LINIVAC

COMPUTER SYSTEMS

- REVISIGN
' Operatmg System/4 (OS/4)

Assembler
Programmer Reference

UP-7935 Rev. 1

This SPERRY UNIVAC™ Operating System/4 (0OS/4) Library Memo announces the release and availability of
“SPERRY UNIVAC Operating System/4 (OS/4) Assembler Programmer Reference,” UP-7935 Rev. 1. This is a
Standard Library I1tem (SLI).

This revision reflects the current version of the OS/4 assembler at the time of publication. Various technical
corrections and additions have been made throughout this manual.

This revision merges the information contained in the “UNIVAC 9400 System Assembler/Central Processor Unit
Programmer Reference,”” UP-7600 and the “UNIVAC 9700 System 0S/4 Assembler Programmer Reference,”
UP-7935 to provide one OS/4 Assembler manual for the SPERRY UNIVAC 9400, 9480, 90/60, and 90/70 Systems.

Note that the title of the manual has been changed to reflect the software system rather than the hardware system.
A,
~— Section 6 of this revision describes floating-point instructions. These do not apply to SPERRY UNIVAC 9400/9480
System users. Throughout other sections, those instructions that apply to SPERRY UNIVAC 90/60,70 Systems only
are so noted. Also where necessary in the description of an instruction, operational differences between the
9400/9480 0S/4 Assembler and the 90/60,70 0S/4 Assembler are given,

Appendix B describes hardware differences between 9400/9480 and 90/60,70 Systems.

Destruction Notice: This revision supersedes and replaces the following:

n “UNIVAC 9400 System Assembler/Central Processor Unit Programmer Reference,” UP-7600, released on
UNIVAC 9400 System Library Memo 4 dated September 30, 1968 and associated update packages.

NOTE: Section 2 of UP-7600 has been superseded by “SPERRY UNIVAC 9400/9480 Systems Processors
Programmer Reference,” UP-8080, released in July, 1974.

L] “UNIVAC 9700 System 0S/4 Assembler Programmer Reference,” UP-7935, released in August,-1972. Please
destroy all copies of UP-7600, UP-7600-A, UP-7600-B, UP-7600-C, UP-7600-D, and their Library Memos and
UP-7935 and its Library Memo.

Additional copies may be ordered by your local Sperry Univac Representative.

-

Mailing Lists 217, Mailing Lists 60, 61, 65, and 66 KLibrary Memo for
~ 630, and 692 ~ (Covers and 379 pages) UP-7935 Rev. 1

- May, 1975

SPERRY UNIVAC
Operating System/4 (0S/4)

Assembler

Programmer Reference

SSSSSSSSSSSSSSS

This document contains the latest information available at the time of
publication. However, Sperry Univac reserves the right to modify or
revise its contents. To ensure that you have the most recent
information, contact your local Sperry Univac representative.

Sperry Univac is a division of Sperry Rand Corporation.

FASTRAND, PAGEWRITER, SPERRY UNIVAC, UNISCOPE, UNISERVO,
and UNIVAC are trademarks of the Sperry Rand Corporation.

© 1972, 1975 — SPERRY RAND CORPORATION PRINTED IN US.A.

7035 Rev. 1 SPERRY UNIVAC Operating System/4 PSS T

UP-NUMBER PAGE REVISION PAGE

PAGE STATUS SUMMARY
ISSUE: UP-7935 Rev.

Part/Section N:re:ngt‘:er Ufglztle Part/Section Nzr?lger Uﬁ:,ztle Part/Section NE:?;er Ufg:'e
Cover/Disclaimer

PSS 1
Contents 1 thru 13
1 1 thru 14
2 1 thru 13
3 1 thru 8
4 1 thru 40
5 1 thru 20
6 1 thru 53
7 1 thru 49
8 1 thru 16
9 1thru 15
10 1 thru 16
11 1 thru 14
12 1 thru 28
13 1 thru 26
14 1thru b
Appendix A 1thru 6
Appendix B 1 thru 4
Appendix C 1thru 7
Appendix D 1 thru 4
Appendix E 1 thru 6
Appendix F 1 thru 3
Index 1 thru 16
User Comment

Sheet

All the technical changes are denoted by an arrow () in the margin. A downward pointing arrow (f) next to a line indicates that
technical changes begin at this line and continue until an upward pointing arrow (4) is found. A horizontal arrow () pointing to
a line indicates a technical change in only that line. A horizontal arrow located between two consecutive lines indicates technical
changes in both lines or deletions.

—

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l Contents 1
UP-NUMBER PAGE REVISION PAGE
Contents

PAGE STATUS SUMMARY

CONTENTS

1. INTRODUCTION
1.1. GENERAL 1—1
1.2. ASSEMBLER CHARACTERISTICS 1—1
1.3. DATA FORMATS 1—2
1.3.1. Fixed-Point Numbers 1—3
1.3.2. Floating-Point Numbers 1—4
1.3.3. Hexadecimal Representation 1-5
1.3.4. Decimal Number Representation 1—5b
1.3.5. Character Representation 1—6
1.3.6. Logical Information 1—6
1.4, STATEMENT CONVENTIONS 1—7
1.4.1. Positional Parameters 1—8
1.4.2. Keyword Parameters 1—11
1.4.3. Combination of Positional Parameters and Keyword Parameters 1—12
1.4.4. Subparameters 1—13
1.4.5. Default Options 1—14

2. ASSEMBLY LANGUAGE
2.1. CHARACTER SET 2—1
2.2. STATEMENT FORMAT 2—1
2.2.1. Label Field 2--2
2.2.2. Operation Field 22
2.2.3. Operand Field 2—-2
224 Comments Field 2—2
2.2.5. Continuation 2—3
2.2.6. Statements in Free Format 2—3

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION \

Contents 2

PAGE

2.3.
2.3.1.

2.3.1.1.
2.3.1.2.
2.3.1.3.
2.3.1.4.

2.3.2.
2.3.3.

2.3.3.1.
23.3.2.
2.3.3.3.

2.3.4.
2.3.5.

2.4,

2.41.
24.2.
2.4.3.

2.5.

2.5.1.
2.5.2.
2.5.3.
2.5.4.
2.5.5.

TERMS
Self-Defining Terms
Binary Representation
Hexadecimal Representation
Decimal Representation
Character Representation
Literals
Symbols
Value Attribute
Length Attribute
Relocatability Attribute
Location Counter References
Attribute References

OPERATORS AND EVALUATION
Arithmetic Operators

Logical Operators

Relational Operators

EXPRESSIONS

Absolute Expression
Relocatable Expressions

Length Attribute of Expressions
Character Expressions

Basic Expressions

INTRODUCTION TO INSTRUCTIONS

3.1.
3.2.
3.2.1.
3.2.2.
3.3.

3.4.

INSTRUCTION TYPES AND FORMATS
OPERAND ADDRESSING

Implied Length

Implied Base Registers

PRIVILEGED OPERATION

PRESENTATION OF INSTRUCTIONS

FIXED-POINT INSTRUCTIONS

4.1.

4.2,

4.3.

4.4

4.5,

4.6.

GENERAL

A (ADD)

AH (ADD-HALF-WORD)
Al (ADD-IMMEDIATE)
AR (ADD)

C (COMPARE)

|

clnmcl»mmm

|
~

~

|
~

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

‘ PAGE REVISION

Contents 3

PAGE

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.15.

4.16.

4.17.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

4.32.

4.33.

4.34.

CH (COMPARE-HALF-WORD)

CR (COMPARE)

CVB (CONVERT-TO-BINARY) — 90/60,70

CVD (CONVERT-TO-DECIMAL) — 90/60,70

D (DIVIDE) — 90/60,70

DR (DIVIDE}) — 90/60,70

L (LOAD)

LCR (LOAD-COMPLEMENT) — 90/60,70

LH (LOAD-HALF-WORD)

LLR (LOAD-LIMITS-REGISTER) — PRIVILEGED INSTRUCTION — 9400/9480
LM (LOAD-MULTIPLE)

LNR (LOAD-NEGATIVE) — 90/60,70

LPR (LOAD-POSITIVE) — 90/60,70

LR (LOAD)

LTR (LOAD-AND-TEST)

M (MULTIPLY) — 90/60.70

MH (MULTIPLY-HALF-WORD) — 90/60,70

MR (MULTIPLY) — 90/60,70

S (SUBTRACT)

SH (SUBTRACT-HALF-WORD)

SLA (SHIFT-LEFT-SINGLE) — 90/60,70

SLDA (SHIFT-LEFT-DOUBLE) — 80/60,70

SLM (SUPERVISOR-LOAD-MULTIPLE) — PRIVILEGED INSTRUCTION
SR (SUBTRACT)

SRA (SHIFT-RIGHT-SINGLE) — 90/60,70

SRDA (SHIFT-RIGHT-DOUBLE) — 90/60,70

SSTM (SUPERVISOR-STORE-MULTIPLE) — PRIVILEGED INSTRUCTION

ST (STORE)

4-10

4—11

4—12

4—14

4—15

4—16

4—17

4—18

4—19

4--20

4—21

4—22

4—22

4—-23

4-25

4—-26

4—-28

4—29

4—31

4—-33

4—34

4—-35

4--36

4—37

Contents 4

7935 Rev. 1 SPERRY UNIVAC Operating System/4
UP.NUMBER , PAGE REVISION | PAGE
4.35. STH (STORE-HALF-WORD) 4—38
4.36. STM (STORE-MULTIPLE) 4-39
5. DECIMAL INSTRUCTIONS
5.1. GENERAL 5—1
5.2. AP (ADD-DECIMAL) 5—1
5.3. CP (COMPARE-DECIMAL) b—4
5.4 DP (DIVIDE-DECIMAL) 5—6
5.5. MP (MULTIPLY-DECIMAL) 5—8
5.6. MVO (MOVE-WITH-OFFSET) ’ 5—10
5.7. PACK (PACK) 5—12
5.8. SP (SUBTRACT-DECIMAL) 5—13
5.9. UNPK {(UNPACK) 5—16
5.10. ZAP (ZERO-AND-ADD) 5—18
6. FLOATING-POINT INSTRUCTIONS — 90/60,70
6.1. GENERAL 6—1
6.2. AD (ADD-NORMALIZED, LONG FORMAT) — 90/60,70 6—2
6.3. ADR (ADD-NORMALIZED, LONG FORMAT) — 90/60,70 6—4
6.4. AE (ADD-NORMALIZED, SHORT FORMAT) — 90/60,70 6—5
6.5. AER (ADD-NORMALIZED, SHORT FORMAT) — 90/60,70 6—7
6.6. AU (ADD-UNNORMALIZED, SHORT FORMAT) — 90/60,70 6—9
6.7. AUR (ADD-UNNORMALIZED, SHORT FORMAT) — 90/60,70 6—10
6.8. AW (ADD-UNNORMALIZED, LONG FORMAT) — 90/60,70 6—11
6.9. AWR (ADD-UNNORMALIZED, LONG FORMAT) — 90/60,70 6—13
6.10. CD (COMPARE, LONG FORMAT) — 90/60,70 6—14
6.11. CDR (COMPARE, LONG FORMAT) — 90/60,70 6—15
6.12. CE (COMPARE, SHORT FORMAT) — 90/60,70 6—16
6.13. CER (COMPARE, SHORT FORMAT) — 90/60,70 6—17

7935 Rev. 1 SPERRY UNIVAC Operating System/4 L Contents §
UP-NUMBER | Pase mevision |ease
6.14. DD (DIVIDE, LONG FORMAT) — 90/60,70 6—18
6.15. DDR (DIVIDE, LONG FORMAT) — 90/60,70 6—19
6.16. DE (DIVIDE, SHORT FORMAT) — 90/60,70 6—21
6.17. DER (DIVIDE, SHORT FORMAT) — 90/60,70 6—22
6.18. HDR (HALVE, LONG FORMAT) — 90/60,70 6—23
6.19. HER (HALVE, SHORT FORMAT) — 90/60,70 6—24
6.20. LCDR (LOAD-COMPLEMENT, LONG FORMAT) — 90/60,70 6—25
6.21. LCER (LOAD-COMPLEMENT, SHORT FORMAT) — 90/60,70 6—26
6.22. LD (LOAD, LONG FORMAT) — 90/60,70 6—27
6.23. LDR (LOAD, LONG FORMAT) — 90/60,70 6—28
6.24. LE (LOAD, SHORT FORMAT) — 90/60,70 6—29
6.25. LER (LOAD, SHORT FORMAT) — 90/70,70 6—30
6.26. LNDR (LOAD-NEGATIVE, LONG FORMAT) — 90/60,70 6—31
6.27. LNER (LOAD-NEGATIVE, SHORT FORMAT) — 90/60,70 6—32
6.28. LPDR (LOAD-POSITIVE, LONG FORMAT) — 90/60,70 6—33
6.29. LPER {(LOAD-POSITIVE, SHORT FORMAT) — 90/60,70 6—33
6.30. LTDR (LOAD-AND-TEST, LONG FORMAT) — 90/60,70 6—34
6.31. LTER (LOAD-AND-TEST, SHORT FORMAT) — 90/60,70 6—35
6.32. MD (MULTIPLY, LONG FORMAT) — 90/60.70 6—36
6.33. MDR (MULTIPLY, LONG FQRMAT) — 90/60,70 6—38
6.34. ME (MULTIPLY, SHORT FORMAT) — 90/60,70 6—39
6.35. MER (MULTIPLY, SHORT FORMAT) — 90/60,70 6—41
6.36. SD (SUBTRACT-NORMALIZED, LONG FORMAT) — 90/60,70 6—42
6.37. SDR (SUBTRACT-NORMALIZED, LONG FORMAT) — 90/60.70 6—43
6.38. SE (SUBTRACT-NORMALIZED, SHORT FORMAT) — 90/60,70 6—44
6.39. SER (SUBTRACT-NORMALIZED, SHORT FORMAT) — 90/60,70 6—45
6.40. STD (STORE, LONG FORMAT) — 90/60,70 6—46

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l \ Contents &
UP-NUMBER PAGE REVIsION | PaGE
6.41. STE (STORE, SHORT FORMAT) — 90/60,70 6—47
6.42. SU (SUBTRACT-UNNORMALIZED, SHORT FORMAT) — 90/60,70 6—48
6.43. SUR (SUBTRACT-UNNORMALIZED, SHORT FORMAT) — 90/60,70 6—50
6.44. SW (SUBTRACT-UNNORMALIZED, LONG FORMAT) — 90/60,70 6—51
6.45. SWR (SUBTRACT-UNNORMALIZED, LONG FORMAT) — 90/60,70 6—52
7. LOGICAL INSTRUCTIONS
7.1. GENERAL 7—1
7.2. AL (ADD-LOGICAL) — 90/60,70 7—1
7.3. ALR (ADD-LOGICAL} — 90/60,70 7—2
7.4. CL (COMPARE-LOGICAL) 7—3
7.5. CLC (COMPARE-LOGICAL) 7—4
7.6. CLI (COMPARE-LOGICAL) 7—6
7.7. CLR (COMPARE-LOGICAL) 7—7
7.8. ED (EDIT) 7—8
7.9. EDMK (EDIT-AND-MARK) — 90/60,70 7—13
7.10. IC (INSERT CHARACTER) 7—15
7.11. LA (LOAD-ADDRESS) 7—16
7.12. MVC (MOVE) 7—17
7.13. MVI (MOVE) 7—19
7.14. MVN (MOVE-NUMERICS) 7—20
7.15. MVZ (MOVE-ZONES) 7—21
7.16. N (AND) 7—22
7.17. NC (AND) 7—23
7.18. NI (AND) 7—25
7.19. NR (AND) 7—26
7.20. O (OR) 7—27
7.21. OC (OR) 7—29

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

Contents 7
PAGE

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

7.31.

7.32.

7.33.

7.34.

7.35.

7.36.

7.37.

Ol (OR)

OR (OR}

SL (SUBTRACT-LOGICAL) — 90/60,70

SLDL (SHIFT-LEFT-DOUBLE-LOGICAL) — 90/60,70
SLL (SHIFT-LEFT-SINGLE-LOGICAL)

SLR (SUBTRACT-LOGICAL) — 90/60,70

SRDL (SHIFT-RIGHT-DOUBLE-LOGICAL) — 90/60,70
SRL (SHIFT-RIGHT-SINGLE-LOGICAL)

STC (STORE-CHARACTER)

TM (TEST-UNDER-MASK)

TR (TRANSLATE)

TRT (TRANSLATE-AND-TEST) — 90/60,70

X (EXCLUSIVE-OR)

XC (EXCLUSIVE-OR})

Xl (EXCLUSIVE-OR})

XR (EXCLUSIVE-OR)

BRANCHING INSTRUCTIONS

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

GENERAL

EXTENDED MNEMONIC CODES

BAL (BRANCH-AND-LINK)

BALE (BRANCH-AND-LINK-EXTERNAL) — 90/60,70
BALR (BRANCH-AND-LINK)

BC (BRANCH-ON-CONDITION}

BCR (BRANCH-ON-CONDITION)

BCRE (BRANCH-ON-CONDITION-TO-RETURN-EXTERNAL) — 90/60,70

BCT (BRANCH-ON-COUNT)

BCTR (BRANCH-ON-COUNT)

8—11

8—12

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents 8

UP.NUMBER PAGE REVISION | PAGE
8.11. BXH (BRANCH-ON-INDEX-HIGH) — 90/60,70 8—13
8.12. BXLE (BRANCH-ON-INDEX-LOW-OR-EQUAL) — 90/60,70 8—14 —
8.13. EX (EXECUTE) — 90/60,70 8—15

9. STATUS SWITCHING INSTRUCTIONS
9.1. GENERAL 9—1
9.2. DIAG (DIAGNOSE) — PRIVILEGED INSTRUCTION — 90/60,70 9—1
9.3. HPR (HALT-AND-PROCEED) — PRIVILEGED INSTRUCTION 9—2
9.4. ISK (INSERT-STORAGE-KEY) — PRIVILEGED INSTRUCTION — 90/60,70 9—3
9.5. LBR (LOAD-BASE-REGISTER) — 90/60,70 9—4
9.6. LCS (LOAD-CONTROL-STORAGE) — PRIVILEGED INSTRUCTION — 90/60,70 9—5
9.7. LPSW (LOAD-PROGRAM-STATUS-WORD) — PRIVILEGED INSTRUCTION 9—6
9.8. RDD (READ-DIRECT) — PRIVILEGED INSTRUCTION — 90/60,70 9—8
9.9. SPM (SET-PROGRAM-MASK) 9—9
9.10. SSK (SET-STORAGE-KEY) — PRIVILEGED INSTRUCTION — 90/60,70 9—-10 o
9.11. SSM (SET-SYSTEM-MASK) — PRIVILEGED INSTRUCTION 9—11
9.12. SVC (SUPERVISOR-CALL) 9—13
9.13. WRD (WRITE-DIRECT — PRIVILEGED INSTRUCTION — 90/60,70 9—14
10. INPUT/OUTPUT INSTRUCTIONS

10.1. GENERAL 10—1
10.2. HI10 (HALT-1/0) — PRIVILEGED INSTRUCTION — 90/60,70 10—3
10.3. LCHR (LOAD-CHANNEL-REGISTER) — PRIVILEGED INSTRUCTION — 90/60,70 10—5
10.4. SCHR (STORE-CHANNEL-REGISTER} — PRIVILEGED INSTRUCTION — 90/60,7010—6
10.5. S10 (START-1/0) — PRIVILEGED INSTRUCTION 10—8
10.6. TCH (TEST-CHANNEL) — PRIVILEGED INSTRUCTION — 90/60,70 10—12
10.7. TIO (TEST-1/0) — PRIVILEGED INSTRUCTION — 90/60,70 10—13

7935 Rev. 1 SPERRY UNIVAC Operating System/4 Contents 9
UP-NUMBER PAGE REVISION PAGE
11. DATA AND STORAGE DEFINITION
11.1. GENERAL 11—1
11.2. DC (DEFINE CONSTANT) STATEMENT 11-2
11.3. DS (DEFINE STORAGE) STATEMENT 11—2
11.4. DC AND DS STATEMENT OPERAND SUBFIELDS 11—3
11.4.1. Duplication Subfield 11—4
11.4.2. Type Subfield 11—4
11.4.3. Length Modifier Subfield 11—4
11.4.4. Constant Subfield 11—4
11.5. LITERALS 11—4
11.6. ALIGNMENT 11—5
11.7. DATA CONSTANT TYPES 11—5
11.7.1. Character Constants 11—b
11.7.2. Hexadecimal Constants 11—6
11.7.3. Binary Constants 117
11.7.4. Packed Decimal Constants 11—8
11.7.5. Zoned Decimal Constants 11—9
11.7.6. Half-Word Constants 11—10
11.7.7. Full-Word Constants 11—10
11.8. ADDRESS CONSTANT TYPES 11—11
11.8.1. Half-Word Address Constants 11—11
11.8.2. Full-Word Address Constants 11—11
11.8.3. Base and Displacement Constants 11—12
11.8.4. External Address Constants 11—13
11.9. CCW (DEFINE-CHANNEL-COMMAND-WORD) DIRECTIVE 11—13
12. ASSEMBLER DIRECTIVES

12.1. GENERAL 12—1
12.2. EQU (SYMBOL-DEFINITION) DIRECTIVE 12—1
12.3. ASSEMBLY CONTROL DIRECTIVES 12—2
12.3.1. ASCII Directive 12—2
12.3.2. EBCDIC Directive 12—3
12.3.3. CNOP (Conditional-No-Operation) Directive 12—3
12.3.4. END (Program-End) Directive 12—4
12.3.5. LTORG (Generate-Literals) Directive 12—5
12.3.6. ORG (Specify-Location-Counter) Directive 12—5
12.3.7. START (Program-Start) Directive 12—6
12.4. BASE REGISTER ASSIGNMENT DIRECTIVES 12—7
12.4.1. DROP (Unassign-Base-Register) Directive 12—7
12.4.2. USING (Assign-Base-Register) Directive 12—7

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

Contents 10

PAGE

13.

12.5.

12.5.1.
12.5.2.
12.5.3.
12.5.4.
12.5.5.

12.6.

12.6.1.
12.6.2.
12.6.3.
12.6.4.

12.7.

12.7.1.
12.7.2.
12.7.3.
12.7.4.

12.8.

12.8.1.
12.8.2.
12.8.3.
12.8.4.
12.8.5.
12.8.6.
12.8.7.

PROGRAM LINKING AND SECTIONING DIRECTIVES

COM (Common-Storage-Definition) Directive

CSECT (Control-Section-ldentification} Directive

DSECT (Dummy-Control-Section-ldentification) Directive
ENTRY (Externally-Defined-Symbol-Declaration) Directive
EXTRN (Externally-Referenced-Symbol-Declaration) Directive

LISTING CONTROL DIRECTIVES

EJECT (Advance-Listing) Directive
PRINT (Listing-Content-Control) Directive
SPACE (Space-Listing) Directive

TITLE (Listing-Title-Declaration) Directive

INPUT AND OUTPUT CONTROL DIRECTIVES
ICTL (Input-Format-Control} Directive

ISEQ (Input-Sequence-Control) Directive
PUNCH (Produce-a-Record) Directive

REPRO (Reproduce-Following-Record) Directive

CONDITIONAL ASSEMBLY

SET Directive

LCL (Local-Symbol-Declaration) Directive
GBL (Global-Symbol-Declaration) Directive
DO (Start-of-Range) Directive

ENDO (End-Range-of-DO) Directive
GOTO (Assembly-Branch) Directive

LABEL (Assembly-Destination) Directive

ASSEMBLER PROCEDURES

13.1.

13.1.1.
13.1.2.
13.1.3.
13.1.4.

13.2.
13.2.1.
13.2.1.1.
13.2.1.2.
13.2.1.3.
13.2.2.

13.3.
13.3.1.
13.3.1.1.
13.3.1.2.
13.3.2.
13.3.2.1.
13.3.2.2.
13.3.2.3.

13.4.

SPECIAL DIRECTIVES

PROC (Procedure-Definition) Directive
NAME (Call-Label) Directive

END (Proc-Definition-End) Directive
PNOTE (Message) Directive

CODING PARAMETERS
Types of Parameters

Positional Parameters

Keyword Parameters

Combined Positional and Keyword Parameters
Parameter Sublists

REFERENCING AND REPLACING PARAMETERS AND SET SYMBOLS
Reference Formats

Paraforms

Set Symbols
Replacement

Parameter Replacement

Set Symbol Replacement

Null Character-String Replacement

CALL LINE LABELS

12—9
12—9
12—11
12—12
12—14
1214

12—16
12—16
12—17
12—18
12—18

12—19
12—19
12—20
12—21
12—-22

12—22
12—22
12—23
12—23
12—25
12—25
12—27
12—-27

13—1
13—1
13—2
13—3
13—3

13—4
13—4
13—4
13—5
13—5
13—6

13—6
13—6
13—7
13—10
13—10
13—10
13—11
13—12

13—13

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

Contents 11

PAGE REVISION PAGE

13.5. NAME LEVELS AND PROC NESTING
13.6. METHOD OF WRITING AND REFERENCING PROCS
13.7. VARIABLE SYMBOLS
13.7.1. Use of Variable Symbols
13.7.1.1. Concatenation of Variable Symbols
13.7.2. SYSTEM VARIABLE SYMBOLS
13.7.2.1. &SYSNDX
13.7.2.2. &SYSECT
13.7.2.3. &SYSDATE
13.7.2.4. &SYSTIME
14. ERROR MESSAGES
14.1. MESSAGE TYPES AND FORMAT
14.2. FATAL ERRORS
14.3. DIAGNOSTIC ERRORS
14.4. ACADEMIC MESSAGES
14.5. ERROR MESSAGE SUMMARY
APPENDIXES
A. INSTRUCTION REPERTOIRE
B. 9400/9480 AND 90/60,70 HARDWARE DIFFERENCES

B.1.

B.2.

B.2.1.
B.2.2.
B.2.3.
B.2.4.
B.2.5.
B.2.6.
B.2.7.
B.2.8.

B.3.

B.4.

B.5.

B.6.

GENERAL

INSTRUCTION DIFFERENCES

Add Immediate (Al)

Add Decimal (AP) and Subtract Decimal (SP)

Compare Decimal (CP)

Divide Decimal (DP)

Load Address (LA)

Multiply Decimal (MP)

Set Program Mask (SPM)} and Program Status Word (PSW)
Set System Mask (SSM)

BUFFER CONTROL WORD (BCW) DIFFERENCES
CHANNEL COMMAND WORD (CCW) DIFFERENCES
STANDARD EQUATE PROC (STDEQU)

REFERENCE TO NONEXISTENT STORAGE

13—13
13—14
13—21
13—21
13—21
13—22
13—22
13—24

13—26
13—26

14—1

14—1

14—1

14—2

14—3

o+]
N

_ .

Lo b LLLL

UJUJUJUJTWWWUJ

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION IPAGE

Contents 12

B.7. MCP TELETYPEWRITER LINE TERMINALS B—4
B.8. STORAGE REQUIREMENTS OF PREAMBLE AND EXTENT/PROTECTED DTF AREASB—4
C. ASCIl, EBCDIC, AND PUNCHED CARD CODES
D. CONVENTIONS FOR THE USE OF FORTRAN LIBRARY ROUTINES
D.1. GENERAL D—1
D.2. ROUTINE CALLING CONVENTIONS D—1
D.2.1. Parameter List D—1
D.2.2. Save Area D—1
D.2.3. Calling Sequence D—1
D.3. INTERNAL VALUE REPRESENTATION D—2
E. USE OF PARAM STATEMENT
E.1. GENERAL E—1
E.2. PARAM STATEMENT OPERANDS E—1
E.2.1. IN — Source Library Input E—1
E.2.2. LIN — Referencing the PROC Library E—2
E.2.3. LST — Selecting List Options E—2
E.2.4. OUT — Output Module Type E—3
E.2.5. VER — Version Number E—4
E.2.6. CDE — Produce Compatible Code E—5
E.2.7. RO$ — Suppressing Covering Error Flag E—5
F. EXECUTING THE ASSEMBLER
F.1. GENERAL F—1
F.2. JOB CONTROL STREAMS F—1
F.3. MAIN STORAGE REQUIREMENTS F—1
F.4. SPECIAL CONSIDERATIONS AND RESTRICTIONS F—2
INDEX
USER COMMENT SHEET
FIGURES
1—1. Fixed-Point Number Formats 1—4
1—2. Floating-Point Number Formats 1—5

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l LCOntemm
PAGE REVISION

UP-NUMBER PAGE

2—1. Assembler Coding Form 22
3—1. Instruction Formats 3—2
3—2. Relocation Register Format 3—8
TABLES

2—1. Summary of Operators 2—-8
3—1. Abbreviations Used in Descriptions of Instructions 3—3
3—2. Operand Specification Using Implied Base Register,

Implied Length, or No Index Register 3—5
7—1. Edit Instruction Operation 7—12
8—1. Extended Mnemonic Codes 8—2
10—1. Channel State Codes 10—2
10—2. HIO Instruction Condition Codes and Initial Status Words 10—4
10—-3. LCHR Instruction Condition Codes and Initial Status Words 10—6
10—4. SCHR Instruction Condition Codes and Initial Status Words 10—7
10—b. SI10 instruction Condition Codes and Initial Status Words 10—11
10—6. TCH Instruction Condition Codes and Initial Status Words 10—13
10—7. TIO Instruction Condition Codes and Initial Status Words 10—16
11—1. Characteristics of Constant and Storage Types 11—1
14—1. Error Message Summary 14—3
Cc—1. ASCIl (American Standard Code for Information Interchange)

Character Codes c—1
c—2. EBCDIC (Extended Binary Coded Decimal Interchange Code)

Character Codes c—2
c—-3. Punched Card, ASCIl, and EBCDIC Codes c—3

F—1. Assembler Software Element Names F—1

7935 Rev. 1 SPERRY UNIVAC Operating System/4 -1

UP-NUMBER PAGE REVISION PAGE

1. Introduction

1.1. GENERAL

This manual provides the basic information necessary for programming in assembly language for the SPERRY
UNIVAC Operating System/4 (0S/4). Information is presented concerning data representation, instruction coding,
constant and storage definition, assembier directives, conditional assembly, assembler procedures, and assembler
error messages.

1.2. ASSEMBLER CHARACTERISTICS

The assembler is an efficient software aid designed to handle most programming problems encountered by the user.
Each machine instruction and data form has a simple, convenient representation in assembly language. The assembler
transiates this language into a form which can be executed by the computer. The rules governing the use of the
language are not complex and are easily applied by the programmer.

A program is written on a coding form in assembly language. The information on the form is then keypunched to
produce source code cards (the source deck). The source deck is read by the assembler and a relocatable object
module and printer listing are produced. The object module is then linked to other object modules to form a load
module suitable for loading and execution.

This manual describes the operational characteristics of the OS/4 assembler and the use of assembly language. These
characteristics are:

L] Mnemonic Operation Codes

A fixed mnemonic code, consisting of from one to four letters, is assigned to each machine instruction; each
code suggests the nature of the instruction. As a further aid in writing branch-on-condition instructions,
separate mnemonic codes are provided for each condition. Restrictions concerning the use of these mnemonic
codes are described in 13.3.2.

L] Flexible Data Representation

Data is represented in the assembler in binary, hexadecimal, decimal, or character notation, allowing the
programmer to choose the most suitable form for each constant.

L] Symbolic Addressing and Storage Assignment

Symbolic labels can be assigned to instructions or groups of data. An instruction then references the labeled
data by label rather than by main storage address. In many cases, other data required by the instruction, such
as operand length, can be supplied automatically by the assembler. The assembler also keeps track of all main
storage locations used for a program, assigns all incoming instructions and data to specific locations, and
performs base register and displacement calculations.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 -2

UP-NUMBER PAGE REVISION PAGE

L] Assembler Directives

The assembler includes a set of directives which specify instructions regarding the operation of the assembler
itself. These directives allow the user to control program sectioning, base register assignment, output listing
format, sequence checking, and other auxiliary functions. Restrictions concerning the use of assembler
directives are described in 13.3.2.

= Conditional Assembly

The assembler provides a set of directives which permit the user to specify the order of source statement
generation, exclude sections of code, include a set of lines in the output of the assembly, and vary the content
of generated statements.

n Relocatable Programs and Program Linking

The assembler produces object modules in relocatable form. In this form, the actual storage locations to be
occupied by a program need not be specified at assembly time, but are determined when the program is
loaded. Provisions are made for linking, loading, and executing as one program the results of separate
assemblies, thereby making more efficient use of machine time. The input to one assembly can be divided into
separate sections, each consisting of a group of instructions or data occupying contiguous locations. The
relative positions of the sections can be declared at the time the program is linked.

u Macro Facility

The assembler macro facility can reduce the effort required to write patterns of code which are repeated in a
program or shared by several programs. One instruction to the assembler can result in the inclusion in the
object program of many instructions and constants, or can result in establishing one or more values for use
elsewhere in the program. A macro may be defined so that the pattern of coding generated can vary widely
depending upon the parameters supplied in the calling macro instruction.

L Program Listing

A printed listing of source and object codes is one output of the assembler. This listing includes error message
flags marking any errors detected by the assembler. Source code errors do not halt the assembly. The
assembler processes the remainder of the source code and performs its usual error checks, thus minimizing the
number of assemblies required to produce error-free code.

= Compatibility

Source programs and macro definitions which are written for the UNIVAC 9400/9480 Systems but which are
to be executed in a UNIVAC 90/60,70 environment may require modification before being acceptable to the
assembler.

1.3. DATA FORMATS

Main storage locations are numbered consecutively. Each address specifies one byte of information. Every time a
storage request is made, four adjacent locations are accessed; therefore, data (depending on the length) is accessed in
groups of four consecutive bytes. The address of a group of bytes is the address of the leftmost byte of the group.
The bits in a byte are also numbered from left to right, starting with zero.

1-3
PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION

[«ai
=2
[a
T
o

bﬂb
0

Half-word data formats consist of two consecutive bytes.

biblblb |bb{blb[b [biblblblbb b
0 78 15

Full-word data formats consist of four consecutive bytes.

bib[b{b|bib (blbib|bb (b|blb|b|bbib|b[b[blbb |b|b|b|bib|b|bjbfb
0 78 1516 2324 31

Double-word data formats consist of eight consecutive bytes.

b|b|b[b|b|b|b]bib{bib|b|b]b{b[b|b|b|b|b]b|bib[b}b|b|b|bib|(b|blb]b|b|b ébbb
0 7 8 1516 2324 3132 63

Variable data formats consist of a variable number of consecutive bytes.

First Byte Last Byte

It is possible to store 256 different bit combinations in the byte. Thus, data can be represented in various forms to
the programmer; however, certain restrictions are imposed if the data is to be printed or processed arithmetically.
The contents of a byte can be considered as a binary number, a decimal number, an alphabetic or symbolic
character, or logical information. A field used to represent a binary number uses all of the bit positions (except the
sign bit) to contain the value. However, each byte in a field representing a decimal number, alphabetic character, or
symbol is considered to be divided into zone and digit portions. The zone portion is the most significant four bits;
the digit portion is the least significant four bits.

ZONE DIGIT

blblb|b]b|b|b]b
0 314 7

1.3.1. Fixed-Point Numbers

Each fixed-point number is represented in one of three fixed-length formats composed of a single sign bit followed
by an integer field. When the sign bit is 0, the integer represents a positive value; when 1, the integer represents a
negative value. Negative integers are represented in twos complement notation. The half-word, full-word, and
double-word formats are shown in Figure 1—1.

UP-NUMBER PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4 I l 1-4
PAGE REVISION

r_. SIGN
Half-Word Format INTEGER
0f1 15
{— SIGN
Full-Word Format INTEGER
01 31
‘___ SIGN
Double-Word Format INTEGER
o0l 1 63

Figure 1—1. Fixed-Point Number Formats

When held in one of the 32 general registers (16 for supervisor functions and 16 for user program functions), a
fixed-point number is generally treated as a 32-bit operand. Certain multiply, divide, and shift operations use a
64-bit operand composed of one sign bit and a 63-bit integer field. A 64-bit operand is located in two adjacent
general registers and is addressed by referring to the even-numbered register of the even-odd register pair.

When fixed-point data is located in main storage, it may be stored in any of the three formats. This data must be
located on the integral main storage boundary of its associated format.

A half word in storage is extended to a full word by propagation of the sign bit through the most significant 16 bits
of the full word when it is transferred to the processor. The half word then operates as a full word in fixed-point
arithmetic operations.

1.3.2. Floating-Point Numbers

Floating-point numbers are represented in signed absolute value form and have a fixed-length format which is either
a full word (short format) or a double word (long format) in length. Both formats may be used in main storage and
in the floating-point registers (6.1). Short format numbers provide faster processing and requires less storage space
than long format numbers. Long format numbers provide greater precision in computations.

in either format, bit O is the sign bit, bits 1 through 7 are the exponent, and the remaining bits are the fraction. The
exponent is expressed in excess-64 binary notation. The fraction is expressed as a hexadecimal number having the
radix point to the left of the most significant fraction digit. The quantity expressed by the full floating-point
number is the product of the fraction and the number 16 raised to the power minus 64 of the exponent.

Separate instructions are provided for operations with long and short format operands (Section 6). The short and
long formats are illustrated in Figure 1—2.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

1-5
PAGE REVISION | PAGE

Full-Word Format

Double-Word Format

SIGN
EXPONENT FRACTION
01 718 31
r— SIGN
EXPONENT FRACTION
o 718 63

Figure 1—2. Floating-Point Number Formats

1.3.3. Hexadecimal Representation

Hexadecimal digits are considered base 16 numbers with values O through F {15). A hexadecimal digit is used to
denote a particular bit pattern in the zone or digit portion of a byte representing either a decimal number or
alphabetic or symbolic character. (Hexadecimal digits are also used for constant definition as described in Section
11.) The hexadecimal digits and their binary values are:

HEXADECIMAL BINARY HEXADECIMAL BINARY
DIGIT VALUE DIGIT VALUE

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 Cc 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

1.3.4. Decimal Number Representation

Decimal numbers are represented in either unpacked form (one digit per byte) or packed form (two digits per byte).

In unpacked form, the byte is divided into zone and digit portions. The zone portion usually contains a hexadecimal
F bit configuration (1111) which is ignored except in the least significant byte; the zone portion of the least
significant byte is interpreted as the sign of the number.

ZONE

DIGIT

I
ZONE | DIGIT

ZONE DIGIT

SIGN

DIGIT

In packed form, digits are contained in both halves of a byte, except the least significant half byte of the field which
is interpreted as the sign of the number.

1-6
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

—
O

DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

The sign of decimal numbers is represented by hexadecimal digits A through F. Any other bit configuration is an
invalid sign code which could produce unpredicatable results.

The interpretation of the contents of the sign position is:

HEXADECIMAL BINARY SIGN
CHARACTER VALUE VALUE
A 1010 Positive
B 1011 Negative
C 1100 Positive (EBCDIC mode)*
D 1101 Negative (EBCDIC mode)*
E 1110 Positive (EBCDIC mode)
F 1111 Positive (EBCDIC mode)**

*Automatically generated in central processor for decimal operations
**Automatically generated in central processor for zone fill during unpack instruction
(Binary value is 0011 in ASCII mode.)

1.3.6. Character Representation

An alphabetic or other symbolic character representation is contained in the full eight bits of a byte. A character
field is considered as not containing a sign. This type of field is represented:

1
|
1
v

'] T
ZONE | DIGIT | ZONE | DIGIT | ZONE | DIGIT | ZONE | DIGIT
\,\I/\/’ _"\1/‘/ N \,\'/__
CHARACTER CHARACTER CHARACTER CHARACTER

1.3.6. Logical Information
Logical information consists of alphabetic or numeric character codes. This information is used in operations such as
compare, translate, editing, bit setting, and bit testing. Logical information is handled as fixed or variable length data

and is processed from left to right, one byte at a time.

Fixed-length logical information consists of one, two, four, or eight bytes.

LOGICAL INFORMATION

Variable-length logical information consists of up to 256 bytes.

BYTE BYTE BYTE BYTE

MOST SIGNIFICANT LEAST SIGNIFICANT
BYTE BYTE

1-7

PAGE REVISION l PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

1.4. STATEMENT CONVENTIONS
The conventions used to delineate the control statements in this manual are:
n Uppercase letters and words and the following characters must be coded exactly as shown:
, ([comma)
. (period)
= (equal sign)
() (parentheses)
' (apostrophe)
* (asterisk)
(number sign)
Examples:
c
#
MCL
RECSIZE=

L] Lowercase letters and words are generic terms representing information supplied by the user. Such lowercase
terms may contain hyphens (for readability).

Examples:

start-addr
vol-no-1
L] Information within braces represents required entries, one of which must be chosen.

Examples:

{ file-id }
“file-id’
LAST

OPR
RESET

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-8

UP-NUMBER PAGE REVISION PAGE

L] Information within brackets represents optional entries that are included or omitted (depending upon user

requirements). Braces within brackets signify that one of the specified entries must be chosen if that parameter
is to be included.

Examples:

[version-no]

HALT)
{JOB }
STEP
_J YES
[VERIFY {NO }]

n An ellipsis {series of three periods) indicates the presence of a variable number of entries.
Examples:
Statement with a specific number of parameters
lun-1 [lun-2,...[lun-20]]
Statement with an unlimited number of parameters

domid-1,...

1.4.1. Positional Parameters

Positional parameters must be written in the order specified, and each must be separated by a comma. When a
positional parameter is omitted, the comma, even though it may be shown inside a bracket, must be retained to
indicate the omission, except in the case of omitted trailing positional parameters.

The following examples are provided to aid the user in coding the positional parameter formats used in this manual.
The coding possibilities do not necessarily reflect all the coding options that may be used.

= Optional positional parameters within a series of required parameters
Format:
A,B,[C],D,E

Coding possibilities:

Ar’:B;’icé)Pnga g it TS NN O AT S SUE SV U N SN S U B N B S B P
TN U A NS SR S S RN U SN ST NN SO S T N SN SN SN DAY NN ST N ST NN SR N N N
A{’Pl’i’ ‘:Dt’(Ei IR NN WA Y0 TON YOUE S ST SN NS ST ST S U S SR T WU U SO0 T S ST VO N N W N

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-9

UP.NUMBER PAGE REVISION PAGE

Format:
AB,[C],[D]E

Coding possibilities:

f\x’xBx’xcf’ L:Dx’jss SN AT S TN U T SIS T N NS TN S S A SN NN S SN 2 S RN N A TS BN S
U YO U U N ST W0 W N O A U U A0S N VT T SO AU DO NN N0 U S BV ST O A Y T D SR N B B R R O it
Ax’ial’;ci’i’ zE= S AT T O S U NS ST N T I SN SN SRR N L IS DN RT RS BN N
IV US T UGN NS ST U N ST SN U S S A N N S N ST U N U UAE G NN N NS U N O A e b
Ax’xBl’x’[Dz’fE; W ISR E S N SN NS T TSN RS A A S N AT S AN N A L i
PR T SN S0E ST S N V0 NN ST NN SN SN NS ST SN SO S ST U S SN Y NS U U U S N RN S S ST SN U S WS SR O
A)’iBL’i,l)’Ei PRI R WY D ST S NN S S W S I S R N N B ;o) ! o Loy
Format:
[Al,[B],C,D
Coding possibilities:
A1’1BQLCI’P; [N S S S U U WU OO ST WO S S NN SN N S 000 A TS SO0 00 U O SIS 0 S N NS N S ST SN A N U A
NI TN I 0 ST T T B AT TR NN N A ST S SO S A N BT AT O AR U AT U B U ST N S N S NS RS
);Bs’ch)th PSSO S RTO S S S N TN VT S T NN W NN SN N N T BN A [SRR I TS VR
U U B SIS T N I Y : : } Lo [N Y i b
? >1c1’1 | SRR T T B T S W TR U O g by L i I NN S | : i
RTINS W S N SR ST S U A 0 AN AV S A T A O I B! i3 i i 4]
A: ’i’lcl’ iD1 g R) 1 . Cl g S i [i pot

" Optional positional parameters at the end of a series of required parameters
Format:
A,BI[,C]

Coding possibilities:

A)iBL)jc;I I N N I .o !

[N A T R R U N N i B T i B A T B T T B N A O S |

Pt op i HI
i 3 H H 3
A)g AR BRI ST S S S SN SN ST SN ST AT AN U ST ST SN AT AN A S BTSN

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-10

UP-NUMBER PAGE REVISION PAGE

Format:
ABI[,C][,D]

Coding possibilities:

Pt Y R N A N 'S U N T T T [) N N N AT A i
ilill)f!!% S U SR U NN N S | }!‘t!ll llf{lf!gll l}lll
1’1’2’1111111 S NI T ST ST SN SAT SN U U V0 A N A R 'R BN T U N T N S R

AN I T i { P :
A!’zBl’!’PiliLllff~§xl:13i151§s!1li:111{xlefxif]

L] Optional positional parameters within a series and at the end of a series of required parameters
Format:
A,B,[C] ,D,E[,F]

Coding possibilities:

Ai' ;Bi’ zcl’t])” iEL’ sz

PN N NS DS T ST U SO B B | i TR I D S N N W B S U B B G R
'S S ST IS SN SO W (0 NN RTINS TN T ST SN N SR TN VS T AN W SN U SN NS U SN NN N Y U S N NN N
A\’g,lcl,lDJ,iEk i ig i1 3 1 IS S W § ‘L | S S li I S g L I S l itk
I YT N S ST SN0 WO U N TR WY S S NN NS N SO AN N N U] i (i [O N R R B 1
A!’;B!’:’P’iEz’sFl toor o s Py i AR AR ST AU ! i g b
ST ST N (N NN N N U N NV ST NN WA N ST U0 YO U 0 S TN S T A N YO U S S N W N O W Loty
A:l,fBl,i’tDl’!E[S S S SR T SAUUNY 00 N A0 U N ST O N P SRV ENT NN AT A S NN N VO AU O AT

Format:
AB,IC],ID].EL,F]

Coding possibilities:

AJJB’th)P;,)sEf’éF: bk AR TR W L SO YN YU NS TS VA WO SN S WU A B W : g i
H H i i i i i H , i H H i ok i i % i i H] z i H i H A N | i ; i Lod i ; fod d
Ax’le’sc?’Pi'!E TR T St R A B SR U0 S W WD SN U W S TN ST AU NN VS N U T
i ot o | : " Lo Lo Lod : | it Lot -
Ai’ B;’Ci’»’iE- - i] : : il il P bl :
PNV YOS UONS RO ST S0 SO OSSN ST W SO SO SO 0 NS SR R SIS UK SN WO YN0 SO Y SN O S
A ’;B 2 "’__;E.;.... SR SO TN W S O N U WS S T " Ll T O I L i
TN T s R SRR RN N N S R N S N TN MU ST N N SR NN NN O O
AJ)EB!) ’szEv)F? ; b b e b d b e Lt
" S T ST TN TN SOOK SO R TN WO VO WAR T S M I R B O il
AJB)»’)’:E‘),F, i SRR T T VOR T W UUS N TR T TS TN VA S T MU T NN W N T R

7935 Rev. 1 SPERRY UNIVAC Operating System/4 -

UP-NUMBER l PAGE REVISION I PAGE

1.4.2, Keyword Parameters

A keyword parameter consists of a word or character immediately followed by an equal sign, which is, in turn,
followed by a specification. Commas are required only to separate keyword parameters and need not be retained to
indicate the omission of a keyword parameter. In the format presentation of this manual, all required keyword
parameters are shown first, followed by the optional keyword parameters. In coding, they may be specified in any
order desired.

The initial keyword specified in the operand field is always coded without its associated comma. However, each
succeeding keyword parameter specified must be preceded by a comma. A comma is never used to begin the coding
specified in the operand field when keyword parameters are the only type of parameter specified in a statement.
Beginning a line of coding with a comma is applicable only when an optional positional parameter is defined as the
initial parameter of the coding. See 1.4.1.

The following examples are provided to aid the user in coding the keyword parameter formats used in this manual.
The coding possibilities do not necessarily reflect all the coding options that may be used.

L] All keyword parameters required
Format:

ABC=nn,XYZ= {; }

Coding possibilities:

ABC=nn ,XYZ =]

R ' < H L
SN SN S RTINS VN T N0 W TOE SN0 N N SO TN VO SO0 S N TN WS T MO

T TS O T T T WA T
XEYZ=2*)ABC=,nnI ‘ ’

. Combination of required and optional keyword parameters

Format:

ARM=HAND[,LEG=FOOT] [,HEAD= { ENYOSE }]

Coding possibilities:

ARM=HAND,LEG=FBOT,HEAD=EYE | .
i S B i H £ : i i bk i i i ; : i H i. i i H i H E L5k i (i i i § bl i
LEG:F?bbT’Ai‘RmszAND’HEA;D:NébssE' ! [! Lodod Lo d
Loy i s T N Loboad i T e §

HEAD~=§EYE)LE;G‘=:FDEDT1)§AR§M =HAP‘;D NIRRT S s Lol
ARM:HAND N R S N N 0 N TN T N W R RN R N b 'N!
ST T ST TN ST NS T TN S T VO SN S WIS ST ST N O SN S WU UUTURT U RO BT MR
HEAD: sHANDf Lo b SUTNN DTSRI N S : Do R
P s T [e T O : i §

HEAD= EYE,ARM=RAND . |
ARM=HAND, LEG =FOOT | e el

7935 Rev. 1 J SPERRY UNIVAC Operating System/4

UP-NUMBER I PAGE REVISION ‘F’AGE

= All optional keyword parameters

Format:

[PAPER=WOOD] [,GLASS=SAND]

1-12

Coding possibilities:

-P;A;PiE;Ri:\;NxD;bpi);GaLiAxsEsts;ALNP TV WO NN WO WO W% S SO 0 T W B Lot
FN T NN U RO UANY OO0 NS N U YA VO N U O Y O O U YT N O S S N A WO NS O W MU OO
GLASS=SAND,PAPER=WOOD | . | i
PRSI KNV US N WOVUNN SN0 ST ST VO RGO WU NS VY SOY SN SR SO SO N TS W SR U A SO R NI
PAPER=WO®D, | 1. ... o L

PR TN N VO W N U S VT OO S S NN VK TN A U SO T SOV OO N S SN S WO N W NN S G M ;
GxL;AiszsfzssA;N‘aDi TSN WO NN YO S WO S SO 100 GOOE SN WO Y OO ST S OV WO WOOT ST WO N SHOE WY S S S S SO O

1.4.3. Combination of Positional Parameters and Keyword Parameters

When positional parameters and keyword parameters are used in the same statement, the keyword parameter must
follow the last specified positional parameter. When a positional parameter within a series of parameters is omitted,
the associated comma must be retained to indicate its omission. When a trailing positional parameter is omitted, its
associated comma is also omitted, except when followed by a keyword parameter.

L] All parameters required

Format:
_JYES _ j HAPPY
TOY,BROKE= { NO } ,CHILD= { SAD }
Coding possibilities:

TplY) bRpthE1= XtEsﬁ CHI LP: ‘SLAD

SR TSR TSNS VRN WO SO N S SO S Lll_“_aggﬁ_ﬂi

AN S W I T : ORI O N T N A

1 TR0 WS SN SN WU SO0 N S N WO N SO S S S S
TOY,CHILD =HAPPY,,BROKE=NO |

a Required and optional parameters

Format:

_fYES _{YES _fYES
DOGLCI LAl [,T],FIGHT—{NO } [,TREE—{NO }][,CATCH {NO }]

1-13

PAGE

7935 Rev. 1 J SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION

Coding possibilities:

DDGnCuArTnfEGHI=NPnTRE£=X£5»CATCH?MO

i i SRS WU NN SO0 UUNR VU NN SN SO WOOF SNTIONN SN NN NN TN WO UUT ST SO U SN S SN S RO T : T
06, AT, FIGHT =YES ,CATICH.=YES-TREE=NS |, ., . | .|
Loid R W 000 DUUR N WO TR U U WONN WO S A A W NN N W N | i Lo it
DOG,., T, TREE=YES,FIGHT=ND =, = | L
- SRS S N SO S O | NS R T B A T L foid SRR U S R Y N T
QD‘G‘MF;I:GH(TF ‘N;b: i b fotd i . TR N N Lo
RN N TR B S A L b] : i] [T N
D;D:G;’ 1F §I165H-T’= E\KES) C;ATCIH;’;YEls; i Lod ; bbb L

L Keyword parameters acting as positional parameters

In some instances, an optional keyword parameter performs the same function as a positional parameter, and
is treated as a positional parameter in both presentation and coding (i.e., the comma is shown as being outside
the bracket; when the keyword parameter is not selected, the comma must be used to show its omission). The
second parameter in the following format is a keyword acting as a positional parameter; [,D=E] and [,0=T]
are keyword parameters.

Format:

,b,c[,D=E] [,0=T]

o
[
oo w

Coding possibilities:

o’e‘;A=Bi)zb-’lc ,Q’-E;,Q{-'I b) f bt Lo |
: . SUNSR R UK WO S WIS SUNE WS ST O JUOF SO SN SO MRS SO O SGTOUN NU NS SO0 SO S NN ST SOO O SO T WO |
ai’g'fb=’§cl’:135=in Coaiad it : i R . |
TSNFRNE UL T B I il TN SR YO S SR I ST SO I N T NS
a:’zAs=zC3"b"~c;’{Qi=fT: S0 S SR DUT NI S N S VT S S N S NI WSS S W R :

1.4 4. Subparameters

Parameters enclosed in parentheses and separated by commas are called subparameters. The parentheses must be
shown to delimit the series of subparameters, and to prevent the commas from being interpreted as parameter
separators. Subparameters follow the same conventions as those for positional and keyword parameters.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 =14

UP-NUMBER

PAGE REVISION | PAGE

1.4.5. Default Options
Underlined parameters are selected automatically when a keyword parameter or subparameter is omitted.

Examples:
time
500

YES
NO
93

2-1

PAGE REVISION I PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

2. Assembly Language

2.1. CHARACTER SET

The assembly language character sets used in writing statements for the SPERRY UNIVAC Operating System/4
(OS/4) are:

L] Letters:
A through Z
L Special Letters:
?$#0
L Digits:
0 through 9
L] Special Characters:
+—=«/,=blank () .><&"

The characters ?, $, #, and @ are considered to be special letters because they may be written as one of the
characters in a symbol.

In the description of instructions, the following specific definition terms are used:
. Alphabetic — a character of the letter or special letter set;
L] Numeric — a character of the digit set; and

u Alphanumeric — a character of the letter, special letter, or digit set.

2.2. STATEMENT FORMAT

Statements in the OS/4 assembly language are written on the assembler coding form (Figure 2—1). Statements and
comments are generally written in columns 1 through 71. Column 72 is used to indicate continuation. Statements
are continued in column 16 of the following card. Columns 73 through 80 may contain program identification and
sequencing information. This format may be altered by the input format control (ICTL) assembler directive
(12.7.1).

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-2

UP-NUMBER PAGE REVISION PAGE
SPERRY<-UNIVAC ASSEMBLER CODING FORM
PROGRAM . PROGRAMMER DATE PAGE oF PAGES
LABEL ADPERATIONA OPERAND A COMMENTS
10 16 72 80,
Lo b o by JE T T O S SO S U S U S S S SR S S U S SR (O S S SO T | T SR
SR YR O S LT P S L O S R S S S S Lot oo b
bao oo 42 Loyo P T U N G S U AU S S VO S U U HN TS N S S SRV ORI S SSRE B bt cod o

Figure 2—1. Assembler Coding Form

Although assembly language is written in free form, it is recommended that source code statements be written with
the first character of the operation code in column 10 and the first character of the operand field in column 16.
Tabulating the statements in this fashion creates a listing which is neater and easier to read. The rules governing the
writing of free form assembler statements are discussed in 2.2.6.

2.2.1. Label Field

The optional label field may contain a symbol for which a value is to be defined. The label field must begin in
column 1 of the coding form and is terminated by a blank column. A blank in column 1 is interpreted as indicating
the absence of this field.

2.2.2. Operation Field

The operation field begins with the first nonblank character after the label field and is terminated by a blank.
Embedded blanks are not permitted. The operation field contains the mnemonic operation code for a machine
instruction, the name of an assembler directive, or the name of a previously defined macro instruction. The
operation code must be written exactly as specified in the assembler instruction or directive format description.

2.2.3. Operand Field

The operand field begins with the first nonblank column after the operation field and is terminated by a blank not
contained in a character constant representation, character self-defining term, or character expression. This field may
contain data and/or information used by the machine instructions or assembler directives, or parameters completing
the specification of the procedure reference. An operand of a source line statement may not terminate in column 71
uniess a continuation is called for (in which case column 72 is not blank). Column 72 cannot be used for coding or
as the terminating blank of the operand field.

2.2.4. Comments Field

The comments field for a statement begins with the column following the blank column that terminates the operand
field and it ends at column 71. It may contain any combination of characters including blanks. It is not processed by
the assembler other than to include it on the assembly listing. It may contain remarks to clarify the purpose or
operation of the associated coding.

Lines may consist entirely of comments from columns 2 through 71 if column 1 contains an asterisk. Comments
written on an instruction line may not be continued and must terminate on or before column 71.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 23

UP-NUMBER

PAGE REVISION l PAGE

2.2.5. Continuation
If a nonblank character is entered in column 72, the operand field of the current source code line may be continued
beginning in column 16 of the following line. Column 72 is the normal continuation column and column 16 is the

normal continue column; however, these can be altered by using the ICTL directive described in 12.7.1. Continued
lines are regrouped when listed on the line printer.

2.2.6. Statements in Free Format
Statements may be written in free format disregarding the standard form, providing the following rules are observed:
u The label field must start in the begin column, as specified by the ICTL directive.

- If the label field is omitted, the operation field must begin at least one column to the right of the begin
column.

L The label and operation fields must appear in the first line of the statement.

L A field must be terminated by at least one blank.

n As in normal form, neither the label nor the operation field may contain embedded blanks. The blank is
always used as a delimiter to terminate a field. The operand field can contain blanks within a valid character
string.

L The entries must appear in normal sequence: label, operation code, operand, comments.

L An entry may not extend beyond statement boundaries.

2.3. TERMS

Terms are representations of values. The assembler recognizes five classes of terms:

= Self-defining terms

L Literals

L Symbols

L] Location counter references

L] Attribute references

Self-defining terms are fixed values coded by the programmer. Literals can have their value specified by the

programmer or computed by the assembler. Symbols, location counter references, and attribute references are
assigned values by the assembler.

2.3.1. Self-Defining Terms

Self-defining terms (SDT) represent fixed values. These representations are not relocatable and are used to specify
immediate data, registers, addresses, and masks in machine instructions. The representation can also be used to
specify values in directive operands or in expressions. Restrictions on the size of SDT's depend on where they are
used. When SDT's are used to designate a register, the value cannot exceed 15. The representation of an address must
not have a value greater than the total size of storage. After conversion to a binary format, the value is truncated or
filled with nonsignificant 0’s to fit the designated field. SDT’s can be represented in binary, hexadecimal, decimal, or
character form. A description of each type of representation follows.

UP-NUMBER

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l \ 2-4
PAGE REVISION

PAGE

2.3.1.1. Binary Representation

A binary representation consists of a series of up to 24 zeros and ones enclosed in apostrophes and preceded by the
letter B. The bit pattern is stored as specified with high order 0’s added when necessary. The following are valid

binary representations:

Binary Representation

Binary Value

B10011"
B11’

B‘101101000101’

2.3.1.2. Hexadecimal Representation

00010011

00000011

00001011 01000101

A hexadecimal representation consists of up to six hexadecimal digits enclosed in apostrophes and preceded by the
letter X. This representation is used primarily to convey binary or bit-pattern information to the system. Each
hexadecimal digit represents a half byte of information. The hexadecimal digits and their values are:

0 — 0000
1 — 0001
2 —0010
3-0011
4 -0100
5—-0101
6 —0110
7-0111

8 — 1000
9 — 1001
A-—1010
B — 1011
cC-1100
D-1101
E-1110
F—~1111

Examples of hexadecimal representations and the binary values they produce are:

Hexadecimal Representation Binary Value
XD’ 00001101
X101’ 00000001 00000001
X‘7FFF’ ot111111 11111111
X'ABC’ 00001010 10111100
X‘F1F2’ 11110001 11110010

2-5

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER | PAGE REVISION

2.3.1.3. Decimal Representation

A decimal number may be used to specify directly to the assembler a value that will be converted to a binary value
or other bit configuration. The decimal number may consist of up to eight digits, 0 through 9, forming a decimai
number, 0 through 16,777,215. This number is converted to a binary value occupying one or more bytes depending
on the type of field for which it is intended. Decimal numbers and the binary values they produce are:

Decimal Representation Binary Value
0 00000000
1 00000001
15 00001111
257 00000001 00000001
00013 00000000 00001101
32767 ot111111 11111111

2.3.1.4. Character Representation

A character representation consists of up to three characters of the 256 valid characters; however, only 63 of the
256 valid characters are printable. The characters must be enclosed in apostrophes and preceded by the letter C.
Each ampersand or apostrophe to be included in a character representation is represented by a double ampersand or
double apostrophe, respectively. In this case, there may be more than three characters within the apostrophes which
delimit the character representation.

The character representation is used to specify immediate data or binary bit patterns. Character representations and
their values are:

Character Representation Binary Value
cD’ 11000100
C’'NOT’ 11010101 11010110 11100011
c'o’ 11111001
C&&"" 01111101 01010000 01111101

2.3.2. Literals

A literal is a representation of data which is replaced by the storage address of the actual data. When the assembler
recognizes a literal in the source code, it searches the table of literals that have been previously encountered. If a
duplicate is found, then the relocatable address of the literal in the table replaces the original literal in the source code. If
a duplicate is not found, then the value of the original literal is entered into the table and its address replaces the source
code specification. Literals are similar in form to the operands of DC and DS statements. A more detailed description of
literalsisgivenin 11.5.

2-6

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION

A literal may be used in any machine instruction that specifes a main storage address and must appear as the complete
operand specification. However, the literal may not be specified as the receiving field operand of an instruction that
modifies main storage, in address constants, shift instructions, input/output instructions, nor combined with other
terms or with an explicit base register specification.

2.3.3. Symbols

A symbol is a group of up to eight alphanumeric characters. The first, or leftmost, character must be alphabetic. Special
characters or blanks may not be contained within a symbol. Examples of valid symbols are:

\Y CARDAREA
GS279 RSINTRN
BOB BD+#4

Not valid symbols for the reasons stated are:

READ ONE Embedded blank
SPEC'L Special character
6AGN First character not alphabetic

A symbol may be more than eight characters long; however, only the first eight characters are analyzed by the assembler.
If the first eight characters of any two symbols are identical, they are considered to be identical symbols regardless of
following characters.

The assembler associates three attributes with each symbol it processes: value, length, and relocatability. Symbols
defined by the EQU directive adopt the attributes of the expression in the operand field of the statement.

2.3.3.1. Value Attribute

A symbol is assigned a value, or defined, when it appears in the label field of any source code statement other than a
comment. A symbol appearing in the label field of an EQU or ORG directive is assigned the value of the expression in the
operand field. In all other cases the value assigned is the current value of the location counter after the adjustmentto a
half-word boundary, if necessary. The value is assigned to the current label before the location counter is incremented
for the next instruction, constant, or storage definition. Thus, if a symbol appears in the label field of a statement
defining an instruction, constant, or storage area, the symbol is assigned a value equal to the storage area address of that
instruction, constant, or storage area.

2.3.3.2. Length Attribute

The length attribute of a symbol is the number of bytes assigned to the instruction, constant, or storage area
involved. For example, the label of a 2-byte instruction has a length attribute of 2 and the labe! of a DS statement
reserving 50 words (four bytes per word) would have a length attribute of 4. Symbols equated to location counter
references and/or absolute value representations usually have a length attribute of 1.

The maximum length attribute that can be generated by the assembler is 256 bytes; however, a DS may be used to
reserve more than 256 bytes of storage.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 27

UP-NUMBER

PAGE REVISION I PAGE

2.3.3.3. Relocatability Attribute

A symbol may either be absolute or relocatable. Values which are assigned to symbols defined in the label field of a
source code line representing an instruction, constant, or storage definition, are relocatable. A relocatable symbol isa
symbol whose value would change by a given number of bytes if the program in which it appears is relocated the same
number of bytes from its originally assigned address. Relocatable symbols are assigned values relative to the location
counter. Decimal, character, binary, and hexadecimal representations are all absolute terms and have a relocation
attribute of 0.

2.3.4. Location Counter References

A location counter is maintained by the assembler for each control section created by the programmer. Each counter
contains the next available location for the associated control section. After the assembler processes an instruction or
constant, it adds the length of the instruction or constant processed to the current location counter.

Each instruction or address constant must have an address which is a multiple of two bytes. This type of address is said to
fall on a half-word boundary. If the value of the location counter is not a multiple of 2 when assembling such a constant
or instruction, a 1 is added to the location counter before assigning an address to the current statement. Storage
locations bypassed in this way receive binary 0's when the program is loaded.

The current value of the location counter, under which the program is currently being assembled, is available for
reference by the programmer. It is represented by the special character # (asterisk). If the asterisk is written in a constant
representation or in an instruction operand expression, this character is replaced by the storage address of the leftmost
byte allocated to that instruction or constant. Thus, in the following example the instruction generates an object code
instruction with the address of the MVC instruction as Operand 2. When executed, the MVC instruction will be
transferred to a 6-byte area labeled ADDR.

Example:

LABEL A OPERATION A OPERAND A
10 16

fii

[N S V;G : AﬂDR(’&);*’

SRR T SR T B bt NS U SO VU0 ST WO TOUE SO R NN T O YO SO SO0 VA SN TN SR SO SN WY SO ST GG SN Y

N T T e

An instruction may address data or other instructions in its immediate vicinity in terms of its own storage address.
This is one kind of relative addressing and it is achieved by an expression of the form =+n or *n where n is the
difference in storage addresses of the referring instruction and the instruction or data being accessed. Relative
addressing is always in terms of bytes and not in terms of words or instructions.

2.3.5. Attribute References

References to symbol attributes assigned by the assembler are treated as terms.

- Length

The length attribute of a symbol may be referenced (2.3.3.2) by writing L’ followed by the symbol. Thus, if the
symbol STOREND is the name of a full-word field,

L’'STOREND
would be considered a term and it would have a value of 4.

The length attribute is not available during conditional assembly processing. Specifically, a paraform (13.3.1.1) may
not be a length attribute if it will be on a “DO" line of the procedure definition.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-8

UP.NUMBER l PAGE REVISION ‘PAGE

u Number

The number attribute is only valid for paraforms (13.3.1.1) associated with procedure definitions. The attribute
refers to the number of items within the list or sublist specified by the paraform. A reference may be madetoa
number attribute by writing N’ followed by the paraform. The reference is replaced by the number of elements.

For example, to obtain the total number of positional parameters associated with the parameter named LST, the
following would be coded in the procedure definition:

N’LST

If positional parameter 1 of LST was a sublist, it would be possible to determine the number of items in the sublist
by coding:

N'LST(1)

Also, if a keyword parameter, KEY, is equated to a sublist on a procedure definition call line, then the number of
items in the sublist can be determined by coding:

N'KEY

2.4. OPERATORS AND EVALUATION

There are 12 operators in the 0S/4 assembler which designate the method, and implicitly the sequence, to be employed
in combining terms or expressions (Table 2—1). Blanks are not permitted within an expression. Evaluation of an
expression begins with the substitution of values for each term. The operations are then performed from left to right in
hierachical order as listed in Table 2—1. The operation with the highest hierarchy number is performed first; operations
with the same hierarchy number are performed from left to right. Parentheses may be used to alter the order of
evaluation. Division by 0 equals 0. The 12 operators are divided into three classes: arithmetic operators, logical
operators, and relational operators. More detailed descriptions of these operators are provided in the following

paragraphs.
Table 2—1. Summary of Operators
Classification Operator Description Hierarchy
Arithmetic Operators */ A*/B is equivalent to Aa«2B 6
// Covered quotient, A//B is equivalent to (A+B—1)/B 5
/ A/B means arithmetic quotient of A and B 5
* A*B means arithmetic product of Aand B 5
— A—B means arithmetic difference of A and B 4
+ A+B means arithmetic sum of A and B a4
Logical Operators o A**B means Logical Product AND of A and B 3
++ A++B means Logical Sum OR of Aand B 2
—_— A——B means Logical Difference XOR or A and B 2
Relational Operators A=B has value 1 if true; has value O if false 1
> AT>B has value 1 if true; has value 0 if false 1
< A <8 has value 1 if true; has value O if faise 1

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-9

UP-NUMBER PAGE REVISION PAGE

2.4.1. Arithmetic Operators
The symbols +,—,«,/, //, and #/ represent the six arithmetic operators. The intrinsic meanings of +,—,«, and / are the
usual ones; that is, + indicates addition, — indicates subtraction, x indicates multiplication, and / indicates binary

division.

The operator // denotes a covered gquotient where A//B is equivalent to (A+B—1)/B. A covered quotient is equal to
regular binary division except that if there is aremainder, a 1 is added to the regular quotient.

The operator */ denotes a binary shift left or right, A*/B indicates a left shift and is equivalent to A*ZB, A*/(—B)
indicates a right shift and is equivalent to A/2—B.

2.4.2. Logical Operators

The symbols ==, ++, and —— are the three logical operators. The characters x* represent the logical product (AND),
the characters ++ represent the logical sum (OR), and the characters —— represent the logical difference (exclusive
OR).

Each bit of the first term is compared with its corresponding bit in the second term and the result of the comparison is
placed in the corresponding position in the resulting term. The result of the bit comparison for each operator is:

AND [OR] XOR
A**B Result A++B Result A—-B Result
1 1 1 11 1 1 1 0
1 0 0 1 0 1 1 0 1
0o 1 0 0 1 1 0 1 1
0 0 0 o 0 0 0 0 0

2.4.3. Relational Operators
The three relational operators are the equals operator (=), the greater than operator {>>), and the less than operator (<).

The equals operator is used to compare the value of two terms or expressions. If the two values are equal, the assembler
assigns a value of 1 to the expression; otherwise, a value of 0 is assigned.

The greater than operator makes a comparison between two terms or expressions. If the value of the first (left) termis
greater than the value of the second (right) term, then a value of 1 is assigned to the expression; otherwise, a value of 0 is
assigned.

The less than operator compares the value of the first (left) expression or term with the second (right) expression. If the
value of the first expression is less than the value of the second one, then a value of 1 is assigned to the expression;
otherwise, a value of O is assigned.

For the expression A+B>C, if the expression A+B has a value greater than the value of C, then the assembler assignsa
value of 1 to the expression; otherwise, a value of O is assigned.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-10

UP-NUMBER PAGE REVISION PAGE

2.5. EXPRESSIONS

An expression consists of one or more terms connected by operators. A leading minus sign is allowed to produce the
negative of the first term.

Two types of expressions, absolute and relocatable, possess various characteristics obtained from the term or terms
which compose them. These two types of expressions are discussed in the following paragraphs.
2.5.1. Absolute Expression

An absolute expression is an expression whose value is unchanged by program relocation. The absolute expression can
be an absolute term or any combination of absolute terms. Arthmetic operators are permitted between absolute terms.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within an absolute
expression, This type of absolute expression requires the following conditions:

L] The relocatable terms must be paired in even numbers.

L] Each pair of relocatable terms must have opposite signs and have the same relocatability attribute {that is, appear
in the same control section). However, the paired relocatable terms need not be contiguous.

L If a relocatable term in the absolute expression enters into a multiply or divide operation, an error flag is given and
the result is treated as absolute (except multiplication and division by absolute 1). Therefore, R-R+A is flagged
and R«A istreated as absolute. Multiplication by absolute O is absolute 0.

The effect of relocation is canceled by the pairing of relocatable terms with the same relocatable attribute and opposite
signs. The absolute expression is thereby reduced to a single absolute value.

The following are examples of absolute expressions:

A

A+A—-A
A—A+A+A
R+A—R
R—R+A
(R—R)=A
A*A

where:
Ais an absolute term.

Risarelocatable term.

2.5.2. Relocatable Expressions

A relocatable expression is an expression whose value changes with program relocation. All relocatable expressions must
be a positive value, All arithmetic operators are permitted between the relocatable terms.

Relocatable terms alone or relocatable terms in combination with absolute terms can be contained within a relocatable
expression. Either type of relocatable expression requires the conditions:

7935 Rev. 1 SPERRY UNIVAC Operating System/4 2-n

UP-NUMBER l PAGE REVISION l PAGE

u An odd number of relocatable terms is necessary.

L] All but one relocatable term must be paired.

- A minus sign must not precede the unpaired (remaining) relocatable term.

L Each pair of relocatable terms must have opposite signs and the same relocatability attribute.
n The paired relocatable terms do not have to be contiguous.

] Multiplication and division of a relocatable term by an absolute 1 or multiplication of an absolute 1 by a
relocatable term produces a relocatable expression.

Using the above requirements, a relocatable expression is thereby reduced to a single relocatable expression. The
following are examples of relocable expressions:

R

R+Aor A+R
R—R+R
R—R+A+R
R-A
R*1or 1*B

where:

A'isan absolute term.

Risarelocatable term.

An expression may be negatively relocatable only under certain circumstances (11.8.2). Such an expression consists of
either an absolute term minus a relocatable termor an expression that can be reordered to that form as:

A—R
A—R—R+R
R—R+A—R

where:

Ais an absolute term.
Risarelocatable term.

Any expression that does not conform to the rules discussed in this section is flagged. Also, the result of invalid pairing
of terms is treated as an absolute term.

2.5.3. Length Attribute of Expressions

The length attribute of an expression is determined by the assembler and is a function of the leading term of the
expression. If the first term of an expression is an absolute value, a length attribute of one byte is assigned to the
expression. If the leading term is a symbol, the number of bytes attributed to the expression is the same as the length
attributed to the symbol. Thus, if TAG appears in the label field of an LH (load-half- word) instruction, it would have a
length attribute of 4 since LH is a 4-byte instruction. In referencing the same label, the expression TAG+195 also has a
length attribute of 4, but the expression 195+TAG has a length attribute of 1 because the leading term is a decimal
self-defining term.

2

2-12
PAGE REVISION | PaGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

2.5.4. Character Expressions

A character expression is either a character string, a character substring, or a concatenation of strings and/or substrings.
Character expressions are used mainly to specify set symbol values for replacement in source code statements (12.8.1).
They can also appear in arithmetic expressions as terms used by relational operators. All arithmetic values are considered
to be greater in value than any character string and any character string is considered to be greater in value than any
shorter character string. Where character expressions appear in arithmetic expressions as terms for operations other than
the relational operators, they are flagged and treated as0’s.

L] Character Strings
A character string is zero, one, or more of the 256 valid characters enclosed by apostrophes. A character string
differs from a character absolute value representation in that the character absolute value representation is
converted to and treated as a binary value. A character string is not treated as a value. Character strings can be up
to 127 characters in length. Apostrophes within the string must appear as pairs of successive apostrophes.
Ampersands must appear as pairs of ampersands.

= Substring Representation

A character substring is a valid character string followed immediately by two unsigned decimal numbers which are
separated by a comma and enclosed in parentheses. The format is:

character-string(n1 o)

The first number (n;) indicates the leftmost character of the original string which is to be included in the
substring. The second number (n,) represents the number of characters to be included in the substring.

For example:

‘PREDEFINED’(4,6)
represents the same string of characters as does

‘DEFINE’

n Concatenation

Concatenation is the joining together of two character strings, two character substrings, or a character stringanda
character substring. A period is used to designate concatenation that results in the formation of a single string of
characters. The characters of the second string or substring are placed immediately following the characters of the
first term in the construction of the resultant string. The following example shows concatenation:

‘PRE'.'DEFINE’ produces PREDEFINE

When a substring is to be concatenated with a following character string, the period may be omitted and
concatenation is assumed.

N

2-13
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

URP-NUMBER

2.5.5. Basic Expressions

A basic expression consists of one or more basic terms connected by operators. Basic expressions are used to specify
information for certain directives.

The following are basic terms:

L] Self-defining terms (SDT)

L] Symbols defined by SET directives (set symbols)

u Character expressions

= Number attribute references

L] Parameter reference forms {paraforms)

All the operators used by the OS/4 assembler are valid; the rules for expression evaluation are the same as with normal

expressions; and parentheses may be used for grouping. Division by O equals 0. Blanks are not permitted in the
expression except within a defined character string or substring. All terms must be predefined.

3-1

PAGE REVISION I PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP.NUMBER

3. Introduction to Instructions

3.1. INSTRUCTION TYPES AND FORMATS

The normal mode of operation for program run under the control the SPERRY UNIVAC Operating System/4
(0S/4) is the 9400/9480 compatible mode; therefore, the descriptions of the instructions in this manual reflect this
mode of operation.

An instruction is an executable statement for operations involving data. The instructions for the 0S/4 are divided
into five types according to the operation specified by the instruction. The instructions are of three lengths: two,
four, or six bytes. In a 2-byte, or half-word instruction, the general registers are referenced for both operands. A
4-byte instruction references main storage for one operand, and the general registers or immediate data for the other
operands. A 6-byte instruction references main storage for both operands. Each instruction is aligned by the
assembler on a half-word boundary; that is, each has an even address. The five instruction types are:

= RR register to register operation, requiring two bytes of main storage.
] RX registerand indexed storage operation, requiring four bytes of main storage.
u RS register and storage operation, requiring four bytes of main storage.

= Si storage and immediate operand (one contained in the instruction) operation, requiring four bytes of
main storage. Only self-defining terms may be used as immediate operands.

L] SS main storage to main storage operation, requiring six bytes of storage. The SSinstruction format is used for
packed decimal arithmetic (maximum operand length is 16 bytes) and for byte-by-byte processing of data
{maximum operand length is 256 bytes).

The basic formats for instruction are shown in Figure 3—1 in source code and object code form.

Table 3—1 defines the abbreviations used in the description of instructions.

Object Code Instruction Format
Instruction Source Code
Type Instruction Format First Half Word Second Half Word Third Half Word
Byte 1 Byte 2 Bytes 3and 4 Bytes 5and 6
78 1112 15116 19 20 31|32 35 |36 47
i | | |
| | REG REG |]
@ ! I 0Pl oP2
RR [symbol] opcode r, .1, ! | . | !
il —— .. ‘
opcode r [n l
|
: | REG ! ADDRESS }
RX j | OoP 1) OPERAND 2 |
[symbol] opcode r ,dz(xz,bzi) |) e
opcode T | X, b2 | d2
I | ! |
i i REG REG I ADDRESS |
@ : i OP 1 OP 3 | OPERAND 2 i
RS {symbol] opcode r, T3.d,1b,) | o e | —— e ——
opcode . I Ty b2 I d2
| | ! |
I | IMMEDIATE | ADDRESS :
OPERAND OPERAND 1
Sl [symbol] opcode iz,d1 (b,) @ : { ——— e ! e —— !
opcode i2 b1 ! d1
1 | l I
[| LENGTH ! ADDRESS | ADDRESS
| i OP 1 and OP 2 ' OPERAND 1 | OPERAND 2
[symbol} opcode d, (b,),d2(b2) | e | ——
s opcode -1 b, i d1 b2 d2
| | | | .
\ t LENGTH | ADDRESS | ADDRESS i
|) OP1 QP 2 : OPERAND 1 | OPERAND 2 |
[symbol] opcode d1(l1,b1),d2(lz,b2) | e e) e — N ——— |
opcode -1 I2—-1 b, d b, d2
718 i1 112 15 116 19 120 31 32 35136 47
NOTES:

@ The RRinstruction has two other forms:

[symbol] opcode i; for the SVC and SRF instruction

{symbol] opcoder, for the SPMinstruction

@ The RS shift instructions are written without use of the r 3 operand, in the form:

[symbol] opcode ry do(by)

@ Some Sl instructions, such as HIO and T10, do not use an i, field. They are written in the form:

[symbol} opcoded,

{by)

Figure 3—1. Instruction Formats

HIAWNN-dN
| "A3Y GE6L

p/walsAg bunesadg JVAINN AHYIIS

‘ NOISIASY 3DV d

35vd

€

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER PAGE REVISION

3-3

PAGE

Table 3—1. Abbreviations Used in Descriptions of Instructions

Abbreviation Definition
a Absolute term or expression
A Blank
b1 Number of the general register which holds the base address of operand 1
b2 Number of the general register which holds the base address of operand 2
cc Condition code
d1 Displacement for the base address of operand 1 (absolute displacement)
d2 Displacement for the base address of operand 2 (absolute displacement)
e Expression

i {mmediate data used as operand 1

i Immediate data used as operand 2

2
1 Length of the operands as stated in source code
I1 Length of operand 1 as stated in source code
| 2 Length of operand 2 as stated in source code
m Mask
opcode Instruction operation code
op, Operand 1
ap,, Operand 2
op, Operand 3
r Number of the general register which holds operand 1
" Number of the general register which holds operand 2
s Number of the general register which holds operand 3
X, Number of the general register which holds an index number for operand

2 of an RX instruction

3.2. OPERAND ADDRESSING
Operands may be located in three places:
» contained in the instruction;

. stored in the operating registers; or

. in main storage.

UP-NUMBER

7935 Rev. 1 SPERRY UNIVAC Operating System/4 J I 3-4
PAGE REVISION

PAGE

No address is needed for an operand which is part of the instruction, that is, an immediate operand. When operands are
located in the register set, the register is addressed by using a 1-digit value. However, operands in main storage must be
addressed by a main storage address, the formation of which is explained in the following paragraphs.

Instructions which access operands from main storage have two operand specification fields:

4 bits 12 bits
The b (base) field of the operand designates a general purpose register. The value contained in this register represents the
base address. The 12 bits of the d (displacement)} field contain the displacement. The base address and the displacement

are added to obtain the effective address of the operand.

The RXinstructions use three fields to specify the operand address :

4 bits 4 bits 12 bits
An example of this addressing follows:

Opcode r X b d

50 4 7 5 100

This is the object code format of a store instruction; operand 1 is stored in the effective address of operand 2. The
contents of base register 5, the displacement value 100, and the contents of index register 7 are added to obtain the
effective address into which the contents of register 4 are stored. Each register requires 32 bits or 4 bytes of main
storage.

This example assumes that the flags in the relocation register pertaining to the destination operand are 0.

Before execution:

Contents of register 4 32,6
Contents of register 5 48,6
Contents of register 7 52,6
Contents of main storage locations 10046

19A through 19D, right justified

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 3-5

PAGE REVISION PAGE

After execution:
Contents of the registers are unchanged
Effective address is

48+100+52=19A,4

Contents of main storage locations 32,6
19A through 19D, right justified

Where an operand is described in terms of a main storage address and a length, the expression used can be simplified from
that shown in the instruction format by implying the base register or length. Information supplied in the USING and
DROP directives enables the assembler to separate a main storage address into a base register and a displacement (12.4).
Table 3—2 lists the complete specification for the operand referencing main storage, applicable instruction types, and
the operand format as it can be written utilizingan implied base register or length representation.

Table 3—2. Operand Specification Using Implied Base Register, Implied Length, or No Index Register

icabl Complete Operand Specification Using
lApp lca. e Specification .] j
nstruction for One Implied Base implied Length Implied B.ase Register
Type . or No index and Implied Length
Operand Register . h
Register* or No Index Register*
RR " NA NA NA
ry NA NA NA
RX dy(x5,b5) solx,) d,(.by) S
RS d,(by) S5 NA NA
St d,y{by) 54 NA NA
SS d4{iby) sq(N d,{b,y} s,
dy(b,) o NA NA
dyfly,by) s1(l1) d,(.by) s,
d2“2,b2) 52“2) dz(,bz) 52

* The index register cannot be impilied. If used, it must be specified as part of the operand.

LEGEND:
NA = Notapplicable
sS4 = Symbolic expression — operand 1

So Symbolic expression — operand 2

3.2.1. Implied Length

The implied length of an instruction operand is only applicable to the SS instructions. To imply a length, the
programmer specifies no length for the operand. The assembler automatically assembles the length attribute of the first
operand into the length field of the instruction. The length attribute of an operand is the length attribute of the
expression which is used to define the storage location. The length attribute of an expression is equal to the length
attribute of its first term; the length of a self-defining termis 1.

3-6
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER *

Some SS instructions contain two length fields (one for each operand)}, of which one or both can be implied. In either
case, the assembler puts the operand length in the length field.

The following instructions are examples of using the implied length feature of the assembler:

L] To move 80 characters from a field labeled OP2 (operand 2) defined as a 90-character field to a field labeled OP1
{operand 1) defined as an 80-character field, the instruction is written:

MVC OP1,0P2

In the above instruction, the length attribute of OP1 was used. In the following example, 80 characters are still
moved from OP2 to OP1 but the length is explicitly stated:

MVC OP1(80},0P2

L If all 90 characters of OP2 are to be moved to OP1, which is defined as 80 characters in length, the instruction
would be written with an explicit length so that the length attribute of OP1 is not used.

The instruction is written:

MVC OP1(90),0P2

3.2.2. Implied Base Registers

Information supplied in the USING and DROP directives {12.4) enables the assembler to separate a main storage address
into a base register and a displacement value.

The assembler maintains a USING table of the available registers and the values they are to contain at object time. A
USING directive adds a register and a value to the USING table or revises the value for a register already in the table. A
DROP directive removes a register and its associated value from the USING table. If the operands of a USING and DROP
directive are not valid, that line of the listing is flagged with an error indication.

If an operand address is given as an effective address instead of a base register and displacement specification, the
assembler searches the USING table for a value which yields a valid displacement (a value from O through 4095) and has
the same relocatability attribute. If there is more than one valid displacement value, the value which yields the smallest
displacement is used. If more than one register contains a value which yields the smallest displacement, the highest
numbered register is selected. If no register can be found which yields a valid displacement, the field is set to 0 and the
statement is flagged with an error indication. An absolute address without a base register indication is treated as an
effective address and the assembler attempts to convert it into a base register and a displacement value.

The specification of a USING directive indicates that one or more general registers are available for use as base registers.
The USING directive operands also state a value which the assembler assumes to be in the base registers at object time.

The value assigned to a register by the USING directive is used by the assembler in the assignment of main storage
addresses. The value assigned is assumed to be in the respective base registers at execution time. The effective addresses
are then derived by the hardware at execution time by adding the contents of the base register to the displacement value
when the instruction is processed.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-7

UP-NUMBER l PAGE REVISION l PAGE

3.3.PRIVILEGED OPERATION

The assembler instructions may be divided into two categories according to their mode of operation:

u Nonprivileged Instructions
The nonprivileged, or problem, instructions are available to both user programmer and system software for
normal data processing when the processor is in the problem state; that is, the proper bit of the program status
word (PSW) is set. If the program attempts to execute a privileged instruction, a program exception occurs.

L Privileged Instructions
The privileged, or supervisor, instructions are so named because their execution permits special priority processor
activity. When the processor is in the supervisor state, that is, when the proper bit of the program status word
(PSW) is not set, all instructions are valid. All privileged instructions are designated as such in this manual.

The processor may be switched from one state to the other by providing a new program status word with the proper bit

set appropriately. This may be accomplished by executing the load-PSW instruction (9.6). Since the load-PSW

instruction is a privileged instruction, the processor must have been in a supervisor state. The switching of status may

also occur as a result of an interrupt condition which causes a new program status word to be obtained from main
storage.

3.4.PRESENTATION OF INSTRUCTIONS

Sections 4 through 10 describe each instruction in the assembler repertoire. The instructions are grouped in sets
according to type:

a Fixed-point instructions

= Decimal instructions

u Floating-point instructions

- Logical instructions

= Branching instructions

- Status switching instructions

= input/output instructions

Thedescription of each instruction is presented in the following format:

= Instruction name — unless otherwise specified, the instruction applies to both the 9400/9480 and 90/60,70
environments

L] Symbolic representation, hexadecimal operation code, format type, and length
- Function — the operation performed by the instruction

n Object instruction format — specified only for those instructions which are exceptions to the formats shown in
Figure 3—1

7935 Rev. 1 SPERRY UNIVAC Operating System/4 3-8

UP-NUMBER PAGE REVISION PAGE

= Operational considerations
- detailed operation information
- restrictions on use
— condition code settings
- possible program exceptions
— applicable relocation and indirection flags (90/60,70 systems). Figure 3—2 lists and defines the

abbreviations used for relocation and indirection flags as well as illustrating their respective placement in
the format for the relocation register.

L Examples

Appendix A contains a list of the assembler instructions in alphabetical order according to mnemonic operation
code.

Appendix B describes the hardware differences between the SPERRY UNIVAC 9400/9480 Systems and the
SPERRY UNIVAC 90/60,70 Systems.

The basic concepts of address relocation and of indirect addressing are described in 4.6 of the processor manual,
UP-7936 (current version).

FLAGS
o |RIVIR[IIR OFFSET (IGNORED)
| |D|D}O}O
1 213]4}|5|6|7]8 19] 20 31
Flags (bits 3—7)

Bit Name

3 R1 branch and relative instruction fetch addresses
0 = absolute addresses
1 = relative addresses

4 1D indirect destination operand contro!
0 = direct addresses
1 = I|ACW addresses

5 RD relative destination operand control
0 = absolute
1 = relative

6 10 indirect origin operand control
0 = direct addresses
1 = |ACW addresses

7 RO relative origin operand control

0 = absolute addresses
= relative addresses

Offset (bits 8—19)

A 12-bit relocation value.

Figure 3~2. Relocation Register Format

41

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER] PAGE REVISION

4. Fixed-Point Instructions

4.1. GENERAL

The fixed-point instruction set provides for loading, storing, adding, subtracting, multiplying, dividing, comparing,
shifting, and sign control of fixed-point operands on the SPERRY UNIVAC 9400/9480 Systems, and 90/60,70
Systems. See 1.3.1 for information concerning the manner in which fixed-point numbers are represented and their
sign code established. Radix conversion of fixed-point operands is provided on the 90/60,70 systems. Unless
otherwise noted, both operands are treated as 32-bit signed integers. Negative quantities are always represented in
twos complement notation. A O result is always represented with a positive sign.

Fixed-point instructions are available in the RR, RX, RS, and S! formats. With the exception of the add- immediate
instruction, at least one of the operands is contained in one of the 16 general registers. The other operand may be
contained in main storage, in the same general register, or in another register. An operand address in main storage
may be specified as relative or absolute on the 9400/9480 systems. On the 90/60,70 systems, an operand address in
main storage may be specified as relative or absolute and direct or indirect under the control of the applicable
relocation register flags. Unless the first and second operands are contained in the same register, or otherwise noted,
the contents of the second operand location remain unchanged by the execution of the instruction.

This section describes the operation of each fixed-point instruction. The instructions are arranged in alphabetical
order according to mnemonic operation code. Each description includes a list of the possible program exceptions
and condition codes which may result. The relocation and indirection flags that are pertinent to the operand
addresses are listed. The object code format of the instruction is shown only for those instructions which differ from
the format shown in Figure 3—1. See Table 3—1 for an explanation of the abbreviations used in describing
instruction formats and Figure 3—2 for relocation flag abbreviations.

4.2. A (ADD)
M H . .
nemc?mc Source Code Hexadec,mal Format Object
Operation Operand Format Operation Tvpe Instruction
Code : Code e Length
A ry.dalxy byl BA RX Four Bytes
Function:

The contents of the full-word operand 2 in main storage at the address, specified by d2(x2,b2), are algebraically
added to the general register specified by r-

Operational Considerations:

. All 32 bits of both operands are added. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree. After overflow, the sign and magnitude
of the result are incorrect.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

4-2

l PAGE REVISION l PAGE

L Operand 2 must be on a full-word boundary.

L] The contents of operand 2 remain unchanged.

L An overflow interrupt may be inhibited if bit 36 of the PSW is set to 0.

s The condition code is set as follows:
- to0 (002) if resultis 0;

- to1 (012) if result is less than 0;

— to2(10,) if result is greater than O; or

- to 3(1 12) if overflow occurs.

L] Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Fixed-point overflow

Binary overflow

Indirect address specification

Specification

Indirect addressing

Protection

Specification (operand 2 or IACW not
on full-word boundary)

= Relocation and indirection flags (90/60,70):

- operand 1: none

—_ operand 2: RO, 10

Examples:
LABEL A OPERATIONA OPERAMD A
19 s e e o
I‘ RO N m ST . lLL\\—YDE . SR SO N SO T | SN FRTONS R S O SO T
Z' S S ! [,,,Ai.».; H ' O;)TABLE-i_ZO

1. The contents of the full word in main storage location JOE are added to register 14.

2. The contents of the full word in main storage addressed by TABLE+20 are added to register 10.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

4-3

PAGE REVISION PAGE

4.3. AH (ADD-HALF-WORD)

Mnemoni i j
onic Source Code Hexadec!mal Format Object
Operation Operand Format Operation T Instruction
Code Code ype Length
AH rydylxsby) 4A RX Four Bytes
Function:

The contents of the half-word operand 2in main storage at the address, specified by d_ (x

272

b,),are expandedtoa

full word by propagating the sign bit value through the 16 most significant bit positions. The operand is then

algebraically added to the general register, specified by r- The result is stored inoperand 1.

Operational Considerations:

All 32 bits of both operands are added. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree. After overflow, the sign and magnitude
of the result are incorrect.

The contents of operand 2 remain unchanged.

An overflow interrupt may be inhibited if bit 36 of the PSW is set to 0.

The condition code is set as follows:

to 0 (002) ifresultisQ;

to 1 (01 2) if result is less than 0;

to 2(10,) if result is greater than 0;or

to 3(1 12) if overflow occurs.

Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Fixed-point overflow

Binary overflow

Indirect address specification

Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. IACW not on full-word boundary

4-4

| PAGE REVISION |PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

- Relocation and indirection flags (90/60,70):
- operand 1: none

- operand 2: RO, 10

Examples:
LABEL A CPERATIONA OPERAND A
1 14 16
i
" U SO i dod A.H i ;,8.)1 F&Xa ‘L x e bbb o e R w.ﬂ. PV S S ‘
Q-- kb E“! L H Lod ;8)50 ()Jz)ix ke ‘ SN S B Y A S S SO SV NIV WD SO0 SUNE S ~ i

1. The contents of the half word in main storage location FOX are added to register 8.

2. -The effective address is obtained by adding the contents of base register 12 to 0. The contents of this address
are then added to register 8.

4.4. Al (ADD-IMMEDIATE)

Mnemc?mc Source Code Hexadecimal Format Oblect‘
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
Al dy(by)ip 93 (9400/9480) si Four Bytes
9A (90/60,70)
Function:

The binary value of operand 2, contained in i2 field, is algebraically added to the contents of the half-word
operand 1 in main storage at the address specified by d1 (b1). The result is stored in operand 1.

Operational Considerations:

L An overflow condition exists when the carry out of the sign bit position and the most significant
numeric bit positions disagree. After overflow, the sign and magnitude of the result are incorrect.

L The condition code is set as follows:

to0 (002) ifresultisO;

to 1{01 2) if result is less than O;

to2 (102) if result is greater than 0; or

- to3(1 12) if overflow occurs.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

45

PAGE

PAGE REVISION

| Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Fixed-point overflow Binary overflow
indirect address specification Specification

Indirect addressing

Protection

Specification

1. Operand 1 not on half-word
boundary

2. 1ACW not on fuli-word
boundary

[] Relocation and indirection flags (90/60,70):
— operand 1: RD, ID
— operand 2: none

Examples:

LABEL A GPERATION A OPERAND A
i 14 H

" ‘i'[i* AI Q(;?),Xlgols,e TR SRR NS SUUR WY NN SR SN S S S NN SO O §
2- IR NN AI b SMA-LL > ,&7 BT

1. The value —128, specified by 80, ., is added to the contents of main storage specified by the displacement0
modified by the contents of the base register 9.

2. The value 127 is added to the contents of the operand labeled SMALL.

45. AR (ADD)

Mnemoni : .
n c?mc Source Code Hexadec,mal Format Object
Operation Operand Format Operation Type Instruction
Code Code e Length
AR r.fs 1A RR Two Bytes
Function:

The 32 bits of operand 2, specified by r, are added to the 32 bits of operand 1, specified by r,. The sum is stored
inoperand 1.

4-6
PAGE REVISION PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Operational Considerations:
L All 32 bits of both operands are added. An overflow condition exists when the carry out of the sign bit

position and the most significant numeric bit position disagree. After overflow, the sign and magnitude
of the result are incorrect.

L The contents of r remain unchanged.
n The condition code is set as follows:
— to0 (002) ifresultisO;
— to 1 (01 2) if resultis less than Q;
— to2 (102) if result is greater than 0; or

— to 3(11 2) if overflow occurs.

L Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Fixed-point overflow Binary overflow

] Relocation and indirection flags (90/60,70): none

Examples:

1h

N AR lhw,u3
AR 1,12

N
[N

1. The contents of register 13 are added to the contents of register 14.

2. The contents of registers 12, 13, and 14 are added and the sum is placed in register 14. The sum of the
contents of registers 12and 13 is stored inregister 12.

4.6. C (COMPARE)

M .) .
nem(?mc Source Code Hexadec! mal Format Object'
Operation Operand Format Operation Type Instruction
Code Code ye Length

C " ,d2(x2,b2) 59 RX Four Bytes

7935 Rev. 1 SPERRY UNIVAC Operating System/4 -7

UP-NUMBER I PAGE REVISION IPAGE

- Function:
~— The full-word operand 1, specified by ry,is algebraically compared with the full-word operand 2, specified by
d, (xz,bz).
Operational Considerations:
L] The contents of both operands remain unchanged.
u The condition code is set as follows:
- to0 (002) if the operands are equal;
— to1(01 2) if operand 1 is less than operand 2;
— to 2 (102) if operand 1 is greater than operand 2; or
— code 3 is not used.
L] Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
— Indirect address specification Specification
— Indirect addressing
Protection
Specification (operand 2 or IACW
not on full-word boundary)
[] Relocation and indirection flags (90/60,70):
- operand 1: none
— operand 2: RO, 10
Examples:
] LABEL A:jkﬁ{i‘;&‘?%ix A
123 SN ic :
1. The contents of register 6 are compared with the full word in main storage location CAT.

2. The contents of register 8 are compared with the full word in main storage labeled CAT+4,

4-8
PAGE REVISION PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

4.7.CH (COMPARE-HALF-WORD)

Mnem(?mc Source Code Hexadecimal Format Ob]ect'
Operation Operand Format Operation Type Instruction
Code Code yp Length

CH " ,d2(x2,b2) 49 RX Four Bytes

Function:

The half-word operand 2 specified by dz(x2 ,bz), is expanded to a full word by propagating the sign bit value
through the 16 most significant bits. The full-word operand 1, specified by r is then algebraically compared with
operand 2.

Operational Considerations:

L] The contents of both operands remain unchanged.

= The condition code is set as follows:

to0 (002) if the operands are equal;

to 1 (01 2) if operand 1 is fess than operand 2;

to2 (102) if operand 1 is greater than operand 2; or

code 3is not used.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. 1ACW not on full-word
boundary

] Relocation and indirection flags (90/60,70):
- operand 1: none

— operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

l PAGE REVISION l PAGE

4-9

Examples:

LABEL A GEFFERATION A

IPERAND

&

e
&

CH

1. The contents of register 8 are compared with the half word in main storage location CTR.

CH .|

A)!CTR b
() 2664 .

2. The contents of register 6 are compared with the contents of the half word in main storage location 2564.

4.8.CR (COMPARE)
M H . .
nemt?mc Source Code Hexadec!mal Format Object‘
Operation Operand Format Operation Type Instruction
Code Code ye Length
CR r1.fo 19 RR Two Bytes
Function:

The full-word operand 1, specified by My is algebraically compared with the full-word operand 2, specified by r,

Operational Considerations:

L The contents of both operands remain unchanged.

] The condition code is set as follows:

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-10
URP-NUMBER PAGE REVISION PAGE
- t00 (002) if the operands are equal;
- to 1 {01 2) if operand 1 is less than operand 2;
— to2 (102) if operand 1 is greater than operand 2; or
- code 3is not used.
L Possible program exceptions: none
L] Relocation and indirection flags {90/60,70): none
Example:
LABEL A pPERATIONA GPERANG
1 o 14
- § ;
1. The contents of register 6 are compared with the contents of register 7.
4.9.CVB (CONVERT-TO-BINARY)—90/60,70
Mnemonic Hexadecimal Object
Operation Opse(::r:(:iel:coor:at Operation F;rmat Instruction
Code Code ype Length
cvB ryds(xy,by) 4F RX Four Bytes
Function:

The double-word operand 2, specified by d
number and placed in the operand 1 location, specified by -

b2), is converted from a packed decimal number to a binary

Operand 2 is a signed 15-digit packed decimal number contained in adouble-word main storage location. It
must begin on a double-word boundary. The number is checked for valid sign and digit code before
conversion to a 32-bit signed integer.

The maximum number which can be converted and still contained in a 32-bit register is 2,147,483,647. The
minimum number is —2,147,483,648. For decimal numbers exceeding this range, the 32 least significant

bits are stored in the first operand location and a fixed-point divide exception is generated.

If operand 2 is negative, the least significant 32 bits of the result are in twos complement notation.

The contents of operand 2 remain unchanged.

|
\
\
\
|
|
Operational Considerations:
]
(]
a
"
- The condition code remains unchanged.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION

4-11
PAGE

u Possible program exceptions:

- addressing exception

— dataexception (invalid sign or digit)

- fixed-point divide exception

- indirect address specification exception

- indirect addressing exception

- protection exception

- specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary)

] Relocation and indirection flags:

- operand 1:none

- operand 2: RO, 10

Example:

A oPERATIONA
10 16

OPERAND

1. The packed decimal number located at main storage location DEC is converted to binary and placed in

register 8.

4.10. CVD (CONVERT-TO-DECIMAL) — 90/60,70

M . . .
nem(?mc Source Code Hexadec!mal Format Object_
Operation Operand Format Operation T Instruction
Code P Code ype Length
CvD r1.d5(x5,b5) 4E RX Four Bytes
Function:

The full-word operand 1, specified by r. is converted from a binary number to a packed decimal number and
placed in the double-word operand 2, specified by d2 (x2 ,b2).

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

I PAGE REVISION I PAGE

Operational Considerations:

u Operand 1 is treated as a 32-bit signed integer. 1t is converted to a signed 15-digit packed decimal number
and placed in a double-word main storage location. The location must begin on a double-word boundary.

» The contents of the operand 1 register remain unchanged.

] The low order four bits of the result represent the sign.

4-12

= The condition code remains unchanged.

L] Possible program exceptions:

addressing exception
— indirect address specification exception
- indirect addressing exception

— protection exception

— specification exception {operand 2 not on double-word boundary or IACW not on full-word

boundary)
L Relocation and indirection flags:
- operand 1: none
- operand 2: RD, ID

Example:

LABEL A OPegATIONA
1 149 14

cvD | 6,BIN

1. The contents of register 6 are converted to a packed decimal number and placed in the double-word storage

location BIN.

4.11. D (DIVIDE) — 90/60,70

M H . .
nemcfmc Source Code Hexadec!mal Format OblBCt'
Operation Operand Format Operation Tvpe Instruction
Code P a Code P Length
D rydoi{xy o) 5D RX Four Bytes
Function:

The double-word operand 1 (the dividend), specified by r is divided by the full-word operand 2 (the divisor), at
the address specified by d2 (x2,b2). The quotient and remainder are stored in operand 1.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4 4-13

PAGE

PAGE REVISION

Operational Considerations:

Example:

Operand 1 is treated as a 64-bit signed integer and occupies an even-odd register pair. The operand 1 field
must specify an even-numbered register. The 32-bit remainder and 32-bit quotient replace the dividend in
the even-numbered and odd-numbered register, respectively.

Operand 2 is treated as a 32-bit signed integer. The contents of operand 2 remain unchanged after
execution.

The sign of the quotient is determined algebraically and the remainder assumes the sign of the dividend. AQ
quotient or O remainder is always positive.

When the quotient exceeds 32 bits or the divisor is equal to 0, a fixed-point divide exception occurs, no
division takes place, and the dividend remains unchanged.

The condition code remains unchanged.
Possible program exceptions:

— addressing exception

— fixed-point divide exception

— indirect address specification exception
— indirect addressing exception

— protection exception

- specification exception (operand 2 or IACW not on full-word boundary; or operand 1 field specifies
an odd-numbered register)

Relocation and indirection flags:
— operand 1: none

- operand 2: RO, 10

LABEL A crEraTion A OPERAND A

L . i &,DINIS

The contents of registers 8 and 9 are divided by the contents of the full word specified by DIVIS. The
quotient is stored in register 9; the remainder, in register 8.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

4-14
PAGE REVISION PAGE

4.12. DR (DIVIDE) — 90/60,70

M H . .
nemonic Source Code Hexadec,mal Format ObIOCt.
Operation Operand Format Operation T Instruction
Code Code ype Length
DR rifo 1D RR Two Bytes
Function:

The double-word operand 1 (the dividend), specified by ry is divided by the full-word operand 2 (the divisor),
specified by r,. The quotient and remainder replace operand 1.

Operational Considerations:

- Operand 1 is treated as a 64-bit signed integer and occupies an even-odd register pair. The operand 1
field must specify an even-numbered register. The 32-bit remainder and 32-bit guotient replace the

dividend in the even-numbered and odd-numbered register, respectively.

. Operand 2 is treated as a 32-bit signed integer. The contents of operand 2 remain unchanged after

execution.

» The sign of the quotient is determined algebraically and the remainder assumes the sign of the dividend.

A 0 quotient or O remainder is always positive.

= When the quotient exceeds 32 bits or the divisor is equal to 0, a fixed-point divide exception occurs, no
division takes place, and the dividend remains unchanged.

L] The condition code remains unchanged.

= Possible program exceptions:

—_ fixed point divide exception

- specification exception {operand 1 field specifies an odd-numbered register)

L] Relocation and indirection flags: none
Example:
LABEL A OFERATION A CEERAND A
} 10 14
!
I‘ i i ,_LJ DR e %hJ ' O i Gk i

1. The contents of registers 6 and 7 are divided by the contents of register 10. The quotient is stored in

register 7; the remainder, in register 6.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

4-15

PAGE REVISION PAGE

4.13. L (LOAD)

M H . .
nem?mc Source Code Hexadecf mai Format Obleﬂ.
Operation Opéran d Format Operation T Instruction
Code Code ype Length
L r1.d5(x5.05) 58 RX Four Bytes
Function:

The contents of the full-word operand 2 in main storage at the address specified by d2(x2,b2), are transferred
to the operand 1 register, specified by r-

Operational Considerations:

L] The contents of operand 2 remain unchanged.

= The condition code remains unchanged.

L] Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Indirect address specification

Specification

Indirect addressing

Protection

Specification (operand 2 or |ACW
not on full-word boundary)

] Relocation and indirection flags (90/60,70):

— operand 1: none

— operand 2: RO, 10

Examples:
LABEL A orERATION A CFERAND A
i 18 i
C L (4 MCHYH
1. The full word in main storage location MCH is loaded into register 14,

2. The four bytes following the four bytes addressed as MCH are loaded into register 14.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION lPAGE

4-16

4.14. LCR (LOAD-COMPLEMENT) — 90/60,70
M H . .
nemonic Source Code Hexadec.lmal Format Objec?
Operation Operand Format Operation T Instruction
Code Code ype Length
LLCR r.lo 13 RR Two Bytes
Function:

The twos complement of the full-word operand 2, specified by L is stored in the operand 1 location,

specified by r-

Operational Considerations:

= The contents of the operand 2 register remain unchanged.

] A fixed-point overflow condition exists when the maximum negative number is complemented; the

number remains unchanged.

u Zero remains unchanged under complementation.

= The condition code is set as follows:

to0 (002) if result is 0;
to 1 (012) if result is less than O;
to 2 (102) if result is greater than O; or

to3(1 12) if overflow occurs.

] Possible program exceptions:

— fixed-point overflow exception

n Relocation and indirection flags: none
Example:
LABEL A orEraTioNn A GPEHAND
! 10 14
!] i
,' i it 8 gL-CaK o ‘7)““8 e FI
1. The twos complement of the contents of register 8 is loaded into register 7.

g

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

4—17

PAGE REVISION PAGE

4.15. LH (LOAD-HALF-WORD)

N
Mnemc?mc Source Code Hexadecimal Format Obiect.
Operation Operand Format Operation Tvoe Instruction
Code P Code ve Length
LH r ,d2(x2,b2) 48 RX Four Bytes
Function:
The half-word operand 2, specified by d2 (x2,b2), is expanded to a full word by propagation of the sign bit
through the 16 most significant bit positions. The resulting full word is stored in operand 1, specified by ry-
Operational Considerations:
] The contents of operand 2 remain unchanged.
= The condition code remains unchanged.
] Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
~— Indirect address specification Specification
Indirect addressing
Protection
Specification
1. Operand 2 not on half-word
boundary
2. IACW not on full-word
boundary
L] Relocation and indirection flags 90/60,70:
— operand 1: none
— operand 2: RO, 10
Examples:
LABEL A OPERATION A ORFERANG
1 14 16 o
i
Ezi Cleoo bR 112 HAE
N]) . i
S~ TSN S S N . LH’ i J O 3 H’ A F"’Z
1. The two bytes in main storage location HAF are expanded to a full word and placed in register 12.

2. The two bytes in main storage location HAF+2 are expanded to a full word and placed in register 10.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 J I 4-18
PAGE REVISION

UP-NUMBER PAGE

4.16. LLR (LOAD-LIMITS-REGISTER) — PRIVILEGED INSTRUCTION — 9400/9480

Mnemc.'muc Source Code Hexadec,mal Format Oblect‘
Operation Operand Format Operation Type Instruction
Code P Code yp Length
LL.R d2(b2) 81 RS Four Bytes
Function:

The limits registers are loaded with the half word in main storage specified in operand 1, d2(b2). Bits 0—7 are
loaded into the upper limits register, bits 8—15 into the lower limits register. Treated as no-op when the
storage protection feature is not installed.

Operational Considerations:

n This is a privileged instruction which is executed and controlled by the supervisor.

L] The instruction loads the half-word operand from main storage specified by d2 (b2) into the limits
register.

L The r and Iy fields of this instruction are ignored.
- The condition code is set as follows:
- to 0 (00) if write protection feature is installed;
- to 1 (01) if write protection feature is not installed;
— codes 2 {10) and 3 (11) are not used.
L] Possible program exceptions:
- privileged operation exception

- specification exception

Example:
LABEL AOPERATIONA OPERAND A
10 16
| IR B LlljRA LﬂMTx‘ll114_1L41_L1L1L1L1L14_1141L1i1

1. The contents of the half word labeled LMT1 are loaded into the hardware limits registers.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-19

UP-NUMBER PAGE REVISION PAGE

4.17. LM (LOAD-MULTIPLE)

Mnemoni i j
¢?n|c Source Code Hexadec! mal Format Ob'”t.
Operation Operand Format Operation Tvoe Instruction
Code Code yp Length
LM ry.r3.d5(b5) 98 RS Four Bytes
Function:

The general registers starting with the operand 1 register, specified by . and ending with the operand 3
register, specified by ry, are loaded with full-word main storage operands beginning with operand 2 address,
specified by dz(b2).

Operational Considerations:

] The registers are loaded in ascending numeric sequence beginning with the operand 1 register and
continuing through the operand 3 register.

u One register may be loaded by specifying the same register number for operand 1 and operand 3.

= if the operand 3 specification is lower than the operand 1 specification, all registers with a number
greater than or equal to operand 1 and all registers with a number less than or equal to operand 3, are
loaded.

. The contents of main storage specified by operand 2 remain unchanged.

L] The condition code remains unchanged.

= Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Specification

Indirect addressing

Protection

Specification {operand 2 or IACW
not on full-word boundary)

n Relocation and indirection flags {90/60,70):
— operand 1: none

— operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 J l 4-20
PAGE REVISION

UP-NUMBER PAGE

Examples:
LABEL A OPERATION A GPERAND A
1 10 16 e -
l'_.i,.LJ.-J-.J.,....,L.,.i L-*Mm*” hf ;.1, O) L‘IOC?(& SO T SN VT N SO W WO ST YR VOO WO TR WO ST SO SO WO IO

S| 1V1m " LMii g)é)L}JDATA S OIS VAN YO SO TR VU SO NN DO TS TS O N VOGS SN SO SO S
LM . 5,5~,JCLQUANI5 T VR W SN WSO 0T WOOK IOOF SO N ST S SO TOOY SONN S0 S S

W 10

1. Registers 6, 7, 8, 9, and 10 are loaded with full words beginning with location 4096.

2. Registers 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, and 6 are loaded, in this order, with full words
beginning at main storage location DATA.

3. Register 5 is loaded with the full word at main storage location COUNT.

4.18. LNR (LOAD-NEGATIVE) — 90/ 60,70

Mne . . .
" m(fmc Source Code Hexadec.umal Format Obwcf
Operation Operand Format Operation T Instruction
Code Code Ype Length

LNR r1.hp 11 RR Two Bytes

Function:

The twos complement of the absolute value of the full-word operand 2, specified by Mye is loaded into operand
1, specified by ry

Operational Considerations:
- The contents of the operand 2 register remain unchanged.
L Positive numbers are complemented; negative numbers remain unchanged.
] Zero remains unchanged under complementation.
L The condition code is set as follows:
- to 0 (002) if result is O;
- to 1 (012) if result is less than 0; or
- codes 2 and 3 are not used.
L] Possible program exceptions: none

- Relocation and indirection flags: none

4-21

PAGE

7936 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

Example:
LABEL A GPERATION A GPERAND A
16 14
1. The twos complement of the absolute value of the contents of register 4 is placed in register 9.

4.19. LPR (LOAD-POSITIVE) — 90/60,70

M . . .
nemonic Source Code Hexadecfmal Format Oblect'
Operation Operand Format Operation Tyoe Instruction
Code P Code yp Length

LPR ry.0o 10 RR Two Bytes

Function:

The absolute value of the full-word operand 2, specified by ry is placed into operand 1, specified by ry-

Operational Considerations:
n The contents of the operand 2 register remain unchanged.
u Positive numbers are unchanged by this operation.
L] When operand 2 is negative, the twos complement is placed in the operand 1 location.

L When operand 2 contains the maximum negative number, a fixed-point overflow condition exists and
the number remains unchanged.

L] The condition code is set as follows:
- to 0 (002) if result is O;
- code 1 is not used;
— to 2 (102) if result is greater than O; or
- to 3 (1 12) if overflow occurs.
L] Possible program exceptions:
— fixed-point overflow exception

] Relocation and indirection flags: none

7935 Rev. 1

UP.NUMBER

SPERRY UNIVAC Operating System/4

4-22

‘ PAGE REVISION ‘ PAGE

Example:
LABEL A OPERATION A OPFRAND A
10 16 L
/' fop o | L-lple’ 5]né) Lot ! fod E
1. The absolute value of the contents of register 6 is loaded into register 5.
4.20. LR (LOAD)
Mnem?noc Source Code Hexadec.imal Format Objecf
Operation Operand Format Operation Tvee Instruction
Code Code ye Length
LR 1.0y 18 RR Two Bytes
Function:

The contents of the full-word operand 2, specified by r,, are transferred to the operand 1 register specified by

I'1.

Operational Considerations:

L] The contents of the operand 2 register remain unchanged.

] The condition code remains unchanged.

] Possible program exceptions: none

] Relocation and indirection flags {90/60,70): none

Example:

LABEL A OPERATION A OPERAND A
1 10 16 — o
/‘ Lo] L& Lo /‘%j ? [S T N R i !
1. The full word in register 9 is loaded into register 14.
4.21. LTR (LOAD-AND-TEST)
:\)nnemt?mc Source Code Hexadecimal Format Objoct.
peration Operand Format Operation Tvoe Instruction
Code Code yp Length
LTR 0o 12 RR Two Bytes

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

J PAGE REVISION

4-23

PAGE

Function:

The contents of the full-word operand 2 register, specified by r,, are transferred to the operand 1 register,
specified by r,. the condition code is set.

Operational Considerations:

= The contents of the operand 2 register remain unchanged.

n The condition code is set as follows:

to 0 (002) if result is O;

to 1 (012) if result is less than O;

to 2 (102) if result is greater than O; or

code 3 is not used.

L] Possible program exceptions: none

[] Relocation and indirection flags {90/60,70): none:

Example:
LABEL A OPERATION A OPERAND A
H 10 16 o
/' . i 1_4 7/’:6 i 1,6{)‘7 RS SO S SUR A
1. The full word in register 9 is loaded into register 14 and the condition code is set.
4.22. M (MULTIPLY) — 90/60,70
Mnemc'mlc Source Code Hexadec.imal Format Obiect.
Operation Operand Format Operation T Instruction
Code Code ype Length
M r1.d5{x5,b5) 5C RX Four Bytes
Function:

The full-word operand 1 {multiplicand), specified by ry is multiplied by the full-word operand 2 (multiplier),
specified by d2(x2,b2), and the product is stored in operand 1.

Operational Considerations:

= Both operands are treated as 32-bit signed integers.

L The contents of operand 2 remain unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-24

UP-NUMBER l PAGE REVISION lPAGE

- The product is treated as a 64-bit signed integer and occupies an even-odd register pair; therefore, the
operand 1 register must specify an even-numbered register. The first operand is taken from the
odd-numbered register. The contents of the even-numbered register are ignored until replaced by the
most significant 32 bits of the product.

L The sign of the product is determined algebraically.

. The condition code remains unchanged.

u Possible program exceptions:

addressing exception

- indirect address specification exception
- indirect addressing exception

- protection exception

— specification exception (operand 2 or {ACW not on full-word boundary; or operand 1 specifies an
odd register address)-

u Relocation and indirection flags:
— operand 1: none
— operand 2: RO, 10

Example:

LABEL A OPERATION A GPERAND A
Y 10 16

Flocoito o[Moo MULT

1. The contents of register 7 are multiplied by the contents of the full word in main storage location
MULT. The product is placed in registers 6 and 7.

4.23. MH (MULTIPLY-HALF-WORD) — 90/60,70

Mnemani i i
n c?mc Source Code Hexadec,mal Format Ob]ect.
Operation Operand Format Operation Tvoe Instrustion
Code Code Yp Length
MH r1,d2(x2,b2) 4Cc RX Four Bytes

Function:

The half-word operand 2, specified by dz(xz,bz), is expanded to a full word by propagation of the sign bit
through the 16 most significant bit positions. Operand 1 (the multiplicand), specified by e is then multiplied
by operand 2 (the multipiier) and the product is stored in operand 1.

4--25

PAGE

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

[PAGE REVISION

Operational Considerations:
L] Both operands are treated as 32-bit signed integers.
= The product has a iength of 47 or fewer bits. After multiplication, the least significant 32 bits of the
product are placed in the operand 1 location. If the product exceeds 32 bits, the most significant bits are
ignored and an overflow condition is not indicated. The sign of the product may be incorrect when the
most significant bits are lost.
= The sign of the product is determined algebraically.

L The condition code remains unchanged.

L] Possible program exceptions:

addressing exception

- indirect address specification exception
- indirect addressing exception

— protection exception

— specification exception (operand 2 not on half-word boundary or IACW not on full-word
boundary)

= Relocation and indirection flags:
- operand 1: none
- operand 2: RO, 10

Example:

LABEL A OPERATION A
1 10 18

/ S U W MH

CPERAND A

.QJ HA!L—F td] bk R TN T S SO T

1. The contents of register 8 is multiplied by the half word in main storage location HALF and product is
stored in register 8.

4.24. MR (MULTIPLY) — 90/60,70

Mnemc?mc Source Code Hexadec,mal Format Object.
Operation Operand Format Operation Tvpe Instruction
Code Code e Length
MR rifo 1C RR Two Bytes
Function:

The full-word operand 1 (the multiplicand), specified by ry.is multiplied by the full-word operand 2 {(the
multiplier), specified by Iy and the product is stored in operand 1.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 l \ 4-26
PAGE RE VISION

PAGE

Operational Considerations:

Examples:

Both operands are treated as 32-bit signed integers. The product is treated as a 54-bit signed integer and
occupies an even-odd register pair; therefore, the operand 1 specification must specify arn even-numbered
register. Operand 1 is taken from the odd-numbered register of the pair. The even-numbered register may
contain operand 2; if not, the contents of the even-numbered register are ignored until replaced by the
most significant 32 bits of the product.

An overflow cannot occur.

The sign of the product is determined algebraically.

The condition code remains unchanged.

Possible program exceptions:

- specification exception (operand 1 specifies an odd-numbered register)

Relocation and indirection flags: none

LABEL A OPESATION A OPERAND A

s

—
¥

Hmwia;asMﬁAh

(0|f®t>.::z Ve ; [EROTE SR S SR T

The contents of register 7 are multiplied by the contents of register 9. The result is stored in registers 6
and 7.

The contents of register 7 are multiplied by the contents of register 6. The result is stored in registers 6
and 7.

4.25. S (SUBTRACT)

Mnemoni i j
nemonic Source Code Hexadecfmal Format Ob;ect.
Operation Operand Format Operation Tvoe Instruction
Code Code e Length
S 4 ,d2(x2,b2) 58 RX Four Bytes

Function:

The

full-word operand 2, specified by d,,(xz,b,,), is subtracted from the full-word operand 1, specified by ry,

and the result is stored in operand 1.

Operational Considerations:

The subtraction is performed by means of signed algebraic twos complement binary addition.

7935 Rev. 1

UP.NUMBER

SPERRY UNIVAC Operating System/4

4-27

PAGE REVISION PAGE

Examples:

All 32 bits of both operands are used. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree.

The contents of operand 2 remain unchanged.

The condition code is set as follows:

w0 (002) if resultis O;

code 3 is not used.

Possible program exceptions:

to1 (012) if result is less than 0;

to 2 (102) if result is greater than 0; or

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Fixed-point overflow

Binary overflow

Indirect address specification

Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

Relocation and indirection flags (90/60,70):

- operand 1: none

— operand 2: RO, 10

LABEL

A geepation A
10 14

GPERAND

{%‘kg;

I VALUE .

The contents stored in the the full word at main storage location VALUE are converted to a twos
complement binary value and added to the contents of register 14.

The contents stored in the full word located at address 4000 are converted to a twos complement binary
value and added to the contents of register 10.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

4-28
PAGE REVISION | PAGE

4.26. SH (SUBTRACT-HALF-WORD)

Mnem?mc Source Code Hexadec!mal Format Object.
Operation Operand Format Operation T Instruction
Code Code ype Length
SH rydyi(xg.by) 4B RX Four Bytes
Function:

The half-word operand 2, specified by d,(x,,b,), is expanded to a full word by propagation of the sign bit
value through the 16 most significant bit positions. Operand 2 is then subtracted from the full-word operand
1, specified by ry and the result is placed in operand 1.

Operational Considerations:

" The subtraction is performed by means of signed algebraic twos complement binary addition.

L] All 32 bits of both operands are used. An overflow condition exists when carry out of the sign bit
position and the most significant numeric bit position disagree.

L] The contents of operand 2 remain unchanged.

u The condition code is set as follows:

to O (002) if result is O;

to 1 (012) if result is less than O;

- to 2 (10,) if result is greater than O; or

to3 (1 12) if overflow occurs.

. Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Fixed-point overflow

Binary overflow

Indirect address specification

Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary
2. IACW not on full-word

boundary

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

4-29
PAGE

L] Relocation and indirection flags:

- operand 1: none
- operand 2: RO, 10
Examples:
LABEL A OPERATION A OPERAND A
1 10 16 e
l' S S S S { SR g;H’ L IQJD‘EbTN L S5 TNUR WUV VOO WO SO ‘, bk i £ i
2;115% ;S‘H ‘5)10?4<s;’ P i
1. Subtract the contents stored in the half word located at DEDTN from the contents of register 10.
2. Subtract the contents stored in the half word located at address 1094 from the contents of register 15.
4.27. SLA (SHIFT-LEFT-SINGLE) — 90/60,70
Mnemonic Hexadecimal Object
Operation Opse‘:::;e::) (:’:at Operation FTorm:t Instruction
Code Code yp Length
SLA r1.d5(by) 88 RS Four Bytes
Function:
The 31-bit integer operand 1, specified by . is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d2(b2).
Object Instruction Format:
OPERATION OPERAND 1| OPERAND 3 OPERAND 2
0 CODE 718 1112 15{16 19120 31
8B e unused b2 d2
Operational Considerations:
u The vacated least significant bit positions of the operand 1 register are zero filled.
n The sign bit remains unchanged.
= If a bit not equal to the sign bit is shifted out of the most significant numeric bit position, a fixed-point
overflow condition exists.
L For numbers with an absolute value of less than 230, a left shift of one bit position is equivalent to
multiplying the number by 2.
- .

Shift amounts from 31 to 63 cause the entire integer to be shifted out of the register. When the entire

integer field for a positive number has been shifted out, the register contains a value of 0; for a negative

. . 1
number, the register contains -3

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION | PAGE

4-30

- The condition code is set as follows:
— to 0 (002) if resultis 0;
— to 1 (012) if result is less than O;
— to 2 (102) if result is greater than O; or
— 1o 3(11,) if overflow occurs.
n Possible program exceptions:
- fixed-point overflow exception
L] Relocation and indirection flags: none
Example:
LABEL A GPERATION A OPERANMD A
1 14 16 _—
/ : i ! { gLA ! ‘s i i i b i
J
1. The contents of register 8 are shifted to the left one bit position.

4.28. SLDA (SHIFT-LEFT-DOUBLE) — 90/60,70

Mnemt?mc Source Code Hexadecfmal Format Object.
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
SLDA ry.dylby) 8F RS Four Bytes
Function:

The 63-bit integer operand 1, specified by o is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by dz(bz)'

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 3 OPERAND 2
0 CODE 718 1112 15/16 1920 31
8F N unused b, d,

Operational Considerations:

The r specification in operand 1 must refer to the even-numbered register of an even-odd register pair.
The contents of both registers, except the sign bit of the even-numbered register, are treated as a 63-bit

integer.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION PAGE

L] The vacated least significant bit positions of the register pair are zero filled.

] The sign bit of the even register remains unchanged.

L] If a bit not equal to the sign bit is shifted out of the most significant numeric bit position of the
even-numbered register, a fixed-point overflow condition exists.

= A 0 shift value provides a double-length sign and magnitude test.

= The condition code is set as follows:
— t00(00,)if resultis O;
— to 1 (012) if result is less than O;
— to 2 (10,,) if result is greater than 0; or
— to 3(11,) if overflow occurs.

. Possible program exceptions:
— Fixed-point overflow exception
- Specification exception (operand 1 specifies an odd register number)

» Relocation and indirection flags: none

Example:

LABEL A DFERATION A CPERAND A

1 10 i%

/' FRR T U S@A 8J;‘Lus ST RO U T VNS SRUOE SN SONE OIS O STE S ‘ VNN WU DO S
1. The contents of register 8 and register 9, taken as a 63-bit integer, are shifted to the left one bit position.

4.29. SLM (SUPERVISOR-LOAD-MULTIPLE) — PRIVILEGED INSTRUCTION

4-31

Mnemoni i i
n .nlc Source Code Hexadec!mal Format Ob]ect_
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
SLM ryradsibs) B8 RS Four Bytes
- Function:

The problem general registers starting with the operand 1 register specified by r,, and ending with the operand

3 register, specified by r

3’

address specified by d, (b2).

are loaded with full-word main storage operands beginning with the operand 2

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE

l PAGE REVISION

Operational Considerations:

Examples:

N~

This is a privileged instruction which is executed and controlled by the supervisor.
This instruction is similar to the load-multiple instruction (4.16) except that in the
supervisor-load-multiple instruction the operands always refer to problem general registers even though

the processor is in the supervisor state.

The registers are loaded in ascending numeric sequence begmmng with the operand 1 numbered register
and continuing through the operand 3 numbered register.

One register may be loaded by specifying the same register number for operand 1 and operand 3.

If the operand 3 specification is lower than the operand 1 specification, all registers with a number
greater than or equal to operand 1 and all registers with a number less than or equal to operand 3 are
loaded.

The contents of main storage specified by operand 2 remain unchanged.

The condition code remains unchanged.

Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Specification

Indirect addressing

Privileged operation

Protection

Specification (operand 2 or IACW
not on full-word boundary)

Relocation and indirection flags:
- operand 1: none

- operand 2: RO, 10

LABEL A GPEERATION A
10 1%

1.

2,

TS <7AREA
. SLM%‘?

Problem registers 4 through 9 are loaded with full words beginning at main storage location AREA.

Problem registers 9, 10, 11, 12, 13, 14, 15,0, 1, and 2 are loaded with full words beginning at main
storage location DATA.

4-32

7935 Rev. 1

UP.-NUMBER

SPERRY UNIVAC Operating System/4

4-33

PAGE REVISION PAGE

S

4.30. SR (SUBTRACT)

M . . .
nemt?mc Source Code Hexadec!mal Format Object.
Operation Operand Format Operation Tvpe Instruction
Code Code ve Length
SR f1.05 18 RR Two Bytes
Function:

The full-word operand 2, specified by My is subtracted from the full-word operand 1, specified by ry and the
result is stored in operand 1.

Operational Considerations:

L] The subtraction is performed by means of signed algebraic twos complement binary addition.

L] All 32 bits of both operands are used. An overflow condition exists when the carry out of the sign bit
position and the most significant numeric bit position disagree.

= The contents of operand 2 remain unchanged.

L] The condition code is set as follows:

u Possi

to 0 (002) if result is 0;

to 1 (012) if result is less than O;

to 2 (102) if result is greater than O; or

to 3 (1 12) if overflow occurs.

ble program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Fixed point overflow

Binary overflow

= Relocation and indirection flags: none
Example:
LABEL A OPERATION A OPERAND
1 15 16 o e
" U N \ii’\ Lo -J\&r-] e 4
1. The contents of register 7 are converted to a twos complement binary value and added to the contents
of register 9.

4-34

PAGE REVISION l PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

4.31. SRA (SHIFT-RIGHT-SINGLE) — 90/60,70

Mnem(.)mc Source Code Hexadec.lmal Format ObJECt_
Operation Operand Format Operation Type Instruction
Code P a Code e Length

SRA ry.dylby) 8A RS Four Bytes

Function:

The 31-bit integer operand 1, specified by r. is shifted right the number of bit positions specified by the least

significant six bits of the operand 2 address, specified by d2(b2)_

Obiject Instruction Format:

OPERATION OPERAND 1 | OPERAND 3 OPERAND 2
0 CODE 718 1112 15]16 19)20 31
8A " unused b2 d2

Operational Considerations:

= The vacated high order bit positions of the operand 1 register are sign filled.

. The bits shifted out of the least significant bit position of the registers are lost.

n A right shift of one bit position is equivalent to division by 2 with rounding downward. When an even
number is shifted right one position, the value of the field is obtained by dividing the value by 2. When
an odd number is shifted right one bit position, the value of the field is obtained by subtracting 1, then
dividing the value by 2. For example, 5 shifted right one bit position yields 2, whereas —5 yields —3.

L] Shift values from 31 through 63 cause the entire integer field to be shifted out of the register. When the
entire integer field of a positive number has been shifted out, the register contains a value of 0. For a

negative number, the register contains a value of —1.

a The condition code is set as foliows:

to 0 (002) if result is 0;

to1 (012) if result is less than O;

to 2 (10,) if result is greater than 0; or

code 3 is not used.

L Possible program exceptions: none

L] Relocation and indirection flags: none

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION l PAGE

4-35

Example:

LABEL

A OPERATION A
18 16

CPERAMND

dRA

1. The contents of register 7 are shifted to the right one bit position.

4.32. SRDA (SHIFT-RIGHT-DOUBLE) — 90/60,70

M H . .
Onemenlc Source Code Hexadecf mal Format Object.
peration Operand Format Operation Tvpe Instruction
Code P Code yp Length
SRDA ry.do{by) 8E RS Four Bytes
Function:

The 63-bit integer operand 1, specified by ry.is shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by dz(bz)'

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 3 OPERAND 2
0 CODE 718 1112 15i16 19120 31
8E " unused b2 d2
Operational Considerations:
L The r specification in operand 1 must refer to the even-numbered register of an even-odd register pair.
The contents of both registers, except the sign bit of the even-numbered register, are treated as a 63-bit

integer.
L The vacated most significant bit positions of the register pair are sign filled.
L] A 0 shift value provides a double-length sign and magnitude test.

L] The condition code is set as follows:

to0 (002) if result is O;

to 1 (012) if result is less than O;

to 2 (10,) if result is greater than O; or

- code 3 is not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-36

UP-NUMBER l PAGE REVISION I PAGE

= Possible program exceptions:

- Specification exception (operand 1 specifies an odd register number)

= Relocation and indirection flags: none
Example:
LABEL D OPERATION A OPERAND A
10 16
I' s boas ‘_Rm _)1‘3 YA SN VT SN N WO SO VOO S SO 0 WO T U U SRR

1. The contents of register 8 and register 9, taken as a 63-bit integer, are shifted to the right one bit
position.

4.33. SSTM (SUPERVISOR-STORE-MULTIPLE) — PRIVILEGED INSTRUCTION

Mnem?mc Source Code Hexadecfmal Format Objecf
Operation Operand Format Operation Tvpe Instruction
Code Code e Length

SSTM r ,ra,dz(bz) BO RS Four Bytes

Function:
The contents of a group of problem general registers, starting with the operand 1 register, specified by ry
ending with the operand 3 register, specified by r,, are stored in the main storage location designated by
operand 2, specified by d2(b2).
Operational Considerations:
L] This is a privileged instruction which is executed and controlled by the supervisor.
n This instruction is similar to the store-multiple instruction (4.35) except that in the
supervisor-store-multiple instruction the operands always refer to problem general registers even though
the processor is in the supervisor state.

L] The contents of operand 1 through operand 3 remain unchanged.

® When the operand 3 specification is lower than the operand 1 specification, the register numbers wrap
around from 15 to 0. For this reason, all possible combinations of operand 1 and operand 3 are valid.

L] The condition code remains unchanged.

Possible program exceptions:

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

4-37

PAGE REVISION PAGE

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Indirect address specification

Specification

Indirect addressing

Storage protection

Privileged operation

Protection

Specification (operand 2 or IACW
not on full-word boundary)

L] Relocation and indirection flags (90/60,70):

- operand 1: none

— operand 2: RD, ID

Examples:

LABEL

A prgration A

%

GPERAND

S~
i

.

W

o
{8

STM | 6,8, RESR .~
; \5, 4 ;j;@,AIN

1. The contents of registers 6, 7, and 8 are placed in the main storage location REGR.

2. The contents of registers 15, 0, 1, 2, 3, and 4 are placed in main storage, beginning at the location

labeled GAIN.

4.34. ST (STORE)

Mnemqmc Source Code Hexadec,mal Format Object'
Operation Operand Format Operation Tyvpe Instruction
Code P Code e Length
ST rydy{xg byl 50 RX Four Bytes
Function:

The contents of operand 1, specified by r,, are stored in the main storage location operand 2, specified by

d2 (x2 ,b2).

Operational Considerations:

L The contents of operand 1 remain unchanged.

L] The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-38

UP-NUMBER PAGE REVISION PAGE

. Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 92400/9480 Systems
Addressing Addressing
Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or IACW
not on full-word boundary)

= Relocation and indirection flags:
- operand 1: none

- operand 2: RD, ID

LABEL A OPERATION A OPERAND A
1 19 14

,' SRR . Sfr ;§ Ly LR—:E‘)UL:"‘ 8 TS VO O LT TR AU O OOE OO RO 0 S SOE DY S DO HO

1. The contents of register 7 are placed in main storage location RESULT.

4.35. STH (STORE-HALF-WORD)

M H o .
nemcfmc Source Code Hexadecllmal Format Ob;ecti
Operation Operand Format Operation T Instruction
Code P Code ype Length
STH ry ,d2(x2,b2) 40 RX Four Bytes
Function:

The least significant 16 bits of the contents of operand 1, specified by r,. are stored in the half-word main
storage location operand 2, specified by d2(x2 ,b2).

Operational Considerations:
a The contents of the operand 1 register remain unchanged.
L] The condition code remains unchanged.

" Possible program exceptions:

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

4-39

PAGE REVISION PAGE

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 8400/9480 Systems

Addressing

Addressing

Indirect address specification

Specification

Indirect addressing

Protection

Specification

1. Operand 2 not on half-word
boundary

2. IACW not on full-word
boundary

L] Relocation and indirection flags (90/60,70):

Example:

operand 1: none

operand 2: RD, ID

LABEL A OPERATION A

14

OPERANMD

1. The least significant 16 bits of register 7 are placed in main storage location RESULT.

4.36. STM (STORE-MULTIPLE)

M H . .
nemt?mc Source Code Hexadecgmal Format Ob]ect.
Operation Operand Format Operation Tvoe Instruction
Code P Code e Length
STM M ,l’3,d2(b2) 90 RS Four Bytes
Function:

The contents of a group of general registers, starting with the operand 1 register specified by r,. and ending
with the operand 3 register specified by ry, are stored in the main storage location designated operand 2,
specified by d2(b2).

Operational Considerations:

L] The contents of operand 1 through operand 3 remain unchanged.

] When the operand 3 specification is lower than the operand 1 specification, the register numbers wrap
around from 15 to 0. For this reason, all possible combinations of operand 1 and operand 3 are valid.

L] The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 4-40

UP-NUMBER PAGE REVISION PAGE

= Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 2400/9480 Systems
Addressing Addressing
Indirect address specification Specification

Indirect addressing

Protection

Specification {(operand 2 or |ACW
not on full-word boundary)

] Relocation and indirection flags:
— operand 1: none

— operand 2: RD, ID

Examples:

LABEL A OPERATION A OPERAND A
10 16

Lx‘*aSTM' éSQRL—.4

™=

1. The contents of registers 7, 8, and 9 are placed in main storage, beginning at the location labeled
ANSWER.

2. The contents of registers 14, 15, 0, 1, 2, and 3 are placed in main storage, beginning at the location
labeled STORE.

5-1

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER | PAGE REVISION

5. Decimal Instructions

5.1. GENERAL

The decimal instruction set provides for adding, subtracting, multiplying, dividing, comparing, and format
conversion of variable-length operands. Unless otherwise noted, operands are treated as signed decimal integers in
packed format. See 1.3.4 for information concerning the manner in which decimal numbers are represented and
their sign codes established.

All decimal instructions are represented in the SS format in which each operand is contained in main storage. On the
SPERRY UNIVAC 9400/9480 Systems, each main storage address is absolute; on the SPERRY UNIVAC 90/60,70
Systems, each main storage address may be specified as relative or absolute and direct or indirect under the control
of the applicable relocation register flags. The address resulting from the relocation and indirection designates the
main storage address of the most significant byte of the operand. Operands are always processed from right to left
(that is, least significant byte to most significant byte). If the operands are of unequal length, the shorter is
considered to be extended with 0 digits. If most significant digits or carries are lost because the first operand field is
too short to accommodate the result of a decimal operation, a decimal overflow exception is detected. Unless the
first and second operands overlap, the contents of the second operand location in main storage remain unchanged by
the execution of the instruction.

This section describes the operation of each decimal instruction. The instructions are arranged in alphabetical order
according to the mnemonic operation code. Each description includes a list of the possible program exceptions and

~ condition codes which may result. The relocation and indirection flags that are pertinent to the operand address are
listed. See Table 3—1 for an explanation of the abbreviations used in describing instruction formats.

5.2. AP (ADD-DECIMAL)

M - . .
nem(?mc Source Code Hexadecgmal Format Obleﬂ'
Operation Operand Format Operation Type Instruction
Code Code yp Length

AP dy(ly,bg)'d2“2'b2) FA SS Six Bytes

Function:

The contents of operand 2, specified by dz(l2,b2), are added to the contents of operand 1, specified by
d1 (I1 ,b1), and the result is stored in the operand 1 location.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

5-2

PAGE

PAGE REVISION

Obiject Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7|8 15|16 1920 31
FA I b,
732 35,36 OPERAND 2 a7
) by d7

Operational Considerations:

Addition is performed from right to left.

If operand 2 is shorter than operand 1, operand 2 is extended with O digits.

An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carry out of the most significant digit position of the result field is lost.

Operand 1 and operand 2 may overlap if their least significant bytes coincide. This makes it possible to
add a number to itself.

The condition code is set as follows:

to 0 (002) if resultis O;

to1 (012) if result is less than O;

to 2 (102) if result is greater than O; or

to 3 (1 12) if overflow occurs.

Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Decimatl overflow

Decimal overflow

Indirect address specification

Storage protection

Indirect addressing

Protection

Specification (FACW not on full-word
boundary)

Data exception
1. Invalid overlap

2. Invalid sign or digit code

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

5-3

PAGE

PAGE REVISION

. Relocation and indirection flags (90/60,70):

- operand 1: RD, ID

- operand 2: RO, 10

Operational Differences:

[] 9400/9480 systems

— If both operand 1 and operand 2 are unsigned, a positive sign is assumed.

— In the case of overflow, the sign of the answer will be correct even if the answer is zero; a zero
answer normally carries a plus sign.

— If operand 2 is longer than operand 1, the remaining digits of operand 2 are ignored.

L] 90/60,70 systems

- All digits and signs are checked for validity; the sign of the result is determined algebraically.

— In the case of overflow where the most significant digits are lost, the partial result has the sign
which the complete result would have had; a zero result is positive when the operation is
completed without overflow.

- An interrupt may occur as a result of processing the significant digits.

Examples:

16

LABEL A oPERATION A GPERAND A

Lt AR

)

N

Tor®) Tierd)
| S;UZMJ(ADbg e) o

¥

1. The 4-byte operand specified by the label INPT is added to the 5-byte operand specified by the label
TOT. Assuming that all signs are positive, the contents of the operands may be represented as follows:

TOT before execution 0976981365+
INPT before and after execution 9753142+
TOT after execution 1074b1277+

2. The operand specified by the label ADD is added to the contents of the operand specified by the label
SUM. The lengths of the operands are implied. The instruction is assigned operand lengths which are
determined during the assembly process. The length attribute for each label is placed into the | field of

the instruction.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION l PAGE

5-4

5.3. CP (COMPARE-DECIMAL)

M . . .
nemcfmc Source Code Hexadeclnmal Format Ob;ocil
Operation Operand Format Operation Tvee Instruction
Code Code e Length

cp d,{ly.b, LPRIPE .Y F9 SS Six Bytes

Function:

The contents of operand 1, specified by d1 (I1 ,b1), are algebraically compared with the contents of operand 2,

specified by d

L0,,).

Object instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7|8 15|16 19,20 31
F9 I1 |2 b1 d1)
>32 35,36 OPERAND 2 47
r by 97

Operational Considerations:

The comparison proceeds from right to left.

Operands with 0 values and unlike signs compare as equal.

Al valid codes representing the same sign are considered equal.

Operand 1 and operand 2 may overlap if their least significant bytes coincide.
The contents of both operands remain unchanged.

The condition code is set as follows:

100 (002) if operand 1 equals operand 2;

to 1 (012) if operand 1 is less than operand 2;

to 2 (102) if operand 1 is greater than operand 2; or
— code 3 is not used.

Possibie program exceptions:

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

5-56

PAGE REVISION l PAGE

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (}ACW not on full-word
boundary)

Data exception
1. Invalid overlap

2. Invalid sign or digit code

] Relocation and indirection flags (90/60,70):
- operand 1: RD, ID
- operand 2: RO, 10
Operational Differences:
= 9400/9480 systems
- If operand 2 is longer than operand 1, the excess high order digits of operand 2 are ignored.
— If operand 1 is longer than operand 2, data from operand 2 is zero filled to extend the operand.
L] 90/60,70 systems

— If the operand fields are unequal in length, the shorter field is zero filled to the length of the
longer.

— All signs and digits are checked for validity and the sign of the result is determined aigebraically.

Example:
LABEL A OPERATION A GPFERAND A
i 106 i
5 ~—
[looor [Cf I VALUINGR 0 o
1. The contents of the location labeled VALU are compared with the contents of the location labeled

INCR. The operand lengths are implied. The condition code is set.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l \ 5-6
PAGE REVISION

UP-NUMBER PAGE

5.4. DP (DIVIDE-DECIMAL)

M . . R
nemonic Source Code Hexadec!mal Format ObIGCt_
Operation Operand Format Operation Type Instruction
Code Code ye Length

DP d, (l1,b1),d2(I2,b2) FD SS Six Bytes

Function:

The contents of operand 1 (dividend), specified by d1(l1,b1), are divided by the contents of operand 2
(divisor), specified by d2(l2,b2). The quotient and remainder are stored in the operand 1 location.

Obiject Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 718 15016 19,20 31

FD I1—1 I2—1 b1 d1 J

}32 35,36 OPERAND 2 47

L by)

Operational Considerations:

. The length of operand 1 specified by the |4 field in the instruction is ignored. The length of operand
1 is determined by scanning operand 1 starting with the most significant digit until a sign code is
found.

L] The dividend {operand 1) must be longer than the divisor (operand 2).

L The quotient and remainder occupy the entire operand 1 field. The remainder is right-justified in the
field, carries the sign of operand 1, and is equal in size to operand 2. The quotient, carrying the
algebraically determined sign, is right-justified in the rest of the operand 1 field.

= The maximum dividend (operand 1) size is 31 digits and sign. The maximum quotient size is 29 digits
and sign. The smallest remainder is one digit and sign.

L If the number of quotient digits exceeds the size of the quotient field or if division by 0 is attempted, a
decimal divide exception results; the divisor and dividend remain unchanged in their storage locations.

u A decimal divide exception occurs if the dividend does not have at least one leading 0. The condition for
a decimal divide exception can be determined by aligning the leftmost digit of the divisor (operand 2)
field with the leftmost-less-one digit of the dividend (operand 1) field and performing a subtraction. If,
when so aligned, the divisor is less than or equal to the dividend, a decimal divide exception is indicated.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4 5-7

PAGE REVISION PAGE

The condition code remains unchanged.

Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Decimal divide

Decimal divide

Indirect address specification

Write protection

Indirect addressing

Protection

Specification exception

1. IACW not on full-word
boundary

2. Operand 1 is not longer than
operand 2.

Data exception
1. Invalid sign or digit code

2. Incorrect overlap

] Relocation and indirection flags (90/60,70):
- operand 1: RD, ID
- operand 2: RO, 10
Operational Differences:
] 9400/9480 systems
— Operand 1 and operand 2 fields may not overlap.
— The maximum divisor (operand 2) length is 31 digits plus sign.

— Decimal digits greater than 916 are not permitted. The sign portion must contain a sign bit
configuration greater than 91 6"

= 90/60,70 systems
- Operand 1 and operand 2 fields may overlap if their least significant bytes coincide.
— The maximum divisor {(operand 2} length is 15 digits plus sign.

- If a sign is not encountered within the first 16 bytes of data in operand 1, a program exception
occurs.

- All signs and digits are checked for validity.

7935 Rev. 1

UP-NUMBER

5-8

PAGE

SPERRY UNIVAC Operating System/4

| PAGE REVISION \

Example:
LABEL A OPERATION A GPERAMD A
1 16 16 R
l- it by DP I S § QRC‘7>)DR(E>% ST RSO S B SO SS S SO S SO S

1. The contents of the 7-byte area QR are divided by the contents of the 3-byte area DR. The quotient and
remainder are placed in QR.

5.5. MP (MULTIPLY-DECIMAL)

M . . .
nemc.muc Source Code Hexadec.nmal Format Ob)ect.
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
MP dq(ly.bq),dy(l5,bs) FC SS Six Bytes
Function:

The contents of operand 1 (the multiplicand), specified by d1(|1,b1), are multiplied by the contents of

operand 2 (the multiplier), specified by d2(|2,b2), and the product is stored in the operand 1 location.
Object Instruction Format:
OPERATION LENGTH OPERAND 1
0 CODE 7|8 15]16 19(20 31
Fe 1 -1 by d)
>32 35,35 OPERAND 2 4
} b,)

Operational Considerations:
L] The sign of the product is determined algebraically.
u The size of the multiplier {operand 2) cannot be more than 15 digits and sign.

L] The length of operand 1 specified by the I1 field in the instruction is ignored. The length of operand is
determined by scanning operand 1 starting with the most significant digit until a sign code is found.

L] The number of digits in the product is equal to the number of digits in the operands; therefore, the
multiplicand (operand 1) must have a field of most significant O digits equal to the number of digits in
operand 2. The maximum product size is 31 digits plus sign. At least one most significant digit of the
product field is 0.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-9

UP-NUMBER PAGE REVISION PAGE

L] The condition code remains unchanged.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Protection Write protection
Addressing Addressing

Indirect address specification

Indirect addressing

Specification

1. Muttiplier exceeds 15 digits

2. Operand 1 is not longer than
operand 2.

3. IACW is not on full-word
boundary.

Data exception

1. Invalid sign or digit code
2. Incorrect overlap
3. Operand 1 does not have suf-

ficient high-order zero digits.

. Relocation and indirection flags {90/60,70):

- operand 1: RD, ID
— operand 2: RO, 10
Ope.rational Differences:

] 9400/9480 systems
- Operand 1 and operand 2 may not overlap.

= 90/60,70 systems
- Operand 1 and operand 2 may overlap if their least significant bytes coincide.
- All signs and digits are checked for validity.

- If the sign if not encountered within the first 16 bytes of data in operand 1, a program exception
occurs.

Example:

LABEL A GPERATION A OFERAND A
1 N 18

I L MP HQu&(v,)ﬁ&%z(Z) B

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-10

UP.NUMBER | PAGE REVISION lPAGE

1. The contents of the operand HOUR are multipled by the contents of the operand RATE. The contents
of the operands may be represented as follows:

HOUR before execution 0000009999999 +
RATE before and after execution 99999 +
HOUR after execution 0999989900001 +

5.6. MVO (MOVE-WITH-OFFSET)

Mnemt?nlc Source Code Hexadecimal Format Oblem.

Operation Operand Format Operation Tvpe Instruction

, Code Code yp Length
MVO d4 (140,),d2(|2,b2) F1 SS Six Bytes

Function:

The contents of operand 2, specified by d2(|2,b2), are shifted to the left four bits and stored in the operand 1
location, specified by d1 (I1 ,b1).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 708 15|16 19,20 31
F1 11 ly=1 b, d, ;)
132 35,36 OPERAND 2 4
r by 9y

Operational Considerations:
L This instruction proceeds from right to left.
= The operands are not checked for valid codes.

L] bverlapping fields may occur. Unless the operands overlap, operand 2 and the least significant four bits
of operand 1 remain unchanged.

L If operand 2 is exhausted before operand 1, the remaining operand 1 field is zero filled. If the result
exceeds the capacity of the operand 1 field, the remaining digits of operand 2 are ignored. This

operation, in effect, prefixes the least significant digit or sign of operand 1 with the digits of operand 2.

L] The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l 5-11
UP-NUMBER PAGE REVISION PAGE
n Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Write protection
Indirect addressing
Protection
Specification (IACW not on full-word
boundary)
] Relocation and indirection flags {90/60,70):
— operand 1: RD, ID
- operand 2: RO, 10
Examples:
LABREL A OPERATION A OPERAND A
1 16 16
Moo Mye | DeST(S), D&&a(a)]
ZL!LLii* MVD i \/AL/ 4> \A(L{(,L‘) RN NOT RTINS N O WO
Bl MV MARH(I—L\MARLH) .
1. The contents of the 3-byte area in main storage specified by ORIG are moved with offset to the main

storage location specified by DEST. The contents of the operand may be represented as follows:

DEST before execution CBAFEDCBA+
ORIG before and after execution 246891
DEST after execution 000246891+

2. The 4-byte area in main storage specified by VAL is moved with offset to the main storage specified by
VAL. The contents of the operands may be represented as follows:

VAL before execution 2356890+
VAL after execution 356890+ +
The digit 2, which is in VAL before execution, is lost.
3. The 4-byte area in main storage specified by MAR is moved with offset to the main storage specified by
MAR 1; this effectively results in a shift to the right of one byte and an offset to the left of four bits.
The contents of the operands may be represented as follows:

MAR before execution 987654321+

MAR after execution 098765432+

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

5—-12
PAGE REVISION | PAGE

Operand 1 encompasses four bytes on the right end of a 5-byte MAR. Operand 2 encompasses four bytes
on the left end of a 5-byte MAR. The move-with-offset instruction moves operand 2 to operand 1,
offsetting the data four bits. The move is in effect a 4-bit shift to the right.

5.7. PACK (PACK)

M H . .
nemt?mc Source Code Hexadec,mal Format Object.
Operation Operand Format Operation Tvoe Instruction
Code P Code e Length
PACK d, (i, ,b1),d2(I2,b2) F2 SS Six Bytes
Function:

The contents of operand 2, specified by d2(I2,b2), are converted from unpacked (zoned) format to packed
format and placed in the operand 1 location, specified by d1 (I1 ,b1). This instruction prepares the operand for
decimal arithmetic operations.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7|8 15{16 19,20 31

F2 11 I b, d,)

>32 35,36 OPERAND 2

r b, d,

47

Operational Considerations:

u This instruction transfers the decimal portion of an unpacked byte in operand 2 to a byte in operand 1,
packing two decimal digits (four bits each) into a single byte. The sign of the operand 2 field (four most
significant bits of the least significant byte) is transferred into the four least significant bits of the least
significant byte of operand 1. The result is automatically padded with a leading O, if necessary, to cause
the number to begin on a byte boundary. The operation is performed in the manner illustrated:

Unpacked zone-digit format operand 2 24272 3Z2sign7

Packed digit-digit format operand 1 0 4 3 2 7sign
where:
Z represents the zone portion.
L] If operand 2 does not fill operand 1, the remaining operand 1 field is zero filled.
L If the result exceeds the capacity of the operand 1 field, the remaining operand 2 digits are ignored.

L] The operands are not checked for valid codes.

e

5-13

UP-NUMBER PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1
PAGE REVISION

n Overlapping fields may occur; each resultant byte is processed after each operand byte. The instruction
proceeds from right to left.

» The condition code remains unchanged.

L] Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Write protection

Indirect addressing

Protection

Specification (IACW not on fult-word
boundary)

] Relocation and indirection flags (90/60,70):
- operand 1: RD, ID
- operand 2: RO, 10

Examples:

LABEL A QOPERATION A OPERAND A
10 16

Joloo Lo | PACK | ARTT(0), ,NMBRCIOY o (.
24 i L PACK | ARTTH L), NMBRALO). i

1. The contents of operand 2, specified by NMBR, are 10 decimal digits and sign. The sign and digits are
transferred to the operand 1 location, ARIT, according to the following representation:

NMBR 22247262821Z325272Z9signb
ARIT 0246813579 6sign

2. Same as example 1, except operand 2 contains 11 decimal digits and sign. The transfer is made according
to the following representation:

NMBR 2928272625242322212O0sign2

ARIT 9876543210 2sign

5.8. SP (SUBTRACT-DECIMAL)

Mnemc.pmc Source Code Hexadecgmal Format Objecf
Operation Operand Format Operation Tvpe Instruction
Code P Code Ye Length

sP dy(l3.b4),dyllpbs) FB ss Six Bytes

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

5-14

I PAGE REVISION lPAGE

Function:

The contents of operand 2, specified by dz(l 2,b,‘,), are subtracted from the contents of operand 1, specified by

d1 (I1 ,b1), and the result is placed in the operand 1 location.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 15] 16 19 31
FB - 1,1 d)
>32 35,36 OPERAND 2 47
[_* %

Operational Considerations:

Subtraction is accomplished by reversing the sign of operand 2 and performing a decimal add. The

contents and sizes of operand 2 are not affected by this operation.

The sign of the result is determined algebraically.

A O result has a positive sign when the operation is completed without overflow.

When most significant digits are lost because of overflow, the partial resuit has the sign which the correct

result would have had.

If operand 2 is shorter than operand 1, operand 2 is extended with 0 digits.

An overflow condition results if the capacity of the operand 1 field is exceeded by the result or if the
carry out of the most significant digit position of the result field is lost.

Operand 1 and operand 2 may overlap if their least significant bytes coincide.

The condition code is set as follows:

- to 0 (002) if result is 0;

- to 1 (012) if result is less than 0;

- to 2 (102) if result is greater than O; or

- to 3 (11 2) if overflow occurs.

Possible program exceptions:

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION

5—15

PAGE

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Decimal overflow

Decimal overflow

Indirect address specification

Write protection

Indirect addressing

Protection

Specification {IACW not on full-word
boundary)

Data exception
1. Invalid sign or digit code

2. Incorrect overlap

] Relocation and indirection flags (90/60,70):

— operand 1: RD, ID
— operand 2: RO, 10
Operational Differences:

] 9400/9480 systems

If operand 2 is longer than operand 1, the excess high order digits of operand 2 are ignored.

u 90/60,70 systems
All signs and digits are checked for validity.

Example:

LABEL A OPERATION A
i 0 16

OPERAND

/- MU N 3? : QES);QARD FAD TR WS FOPOU: UOY SIS WO B

1. The sign of operand 2, specified by CARD, is reversed and the resuit is added to the contents of operand

1, specified by RES.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-16

UP-NUMBER ‘ PAGE REVISION \ PAGE

5.9. UNPK (UNPACK)

Mnemt?mc Source Code Hexadec?mal Format Object'
Operation Operand Format Operation Tvpe Instruction
Code pe Code yp Length
UNPK d1(l1,b1),d2(|2,b2) F3 SS Six Bytes
Function:

The contents of operand 2, specified by d, (l2,b2), are converted from packed format to unpacked (zoned)

format and placed in the operand 1 location, specified by d,‘ (I1 ,b1).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7|8 15|16 19,20 31
F3 Iy~1 -1 b, d)
EZ 45,36 OPERAND 2 47

L b, d,

Operational Considerations:

a The decimal data of operand 2 is transferred sequentially, right to left, to the numeric portion of each
operand 1 byte. The zone supplied depends on the state of the A mode of the current program status
word (PSW) (1 1112 for EBCDIC, 00112 for ASCII).

L] The sign in the packed operand, located in the four least significant bits of the least significant byte of
operand 2, is transferred to the four most significant bits of the least significant byte of operand 1, as

shown in the illustration:

Packed digit-digit format operand 2 04 3 2 7 sign

7935 Rev. 1

UP-NUMBER

L SPERRY UNIVAC Operating System/4

‘ PAGE REVISION I

5-17

PAGE

Unpacked zone-digit format operand 1

where:

Z represents the zone portion

Z20Z42Z32Z2sign?

If operand 2 does not completely fill operand 1, the remaining operand 1 bytes are set to 0 with the

appropriate zone.

If the result exceeds the capacity of the operand 1 field, the remaining operand 2 digits are ignored.

The operands are not checked for valid codes.

Overlapping fields may occur; each result byte is processed after processing each operand 2 byte. Except
for the least significant operand 2 byte, containing the sign, each operand 2 byte produces two result
bytes. If the operand fields are to be overlapped, the least significant position of operand 1 must be to
the right of the least significant position of operand 2 by the number of bytes in operand 2 minus 2. If
one or two bytes are to be unpacked, the least significant positions of the operands may coincide.

The condition code remains unchanged.

Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Indirect address specification

Write protection

Indirect addressing

Protection

Specification (IACW not on fuli-word
boundary)

Relocation and indirection flags (90/60,70):

- operand 1: RD, ID

- operand 2: RO, 10

5--18

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Example:

LABEL A OPERATION A OFERAND A
14 16

1. Assume the contents of operand 2, specified by DIGT, to be 2468901. To unpack the 4-byte operand 2
field, it is necessary to have a 7-byte operand 1 field. The length of operand 1 equals the length of
operand 2 in bytes times 2 minus 1.

The contents of the operands appear as follows:

DIGIT 2468901 sign

ZONE 22Z24262Z282Z9ZO0signt

5.10. ZAP (ZERO-AND-ADD)

M M . .
nem(?mc Source Code Hexadecfmal Format Oblectl
Operation Operand Format Operation Type Instruction
Code Code ye Length
ZAP d, (I1,b1),d2(|2,b2) F8 SS Six Bytes
Function:

Operand 1, specified by d, (I1,b1 }; is cleared to 0, the contents of operand 2, specified by dz“zlbz)' are added
to the contents of operand 1.

Obiject Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 718 1516 19,20 31
F8 =1 lo—1 b, d,)

OPERAND 2 47

5;2 3536

Operational Considerations:

L] The zero-and-add instruction is equivalent to the add-decimal instruction with O as the contents of
operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 5-19

UP-NUMBER l PAGE REVISION | PAGE

L A 0 result has a positive sign, except when digits are lost due to overflow. In this case, a 0 result has the
sign of operand 2.

L If operand 2 does not fill the operand 1 field, operand 2 is extended with O’s.

L Operand 1 and operand 2 may overlap if their least significant bytes coincide, or if the least significant
byte of operand 1 is to the right of the rightmost byte of operand 2.

» The condition code is set as follows:

to 0 (002) if resultis 0;

to 1 (012) if result is less than 0;

to 2 (102) if result is greater than O; or

- code 3 is not used.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Write protection

Indirect addressing

Protection

Decimal overflow

Specification (IACW not on full-word
boundary)

Data exception
1. Invalid sign or digit code

2, Incorrect overlap

] Relocation and indirection flags (90/60,70):
—_ operand 1: RD, ID
— operand 2: RO, IO
_Operational Differences:

= 9400/9480 systems

If operand 2 is longer than operand 1, the most significant digits of operand 2 are ignored.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 l : J 5-20
PAGE REVISION

PAGE

= 90/60,70 systems

If operand 2 is longer than operand 1 and significant digits are lost, a decimal overflow condition will

occur.
All signs and digits of operand 2 are checked for validity. o
Examples:
LABEL A QPERATION A GPERAND A

10 16

" TR N ATP : EXPN(,7> (4_) I N S N ST
e TN AR QT@R ST‘&K TR N S SO S SN0 U0 W YOE T SN

1. The contents of the 4-byte operand labeled UNIT are added to the area in main storage specified by the
label EXPN after EXPN has been forced to 0. The contents of the operands may be represented as

follows:
EXPN before execution 1T0CCFF9FF2F3A7
UNIT before and after execution 39 17238A
EXPN after execution 0000003917238C¢C

2. The contents of main storage labeled STOR are not changed unless the sign is modified in the addition.
The condition code is set.

61
7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION | PAGE

6. Floating—Point Instructions—
90/60,70

6.1. GENERAL

The floating-point instruction set is provided on the SPERRY UNIVAC 90/60,70 Systems only. This instruction set
is added to the 90/60,70 systems instruction repertoire as part of the Floating-Point Control Feature, F1334—00.
An operation exception results if a floating-point instruction is issued to a processor in which the floating-point
control feature has not been installed.

The floating-point instruction set provides for loading, adding, subtracting, comparing, muitiplying, dividing, storing,
and sign control of short or long format floating-point operands. See 1.3.2 for information concerning the manner in
which floating-point numbers are represented and their sign codes established. Four double-word floating-point
registers are provided to accommodate storing and loading of results and operands. These registers are numbered 0,
2, 4, and 6. The specification of any other register number results in a specification exception. For long format
operands, the entire double-word register is involved in the operation. For short format operands, excluding the
product in the short format multiply instruction, only the most significant word of the double-word register is
involved in the operation. The least significant word remains unchanged.

The floating-point instructions are available in RR and RX formats. Therefore, at least one of the operands is
contained in one of the floating-point registers. The other operand is located in the same or another register or in
main storage. Each main storage address may be specified as relative or absolute and direct or indirect under control
of the applicable relocation register flags.

To increase the precision of certain computations, an additional least significant digit, the guard digit, is carried
within the hardware in the intermediate result of the following operations: add-normalized, subtract-normalized,
add-unnormalized, subtract-unnormalized, compare, halve, and multiply. In the execution of add-normalized,
subtract-normalized, add-unnormalized, subtract-unnormalized, and compare instructions, when a right shift of the
fraction is required to equalize two exponents, the last hexadecimal digit to be shifted out of the least significant
digit position of the fraction is saved by the processor hardware as the guard digit. The shifted fraction, including the
guard digit, is used in computing the intermediate result. In the halve instruction, the least significant bit position of
the fraction is saved as the most significant bit position of the guard digit. In the long format multiply instruction,
the guard digit is carried as the fifteenth digit of the fraction of the intermediate product. If the intermediate result
is subsequently normalized, the guard digit is shifted left to become part of the normalized fraction.

This section describes the operation of each floating-point instruction. The instructions are arranged in alphabetical
order according to mnemonic operation code. Each description includes a list of the possible program exceptions
and condition codes which may result. The relocation and indirection flags pertinent to each operand are also listed.
See Table 3—1 for an explanation of the abbreviations used in describing instruction formats.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

| PAGE REVISION l PAGE

6.2. AD (ADD-NORMALIZED, LONG FORMAT) — 90/60,70

nemonic Source Code Hexadec!mal Format Object
Operation Operand Format Operation Type instruction
Code Code Yp Length

AD r1,d2(x2,b2) 6A RX Four Bytes

Function:

The double-word contents of operand 2, specified by d2(x2,b2), are algebraically added to the double-word
contents of operand 1, specified by ry The normalized sum is placed in operand 1.

Operational Considerations:

Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit (6.1), and a possible carry. If
any most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted
left to form a normalized fraction. Vacated least significant digit positions are zero filled and the
exponent is reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current program status word (PSW) is 1, the resultant
floating-point number has a correct and normalized fraction, a correct sign, and an exponent which is
128 more than the correct value. If the exponent underfiow mask of the current PSWis 0, the result is a
true 0. The exponent underflow condition causes a program interrupt if the exponent underflow mask
bit and the program exception mask bit of the current PSW are 1.

Zero result

If the intermediate sum, including the guard digit, is 0, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0 and the intermediate sum is O, the result is made a true
0. Exponent underflow cannot occur for a 0 fraction. The significance exception causes a program
interrupt if the significance mask bit and the program exception mask bit of the current PSW are 1.

6—-2

7935 Rev. 1
UP-NUMBER

6-3

l PAGE REVISION l PAGE

SPERRY UNIVAC Operating System/4

[]
.
L
]
N
]
Example:

The sign of an arithmetic result is determined algebraically. The sign of a result with a O fraction is
always positive.

The condition code is set as follows:

to0 (002) if the result fraction is 0;

to 1 (012) if the result fraction is less than O;

to 2 (102) if the result fraction is greater than O; or
— code 3 is not used.

Possible program exceptions:

- addressing exception

- exponent overflow exception

— exponent underflow exception

- indirect address specification exception
- indirect addressing exception

— operation exception

- protection exception

— significance exception

— specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

Relocation and indirection flags:
— operand 1: none

— operand 2: RO, 10

LABEL A CPERATION A OPERAND A
10 16

ttil: ‘£!LL}J)EN.D;ei..i.i,.;'vf;ssx.i=%i‘:f’f‘§

The double-word contents of floating-point register 4 and the main storage location {abeled DEND are
added. The result is placed in register 4.

7935 Rev. | SPERRY UNIVAC Operating System/4 64

UP-NUMBER] PAGE REVISION ‘ PAGE

6.3. ADR (ADD-NORMALIZED, LONG FORMAT) — 90/60,70

Mnemoni i j
ne! cfmc Source Code Hexadec!mal Format Ob;ect.
Operation Operand Format Operation Tvoe Instruction
Code Code yp Length
ADR PP 2A RR Two Bytes

Function:

The double-word contents of operand 2, specified by r,, are algebraically added to the double-word contents
of operand 1, specified by ry The normalized sum is placed in operand 1.

Operational Considerations:
L] Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. if the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

L Normalization

The intermediate sum is composed of 14 hexadecimal digits, a guard digit {6.1), and a possible carry. If
any most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted
left to form a normalized fraction. Vacated least significant digit positions are zero filled and the
exponent is reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

L] Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current PSW is 1, the resultant floating-point number has a
correct and normalized fraction, a correct sign, and an exponent which is 128 more than the correct
value. If the exponent underflow mask of the current PSW is 0, the result is a true 0. The exponent
underflow condition causes a program interrupt if the exponent underflow mask bit and the program
exception mask bit of the current PSW are 1.

L Zero result

If the intermediate sum, including the guard digit, is O, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0 and the intermediate sum is O, the result is made a true
0. Exponent underflow cannot occur for a 0 fraction. The significance exception causes a program
interrupt if the significance mask bit and the program exception mask bit of the current PSW are 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 °e

UP-NUMBER | PAGE REVISION l PAGE

- The sign of an arithmetic result is determined algebraically. The sign of a result with a O fraction is
always positive.

n The condition code is set as follows:

to0 (002) if the result fraction is O;

to 1 (012) if the result fraction is less than O;

to2 (102) if the result fraction is greater than 0; or

code 3 is not used.

L Possible program exceptions:
— exponent overflow exception
— exponent underflow exception
— operation exception
- significance exception

- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6}

- Relocation and indirection flags: none

Example:

LABEL A OPERATION A OPERAND A
1 10 16

/1§ . Q)LJ'*‘** IS SO S A T

1. The double-woyd contents of floating-point registers 2 and 4 are added and the result is placed in register 2.

6.4. AE (ADD-NORMALIZED, SHORT FORMAT) — 90/60,70

Mnemc?mc Source Code Hexadoc,ma| Format Obleﬂ‘
Operation Operand Format Operation T Instruction
Code P Code ype Length
AE rydyix,by) 7A RX Four Bytes
Function:

The full-word contents of operand 2, specified by dz(xz'bz)' are algebraically added to the full-word contents
of operand 1, specified by ry The normalized sum is placed in operand 1.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 6-6

PAGE REVISION PAGE

Operational Considerations:

Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

Normalization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a possible carry. If any
most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted left
to form a normalized fraction. Vacated least significant digit positions are zero filled and the exponent is
reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current PSW is 1, the resultant floating-point number has a
correct and normalized fraction, a correct sign, and an exponent which is 128 more than the correct
value, If the exponent underflow mask of the current PSW is 0, the result is a true 0. The exponent
underflow condition causes a program interrupt if the exponent underflow mask bit and the program
exception mask bit of the current PSW are 1.

Zero result

If the intermediate sum, including the guard digit, is 0, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0, and the intermediate sum is 0, the result is made a true
0. Exponent underflow cannot occur for a O fraction. The significance exception causes a program

interrupt if the significance mask bit and the program exception mask bit of the current PSW are 1.

The sign of an arithmetic result is determined algebraically. The sign of a result with a 0 fraction is
always positive.

The condition code is set as follows:

— to 0 (002) if the result fraction is O;

- to 1 (01,) if the result fraction is less than 0;

- to 2 (102) if the result fraction is greater than O; or

- code 3 is not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 67

UP.NUMBER I PAGE REVISION IPAGE

" Possible program exceptions:

addressing exception

= exponent overflow exception

— exponent underflow exception

— indirect address specification exception
- indirect addressing exception

- operation exception

- protection exception

— significance exception

- specification exception (operand 2 not on full-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags:
— operand 1: none
— operand 2: RO, 10

Example:

LABEL D OPERATION A OPERAND A
1 10 16

\. [R S AE (OJF’ULL—i‘(‘? i

1. The full-word contents of floating-point register 6 and the main storage location FULL are added. The
result is placed in register 6.

6.5. AER (ADD-NORMALIZED, SHORT FORMAT) — 90/60,70

M . . .
nemcfmc Source Code Hexadec!mal Format Object.
Operation Operand Format Operation Tvoe Instruction
Code pe Code ve Length

AER Mo 3A RR Two Bytes

“unction:

The full-word contents of operand 2, specified by r, ,are algebraically added to the full-word contents of
operand 1, specified by ry - The normalized sum is placed in operand 1.

7935 Rev. 1
UP-NUMBER

PAGE

SPERRY UNIVAC Operating System/4 L 6-8

Operational Considerations:

Floating-point addition

Floating-point addition consists of exponent equalization and fraction addition. If the exponents are
equal, the fractions are added to form an intermediate sum. If the exponents are unequal, the smaller
exponent is subtracted from the larger. The difference indicates the number of hexadecimal digit shifts
to the right to be performed on the fraction having the smaller exponent. Each hexadecimal digit shift to
the right causes the exponent to be increased by 1. After equalization, the fractions are added to form
an intermediate sum.

A carry out of the most significant hexadecimal digit position of the intermediate sum causes the
intermediate sum to be shifted right one digit position and the exponent to be increased by 1. If an
exponent overflow condition occurs, the resultant floating-point number consists of a normalized and
correct fraction, a correct sign, and an exponent which is 128 less than the correct value.

Normalization

The intermediate sum is composed of six hexadecimal digits, a guard digit, and a possible carry. If any
most significant digits of the intermediate sum are 0, the fraction including the guard digit is shifted left
to form a normalized fraction. Vacated least significant digit positions are zero filled and the exponent is
reduced by the number of shifts. If normalization is unnecessary, the guard digit is lost.

Exponent underflow

If normalization causes the exponent to become less than 0, an exponent underflow condition results. If
the exponent underflow mask bit of the current PSW is 1, the resultant floating-point number has a
correct and normalized fraction, a correct sign, and an exponent which is 128 more than the correct
value. If the exponent underflow mask of the current PSW is 0, the result is a true 0. The exponent
underflow condition causes a program interrupt if the exponent underflow mask bit and the program
exception mask bit of the current PSW are 1.

Zero result

If the intermediate sum, including the guard digit, is 0, a significance exception exists. If the significance
mask bit of the current PSW is 1, the result is not normalized and the exponent remains unchanged. If
the significance mask bit of the current PSW is 0 and the intermediate sum is 0, the result is made a true
0. Exponent underflow cannot occur for a O fraction. The significance exception causes a program

interrupt if the significance mask bit and the program exception mask bit of the current PSW are 1.

The sign of an arithmetic result is determined algebraically. The sign of a result with a O fraction is
always positive.

The condition code is set as follows:

- to 0 (002) if the result fraction is O;

- to 1 (012) if the result fraction is less than Q;

— to 2 (102) if the result fraction is greater than 0; or

— code 3 is not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-9
UP-NUMBER PAGE REVISION PAGE
= Possible program exceptions:
~ — exponent overflow exception
— exponent underflow exception
— operation exception
- significance exception
— specification exception {operand 1 or operand 2 register is not 0, 2, 4, or 6)
L Relocation and indirection flags: none
Example:
LABEL A ORERATION A OPERAND A
1 16 16
1
(‘ | § E!‘R 2543;(0 ISR NI SR W S ST SR SRR SO I N . ST AR U O Y
1. The full-word contents of floating-point registers 4 and 6 are added and the result is placed in register 4.
6.6. AU (ADD-UNNORMALIZED, SHORT FORMAT) — 90/60,70
\"/ M H . .
onsmo_mc Source Code Hexadec,mal Format Ob’em,
peration Operand Format Operation Type Instruction
Code Code yp Length
AU r1,d2(x2,b2) 7E RX Four Bytes
Function:

The full-word contents of operand 2, specified by d2(x2,b2), are algebraically added to the full-word contents
of operand 1, specified as r The sum is placed in operand 1.

Operational Considerations:

L] The execution of the AU instruction is identical to the AE instruction, except that the sum is not
normalized before being placed in operand 1.

n The condition code is set as follows:

to 0 (002) if result is O;

to 1 (012) if result is less than O;

to 2 (102) if result is greater than 0; or

- code 3 is not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-10

UP.NUMBER | PAGE REVISION \PAGE

L] Possible program exceptions:
- addressing exception
- exponent overflow exception
— indirect address specification exception
- indirect addressing exception
- operation exception
— protection exception
- significance exception

— specification exception {operand 2 or IACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, or 6)

L] Relocation and indirection flags:
- operand 1: none
— operand 2: RO, 10

Example:

LABEL A OPERATIONA GPERARD A
1 10 146

1. The full-word contents of floating-point register 6 and main storage location UNOR are added and the
result is placed in register 6.

6.7. AUR (ADD-UNNORMALIZED, SHORT FORMAT) — 90/60,70

Mnemoni . .
nemonic Source Code Hexadec!mal Format Object
Operation Operand Format Operation T Instruction
Code Code ype Length

AUR PP 3E RR Two Bytes

Function:

The fuli-word contents of operand 2, specified by r, are algebraically added to the full-word contents of
operand 1, specified as r The sum is placed in operand 1.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION l PAGE

6—-11

Operational Considerations:

] The execution of the AUR instruction is identical to the AER instruction, except that the sum is not

normalized before being placed in operand 1.

L The condition code is set as follows:

- to 0 (002) if result is O;

— to1 (012) if result is less than 0;

- to 2 (102) if result is greater than O; or

— code 3 is not used.

n Possible program exceptions:

— exponent overflow exception

- operation exception

- significance exception

- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags: none

Example:
LABEL A OPERATION A OPERAND
1 10 16
\ - L] AUR : AJ\[Z-’ Lok b {

1. The full-word contents of floating-point registers 6 and 2 are added and the result is placed in register 6.

6.8. AW (ADD-UNNORMALIZED, LONG FORMAT) — 90/60,70

Mnemoni i j
onic Source Code Hexadec!mal Format Obleﬂ.
Operation Operand Format Operation T Instruction
Code Code ype Length
AW " ,d2(x2,b2) 6E RX Four Bytes
Function:

The double-word contents of operand 2, specified by d2(x2,b2), are algebraically added to the double-word

contents of operand 1, specified by r,- The sum is placed in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l [6-12
PAGE REVISION

UP-NUMBER PAGE

Operational Considerations:

L The execution of the AW instruction is identical to the AD instruction, except that the sum is not
normalized before being placed in operand 1.

L] The condition code is set as follows:

to 0 (002) if result is O;

to1 (012) if result is less than 0;

to2 (102) if result is greater than 0; or
- code 3 is not used.

L Possible program exceptions:
- addressing exception
- exponent overflow exception

- indirect address specification exception

- indirect addressing exception
— operation exception

- protection exception

- significance exception

— specification exception (operand 2 not on double-word boundary or IACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags:
- operand 1: none
— operand 2: RO, 10

Example:

LABEL A OPERATION A OGPERAKD A
! 10 1%

/' ST N W . LJ‘JWBRE SRR U WUCRNIRE ST SOOI S b]

1. The double-word contents of floating-point register 4 and the main storage location WERE are added
and the result is placed in register 4.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-13
UP-NUMBER PAGE REVISION PAGE
6.9. AWR (ADD-UNNORMALIZED, LONG FORMAT) — 90/60,70
Mnemonic Hexadecimal Object
Operation o Seo'urt;e':c o':: ¢ Operation F:rmat Instruction
Code perand Forma Code ype Length
AWR 1.2 2E RR Two Bytes
Function:

The double-word contents of operand 2, specified by r,, are algebraically added to the double-word contents
of operand 1, specified as ry- The sum is placed in operand 1.

Operational Considerations:

u The execution of the AWR instruction is identical to the ADR instruction, except that the sum is not
normalized before being placed in operand 1.

L] The condition code is set as follows:

to 0 (002) if result is O;

to 1 (012) if result is less than 0;

to 2 (102) if result is greater than O; or

code 3 is not used.

L Possible program exceptions:

— exponent overflow exception

operation exception
- significance exception

— specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

] Relocation and indirection flags: none
Example:
LABEL A GPERATION A OPERAND A
1 H 16

" TN T Wg 2,;(@ I I b bk RS NS S

1. The double-word contents of floating-point registers 2 and 6 are added and the result is placed in register 2.

PR e e — e ——————

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

| PAGE REVISION \ PAGE

6—14

6.10. CD (COMPARE, LONG FORMAT) — 90/60,70

M . . .
nemc?mc Source Code Hexadec,mal Format Object.
Operation Operand Format Operation Tvpe Instruction
Code Code e Length
CcD r ,d2(x2,b2) 69 RX Four Bytes
Function:

The double-word contents of operand 1, specified by r,, are algebraically compared with the double-word

contents of operand 2, specified by d2(x2,b2).

Operational Considerations:

Comparison is accomplished by the rules for normalized floating-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is 0.

Operands with 0 fractions compare as equal even when their signs or exponents are different.

The condition code is set as follows:

|

to 0 (002) when operand 1 equals operand 2;

to 1 (012) when operand 1 is less than operand 2;

to2 (102) when operand 1 is greater than operand 2; or

code 3 is not used.

Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception
operation exception

protection exception

specification exception (operand 2 not on double-word boundary or lACW not on full-word
boundary; or operand 1 register is not 0, 2, 4, or 6}

Relocation and indirection flags:

operand 1: none

operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-15
UP-NUMBER PAGE REVISION PAGE
Example:
LABEL A QPERATION A CPERARD A
i 16 16 e T
N U B 132 L;LJPAR‘E SR S0 WU TN0 NSNS SN U SR T VO SO O S N SN SO SIS S
1. The double-word contents of floating-point register 4 and main storage location PARE are compared and

the condition code is set.

6.11. CDR (COMPARE, LONG FORMAT) — 90/60,70

M . . .
nemonic Source Code Hexadecimal Format Object
Operation Operand Format Operation Tvpe Instruction
Code Code ye Length
CDR ryfo 29 RR Two Bytes
Function:

The double-word contents of operand 1, specified by r,, are algebraically compared with the double-word
contents of operand 2, specified by rye

Operational Considerations:

= Comparison is accomplished by the rules for normalized floating-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is O.

= Operands with O fractions compare as equal even when their signs or exponents are different.

[The condition code is set as follows:

to 0 (002) when operand 1 equals operand 2;

to 1 (012) when operand 1 is less than operand 2;

to 2 (10,) when operand 1 is greater than operand 2; or
— code 3is not used.
. Possible program exceptions:
operation exception
- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

] Relocation and indirection flags: none

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION l PAGE

6—-16

Example:
LABEL A OPERATION A OPERAND
! o 16 N e - R
i .
) ™
/' - Lo \. Dg : ;2) 14 ! H L Lo it
1. The double-word contents of floating-point registers 2 and 4 are compared and the condition code is set.

6.12. CE (COMPARE, SHORT FORMAT) — 90/60,70

Mnemt?mc Source Code Hexadec.lmal Format Objec?
Operation Operand Format Operation Type Instruction
Code Code P Length
CE r ,d2(x2,b2) 79 RX Four Bytes
Function:

The full-word contents of operand 1, specified by r,,are algebraically compared with the full-word contents
of operand 2, specified by dz(xz,bz).

Operational Considerations:

n Comparison is accomplished by the rules for normalized fixed-point subtraction. The operands are equal
when the intermediate sum, including the guard digit, is 0.

L Operands with O fractions compare as equal even when their signs or exponents are different.

. The condition code is set as follows:

to 0 (002) when operand 1 equals operand 2;

to1 (012) when operand 1 is less than operand 2;

to 2 (102) when operand 1 is greater than operand 2; or

code 3 is not used.

] Possible program exceptions:

addressing exception

indirect address specification exception

indirect addressing exception
operation exception

protection exception

specification exception {(operand 2 or IACW not on full-word boundary; or operand 1 register is

not 0, 2, 4, or 6)

7935 Rev. 1
UP.-NUMBER

SPERRY UNIVAC Operating System/4

6—17

PAGE REVISION i PAGE

- Relocation and indirection flags:

operand 1: none

operand 2: RO, 10

Example:
LABEY A OPERATIONA OPERAND A
1 16 L
" IR RO CIE‘ T OJ&I;A-R SUIUE I N i
1. The full-word contents of floating-point register 0 and main storage location GIAR are compared and

the condition code is set.

6.13. CER (COMPARE, SHORT FORMAT) — 90/60,70

M i i i
onemq?mc Source Code Hexadec!mal Format Obleﬂ.
peration Operand Format Operation Type Instruction
Code P Code yp Length
CER ryfo 39 RR Two Bytes
Function:

The full-word contents of operand 1, specified by r,,are algebraically compared with the full-word contents
of operand 2, specified by r,

Operational Considerations:

L Comparison is accomplished by the rules for normalized floating-point subtraction. The operands are
equal when the intermediate sum, including the guard digit, is O.

L) Operands with 0 fractions compare as equal even when their signs or exponents are different.

L The condition code is set as follows:

to 0 (002) when operand 1 equals operand 2;

to 1 (012) when operand 1 is less than operand 2;

to 2 (102) when operand 1 is greater than operand 2; or

code 3 is not used.

» Possible program exceptions:

operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION | PAGE

Example:

Relocation and indirection flags: none

LABEL A OPERATION A OPERAND A
16 16

1.

AT B C‘Fj&iif,bjlo SR R UNE 0 SR SO O SRR ST S A U SO N DA N S |

The full-word contents of floating-point registers 0 and 6 are compared and the condition code is set.

6.14. DD (DIVIDE, LONG FORMAT) — 90/60,70

M 4 . .
nem?mc Source Code Hexadec!mal Format Object.
Operation Operand Format Operation Tvpe Instruction
Code Code e Length
DD . 3 ,d2(x2,b2) 6D RX Four Bytes

Function:

The double-word contents of operand 1 (dividend), specified by r,. are divided by the double-word contents
of operand 2 (divisor), specified by d2(x2,b2). The normalized quotient is placed in operand 1. The remainder
is not preserved.

Operational Considerations:

Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

Both operands are normalized before division (6.2). Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

If the final quotient exponent is less than 0, an exponent underflow condition exists. {f the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

Attempted division by a divisor with a O fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made 0, giving a true 0 result. No program exceptions
occur.

6-18

6—19
PAGE REVISION | PAGE

7935 Rev. 1 l

UP.NUMBER

SPERRY UNIVAC Operating System/4

. The condition code remains unchanged.
] Possible program exceptions:
— addressing exception
— exponent overflow exception
- exponent underflow exception
— floating-point divide exception
- indirect address specification exception
- indirect addressing exception
- operation exception
- protection exception

- specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

n Relocation and indirection flags:
- operand 1: none
T - operand 2: RO, 10

Example:

LABEL A OFERATION A GPERAND A
1 10 14

/- R D G /7LJST—5AK, RO TN SO0 NV S N N S W

1. The double-word contents of floating-point register 4 are divided by the double-word contents at main
storage location STAR. The result is placed in register 4.

6.15. DDR (DIVIDE, LONG FORMAT) — 90/60,70

Mnemc?mc Source Code Hexadec.imal Format Oblet-‘t.
Operation Operand Format Operation Tvpe Instruction
Code Code ve Length
DDR r.fo 2D RR Two Bytes
Function:

The double-word contents of operand 1 (dividend), specified by r, are divided by the double-word contents
of operand 2 (divisor), specified by r, The normalized quotient is placed in operand 1. The remainder is not
preserved.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-20

UP-NUMBER PAGE REVISION PAGE

Operational Considerations:

a Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

L Both operands are normalized (6.2) before division. Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

L If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

L If the final quotient exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

L Attempted division by a divisor with a O fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made 0, giving a true O result. No program exceptions
occur,

= The condition code remains unchanged.

L Possible program exceptions:

- exponent overflow exception
- exponent underflow exception
- floating-point divide exception
- operation exception

- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

= Relocation and indirection flags: none

LABEYL A OPERATION A GPERAND A
1 10 14

1. The double-word contents of floating-point register 6 are divided by the contents of floating-point
register 4. The result is placed in register 6.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-21
UP-NUMBER PAGE REVISION PAGE
6.16. DE (DIVIDE, SHORT FORMAT) — 90/60,70
gnemcfnic Source Code Hc(z)xadec_imal Format | ObiBCf'
pg’a‘:uon Operand Format peration Type nstruction
e Code . Length
DE r ,d2(x2,b2) 7D RX Four Bytes

Function:

The full-word contents of operand 1 (dividend), specified by r

;s are divided by the full-word contents of

operand 2 (divisor), specified by d2 (x2,b2). The normalized quotient is placed in operand 1. The remainder is
not preserved.

Operational Considerations:

Floating-point division consists of exponent subtraction and fraction division. The intermediate guotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

Both operands are normalized (6.2) before division. Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

If the final quotient exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

Attempted division by a divisor with a 0 fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made 0, giving a true 0 result. No program exceptions
occur,

The condition code remains unchanged.

Possible program exceptions:

- addressing exception

- exponent overflow exception

~ exponent underflow exception

- floating-point divide exception

- indirect address specification exception

6—22

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

FPAGE REVISION

- indirect addressing exception
- operation exception
- protection exception

- specification exception {operand 2 or 1ACW not on full-word boundary; or operand 1 is not 0, 2,
4, or 6)

- Relocation and indirection flags:
- operand 1: none
- operand 2: RO, IO

Example:

LABEL A preraTion A GEERAND A

¥ (s [

DE | H,MAIN .

=~
e §

1. The full-word contents of floating-point register 4 are divided by the full-word contents in main storage
location MAIN. The result is placed in register 4.

6.17. DER (DIVIDE, SHORT FORMAT) — 90/60,70

M H . .
nemc.muc Source Code Hexadec,mal Format ObIOCt-

Operation Operand Format Operation Tvpe Instruction
Code Code v Length
DER T30 3D RR Two Bytes

Function:

The full-word contents of operand 1 (dividend), specified by r,. are divided by the full-word contents of
operand 2 (divisor), specified by r. The normalized quotient is placed in operand 1. The remainder is not
preserved.

QOperational Considerations:

L Floating-point division consists of exponent subtraction and fraction division. The intermediate quotient
exponent is obtained by subtracting the exponents of the two operands and increasing the difference by
64.

u Both operands are normalized before division. Consequently, the intermediate quotient is correctly
normalized or a right shift of one digit position may be required. The exponent of the intermediate
result is increased by 1 if the shift is necessary. All operand 1 fraction digits are used in forming the
quotient even if the normalized operand 1 fraction is larger than the normalized operand 2 fraction.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION PAGE

Example:

If the final quotient exponent exceeds 127, an exponent overflow exception results. The quotient
consists of the correct and normalized fraction, a correct sign, and an exponent which is 128 less than
the correct value.

An exponent overflow exception causes a program interrupt if the program exception mask bit of the
current PSWis 1.

If the final quotient exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the quotient has a correct and normalized fraction, a correct
sign, and an exponent which is 128 greater than the correct value. If the exponent underflow mask bit of
the current PSW is 0, the result is made a true 0. Underflow does not apply to the intermediate result or
the operands during normalization. An exponent underflow exception causes a program interrupt if the
exponent underflow mask bit and the program exception mask bit of the current PSW are 1.

Attempted division by a divisor with a O fraction leaves the dividend unchanged and a program
exception for floating-point divide occurs. When division of a 0 dividend is attempted, the quotient
fraction is 0. The quotient sign and exponent are made O, giving a true O result. No program exceptions
occur.

The condition code remains unchanged.

Possible program exceptions:

- exponent overflow exception

- exponent underflow exception

— floating-point divide exception

— operation exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

Relocation and indirection flags: none

LABEL A OFERATION A CPEHARD A
0 16

AT EQ 2;!“?1 S TR | PIUE DU SN S ST

1.

The full-word contents of floating-point register 2 are divided by the full-word contents of floating-point
register 4. The result is placed in register 2.

6.18. HDR (HALVE, LONG FORMAT) — 90/60,70

Mnemcrmc Source Code Hexadec!mal Format Obleﬁ.
Operation Operand Format Operation Type Instruction
Code P a Code ye Length

HDR r1.fo 24 RR Two Bytes

6-23

7935 Rev. 1

UP.-NUMBER

6-24

PAGE

SPERRY UNIVAC Operating System/4

PAGE REVISION

Function:

The double-word contents of operand 2, specified by r,. are divided by 2. The normalized quotient is placed
in operand 1, specified by r,

Operational Considerations:

Example:

The fraction of operand 2 is shifted right one bit position, placing the least significant bit of the fraction
into the most significant bit position of the guard digit and filling the vacated fraction bit position with
0. The intermediate result is normalized and placed in the operand 1 location.

When normalization causes the exponent to become less than 0, an exponent underflow condition exists.
If the exponent underflow mask bit of the current PSW is 1, the exponent of the result is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is O, the result is made
true 0. An exponent underflow exception causes an interrupt if the exponent underflow mask bit and
the program exception mask bit of the current PSW are 1.

When the fraction of operand 2 is 0, the result is made a true 0, normalization is not attempted, and a
significance exception does not occur.

The condition code remains unchanged.

Possible program exceptions:

- exponent underflow exception

— operation exception

- specification exception {operand 1 or operand 2 register is not 0, 2, 4, or 6}

Relocation and indirection flags: none

LABEL A QOPERATION A GPERARD A
10 14

o B H-.DR : zJHw : R ST SO SV SO WOTAE NS ST ST SN SO ST N Y SO S B S

The double-word contents of floating-point register 4 are divided by 2. The result is placed in
floating-point register 2.

6.19. HER (HALVE, SHORT FORMAT) — 90/60,70

Mnemoni) .
n c?mc Source Code Hexadec!mal Format Object
Operation Operand Format Operation Type Instruction
Code Code yp Length

HER rifo 34 RR Two Bytes

6—-25

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP.NUMBER I PAGE REVISION

Function:

The full-word contents of operand 2, specified by r,. are divided by 2. The normalized quotient is placed in
operand 1, specified by r

Operational Considerations:

L The fraction of operand 2 is shifted right one bit position, placing the least significant bit of the fraction
into the most significant bit position of the guard digit and filling the vacated fraction bit position with
0. The intermediate result is normalized and placed in the operand 1 location.

" When normalization causes the exponent to become less than 0, an exponent underflow condition exists.
If the exponent underflow mask bit of the current PSW is 1, the exponent of the result is 128 greater
than the correct value. If the exponent underflow mask bit of the current PSW is 0, the result is made
true 0. An exponent underflow exception causes an interrupt if the exponent underflow mask bit and

the program exception mask bit of the current PSW are 1.

L When the fraction of operand 2 is 0, the result is made a true 0, normalization is not attempted, and a
significance exception does not occur.

. The condition code remains unchanged.
L Possible program exceptions:

— exponent underflow exception

—_ operation exception

- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags: none
Example:
LABEL A GPERATION A CPERAND A
i 0 T4
IS . Lo HER CZ,AE> 00 T SRR O SO TN N U USSR SO0 SN SO SONESND SUUT U S T SO0 S

1. The full-word contents of floating-point register 6 are divided by 2. The result is placed in register 0.

6.20. LCDR (LOAD-COMPLEMENT, LONG FORMAT) — 90/60,70

Mnemt?nuc Source Code Hexadec,mal Format Object.
Operation Operand Format Operation Tvoe Instruction
Code Code ve Length
LCDR r17n 23 RR Two Bytes
Function:

The sign of double-word operand 2, specified by ro is reversed and the result is placed in operand 1, specified
byr..
1

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

6—26

PAGE

Operational Considerations:

L The exponent and fraction are not changed.

. The contents of operand 2 remain unchanged.

n The condition code is set as follows:

— to 0 (002) if resultis O;

to 1 (012) if result is less than 0;

to 2 (102) if result is greater than 0; or

code 3 is not used.

» Possible program exceptions:

- operation exception

— specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

= Relocation and indirection flags: none

Example:
LABEL A OFERATION A OPERAND A
10 14 B
/' ot LC«DR ;2-’6 - N b

1. The sign of the double-word contents of floating-point register 6 is reversed and the result is placed in

register 2.

6.21. LCER (LOAD-COMPLEMENT, SHORT FORMAT) — 90/60,70

M M . .
nerm?mc Source Code Hexadecfmal Format Oblect.
Operation Operand Format Operation Tvpe Instruction
Code Code e Length
LCER f1.fo 33 RR Two Bytes
Function:

The sign of full-word operand 2, specified by Ty is reversed and the result is placed in operand 1,specified by r.

Operational Considerations:
= The exponent and fraction are not changed.

= The contents of operand 2 remain unchanged.

6—27

PAGE REVISION ‘ PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

L The condition code is set as follows:

to0 (002) if result is O;

to 1 (012) if result is less than O;

to 2 (10,) if result is greater than O; or

- code 3 is not used.
L] Possible program exceptions:

— operation exception

— specification exception {operand 1 or operand 2 register is not 0, 2, 4, or 6)
L Relocation and indirection flags: none

Example:

LABEL A OPERATION A GPERAND A
10 ié

8 SRR N LECxE,-R_J,bA)H' 0 S U O WU ST VRN ISE SO0 SUOT SO T WO SO SN SR SO0 SO SO SO S

1. The sign of the full-word contents of floating-point register 4 is reversed and the result is placed in
register 6.

6.22. LD (LOAD, LONG FORMAT) — 90/60,70

Mnemc?mc Source Code Hexadec!mal Format Oblecf
Operation Operand Format Operation Tvpe Instruction
Code Code e Length

L.D ry ,d2(x2,b2) 68 RX Four Bytes

Function:

The contents of double-word operand 2, specified by dz(xz'bz)' are placed in operand 1, specified by r.

VOperationaI Considerations:
- The contents of operand 2 remain unchanged.
L The condition code remains unchanged.
- Possible program exceptions:
- addressing exception

- indirect address specification exception

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l ‘ 6-28
PAGE REVISION

UP-NUMBER PAGE

- indirect addressing exception
- operation exception
- protection exception

— specification exception {operand 2 not on double-word boundary or IACW not on fuli-word
boundary; or operand 1 register is not 0, 2, 4, or 6)

» Relocation and indirection flags:
- operand 1: none
- operand 2: RO, 10

Example:

LABEL A OPERATION A GPERAND A
10 16

ol] bk LD o L“)AFORM S U N0 SO OO SN SN W SO AU WO NN SIS S W I S ST

1. The double-word contents of main storage location FORM are placed in floating-point register 4.

6.23. LDR (LOAD,LONG FORMAT) — 90/60,70

M . R .
nem(?mc Source Code Hexadecfmal Format Object.
Operation Operand Format Operation T Instruction
Code Code ype Length

LDR .75 28 RR Two Bytes

Function:
The contents of double-word operand 2, specified by r,, are placed in operand 1, specified by r,.
Operational Considerations:
L] The contents of operand 2 remain unchanged.
- The condition code remains unchanged.
. Possible program exceptions:
— operation exception
- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags: none

6—29

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

Example:
LABEL A OPERATION A OPERAND A
10 16
" oo b L.‘D;K ,.4?[1,12;‘.5-5=:-3 : TSR ST IN U N SN S U S S
1. The double-word contents of floating-point register 2 are placed in floating-point register 4.

6.24. LE (LOAD, SHORT FORMAT) — 90/60,70

Mnemc.?nlc Source Code Hexadec?mal Format Obyect.
Operation Operand Format Operation T Instruction
Code Code ype Length
LE ryd,(x5.b,) 78 RX Four Bytes
Function:

The contents of full-word operand 2, specified by d_(x_,b_}, are placed in operand 1, specified by r_.
21722 1

Operational Considerations:
L The contents of operand 2 remain unchanged.
] The condition code remains unchanged.
L Possible program exceptions:
- addressing exception
- indirect address specification exception
- indirect addressing exception
— operation exception
— protection exception

- specification exception (operand 2 or 1ACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, or 6)

] Relocation and indirection flags:
— operand 1: none

- operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP.NUMBER

l PAGE REVISION PAGE

6—30

Example:
LABEL A QPERATION A ODPERAND
1 10 14
{ | _— N S
,o Lol xi Lok zLiE QZ)SMADE» FUUPRS TV MRS SUVE SRS SRS SUANE S {
1. The full-word contents of main storage location MADE are placed in floating-point register 2.

6.25. LER {(LOAD, SHORT FORMAT) — 90/60,70

M . . .
nemt?mc Source Code Hexadec.lmal Format Object'
Operation Operand Format Operation Type Instruction
Code Code ye Length
LER 172 38 RR Two Bytes
Function:

The contents of full-word operand 2, specified by r, are placed in operand 1, specified by ry

Operational Considerations:
L] The contents of operand 2 remain unchanged.
L The condition code remains unchanged.
- Possible program exceptions:

— operation exception

- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

= Relocation and indirection flags: none

Example:
LABEL A OFERATION A GEERAMND
! 0 e M B
I. SRR I %LER ; %"“72 fo

1. The full-word contents of floating-point register 2 are placed in floating-point register 4.

6—-31

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

6.26. LNDR (LOAD-NEGATIVE, LONG FORMAT) — 90/60,70

N
- sure o et | o |
Code perand Format Code Type Length
LNDR FTP? 21 RR Two Bytes
Function:
The sign of double-word operand 2, specified by ry is made negative and the result is placed in operand 1,
specified by r,
Operational Considerations:
. Operand 2 is made negative even if the fraction is 0.
L The exponent and fraction are not changed.
» The contents of operand 2 remain unchanged.
- The condition code is set as follows:
— to0 (002) if result is O;
— tol (012) if result is less than 0; or

— codes 2 and 3 are not used.
] Possible program exceptions:
- operation exception
— specificationvexception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

] Relocation and indirection flags: none

Example:
LABEL A OPERATION A CPERARND A
1 10 14 e S
I‘ RN S LINDR, 2:’1(0 PO ST WL WO N S
1. The sign of the double-word contents of floating-point register 6 is made negative and the result is placed

in floating-point register 2.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-32

UP-NUMBER | PAGE REVISION \ PAGE

6.27. LNER (LOAD-NEGATIVE, SHORT FORMAT) — 90/60,70

M . . .
nemt?mc Source Code Hexadec!mal Format ObjeCt_
Operation Operand Format Operation Type Instruction
Code Code e Length
LNER riy 3 RR Two Bytes

Function:

The sign of full-word operand 2, specified by My is made negative and the result is placed in operand 1,
specified by Ty

Operational Considerations:
= Operand 2 is made negative even if the fraction is 0.
L The exponent and fraction are not changed.
L The contents of operand 2 remain unchanged.
. The condition code is set as follows:
— to 0 (002) if result is 0;
- tol (012) if result is less than 0; or
- codes 2 and 3 are not used.
L Possible program exceptions:
- operation exception
- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

L Relocation and indirection flags: none

Example:
LABEL A oPERaTION A OPERAND A
1 1g 1E
,‘ Lk k ! FOR T L-NER . %bJ L{' et S s L T S Padod Lohdodendboadidde b f
1. The sign of the full-word contents of floating-point register 4 is made negative and the result is placed in

floating-point register 6.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

633

PAGE

l PAGE REVISION

R

6.28. LPDR (LOAD-POSITIVE, LONG FORMAT) — 90/60,70

Mnemoni i j
n .mc Source Code Hexadecllmal Format ObIGCt.
Operation Operand Format Operation T Instruction
Code Cade ype Length
LPDR Mifs 20 RR Two Bytes
Function:

The sign of double-word operand 2, specified by My is made positive and the result is placed in operand 1,

specified by r-

Operationa! Considerations:

L The exponent and fraction are not changed.
. The contents of operand 2 remain unchanged.
L The condition code is set as follows:
- to 0 (002) if result is O;
— to 2 (102) if result is greater than O; or
- codes 1 and 3 are not used.
= Possible program exceptions:
- operation exception
- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)
L] Relocation and indirection flags: none
Example:
LABEL A GPERATION A GPERAND A
1 §?M mmmmmmmmmm -~ 14
| IR T N ELPDK . Q)b e U SR TR A ; i S
1. The sign of the double-word contents of floating-point register 6 is made positive and the result is placed

in register 0.

6.29. LPER (LOAD-POSITIVE, SHORT FORMAT) — 90/60,70

Mnemc?mc Source Code Hexadec,mal Format Object.
Operation Operand Format Operation Type Instruction
Code Code ye Length

LPER rifa 30 RR Two Bytes

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-34

UP-NUMBER I PAGE REVISION |PAGE

Function:

The sign of full-word operand 2, specified by r
specified by My

2t is made positive and the result is placed in operand 1,

Operational Considerations:
" The exponent and fraction are not changed.
. The contents of operand 2 remain unchanged.
- The condition code is set as follows:
- to0 (002) if result is 0;
— t02(10,) if result is greater than 0; or
— codes 1 and 3 are not used.
- Possible program exceptions:
- operation exception
— specification exception {operand 1 or operand 2 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags: none

Example:
LABEL N CPERATION A UFERAND A
i 10 16
i e I
: ; . .
i H
1. The sign of the full-word contents of floating-point register 0 is made positive, and the result is placed in

floating-point register 4.

6.30. LTDR (LOAD-AND-TEST, LONG FORMAT) — 90/60,70

M . . .
nemt?mc Source Code Hexadec!mal Format Object.
Operation Operand Format Operation Tvoe Instruction
Code Code ye Length

LTDR F1.0n 22 RR Two Bytes

Function:

The contents of double-word operand 2, specified by r,.are placed in operand 1, specified by ry-

6—35

PAGE

7935 Rev. 1 L SPERRY UNIVAC Operating System/4

UP-NUMBER

l PAGE REVISION

Operational Considerations:
= The contents of operand 2 remain unchanged.

L When the same register is specified for operand 1 and operand 2, the operation is equivalent to a test
without data movement.

L The condition code is set as follows:

to O (002) if result is 0;

to 1 (012) if result is less than O;

to 2 (102) if result is greater than O; or
— code 3 is not used.

L Possible program exceptions:
- operation exception

- specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags: none
Example:
LABEL A OPERATION A OPERAND A
1 10 16 R
L B LI TDR 2 IH‘ R SR S ST YO VNN NN S YOOE ST S ST T NN ST SO N S N S

1. The double-word contents of floating-point register 4 are placed in floating-point register 2 and the
condition code is set.

6.31. LTER (LOAD-AND-TEST, SHORT FORMAT) — 90/60,70

Mnemc?mc Source Code Hexadecgmal Format ObIOCt'
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length

LTER r1.42 32 RR Two Bytes

Function.

The contents of full-word operand 2, specified by r, are placed in operand 1, specified by r.

7935 Rev. 1
UP-NUMBER

6—36

l PAGE REVISION \ PAGE

SPERRY UNIVAC Operating System/4

Operational Considerations:

= The contents of operand 2 remain unchanged. —
» When the same register is specified for operand 1 and operand 2, the operation is equivalent to a test
without data movement.
] The condition code is set as follows:
- to 0 (002) if result is O;
— t01(01,) if result is less than 0;
- to 2 (102) if result is greater than 0; or
— code 3 is not used.
L] Possible program exceptions:
- operation exception
- specification exception {operand 1 or operand 2 register is not 0, 2, 4, or 6)
L] Relocation and indirection flags: none
Example:
LABEL A CFERATION A UPERAND A —
L § A
1) LTER | 0,2 -
1. The full-word contents of floating-point register 2 are placed in floating-point register O and the

condition code is set.

6.32. MD (MULTIPLY, LONG FORMAT) — 90/60,70

M . . .
nem(?nlc Source Code Hexadec.umal Format Object
Operation Operand Format Operation Type Instruction
Code Code yp Length
MD 12 ,d2(x2,b2) 6C RX Four Bytes
Function:

The contents of double-word operand 1 (multiplicand), specified by r,. are multiplied by the contents of
double-word operand 2 (multiplier), specified by d2(x2,b2). The normalized product is placed in operand 1.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 6-37

PAGE REVISION PAGE

Operational Considerations:

Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of
the intermediate product is obtained by adding the exponents of the two operands and reducing the sum
by 64.

Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits and a guard digit (6.1) before
normalization.

If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An
exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSW is 1,

If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is 0, the result is made a true 0. When an underflow
characteristic becomes less than 0 during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

When all digits of the intermediate product are 0, the result is made a true 0.

When the result fraction is 0, a program exception for exponent underflow or overflow does not occur.
The condition code remains unchanged.

Possible program exceptions:

— addressing exception

- exponent overflow exception

_ exponent underflow exception

— indirect address specification exception

- indirect addressing exception

- operation exception

- protection exception

— specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

Relocation and indirection flags:
- operand 1: none

— operand 2: RO, 10

6—-38

PAGE REVISION ‘ PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Example:
LABEL A OPERATION A UPERAND A
1 1 g 16
,' bede cedind il,\ { MD Lok 2)‘MuLT‘;> ! ST VN SN SUE VRO WU SO S SR W S A T T T !
1. The double-word contents of floating-point register 2 are multiplied by the double-word contents of

main storage location MUL TP. The result is placed in register 2.

6.33. MDR (MULTIPLY, LONG FORMAT) — 90/60,70

M H . .
nemt?mc Source Code Hexadecfmal Format Oblect.
Operation Operand Format Operation Type Instruction
Code Code yp Length
MDR 1.y 2C RR Two Bytes
Function:

The contents of double-word operand 1 (multiplicand), specified by r,, are multiplied by the contents of
double-word operand 2 (multiplier), specified by Fy- The normalized product is placed in operand 1.

Operational Considerations:

L] Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of

the intermediate product is obtained by adding the exponents of the two operands and reducing the sum
by 64.

L] Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits and a guard digit before
normalization.

L] If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An

exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSW is 1.

L If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is 0, the result is made a true 0. When an underflow
characteristic becomes less than O during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

n When all digits of the intermediate product are O, the result is made a true 0.

6—39

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

L When the result fraction is 0, a program exception for exponent underflow or overflow does not occur.
L The condition code remains unchanged.
L Possible program exceptions:
- exponent overflow exception
- exponent underflow exception
- operation exception
— specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)
» Relocation and indirection flags: none

Example:

LABEL A QPERATION A OQFERAND A
1 190 14

S SR N A MDR ; O,H‘ P VOOR SISO VAT W SO0 SO SO ST SO SO SO SO U 0 SO0 SN

1. The double-word contents of floating-point register 0 are multiplied by the double-word contents of
floating-point register 4. The result is placed in register 0.

6.34. ME (MULTIPLY, SHORT FORMAT) — 90/60,70

Mnemc?mc Source Code Haxadec!mal Format Object‘
Operation Operand Format Operation Type Instruction
Code Code yp Length
ME N ,d2(x2,b2) 7C RX Four Bytes
Function:

The contents of full-word operand 1 (multiplicand), specified by ry, are multiplied by the contents of
full-word operand 2 (multiplier), specified by d2(x2,b2). The normalized product is placed in operand 1.

Operational Considerations:

L] Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of
the intermediate product is obtained by adding the exponents of the two operands and reducing the sum

by 64.

L Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits, the two least significant
digits of which are 0, before normalization.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6—40

UP-NUMBER l PAGE REVISION I PAGE

L If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An
exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSWis 1.

= If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is O, the result is made a true 0. When an underflow
characteristic becomes less than O during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

a When all digits of the intermediate product are 0, the result is made a true 0.
. When the result fraction is 0, a program exception for exponent underflow or overflow does not occur.
L] The condition code remains unchanged.

] Possible program exceptions:

|

addressing exception

- exponent overflow exception

- exponent underflow exception

— indirect address specification exception
- indirect addressing exception

— operation exception

- protection exception

— specification exception (operand 2 or IACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, or 6)

] Relocation and indirection flags:
- operand 1: none
- operand 2: RO, 10

Example:

LABEL A srEgation A UEERAND A
! 1o 14

% NSRRI B % ME * éJNOKM it et 4 L]

1. The full-word contents of floating-point register 6 are multiplied by the full-word contents of main
storage location NORM. The result is placed in register 6.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

6—-41

PAGE REVISION PAGE

6.35. MER (MULTIPLY, SHORT FORMAT) — 90/60,70

Mnemt?mc Source Code Hexadec,ma! Format Object.
Operation Operand Format Operation Type Instruction
Code Code - Length
MER r1.0o 3C RR Two Bytes
Function:

The contents of full-word operand 1 (multiplicand), specified by r,, are multiplied by the contents of
full-word operand 2 {multiplier), specified by ry The normalized product is placed in operand 1.

Operational Considerations:

Floating-point multiplication consists of exponent addition and fraction multiplication. The exponent of
the intermediate product is obtained by adding the exponents of the two operands and reducing the sum
by 64.

Both operands are normalized before multiplication and the intermediate product is normalized after
multiplication. The intermediate product fraction is truncated to 14 digits, the two least significant
digits of which are 0, before normalization.

If the exponent of the final product exceeds 127, an exponent overflow condition exists. The resultant
floating-point number consists of a correct and normalized fraction, a correct sign, and an exponent
which is 128 less than the correct value. The overflow condition does not occur for an intermediate
product exponent exceeding 127 if the final exponent is brought within range during normalization. An
exponent overflow condition causes a program interrupt if the program exception mask bit of the
current PSW is 1.

If the final product exponent is less than 0, an exponent underflow condition exists. If the exponent
underflow mask bit of the current PSW is 1, the resultant floating-point number has a correct and
normalized fraction, a correct sign, and an exponent which is 128 greater than the correct value. If the
exponent underflow mask bit of the current PSW is 0, the result is made a true 0. When an underflow
characteristic becomes less than 0 during normalization before multiplication, an underflow exception is
not recognized. An exponent underflow exception causes a program interrupt if the exponent underflow
mask bit and the program exception mask bit in the current PSW are 1.

When all digits of the intermediate product are 0, the result is made a true 0.

When the result fraction is 0, a program exception for exponent underflow or overflow does not occur.
The condition code remains unchanged.

Possible program exceptions:

- exponent overflow exception

— exponent underflow exception

operation exception

specification exception {operand 1 or operand 2 register is not 0, 2, 4, or 6)

Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 [\ 6-42
PAGE REVISION

UP.NUMBER PAGE

Example:
LABEL A DRERATION A CPERAND A
1 oot :
bl i [MBR .| 12,0 . : z f
1. The full.word contents of floating-point register 2 are multiplied by the full-word contents of

floating-point register 0. The result is placed in register 2.

6.36. SD (SUBTRACT-NORMALIZED, LONG FORMAT) - 90/60,70

Mnemonic i i
. ' Source Code Hexadec,mal Format Object.
Operation Operand Format Operation Tvoe Instruction
Code Code ve Length
SD r1.d5(x5.b5) 6B RX Four Bytes
Function:

The double-word contents of operand 2, specified by dz(xz'bz)' are algebraically subtracted from the
double-word contents of operand 1, specified by Py The normalized difference is placed in operand 1.

Operational Considerations:

L] The execution of the SD instruction is identical to that of the AD instruction, except that the sign of
operand 2 is reversed before addition.

= The condition code is set as follows:

to 0 (002) if result fraction is O;

to1 (012) if result fraction is less than O;

to 2 (102) if result fraction is greater than O; or
- code 3 is not used.
L] Possible program exceptions:
- addressing exception
- exponent overflow exception
— exponent underflow exception
- indirect address specification exception
- indirect addressing exception

- operation exception

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION IF’AGE

6—43

protection exception

significance exception

specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6}

- Relocation and indirection flags:

operand 1: none

operand 2: RO, 10

Example:
LABEL A GPERATION A OPERAND A
10 14 R e
/' fodnid l Lod $‘D ¢ bJ;TR!ACK :_;xx FEE RS T ke L
1. The double-word contents of main storage location TRACK are subtracted from the double-word

contents of floating-point register 6. The result is placed in register 6.

6.37. SDR (SUBTRACT-NORMALIZED, LONG FORMAT) — 90/60,70

M . . .
nemc‘mlc Source Code Hexadec_lmal Format Object
Operation Operand Format Operation T Instruction
Code Code ype Length
SDR rfo 2B RR Two Bytes
Function:

The double-word contents of operand 2, specified by r,, are algebraically subtracted from the double-word

contents of operand 1, specified by r The normalized difference is placed in operand 1.

Operational Considerations:

L The execution of the SDR instruction is identical to that of the ADR instruction (6.3), except that the

sign of operand 2 is reversed before addition.

L The condition code is set as follows:

to 0 (002) if result fraction is O;

to 1 (012) if result fraction is less than O;

to 2 (102) if result fraction is greater than 0Q; or

code 3 is not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l \ 6-44
PAGE REVISION

UP-NUMBER PAGE

L] Possible program exceptions:

- exponent overflow exception

— exponent underflow exception

— operation exception

- significance exception

— specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)
L] Relocation and indirection flags: none

Example:

LABEL A OFERATION A GPERAND A
1 10

ié
B A S‘DR fed H)Z TR TS 0 SO T SN O S

1. The double-word contents of floating-point register 2 are subtracted from the double-word contents of
floating-point register 4. The result is placed in register 4.

6.38. SE (SUBTRACT-NORMALIZED, SHORT FORMAT) — 90/60,70

M H . .
nemc?mc Source Code Hexadecfmal Format Obleﬂ_
Operation Operand Format Operation Type Instruction
Code P Code yp Length
SE ry.daixyby) 78 RX Four Bytes
Function:

The full-word contents of operand 2, specified by dz(xz'bz)' are algebraically subtracted from the full-word
contents of operand 1, specified by r- The normalized difference is placed in operand 1.

Operational Considerations:

L The execution of the SE instruction is identical to that of the AE instruction (6.4), except that the sign
of operand 2 is reversed before addition.

= The condition code is set as follows:

to 0 (002) if result fraction is 0;

to1 (012) if result fraction is less than 0;

to 2 (10,) if result fraction is greater than 0; or

code 3 is not used.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

‘ PAGE REVISION l PAGE

6—45

n Possible program exceptions:

- addressing exception

- exponent overflow exception

— exponent underflow exception

- indirect address specification exception

— indirect addressing exception

— operation exception

- protection exception

- significance exception

— specification exception (operand 2 or IACW not on full-word boundary; or operand 1 register is
not 0, 2, 4, 6)

n Relocation and indirection flags:

- operand 1: none

- operand 2: RO, 10

Example:
LABEL A GFERATION A QPERAMD
i 1s 14
!
’ S i | SE b 2,2)*CL¢ARE FRS S DU S
1. The full-word contents of main storage location CLARE are subtracted from the contents of

floating-point register 2. The result is placed in register 2.

6.39. SER (SUBTRACT-NORMALIZED, SHORT FORMAT) — 90/60,70

M H . .
nemonic Sourcs Code Hexadec!mal Format Oble':'.
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
SER ri/fo 3B RR Two Bytes
Function:

The full-word contents of operand 2, specified by r,.are algebraically subtracted from the full-word contents

of operand 1, specified by r The normalized difference is placed in operand 1

»

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l \ 6-46

UP-NUMBER PAGE

Operational Considerations:

. The execution of the SER instruction is identical to that of the AER instruction (6.5), except that the
sign of operand 2 is reversed before addition.

L The condition code is set as follows:
— to 0 (002) if result fraction is 0;
— to 1 (012) if result fraction is less than 0;
- to 2 (102) if result fraction is greater than 0; or
- code 3 is not used.
L Possible program exceptions:
— exponent overflow exception
- exponent underflow exception

- operation exception
- significance exception

— specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

L Relocation and indirection flags: none
Example:
LABEL A OPERATION A GFERAND A
H 16 16
l. S : in
I S W SE Q i ga)b
1. The full-word contents of floating-point register 6 are subtracted from the full-word contents of

floating-point register 0. The result is placed in register 0.

6.40. STD (STORE, LONG FORMAT) — 90/60,70

M H n .
nemc?mc Source Code Hexadecgmal Format Ob]ect_
Operation Operand Format Operation Type Instruction
Code Code ye Length
STD ry.dyixyby) 60 RX Four Bytes
Function:

The double-word contents of operand 1, specified by r,,are placed in main storage at the location designated
by operand 2, specified by d2(x2,b2).

6—47
PAGE REVISION { PAGE

7935 Rev. 1 [SPERRY UNIVAC Operating System/4
UP.NUMBER

Operational Considerations:

-~ L] The condition code remains unchanged.
u Possible program exceptions:
— addressing exception
— indirect address specification exception
- indirect addressing exception
— operation exception
- protection exception
— specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)
- Relocation and indirection flags:
— operand 1: none
- operand 2: RD, ID
Example:
LABEL A OPERATION A OPERAND A
1 10 16 e i N
AN I B ST.D i L‘I‘]STQQE 0 DU SULSOPRS SN SR VRN IS ST SO S S S |
1. The double-word contents of floating-point register 4 are placed in main storage location STORE.

6.41. STE (STORE, SHORT FORMAT) — 90/60,70

Mnemonic])
" oni Source Code Hexadeclnmal Format Obleﬂ.
peration Operand Format Operation Type Instruction
Code Code yp Length
STE rydaixy,by) 70 RX Four Bytes
Function:

The full-word contents of operand 1, specified by r,.are placed in main storage at the location designated by
operand 2 specified by d_ (x b2).

272

7935 Rev. 1 SPERRY UNIVAC Operating System/4 | ‘ 6-48
PAGE REVISION

UP-NUMBER PAGE

Operational Considerations:

n The condition code remains unchanged.

L] Possible program exceptions:
- addressing exception
- indirect address specification exception
— indirect addressing exception
- operation exception
- protection exception

— specification exception (operand 2 or IACW not on full-word boundary, or operand 1 register is
not 0, 2, 4, or 6)

L] Relocation and indirection flags:
- operand 1: none

— operand 2: RD, ID

Example:
LABEL A CPERATION A OFERAHD A
18 14 -
oot |STE . |6, ARTM . .
1. The full-word contents of floating-point register 6 are placed in main storage location ARTM.

6.42. SU (SUBTRACT-UNNORMALIZED, SHORT FORMAT) — 90/60,70

M . . .
nemc'mlc Source Code Hexadec!mal Format Object
Operation Operand Format Operation T Instruction
Code Code ype Length
SuU 2 ,dz(xz,bz) 7F RX Four Bytes
Function:

The full-word contents of operand 2, specified by dz(xz,bz), are algebraically subtracted from the full-word
contents of operand 1, specified by r,. The difference is placed in operand 1.

Operational Considerations:

L The execution of the SU instruction is identical to that of the AU instruction {6.6), except that the sign
is reversed before addition.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION l

6—49
PAGE

The condition code is set as follows:

- to 0 (00,) if result fraction is O;

- to 1 (012) if result fraction is less than O;
- to 2 (10,,) if result fraction is greater than O; or
- code 3 is not used.

Possible program exceptions:

- addressing exception

— exponent overflow exception

- indirect address specification exception
- indirect addressing exception

- operation exception

— protection exception

- significance exception

- specification exception (operand 2 or IACW not on full-word boundary, or operand 1 register is

not 0, 2, 4, or 6)
Relocation and indirection flags:
- operand 1: none

- operand 2: RO, 10

LABEL A OPERATION A GPERAND
10 14

a
a
[}
Example:
H
l.
1.

The full-word contents of main storage location TRAM are subtracted from the full-word contents of

floating-point register 4. The result is placed in register 4.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 6-50
UP-NUMBER PAGE REVISION PAGE
6.43. SUR (SUBTRACT-UNNORMALIZED, SHORT FORMAT) — 90/60,70
Icl)lnemc?nic Source Code H:)xadecimal Format | Object'
p;::uon Operand Format peration Type nstruction
e Code Length
SUR rqfo 3F RR Two Bytes

Function:

The full-word contents of operand 2, specified by r,, are algebraically subtracted from the full-word contents
of operand 1, specified by ry The difference is placed in operand 1.

Operational Considerations:

L] The execution of the SUR instruction is identical to that of the AUR instruction (6.7), except that the
sign is reversed before addition.

n The condition code is set as follows:

to 0 (002) if result fraction is 0;

to1 (012) if result fraction is less than O;

to 2 (102) if result fraction is greater than O; or
- code 3 is not used.

L Possible program exceptions:

exponent overflow exception

operation exception

- significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6)

Example:

LABEL A CPERATION A GPERAND A
1 10 16

I'__i_.i.__.;._..ﬁ.i.._,l,,,i UL SUR‘ i b J;Q ;

1. The full-word contents of floating-point register O are subtracted from the full-word contents of
floating-point register 6. The result is placed in register 6.

6—51

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

6.44. SW (SUBTRACT-UNNORMALIZED, LONG FORMAT) — 90/60,70

M H o .
nemcfnlc Source Code Hexadec!mal Format Obiject
Operation Operand Format Operation Type Instruction
Code Code ve Length
Sw " ,d2(x2,b2) 6F RX Four Bytes

Function:

The double-word contents of operand 2, specified by dz(xz,bz), are algebraically subtracted from the
double-word contents of operand 1, specified by r. The difference is placed in operand 1.

Operational Considerations:

L The execution of the SW instruction is identical to that of the AW instruction (6.8), except that the sign
is reversed before addition.

" The condition code is set as follows:

to 0 (002) if result fraction is O;

to1 (012) if result fraction is less than 0;

to 2 (102) if result fraction is greater than O; or
— code 3 is not used.
= Possible program exceptions:
- addressing exception
- exponent overflow exception
- indirect address specification exception
- indirect addressing exception
- operation exception
— protection exception
- significance exception

— specification exception (operand 2 not on double-word boundary, or IACW not on full-word
boundary, or operand 1 register is not 0, 2, 4, or 6)

L] Relocation and indirection flags:
- operand 1: none

— operand 2: RO, 10

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION

6—52
PAGE

Example:
LABEL A OPERATION A OPERAND
i 1¢ 16 . —
l- TR | F SMI £l OJSW;IFT L ih b i
1. The double-word contents of main storage location SWIFT are subtracted from the double-word

contents of floating-point register 0. The result is placed in register 0.

6.45. SWR (SUBTRACT-UNNORMALIZED, LONG FORMAT) — 90/60,70

Mnemt?mc Source Code Hexadec!mal Format Ob]ect.
Operation Operand Format Operation Type Instruction
Code pe Code v Length
SWR rifo 2F RR Two Bytes
Function:

The double-word contents of operand 2, specified by r,, are algebraically subtracted from the double-word

contents of operand 1, specified by r. The difference is stored in operand 1.

Operational Considerations:

The execution of the SWR instruction is identical to that of the AWR instruction (6.9), except that the
sign is reversed before addition.

The condition code is set as follows:

to 0 (002) if result fraction is O;
to 1 (012) if result fraction is less than O;
to 2 (102) if result fraction is greater than 0; or

code 3 is not used.

Possible program exceptions:

exponent overflow exception
operation exception

significance exception

specification exception (operand 1 or operand 2 register is not 0, 2, 4, or 6}

Relocation and indirection flags: none

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

6—53
PAGE

| PAGE REVISION

Example:
LABEL A OPERATION A OPERAND A
10 s i
bl TR E§V¢f§mﬁﬂkuélaézhﬁ.4 ST S0 DU T S S G PN ik
1. The double-word contents of floating-point register 2 are subtracted from the double-word contents of

floating-point register 6. The result is placed in register 6.

-

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-1

UP-NUMBER ‘ PAGE REVISION I PAGE

7. Logical Instructions

7.1. GENERAL

The logical instruction set provides for the adding, subtracting, moving, comparing, bit manipulating, bit testing,
translating, editing, and shifting of logical operands. A logical operand may be a full word or double word, a single
character, or a variable-length field. Depending on the instruction, logical operands may be treated as unsigned
integers or as unsigned and signed, packed and unpacked fields.

Logical operands are available in the RR, RX, RS, SS, and Sl formats. The operands may reside in the general
registers, in main storage, or within a field in the instruction itself. On the SPERRY UNIVAC 9400/9480 Systems,
the address of an operand in main storage is specified as absolute. On the SPERRY UNIVAC 90/60,70 Systems, the
address of an operand in main storage may be specified as relative or absolute and direct or indirect under the
control of the applicable relocation register flags. The first and second operand fields in main storage may overlap in
any way; however, unpredictable results may occur during translation and editing operations. The effect of
overlapping may be understood by considering the operands to be processed one byte at a time from left to right.

This section describes the operation of each logical instruction. The instructions are arranged in alphabetical order
according to mnemonic operation code. Each description includes a list of the possible program exceptions and
condition codes which may result. The relocation and indirection flags that are pertinent to the operand addresses
are listed. The object code format of the instruction is shown only for those instructions which differ from the
format shown in Figure 3—1. See Table 3—1 for an explanation of the abbreviations used in describing instruction

formats.

7.2. AL (ADD-LOGICAL) —90/60,70

M . . .
nemonic Source Code Hexadec!mal Format ObleCt'
Operation Operand Format Operation Type Instruction
Code Code ye Length
AL ri ,dz(xz,b2) 5E RX Four Bytes
Function:

The contents of operand 2, specified by d2(x2,b2), are logically added to the contents of operand 1, specified
by M and the sum is placed in operand 1.

Operational Considerations:
L] Logical addition is performed by adding all 32 bits of each operand.

L] The contents of operand 2 remain unchanged.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

7-2
PAGE REVISION PAGE

. The condition code is set as follows:
- to 0 (002) if result is 0; no carry out of most significant bit;
— to 1 (012) if result is not 0; no carry out of most significant bit;
- to 2 (102) if result is 0; carry out of most significant bit; or
- to 3 (112) if result is not 0; carry out of most significant bit.
L Possible program exceptions:
- addressing exception
- indirect address specification exception
— indirect addressing exception
- protection exception
— specification exception (operand 2 or [ACW not on full-word boundary)
. Relocation and indirection flags:
- operand 1: none

- operand 2: RO, 10

Example:
LABEL A OPERATION A OPERAMD A
1 10 16
/‘ SRR W AL i 55£QRR SRR N TOE T R OR N N FUNS SN SO SIS S S

1. The contents of the main storage location CORR are logically added to the contents of register 5. The
result is placed in register 5.

7.3. ALR (ADD-LOGICAL) — 90/60,70

M i . .
nemonic Source Code Hexadec,mal Format Obleﬂ_
Operation Operand Format Operation T Instruction
Code pe Code ype Length
ALR rfy 1E RR Two Bytes
Function:

The contents of operand 2, specified by r,, are logically added to the contents of operand 1, specified by My

and the sum is placed in operand 1.

7-3
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Operational Considerations:

N
L Logical addition is performed by adding all 32 bits of each operand.
L The contents of operand 2 remain unchanged.
L The condition code is set as follows:
— 100 (002) if result is O; no carry out of most significiant bit;
— to1 (012) if result is not 0; no carry out of most significant bit;
— to 2 (102) if result is 0; carry out of most significant bit; or
- to 3 (11 2) if result is not Q; carry out of most significant bit.
n Possible program exceptions: none
L] Relocation and indirection flags: none
Example:
LABEL A OFERATION A CPERAND A
1 10 15
[I
1 1. The contents of register 9 are logically added to the contents of register 7. The result is placed in register 7.
7.4. CL (COMPARE-LOGICAL)
Mnem(?nic Source Code Hexadec'imal Format Obj ect
Operation o d Format Operation Tvpe Instruction
Code peran Code ye Length
CL r1.05(x5,b5) 55 RX Four Bytes
Function:

The contents of operand 1, specified by e and operand 2, specified by d2(x2,b2), are compared and the
condition code is set according to the comparison.

Operational Considerations:
L Operands are considered as unsigned binary numbers and all bit combinations are valid.

= The contents of both operands remain unchanged.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

7-4
PAGE

= The

Exampl

condition code is set as follows:

to 0 (002) if the operands are equal;

tot (012) if operand 1 is less than operand 2;

to 2 (102) if operand 1 is greater than operand 2; or

code 3 is not used.

Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 8400/9480 Systems

Addressing

Addressing

Indirect address specification

Specification

Indirect addressing

Protection

Specification (operand 2 or |ACW
not on full-word boundary)

Relocation and indirection flags (90/60,70):

e

operand 1: none

operand 2: RO, 10

LABE

L A OFERATION A
14 16

GFERANRD

The contents of register 8 are compared with the contents of main storage location COMP.

7.5.CLC (COMPARE-LOGICAL)

B,COMP

Mnemc‘muc Source Code Hexadecfmal Format %]001.
Operation Operand Format Operation Type Instruction
Code pe Code Length
cLC d,(1by),d,(b,) D5 ss Six Bytes
Function:

The contents of operand 1, specified by d1 (I,b1), and operand 2, specified by dz(bz)r are compared and the
condition code is set according to the comparison.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

7-5
PAGE REVISION | PAGE

Obiject Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 718 15|16 1920 31

D5 -1 b, d, 3

}32 35,35 OPERAND 2 47

Operational Considerations:
L The length specification of operand 1 specifies the length of both operands.
- Operands are considered unsigned binary numbers and all bit combinations are valid.
= The contents of both operands remain unchanged.
L The instruction is processed from left to right, byte by byte.

L The condition code is set as follows:

to 0 (002) if the operands are equal;

to 1(01,) if operand 1 is less than operand 2;

to 2 (102) if operand 1 is greater than operand 2; or

— code 3 is not used.

n Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification ({ACW not on full-word
boundary)

- Relocation and indirection flags (90/60,70):
- operand 1: RD, ID

- operand 2: RO, 10

7-6
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Example:

LABEL A OPERATION A OPERAND A
10 16

@LJ.xuoug ; SUMMARY, TNPUT 1o

—

1. The contents of main storage location SUMMARY are compared with the contents of main storage
location INPUT. SUMMARY and INPUT are labels with defined locations and lengths. The length
attribute of the symbol SUMMARY determines the length of the operands.

7.6.CLI (COMPARE-LOGICAL)

M . R .
nemt?mc Source Code Hexadec!mal Format Ob)ect'
Operation Operand Format Operation T Instruction
Code Code ype Length
cLI d, by)iy 95 si Four Bytes
Function:

The one-byte contents of operand 1, specified by d1 (b1), and operand 2, contained in the i2 field, are
compared and the condition code is set according to the comparison.

Operational Considerations:
L Operands are considered unsigned binary numbers and all bit combinations are valid.
L The contents of operand 1 remain unchanged.
- The condition code is set as follows:
- to 0 (002) if the operands are equal;
- to 1 (012) if operand 1 is less than operand 2;
- to 2 (102) if operand 1 is greater than operand 2; or
- code 3 is not used.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary}

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

77

PAGE

= Relocation and indirection flags (90/60,70):

Exampiles:

operand 1: RO, 10

operand 2: none

1. The contents of main storage location VALUE are compared with 100.

s CLT

.‘T—ESTLJX‘- *O’xﬁ: ';v ER S

LABEL A OPERATION A GPERAND A
1 18 14
I' .4 i § ER CLI i N VAEL—»U}E») l OO b Bk i ”i.,w F.

2. The contents of main storage location TEST are compared with the hexadecimal value 3.

7.7. CLR (COMPARE-LOGICAL)

Mnemc?mc Source Code Hexadecfmal Format Ob;eci'
Operation Operand Format Operation Type Instruction
Code Code e Length
CLR ri.fa 15 RR Two Bytes
Function:

The contents of operand 1, specified by r. and the contents of operand 2, specified by r,, are compared and
the condition code is set according to the comparison.

Operational Considerations:

L] Operands are considered unsigned binary numbers and all bit combinations are valid.

L] The contents of both operands remain unchanged.

L The condition code is set as follows:

to 0 (00,) if the operands are equal;

to 1 (012) if operand 1 is less than operand 2;

to2 (102) if operand 1 is greater than operand 2; or

code 3 is not used.

L] Possible program exceptions: none.

] Relocation and indirection flags (90/60,70): none

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

I PAGE REVISION l

PAGE

Example:
\r/;‘
LABEL A OPERATION A OPERAND
16 16
I' TR A GL{-R i,lul,bv."7r Ll o i i
1. The contents of register 6 and the contents of register 7 are logically compared and the condition code is
set.
7.8. ED (EDIT)
Mnemonic Hexadecimal Object
. So
Operation Oper:l::e:(:‘:‘:at Operation F;rmat Instruction
Code Code ype Length
ED dq(1by).dylby) DE ss Six Bytes
Function:

The data of operand 2, specified by dz(bz), is changed from packed to unpacked format, is edited under the
control of operand 1 (the mask), and is placed in the operand 1 location, specified by d1 (l,b1).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7|8 15|16 19/20 31
DE I—1 b1 d1 —)
T&,_ 35,35 OPERAND 2 47
) by dy

Operational Considerations:

L] Editing includes sign and punctuation control and the suppression and protection of leading 0's. It also
facilitates programmed blanking for alt O fields. Several fields may be edited in one operation, and
numeric information may be combined with text.

L The instruction proceeds from left to right.
" Operand 2 data must be in packed format and must contain valid numerics and sign codes.
» The original contents of operand 1 is the mask, the pattern which controls the edit process. Depending

on the edit requirements, some of the bytes originally in operand 1 are replaced by data from operand 2.
The mask is expressed in unpacked format and may consist of any combination of 8-bit characters.

7935 Rev. 1

UP.NUMBER

SPERRY UNIVAC Operating System/4 7-9

1 PAGE REVISION I PAGE

As the mask is scanned from left to right, one of three things happens to each mask character:

— An operand 2 digit is expanded to a zoned character. The zoned character replaces the mask
character. When the operand 2 digit is stored as the result, its code is expanded from packed to
unpacked format by attaching a generated zone code. When the A mode bit of the current
program status word is 0, the EBCDIC zone code (111 12) is generated; when the A mode bit is 1,
the ASCI! zone code {001 1,) is generated.

— The mask character is left unchanged.

— A fill character is stored in the result. The fill character is taken from the first byte position of the
mask. The choice of this character is not dependent upon the editing function initiated by this
code. The editing function occurs after the code has been assigned as a fill character.

Each mask character is replaced by a result character that depends on three conditions:
— the digit obtained from operand 2;

— the mask character; and

- the S switch status.

When a digit select or significance start byte is found in the mask, the S switch and an operand 2 digit
are examined. This results in either the unpacked operand 2 digit or the fill character replacing the mask
character. A valid decimal digit (if mask byte is significance start) or nonzero decimal digit {if mask byte
is digit select) sets the S switch to on if the operand 2 byte does not contain a plus code in the four least
significant bit positions (Table 7—1).

Significance Indicator (S Switch)

The significance indicator, referred to as the S switch, indicates by its on or off state the significance or
nonsignificance, respectively, of subsequent operand 2 digits or message characters. Significant operand
2 digits replace their corresponding digit select or significance start characters in the result. Significant
message characters remain unchanged in the result.

When the S switch is off, 0’s to be transferred from operand 2 are suppressed and the fill character is
inserted in the corresponding operand 1 position. When the S switch is on, any 0 to be transferred from
operand 2 is unpacked into the corresponding operand 1 position. At the beginning of execution the §
switch is off.

Fill Character

The fill character is the leftmost character of the edit mask (operand 1). Any hexadecimal value
(Appendix C) may be used as a valid fill character. This character is retained for the editing which
follows. This position does not receive a digit from the operand 2 data.

Digit Select Byte

The digit select byte is a character in the operand 1 mask represented by the EBCDIC code 20 or the
ASCII code 80. If the digit select byte is encountered and the S switch is on, any digit, O through 9, is
unpacked to replace the digit select byte. If the S switch is off, the operand 2 digit is examined and only
nonzero digits are unpacked into operand 1. The fill character replaces the digit select byte if the
examined digit is 0. The S switch is turned on when the first nonzero operand 2 digit is encountered; this
allows succeeding 0's from operand 2 to be included in the result,

7-10

| PAGE REVISION |PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

L Significance Start Byte

The significance start byte is represented in the edit mask by the EBCDIC code 21 or the ASCII code 81.
The significance start byte performs the same function as the digit select byte except the significance
start byte turns the S switch on regardless of the value of the current operand 2 digit. Once the S switch
is on, it remains on for all succeeding digits; however, the current digit is not affected. The S switch may
be turned off by a field separator byte or by a positive sign code within operand 2.

L] Message Character
Any other symbol or data in the operand 1 edit mask, as represented by hexadecimal codes, is retained
unchanged if the S switch is on. If the S switch is off, the other data is replaced by the fill character.
During this operation, the digit of operand 2 is neither accessed nor address advanced.

] Field Separator Byte
Multiple-field editing operations are indicated by the presence of one or more field separator bytes
(EBCDIC code 22, ASCII code 82). The field separator byte identifies the individual fields in this
operation and is always replaced in the mask with a fill character. The S switch is always off after the
field separator byte is encountered. If field separators are not indicated by the mask, the entire operand
2 is considered one field.

» Sign Consideration for Operand 2
The sign of operand 2, positive or negative, must be a value greater than binary 9 (10012). Any
hexadecimal value A through F is acceptable. The sign itself is not moved to operand 1; instead, a sign
indicator, such as a minus sign or letters CR, is either deleted from or retained in operand 1, depending
on the sign of operand 2.
The sign of operand 2 also affects the S switch. A positive sign turns the S switch off, thus causing the

following characters in operand 1 to be replaced by the fill character. A negative sign leaves the S switch
unchanged.

u If the fill character is a blank, if no significance start byte appears in the mask, and if operand 2 is all Q’s,
the editing operation blanks the result field.

L] Overlapping operand 1 and operand 2 fields produce unpredictable results.
= Operand Length

The length specification in the object instruction specifies the length of the mask {operand 1). The
length of the mask can be determined as follows:

- one byte for the fill character;

— one byte for each digit select byte, significance start byte, and field separator byte; and

— one byte for each message character.

Usually operand 2 is shorter than operand 1, since, for each operand 2 digit, a zone and a numeric are

inserted in the result. The total number of digit select and significance start bytes in the mask must equal
the number of operand 2 digits to be edited.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 -1

PAGE REVISION PAGE

L] If operand 2 containing unpacked data is to be edited, it must first be packed by the PACK instruction.

In packing an odd number of bytes, an odd number of digit positions and the sign are produced. In
packing an even number of bytes, an odd number of digit positions and the sign are produced. The extra
digit position in the latter case is 0, and is the most significant position in operand 2, The extra position
must be provided for in the mask by specifying an extra DSB or SSB. Space, asterisk, or other character
fill occurs and may be dropped when transferring the edited operand to output.

n The condition code, reflecting the status of the last source field edited, is set as follows:

— to 0 when all of the operand 2 digits in the last field are 0. If the mask of the last field has no
significance start or digit select bytes, the operand 2 digits are not examined and the condition
code is set to 0;

— to 1 (012) when a nonzero operand 2 digit without an associated plus sign is detected;
- to 2(102) when an operand 2 digit greater than zero is detected; or
- code 3 is not used.

u Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

Data exception {invalid sign or digit
code)

= Relocation and indirection flags (90/60,70):
- operand 1: RD, ID
- operand 2: RO, IO

. The operation of the edit instruction is summarized in Table 7—1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-12

UP-NUMBER PAGE REVISION PAGE

Table 7—1. Edit Instruction Operation

S
. Resulting Resulting
Mask (Operand 1) EBCDIC/ASCII Code | SSWitch | Data (Operand 2) (Operand 1) S Switch
Character Status Character
Character Status
Fill character Any Off Not examined - Fill Off
character
Digit select 20/80 On Digit Digit On*
byte
Off Nonzero Digit On*
Off Zero Fill Off
character
Significance 21/81 On Digit Digit On*
start byte
Off Nonzero Digit On*
Off Zero Fill On*
character
Message Any except: On Not examined Message On*
character 20/80, 21/81, 22/82 character
Off Not examined Fill Off
character
Field 22/82 On Not examined Fill Off
separator byte character
Off Not examined Fill Off —
character

* Sign detection {examined simultaneously with operand 2 digit} affects the S switch as follows:
A plus sign detected as a least significant digit causes the S switch to be turned off.
A minus sign has no effect on the S switch.

Examples:
LABEL A?EERATIONA 1 OPERAND A COMMENTS

/. lAISLKI I Y le 1 XLLl,xgll 41012016‘132'040‘210|6&2*024‘024‘ E¢B,ZAOA>Z,‘LQ;,_< L,J,,,L,; Aa J R

IR B 1 ' mLLﬁA)A_,AM‘ PO ARSI A R SRR R | TR ST SR R L
ZMASK 1, D] X115 4020682020208, z«amzwwozoca aA £t v

11 1 1 lJ 1 lDl i 1 JASIK(@1AV‘ALU1 ', AN | i 1 1
SMASK 1 c oo | 221562020682 02.0201{-15202,&22212102022‘2106&2020 2048’

b Lo 0 (SKO22Y 5 FLELD 1 0 b .

1. The packed operand AMT is edited according to the mask MASK and the result is placed in the operand 1
location. Assume AMT to contain the value 000012698. This value appears in five bytes as follows:

000012698+
The edit mask appears in 13 bytes as follows:
40206B2020206B20214B2020

The result is:
MNVWW126.98.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4 I | 7-13
PAGE REVISION PAGE

2. The packed operand VALU is edited according to the mask MASK and the result is placed in the operand 1
location. If operand 2 is negative, the letters CR are printed to the right of the result amount. Assume VALU
to contain the value 000456789. This value appears in five bytes as follows:

000456789-
The edit mask appears in 15 bytes as follows:
40206B2020206B2020214B2020C3D29
The result appears as:

AMNNG 567.89CR.

This example employs the field separator byte to allow editing of three fields with one edit instruction.

Packed value of operand 2:
0012345C123C123450¢C
Edit mask in hexadecimal:
5C20206B2020204B2020222120202220206B20202048
The edited result is:

*»%x%x%123.45+123x12,345

7.9. EDMK (EDIT-AND-MARK) — 90/60,70

Mnemt?mc Source Code Hexadec?mal Format ObIGCt.
Operation Operand Format Operation Type Instruction
Code pe Code P Length
EDMK dy(lby),dylb,) DF SS Six Bytes

The data of operand 2, specified by dz(bz)' is changed from packed to unpacked format, is edited under the
control of operand 1 (the mask), and is placed in the operand 1 location, specified by d1 (I,b1). The address of

the first significant result character is placed in general register 1.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 78 15[16 1920 31
OF -1 by d,)
132 35,35 OPERAND 2 47
? ba da

7935 Rev. 1

UR-NUMBER

7-14

l PAGE REVISION l PAGE

SPERRY UNIVAC Operating System/4

Operational Considerations:

Example:

The EDMK instruction is identical to the ED instruction with the addition of storing the address of the
first significant result character in the least significant 24 bits of general register 1. This occurs when the
result character is a digit from 1 to 9 and the S switch was off before examination of the digit.

When an EDMK instruction is used to edit more than one field, the address of each succeeding field

replaces the contents of the least significant 24 bits of general register 1; therefore, only the first

significant character of the last field edited is available.

This instruction is used to faciliate currency symbol insertion. The address stored in register 1 is one

more than the address where a currency symbol must be inserted. The branch-on-count instruction with

0 in the operand 2 field is used to reduce the inserted address by 1 (BCTR 1,0).

The condition code, reflecting the status of the last source field edited, is set as follows:

— to 0 when all of the operand 2 digits in the last field are 0. If the mask of the last field has no
significance start or digit select bytes, the operand 2 digits are not examined and the condition

code is set to 0.

- to 1 (012) when a nonzero operand 2 digit is detected and the S switch is set on after the last mask
digit is examined;

- to 2 (10,) when a nonzero operand 2 digit is detected and the S switch is set off after the last
mask digit is examined; or

- code 3 is not used.

Possible program exceptions:

— addressing exception

- data exception (invalid sign or digit code}

- indirect address specification exception

— indirect addressing exception

- protection exception

— specification exception (IACW not on full-word boundary)
Relocation and indirection flags:

- operand 1: RD, ID

- operand 2: RO, 10

LABEL A OPERATION A CPERAND A
10 14

|| [EDMK | MASKCIH),TOTAL

7-15
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

1. The contents of main storage location TOTAL are edited according to the contents of main storage

location MASK. The result is placed in the MASK location, and the address of the first significant
character is placed in general register 1.

7.10. IC (INSERT CHARACTER)

M . . R
nemc?mc Source Code Hexadec!mal Format Obj ect
Operation Operand Format Operation Type Instruction
Code Code e Length
iIC " ,dz(xz,bz) 43 RX Four Bytes
Function:

The byte of main storage in the operand 2 location, specified by dz(xz,bz), is placed in the least significant
eight bits of the operand 1 register, specified by r-

Operational Considerations:
= The contents of operand 2 remain unchanged.

= The contents of the most significant 24 bits of the operand 1 register remain unchanged.

L The condition code remains unchanged.

n Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

] Relocation and indirection flags (90/60,70):

— operand 1: none

— operand 2: RO, 10

Example:
LABEL A GPERATION A OPFERAND A
i 14 ‘
|

1. The byte of main storage labeled RANN is placed into the least significant byte of general register 3.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION | PAGE

7-16

7.11. LA (LOAD-ADDRESS)

M . . .
nemcfmc Source Code Hexadec'lmal Format Objec?
Operation Operand Format Operation Tvpe Instruction
Code Code ve Length
LA ry.dy(x,b,) 41 RX Four Bytes
Function:
The main storage operand 2 address, specified by dz(xz'bz)' is loaded into the least significant bits of operand

1, specified by r,- The most significant bits of r,are setto 0.

Operational Considerations

The generated address is not checked for validity.
The contents of operand 2 remain unchanged.

If X, or b2 specifies the same register as e, the contents of the register are incremented by the value

specified as d2.
The condition code remains unchanged.
Possible program exceptions: none

Relocation and indirection flags {(90/60,70): none

Operational Differences:

9400/9480 systems

The storage address of operand 2, specified by d2(x2,b2), is loaded into the least significant 17 bits of
operand 1, specified by r- The most significant 15 bits of r, areset to 0.

90/60,70 systems

The storage address of operand 2, specified by d2(x2,b2), is loaded into the least significant 24 bits of
operand 1, specified by r- The most significant 8 bits of r, areset to 0.

7935 Rev. 1
UP.-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION I PAGE

7-17

- Examples:
LABEL A GPERATION A GPERAND
i 140 i — R
L i Lot L-A SN lQ) AD:D R oh ’M NS SO SPUIOR NUUD S S | i
Z,_ s bt LA 8i);2;5(;8) O) b [N .
The main storage address labeled ADDR is loaded into register 10.
The contents of register 8 are incremented by 25, and the most significant bits are set to 0.
3. The contents of register 10 are incremented by 16, and the most significant bits are set to 0.
7.12. MVC (MOVE)
Mnemo:fnic Source Code Hexadecimal Format ObiGCt‘
Operation Operand Format Operation Tvpe fnstruction
Code P Code ye Length
mMvC dq(l,bq).dylby) D2 ss Six Bytes
Function:

The contents of operand 2, specified by dz(b2), are placed in the operand 1 location, specified by d1 (I,b1).

Object Instruction Format:

OPERATION
LENGTH OPERAND 1
0 CODE 15(16 19,20 3;}
D2 -1 b, d,)
132 35,36 OPERAND 2 o
? b, dy

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION ‘

7-18
PAGE

Operational Considerations:

n The transfer proceeds from left to right.
L) The number of bytes transferred is specified by the length field in operand 1.
L The contents of operand 2 remain unchanged.
L The condition code remains unchanged.
L Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Storage protection
Indirect addressing
i Protection
i Specification (JACW not on fuli-word
; boundary)
= Relocation and indirection flags (90/60,70):
— operand 1: RD, ID
- operand 2: RO, 10
Examples: ~
LABEL A GPERATION A OPER&RD A
i g 14
2ot MVC | DESTIN(20), ORI&IN
1. The contents of main storage location ORIGIN are transferred to main storage location DESTIN. The
length is implied by DESTIN.
2. A length of 20 overrides the implied length of DESTIN.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

7-19

PAGE REVISION PAGE

7.13. MVI (MOVE)

M . . .
nemtfmc Source Code Hexadecfmal Format Object
Operation Operand Format Operation Type Instruction
Code Code vP Length
MVi d, (by Yo 92 Sl Four Bytes
Function:

The data contained in the i2 field is moved to the main storage byte of operand 1, specified by d1 (b1).

Operational Considerations:
n The condition code remains unchanged.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification {IACW not on full-word
boundary)

] Relocation and indirection flags (90/60,70):
— operand 1: RD, ID
— operand 2: none

Exampiles:

GPERAND

LABEL A OPERATION A
1 1% 18

Lt | MUL | %T@KEJX '9E’
20 i MvT | bL10))12

1. The hexadecimal value 9E (10011110, is placed in main storage iocation STORE.

2. The binary value of the decimal number 12 is stored in the main storage location specified by the

address value 0 modified by the contents of base register 10.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

7-20
PAGE REVISION | PAGE

7.14. MVN (MOVE-NUMERICS)

Mnemt?mc Source Code Hexadecimal Format %]BCt.
Operation Operand Format Operation Type Instruction
Code P @ Code yp Length
MVN dy{l,b,),d2(b2) D1 SS Six Bytes
Function:

The least significant four bits (the numeric portion) of each byte of operand 2, specified by d2 (b2), are
transferred to the least significant four bits of each byte of operand 1, specified by d1 (l,b1).

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 718 15]16 19,20 31
D1 -1 b1 d11 ‘)
132 35,36 OPERAND 2 47
l by d;

Operational Considerations:

L The four most significant bits of each byte (zone portion) of operand 1 remain unchanged.

- The contents of operand 2 remain unchanged.
L Overlapping of operands is permitted.
L The condition code remains unchanged.

L] Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Storage protection

Indirect addressing

Protection

Specification (1ACW not on full-word
boundary)

L] Relocation and indirection flags (90/60,70):
- operand 1: RD, ID

—~ operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 -2
UP-NUMBER PAGE REVISION PAGE
Example:
LABEL A CPERATION A OPERAND A
1 10 o 16 . _
" S S N i Lod MV N ; ;;rH'E.gE (\ 0)4)wH EKE— b b SO TN S S S { i
1. The numeric portions of 10 consecutive bytes are transferred from main storage location HERE to main

storage location THERE.

7.15. MVZ (MOVE-ZONES)

Mnememc Source Code Hexadecimal Format Obleﬂ'
Operation Operand Format Operation Tvpe Instruction
Code Code e Length

MvZ dy{1by),dy(by) D3 ss Six Bytes

Function:

The most significant four bits (zone portion) of each byte of operand 2, specified by dz(bz)' are transferred to
the most significant four bits of each byte of operand 1, specified by d1 (I,b1). .

3

Obiject Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 718 15|16 1920 31
D3 {—1 b,| d.I)
732 35,36 OPERAND 2 47
? b, d,

Operational Considerations:
n The four least significant bits of each byte (numeric portion) of operand 1 remain unchanged.
L The contents of operand 2 remain unchanged.
] Overlapping of operands is permitted.
L The condition code remains unchanged.

L Possible program exceptions:

7-22

7935 Rev. 1 SPERRY UNIVAC Operating System/4
UP-NUMBER PAGE REVISION PAGE
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Storage protection
Indirect addressing
Protection
Specification (IACW not on full-word
boundary)
] Relocation and indirection flags (90/60,70):
- operand 1: RD, ID
- operand 2: RO, 10
Example:
LABEL A OPERATION A CPERAND A
10 16 e
Bl oot o LMVZ TRAY.(25))SLAKD SRRV SO O SN WP SN S WY SO T SO
1. The zone portions of 25 bytes are transferred from main storage location SARD to main storage location
TRAY.
7.16. N (AND)
M i i i
nemonic Source Code Hexadec!mal Format 0bl°°t.
Operation Operand Format Operation Tvoe Instruction
Code Code ye Length
N ry.d5(x5,b,) 54 RX Four Bytes
Function:

A logical product (AND) operation is performed on the contents of operand 1, specified by ry and operand 2,
specified by d2(x2,b2). The resuit is stored in operand 1.

Operational Considerations:

L] A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position isset to 0.

= The rules of operation for logical product are illustrated by the following truth table:

Result
Operand 1 Operand 2 {Operand 1)
0 0 0
0 1 0
1 0 0
1 1 !

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-23

UP.NUMBER PAGE REVISION PAGE

L It is possible to clear selected bits in operand 1 by specifying O’s in the corresponding bit positions of
operand 2.

= The condition code is set as follows:
- to 0 (002) if result is O;
- to1 (012) if result is not 0; or
— codes 2 and 3 are not used.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or lACW
not on full-word boundary)

u Relocation and indirection flags (90/60,70):

— operand 1: none
- operand 2: RO, 10

Example:

LABEL A OPERATION A OPERAND A
1 10 16

,~__‘__L_;..._._twi Lo N ERE g! O)CQMP PR T AT ST WO S R S S TR I S S S ST

1. The logical product of the contents of register 10 and main storage location COMP produces a result
which is stored in register 10.

7.17. NC (AND)

M B . .
nemt?mc Source Code Hexadec!mal Format Object‘
Operation Operand Format Operation Tvne Instruction
Code Code P Length

NC dq (b, },dsiby) D4 SS Six Bytes

Function:

A logical product (AND) operation is performed on the contents of operand 1, specified by d1(l,b1), and
operand 2, specified by d2(b2). The result is stored in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-24

UP.NUMBER | PAGE REVISION \ PAGE

Obiject Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 7l8 15{16 19,20 31
D4 -1 b1 d,|)
?32 35,36 OPERAND 2 47
T -

Operational Considerations:

= A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position is set to 0.

L The rules of operation for logical product are illustrated by the following truth table:

Result
Operand 1 Operand 2 (Operand 1)
0 0 0
0 1 0
1 0 V]
1 1 1
L It is possible to clear selected bits in operand 1 by specifying 0's in the corresponding bit positions of
operand 2.
L The condition code is set as follows:
- to 0 ~(002) if result is O;
— to 1 (012) if result is not 0; or
- codes 2 and 3 are not used.
L Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect 7addr;ss specificétioh Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

7935 Rev. 1

UP-NUMBER

7-25

PAGE REVISION | PAGE

SPERRY UNIVAC Operating System/4

Relocation and indirection flags (90/60,70):
- operand 1: RD, ID

- operand 2: RO, 10

A CPERATION A
10 14

OPERAND

NG

R, HAR . 1. ..

1.

7.18. NI (AND)

The logical product of the contents of main storage locations MAR and HAR produces a result which is
stored in MAR. The length is implied by MAR.

M H . .
nemonic Source Code Hexadec!mal Format Object‘
Operation Operand Format Operation Type Instruction
Code Code yp Length
NI d1 (b1),i2 94 Sl Four Bytes
Function:

A logical product (AND) operation is performed on the contents of the operand 1 byte, specified by d1 (b1),
and operand 2, contained in the i2 field. The result is stored in operand 1.

Operational Considerations:

A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position is set to 0.

The rules of operation for logical product are illustrated by the following truth table:

Result
Operand 1 Operand 2 {Operand 1)
0 0 0
0 1 0
1 0 0
1 1 !

It is possible to clear selected bits in operand 1 by specifying 0's in the corresponding bit positions of

operand 2.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION I PAGE

7-26

n The condition code is set as follows:

to0 (002) if result is O;
to1 (012) if result is not 0; or

codes 2 and 3 are not used.

» Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Indirect address specification

Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary}

] Relocation and indirection flags (90/60,70):

operand 1: RD, ID

operand 2: none

Example:
LABEL A OPERATION A OPERAND
10 16
/ . NN LT . . CHANGE 2)(‘ ,FQQNI,,, Lo i b i
1. Assume that CHANGE addresses a byte in main storage containing the following bit configuration:
CHANGE before execution 10101010
FO 11110000
CHANGE after execution 10100000
7.19. NR (AND)
Mnemonic Hexadecimal Object
Operation o s:f::::;: ¢ Operation F:rmat instruction
Code P a Code ype Length
NR ryfo 14 RR Two Bytes
Function:

A logical product (AND} operation is performed on the conteiits of operand 1, ¢nccified by ry.

specified by Iy The result is stored in operand 1.

and operand 2,

7-27

7935 Rev. 1
PAGE REVISION | PAGE

UP-NUMBER

SPERRY UNIVAC Operating System/4

Operational Considerations:

L] A bit position in the result is set to 1 if the corresponding bit positions in both operations contain 1;
otherwise, the result bit position is set to 0.

L The rules of operation for logical product are illustrated by the following truth table:

Resulit

Operand 1 (Operand 1)

Operand 2

- = 00
- 0o =0
-~ 0 0o

L It is possible to clear selected bits in operand 1 by specifying O's in the corresponding bit positions of
operand 2. ~

- The condition code is set as follows:
- to 0 (002) if result is 0;
— to 1 (012) if result is not 0; or
- codes 2 and 3 are not used.

L Possible program exceptions: none

L] Relocation and indirection flags (90/60,70}: none

Example:
LABEL A OPERATION A OGPERAND A
10 L
/' AU TR W ii NR S 5)“" H LA i R EENE S R R P ; i d
1. The logical product of the contents of registers 3 and 4 is placed in register 3.
7.20. O (OR)
Mnem(fmc Source Code Hexadecfmal Format Object.
Operation Operand Format Operation Tvpe Instruction
Code P Code e Length
o rydalxsby) 56 RX Four Bytes
Function:

A logical addition (inclusive OR) operation is performed on the contents of operand 1, specified by ry and
operand 2, specified by dz(xz'bz)' The result is stored in operand 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 o

UP-NUMBER l PAGE REVISION l PAGE

Operational Considerations:

L] A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.

L The rules of operation for logical addition are illustrated by the following truth table:

Result
O d 1
peran Operand 2 (Operand 1)
0 0 4]
0 1 1
1 0 1
1 1 1

= Selected bits of operand 1 can be set by specifying 1's in the corresponding bit positions of operand 2.
] The condition code is set as follows:

— t00(00,}) if result is O;

— to 1 (012) if result is not O; or

— codes 2 and 3 are not used.

L] Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Specification

Indirect addressing

Protection

Specification (operand 2 or |IACW
not on full-word boundary}

] Relocation and indirection flags (90/60,70):
- operand 1: none

-~ operand 2: RO, 10

Example:

LABEL A OPERATION A OPERAND A
10 16

s oo doag o] b ,5: TLAB! P N N ST S O W 0 DR W VU SN SO0 O ST S T S N

—
.

1. The logical sum of the contents of register 5 and main storage location TAR is placed in register 5.

e

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION I PAGE

7-29

7.21. OC (OR)
Mnemo'mc Source Code Hexadecimal Format Ob;ect.
Operation Operand Format Operation Type Instruction
Code P Code ve Length
ocC dq{tb,),dy(by) D6 SS Six Bytes
Function:

A logical addition (inclusive OR) operation is performed on the contents of operand 1, specified by d1 (l,b1),
and operand 2, specified by d2(b2). The resuit is stored in operand 1.

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 15|16 19)20 31
D6 I—1 by dy)
}32 3536 OPERAND 2 47
) b2 dp

Operational Considerations:

L] A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.

L] The rules of operation for logical addition are illustrated by the following truth table:

Result
Operand 1 Operand 2 {Operand 1)
0 0 0
0 1 !
1 Y !
1 1 !

- Selected bits of operand 1 can be set by specifying 1's in the corresponding bit positions of operand 2.

] The condition code is set as follows:

— to 0 (002) if result is O;

— to1 (012) if result is not 0; or

— codes 2 and 3 are not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 =%

UP-NUMBER PAGE REVISION PAGE

a Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

] Relocation and indirection flags (90/60,70):
- operand 1: RD, ID
- operand 2: RO, 10

Exampile:

LABEL A OPERATION A OPERAND A
14

10)
Lot [PC o | PATRENGD Lo

1. The contents of main storage locations PATR and INCD are logically added. The result is stored in
PATR.

7.22. Ol (OR)

M . . .
nemcfmc Source Code Hexadecfmal Format Ob]ect.
Operation Operand Format Operation T Instruction
Code Code ype Length
Ol d, (b,),32 96] Four Bytes

Function:

A logical addition (inclusive OR) operation is performed on the contents of the operand 1 byte, specified by
d1 (b1), and operand 2, contained in the i2 field. The result is stored in operand 1.

Operational Considerations:

- A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.

= The rules of operation for logical addition are illustrated by the following truth table:

S

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION

7-31

PAGE

Result
d
Operand 1 Operand 2 (Operand 1)
0 0 0
0 1 !
1 0 !
1 1 !

n Selected bits of operand 1 can be set by specifying 1’s in the corresponding bit positions of operand 2.

- The condition code is set as follows:
- to 0 (002) if resultis O;
- to 1(01,) if result is not 0; or
- codes 2 and 3 are not used.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

indirect address specification

Storage protection

Indirect addressing

Protection

Specification (!ACW not on full-word
boundary)

L] Relocation and indirection flags:
— operand 1: RD, iD

- operand 2: none

Example:
LABEL A OPERATION A OPERAND A
10 1%
bl i f 0T ResT, X80/ . &
1. Assume that REST addresses a byte in main storage containing the following bit configuration:

REST before execution 01111111

80 10000000

REST after execution 11111111

7935 Rev. 1 J

UP-NUMBER

SPERRY UNIVAC Operating System/4

‘ PAGE REVISION \PAGE

7-32

7.23. OR (OR)

Mnemoni i j
onic Source Code Hexadec!mal Format Object
Operation Operand Format Operation Tvoe Instruction
Code Code e Length
OR 1. 16 RR Two Bytes
Function:

A logical addition (inclusive OR) operation is performed on the contents of operand 1, specified by My and
operand 2, specified by ry The result is stored in operand 1.

Operational Considerations:

L A bit position in the result is set to 1 if the corresponding bit positions in either or both operands
contain 1; otherwise, the result bit position is set to 0.
L The rules of operation for logical addition are illustrated by the following truth table:
Result
Operand 1 Operand 2 (Operand 1)
0 0 0
0 1 1
1 0 1
1 1 1
u Selected bits of operand 1 can be set by specifying 1’s in the corresponding bit positions of operand 2.
L The condition code is set as follows:
- to 0 (002) if result is 0;
— to 1 (012) if result is not 0; or
- codes 2 and 3 are not used.
L] Possible program exceptions: none
L] Relocation and indirection flags (90/60,70): none
Example:
LABEL A OPERATION A CPERAND A
1 10 15
’- SN ,,_(D*&LM i 1] 1(0 PR N ST ST SR U TR SO Y i S SR O ST N
1. The contents of registers 9 and 6 are logically added and the sum is stored in register 9.

S’

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-33

UP-NUMBER l PAGE REVISION IPAGE

7.24. SL (SUBTRACT-LOGICAL) — 90/60,70

Mnemoni . .
nemonic Source Code Hexadecfmal Format Obleﬂ.
Operation Operand Format Operation Type Instruction
Code Code P Length
SL r.I ,d2(x2,b2) 5F RX Four Bytes
Function:

The full-word operand 2, specified by dz(xz,bz), is logically subtracted from the full-word operand 1,
specified by e and the result is placed in operand 1.

Operational Considerations:
. The subtraction is performed by adding the twos complement of operand 2 to operand 1.
L All 32 bits of both operands are used.
» The contents of operand 2 remain unchanged.

L The condition code is set as follows:

to 1 (012) if result is not O (no carry out of most significant bit position);
— to 2 (102) if result is O (carry out of most significant bit position);
— to 3 (1 12) if result is not O (carry out of most significant bit position); or

— code O is not used. A 0 difference cannot be obtained without a carry out of the most significant
bit position.

= Possible program exceptions:

- addressing exception

— indirect address specification exception

- indirect addressing exception

- protection exception

- specification exception {operand 2 or IACW not on full-word boundary)
L] Relocation and indirection flags:

— operand 1: none

— operand 2: RO, 10

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION PAGE

| 7-34

Examples:

LABEL A OPERATION A GPERAND A
16 6 o o .
% IR IO T N A VALUE L e ;

e

lQ)thODO fod Ao

1. The contents of the full word addressed by main storage location VALUE are converted to a twos
complement binary value and added to the contents of register 14.

2. The contents of the full word located at main storage address 4000 are converted to a twos complement
binary value and added to the contents of register 14.

7.25. SLDL (SHIFT-LEFT-DOUBLE-LOGICAL) — 90/60,70

Mnemoni i j
onic Source Code Hexadec!mal Format Obleﬁ.
Operation Operand Format Operation T Instruction
Code Code ype Length
SLDL r1,d2(b2) 8D RS Four Bytes
Function:

The double-word operand 1, specified by ry.is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d2(b2).

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 3 OPERAND 2
0 CODE 7|8 1112 15|16 19120 31
8D g unused b2 d2

Operational Considerations:
= The r specification in operand 1 must refer to the even-numbered register of an even-odd register pair.
- The vacated least significant bit positions of the register pair are zero filled.
] Bits shifted out of the even register are lost.
L] The condition code remains unchanged.
= Possible program exceptions:
— specification exception (operand 1 specifies an odd-numbered register)

. Relocation and indirection flags: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

7-35
PAGE REVISION | PAGE

- Example:
LABEL A opeEraTION A OPERAND A
1 10 O
!
P IR SL:DL;SJ*‘E B U T VA U S TR YUY O U VAR ST NS SO S MO SO0 UL S
1. The contents of registers 8 and 9, taken as a double word, are shifted to the left one bit position.
7.26. SLL (SHIFT-LEFT-SINGLE-LOGICAL)
Mnem(fnic Source Code Hexadecimal Format Objact-
Operation Operand Format Operation Tvpe Instruction
Code Code P Length
SLL ry.dy(by) 89 RS Four Bytes
Function:
The full-word operand 1, specified by ry.is shifted left the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d2 (b2).
_ Object Instruction Format:

OPERATION OPERAND 1| OPERAND 3 OPERAND 2
0 CODE 7|8 1112 15|16 19120 31
89 " unused b2 d2

Operational Considerations:
L] The vacated least significant bit positions of the register are zero filled.
» Bits shifted out of the register are lost.
L The condition code remains unchanged.
L] Possible program exceptions: none

] Relocation and indirection flags (90/60,70): none

Example:

LABEL A CPERATION A OPERAND A
10 16

l- i1 i Lok SLL» . 853\ Sk SR AEN RN S R SO U B i U5 U S SN HOUR SO

1. The contents of register 8 are shifted to the left one bit position.

7935 Rev. 1

UP-NUMBER

7-36
REVISION | PAGE

SPERRY UNIVAC Operating System/4 \

7.27. SLR (SUBTRACT-LOGICAL) — 90/60,70

Mnemoni i j
cfnuc Source Code Hexadec!mal Format Oblect.
Operation Operand Format Operation T Instruction
Code Code ype Length
SLR rifa 1F RR Two Bytes
Function:

The full-word operand 2, specified by Fy is logically subtracted from the full-word operand 1, specified by My
and the result is placed in operand 1.

Operational Considerations:
L The subtraction is performed by adding the twos complement of operand 2 to operand 1.
u All 32 bits of both operands are used.
L The contents of operand 2 remain unchanged.
] The condition code is set as follows:
— to 1 (0‘!2) if result is not O (no carry out of most significant bit position);
— to 2 (102) if result is 0 (carry out of most significant bit position});
— to 3 (1 12) if result is not O (carry out of most significant bit position); or

- code 0 is not used. A O difference cannot be obtained without a carry out of the most significant
bit position.

n Possible program exceptions: none

L] Relocation and indirection flags {90/60,70): none

Example:
LABEL A OFERAYVION A OPERAND A
10 16 -
/. vt g SAR 9J7 Ldd i Lo ! Lo U SO 0 TS S |
1. The contents of register 7 are converted to a twos complement binary value and added to the contents

of register 9.

7.28. SRDL (SHIFT-RIGHT-DOUBLE-LOGICAL) — 90/60,70

Mnemonic i i
Operation Source Code Hz:)aedr:‘t:; :‘na| Format In(s::l::lecc:ion
F
Code Operand Format Code Type Length
SRDL rq.dofby) 8C RS Four Bytes

7935 Rev. 1
UP-NUMBER

7-37
PAGE

SPERRY UNIVAC Operating System/4

l PAGE REVISION

Function:

The double-word operand 1, specified by . is shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d2 (bz)'

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 3 OPERAND 2
0 CODE 718 1412 15|16 19120 31
8C 1 unused b2 d2

Operational Considerations:
a The r specification in operand 1 must refer to the even-numbered register of an even-odd register pair.
L] The vacated most significant bit positions of the register pair are zero filled.
L] Bits shifted out of the odd register are lost.
L The condition code remains unchanged.
n Possible program exceptions:
— specification exception {operand 1 specifies an odd-numbered register)

L Relocation and indirection flags: none

Example:
LABEL A OPERATION A GPERAND A
1 19 16 .
l. co b JBRDL L8 b b
1. The contents of register 8 and register 9, taken as a double word, are shifted to the right four bit

positions.

7.29. SRL (SHIFT-RIGHT-SINGLE-LOGICAL)

M H . .
nem(?mc Source Code Hexadecgmal Format Object.
Operation Operand Format Operation Tvoe Instruction
Code Code yp Length
SRL 5 dy(by) 88 RS Four Bytes
Function:

The full-word operand 1, specified by My is shifted right the number of bit positions specified by the least
significant six bits of the operand 2 address, specified by d2 (b2).

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

I PAGE REVISION lPAGE

7-38

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 3 OPERAND 2
0 CODE 78 1112 15]16 19120 31
88 ry unused b2 d2
Operational Considerations:
L] The vacated most significant bit positions of the register are zero filled.
= Bits shifted out of the register are lost.
» The condition code remains unchanged. *
. Possible program exceptions: none
L] Relocation and indirection flags 90/60,70: none
Example:
LABEL N OPERATION A OPERAND
1 14 e o e
I - 7-(N s ST L i
1. The contents of register 7 are shifted to the right one bit position.
7.30. STC (STORE-CHARACTER)
Mnemonic Hexadecimal Object
Operation Opseor::‘ficho ":':at Operation F;:rmat Instruction
Code Code ype Length
STC ry.da(xg,bs) 42 RX Four Bytes
Function:

The least significant eight bits of operand 1, specified by r,, are stored in the storage location operand 2,

specified by d_ (x

Operational Considerations:

22

b,).

The contents of operand 1 remain unchanged.

The condition code remains unchanged.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-39

UP-NUMBER PAGE REVISION | PAGE

= Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on fuli-word
boundary}

= Relocation and indirection flags (90/60,70):
— operand 1: none
— operand 2: RD, ID

Example:

LABEL A OPERATION A OPERAND A
1 10 16

L : T B | S’TC— 7jST,AK SR WU DU TN S SR SO SN : TN ST ST

1. The rightmost eight bits of register 9 are stored in main storage location STAR.

7.31. TM (TEST-UNDER-MASK)

Mnemt?mc Source Code HexadeCfmaI Format Object.
Operation Operand Format Operation Type Instruction
Code P Code - e Length

T™ dy(bq)iy 91 St Four Bytes

Function:

The main storage byte operand 1, specified by d1 (b1), is tested for the presence of 1 bits according to the
8-bit mask operand 2, specified by i2.

Operational Considerations:
L The 1 bits of the operand 2 mask are used to test the bits of operand 1.
L The contents of operand 1 remain unchanged.
- The condition code is set as follows:

- to 0 (002) if all the 1 bits in the mask match O bits in the byte tested or if all the bits in the mask
are 0;

7—-40

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

- to 1 (012) if some of the 1 bits in the mask match O bits in the byte tested;
- to 3 (112) if all the 1 bits in the mask correspond with 1 bits in the byte tested; or
- code 2 is-not used.

n Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

] Relocation and indirection flags (90/60,70}:
- operand 1: RO, 10
- operand 2: none

Examples:

LABEL O OPERATION A QPERAND A
10 1%

1. : ; L TM Lok TEs_ra,‘X\qolé FRUNE TN DU SN SUF SRR SOUE O B N N ',L..;v.ww»: b dd
2' '1 Codih i TiM; Lo TEASTfX\blIi S S T T N

f—

1. Assume that main storage location TEST contains the following value:
TEST 10010000
90 10010000

Condition code 3 is set.
2. Assume that main storage location TEST contains the following value:
TEST 10010000

61 01100001

Condition code O is set.

e

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4 741

| PAGE REVISION PAGE

7.32. TR (TRANSLATE)

Mnem(?mc Source Code Hexadec.imal Format Object
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
TR d,(1b;).dy(bs) DC ss Six Bytes
Function:

Data stored in operand 1, specified by d1(|,b1), is translated according to a table stored in the operand 2
location, specified by d2(b2).

Object Instruction Format:
OPERATION LENGTH OPERAND 1
0 CODE 718 15|16 19120 31
DC -1 b, d, J
}32 35,36 OPERAND 2 4
P b, d,

Operati

onal Considerations:

The 8-bit code of each character of operand 1 is added to the base table address specified by operand 2
to obtain the address of the character which is to replace the original character of operand 1.

Translation continues until all characters specified by the length (!) have been translated.
The contents of the table are not changed unless overlap occurs.
The condition code remains unchanged.

Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Addressing

Indirect address specification

Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

Relocation and indirection flags (90/60,70):

- operand 1: RD, ID

- operand 2: RO, 10

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

7-42

PAGE

PAGE REVISION

Example:
LABEL A OPERATION A OPERAND A
1 10 16 o
l i T TTK L CD{DE)TBL o AR S W TN TUE NN T N VS U

1.

Assume TBL specifies the leftmost translate table address, 500016. The table length is 256 bytes. All
values given are hexadecimal.

Location 5000 5001 HB008 5080 bBOFF
Table contents 77 30 1F 01 A9

Assume CODE is a 3-byte area whose contents are:

Operand 1 CODE CODE+1 CODE+2
Contents before execution 01 08 80
Contents after execution 30 1F 01

Translate Operation:

The contents of main storage location CODE (0116) are added to the base address assigned to TBL,
which is 5000, ;. The resulting address is 5001, . The contents (30, /) at table location 5001, ; are
transferred to location CODE, replacing the original value 01 16 with 301 6

CODE+1 originally contains 081 6 This is added to the base table address, which is 50001 g 10 derive the
address 500816‘ Location 500816 in the table contains 1F16. This value is transferred to location
CODE+1 to replace the original éont‘ents.

»

CODE+2 originally contains the value 801 6 This is added to the base table address, which is 50001 g 1O
derive the address 508016. After the translation cycle, CODE+2 contains the value 011 6 obtained from
the translate table.

The programmer may place whatever values are required into the 256-byte translate table. When it is
known what kind of bit configurations are expected as input (each unique configuration produces an
address pointing to a unique table address), the desired value may be placed in the table to produce a
translation.

7.33. TRT (TRANSLATE-AND-TEST) — 90/60,70

Mnemt?mc Source Code Hexadec?mal Format Object
Operation Operand Format Operation Tvoe Instruction
Code Code e Length

TRT d.] (l,b.I),d2(,b2) DD SS Six Bytes

Function:

The data stored in operand 1, specified by d1 (I,b,'), is translated according to a table stored in the location

designated by operand 2, specified by d2(b2), and the result is tested.

7935 Rev. 1

UP-NUMBER

7-43

PAGE REVISION l PAGE

SPERRY UNIVAC Operating System/4

Object Instruction Format:

OPERATION LENGTH OPERAND 1
0 CODE 718 15{ 16 19,20 31
DD 1—1 b1 d1)
>32 35,36 OPERAND 2 .
) b2 dy

Operational Considerations:

The translate function of this instruction proceeds in the same manner as the TR instruction.

The selected byte (result byte) in the translate table is examined and tested for a pattern of all 0’s. If the
result byte is all O’s, it is ignored and the translate operation is continued. If the result byte is nonzero,
the address of the corresponding operand 1 byte is stored in the least significant 24 bit positions of
general register 1; the result byte is stored in the least significant eight bit positions of general register 2
and the operation is terminated.

The contents of both operands remain unchanged.
The address stored in general register 1 is a program relative address if the RD flag of the current
relocation register is 1 or if the ID flag of the current relocation register and the R flag of the last

associated |ACW are 1. Otherwise, the address stored is an absolute address.

The condition code is set as follows:

to0 (002) if all result bytes are 0. In this case, registers 1 and 2 remain unchanged.

to 1 (01 2) if the result byte corresponding to any except the last operand 1 byte is nonzero;

to 2 (102) if the result byte corresponding to the last operand 1 byte is nonzero; or
- code 3 is not used.

Possible program exceptions:

- addressing exception

— indirect address specification exception

- indirect addressing exception

- protection exception

- specification exception (IACW not on full-word boundary)

Relocation and indirection flags:

- operand 1: RD, ID

- operand 2: RO, 10

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

| PAGE REVISION IPAGE

Example:
LABEL A OPERATION A OPERAND A
18 16 _ —
" AT -TgﬂT P\-—LE’Q—‘T)TABL&E ST S . b i i |

1. The contents of main storage location TEST are translated according to the table designated as TABLE.
The result is tested for 0’s and the appropriate data is stored in general registers 1 and 2. The contents of
TEST are not altered by this operation.

7.34. X (EXCLUSIVE-OR)

7-44

M H . n
nemt?mc Source Code Hexadec!mal Format Object
Operation Operand Format Operation Tvpe Instruction
Code Code ye Length
X r1.d5(X5,by) 57 RX Four Bytes
Function:

A logical difference (exclusive OR) operation is performed on the contents of operand 1, specified by r_, and
the contents of operand 2, specified by d2 (x2b2). The result is stored in operand 1.

Operational Considerations:

L] A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

L The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Result
Operand 1 Operand 2 (Operand 1)
o] 0 0
1 0 1
0 1 1
1 1 0

= The condition code is set as follows:
- to 0 (002) if result is O;
- to 1 (012) if result is not 0; or

- codes 2 and 3 are not used.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-45
UP-NUMBER PAGE REVISION PAGE
» Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Addressing
Indirect address specification Specification
Indirect addressing
Protection
Specification (operand 2 or IACW
not on full-word boundary)
L Relocation and indirection flags (90/60,70):
- operand 1: none
- operand 2: RO, 10
Example:
LABEL A GEERATIONA DPERAND
0 16
i I
. 4 i f
/‘ TS i X ok ;f, ;/Oa)EX@K AR VR SHUS TS SO SOV SO SR A SO ik
i
1. An exclusive OR operation is performed on the bits of register 10 and the bits in main storage location

EXOR. The result replaces the contents of register 10.

7.35. XC (EXLUSIVE-OR)

Mnemc?mc Source Code Hexadec?mal Format Objeﬂ.
Operation Operand Format Operation Tvpe Instruction
Code P Code ve Length
XC dq(1by)dy(by) D7 ss Six Bytes
Function:

A logical difference (exclusive OR) operation is performed on the contents of operand 1, specified by d1

(I,b1), and the contents of operand 2, specified by d2 (b2). The result is stored in operand 1.

Object Instruction Format:

OPERATION
LENGTH OPERAND 1
0 CODE 1516 19,20 31)
D7 I—1 b, d, ;)
132 35,36 OPERAND 2 47
} by)

7-46

PAGE REVISION l PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Operational Considerations:

L] A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

L The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Result

Operand 1 Operand 2 {Operand 1)

- O = 0
- - 00
O = =2 0O

= The condition code is set as follows:
— to 0 (002) if result is O;
- to1 (012) if result is not 0; or
- codes 2 and 3 are not used.

L] Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on fuli-word
boundary)

. Relocation and indirection flags (90/60,70):
- operand 1: RD, ID
— operand 2: RO, 10

Example:

LABEL A OPERATION A CPERAND A
16 16

/- SR N B YiC. . ;NUKMBERJXCDMPA Lo ol ; ; foi b

1. An exclusive OR operation is performed on the contents of main storage locations NUMBER and COMP.
The result is stored in main storage location NUMBER.

e

SPERRY UNIVAC Operating System/4 7-47

PAGE REVISION PAGE

7935 Rev. 1

UP-NUMBER

7.36. XI (EXCLUSIVE-OR)

Mnemoni i j
onte Source Code Hexadecfmal Format Ob'e“.
Operation Operand Format Operation Tvpe tnstruction
Code Code ve Length
Xl dq (b1),i2 97 S Four Bytes
Function:

A logical difference (exclusive OR) operation is performed on the operand 1 byte, specified by d1 (b1), and the
operand 2 byte, contained in the i, field. The result replaces operand 1.

Operational Considerations:

a A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

L The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Result
Operand 1 Operand 2 {Operand 1)
0 0 0
1 Y !
0 1 !
1 1 0

= The condition code is set as follows:
— to 0 (002) if resultis O;
- to 1 (012) if result is not O; or
- codes 2 and 3 are not used.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems

Addressing Addressing

Indirect address specification Storage protection

Indirect addressing

Protection

Specification (IACW not on full-word
boundary)

L] Relocation and indirection flags (90/60,70):
- operand 1: RD, ID

— operand 2: none

7-48
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Example:

‘ LABEL A OPERATION A OPERAND A
10 1%

Pt XTI L CNTRLG, X OF S

1. Assume that CNTRLS contains the following value:
CNTRLS before execution 01001100

OF 00001111

CNTRLS after execution 01000011

7.37. XR (EXCLUSIVE-OR)

M H . -
nem?nu: Source Code Hexadecfmal Format Oblect.
Operation Operand Format Operation Type Instruction
Code Code yp Length
XR f1.lo 17 RR Two Bytes
Function:

A logical difference (exclusive OR) operation is performed on the contents of operand 1, specified by Ty and
the contents of operand 2, specified by ry, The result is stored in operand 1.

Operational Considerations:

n A bit position in the result is set to 1 if the corresponding bit positions in the operands are unlike;
otherwise, the bit position in the result is set to 0.

L The rules of operation for the exclusive OR operation are illustrated by the following truth table:

Result

Operand 1 Operand 2 {Operand 1)

- 0O = 0
- -0 0
o = = O

7935 Rev. 1 SPERRY UNIVAC Operating System/4 7-49

UP-NUMBER ! l PAGE REVISION I PAGE

L The condition code is set as follows:
— 10 0(00,)if resultis O;
- to 1 (01,,) if result is not 0; or
— codes 2 and 3 are not used.
L Possible program exceptions: none
n Relocation and indirection flags (90/60,70): none

Exampile:

LABEL A GPERATION A OPERAND A
1 18 15 ‘

77
l SR S % iXK IOQJ.J;Z' Coi T T L L

1. An exclusive OR operation is performed on the contents of registers 10 and 12. The result replaces the
contents of register 10.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8—1

UP.NUMBER PAGE REVISION | PAGE

8. Branching Instructions

8.1. GENERAL

The branching instruction set provides the program-controlled capability of altering the normally sequential
execution of instructions. Branching instructions provide a means for making a choice, for jumping to or from a
subroutine, or for repeating a segment of coding.

Each branching instruction specifies the address of the instruction to be executed if the conditions specified by the
instruction are met. In all the branching instructions, the second operand address is used as the branch address. A
branch in the sequence of instructions is performed by loading the branch address into the instruction address field
(bits 40 through 63) of the current program status word (PSW). However, since the contents of the instruction
address field of the current PSW must always specify an absolute main storage address, the branch address may be
converted from relative to absolute before the instruction address field is loaded.

On the SPERRY UNIVAC 90/60,70 Systems, whether a specified branch address is to be relocated, that is, whether
it is relative or absolute, depends on the state of the Rl flag (bit 3) in the current relocation register. Except for the
branch-and-link-external (BALE) and execute (EX) 90/60,70 instructions, branch addresses are never indirect
addresses.

Arithmetic, logical, and input/output instructions set a 2-bit condition code to one of four states: 0, 1, 2, and 3. The
condition code reflects conditions such as 0, low, high, or overflow results, and equal, low, or high comparisons of
two operands. The condition code remains unchanged until modified by a subsequent instruction. The
branch-on-condition instruction inspects this code and uses the setting as the criterion for branching.

Extended mnemonic codes facilitate the use of branch-on-condition instructions. See 8.2 for a description of
extended mnemonics.

This section describes the operation of each branching instruction. The instructions are in alphabetical order
according to mnemonic operation code. Each description includes a list of the possible program exceptions and
condition codes which may result. The execution of a branch instruction is considered to extend to the point where
the absolute address is loaded into the instruction address field of the current PSW. Only those program exceptions
that may occur before that point are listed. Thus, even though a specified branch address may be invalid (for
example, reference to an out-of-bounds location) the resulting program exception is detected only when the branch
address is actually used to access main storage. However, since the branch instruction is considered to have been
completed by that point, the program exception (address exception) is not listed in the description of the branch
instruction. Furthermore, if an interrupt occurs due to the program exception, the instruction address field of the
program exception old PSW reflects the instruction at the branch address and not the branch instruction itself.

The pertinent relocation and indirection flags are listed for each instruction on 90/60,70 systems. The object
instruction format is shown only for those instructions which differ from the format shown in Figure 3—1. See
Table 3—1 for an explanation of the abbreviations used in describing instruction formats.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

8-2
PAGE

8.2. EXTENDED MNEMONIC CODES

Extended mnemonic codes are provided

in assembly

language as abbreviated nototations for writing

branch-on-condition instructions. Table 8—1 lists the extended mnemonic codes and their meanings. These codes
represent the branch-on-condition instruction with different condition code settings in the m, field (8.6 and 8.7).

Table 8—1. Extended Mnemonic Codes

RR Type Instructions RX Type Instructions
Hexadecimal . Hexadecimal Function
Mnemonic Operation Mnemonic Operation
Code/m, Code Code/m,
BR 07 F B 47 F Branch
NOPR 070 NOP 47 0 No operation
Used After Comparison Instruction
BHR 07 2 BH 47 2 Branch if high
BLR 074 BL 47 4 Branch if low
BER 078 BE 47 8 Branch if equal
BNHR 07D BNH 47D Branch if not high
BNLR 07 B BNL 47 B Branch if not low
BNER 077 BNE 47 7 Branch if not equal
Used After Test Under Mask Instructions
BOR 071 BO 471 Branch if all ones
BZR 078 Bz 47 8 Branch if all zeros
BMR 074 B8M 47 4 Branch if mixed
BNOR 07 E BNO 47 E Branch if not all ones
BNZR 077 BNZ 477 Branch if not all zeros
BNMR 078B BNM 47 B Branch if not mixed
Used After Arithmetic Instructions
BOR 071 BO 471 Branch if overflow
BZR 078 BZ 478 Branch if zero
BMR 074 BM 474 Branch if minus
BPR 072 BP 472 Branch if positive
BNOR 07 E BNO 47 E Branch if no overflow
BNZR 077 BNZ 477 Branch if not zero
BNMR 078 BNM 47 B Branch if not minus
BNPR 07D BNP 47 D Branch if not positive

7935 Rev. 1

UP-NUMBER

8-3

| PAGE REVISION | PAGE

SPERRY UNIVAC Operating System/4

Examples:

Source code BR 10 produces an unconditional branch to the address contained in register 10. The object
instruction format is:

07 F ~ 10

Source code BZ CORRECT produces a conditional branch if the condition code is 0 to the address specified
by CORRECT. The object instruction format is:

a7 8 7 5 100
0 718 11112 15]16 19120 31

CORRECT

NOTE:

The value of the index regiater is implied to be O if not specifically stated in source code. If it is not equal to 0, it
must be coded.

8.3. BAL (BRANCH-AND-LINK)

M H . .
nemonic Source Code Hexadec,mal Format Obleﬁ'
Operation Operand Format Operation Tvpe Instruction
Code Code ye Length
BAL r1.d5(x5,05) 45 RX Four Bytes
Function:

The current PSW instruction length code, program mask, and instruction address field (bits 32 to 63) are

stored in operand 1, specified by Ty and the address of operand 2, specified by d2(x2,b2), is stored in the
current PSW instruction address field.

Operational Considerations:
= Operand 2 is the address branched to by the program.

L The return address is preserved in operand 1.

n The branch address is determined before the return address is stored. This allows correct operation if the
r and X, Or b2 registers are the same.

L The condition code remains unchanged.

= Possible program exceptions: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l l 84
PAGE REVISION

UP-NUMBER PAGE

L Relocation and indirection flags (90/60,70):
- operand 1: none
- operand 2: Rl

- 90/60,70 systems — If Rl (bit 3 of the current relocation register) is 1, the offset value contained in the
current relocation register is subtracted from the updated instruction address to form the return address.
If Rl is 0, the updated instruction address is the return address and is not modified.

Example:

LABEL A orEgaTION A OPERAND A
1 15 13

I R R B‘AL; § \O’,srU’B‘R,TN TR TN FT U S NS S W
Ri,ESTU’R.E\N b v,AB.,_.A..,...i‘ .. bi,’i‘k,~m\.v;' SFURTTNE ST NN YT SUE WS S0 SO S N SN YUY ST SN SO I A A

SxUB:RL-ri"L e AHﬁ S b,zu.MG‘R ; Eodbiod L SRS DT ST U ST SO S S O

1 s PR :
i 5o VO N T FSUR TN T DU SN SO SO SO S bk b S b b

*l H i L] I i g sy
S SO S o nank ek ¢ I - H

SRS SO SURPOS SRS S NG VS S - O Lo R
ORI S BCR ‘5;,*in G : T N TSR NS W NS O T

1. The address of main storage location RETURN is stored in register 10 and branch is made to the address
specified by SUBRTN. After SUBRTN execution, branch is made to the address stored in register 10
(RETURN).

8.4. BALE (BRANCH-AND-LINK-EXTERNAL) — 90/60,70

M . . .
nemqmc Source Code Hexadecfmal Format Object

Operation Operand Format Operation T Instruction
Code Code ype Length
BALE ry ,d2(x2,b2) 4D RX Four Bytes

Function:

The current relocation and indirection flags and the updated instruction address are stored in operand 1,
specified by r (link register). The contents of operand 2, specified by d2(x2,b2), are used to compute the
branch address.

QOperational Considerations:

L] Bits O through 7 (relocation and indirection flags) of the current relocation register replace bits 0
through 7 of operand 1. If Rl (bit 3 of the current relocation register) is 1, the updated instruction
address is converted to relative by subtracting the offset value contained in the current relocation
register. If Rl is 0, the updated instruction address remains unmodified. The updated instruction address
is then placed in bit positions 8 through 31 of the operand 1 location {link register).

£

7935 Rev. 1

UP-NUMBER

PAGE

SPERRY UNIVAC Operating System/4 J
PAGE REVISION

L The d, field and the contents of the base register specified by b, are added. The sum specifies the
address (relative if R, bit 3 of the current relocation register, equals 1) of an IACW. The address of the
final IACW is computed according to the rules of indirect and relative addressing. Bits 8 through 31 of
the final IACW plus the contents of the register specified by Xy specify the branch address (realtive if R,
bit 6 of the final IACW, is 1). If R is 1, the branch address is converted to absolute by adding the offset
value contained in the current relocation register. If R is 0, the branch address is considered to be an
absolute address and is not further modified. The absolute branch address then replaces the instruction
address field of the current PSW. The Rl flags of both the current relocation register and the applicable
relocation register in main storage are replaced by R.

] The branch address is computed before the link register is loaded. This allows for correct execution of
the branch if the register specified by r, is the same as that specified by x,, or b,.

L if the b2 designator in the instruction contains the value 0, the branch is not accomplishea but the link
information is stored in the operand 1 location.

L The condition code remains unchanged.

L] Possible program exceptions:
- indirect address specification exception
— indirect addressing exception
— operation exception (if current PSW specifies IBM native mode)
~— specification exception (IACW not on full-word boundary)

a Relocation and indirection flags:
— operand 1: none
— operand 2: Rl

Example:
LABEL A orgration A OPERAND A
149 - 15
l'»_; o AL;E b)NEzW T ’ Cobid
1. The current instruction address is stored in register 6 and a branch is made to the main storage address

contained in the location specified by NEW.

8.5. BALR (BRANCH-AND-LINK)

8-5

Mnemcfmc Source Code Hexadec!mal Format ObJG(:t.
Operation Operand Format Operation Tvpe Instruction
Code P Code ye Length

BALR ryfo 05 RR Two Bytes

T

8-6

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Function:
The current PSW instruction length code, program mask, and instruction address fields (bits 32 to 63) are
stored in operand 1, specified by e and the address of operand 2, specified by My is stored in the current PSW
instruction address field.

Operational Considerations:
= Operand 2 is the address branched to by the program.
L The return address is preserved in operand 1.
L If RI (bit 3 of the current relocation register) is 1, the offset value contained in the current relocation

register is subtracted from the updated instruction address to form the link address. If Rl is 0, the

updated instruction address is the link address and is not modified.

L The branch address is determined before the operand 2 address is stored. This allows correct operation if
the r and r registers are the same.

- If the operand 2 register is 0, the link information is stored in the operand 1 location, but no branch is
accomplished. Instruction sequencing continues with the updated instruction address.

L] The condition code remains unchanged.

= 90/60,70 systems — If Rl (bit 3 of the current relocation register) is 1, the offset register is subtracted
from the updated instruction address to form the fink address. If Rl is 0, the updated instruction address
is the link address and is not modified.

L Possible program exceptions: none

L Relocation and indirection flags (90/60,70):

- operand 1: none

- operand 2: RI
Example:
LABEL AOPERATIONA OPERAND A
10 16
IR I I LlAj L1 7.:151U131R4TLN| [VU ST SR N0 N S SN S NNUN SN WY U A N SN AN
At 1} lJ I lAllﬂRl 6J'l 171 1 l i1 1 1 l 11} L l J I S | l) N N W | l 11 1t l i
CLAR |, | LIR bl 21'1 K Lo o b b g by
L]
FETER T G Lo PARVURN S SN SR SN SN T SN ST NN N N SO N YN WO S0 (N SN S SN N U
SIMBRTINI 1 ﬁl& i1 Z#ZL L 1 1 1 1 1 l 1 1 1 | l 1 1 i i_L 1 L4 i i U D S | I |
AR EN I R Py PRSI B TR NIT I S DT SAN I RS S AT A NS S SN N S SR N A
AR B Blclp\ 1 \15-1.:161 Lo b v b e by b s L
1. The return address is stored in register & and a branch is made to the address in register 7. After

SUBRTN execution, an unconditional branch is made to the addrec< in roaster 6 (CLAR),

o8 Rev 1 SPERRY UNIVAC Operating System/4 . =
8.6. BC (BRANCH-ON-CONDITION)
Opersion o Souree Code overetion Forva istrction
Code Code Length
BC my ,d2(x2,b2) 47 RX Four Bytes
Function:
The operand 1 mask, specified by m,, is compared with the current condition code. If equal, the instruction at
the address specified by operand 2, specified by d2(x2,b2), is executed; otherwise, the next instruction in
sequence is executed.
Obiject instruction Format:
OPERATION OPERAND 1 OPERAND 2
0 CODE 718 11112 15116 1920 31
47 m, Xy b2 d2
Operational Considerations:
L The mask, considered operand 1, occupies bits 8, 9, 10, and 11 of the object instruction. The mask
specification determines the condition code setting to be tested, as follows:
~——r - An 8 produces the mask 10002 which tests bit 8 for a 0 condition code.
— A 4 produces the mask 01002 which tests bit 9 for a 1 condition code.
— A 2 produces the mask 00102 which tests bit 10 for a 2 condition code.
- A 1 produces the mask 00012 which tests bit 11 for a 3 condition code.
— A 0 produces the mask 00002 which is equivalent to no operation.
- Any combination of 1’s and 0's in the mask tests for more than one condition code.
- Any 1 bit on and tested produces the branch.
. A mask specification of 15 (111 12) produces an unconditional branch.
L See 8.2 for a list of extended mnemonic codes which may be used for branch-on-condition instructions.
= The condition code remains unchanged.
» Possible program exceptions: none
] Relocation and indirection flags (90/60,70):
- operand 1: none

— operand 2: Rl

7935 Rev. 1

UP-NUMBER

8-8

PAGE

SPERRY UNIVAC Operating System/4

| PAGE REVISION

Examples:

A OPERATION A GPERAND A

10 ib

!Q\(JJAX Lok LI S Sohe i S

W N ~

If the condition code is set to 0, a branch is made to ENDPROG.

2. if the condition code is set to 0 or 1, a branch is made to JAX.

3. An unconditional branch is made to BEGIN.

8.7. BCR (BRANCH-ON-CONDITION)

M . . .
nemt?mc Source Code Hexadecfmal Format Ob]ect-
Operation Operand Format Operation Tvpe Instruction
Code P Code yp Length
BCR my.foy 07 "RR Two Bytes
Function:

The operand 1 mask, specified by m,,is compared with the current condition code. if equal, the instruction at
the address stored in operand 2, specified by L is executed; otherwise, the next instruction in sequence is

executed.

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 2
0 CODE 718 11112 15
07 my ry

Operational Considerations:

= The mask, considered operand 1, occupies bits 8, 9, 10, and 11 of the object instruction. The mask
specification determines the condition code setting to be tested, as follows:

An 8 produces the mask 10002 which tests bit 8 for a O condition code.

A 4 produces the mask 01002 which tests bit 9 for a 1 condition code.

A 2 produces the mask 001 02 which tests bit 10 for a 2 condition code.

A 1 produces the mask 00012 which tests bit 11 for a 3 condition code.

A 0 produces the mask 00002 which is equivalent to no operation.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION | PAGE

8-9

- Any combination of 1's and 0’s in the mask tests for more than one condition code.

- Any 1 bit on the tested produces the branch.
L A mask specification of 15 (111 12) produces an unconditional branch.

u If operand 2 is register 0, the instruction is equivalent to no operation.

L] See 8.2 for a list of extended mnemonic codes which may be used for branch-on-condition instructions.

L] The condition code remains unchanged.

L Possible program exceptions: none

= Relocation and indirection flags (90/60,70):

— operand 1: none

— operand 2: RI
Examples: -
LABEL A OFERATION A GPERAND
% %w’ L
; ,
/. R S sBC.aR . 831 O .. ek
2r‘ TR S ?BQ;R : ¥15);..83 [
1. If the condition code is set to O, branch is made to the address stored in register 10.

2. Anunconditional branch is made to the address stored in register 8.

8.8. BCRE (BRANCH-ON-CONDITION-TO-RETURN-EXTERNAL) — 90/60,70

M . . .
nemonic Source Code Hexadecgmal Format ObJBCt'
Operation Operand Format Operation Tvpe Instruction
Code Code e Length
BCRE my.ry ocC RR Two Bytes
Function:

The operand 1 mask, specified by m,, is compared with the current condition code. If equal, and depending
on the relocation and indirection flags, the instruction at the address stored in operand 2, specified by r,, is
executed; otherwise, the next instruction in sequence is executed.

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 2
0 CODE 8 11{12 15
ocC m, o)

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

I PAGE REVISION ‘PAGE

8-10

Operational Considerations:

If the operand 1 mask equals 0, bits 0 through 7 of operand 2 are placed in bit positions O through 7 of
the current relocation register in main storage. If the new RI flag {bit 3 of the current relocation register)
is 1 and the old Rl flag had been 0, the offset value contained in the current relocation register is added
to the updated instruction address to form the next instruction address. If the new Rl flag is 0, the
updated instruction address remains unchanged.

If a bit in the operand 1 mask corresponds to the current condition code setting, bits O through 7 of
operand 2 are placed in bit positions 0 through 7 of the current relocation register and the applicable
relocation register in main storage. If the new RI flag is 1, the offset value contained in the current
relocation register is added to the address contained in the register specified by r, to form the branch
address. If Rl is O, the branch address is the address contained in the operand 2 register specified by rye
The branch address replaces the instruction address field of the current program status word.

If the operand 1 mask does not equal 0 and a bit in the mask does not correspond to the current
condition code setting, no operation takes place.

Except for the no-operation case, the following constraint applies: If the current relocation register flags
indicate relative instruction (Ri=1), the bits in the operand 2 register corresponding to relative
instruction, origin, and destination (Rl, RO, RD) must all be set to 1. If this requirement is not met, a

specification exception is generated and no operation takes place.

The mask, considered operand 1, occupies bits 8, 9, 10, and 11 of the object instruction. The mask
specification determines the condition code setting to be tested, as follows:

- An 8 produces the mask 10002 which tests bit 8 for a 0 condition code.
- A 4 produces the mask 01002 which tests bit 9 for a 1 condition code.
- A 2 produces the mask 00102 which tests bit 10 for a 2 condition code.
- A 1 produces the mask 00012 which tests bit 11 for a 3 condition code.
— A 0 produces the mask 00002 which is equivalent to no operation.

— Any combination of 1's and 0’s in the mask tests for more than one condition code.
— Any 1 bit on and tested produces the branch.

A mask specification of 15 (11112) produces an unconditional branch.

The condition code remains unchanged.

Possible program exceptions:

— operation exception (if current PSW specifies IBM native mode)

- specification exception (current relocation flags indicate relative instruction and RI, RO, and RD
of operand 2 are not all equal to 1)

Relocation and indirection flags:
—_ operand 1: none

— operand 2: Rl

A

7935 Rev. 1
UP-.NUMBER

SPERRY UNIVAC Operating System/4

8—11
PAGE REVISION | PAGE

R

Examples:
LABEL A oPerATION A OFERAND A
1 10 i1 T .
,' i d BC RE 8 79 S0 RO STV SO0 VOO SR TN ST W O A 1 { i
2~ IR BCRE 15.}8, i A O U U S
1. If the condition code is 0, the contents of register 9 are used to form the branch address.

2. An unconditional branch is made to the address determined by the contents of register 8.

8.9. BCT (BRANCH-ON-COUNT)

Mnemt?mc Source Code Hexadacimal Format Ob;ect.
Operation Operand Format Operation Type Instruction
Code Code yp Length
BCT ry.do(xp.bs) 46 RX Four Bytes
Function:

The contents of operand 1, specified by r,, are reduced by 1. If the result is O, instruction sequencing
continues. If the result is nonzero, a branch is made to the operand 2 address, specified by d2(x2 ,b2).

Operational Considerations:
L The BCT instruction proceeds as follows:
— The count value is loaded into the operand 1 register, r by a prior instruction.
— The operand 1 register is decremented by 1 each time the BCT instruction is executed.
— The test for 0 is made after each count.
— If 0, the next instruction is executed.
— If not 0, the branch is made to the address specified as operand 2.

L] If the operand 1 register is initially 0, the count is decremented through 0 and is treated as an unsigned
positive number with a magnitude of 232,

L] The branch address is determined prior to the counting operation. This allows correct operation if the r
and b2 or x, registers are the same.

. The condition code remains unchanged.
L] Possible program exceptions: none
= Relocation and indirection flags:

— operand 1: none

— operand 2: RI

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

8-12
PAGE REVISION § PAGE

Example:

LABEL A oPERATION A
10 i85

CPERAND

BCT | 10,SET

1. The count in register 10 is decremented and tested. If it is not equal to O, branch is made to the address
specified by SET. If it equals 0, the next sequential instruction is executed.
8.10. BCTR (BRANCH-ON-COUNT)
I\(I,Inem(?mc Source Code Hexadecimal Format Object.
peration Operand Format Operation T {nstruction
Code Code ype Length
BCTR T 06 BR Two Bytes
Function:

The contents of operand 1, specified by r

1°*

are reduced by 1. If the result is O, instruction sequencing

continues. If the result is not equal to 0, a branch is made to the address stored in operand 2, specified by ry

Operati

onal Considerations:

The BCTR instruction proceeds as follows:

— The count value is loaded into the operand 1 register, r. by a prior instruction.

—-r, is decremented by 1 each time the BCTR instruction is executed.

— The test for 0 is made after each count.

— If 0, the next instruction is executed.

— If not 0, the branch is made to the address stored in the operand 2 register.

If the operand 1 register is initially 0, the count is decremented through O and is treated as an unsigned

positive number with a magnitude of 232,

If the operand 2 register field is 0, counting is performed without branching.

The condition code remains unchanged.

Possible program exceptions: none

Relocation and indirection flags (90/60,70):

- operand 1: none

- operand 2: Rl

S

7935 Rev. 1 SPERRY UNIVAC Operating System/4 8-13
UP-NUMBER PAGE REVISION PAGE
Example:
LABEL A preration A OPERAND A
! 10 1 -
/ b 1 IBCTR IQA) L2 L]
1. Decrement and test the count in register 10. If it is not equal to 0, branch is made to the address stored

in register 12. If it equals 0, the next sequential instruction is executed.

8.11. BXH (BRANCH-ON-INDEX-HIGH) — 90/60,70

M i ; ;
nemonic Source Code Hexadec?mal Format Obleﬂ'
Operation Operand Format Operation Type Instruction
Code Code Yp Length
BXH ry ,r3,d2(b2) 86 RS Four Bytes
Function:

The sum of the contents of operand 1 and operand 3, specified by r and 3 respectively, is algebraically
compared to a comparison value. If the sum is greater than the comparison value, a branch is made to the
operand 2 address, specified by d2(b2); otherwise, sequential instruction execution proceeds.

Operational Considerations:

s The comparison value is contained in an odd-numbered register. The register is T3 if ry is odd, or r3+1, if
My is even,

= Following the comparison, the sum is placed in the operand 1 register.

" All quantities are treated as signed integers.

n The condition code remains unchanged.

L] Possible program exceptions: none

. Relocation and indirection flags:
— operand 1: none
— operand 2: RI

Examples:

LABEL A GreRaTION A GPERAND A

15
Y

20
(3 NS SRS N SN SR S SO S

IBXH

8-14
PAGE REVISION | PAGE

7935 Rev. 1 ' SPERRY UNIVAC Operating System/4

UP-NUMBER

1. The contents of registers 4 and 5 are added and the sum is placed in register 4. If the new contents of
register 4 are greater than the contents of register 5, a branch is made to main storage location HAR.
Otherwise, instruction execution proceeds sequentially.

2. The contents of registers 6 and 8 are added and the sum is placed in register 6. If the new contents of

register 6 are greater than the contents of register 9, a branch is made to main storage location HIGH.
Otherwise, instruction execution proceeds sequentially.

8.12. BXLE (BRANCH-ON-INDEX-LOW-OR-EQUAL) — 90/60,70

Mnemc'umc Source Code Hexadec!mal Format Object.
Operation Operand Format Operation Tvpe Instruction
Code pe Code yp Length

BXLE r1.r3.d5(b,) 87 RS Four Bytes

Function:
The sum of the contents of operand 1 and operand 3, specified by r and Ty respectively, is algebraically
compared to a comparison value. If the sum is less than or equal to the comparison value, a branch is made to
the operand 2 address specified by d2(b2); otherwise, sequential instruction execution proceeds.

Operational Considerations:

= The comparison value is contained in an odd-numbered register. The register is Ty if ry is odd, or r3+1, if
r, is even.

3
] Following the comparison, the sum is placed in the operand 1 register.
n All guantities are treated as signed integers.

u The condition code remains unchanged.

L Possible program exceptions: none

L Relocation and indirection flags:

- operand 1: none

— operand 2: Ri
Examples:
LABEL A OPERATIONA GPERAND A
1 10 16 e
/' i o XLE é) :7, LDW NI SRR N) (S0 T S S SO
Rl tos | BXLE | 5,b, BRANCH

1. The contents of registers 6 and 7 are added and the sum i placed in register 6. If the new contents of
register 6 are less than or equal to the contents of register 7, a branch is made to the address specified by
LOW. Otherwise, instruction execution proceeds sequentially.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION I PAGE

2.

The contents of registers b and 6 are added and the sum is placed in register 5. If the new contents of
register 5 are less than or equal to the contents of register 7, a branch is made to the address specified by
BRANCH. Otherwise, instruction execution proceeds sequentially.

8.13. EX (EXECUTE) — 90/60,70

8-1b

M H . .
nemtfmc Source Code Hexadecgmal Format Object.
Operation Operand Format Operation Type Instruction
Code Code ye Length
EX) ,d2(x2,b2) 44 RX Four Bytes
Function:

If the contents of operand 1, specified by ry,are 0, the instruction at the operand 2 address, specified by

d

(x b2), is executed without modification. If operand 1 is not 0, the contents are used to modify the

2\ %gr
operand 2 instruction before that instruction is executed.

Operational Considerations:

The address specified by operand 2 must be on a half-word boundary.

When operand 1 is not 0, modification of the operand 2 instruction proceeds as follows: A logical
addition (OR) is performed on the contents of bits 24 through 31 of operand 1 and bits 8 through 15 of
the instruction at the operand 2 address. The result replaces bits 8 through 15 of the operand 2
instruction. The rules of operation for logical addition are illustrated by the following truth table:

Result

Operand 2 (Operand 1)

Operand 1

- = 0o o0
-0 ~ O
- m Ao

Modification of the operand 2 instruction affects only the execution of the instruction and does not
alter the contents stored at the operand 2 location.

The modified instruction is executed as if it were in the normal instruction sequence except that the
instruction length code and updated instruction address fields of the current PSW reflect the EX
instruction.

Normally, instruction sequencing continues with the instruction following the EX instruction. However,
if the instruction at the operand 2 address is a successful branch instruction, the instruction address field
of the current PSW is replaced by the branch address and instruction sequencing continues with the
instruction located at the branch address. If the operand 2 instruction is branch-and-link or
branch-and-link-external, the instruction address stored in the link register is that of the instruction
following the EX instruction.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 | l 8-16
PAGE REVISION

UP-NUMBER PAGE

L] If an interrupt occurs after the completion of the subject instruction, the old PSW contains the address
of the instruction following the EX instruction or the branch address.

= The condition code may be set by the instruction at the operand 2 address.

L] Possible program exceptions:
NOTE:

A program exception condition can be caused by the EX instruction or the instruction specified in the
EX instruction.

- addressing exception

- execute exception

- indirect address specification exception
- indirect addressing exception

— protection exception

- specification exception (IACW not on full-word boundary; or the address specified by operand 2 is
odd)

L] Relocation and indirection flags:
- operand 1: none
— operand 2: RO, |0

Example:

LABEL A SPERATION A GPERAND A
190 V&

1. The instruction located at the address specified by SUBST is executed after modification according to
the contents of register 6. After the execution of the instruction at main storage location SUBST,
instruction sequence continues with the instruction following the EX instruction.

91
PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

P

‘9. Status Switching Instructions

9.1. GENERAL

The status switching instruction set provides the capacility of altering the operating characteristics of the SPERRY
UNIVAC Processor. Status switching instructions may be used to replace part or all of the current program status
word (PSW) or to alter the contents of the SPERRY UNIVAC 90/60,70 protect key main storage. Certain of these
instructions provide maintenance functions.

Status switching instructions are available in the RR, RS, and S| formats. As such, the operands may be contained in
the general registers, main storage, or within the instruction itself. The address of an operand in main storage may be
specified as relative or absolute and direct or indirect under the control of the applicab!e relocation register flags.

This section describes the operation of each status switching instruction. The instructions are arranged in
alphabetical order according to mnemonic operation code. Each description includes a list of the possible program
exceptions and condition codes which may result. In addition, the 90/60,70 relocation and indirection flags
pertinent to the operand addresses and, in the case of the LPSW instruction, to the operand itself are listed.

The object instruction format is shown only for those instructions which differ from the format shown in Figure
3—1. For an explanation of the abbreviations used in describing instruction formats, see Table 3—1.

9.2. DIAG (DIAGNOSE) — PRIVILEGED INSTRUCTION — 90/60,70

Mnemc.mlc Source Code Hexadecimal Format Oblect.
Operation o d Format Operation Type Instruction
Code perand Forma Code yp Length
DIAG dqlby)isy 83 Sl Four Bytes
Function:

The DIAG instruction is used to control diagnostic operation:
a Channel Tester

When the i2 field specifies a value of 8016 or 8116, the DIAG instruction relates to the channel tester.
The contents of the 32-bit base register specified by b, are added to the contents of thed, field to form
a 32-bit field with the following format:

UP-NUMBER

7935 Rev. 1 SPERRY UNIVAC Operating System/4 ‘ \ 9-2
PAGE REVISION

PAGE

CHANNEL
lNUMBER

!

0 20|21 23] 24 31

If the i2 field specifies 8016, the channel specified by bits 21 through 23 is disconnected from the 1/0
interface and connected to the channel tester.

If the i2 field specifies 8116, the channel specified by bits 21 through 23 is disconnected from the
channel tester and reconnected to the 1/0 interface.

Operational Considerations:
= This is a privileged instruction which is executed and controlled by the supervisor.
L] The condition code remains unchanged.
n Possible program exceptions:
— privileged operation exception

L Relocation and indirection flags: none

9.3. HPR (HALT-AND-PROCEED) — PRIVILEGED INSTRUCTION

M . . R
nemcfmc Source Code Hexadec!mal Format ObIBCt-
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
HPR dylbq)iiy 99 Si Four Bytes
Function:

The processor is halted without loss of data and the contents of the operands may be displayed.

Operational Considerations:
n This is a privileged instruction which is executed and controlied by the supervisor.

L] 9400/9480 systems — The processor halts and the storage address formed by d1 + (b1) is placed into the
internal data address register, A. The contents of this register can be displayed on the maintenance panel.
The next instruction in the program is executed when the operator presses the RUN switch. The 52 field
of this instruction is ignored. A diagnostic error is issued whenever i2 is specified.

L] 90/60,70 systems — The operand 1 address is placed in bit positions 8 to 31 of the storage address
register. Operand 2, contained in the i2 field, if present, is placed in bit positions 8 to 15 of the
operation code register. The processor halts and the HPR indicator is activated on the system
maintenance panel. The registers may then be selected and displayed on the system maintenance panel.
The processor remains halted until the RUN switch is pressed.

L The condition code remains unchanged.

~

9-3

PAGE REVISION I PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

] Possible program exceptions:
— privileged operation exception
L Relocation and indirection flags (90/60,70): none

Examples:

LABEL A OPERATION A GPERAND A
1 16 14

,' F U T T i Lo Hp«* ! X 'aF‘ l? (Ox)é o bk ot L B FI E SO S !
2ITAGA | . . | HPR . 0(5);):X‘8l I BRSNS S
Al HPR . 250 ('Ol) JFAG'X S0 SN WSRO RO RN U SO N o

1. The processor is halted and the value 00000000111 100012 is displayed. (Applicable only to 9400/9480
format.)

2. The processor is halted and the value of the address specified by 0 indexed by the contents of register 5
is displayed. On the 90/60,70, the hexadecimal value 81 is placed in the operation code register. (Format
correct for 90/60,70.)

3. The processor is halted and the value 00000000111110102 is displayed. On the 90/60,70, the value of

TAGX, which must have been previously equated to a value in the range 0 to 255, is placed in the
operation code register. (Format correct for 90/60,70; an error code is generated in 9400/9480 system.)

9.4. ISK (INSERT-STORAGE-KEY) — PRIVILEGED INSTRUCTION — 90/60,70

M H . .
nemcfmc Source Code Hexadecfmal Format Oblec?

Operation Operand Format Operation Type Instruction
Code Code Yp Length

ISK r1/Fo 09 RR Two Bytes

Function:

The 5-bit storage key contained in the key memory location in operand 2, specified by My is inserted into the
operand 1 register, specified by r-

Operational Considerations:
L] This is a privileged instruction which is executed and controlled by the supervisor.
= Bits 8 through 20 of operand 2 designate the location from which the storage key is to be taken.
. The storage key is inserted into bits 24 through 28 of operand 1.
L] Operand specifications are the same as for the SSK instruction (9.10).
= The condition code remains unchanged.
n Possible program exceptions:

— addressing exception (operand 2 specifies a nonexistent block of storage)

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

94
PAGE REVISION | PAGE

— privileged operation exception
— specification exception (bits 28 through 31 of operand 2 are not 0)
L Relocation and indirection flags: none

Example:

A OPERATION A
1c 1%

GPERAND

ISK

g%)fﬂs$, IR0 N0 NOOL NS VAN S SO SO O B

1. Presuming that R4$ and R5$ have been equated to 4 and 5, respectively, the storage key in the key
memory location specified by bits 8 through 20 of register 5 is inserted in bit positions 24 through 28 of

register 4.

9.5. LBR (LOAD-BASE-REGISTER) — 90/60,70

Mnemonic So Cod Hexadecimal E Object
Operation o ur(:;; E ode Operation ;rmat Instruction
Code perand Format Code ype Length
LBR r oB RR Two bytes
Function:

The offset value contained in the current relocation register is subtracted from the updated instruction
address. The relative instruction address thus formed is placed in bit positions 8 through 31 of the register
specified by r. Binary zeros will be placed in bit positions O through 7 of the register specified by r. The
constant 00010101 is placed in bit positions O through 7 of the current relocation register and the applicable
relocation register in main storage.

Object Instruction Format:

OPERATION OPERAND 1| OPERAND 2
0 CODE 718 11]12 15
0B unused r

Operational Considerations:

= If the r designator is zero, no operation takes place.
L The condition code remains unchanged.

| Possible program exceptions: none

- Relocation and indirection flags: none

9-5

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

- Example:
LABEL AOPERATIONA OPERAND A
10
o by LlBle 31114111111l111[11IILLLLlllLlLII

9.6. LCS (LOAD-CONTROL-STORAGE) — PRIVILEGED INSTRUCTION — 90/60,70

M H . .
nemt?mc Source Code Hexadec!mal Format Oble“.
Operation Operand Format Operation Type Instruction
Code Code yp Length
LCS ryra3dyibsy) B1 RS Four Bytes

Function:

The number of microinstructions specified by the r field plus 1 are transferred from main storage, beginning
with the microinstruction located at the operand 2 address, specified by dz(bz)' to the proper section of the
control storage, beginning at the address specified by the contents of operand 3, specified by My

Operational Considerations:

L This is a privileged instruction which is executed and controlled by the supervisor.

L] The number of microinstructions to be transferred is computed as the operand 1 register specification
plus 1.

L The register specified by operand 3 contains the address of the section of control storage to be loaded as
follows:

- If bit 16 of the operand 3 register is 0, bits 23 through 31 specify the location in the address
calculator (AC) section of the control storage into which the first microinstruction is to be loaded.
Bits 0 through 15 and 17 through 22 are ignored.

— If bit 16 of the operand 3 register is 1, bits 21 through 31 specify the location in the operand
manipulation (OM) section of the control storage into which the first microinstruction is to be
loaded. Bits 0 through 15 and 17 through 20 are ignored.

L The condition code remains unchanged.
u Possible program exceptions:
- privileged operation exception

- addressing exception {specified main storage or control storage location is nonexistent)

— indirect address specification exception

7935 Rev. 1 SPERRY UNIVAC Operating System/4 -8

UP-NUMBER ‘ PAGE REVISION \ PAGE

— indirect addressing exception
- protection exception
— specification exception (operand 2 or {ACW not on full-word boundary)

Examples:

LABEL A OPERATION A OPERAND A
10 16) _ I
‘- O T i {1 l—lcts SJLZ;J‘I-NST e Lo 5 SO A VU TR WS U SO FANC SRR WSS DT SR SR IO 3
S IR RN B LECS : 7:} 3 J.O(‘L’") T S VRS N SO RS SOUPRIN NN S SHUE SO S S WSS DS
<) S 97;1.,,.8&3) RN U - FHE NI S NS N A TONE T S U
4. RIS SR LICDSI : 6):7~) TEA@.%LZL)_: [T B N N ; NERIE N S S S fd
1. Six instructions, beginning at location INST, are loaded into control storage. Register 2 contains the

address in control storage into which the instructions are loaded.

2, Eight instructions, beginning at the location specified in register 4, are loaded into control storage.
Register 3 contains the address in control storage into which the instructions are loaded.

3. Ten instructions, beginning at location 8 indexed by the value in register 3, are loaded into control
storage. Register 1 contains the address in control storage into which the instructions are loaded.

4, Seven instructions, beginning at location TAG4 indexed by the value in register 2, are loaded into

control storage. Register 7 contains the address in control storage into which the instructions are loaded.
TAG4 must have been previously equated to a value not greater than 4095.

9.7 LPSW (LOAD-PROGRAM-STATUS-WORD) — PRIVILEGED INSTRUCTION

M . . .
nemonic Source Code Hexadecfmal Format ObIOCt.
Operation Operand Format Operation Type Instruction
Code Code yp Length
LPSW d.I (b1),i2 82 Si Four Bytes
Function:

The current program status word (PSW) is altered according to the contents of operand 1, specified by d,(b,).
Operand 2, contained in the i2 field, contains a secondary operation code.

Operational Considerations
L) This is a privileged instruction which is executed and controlled by the supervisor.

L] 9400/9480 systems — The double-word operand is in storage at address d1 + (b1). This operand is placed
into the program status register unaltered. The interrupt code and instruction length code of the current
PSW, bits 16 through 33, remain unchanged. The i, field of this instruction is ignored. A diagnostic error

is issued whenever i2 is specified.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-7

UP.-NUMBER I PAGE REVISION IPAGE

= Bits O through 23 and 34 through 39 of double-word operand 1 replace the corresponding bits of the
current PSW. If the Rl flag of the current relocation register is 0, bits 40 through 63 of operand 1
~— replace the corresponding bits (the instruction address field) of the current PSW. If the RI flag of the
current relocation register is 1, bits 40 through 63 of operand 1 are added to the offset value from the
current relocation register. The sum replaces bits 40 through 63 of the current PSW.

] 90/60,70 systems — The 12 field contains the secondary operation code. If the secondary operation code
is 0, the hardware priority circuit examines the state of all interrupt request lines immediately after the
current PSW is replaced by operand 1. If an interrupt request is pending and the corresponding mask bit
of the current PSW is 1, an interrupt initiation sequence (11S) takes place. If the secondary operation
code is 1, the hardware priority circuit is inhibited and no IIS can occur after the current PSW is
replaced by operand 1. This inhibition is removed when the processor resumes instruction execution
under control of the current PSW. If the secondary operation code is not 0 or 1, the result of the LPSW
instruction is unpredictable. If i2 is not specified, 0 is assumed.

] The condition code is set equal to bits 34 and 35 of operand 1.

n Possible program exceptions:
SPERRY UNIVAC 90/60,70 Systems SPERRY UNIVAC 9400/9480 Systems
Addressing Privileged operation
Indirect address specification Specification

Indirect addressing

Privileged operation

~
Protection
Specification (operand 1 or IACW
not on full-word boundary)
1 = Relocation and indirection flags (90/60,70):
; — operand 1: RO, 10
|
i - operand 2: none
- bits 40 through 63 of operand 1: Rl
‘ Examples:
LABEL A OPERATION A GPERAND A
1 10 16 N e o
2»;,‘:_"...1._L.ML.:L.;M;MJ; TLJPSW : NEWPSW) l; ok S SOV SO SO SO SO RRNY SES
1. Bits 0 through 23 and 34 through 63 of the double word specified by NEWPSW replace the contents of
the current PSW. The secondary operation code is presumed to be 0 (9400/9480 format).
~ 2. Bits 0 through 23 and 34 through 63 of the double word specified by NEWPSW replace the contents of
the current PSW. Since the secondary operation code is 1, on 90/60,70 systems, no interrupt can take
place after the current PSW is replaced until the processor resumes execution of instructions (90/60,70
format).

7935 Rev. 1

URP-NUMBER

9-8

PAGE REVISION l PAGE

SPERRY UNIVAC Operating System/4

9.8. RDD (READ-DIRECT) — PRIVILEGED INSTRUCTION — 90/60,70

M H o -
nemc?mc Source Code Hexadec,mal Format Object.
Operation Operand Format Operation Tvoe Instruction
Code Code yp Length
RDD d1 (b1),i2 85 Sl Four bytes
Function:

The operand 1 address specified by d_ {b,) is used as the storage location for the data received on the direct
control bus-in lines. Acceptance of this data prepares the processor for receiving data from an external device
or processor from which the signal originated. The operand 2 byte, contained in the i2 field, is sent as eight

ti

ming signals on the timing signal bus-out lines.

Operational Considerations:

This is a privileged instruction which is executed and controlled by the supervisor.

The RDD instruction is used as part of the Direct Control and External Interrupt Feature (F1335—00)
which provides direct communications of controlling and synchronizing information between two
processors or between a processor and an external device.

The signal received on the eight direct control bus-in lines is placed in the operand 1 storage location,
provided no HOLD signal is present. The HOLD signa! prevents the direct control bus-in lines from being
read until the signal data is present. A parity bit is generated as the data is stored.

The byte specified as i2 is sent as eight timing signals on the timing signal bus-out lines. No parity is
associated with these signals. At the same time, an identica! timing signal is sent on the read-out line to
inform the other device that the processor is receiving data on the direct control bus-in lines.

The condition code remains unchanged.

Possible program exceptions:

- addressing exception

— indirect address specification exception

- indirect addressing exception

— operation exception (direct contro! and external interrupt feature not installed)

- privileged operation exception

- protection exception

- specification exception {IACW not on full-word boundary)

Relocation and indirection flags:

- operand 1: RD, ID

- operand 2: none

7935 Rev. 1 SPERRY UNIVAC Operating System/4 I 9-9
UP-NUMBER PAGE REVISION PAGE
Examples:
LABEL A OPERATION A CPERAND
1 14 6
... | ®oDd | |oL), X' 08" . %
RIREAD . . | RDD | 0(9),VALUE
AU RDD. 18 P(s L),.j,x LR il U
1. One byte is read into main storage location 0 indexed by the value in register 6. The value 0816 is

transmitted to the sending processor.

2. One byte is read into main storage location 0 indexed by the value in register 9. The hexadecimal value
in main storage location VALUE is transmitted to the sending processor. VALUE must have been
previously equated to a value in the range 0 to 255.

3. One byte is read into main storage location DISP indexed by the value in register 1. The value 1F16 is
transmitted to the sending processor. DISP must have been previously equated to a value not greater

than 4095.

9.9. SPM (SET-PROGRAM-MASK)

Mnemt?mc Source Code Hexadecgmal Format Object.
Operation Overand Format Operation Type Instruction
Code pera rma Code yp Length
SPM r 04 RR Two bytes
Function:

The program mask field of the current PSW is changed according to the contents of the register specified by r.

Object Instruction Format:

OPERATION

OPERAND 11 OPERAND 2
8

1i2 15

unused

Operational Considerations:

n 90/60,70 systems — Bits 2 through 7 of the full-word contents of the specified register replace the
program mask field (bits 34 through 39) of the current PSW.

= Bits 0, 1, and 8 through 31 of the register are ignored.

L] 9400/9480 systems — Bits 2 through 5 of the register, defined by r, replace the condition code and
program mask portion of the current program status word (PSW), bits 34 through 37. All other bits of
this register are ignored.

L The condition code is set equal to bits 2 and 3 of the specified register.

L Possible program exceptions: none

- Relocation and indirection flags: none

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

9-10
PAGE REVISION | PAGE

Example:
LABEL A oPERATION A OPERAKND A
1 10 18 e
. { : S!PvM ; % TN W N N N [RO ; Lol
1. The program mask field of the current PSW is changed to the value specified by the contents of bits 2

through 7 of register 3.

9.10, SSK (SET-STORAGE-KEY) — PRIVILEGED INSTRUCTION — 90/60,70

M . . .
nemonic Source Code Hexadec,mal Format Oblﬂ?t.
Operation Operand Format Operation Tvpe Instruction
Code Code yp Length
SSK 0o 08 RR Two Bytes
Function:

A main storage key is defined by the contents of operand 1, specified by r and is placed in the processor key
memory location designated by the contents of operand 2, specified by r, ;

Operational Considerations:

This is a privileged instruction which is executed and controlled by the supervisor.

The 5-bit value contained in bit positions 24 through 28 of operand 1 is placed in the processor key
memory location specified by bits 8 through 20 of operand 2.

The processor key memory location designated by operand 2 is associated with a block of main storage
located on an integral boundary which is a multiple of 2048 bytes. Bits 28 through 31 of operand 2
must be 0. Bits O through 7 and 21 through 27 of operand 2 are ignored.)

The main storage key, bits 24 through 28 of operand 1, provides for write only or write and read
protection within a 2048-byte block of main storage. Bits 24 through 27 provide write protection
identity for the specified block. If bit 28 is 1, read protection is provided. Bits O through 23 and 29
through 31 of operand 1 are ignored.

The condition code remains unchanged.

Possible program exceptions:

- addressing exception (operand 2 specified a nonexistent block of main storage)

— privileged operation exception

— specification exception (bits 28 through 31 of operand 2 are not 0)

Relocation and indirection flags: none

7935 Rev. 1
UP-NUMBER

9-11
PAGE REVISION | PAGE

SPERRY UNIVAC Operating System/4

Example:

~—r’

LABEL A opezation A OPFEAND A

! il 4

dsk | Ru$,RsE

EPURT—

1. Presuming that R4$ and R5$ have been equated to 4 and 5, respectively, bit positions 24 through 28 of
register 4 are placed in the key memory location specified by bits 8 through 20 of register 5.

9.11. SSM (SET-SYSTEM-MASK) — PRIVILEGED INSTRUCTION
l\ollnemc?nic Source Code Hexadec.imal Format Object.
peration Operand Format Operation Tyoe Instruction
Code P Code ye Length
SSM d(b) 80 St Four Bytes
Function:

The system mask bits of the current PSW are changed according to the contents of the operand, specified by
d(b).

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CGDE 718 OPERAND 15 | 16 19120 31
80 unused b d

Operational Considerations:
. This is a privileged instruction which is executed and controlled by the supervisor.

L] 9400/9480 systems — The byte operand in storage at address d1 + (b1) replaces the system mask field of
the current PSW, bits 0 through 6. The low order bit of the byte operand is ignored.

L] 90/60,70 systems — Bits O through 12 of the half-word operand replace the system mask (bits O through
12) of the current PSW.

L The condition code remains unchanged.

L] If the location specified by the operand contains the hexadecimal value FFD8, the following interrupts
are allowed:

- program check
- machine check
- external

- timer

- read direct

7935 Rev. 1 SPERRY UNIVAC Operating System/4 l I 9-12
PAGE REVISION

UP-NUMBER

PAGE

- selector 1

— selector 2

— selector 3

- selector 4

- communications intelligence channel

— multiplexer channet - standard

- multiplexer channel - status table

If the location specified by the operand contains the value 00001 6 all interrupts are inhibited except the

supervisor call interrupt.

L Possible program exceptions:

SPERRY UNIVAC 90/60,70 Systems

SPERRY UNIVAC 9400/9480 Systems

Addressing

Privileged operation

Indirect address specification

Indirect addressing

Privileged operation

Protection

Specifications

1. Operand 1 not on half-word
boundary

2. tACW not on full-word
boundary

= Relocation and indirection flags (90/60,70):

- operand 1: RO, 10

Example:

LABEL AGrPERATION A
1 10 14

GPERANMD A

1. 9400/9480 systems — Bits 0 through 6 of the byte specified by SYSMASK replace the system mask (bits

0 through 6) of the current PSW,

90/60,70 systems — Bits 0 through 12 of the half word specified by SYSMASK replace the system mask

(bits O through 12) of the current PSW.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

9-13

PAGE

9.12. SVC (SUPERVISOR-CALL)
Mnemt?mc Source Code Hexadec.imal Format Object.
Operation Operand Format Operation T Instruction
Code P Code ype Length
sSvC i 0A RR Two Bytes
Function:

A supervisor call interrupt request is generated.

Object Instruction Format:

0

OPERATION
CODE

OPERAND 1

15

OA

Operational Considerations:

= When the interrupt is granted, the contents of the i field are stored as the interrupt code in the current
PSW. The current PSW is stored in the supervisor call old PSW location, and the contents of the
supervisor call new PSW location replace the current PSW.
L] The condition code is set equal to bits 34 and 35 of the supervisor call new PSW. It remains unchanged
in the old PSW.
L Possible program exceptions: none
- Relocation and indirection flags (90/60,70}: none
Example:
LABEL A crgraTion A OPERAHD A
H 14
i H
P [
I i T § S\/*C R ;)(’ DE dbhind
1. A supervisor call interrupt is generated and the value 000011112 is stored in the old program status

word.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 9-14
UP-NUMBER . PAGE REVISION PAGE
9.13. WRD (WRITE-DIRECT) — PRIVILEGED INSTRUCTION — 90/60,70
~—r
Mnemonic Hexadecimal Object
Operation Opi‘:::!efg) ‘:’:at Operation F_:_"m:t Instruction
Code Code ye Length
WRD d1(b1),i2 84 Si Four Bytes
Function:

The contents of the byte at the operand 1 main storage location specified by d1 (b1) are made static signals on

the direct control bus-out lines. The operand 2 byte, contained in the i2 field, is sent as eight timing signals on

the timing signal bus-out lines. These signals are used to alert an external device or another processor for
communications.
Operational Considerations:

a This is a privileged instruction which is executed and controlled by the supervisor.

L] The WRD instruction is used as part of the Direct Control and External Interrupt Feature (F1335—00)
which provides direct communications of controlling and synchronizing information between two
processors or between a processor and an external device.

" The byte contents of operand 1 are made a static signal on the eight direct control bus-out lines. No
parity is associated with the signal. The signal remains until the execution of another WRD instruction.

- The byte contained in the i, field is sent as eight timing signals on the timing signal bus-out lines. No —
parity is associated with these signals. At the same time, an identical timing signal is sent on the
write-out line to inform the external device that the processor is sending data on the direct control
bus-out lines.

- The condition code remains unchanged.

L] Possible program exceptions:

— addressing exception
- indirect address specification exception
- indirect addressing exception
— operation exception (direct control and external interrupt feature not installed)
— privileged operation exception
— protection exception
- specification exception (IACW not on full-word boundary)
n Relocation and indirection flags:

operand 1: RO, 10

operand 2: none

9—-156

PAGE REVISION IPAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Examples:
LABEL A GRERATION A CPERARD A
1 10 16 ,
I‘ SVUNE S R é o WRD A - O(S)JX ! O ‘l e S W ESUIR SO UV SO SN SR NOPH. S b
20 .ot MRD L IO(B) , VALUE =
~3....~Lm1,, TR WRD i DISPL‘)] x ‘f \ F ’/ B G AU TR S T S DO O RO SO NS S N OO
1. One byte is written from main storage location 0 indexed by the value in register 5. The hexadecimal

value 01 is transmitted to the receiving processor.

2. One byte is written from main storage location 0 indexed by the value in register 5. The hexadecimal
value in main storage location VALUE is transmitted to the receiving processor. VALUE must have been

previously equated to a value in the range 0 to 255.

3. One byte is written from main storage location DISP indexed by the value in register 1. The value 1F16
is transmitted to the receiving processor. DISP must have been previously equated to a value not greater

than 4095.

101
PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

10. Input/Output Instructions

10.1. GENERAL

The input/output instruction set of the SPERRY UNIVAC Operating System/4 (0S/4) Assembler provides for the
initiation, testing, and termination of operations executed by the multiplexer channel selector channel,
communications intelligence channel {CIC), and operating system storage facility (OSSF) control channel.

The execution of an input/output instruction begins with the activation of a signal from the processor to the
appropriate channel requesting initiation of the operation. The processor then waits for an acknowledge signal from
the channel. Depending on the state of the channel, the operation is initiated, or the processor is informed of the
reason why the operation was not initiated.

This section describes the operation of each input/output instruction. The instructions are arranged in alphabetical
order according to mnemonic operation code. A list of the possible program exceptions and condition codes which
may result is included. There are no pertinent relocation and indirection flags for input/output instructions. See
Table 3—1 for an explanation of the abbreviations used in describing instruction formats. .

Table 10—1 describes the letters used to form codes describing the channel states as applicable to the input/output
instruction. The state of the individual unit is indicated by the position of the letter in the channel state code. From
left to right within the code is an indication of the state of the channel, subchannel, and subsystem.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-2

UP-NUMBER PAGE REVISION PAGE

Table 10—1. Channel State Codes

Code Meaning Unit Description

A Available Channel Ready to accept t/O instruction and execute the operation specified.
Muiltiplexer channel is always available.

Subchanne! Selector channel: same as available channel.
Multiplexer channet: mode in the hard channel! control word is idle,
Subsystem If subsystem control unit contains information on the state of the

addressed device or queries the addressed device, the subsystem is
available if neither the control unit nor the addressed device is
executing a previously initiated operation or is holding pending status.
if the subsystem contains no information on the state of the addressed
device or does not query the addressed device, it is available if the
control unitis neither executing a previously initiated operation nor
holding pending status.

I Interrupt Channel Selector channel: interrupt-causing device or subchannel status has developed,
Pending an interrupt request has been activated, and all other
operations have been halted.
Multiplexer channel: device status has been accepted from a standard device and

stored in the hard channel control word, or an interrupt has
been detected in a channel command word related to a
standard subchannel, an interrupt request has been activated,
and all other status is in a waiting state.

Subchannel! Selector channel: same as channel in interrupt pending state.
Multiplexer channel: mode in the hard channel control word is terminated or reset.
Subsystem The subsystem is holding pending device status.
N Nonopera- | Channel Channel is offline or not present.
tional
Subchannel Multiplexer channel: specified subchannel is not installed.
Selector channel: same as nonoperational channel.
Subsystem Offline, powered down, not installed, or does not recognize its
address during the initial selection sequence.
w Working Channel Selector channel: operating in burst mode or a chaining sequence is
in progress.
Multiplexer channel: not possible.
Subchannel Selector channel: same as working channel.
Muitiplexer channel: mode in the hard channel control word is active
or chain.
Subsystem Control unit or device is executing a previously initiated operation,

X Any operational state

7935 Rev. 1

UP.NUMBER

SPERRY UNIVAC Operating System/4

] PAGE REVISION |

10-3
PAGE

10.2. HIO (HALT-1/0) — PRIVILEGED INSTRUCTION — 90/60,70

M - . .
Operation Source Cade overaiion. Format introeton
structio
Code Operand Format Code Type Length
HIO d{b) 9E St Four Bytes
Function:

The halt-1/0 instruction causes the addressed selector channel, subchannel, and device to terminate the current
operation. Any pending device or subchannel status is stored in the initial status word (ISW), and the
appropriate condition code is set.

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 718 QOPERAND 15] 16 19120 31
9E unused b d

Operational Considerations:

L This is a privileged instruction which is executed and controiled by the supervisor.
L The HIO instruction applies to the operation of the selector channel only.
L The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a 32-bit field with the following format:
CHANNEL
NUMBER |
Y
DEVICE
IGNORED ADDRESS
0 20(21 23124 31
L] The channel specified by bits 21 through 23 and the device and subchannel, implied by the device

number, specified by bits 24 through 41 are addressed, and the operation proceeds as follows:

State

Procedure

AAX

to 0 and no ISW is written.

WWX

If the addressed channel and subchannel are in the available state, the condition code is set

If the addressed channel is transferring data in burst mode, the device address in the HIO

instruction is ignored, and the operation with the device is terminated by an interface
disconnect sequence. Command or data chaining is suppressed. An ISW with the device
address of the terminated device and the incorrect length bit set to 1 is written. The
condition code is set to 2. The mode is set to idle.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-4

UP-NUMBER PAGE REVISION PAGE

State Procedure

HX If the addressed channel and subchannel are in the interrupt pending state with pending
device or subchannel status, the pending status is written into the 1SW, the interrupt pending
condition is cleared, and the condition code is set to 1. The mode is set to idle.

NXX If the channel is not available or nonoperational, the condition code is set to 3 and no ISW is
written. If the channel is available or in the interrupt pending state, the device is not
addressed. In these cases, the fact that a device was nonoperational would not be indicated

until the next reference of the device for a test-1/0 or start-1/Q instruction.

Table 10—2 summarizes the resulting condition codes and 1SW contents for the HIO instruction.

Table 10—2, HIO Instruction Condition Codes and Initial Status Words

. ISW Contents
Channel Channel Condition parC—
State Code Device Address Device Status
Status
Selector AAX 0 No ISW written
WWX 2 Active device address * Unpredictable Incorrect length and any
other present
11X 1 Address of device Any pending status Any pending status
associated with
pending status
NXX 3 No ISW written
Multiplexer XXX 1 Addressed device 0 Program check —

* The device address specified in the operand field of H10 is ignored.

. An HIO instruction issued to the multiplexer channel results in an ISW with the program check bit set
and a condition code of 1.

- Possible program exceptions:
— privileged operation exceptidn

. Relocation and indirection flags: none

Example:
LABEL A CFERATION A OPERAND A
1 10 1% e e
/- T HI{& 1.0 (8) 3 oy § :

1. The channel and device address is represented by the sum of 10 and the contents of register 8.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

PAGE

10.3. LCHR (LOAD-CHANNEL-REGISTER) — PRIVILEGED INSTRUCTION — 90/60,70

Mnemo.mc Source Code Hexadec!mal Format Ob]ect.
Operation Operand Format Operation Type Instruction
Code pera or Code Yp Length
LCHR d(b) AD Sl Four Bytes
Function:

The load-channel-register instruction is used to transfer 32 bits of information from location 18016 in main
storage to a location in the channel register stack (CRS), specified by d(b).

Object Instruction Format:

OPERATION OPERAND 1 OPERAND 2
0 CODE 718 15l16 1920 31
AD unused b d

10-5

Operational Considerations:

This is a privileged instruction which is executed and controlled by the supervisor.

The LCHR instruction applies to the operation of the multiplexer channel.

L] The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a 32-bit field with the following format:

CHANNEL
NUMBER | IIGNORED
Y Y
IGNORED REGISTER
NUMBER
0 20121 23|24 25 |26 31

] The register number field (bits 26 through 31) specifies in binary the location of one of 32 full words in
the CRS (64 if the Subchannel Expansion Feature, F1518, is installed). The contents of location 180 are
transferred to the specified register, and the condition code is set as follows:

— If the transfer is completed successfully, the condition code is set to 0.

- I¥ the channel detects a storage error on the access of location 180, an ISW with the appropriate
channel control check code is written and the condition code is set to 1.

- If the channel is nonoperational or the specified register is not installed, the condition code is set
to 3.

— If the LCHR instruction is issued to a selector channel in the available state, an ISW with the
program check bit set is written; the condition code is set to 1. An LCHR instruction issued to a
selector channel in any state other than available causes the condition code to be set to 2.

Table 10—3 summarizes the condition codes and ISW's for the LCHR instruction. The codes for the channel
states are given in Table 10—1.

10—-6
PAGE

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

Table 10—3. LCHR Instruction Condition Codes and Initial Status Words

Channel Channel Condition iSW Contents
State Code Device Address Device Status Subchannel
Status
Multiplexer AXX 0 No ISW written
AXX 1 0 0 Channel control check *
NXX R
ANX 3 No ISW written
Selector AXX 1 0 0 Program check
IXX .
WXX 2 No ISW written

* Storage error in access of 18016'

L] Possible program exceptions:

— privileged operation exception

- Relocation and indirection flags: none
Example:
LABEL A OPERATION A OPERAND A
10 16 e
/~ Coe b 5&“6 L&ADC.(@) b . A4 ;

1. The contents of location LOADC and the contents of register 6 are added to form the binary value of
the channel and device address. Assume that LOADC has been previously defined as equal to a value not
greater than 4095. '

10.4. SCHR (STORE-CHANNEL-REGISTER) — PRIVILEGED INSTRUCTION — 90/60,70

Mnemt?mc Source Code Hexadecfmal Format Oblect.
Operation Operand Format Operation T Instruction
Code P Code ype Length
SCHR d(b} AC Sl Four Bytes
Function:

The store-channel-register instruction is used to transfer 32 bits of information from a specified location in the

CRS, specified by d(b), to location 18016 in main storage.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

FPAGE REVISION PAGE

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 718 OPERAND 151 16 19120 31
AC unused b d

Operational Considerations:

This is a privileged instruction which is executed and controlled by the supervisor.
The SCHR instruction applies to the operation of the multiplexer channel.

The contents of the 32-bit register specified by the b field are added to the contents of tne d field to
form a 32-bit field with the following format:

CHANNEL
NUMBER IGNORED
y
(GNORED REGISTER
NUMBER
20121 23124 25126 31

The register number field (bits 26 through 31) specifies in binary the location of one of 32 full words in
the CRS (64 if the Subchannel Expansion Feature, F1518, is installed). The contents of the specified
register are transferred to location 1801 6 and the condition code is set as follows:

- If the transfer is completed successfully, the condition code is set to 0.

— If the channel detects a storage error on the access of location 180, an ISW with the appropriate
channel control check code is written and the condition code is set to 1.

- If the channel is nonoperational or the specified register is not installed, the condition code is set
to 3. '

— If the SCHR instruction is issued to a selector channel in the available state, an ISW with the
program check bit set is written; the condition code is set to 1. An SCHR instruction issued to a

selector channel in any state other than available causes the condition code to be set to 2.

Table 10—4 summarizes the condition codes and initial status words for the SCHR instruction. The
codes for the channel states are given in Table 10—1.

Table 10—4. SCHR Instruction Condition Codes and Initial Status Words

10-7

ISW t
Channel Channel Condition Contents Sunch I
State Code Device Address Device Status ubchanne
Status
Multiplexer AXX 0 No ISW written
AXX 1 0] Channel control check
":)N(i 3 No ISW written
Selector AXX 1 0 0 Program check
IXX R
N i
WXX 2 o ISW written

* Storage error in accesss of 1801

6

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION | PAGE

= Possible program exceptions:

- privileged operation exception

L] Relocation and indirection flags: none
Example:
LABEL A OPERATION A OPERAND A
1 10 16 .

1. The contents of main storage location STORE and the contents of register & are added to form the
binary value of the channel and device address. Assume that STORE has been previously equated to a
value not greater than 4095.

10.5. SIO (START-1/0) — PRIVILEGED INSTRUCTION ‘ -

10-8

Mnemo.mc Source Code Hexadec,mal Format Obwct'
Operation 0 d Format Operation T Instruction
. Code peran ma Code ype Length
SI0 dib) ac Si Four Bytes
Function:

The start-1/0 instruction is used to initiate all read, read backwards, write, control, and sense operations. f in
the proper state, the specified channel reads the channe! address word (CAW) and the first CCW and initiates
the operation with the device. On the 90/60,70 systems, if any device or subchannel status develops during the
initiation of the operation, an ISW is written. The completion of the SIO instruction sets the appropriate
condition code in the current PSW.

Object Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 718 OPERAND 15 1 16 191 20 31
aC unused b d

9400/9480 Operational Considerations:
L This is a privileged instruction and is executed only in the supervisor mode.
L] Execution of the start I/O instruction performs the following:

— Accesses the channel address word {CAW) for the address of the first channel command word
{CCW) for selector channels. CAW is stored in supervisor general register 0.

- The selector channel puts the CCW into hardware.

— The channels access the device and initiate the operation,

7935 Rev. 1 SPERRY UNIVAC Operating System/4 10-9

UP-NUMBER l PAGE REVISION I PAGE

L] The CCW for the selector channei or the SCW and BCW for the multiplexer channel specify the type of
operation, data address, controls, and data byte count.

L] The 32 binary value produced by adding the contents of b1 to the d1 field specify the channel and
device address. The channel is specified by bits 21 through 23 and the device specified by bits 24
through 31.

- The specified device is initiated by and operates under the control of the CCW, SCW, or BCW,

L] Condition code is set as follows:

to 0 (0) if the 1/O operation is initiated and is being executed;

to 1 (01) if an immediate status word has been stored;

to 2 (10) if the selector channel is busy;

to 3 (11) if device or channel is not operational.

L] Basic procedures for using the start 1/0 instruction are as follows:

establish one or more CCWs, (SEL), or SCWs and BCWs {MPX) in main storage;

load the channel address word (CAW) with the address of the first CCW (SEL) or the command in
the CAW (MPX);

- specify the channel and device number in the operand 1 portion of the start 1/0 instruction:

- issue the start 1/0 instruction;

test the conditon code for determination of result of 1/O operation.
90/60,70 Operational Considerations:
= This is a privileged instruction which is executed and controlled by the supervisor.
] The SI10 instruction applies to the operation of the multiplexer and selector channels.

L] The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a 32-bit field with the following format:

10-10
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

CHANNEL
| NUMBER
l DEVICE
IGNORED ADDRESS
0 ; 20{21 23f24 31

n The channel specified by bits 21 through 23 and the device specified by bits 24 through 31 are addressed
and the operation proceeds as follows:

State Procedure

AAA If the addressed channel, subchannel, and device are in the available state, the condition
code is set to 0 and the prescribed 1/O operation proceeds under the control of the channel
and subchannel.

11X, WWX

(Selector) If the addressed channel is in any state other than available, the device is not addressed; the
XX, XWX L s .

(Multi- operation is halted, and the condition code is set to 2.

plexer)

AAW, AAI If the addressed channel and subchannel are available but the addressed device is in the
working or interrupt pending state, an ISW with the appropriate device status is written and
the condition code is set to 1. For devices which present channel end and device end
separately, an available subchannel may have a working or interrupt pending device. In this
case, the selector channel or multiplexer subchannel becomes available after the interrupt
with the channel end indication. The S10 instruction is issued before the device end has been
accepted at the channel. Similarly, in subsystems with the dual channel access or dual access
facility, the control unit may be operating under the control of an active subchannel in
another channel while receiving the SIO instruction from the addressed channel.

If the control unit is in the interrupt pending state with device status (for example, device
end or attention) for the addressed device, the pending device status including the busy bit is
written into the ISW and cleared in the control unit. if the control unit is working or in the
interrupt pending state with pending status for a device other than the addressed device, the
device status written into the ISW will contain the busy and status modifier bits; however,
the pending status is not cleared in the control unit.

NXX, If the addressed channel, subchannel, or device is nonoperational, the condition code is set
XNX, to 3.
XNN

The resulting condition codes and ISW contents are summarized in Table 10—5. The codes
for the channel states are given in Table 10—1.

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

10-11

PAGE

Table 10—5. SI0 Instruction Condition Codes and Initial Status Words

ch | Conditi ISW Contents
anne ondition
Channel
o State Code Device Address Device Status Subchannel
Status
Multiplexer AAA 0 No ISW written
and B
Selector AAl 1 Addressed device ® 0
AAW 1 Addressed device) 0
NXX
XNX 3 No ISW written
XXN
Multiplexer XIX .
XWX 2 No ISW written
Selector hx 2 No ISW written
WwWX

@ If the control unit contains pending status for the addressed device, busy and pending status bits are set in the device

status field; otherwise, busy and status modifier bits are set.

@ If the control unit is working, busy and status modifier bits are set in the device status field. If the control unit is

available and the device is working, only the busy bit is set.

L Detection of any of the following errors causes the operation to be aborted by a selective reset to the

device:

— storage errors in the access of the CAW, the relocation register, or the first CCW;

- format errors in the contents of the CAW or CCW;

- parity errors in the address or status from the device.

If any of these errors are detected, an ISW is written with the appropriate subchannel status bits set and

the condition code is set to 1.

s Possible program exceptions:

- privileged operation exception

L] Relocation and indirection flags: none
— none
Example:
LABEL A OPERATION A GeE A
1 10 16 . -
Jlo vt ISTE [iro(8)

1. Ten is added to the contents of register 8 to form the binary value of the channel and device address.

10-12
PAGE

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION l

10.6. TCH (TEST-CHANNEL) — PRIVILEGED INSTRUCTION — 90/60,70

Mnem(?mc Source Code Hexadecgmal Format Obj ect
Operation - Operand Format Operation Type Instruction
Code P Code ye Length
TCH d(b) oF Sl Four Bytes
Function:

The test-channel instruction is used to determine the current state of the addressed channel. The appropriate
condition code is set in the current PSW and any pending status is written into the ISW.

Obiject Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 718 OPERAND 15 16 19120 31
9F unused b d

Operational Considerations:
L This is a privileged instruction which is executed and controlled by the supervisor.

n The contents of the 32-bit register specified by the b field are added to the d field to form a 32-bit field
with the following format:

CHANNEL
I NUMBER

'

0 . 20121 23|24 31

IGNORED IGNORED

n The channel specified by bits 21 through 23 is addressed and the condition code is set. The operation
proceeds as follows: E

State Procedure

AXX If the addressed channel is available, the condition code is set to 0 and no ISW is written.

IXX If the addressed channel is in the interrupt pending state, the pending device and subchannei
status and the device address associated with that status are written into the ISW and the
condition code is set to 1. The interrupt request associated with the pending status is
cleared.

WXX If the addressed channel is in the working state, the condition code is set to 2 and no ISW is
written. A condition code of 2 from the selector channel implies that the channel is
operating in burst mode. A condition code of 2 from the multiplexer channel is not possible.

NXX If the addressed channel is not present or not operational, the condition code is set to 3 and

no ISW is written.

7935 Rev. 1

UP.NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

10-13

PAGE

Table 10—6 summarizes the resulting condition codes and ISW contents for the TCH instruction. The
codes for the channel states are given in Table 10—1.

Table 10—6., TCH Instruction Condition Codes and Initial Status Words

Channel Channel Condition ISW Contents Suboh I
State Code Device Address Device Status channe
Status
Multiplexer AXX 0 No ISW written
ZZ?ector IXX 1 Address of device Any pending status Any pending status
associated with pending
status
NXX 3 No ISW written
Selector WXX 2 No ISW written

= Possible program exceptions:

privileged operation exception

L] Relocation and indirection flags: none

Example:

LABEL A QPERATION A GPERAND A
10 16
caco b) [TCH L. (9): i j R
1. Oneis added to the contents of register 9 to form the binary value of the channel and device address.

10.7. TIO (TEST-1/0) — PRIVILEGED INSTRUCTION — 90/60,70

Mnem?mc Source Code Hexadec.imal Format Obleﬂ.
Operation Operand Format Operation Tvpe Instruction
Code P Code yp Length
TIO d(b) 9D SI Four Bytes
Function:

The test-1/0 instruction is used to determine the current state of the addressed channel, subchannel, and
device. The appropriate condition code is set in the current PSW. Any status pending in the subchannel or
device is written into the ISW and the pending interrupt condition is cleared.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION | PAGE

10-14

Obiject Instruction Format:

OPERATION IMMEDIATE OPERAND 1
0 CODE 718 OPERAND 15] 16 19120 31
9D unused b d

Operational Considerations:

L This is a privileged instruction which is executed and controlled by the supervisor.
= The contents of the 32-bit register specified by the b field are added to the contents of the d field to
form a field with the following format.
CHANNEL
{ NUMBER
l DEVICE
IGNORED ADDRESS
0 20{21 23(24 31
(]

The contents of the 32-bit register specified by bits 21 through 23, and the device and subchannel
implied by the device address specified by bits 24 through 31, are addressed and the condition code is

set. The operation proceeds as follows: o~
State Procedure
AAA If the addressed channel, subchannel, and device are available, the condition code is set to O

AAl, AAW

AlX
(Multi-
plexer)

and no ISW is written.

If the addressed channel and subchannel are available and the control unit contains pending
status for the addressed device, the device status is cleared in the control unit and written
into the ISW. The condition code is set to 1. If the control unit is working.or contains
pending status for a device other than the one addressed, the device status written in the ISW
contains the busy and status modifier bits, and any pending status is not cleared in the
control unit. If the control unit is available but the addressed device is working, the device
status contains the busy bit only.

If the addressed channel is available {or interrupt pending for other than the addressed
device) but the addressed subchannel is in the interrupt pending state for the addressed
device, the device is addressed and any device status returned is written along with any
pending subchannel status into the ISW. The condition code is set to 1. Depending on the
setting of the mode in the appropriate hard channel control word (HCCW) and the device
status returned, the subchannel is left in the interrupt pending state or cleared to the
available state. 1f the mode is reset, then any device status returned and the pending
subchannel status are written in the ISW. The mode is then set to idle and the subchannel is
available. If the mode is terminate, the device status must be examined. If the device status
contains at least the busy bit, the device status and any pending subchannel status are
written into the ISW. However, the mode is left as terminate and the subchannel remains in
the interrupt pending state. If the device status contains at least the channel end bit, the
device status and any subchanne! status are written into the ISW. The mode is then set to
idle and the subchannel is available.

P

7935 Rev. 1
UP.NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

10-156

PAGE

State

HX
{Selector)

IXX
(Multi-
plexer)

WXX
(Selector)

XWX
(Multi-
plexer)

NXX,
XNX,
XXN

Procedure

If the addressed subchannel contains pending subchannel status for a device other than the
addressed device, the addressed device is not interrogated, the condition code is set to 2 and
the subchannel status is left pending.

If the addressed channel (or subchannel) contains pending device or subchannel status for the
addressed device, the device is addressed and any status returned is merged with the pending
status in the ISW; the condition code is set to 1. If the addressed channel contains pending
status for a device other than the addressed device, the condition code is set to 2 and the
status is left pending. (If the addressed device became nonoperational between the time that
device status was accepted or subchannel status developed and the time that the device is
addressed, the pending status would be written into the ISW and the condition would be
cleared in the channel. The fact that the device was nonoperational would be indicated the
next time the device is interrogated.)

If the addressed channel is in the interrupt pending state with pending device status for the
addressed device, the device is interrogated and any device status is merged with the pending
device status. The merged device status and any associated subchannel status is written into
the ISW and the condition code is set to 1. If the addressed channel is in the interrupt
pending state for other than the addressed device, the state of the subchannel determines
further operation. That is, if the subchannel is in the interrupt pending state, the operation
continues as for the AlX state; if in the working state, as for the XWX state.

If the addressed channe! or subchannel is in the working state, the condition code is set to 2
and the operation with the device continues.

If the addressed subchannel is in the working state, the condition code is set to 2 and the

operation with the device continues.

If the addressed channel, subchannel, or device is not present or not operational, the
condition code is set to 3.

The resulting condition codes and ISW contents are summarized in Table 10—7. The codes for the
channel states are given in Table 10-1.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

10-16

PAGE REVISION PAGE

Table 10—7. T10O Instruction Condition Codes and Initial Status Words

Channel | Condition ISW Contents
Channel s Cod Subchannel
. State e Device Address Device Status
Status
Multiplexer AAA 0 No ISW written
and) " Q)
Selector AAI 1 Addressed device Pending status Any present
Busy and status modifier @
AAW 1 Addressed device Busy and status modifier @ Any present
Busy @
NXX
XNN 3 No ISW written
XXN
Multipiexer AlX 1 Addressed device Any returned by device @ IPending status
2 No ISW written @
IXX 1 Addressed device Merge of returned and Any present
pending
Same as AXX, where X =A,l,or W @
XWX 2 No ISW written
Selector ix 1 Addressed device Merge of returned and Any pending
pending
2 - No ISW written &)
WXX 2 No ISW written

®@ @ ® ® ® 6

Pending status for addressed device.

Pending status for other than addressed device.

Control unit working.

Control unit available; device working.

Interrupt pending for addressed device.

Interrupt pending for other than addressed device.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

11-1

PAGE REVISION PAGE

11.1. GENERAL

11. Data and Storage Definition

Two statements are available to the SPERRY UNIVAC Operating System/4 (0S/4) for specifying either data to be
used as stored constants {DC) or storage areas to be reserved (DS). The formats for these statements are similar to
machine instruction format. A symbol may appear in the label field, is assigned the address of the leftmost character
of the constant or storage area specified in the operand field, and has a length attribute equal to that of the constant
or storage area. The maximum length attribute of a symbol is 266. The programmer must branch around areas
reserved in line with the program.

The operation code is DC (define constant) or DS {(define storage). The operand field is divided into subfields which
specify the information needed to create the data or storage area. The general format of the operand field is
described in 11.2 and 11.3. Table 11—1 lists the characteristics of constant and storage types. Detailed descriptions
are provided in 11.7 and 11.8.

Table 11—1. Characteristics of Constant and Storage Types

Type St Cod T i Length in Bytes
. orage Code runcation
Code Constant or Storage Type Alignment Specification Storage Format or Padding . Minimum Maximum
Implied . .
Explicit Explicit
C Character None Characters Character Right Variable 1 256 {DC)
65,535 (DS)
X Hexadecimal None Hexadecimal Hexadecimal Left Variable 1 256 (DC)
digits 65,535 {DS)
B Binary None Binary Binary Left Variable 1 256
digits
P Packed decimal None Decimal Packed Left Variable 1 16
digits decimal
z Zoned decimal None Decimal Character Left Variable 1 16
digits
H Half-word fixed point Haif word Decimal Fixed-point Left 2 1 8
digits binary
F Full-word fixed point Full word Decimal Fixed-point Left 4 1 8
digits binary
Y Half-word address Half word Expression Binary Left 2 1 2
A Full-word address Fuif word Expression Binary Left 4 1 4
S Base and displacement Half word One or two Base and None 2 2 2
expressions displacement
A\ External address Full word Relocatable Binary Left 4 4 4

11-2
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

11.2. DC (DEFINE CONSTANT) STATEMENT

The DC statement specifies data to the assembler that is to be used as stored constants. These constants are
generated and produced in object output format ready to be loaded along with the program instructions. The format

of the DC statement is:

LABEL A OPERATION A OPERAND
[symbol] DC [d]t[Ln] ;(z) }
where:
d is the duplication factor.
t is the type of constant.

Ln s the explicit length (modifier).
C is the constant specification.

Multiple operands in a DC statement are not permitted.

The various constants and the specifications necessary for each type of DC statement are described in 11.4.

Y

11.3. DS (DEFINE STORAGE) STATEMENT

The DS statement is used to specify a storage area to be reserved by the assembler.

LABEL AOPERATION A OPERAND

[symbol] DS [dlt[Ln] D (2) }]

where:
d is the duplication factor.
t is the type of constant.
Ln isthe explicit length (modifier).
c is the constant specification.

The various constants and specifications necessary for each type of DS statement are described in 11.4. The
following modifications should be noted:

L] Data can be specified in the constant subfield; however, the constant is not assembled. 1t allows the assembler
to determine the size of the storage area needed when implied length is variable. The type field must be

specified.

n All types of constants are legal.

7935 Rev. 1

UP-NUMBER

11-3

PAGE REVISION I PAGE

SPERRY UNIVAC Operating System/4

C and X type constants have a maximum length of €5,5635 bytes instead of 256 bytes as in DC statements and
literals. However, the maximum length attribute associated with the constant subfield is 256.

Storage areas reserved by a DS statement are not set to 0.

Storage locations reserved by boundary alignment for DS statements are not set to 0.

The grouping together of all DS statements produces a more efficient object code.

11.4. DC AND DS STATEMENT OPERAND SUBFIELDS

The operand field (dtic) is divided into four subfields that describe and identify the data or storage space to be
generated. The four subfields are:

Duplication (d)
Type (t)
Length modifier (1)

Constant {c)

The subfields must be specified in the stated order with the duplication factor first and the constant last. The type
(t) subfield is always present, the constant (c) subfield is required for DC statements only.

The following is a valid example for a typical DC statement with the subfields identified.

Exampile:
LABEL A OPERATION A OPERAND A
10 16
¢ ; ?
—EEII I I)C=! i 3‘;L£L‘M)2fL6£%A&5C,1 Lot ; dododo ol
S e S A
1 jlﬁ P L S S 0! I S b b d bbb o] I
d;uPL l{ca+'dp s‘p?ctdir‘ H 1 o R L . ! e ! ootk
I i P i I i i1 ; j ' | [N : i § H
+yPle; bt ko ol bbbt . SIS N S R S
O ¥ : Lot el bl i : Lo b i o
t .
‘?"3 h{b? 9r i ; [T ST T B ST YOI TN NN VAR O N T N VU T SN R N OO T
b4 i Ei i f ‘ RN NN L T T L EJ fedond i
canstant, repréqentation ,
RN A B | I N R Lod i S o ; i 1 :

Bianks or punctuation marks cannot separate the subfields. Blanks can appear only in the constant subfield as part
of a character constant.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 114

UP-NUMBER | PAGE REVISION l PAGE

11.4.1. Duplication Subfield

The duplication subfield designates the number of identical constants to be generated. Either an unsigned decimal
self-defining value or a positive absolute expression enclosed in parentheses (with all terms predefined) may be used
to specify the duplication factor. If the subfield is omitted, the duplication factor is assumed to be 1. A duplication
factor of 0 does not generate a constant or storage area, but advances the location counter to proper boundary
alignment if no length is specified and assigns the location counter value to the symbol in the label field (if a label is
present). In generating literals, a duplication factor of O is illegal.

11.4.2. Type Subfield

The type subfield designates the type of constant to be generated (11.7). One of 11 characters is used to specify this
type. Paraforms and set symbols cannot be used to specify replacement of the type character. Valid characters and
what they represent are shown in Table 11—1. The type subfield is to be present as it determines the alignment,
truncation, storage form, and implicit length of the constant.

11.4.3. Length Modifier Subfield

The length modifier subfield designates the number of bytes to be used in generating the constant. The length factor
follows the character L and can be either an unsigned decimal value or a positive absolute expression enclosed in
parentheses (with all terms predefined). This factor can be stated for all types of constants and is used to establish
the number of bytes the constant or storage definition occupies. Constants that do not exactly fit the area specified
are padded or truncated to the length specified. The character L may not be generated by the replacement of
paraforms or set symbols.

If the length factor is specified, boundary alignment is not provided; however, when the length is omitted, the
implied length is used and boundary alignment is provided for most types of constants {Table 11—1).

11.4.4. Constant Subfield

The constant subfield specifies the value (subject to modification by the length subfield) of the constant to be
generated. The values for the various types of constants are represented in different ways. A data value
representation is specified by enclosing it in apostrophes and an address value representation is specified by enclosing
it in parentheses.

Data Constant Address Constant
‘constant’ {constant)

11.5. LITERALS

Literals can be used in machine instructions wherever a storage address is permitted, because they are replaced with
the storage address of the constant generated from the literal specifications.

A literal is identified by an equal sign (=) preceding a constant specification in the format described in 11.4.

The handling of literals by the assembler is described in 2.3.2.

11-5
PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

Example:

LABEL A CPERATION A GPERAND A
1 10 1%

N T S i i L bvdnit 'Z}i-':XALa' LI'DD‘.JJ¢ b H U SRS SN S SO ;

The following restrictions must be observed in the use of literals:
] Only one literal can appear in an instruction.

= Assembler directives cannot contain literals.

= Literals cannot have a duplication factor of 0.

L] S type literals are not permitted.

11.6. ALIGNMENT

All machine instructions must be aligned on half-word boundaries. The first byte of the instruction must have an
address that is divisible by 2. Constanis, however, can be aligned on a half word, full word, or no boundary at all.
Table 11—1 indicates the kind of alignment, when necessary, for data or storage definition statements if no length
factor is stated. When a length factor is specified by the programmer, no alignment is provided. A duplication factor
of 0 in DC and DS statements does not generate a constant or storage area, but for some types of constants it forces
a boundary alignment if no length factor is coded. This method provides a convenient means of obtaining a
boundary alignment before generating a constant that is not automatically aligned by the assembler. Any bytes
skipped to align constants are zero filled. However, bytes skipped to align storage areas are not zero filled.

11.7. DATA CONSTANT TYPES

Data constants are absolute values generated by the assembler which require no modification by the relative loader.
The seven types of data constants are discussed in the following paragraphs.

11.7.1. Character Constants

A character constant is specified by the character C in the type subfield and up to 255 characters enclosed by
apostrophes in the constant subfield. Any of the 256 valid card punch combinations can be used. Each character is
stored in one byte using the 8-bit character code. If no length factor is specified, the length in bytes of the constant
equals the number of characters specified. If the length factor is present, the character specification is truncated or
filled with blanks (if necessary) to the right of the last character and to the length specified. Boundary alignment is
not required.

Two consecutive apostrophes or two consecutive ampersands are necessary to generate the character code for one
apostrophe or one ampersand within the constant. A single apostrophe in the character representation terminates the
constant. Multiple constants are not permitted for this constant type.

11-6

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Examples:

LABEL A CrEgaTION A CPERAND A
1 10 14

b DG CL2TAY
et L DI C,‘ A !

cesa e bpe . LICHA L G adeiet i b o
: b DC, - CL.t O‘ EMPL. DIV S DT ST ST DR O DO ‘
Ll ibe . CL12' . L | e »
: i Co .| BCLA Y2345 " ' IR SR AT S N S

NS o FE W -

e L 1 DG 3CL¢@‘L23H5 '» bt PN R R N O W T TS N

1. A 2-byte constant containing the following:
AA

2. A 1-byte constant containing the following:
A

3. A 2-byte consta;nt containing the following:
AA

4. A 10-byte constant containing the following:
AEMPLADIVA

5. A 12-byte constant containing blanks.

6. A 12-byte constant containing the following:
123412341234

7. An 18-byte constant containing the following:

12345A12345A12345

11.7.2. Hexadecimal Constants

A hexadecimal constant is specified by the character X in the type subfield and up to 255 hexadecimal digits
enclosed by apostrophes in the constant subfield. Two hexadecimal digits are assembled into one byte. The
maximum length that can be specified in the length modifier for a hexadecimal constant is 256 bytes (512
hexadecimal digits). If an odd number of digits is specified, the first, or leftmost, byte of the constant contains a
hexadecimal O in the four leftmost bits and the first digit in the four rightmost bits. If no length factor is specified,
the length in bytes of the constant is half the sum of the number of digits or 0’s specified. If the length factor is
present, the hexadecimal specification is truncated or filled with hexadecimal 0’s (on the leftmost end) if necessary,
to the length specified.

11-7

PAGE REVISION I PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Examples:
LABEL A OPERATION A GPERARD A
t 10 14
S SO S | : . X.L:zs g | ' U0 WO TSSO U SO W O T W B SR DU I TN SR
/4 TR R DC L 12%‘45 ol TSN Y00 VU U0 YOS S SO DOCUNNS SO SOOE SO O SO S DI R
3, L bog DC. ;. CARCL 23 I ENUS N ST R T RN DT Y
7S PRSI NP 2 LA FRE i b b L
Sl DCy SEERQRO Y R R bbb b
2% T DIC L A o e b e
7 S T i .t CL §oond dez '1223};-"?5 ls ek ki d I S T | ! ! Lok ‘,, B SN O S | §f i

1. A 3-byte constant containing the fotlowing:
00000000 00000000 00000001

2. A 3-byte constant containing the follqwing:
00000001 00100011 01000101

3. A 4-byte constant containing the following:
00001010 10111100 00010010 00111101

4. A 4-byte constant containing the following:
00000000 00000000 00001111 11111111

5. A 3-byte constant containing the following:
11111111 11110000 00000000

6. A 4-byte constant containing the following:
00000000 00000000 00000000 00001010

7. A 2-byte constant containing the following:

00100011 01000101

'11.7.3. Binary Constants

A binary constant is specified by the character B in the type subfield and up to 255 binary digits (bits) enclosed by
apostrophes in the constant subfield. Eight bits are assembled into one byte. The maximum length that can be
specified in the length modifier for a binary constant is 256 bytes. Because only 255 bits can be specified, only the
least significant 32 bytes of the constant may have their value specified. The high order bytes are zero filled. Binary
0’'s are added to the leftmost end as necessary to ensure byte boundary alignment. If no length factor is specified,
the length in bytes of the constant is one-eighth the number of the digits specified (the binary O’s added are counted
as digits). If the length factor is present, the binary specification is truncated or filled with binary 0's {on the
leftmost end) as necessary, to the length specified.

11-8

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP.NUMBER

Examples:
LABEL A CPERATION A OGP ERAND A
10 16 e o
VA SRR NP I "< I 1- S o ¥ TR il
Al [DPC L2 ' 111001 OI (Ol OOOO(lOI Q‘ .
3' I A Co s .SL-;Z_,LOl 10‘ i1 ! bbb o ST N

1. A 1-byte constant containing the following:
00000101

2. A 2-byte constant (with most significant bits truncated) containing the following:
01011010 00011010

3. A 2-byte constant containing the following:

00000000 10110111

11.7.4. Packed Decimal Constants

A packed decimal constant is specified by the character P in the type subfield and up to 31 decimal digits enclosed
by apostrophes in the constant subfield. The digits are packed two digits to a byte; therefore, each decimal digit
requires four bits. A leading sign (+ or —) can be coded within the apostrophes. A plus sign is represented by a
hexadecimal C and a minus sign is represented by a hexadecimal D. If a sign is not specified, a plus sign is assumed.
Multiple constants are permitted.

If no length factor is specified, the length of the constant is the required number of bytes needed to contain the
constant, a sign, and the possible addition of O bits. When an even number of packed decimal digits is specified, the
leftmost digit is unpaired because the rightmost digit is paired with the sign. In this case, the most significant four
bits of the leftmost byte contain a hexadecimal 0 and the most significant four bits of the least significant
(rightmost) byte contain the first (rightmost) digit. The least significant four bits of the rightmost byte always
contain the sign of the constant.

If a length factor is present, the decimal specification is truncated or filled with hexadecimal O’s if necessary (on the
leftmost end), to the length specified.

Examples:
LABEL A OPERATIONA OPERAND A
16 18 & e o
I' i L Cst . . p,+%é}8 ! Bttt LN SN WO SO S SOV S S |
2.,.....;- S ST U0 WS S C., i PLZ ;24 :Zb 'i T SN0 N A S SN SUNN SNE SO O WS SOOY NN T ST W SO
3! . L PG PL-S ! "':325 o SRR N WO N SRR YOS DU VNS SOOE N IO SO SU UG S S
'S i Cooid 3PL2‘ 5581' bt R TET ORI S0 U0 NSNS

7935 Rev. 1 SPERRY UNIVAC Operating System/4 1-9

UP-NUMBER l PAGE REVISION IPAGE

1. A 2-byte constant containing the following:
468C

2. A 2-byte constant (with most significant digit truncated) containing the following:
476C

3. A 3-byte constant containing the following:
00325D

4. A 6-byte constant containing the following:

381C381C381C

11.7.5. Zoned Decimal Constants

A zoned (unpacked) decimal constant is specified by the character Z in the type subfield and by up to 16 decimal
digits enclosed by apostrophes in the constant subfield. A plus or rminus sign can be coded within the apostrophes; if
none is present, a positive sign is assumed. The digits are assembled one to a byte with a hexadecimal F (EBCDIC) or
hexadecimal 3 (ASCII) inserted into the most significant four bits of all but the least significant byte. The most
significant four bits of the least significant byte contain the sign. If no length factor is specified, the length in bytes
of the constant is the number of decimal digits in the constant subfield. if the length factor is present, the decimal
specification is truncated or filled with decimal O’s, if necessary (on the leftmost end), to the length specified. The
rightmost byte always contains the sign and the rightmost digit specified. A plus sign is represented by a hexadecimal
C, and a minus sign is represented by a hexadecimal D. A decimal point may be included in the constant subfield,
but is ignored by the assembler.

Examples:
LABEL A CRERATION A OPERAND A
16 16
] A .
]' RN DCs ; ZL.5157682 FEUUE IR U W YO O SO S WO W S S S ST U WO Y S U S S O
' ' .
2. b b b DG 22L3*‘®25‘f’ FSRE VS SO SO TS VTN AU WO O ST TN SE S OO SO
1. A b-byte constant containing the following:
BYTE 1 2 3 4 5
Hexadecimal F 0 F 7 F 6 F 8 o} 2
N I N
EBCDIC
Character Y 7 6 8 B

2. A 6-byte constant containing the following:

BYTE 1 2 3 4 5 6

Hexadecimal F I 2l F]l s | D I 4] F I 2l]l s] oD r4 |
Nttt o e\t N~

EBCDIC

Character 2 5 M 2 5 M

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION l PAGE

11.7.6. Half-Word Constants

A half-word constant is specified by the character H in the type subfield and up to 10 significant decimal digits
enclosed by apostrophes in the constant subfield. A plus or minus sign can be included within the apostrophes. If no
length factor is specified, the constant has the implied length of two bytes and must not contain a value greater than
+32767 or —32768. If the Iength factor is present, the decimal value specification is truncated or filled with binary
0’s if necessary (on the leftmost end}, to the length specified. The value specified in the constant subfield may be an
integer, a fraction, or a mixed number. However, the fractional portion of the mixed number is lost and the decimal
value of the entire number is converted into a binary format for storage.

Examples:
LABEL N arerarion A DPERAND A
1 jﬁwmw 14
|
l' i hed]X; ! éHi‘ 1_2.7§IA LU S E TR TON SO N W NE OO N i) T !imi
2' i : | H Dpl fok EHLL3f'ﬁ2§7A, BRSO SO I T v‘i.;-.i N S !’4 i j.§ e b ..L._E, R

1. A 2-byte constant containing the following:
00000000 00011011
2. A 3-byte constant containing the following:

00000000 00000000 00011011

11.7.7. Fuli-Word Constants

A full-word constant is specified by the character F in the type subfield and up to 10 significant decimal digits
enclosed by apostrophes in the constant subfield. A plus or minus sign can be included within the apostrophes. If a
length factor is not specified, the constant has the implied length of four bytes. If the length factor is present, the
decimal value specification is truncated or filled with binary 0's, if necessary (on the leftmost end), to the length
specified. The value specified in the constant subfield may be an integer, a fraction, or a mixed number. However,
the fractional portion of a mixed number is lost and the decimal value is converted into a binary format for storage.

Example:

LABEL A oPeraTION A OPERAND A
} 10 18

.
£ N —

TR TR N -D*C i ‘,F*Z7il S I N (S LU WOR S U S O

A 4-byte constant containing the following:

00000000 00000000 00000000 00011011

11-10

7935 Rev. 1 SPERRY UNIVAC Operating System/4 [[11-1
. PAGE REVISION P

UP-NUMBER AGE

11.8. ADDRESS CONSTANT TYPES

Address constants are relocatable values generated by the assembler that are usually altered by the relative loader to
reflect the storage address that the program occupies when it is executed. Address constants are often used to load
base registers or to provide a means of referencing external addresses. If there is a location counter reference in the
constant subfield of an address constant and the duplication factor is greater than 1, then the value of the location
counter is adjusted for each duplication of the constant.

Each type of constant is described and examples of its use are shown in typical DC statements.

11.8.1. Half-Word Address Constants

A half-word address constant is specified by the character Y in the type subfield, and an expression enclosed by
parentheses in the constant subfield. The expression may be absolute or relocatable. A length factor of 1 can be
specified only for absolute expressions. Negative relocatable values are permitted. If no length factor is specified, the
constant has an implied length of two bytes. If the length factor is present, the binary value is truncated or filled
with binary 0’s (on the leftmost end) to the length specified.

NOTE:

Y-type constants allow addressing of only the first 32K bytes of main storage. Due to the possibility of
multiprogramming in an environment of greater than 32K, the use of A-type constants instead of Y-type constants is

recommended.
Examples:
LABEL A OPERATION A CPERAND A
1 10 16

el DG [IYOBOB) b
Al Cois Q%ng(b)k{l [SRT T SO D S T

1. Assuming that BOB equals 1446, the hexadecimal value is stored as a 2-byte constant containing the
following:

05A6
2. A 2-byte constant is generated containing the following:

0606

11.8.2. Full-Word Address Constants

A full.word address constant is specified by the character A in the type subfield and an expression enclosed by
parentheses in the constant subfield. The expression may be absolute, relocatable, or compiexly relocatable. A
length factor of less than three bytes can be specified only for absolute expressions. Negative relocatable values are
permitted. If no length factor is specified, the constant has an implied length of four bytes and is aligned to a
full-word boundary. If the length factor is present, the binary value is truncated or filled with binary 0's (on the
leftmost end), to the length specified, The maximum length that may be specified is four bytes. The maximum value
that may be specified for a full-word constant is 224—1,

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

l PAGE REVISION l

1112
PAGE

Examples:
LABEL A OPERATION A OPERAND A
16 1% o i
L AR V12<LMLW;“ ,£;<;55‘\h4) i !
2o 1 De | RALLOX! +|b +|)

1. Assuming that SAM equals 3863, the hexadecimal value is stored as a 4-byte constant containing

the following:

00000F17

2. A 2-byte constant is generated containing the following:

1717

11.8.3. Base and Displacement Constants

A base and displacement constant is specified by the character S in the type subfield and one or two expressions
enclosed by parentheses for each constant in the constant subfield. Only a length factor of 2 can be specified. If no
length factor is specified, the constant has an implied length of two bytes and is aligned on a half-word boundary.
Negative relocatable values are not permitted. This type of constant is used to store addresses in the base and
displacement form; the leftmost four bits represent the base, and the remaining 12 bits represent the displacement.
If a constant is defined by a single expression, it may be either an absolute or a relocatable expression and the
assembler converts it to a base plus displacement value. If two expressions are used to define a constant, the
expression representing the base is enclosed in parentheses with the other expression {(representing the displacement)
preceding it and another set of parentheses enclosing the base and displacement specifications. In this case, both

expressions must be absolute. The S-type constants may not be specified as literals.

Examples:

10

LABEL A OPERATION A

OPERAKD

1o

|.IDON . 1,

ililill E.

START]

512 .

Lot bt

&
L

..
AR IR ol i i i

UQINQ“

DON+488, 3.

| B Lot

:3.Cxalfihl [Lo 1

§
Y

T
i ESE S S |

H
S SUSU SN SN SRS W

(.

sajawwj

<(125(3))

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

l PAGE REVISION I PAGE

Assume that constant with the label JOHN (line 3) has been assigned an address value of 1125 by the location
counter, and that the USING directive (line 2) gives the effective value 1000, which is assumed to be in register
3 at execution time (12.4.2). The operands in the two statements (lines 4 and 5) produce the same stored base
and displacement value. The hexadecimal representation of this stored value is 307D:

Base .
R Displacement
Register {12 bits)
(4 bits)

11.8.4. External Address Constants

An external address constant is specified by the character V in the type subfield and an external symbol enclosed by
parentheses in the constant subfield. The constant cannot be used to reference external data. The symbol need not
be identified by an EXTRN statement. A length factor of 4 is permitted. If no length factor is specified, the constant
has an implied length of four bytes and is aligned to a full-word boundary. The specification of a symbol in the
operand field of a V-type constant does not constitute a definition of that symbol. A V-type constant within a
CSECT of reference is converted to an A-type constant.

Until the linkage editor replaces the hexadecimal representation in each byte with the correct value of the external
labels, the value of each assembled constant is 0.

Example:

LABEL A OPERATION A CPERAND A
1 10 16

L G LINGBILL) b]

This DC statement generates the following constant:

00000000

11.9. CCW (DEFINE-CHANNEL-COMMAND-WORD) DIRECTIVE
The CCW directive defines and generates an 8-byte channel command word aligned on a double-word boundary. The

channel command word is used to direct the operation of the multiplexer and selector channels. The format of the
CCW directive is:

LABEL A OPERATION A OPERAND

[symbol] CCwW code,address, flags, count

11-13

7935 Rev. 1
UP-NUMBER

11-14
PAGE REVISION | PAGE

SPERRY UNIVAC Operating System/4

where:
code

address

flags

count

is an absolute expression specifying the command code.

is an expression specifying the address of the data. This value is assembled as a 3-byte
constant.

is an absolute expression specifying the flag bits.

is an absolute expression specifying the number of bytes to be transferred.

If a symbol appears in the label field, it is defined as equal to the address of the leftmost byte of the CCW and has a

length attribute of 8.

All four operands must be specified and separated by commas.

Example:

A oPERATION A OPERAND A

16 16

cCw |

where:

TED

X 40’

50

!, ’TED ,X| 410@ I,‘:‘,) BO Lo

o

is the command code for a write operation.
is the label of the data address.
indicates a command chaining operation.

is the number of bytes to be transferred.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP.NUMBER l PAGE REVISION I PAGE

121

12. Assembler Directives

12.1. GENERAL

The SPERRY UNIVAC Operating System/4 {0S/4) Assembler directives are statements which enable the user to
control assembler operation. These directives control the assembler at assembly time just as operation codes control
the operation of the central processor at execution time. Assembler directives are represented by mnemonic codes
entered in the operation field of a line of code. The directives are used to define symbols, adjust location counter
values, control assembly /O formats, section programs, provide boundary alignment, and assign base registers.

The following paragraphs describe the directives for the OS/4 assembler. The directives are arranged alphabetically
within functional groups.

12.2. EQU (SYMBOL-DEFINITION) DIRECTIVE

The EQU directive is provided for symbol definition. It is used primarily for defining the length and value of a
symbol. The format of the EQU directive is:

LABEL A OPERATIONA OPERAND
symbol EQU el,a)
where:
e represents an absolute or relocatable expression.
a represents an absolute expression.

All terms must be predefined.

The symbol in the label field is defined as having the value of the first expression in the operand field. This value
must be of the range —223 to 224—1. If overflow occurs during evaluation of this expression, the directive is flagged.
The symbol has a length attribute equal to the value of the second expression in the operand. The maximum value
allowed for this expression is 256. This expression may be omitted, in which case the symbol is defined as having the
length attribute of the first term in the first expression. If that termis * or a self-defining term, the length attribute
is 1.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-2

UP-NUMBER I PAGE REVISION | PAGE

Examples:
LABEL A OPERATION A OPERAND A
10 14
ZHIDE .. | BQU . | | 00+TAG,I180 .
SdEEK | . | EQU . | TAG+I270-%
AED . | EQU | TAG [RT0-%,200 .

Assuming that the value of the location counter is 2000 when these lines of code are encountered, the symbols
are assigned the following values:

1. TAG has a relocatable value of 2000 and a length attribute of 10. The location counter is advanced to
2250.

2. HIDE has a relocatable value of 2100 (100 + 2000) and a length attribute of 150. The location counter
remains at 2250,

3. SEEK has an absolute value of 1020 (2000 + 1270 — 2250) and a length attribute of 10 (same as length
of first term).

4. GO has an absolute value of 1020 (2000 + 1270 — 2250) and a length attribute of 200. (The 200
overrides the length of TAG.}
12.3. ASSEMBLY CONTROL DIRECTIVES
Assembler directives are available to control the program name and initial location, to section the program, to alter

the location counter in a specified manner, to indicate the end of a program statement, and to designate the
instruction with which execution of the object program is to begin.

12.3.1. ASCII Directive

The ASCII directive is used to define ASCII constant generation and literals immediately following the directive, up
to the recognition of the next mode directive. The format of the ASCII directive is:

LABEL | A OPERATION A ‘ OPERAND

unused ' ASCIH l unused

If no mode directive is used, EBCDIC constants are generated. For further information, see 3.6.1 in DOS interchange
standards, UP-7902 (current version). Literal constants are generated according to the mode under which they are
referenced rather than the mode for the region in which they are generated.

Example:

LABEL AOPERATIONA OPERAND A
10
ST B AtSLCLI 11 v g g b e vy b v s b v b o

12-3

PAGE REVISION I PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

12.3.2. EBCDIC Directive

N

The EBCDIC directive is used to define EBCDIC constant generation immediately following the directive, up to the
recognition of the next mode directive. The format of the EBCDIC directive is:

LABEL AOPERATION A OPERAND

unused EBCDIC unused
If no mode directive is specified, EBCDIC constants are generated.
Example:

LABEL AOPERATIONA OPERAND A

10 16
SRR AR ElBlchIIC AT ETEE T B SR R BT R BN RN S S N W N N A
g g | v b v b v b v oy s by o e by Ly
12.3.3. CNOP (Conditional-No-Operation) Directive
The CNOP directive is used to adjust the location counter to a half-word, full-word, or double-word storage
boundary. The format of the CNOP directive is:
N’)
LABEL A OPERATION A OPERAND
unused CNOP a,a
where:
a is an absolute expression.

The first expression in the operand field indicates a byte to which the location counter must be set. Legal values for
the first expression are 0 and 2 for alignment relative to a full-word boundary and 0, 2, 4, and 6 for alignment
relative to a double-word boundary. Zero indicates that the full-word or double-word boundary is desired; 2, the
second byte (first half word) past the boundary; 4, the fourth byte (second half word) past a double-word boundary;
and 6, the sixth byte (third half word) past a double-word boundary.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION |

12—-4
PAGE

Permissible values for the second expression are 4 and 8, indicating that the adjustment is relative to a full-word or
double-word boundary, respectively.

If the location counter is already set to the indicated byte, CNOP has no effect. When alignment is needed, one, two,
or three no-operation instructions are generated to increment the location counter to the proper half-word boundary
and to ensure correct instruction processing. All terms must be predefined.

Examples:
LABEL A OPERATION A OPERAND A
14 14
/ RN A CH#&fzw ‘DAN8>5U SCURUTIUNE NN DU WO U ST S NN WO S T FAVUNN SOOI SUROY NN SOV B
Q“ v o CWiOJ? ..il}}iwéﬂ.gMJ.&r.ﬁ;v} FATI RO O U WP R SR S RO RS S I
1. The current location counter is advanced, if necessary, to the first byte of the next double-word
boundary. A legal double-word boundary is any address value divisible by 8.
2. The current location counter is advanced, if necessary, to the second byte (first half word) past the next

full-word boundary. A legal full-word boundary is any address value divisible by 4.

12.3.4. END (Program-End) Directive

The END directive indicates to the assembler the end of a source module or a procedure definition being assembled.
The format of the END directive for program end is as follows; the format for Proc-Definition-End directive is
described in 13.1.3.

LABEL

AOPERATION A

OPERAND

[symbol]

where:

END

e is a relocatable expression.

[e]

If a symbol appears in the label field of the END directive, it is assigned the current value of the location counter.
This is normally one greater than the highest address assigned to the program being assembled. The END directive
must always be the last statement in the source module or procedure definition. If the operand field contains an
expression, it designates the point in the program or in a separately assembled program where control may be
transferred after the program is loaded. If the END directive is missing, an END directive with a blank operand field
is supplied by the assembler.

Examples:
LABEL A QPERATION A OPERAND A
1 10 16 T e ——
l-}:éR)Q JU B Ey«ll : IBEEEib‘ God S0 U T W YO T N S TN YU O WU OO 00 WU SO SRS SO N
‘a- SR T T EﬁbJI) é;t}4ﬂaiiék.- PR N S VO YOS VO S SN YU WO N SO0 T U ST SN S SO NSNS SO
3L ND RS DU N P VORI SE YOS WO WU SO UG N SOOI B L T O

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-5
UP-NUMBER PAGE REVISION PAGE
1. When the statement FOX is encountered, the zssembly process is brought to an orderly halt. A transfer

record is produced to identify the transfer address as the address of the instruction labeled BEGN. The
label FOX receives an address value equal to the value of the location counter when the END statement
is assembled.

2. If GO has a value of 1000, a transfer record with a transfer address of 1324 is generated.

3. Atransfer record is generated with a transfer address equal to the first address loaded.

12.3.5. LTORG (Generate-Literals) Directive

The LTORG directive is used to generate all literals previously defined, but not generated, in the source module. The
format of the LTORG directive is:

LABEL A OPERATION A OPERAND

[symbol] LTORG unused

The literals are generated following the occurrence of the LTORG directive. A symbol coded in the label field
represents the first byte of the generated literal pool. LTORG directives may not appear within a dummy control
section or in a blank common storage area. If there are no LTORG statements in a program and literals are specified
or if any literals are specified after the last LTORG directive in a program, these literals are generated at the end of
the first control section. The programmer must then ensure that there is a valid base register available at all times to
address the locations at the end of the first control section.

12.3.6. ORG (Specify-Location-Counter) Directive

The ORG directive is used to set or reset the locatian counter to a specified value. The format of the ORG directive
is:

LABEL A OPERATION A OPERAND

[symbol] ORG [e]

where:
e is a relocatable expression.

The location counter is set to the value of the expression in the operand field. When the expression is not present,
the location counter is set equal to a value one greater than the highest location previously assigned in the current
section. If a symbol appears in the label field, its value is also the value of the expression in the operand field and it
is assigned a length attribute of 1. The expression in the operand field must be a relocatable expression whose
unpaired relocatable term must represent an address in the same control section in which the ORG occurs. The value
must be equal to or greater than the initial setting of the current location counter. If the expression is in error, the
ORG directive is ignored and the line is flagged. The ORG directive makes it possible to set the location counter to a
value which is not a half-word boundary.

12—-6

PAGE REVISION l PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

All terms in the expression must be predefined.

Bytes of storage reserved with a DS statement or an ORG directive are not set to 0 or cleared when the program is
loaded.

Example:

LABEL A opPErRaTION A OPERAND A
i 10 14

AREAiﬁix } §pR(ﬁl *+;A+;6 - RS RSN TNUN AR NUUUL NS YO WUOE SOV N WO U0 SO SHNS SO SO WO S

E
[I

This statement reserves A plus B bytes of storage, where A and B are previously defined symbols with absolute
values. If A =80, B = 160, and the value of the location counter is 1048, then 240 bytes are reserved beginning
at the location 1048. The program may reference this 240-byte area by specifying AREA minus 240 as an
operand.

12.3.7. START (Program-Start) Directive

The START directive defines the program name and tentative starting location. The format of the START directive
is:

LABEL AOPERATION A OPERAND

[symbol] START [a]

where:
a is an absolute expression.
All terms must be self-defining terms.

The expression in the operand field is evaluated and incremented, if necessary, to make it a multiple of 8. The result
becomes the initial setting of the location counter for listing purposes and is the value of the symbol in the label
field. This symbol is available as an entry point without being separately defined as such, and is the name assigned to
the object module. The length attribute of this symbol is 1. If no name is assigned, the object module name is
ASMOBJ00. The operand of the START directive is an absolute value but is treated as relocatable. Thus, the value
of the location counter and the coding following a START directive are relocatable. The actual storage location at
which the program is to be located is determined by the supervisor.

A START directive may be preceded by statements which do not alter or reference the location counter. If no
START directive appears within the program, an invalid one is encountered, or the operand field is left blank, and

the program is assembled relative to 0. If the label field is blank, an unnamed control section is defined.

Example:

LABEL A GPERATIONA OPERAND ‘ A
1 10 16 :

12-7

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION

Either one of these statements results in the program being assigned to locations starting at 1064 and having
the symbol TEST defined with the relocatable value 1064.

12.4. BASE REGISTER ASSIGNMENT DIRECTIVES
The assembler assumes the responsibility of converting storage addresses to base register and displacement values for
insertion into instructions being assembled. To do this the assembler must be informed of the available registers and
the values assumed to be in those registers. The assembly directives USING and DROP are available for this purpose.
12.4.1. DROP (Unassign-Base-Register) Directive
The DROP directive informs the assembler that the specified registers are not available for base register assignment.
The format of the DROP directive is:
LABEL l A OPERATION A | OPERAND
unused l DROP ‘ L% PR
where each operand is an absolute expression which specifies by number (0 through 15) a register which is no longer
available.
Registers previously made available for base register assignment can be dropped and registers can be made available
again (in a USING directive) after they have been dropped. The value which is assumed to be in a base register can be
o changed by coding another USING directive without an intervening drop of that register.
e
Example:
LABEL A oregaTion A OPERAND A
1 16 16

o b DRL& p B U RS SO R O T O A bbb

This statement specifies that register 1 is no longer available to the assembler.

12.4.2. USING (Assign-Base-Register) Directive

The USING directive informs the assembler that a specified register is available for base register assignment in
operand addresses and that it will contain a specific value at execution time. The value must be loaded by the
problem program into the registers specified by the USING directive. The format of the USING directive is:

LABEL A OPERATION A OPERAND

unused USING v.r, [,...,rn]

12-8
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

where:

v is an expression which gives the value that is assumed to be in the specified registers at execution
time. This value may be relocatable or absolute. Literals are not permitted.

] are absolute expressions specifying the numbers (0O through 15) of the registers into which the
value or modified values are placed. These register numbers do not necessarily have to be assigned
in ascending sequence.

r [,...,rn

The first register specified after the expression (v) is assigned the value of v, the next register is assigned the value of
the first register plus 4096, the next register is assigned the value of the second register plus 4096, and so on through
all the registers specified. A USING directive may specify a single register or a group of registers, or the registers may
be specified by individual USING directives.

The only addresses that may be covered by the registers indicated in @ USING statement are those in the same
control, dummy, or common section as the address represented by the first expression of the operand field of the
USING statement.

Register 0 may be specified as a valid base register. However, the assembler assumes that is always contains the value
0. Any program using register 0 as a base register is not relocatable. Register 0 must be operand o and any register
specified in the operand field following register O is assumed to contain increments of 4096 from 0. If cover by
Register 0 is desired for load address instructions and register O is not specified in a USING statement, cover error
messages can be avoided through the use of the RO$ PARAM statement (E.2.7.).

When the expression v is absolute, the indicated registers can be used to process only absolute effective addresses.

When the expression v is relocatable, the indicated registers can be used to process only relocatable effective
addresses. The registers r,,... are used to process only those addresses in the same control section as the address
represented by the expression v.

The value specification in a USING directive sets the lower limit of an address range. The upper limit of the range is
automatically set 4095 bytes above the lower limit. The upper limit of a USING directive may be set less than 4095
bytes by being overlapped by the lower limit of another USING directive.

The range specified by a USING directive is used by the assembler to assign base register and displacement values to
those effective operand addresses that fall within that range.

If an operand address is specified as an effective address instead of a base register and displacement specification, the
assembler searches the USING table for a value yielding a displacement of 4095 or less. If there is more than one
such value, the value that yields the smallest displacement is chosen. If no value yields a valid displacement, the
operand address is set to 0 and the line is flagged with an error indication. If more than one register contains the
value yielding the smallest displacement, the highest numbered register is selected.

Examples:
LABEL A GPERATIONA OPERAND A
] 10 6 o
L. po b 3 USING 4MO‘OO')8 SSEEN S S O T YO SO O 0TSV SO0 NN S SO T G AOE SO SO 0
2'”,1.'.5. Sk J,,L i UisinMG . &Ooio‘) IV;).zZi‘).,si) ,6_\‘3 %7;),‘85.;,&";,2, LU U SR VU S SO S S A i ;
31 Gk USLMG: *4' O .. 0 UG WO O W FEUUSU TN N SN 0 NS VU HORE WOE U U S O

1. A range of 4096 bytes is specified beginning at location 4000 and ending at 8095. A value of 4000 is
assumed to be stored in register 8.

12-9

PAGE REVISION I PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

2. The value 8000 is assumed to be in register 1, 12096 in register 2, 16192 in register 3, 20288 in register
6, 24384 in register 7, 28480 in register 8, and 32576 in register 12. These register numbers and their
assumed values are entered into the USING table in the order specified.

3. This statement indicates to the assembler that the current value of the location counter is to be in
register 10 at object time. (This is a relocatable value. A label can be used in place of a location counter.)

12.5. PROGRAM LINKING AND SECTIONING DIRECTIVES

A program or a portion of a program that is assembled as a single unit is called a module. A complex program can be
made up of many modules, some of which are standard subroutines that can be used in any program.

The assembler provides, as part of its output, information which allows these modules to be linked together, loaded,
and then executed as a single program. Proper partitioning or sectioning reduces the execution time required to
make changes to an existing program. If a change is required, only that module which is changed must be
reassembled. The output is then linked with the remaining parts to produce the altered program. Proper partitioning
of a program also reduces the number of symbols required in each of the separate assemblies.

A symbol defined in the label field of module A and addressed in module B is said to be externally defined (by an
ENTRY directive) in module A and referenced (by an EXTRN directive} in module B. Thus, by using the ENTRY
and EXTRN directives, proper linkage is supplied when the separate modules are assembled. This information is
passed to the linkage editor by the external definition records and the external reference records which are outputs
of the assembler.

The assembler also provides the capability of dividing one module into different sections. A centrol section is a
group of instructions, constants, and storage areas. The proper execution of an instruction in one section must not
depend on its position relative to instructions or data in another section. Sections can appear in the input in any
order, and statements belonging to one section may be separated by statements belonging to one or more other
sections. If the first statement is a START directive, its label becomes the name of the first control section.

Each module can have a maximum of 255 external symbol identification items {ESID items). An ESID item contains
special information that is used by the linkage editor in relocating modules and module sections, and in resolving
references between modules. The following items cause the assembler to generate an ESID item:

n each symbol in the operand field of an EXTRN directive;

L] each symbol used in an external address (V-type) constant;

] each control section;

L] each dummy control section; and

. a common storage definition section.

12.5.1. COM (Common-Storage-Definition) Directive

The COM directive enables the programmer to define a control section which is a storage area common to two or
more separately assembled routines. The format of the common section can be described by DS and DC directives.
Labels which appear within the sections are defined. No data or instructions are assembled in a common section
which has a separate location counter with an initial value of 0. Data may be entered intoc a common section only by
execution of a program which refers to it. Labels defined in a common section are not subject to the restrictions
imposed on dummy section labels.

12-10

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

One assembly can define only one common section. However, several COM directives may appear among the source
statements. Each COM directive after the first is taken to define a continuation of the common section previously
described. When several routines defining common storage are linked, the resulting module contains only one section
corresponding to the common section previously described. When several routines defining common storage are
linked, the resulting module contains only one section corresponding to the common sections in the input modules.
The length of this section is the length of the largest common section in the input modules. The format of the COM
directive is:

LABEL I A OPERATION A I OPERAND

unused I Ccom l unused

Examples:

procraw MODULE |

e e e e PROGRAMMER ..
LABEL A GPERATION A OPERAND A
10 16
/. M&_Dlz Lo GQEC.T ol TR WO ST D NN TN YOS VOO VU TAOE YOO T A WSO TUUCOOOE W ST N SOOI N
IR A L S0P V0 SN R ST SOV SUE NS NN ST VOO U NI NUUN SN SN S N S SUOE SUNEYONY SN U S NI S

TSN NN B ¢}

2 Ll g 1 CDM AR S SR ANE N SN N SO UUUR YOI SO0 FOULSE SUNT SOE S NS SO SN W O VOIS WSS SO SRS T U
; S [.| b 4 . oo L S ‘ R i i
REE SRR N QL PR VO SO W SO SR S SRR S W NN WO OO WO T VO N N W DTS T

ltiffléEiNb} ST T RN N W NN T Y RN N O A A N NN N

o

proGRAW. MODULE 2 . PROGRAMMER
LABEL A OPERATION A CPERAND A
10 16
3 IMOD2, | . . CSECT | TS 08 TSSO S N WO T WX SO0 SO WO SO SO V0 O O S
RS N IS URURT I AR PRI NS S0 WU AN S SD NU SO S SO SHOF SO SN NOY G SO S B
oo b L3 N S A T N R ; RIS T T I T .
4- IR IR N CDM 0 R I AR i R NI T
§ U0 S i L q Lo C‘--2‘6A0z [A i [) f ; P i Pooi iy i
FER R END SR N0 S U T T W S e T W R T T T T

1. When module 1 is assembled, it uses the common storage area defined by line 2.
2. The common storage area used by module 1 and module 2.
3. When module 2 is assembled, it also uses the common storage area defined by line 2.

4, The common storage area used by module 1 and module 2.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

| PAGE REVISION PAGE

12.5.2. CSECT (Control-Section-ldentification) Directive

The CSECT directive indicates to the assembler that the source statements which follow belong to a control section
diffent from other preceding source statements. Use of the CSECT directive allows the programmer to code parts of
logical sections of a program in the order in which he encounters the need for them. The format of the CSECT

directive is:

LABEL

' A OPERATION A

' OPERAND

[symbol]

‘ CSECT

! unused

The label field of the CSECT statement contains the name of the control section. This symbol must 1.0t appear in
the label field of any other source statement except another CSECT statement. It is the name of the control section
and is defined as an entry point of the program being assembled. The value of the symbol is the address of the first
byte of the control section. If the label of the CSECT statement has appeared as a label of a previous CSECT
statement, the succeeding statements are a continuation of the control section of that name.

The use of CSECT eliminates the need to discontinue coding a section of a program in order to code another section
upon which the original section is dependent by setting up the new section with CSECT and continuing. After the
second logical section is coded or even partly coded, the programmer can revert to the original section by setting up
CSECT with the same label given to the original section. The assembler reorganizes parts of each section and
assembles it as one continuous control section. It is important to note, however, that neither the listing nor the
sequence of object coding is reorganized. The reorganization that takes place is with respect to the final structure of
the coding within main storage after loading; the addresses of the coding within main storage are indicated on the

listing.
Example:
LABEL A oPERATION A OPERAND A COMMENTS

1 10 16

BILL | START . % AUTDMATICALLY, SETS UP, CSECT, .
R S e T SN RO U U SN DS UY UON SFUR SO SN ST AUNE SIS SRR
STV B B S S T :; iCQDI “iﬁ; _ PART, A DF FIRST. .| ..., ...
b LSRN SN UE NN NS T O TN BTV ST U S Sﬁ&T IDN & ,,;A) bediodei bl B
WKL CSECT ! ; i . ; T i

dedo ot Lo Loati o . PRI NS T VR J R T
TSI bl o} boa } J_CAODIALGH . PART. A LQF .SEic DM‘DL_L T
IR Loty e a b JSEIC ;TIDNI CRAD v v L ol ay
BILL, | CSECT TN S NN N SO SO G SO NS SN0 SO SN S N O SUNY WO SN U S N S Y O L_l O T
[S A A i SRENL NIl BN R Lol AR i

SUEN RSN SRR 5N S BRI : } ’CLQD;LMAQ PART B OF, FIRST USSR EU U S BT RRTY
oo b o S w.,;ﬁi‘); Lo b 9ECTI ;ONl_.(,‘JB) | ISRV SEEE NS S
M;I,z‘.(xI,L.l L Cls'EanT PR Y ST N O SRS ST AU S SNNE SN SO ST S ST N SRS SOUURY UG NSNS NN SRS SRVUNN B S
U ST N Loalios Lotdy bl bedodoa U TS it ik i b i
Y copING: PART. B DF. SECOND. .
et e SECTIDN (2B) . . .
,ILL Ao QSEC[T i Gk H N

I R S cli : ‘

con b .} CODING: PART c OF FI RS,T, o

L SECTIDN (1c)

12-11

1212

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

n Assembled output:
First section labeled BILL ~ all of coding 1A, 1B, and 1C;
Second section labeled MIKI - all of coding 2A and 28B.
] Operational conditions:
— Direct addressing between control sections must not be attempted.
- The first CSECT with a unique label also sets up an automatic entry point.
NOTE:
Care must be taken to prevent linking CSECT and COM directives with duplicate names. A blank label field is
permitted as a legitimate label only once. When both CSECT and COM directives have no labels, the label used
for both is a blank,; however, only one such label is permitted.

— USING directive values between sections which define the same register must be redefined when each
section is reentered.

12.5.3. DSECT (Dummy-Control-Section-ldentification) Directive

The DSECT directive indicates to the assembler that the statements which follow are used to redefine a data storage
area reserved either in the module being programmed or in another separately assembled module. If the data storage
area is reserved in a separately assembled module, that module is later linked to the module containing the dummy
control section. No storage is reserved for a dummy control section. Data and instructions appearing in a dummy
control section do not become part of the assembled program. The format of the DSECT statement is:

LABEL | A OPERATION A | OPERAND

[symbol] I DSECT l unused

A DSECT statement may not have a blank label field in a program which either has no START statement or has a
START or CSECT statement with a blank iabel field.

An LTORG directive may not appear in a dummy section. Labels of statements in a dummy section are called
dummy labels.

The following rules must be observed in the use of dummy labels:

L] An unpaired dummy label may appear only in an expression defining a storage address for a machine
instruction or a constant of type S.

L] A base register may not be designated for this address field, but the resulting value must be covered by a
USING statement.

L The programmer must ensure that the appropriate value is loaded into the register specified in the USING
statement,

L] To guarantee alignment between the actual storage area and the dummy control section, the programmer
should align the storage areas on doubl-word boundaries. All dummy control sections are adjusted to begin at

location 0.

= The last source code input to an assembly must not be part of the dummy control section.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION |PAGE

More than one dummy control section can be used within a module.

Example:
procrav_]MODULE A PROGRAMMER ..
LABEL A opegaTION A OPERAND A

i 10 16
BELL. | START| 1065, . i1 Lo b ol
Lo ENTRY] IAREA A bodod i [TN DU T
i { R PR SRR T TR W WR N N W Y N j SO ST N ST W SO0 WS

b . P bdenidodod SR OIE N W0 W O i : ik

REA ; DS . CL260 ., . ! i Ly ; !

SRR | I Y ; gt : i ! | !

| END. ; 1 e L ! o vl
procraw MODULE B - PROGRAMMER
: LABEL A?%?izgwa@x Am OPERAND A
EASE. | . GSTART 2095 b .
. EXTRN AREA. | . . . [. ...l .. bl ol

SN0 I O AN " ST TN N N T i b L
LAKE. & . DC . L YCAREAD., L N

Li 19, LAKE = , ; ,
i - usl NG [SAIL ,9. oddi bt : !

DISRR SN SO ; H . ;,Y,L: - - H ! T W S b | : !
SAEIVL» DSECT s ; N i SO N S TN T)
FLDA. | . DS, . CL2 ol it L Lot
F.LDB, | DS, . CLH o ! L ;

IKI. | CSECT Loisie | '

kol . il i 1 ! : i
IR T N DN 1 b b [SR { i o]

Lo b ; 5 | i K COSNETN VONCN W SO WO SN T
" \ E"N:D‘ ; / ! i i L ok

In module A, the symbol AREA, defined as an ENTRY point, is specified as 260 bytes.

In module B, the base address of AREA is externally defined. Portions of AREA are redefined by DSECT as
FLDA, containing two bytes, and FLDB, containing four bytes. FLDA and FLDB are relatively addressed as
location 0 and location 2, respectively. Before FLDA and FLDB are addressed, register 9 must contain the
base address of LAKE, which receives its true value at linker time.

1213

12-14
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

12.5.4. ENTRY (Externally-Defined-Symbol-Declaration) Directive
Each module must declare to the assembler the symbols defined within the module to which reference is made by

other modules. Each symbol is referred to as being externally defined and is declared by the ENTRY directive. The
format of the ENTRY directive is:

LABEL | A OPERATION A l OPERAND

unused ’ ENTRY l symbol[,symbol,...,symbol]

Each symbol in the operand field is declared to be defined in this module. Their name and assigned values are
included in the output of the assembler as external definition records. The maximum number of operands in an
ENTRY Directive statement is nine. Continuation is not allowed.

12.5.5. EXTRN (Externally-Referenced-Symbol-Declaration) Directive
The assembler must be informed of all symbols referred to in the module being assembled but defined in some other

module. A reference to such a symbol is called an external reference, and such symbols are declared in the EXTRN
directive. The format of the EXTRN directive is:

LABEL l A OPERATION A I OPERAND

unused l EXTRN l symbol [,symbol,...,symboli]

Each symbol in the operand field is declared to be a symbol defined in some other module. The symbolic name and
the external symbol identification assigned by the assembler are included as input to the linkage editor as an external
reference record. Each symbol is assigned a unique ESID and, therefore, cannot be paired with another symbol in an

expression.
Examples:
procram _MODULE A PROGRAMMER
LABEL A oPERaTIONA OPERAND A

10 16

FOX . 1. .| Mvb . | DEST(5), 0&16(3)L T
L. DC. | A(cAT). S T
R N DACMLA(—DGGz)s!zﬁi‘ ; T oo
JOE 1 I BC, BI04

. f : 5
T bt TS TS O W T WL O T W WO LS A0 N U ST U NN Y T N T

L]
bde e b AR SRR W AR SV T WL NN ST WA VRSN U S W A s c
MAT - . B%CT i { p{; S;EfT L fod { NI N R R U R TR T
bk »;Mi.vvé,_,; . Dsz - ?(‘:PiIﬁi): NN W S NN S SR O L I T R [
SRR AN NN b SO UUTIU A N ST WIN VT ST SR W A NN S SRR N A RO TR
-
Loy . L Py b ' Cob o b

o lenTRY] [Fox, JbE, MAT L .

fom
:
i
i
%

R

12-156
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

Coding continued:

_ procran_ MODULE B PROGRAMMER
LABEL A QPERATIONA OPERAND A
10 16
- I bl DC ook A(IFIOIX’)’ i i L g LS A | l | S N { i] H o4 i Pl) ! i
»
| S | 1 ‘ } i .L bk 1 i bt i l i ok i l 3 Sk i § } N H i i i b i i H H i g i
Lot b AT R A B b e by e b AR |

CAT . 1., PRIN DATA | 0 b b e
b PDC;&; A!(ILJ'OXE)tl D IR I I AT A I A T A R A
DOG e b e b b e L
N T (fMAm)siieiz;slizitfix:"iif I

o] J
- i 3
AR U A . s TN TS VOO R TN WO TN SO VU U YU VNN YOO TN WO SO SN WO VOO0 O S0 T TN U WO YOC WO WY WY
bt b ol I O SRS NI N A R R ool b e by
leﬁl Ll AkLl L 6;: L.L&{biﬁ ; R RN N NS U e by
TR Lo g SRR R bt b e b b
SR R B! EEMTR;Y C, T Y Dbi& ;:P;IG? TS TS NN WO TN L RO W WA SO U S O L

Rk b d I i ;E&mefM}MWEDIKL‘JdQ;lMAj—E i ! L i § SRS W VS | : SIS S [i

In module A, the symbols FOX, JOE, and MAT are specified with the ENTRY directive sc that they may be
used in module B as specified by EXTRN.

In module B, the symbols CAT, DOG, and PIG are specified with the ENTRY directive so that they may be
used in module A as specified by EXTRN.

An externally defined symbol may be an absolute value which forms the explicit base/displacement specification of
an instruction,

Examples:
program_ MODULE A PROGRAMMER
LABEL AOPERATIONA OPERAND A
10

li&l]if 'E&TIR’NO'L&Ti'llcilkilill!fg!l!iilliiiif'ili

'S S T O Y ;MV,C, i QUJZCJLQg CL)L,‘F:;CiL;Bioi'xE-riC:'! [T U S N T T Y

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-16

UP.NUMBER I PAGE REVISION |PAGE

procram_ MODULE B PROGRAMMER ____
LABEL ACPERATIONA OPERAND Fa)
10
qU!Tfilt=1E§Qng lﬂm-tsxtARTiigi'f§iill(!l!ihi’31121
Cx1>tlzilE§Q:Uti Y T I B e T RO SRR B
ot i b EiN!T-!RlYUiMTl'.i‘BE!SIIliIIiiI£flliéi§1lli§€
In module B, OUT is defined as the absolute displacement of the desired location under the explicit cover
register C which is also defined in module B.
The only valid EXTRN symbol references, other than the base/displacement specification, are those used in address
constants.
12.6. LISTING CONTROL DIRECTIVES
One of the outputs of the assembler process is a listing of source and object codes. Assembler directives are available
to control the format of the listing. Their functions are:
L] to provide headings for each page;
n to eject or skip to a new page;
u to space for extra blank lines; and
——

u to provide for printing or nonprinting of the output.
12.6.1. EJECT (Advance-Listing) Directive

The EJECT directive causes the assembler to advance to the next page for continued listing. The format of the
EJECT directive is:

LABEL I AOPERATIONA I OPERAND

unused ' EJECT I unused

~——

12--17
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

If the next line of the listing were to cause a page change, the EJECT directive has no effect.

When the EJECT directive is encountered, the form is skipped to the next page. If a title has been previously
specified, the title is printed on the new page.

12.6.2. PRINT (Listing-Content-Control) Directive

The PRINT directive enables the programmer to control the contents of the assembly listing. The format of the
PRINT directive’is:

LABEL A OPERATION A | OPERAND

ON GEN DATA
d
Hnuse PRINT [OFF] [NOGEN $ J [NODATA]
where:
ON specifies the printed listing.
OFF specifies that no listing is printed.
GEN specifies that lines generated by a macro instruction are printed.

NOGEN specifies that lines generated by a proc call are not printed, except that the proc call, any
PNOTE messages generated, and generated lines that contain error flags are printed.

DATA specifies that all characters of each constant representation are printed.
NODATA specifies that only the first eight characters of each constant representation are printed.

If a PRINT directive specifies OFF and also other parameters, the other specifications are not effective until a
PRINT directive is encountered which specifies that the listing facility is to be turned ON.

In this directive, the comma is not required if a parameter is omitted. The initial print condition of assembly printing
is ON, GEN, NODATA. This condition remains until the first PRINT directive changes it. PRINT directives may
change only one or two of the parameters; any unspecified parameters remain in their previous condition. A PRINT
directive may not appear in a procedure definition.

Any program statement or instruction that produces an assembly error condition is listed regardless of specified
PRINT options.

Examples:
LABEL A oreration A | GEERAND A
1 149 T
L1 | [PRINT| DATA «

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION l PAGE

1. Datais printed in full.
2. All printing is suppressed except lines of coding which produce error conditions.

3. Full printing is restored with complete printing of data constants.

12.6.3. SPACE (Space-Listing) Directive

The SPACE directive causes the assembler to advance the paper in the printer a specified number of lines. The
operand field contains an unsigned decimal integer which specifies the number of lines the paper is to be advanced.
If no operand is coded, one line is spaced. If the number specified is greater than the number of lines remaining on
the page, the SPACE directive has the same effect as an EJECT directive. The SPACE directive does not appear on
the listing.

The format of the SPACE directive is:

LABEL | A OPERATION A | OPERAND

unused ‘ SPACE ' li]

where:

i is an unsigned decimal integer.

Examples:

LABEL A OPERATION A OPERAND A
10 16

I.Jl!lll(SLPJAC 61;?asii«;zlixas;isa.s?t(rxi:
2A'l‘[lii QPAC 321£Lj’il§{<¥]i§&il‘s""iilil"l~

1. The printer advances the form six lines before printing the next line.

2. The printer advances the form 22 lines before printing the next line.

12.6.4. TITLE (Listing-Title-Declaration) Directive

The TITLE directive provides data for the heading appearing at the top of each page of the assembler listing. A
TITLE directive also causes the printer form to be advanced to a new page. The format of the TITLE directive is:

LABEL l AOPERATION A | OPERAND

[symbol] l TITLE ’ ‘c’

12-18

12-19
PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION

where:
c is up to 100 characters of heading.
The following conditions apply to characters in the operand field:
L Any character may be specified, including spaces, within the defining apostrophes.
L An apostrophe within the operand must be specified as a pair of apostrophes.
L An ampersand within the operand must be specified as a pair of ampersands.
] Spaces may be specified freely to separate heading words.

More than one TITLE directive is permitted in a program. A TITLE directive provides the heading for all pages in
the listing which succeed it.

The first TITLE card in the program may have a special symbol in the label field {(one to four alphanumeric
characters in any order) which is used as a program identification on the listing.

Examples:

LABEL A oPERATION A OPERAND & COMMENTS
T4 72 30

| T ? WEEKLY PAYRDLL SDURCE AND OBJECT CODE LISTIN& CASSER L
ISP IMBLED JANUARY &Th 1972° N | R
i
|

Al L TITLE Y PAYROLL SUBRKECTION - - JAN. _6TH 1972 ool

1. The Z in column 72 specifies that the title is continued on the next line.

2. The second title line indicates a change in the page heading, and the page headings are specified in the
second title line.

12.7. INPUT AND OUTPUT CONTROL DIRECTIVES

The assembler input and output control directives provide the necessary control for sequence checking, formatting,
punching data, and reproducing data.

12.7.1. ICTL (Input-Format-Control) Directive

The ICTL directive specifies new values for the beginning, ending, and continuation coding columns. The format of
the ICTL directive is:

LABEL l AOPERATION A OPERAND

unused ICTL [b] [,e] [,c]

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-20

UP-NUMBER ‘ PAGE REVISION l PAGE

where:
b is an unsigned decimal integer specifying the beginning column. It must be less than 80.
e is an unsigned decimal integer specifying the ending column. It must be greater than b and less than or
equal to 80.
c is an unsigned decimal integer specifying the continuation column. It must be greater than b and less
then e.

If b is omitted, it is assumed to be 1. If e is omitted,,.it is assumed to be 71. If ¢ is omitted or if e equals 80,
continuation records are not allowed.

There can be only one ICTL directive in a source code module and it must immediately precede or follow any
program-defined procedure definitions. The ICTL directive applies only to those source statements that follow it. Ali
procedure definitions are assumed to have normat output format.

Example:
LABEL A ?P%R:‘a?i@ﬁ A) OPEQAND A
T 14 o
l' SRR I N IC..TL ! %2;,)'; > I !b S D U JOOF S W YO T ST YOS SO RSO WS S NS S ST
1. Coding is to follow standard format except that it is to start in column 2.

12.7.2. ISEQ (Input-Sequence-Control) Directive
The ISEQ directive specifies to the assembler which columns of the source statement contain the field used for

checking the sequence of statements. It also controls the initiation and termination of sequence checking. The
format of the 1ISEQ directive is:

LABEL | A OPERATION A | OPERAND

unused l ISEQ ‘ [1,r]

where:
| is a decimal integer specifying the leftmost column of the field to be used for the sequence check.

r is a decimal integer specifying the rightmost column of the field to be used for the sequence check.
r must be greater than or equal to the specification for I.

Columns to be checked should not fall between the beginning and ending input columns specified for the program.

The sequence check begins with the first source statement after the first ISEQ directive and is terminated by an
ISEQ directive with a blank or invalid operand field.

Sequence checking is not performed on statements generated from procedure definitions.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP.NUMBER

PAGE REVISION PAGE

Example:
LABEL A OPERATION A OPERAND A
10 16
I'J:Lilix SEQ b0 ol]
7 Py
1. Input record sequence is to be checked using the sequence numbers found in columns 56 through 60.

12.7.3. PUNCH (Produce-a-Record) Directive

The PUNCH directive is used to produce specified data in the object code output of the assembled program. The
format of the PUNCH directive is:

LABEL I A OPERATION A OPERAND

unused l PUNCH ’c1 ,...,c80’

where:

€,...Cgo represents a string of up to 80 characters produced as a record in the object code output.

The following conditions applyv to the characters specified in the operand field:

= Up to 80 characters including spaces, may be specified within the enclosing apostrophes.
L An apostrophe within the operand must be specified as a pair of apostrophes.

a An ampersand within the operand must be specified as a pair of ampersands.

L Spaces may be used to separate fields.

L In counting characters for the limit of 80, a pair of ampersands or apostrophes written to express a single
ampersand or apostrophe counts as one character.

Although this directive may be included within a procedure definition, it may not occur before or between the
procedure definitions. It may be written after the procedure definitions, but prior to the first control section of the

program. PUNCH directives thus written produce records prior to the object module.

Example:

LABEL A oFERATION A OPERAND A COMME
10 16

et | PuNeH] j'J:HLs. RECOHRD APPEARS IN THE SUTPUT' .

12-21

12-22
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

12.7.4. REPRO (Reproduce-Following-Record) Directive

The REPRO directive is used to reproduce a record in its entirety {(columns 1 through 80) during assembly time. The
format of the REPRO directive is:

LABEL l A OPERATION A I OPERAND

unused l REPRO l unused

This directive causes the contents of the following record on the coding form to be produced as a record in the
assembler output. Each REPRO directive produces one record. A maximum of 80 bytes are reproduced.

A REPRO directive prior to the first control section of the program produces records prior to the first control
section.

No substitution for variable symbols occurs in the record thus produced. This directive cannot appear in a macro
definition.

12.8. CONDITIONAL ASSEMBLY

The assembler recognizes certain directives which can exclude lines of coding from the output of the assembly,
include a set of lines in the output of the assembly more than once, or establish and alter values which may be used
to determine whether a set of lines shall be included or excluded.

These directives are known as conditional assembly directives. While they are frequently used within procedure et
definitions, they can be effectively used at the basic assembly level.

12.8.1. SET Directive

The SET directive is used to define or redefine the value represented by set symbols. A set symbol is a symbol to
which a value is assigned during the generation of code corresponding to procedure references and DO directives. It
can be used as a counter or as a switch to control the generation of code. Unlike an ordinary symbol, the value
assigned to a set symbol can be altered during the course of an assembly.

A set symbol can be either local or global. A global set symbol, once declared and given a value by a SET statement,
remains defined throughout the assembly and retains the same value until that value is changed by another SET
statement. A local set symbol is defined only within the procedure definition in which it is declared. The value of a

local set symbol within one procedure definition is not affected by the declaration of either a local or global set
symbol with the same name in another procedure definition or at the source code level.

Before a set symbol may be set or referenced, it must first be declared by a GBL or an LCL directive.

The format of the SET directive is:

LABEL A OPERATION A OPERAND

symbol SET b

12-23

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER I PAGE REVISION

where:
b is a basic expression (2.5.5).

The symbol in the label field is assigned the value represented by the basic expression in the operand field. Only a
basic expression may be used.

Operand expressions cannot be greater in value than +224—1. Set symbols may represent character strings up to
eight characters in length; also, symbols originally set to an arithmetic value can be redefined to represent a character
string of up to eight characters.

12.8.2. LCL (Local-Symbol-Declaration) Directive

The LCL directive is used to declare and initialize local set symbols before they are defined or referenced. The

format of the LCL directive is:

LABEL A OPERATION A I OPERAND

unused LCL l symbol[,syrﬁbol,...,symbol]

Each symbol which appears in the operand field is declared to be a local set symbol and is set equal to a null
character string.

Although the LCL directive is primarily for use within procedure definitions, it may be used at the basic source code
level to declare set symbols which may be referenced only at the source code level.

12.8.3. GBL (Global-Symbol-Declaration) Directive
The GBL directive is used to declare that a symbol is a global set symbol.

The format of the GBL directive is:

LABEL A OPERATION A OPERAND

unused GBL symbol[,symbol,...,symbol]

Each symbol which appears in the operand field is declared to be a global set symbol, and is set equal to the null
character string when declared for the first time. Declaring, as a global set symbol, a symbol which has already been
defined as a global set symbol does not affect its value.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION |

12-24
PAGE

Examples:
LABEL A OPERATION A OPERAND A
1 10 16
: ! 4o SﬁTAnRT : E SN ; ! sl
Lo ! bl BESNE SO i SO b 1 pdo bt
bobdod ° L ! ! i ; b bk ddd ot
! | Sl LI N SO WO S ! : i IR N
Tl GBL . | WALT . . . L]
20 LCL, . | ITED. , . . .} ; b b
Lot b it W { sl ot dd " pd
ptand il I T 1o o fod ! i : e bk
3 WALT | SE;T; [! ‘ ot : ! : I O T B
[AR ol bbb b b Dbt]
fitd] Pt ol 1 NI SN BN N bodd i
+TED . | SET . | WALT®432+X'7E' | . . . Lol
PR | iy o L. Dot Lodd Coado
4 L | * Lod bt i { : i L b Lot
SWALT | SET. . | 12 L ; (j |
i) ® : i bt LN W ! i |
b S i SN NN W T W I ISR T E
6.TED. . | SET . | 'CX1&&144 W
i i bt ! B ok bk ; L
L] S i bt e i
Lok END, bbdtd ik Lo Lo

1. Declares the label WALT to be a global set symbol.

2. Declares the label TED to be a local set symbol.

3. Defines the value labeled WALT.

4. Defines the value labeled TED.

5. Redefines the value labeled WALT.

6. Redefines the value labeled TED.

p——

12-25

PAGE REVISION l PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

12.8.4. DO (Start-of-Range) Directive

The DO directive defines the start of the range of code to be generated repetitively and specifies the number of times
it is to be generated. The format of the directive is:

LABEL A OPERATION A OPERAND
[symbol] DO b
where:
b is a basic expression (2.5.5).

The expression in the operand field indicates the number of times the source code statements following the DO
directive are to be produced in the object code. All lines of coding following the DO directive, until its associated
ENDO directive is encountered, are generated. The value of the expression in the operand field may be any positive
value or 0.

Any valid source code statement may be within the range of a DO directive including other DO directives with their
corresponding ENDO statements. DO directives may be nested up to 10 levels.

The symbol in the label field, when specified, is used as a counter for the number of times a set of lines within the
range of a DO statement have been generated. Its value is 1 the first time through the statements, 2 the second time
through the statements, and so forth. It may be referenced in the same manner as a set symbol.

If a DO directive is within the range of another DO directive and the nested DO directive is reentered, its count
begins at 1 again. The value of the label of the DO directives is available to the statements following the ENDO
directive even if the operation of the DO directive cycle is interrupted.

12.8.5. ENDO (End-Range-of-DOQ) Directive

The ENDO directive is used to signal the end of the range of a DO statement. The ENDO directive has the following
form:

LABEL I A OPERATION A] OPERAND

unused l ENDO l unused

For every DO directive there must be an ENDO directive to define the range.

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION |

12-26
PAGE

16

OPERAND

{

Examples:
LABEL A ‘%PERAT!ON A
1- i i . LSS S I
2.0 b .
3 DL b DO o
4.0 bbb
5.1 o] * Db
6 ol S RN
A IR i
8| 1. | ENDD
2 RN ST 1 Y A

1(2 b by o

ll.Dleli Lo D&A L

)

L~
~-@
N

(

18,D£)q” Lot i)b*‘ : 5 ; Aé bk L
1 9 I 5 : } i 4§1 P L
20. .. ; i 5(‘9) ;

ENDD,

ENDD,

EmLELCl

Lines 4, 5, 6, and 7 following the first DO directive (on line 3) are produced in the output five different

times. The ENDO directive on line 8 signals the end of the lines of coding to be generated.

Lines 12, 13, 14, 24, and the lines produced by the operation of the two DO directives (lines 15 and 18)
are generated in the output 10 different times.

Within each of the 10 sets produced by the DO directives on line 11, lines 16 and 17 and the lines
generated by the operation of the DO directive on line 18 are produced in the output three different

times.

@ Within each of the 30 sets produced by the two DO directives (lines 11 and 15), lines 19, 20, and 21 are
generated in the output five different times.

NOTE:

The first DO directive produces 20 lines of autput coding. The second, third, and fourth DO directives combined

produce 550 lines of coding.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 12-27

UP-NUMBER | PAGE REVISION | PAGE

12.8.6. GOTO (Assembly-Branch) Directive

The GOTO statement is used to direct the assembler to another point in the source code. The form of the GOTO
directive is as follows:

LABEL J A OPERATION A | OPERAND

unused I GOTO ' symbol

The symbol in the operand field specifies the LABEL directive at which the assembler should resume piocessing the
source code. The following rules and conditions must be observed when using the GOTO directive:

L] The symbol used must be identical to the symbol in the label field of the LABEL directive.

] A GOTO directive within a section of basic source code may not indicate a destination within a procedure
definition.

L A GOTO directive within a procedure definition may not specify a destination within another procedure
definition and it may not specify a destination within a section of basic source code.

L] A GOTO statement, within the range of a DO directive that specifies a LABEL directive that is not within the
same range, interrupts the operation of the DO directive and continues source code processing at the LABEL
statement.

= A GOTO directive may specify a destination point either forward or backward in the source code.

L A period is allowed as the first character of the operand. The period will not appear on the asserﬁbly
listing.

L] If the symbol in a GOTO statement is not atisfied by a LABEL statement, the assembler falls through to the
next line of source code.

12.8.7. LABEL (Assembly-Destination) Directive
The LABEL directive is used to identify a destination point for the GOTO directive only.

The format of the LABEL directive is as follows:

LABEL A OPERATION A OPERAND

symbol LABEL unused

The symbol specified in the label field of the LABEL directive is not defined by the assembler in the usual way;
instead, the assembler maintains a special list of LABEL directive symbols which are the only valid destination
points for the GOTO directive.

The GOTO directive may not specify a label that has not been defined by a LABEL directive.

A period is allowed as the first character of the label field of a LABEL statement. The period will not appear on the
assembly listing.

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION I

12--28
PAGE

Example:

.

.

NN & wron

N
o

15.
16.

A GPERATION A

14

16

ek

i i

GDTD.

LABE L
o

’f{’(

)

i

I

Lot

GO.TO,

CD;N

Tl

N

.BREAK

H
bk

LABE L

’

Sk

}}lli‘

et

S

A

L

[

GOTD,

RETUR

i }

[

i

i

N

fod

I

'llif

i i

i

i

bk

. c !b NlTiI i”)UEE

LdAdafo
T i

-

i Lo
S T
H i)
O S { food
i
H | O 1
¥
v d
TR

The GOTO directive on line 3 provides an unconditional branch to line 8. Lines 9 and 10 and processed by the

assembler; then line 11 specifies a GOTO to line 4, where lines 5 and 6 are processed by the assembler
specifies a GOTO to fine 14 where the assembler continues processing at line 15,

.Line7

7935 Rev. 1 SPERRY UNIVAC Operating System/4 131

UP.NUMBER l PAGE REVISION I PAGE

13. Assembler Procedures

13.1. SPECIAL DIRECTIVES

The SPERRY UNIVAC Operating System/4 (0S/4) Assembler, by the use of special directives and conditional
assembly directives (12.8), allows the programmer to specify and generate repetitive sequences of coding. To save
time and effort required to write a series of instructions repeatedly and to eliminate possible errors in transcription,
the series can be written once in a procedure definition. A procedure definition (proc) is a series of one or more
assembler statements beginning with a PROC directive, followed by one or more NAME directives, and ending with
an END directive. The PROC directive signals the beginning of a procedure definition. The NAME directive declares
a label by which the procedure definition can be referenced. The END directive signals the end of the procedure
definition. Each time the instructions are needed, a procedure call line is written. The assembler inserts O or more
lines of coding at the point of reference.

The procedure definition specifies to the assembler the coding and instructions for a particular operation, and the
procedure call line specifies the variable parameters. The assembler then combines the coding of the procedure with
the parameters to produce a specific section of coding.

13.1.1. PROC (Procedure-Definition) Directive

The procedure definition is introduced into the source program by the PROC directive. This directive is used to
signal the beginning of a procedure definition. The format of the procedure definition is:

LABEL A OPERATIONA OPERAND
s
[symbol] PROC sn
s,nk
snk,...
where:
s represents the name or symbol in the operand field to be used in referencing parameters.
n is a decimal, self-defining term that represents the maximum number of positional parameters that are

found in the proc call line.
k represents keyword parameters.

If the label field contains a valid symbol, it represents the label of the proc call line (13.4).

13-2
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP.-NUMBER

The operand field specifies the names to be used when referring to parameters in the source code statement of the
proc call line. The first subfield (s) must contain a valid symbol if any parameters are to be referenced, and the
second subfield (n) must contain a number that indicates the maximum number of positional parameters that can be
specified in the proc call line if any keyword parameters are to be referenced. The remaining subfields specify names
used in referencing keyword parameters in the body of the procedure coding.

A method is provided whereby the programmer can preset the value of a keyword. This preset value is automatically
used if the particular keyword is not specified; however, the preset value can be changed or overridden by specifying
a new value for that keyword. A predefined keyword appears in the operand field of the PROC directive as follows:

k=v
where:

k represents a symbol or name which is used to identify the parameter.

v represents the preset value.

13.1.2. NAME (Call-Label) Directive

The NAME directive specifies a name by which the procedure is referenced. The format of the NAME directive is:

LABEL | AQPERATION A | OPERAND

symbol I NAME ' [p]
where:
p is a parameter or a parameter sublist.

The first NAME directive must immediately follow the PROC directive. More than one NAME directive may be
coded but all must be at the beginning of the definition. Each such NAME directive specifies a different name for
the proc. The symbol in the label field is available for reference within procs as well as at the source code level.

The operand field is used to provide a parameter to the proc. When more than one NAME directive follows the
PROC directive, only the operand of the NAME directive whose symbol is used to reference the proc is available to
the body of the definition.

Reference is made to the parameter or parameter sublist in the operand field by means of paraforms which are
discussed in 13.3.1.1.

Multiple NAME directives allow the programmer to specify a different parameter for each NAME directive and to
select the parameter by calling on that particular NAME directive. The following example lists three NAME
directives; the proc can be called by any one of them.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

13-3
PAGE REVISION | PAGE

Examples:
LABEL A GPERATION A OPERAND A
18 16

ol L PROC | Py 3 KEY T KEYZ,KEY3 ol
ZMOVE2 [WNAME | 50 . | b b el
3 p ; VIEJE ; N;A ME 78 i N N VOUNE WY VO U S SN TN VOO 0% TN NS S T N S
ot by AN i [y Loy s Loy b L Co b

Lol Lo Ml ok i b i b v b b

ISR END, FOU ORI VOO SN SO SNE SAT NS W TN NN U UAOR Y N Y T AU SO ST W VOOE WS O O

1. MOVET1 calls in the procedure and provides parameter 25.
2. MOVE?2 calis in the procedure and provides parameter 50.

3. MOVE 3 calls in the procedure and provides parameter 75.

13.1.3. END (Proc-Definition-End) Directive

The END directive is used to signal the end of a proc, as well as the end of the source module. An END directive
format is:

LABEL l A OPERATION A l OPERAND

unused l7 END unused

The operand field should be blank. The assembler pairs each END directive with the most recently encountered
PROC directive which is unpaired.

The statements between paired PROC and END directives are defined as the body of a proc. An END directive that
cannot be paired signals the end of the module to be assembled.

13.1.4. PNOTE (Message) Directive

The PNOTE directive may be used within a proc or at the source code level to generate comments and/or error
messages on the printer listing. The format of this directive is:

LABEL ' A OPERATION A J OPERAND

unused l PNOTE l e.c

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION | PAGE

where:

e is a message character string.

c is a comments character string.
The PNOTE directive indicates to the assembler that a comment line is to be generated in the output listing. The
first subfield of the operand must contain either an asterisk or a character expression of not more than six
characters. The second subfield may contain a character expression of not more than 79 resultant characters. When
the first subfield contains a character expression, the resultant characters appear on the listing as error flags and the
resultant characters of the second expression are printed as a comment line. If the first subfield contains an asterisk,

an asterisk is printed in the error flag field and the resultant characters of the second expression are printed as a
comment line. .

Any characters generated in the error flag field are treated as diagnostic errors. Message and error flags appear in the
listing even when the NOGEN option of the PRINT directive is in effect. '

13.2. CODING PARAMETERS
In order to activate a proc, certain information must be given to it at the time it is referenced. Each item of

information is called a parameter and coded in a subfield on the line which calls a proc. A string of subfields
separated by commas is called a field and is the operand field for a proc reference.

13.2.1. Types of Parameters

There are two types of parameters: positional and keyword. The distinction between the two is in the way they are
identified. Positional parameters are identified by their position within the operand field of the call line. Keyword
parameters are identified by the symbols which are assigned to them in the call line.

13.2.1.1. Positional Parameters

Positional parameters must be specified before the keyword parameters in any call line. The order of the expressions
in the operand determines the order of the parameters specified. Positional parameter specifications are separated by
commas. When a nontrailing positional parameter specification is omitted, the comma must be retained to indicate
the omission. Thus if a proc call line has four positional parameters

ViVa.VgaV,

and the second one is not specified, the operand would appear:
ViNV3Vg

If the third and fourth parameters are not specified, the operand is written:
ViNa

If only the last parameter is specified, the operand is written:

luv4

Thus, preceding or intervening missing parameters must be indicated by a comma. Trailing parameters which are
missing need not be indicated.

13-4

13-5

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER I PAGE REVISION

13.2.1.2. Keyword Parameters
Keyword parameters must follow the positional parameters, when both are used, on the call line. Keyword
parameters need not appear in any specific order. Each keyword is equated to a symbol, value, or character string.
Keywords are coded on the call line as follows:

ky=vy Ko=v,,. k=,
where:

k represents a symbol or name which is used to identify the parameter and

v represents the parameter value.
Keyword parameter specifications must be separated by commas and can appear in any order. Because a keyword
parameter is identified by name and not by position, a comma must not be used to indicate a missing keyword
parameter. A comma must separate the last positional parameter from the first keyword parameter when a
combination of both is used.
If a PROC directive specifies three keyword parameters in the operand field

kykaka
and if the call line specifies only two of the three with the second keyword parameter missing, the format is:

ki=v,.kg=vs or k3=v3,k1 =v,
or if the call line specifies only one of the parameters, the format is:

k3=v3
If the value of the missing keyword parameters has been preset in the PROC directive, then the preset values will be
used in the called procedure. If values have not been preset, then the missing keyword parameters are set to a null
character string.

13.2.1.3. Combined Positional and Keyword Parameters

Both positional and keyword parameters can be specified in the proc call line. The following rules apply to the proc
call line:

L In all cases all parameters are separated by commas.

n Positional parameters can be specified without keyword parameters, or keyword parameters can be specified
without positional parameters, or a combination of both can be used.

L Preceding or intervening positional parameters which are missing must be indicated by a comma; trailing
positional parameters which are missing need not be indicated.

= Omitted keyword parameters do not need a comma to indicate the omission.
= Keyword parameters can be specified in any order.

L] An omitted keyword parameter that has been assigned a preset value receives the preset value in the procedure
coding.

L] An omitted keyword parameter without a preset value receives a value of a null character string.

13-6

PAGE REVISION l PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

13.2.2. Parameter Sublists

Each subfield in the proc call line can contain more than one parameter. Multiple parameters in either positional or
keyword subfields are called parameter sublists. Each of the parameters in a parameter sublist is separated by
commas, and the whole parameter sublist is enclosed by parentheses. A proc call line operand having a positional
parameter sublist in the second subfield appears as follows:

LABEL ‘ AOPERATION A | OPERAND

roc-name
’ P l Vilvy 4,)V

where each v represents a parameter. A keyword parameter sublist has the format:

LABEL | A OPERATION A ' OPERAND
proc-name kn=(vn,1 'vn,2""'vn,m)
where:
k, represents the symbol or name used to identify the keyword parameter sublist and
Vo102V m represent the parameters within the parameter sublist.

13.3. REFERENCING AND REPLACING PARAMETERS AND SET SYMBOLS

A coordinate system is provided by the assembler for references to parameters coded on a proc call line. In addition,
keyword parameters may be referenced by the keyword symbol alone. Parameter references may be coded in any
statement within the proc. When the proc is referenced (called), the assembler replaces all parameter references with
the information coded in the designated subfield of the proc call line.

In this section, the referencing and reptacing of set symbols is compared to the referencing and replacing of
parameters in order to show the similarities and differences. The basic term paraform is a parameter reference form.
Thus, a paraform is a reference to the parameter or parameter sublist in the operand field of the NAME directive, or
a reference to the parameters on the PROC call line.

13.3.1. Reference Formats

References to parameters and set symbol values are usually made by coding the pa/;aform or the set symbol at the
place where replacement is desired. However, delimiters must be coded in certain cases to separate the reference
from the remainder of the statement.

Where replacement is desired in proc call line operand fields, in NAME directive operand fields, or within paired
apostrophes, the reference must be preceded by a single ampersand.

L Any data constant specification
= Character self-defining terms

u Hexadecimal self-defining terms
- Binary self-defining terms

L] Character-strings or substrings

13-7

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

.\ PAGE REVISION
UP-NUMBER

A paraform or set symbol may be concatenated with other characters within the apostrophes. If the paraform or set
symbol is followed by an alphanumeric character, a period, or a left parenthesis, a period (designating
concatenation) must be coded after the reference.

When a period follows a set symbol or paraform, the period is discarded when replacement occurs. For example, if
the set symbol ABC has the character value ‘6’ the term

C'&ABC..7*
after replacement would vyield
C5.7'

A set symbol or paraform may also be concatenated with other characters, set symbols, or paraforms to form a
single term outside of paired apostrophes. The reference may be coded exactly as it would have been to concatenate
with the same preceding and following characters within paired apostrophes. However, the leading ampersand is
required only if the character preceding the reference is alphanumeric. In this case a period could be used instead of
the ampersand with the same results. However, it is strongly recommended that the leading ampersand always be
written.

13.3.1.1. Paraforms

Two types of paraforms are used within the body of a procedure to reference the parameters on the proc call line:
positional and keyword.

Positional paraforms may be used to reference any parameter on the call line. The format of a paraform is:
s(n)
where:

s represents the name or symbol in the first subfield of the PROC directive operand field. This is the name
used to reference parameters.

n represents the numeric order of the positional parameters in the call line and/or the position of the
keyword parameters in the operand of the PROC directive.

The parameters are identified by the numbers assigned to the subfield they occupy. Subfield s(0) is defined as the
operand of the line on which the procedure name is specified. Subfields s(1) through s(n) are defined as the n
positional parameters coded on the proc call line. The maximum number (n) of positional parameters to be expected
for any procedure is coded in the second subfield of the PROC directive operand field. The next subfields, s(n+1)
through s(n+m), correspond to the keywords shown in the operand field of the PROC directive.

Keyword paraforms may be used to reference keyword parameters only. A keyword parameter reference consists of
the keyword itself coded in the statements where replacement is desired. No subfield is needed because the parameter
value is identified by the keyword on the proc call line.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

13-8
UP.NUMBER PAGE REVISION | PAGE

Example:
LABEL N GPERATION A OFERAND A

1 10 16 R
... .| [PRDC | BBOB,3 &KEYI JBKEYZ,BKEY3
TRANSEFE{ NJAME 2‘+ : R T TN ST SO IO SR R W
TS W W O T T o I &BDB(1) Ehd L2 LIS NN NS SRR W ’ e
RN N A *i : ':°a‘;\1&BOB(2) bt S SOOI U WO T SO S
o e e BUBOB(B) e
b b KEY 1 (&KEYZ), ,&KEY3 . t. . 1.,
- ?i(;gi,w ’ NI W 4y T A S

The preceding example specifies six variable parameters and one fixed parameter. The fixed parameter is
defined when the procedure is written {in this case 24}, and the six variables are defined &BOB(1), &BOB(2),
&BOB(3), &KEY1, &KEY2, and &KEY3. The parameters represented by &KEY1, &KEY2, and &KEY3 could
also be referenced by paraforms &BOB{4), &BOB(5), and &BOB(6), respectively.

These seven parameters can be referred to as paraforms and are referenced by:

&BOB(0) represents the fixed value on the NAME line.
&BOB (1) represents the first positional parameter.
&BOB(2) represents the second positional parameter.
&BOB(3) represents the third positional parameter.
&BOB(4) represents the first keyword parameter.
&BOB(b) represents the second keyword parameter.
&BOB (6) represents the third keyword parameter.

LABEL A OPERATION A OPERAND

TRANSFER 4,2, KEY3=7,KEY2=10

The preceding procedure call line allows replacement of the paraforms with these values:

&BOB(0) is 24,

&BOB(1) is 4, the first positional parameter.
&BOB(2) is a null character string.

&BOB(3) is 2, the third positional parameter.
&BOB(4) is a null character string.

&BOB(5) is 10, for the second keyword parameter.
&BOB(6) is 7, for the third keyword parameter.

139

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION

Missing parameters are equated to a nul character string. 2. procedure can have more than one name assigned by the
NAME directives and each name can have a different value in the operand field. The different values can be selected
by specifying the appropriate name in the call line.
If a subfield contains a parameter sublist, a different numbering system is necessary to reference its contents. A
matrix notation system is used where the first number indicates the subfield and the second indicates the parameter
within the subfield. A paraform referencing a parameter within a parameter sublist would have the form:

s(n,i)
where;

s represents the name or symbol used for referencing the parameters.

n represents the subfield number.

i represents the parameter number within the subfield.
In the previous example, if the operand field of the NAME directive had been

(24,17)

then:

&BOB(0,1) would be replaced by 24.
&BOB(0,2) would be replaced by 17.

When a parameter sublist is coded in a subfield and the subfield only is addressed, the paraform is replaced by all the
characters in the sublist including the surrounding parentheses. Thus in the previous example where the NAME
directive of the operand contained a sublist, the reference &BOB{0) would be replaced by:
(24,17)
If the operand had contained a sublist of three factors
(32,,12)
then:
&BOB(0) would be replaced by (32,,12)
Keyword paraforms may be used to reference parameters in a keyword parameter sublist in the format:
k(i)
where:

k represents the keyword symbol.

i represents the parameter number within the subfield.

13-10

PAGE REVISION | PAGE

7935 Rev. 1 l SPERRY UNIVAC Operating System/4

UP-NUMBER

Thus, if the following proc call line were coded

LABEL AOPERATION A OPERAND
PCL KEY 1=(14,56)
then:
&KEY1 would be replaced by (14,56).
&KEY1(1) would be replaced by 14.
&KEY1(2) would be replaced by 56.
13.3.1.2. Set Symbols

The expressions and values which set symbols represent may be referenced in the assembly module anywhere they
are defined. The set symbol itself:is coded where the value is desired. The assembler replaces the symbol as explained
in 13.3.2.2.

Although it is seldom necessary to precede set symbol references by an ampersand, it should be done to differentiate
the set symbol from the other characters.

13.3.2. Replacement

References to parameters and set symbol values cause information to replace those references in the source code
line. The format of the references and the rules for where references may occur are similar to those for keywords, set
symbols, and paraforms. However, parameters are not replaced by the same method as set symbols.

Replacement is subject to the following limitations:

n Parameter and set symbol replacements may not be used to construct other parameter or set symbol
references.

. Character substrings and the concatenation of character strings may not be used to construct parameter or set
symbol references.

L Parameter and set symbol replacements and character manipulation may not be used to construct the
following directive mnemonics:

SET, DO, ENDO, PROC, NAME, END, ISEQ, ICTL -

» Assembler directive and operation code mnemonics should not be used as set symbols, keyword names, PROC
directive labels, or DD statement labels.

L Parameter and set symbol replacement may not be used to construct the type subfield or the character L in
DC, DS, or literal operand fields.

13.3.2.1. Parameter Replacement

Parameters which appear in the operand field of a proc call line or a NAME directive are not evaluated. Parameter
references and set symbol references that appear on a proc call line are replaced but are not analyzed. Information
coded as a parameter is treated as a collection of one or more characters delimited by commas.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-11

UP-NUMBER PAGE REVISION PAGE

In any statement other than proc call lines, after the set symbol values have been referenced and all the paraforms
and keywords have been replaced by the characters from the appropriate parameter subfields, the newly constructed
source code line is scanned for conversion and evaluation. This allows the programmer to submit parameter
combinations of characters which could not otherwise be used.

Example:

Given the following proc call line

LABEL A OPERATIONA OPERAND A
1 16 18

. Lo § fohn ‘RdlL-L &;«X51B+3+ 3 S S S Lot i Gt b ey §

L E;: Py I s i H sé‘zﬂiﬁi)‘..ﬁ

TR 5 ,5;_s~‘»§si:;> L SO S SUE NN N W T O VWS SR SO
Bl ?E;Qu? CI&PC3N i

i s Lk Py b coE oy R R

would effectively produce the following line

T T B R [TS T
F;fi‘?kx EQU c%'i-'iax‘hgi‘ﬁ'w‘?;(r3’,fi§:z<gii*zt

[A S T T i ~§»3:=:\A£*!:='55:52E}l:if_

and no error flags would occur. If the characters 1B had occurred anywhere else in the module as a term (e.g.,
2+1B+34), they would have caused an expression error to be generated.

13.3.2.2. Set Symbol Replacement .

Set symbol replacement differs from parameter replacement. The expression or character string which the set
symbo! represents has already been evaluated. The expression in the operand field of a set directive has been
converted into a binary value. When the set symbol value is referenced, it is converted to a string of decimal digits
which represents that value. These decimal characters then replace the set symbol reference as part of the newly
constructed source code line. When the set symbol represents a character string, no conversion is necessary; thus
characters of the character string replace the set symbol reference.

After all set symbol value and parameter references have been replaced, the new source code line is converted and
fully evaluated.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 13-12

UP-NUMBER PAGE REVISION | PAGE

Example:

Given the following SET directive statements:

LABEL A OPERATION A OPERAND A
10 16
\]
&1A‘LF1Alxx S!Ex-rfz X11F';Fx?1xn‘f4(y;§t‘:;ixiixgtllil

xXALLlii SlEx-rzl ‘1BDSB’;3§ik!éSilé!llii*ill‘(!iil

and a reference to those symbols

IR Laa [N AT RN AR S I A AT AN I N AT T A A

BEl-rlAlllilEQul &AJ_LIFLA[+1111'aiLi!lll!!!lill{lll}i
Y111|111 Equix xX.x+12:7izxx§ili!1!Jitn§;l;ilxt::lx

then the effective results after substitution would be:

Lixlli;l!xlz I N N N A N A A

B_ETA:!!;]EQ_LLI 215!5.1-’—&!%1]5l!liti}l'llil!)ill{)lil
Ylillillk&ul! &)sa'fz{an11{;1;1;11111(14}141112

The value that symbo! BETA represents is 256, and if BOB represents the value 17, then Y would represent
the value 44.

13.3.2.3. Null Character-String Replacement

When a parameter is referenced but is not present on the proc cali line or when a set symbol is referenced after it has
been declared but before it has been defined, the reference is treated as a null character string. A null character string
is a convenient representation of a void. Null character strings generated from references to undefined set symbols or

parameters delete the original reference.

Given the following proc call

LABEL A OPERATION A OPERAND A
10 16
W lpr'C;Li ‘uxhouH; A I I

this statement within the proc

[N T R Lot it b e e by :
Bb;B(;!glpx(az)-g]t; ExQ;Llisils”’;Bd'iTbesl111111;1s§1;x;i;

AR Lo RN NN VO N0 VO T N0 W U WO MR SN IO (NS WA WOC WA WS OO C O YL O DU NN N TN

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE

PAGE REVISION |

would appear and be processed as follows:

LABEL AOPERATIONA OPERAND A
10 18
‘BIO;B}Z | IR ! ;EIQM : ! Y 3:"',T;QM o e vy s b e b v b

The null character string may also be coded in certain places in the source statements. As coded, a null character
string consists of two successive apostrophes which are not inside any other paired apostrophes. It should only be
coded as a separate term in arithmetic expressions. Unless it is an argument of a relational operation, a null character
string is treated as 0.

In a relational operation, the null character string can be used efféctively to test for the presence or the absence of
parameters. Thus, given the preceding proc call line, the following expression would have a value of 1;

13—13

H

iliillLl;

H

1

13

N]
¥

i

¥]
¥

1=1‘&§P((e21)1li

i

i

i

i

ottt i i3t L Ve o b v v o
and these expressions would have a value of 0:
it b Ox=1pg(le>; MR 1 PRI B T NIU N S N T R N A
B -1 []
IS I Lt Fou Simit 1&i.ps(-x3;)x I AN Y W S U U A R N W A
et b Lot SR T SN R B SR S O HIE S W T O ST SR TR s Lo
In a relational operation in which one operand is a paraform or set symbel that may be replaced by the null

character string, it should be coded as the second operand.

13.4. CALL LINE LABELS

The label of a proc call line is represented by a dummy label which is specified in the PROC directive statement label
field. The dummy label is coded within the proc wherever the call line label is to be generated. When the proc is
called, the call line label replaces the dummy label wherever it is coded. If there is no label on the call line, the
dummy label is replaced by a null character string. The dummy label may be coded in the label operation code,
and/or operand field of any instruction, directive, or proc call statement (except special directives) within the proc.
It is used like a set symbol (13.3).

13.5. NAME LEVELS AND PROC NESTING

A proc reference may appear within a proc definition; this is considered a second level reference. A maximum of
three levels of proc references may be generated within an assembly module. At the source code level and at each of
the three proc levels, set symbol definitions may be declared to be available for reference anywhere in the module.
Set symbols declared this way (by means of the GBL directive) are globally defined. When a set symbol is declared
to be locally defined (by means of the LCL directive), its definition may only be referenced at the level where it is
declared. A set symbol locally declared at the source code level is not available for reference within procs and one
which is locally declared at some proc level can only be referenced within that proc. Locally declared set symbols
may be used within procs or at the source code level without fear of conflicting with set symbols defined locally at
some other level or globally throughout the module.

7935 Rev. 1 SPERRY UNIVAC Operating System/4

URP-NUMBER

PAGE REVISION PAGE

Keyword symbols, the dummy label, and the symbol used to reference positional parameters are treated in the same
way as locally declared set symbols. They cannot be referenced outside of the proc in which they are declared. When
the proc is completely processed, all the locally declared symbols and their values are discarded.

13.6. METHOD OF WRITING AND REFERENCING PROCS
Although the following examples are limited to procedures within a given program, the system library also contains
procs. A call on a library procedure causes that proc to be brought into memory. The assembler then substitutes the

input information given in the operand field of the call line and produces the required object lines.

The generation of code from a given procedure is done only at assembly time when a proc call is encountered. The
coding thus generated is an integral part of the object program.

Program-defined procs must precede all other statements in the source code module.
Examples:

The following examples illustrate all of the pertinent points and rules necessary in writing and generating
procedures,

In a given program it is found necessary to compare two numbers frequently and to load the smaller of the
two numbers into a register. The symbolic labels assigned the storage positions to be compared are BOB and
JOE, respectively, Because the same load and comparison must be done several times, a proc to generate the
proper code can be written. Such a proc might look like this:

LABEL A OPERATION A OPERAND A

] 10 16
1' RS S PR®.C. ISR N WU TN N G IO SO0 U DU SO A AT SATTN O AT SO U U O I
218MALLL L INAME 11O b b L L
3 Liv o 6‘,‘ BOB oo Lo by by e gLy
1 I Ci 1 6(;&)&@15 T NN NN U N N O WO 0 N S SNV YOO S U S SN N S W N N
Sl gt Bk I et® b e b b b 1
e 111 Li oy 6 OB b b b L
VA IR TR END v b e e b b e e b by g

1. Initiates a proc.

2, Names the proc.

3. Lo.ads the contents of BOB into register 6.
4, Compares contents of JOE to register 6.

5. Branches out if BOB is smaller.

6. If JOE is smaller, loads JOE into register 6.

7. Ends the proc.

13-14

7935 Rev. 1

UP.NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION PAGE

Register 6 has been designated to contain the smaller number. When the following proc call line is encountered
in the source code

LABEL A GPERATIONA

16

10
wA;LL TSI S0 N U VIO UNNN SO0 N VNN W WY NS NS T T WO U S A NN SN U VN Y U

OPERAND

lines 3 through 6 within the proc are generated and inserted at the point where the proc call, SMALL, is
encountered.

In order to compare two numbers not located in BOB and JOE, and to store the smaller number in a register other
than register 6, the following proc could be coded to allow parameters.

N AR BN

) AR A SEIAN) ¢ A
SMALL. . NAME O . . . |
&DL L : &P(kl) }&:PT(2) : : S L RSO T U
S SN SR S i X S . dedobld BT S
1. Initiates a proc with parameters.
2. Names the proc.
3. Uses paraforms to reference parameters. The &DL in the label field causes the symbol in the label field
of the call to be defined as the label of this instruction.
4, Uses paraforms to reference parameters.
5. Branches out if &P(2) is smaller than &P(3).
6. If &P(3) is smaller than or equal to &P(2), load &P(3) into &P(1).
7. Ends the proc.

The &P,3 on line 1 specifies that there are three positional parameters in the body of the procedure; these
parameters are referenced on lines 3, 4, and 6. Note that a parameter can be used many times.

13—-15

7935 Rev. 1 13-16

SPERRY UNIVAC Operating System/4

PAGE REVISION | PAGE

UP-NUMBER

A calling statement to generate the same object code as in the previous example would contain these expressions in
the call line:

p—
Py A w0 A ‘ A
b i IR N U O NN T N T AT N TS T A T N T W i b
L4 H 3 L4 M_AIL!L 63}181bi& ;}d!b¥E 5 boddnd E b dd ; | A N S i Loddd ‘ §.
Using the same procedure, other values can be compared and another register can be used by coding:
PR T N O | (S U T W TN NN VU Y0NS NON WO TN AT N NN O SO ANC W NN UOUT W WO NN U WS SRS N '
N EE R SiMiA'sLﬂL 3;‘15T151M§P»J\ 1Cs0MT; SRS SR AR RN AN A O U AR R
v b Lot SR T WO T DU TS VAN U VNS NN N AN O U N O SN U WO NOOC YN SN WO TN WU TSN AU B
where TEMP and CONT represent the addresses of two other numbers, and the 3 represents register 3.
To provide a more general procedure to handle two numbers anywhere in storage, using any register and also
comparing for either a smaller or larger factor and storing that factor in the register, a proc could be written as
follows:
&L~ PRbC @ &P,3 et i
SMALL . NAME O -

LARGE . NAME L. .. ‘ bt it
" ! C PCL)L&P(3) 1 L] «
Do &P(O)=l.
00 . ol L . *4+8
W LABEL : : i f Lo Lok o : : bk
12 . . R I SO &Pf(‘);&P(a) SO VRS SO SR M O NS BON O S SOOI O

S ®NNUE N —

1. Initiates a proc with parameters.

2. Names the proc for smaller comparison.
3. Names the proc for larger comparison.
4. Uses paraforms to reference parameters.

5. Uses paraforms to reference parameters,

7935 Rev. 1

UP.NUMBER

SPERRY UNIVAC Operating System/4 13-17

PAGE

PAGE REVISION I

10.

11.

12.

Does the following two lines of coding if &P{0) equals 1 (this makes comparison for the larger of two
factors).

Branches out if &P(2) is larger.
Branches to label defined as TND.
Terminates DO statements.
Branches out if &P(2) is smaller.
Defines TND as a GOTO label.

Uses paraforms to reference parameters.

13. Ends the proc.

A call line using the proc name SMALL generates the same object coding as in the previous examples, because the
expression in the operand field &(P(0)) of the DO line is O; therefore lines 7 and 8 are not evaluated. If the following

call line is used

LABEL A OPERATIONA QPERAND A
10 16
A_}B] fod % fd LﬁA R!GE 6 9180;8’;d b,E i N - | | S S | % i bodd { Y H

then the DO line expression is equal to 1, lines 7 and 8 are evaluated, line 10 is skipped, and the following object

statements are generated.

A simpler procedure to accomplish the same result can be coded:

R b b b b 00 N S T U S W S TR S M O T W A
LY R N | T ©,8098 1, IV ORI BT
SR N B Ci i . 6;,;(’;&5% SUUTE SO U T SR UR TS N S WO B W SRR
IR B T BH, | %H8 L i b e b el e Lo
it o L. ?;)di&xEl A VT N S W N NN IO A S SN S O T M MR O A

L&DL PROc &P,3
2SMALL NAME L

3LARGE NAME H .

$&DL. L P(1),&P(2)

S €. &P(1),&P(3)

6 B&P(0) . %+8

7 L &PC1),&P(3)

8 EMD e

7935 Rev. 1 13—-18

SPERRY UNIVAC Operating System/4

UP-NUMBER l PAGE REVISION IPAGE

1. Initiates proc with three parameters.
2. Names the proc for smaller (low) comparison.
3. Names the proc for larger (high) comparison.

4, Uses parameter reference forms for the register (&P(1), displacement (&P(2,1)), index register (&P(2,2)),
and base register (&P(2,3)}.

5. Same as line 4 except uses parameter 3 instead of 2.

6. Branches out. &P(0) varies either L or H depending on the call line.
7. Same as line 5.

8. Ends the proc.

The character L or H on lines 2 or 3 replaces the parameter &P(0) in the source code line on line 6. Line 6 is then
evaluated as either:

LABEL A GPERATION A OPERARD A
10 16
o d L Lo BL i **'.,8, N H e H L i
or
eiaod P i foded i . i !] Lo b,
bt BHz i 'k+a R T el] £ H i H
L i S iwgm.ﬁ i i o Lo d - fod | ! L !

The explicit form of base displacement addressing with the ability to specify index registers for the generated
instruction can be provided by the following:

&DL

DL

SMALL
LARGE V
L &P, &P(Z

PROC &P,3
NAME L

NAME H
),8P(2,2),4P(2,3).

OO N U = NS

c 8Py &P(341),&P(3 12),&P(3, 3.

B&?(O) O
L &P(l) &P(3, l)(&P(3 2) &P (3, 3))

_END

7935 Rev. 1~
UP-NUMBER

SPERRY UNIVAC Operating System/4

I PAGE REVISION |F’AGE

13-19

If the proc call line is specified as follows:

LABEL A OPERATION A OPERAND A
1 10 16
S MU 1 i LIA{R!G'EE éill:(15!0: 4“11 5 i(75 135;} 1{5')! fod } L Pl i

N

R N A ool i1 T ot Lot TR I ; i
Lo da) Li 61-50t 4;115) ; ol R RN

ettt Cl 1. 6:;:115i03(5’;s15{ - el e o b
RO BH. . .| &+8 . R - bevroa v beae e g
[N L. ;6}!115)Q(155'1 15 | S R AT I

The generated coding on line 1 specifies loading into register 6 the contents of a location whose address is
determined by adding the displacement 50 to the contents of index register 4 and then adding the contents of base
register 15. Lines 2 and 4 are handled similarly by using the displacement of 150 plus the contents of index register
5 plus the contents of base register 15.

If one of the numbers is already in the correct register, then the first load instruction need not be generated. By
omitting the second parameter on the call line when the number is in the register, the proc can test that subfield to

determine when to generate the first load instruction.

O Ao nE VN

&DL. . | PRbc &P,3 . .. :
BMALL . NAME L

LARGE | NAME H . . o

L _,_,&LCL l; Lo FURTTRTIS TR
&LCL.L: SET '&DL

&DL .

"&P(2) =" =0

S P(:) &P(Z n)(&P(zﬁ,z))
IORLCLL C P(n &P(3 :)(&PL3 g)) e
18— _B&P.LO)| *+8
72 Lo . P(l)m &?(3,4)(&?(3 2))

X

lEaD

fd

A SRS S S

13-20

PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

4. Declares a local set symbol for use in inserting the label of the proc call in the first generated line.

b. Sets the local set symbol to the character string in the label of the proc call line.

6. Generates the load instruction only if the call to this proc has a non-null second operand.

7. The load instruction, if generated, always has the label of the proc call.

8. Sets the local set symbol to a null character string so that line 8 will be unlabeled if line 7 is generated.
10. Defines the label on the proc call line only if line 7 is not generated.

If the call line for the preceding is:

LABEL AOPERATIONA OPERAND A
10 16
TR WA NUTUE A WO O ST A | t R AOF YO N YOUE SN NS TN SN TN WO WO YUTCHUNE WU W T T U RSO SO
WXY 2 Lo SMALL, 4,;;,;(2"3&5}5.:)% ST WO N0 N TNNE SN SN SOOF JNON NUOF SO SO SO B O O N W
.. L S H % RS SO ! ST S0 N TS T SN N S SR SO BT SO =

then the object code of the following statements would be generated:

; ; i ; |
i Loit Loiod T N N T T T R TR

: o I . bdon

MxiYi Lo ci d 6;,'d‘D§E1 (5) b e (. el
b IBIL, ; *ﬂ-‘—is TIN0S OO WO NV TNOE VO JNL TOU VUL TN WU IR TN T S N oo bt

i i Lo 6 ,sdP;EiCS,) PO A A bobd b N

A proc call such as:

SRR A b T WO WO T PR TS WO SO NN WO WS VU YOOI WO TH S YOO W N WO .
uivlwl } i S ¢ SMAILIL 61}1(18‘0}5)’ x(d;b!E,SI') i S O E : H fod bk bk i i
Codb i b1 R T N T U SRS NV R TR AT U N ST U MR N S UNTON Y SN N N NS
would generate the following statements in object coding:
Lodnh bk bbbk bbb A [TR VTR T U T W0 WONE A S T S O A W
UVM o do Li o 61’sszaB§() Lo pobo] AN NN A
C Ci i §6l)zch*E(;5_§)] S0 RS A TAT N N TN WY N N W O SR U AT
e b B e A T R
I L. S 6) d&E(S) B SRS U S W N I SO S TRRE W N S N I

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION I PAGE

13.7. VARIABLE SYMBOLS

A variable symbol may be used as any of the following:

L] a symbolic parameter

L a set symbol

L] the label of a DO directive

= the label of a PROC directive

L] a system variable symbol

A variable symbol consists of from two through nine characters, the first of which is an ampersand (&), the second a
letter or special letter, and each of the remaining characters a letter, special letter, or digit. A symbolic parameter
represents the label or the macro instruction or one of the operands of the macro instruction by which the macro

definition is called. SET symbols and the DO directive are described in 12.8 and 12.8.4, respectively, System variable
symbols are described in 13.7.2.

13.7.1. Use of Variable Symbols

SET symbols are replaced whenever found, including operation fields and label fields, except for SET statements.
Therefore, assembler directives and mnemonic operation codes are not permitted to be used as:

- SET symbols (LCL or GBL)

- keyword parameters
L labels of PROC directives
L] labels of DO statements

13.7.1.1. Concatenation of Variable Symbols

A variable symbol may appear in a statement concatenated with other variable symbols or other characters. If a
variable symbol is to be immediately followed by a letter, digit, left parenthesis, or period, a period must be written
after the variable symbol to distinguish the variable symbol from the characters following it. The variable symbol
and the period following it are replaced by the characters representing the value of the variable symbol. The period
does not appear in the resultant statement.

13-21

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

PAGE REVISION l PAGE

13—-22

13.7.2. System Variable Symbols

System variable symbols are assigned values automatically by the assembler. Two of these symbols, &SYSNDX and
&SYSECT, can appear only in the label, operation, or operand fields of statements in proc definitions. Two other
system variable symbols, &SYSDATE and &SYSTIME, can appear in proc definitions or in source modules.

13.7.2.1. &SYSNDX

The system variable symbol &SYSNDX is used to prevent the occurrence of doubly-defined labels; that is,
&SYSNDX can be combined with other characters to create unique names for statements generated within the same
proc definition.

Initially, & YSNDX is assigned 4-digit number 0001 to correspond to the first proc definition processed by the
assembler. For each subsequent proc definition, symbol &SYSNDX is incremented by 1 so that it effectively keeps a
running count of all procs being processed. Thus, if &SYSNDX is used in a proc definition, the value substituted for
it will correspond to the current proc definition being processed.

Throughout one use of a proc definition, the value of &SYSND X remains constant, independent of any nested procs
within that definition.

The following coding example illustrates the use of the &SYSNDX symbol. The assumption is that the program is
calling the same proc twice, and that the proc itself (called MAIN) contains a nested proc (called NEST).

AR A srieation A OPERAND A
i TG 1 &

IS T R A prc &P) O . FANERRIS NSNS TN N N W T
CR._. 3,6] : :
B

ABSYSNDX]

. A&SL\(sNDX SR VUS5SSR UG N SFUNE WS WIS S S TS

2. SRR N PRDC‘ &‘P ,O* U SR B SIS NI I

MAIM . NAME | |

3. &NJD»XNJUM %ET ; 3;Y$NDXL TSV N0 Y SRS SUNE SIS SONI N NE VO ST SN SN N ST SN S S N
N B AR, . . 4’-,. 9 R i : S SO WO S S0 S WS Dt S

NE$T T .

B&§3Y$NDX ,SQR;-;...;N 4 5.14 SR S NN T ST W N ST SRS ST S S S N U

S RPN S 9

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

13-23

PAGE

| PAGE REVISION

Coding continued:
LABEL AOPERATIONA OPERAND A
10 16
L B i
5, BALR gn,,o T R
‘‘‘‘‘‘‘ USING {*:,L Clitin
6.PROGA MAIN ' . L \ el
... |GBL | ANDXNUM L
T.&NDXNUM | SET = |ooo!. R L
Al SR A7 o L
AR 4,9 . A o
8. MES,T; S Y W R o Gene\-aTed Code‘ o
t GBL NDXNUM)\ . [Fvom MAN proc
9..A0002 SR | B,6 . Generated Cede | (firstcall)
... ... lER . IB,6 . from NEST proc
of. BE . | Al . (firsteall)
M .. B . . JROOO2 . /. . o
12.Boool . | BR 2.5 e -
13-;912&3&3; | mMAIN e A
oo . BBL '&NDXNUM R U
(4 RNDXNUM | BET | boo3 | . . A
A3 BRI Y
i R i q’z}q ! -
(5' i b .JNtEsSJTL TR ST VRN RS ST SIS SO R N i .
i -{E:‘B_Li » NDXANUM .). , Genera‘\’ed G:de o
16. ;tgLQoolqj aR. . IBR,6 Genera‘l‘ed cer | from MAIN pvoc
... JCR LIB6 _from NEST prec | (second call)
1. E .. llIA3 . ‘ \ _(second call) .
8. . B. |lwoood. . ./ / N
(9.Booo3 BR. |25 . .. o
4 EAD » -

1. Start of nested proc definition.

2. Start of main proc definition.

3. &SYSNDX is initially assigned the value 0001.

4, Call line for nested proc.

5. Start of main program (showing all generated coding).

6. Call line for main proc (first time).

7. &SYSNDX = 0001, &NDXNUM set to 1 (leading O's dropped).

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION |

13-24

PAGE

8. Call line for nested proc (first time).
9. &SYSNDX =0002.
10. &NDXNUM = 1 (from main proc).
11. &SYSNDX = 0002.
12. &SYSNDX = 0001, within first call to MAIN.
13. Call line for main proc (second time).
14. &SYSNDX = 0003, &NDXNUM set to 3 (leading 0’s dropped).
156. Call line for nested proc (second time).
16. &SYSNDX = 0004.
17. &NDXNUM = 3 (from main proc).
18. &SYSNDX = 0004.
19. &SYSNDX = 0003.
13.7.2.2. &SYSECT

The system variable symbol &SYSECT is used to represent the name of a control section in which a proc call
appears; that is, for each proc call processed by the assembler, &SYSECT is assigned a value that corresponds to the
name of the control section in which the proc call appears.

Control section statements (CSECT or DSECT) processed in a proc definition affect the value for &SYSECT for any
subsequent nested procs in that definition. However, throughout the use of a proc definition, the value of &S YSECT
may be considered a constant, independent of any CSECT or DSECT statements or nested procs. The name assigned
to &SYSECT will always be that of the last CSECT, DSECT, or START statement, regardless of whether that
statement is correct.

The following coding example illustrates the use of the &SYSECT symbol. Here, the program is calling two procs
(called MAINA and MAINB) in succession, the first of which {(MAINA) involves calling the same nested proc twice in

succession.

7935 Rev. 1

SPERRY UNIVAC Operating System/4

13-25

l PAGE REVISION |

LAREL A}O{}PERATIONA}é OPERAND A COMMENTS
| ANESECT | PROC | &P, 0 i
NJEST L NAME O . [O S A Ui = R
&MESEQT1 CSECT] N RO AR
i 1PC A(&&Y’SECI) ! id Lot bodd
- END i i ps ! N
i ST bohd bented Lo . | . i
P P T S U SRS S Lo Lo ST D UL A S § it b Lot
i A 124 5 R el b d U G TSI cinba
20 i pRDJCi ‘&‘P,O ! i I ST S bt bk] il
MATINA . . ME 1. .] ,] » P .
CSMAINA | CSECT | . . 0. Lo ; :
TR | : DS» D CEIBO i L R it _ H
3.NESTA . . | NEST PO SR S U S UVUUEE SRS SRR S ‘
4- MExil‘;BLL ¢ EST, T T VRO ST ST NONE S SN U SO SY NO O i L .
s a1 DS (&QXMT) ‘ ! 1
5- @YSLECI CS.Epfr S JESN PO S S GO 4 EUNRREUS IS BU RE I T T ST S
b o) END G S T O P S VST SO O | L - N
6. I PROSC. &P};Q bededled doii i B S TS Y S SRR
MA.I-MB fd #AMEA [DOU S TS G S SRS S SO U0 SO A S
il C (28YSECT). o
[S END PP T U SO YO W SO SO SO SO - i
Lt . ot Lo TURS SO SR SO JUN USUPH ST T SO .
T RS i ; L i A et 1o
1 TR e TN WO I VS SO SN0 ST SN SO SN SR U SONE SN SOD S VO Lodeia L
P Lt LI : i Lo i
T.MAINPROG] CSECT | . : .
S TS DS CLZDO ,,,,,, e -
8. ke el MAINA | I i
CSMATNA | [CSECT] L |

(.

12.|

13,
4.
Is.

'NESTA Y

NESTA .

o dede e

NESTR

DS
NEST.

cLtoo . .

iyding R

DC . .
NEST

,,A(csMAmA) }

H

GenerdfedCodefrom
NE$T proc (Firsteall)

P S S

NESTB

[I

CSECT,

DC .

A(NESTA). .
A(MAINPRDG)

Generi‘fed Codg‘ﬁpm
_ NesT proc (mmd ca u)

MA;D;JPBDG CSECI Loddo ; R 1 b,. .,:“. b :‘J i :)
i R I I.Ml [Y S H Lo b ey i i
b ... | PC. A(NLA:LNPqu) ,L Genevated Code from MAINB proc. |
. BRI END | 8 S T T Y-S ST S ST WS S U NSNS S S SN SNE VU ST UG SRR SUIOOF SO S ST
IS B [SRTU SO N SV T SO NS WY S W S R God ke
poid o ot PR SUE R N S

13-26

PAGE REVISION I PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

1. Start of nested proc definition.

2. Start of main proc A definition.

3. Call line for nested proc NESTA.

4, Call line for nested proc NESTB.

5. Returns to the CSECT under which code was being generated when MAINA was called.
6. Start of main proc B definition.

7. Start of main program (showing all generated coding).

8. Call line for main proc A.

9. Call line for nested proc NESTA.

10. &SYSECT = CSMAINA.

11. Call line for nested proc NESTB.

12. &SYSECT = NESTA.

13. Return to main proc A (&SYSECT = MAINPROG).

14. Returns to the CSECT under which code was being generated when MAINA was called.
15. i Call line for main proc B.

16. &SYSECT = NESTB.

13.7.2.3. &SYSDATE

The system variable symbol &SYSDATE provides the date of the assembly. The format of &SYSDATE is the
character string mm/dd/yy representing month, day, and year. The value of &SYSDATE is constant during the
assembly.

13.7.24. &SYSTIME

The system variable symbol &SYSTIME provides the time of the assembly. The format of &SYSTIME is the
character string hh:mm representing hours and minutes. The value of &SYSTIME is constant during the assembly.

141

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER ‘ PAGE REVISION

14. Error Messages

14.1. MESSAGE TYPES AND FORMAT
Fatal, diagnostic, and academic are the three levels of error messages provided by the assembler. Each error message
(flag) is a single alphabetic character. The assembler analyzes each source code statement (except after a fatal error)

as it processes the statement. When an error is found, the appropriate flag is printed on the same line as the source
code statement containing the error on the program listing to the left of the relative storage address.

14.2. FATAL ERRORS

Fatal error flags signify that the processing of any remaining source code statements would produce meaningless
results. The assembler produces a partial listing of the program but all statements are not completely analyzed.

The fatal errors are:
] ESID Overflow — B

n Storage Overflow — F

14.3. DIAGNOSTIC ERRORS
Diagnostic error flags signify incorrectly specified source code statements. These errors are not serious enough to
prevent the normal processing and the generation of binary output; however, they prohibit execution of the

program. The appropriate flags are printed on the program listing on the same line as the statements containing
errors.

The diagnostic errors are:

L] Expression Not Relocatable — A

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

| PAGE REVISION |

14--2
PAGE

Covering Error — C
Duplication Error — D
Expression Error — E
Statement Too Large — G
Boundary Alignment — H
Operation Code Error — |
Syspool Overflow — K
Location Counter — L
Undefined Symbol — U
Internal Assembler Failure — V

Continuation Error — X

Too Many Nested DO or PROC Directives — Z

14.4. ACADEMIC MESSAGES

Academic message flags signify that certain actions have been taken by the assembler. These actions can be caused
by erroneous coding or by the programmer who wishes to obtain a specific result. Academic messages do not
prohibit or have any effect on the output of an assembly, and these occurrences are not considered serious in nature.

Conditional Assembly Error — M

Name Field Error — N

Relocation Information Dropped — R

Statement Out of Sequence — S

Truncation — T

Symbol to a Character String — W

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

143

PAGE

14.5. ERROR MESSAGE SUMMARY

Table 14—1 is a summary of all error messages, the type of error, and the meaning of each message.

Table 14—1. Error Message Summary (Part 1 of 3)

Flag

Level

Explanation

Response Action

Diagnostic

Expression not relocatable — An
absolute expression is provided
where a relocatable expression is
required.

Replace absoiute expression with relocatable
expression.

Fatat

External symbol identification
(ESID) overflow — More than 254
external symbol identifications
exclusive of COM are specified.

Reduce number of ESIDs to conform “o limit
of 254.

Diagnostic

Covering error — No valid base
register can be found to cover
or reach the effective storage
address and still have a displace-
ment value from 0 to 4095,

Specify appropriate base register.

Diagnostic

Duplication error — A label is
defined more than once. Set
symbols can be redefined without
producing a flag.

Eliminate duplicate labels,

Diagnostic

Expression error — The operand
field for an instruction or a
directive has an incorrect
format.

Correct incorrect formats,

Fatal

There is no more space available
to the assembler for expanding
tables during macro generation,
This does not apply io literals,
location counter derived symbols,
and symbols defined by the EQU
directive.

Diagnostic

Statement too large — The number of
characters included in the

statement exceeds the size

of the buffer from which

the statement is processed.

Either decrease size of statement, or
increase the size of buffer.

Diagnostic

Boundary alignment error — Refer to

the // PARAM LST=(4) statement in
E.2.3. The operand addresses of RX, Si,
and RS instructions are checked for
boundary alignment. The flag is generated
if the address violates the boundary
alignment rules.

Correct alignment.

Diagnostic

Operation code error — An
illegal operation or an
undefined operation is
specified.

Correct specification.

Diagnostic

Syspool overflow — The disc
assembler has overflowed the
syspace area allotted to
processing EXTRN and ENTRY
records.

Remap the syspool using DACMAP (utility
and service routines, UP-7713) and resubmit
job, If problem persists, additional syspool
area must be allotted to the job.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 14-4

UP-NUMBER PAGE REVISION PAGE

Table 14—1. Error Message Summary (Part 2 of 3)

Flag Level Explanation Response Action
L Diagnostic Location counter overflow — Reassemble specifying correct object computer
Either one of the location size.

counters has overflowed or the
assembled program has exceeded
the specified maximum storage
space available, The assembler
assumes that the computer in
which the object module is to
be executed has the same
configuration as the computer in
which the program is assembled,
unless otherwise stated.

M Academic Conditional assembly error — Ensure that DO and ENDO statements are
DO and ENDO statements have paired.
not been paired.

N Academic Name field error — The label Correct label error.
field contains an illegal
symbol, no symbol when one is
necessary, or a symbol when
one is not allowed,

R Academic Relocation information dropped — Correct the usage of relocatable terms.
A relocatable term is used in
such a manner that its relo-

~ cation information is no longer
valid in this instance. This
condition occurs frequently
when a relocatable term is
used in an expression.

S Academic Statement out of sequence — An Place statements and records in proper
S flag signifies that a START, sequence,

PROC, NAME, or ICTL statement
is out of sequence. This flag

also signifies that sequence
numbers in the source records

are not in ascending order.

T Academic Truncation — A specified or Reduce length of value or increase length
completed value is too large for of receiving field, if truncation is not
the field in which it is stored; intentional,

therefore, it is truncated and

inserted into the field. Truncation

can be intentional; it does not
prevent the execution of the program.

V] Diagnostic Undefined symbol — One or Define all undefined symbols,
more symbols in a source code
statement are undefined during

the assembly. Any symbols that
remain undefined are equated to

0. However, undefined paraforms

do not produce an error flag,

All symbols that are defined in
another object moduie must be
identified in the EXTRN statement

so that they can be properly processed
and not cause U flags,

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

14-5

PAGE

Table 14—1. Error Messag» Summary (Part 3 of 3)

Flag

Level

Explanation

Response Action

Diagnostic

Internal assembler failure —
An internal assembler failure
is detected. This error is
caused primarily by catas-
trophic hardware failure,

Notify Sperry Univac customer representative.

Academic

Symbol to character string —
An undefined symbol is coded
in a basic expression. The
symbol is treated by the
assembler as a character
string.

Correct coding errors,

Diagnostic

Continuation error — A
continuation card has not been
provided for a statement whose
operand field is incomplete.

Correct coding errors.

Diagnostic

Too many nested DO or PROC
directives — More than 10
levels of DO directives or

three levels of PROC directives
are coded for assembly.

Correct coding errors.

7935 Rev. 1

UP.-NUMBER

SPERRY UNIVAC Operating System/4

A-1

PAGE REVISION PAGE

Appendix A. Instruction Repertoire

Mnemonic Description Operation Type 90/60, 9400/
Code Code 70 9480
A Add bA RX X X
AD Add-normalized (long format) 6A RX X
ADR Add-normalized {long format) 2A RR X
AE Add-normalized (short format) 7A RX X
AER Add-normalized (short format) 3A RR X
AH Add-half-word 4A RX X X
Al Add-immediate 9A St X

93 Si X
AL Add-logical 5E RX X
ALR Add-logical 1E RR X
AP Add-decimal FA SS X X
AR Add 1A RR X X
AU Add-unnormalized (short format) 7€ RX X
AUR Add-unnormalized (short format) 3E RR X
AW Add-unnormalized (long format) 6E RX X
AWR Add-unnormatized (long format) 2E |R X
BAL Branch-and-link 45 RX X X
BALE Branch-and-link-external 4D RX X
BALR Branch-and-link 05 RR X X
BC Branch-on-condition a7 RX X X
BCR Branch-on-condition 07 RR X
BCRE Branch-on-condition-to-return-external oc RR X
BCT Branch-on-count 46 RX X X

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

A-2

PAGE REVISION PAGE

Mnemonic Description Operation Type 90/60, 9400/
Code Code 70 9480
BCTR Branch-on-count 06 RR X X
BXH Branch-on-index-high 86 RS X
BXLE Branch-on-index-low-or-equal 87 RS X
C Compare 59 RX X X
CcD Compare {(long format) 69 RX X
CDR Compare (long format) 29 RR X
CE Compare (short format) 79 RX X
CER Compare {(short format) 39 RR X
CH Compare-half-word 49 RX X X
CL Compare-logical 55 RX X X
CcLC Corr;pare-logical D5 SS X X
cLl Compare-logical 95 Si X X
CLR Compare-logical 15 RR X X
cP Compare-decimal F9 SSs X X
CR Compare 19 RR X X
cvB Convert-to-binary 4F RX X
CvD Convert-to-decimal 4E RX X
D Divide 50 RX X
DD Divide (long format) 6D RX X
DDR Divide (long format) 2D RR X
DE Divide {short format) 70 RX X
DER Divide {short format) 3D RR X
DIAG Diagnose {privileged instruction) 83 Si X)
DP Divide-decimal FD SS X X
DR Divide iD RR~ X
EA Emulation-aid EZ * X
ED Edit DE ss X X
EDMK Edit-and-mark DF SS X
EX Execute 44 RX X
HDR Halve (iong format) 24 RR X
HER Halve {short format) 34 RR X
HIO Halt-4/O (privileged instruction) 9E Si X

7935 Rev. 1

UP-.NUMBER

SPERRY UNIVAC Operating System/4

A-3

PAGE REVISION PAGE

Mnemonic Description Operation Type 90/60, 9400/
Code Code 70 9480
HPR Halt-and-proceed (privileged instruction) 99 SI X X
IC Insert-character 43 RX X X
ISK Insert-storage-key 09 RR X
L Load 58 RX X X
LA Load-address 41 RX X X
LBR L.oad-base-register]3] RR X
LCDR Load-complement (long format} 23 RR X
LCER Load-complement {short format) 33 RR X
LCHR Load-channel-register {privileged instruction) AD SI X
LCR Load-complement 13 RR X
LCS Load-control-storage {privileged instruction) B1 RS X
LD Load (long format) 68 RX X
LDR Load (long format 28 RR X
LE Load {short format) 78 RX X
LER Load (short format) 38 RR X
LH Load-half-word 48 RX X X
LLR Load-limits-register 81 RS X
LM Load-muitiple 98 RS X X
LNDR L oad-negative {long format) 21 RR X
LNER Load-negative {short format) 31 RR X
LNR L oad-negative 11 KRR X
LPDR Load-positive (long format) 20 RR X
LPER Load-positive {short format) 30 RR X
LPR Load-positive 30 RR X
LNR Load-negative 10 RR X
LPSW Load-program-status-word (privileged instruction) 82 Sl X X
LR Load 18 RR X X
LTDR Load-and-test {long format) 22 RR X
LTER Load-and-test {short format) 32 RR X
LTR Load-and-test 12 RR X X

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

A—4

PAGE REVISION PAGE

M Multiply 5C RX X

MD Multiply {long format) 6C RX X

MDR Multiply {iong format) 2C RR X

ME Multiply (short format) 7C RX X

MER Multiply {short format) 3C RR X

MH Multiply-half-word 4C RX X

MpP Multiply-decimal FC SS X X '
MR Multiply 1C RR X

MVC Move D2 SS X X
MVi Move 92 Si X X
MVN Move-numerics D1 SS X X
MVO Move-with-offset F1 SS X X
Mvz Move-zones D3 SS X X
N AND 54 RX X X
NC AND D4 SS X X
NI AND 94 Sl X X
NR AND 14 RR X X
[9] OR 56 RX X X
ocC OR D6 SS X X
ol OR 96 St X X
OR OR 16 RR X X
PACK Pack F2 SS X X
RDD Read-direct {privileged instruction) 85 Sl X

S Subtract 58 RX X X
SCHR Store-channel-register {privileged instruction) AC Sl X

SD Subtract-normalized (long format) 6B RX X

SDR Subtract-normalized {long format) 2B RR X

SE Subtract-normalized (short format) 78 RX X

SER Subtract-normalized (short format) 38 RR X

SH Subtract-half-word 4B RX X X
sSic Start-1/O {privileged instruction} ac St X X

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

A-5
PAGE

Mnemonic Description Operation Type 90/60, 9400/
Code Code 70 9480
SL Subtract-logical 5F RX X
SLA Shift-left-single 8B RS X
SLDA Shift-left-double 8F RS X
SLDL Shift-left-double-logicai 8D RS X
SLL Shift-left-single-logical 89 RS X X
SLM Supervisor-load-multiple (privileged instruction) B8 RS X X
SLR Subtract-fogical 1F RR X
SP Subtract-decimal FB SS X X
SPM Set-program-mask 04 RR X X
SR Subtract 1B RR X X
SRA Shift-right-single 8A RS X
SRDA Shift-right-double 8E RS X
SRDL Shift-right-double-logical 8C RS X
SRL Shift-right-single-logical 88 RS X X
SSK Set-storage-key (privileged instruction) 08 RR X
SSM Set-system-mask (privileged instruction) 80 Si X X
SSTM Supervisor-store-multiple {privileged instruction) BO RS X X
ST Store 50 RX X X
STC Store-character 42 RX X X
STD Store (long formaty 60 RX X
STE Store (short format} 70 RX X
STH Store-half-word 40 RX X X
ST™M Store-multiple 90 RS X X
SuU Subtract-unnormalized (short format) 7F RX X
SUR Subtract-unnormalized (short format) 3F RR X
SvC Supervisor-call 0A RR X X
SwW Subtract-unnormalized 6F RX X
SWR Subtract-unnormalized (iong format) 2F RR X
TCH Test-channe! (priviteged instruction) 9F | X
TIO Test-1/0 (privileged instruction) 9D Si X

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

A—6

PAGE REVISION PAGE

Mnemonic Description Operation Type 90/60, 9400/

Code Code 70 9480
™ Test-under-mask 91 Sl X X
TR Translate DC SS X X
TRT Translate-and-test DD SS X

UNPK Unpack F3 SS X X
WRD Write-direct (privileged instruction) 84 Sl X

X Exclusive-OR 57 RX X X
XC Exclusive-OR D7 SS X X
X1 Exclusive-OR 97 Sl X X
XR Exclusive-OR 17 RR X X
ZAP Zero-and-add F8 SS X X

PR

7935 Rev. 1 SPERRY UNIVAC Operating System/4 B—1

UP-NUMBER l PAGE REVISION | PAGE

Appendix B. 9400/9480 and 90/60,70
Hardware Differences

B.1. GENERAL

The SPERRY UNIVAC Operating System/4 (0S/4) provides SPERRY UNIVAC 9400/9480 compatibility mode on
SPERRY UNIVAC 90/60,70 hardware. This compatibility mode does not duplicate all the characteristics of the
9400/9480 systerns hardware. Therefore, there are minor hardware differences between the 9400/9480 systems and
the 90/60,70 systems. These differences may require some coding modifications to 9400/9480 programs.

For additional hardware information, see the processor programmer references, UP-7936 (current version) for
90/60,70 and UP-8080 (current version) for 9400/9480 systems.

B.2. INSTRUCTION DIFFERENCES

B.2.1. Add Immediate (Al)
= 9400/9480 systems

Al has an op code of 931 6
- 90/60,70 systems

In 9400/9480 compatibility mode, the Al op code is 931 6 Of 9A1 6

B.2.2. Add Decimal (AP) and Subtract Decimal (SP)
] 9400/9480 systems

If operand 2 is longer than operand 1, the high-order digits of operand 2 are ignored.
n 90/60,70 systems

A program exception interrupt may occur as a result of processing the significant digits.

B.2.3. Compare Decimal (CP)
u 9400/9480 systems

If operand 2 is longer than operand 1, the high-order digits of operand 2 are ignored.

B-2
PAGE REVISION | PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

UP-NUMBER

w 90/60,70 systems

The shorter operand is extended with Q's.

B.2.4. Divide Decimal (DP)
L] 9400/9480 systems

Operand 1 length is ignored and execution depends upon first occurrence of a sign. The divisor {operand 2)
may be a maximum of 31 digits plus a sign.

] 90/60,70 systems

If a sign is not encountered with the first 16 bytes of data, a program exception interrupt occurs. The divisor
{operand 2) may be a maximum of 15 digits plus a sign.

B.2.5. Load Address (LA)
= 9400/9480 systems

The 9400/9480 systems use 18-bit main storage addresses.
= 90/60,70 systems

The 90/60,70 systems use 24-bit main storage addresses.

B.2.6. Muitiply Decimal (MP)
= 9400/9480 systems

Operand 1 length is ignored and execution depends upon first occurrence of a sign.
] 90/60,70 systems

If sign is not encountered with the first 16 bytes of data, a program exception interrupt occurs. The multiplier
(operand 2) may be a maximum of 15 digits plus a sign.

B.2.7. Set Program Mask (SPM) and Program Status Word (PSW)
L] 9400/9480 systems
Bit position 12 is for ASC!| mode.
Bit positions 38 and 39 of the PSW are not used.
= 90/60,70 systems
Bit positions 2 to 7 of the specified register are transferred to bit positions 34 to 39 of the current PSW.
Bit position 16 is for ASCH mode.

Bit positions 38 and 39 are used due to the additional hardware capabilities. Other differences will be noted in
the interrupt code portion of the PSW.

7935 Rev. 1

UP-NUMBER

B-3
PAGE

SPERRY UNIVAC Operating System/4

PAGE REVISION

B.2.8. Set System Mask (SSM)

9400/9480 systems
The operand (mask) is a 1-byte data field.
90/60,70 systems

The operand (mask) is a 2-byte data field which must be aligned on a half-word boundary.

B.3. BUFFER CONTROL WORD (BCW) DIFFERENCES

The 90/60,70 1/O interfaces do not use BCWs. Any programs which may have communicated with the 1/O at the
physical 1/0 level require BCW translation to channel command words (CCW).

B.4.

CHANNEL COMMAND WORD (CCW) DIFFERENCES

The 90/60,70 1/O channels contain minor differences from those used in the 9400/9480 systems. Therefore, the
following considerations must be given to the CCWs used in |/O processes:

B.5.

Command code field of O (ccceptable in the 9400/9480 systems) is not acceptable in the 90/60,70
environment.

A TIC-to-TIC operation {(acceptable in the 9400/9480 systems) causes a program check in subchannel status in
the 90/60,70 systems.

The 9400/9480 command codes T10, SIS, and RIS require modification for the OS/4 environment.

A 0-byte count field for commands other than TIC (acceptable in 9400/9480 systems) results in an 1/0
interrupt (subchannel status) in the 90/60,70 systems.

The 90/60,70 hardware has the ability to create an interrupt in an incorrect length condition when the length
of data transferred does not equal the byte count.

Although the CCW proc facilities of the 9400 system software provided double-word alignment, the
9400/9480 systems hardware did not actually enforce this requirement. In the 90/60,70 systems, CCWs must
be aligned on double-word boundaries or execution is not allowed.

STANDARD EQUATE PROC

9400/9480 systems

This proc (STDEQU) contains appropriate system labels, including those which represent 9400/9480 systems
low order storage areas.

90/60,70 systems

This proc (STDEQUSH) contains additional system labels, unique to the 0S/4 90/60,70 environment.

B—4

PAGE

7935 Rev. 1 SPERRY UNIVAC Operating System/4

URP-NUMBER I PAGE REVISION

B.6. REFERENCE TO NONEXISTENT STORAGE
n 9400/9480 systems

In systems with 262K storage, reference to nonexistent storage results in wraparound addressing. In smaller
systems, the result varies according to the operation as follows:

- Read (load), zeros are picked up.
— Write (store) results in no-op unless write-protection is included thus causing interrupts.
- Branch results in illegal instruction interrupt at the nonexistent location.

= 90/60,70 systems

References to nonexistent storage result in an addressing exception interrupt.

B.7. MCP TELETYPEWRITER LINE TERMINALS
] 9400/9480 systems

MCP supported use of multiplexer channel adapter which checks start of message (SOM) and end of message
(EOM) functions.

] 90/60,70 systems

Multiplexer channel adapter SOM and EOM check features are not available.

B.8. STORAGE REQUIREMENTS OF PREAMBLE AND EXTENT/PROTECTED DTF AREAS
n 9400/9480 systems

Storage allocated to the preamble and the extent/protected DTF areas is:

Preamble Area Extent/Protected DTF Area
Storage Size (Bytes) (Bytes)
131K or less 512 512 or a multiple thereof
262K 1024 1024 or a multiple thereof

= 90/60,70 systems

Storage allocation for both the preamble and the extent/protected DTF areas is 2048 bytes or a multiple
thereof.

7935 Rev. 1 SPERRY UNIVAC Operating System/4 c-1

UP-NUMBER PAGE REVISION PAGE

Appendix C. ASCIILEBCDIC, and
Punched Card Codes

Table C—1, ASCII (American Standard Code for Information Interchange) Character Codes

Bit Positions 7, 6,5
000 001 010 011 100 101 110 1mm
0000 NUL DLE SP 0 @ P ' [
0001 SOH DC1 [@ 1 A Q a q
0010 £TX DC2 " 2 B R b r
0011 ETX DC3 # 3 c s c s
0100 EOQOT Dc4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F \Y) f v
Bit
o111 BEL ETB ‘ 7 G w g w
Positions
1000 BS CAN (8 H X h x
4,3,2,1
1001 HT EM) 9 1 Y i ¥
1010 LF SuB * : J V4 i z
1011 VT ESC + : K [k (
1100 FF FS , < L \ [} ©)
1101 CR GS - = M 1 m }
1110 SO RS . > N /\® n ~
1111 Sl us / ?) —] DEL
\—/_\©/—\/ @
N T ——
NOTES:
ASCII bits are numbered from the left in descending numerical sequence: 7654321
@ The following optional graphics can be substituted @ Sixty-three printable character set.

in the character set:
@ Graphics available by use of the type 0768-02 printer
] for A which prints a 94-character set (DEL is not a graphic}

{for | Ninety-four printable character set.
|

@ For 63-character printers, the following substitution
is made:

\for {

Table C—2, EBCDIC (Extended Binary Coded Decimal Interchange Code} Character Codes

Bit Positions 0, 1,2, 3

HI3IgWNN-dN

L A4 GEBL

0000 | 0001 | 0010 | 0011 | o100 | 0101 | ott0 | O111 1000 | 1001 1010 | 1011 1100 {1101 1110 | 1111
00000 | NUL | DLE ps @O SP & - {’@ @\ @ o
0001 | soH | oci sos(D ! a @ i ~@ A J 1
0010 STX DC2 Fs (D] SYN b k s B K S 2
0011 ETX DC3 c [t c L T 3
0100 d m u D M U 4
0101 HT LF e n v E N \Y 5
0110 BS ETB f o w F o] w 6
Bit

Positions 0111 DEL ESC EOT g p X G P X 7

4,5,6,7
1000 CAN h q y H Q Y 8
1001 EM @ i r z ! R z 9
1010 I @ 1@ 1 ®
1011 vT $, #
1100 FF FS DC4 < . % @
1101 CR GS ENQ NAK () . '
1110 | SO RS ACK + ; > =
1M sl us BEL suB ! A ? "

NOTES:

EBCDIC bits are numbered from the left in ascending numerical order:

01234567

@ DC, SOS, FS are the control characters for the EDIT instruction and
have been assigned for ASC1I mode processing so as not to conflict
with the corresponding character positions previously assigned in the

EBCDIC chart. As these characters are not outside the range as

defined in American National Standard, X3.4 — 1968,

they must not appear in external storage media, such as
ANSI standard tapes. This presents no difficulty due to
the nature of the EDIT instruction.

The following optional graphics can be substituted in the character set:

¢ for[

| for)

For 63-character printers, the following substitution is made:
|
\ for |

The lowercase alphabet and indicated graphics are introduced by
use of the type 0768—02 printer, which prints a 94-character set.

PamN

NOISIA3Y 39Vd

Fovd
0

p/waisAg bunesadg IVAINN AHHIIS

|

7935 Rev. 1
UP-NUMBER

SPERRY UNIVAC Operating System/4

PAGE REVISION

c-3
PAGE

Table C—3. Punched Card, ASCIl, and EBCDIC Codes (Part 1 of 5)

Printed Card ASCII EBCDIC
Character Symbol Punches Hexadecimal l Decimal Hexadecimal l Decimal
Letters

Uppercase A A 12—1 41 65 C1 193
Uppercase B B 12-2 42 66 c2 194
Uppercase C C 12-3 43 67 C3 195
Uppercase D D 12—4 44 68 c4 196
Uppercase E E 12-5 45 69 Cc5 197
Uppercase £ F 12—6 46 70 C6 198
Uppercase G G 12-7 47 71 c7 199
Uppercase H H 12-8 48 72 c8 200
Uppercase | l 12—-9 49 73 Cc9 201
Uppercase J J 11-1 4A 74 D1 209
Uppercase K K 11-2 4B 75 D2 210
Uppercase L L 11-3 4C 76 D3 211
Uppercase M M 11-4 4D 77 D4 212
Uppercase N N 11-5 4E 78 D5 213
Uppercase O o) 11-6 4F 79 D6 214
Uppercase P P 11-7 50 80 D7 215
Uppercase Q Q 11-8 51 81 D8 216
Uppercase R R 11-9 52 82 D9 217
Uppercase S S 0-2 53 83 E2 226
Uppercase T T P 0-3 54 84 E3 227
Uppercase U U 0—4 55 85 E4 228
Uppercase V v 0-5 56 86 E5 229
Uppercase W w 0-6 57 87 E6 230
Uppercase X X 0-7 58 88 E7 231
Uppercase Y Y 0-8 59 89 E8 232
Uppercase Z Z 0-9 5A 90 E9 233
Lowercase a a 12-0-1 61 97 81 129
Lowercase b b 12-0-2 62 98 82 130
Lowercase ¢ c 12—-0-3 63 99 83 131

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

c—4

PAGE REVISION PAGE

Table C—3. Punched Card, ASCII, and EBCDIC Codes (Part 2 of 5)

Printed Card ASCII EBCDIC
Character Symbol Punches Hexadecimal D al Hexadecimal Decimal
Lowercase d d 12-0-4 64 100 84 132
Lowercase e e 12--0-5 65 101 85 133
Lowercase f f 12—-0-6 66 102 86 134
Lowercase g g 12—-0-7 67 103 87 135
Lowercase h h 12-0-8 68 104 88 136
Lowercase i i 12—-0-9 69 105 89 137
Lowercase j j 12-11-1 6A 106 91 145
Lowercase k k 12—-11-2 68 107 92 146
Lowercase | 1 12-11-3 6C 108 93 147
Lowercase m m 12-11-4 6D 109 94 148
Lowercase n n 12-11-6 6E 110 95 149
Lowercase o o 12-11-6 6F 111 96 150
Lowercase p p 12—-11-7 70 112 97 151
Lowercase q q 12-11-8 71 113 98 152
Lowercase r r 12—11-9 72 114 99 1563
Lowercase s s 11-0-2 73 115 A2 162
Lowercase t ‘ t 11-0-3 74 116 A3 163
Lowercase u u 11-0-4 75 117 A4 164
Lowercase v v 11-0-5 76 118 A5 165
Lowercase w w 11-0-6 77 119 A6 166
Lowercase x X 11-0-7 78 120 A7 167
Lowercase y Y 11-0-8 79 121 A8 168
Lowercase z z 11-0-9 7A 122 A9 169
Numerals
0 0 0 30 48 FO 240
1 1 1 31 49 F1 241
2 2 2 32 50 F2 242
3 3 3 33 51 F3 243
4 4 4 34 52 F4 244
5 5 5 35 53 F5 245
6 6 6 36 54 F6 246

7935 Rev. 1 SPERRY UNIVAC Operating System/4 c-5

UP-NUMBER PAGE REVISION PAGE

Table C—3. Punched Card, ASCII, ind EBCDIC Codes (Part 3 of 5)

Character Printed Card ASClI EBCDIC
Symbol Punches Hexadecimal Decimal Hexadecimal Decimal

7 7 7 37 55 F7 247

8 8 8 38 56 F8 248

9 9 9 39 57 F9 249

Symbols

Exclamation point ! 12-8-7 21 33 4F 79
Quotation mark, dieresis ” 8-7 22 34 7F 127
Number sign, pound sign # 8—3 23 35 78 123
Dollar sign $ 11-8-3 24 36 5B 91
Percent sign % 0-8-4 25 37 6C 108
Ampersand & 12 26 38 50 80
Apostrophe, acute accent ' 8-5 27 39 7D 125
Opening parenthesis (12—-8-56 28 40 4D 77
Closing parenthesis) 11-8-56 29 41 5D 93
Asterisk * 11-8-4 2A 42 5C 92
Plus sign + 12-8-6 2B 43 4E 78
Comma, cedilla , 0—-8-3 2C 44 6B 107
Minus sign, hyphen — 11 20 45 60 96
Period, decimal point . 12—-8-3 2E 46 4B 75
Slash, virgule, solidus / 0-1 2F 47 61 97
Colon : 8-2 3A 58 7A 122
Semicolon H 11-8-6 3B 59 5E 94
Less than < 12-8—-4 3C 60 4Cc 76
Equal sign = 8—6 3D 61 7E 126
Greater than > 0-8-6 3E 62 6E 110
Question mark ? 0-8-7 3F 63 6F 11
Commercial at symbol @ 84 40 64 7C 124
Opening bracket [12—-8-2 58 91 4A 74
Closing bracket] 11-8-2 5D 93 5A 90
Reverse slash \ 0-8-2 5C 92 EO 224
Circumflex A 11-8-7 5E 94 5F 95

7935 Rev. 1

UP-NUMBER

SPERRY UNIVAC Operating System/4

c-6

PAGE REVISION PAGE

Table C—3, Punched Card, ASCI!, and EBCDIC Codes (Part 4 of 5/

Printed Card ASCH EBCDIC
Character Symbol Punches Hexadecimal | Decimal Hexadecimal | Decimal
Underline —_ 0-8-5 5F 95 6D 109
Grave accent ' 8—1 60 96 79 121
Opening brace { 12-0 - 78 123 co 192
Closing brace } 11-0 7D 125 DO 208
Vertical line } 12-11 7C 124 6A 106
Overline, tilde ~ 11—0—1 7E 126 A1 161
Card ASCII EBCDIC
Character Punches Hexadecimal { Decimal Hexadecimal | Decimal
Nonprintable Characters
ACK {Acknowledge) 0-9-8-6 06 6 2E 46
BEL (Bell) 0-9-8-7 07 7 2F 47
BS (Backspace) 11-9-6 08 8 16 22
CAN {Cancel) 11-9-8 18 24 18 2