLER, see Figure F-1) which
shares data=items and calls upon a CALL subprogram (CALLED, see Figure F-2) and
an assembly language subprogram (ADDROUT, see Figure F-3), for operations upon
the shared data-items. Table F-1 shows the relationship between these programs.

TYPE LANGUAGE INTERFACE FUNCTION COMMENT

Program COBOL CALLs COBOLADD Sets values in data- Note that any 01 or 77
in CALLED. items and CALLs level data-item can be
CALLs ASMBLRAD on subprograms to used as operand in CALL
in ADDROUT. add values and statement (shared with

provide result. subprogram).
Results are dis·
played on con°
sole.

Subprogram COBOL ENTRY point is Adds values in Items to be shared with
COBO LADD. several shared a CALLing program are
EXIT accomplish 0 data-items and described as 01 or 77
ed via exit leaves result level data-items in
program. in a shared LINKAGE SECTION.

data 0 item.

ADD ROUT Subprogram ASM ENTRY point is Same as CALLED Items to be shared with
ASMBLRAD. above. a CALLing program may
Exit accom pl i sh 0 be described within a
ed via BR RE$. DSECT. The arguments

passed represent the
address of each item
in the CALLing program
storage.

Table F-1. Program/Subprogram Relationships

UP-7709
Rev. 2

LINE NO.

00001

00002

00003

00004

00005

00006

00007

00008

00009

00010

00011

00012

00013

00014

00015

00016

00017
00018

00019

00020

00021

00022

00023

00024

00025

00026

00027

00028

00029

00030

00031

00032

00033

Appendix F 3 UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION: PAGE:

SOURCE STATEMENT

IDENTIFICATION DIVISION.

PROGRAM-ID. CALLER.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. UNIVAC-9400.

OBJECT-COMPUTER. UNIVAC-9400.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 DAT Al PIC 9999.

77 DATA2 PIC 99.

77 CTR PIC 99 VALUE 01.

01 DA TAX.

02 DATA3 PIC 99.

02 DATA4 PIC 99.

PROCEDURE DIVISION.

PO.

MOVE CTR TO DATA2, DATA3, DATA4.
POD.

Pl.

P3.

P4.

ENTER LINKAGE.

CALL ASMBLRAD USING DATA2, DATAX, DATAl.

ENTER COBOL.

DISPLAY I CALLER RECVD I DATA2 I + I DATA3 I + I DATA4 I = I

DA TAl ' FROM ASMBLRAD ' •

ADD 1 TO DATA4.

ENTER LINKAGE.

CALL COBOLADD USING DATA2, DATAX, DATAl.

ENTER COBOL.

DISPLAY I CALLER RCVD I DATA2 I + I DATA3 I + I DATA4 I = I

DATAl ' FROM COBOLADD'.

IF CTR LESS THAN 12 ADD 1 TO CTR GO TO PO ELSE

DISPLAY 'END OF RUN' STOP RUN.

Figure F-1. Example of CALLing Program

UP-7709
Rev. 2

LINE NO.

00001

00002

00003

00004

00005

00006

00007

00008

00009

00010

00011

00012

00013

00014

00015

00016

00017

00018

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

SOURCE STATEMENT

IDENTIFICATION DIVISION.

PROGRAM-ID. CALLED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. UNIVAC-9400.

OBJECT-COMPUTER. UNIVAC-9400.

DATA DIVISION.

LINKAGE SECTION.

01 DATAX.

02 DATA3 PIC 99.

02 DATA4 PIC 99.

77 DATAl PIC 9999.

77 DATA2 PIC 99.
PROCEDURE DIVISION.

Appendix F 4
SECTION: PAGE:

PO. ENTER LINKAGE. ENTRY COBOLADD USING DATA2 DATAX DATAl.
ENTER COBOL.

Pl. ADD DATA2 DATA3 DATA4 GIVING DATAl.

P9. ENTER LINKAGE. EXIT PROGRAM. ENTER COBOL.

Figure F-2. Example of CALLed Program

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix F 5
SECTION: PAGE:

ADDROUT START 0

PRINT NOGEN

STDEQU

PRINT GEN

DUMMY DSECT

DATA2ASM DS

DATAXASM DS

DATA3ASM DS

CL2

OCL4

CL2

DATA4ASM DS CL2

DATAlASM DS CL4

ADDROUT CSECT

USING DATA2ASM,R2$

USING DATAXASM,R3$

USHJ'.:J DATA1ASM,R4$

USING *,RF$

ASMBLRAD SIM RE$,RC$,12(RD$)

ENTRY ASMBLRAD

LR

LA

SIM

R2$,RD$

RD$,SAVEAREA

R2$,R2$,4(RD$)

A DSECT IS A DESCRIPTION NOT TO

BE MAPPED SINCE IT WILL RESIDE

ELSEWHERE AT OBJECT TIME

R2 WILL BE USED TO COVER DATA2

R3 WILL BE USED TO COVER DATA3/4

R4 WILL BE USED TO COVER DATAl

COVER FOR THIS ROUTINE

SAVE CALLERS REGS IN HIS SAVEAREA

DECLARES ENTRY POINT LABEL

SAVE ADR OF CALLERS SAVEAREA

LOAD RD$ WITH ADDR OF THIS ROUT S-A

SAVE CALLER S-A ADR IN THIS ROUT SA

SIM RD$,RD$,8(R2$) SAVE THIS ROUT SA ADR IN CALLER SA

LM

PACK

ZAP

PACK

AP

PACK

AP

UNPK

L

LM

MVI

BR

SAVEAREA DS

ACCUM DS

HOLD2 OS

END

R2$,R4$,0(Rl$) LOAD COVER REGS WITH ARG'S

HOLD2(2),DATA2ASM(2)

ACCUM(3),HOLD2(2)

HOLD2(2),DATA3ASM(2)

ACCUM(3),HOLD2(2)

HOLD2(2),DATA4ASM(2)

ACCUM(3),HOLD2(2)

DATA1ASM(4),ACCUM(3)

RD$, 4 (, RD$)

RE$,RC$,12(RD$)

12(RD$) ,X' FF'

RE$

18F

CL3

CL2

ADDR OF CALLERS SA

RESTORES CALLERS REGS

SET CALLED TO RETURNED STATUS

Figure F-3. Example of CAL Led Assembly Subprogram

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev.1

Example console typeout at execution time of the three programs.

13:42 RE 15

Appendix F 6

SECTION: PAGE:

113:42 ¢'1 ST22 AC2 RL AP
113:42 ¢1 JC¢6 15 COBOL CALLXX :¢94
113:42 15 ST18 //ALTER ,.L
113: 42 15 cm¢ CALLER RCVD ¢1 + ¢1 + ¢1 ::::z ¢¢rte FROM ASMBLRAD
113:42 15 CD1¢' CALLER RCVD ¢1 + ¢1 + ¢2 =~ ¢~4 FROM COBOLADD
113:43 15 CD1¢' CALLER RCVD ¢'2 + ¢'2 + ¢'2 = ~F FROM ASMBLRAD
113:43 15 CD1¢ CALLER RCVD ¢2 + ¢2 + ¢3 = ~7 FROM COBOLADD
113:43 15 CD1¢ CALLER RCVD ¢3 + ¢3 + ¢3 = ~I FROM ASMBLRAD
113:43 15 CD1¢ CALLER RCVD ¢3 + ¢3 + ¢4 = 1¢' FROM COBOLADD
113:43 15 cm¢ CALLER RCVD ¢4 + ¢4 + ¢'4 = 00rn FROM ASMBLRAD
113: 43 15 cm0 CALLER RCVD ¢4 + 04 + ¢5 = ¢¢13 FROM COBOLADD
113: 43 15 cm¢ CALLER RCVD 05 + 05 + ¢'5 = 0¢u: FROM ASMBLRAD
113: 43 15 cm¢ CALLER RCVD ¢5 + 05 + 06 = 0016 FROM COBOLADD
113:43 15 CD1¢' CALLER RCVD 06 + 06 + 06 = OOIH FROM ASMBLRAD
113:44 15 CD1¢' CALLER RCVD 06 + 06 + 07 = 0019 FROM COBOLADD
113: 44 15 CD1¢' CALLER RCVD ¢7 + ¢'7 + ¢'7 = ¢¢2A FRO:V\ ASMBLRAD
113:44 15 cm¢ CALLER RCVD 07 + ¢1 + ¢'8 = ¢'¢22 FROM COBOLADD
113: 44 15 cm¢' CALLER RCVD ¢'8 + 0~ + ¢'8 = ¢'¢20 FROM ASMBLRAD
113:44 15 co1¢ CALLER RCVD 08 + 08 + ¢9 = ¢'¢25 FROM COBOLADD
113:44 15 cm¢ CALLER RCVD ¢'9 + ¢'9 + ¢'9 = ¢'¢2G FROM ASMBLRAD
113:44 15 CD1¢ CALLER RCVD ¢'9 + ¢'9 + 1¢' = ¢'¢28 FROM COBOLADD
113: 44 15 cm¢ CALLER RCVD 1¢' + 1¢' + 1¢' = 003 FROM ASMBLRAD
113:44 15 CD1¢' CALLER RCVD 1¢' + 10 + 11 = ¢'¢'31 FROM COBOLADD
113:45 15 CDlyt CALLER RCVD 11 + 11 + 11 = ¢"03C FROM ASMBLRAD
113:45 15 CD10 CALLER RCVD 11 + 11 + 12 = ¢'¢'34 FROM COBOLADD
113: 45 15 cm¢' CALLER RCVD 12 + 12 + 12 = ¢'yif3F FROM ASMBLRAD
113:45 15 CD1¢' CALLER RCVD 12 + 12 + 13 = ¢"037 FROM COBOLADD
113:45 15 CD1¢ END OF RUN
113:45 ¢'1 JT¢'1 15 COBOL RUN TIME 1:14:476

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix G
SECTION: PAGE:

APPENDIX G. COMPILER
OPTIONS

G.1. GENERAL

The optional // PARAM card provides a method of presenting parameters to the compiler
to exercise specific COBOL options.

NOTE: Only one blank may precede the P of the word PARAM.

When P ARAM cards are used, they must be positioned immediately following the / / EXEC
EXEC card in the compilation job stream. The// PARAM cards will be printed on the
first page of the compiler output listing.

If a PARAM card format error or an illegal parameter is encountered, a console message
is produced and the compilation is terminated.

If there are no PARAM cards supplied, the compiler will produce a source program listing
and a source program diagnostic report, and generate an object module.

Absence of PARAM cards implies:

11 PARAM LST= (s)

G.2. LIST OPTIONS

Format:

II PARAM LST=(spec l, ••• ,spec n)

where spec 1, ... , spec n is one or more of the following:

A - Activate ambiguity mode of reference resolution. Normally, references are resolved
by the first appropriate definition encountered for the referenced name. The definition
search process begins with the first entry in the appropriate division and continues
through to the last entry in that division.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rev. 2 Appendix G
SECTION: PAGE:

In the ambiguity mode, the definition search process is not terminated when the
reference has been resolved, but continues in an attempt to uncover and report
duplicate definitions. When the se<>rch of the division that corresponds to the
reference type has been completed, the other divisions are also searched to
determine if the highest possible qualifier rule has been violated. Diagnostic
messages 151 through 154 report the presence of ambiguous references/definitions.

C - Produce storage map and cross reference listing for the Data Division and Procedure
Division.

E Ignore printer mismatch errors during compilation.

K Inhibit source item sequence number checking (columns 1 through 6 of the source
item)

L Single space source and diagnostic listing.

M Produce Data Division storage map listing.

N - Inhibit all listable output except PARAM card listing and compilation identi­
fication heading.

0 Produce object code listing.

P Produce Procedure Division storage map listing.

S Produce source program listing.

W - Inhibit listing of all precationary diagnostics. These errors are identified by a
severity code of P.

G.3. OUTPUT OPTIONS

Formats:

II PARAM OUT=(spec l, ••• ,spec n)

where spec 1, ... ,spec n is one or more of the following:

A - Produce ASCII sensitive object program.

L Inhibit generation of linker control cards in object module.

N Inhibit generation of object module.

P Disregard mis-match errors for all object program print files.

S - Disable object program SORT PARAM request console message.

T Inhibit compiler generation of a transfer address in the object mode. When
invoked, the program cannot be executed unless it is CALLed.

2

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

G.4. SOURCE LIBRARY INPUT

Format:

II PARAM IN=program-namelfile-name

where:

Appendix G 3
SECTION: PAGE:

program-name 1- to 8-character name of source program to be compiled.

file-name 1- to 8-character name used to identify the file on which the source
program resides. This name must appear on the LFD control card
used to define the device to the Job Control program.

If the file-name is omitted, the following name will automatically
be supplied:

Name when using basic system - SYSRES
Name when using extended system - SORS$

NO TE: When only four tapes are available for compilation, source input should be
mounted on SCR2. The compiler console message:

DISMOUNT SCR2. MOUNT A SCRATCH TAPE ON SCR2.

appears when tape is to be changed.

G.5. COPY LIBRARY INPUT

Format:

II PARAM LIN=file-name

file-name - 1- to 8-character name used to identify the file on which the COPY
library resides. This name must appear on the LFD control card used
to define the device to the Job Control program.

If the file-name is omitted, the following name will automatically be
supplied:

Name when using basic system - SYSRES
Name when using extended system - COPY$

The COPY element-name is supplied in the source program via the COPY
clause,

G.6. OBJECT MODULE VERSION/REVISION NUMBER

Format:

II PARAM VEP;;:::::vvlrr

where:

vv - version number

rr - revision number

These numbers are applied to compiler output module.

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

APPENDIX

H.1. GENERAL

Appendix H
SECTION: PAGE:

H. INTERMEDIATE
RESULTS IN
ARITHMETIC
OPERATIONS

For certain arithmetic statements, the compiler generates code that uses internal
work areas for storage of intermediate results. Intermediate results may be required
in the following types of statements:

(1) ADD, where more than one operand preceeds TO or GIVING.

(2) SUBTRACT, where more than one operand preceeds FROM or GIVING.

(3) Any statement containing an arithmetic expression which specifies more than
one operation.

Arithmetic expressions are simplified by the compiler to become a series of simple
arithmetic operations that store partial results in intermediate result areas, which
may then be used as operands in succeeding operations.

The compiler provides a description for an intermediate result which is appropriate
for its use in the operation or series of operations for which it is required. This
description can be expressed as a numeric PICTURE; however, it should be noted
that an intermediate result, used in the evaluation of an expression, may contain
as many as 30 digits.

H.2. ADD AND SUBTRACT STATEMENTS

The description of the intermediate result area is determined by forming the composite
of operands (see 6.6.1) and appending one additional digit in the most significant
position to contain overflow when there are 10 or fewer operands immediately follow­
ing the verb, or two digits when there are more than 10 operands.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SU PPLEMEHT ARY REFE REHCE

Appendix H
SECTION: PAGE:

H.3. EXPRESSIONS

The following abbreviations are used:

pl

OPl

OP2

ir

comp

mag

When
ately
when

length in mappable digits.

point location which is the number of places that the decimal point is dis­
placed from the position it would occupy if the mappable digits were con­
sidered to be an integer. For example, for the picture 99V9, pl = 1, because
the decimal point has been displaced one position; for the picture PP999,
pl = 5. A negative value in pl indicates trailing P's in the associated picture,
e.g., for the picture 99PP, pl = -2.

first operand

second operand

intermediate result

composite of operands

magnitude = 1 - pl
The maximum value that a variable can assume is 1omag - 10-pl,

expressions are evaluated, a composite of all operands except those immedi-
to the right of the exponentiation operator is formed. The receiving data item,
present, is considered in determining the composite. The following rules apply:

Operator Description

+,- plir =max (ploPl• plop2)

Lir = max (magOPl•magOP2) + P1ir

* P1ir = P1oP1 + P1oP2

Lir = magOPl + magOP2 + P1ir

I P1ir = plcomp

Lir = P1oP2 - P1oP1 + Lopl + P1ir

** plir = 12

Lir = 30

NOTE: When an expression appears in a COMPUTE statement and the ROUNDED
option is specified, one digit is added in the least significant position of
the receiver description before the composite is formed.

2

, ____ .:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Appendix H

SECTION: PAGE:

When application of the preceding rules produces an intermediate result length that
is greater than 30, the description must be re-adjusted. Three cases must be con­
sidered:

Case Condition pl ir 1ir

1 P1ir :::;._ P1com p unchanged 30

2 P1ir > P1comp P1comp 30

AND

L ir - P1comp > 30

3 P 1ir > P1com p 30 +- plir - lir 30

AND

Lir - P1comp S. 30

3

~----

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix I 1
SECTION: PAGE:

APPENDIX I. JOB CONTROL
- STREAM

I.1. GENERAL

The load modules for the basic compiler are named COBOLBOO through COBOLB24;
and for the extended compiler, COBOLOOO through COBOL024.

I.2. SAMPLE JOB STREAMS

Listed below are sample job streams used for compilation:

BASIC (T.O.S.)

II JOB jobname
11 OPTION NOVOL
11 DVC 3
11 LFD PRNTR
II DVC 4
11 LFD SYSRES
II DVC 5
II LFD SCRl
II DVC 6
I I LFD OBJFIL
II DVC 7
11 LFD SCR 2
II EXEC COBOLBOO,SYSRES
II PARAM operand,operand, •••
I$

I* I&
COBOL source Program

BASIC (D.0.S.)

II JOB jobname
I I OPTION NOVOL
II DVC 3
11 LFD PRNTR
II DVC 4
11 LFD SCRl
II DVC 10
11 LFD SCR2
11 DVC 11
11 LFD OBJFIL
II EXEC COBOLB,LOAD$LIB,,REL
~ PARAM operand,operand, •••

COBOL Source Program
I* I&

EXTENDED (o.o.s.)

II JOB jobname
I I OPTION NOVOL.
II DVC 3
11 LFD PRNTR
11 DVC 20
II VOL xxxx
I I LFD SYSRES
11 DVC 20
II VOL xxxx
11 DVC 21
II VOL xxxx
I I LFD SYSPOOL

II EXEC COBOLOOO,LOAD$LIB,,REL
~ PARAM operand,operand, •••

COBOL source Program
I* I&

UP-7709
Rev. 2

COMPILE

LINK

LIB

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix I 2
SECTION: PAGE:

The following operating instructions pertain to compiling under DOS, with either the
basic or extended compiler:

(1) Boot from disc (the system will load the compiler from tape for basic COBOL
only).

(2) File job stream on disc via console: FILE ~ (All cards in reader will be
filed, including the COBOL source deck).

(3) Run job via console:

RUN jobname,,GO,AOOO (AOOO allocates remainder of memory for compilation when
running in 65K environment).

(4) Normal system console messages may appear during compilation.

(5) Compilation is terminated when the following message appears on console:

9400 COBOL COMPILATION TIME FOR program-id START xxxx END xxxx

Operating instructions for running basic COBOL under TOS are the same as above,
with the following exceptions:

(1) Boot system from tape instead of disc.

(2) Job stream may not be filed.

(3) Console run command is:

RUN jobname,,GO

If the source program to be compiled exists on a library tape or disc file, follow the
procedures described under PARAM=IN, in Appendix G.

The job stream statements used for compile-link-go on the extended disc compiler

are as follows:

(1) Compiling a source program from cards

~
JOB name
DVC 3 II LFD PRNTR
DVC 20 I/ VOL DSP155 » LFD Load

~
DVC 20 I VOL DSP155 I DVC 21 11 VOL DSP185
LFD SYSPOOL
EXEC COBOL,LOAD$LIB,,REL

h PARAM (your options)

Source Program

I* II DVC 21 II VOL DSP185 II LBL RESV$LIB,DSP185
11 LFD RESV$
II EXEC DLINK,LOAD$LIB,,REL
II DVC 21 II VOL DSP185 II LBL USERLIB*,DSP185
11 LFD LIBl
II EXEC LIBUPS,LOAD$LIB,,REL h PARAM LIN=(l,NA:LT1,NALT2)

FILL LIBl,I,l
ADDL PROGRAM NAME** (MCL)

__ __,,..

UP-7709
Rev. 2

EXECUTION

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

I* II DVC xx l WHATEVER COMPILED PROGRAM
II DVC xx I HAS ASSIGNED
II EXEC PROGRAM NAME***,USERLIB,LIBl,REL
I&

Rev. 1 Appendix I 3

SECTION: PAGE:

(2) Compiling a source program from a disc source library

II JOB name
II DVC 3 II LFD PRNTR
II DVC 20 II VOL DSP155 II DVC 21 II VOL DSP185
I I LFD SYSPOOL
II DVC 23 II VOL DSPXXX II LBL NAME,DSPXXX
11 LFD LIBIN
II EXEC COBOL,LOADLIB,,REL
II PARAM IN=PROGRAM NAMEILIBIN
II PARAM (your options)
II DVC 21 II VOL DSP185 II LBL RESV$LIB,DSP185

11 LFD RESV$
II EXEC DLINK,LOAD$LIB,,REL
II DVC 21 II VOL DSP185 II LBL USERLIB*,DSP185
11 LFD LIBl
II EXEC LIBUPS,L0AD$LIB,,REL
II PARAM LIN=(l,NALT1,NALT2)
I$
FILL LIBl,I,l

ADDL PROGRAM NAME** (MCL)
I*
11 DVC xx l WHATEVER COMP I LED PROGRAM
II DVC xx I HAS ASSIGNED
II EXEC PROGRAM NAME***,USERLIB*,LIBl,REL
I&

*USERLIB may be a temporary disc area from which the program may be executed.
If the object program is to be saved, it must be transferred to a private library.

** This is the name assigned by the linker, i.e., PROGRAM ID. IFTEST. ADDL
IFTESTOO(MCL)

When the problem program is segmented, each segment must be added via ADDL,
i.e., IFTEST contains 4 segments:

ADDL IFTESTOO }
ADDL IFTESTOl
ADDL IFTEST02 (MCL) or
ADDL IFTEST03

ADDL IFTEST .ALL (MCL)

***This is the name assigned the problem program by the PROGRAM-ID clause,
i.e., I I EXEC IFTEST, USERLIB,LIBl ,REL.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix I
SECTION: PAGE:

I.3. DATA MANAGEMENT INTERFACE AND JOB CONTROL INFORMATION

The following is offered to clarify the use of Data Management by the COBOL com­
piler. A distinction must be made, however, between the compiler itself, and the code
produced by it.

The compiler uses its own input-output routines which are designed solely to meet
the needs of the compiler. Data Management is not utilized at compile time.

The code produced by the compiler from source statements makes use of Data Manage­
ment. This enables compatibility with other languages and a normal amount of flexi­
bility when defining files.

The compiler does a great deal of work for the user on his I-0 functions, and, for a
better understanding of the requirements and options, the user should be familiar with
UNIVAC 9400 System Data Management System Programmers Reference, UP-7629
(current version).

To supply label information for files on tape volumes, the LBL statement is used.
This statement normally follows a VOL statement in the control stream. The LBL
statement is required for all standard tape labels.

11 VOL XXXXXX (tape number supplied by user)
11 LBL file-id, file-serial-number, volume-sequence-number, expiration-date, creation­

date, file-sequence-number, generation-number, version-number.

PARAMETER LENGTH IN
CHARACTERS

DESCRIPTION

file-id

file-s eria 1-num ber

volume-sequence­
number

expiration-date
(15 = blank)

creation-date

file-sequence­
number

generation-number

version-number
(of generation)

1 to 17

1 to 6

4

6

6

4

4

2

Cannot contain imbedded blanks. Name
of file as specified in SELECT statement,
i.e., SELECT TAPEIN ASSIGN TO TAPE.

Identical to the first volume serial number
appearing on the VOL card.

Used with multireel files and is the posi­
tion of the current reel with respect to the
first reel on which the file begins.

Expiration date of the file in the form
oyyddd.

Creation date of the file in the form oyyddd.

Used with multireel files to assign a numeric
sequence for a file within a multifile set.

Uniquely identifies the edition of a file.

Indicates the version of a generation of a
file.

4

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

I.4. LINKER CONSIDERATIONS

Appendix I 5
SECTION: PAGE:

The object module produced by the basic compiler is always written to the tape trans­
port whose LFD name is OBJFIL.

If the transport is at load point at the start of the compilation, the object module wi 1 1

become the first entry in OBJFIL. If the transport is not at load point at the start of
the compilation, stacking of object modules is implied, and the compiler output will
be placed behind the existing modules already on OBJFIL. The compiler does not
rewind OBJFIL at the end of a compilation.

If the single object module produced by the compiler represents the complete user
program, OBJFIL should be rewound prior to the start of compilation. The compiler
provides the necessary communication for the linkage editor via embedded control
cards within the object module output, so that the linking is done without requiring
linker control cards in the job stream. All that is necessary, bes ides device a lloca­
tion, is an EXEC control card for the linkage editor (see UNIV AC 9400 System
Linkage Editor Programmers Reference, UP-7703 (current version). The linkage
editor then processes the first module on OBJFIL and places the executable program
back on OBJFIL or, if specified, LDMFIL.

Therefore, for a segmented or nonsegmented COBOL program, the following job stream
can be used:

DVC 3 II LFD
OPTION NOVOL
DVC 5 II VOL
DVC 6
DVC 7
EXEC LINK

PRNTR

NNNNNN

II
II LFD SYSRES
LFD OBJFIL
LFD SCRl

If the COBOL program being compiled represents only a part of a complete user
program, the user must define, using the control stream, the structure and position
of all modules in the program. The control cards required are defined in UNIVAC
9400 System Linkage Editor Programmers Reference, UP-7703 (current version).

Nonsegmented COBOL programs may be linked in any fashion, providing the user
has ensured compliance with VCON and segment loading requirements. COBOL
modules contain ENTRY points for all entry points specified within the program
and VCON references for all CALLed program-names. It should be noted that if the
user links a COBOL program as an overlay segment, the entire program (including
the Data Division) resides in the segment.

The extended compiler places the compiled object module into MCL. Since MCL is
initialized at the start of each job, a compilation must be followed by a subsequent
job step linking the compiler output, within the same job.

Fallowing is the job stream to link the output of the extended compiler:

DVC 21 II VOL XXXX
LBL RESV$LIB,DSPXXXX
LFD RESV$
EXEC DLINK,LOAD$LIB,,REL

'
I

I

UP-7709
Rev. 2

L

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 Appendix I 6
SECTION: PAGE:

To execute the linked program, the program may first be moved to USERLIB:

~
~ Ii

DVC 21 II VOL XXXX
LBL USERLIB,DSPXXXX
LFD LIBl
OPTION NOVOL
EXEC LIBUPS,LOAD$LIB,,REL
PARAM LIN=(l,NALT1,NALT2)

FILL LIBl,I,l
ADDL program-name,ALL(MCL)

Linked object programs may be executed directly from the MCL area, in which case
the preceding job step is unnecessary. Programs that exist in the MCL area are
available only for the duration of the job in which they are created.

I.5. SEQUENTIALLY ORGANIZED DISC CONTROL STATEMENTS

The job control statements having sequential organization and used to define a file
on disc are described in this paragraph. For a more detailed description of the
various options, consult U N/V AC 9400 System job Control for Disc Systems
Programmer Reference, U.P-7585 (current version).

II DVC logical-unit [,ALT]

A DVC card must be included for each file to define the logical-unit-number of
the device on which the first or only volume of the file resides.

The ALT parameter is used for a multivolume file if a second device is available.

II VOL volume-number [,volume-number, •••]

This statement contains the volume-serial-number(s) of the disc pack(s) to be
mounted on the device whose DVC card it immediately follows.

The volume-number of each volume in the file must be specified on the VOL card
in the same order (volume-sequence-number order) as the volumes occur in the
file.

This statement provides information necessary for allocation of the file on the
device. It is required the first time the program is run if the space for the file
has not been previously allocated. Multi volume files must be allocated prior to
execution of the program.

{

file-serial-number }
II LBL file-id, VCHECK

blank

[,expiration-date][,creation-date]

[,volume-sequence-number]

The file-id identifies the file by name. This name is external to the COBOL program
but may, for documentation purposes, be the same as the file-name used in the
SELECT and FD entry.

UP-7709
Rev. 2

-

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

file-seria 1-num ber

Rev. 2 Appendix I 7

SECTION: PAGE:

For files OPENed for OUTPUT, the file-serial-number of the first volume in the
file becomes the file-serial-number for all volumes. Files OPENed for INPUT or
I-0 must have a file-serial-number, on all volumes, equal to the file-serial-number
specified on the LBL card.

VCHECK

For files OPENed for OUTPUT, the file-serial-number of all volumes in the fileset
is set equal to the volume-serial-number of the first volume. When the file is OPENed
for INPUT or I-0, the file-serial-number of all volumes must equal the volume-serial­
number of the first volume.

blank

File-serial-numbers are not checked or created.

volume-sequence-number

For files OPENed for OUTPUT, this value should be 1. This value will be incre­
mented by 1 for each additional volume in the file. On INPUT or I-0 files, the
volume-sequence-number of the first volume must be equal to the volume-sequence­
number on the LBL card. Each additional volume in the file must have a volume­
sequence-number greater than the previous volume-sequence-number by 1. Volume­
sequence-numbers are neither checked nor created if this operand is omitted.

expiration-date

This value is written if the file is OPE Ned for OUTPUT. It is not checked when
the file is OPENed for INPUT or I-0. For documentation purposes, these values
may appear in the file description in the VALUE OF clause.

creation-date

This value is written if the file is OPENed for OUTPUT. It is checked when the
file is OPE Ned for INPUT or I-0, and, if it does not match, the job is aborted.

II LFD file-name, SQ, nn [,NEW]

file-name

SQ

nn

NEW

The external name assigned to the file in the SELECT entry.

Defines a sequential file; corresponds to the ORGANIZATION IS
SEQUENTIAL clause.

The maximum number of extents which can appear for a volume of this
file. The maximum possible is 16.

Indicates a new file. If this operand is not specified, the file already

exists.

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 Appendix I 8
SECTION: PAGE:

The following example shows a COBOL file definition and job control stream.

In this example, a new file of three extents is to be created. The first extent is
to be a contiguous area of five cylinders, the second extent, a contiguous area
of eight cylinders, while the third is for a contiguous area of four tracks. The
name of the file is TEMPORARY FILE, the device name is FILE-A.

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQDIS.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

SELECT TEMPORARY-FILE
'FILE-A' DISC ORGANIZATION IS SEQUENTIAL.

DATA
FILE
FD

DIVISION.
SECTION.
TEMPORARY-FILE
LABEL RECORDS ARE STANDARD
DATA RECORDS ARE name-1, name-2
VALUE OF CREATION-DATE IS '69188'
EXPIRATION-DATE IS '69365'.

01 name-1.

II DVC 20
11 VOL DSP006
II EXT c,o,cYL,5
l/l C,O,CYL,8
l/2 C,O,TRK,4
II LBL TEMPORARY-FILE,,1,69365,69188
II LFD FILE-A,SQ,3,NEW

name-n

COL - 72

x
x

I.6. DIRECT OR RELATIVE ORGANIZATION DISC CONTROL STATEMENTS

The job control statements used to define a file on disc, whose organization is
direct or relative, are defined in this paragraph. For a more detailed description of
the various options, consult the UNIVAC 9400 System Job Control for Disc Systems
Programmers Reference, U P-7585 (current version).

II DVC logical-unit

A DVC statement must be included for each volume of the DAM file because all
volumes of a direct access file must be on-line. There is a maximum of eight volumes
to a file.

II VOL volume-number

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix I

SECTION: PAGE:

This statement contains the volume-serial-number of the disc pack to be mounted
on the device whose DVC card it immediately follows. One VOL statement should
be included for each DVC statement.

11 EXT { ~ } ,, { ~~fr} , Qty
Trk

This statement provides information necessary for creation or expansion of the file
on the device. It is required the first time the program is run if the space for the file
has not been previously allocated.

II {

file-serial-number }
LBL file-id, VCHECK

blank
,expiration-date ,creation-date]

, [volume-sequence-number

The file-id identifies the file by name. This name is external to the COBOL program
but may, for documentation purposes, be the same as the file-name used in the SELECT

and FD entry.

file-serial-number

For files OPENed for OUTPUT, the volume-serial-number of the first volume in the
file becomes the file-serial-number for all volumes. Files OPENed for INPUT or
I/0 must have a file-serial-number, on all volumes, equal to the file-serial-number
specified on the LBL card.

VCHECK

For files OPENed for OUTPUT, the file-serial-number of all volumes in the file is
set equal to the volume-serial-number of the first volume. When the file is OPENed
for INPUT or I/0, the file-serial-number of all volumes must equal the volume-serial­
number of the first volume.

blank

file-serial-numbers are not checked or created.

Volume-sequence number

For files OPENed for OUTPUT, this value should be 1. This value will be incre­
mented by 1 for each additional volume in the file. On INPUT or I/0 files, the
volume-sequence-number of the first volume must be equal to the volume-sequence­
number on the LBL card. Each additional volume in the file must have a volume­
sequence-number greater than the previous volume-sequence-number by 1.

Volume-sequence-numbers are neither checked or created if this operand is omitted.

Expiration-date

This value is written if the file is OPENed for OUTPUT. It is not checked when
the file is OPENed for INPUT or I/0. For documentation purposes, these values
may appear in the file description in the VALUE OF clause.

9

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Rev. 1 Appendix I 10
SECTION: PAGE:

Creation-date

This value is written if the file is OPE Ned for OUTPUT. It is checked when the
file is OPENed for INPUT or 1/0, and, if it does not match, the job is aborted.

II LFD file-name,DR,nn [,NEW]

file-name The external name assigned to the file in the SELECT entry.

DR

nn

NEW

Defines a direct or relative access file; corresponds to the ORGANIZA­
TION IS DIRECT or ORGANIZATION IS RELATIVE clause.

The total number of extents which can appear for this file. The maximum
possible is 16 per volume. For an eight-volume file with 16 extents per

volume, this number would be 128.

Indicates a new file. If this operand is not specified, the file already
exists.

The following examples shows a COBOL file definition and job control stream.

In this example, a new file of four extents on two volumes is to be created. The
first extent is to be a contiguous area of five cylinders, the second extent, a con­
tiguous area of eight cylinders, while the third is for a contiguous area of four
tracks. The fourth extent is on the second volume and is to be a contiguous area
of six cylinders.

IDENTIFICATION DIVISION.
PROGRAM-ID. RANDIS.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

DATA
FILE
FD

SELECT TEMPORARY-FILE ASSIGN TO 'FILEA'
DISC ACCESS IS RANDOM
ORGANIZATION IS RELATIVE
ACTUAL KEY IS DATA-NAME

DIVISION.
SECTION.
TEMPORARY-FILE
LABEL RECORDS ARE STANDARD
DATA RECORDS ARE name-1, name-2 name-n
VALUE OF CREATION-DATE IS '69365'.

01 name-1.

..___.

UP-7709
Rev. 2

I. 7.

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

Appendix I
SECTION:

~
DVC 20 COL-72
VOL DSP006
EXT C, ,CYL ,5

~ 1 C, ,CYL,8
2 C,, TRK,4

~
DVC 21
VOL DSP007
EXT C, ,CYL,6

!;/ LBL TEMPORARY FILE,,1,69365,69188
LFD FILEA,DR,4,NEW

INDEXED SEQUENTIAL DISC FILE CONTROL STATEMENTS

The job control statements used to define a file on disc, whose organization is
indexed, are described in this paragraph. For a more detailed description of the
various options, consult the UNIVAC 9400 System Job Control Programmers
Reference, U P-7585 (current version).

II DVC logical-unit

x
x

A DVC statement must be included for each volume of the ISAM file. All volumes of
the file must be on-line. There is currently a maximum of four volumes to a file.

II VOL volume-number

This statement contains the volume-serial-number of the disc pack to be mounted on
the device whose DVC card it immediately follows. One VOL statement should be
included for each DVC statement.

{
Addr} II EXT C, extent-type, Cyl
Trk

' qty

This statement provides information necessary for the creation of the file on the
device. It is required, the first time the program is run if space for the file has not
been previously allocated. If the file is new, the LFD statement must specify NEW
and each DVC-VOL must be followed by an EXT statement.

The first volume of the file must have an EXT statement describing the extent for
the optional master index and the required cylinder index.

l Addr} II EXT c, 04, Cyl ' qty
Trk

The first parameter must be C or omitted. The second parameter, extent type, must
be 04, to identify an index area extent request. The third and fourth parameters
specify the amount of space to be reserved for the index area.

11
PAGE:

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix I
SECTION: PAGE:

There may be one or two additional extents allocated on the first volume extent; type
= 01 defines a prime data area extent and type = 02 defines an independent overflow
area extent. Both of these types must begin on cylinder boundaries and must be
requested as an integral number of cylinders.

II

file-id

{

file-serial-number l
LBL file-id, VCHECK

blank
,expiration-date ,creation-date]

, [volume-sequence-number

Identifies the file by name. This name is external to the COBOL program but may,
for documentation purposes, be the same as the file-name used in the SELECT and
FD entry.

file-serial-num her

For files OPENed for OUTPUT, the volume-serial-number of the first volume in the
file becomes the file-serial-number for all volumes. Files OPENed for INPUT or 1/0
must have a file-serial num her, on all vol um es, equal to the f ile-serial-n um her s peci­
fied on the LBL card.

VCHECK

For files OPENed for OUTPUT, the file-serial-number of all volumes in the file is
set equal to the volume-serial-number of the first volume. When the file is OPENed
for INPUT or I/0, the file-serial-number, on all volumes must equal the volume­
serial-number of the first volume.

blank

File-serial-numbers are not checked or created,

Volume-sequence-number

For files OPE Ned for OUTPUT, this value should be 1. This value will be incre­
mented by 1 for each additional volume in the file. On INPUT or 1/0 files, the
volume-sequence-number of the first volume must be equal to the volume-sequence­
number on the LBL card. Each additional volume in the file must have a volume­
sequence-number greater than the previous volume-sequence-number by 1.

Volume-sequence-numbers are neither checked nor created if this operand is omitted,

Expiration-date

This value is written if the file is OPENed for OUTPUT. It is not checked when the
file is OPE Ned for INPUT or 1/0. For documentation purposes, these values may
appear in the file description in the VALUE OF clause.

Creation-date

This value is written if the file is OPENed for OUTPUT. It is checked when the
file is OPENed for INPUT or I/O, and, if it does not match, the job is aborted.

II LFD file-name,IS,nn[,NEW]

12

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

File-name

The external-name assigned to the file in the SELECT entry.

IS

Appendix I

SECTION: PA GE:

Defines an indexed sequential file; corresponds to the ORGANIZATION IS INDEXED
clause.

nn

The total number of extents which can appear for this file. Only 1 prime data area
extent is allowed per volume. The first volume must contain the index area extent.
Any volume may contain the independent overflow area extent.

NEW

Indicates a new file. If this operand is not specified, the file already exists.

The following example shows a COBOL file definition and job control stream.

In this example, a new file of three extents on one volume is to be created. The first
extent is to be an index area of two tracks. The second extent is to be prime data
area of eight cylinders. The third extent is for an independent overflow area of one
cylinder.

IDENTIFICATION DIVISION.
PR03RAM-ID. INDXSQ.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

SELECT TEMPORARY-FILE ASSIGNED TO 'FILEA' DISC
ACCESS IS SEQUENTIAL
ORGANIZATION IS INDEXED
RECORD KEY IS DATA-KEY.

DATA DIVISION.
FI LE SECTION.

FD TEMPORARY-FILE
LABEL RECORDS ARE ST AND ARD
DATA RECORD IS DATA-RECORD.

01 DATA-RECORD.
02 DATA-KEY.

DVC 20
VOL DSP006
EXT C,04,TRK,2
EXT C,01,CYL,8
EXT C,02,CYL,l
LBL TEMPORARY-FILE,,1,69365,69188
LFD FILEA,IS,3,NEW

COL - 72

x
x

13

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix
SECTION: PAGE:

It should be noted that if an ISAM file is to be recreated, the existing file must first
be logically deleted from the disc pack VTOC (SCRATCHed). Refer to UNIVAC
9400 System Data Management System Programmers Reference, UP-7629 (current
version).

I.8. USE OF THE COMPILER PATCHING FACILITY

The 9400 System compiler has its own patch routine, which applies patches directly
to segments as they are loaded into memory at compilation time. Each segment being
patched has a header card which precedes the appropriate patch cards. (Only 1 header
card per SEG is acceptable.)

Patch cards are placed in the job stream immediately preceding the IDENTIFICATION
DIVISION card, and must be in ascending sequence according to segments involved.
Following are the card formats:

HEADER CARD, beginning in card column 1:
$PTCH n SEG
where: n = Segment Identification
PATCH CARD, beginning in card column 1:
$PTCH t aaaa dppppd .•.
where: t = patch data type H = hexadecimal; C = EBCDIC

a = hexadecimal address of area to be patched
d = delimiter, patch data is bounded by apostrophes
p = contents of patches

Patches are released when necessary by Systems Programming with an explanation
of the compiler problem involved.

1.9. COMPILER STATUS INDICATORS

The compiler sets the following status indicators in the user program switch indicator
(UPSI) byte. These indicators may be used in conjunction with the //SKIP job control
card:

• Switch-0 (X'80') is set to 1 if the compiler does not create a complete object module.
This condition might be caused by an "insufficient memory available" diagnostic or
a compiler abort.

• Switch-1 (X'40') is set to 1 if the compiler issues any diagnostic message with
severity code other than P.

14

-·

UP-7709
Rev. 2

._ ..

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix J
SECTION:

APPENDIX

J .1. GENERAL

~- COMPILER
DIAGNOSTICS AND
CONSOLE MESSAGES

PAGE:

The diagnostic listing is produced as the last printed output of the compiler. Each
diagnostic message contains the compiler-generated line number on which the error
occurred, the diagnostic severity code, the diagnostic number, and the diagnostic
message text.

The tables in this section are arranged by diagnostic number and contain a detailed
explanation of each error condition.

The diagnostic severity code definitions are:

P - precautionary - No source language error was encountered, but an unusual or
potentially undesirable condition was noted by the compiler.

C - changed - A character, word, clause, entry or statement in the source program
is omitted or used incorrectly. To compensate for the error, the item has been
changed by the compiler to avoid its deletion and reduce the probability of
error propagation. Execution of the object time program r.rny give unpredictable
results.

U - uncorrectable - A source language error was detected which caused the com­
piler to delete a character, word, clause, entry, or statement from the source
program. The compilation continues but other errors may result because of the
deleted item. Execution of the object program in general, gives unpredictable
results.

S - compiler restriction exceeded - The compilation continues but, to generate
code for the excessive items, a recompilation is necessary after source program
modification or with more storage assigned to the compiler.

J .2. COMPILE TIME DIAGNOSTICS

The following charts explain the error messages and the related recovery procedures.
The messages are in ascending order based on the message number.

1

MESSAGE 'I SEVERITY
NUMBER CODE

001 p

002 c

003 c

004 c

i
\

DIAGNOSTIC TEXT

ERROR IN SOURCE LINE
SEQUENCE NUMBERING.

AREA-A NON-BLANK WITH
HYPHEN IN COLUMN 7.

ERROR IN COLU!\;lN 7 OF
SOURCE LINE.

SPACE FOLLOWING LEFT
PARENTHESIS.

REASON

The characters in columns
1 to 6 of the source line are
alphanumerically less than
columns 1 to 6 of the pre­
vious source line.

A nonblank character has
been found in area A (col­
umns 8 to 11) when contin­
uation has been specified
by a hyphen in column 7.

An invalid character has
been found in column 7.

One or more spaces have
been detected following a
left parenthesis.

(
I

EXPLANATION

RULE

The sequence number,
columns 1 to 6 of the source
line, is an optional entry
used only by the programmer
to establish a sequence
among the various lines of
coding.

When continuation is speci­
fied by hyphen in column 7,
the continued portion must
begin in area B (columns 12
to 72).

The only acceptable charac­
ters for column 7 are the
space, hyphen (continuation),

or asterisk (comment).

In 9400 COBOL spaces must
not separate left or right
parentheses from that which
they enclose.

RECOVERY

The source line is pro­
cessed as though the error
had not occurred.

The first nonblank character
after column 7 .is accepted
as the beginning of con­
tinuation.

A space is assumed to have
been found in column 7.

Processing continues as if
the space had not occurred.

I

::ti c::
('p 'ti
<: I

. " " NO

(I'

c: .,,

'°

.,, c:
rz m_
3:: <
m:J>­
zn
-4-o
)>- ,,..
;::oo
-<o
;::on
mO
,, DJ
mO
;::or
m
z
n
m

(jJ

fTI ~
n 'O
-i 'O

0 ('p

::i z 0..
:<
'--<

--
1l
)>

(;)

fTI

N

MESSAGE I SEVERITY
NUMBER CODE

oos I c

006 I c

007 c

008 u

DIAGNOSTIC TEXT

NON-NUMERIC LITERAL
CONTINUATION DID NOT
BEGIN WITH QUOTE OR
APOSTROPHE.

IMPROPER TERMINATION
OF NON-NUMERIC
LITERAL LITERAL.

EXCESSIVE CHARACTER
STRING CHAR-STRING.

INVALID CHARACTER DE­
TECTED IN CHAR-STRING.

(

REASON

The continued portion of a
nonnumeric literal did not
begin with a quote or
apostrophe.

The second of the two
quotes or apostrophes which
enclose a nonnumeric literal
is not followed by a space
or punctuation and a space.
The first 30 characters of
the nonnumeric literal are
noted in the diagnostic.

A character string which is
greater than its maximum
legal size has been detected.
The first 30 characters of
the string are noted in the
diagnostic.

An invalid character was
found in the character string
displayed in the diagnostic.

EXPLANATION

RULE

When continuation of a non­
numeric literal is specified
by a hyphen in column 7,
the continued portion must
begin with a quote or apos­
trophe in area B.

The terminating quote or
apostrophe enclosing a non­
numeric literal must be fol­
lowed by a space or period
and a space.

Maximum legal sizes are:
132 characters for nonnu­
meric literals, 20 characters
for numeric literals (in­
cluding sign and decimal
point), 30 characters for
nonli terals.

An invalid character is one
which is in the COBOL
character set but which io;
made invalid by the context
in which it appears, i.e.,

PI 1 TURE.

(

RECOVERY

Processing continues as if
a quote or apostrophe oc­
curred prior to the first
nonblank character.

Processing continues as if
a space had occurred.

Processing continues after
the excessive characters
are discarded.

The entire string is deleted.

~ c:::
(1) 'tl
< I . -..]

-..]

IV 0
l.O

ell
c: .,,
.,, c:
::;; z
:c<
m>
zn
-I '°
>""""' ::0 0
-<o
::o n
mO .,, °' mO
::o r
m
z
n
m

/JI
[Ti >
n 'Cl
-! 'Cl

0 (1)

::s z c..
~·
:><:

<--..

--1J
)>

(il

[Ti

w

MESSAGE I SEVERITY
NUMBER CODE

009 u

010 c

011 c

012 c

013 c

(

DIAGNOSTIC TEXT

ILLEGAL CHARACTER DE­
TECTED IN CHAR-STRING.

NON-NUMERIC LITERAL
OF SIZE 0 ENCOUNTERED.

HYPHEN EXPECTED IN
COLUMN 7.

HYPHENS IN COLUMN 7
AND QUOTE OR APOS­
TROPHE EXPECTED.

SPACE PRECEDING A
RIGHT PARENTHESIS.

REASON

An illegal character was
found in the character-string
displayed in the diagnostic.

Two quotes or apostrophes
with no intervening charac­
ters were encountered.

A nonnumeric literal is being
con.tinued and a hyphen is
missing from column 7.

There is no terminating
quote or apostrophe on the
previous source line and no
hyphen in column 7 or quote
or apostrophe on the current
source line to indicate con­
tinuation.

One. or more spaces have
been detected preceding right
parenthesis.

i
'·.

EXPLANATION

RULE

An illegal character is one
that is not in the cobol
character set, i.e., 1t

A nonnumeric literal must
have at least one character
between the enclosing
quotes or apostrophes.

A hyphen in column 7 and a
quote or apostrophe in area
8 are needed to continue a
nonnumeric literal.

Continuation of a nonnumeric
literal is specified by a hy­
phen in column 7 and a
quote or apostrophe in area
8 preceding the continued
portion of the nonnumeric

literal.

In 9400 COBOL spaces
must not separate left or
right parentheses from that
which they enclose.

RECOVERY

The entire string is deleted.

A nonnumeric literal of one
space character is assumed.

Processing continues as if
a hyphen were encountered.

The nonnumeric literal is
terminated on the previous
source line at column 72.

Processing continues as if
the space had not occurred.

(

::0 c
Cb 'tl
<: I
• -..J

-..J
NO

Cl'
c:
""D

'°

""D c:
~z
~<
m>
zn
-1-o >,,...
:::00
-<o
:::on
mO
'Tl~
mO
:::0 r­
m
z
n
m

U>

rn ;i:;..
() 'O
-i 'O
- ro
0 ::3
z p..

1J
)>

(;)

rn

.....
x

'--<

"""

(

MESSAGE SEVERITY
NUMBER CODE DIAGNOSTIC TEXT

014 u SYNTAX REQUIRES--·
CHAR-STRING INVALID.

REASON

/
\

The character-string listed
as invalid in the message
text has produced a syntax
error. The required item is
a source string that would
have correctly completed
the clause, entry, or state-
ment in error.

EXPLANATION

RULE

See 9400 COBOL reference
manual for language formats.

(

RECOVERY

If the error appears within
a clause, such as ACCESS
or OCCURS, the clause is
deleted.

If the error appears within
an entry, such as the as-
sign device type or an in-
valid name following FD,
the entire entry is dis-
carded.

If the error appears within
a statement, the statement
is ignored.

When a syntax error occurs,
source strings are ignored
until one of the following
listed recovery types is
detected, whereupon pro-
cessing resumes. Recovery
is possible on the string
listed as invalid in the
diagnostic.

~ c::
m 'tl
< I . :j
IV 0

CA
c .,,

"°

.,,c
::;:; z
~<
m>
zn
-t "° >
:::ioo
-<o
::ion
mO .,, °' mO
:::0 r­
m
z
n
m

U1

f11 >
n "O
-I "O
- m
0 ::i
z Q.
.. ><"

1l
>
GI
f11

.......

VI

MESSAGE SEVERITY EXPLANATION
DIAGNOSTIC TEXT

NUMBER CODE
REASON RULE

014
(Cont)

015 s COMPILER ERROR This diagnostic is only .is-
sued as the result of a com-
piler/system error.

((

RECOVERY

IDENTIFICATION, PRO-
GRAM-ID, AUTHOR, IN-
STALLATION, DATE-
WRITTEN, DATE-COM-
PILED, SECURITY, RE-
MARKS, ENVIRONMENT
CONFIGURATION,
SOURCE-COMPUTER,
OBJECT-COMPUTER,
SPECIAL-NAMES, any
SPECIAL-NAME definition,
INPUT-OUTPUT, FILE-
CONTROL, SELECT, FOR,
FILE-LIMIT, ACCESS,
ACTUAL, SYMBOLIC,
RELATIVE, ORGANIZA-
TION, RESERVE, 1-0-
CONTROL, RERUN, SAME,
APPLY, DATA, FILE, FD,
SD, BLOCK, RECORD, LA-
BEL, RECORDING, DATA,
VALUE, OCCURS, PICTURE,
USAGE SYNCHRONIZED,
JUSTIFIED, BLANK, COM-
PUTATIONAL, COMP-3,
COMP-4, DISPLAY, INDEX,
SIZE, MAP, level
number, WORKING·
STORAGE, LINKAGE,
PROCEDURE, PROCEDURE-
NAME IN AREA A, any
verb.

The occurrence of this
diagnostic should be re-
ported using the SSFR
procedure.

(

:::l:l c::
Cb "d
<: I . " " tv 0

Cit
c: .,,

'°

.,, c:
::;; z
3:<
m:a>
zn
-f '°
)>""'
:::l:JO
-<o
:::l:ln
mO
"T1 D3
mO
:::1:1 I
m
z
n
m

(/)

fTI
n
-t -
0
z

::i>-
"O
"O
Cb
::i
0.. ...
:><

'-'

-1l
)>

Gl
fTI

O'I

((

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

016 u FILE-NAME FILE-NAME The file-name being refer-

NOT PREVIOUSLY enced has not been defined

SELECTED. in a SELECT entry.

017 u EXTERNAL-NAME The external-name being

EXTERNAL-NAME NOT referenced has not been as-

PREVIOUSLY ASSIGNED. signed in a SELECT entry.

018 u CLAUSE PREVIOUSLY An entry, such as APPLY

SPECIFIED FOR FILE- BLOCK-COUNT, has been

NAME. multiply specified for the
listed file-name.

019 u NAME PREVIOUSLY DE- The listed name appears in

FINED AS EXTERNAL- more than one SELECT

NAME OR FILE-NAME. entry.

020 u MISSING DAT A DIVISION The PROCEDURE DIVI-

HEADER. SION header has been en-
countered without prior
detection of the DAT A
DIVISIO.N header.

EXPLANATION

RULE

A file-name referenced in a
RERUN, MULTIPLE,
VERIFY, RESTRICTED,
BLOCK-COUNT or SAME
AREA entry must appear in
a SELECT entry.

The external-name specified
in a RERUN entry must
match the assigned external-
name or, if external-name was
not specified, the first 8
characters of the SELECT
file-name.

An entry, such as APPLY
BLOCK-COUNT, should be
s pee ified only once for a
given file.

File-names and external-
names specified in SELECT
entries must be unique.

All four division headers
must appear in every pro-
gram and conform to the
following order: IDENTI-
FICATION, ENVIRON-
MENT, DATA, PRO-
CED URE.

(
\

RECOVERY

The referenced file-name is
deleted from the entry.

The RERUN entry is deleted.

The duplicate entry is de-
leted.

The entire SELECT entry
is deleted.

Processing continues with
the PROCEDURE DIVI-

SION header. If Data
Division entries exist,
they are ignored.

::I:) c:
ID 'P
< -..J
• -..J
tv 0

Cit
c: .,,

l.O

.,, c:
•z m
:c<
m>
zn
-t.o >
::og
-<n
::oo
m1:1:1
-no m,
::0
m
%
n
m

Ill
[II>
0 'O
-i 'O
- ID
0 ::i
z 0.

1J ,,.
" [II

x
'-<

-..J

::ti c::
~ "P
< '1

'1

EXPLANATION.
NO

MESSAGE SEVERITY
\0

DIAGNOSTIC TEXT
NUMBER CODE REASON "RULE RECOVERY

021 u MISSING DATA AND PRO- The end of the source pro- All four div is ion headers If Data Division entries
CEDURE DIVISION gram has been reached must appear in every source or Procedure Division state
HEADER. without a DATA DIVISION program and conform to the ments exist, they are

or PROCEDURE DIVISION following order: IDENTI- ignored.
header being encountered. FICATION, ENVIRON-

CA
c:

MENT, DATA, PRO-
,,
,, c:

CEDURE. •z m-
~<
m>

022 c RESERVE INTEGER The number of alternate The RESERVE clause One alternate area is zn
-I "° LITERAL PROCESSED areas specified in the must specify no or one allocated for this file. >
::0 0

AS 1. RESERVE clause is not alternate area. -<o
acceptable. n

::0 0
m o:i
.,, 0
m.-

023 u FILE-NAME FILE-NAME The listed file-name ap- A file-name cannot be The file-name in error ::0
m

CONFLICTS WITH PRE· pears in multiple SAME specified in more than one is deleted from the z
VIOUS SAME AREA AREA or SAME RECORD SAME AREA or SAME SAME AREA clause. n

m
CLAUSE. AREA clauses. RECORD AREA clause.

024 u CLAUSE CLAUSE IS OUT- A clause, such as SYM- Clauses associated with The clause is deleted.
SIDE SELECT ENTRY. BOLIC, is not associated a SELECT entry must ap-

with the previously com- pear within the entry,
pleted SELECT entry. e.g., prior to the period

that terminates the entry.

025 u CURRENCY SIGN SYMBOL The currency sign specified The currency sign symbol The clause is deleted and
CHARACTER INVALID. is not contained within the must be within the COBOL the currency sign remains

valid currency sign .charac- character set but cannot a $.
Ul

f11 >
ter set. be one of the following:

n 't:l
-i 'O

The digits 0 through 9 A
- <P
0 ::l

B C D P R S V X Z space
z 0.. .. ~·

~

* + - . ; () or ". '--<

1l
J>
Gl
f11

00

(I
\) i

I

MESSAGE
NUMBER

026

027 I

028

029

(

-
SEVERITY I

CODE
DIAGNOSTIC TEXT

p I EXTERNAL-NAME

c I

c

u

EXTERNAL-NAME
TRUNCATED.

HEADER
REQUIRED AT THIS
POINT.

CLAUSE CONFLICTS
WITH ACCESS METHOD
SPECIFICATION.

FlLE-NAME PREVIOUSLY
SPECIFIED AS RERUN
CONTROLLER.

REASON

The external-name contains
more than 8 characters.

The current source line
must be preceded by the
listed header.

OPTIONAL, RESERVE,
and APPLY FILE-PRE­
PARATION are applicable
only to disc files with
ACCESS SEQUENTIAL

and ORGANIZATION SE­
QUENTIAL APPLY RE­
STRICTED SEARCH
applies only to disc files
with ACCESS RANDOM
and ORGANIZATION
DIRECT.

The listed file-name ap­
pears in multiple RERUN

entries as the RERUN
controller.

EXPLANATION

RULE

Only the first 8 characters
of the external-name are
meaningful.

The FILE-CONTROL
header must precede the
first SELECT entry, the
SPECIAL-NAMES header
must precede the first
special-name, and the I­
O-CONTROL header must
precede the first RERUN,

SAME, APPLY, or
MULTIPLE FILE entry.

See Appendix D.

A given file may control
no more than one RERUN
receiver.

RECOVERY

The excess characters
in the external-name are
deleted.

The header is assumed to
have been encountered.

The clause in error is
deleted. Line number re­
flects last statement in
the SELECT clause.

The RERUN entry is
deleted.

:;lj c:::
Cl) '"Cl
<! I
• "'-l

N ;:3

Cl>
c

\0

"'ti
"'tic

~z
3: <
m:i>
zn
-4
J>~
::0 0
-<o
::0 ()
mO
-n CCI
mo
::0 r­
m
z
()
m

(/)

fT1 > 0 '"O
-I '"O
0 Cl)

::i z
0..
~·
:<

'--<

1l
)>

Gl
fT1

\0

::ti c::
(!) "'Cl

I

EXPLANATION
;: -..]

-..]

MESSAGE SEVERITY DIAGNOSTIC TEXT l'-.)0

NUMBER CODE '° REASON RULE RECOVERY

030 u INVALID SPECIFICATION The listed RERUN receiver RERUN receivers must be The RERUN entry is de-
~ OF RERUN RECEIVER is not a tape or disc. assigned to a tape or disc. leted.

EXTERNAL-NAME

031 s ADDITIONAL MEMORY The compiler does not have Each SELECT entry re- This SELECT entry and
V>
c:

REQUIRED FOR SELECT sufficient internal storage quires 26 bytes of storage all others that follow are -0
-Oc:

PROCESSING. to process all of the plus 1 byte for each char- deleted. rz
SELECT entries. acter in the file-name. To

m_
:C<

increase the number of m>-
zn

SELECTS that can be proc- '°
essed, recompile using >-~

;:c 0

smaller file-names or with -<o

more storage assigned to
;:en
mO

the corn piler. -n IJJ
mO
;:er
m
z

032 u DUPLICATE CLAUSE OR A clause such as ACTUAL All clauses must be The duplicate clause or n
HEADER. or a header such as unique within their as- header is deleted. m

A.UTHOR has been multiply sociated entries. All
specified. headers must be unique.

033 u HEADER OUT OF SE- The header on the indicated The order of headers must The header is deleted.

QUENCE. line number is out of se- be as defined.
::ti

quence. (!)

<:

!'-.)

034 u CLAUSE APPLIES ONLY The clause or entry at the VERIFY, RANDOM, The clause or entry is

TO RANDOM ACCESS indicated line number RESTRICTED, ORGAN I- deleted. UI

FILES. applies only to random ZATION, ACTUAL, SYM-
[11 ;i:..
(l 't:l

access files. BOLIC, RELATIVE, or
-l 't:l

0 (!)

::i
MULTIPLE apply only to z 0. .. :;« random access files.

1J
)>

Gl
[11

~
0

(I

((
\

(((
:::l:l c::
ro 'P

SEVERITY
EXPLANATION ::: '1

MESSAGE DIAGNOSTIC TEXT
'1

CODE
NO

NUMBER REASON RULE RECOVERY '°

035 u CLAUSE NOT APPLIC- The clause or entry at the The following clauses or The clause or entry is
ABLE FOR FILE-NAME. indicated line number is entries are not applicable deleted.

not applicable for the for the indicated devices:
listed file-name.

BLOCK-COUNT - CARD
READER, CARD- CA

c:
PUNCH, PRINTER, ""D

RANDOM ACCESS ""D c:
'z

DEVICE. m_
~<

MULTIPLE - CARD- m~

READER, CARD- zn
-I '° PUNCH, PRINTER. ~""" ;:o 0

OPTIONAL - CARD- -<o
PUNCH, PRINTER. ;:o n .. mo

,, Cl:I
mO

036 c INVALID ACCESS-TYPE An invalid combination The combinations of The file is classified as
;:o r-
m

SPECIFICATION. of ACCESS, ORGANIZA- ACCESS, ORGANIZA- ACCESS SEQUENTIAL, z
n

TION, and KEY clauses TION and KEY clauses ORGANIZATION SE- m
has been specified. are invalid: See Appen- QUENTIAL.

dix D, Table D-1.

:::l:l
ro
<
N

U1

/Tl>
0 'O
-l 'O
- ro
~ ;:l
.. 0..

:<•
'--<

1l
)>

" /Tl

......

......

~ c:
Cb "?
:: -..J

-..J
1-.)0

l.O

lllESSAGE SEVERITY
EXPLANATION

DIAGNOSTIC TEXT
NUMBER CODE REASON RULE RECOVERY

037 c COPY ST AT EM ENT RE- Something other than a A period must follow the A period is assumed to Cl'

QUIRES PERIOD. period was found following library name of a COPY have been present. c ,,
the library name of a COPY statement. ,,c
statement. r-z m_

~<
m>
zn

038 c LABEL RECORDS CLAUSE A LABEL RECORDS clause The LABEL RECORDS LABEL RECORDS OMIT- -t'°
>"""

OMITTED FROM FILE- has not been specified for clause is required for all TED is assumed. :::00
-<o

NAME. the listed file-name. files. :::on
mO
-n CD
mO

039 u MISSING PROCEDURE The end of the source pro- All four division headers If procedure Division :::ti r-
m

DIVISION HEADER. gram has been reached must appear' in every pro- statements exist, they are z
n

without detecting the gram and conform to the deleted. m
PROCEDURE DIVISION following order: IDENTI-
header. FICATION, ENVIRON-

MENT, DATA, PRO-
CE DURE.

~
Cb
<:

.....

Ill
fTl >
() 'O
-l '"O
- (1)
0 ;::
z 0..
•• !--"·

:i<

'-<

1l
)>

" fl! ..

.....
!'.)

\. ~ (

(

MESSAGE SEVERITY EXPLANATION
DIAGNOSTIC TEXT

NUMBER CODE REASON RULE

040 c LITERAL NOT A VALID The listed level number is (1) Level number values
LEVEL NUMBER. erroneous because of its are restricted to 01

value or use. through 49, 66, 77, or
88.

(2) The level number of
the first data descrip-
tion following an FD
or SD must be 01.

(3) A level number 77 may
not be used within the
File Section.

041 u CLAUSE CLAUSE IN- The listed clause is not (1) A REDEFINES clause
VALID WITH ASSOCIATED allowed with the s pee ified may not be used with
LEVEL NUMBER. level number. a level number 66, 77,

88, or a 01 in the File
Section.

(2) A PICTURE clause
may not be used with a
level number 66 or 88.

(3) The MAP clause is not
allowed with level
number 66 or 88.

(4) Multiple values can
only appear with a
level number 88.

(5) The OCCURS clause is
not permitted with a
level number 01, 66, 77,
or 88.

(6) A RENAMES clause can
only be used with a
level 66.

(7) The value clause can-
not be used with a level
number 66.

RECOVERY

(1) If a level number other
than 01 through 4-9, 66,
77, or 88 is encountered;
the level number is
changed to 49 if the
WORKING-STORAGE or
LINKAGE SECTION
header has not been en-
countered; otherwise,
the level num her is
changed to 01.

(2) If the first data des-
criptor in a record is
not 01, a 01 filler is
created by the com-
piler to precede the
current data description.

(3) The level number is
changed to 01.

In rules 1 through 5, the
clause is deleted. For
rule 7 the first value is
accepted; all others are
deleted.

::0 c::
CD 'tl
< I . :j
i-,:iO

CA
c ,,

'°

,,c
~%
~<
m>­
zn
-I -0
,.. ~
~o
-<o
~n
mO
.,, g,
mO
~· m
%
n
m

UI

Ill~
(l "O
-I "O
- Cl>
0 ::i
z 0. .. :<•

"lJ
)>

"' Ill

'-<

.......
w

MESSAGE I SEVERITY
NUMBER CODE

042 c

043 u

044 c

045 c

~
046 c

(

DIAGNOSTIC TEXT

REDEFINES MUST BE
FIRST CLAUSE.

CLAUSE NOT SUP­
PORTED BY UNIVAC-
9400 COBOL.

LEVEL NUMBER 01/77
MUST BE IN AREA-A.

COPY STATEMENT RE­
QUIRES LIBRARY NAME,
(CHAR. STRING)
INVALID.

OCCURS CLAUSE
INTEGER INVALID.

REASON

The REDEFINES clause
was not the first clause
in the data description.

An obsolete COBOL
clause has been en
countered.

The level number 01 or
77 did not begin in area
A.

A COPY verb was not
followed by a library name.

An OCCURS clause
integer is zero or greater
than 65,535. (In Format 2
of the OCCURS clause,
integer-1 may be zero).

(

EXPLANATION

RULE

The REDEFINES clause
must immediately follow
the name of the data
description.

The SIZE clause is not
within the 9400 COBOL
language.

All 01 or 77 level num­
bers must start in area
A.

A library name:
(1) is composed of no

more than 8 characters
of the set A through
Z, 0 through 9, and
the hyphen (-).

(2) has at least one al­
phabet character.

(3) does not have a hy­
phen as the first or
last character.

(4) is not a COBOL re­
served word.

The minimum OCCURS
value is 1. The maximum
OCCURS value is
65,535.

RECOVERY

The REDEFINES clause
is accepted.

The SIZE clause is
deleted.

The level number is
accepted.

The first 8 characters
of the string provided
are used as a library
name.

If zero is used in Format 1
or as integer-2 in Format 2,
the OCCURS clause is
ignored. If an integer ex­
ceeds 65,535 the integer
is assumed to be 1.

(

::tie
('!) "Cl
<: I

. :j
NO

'°

"' c:: .,,
.,, c::
~z
~<
m)>
z (")
-t -0 ,.. ~
;:oo
-<o
:::0 (")
mO
"T1 CD
mO
:::0 r­
m
z
(")
m

::ti
('!)

~
......

--
Ill >-!Tl
() 'O
-i 'O
- ('!)
0 ::i
z 0..

~·
:<
'-<

1l
)>

G')

!Tl

......
~

(
'

MESSAGE I SEVERITY
NUMBER CODE

047 c

048 u

049 c

050 c

051 c

DIAGNOSTIC TEXT

LIBRARY NAME
(CHARACTER STRING)
EXCEEDS EIGHT
CHARACTERS.

REMAINDER OF THE
LINE FOLLOWING COPY
STATEMENT MUST BE

BLANK.

DATA-NAME, FILE-NAME
OR LEVEL NUMBER IN
AREA-A

APPLY CLAUSE OR
SEGMENT-LIMIT INTEGER
INVALID.

APPLY CLAUSE INTEGER
INVALID.

(

REASON

The library name following
the COPY verb was found
to be longer than 8 charac­
ters.

A nonblank character was
found in the remainder of
the line on w hie h the C 0 PY
statement appears.

The name or number as­
signed to the file or data
description begins in area A.

Cylinder overflow percent
was specified as being
greater than 903 for 8414
disc or greater than 803
for 8411 disc, the buffer
offset value is not from 1
to 99, or the SEGMENT­
LIMIT value is not from
1 to 49.

A BLOCK CONTAINS
RECORDS clause has
been specified with a

recording mode of U.

Buffer offset value
exceeds 99.

EXPLANATION

RULE

The name of a library
structure may be a maximum
of 8 characters long.

Since the COPY statement
directs the compiler to
access new lines of
COBOL code, nothing may
follow the COPY statement
on the same line.

File-names, data-names,
level number and filler
must not begin in area A.

Cylinder overflow percent
may not be greater than
903 for 8414 disc or
greater than 803 for 8411
disc.

Recording mode U states
that records of the file
are not blocked and may
vary in length.

(

RECOVERY

The first 8 characters of
the name provided are
used.

The remainder of the line
is deleted.

The name or level number
is accepted.

The overflow percent is
set to 80 or 90 percent
according to the type of
disc, the buffer offset
is set at 99, or the
SEGMENT-LIMIT is
set at 49.

The block contains clause
is deleted. The recording

mode U is accepted or the
buffer offset value is set
to 99.

:;>;) ~
It> I
< -J
• -J
NO

"' c:
"'O

\0

"'O c:
rz m
:c<
m>
zn
-i-o
>~ Alg
-<n
Aio
mD:J
-no
mr Al
m
z
n
m

:;>;)
It>
<

N

--
"' ;l>
fT1
() 'O

-i
'O

(1)

0 :::i
z 0..

~·
x

'--<

1l
)>

G'l

fT1

......
(J1

MESSAGE SEVERITY
NUMBER CODE

052 u

053 c

054 u

055 c

DIAGNOSTIC TEXT

CLAUSE NOT ASSOC!-
A TED WITH FD OR
DATA-NAME.

NO DATA ENTRY FOR
PREVIOUS FD OR SD.

FD OR SD NOT IN FILE
SECTION.

LEVEL NUMBER NUMBER
ENCOUNTERED PRIOR
TO SECTION HEADER.

REASON

A clause, such as DATA
RECORDS or PICTURE,
is not associated with the
previously completed file
or data descriptor.

The previous FD or SD
does not have at least one
record description asso-
ciated with it.

An FD or SD has been de­
tected outside the File
Section.

A data descriptor has been
encountered prior to de­
tection of a DAT A
DIVISION header.

(

EXPLANATION

RULE

Clause.s associated with
file or data descriptions
must appear within the
entry, e.g., prior to the
period that terminates the
entry.

A record description, with
level number 01, must fol-
low every FD or SD de-
scription.

Every file or sort de­
scription must be within
the File Section.

If a data descriptor is the
first entry in the Data
Division, it must be pre­
ceded by a WORKING­

STORAGE or LINKAGE
SECTION header.

RECOVERY

The clause is deleted.

The compiler creates a
record description whose
name is filler. The size
of this record is set to the
number of bytes specified
in the RECORD CONTAINS
CHARACTERS clause, if
the clause was detected;
otherwise, the size is set
to 30 bytes.

The file or sort description
is deleted. Any record
descriptions following the
FD or SD are accepted.
They are allocated to
either the Working-Storage
or Linkage Section, de­
pending on which header
was last encountered.

The compiler assumes the
WORKING-STORAGE
SECTION header has been
encountered and allocates
the data item to that
section.

(

::I:! c
~ 'tl
< I . " " NO

Cl'
c:
""O

l.O

.,, c:
r- z;
m­
~ <
m>
:z:n
-I "° ,.,.,.
::a g
-<n
::a 0
mDJ
"Tl 0 m,­
::a
m
z;
n
m

U1

fT1 >
n 'O

-· 'O - ~
0 ::i
z 0..

1l
)>

" fT1

x
.......

......
O'I

I ((
\ \

:::.:l c::
EXPLANATION

ro 'tl
< I

MESSAGE SEVERITY DIAGNOSTIC TEXT
• -...:i

-...:i
NUMBER CODE REASON RULE RECOVERY

NO
\.0

056 u LANGUAGE ELEMENT A COBOL language feature The following language The clause, entry, or
NOT IMPLEMENTED. not supported in the basic elements are not available statement is deleted.

compiler has been en- with the basic compiler:
countered. SYSERR, RANDOM, OR-

GANIZA TION, VERIFY,
MASTER-INDEX, CYLIN- Cit

c
DER-INDEX, CYLINDER- .,,
OVERFLOW, EXTENDED- .,, c

r- z
INSERTION, FILE- m_

3:: <
PREPARATION, KEYS, m>
MULTIPLE, VALUE, CON-

z (')
-I '° DITION-NAMES, SD, COM- J>
:;o 0

PUTE, INSERT, SORT, -<o
RETURN, RELEASE, :;o (')

mO
PERFORM FORMAT 3 .,, CIJ

AND 4, AND, OR, COR- mo
:;o r-

RESPONDING, AR ITH- m
METIC EXPRESSIONS. z

(')

The following language m
elements are not available
in either compiler:
I-0, CALL, entry with-
in USE procedure

057 u DATA ENTRY REQUIRES A data descriptor with level A data descriptor whose The data description is
RENAMES OR VALUE number 66 has no RENAMES level number is 66 must deleted.
CLAUSE. clause or a data descriptor have a RENAMES clause,

with a level number of 88 and a data descriptor whose

has no VALUE clause. level number is 88 must
l/l

have a VALUE clause. [Tl :;...
n 'O
., 'O
- ro 0 ::i z 0. ..

058 u LEVEL 88 CONDITION- The level 88 entry is the See rules for CONDITION- The compiler creates a ~·

~

NAME NOT PRECEDED first entry in the Data NAME. level 01 named FILLER, '--<

BY DATA ENTRY. Division. length 1, signed for the
conditional variable. 1l

)>

Gl
[Tl

......
-...:i

MESSAGE I SEVERITY
NUMBER CODE

059 u

t 060 u

•
061 u

062 u

063 u

064 u

DIAGNOSTIC TEXT

LEVEL 66 DATA-NAME
MUST APPEAR ONLY AT
END OF HIERARCHY.

OCCURS DEPENDING
CONFLICT ASSO­
CIATED WITH
DATA-NAME

LEVEL NUMBER
LITERAL IS NOT SUB­
ORDINATE TO AN 01.

USAGE IS INDEX IS IN­
VALID FOR DATA-NAME
WITH CLAUSE CLAUSE.

DATA-NAME DESCRIBED
AS TYPE ITEM HAS TYPE
INITIAL VALUE.

PICTURE INVALID FOR
GROUP ITEM DATA­
NAME.

REASON

The level 66 entry was
not followed by one of the
following: a level 01 entry,
an FD or SD entry, a level
77 entry, a level 66 entry,
or a PROCEDURE
DIVISION header.

The data-name with the
DEPENDING option of
the OCCURS clause is
not the last group entry
in an 01 hierarchy or
the data-name is sub­
ordinate to another
OCCURS clause.

A data entry with a level
between 02 and 49 follows
a level 77 or DATA
DIVISION header.

An additional clause was
specified for a data entry
with USAGE IS INDEX
clause specified.

A class error between a
data entry and the value
specified for this entry
was detected.

The data entry was de­
termined to be a group
item from level number
structure and a PICTURE
clause conflicts with a
group entry.

I

\

EXPLANATION

RULE

See rules for RENAMES.

See rules for OCCURS
clause with the
DEPENDING option.

See rules for level number.

See rules for USAGE.

See rules for VALUE IS.

See rules for PICTURE.

RECOVERY

A level 01 named FILLER
is created to follow the
level 66 entry.

The DEPENDING option
of the OCCURS clause
is ignored, (maximum
number of occurrences
is assumed).

A level 01 named FILLER
is created to precede the
data entry.

Compiler deletes USAGE
IS INDEX clause specified
for this data entry.

The compiler deletes the
value specified for this
data entry.

The compiler deletes the
PICTURE clause on the
group item.

(

:;i;) c:::
ro "O
<: I
• '1

'1
NO

V>
c

'°

""D
"'De
r-z m_
:C<
m>­
zn
-t'° >-,,,.
::ti C)
-<C)

::on
mO
,, D:I
mO
::ti r­
m
z
n
m

Ul

:;i;)
ro
<:
.......

rn ;i,.
() 'O
-i 'O
o ro
z 5.

1l
}>

"' rn

~·
:<

'--<

.......
00

(('
\

EXPLANATION :;lj c:: MESSAGE SEVERITY DIAGNOSTIC TEXT ro 'P NUMBER coor: REASON RULE RECOVERY ::: --..J
--..J

NO
l.O

065 u DATA-NAME DESCRIBED Conflict between descrip- See Sec ti on 5 for rules The clause listed as
AS TYPE, CLAUSE tion clauses of the data for clauses in conflict. invalid is deleted.
INVALID. entry, i.e., data-name

described as NUMERIC,
JUSTIFIED invalid.

Cl'

066 u INITIAL VALUE INVALID, A value clause, not on a See rules for VALUE IS. The compiler deletes the c:
"ti

FOR DATA-NAME, IN CONDITION NAME entry, VALUE clause on the "tic:
FILE OR LINKAGE SEC- was noted for an entry in data entry. 'z m_
TION. the File or Linkage Sec- !t: <

m~
tions of the Data Division. zn

-4 '°
~"""" ::0 0

INITIAL VALUE INVALID A VALUE clause, on a See rules for VALUE IS. The compiler deletes the
-<o

067 u ::o n
FOR DATA-NAME SUB data entry which was VALUE clause on the mO

'Tl IJJ
ORDINATE TO REDE- subordinate to either a data entry. mO
FINES OR OCCURS. REDEFINES, OCCURS, ::0 r-

m
or VALUE clause, was z
found. n

m

068 u DAT A-NAME USAGE A data entry with an H in See rules for PICTURE The compiler assumes
COMP-3 FROM PICTURE the PICTURE (implying and USAGE. COMP-3 as valid and
CONFLICT WITH USAGE COMP-3) and a conflicting deletes the other

TYPE CLAUSE. USAGE clause were noted. USAGE clause.

:;lj
ro

069 c SAME SORT OR SAME Not all files in the See rules for SAME The file is processed as
<:
;.....

RECORD AREA SAME AREA clause AREA clause. though it had appeared
CONFLICTS WITH appear in the SAME in the SAME RECORD
SAME AREA CLAUSE. SORT AREA clause or SAME SORT AREA "' Ill >

or SAME RECORD clause. n 'O
-i 'O

AREA clause. 0 ro
::i z 0.. ..
~·
~

.......
070 u OCCURS CLAUSE IN- An OCCURS clause was See rules for OCCURS. The compiler deletes the

VALID FOR DATA- noted on a data entry OCCURS clause. 11

NAME, A LEVEL It with a level number of 01
)>

Gl

ENTRY. or 77. Ill

.......
l.O

:::tic

MESSAGE SEVERITY
EXPLANATION ('!) 'P

DIAGNOSTIC TEXT :: ---l
NUMBER CODE ---l

REASON RULE RECOVERY tvO

'°
071 c FILLER INVALID FOR Data-name FILLER was See rules for level num- The compiler assumes

TYPE ENTRY. on a data entry with a ber and data-name a level of 01.
level of 66, 88, or a FILLER.
group item.

072 u DATA-NAME CONTAINS A data entry was noted See rules for OCCURS. The compiler deletes ~

BOTH A REDEFINES AND with both a REDEFINES the OCCURS clause c:
"ti

OCCURS CLAUSES. clause and an OCCURS on the data entry. "tic:
clause, i.e., each oc- 'z m_
currence will redefine !C: <

m»
the area (not a table). zn

-f'°
)>.,.,.
~o
-<o

t 073 c ONE LEVEL NUMBER More than one level See formats of the The level number is ~(')
mO

ALLOWED PER LINE. number appears on DATA DIVISION, processed as though it "T1 OJ

the indicated line were on a unique line mO

• ~· number. number. m
z
(')
m

074 c USAGE OF DATA-NAME A data entry usage con- See rules for USAGE Compiler assumes en-

CONFLICTS WITH flicts with the usage of and VALUE IS. tries usage as proper

USAGE OF GROUP. one or more of the group usage.

entries which this data
entry is subordinate to
or usage conflicts with a
value on a group level. :::ti

('!)

<

N

075 u THE OCCURS CLAUSE A data entry with an See rules for OCCURS. The compiler deletes

ON DATA-NAME IN- OCCURS clause which the OCCURS clause
(/)

VALID, 4 DIMENSION would cause more than on the data entry. fT1 :»
() 'O

TABLE DESCRIBED. three levels of sub- :::' 'O
0 ('!)

scripting was encountered. z ;:i
.. 0.

~-

:<

'-

076 u FILE FILE-NAME HAS A level 01 data record Format violated, see No action is taken by
1l

NO DATA RECORD. was not encountered for FILE SECTION. the compiler.)>

Gl

this file. NOTE: There must be a fT1 ..

data record description
for each file. N

0

(I (
\ '

((\.

~c
Cl> '?
;::: -...]

EXPLANATION -...]

NO MESSAGE SEVERITY DIAGNOSTIC TEXT \0
NUMBER CODE REASON RULE RECOVERY

t
077 c BLOCK-LENGTH-CHECK Block-length-check is Block-length-check is The block-length-check

INVALID WITH not allowed with all appropriate with is disregarded.
RECORDING MODE. recording modes . recording mode V or D. • CA

c
078 s ADDITIONAL MEMORY RE- There is not enough memory NIA Compiler assumes label "ti

QUIRED FOR LABEL RE- available for holding of all name definitions that will "tic
rz

CORD PROCESSING. the label name definitions not fit, do not exist.Memory m_
~<

for this file. is required to hold the m~

SELECTS and label name
zn
-I '°

definitions. To allow pro- ~~
::0 0

cessing of more label -<o
names, allocate more memory ::o n

mO
shorten the size of the .,, DJ

SELECTS, or define fewer mO
;:io r

la be 1 names. m
z
n
m

079 u BLOCKING CONFLICTS A file with organization The compiler deletes the
WITH ORGANIZATION ON direct or relative with a BLOCK CONTAINS clause.
FILE FILE-NAME. blocking factor was en-

countered (blocking from
BLOCK CONTAINS clause).

:;;;)

080 c FILE-NAME FILE-NAME A file which does not have See rules for FILE- Compiler assumes a SELECT Cl>
;:::

DOES NOT APPEAR IN A a SELECT entry (matched CONTROL entry defined with file· name
SELECT. by file-name) was en- (of file) assigned to tape-6.

countered.
Ul

rn ;i:.
(l 'i:l
-< '"d
- Cl>
0 ;:J

: 0..
~·
:<

'--<

1J
)>

Gl
rn

N

::tic:::
ro "?
~ ---J

---J

EXPLANATION NO
MESSAGE SEVERITY '°
NUMBER CODE

DIAGNOSTIC TEXT
REASON RULE RECOVERY

t 081 c INVALID RECORDING (1) A file assigned to card Device restriction (card Compiler assumes recording

MODE FOR FILE reader and recording mode reader) access method mode F for this file.
FILE-NAME was V or U. restriction (DISC, DISC-

(2) File assigned to DISC- 8414)
"' 8411, DISC-8414 with c:

ORGANIZATION REL-
"'tJ
"'tJ c:

ATIVE or INDEXED and r-z m_
RECORDING MODE was ~<

V or 0. m:i>
zn

(3) File assigned to DISC- -t -0

8411, DISC-8414 with
)>""' ;:o 0

ORGANIZATION -<o
;:on

DIRECT and RECORD- mO
ING MODE was V. "T1 D:J

mO
;:o r-
m
z

082 c 80 CHARACTER BLOCK A BLOCK CONTAINS See rules for BLOCK The compiler assumes the n
LIMIT EXCEEDED BY clause exceeds the maximum CONTAINS. maximum size (80) for m

CARD FILE FILE-NAME. for a card device. BLOCK CONTAINS.

083 c BLOCK CONTAINS EX- A file assigned to a card Device restriction Compiler assumes BLOCK

CEEDS 1 RECORD ON device with BLOCK CON- CONTAINS 1 record.

CARD-READER FILE FILE- T AINS 2 or more records
NAME. specified was encountered. ::ti

ro
~
......

084 c FILE FILE-NAME MUST A file assigned to a unit Data management restriction. Compiler assumes labels to

HAVE LABEL RECORDS record device with other be omitted.
(/)

OMITTED. than LABEL RECORDS
rn ;i;..
() 'O

OMITTED was encountered. -! 'O - ro
0 ::i
z 0..
•. I-'•

><

085 c BLOCK SIZE SPECIFIED BLOCK CONTAINS clause See BLOCK CONTAINS. The compiler assumes that
<.......,

FOR FILE FILE-NAME contains value which ex- the maximum length was
"{}

EXCEEDS MAXIMUM. ceeds maximum length for specified.)>

Gl

the device the file is as- [Tl

• signed to .
N
N

(I \ I

t

•

(

EXPLANATION
MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON RULE RECOVERY

086 C BLOCK SIZE SPECIFIED A BLOCK CONTAINS ' The compiler assumes the See BLOCK CONTAINS.
FOR FILE FILE-NAME clause value was encountered minimum length for the
LESS THAN MINIMUM. which is less than the BLOCK CONTAINS clause.

minimum allowed fort he
device.

087 U DESCRIPTION FOR A label name (from LABEL See rules for label The compiler assumes
LABEL RECORD LABEL RECORDS ARE clause) records. that the label name does
NAME NOT ENCOUN- with no 01 label descrip- not exist.
TERED. tion was encountered.

088 C FILE FILE-NAME MUST filename is assigned to File assigned to disc Compiler assumes LABEL
HAVE LABEL RECORDS direct access device must have a LABEL RECORDS ARE STANDARD
STANDARD OR DATA (DISC, DISC-8414) and RECORDS specification. for the file.
NAME. the LABEL RECORDS

clause specified omitted.

089 C FILE FILE-NAME MUST filename -is assigned to a File with organization Compiler assumes label
HAVE LABEL RECORDS direct access device indexed must have records to be standard
STANDARD. (DISC, DISC-8414) and has LABEL RECORDS for the file.

organization indexed, and STANDARD.
LABEL RECORDS ARE
OMITTED or data name is
s pee ified.

090 C FILE FILE-NAME, BLOCK File assigned to direct File with organization Compiler assumes there
CONTAINS CHARACTERS access device (DISC, must have BLOCK CON- was no BLOCK CON-
CLAUSE NOT ALLOWED. DISC-8414) with ORGAN!- TAINS RECORDS or no TAINS clause specified.

ZATION INDEXED and BLOCK CONTAINS
BLOCK CONTAINS clause.
CHARACTERS was en-
countered .

:;o ~
Cl) I

< -...:i
• -...:i
NO

U'
c
-0

'°

-oc
r-z
m--
~< m,,..
zn
-f-o ,,..
::og
-<n
::oo m.,,
.,,0
mr­::o
m
z
n
m

:;o
Cl)

<

......

~ :i>
(l 'O
-I 'O
- Cl)
0 ::s
z 0..

1J
)>

Gl
fT1

><:

'--<

N
w

MESSAGE I SEVERITY
NUMBER CODE

t 091 u

092 s

• 094 c

095 c

096 c

097 c

(

DIAGNOSTIC TEXT

COPY SYNTAX
REQUIRES __ ,
CH AR ACT ER-STRING
INVALID.

REPLACING AREA
OVERFLOW CAUSED BY
CHARA CT ER-STRING.

CHARACTER NUMBER
LITERAL IS INVALID
IN TYPE PICTURE
PICTURE-STRING.

THE TYPE PICTURE
PICTURE-STRING IS
INCOMPLETE.

CHARACTER NUMBER
LITERAL IS INVALID IN
PICTURE PICTURE­
STR!NG.

SIZE LIMIT OF LITERAL
BYTES EXCEEDED BY
PICTURE PICTURE­
STRING.

REASON

The character-string
listed as invalid has
produced a syntax error.
The required type of
character-string is
indicated.

The internal storage area
used to save REPLACING
items has been exhausted
or the number of qualifiers
associated with an identi­
fier has exceeded internal
storage area.

An illegal PICTURE
character, a PICTURE
character inconsistent
with the PICTURE type,
or a violation of the PIC­
TURE precedence rules
has been detected.

As stated, the picture is
incomplete and cannot be
processed, e.g., SPPPP.

An illegal PICTURE
character, a PICTURE
character inconsistent
with the PICTURE type,
or a violation of the PIC­
TURE precedence rules
has been detected.

The PICTURE specifies
more storage than the
maximum allowed for the
PICTURE type.

(

EXPLANATION

RULE

See 6.7.7 for COPY rules.

Compiler Restri'ction

See Section 'S for the
allowable PICTURE
symbols and the rules
for their usage.

See Section 5 for the

allowable PICTURE
symbols and the rules for
their use.

See Section 5 for the

allowable PICTURE
symbols and the rules for
their usage.

The maximum size in
bytes of numeric PICTURE
is 18, alphabetic or alpha­
numeric is 4092, numeric
edited or alphanumeric
edited is 132.

RECOVERY

The item in error and all
items which follow it in
the COPY clause are
deleted.

The compiler ignores the
balance of the clause
which causes overflow.
Recompile with addi­
tional memory allocated
to the compiler or reduce
the number of items,
amount of qualification,
or size of names in the
REPLACING clause .

In order not to delete the
data descriptor, the com­
piler sets its PICTURE
to S9.

In order not to delete the
data descriptor, the com­
piler sets its PICTURE
to S9.

The PICTURE characters
prior to the character in
error are accepted.

In order not to delete the
data descriptor, the com­
piler sets its PICTURE
to S9.

(

c: ;:o 'ti
ro I
< '1
• '1
NO

VI
c: .,,

'°

.,, c:
r- z
m­
~<
m >
zn
-I "° >~
;::o g
-< n
:::oo
m IJJ
.,, 0
mr­
:::o
m
z
n
m

;:o
ro
<

......

~ ~
(l '"O
--l '"O
- ro
0 ::i
z 0..

1J
)>

" [Tl

~·
~

......

N
-1:>.

(

MESSAGE I SEVERITY
NUMBER CODE

098 c

099 c

100 c

101 c

102 c

DIAGNOSTIC TEXT

THE NUMBER OF DIGIT
POSITIONS IN PICTURE
PICTURE-STRING EX­
CEEDS 18.

A VALUE CONTAINED
WITHIN PARENTHESES IS
=0 0 R >4092 IN PICTURE
PICTURE-STRING.

A NUMBER DOES NOT
FOLLOW A LEFT PAREN­
THESIS IN PICTURE
PICTURE-ST RlNG.

RIGHT PARENTHESIS
MISSING FROM PICTURE
PICTU RE-STRTNG.

BOTH LEADING AND
TRAILING SIGN INSER­
TION SPECIFIED IN
PICTURE PlCTU RE­
STRING.

(

REASON

The number of digit posi­
tions in the PICTURE ex­
ceeds 18.

A value contained within
parentheses is either zero
or greater than 4092.

A left parenthesis within
the PICTURE is not fol­
lowed by a numeric
integer.

A right parenthesis does
not follow a numeric in­
teger preceded by a left
parenthesis.

Two insertion sign charac­
ters have been encountered
in the numeric edited
PICTURE.

EXPLANATION

RULE

The maximum number of
digits allowed in a numeric
or numeric edited PICTURE
is 18.

The number of times a
PICTURE character is
repeated, as specified by
the value in parentheses
following it, must be
greater than zero and less
than 4093.

Within parentheses, a
numeric integer is used
to specify the number of
times the preceding PIC­
TURE character is re­
peated.

Each left parenthesis in a
PICTURE must be followed!
by a numeric integer and ·
a right parenthesis.

Specification of both lead­
ing and trailing sign in­
sertion is not permitted.

(

RECOVERY

In order not to delete the
data descriptor, the com­
piler sets the PICTURE
to S9.

The value within the
parentheses is set to 1
and processing of the
PICTURE continues.

In order not to delete the
data descriptor, the com­
piler sets the PICTURE
to S9.

In order not to delete the
data descriptor, the com­
piler sets the PICTURE
to S9.

In order not to delete the
data descriptor, the com­
piler sets the PICTURE
to S9.

~ c:
(1) "O
<: I
• -.J

N ci

(It

c: .,,

\0

.,, c:
~z
~<
m~
zn
-4 '°
~""' '° C> -< C>

;ion
mO
"T1 CCI
mo
'° r­m
z
n
m

(/)

fl1 ;i:..
() 'O
-i 'O
- (1)
0 ::i
z 0.

1l
)>

G\
fl1

~·
~

'-<

N
<.n

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

105 c INITIAL VALUE TRUN- The value specified for

CA TED. the data item contains a
greater number of characters
than the data item, or is a
numeric value that, when
the decimal point is
aligned, is larger than the
maximum value the data
item can contain.

t
106 u INVALID POSITIONING There must not be any

OF KEY DATA-NAME items with an OCCURS
IN HIERARCHY. clause between the

table item and its keys.

•
107 s ADDITIONAL MEMORY There is not enough mem-

REQUIRED TO PROCESS ory available to contain

HIERARCHY CON- all entries subordinate to

TAINING DATA-NAME. the 01 data entry. There
are too many entries for
the 01 hierarchy for
memory allocated.

108 s DATA-NAME EXCEEDS There are too many levels

REDEFINES NESTING of redefinition. This data

LIMIT. entry exceeds the limit of
redefinition.

109 c DATA-NAME WAS IM- The redefined area is a

PROPER REDEFINES OB- redefining area; i.e., the

JECT DATA-NAME. object of the REDEFINES
clause has or is subordinate
to a REDEFINES clause.

((

EXPLANATION

RULE RECOVERY

The initial value cannot The excess characters

contain more characters are truncated.

then can fit into the data
item.

See rules for KEYS The named KEY is
under OCCURS clause. processed as a regular

data item, the KEY
information is ignored.

The compiler will not
process the data entries
which are not contained
in memory. To compensate,
shorten the hierarchy,
shorten names in data
entries, or assign more
memory to compiler.

See rules for REDEFINES. The compiler assumes this
entry does not have RE-
DEFINES clause.

See rules for REDEFINES. The compiler assumes the
redefinition of the last
defined area with the
same level as the subject
of the REDEFINES clause.

(

::0 c::
(!) 'ti
<: •
• '1

'1
rv o

\.0

(n

c .,,
.,,c
rz m_
3:<
mJ>­
zn
-1-a
)>- ~
;:ICC>
-<o
'°n
mO
"T1 D:J
mO
;or
m
:z
n
m

(})

::0
(!)
<:
>-'

fT1 ;i;.
(l '"O
_, '"O
0 (])

::i z 0..

1l
)>

Gl
fT1

;<"
'--<

rv
0\

(

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

110 s ADDITIONAL MEMORY There is insufficient
REQUIRED TO PROCESS memory available to con-
RENAMES QUALIFIER. tain the RENAMES quali-

fier. Th is is due to a large
hierarchy and/ or a lot of
RENAMES qualifiers.

111 u DESCRIPTION OF DAT A- The definition of the entry
NAME NOT EN- is not in the current
COUNTERED. hierarchy.

112 c RENAMES-OCCURS CON- The object of the RE-
FLICT BETWEEN DATA- NAMES clause on data-
NAME-1 and DATA-NAME- name-1 has or is sub-
2. ordinate to an OCCURS

clause.

113 c REDEFINING AREA DAT A The calculated length of
NAME UNEQUAL TO SIZE the redefined area is not
OF REDEFINED AREA. the same as the length of

the redefining area.

114 c SIZE OF ELEMENTARY An elementary item with a
ITEM DATA-NAME EX- length larger than the maxi-
CEEDS MAXIMUM OF 4092. mum was encountered.

t 115 c SIZE OF WORKING- A group entry in WORKING-
STORAGE GROUP ITEM STORAGE has a length
DATA-NAME EXCEEDS calculated to exceed the
MAXIMUM 65,535. maximum.

•

(~

EXPLANATION

RULE RECOVERY

The compiler assumes
the qualifier does not
exist.

See rules for qualification. The compiler assumes
the qualifier name in
error does not exist.

See rules for level num- The compiler assumes the
ber. last elementary item in

the hierarchy is the ob-
ject of the RENAMES
clause.

See rules for REDEFINES. The compiler assumes the
largest length was cal-
culated for both areas.

See data definition. The compiler assumes the
length to be 4092 for the
elementary item.

See data definition. The compiler assumes the
length of the group item to
be 65,535. The entire
area specified is, however,
allocated.

~ c::
Cl> "O
<: I
• '1

'1
NO

'°

"' c ..,,
..,, c
~z
:?: <
m>
zn
~'° >.j>..
;;ii:io
-<o
::ii:in
mo
.,, OJ
mO
::ii:i•
m
z
n
m

~
Cl>
<:
......

Vl
fT1 ~
() 'O _,

'O
0 Cl>

::i z a.
~· x

........

1l
}>

" fT1

N
'1

SEVERITY MESSAGE DIAGNOSTIC TEXT
NUMBER CODE REASON

116 c SIZE OF NON-WORKING- The length of a file or
STORAGE GROUP ITEM LINKAGE SECTION group
DATA-NAME EXCEEDS item was calculated to be
MAXIMUM OF 4092. greater than the maximum.

117 u INVALID LEVEL NUMBER A level number equal to
STRUCTURE EN- the level of the data entry
COUNTERED AT DATA- should have appeared in
NAME. the hierarchy directly sub-

ordinate to the 01.

118 c THE FIRST OBJECT OF The first object of a RE-
LEVEL 66 ENTRY DATA- NAMES clause does not
NAME ENDS AFTER THE precede the area of the
SECOND OBJECT. second object of the RE-

NAMES clause.

119 c THE SECOND OBJECT OF The second object of a RE-
THE LEVEL 66 ENTRY NAMES clause does not
DATA-NAME STARTS BE- precede the first object of

I FORE THE FIRST OBJECT. the RENAMES clause.

I

\ (

EXPLANATION

RULE RECOVERY

See data definition. The compiler assumes the
maximum of 4092 was the
calculated length of the
group i tern.

The compiler assumes there
was a level number on a
data entry directly sub-
ordinate to the 01, i.e.,

01 A
LEVEL 02 MISSING
05 B
02 c
INVALID LEVEL

STRUCTURE

See rules for RENAMES. The compiler assumes the
second object does not
exist.

See rules for RENAMES. The compiler assumes the
objects are reversed. (The
first is the second and the
second is the first.)

(

~ c:::
Cl) "(j
<: I . -...]

-...]
NO

V>
c: .,,

"'

.,, c:
~z
~<
m:s>
zn
-f'°
)>.,..,
;::oo
-<o
;:on
mO
-n D:J
mO
;::or-
m
z
n
m

IJl

IT1 :i> ()

-i 'O

0
'O
Cl)

z ::i
0...
;('

'-"'

1l
)>

" IT1

N
00

((

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

120 c USAGE INDEX INVALID A condition name entry
FOR CONDITIONAL is defined for a data entry
VARIABLE DATA-NAME. with a USAGE INDEX

clause.

121 c RECORD DATA-NAME A file described as F RE-
IS NOT SAME SIZE AS CORDING MODE does not1
ALL PREVIOUS RECORDS have data records with the

IN A FIXED RECORDING same length.

MODE FILE.

122 c LABEL RECORD DATA- A label record description
NAME SIZE NOT EQUAL with a length other than 80
80 CHARACTERS. was encountered.

124 c BLOCK SIZE FOR FILE- The BLOCK CONTAINS
NAME SMALLER THAN CHARACTERS clause
LARGEST RECORD. specifies a block length

smaller than length of

t
largest data record.

125 c SIZE OF DATA-NAME The RECORD CONTAINS
GREATER THAN clause specifies a record
RECORD CONTAINS length smaller than largest

• FOR FILE F/LE-N AME. record.

(

EXPLANATION

RULE RECOVERY

See rules for condition The compiler assumes
name. alphanumeric usage for

the conditional variable.

See rules for RECORDING The compiler assumes the
MODE. largest data record length

for calculation of record
length for the file.

9400 label specification The compiler assumes the
has a length of 80 for length of label records to
labels. be 80.

The compiler assumes the
block length to be the
length of the largest
record.

The compiler assumes that
the largest hierarchy sub-
ordinate to the FD, speci-
fies the length of the
largest data record for the
file.

:::ti c:
Cl) "Cl
<: I
• --:i

--:i
tvO

l.O

(I>

c .,,
.,,c
~z
~<
m~
zn
~~
;:o C>
-< C>

::o n
mO
,, OJ
mO
;:o r
m
z
n
m

;:ti
Cl)

<

N

(/)

Ill
(l ;I;>
.., '"O
- '"O
0 Cl)
z ::i

1l
)>

Gl
Ill

0..
~·

......

N
l.O

-- -- ----

EXPLANATION
MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON RULE

126 c FILE-NAME CLAUSE The BLOCK CONTAINS See BLOCK CONTAINS
LENGTH CONDITION clause or the RECORD and RECORD CON-
ALLOWED FOR DEVICE. CONTAINS clause exceeds TAINS.

maximum or is less than
minimum for the device
which the file is assigned
to.

127 c RECORD CONTAINS The RECORD CONTAINS
CLAUSE FOR FILE clause does not specify
FILE-NAME NOT EQUAL the length of the largest
TO SIZE OF LARGEST data record.
RECORD.

128 p BLOCK LENGTH OF FILE The length of the block for
FILE-NAME PROHIBITS the file is too large to al-
RUN TIME SPECIFICA- low block numbering.
TION OF BLOCK
NUMBERING.

129 u REDEFINES NOT PER- A File Section leve 1 01 See rules for REDEFINES.
MITTED FOR RECORDS with a REDEFINES clause
IN FILE SECTION. was encountered.

130 u SUBJECT OF REDEFINES The subject of a REDE- See rules for REDEFINES.
DATA-NAME NOT IN SAME FINES clause is not in
SECTION AS OBJECT OF same section as entry with
REDEFINES. REDEFINES.

(
/

(

RECOVERY

The compiler assumes the
limiting length for the
clause in error.

The compiler assumes
that the length of the
largest data record is
specified in the RECORD
CONTAINS clause.

No action. Precautionary
warning.

The compiler assumes the
REDEFINES clause does
not exist.

The compiler assumes the
REDEFINES clause does
not exist.

(

:::0 c::
(1) "'O
< I
• '1

'1
IV 0

l.D

Cl'
c: .,,
.,, c:
~z
~<
m)>
zn
-I "°)>~
:::oo
-<o
:::o n
mO
"Tl t1CI
mO
:::o r
m
z
n
m

Ill
(Tl

n
-i -
0
z

:i>
'O
'O

(1)

::l
p..

~«
'-<

'U ,,.
" (Tl

w
0

((

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

131 u OBJECT OF REDEFINES, The object of a REDE-
DATA-NAME, WITHIN FINES clause has or is
RANGE OF OCCURS. subordinate to an OCCURS

clause.

132 u REDEFINES OBJECT The object and subjects
DATA-NAME, AND SUB- of the REDEFINES clause
JECT DATA-NAME DO do not have the same level
NOT HAVE SAME LEVEL numbers.
NUMBER.

133 s INDEX NAME DATA- The current compiler limit
NAME EXCEEDS COM- of index-names is 255.
PILER LIMITS. This entry is the 256

specified index-name.

134 c ELEMENTARY ITEM An elementary item, de-
DATA-NAME HAS NO termined from level number
LENGTH SPECIFIED. structure, with no length

specified or assumed was
encountered.

135 c OBJECT OF RENAMES The object of the RE-
DATA-NAME NOT FOUND NAMES clause was not
WITHIN HIERARCHY. found in the immediate

hierarchy.

(

EXPLANATION

RULE RECOVERY

See rules for RENAMES. The compiler assumes
the REDEFINES clause
does not exist.

See rules for REDEFINES. The compiler assumes
the REDEFINES clause
does not exist.

The compiler starts index-
name memory assignment
over and reassigns the
memory to the index-names
being processed.

The compiler assumes a
length of 1, signed was
specified.

See rules for RENAMES. The compiler assumes the
last elementary item of
the heirarchy as the
specified object of the
RENAMES clause.

~c
ro 'P
< " . "
IV 0

"' c:
"'O

IO

"'O c:
r-z
m
~<
m>
zn
-4-o
>"'­:::t1g
-<n
:::tJo m_,,
'""o mr­
:::tJ
m
z
n
m

(/l

fT1 ;i:..
() '"O
-! '"O - ro
0 ::i
z 0..

1l
)>

Cl
fT1

~·

x
.......

w

-

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

136 c OBJECT OF RENAMES The object of the RE-
DATA-NAME HAS ILLEGAL NAMES clause has illegal
LEVEL NUMBER. level number.

137 u REDEFINES CLAUSE IN The object of the REDE-
DATA-NAME HAS INVALID FINES clause is not a
OBJECT. legal level for redefinition.

138 s ADDITIONAL MEMORY The compiler needs more
REQUIRED FOR PROCE- memory in order to process
DURE NAME PROCESSING. the rest of the section and

paragraph names.

(
\ (

EXPLANATION

RULE RECOVERY

See rules for RENAMES. The compiler assumes the
last elementary item
as specified object of the
RENAMES clause.

See rules for REDEFINES. The compiler assumes the
REDEFINES clause does
not exist.

Each procedure-name This procedure-name de-
definition requires 16 finition and all others
bytes of storage plus 1 that follow are deleted.
byte for each character in
the name. To increase the
number of procedure-names
that can be processed,
recompile using smaller
names or with more stor-
age assigned to the com-
piler.

(.

:::t3 c::
(1) 'ti
< I
• '1

'1
NO

ID

"' c: .,,
.,, c:
r-z
m-
~<
m>
zn
-I -0 >,,...
::a g
-<n
::a 0
mco
.,, 0
mr­
;;o
m
z
n
m

~ :i>
() 'O
-; 'O
- (1)
0 ::i
z 0.

1l
)>

" fl1

)("

'-'

w
N

MESSAGE I SEVERITY
NUMBER CODE

139 I c

140 I U

141 I u I

142 I u I

DIAGNOSTIC TEXT

PRIORITY NUMBER IN­
CORRECT OR OUT OF
SEQUENCE.

NEITHER EXIT PROGRAM
NOR RETURN STATE­
MENT ASSOCIATED WITH
ENTRY OR USING ST A TE­
MENT.

NEITHER ENTRY NOR
USING STATEMENT
ASSOCIATED WITH EXIT
PROGRAM OR RETURN
STATEMENT.

NO ENTRY OR RETURN
STATEMENT ASSOC IA TED
WITH LINKAGE SECTION.

(

REASON

Priority number value does
not fall in range of 0 to 99
or priority number >50 is
not in ascending sequence.

An entry point has been
specified for this program
but the program contains
no mechanism to return to
caller.

Program contains mechan-
ism to return to a calling
program but no mechanism
has been coded where the
calling program may enter
this program.

No entry point has been
specified for this sub-
program.

I

EXPLANATION

RULE

The priority number must
be an integer ranging in
value from 0 through 99.
Segments with priority
number 50-99 are inde­
pendent segments and
must appear in the source
program in ascending
numeric order.

All COBOL subprograms
must contain either an
exit program or a RETURN
statement.

A COBOL program that
is to be used as a sub-
program must have an
entry point.

The use of the LINKAGE
SECTION implies that
this is a subprogram. Sub-
programs must have entry
and exit points.

I

(

RECOVERY

If segmentation has been
specified (a previous seg­
ment with priority number
>50) the last valid priority
number is assigned to this
section. If segmentation
has not been encountered,
a priority number of 0 is
assumed.

No corrective action is
possible for this error. If
the program is executed
as a subprogram it will
not return to the calling
program.

No corrective action is
possible for this error. It
is impossible to execute
this program as a sub-
program.

No corrective action is
taken.

::ti c::
ro "tl
<! I
• '1

N~

"' c: .,,

l.O

.,, c:
~z
~<
m:r>
zn
-I '° >-""" ::ti 0
-<o
::o n
mO
.,, DJ
mo
::ti r­
m
z
n
m

Ill

fTI :i>
() 't:l
-i 't:l
- ro
0 ::i
z 0...

11
)>

" fTI

.....
:><

.......

w
w

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

143 u STRUCTURE OF CON- ELSE encountered in IF
DITIONAL SENTENCE statement with no preceding
INVALID, UNPAIRED IF verb to match it with.
ELSE ENCOUNTERED.

144 p PROCEDURE DIVISION No STOP RUN statement

DOES NOT CONTAIN A is coded in this program.

STOP RUN. There is no way to bring
this program to an orderly
halt.

145 u EXIT WAS NOT THE ONLY EXIT statement is in
STATEMENT IN PARA- paragraph which contains
GRAPH. statements other than

EXIT.

146 c THE BEFORE OPTION OF The BEFORE option is not
THE USE ST A TEMENT IS allowed in UNIV AC 9400
NOT APPLICABLE IN System.
UNIVAC-9400 SYSTEM.

147 c THE PROGRAM NAME IN Program name exceeds 8
CALL STATEMENT EX- characters in length.
CEEDS EIGHT CHARAC-
TERS.

((

EXPLANATION

RULE

In a conditional statement
any ELSE encountered is
considered to apply to the
immediately preceding if
that has not been already
paired with an ELSE.

No rule has been violated;
this diagnostic is strictly
informative.

The EXIT sentence must
be preceded by a para-
graph-name and be the
only sentence in the para-
graph.

The BEFORE option is
not applicable to the
UNIVAC 9400 System, but
is accepted for com-
patibility.

A maximum of 8 characters
is allowed in subprogram
names.

RECOVERY

The conditional statement
is terminated at this
point.

Results during execution
are unpredictable.

Nothing is deleted from
the program but the state-
ments following the EXIT
verb are never executed.

The AFTER option is as-
sum ed.

The program name in
CALL statement truncated
to 8 characters.

::0 c::
Cl) 'tl
<: I
• '1

'1
IV 0

\0

V>
c
"ti
"tic :;;z
:c<
m>­
zn
-t-o >-,,..
;:ice
-<o
::ion
mO
.,, l:KI
mO
'°
m
z
n
m

Ul

llJ ::i:> n 'O
-I 'O
0 Cl)

::i z p..
;("
'-<

1l
)>

" llJ

w

""'

(

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

148 u REFERENCE TO NAME A definition of the listed
CANNOT BE RESOLVED. name has not been en-

countered.

149 u QUALIFIED REFERENCE A definition of the listed
TO NAME CANNOT BE name has not been en-
RESOLVED. countered under the speci-

fied qualifiers.

150 c REFERENCE TO PRO- A definition of the listed
CEDURE NAME IS paragraph-name has not
AMBIGUOUS, DEFINITION been encountered within
AT LINE LITERAL USED. the section from which the

reference is made, while
multiple definitions exist
outside the section of
reference.

(

EXPLANATION

RULE RECOVERY

Every name referenced The statement containing
must be defined. the reference is deleted.

Every name referenced The statement containing
with qualification must the reference is deleted.
be defined within the
hierarchy associated
with the highest level
qualifier.

A reference to a non- The reference is resolved
unique paragraph-name by the paragraph-name at
where all definitions are the listed line number.
outside the section from
which the reference is
made must be qualified.

:;:lj c::
CD 'tJ
< I . -.,,]

-.,,]

tv 0
\0

CA
c:
-0
""CJ c:
~z s:<
m >
zn
-t "° ,.. .,...
;:ao
-<o
::an
mO
.,, g,
mO
;:a r-
m
z
n
m

..
f11 >
0 'O
-I 'O

Ci CD
::i z a.
~·
>:
'-<

--'O
)o

Gl
f11

w
(J'\

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

151 u REFERENCE TO NAME Normally this diagnostic

OF NAME, CANNOT BE indicates that a definition

RESOLVED DUE TO DE- for the qualifier in a pro-

FINITION AT LINE cedure reference has been

LITERAL. encountered but is not a
section-name. In the am-
biguity mode of reference
resolution (PARAM LST=A)
this diagnostic is also
generated when:

(1) The highest qualifier
of a data reference is
not encountered in the
Data Division but is
encountered in the Pro-
cedure Division,

(2) The qualifier of a pro-
cedure reference is not
encountered in the Pro-
cedure Division but is
encountered in the Data
Division.

This emplies that when the
definition that will resolve
the reference is added to
the source program, the
highest possible qualifier
rule is violated.

((

EXPLANATION

RULE RECOVERY

The qualifier in a pro- The statement containing

cedure reference must the reference is deleted.

refer to a section-name.
Highest possible qualifiers
(level indicator names,
section-names, level 01
and 77 names) must be
unique in a program since
a reference to the name
cannot be qualified,

(

:::tic:::
<l> 'ti
< I . " " 1'.)0

Cit
c: ,,

"°

,,c:
~z
~<
m>
zn
~
>~
:;:IJO
-<Cl
,.,n
mO
'Tl o:J
mO ,., r-
m
z
n
m

111
Ill
n
-I

0
z

;:...
"O
"O

<l>
::i
0..
~·
:<

<--<

--
'll
)>

Gl
Ill

w

°'

((

MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON

152 c REFERENCE TO NAME This diagnostic is generated
AMBIGUOUS DUE TO DEFI- only in the ambiguity mode
NITION AT LINE LITERAL, of reference resolution
DEFINITION AT LINE (PARAM LST=A) for an un-
LITERAL USED. qualified reference when a

duplicate definition of the
listed name has been en-
countered within the COBOL
division implied by the
reference type, e.g., GO TO
implies Procedure Division;
MOVE implies Data Divi-
sion.

153 c IMPROPER DEFINITION This diagnostic is generated
OF NAME AT LINE only in the ambiguity mode
LITERAL IMPLIED BY of reference resolution
MANNER OF REFERENCE. (PARAM LST=A) for an un-

qualified reference when a
duplicate definition of the
listed name has been en-
countered in a COBOL
division other than the
division implied by the
reference type and consti-
tutes a violation of the
highest possible qualifier
rule.

(

EXPLANATION

RULE RECOVERY

Every name in a COBOL The reference is resolved
program must be unique by the name at the listed
either because of clifferent line number.
spelling or because of
qualification.

Highest possible qualifiers If the reference cannot be
(leve 1 indicator names, resolved within the COBOL
section-names, level 01 division corresponding to
and 77 names) must be the reference type, the
unique since a reference to statement is deleted.
the name cannot be quali-
fied.

:;:i;, c:
(1) 'tl
< I
• -..:i

-..:i
1'.J 0

'°

CA
c:
"ti
"tic:
~z
~<
m >­
z n
-t '° ,.. ""'" ;::oo
-<o
:::o n
mO ,, °' mO
:::0 r­
m
z
n
m

~ >
n 'O
-l 'O
- (1)
0 ::s
z 0.

1l
>
Gl
ff!

.....
~

'-<

w
-..:i

::I:] c:::
(1) '?

EXPLANATON ::: " MESSAGE SEVERITY " DIAGNOSTIC TEXT tv 0
NUMBER CODE REASON RULE RECOVERY l.D

154 c NAME MUST BE UNIQUE This diagnostic is generated Highest possible qualifiers If the reference cannot be
DUPLICATE DEFINITION only in the ambiguity mode (level indicator names, resolved within the COBOL
FOUND AT LINE of reference resolution section-names, level 01 division corresponding to
LITERAL. (PARAM LST=A) for quali- and 77 names) must be the reference type, the

fied references when a re- unique since a reference statement is deleted.
definition of the highest to the name cannot be Vt

c:
qualifier violates the highest qualified. ,,
possible qualifier rule.

,, c:
r-z m_
~<

t m>
155 c BEFORE OPTION NOT The WRITE BEFORE Compatibility The BEFORE option is zn

-t '°
APPLICABLE IN ADVANCING option is requirement. treated as though the >"""" :;a 0
C-MODE. not available in the con- AFTER option had been -<o

version mode. specified. :;a n
mO
"11 CD
mO
:;a r-
m
z

... n
m

159 u VERB STATEMENT CON- The specified data item See the general rules The statement containing
TAINS INVALID OPERAND does not satisfy the re- specified for the designated the listed operand is de-

DATA-NAME. quirements for the designated verb. leted.
verb, for example, an alpha-
betic operand in an ADD
statement. ::I:]

(1)

<

160 u VERB STATEMENT The data item contains References to items in a The statement containing
......

OPERAND DATA-NAME too many, too few, or an table must have the correct the subscript error is

IS IMPROPERLY SUB- improper type of subscript. number of subscripts or deleted. tll

> fT1

SCRIPTED. indexes, subscripts must n '"O
-I '"O

be unsigned numeric in- - (1)
0 ::i

tegers, subscripts and in-
z 0.. ..

~-

dexes must not be mixed in '--"
a single data reference, and
references to items not in 1J

)>

a table must not be sub- " fT1

scripted. ..

w
00

(I
\ \

(((
\

::0 c
('1) ';'

EXPLANATION ::: "" "" MESSAGE SEVERITY DIAGNOSTIC TEXT IV 0

NUMBER \0 CODE REASON RULE RECOVERY

161 u VERB STATEMENT CON- The combination of oper- See the rules for the in- The statement containing
TAINS INCONSISTENT ands in the statement con- dicated verb statement. the inconsistent operand
OPERAND DATA-NAME. flict in their usage, for ex- is deleted.

ample, moving a numeric
item to an alphabetic oper- Vt

and. c:
"'D
"'D c:
r-z
m--

162 c VERB STATEMENT CON- A signed literal has been See the specific rules The sign of the literal is ~<
m>

TAINS SIGNED LITERAL encountered. for the designated verb. deleted. zn
LITERAL. '° >~

;:igO
-<o

n
163 u COMPOSITE OF OPER- The s uperim posit ion of all See rules for composite The statement containing

:::oo
mlXI

ANDS IN VERB STATE- operands to the left of the of operands for the speci- the composite error is "no
mr-

MENT EXCEEDS 18 word giving exceeds 18 fied verb. deleted. ;:ig

DIGITS. digits.
m
z
n
m

164 u GO TO PRECEDES IM- A GO TO statement is A GO TO statement must The statements between
PERATIVE STATEMENT. followed by other impera- be the last statement in a the GO TO and the ELSE,

tive statements. series of imperative IF, or period are deleted.
statements. In a condi-
tional statement, a GO TO
must be followed by ELSE,
IF, or a period.

165 u VERB STATEMENT An operand not defined in Data7names in an entry The statement containing
OPERAND DATA-NAME the Linkage Section has or Procedure Division the listed operand is de- Ul

:i>
been encountered in an USING statement must be let ed.

111
NOT DEFINED IN () 'O

Entry or Procedure Division defined in the Linkage
-i 'O

LINKAGE SECTION. 0 ('1)

=3
USING statement. Section. z 0.. ..

~·
:<
'-<

'O
)>

" 111

w
\0

::ti c::
Cl) "(j
<: I

EXPLANATION
• --:i

--:i
MESSAGE SEVERITY DIAGNOSTIC TEXT

tv 0

NUMBER CODE '° REASON RULE RECOVERY

166 u VERB STATEMENT A operand with a level Data items in a CALL. The verb is deleted from

OPERAND DATA-NAME number other than 01 or 77, ENTRY, or Procedure further compilation.

IS NOT LEVEL NUMBER has been detected in a Di vision using statement

01 OR 77. CALL, ENTRY, or Pro- are restricted to items
cedure Division USING whose level number is 01

"' statement. or 77. c: ,,
t

,, c:
rz m_

167 s ADDITIONAL MEMORY This statement exceeds the The storage necessary The statement is deleted. ~<
m»

REQUIRED TO PROCESS internal storage area avail- to process a single Additional memory should zn
STATEMENT CONTAINING able to process statements operand varies from be assigned to the com- -t '°)> ~

DATA-NAME. with multiple operands. 18 to 250 bytes, de- piler or the statement must ;;it:IO
-<o

pending on the number be rewritten as multiple ::itJn
of characters in the statements. mO
data-name and whether

'Tl CD
mo

the item OCCURS, has an ::itJr

edited picture, or is
m
z

subscripted. The max- n
m

imum storage available
for statement processing
is a function of the
total storage available
to the compiler. A limit
of 100 symbols exists
for a single condition.
A symbol in this con- ~

Cl)

text is an operand, an <

arithmetic operator, a
......

logical operator, a
relational operator, or IJl

a class. (A con di ti on- ~ ;t>
--< 'O

name test expands to - 'O
0 Cl)

multiple symbols de-
z ::i
.. 0.

~-

pending on the number x

of values associated '---<

with the condition- 1l

name.) }> • Gl
fTI

.J::>.
0

((I

\

-. I

({ I
\

:;o c::
EXPLANATION

(!) "?
::: '1 MESSAGE SEVERITY DIAGNOSTIC TEXT '1

NUMBER CODE REASON RULE· RECOVERY NO
ID

t
168 u VERB EXCEEDS LIMIT The maximum number of Reduce the complexity of

OF TEMPORARY DATA temporary arithmetic data the expression or reduce

AREAS. areas has been exceeded. the number of expressions
in the statement.

• 169 u VERB STATEMENT The input-output statement The following verbs must The statement in error is Cl'
c:

OPERAND NAME IS NOT does not reference a refer to record or file-names: deleted. ""O

RECORD OR FILE-NAME. record-name or file-name. OPEN, CLOSE, READ, ""O c:
'z

WRITE, SORT, RELEASE,
m_
::C:<

RETURN, INSERT, SEEK. m::a>
zn
-1-o
)>""'
;::oo

170 u SENTENCE PRODUCES Object code cannot be Generally, a complete Reduce the sentence size -<o

EXCESSIVE OBJECT produced for the entire sentence is limited to by rewriting it as several ;:on
mO

CODE sentence because of the between 2048 and 4096 sentences/ paragraphs. "11 OJ

sentence size. bytes depending on the
mO
;::or-

sentence structure. m
z
n
m

173 u VERB STATEMENT Both operands in the The operand specified in The statement is deleted.
OPERAND NAME REFERS statement refer to the same the WRITE FROM, INSERT
TO FILE RECORD AREA. storage area. FROM, or READ INTO

options, may not occupy
the same storage area as
the record or file-name.

:;o
(!)
<:

174 u VERB STATEMENT The listed operand is not WRITE, INSERT, and The statement is deleted.
RECORD-NAME NAME IS defined in the File Section. RELEASE refer to items
NOT DEFINED IN FILE defined in the File Sec-

"' SECTION. tion. fT1 :i>
() 'O
-; 'O

Ci ('!)

::i z 0.. ..
The DIVIDE statement is ~· 176 u DIVIDE STATEMENT The description of the x

PRODUCES MEANINGLESS operands in a DIVIDE deleted. '--<

RESULT. statement is such that only
1l

zeros could result for the)>

quotient in the specified
G\
fT1

receiver.
.....

MESSAGE I SEVERITY
NUMBER CODE

177 u

178 u

179 u

180 c

(

DIAGNOSTIC TEXT

VERB STATEMENT CON­
FLICTS WITH SEGMENTA­
TION RULES.

VERB STATEMENT IN­
COMPLETE OR CONTAINS
INVALID OPERAND OR
OPTION.

INTERNAL LABEL
TABLE OVERFLOW.

CLASS OF LITERAL CON­
FLICTS WITH CLASS OF
DATA-NAME.

REASON

A branching verb is invalid­
ly specified with respect to
the rules of segmentation,
or an ALTER statement re­
fers to a paragraph that
does not begin with a GO
TO.

An operand conflicts with
a s pee ified option or with
another operand, or an op­
tion that must be specified
for a given statement was
not encountered. For ex­
ample, a WRITE to a mass
storage device must con­
tain an INVALID KEY
clause.

Either a sentence requires
more than 256 internal
labels or more than 24
internal labels are active.

A nonnumeric literal con­
taining numeric characters
is being moved to an alpha­
betic item, or a nonnumeric
literal containing non­
numeric characters is being
moved to a numeric item.

EXPLANATION

RULE

See the rules on segmen~
tation for the listed verb.

See the rules for the
specified verb.

The class of all characters
contained in a nonnumeric
literal must be consistent
with the class of the re­
ceiving item.

RECOVERY

The statement in error
is deleted.

The statement is deleted.

Requirements for internal
labels may be lowered by
reducing the number of
statements in a sentence,

The nonnumeric literal
is accepted.

\

~ c::
(I) 7'
< --:i
• --:i
t-..:iO

Cl'
c: .,,

l.O

.,, c:
::;; z
~<
m>
zn
-4 "° >.j>..
AJO
-<o
Ain
mO ,, °' mO
Al r­
m
z
n
m

Ill

fTl ;t>
() 'O
-! 'O
- (I)
0 ;:l
z 0..

ll
)>

Gl
fTl

:<·
'""""

~
1-..:l

(((~c::
, ro ~

<: "-J
• "-J
IV 0
~

EXPLANATION
MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON RULE RECOVERY

181 P NAME/LITERAL TRUN- The data-name or literal Truncation occurs when The data-name or literal
CATED DURING MOVE. being moved contains a any portion of the item is moved and truncated.

greater number of character being moved cannot be
positions than the receiver contained in the receiving v.
or, when decimal point operand. C:

aligned, contains a greater :g
number of digit positions r-i m_
than the receiver. 3:: <

m>
zn
-I'°

182 U COMPLETE TRUNCATION Decimal point alignment The MOVE statement or ~ ~
OF NAME/LITERAL/ is such that no portion of arithmetic giving MOVE -< o
RESULT. the item being moved can is deleted. Ai g

be contained in the re- ~ o:i

ceiving operand. m ~
Al
m
z

183 U REDUNDANT ROUND The numeric description Rounding is possible only The round operation is ~
OPERAND DATA-NAME. of the arithmetic result is when an arithmetic result deleted.

such that no excess digit contains at least one ex-
positions are available for cess digit from which the
rounding into the listed round operation can be
operand. based.

184 P REDUNDANT SIZE ERROR The numeric description A size error is possible The size error test is
OPERAND DATA-NAME. of the arithmetic result only if the arithmetic re- performed.

is such that its value sult contains more sig-
could never exceed the nificant digit positions
largest value that can be than the resultant identi- _"' __ _

contained in the listed fier. ~ ;i::..

operand. ::! :g
o ro
z ::i
.. 0..

1)

)>

Gl
[Tl

....
:><:

'--<

,.,.
w

::d c:
en "!='

EXPLANATION < -..J

SEVERITY
-..J

MESSAGE DIAGNOSTIC TEXT tv 0
NUMBER CODE REASON RULE RECOVERY \0

186 c PERFORM STATEMENT The TIMES literal in the The maximum value of a The accepted TIMES
LITERAL EXCEEDS perform statement exceeds PERFORM TIMES literal count is the rightmost 15
32, 767. the maximum allowable is 32, 767. bits of the original value

value. when converted to binary.
This value is between 1

Cl\
and 32,767. c: .,,

t
.,, c:
'z m_

187 c ADVANCING LITERAL The WRITE ADVANCING The maximum number of The advancing line count ~<
m»

EXCEEDS LIMIT. literal exceeds the maxi- lines that can be ad- is set to 1. zn
mum allowable value. vanced is 127 in the -t '°)> .j>..

normal mode and 3 in ;;ti 0

the conversion mode.
-<o
;;o n
mO
'"Tl D:J
mO
;;ti I

• m
z
n
m

188 u FILE AT LINE LITERAL An OPEN or CLOSE has Every file must be Results during execution
NOT WITHIN not been specified for opened and closed. Files are unpredictable.

PROGRAM. the file or the OPEN is written on must be opened
inconsistent with the for output or I-0, files
activity associated with read from must be opened
the file. for input or I-0.

::d
en
~
......

Ill

fTI ;i;..
n 'O
: 'O
o en
z ::i
.. 0..

x
........

1l
}>

Gl
fTI

~
~

(, i' (\

(((
::1:1 c::
Cl> '?
:: -...J

-...J
t-.:iO

"° EXPLANATION
MESSAGE SEVERITY DIAGNOSTIC TEXT
NUMBER CODE REASON RULE RECOVERY

190 s ADDITIONAL MEMORY The compiler does not Recompilation is necessary The object module is
REQUIRED TO PRODUCE have sufficient storage to with more storage assigned produced.
OBJECT CODE LISTING. produce the object code to the compiler.

listing. Cl'
c: .,,
.,, c:

191 s ADDITIONAL MEMORY The compiler does not have A recompilation is neces- r-z m_
REQUIRED TO PRODUCE sufficient storage to sary with more storage ::c: <

m>
OBJECT PROGRAM. maintain the compile time assigned to the compiler. zn

tables necessary to create -I "° >~ the object module output ::a 0

for this program. -<o
::a n
mO
.,, o:I

192 c KEY SIZES FOR FILE AT Record key size unequal Record key and symbolic Symbolic key size is mO
::a r-

LINE LITERAL NOT to symbolic key size. key sizes must be equal. changed to record key m
EQUAL. size. z

n
m

Ill

111 ;i:.. n
"O

-I "O
0 Cl>
z ::i .. 0...

:><

'--<

1l
l>
Cl
111

.!>.
U1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

] .3. CONSOLE MESSAGES

Rev. 2 Appendix] 46
SECTION: PAGE:

During compilation, the compiler generates messages for general information purposes

and messages which describe nonstandard compilation, such as a compiler abort.

During execution, COBOL-generated user programs may encounter one of several error
conditions which are emphasized by console messages.

For description and explanation of COBOL generated console messages, see UNIVAC
9400 Operations Handbook - UP-7871 (current version).

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix K

SECTION: PAGE:

APPENDIX K. COMPILER LISTINGS

K.1. SOURCE CODE LISTING

A source code listing header line appears at the start of each source code listing.
It identifies the compiler, the compiler version, the date of the compilation, and
the time of day at which the COBOL program was compiled. If the date and time are
to appear correctly in the source code listing header line, they must be set by the
operator through the operator commands SET DATE and SET CLOCK when the
supervisor is loaded.

At the top of each page of the source code listing there is a page header which identifies
the page number and sections of the COBOL source code listing which appear under the
page header. These sections are the line number, sequence number, source statement,
and identification.

The line number (LINE NO.) is a compiler-generated number which identifies the
particular line of COBOL source code with which it appears. The line number is
used to reference lines of COBOL source code in the diagnostic listing, the object
program listing, the Data Division memory map, the Procedure Division memory map,
and the cross reference listing.

If the COPY verb is used, the letter C appears after the compiler-generated line
number, to indicate lines of source code taken from the copy library.

The source item sequence number is listed under SEQ. (card columns 1 to 6). The
sequence number field (card columns 1 to 6) is optional for the COBOL programmer.

Under SOURCE STATEMENT the text (card columns 7 to 72) of the COBOL source
program is listed.

Under IDEN., program identification information (card columns 73 to 80) is listed.
This is an optional entry made by the COBOL programmer to provide identification
or card deck information. The COBOL compiler takes no action upon it.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix K
SECTION: PAGE:

K.2. DATA DIVISION STORAGE MAP AND CROSS REFERENCE LISTING

The storage map header line contains the PROGRAM-ID name, the compiler version,
and the date and time of compilation.

The page header locates the following information:

LINE - The compiler-generated line number on which the data item is defined.

LEVEL - The level indicator or level number assigned to the item. An * indicates
that the item was generated by the compiler, as with TALLY.

DATA-NAME - The name of the item.

REG - Where applicable, the hardware register number which contains the
address used as a base value for referencing the item. If a perrna,.nent
register has not been dedicated to cover the item, an * is listed.

DISP - The displacement of the item relative to the address contained in the

ADDR

LENGTH

TYPE

PTLOC

occ

item's cover register. The number is expressed in hexadecimal.

- The address of the item, relative to the first byte of the program. If
blank, the address varies due to blocking, double buffering, etc. The
n urn ber is expressed in hexadecirn al.

- The length in bytes of the item.

- The class or type of the item where:

GP
A/N
A

= Group item
= Alphanumeric item
= Alphabetic item

NUP = Numeric unpacked item
ID N = index-data-name
IDX = index-name
AE = Alphabetic edited
NE = Numeric edited
NP = Numeric packed

VGP =Variable group item.

- The decimal point location of the item where:

- integer indicates the number of fractional digit positions plus the
number of leading P's in the PICTURE, i.e., -5 for PIC PP999 or
PIC 9.99999 or PIC 99V99999.

+ integer indicates the number of trailing P's in the PICTURE, i.e.,
+5 for PIC 99P(5)

- The number of occurrences of the item as specified by the OCCURS
clause.

If the cross reference list has been specified, the line numbers where one or more
references to the item were made are listed under LINE NUMBERS OF REFERENCES.

2

· .. __..

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 Appendix K 3
SECTION: PAGE:

K.3. PROCEDURE DIVISION STORAGE MAP AND CROSS REFERENCE LISTING

The storage map header line will contain the PROGRAM-ID name, the compiler version,
and the date and time of compilation.

The page header locates the following information:

LINE - The compiler-generated line number on which the item is defined.

SECTION - If the item is a section-name, it is listed here.

PARAGRAPH - If the item is not a section-name, it is listed here.

PRIORITY - The priority number of the section-name.

ADDR - The address of the procedure, relative to the first byte of the program.

GO TO

PERFORM

If the name is not referenced in the program, NO REF is listed here.
The number is expressed in hexadecimal.

- An E indicates that the procedure is the object of a GO TO.

ENTRY - An E indicates that the procedure is the object of a PERFORM.

EXIT - An X indicates that the procedure contains a PERFORM exit point.

ALTER - An A indicates that the procedure is AL TERed.

SORT

ENTRY - An E indicates that the procedure is the entry point of a SORT procedure.

EXIT - An X indicates that the procedure contains a SORT procedure exit point.

DEBUG - An * indicates that the procedure is the object of a debug packet.

If the cross reference list has been specified, the line numbers where one or more
references to the procedure have been made, are listed under LINE NUMBERS OF
REFERENCES.

K.4. OBJECT CODE LISTING AND EXTERNAL REFERENCES

The object code listing header line contains the compiler version number and the
date and time of the compilation.

Following the report header line is a list of external reference symbols (EXTRN and
ENTRY names). These are the symbols whose object time address cannot be calculated
at compile time and must be resolved by the linker. The program name and segment
names are also listed here so that their object time address can be determined by the
linker. A two-character ESID number follows each name. This number is used as a
link between the ESID associated with all address constants and the element base
to which that address is relative.

The following are compiler assigned names.

DP$00000
DP$00001
DP$000+2

ETC ~
for
DEPENDING
Procedures

DEB$GOO
DEB$G01

~
ETC

~ Debug
~ Packets

t

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix K

SECTION; PAGE;

The first entry in the list is the program name and its ESID number of 02. The program
name is the PROGRAM-ID name. If the COBOL program is segmented, the segment
names follow. The eight-character segment name is composed of the first six characters
of the program-name and a two-character segment number, The segment number 01 will
be assigned to the first section-name whose priority number exceeds 49; 02 to the next
section with a different priority number greater than 49, etc. The ESID of the first
segment is 03, the next is 04, etc.

The next group of names identify various external programs required in the execution
of the COBOL program, such as the Data Management modules and special COBOL
object time subroutines.

The last group of symbols are names that appear in CALL statements.

The object code listing page header identifies the following information:

LINE#

BASE/DISPL

ADDRESS

- The compiler-generated line number on which each
PROCEDURE DIVISION statement exists.

- This field lists the hardware base register number used
to contain the cover address for the line of code. The
displacement from the address in the cover register to
this line of code is also displayed.

If this field is blank, no cover is needed for the line of
code or the cover register assignment at object time
varies and cannot be defined.

- The program-relative address where the line of code
resides.

CONTENTS OF MEMORY - The actual hexadecimal description of the code or con­
stants produced. An ESID number appears to the right
of each address constant (DC A).

OPERAND ADDRESS

OPCODE

COMMENTS

- The program-relative address of the data or constant
area being referenced. If this field is blank, the item
is being addressed indirectly.

- The mnemonic name for the constant or instruction pro­
duced on this line. If this field is blank and the 'contents
of memory' field contains zeros, alignment is being effected
for the next line of code.

- This field defines the purpose for which the code was
generated. For code in the Procedure Division, the
source program verb is listed.

Prior to the Procedure Division, the following numbers are used to locate the indicated

items and areas.

1. Inter-segment GO TO Subroutine

Used when control is passed from one segment of a segmented program to another.

4

~

UP-7709
Rev. 2

"-

Rev. 3 Appendix K UN1V AC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION: PAGE:

2.

3.

Inter-segment PERFORM Subroutine

Used when a PERFORM references a section or paragraph in another segment.

PERFORM EXIT Subroutine

Called at end of paragraph or section referenced as PERFORM EXIT to determine
if PERFORM is active or not.

4. CVB

Converts packed decimal to binary.

5. CVD

Converts binary to packed decimal.

6. Multiply Half-word Subroutine

Determines product of two binary halfwords.

7. CVB and Multiply Half-word Subroutine

Converts a packed decimal number to binary and multiplies it by another binary
number.

8. GO TO DEPENDING Subroutine

PERFORM function required by GO TO DEPENDING function.

9. Converts separate sign to embedded sign.

10. Converts embedded sign to separate sign.

11. Same as 1 O.

12. Calculate occurrence number.

13. Alter Fixed Segment Subroutine.

15. Transient Storage Area

Storage area used to perform certain intermediate calculations.

16. Special Constants

Constants required by verb generators.

17. Address of USING argument area

Pointer to area used to pass USING arguments to CALLed routines; also used
by ACCEPT and DISPLAY functions.

18. Address of USE procedure table

Pointer to table of USE procedure addresses.

19. Address of AL TERed GO TO Table

Pointer to table of AL TERed GO TO's in priority segments.

~

5

UP-7709
Rev. 2

t

UNIVAC 9400 COBOL
SUPPLEMENT ARY RE FERENCE

20. Start of BAT Table

Rev. 3

A table of addresses used to reference Data Division entries.

21. Start of PEP Table

A table of addresses of referenced procedures.

22. Start of DTF Block Addresses

Appendix K
SECTION: PAGE:

A table of addresses which define the starting points of DTF 's and the COBOL
prefixes for each.

23. Start of EXTRNs for COBOL Subroutines

EXTRNed address of subroutines required by certain COBOL functions.

24. VCON Reference Table

A table of addresses created by CALL statements compiled as VCON's.

25. PERFORM EXIT Storage Area

Area used to save address and other indicators for PERFORM functions.

26. Index-Name Storage Area

Area used to store values of indexes, TALLY also in this area.

27. PERFORM N TIMES Counter Storage Area

28. Start of DTF Tables

A series of tables used to define files for input/output functions.

29. Start of AL TERed GO TO Table

A table of ALTERed GOTO's in priority segments.

30. Start of USE Procedure Table

A table used to reference USE procedures containing necessary indicators and
addresses.

31. Start of Data Division Initial Values

Start of listing of constants produced by VALUE clause in Working-Storage
Section.

32. Start of Procedure Division Constants

Area contains those values and constants required by Procedure Division literals
and functions.

6

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix L
SECTION:

APPENDIX L. USE OF ACCEPT
AND DISPLAY
STATEMENTS

L.1. GENERAL

When the mnemonic-name specified in the following format is not provided, the
ACCEPT data will be from the job stream. A display upon the console is assumed
if the UPON option is omitted.

ACCEPT identifier FROM mnemonic-name

L.2. ACCEPT FROM JOB STREAM

PAGE:

This form of ACCEPT is used to retrieve data images and certain control statements
from the job control stream. COBOL programs are permitted to access their control
streams in order to retrieve //OPARAM job control statements and data images. A
maximum of 4095 bytes of data may be retrieved with a single ACCEPT. The number

"--'. of bytes accepted is not required to be a multiple of 80. Two ACCEPTS of 20
character items require two cards.

Job Stream Set-up:

II EXEC operand 1, operand 2, operand 3, operand 4

The EXEC statement (execute) is the last statement processed by job control
before the execution of the program (job step) named in the statement.

The $ statement is used to indicate the beginning of a stream of data that is to
be diverted to a file for subsequent retrieval by the job. All statements following
the $ statement up to and including the first /* (endQof-data) statement are filed
on the resident direct access storage device. Although this statement is required
by job control, it will not be transferred to the COBOL program.

DATA IMAGE 1
DATA IMAGE 2

DATA IMAGE n
I*

1

.-

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix L
SECTION: PAGE:

The /* statement is used to indicate the end of a data stream introduced with the
control stream. This statement is required by job control but will not be transferred
to the COBOL program. An attempt to retrieve this statement will result in an error
condition within the COBOL program.

Control Stream Errors:

When the control stream is unable to deliver an image to the COBOL program (that is,
if the next sequential record in the control stream is not a //1iPARAM job control state­
statement, or a data image), control is transferred to the object time error subroutine.
The subroutine logs the following message on the console:

CEOl ERROR-DATA FOR ACCEPT NOT AVAILABLE

If the COBOL program attempts to retrieve a /* image from the control stream, an
error condition results. Control is transferred to the object time error subroutine.
The subroutine logs the following message on the console:

CE02 ERROR-INSUFFICIENT DATA FOR ACCEPT

These errors cause the run to be aborted.

ACCEPTS from the job stream are not permitted inside a USE for LABEL PROCEDURE.

L.3. ACCEPT IDENTIFIER FROM SYSCONSOLE

The maximum number of characters that may be entered for a single ACCEPT is
4092. Due to system and hardware restrictions it is only possible to enter 60
characters of text per line.

The following will help to illustrate the mechanics for entering data via the console

typewriter.

When the ACCEPT statement is encountered in the COBOL program, one of the

following messages will be typed:

1. CA10 ACCEPT READY
2. CA10 ACCEPT READY - (The hyphen is typed whenever the maximum (60)

number of characters for one line is to be entered, otherwise the hyphen is not
printed. The message will be typed for ·each line to be entered.)

The operator, when replying to a console ACCEPT, must enter "job number R 1i"

followed by the text.

Example of accepting into a USAGE DISPLAY data item:

1. *R14:37 18 CA10 ACCEPT READY
2. @14:37 18R TEST ACCEPT@B)

Line 1:

The * printed on line 1 indicates an OPR message with an operator reply expected.

The R printed indicates an operator action is required; namely a reply to the message
presented. The following six characters indicate the time of day. The next three
characters are job number; NN1i job number 18 issued the ACCEPT. The next five
characters are the message prefix identifying the message origin; this message is
from COBOL (C) ACCEPT (A) and message type 10 followed by a blank. The remain­

ing characters are the message text from ACCEPT.

;

2

-.,.,.,_ ..

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Line 2:

Rev. 1 Appendix L 3

SECTION: PAGE:

In order to reply to the ACCEPT (OPR), the operator must press the ATTENTION
KEY. This causes the @ to be printed on the console followed by six characters for
the time of day. The operator then types JOBnRD (in the example 18R15) followed by
the message text to be accepted.

When the operator types less than the number of characters expected, the EOM
(X'37') character is accepted into the area and the remaining positions are space­
filled (X'40').

Information provided for a COMP item must be provided in DISPLAY format, with
the correct number of digits and sign, as noted in the item description.

Example of accepting into a signed COMPUTA TIONAL-3 data item (PIC S999):

Enter a computational constant +265.

1. *Rl4:38 18 CAlO ACCEPT READY
2. @14:38 18R 26E~

Enter a computational constant -349.

1. *Rl4:38 18 CAlO ACCEPT READY
2. @14:38 18R 34R~

Note that the last character entered must account for the sign of the last integer
entered. (E=X'C5' ,R=X'D9') ACCEPTs from SYSCONSOLE are not permitted
inside a USE for LABEL PROCEDURE.

L.4. ACCEPT IDENTIFIER FROM SYSDATE

ACCEPT FROM SYSDATE causes the date to be made available to the program in
the form at yymmdd (PIC 9(6)). This information is moved to the identifier under the
rules for a COBOL MOVE.

When the date is set through the job stream(// SET DATE, MM/DD/YY) the date
is stored in the user's job preamble. Although not a system convention, COBOL
expects external SET DATE of mmddyy. If the date is not set via the job stream,
Job Control will move the date from the system information block (SIB) into the
user's job preamble. The date in the SIB is entered via the console by the operator.
This is accomplished by using the operator SET command to enter the current data.

By setting the date from the job stream, the user may pre-date or post-date his jobs.

L.5. ACCEPT IDENTIFIER FROM SYSTIME

The diagnostic listing header line contains the program-ID name, the compiler version,
and the date and time of compilation.

An explanation of the diagnostic text can be found in Appendix J.

ACCEPT FROM SYSTIME causes the time of day to be made available to the program
in the format hhmmOOOO(PIC 9(8)), where hh is the hour and mm is the minute (hhmm
does not exceed 2359). This information is moved to the identifier under the rules
for a COBOL MOVE.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

L.6. ACCEPT IDENTIFIER FROM SYSSWCH

Rev. 1 Appendix L 4
SECTION: PAGE:

ACCEPT FROM SYSSWCH permits the COBOL program to access the user program
switch indicator (UPSI) byte which is the last byte of the 12-byte communication
region in the job preamble. An eight-byte item is created containing EBCDIC 0 or
EBCDIC 1 to represent the OFF or ON status of the individual UPSI bits/switches,
respectively (i.e., if SYSSWCH-0 and SYSSWCH-2 are ON and all others are OFF,
ACCEPT FROM SYSSWCH makes available to the program an 8-character item
containing 10100000).

L.7. ACCEPT IDENTIFIER FROM SYSCOM

ACCEPT FR OM SYS COM allows the COBOL program to receive information from the
communication region in the job preamble. When this ACCEPT is encountered, the
12-byte communication region is moved to the 12 bytes described by the identifier.
It is through the communication region that one job step may communicate with a
following job step.

NOTE: The twelfth byte of the communication region is the UPSI byte.

L.8. DISPLAY IDENTIFIER UPON SYSCONSOLE

DISPLAY UPON SYSCONSOLE permits the COBOL program to display messages
upon the console typewriter. Message size is limited to 4092 contiguous characters.

Each line has the message prefix CDlOD. The message text is 59 characters per
line. When the message text is larger than 59 characters, it is continued on the next
line. For signed numeric items, a separate character is displayed immediately after
the operand. If an EOM character(® ,X'37') is encountered within the message text,
it is printed and printing is terminated.

L.9. DISPLAY IDENTIFIER UPON SYSSWCH

DISPLAY UPON SYSSWCH permits the COBOL program to change the entire UPSI
byte.

The eight bytes described by the identifier are converted into individual bit settings
and resultant 8 bits are stored in the UPSI byte. A value of X'Fl' causes a bit
(UPSI switch) to be turned ON (1 value).

The UPSI byte may be initialized prior to execution by the SET statement in the
Job Control stream (/I SET UPSI, switch setting).

L.10. DISPLAY IDENTIFIER UPON SYSSWCH-n

DISPLAY UPON SYSSWCH-n allows the COBOL program to change an individual
switch (bit setting) in UPSI. The eight switches in UPSI are numbered 0 through
7 from left to right. A one-byte identifier (PIC X) is used to alter UPSI SWITCH-n.
A value of zero (X'FO') causes the switch to be turned OFF (0 value); any other
value causes the switch to be turned ON (1 value).

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 Appendix L S
SECTION: PAGE:

L.11. DISPLAY IDENTIFIER UPON SYSCOM

DISPLAY UPON SYSCOM allows the COBOL program to alter the contents of the
communication region. The 12 bytes described by the identifier are moved into the
12-byte communication region in the job preamble.

The communication region is initialized to binary zeros prior to the first job step
by Job Control. Through use of the SET statement(! I SET COMREG, character
string), the communication region may be set to an initial value. Information may
be passed from job step to job step in the communication region. The communica­
tion region is not changed during job steps.

L.12. DISPLAY IDENTIFIER UPON SYSLST

DISPLAY UPON SYSLST permits the COBOL programmer to display messages
upon the printer. Displays are in 132-character multiples and are printed after
advancing paper one line. For signed numeric items, a separate sign character
is displayed immediately following the operand.

The LFD name assigned to the printer in the Job Control stream must be SYSLST.

At least one DISPLAY to SYSLST must be performed in the nondeclarative portion
of the PROCEDURE DIVISION before any are performed within the DECLARATIVE
portion.

t

UP-7709
Rev. 2

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 1 Appendix M 1
SECTION: PAGE:

APPENDIX M. DEBUGGING

LANGUAGE

M.1. GENERAL

The source program debugging statements, READY TRACE, RESET TRACE, EXHIBIT,
and *DEBUG are extensions to the American National Standard COBOL language.

The output resulting from the execution of a debugging statement is displayed upon
the printer (LFD name = SYSLST). The output may be transferred to tape or disc
by including the appropriate Job Control statement options and format information.
Printing is performed after a one line paper advance. The print cooperative/symbiont
mechanism permits subsequent listing.

The debugging statements may be included between Procedure Division statements,
or the statements may be put in packet form at the end of the Procedure Division
(see M .5).

M.2. READY TRACE

Function:

The execution of a READY TRACE statement produces the output:

'TRACE ON AT line-number'.

When a section or a paragraph is entered for execution, the following output is
produced:

'section-name (or unqualified-paragraph-name) line-number'

Form at:

READY TRACE.

Rule:

This statement may appear anywhere in the Procedure Division or in a compile­
time debugging packet.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

M.3. RESET TRACE

Function:

Rev. 1 Appendix M 2
SECTION: PAGE:

The execution of the RESET TRACE statement terminates the functions initiated
by READY TRACE and produces the following output:

'TRACE OFF line-number'

Format:

RESET TRACE.

Rule:

This statement may appear anywhere in the Procedure Division or in a debugging
packet.

M.4. EXHIBIT

Function:

The execution of the EXHIBIT statement results in a formatted display of identifiers
or nonnumeric literals listed in the statement.

Format:

EXHIBIT CHANGED
{

NAMED }
{
identifier-I }
nonnumeric literal-1

CHANGED NAMED

Rules:

(1) An identifier may not be an index-data-item.

(2) An identifier length may not exceed 256 bytes.

(3) N onnumeric literals may not exceed 132 characters in length.

(4) Displayed operands are continued as described by the DISPLAY statement.
A maximum logical record size of 132 characters is assumed.

(5) An EXHIBIT statement may appear anywhere in the Procedure Division or in
a debugging packet.

(6) The NAMED option produces a noncolumnar display of all operands specified
in the EXHIBIT statement. The operands are displayed in source order and
are formatted as follows:

(a) Identifier

identifying name15equal sign15identifiers value15

The identifying name includes qualifiers and subscripts. A maximum of
130 characters will be displayed.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2 Appendix M 3
SECTION: PAGE:

(b)

The identifiers value may be a maximum of 256 characters. If the identifier
is a signed numeric elementary item, a sign is also displayed following the
value.

N onnumeric literal

nonnumeric literal15

(7) The CHANGED NAMED option produces a noncolumnar display of all nonnumeric
literals and, conditionally, the identifiers specified in the EXHIBIT statement.
The format sequence of the displayed operands is as described in Rule (6). If
the value of the identifier has not changed since the previous execution of this
EXHIBIT statement, the identifier is not displayed and space is not reserved
for the value in the print record.

All identifier values are considered changed on the initial execution of the
statement. If the EXHIBIT statement does not contain any nonnumeric literals
and the value of all identifiers is the same as when this EXHIBIT was previously
executed, neither a display nor a form advance occurs.

(8) The CHANGED option produces a columnar display of all nonnumeric literals
and the changed values of all identifiers.

If the value of the identifier has not changed since the previous execution of
this EXHIBIT statement, the positions reserved for the identifier value are
displayed containing spaces. All identifier values are considered changed on
the initial execution of the EXHIBIT statement.

When the statement contains only identifiers and none of the values have
changed, one line of spaces is displayed. The operands are displayed in the
order in which they appear in the statement and have the following format:

(a) Identifier

identifier valueo

The identifier value may be a maximum of 256 characters. If the identifier
is a signed numeric elementary item, its sign is displayed following the
value.

(b) Nonnumeric literal

non-numeric literal15

(9) If two distinct EXHIBIT CHANGED NAMED or two EXHIBIT CHANGED state­
ments appear in one program, each specifying the same identifiers, the changes
in value of those identifiers are associated with each of the two separate state­
ments. Depending on the path of program flow, the values of the identifier saved
for comparison may differ for each of the two statements.

(10) Variable length identifiers are not permitted as operands with the CHANGED
or CHANGED NAMED option.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

M.5. THE DEBUGGING PACKET

Appendix M 4
SECTION: PAGE:

A packet contains debugging statements referring to a paragraph name or a section
name in the Procedure Division. The debug packets are grouped together and placed
immediately following the source program. The packet statements are compiled with
the source program and are executed at object time; the packets produce the same
result as placing the debug statements directly in the source program following a
section name or a paragraph name.

Each debug packet is preceded by a control card which has the following format:

1 8

*DEBUG location

Location refers to a section or paragraph name which starts anywhere within margin
A. The name, which may be qualified, indicates the starting point in the program
where execution of the packet is to begin. Location cannot be a paragraph name
within any debug packet and the same location must not be used in more than one
debug control card.

A debug packet may consist of procedural statements such as GO TO, PERFORM,
or ALTER. These statements may refer to a procedure name in any debug packet
or in the main body of the Procedure Division.

When the source COBOL program is on a library file (tape or disc), the library
module containing the source program may also contain *DEBUG control cards.
Regardless of whether the library module contains any *DEBUG cards, when the
compiler reaches the end of the library module, it will determine if any additional
*DEBUG cards are present in the job stream. If there are *DEBUG cards in the
job stream, they are processed as if they were contained at the end of the library
module. If there are no *DEBUG cards present in the job stream, the process of
reading COBOL input to the compiler is terminated.

Example:

II EXEC COBOL,LOAD$LIB,,REL
II PARAM IN= PROGNAME/LIBIN
~ PARAM LSI = (o,c,s)

*DEBUG~~~~~~~~~

/*

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix N
SECTION: PAGE:

APPENDIX N. ASCII PROCESSING

N.l. GENERAL

When the PARAM statement is specified in the job control stream, the COBOL compiler
produces an object program which assumes that the contents of any data item, with an
implied or explicit USAGE IS DISPLAY, is represented in American Standard Code for
Information Interchange character set (ASCII).

The format of the PARAM statement is:

II PA RAM OUT=A

Although an EBCDIC or ASCII object program may be generated by the compiler,
compilation is always performed in EBCDIC mode, as is the source program input
and all listable output. The following discussion applies to programs produced under
control of the ASCII option.

When the ASCII mode is selected, the computer character set at execution time consists
of the 128 ASCII character codes (normally, the computer character set consists of
the full 256 EBCDIC characters). Compiler-created object programs are sensitive at
the hardware instruction level to the ASCII character set.

N.2. FIGURATIVE CONSTANTS

The value associated with the figurative constant HIGH-VALUE is hexadecimal 7F.
QUOTE, ZERO, and SPACE take on the corresponding ASCII value. LOW-VALUE
remains a hexadecimal 00.

N.3. COMPUTATIONAL ITEMS

Values associated with WORKING-STORAGE items whose USAGE IS DISPLAY are
allocated to the program in the appropriate ASCII character codes. The allocation of
values for computational forms of data is not effected by the interchange mode selection.
These values are generated in the corresponding computational format. When computa­
tional items are moved or compared against DISPLAY items, they are automatically
converted to the ASCII character code values.

N.4. SIGNED ITEMS

The ASCII character set does not facilitate the use of the traditional overpunch sign
convention; however, 9400 implementation of ASCII does permit overpunching. See
5.3.13. An ASCII signed numeric DISPLAY item should have an S in its PICTURE
and be associated with a SIGN IS SEPARATE CHARACTER clause. Signed numeric
items used in conjunction with arithmetic operations are automatically converted to
the appropriate signed computational format.

Signed numeric values of PROCEDURE DIVISION constants must be specified with
the sign as the leftmost character regardless of the SEPARATE SIGN option.

N.5. APPLY ASCII

ASCII files must be declared to the compiler by the APPLY ASCII ON file-name clause.
ASCII files must also be declared to the supervisor by the ASCII parameter on the LFD
job control statement. Any file may be classified as an ASCII file except those assigned
to DISC. A mix of ASCII and non-ASCII files is permitted in the COBOL program.

1

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

N .6. RECORDING MODE

Regardless of the mode specified for files assigned to TAPE, user labels and data
records are presented to the program in their external character code representation.
No translation of input or output records is performed by the system. The RECORDING
MODE IS D clause may be specified for ASCII tape files which contain variable length
records.

An option within the APPLY ASCII ON file-name clause allows the specification of
a buffer offset for any tape input file or the activation of the block length check feature
on tape files with RECORDING MODE D.

If a file assigned to the printer is declared as being an ASCII file, the device will
accept only ASCII records. Multiple print files, assigned to the same device, with
different mode specifications are not permitted.

Depending on the mode specified for a file assigned to a CARD-READER, the system
will present input records to the program in either ASCII or EBCDIC. Multiple card
reader files assigned to the same device with different mode specifications are not
permitted.

Depending on the mode specified for a file assigned to a PUNCH, the system will
accept output records from the program in either ASCII or EBCDIC. Multiple card
punch files assigned to the same device with different mode specifications are not
permitted.

N.7. CONSTANTS AND LITERALS

PROCEDURE DIVISION numeric literals and nonnumeric literals used in conjunction
with items whose USAGE IS DISPLAY are allocated within the object program as
ASCII constants. Literals associated with computational data items are allocated
in the corresponding computational format.

N.8. CONDITIONAL TEST

The results of an IF statement associated with an item whose USAGE IS DISPLAY is
based upon the assumption that the item is represented in the ASCII character set.

N.9. DISPLAY

DISPLAYs upon SYSLST and output from TRACE/EXHIBIT statements require that
ASCII be specified on the LFD control card for SYSLST. If, at the time this output
is generated, a user print file assigned to the same device is OPEN but was not
declared as an ASCII file, the device will not accept the debug output records.

N.10. ACCEPT

Since the console assumes the mode of the problem program, only ASCII data should
be DISPLA Yed upon SYSCONSOLE. When ACCEPTing from SYSCONSOLE, the user
will receive ASCII data.

Data ACCEPTed from the job stream will also be in ASCll. This includes // PARAM
cards.

2

UP-7709
Rev. 2

N .11. SORT

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Appendix N 3

SECTION: PAGE:

Sorting is controlled entirely by the SORT KEY specifications and the values contain­
ed within the KEY fields. SORT keys whose category is other than numeric are pro­
cessed according to their hexadecimal value. Numeric keys are treated algebraicly
regardless of the item's operational sign location.

N.12. CONVERSION OF DISPLAY ITEMS

The TRANSFORM statement may be used to convert DISPLAY items from one character
representation to another.

A special format of the TRANSFORM statement will facilitate translation from ASCII
to EBCDIC or from EBCDIC to ASCII via compiler created translate tables. This option
is specified when the reserved words ASCII or EBCDIC appear following the word
FROM or TO. If TRANSFORM rules are specified by nonnumeric literals, transforma­
tion across code bases is not possible.

N.13. COBOL SOURCE LANGUAGE ADDITIONS

Format:

APPLY ASCII [WITH BUFFER-OFFSET { FO~ BLOCK-LENGTH-CHECK}]
------ --- OF integer CHARACTERS

ON file-name [, file-name].

Rules:

1. The APPLY ASCII clause identifies each file that contains or receives ASCII data
(see 4.3.2).

2. The BUFFER-OFFSET option applies only to files that are assigned to TAPE. The
absence of this option implies the absence of a buffer offset.

3. The integer CHARACTERS option specifies the number of additional characters that
appear at the front of each data block in the file. Integer may have a value of 0 to 99.
The specified offset applies only to files OPEN for INPUT. The offset area cannot
be referenced by the program nor can it be created when the file is OPEN for OUTPUT.

4. The BLOCK-LENGTH-CHECK option applies only to tape files whose RECORDING
MODE IS D. When specified, input data blocks are assumed to possess a four character
buffer offset which contains the length of the block. Data Management routines validate
that each block read contains the number of characters specified in this field. When the
file is being created, the block length is placed in the four-character buffer offset area.

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix N

SECTION:

N .14. THE RECORDING MODE CLAUSE

Format:

RECORDING MODE 15{!1
Rules:

1. The RECORDING MODE clause is expanded to include the specification
of 'D' type records (see 5.2.1.4)

2. A recording mode of 'D' may be specified for ASCII tape files with variable-length
records.

3. Tape files declared as ASCII may also have a recording mode of 'V' since, for
ASCII files, 'D' and 'V' are synonymous. The 'D' mode is for compatability with
other implementors.

U format records

F format records

unblocked

r-r buff:;
blocked I s I data data

L_Loffs~

D format records

unblocked

blocked

s

1;-T DODD I L_.L.: __ dddd data

rs-rooo;I L_L __ dddd data dddd data

- Block sequence indicator. Optional one-character field whose value
cycles from 0 to 9, 0 to 9, etc. Presence specified by the APPLY
BLOCK-COUNT clause.

Buffer offset - Optional field at the front of each input data block. Offset may be

DODD

dddd

0 to 99 characters in length. This area cannot be referenced by
program nor can it be created on output files. Presence specified by
the APPLY ASCII WITH BUFFER-OFFSET OF integer CHARACTERS
clause.

-Optional block length field in an implied buffer offset area of four
characters. Block length is created and validated by data management
programs. This option is specified by the APPLY ASCII BUFFER­
OFFSET FOR BLOCK-LENGTH-CHECK clause.

-Record length.

S, DODD, dddd are all in ASCII decimal format.

Figure N-1, ASCII Physical Tape Formats

4
PA GE:

UP-7709
Rev. 2

Appendix N 5 UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION: PAGE:

FILE
APPLY APPLY

RECORDING LABEL RECORDS BUFFER-OFFSET BLOCK-
MODE IS DECLARED SPECIFICATIONS

INPUT l OUTPUT AS LENGTH-
CHECK

OMITTED
EBCDIC STANDARD ffi data-name

u
OMITTED

ASCII STANDARD gs 0 to 99
data-name

OMITTED
EBCDIC STANDARD ffi F data-name

blocked or
unblocked OMITTED

ASCII STANDARD gs 0 to 99
data-name

OMITTED
EBCDIC STANDARD ffi auto-

v data-name ma tic

blocked or
unblocked ASCII

EBCDIC

D

blocked or
OMITTED

unblocked
ASCII STANDARD gs 0 to 99 © optional

data-name ©

NOTES:

(j) De facto standard as defined by UNIVAC 9400 System Data Management System

Programmer Reference, UP-7629 (current version)

@ ANSI standard.

@ Implies presence of system standard labels 1 or 2.

© BLOCK-LENGTH-CHECK specifies that a buffer offset of four characters contains
the length of the block for verification by data management programs.

@ Specifies a one•character cyclic block sequence indicator.

Table N-1. Characteristics of Tape Files Available to COBOL Users

APPLY
BLOCK-
COUNT

op ti ona I

optional

®

option a I

optional

®

option a I

op ti ona I

®

UP-7709
Rev. 2

HEX

00

01

02

03

04

05

06

07

08

09

OA

OB

oc
OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

10

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

20

2E

2F

30

ASCII

DEC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

CONTROL CHARACTER

NUL

SOH

STX

ETX

EOT

ENO

ACK

BEL

BS

HT

LF

VT

FF

CR

so
SI

OLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

us
SP, SPACE

SYMBOL

! ..

$

%

&

(

)

*

+

-

I
0

Table N-2. ASCII/EBCDIC Conversion (Part 1 of 3)

Appendix N 6

SECTION: PAGE:

EBCDIC SIGNED

HEX DEC NUMBER
··._./

00 0

01 1

02 2

03 3

37 55

20 45

2E 46

2F 47

16 22

05 05

25 37

OB 11

oc 12

OD 13

OE 14

OF 15

10 16

11 17

12 18

13 19

3C 60

30 61

32 50

26 38

18 24

19 25

3F 63

27 39

1C 28

10 29

1E 30

1F 31

40 64

4F 79

7F 127

7B 123

5B 91

6C 108

50 80

70 125

40 77

50 93

5C 92

4E 78

6B 107

60 96

4B 75

61 97

FO 240

UP-7709
Rev. 2

HEX

31

32

33

34

35

36

37

3B

39

3A

3B

3C

30

3E

3F

40

41

42

43

44

45

46

47

4B

49

4A

4B

4C

40

4E

4F

50

51

52

53

54

55

56

57

5B

59

5A

5B

5C

50

5E

5F

60

61

62

63

ASCII

DEC

49

50

51

52

53

54

55

56

57

5B

59

60

61

62

63

64

65

66

67

6B

69

70

71

72

73

74

75

76

77

7B

79

BO

Bl

B2

B3

B4

B5

B6

B7

BB

B9

90

91

92

93

94

95

96

97

9B

99

UN1VAC 9400 COBOL
SUPPLEMENTARY REFERENCE

CONTROL CHARACTER SYMBOL

1

2

3

4

5

6

7

B

9

:

;

<
=
>
?

@

A

B

c
0

E

F

G

H

I

J

K

L

M

N

0
p

Q

R

s
T

u
v
w
x
y

z
[
\

]

-
'
a

b

c

Table N-2. ASCII/EBCDIC Conversion (Part 2 of 3)

Appendix N 7

SECTION: PAGE:

EBCDIC SIGNED

HEX DEC NUMBER

Fl 241

F2 242

F3 243

F4 244

F5 245

F6 246

F7 247

FB 24B

F9 249

7A 122

5E 94

4C 76

7E 126

6E 110

6F 111

7C 124

Cl 193 +1

C2 194 +2

C3 195 +3

C4 196 +4

C5 197 +5

C6 19B +6

C7 199 +7

CB 200 +B

C9 201 +9

01 209 -1

02 210 -2

D3 211 -3

04 212 -4

05 213 -5

06 214 -6

07 215 -7

OB 216 -B

09 217 -9,

E2 226

E3 227

E4 22B

E5 229

E6 230

E7 231

EB 232

E9 233

4A 74

EO 224

5A 90

5F 95

60 109

79 121

Bl 129

B2 130

B3 131

UP-7709
Rev. 2

I

ASCII

HEX DEC

64 100

65 101

66 102

67 103

6S 104

69 105

6A 106

68 107

6C 10S

6D 109

6E 110

6F 111

70 112

71 113

72 114

73 115

74 116

75 117

76 11S

77 119

7S 120

79 121

7A 122

78 123

7C 124

70 125

7E 126

7F 127

80 12S

St 129

S2 130

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

CONTROL CHARACTER

DEL

ISR

SS8

FS8

SYMBOL

d

e

f

g

h

i

j

k

I

rn

n

0

p

q

r

s

t

u

v

w

x

y

z

I
I
I

!
-

*For edit mask conversion only.

Table N-2. ASCII/EBCDIC Conversion (Part 3 of 3)

Appendix N 8
SECTION: PAGE:

EBCDIC SIGNED

HEX DEC NUMBER

84 132

S5 133

S6 134

S7 135

SS 136

S9 137

91 145

92 146

93 147

94 14S

95 149

96 150

97 151

9S 152

99 153

A2 162

A3 163

A4 164

A5 165

A6 166

A7 167

AS 16S

A9 169

co 192 _,.....--
6A 106

DO 208

A1 161

07 07

20* 32

21* 33

22* 34

UP-7709
Rev. 2

. .._...·

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix 0 1

SECTION: PAGE:

APPENDIX 0. RERUN CLAUSE

0.1. GENERAL

The RERUN facility provides a means of recording the status and environment of a
COBOL program at a specified point in the processing of that program. Once recorded,
this status and environment may be re-established and execution of the COBOL program
resumed from this point. The RERUN facility causes linkage between the COBOL
program and the 9400 checkpoint facility. The RESTART ability is provided by the
RESTART job control statement.

0.2. RERUN CLAUSE

The RERUN clause may appear in the I-0-CONTROL paragraph of the ENVIRONMENT
DIVISION. The format of the rerun clause is:

RERUN ON external-name EVERY integer RECORDS OF file-name-1 [, file-name-2, •.•]

The external-name in the format above must appear in a SELECT statement. The device
specified by external-name is the RERUN receiver; this device receives the check­
point records which contain the status and environment of the COBOL program. File­
name-1, file-name-2, etc., are RERUN controllers; these files dictate when the check
point records are to be issued. The same rerun receiver may appear in any number of
RERUN clauses; a RERUN controller may appear in only one RERUN clause. The
allowable range for integer is 1 to 9,999,999.

0.3. CHECKPOINTING

Checkpoint records are issued whenever integer records occur for a rerun controller.
The rerun controller's record counter is set to 0 when the controller is opened and
incremented by 1 before each READ, WRITE, or INSERT issued to the controller.
When the rerun controller is opened as I-0, a WRITE does not cause the record counter
to be incremented.

If the rerun receiver is a tape device, it may be dedicated to receiving checkpoint
records or it may receive other program output. If the rerun receiver is dedicated, it
will be OPENed automatically with the assumption that label records are omitted.
If the rerun receiver is being shared with other program output, it is the programmer's
responsibility to ensure that the receiver is OPENed for OUTPUT whenever check­
point records are issued. Checkpoint records will not be issued if the receiver is not
OPEN for OUTPUT.

If the receiver is a disc device, it must be dedicated to receiving checkpoint records.
The device must appear in a SELECT statement but not in an FD.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix 0 2

SECTION: PAGE:

If the RERUN facility is to be used in a single, linked object program which is com­
posed of multiple COBOL object programs, a RERUN clause must appear in each
COBOL module which performs I/O. When a RERUN controller is opened, the files
of that module are added to the list of files for the entire program. Therefore, in
each COBOL object module, a RERUN controller should be opened before any other
I/0 is done in that module. Otherwise, it is possible that checkpoint records will
be issued which do not contain the status of all the active files in the entire program.

0.4. RESTARTING

To initiate the restart of a previously checkpointed program, the original control
stream, with the addition of a 11 RSTRT control statement immediately following the
II JOB control statement, should be entered. The format of the 11 RSTRT statement
is specified in UNIVAC 9400 System Job Control Programmer Reference, UP-7793
(current version).

0.5. NOTES AND RESTRICTIONS

Due to the manner in which the sort facility's temporary scratch files are processed,
checkpoints which reflect usable restart information cannot be issued. Therefore,
even though integer records may occur for a rerun controller, checkpoints will not be
issued if a sort is active.

The restart facility will verify and reposition the programs files; however, the pro­
grammer must ensure that the data on those files has not changed since the time of
the checkpoint, or that any change will not affect the execution of the restarted
program. For example, a disc file is being updated and a checkpoint is issued just
prior to reading record number 400. The program is aborted for external reasons after
record number 500 is updated and rewritten. The restarted program will begin updating
at record number 400; however, records number 400 through 500 have already been
updated.

The restart facility will reposition the program's control stream to the card following
the last card ACCEPTed before the checkpoint was taken. This is done by searching
the control stream for a card match. If duplicate cards exist in the control stream, it
is the responsibility of the programmer to ensure that the first card match is the
proper one.

Appendix P 1 UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE SECTION: PAGE:

APPENDIX P. CONVERSION MODE

P.1. GENERAL

To facilitate the conversion of a nonstandard COBOL to UNIVAC 9400 COBOL, a conversion facility has been built
into the UNIVAC 9400 COBOL compiler. This facility, called the conversion mode (or C-mode). accepts COBOL
source code and alters it to American National Standards Institute (ANSI) specifications, or flags it so the
programmer is made aware of the need for changes.

The source code that has been chosen as input to the conversion mode is IBM System/360 DOS COBOL level D
(COBOL-D) because it is representative of high level nonstandard COBOL.

P.2. CONVERSION MODE OPERATION

A PAR AM card option is available to energize the conversion mode of the UNIVAC 9400 COBOL complier.

The conversion mode availability does not imply total source program transfer capability. Its intent is to minimize
the volume and complexity of source program alterations necessary to successfully compile a given COBOL-D
program. Every attempt is made to provide software support for those language differences that would, under a
totally manual conversion process, require a knowledge of the source program intent and logic flow. Source program
statements that must be altered prior to compilation are, in most cases, independent of program design.

There are several methods by which the conversion mode operates on a COBOL-D source program. In addition to
accepting portions of the alien syntax and interpreting that syntax in a COBOL-D manner, the complier alters the
meaning of certain source clauses and statements. For example, a COBOL-D COMP clause is treated as a UNIVAC
9400 COMP-4 clause.

In the conversion mode, various compiler processing paths are altered to effect a change in the semantic
interpretation of a COBOL-D clause or statement, as in the case of contradiction across compilers associated with
the IF NUMERIC statement.

Occasionally, an entire processing philosophy can be reversed. In the conversion mode, the compiler assumes that
ASCII print control characters are utilized in all print files. In addition, a special COBOL-supplied object time
subroutine is provided to ensure acceptable object program print speed. This software bridges the gap between the
exclusive use in COBOL-D programs of the WRITE AFTER ADVANCING statement and the associated UNIVAC
9400 System hardware limitation.

This appendix describes the known differences that exist between COBOL-D and UNIVAC 9400 ANS COBOL. It
also defines the language differences that the conversion mode renders transparent. Those language differences for
which no automatic software support is possible are also identified here, along with the appropriate source program
change requirement.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Appendix P
SECTION: PAGE:

When functioning in the conversion mode, many of the compiler's ANS language features are disabled. Therefore, it
is not recommended that a COBOL-D program once converted, be modified to take advantage of the many
additional UNIVAC 9400 language capabilities without first being totally converted to ANS COBOL.

In the normal ANS COBOL mode, COBOL-D language differences are not permitted. The special processing
interpretations and software extensions available in the conversion mode are not supported in the ANS mode; that
is, control of character print files are unique to the conversion mode.

NOTE:

The conversion mode and the ASCII mode of the compiler are mutually exclusive. This restriction is imposed
because of the incompatibility between the IBM and UNIVAC ASCII implementation philosophy. UNIVAC
supports internal ASCII processing, while IBM effects data translations at the extremities. This is remedied by
use of the TRANSFORM verb in conjunction with input/output processing.

P.3. CONVERSION MODE SYNTAX

The differences between COBOL-D and UN IV AC 9400 COBOL are described in the following paragraphs within
each program division.

P .3.1. Identification Division

• PROGRAM-ID. program-name.

COBOL-D

9400

Program-name is one to eight characters enclosed in quotation marks.

Program-name is one to thirty characters not enclosed in quotation marks. Only the first six characters,
excluding hyphens, are used to identify the object program.

C-mode

9400 will accept a 1- to 8-character name enclosed in quotation marks. Only the first six characters,
excluding hyphens, are used to identify the object program.

P.3.2. Environment Division

• CONFIGURATION SECTION heading.

COBOL-D

Optional.

2

I

UP-7709
Rev. 2

9400

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Required.

C-mode

Optional.

Appendix P
SECTION: PAGE:

• SOURCE/OBJECT COMPUTER clause.

•

COBOL-D

IBM-360 model-number.

9400

UNIVAC-9400.

C-mode

The compiler accepts any SOURCE/OBJECT COMPUTER entries that are valid for COBOL-D.

SPECIAL-NAMES paragraph/DECIMAL-POINT IS COMMA clause

COBOL-D

9400

Does not exist. Reversal of decimal point and comma is activated by a parameter on the CBL control

card.

Reversal of decimal point and comma controlled by SPECIAL-NAMES entry.

C-mode

No automatic support. The convertor has to insert a special-names paragraph and the DECIMAL-POINT

IS COMMA clause into the source program before compiling.

If the CONSOLE or SYSLST option of an ACCEPT/DISPLAY statement is used in the program, the
compiler will automatically produce a special-names entry, internally, for the program. CONSOLE will
be equated to SYSCONSOLE, and SYSLST will be equated to SYSLST.

• SELECT/ASSIGN clause

COBOL-D

{

DIRECT-ACCESS }
ASSIGN TO 'external-name' UTILITY

UNIT-RECORD

device-number UN IT(s)

3

UP-7709
Rev. 2

9400

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

ASSIGN TO 'external-name' integer implementor-name

C-mode

Appendix P
SECTION: PAGE:

No automatic support. The SELECT statement, with respective ASSIGN clauses, must be replaced by
the appropriate UNIVAC 9400 SELECT/ASSIGN clauses before compilation.

• ACCESS clause

COBOL-0

The word 'IS' is optional.

9400

The word 'IS' is required.

C-mode

The word 'IS' is optional.

• KEY clauses

COBOL-0

The word 'IS' is optional.

9400

The word 'IS' is required.

C-mode

The word 'IS' is optional.

• 1-0-CONTROL paragraph entries

COBOL-0

9400

Allows the clauses of the 1-0-CONTROL paragraph to be separated by periods.

Allows the clauses to be separated by a comma or a semicolon. A period must follow the last entry in
the paragraph.

C-mode

No automatic support. The embedded periods within the 1-0-CONTROL paragraph must be removed

4

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix P
SECTION: PAGE:

• RERUN clause

COBOL-D

9400

, , { DIRECT ACCESS }
RERUN ON external-name UTILITY device-number

UNIT(s) EVERY integer RECORDS OF file-name.

External-name may not be the same as the external-name in an ASSIGN clause.

Allows a maximum of 20 external devices to be used to store checkpoint records - only one of these

can be a direct access device.

Checkpoint records are written preceding the execution of integer for a READ, WRITE, or REWRITE

statement. Integer may not exceed 8,388,607.

RERUN ON 'external-name' EVERY integer RECORDS OF file-name

The external-name must be specified in an ASSIGN clause.

The only restriction on the devices is the compiler limit of 63 devices per program.

Integer may not exceed 9,999,999.

C-mode

No automatic support. The RERUN clause must be replaced by one that conforms to the OS/7 COBOL
format. A SELECT statement must be added for each external-name in each RERUN clause.

• APPLY clause for FORM-OVERFLOW

COBOL-D

APPLY overflow-name TO FORM-OVERFLOW ON file-name.

9400

This clause is not supported.

C-mode

No automatic support. Remove the APPLY FORM-OVERFLOW clause from the source program. Add a
USE FOR FORM-OVERFLOW procedure in the Declaratives portion of the Procedure Division for

detection of page breaks.

5

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

• APPLY clause for RESTRICTED SEARCH

COBOL-D

The word 'ON' is optional.

9400

The word 'ON' is required.

C-mocle

The word 'ON' is optional.

• COPY library-name

COBOL-D

Library names are enclosed in quotation marks.

9400

Library names are not enclosed in quotation marks.

C-mocle

Appendix P
SECTION: PAGE:

Library names are enclosed in quotation marks. All libraries are expected to be in UN IV AC 9700
format.

P.3.3. Data Division

• Data formats

COBOL-D

9400

COMPUTATIONAL-1 specifies short floating-point format; COMPUTATIONAL-2 specifies long
floating-point format.

COMPUTATIONAL-1 and 2 are not supported.

C-mode

COMP-1 and 2 are not supported.

6

·.__..,.-·

.. __ .·

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Appendix P
SECTION: PAGE:

• LABEL RECORDS clause

COBOL-D

9400

Optional clause. If omitted, LABEL RECORDS OMITTED is assumed. For LABEL RECORDS ARE
data-name, the data names must be 01 or 77 in the Linkage Section.

Required clause. If the clause is omitted, a diagnostic is produced and OMITTED is assumed (unless
device is disc, then labels are assumed to be STANDARD). For LABEL RECORDS ARE data-name, the
data-name record description must be subordinate to the file description.

C-mode

Optional clause. Same default as COBOL-D. Label data-names must be in Linkage Section as 01 or 77
level items.

• PICTURE clause

COBOL-D

9400

An external floating-point item may be defined by a PICTURE which contains an 'E' and two sign
characters. The sterling currency feature may be specified by extensions to the PICTURE clause.

Neither the sterling currency feature nor the external floating-point PICTURE description are supported.

C-mode

Neither the sterling currency feature nor the external floating-point PICTURE description are supported.

• USAGE clause

COBOL-D

9400

The USAGE IS COMPUTATIONAL clause indicates that the data is in binary format.

If USAGE IS COMP, COMP-1, or COMP-2, intra-record slack bytes are added by the compiler to ensure
that the data is aligned on a half-word, full-word, or double-word boundary.

USAGE IS COMPUTATIONAL indicates that the data is in packed decimal format. Binary data formats
are not supported. COMP-1 and 2 are not supported.

C-mode

There is no support for binary or floating-point data formats.

7

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

• Working-Storage Section

COBOL

All 01 's are aligned on a double-word boundary.

9400

Level 01 'sin Working-Storage Section are not aligned.

C-mode

Appendix P
SECTION:

All level 01's in Working-Storage Section are not aligned on a double-word boundary.

• COPY specifications

COBOL-D

The COPY statement is allowed on 77 items in the Working-Storage and Linkage Sections.

9400

The COPY statement is not allowed on 77 items.

C-mode

PAGE:

The COPY statement is allowed on level-number 77 items in the Working-Storage and Linkage Sections.
However, the implied replacing feature is not supported. Replacing can be accomplished by use of
explicit REPLACING clauses. All COPY libraries are expected to conform to UNIVAC 9400 formats.

P.3.4. Procedure Division

• ACCEPT statement

COBOL-D

9400

A maximum of 72 characters may be accepted from the console.

When the FROM option is not used, one logical record will be retrieved from the system logical input
device (SYSIPT).

Since a special-names paragraph is not available, the only acceptable FROM option is CONSOLE.

If /* is encountered on an ACCEPT statement, a fall through to the next source statement is effected.
End-of-file detection is the user's responsibility.

A maximum of 4095 characters may be accepted from the console.

8

I

Appendix P 9 UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REF ER ENCE SECTION: PAGE:

When the FROM option is not used, a maximum of 4095 characters (52 card images) are retrieved from
the job stream.

If /* is encountered on an ACCEPT statement, an object-time diagnostic is issued and the program is
terminated.

C-mode

SYSIPT is equivalent to the UNIVAC 9400 job stream file.

The compiler creates an internal special-name definition to equate CONSOLE to SYSCONSOLE.

• DISPLAY statement

COBOL-D

When the UPON option is omitted, SYSLST is assumed.

Displays may be directed to SYSPUNCH.

The sign of a numeric item is not displayed as a separate character, i.e., -32 displayed as 3K.

9400

When the UPON option is omitted, SYSCONSOLE is assumed.

Displays to a punch are not supported.

The sign of a numeric item is displayed as a separate character, i.e .. -32 displayed as 32-.

C-mode

When the UPON option is omitted, SYSLST is assumed. The compiler creates an internal special-name
definition to equate SYSLST to SYSLST.

Restriction: Displays to a punch are not supported. The sign of a numeric item is displayed as a separate
character.

• IF statement

COBOL-D

A class test may be performed on an item whose usage is either DISPLAY or COMP-3 (packed decimal).

An IF NUMERIC test always assumes the item is signed, for example:

DATA-AA PIC X VALUE IS 'A'.

An IF NUMERIC test on DATA-AA yields a 'yes'.

I

UP-7709
Rev. 2

9400

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Appendix P
SECTION: PA GE:

A class test may be performed only on an item whose USAGE IS DISPLAY, but not floating-point

display.

An IF N UM ER IC test does not assume an item is signed. The sign is interrogated only if the item is

declared to be signed; for example:

DATA-AA PIC X VALUE IS 'A'.

An IF DATA-AA NUMERIC results in a 'no'.

C-mode

A class test may be performed on an item whose USAGE IS COMP-3 (packed decimal) or floating-point

display.

An IF NUMERIC test always assumes the item is signed.

• INCLUDE (COPY) statement

COBOL-D

An INCLUDE statement in the Procedure Division implies a COPY function.

9400

The INCLUDE statement is not supported. The COPY verb must be used.

C-mode

The INCLUDE statement is equated to the COPY function. Library names enclosed in quotation marks

are accepted. COPY libraries are expected to be in UNIVAC 9400 format.

• MOVE statement

COBOL-D

When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to 'F'.

9400

When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to plus.

C-mode

When an unsigned numeric item is moved to a signed numeric item, the sign of the receiver is set to 'F'.

10

·--·

UP-7709
Rev. 2

• ON statement

COBOL-D

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

This statement is supported.

9400

This debugging statement is not supported.

C-mode

No automatic support. This clause is not supported.

• READ statement

See P.5 for disc considerations.

• STOP statement

COBOL-D

Appendix P
SECTION: PAGE:

When the STOP RUN statement is encountered in a called program, control is returned to the calling
program.

9400

A STOP RUN statement causes an end-of-job termination sequence.

C-mode

When a STOP RUN statement is encountered in a called program, it is treated as an EXIT PROGRAM
statement.

• USE AFTER STANDARD ERROR PROCEDURE

COBOL-D

The word 'PROCEDURE' is optional.

9400

The word 'PROCEDURE' is required.

C-mode

The word 'PROCEDURE' is optional.

11

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFER ENCE

Appendix P 12
SECTION: PAGE:

• USE FOR LABEL PROCEDURE

•

COBOL-D

USE FOR { CREATING } {BEGINNING} LABELS
CHECKING ENDING

{
INPUT }

ON O'LJTPUT file-name.

9400

USE { BEFORE } STANDARD {BEGINNING }
AFTER ENDING {

REEL}
UNIT LABEL
FILE

{

file-name 1
INPUT

PROCEDURE ON iJLiTPUT .

1-0

C-mode

No automatic support. The USE statement for label procedures must be rewritten as per the UNIVAC
9400 format.

WRITE statement

See P.4 printer considerations, and P.5 for disc considerations.

• *DEBUG card

COBOL-D

*DEBUG packets precede the source deck.

9400

*DEBUG packets follow the source deck.

C-mode

No automatic support. The *DEBUG packets must be moved from in front of the source program and
placed behind the source program.

__.....,

I

._

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

P.3.5. Reserved Words

C-mode

Appendix P 13
SECTION: PAGE:

The following UNIVAC 9400 COBOL reserved words may currently exist in COBOL-D source programs as
user-defined words. Their use as user names will not be allowed by the UNIVAC 9400 COBOL compiler.

ASCENDING LINE SYSDATE
ASCII SYSERR

MAP SYSERR-0
BEFORE MASTER-INDEX SYSERR-1
BLOCK-COUNT MEMORY SYSERR-2
BLOCK-LENGTH-CHECK MODULE SYSERR-3
BUFFER-OFFSET MORE-LABELS SYSERR-4

MULTIPLE SYSERR-5
CARD-PUNCH SYSERR-6
CARD-READER OFF SYSERR-7
CARD-READER-51 OPTIONAL SYSERR-8
CARD-READER-66 SYSERR-9
CHARACTERS PERCENT SYSERR-10
COMMA PIC SYSERR-11
COMPUTATIONAL POSITION SYSERR-12
COMPUTATIONAL-3 PRINTER SYSERR-13
COMPUTATIONAL-4 PROGRAM SYSERR-14
COMP SYSERR-15
COMP-3 RELEASE SY SSW CH
COMP-4 REMAINDER SYSSWCH-0
CORR RENAMES SYSSWCH-1
CORRESPONDING SYSSWCH-2
CURRENCY SEARCH SYSSWCH-3
CYLINDER-INDEX SEGMENT-LIMIT SYSSWCH-4
CYLINDER-OVERFLOW SEPARATE SYSSWCH-5

DECIMAL-POINT SEEK SYSSWCH-6
DESCENDING SET SY5SWCH-7
DISC SIGN SYSTIME
DISC-8411 SORT
DISC-8414 SPECIAL-NAMES TAPE
DOWN STATUS TAPES

SYNC TAPE-6
EQUALS SYNCHRONIZED THROUGH
EXTENDED-INSERTION SYSCHAN-4 TIME
EBCDIC SYSCHAN-5 TRACKS

SYSCHAN-6 TRAILING
FILE-LIMIT SYSCHAN-7
FILE-LIMITS SYSCHAN-8 UNIVAC-9400
FILE-PREPARATION SYSCHAN-9 UP

SYSCHAN-10

INDICES SYSCHAN-11 VALUES
INDEX SYSCHAN-12 VERIFY

INSERT SYSCHAN-13
SYSCHAN-14 WORDS

JUST SYSCHAN-15 WHEN
SY SC OM
SYSCONSOLE

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

P.4. PRINTER FILE SUPPORT

Appendix P
SECTION: PAGE:

Support is available for printer files in the conversion mode of the COBOL compiler; the aim is to be as compatible
as possible with COBOL-D printer file processing within the limits of hardware differences.

Due to the manner in which the UNIVAC 0768 Printer Subsystem hardware operates, an advance-then-print
command (WRITE AFTER ADVANCING) results in the effective half-speed of the device. In COBOL-D,
advance-then-print is the only option allowed.

When in the conversion mode, the compiler produces object code to change logical advance-then-print commands
into physical print-then-advance operations. This causes full-speed operation of the UNIVAC 0768 Printer
Subsystem. All printer files must be defined and 'referenced according to COBOL-D rules. Each printer file must have
fixed recording mode and first character control. COBOL-D control characters must be used; consequently, neither a
BEFORE ADVANCING nor an ADVANCING mnemonic-name will be supported in the source language. The only
acceptable format for a printer WRITE statement is:

WRITE record-name FROM identifier

AFTER ADVANCING { i~entifier } LINES.
literal

Restrictions:

COBOL-D allows an APPLY FORM-OVERFLOW clause in the 1-0-CONTROL paragraph of the Environment
Division. The APPLY FORM-OVERFLOW clause must be converted to a USE FOR FORM-OVERFLOW procedure
in the declaratives portion of the Procedure Division.

In COBOL-D, when APPLY FORM-OVERFLOW is specified, one line is printed after the overflow punch in the
carriage control loop is detected. Due to the manner in which the logical write commands are converted into
physical commands, three lines are printed after overflow is detected.

No action is taken when form overflow is encountered unless specified by a USE FOR FORM-OVERFLOW
procedure.

To overcome the problem of three lines being printed after the overflow punch in the carriage control loop is
crossed, the overflow punch must be moved back on the carriage control loop by two logical print commands (two
lines if single spacing, four I ines if double spacing, etc.). If the overflow punch crosses or coincides with another
carriage control punch, the program cannot produce the proper print formats when the program is executed. The
program is not transferable.

The testing of the condition-name specified in the APPLY FORM-OVERFLOW clause must be deleted from the
existing Procedure Division and must not be used in the USE FOR FORM-OVERFLOW procedure. An alternate
method, instead of deleting the processing associated with the overflow condition-name, is to leave the testing of the
condition-name as is and to use the USE FOR FORM-OVER FLOW procedure as a place to set the condition-name
to the true state.

The IBM model 1403 printer supports carriage-control channels 1 through 12. The UNIVAC 0768 Printer Subsystem
supports carriage control channels 4 through 15 with both 14 and 15 signifying home paper. The COBOL-D carriage
control references are translated as follows:

14

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

COBOL-D Control
Character

P.5. DISC FILE SUPPORT

1
2
3
4
5
6
7
8
9
A
B
c

home paper

form-overflow

Carriage Control
Punch

15
12
13
4
5
6
7
8
9

10
11
9

Appendix P 15
SECTION: PAGE:

The following paragraphs detail considerations for conversion of COBOL source programs dealing with files assigned
to direct access devices.

To facilitate an understanding of the differences between the COBOL compilers, a clause-by-clause, verb-by-verb
difference description follows, by file organization.

P .5.1. Sequential Organization

• SELECT/ASSIGN clause

The SELECT/ASSIGN clause requires a source program change to meet the format requirements of UNIVAC
9400 COBOL.

• APPLY VERIFY clause (not availabe in COBOL-D)

When in C-mode, the compiler automatically sets the verify function without regard to the APPLY clause
present in the source program.

• LABEL RECORD definition

In C-mode, the compiler accepts the LABEL RECORD definition in the Linkage Section.

• REWRITE verb

In C-mode, the compiler accepts the REWRITE verb when the file is opened for 1/0.

• INVALID KEY phrase

When C-mode is active, the compiler causes transfer to the USE FOR ERROR procedure or initiates an
end-of-job sequence when an INVALID KEY condition is detected and there is no INVALID KEY phrase
specified.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

P.5.2. Indexed Organization

• SELECT/ASSIGN clause

Appendix P

SECTION: PAGE:

The SELECT statement with its ASSIGN clause requires a source program change to meet the format
requirements of UNIVAC 9400

• APPLY VERIFY clause (not available in COBOL-D)

In C-mode, the compiler automatically sets the verify function without regard to the APPLY clause.

• APPLY MASTER-INDEX clause (not available in COBOL·D)

The APPLY MASTER-INDEX clause must be added to the source program if the file is to be created with a
master index.

NOTE:

COBOL·D specifies this option via the job control stream.

• APPLY CYLINDER-OVERFLOW clause (not available in COBOL-D)

If this clause is not inserted into the source program, the compiler specifies that 20% of each prime data
cylinder is to be reserved for cylinder overflow area.

• APPLY CYLINDER-INDEX AREA clause (not available in COBOL·D)

16

If this clause is not specified in the source program, the compiler does not allocate main storage area to ,__,,
accommodate the cylinder index.

• APPLY EXTENDED-INSERTION AREA clause (not available in COBOL·D)

When this APPLY clause is not specified, the compiler does not allocate additional main storage for efficient
addition of records to an update file.

• RECORD KEY description

In C-mode, the record key size must not be less than 3 nor greater than 255 bytes.

• SYMBOLIC KEY description

In C-mode, the symbolic key size must not be less than 3 nor greater than 255 bytes.

• WRITE verb

When the C-mode is active, the compiler accepts the WRITE verb for the INSERT function when the file is
opened for 1/0.

• INVALID KEY phrase

When C-mode is active, the compiler causes transfer to the USE FOR ERROR procedure or initiates an end-of·
job sequence when an invalid key condition is detected and there is no INVALID KEY phrase specified.

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

• REWRITE verb

Appendix P
SECTION:

In C-mode, the compiler accepts the REWRITE statement when the file is opened for 1/0.

• Error testing in USE FOR ERROR procedures

PA GE:

Replace any calls on DTF interrogation subprograms by tests of SYSERR's (defined in Special-Names
paragraph) to determine error status.

P.5.3. Direct Organization (Absolute Addressing)

• SELECT/ASSIGN clause

The SELECT/ASSIGN clause must be rewritten to conform to the OS/7 COBOL format.

• APPLY RESTRICTED SEARCH clause

In C-mode, the restricted search logic of COBOL-D is employed. Absence of this clause implies a search to end
of cylinder.

• APPLY VERIFY clause (not available in COBOL-D)

When C-mode is active, the compiler automatically sets the verify function without regard to the APPLY
clause.

• APPLY FILE-PREPARATION clause (not available in COBOL-D)

In C-mode, the compiler automatically sets the file preparation function without regard to the APPLY clause.

• LABEL RECORD definition

In C-mode, LABEL RECORD definitions in the Linkage Section are accepted.

• ACTUAL KEY usage

If conversion mode is specified, the compiler accepts a track address in the form:

m bb cc hh r

• ACTUAL KEY description

In UNIVAC 9400 C-mode, the ACTUAL KEY PICTURE must be changed to reflect the M, bb, cc, hh, r fields
as decimal integer (packed) fields.

• SYMBOLIC KEY description

The symbolic key length must not be less than 3 nor greater than 255 bytes when the C-mode is active.

• WRITE verb

In C-mode, the compiler accepts the WRITE verb for the INSERT function when the file is opened for 1/0.

• REWRITE verb

When in C-mode, the compiler accepts the REWRITE statement when the file is opened for 1/0.

17

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

• INVALID KEY phrase

Appendix P
SECTION: PAGE:

In C-mode, the compiler causes a transfer to the USE FOR ERROR procedure or initiates an end-of-job
sequence when an invalid key condition is detected and there is no INVALID KEY option.

• Error testing in USE FOR ERROR procedures

Replace the calls on DTF interrogation subprograms by SYSERR tests to determine error status. SYSERR's
are defined in the special-names paragraph.

18

~--

, _____

'--....---

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Term Reference Page

ACCEPT,

coding ru I es 6.7.1 6-9
format of 6.7.1 6-9
from job stream L.2 L-1

function of 6. 7 .1 6-9

SY SC OM L.7 L-4

SYSCONSOLE 4.2.3, L-3 4-4, L-2

SYSDATE L.4 L-3

SYSTIME L.5 L-3

SYSSWCH L.6 L-4

uses of L.l L-1

Access Method,

random D.3.2 D-2

sequential D.3.1 D-2

ACCESS MODE,

Access Type 2 D.6.2.1 D-7

Access Type 3 D.6.3.l D-10

Access Type 4 D.6.2.2 D-8

Access Type 5 D.6.3.2 D-11

Access Type 6 D.6.4.1 D-13

Access Type 7 D.6.4.2 D-14

in FILE-CONTROL 4.3.l 4-8

RANDOM D.2.1 D-1

SEQUENTIAL D.2.2 D-1

use in file processing D.3 D-2

Access Mode Options D.5.2.2 D-6

ACCESS/ORGANIZATION, D.6 D-6

relationships

Access Types D.4 D-2

ACTUAL KEY,

Access Type 3 D.4.3 D-3

Access Type 4 D.4.4. D-3

Access Type 5 D.4.5, D.5.3.2 D-3, D-8

in file organization D.2 D-1

in direct file processing D.6.3 D-9

in FILE-CONTROL 4. 3.1 4-8

SEEK 6. 7 .27 6-40c

use in file processing D.5.1, D.5.2 D-3, D-4

ADD,

coding rules 6.7.2 6-11

format of 6.7.2 6-10

function of 6.7.2 6-10

intermediate results of H.2 H-1

Rev. 1 Index 1
SECTION: PAGE:

I N D E x
Tenn Refer,!nce Page

AFTER 6. 7 .21 6-32

ALL,

EXAMINE 6. 7 .12 6-19

figurative constant 2.2.2 2-6

Alphabetic Test 6. 7 .15 6-26

ALTER,

coding rules 6.7.3 6-11

format of 6.7.3 6-11

function of 6.7 .3 6-11

GO TO 7.4.1, 6.7.14 7-2, 6-20 ..
segmentation 7.4.1 7-2

ALTERNATE AREA D.6.2 D-7

AND 6. 7 .15 6-23

APPLY, BLOCK-COUNT

BLOCK-COUNT 4.3.2 4-11

CYLINDER-INDEX 4.3.2, D.5.2 4-11, D-4

CYLINDER OVERFLOW AREA 4.3.2, D.5.2 4-11, D-4

EXTEND ED-INSERTION 4.3.2, D.5.2 4-11, D-4

FILE PREPARATION 4.3.2, D.5.2 4-11, D-4

APPLY RESTRICTED SEARCH,

in 1-0-CONTROL 4.3.2 4-11

to specific number of tracks D.6.3, D.6.3.2 D-9, D-11

APPLY VERIFY 4.3.2 4-11

Arithmetic Operations 2.1.4 2-3

Arithmetic Verbs,

ADD 6.7.2 6-10

coding rules 6.6.l 6-6

COMPUTE 6. 7 .6 6-13

DIVIDE 6.7.9 6-16

function of 6.6.1 6-6

MULTIPLY 6. 7 .18 6-30 ..
options of 6.6.1 6-7

SUBTRACT 6. 7.31 6-45 ..
ASCENDING 6.7 .29 6-42 ..
ASCII,

processing Appendix N

TRANSFORM 6. 7.32 6-46

ASSIGN 4.3.l 4-6

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Rev. 2

Tenn Reference Page Tenn

AT END CHARACTERS,
in file processing D.7 D-13 in File Description
READ 6. 7 .22 6-37 OBJECT-COMPUTER
RETURN 6. 7 .24 6-39 TRANSFORM

ATTENTION KEY L.3 L-2 Character-string,

NOTE

AUTHOR 3.1 3-1 PICTURE

BEGINNING 6.7.33 6-46b Character Set, COBOL,

definition of

BLANK WHEN ZERO, in arithmetic operators

coding rules 5.3.9 5-21 in editing

format of 5.3.9 5-21 in punctuation

function of 5.3.9 5-21 in relational expressions

in data description 5.3 5-10 in words

uses of

BLOCK CONTAINS,

coding rules 5.2.1.1. 5-4 Character Set, system

format of 5.2.1.1. 5-4

function of 5.2.1.1 5-4 Checkpoint Record

in File Description 5.2.1 5-3
Checkpo inti ng

BLOCK-LENGTH-CH ECK N.13 N-3
Class Condition,

Block Size Ranges 5.2.1.1 5-4 definition of

format of

Braces 1.2 1-2
CLOSE,

Brackets 1.2 1-2 coding rules

format of

BUFFER- OFFSET N.13 N-3 function of

OPEN

BY 6. 7.21 6-32 READ

~ C-mode P.1 P-1
COBOL Programming Form,

column usage
CALL, description of

coding rule 6.7.4 6-12

ENTER 6. 7 .10 6-17 Collation Sequence
format of 6.7.4 6-12

function of 6.7.4 6-12 Columns, on programming form
interface with ENTRY F.4 F-2

transfer of control F.1 F-1 Comment

CALLed Programs, Comment-entry
coding for F.2 F-4

transfer of control to F .1 F-1
COMP

CALLing Programs, Compiler, basic
coding for F.2 F-3

copy I ibrary input

Index 2
SECTION: PAGE:

Reference Page

5.2.1.1 5-4

4.2.2 4-2

6. 7.32 6-46

6. 7 .19 6-30

5.3.4 5-12

2.1 2-1

2.1.4 2-3

2.1.5, 5.3.4 2-3, 5-13

2.1.2 2-2

2.1.3 2-2

2.1.1 2-2

2.1 2-2

A.1 A-1

4.3.2 4-11

0.3 0-1

6. 7 .15 6-26

6. 7 .15 6-26

6.7.5 6-12

6.7 .5 6-12

6.7.5 6-12

6. 7.20 6-31

6.7.22 6-37

2 5 2-9

2 5 2-8

2.1 2-1

See COBOL Programming Form

2.5 2-9

3.1 3-1

See COMPUTATIONAL

c.2 C-2 ---transfer of control from F .1 F-1
minimum system configuration for 1.3 1-2
options 1.4 1-3

CHANGED See EXHIBIT
source library input c.2 C-2

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Tenn Reference Page

----· Compiler, extended

copy library input C.3 C-3

features E.1, 9.3.6 E-1, 9-4

minimum system configuration for 1.3 1-2

options 1.4 1-3

rules for SPECIAL-NAMES 4.2.3 4-5

source library input C.3 C-3

Compiler-directing Statements,

CALL 6.7.4 6-12

coding rules 6.5.3 6-5

definition of 6.5.3 6-5

description of 6.6.7 6-9

ENTER 6.7 .10 6-17

format 6.5.3 6-5

in DECLARATIVES 6.2 6-2

NOTE 6.7 .18 6-30

USE 6.7 .33 6-46b

Compiler, listings

Data Division storage map K.2 K-2

externa I references K.4 K-3

object code Ii sting K.4 K-3

Procedure Division storage map K.3 K-3

,...._..... Compiler, options

copy library input G.5 G-3

I ist G.2 G-1

object module version G.6 G-3

output G.3 G-2

revision number G.6 G-3

source library input G.4 G-3

COMPUTATIONAL 5.3.5 5-18

COMPUTE,

coding rules 6.7.6 6-13

format of 6.7.6 6-13

function of 6.7.6 6-13

Condition,

compound 6.5.2 6-5

simple 6.5.2 6-5

types of 6. 7 .15 6-23

Condition-name,

coding rules 5.3.11 5-23

definition of 2.2.1 2-4

examples of 5.3.11 5-23

format of 5.3.11 5-23

fun ct ion of 5.3.11 5-23

in data description 5.3 5-10

Condition-name Condition,

definition of 6. 7 .15 6-26

format of 6. 7 .15 6-26

Rev. 2 Index 3

SECTION: PAGE:

Term Reference Page

Conditional Expression,

compound 6.5.2 6-5

simple 6.5.2 6-5

use of 6.6.6 6-9

Conditional Statements,

coding rules 6.5.2 6-5

definition of 6.5.2 6-5

format of 6.5.2 6-5

Conditional Variable,

conditional-name condition 6.7 .15 6-26

definition of 2.2.1 2-4

Conditional Verb,

description of 6.6.6 6-9

IF 6. 7 .15 6-22

CON FIGURATION SECTION,

definition of 4.2 4-1

format of 4.2 4-1

in Environment Division 4.1 4-1

Connectives 2.2.2 2-6

Continuation 2.5 2-9

Conversion mode

Data Division P.3.3 P-6

disc file support P.5 P-15

Environment Division P.3.2 P-2

Identification Divison P.3.1 P-2

operation P.2 P-1

printer file support P.4 P-14

Procedure Division P.3.4 P-8

reserved words P.3.5 P-13

syntax P.3 P-2

t COPY,

COBOL library 10.2 10-1

coding rules 6.7.7 6-14

formats of 6.7.7, 10.2 6-14, 10-2

function of 6. 7.7 6-14

Copy Library Input C-1 C-1

CORRESPONDING,

ADD 6.7.2 6-10

data item requirements 6.6.1 6-7

MOVE 6. 7 .17 6-28

SUBTRACT 6. 7 .31 6-45

CURRENCY 4.2.3 4-3

CYLINDER-INDEX See APPLY

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Tenn Reference Page

CYLINDER OVERFLOW AREA See APPLY

Data Description,

format of 5.3 5-10

function of 5.3 5-10

DATA DIVISION,

coding rules 5.1 5-1

conversion mode P.3.3 P-6

description of 5.1 5-1

general format of 5.1 5-1

Data Items,
allowable sizes 5.1.1 5-2

treatment of F.2 F-1

Data Management,

in file processing techniques D.5.2 D-4

interface with COBOL compiler 1.1 1-1

Data Movement Verbs,

description of 6.6.3 6-8

EXAMINE 6. 7 .12 6-19

MOVE 6.7.17 6-28

SET 6. 7 .28 6-40d

Data-name,

definition of 2.2.1 2-4

unqualified 2.2.1 2-4

Data Organization See File Organization

DATA RECORD,

coding rules 5.2.1.6 5-8

format of 5.2.1.6 5-8

function of 5.2.1.6 5-8

in File Description 5.2.1 5-3

in Sort File Description 5.2.2, 9.3.2 5-9, 9-2

RELEASE 6.7 .23 6-38

DATA-COMPILED 3.1 3-1

DATE-WRITTEN 3.1 3-1

DEBUG M.5 M-4

Debugging,

language M.1 M-1

packet M.5 M-4

DESCENDING 6.7.29 6-42

Decimal Point Alignment 6.6.l 6-7

DECIMAL-POINT IS COMMA 4.2.3 4-3

Rev. 2 Index 4
SECTION: PA GE:

Term Reference Page

DECLARATIVES,

coding rules 6.2 6-2

format of 6.2 6-2
function of 6.2 6-2

in Procedure Division 6.1 6-1

DEPENDING ON 6. 7 .14 6-20

DIRECT 4.3.1 4-8

Direct Access,

devices D.1 D-1

files D.1 D-1

Direct File Processing D.5.3 D-7

Direct Indexing 8.5 8-3

Disc Control Statements

indexed sequenti a I 1.7 1-11

relative 1.6 1-8

sequential 1.5 1-6

l
Disc file support

description P.5 P-15

direct organization P.5.2. P-17 ---
indexed organization P.5.3 P-16

sequential organization P.5.1 P-15

t
DISPLAY,

ALL 2.2.2 2-6

coding rules 6.7.8 6-15

format of 6.7.8 6-15

function of 6.7.8 6-15

SY SC OM L.11 L-5

SYSCONSOLE 4.2.3, L.8 4-4, L-4

SYSDATE 4.2.3 4-4

SYS LIST L.12 L-5

SYSSWCH L.9 L-4

SYSSWCH-n L.10 L-4

SYSTIME 4.2.3 4-4

USAGE 5.3.5 5-17

DIVIDE,

coding rules 6.7.9 6-16

format of 6.7 .9 6-16

function 6.7.9 6-16

DOWN BY 6.7.28 6-40d

EBCDIC 6.7.32 6-46
__ _.,.,..

Edi ting 2.1.5 2-3

'--"'

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Term Reference Page

El lip sis 1.2 1-2

ELSE 6.7.15 6-22

END DECLARATIVES 6.2 6-2

Ending Verb,

description of 6.6.5 6-9

STOP 6. 7.30 6-44

USE 6. 7 .33 6-46b

ENTER,

CALL 6.7.4 6-12

coding rules 6.7 .10 6-17
format of 6. 7 .10 6-17

function of 6. 7 .10 6-17

subprogram communication F .1 F-1

ENTRY F.4 F-2

ENVIRONMENT DIVISION,

conversion mode P.3.2 P-2
~

general format 4.1 4-1

EQUALS 6.7.15 6-22

~

Error Checking 6.7.33 6-46b

ERROR PROCEDURE 6. 7 .33 6-46b

EXAMINE,

ALL 2.2.2 2-6

coding rules 6. 7 .12 6-19

format of 6.7 .12 6-19

function of 6.7 .12 6-19

TALLY 2.2.2 2-6

EXCEEDS 6. 7.15 6-22

EXHIBIT

format of M.4 M-2

function of M.4 M-2

coding rules M.4 M-2

NAMED M.4 M-2

CHANGED M.4 M-2

EXIT,

coding rules 6.7 .13 6-20

form at of 6.7 .13 6-20

function of 6. 7 .13 6-20

PERFORM 6. 7 .21 6-32

EXIT PROGRAM 6.7 .10 6-17

EXTENDED-INDEX See APPLY

Rev. 2 Index 5
SECTION: PAGE:

Term Reference Page

External·name,

definition of 2.2.1 2-4

FD See File Description

Figurative Constants 2.2.2 2-6

FILE 6.7.33 6-46b

FILE-CONTROL,

coding rules 4.3.l 4-9

format of 4.3.1 4-8

function of 4.3.1 4-8

in Input-Output Section 4.3 4-6

FILE-LIMIT 4.3.1 4-8

File processing Techniques,

definition of D.6 D-6
direct D.6.3 D-9
indexed D.6.4 D-12
relative D.6.2 D-7

sequential D.6.1 D-6

Fi I e Description,

coding rule 5.2.l 5-3
format of 5.2.1 5-3
function of 5.2.l 5-3

File Description Entry 5.2 5-2

File Organization

direct D.2.3 D-2
indexed D.2.4 D-2
relative D.2.2 D-1
sequential D.2.1 D-1

types of D.2 D-1

FILE PREPARATION See APPLY

FILE SECTION,

description of 5.2 5-2

general format of 5.2 5-3

in Data Division 5.1 5-1

FILLER 5.3 5-10

FIRST 6.7.12 6-19

Fl VO FF 4.3.1 4-8

FIVON 4.3.1 4-8

Fi xed·I ength Format 5.2.1.4 5-7

Fixed Portion See Segmentation

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Term Reference Page

FORM-OVERFLOW 6.7.33 6-46b

FROM,

ACCEPT 6. 7 .1 6-9

PERFORM 6.7.21 6-32

RELEASE 6.7.23 6-38

SUBTRACT 6.7.31 6-45

WRITE 6.7.34 6-48

Generic Terms 1.2 1-2

GIVING,

ADD 6.7.2 6-10

arithmetic statements 6.6.l 6-7

DIVIDE 6.7.9 6-16

MULTIPLY 6. 7.16 6-30

SORT 6.7.29 6-42

SUBTRACT 6.7 .31 6-45

GO TO,

ALTER 6.7 .3, 7 .4.1 6-11, 7-2

coding rules 6.7.14 6-21

format of 6.7 .14 6-20

function of 6.7.14 6-20

segmentation 7 .4.1 7-2

Hierarchy 2.3 2-7

HIGH-VALUE (HIGH-VALUES) 2.2.2 2-6

IDENTIFICATION DIVISION,

character set in 2.1 2-2

coding rules 3.1 3-1 conversion mode P.3.1 P-2

general format 3.1 3-1

Identifier 2.2.l 2-3

IF,

coding rules 6.7 .15 6-22

format of 6.7 .15 6-22

function of 6.7 .15 6-22

in conditional statements 6.5.2 6-5

Imperative Statements,

coding rules 6.5.l 6-4

definition of 6.5.l 6-4

to rm at of 6.5.1 6-4

Implementor-name 4.3.1 4-8

IN 2.2.2, 2.3 2-6, 2-7

Rev. 2 Index 6
SECTION: PAGE:

Term Reference Page

Independent Entries,
'-._.,/

coding rules 5.4.1 5-24

format of 5.4.1 5-24

function of 5.4.1 5-24

Independent Segments See Segm en ta ti on

INDEX 5.3.5 5-17

Index-name,

definition of 2.2.1 2-5

displacement formula for 6.7.28 6-42

in relation condition 6.7.15 6-24

internal format of 6.7.28 6-42

SET 6.7.28 6-40d

Index Data-i tern,

definition of 2.2.1 2-5

in relation condition 6.7.15 6-24

i nterna I to rmat of 6.7.28 6-42

SET 6.7.28 6-40d

INDEXED BY,

defined by index-name 2.2.l 2-5

in data description 5.3 5-10

OCCURS 5.3.3 5-12 ___,.
SET 6.7.28 6-40d

Indexing,

definition of 2.4 2-8

rules of 2.4 2-8

Indexing Tables,

coding rules 8.5 8-3

definition of 8.5 8-3

format of 8.5 8-3

specifying occurrence numbers 8.3 8-2

INPUT,

OPEN 6.7.20 6-31

USE 6.7.33 6-46b

INPUT-OUTPUT SECTION,

definition of 4.3 4-8

general format 4.3 4-8

Input/Output Verbs,

ACCEPT 6.7.1 6-9

CLOSE 6.7.5 6-12

description of 6.6.4 6-8
'---'

DISPLAY 6.7.8 6-15

·.___.?

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Term Reference Page

INSERT 6.7 .16 6-27

OPEN 6. 7 .20 6-31

READ 6.7 .22 6-37

RELEASE 6.7.23 6-38

RETURN 6.7.24 6-38

SEEK 6.7.27 6-40c

SORT 6.7.29 6-42

WRITE 6.7.34 6-48

INPUT PROCEDURE,

in sort operations 9.2 9-1

SORT 6.7.29 6-42

INSERT,

Access Type 4 D.6.2.2 D-8
Access Type 5 D.6.3.2 D-11

Access Type 7 D.6.4.2 D-14

format of 6.7.16 6-27

function of 6. 7 .16 6-27

INSTALLATION 5.1 5-1

Intermediate Result Areas H.1 H-1

INTO,

READ 6.7 .22 6-37

RETURN 6. 7.22 6-38

1-0,

OPEN 6.7.20 6-31

USE 6. 7.33 6-46b

1-0-CONTROL,

coding rules 4.3.2 4-12

format of 4.3.2 4-11

function of 4.3.2 4-11

in Input-Output Section 4.3 4-8

INVALID KEY,

is file processing D.7 D-15

INSERT 6. 7.15 6-26
use of 4.3.2 4-12

WRITE 4.3.2 4-12

Job Control 4.3.2 4-11

Job Control Stream 1.1 1-1

JUSTIFIED,

coding rules 5.3.7 5-19

format of 5.3.7 5-19

function of 5.3.7 5-19

in data description 5.3 5-10

Rev. 2 Index 7

SECTION: PAGE:

Term Reference Page

KEY,

in sort operation 9.2 9-1

SORT 6.7.29 6-42

Key Clauses D.5 D-3

Key Words,

definition of 2.2.2 2-6

use of 1.2 1-1

Label Checking 6.7.33 6-46b

LABEL PROCEDURE 6. 7.33 6-46b

LABEL RECORDS,

checking 5.2.1.3 5-6

coding rules 5.2.1.3 5-6

format of 5.2.1.3 5-6

function of 5.2 .1.3 5-6

in Fi le Description 5.2.l 5-3

USE 6.7.33 6-47

Label Writing 6.7.33 6-46b

LEADING 6. 7 .12 6-19

Level-number,

coding rules 5.3.1 5-11

format of 5.3.l 5-11

function of 5.3.l 5-11

in data description 5.3 5-10

LIBRARY, 10.2 10-1
Library-name 6.6.7 6-14

Linkage Section,

coding rules 5.5 5-25

definition of 5.5 5-25

in Data Division 5.1 5-1

Linker, considerations 1.4 1-5

Linking F.3 F-2

LOCK 6.7.5 6-12

Logical Operators,

condition combinations with 6. 7.15 6-24

con di ti on relationships 6.7.15 6-23

LOW-VALUE (LOW-VA LU ES) 2.2.2 2-6

MAP IS 5.3 5-10

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Term Reference Page

MASTER-INDEX See APPLY

MEMORY SIZE,

allowable 5.1.l 5-2

OBJECT-COMPUTER 4.2.2 4-2

MODULES 4.2.2 4-2

Mo du I e/Level Imp I ementation 1.3 1-2

MORE-LABELS 6.7 .14 6-20

MOVE,

coding rules 6. 7 .17 6-28

compiler handling of SPECIAL-

NAMES 4.2.3 4-5

format of 6.7.17 6-28

function of 6. 7 .17 6-28

index data items 2.2.1 2-5

sending and receiving fields 6.7.17 6-29

MULTIPLE FILE 4.3.2 4-11

MULTIPLE REEL/UNIT 4.3.1 4-8

MULTIPLY,

coding rules 6. 7 .18 6-30

format of 6. 7.18 6-30

function of 6.7 .18 6-30

NAMED See EXHIBIT

NEXT SENTENCE 6.7 .15 6-22

Nonnumeric Literal,

CURRENCY 4.2.3 4-3

definition of 2.2.1 2-5

Nonnumeric Operand 6.7 .15 6-24

NO 4.3.1 4-8

NO REWIND,

CLOSE 6.7.5 6-12

OPEN 6.7.20 6-31

NOT 6.7 .15 6-23

NOTE,

coding rules 6.7 .19 6-31

format of 6. 7 .19 6-30

function of 6. 7 .19 6-30

Rev. 2 Index 8
SECTION: PAGE:

Term Reference Page

Numeric Literal 2.2.1 2-5

Numeric Operand 6. 7 .16 6-25

Numeric Test 6. 7 .16 6-26

OBJECT-COMPUTER,

coding rules 4.2.2 4-2

format of 4.2.2 4-2

function of 4.2.2 4-2

in Environment Division 4.1 4-1

Object-time Diagnostics 8.6 8-3

OCCURS,

coding rules 5.3.3 5-12

format of 5.3.3 5-12

function of 5.3.3 5-12

in data description 5.3 5-10

indexing 8.5 8-3

REDEFINES 5.3.2 5-11

RENAMES 5.3.10 5-22

subscripting 8.4 8-2

table handling 8.2 8-1

VALUE 5.3.8 5-20

OF 2.2.2, 2.3 2-6, 2-7 ~

OFF STATUS 4.2.3 4-3

OMITTED 5.2.1.3 5-6

ON SIZE ERROR,

ADD 6.7.2 6-10

COMPUTE 6.7 .6 6-13

DIVIDE 6.7 .8 6-15

in arithmetic statements 6.6.1 6-7

MULTIPLY 6. 7 .18 6-30

SUBTRACT 6. 7 .31 6-45

ON STATUS 4.2.3 4-3

OPEN,

CLOSE 6.7.5 6-12

coding rules 6. 7.20 6-31

format of 6.7 .20 6-31

function 6. 7.20 6-31

in sequential data organization D.2.1 D-1

READ 6.7.22 6-37

WRITE 6.7.34 6-48

Operands 6.7 .15 6-24

__ __,

,

I

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENT ARY REF ER ENCE

Term Reference Page

OPTIONAL 4.3.l 4-8

Optional Words 2.2.2 2-6

OR 6. 7 .15 6-23

ORGANIZATION,
Access Type 2 D.6.2.1 D-7

Access Type 3 D.6.3.l D-10

Access Type 4 D.6.2.2 D-8

Access Type 5 D.6.3.2 D-11

Access Type 6 D.6.4.1 D-13

Access Type 7 D.6.4.2 D-14

in direct file organization D.2.3, D.6.3 D-2, D-9

in FILE-CONTROL 4.3.1 4-8

in indexed file organization D.2.4, D.6.4 D-2, D-12

in relative file organization D.2.2, D.6.2 D-1, D-7

in sequential file organization D.2.1, D.6.1 D-1, D-6

use of D.5.1 D-3

OUTPUT,

OPEN 6.7.20, D-6 6-31, D-6

USE 6.7.33 6-46b

OUTPUT PROCEDURE,

in sort operation 9.2 9-1

SORT 6.7.29 6-42

Paragraphs,

coding rules 6.4 6-4
definition of 6.4 6-4

format of 6.4 6-4

in Procedure Division 6.1 6-1

Patching 1.8 1-13

PERFORM,

coding rules 6.7 .21 6-32

EXIT 6.7 .13 6-20

format of 6.7 .21 6-32

function of 6. 7.21 6-32
logic of 6. 7 .21 6-35
segm enta ti on 7.4.2 7-2

PICTURE,
coding rules 5.3.4 5-13

CURRENCY 4.2.3 4-3

DECIMAL POINT IS COMMA 4.2.3 4-3

determining data type 5.1.1 5-2

format of 5.3.4 5-13

function of 5.3.4 5-13

in Data Division 5.3 5-10

in single-item areas 5.4.1 5-24

SPECIAL-NAMES 4.2.3 4-3

arithmetic operands 6.6.1 6-7

Rev. 2 Index 9

SECTION: PAGE:

Term Reference Page

USAGE 5.3.5 5-18
VALUE 5.3.8 5-21

Picture-string 5.3 5-10

PICTURE Symbols,
precedence of 5.3.4 5-16
usage rules 5.3.4 5-15

Presentation, rules of 1.2 1-1

Printer file support P.4 P-14 ~

Printer Form-Overflow 6. 7.33 6-46b

Priority 6. 7.21 6-36

Priority-number 7.3 7-1

Procedure Branching Verbs,

ALTER 6.7.3 6-11

description of 6.6.2 6-8

GO TO 6. 7.14 6-20

PERFORM 6. 7.21 6-32

PROCEDURE DIVISION,

character set in 2.1 2-2
conversion mode P.3.4 P-8

~
definition of 6.1 6-1
format of 6.1 6-1

Procedure-name 2.2.1 2-4

PROCEED TO 6.7.3 6-11

PROCESSING MODE 4.3.1 4-8

PROGRAM-ID,

character set in 2.1 2-2

coding rules 3.1 3-1

ENTER 6. 7.11 6-18

format of 3.1 3-1

USING 6.1.1 6-2

Punctuation 2.1.2 2-2

Qua I ification,

definition of 2.3 2-7

rules of 2.3 2-7

Qualifier 2.3 2-7

QUOTE (QUOTES) 2.2.2 2-6

Random Access See Access Methods

I

UP-7709
Rev. 2

Term

READ,

Access Type 2

Access Type 3

Access Type 4

Access Type 5

Access Type 6

Access Type 7

coding rules

format of

function of

OPEN

verification of

READY TRACE

Recevi ng Fields,

categories of

examples of

RECORD CONTAINS,

coding rules

format of

function of

in File Description

in Sort File Description

Record Description,

coding rules

format of

function of

Record Description Entry

RECORD KEY,

Access Type 7

error conditions

format of

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFERENCE

Reference Page

D.6.2.1 D-7

D.6.3.1 D-10

D.6.2.2 D-8

D.6.3.2 D-11

D.6.4.1 D-13

D.6 .4.2 D-14

6. 7 .22 6-37

6. 7.22 6-37

6.7.22 6-37

6.7 .20 6-31

4.3.2 4-12

M.2 M-1

6. 7.17 6-29

5.3.4 5-17

5.2.1.2 5-5

5.2.1.2 5-5

5.2.1.2 5-5

5.2.1 5-3

5.2.2, 9.3.2 5-9, 9-2

5.4.2 5-25

5.4.2 5-25

5.4.2 5-25

5.2 5-2

D.6.4.2 D-14

D.7 D-15

4.3.1 4-8

ORGANIZATION IS INDEXED D.2.4, D.5.1 D-2, D-3,

D.6.4 D-12

Record Size Ranges 5.2.1.2 5-5

RECORDING MODE,

coding rules 5.2.1.4 5-8

format of 5.2.1.4 5-7

function of 5.2.l.4 5-7

in File Description 5.2.l 5-3

in file processing D.6.1, D.6.2 D-6, D-7

in Sort File Description 5.2.2, 9.3.2 5-9, 9-2

RECORDS 5.2.1.1 5-4

REDEFINES,

coding rules 5.3.2 5-11

format of 5.3.2 5-11

Rev. 3 Index 10
SECTION: PAGE:

Term Reference Page

function of 5.3.2 5-11

in data description 5.3 5-10

VALUE 5.3.8 5-20

REEL,

CLOSE 6.7.5 6-12

USE 6.7 .33 6-46b

Relation Condition,

definition of 6. 7.15 6-24

format of 6. 7 .15 6-24

Rel a ti ona I-op era tor 6. 7.15 6-23

Relational Expression,

characters used in 2.1.3 2-2

in conditional expression 6.5.2 6-5

RELATIVE 4.3.1, D.2.3 4-8, D-2

Relative Indexing 8.5 8-3

RELATIVE KEY,

in FILE-CONTROL 4.3.l 4-8

in relative file organization D.2.2 D-1

key clause usage D.5.1 D-3__,,.

RELEASE,

coding rules 6. 7.23 6-38

format of 6.7.23, 9.3.3 6-38, 9-3

function of 6.7.23 6-38

in creating sort file 6.7 .29 6-43

in sort operation 9.2, 9.3.3 9-1, 9-3

REMARKS 3.1 3-1

RENAMES,

coding rules 5.3.10 5-22

format of 5.3.10 5-22

fun ct ion of 5.3.10 5-22

identifying entries for 5.3.1 5-11

in data description 5.3 5-10

REPLACING 6.7 .12 6-19
EXAMINE 6.7.7 6-14
COPY

RERUN,

description of Appendix 0 4-11

in 1-0-CONTROL 4.3.2 4-8

SELECT 4.3.1
'--..../

RESERVE 4.3.l 4-8

...___,,'

'-..__./'

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

~ Term Reference Page

Reserved words

conversion mode P.3.5 P-13

listing B.1 B-1

t
RESET TRACE M.3 M-2

Restarting 0.4 0-2

RETURN,

coding rules 6. 7 .24 6-38

ENTER 6. 7 .10 6-18

format of 6. 7.24, 9.3.4. 6-38, 9-3

function of 6.7.24 6-38

in creating sort file 6.7 .29 6-43

in Sort File Description 5.2.2 5-9

in sort operation 9.2, 9.3.4 9-1, 9-3

REVERSED 6. 7 .20 6-31

REWRITE 6.7.15 6-22

ROUNDED,

ADD 6.7.2 6-10

COMPUTE 6.7.6 6-13

DIVIDE 6.7.9 6-16

in arithmetic statements 6.6.l 6-7

MULTIPLY 6. 7 .18 6-30

SUBTRACT 6. 7 .31 6-45

RUN 6. 7 .30 6-44

SAME AREA 4.3.2 4-11

SAME RECORD AREA 4.3.2 4-11

SD See Sort File Description

SEARCH 6. 7 .26 6-40

SECTION,

coding rules 6.3 6-3

format of 6.3 6-3

function of 6.3 6-3

in Procedure Division 6.1 6-1

in segmentation 7.3 7-1

SEEK,

coding rules 6.7 .27 6-40d

format of 6.7 .27 6-40c

function of 6.7 .27 6-40c

READ 6.7.22 6-37

WRITE 6.7.34 6-48

SECURITY 3.1 3-1

Rev. 3 Index 11

SECTION: PAGE:

Term Reference Page

Segmentation,

ALTER 7 .4.1 7-2

fixed portion 7.4.2 7-2

general discussion 7 .2.1 7-1

independent segments 7.1 7-1

over layabl e segments 7.2.2 7-1

PERFORM 7.4.1 7-2

priority of 7.3 7-1

program organization 7.2 7-1

restrictions on program flow 7.4 7-2

SEGMENT-LIMIT 4.2 4-1

SELECT

in FILE-CONTROL 4.3.1 4-8

sort file 9.3.1 9-2

Sending Field 6. 7 .17 6-29

Sentence,

definition of 6.5 6-4

format of 6.5 6-4

Sequence Number 2.5 2-9

SEPARATE see SIGN

SEQUENTIAL See ORGANIZATION

Sequential Access See Access Method

SET,

coding rules 6. 7 .28 6-41

format of 6.7.28 6-40d
function of 6.7 .28 6-40d
Index data item 5.3.5 5-18

index-names 2.2.1, 8.5 2-5, 8-3

UPSI switches 4.3.l 4-8

SIGN 5.3.13 5-24

Sign Condition,

definition of 6. 7.15 6-26

format of 6.7 .15 6-26

SKIP 4.3.1 4-8

SORS C.1 C-1

SORT,

coding rules 6. 7 .29 6-42

format of 6.7 .29, 9.3.5 6-42, 9-3

function of 6. 7 .29 6-42

in Sort File Description 5.2.2, 9.3.2 5-9, 9-2

in sort operations 9.2, 9.3.5 9-1, 9-3

RETURN 6.7.24 6-38

UP-7709
Rev. 2

Term

SORT Feature,

des c rip ti on of

in extended compiler

So rt Fi I e

Sort File Description,

coding rules

format of

function of

in File Description

So rt Operations

So rt Statements,

RELEASE

RETURN

SELECT

SORT

SOURCE-COMPUTER,

coding rule

format of

function of

in Environment Division

Source Field

Source Library Input

SPACE (SPACES),

elementary item category

figurative constant

SPECIAL-NAMES,

ACCEPT

coding rules

compiler handling of

DISPLAY

format of

function of

in Environment Division

STANDARD

Statement

STOP,

ALL

coding rules

format of

fun ct ion

UNIVAC 9400 COBOL
SUPPLEMENT ARY REFER ENCE

Reference Page

9.1 9-1

9.3.6 9-4

9.2 9-1

5.2.2 5-9

5.2.2, 9.3.2 5-9, 9-2

5.2.2 5-9

5.2.1 5-3

9.2 9-1

6.7 .29, 9.3.3 6-43, 9-3

6.7.29, 9.3.4 6-43, 9-3

4.3.1, 9.3.1 4-8, 9-2

6.7.29, 9.3.5 6 43, 9-4

4.2 1 4-2

4.2.1 4-2

4 2.1 4-2

4.1 4-1

5.3 4 5-17

C.1 C-1

6. 7.17 6-29

2.2.2 2-6

6.7 1 6-10

6.7.7 6-14

4.2.3 4-5

4.2.3 4-4

4.2.3 4-3

4.2.3 4-3

4.1 4-1

5.2. l.3 5-6

6.5 6-4

2.2.2 2-6

6. 7 .30 6-44

6.7 .30 6-44

6. 7 .30 6-44

Rev. 2 Index 12
SECTION: PA GE:

Term Reference Page

Subscripting,

coding rules 2.4, 8.4 2-8, 8-2 '----'

definition of 2.4, 8.4 2-8, 8-2

format of 8.4 8-2

specifying occurence numbers 8.3 8-2

SUBTRACT,

coding rules 6. 7 .31 6-45

format of 6. 7 .31 6-45

function of 6. 7 .31 6-45

1ntermed1ate results of H.2 H-1

Supervisor Control Program c .1 C-1

Switch-status Condi ti on,

definition of 6.7.15 6-26

lo rmat of 6. 7 .15 6-26

Symbol See PICTURE Symbols

SYMBOLIC KEY,

Access Type 3 D.6.3.l D-10

Access Type 5 D.6.3.2 D-11

Access Type 6 D.6.4.1 D-13

Access Type 7 D.6.4.2 D-14

in direct file organization D.6.3.2 D-11

in direct file processing D.5.3 D-7 ._./

in Fl LE-CONTROL 4.3.1 4-8

in indexed file organization D.2.4, D.5.1 D-2, D-3

SYNCHRONIZED,

coding rule 5.3.6 5-19

format of 5.3.6 5-19

function of 5.3.6 5-19

in data description 5.3 5-10

SYSCHAN-t,

channel i denti f1 ca ti on 1n WRITE 6. 7 .34 6-49

1n SPECIAL-NAMES 4.2.3 4-6

SYS COM,

ACCEPT 6.7.1 6-10

DISPLAY 6.7.7 6-14

in SPECIAL-NAMES 4.2.3 4-6

SYSCONSOLE,

ACCEPT 6.7.1 6-10

DISPLAY 6.7.7 6-14

in SPECIAL-NAMES 4.2.3 4-6

SYSDATE,

ACCEPT 6.7.1 6-10 ,__..

in SPECIAL-NAMES 4.2.3 4-6

UP-7709
Rev. 2

Term

, _ __....... SYSERR,

ACCEPT

error conditions in

in SPECIAL-NAMES

SYSERR-m

SYSERR-n

SYSLST,

DISPLAY

in SPECIAL-NAMES

SY SR ES

SYSSWCH,

ACCEPT

DISPLAY

in SPECIAL-NAMES

SYSSWCH-n,

DISPLAY

in SPECIAL-NAMES

SYSTIME,

ACCEPT ,_
in SPECIAL-NAMES

Table Elements

Table Handling,

defining a table

dimensions

general discussion

indexing

OCCURS

searching

subscripting

tab I e reference

TALLY

TALLYING

TAPE

THRU

TIMES

TRAILING

'-

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Reference Page

6.7.l 6-10

D.7 D-13

4.2.3 4-6

4.2.3 4-6

4.2.3 4-6

6.7 .8 6-15

4.2.3 4-6

C.l C-1

6. 7 .1 6-10

6.7.8 6-15

4.2.3 4-6

6.7.8 6-15

4.2.3 4-6

6.7.l 6-10

4.2.3 4-6

8.2 8-1

8.2 8-1

8.2 8-1

8.1 8-1

8.3 8-2

8.2 8-1

8.6 8-3

8.3 8-2

8.3 8-2

2.2.2 2-6

6. 7 .12 6-19

4.3.2 4-8

6.7 .21 6-32

6. 7 .21 6-32

5.3.13 5-24

Rev. 2 Index 13
SECTION: PAGE:

Term Reference Page

TRANSFORM 6.7.32 6-46

Undefined Format 5.2.1.4 5-7

UN EQUALS 6. 7 .15 6-22

UNIT,

CLOSE 6.7.5 6-12

USE 6. 7 .33 6-46b

Unqualified Data-name 2.2. l 2-4

UNTIL 6. 7 .21 6-32

UNTIL FIRST 6.7 .12 6-19

UP BY 6. 7.28 6-40d

UPON 6.7 .8 6-15

UPSI See User Program

Switch lndi ca tor

USAGE,

coding rules 5.3.5 5-18

format of 5.3.5 5-18

fun ct ion of 5.3.5 5-18

in class condition 6. 7.15 6-26

in data description 5.3 5-10

index data items 2.2.1, 8.5 2-5, 8-3

USE,

coding rules 6. 7 .33 6-47

format of 6.7.33 6-46b

function of 6.7 .33 6-46b

DECLARATIVES 6.2 6-2

label records 5.2.1.3 5-6

OPEN 6. 7 .20 6-31

User Program Switch Indicator,

ACCEPT 6.7.8 6-15

compiler option 1.4 1-3

DISPLAY 6.7.8 6-15

SYSSWCH-n 4.2.3 4-3

USING,

coding rules 6.1.l 6-2

ENTRY 6.7 .10 6-18

format of 6.1.l 6-2

function of 6.1.1 6-1

in Procedure Division 6.1 6-1

SORT 6.7 .29 6-42

UP-7709
Rev. 2

UNIVAC 9400 COBOL
SUPPLEMENTARY REFERENCE

Term Reference Page

VALUE,

coding rules 5.3.8 5-20

condition-name entry 5.3.1 5-11

data description 5.3 5-10

format of 5.3.8 5-20

function of 5.3.8 5-20

independent entries 5.4.1 5-24

Linkage Section 5.5 5-25

REDEFINES 5.3.2 5-11

VALUE OF,

format of 5.2.1.5 5-8

function of 5.2.1.5 5-8

in File Description 5.2.1 5-3

Variable-length Format S.2.1.4 5-7

VARYING 6. 7 .21 6-32

Verbs,

categorization of 6.6 6-6

definition of 2.2.2, 6.6 2-6, 6-6

listing of 6.7 6-9

Word, COBOL,

character used in 2.1.1 2-2

definition of 2.2 2-3

WORD, in OBJECT-COMPUTER 4.2.2 4-2

Word, Reserved,

definition of 2.2.2 2--3

listing of B.1 B-1

types of 2.2.2 2-6

Rev. 2 Index 14
SECTION: PA GE:

Term Reference Page

Word, User-supplied,
. ._

definition of 2.2.1 2-3

types of 2.2.1 2-4

Word-string,

in com pi I er-directing statement 6.5.3 6-5

in imperative statement 6.5.l 6-4

WORKING-STORAGE SECTION,

definition of 5.4 5-24

format of 5.4 5-24

in Data Division 5.1 5-1

WRITE,

Access Type 2 D.6.2.1 D-7

Access Type 3 D.6.3.1 D-10

Access Type 4 D.6.2.2 D-8

Access Type 5 D.6.3.2 D-11

Access Type 6 D.6.4.1 D-13

Access Type 7 D.6.4.2 D-14

coding rules 6.7.34 6-48

format of 6.7.34 6-48

function of 6.7.34 6-48

OPEN 6.7.20 6-31

SYSCHAN-t 4.2.3 4-4
.,,,..-

ZERO, in BLANK 5.3.9 5-21

ZERO (ZEROS, ZEROES),

elementary item category 6.7 .17 6-29

figurative constant 2.2.2 2-6

