/

g

= = COMPARE PRODUCT NO.(A) = =

YW-MATIC

PROGRAMMING
SYSTEMmM

,H—w BN !%iw.!&;g,“” T

| It

. = === BO0940 = == LOO880O = == =

- ~COMPARE PRODUCT NO.(A) .

PROGRANMMING
SYSTEMWM

ANOTHER SERVICE OF . . .

MANAGEMENT SERVICES AND OPERATIONS RESEARCH DEPARTMENT

DIVISION OF SPERRY RAND CORPORATION

@ 1958+ SPERRY RAND CORPORATION

© 1958+« SPERRY RAND CORPORATION

Preface

WHAT 1S THE UNIVAC FLOW-MATIC PROGRAMMING SYSTEM?

THE UNIVAC FLOW-MATIC SYSTEM is a revolutionary new programming aid developed
for the UNIVAC Data Automation System by the Automatic Programming Development
Group of the Remington Rand Division, Sperry Rand Corporation. Using an
English language description of application requirements as its instruction
code, this new product is especially designed for use by those who know and
can best define their data processing needs. With this new system, the Com-—
puter is directed to accept descriptions of application requirements in the
businessman's vocabulary and translate these descriptions automatically and
accurately into detailed coded instructions.

WHO CAN USE THE UNIVAC FLOW-MATIC SYSTEM?

The systems and procedures analysts, the accountants, operating management
can use the UNIVAC FLOW-MATIC SYSTEM with little training. Familiarity with
detailed computer coding is not necessary. Familiarity with the desired
system, and the ability to describe it are the only prerequisites. The ex-
perienced programmer will also find that the UNIVAC FLOW-MATIC SYSTEM fac-
ilitates program preparation.

WHY USE UNIVAC FLOW-MATIC?

The UNIVAC FLOW-MATIC AUTOMATIC PROGRAMMING SYSTEM offers to its user un-—
precedented benefits, —- benefits such as:

Faster and more accurate Programming - The coding process utilized reduces
the elapsed time between the original conception of an application and the
checked out final processing. The concise method of expression greatly re-
duces chance of error.

Easier Programming Analysis - The inherent step by step approach leaves a
trail of easily understood documentation, important in retrospect if it be-
comes necessary to alter the programs either because of changed requirements
or modifications in the data processing systenm.

Checks Systems Design - The ease of preparing UNIVAC FLOW-MATIC charts, plus
the flexibility with which changes can be made facilitates greater use of
pilot systems to check the basic logic of the system design.

One-Shot Jobs Now Practical - The programming of many one-shot jobs formerly
considered impractical is now not only feasible and economical, but also
provides invaluable additional fact power to decision making management.

Flexibility - Changes in either the processing procedure or data format can
be accomplished independently without affecting the other.

ABOUT THIS MANUAL

Straight-forward in approach, this manual is so designed to serve the grada-
tional need of the user. Later chapters and appendices furnish detailed
information for the experienced programmer.

11

Chapter

Appendix
A

Table Of Contents

’ Page
INTRODUCT 10N

A COMPLETE SYSTEM WHICH MEETS ALL USER PROCESSING

REQUIREMENTS ...ttt ittt s iassssan s
AVAILABLE EQUIPMENTS AND THEIR FUNCTIONS ..vvenenrnvnnensns,
THE UNIVAC 11 CENTRAL COMPUTER «uverunroenenvnsnnnssnnnsanns
THE UNIVAC 11 CONTROL GROUP ...iuvuveninsnnnnannnsesannanass
UNIVAC INPUT DEVICES +vvvvvnncannn tetieeretresieraatsatans
UNIVAC INPUT=OUTPUT DEVICES wueuveunrnnnussnscanannnnnnsenns
UNIVAC OUTPUT DEVICES vuvvuvevanenensnssasasnssasssonanasnns
ILLUSTRATION OF INTERRELATIONSHIP OF EQUIPMENT ..uvvvenennns I

THE FLOW-MATIC METHODiciiviiiiinnianinnncareaconnnnnass I3
The steps to be followed in applying this new method of
programming are described in terms of a data-processing
problem.

FLOW-MATIC CHARTING AND PROGRAM-WRITINGcocivrnunnnnnn 26
The procedures for drawing flow charts and writing English-
language programs are described. Sample Problem 1 is
programmed.

FILE-DATA LAYOUT AND DESIGNcvvviiriirnrnernerannneasansanss 35
The methods of writing descriptions of data files, items and
fields is given, along with the pre-printed forms used.

INTERMED IATE OR WORKING STORAGEiovvirvennrnnnnnenaans 60
Sample Problem 2 is introduced requiring working storage.
The method of utilizing this feature of FLOW-MATIC 1is

described.

RELATIVE MACHINE CODING, X~=l ...viveiiernennnnnnsenssiasacanns 72
In order that special or unique subroutines may be tncluded
in the compiled program, a method of machine coding tis shown.
Sample Problem 3 indicates how this is used in a progranm.

THE FLOW-MATIC COMPILING ROUTINEcoiviiiririrnrnnnnnnenss 83
A rudimentary description is given of how the compiler oper-
ates, and of the record of compilation prepared for the user.

N oo ENNN —

FLOW-MATIC FUNCTIONS, GUIDE FOR WRITING FLOW-MATIC CODE,

FLOW-MATIC STATEMENTScviiitiiiiiiiinnirarnnensennnannnens 9l
DATA DESIGN PRE-PRINTED FORMScciiiiiiniinrnrnennnas 101
RELATIVE MACHINE CODING X=1 ..o iuiiiirienienrnenenncnsacnnens 105
FLOW-MATIC OPERATING INSTRUCTIONScivuiieiirnnnnanninnnns Lt
INDEX .ttt it ittt ittt sttt 115

111

Introduction

The FLOW-MATIC programming system provides for the UNIVAC user an entirely
new, different, versatile method of writing programs. The key development
in this system is the conversion of the FLOW-MATIC code in the businessman's
vocabulary into standard computer code. The primary objective in the de-
velopment of this system has been to create a tool to assist analysts in
the preparation of programs for data-processing systems. This is the first
major step in the direction of a general-purpose programming aid for data-
processing users.

The use of the FLOW-MATIC System involves the following steps:
Data System Design
Complete Run Definition
Process Chart of the Run
Block Chart of the Program
|

FLOW-MATIC Chart

FLOW-MATIC Code

1v

The user may also be interested in the general picture of the entire process
in preparing a program with the aid of the FLOW-MATIC compiling routine as
shown in the graphic presentation as follows: '

Data System Design -

Y
Complete Run Definition

Y
Process Chart
Programmer's Contribution

(English Language)

\

/
Block Chart

Y
FLOW-MATIC Chart

|

FLOW-MATIC Code =

COMPILER i
Translation of FLOW-MATIC]

FLOW-MATIC.Library'->{ Code into Computer code

Computer's Contribution
(Computer's Language)
Compiled Running Program
in computer code on tape
ready for processing data

The primary consideration in the design of the FLOW-MATIC system is the (data
processing) user and the types of programs required by the system he defines.
It provides a complete method, or procedure, which begins with the first
definition of the problem or application, and continues throughout the check-
ing out phase and into the program and system refinements which follow the
initial operation of the UNIVAC system.

Both the manner and the extent to which ‘the FLOW~-MATIC System is used depend
on the individual who uses it. The expert programmer may use the FLOW-MATIC
procedure during the initial definition of UNIVAC runs to facilitate communi-
cation between the computer programming group and operating management. If
the major function of the expert programmer is to supervise a number of less
experienced people, he can spend maximum time in the definition and analysis

phases, carrying out the steps of the FLOW-MATIC procedure only so far as is
necessary, depending upon the varying abilities of his individual programmers.
Still another possibility is that of utilizing FLOW-MATIC to produce the first
draft of a program which, because of its high degree of repetition, may later
require ingenious modification and application of the "tricks of the trade"
known to the expert programmers.

One advantage the FLOW-MATIC programming system offers to a data~processing
organization in its early stages of growth is the reduction of personnel
training time. Within a comparatively short period they will become expert
FLOW-MATIC programmers and system designers. As with any powerful, general-
purpose tool, users increase in competence as they gain experience. This
does not, of course, remove the need for experienced, career programmers.
Every UNIVAC Data Automation System installation requires, and is benefited
by, experienced career programmers who discover operational flaws in programs
and systems, correct them, utilize their intensive knowledge to solve especial-
ly difficult programming problems, and add to the effectiveness of FLOW-MATIC
itself.

It is important to point out that FLOW-MATIC is a growing system designed for
continued expansion and development in a variety of directions, all within
the basic framework of the existing structure. It is expected that this
growth will proceed in such a way as to make the system increasingly useful.

Although the programmer who uses the FLOW-MATIC Compiling system is not re-
quired to know the internal operation of the UNIVAC Data Automation System,
he must be familiar with the manner in which the computer reads input data,
performs various operations and delivers the desired results. Chapter I gives
a brief description of the UNIVAC Data Automation System together with the
specific function of each individual piece of equipment.

Chapter II provides the reader with a quick, comprehensive view of the FLOW-
MATIC method. It presents a sample application, and traces the procedure
to be followed in programming with this system. Later chapters develop the
detailed techniques involved in each step of the procedure, and through the
introduction of extensions of the basic application, additional features of
FLOW-MATIC are explained.

Vi

chapter 1

A Complete System Which
Meets All User Processing .

Requirements

The Univac II Data Automation System is a complete and well balanced data
processing system. It will accept and prepare information through a wide
variety of standard data-recording media. The user gains versatility most
economically since the Central Computer, that unit which performs the actual
processing, can read and write information directly through the magnetic tape
which is one of the most rapid input-output media in use today. Peripheral
equipments convert all recorded data into the form acceptable to the Central
Computer, or from the form prepared by the Central Computer (Univac II System
code on magnetic tape) to the desired form. 1ln this way, the system has a
d¢ual advantage. First, the Central Computer need not be hampered in its
processing task by the necessity of working directly with input-output media
unworthy of its lightning-fast internal operating speeds. Secondly, the
Central Computer need not be involved in conversion process which can most
economically be handled by peripheral equipments on an off-line basis.

From a wide variety of available equipments each Univac II System user
chooses the units which, when mokded into a system, best meet his overall
data processing requirements.

AVAILABLE EQUIPMENTS AND THEIR FUNCTIONS

THE UNIVAC 11 CENTRAL COMPUTER

The Univac II Central Computer in Figure 1 is the heart of the Univac II
Data Automation System. It performs all arithmetic and logical operations.

In the execution of a typical data processing task the Central Computer
performs the following basic operations:

1. Step-by-step instructions, stating specifically the operations to
be performed on the data, are read by the Central Computer from
magnetic tape and stored internally within the Central Computer.
Obeying the stored instructions, the Central Computer then auto-
matically

2. Reads the data from magnetic tape and stores it internally.

3. Performs all operations upon the data indicated by the instructions,
and stores the results internally.

4. Reads the results from storage and writes them on magnetic tape.

FIGURE 1

A11 operations are self-checked to ensure that they are performed with the
unwavering accuracy and dependability that has become associated with the
name UNIVAC.

THE UNIVAC |1 CONTROL GROUP

Two control units are directly connected to the Central Computer, and each
in its own way, provides some indication of the actions of the Central Com-
puter.

Univac Supervisory Control Console

The Univac Supervisory Control Console (Figure 2) provides the operator with
a continuous picture of the operations taking place within the Central Com-
puter. It also provides visual indication whenever an error occurs in any
operation, identifying the faulty circuit for the maintenance technician.

Although the Central Computer is designed to operate automatically, there
are occasions when manual intervention may be desirable. The Univac Super-
visory Control Console includes a keyboard by means of which the operator
can type information directly into the Central Computer. A group of switches
and buttons on the Console allows the interruption of automatic operations
and the institution of changes in their course or-the substitution or in-
sertion of other operations.

FIGURE 2

Univac Supervisory Control Printer

The Univac Supervisory Control Printer (Figure 3) is a modified electric
typewriter which prints information directly from the Central Computer. Its
primary function is to provide the operator, in easily readable form, infor-
mation concerning the processing being performed within the Central Computer.
This unit is sometimes employed for printing processing results; however,
it is used for this purpose only when the information to be printed is not
lengthy.

FIGURE 3

UNIVAC INPUT DEVICES

The function of Univac II input devices is to convert information from its
original form into Univac II System code recorded on magnetic tape. These
devices are completely independent of the Central Computer, so that while
the input devices prepare data for future use by the computer, the computer,
itself, is free to carry on the current processing problems. This ability
to overlap input preparation and computer processing represents a large saving
of time and thus money, for the user.

Y

Univac Unityper |1

The Univac Unityper II (Figure 4) is a device by means of which information
legible to its human operator can be recorded on magnetic tape. This device
is somewhat larger than, though similar in appearance to, an electric type-
writer. The 26 letters of the alphabet, 10 numerals, and some special Univac
II System Symbols are represented on the keyboard of this device in an array
similar to the familiar typewriter keyboard pattern. Striking a Unityper
II key causes:

1. A pattern of magnetic spots representing the Univac II System Code
for the character represented on the key to be recorded on a mag-
netic tape mounted in the upper portion of the device, and

2. That character to be printed on a piece of copy paper mounted on
the carriage.

Thus, recording information on magnetic tape with the Unityper II involves
little more than a retyping of the information. Information is tape-recorded
by the Unityper II at a density of so characters per inch with a 2.4 inch
spacing between each consecutive 120 characters.

FI1GURE 4

Univac Verifier

The Univac Verifier (Figure s) is a unit of peripheral equipment which can
operate in any one of two capacities:

1. As a primary input device which records information on magnetic

tape by means of a typewriter keyboard in very much the same manner
as the Unityper II.

2. As a proof reading device which corroborates information recorded
on tape and permits the correction of detected errors.

Its primary use is as a proof reading and correcting device. Information is
recorded by the Verifier at a recording density of so characters per inch with
a 2.4 inch spacing between each 120 characters.

FIGURE 5

Univac Punched Card-to-Magnetic Tape Converter

The Univac Punched Card-to-Magnetic Tape Converter (Figure 6) consisting of
a card Reading Unit, a Control Unit and a Tape Unit, allows the entry of
information into the Univac System in punched card form. Cards are loaded
into the intake bin of the Card Reading Unit, and the information read from
the cards is recorded on magnetic tape. The entire process is accomplished
automatically and its operation is completely self-checked to ensure complete
accuracy of the recorded information. The Converter is equipped with a re-
movable plugboard which allows automatic rearranging of information during
the conversion process.

FIGURE 6

Univac Punched Card-to-Magnetic Tape Converters are offered in two models.
One handles standard 9o-column punched cards; the other handles standard 8o-
column punched cards. Both models operate at a maximum conversion rate of
240 cards per minute and record information at a density of 128 characters
per inch with a 1.8 inch space between each 120 characters, and a 2.4 inch
space between each 720 characters.

Univac Paper Tape-to-Magnetic Tape Converter

The Univac Paper Tape-to-Magnetic Tape Converter (Figure %) is a device con-
sisting of a Perforated Tape Reader, a Translator and Control Unit, and a
Magnetic Tape Recorder. This equipment allows information recorded on paper
tape to be entered directly into the Univac II System. Reels or message
lengths of punched paper tape generated by teletypewriters, automatic type-
writers, adding or bookkeeping machines with tape punchers attached, and
punched card to perforated tape converters may be mounted on the Tape Reader.
Information contained in tapes are automatically translated into Univac II
System Code and recorded on magnetic tape. Deletion of certain punched paper
tape symbols, and addition of some Univac II System Symbols may be accomplish-
ed automatically during the conversion process. The entire operation is
completely self-checked to ensure complete accuracy of the conversion process.
The Univac Paper Tape-to-Magnetic Tape Converter operates at a maximum con-
version rate of 200 characters per second and records information at a density

of 128 characters per inch, placing a one inch space between each 120 chara-
cters, and a 2.4 inch space between each 720 characters.

FIGURE 7

UNIVAC INPUT-OUTPUT DEVICES

Univac Uniservo

The Univac Uniservo (Figure 8) is the device through which the Central Com-
puter communicates with its magnetic tapes. A maximum of 16 Uniservos may
be directly connected to the Univac Il Central Computer. FEach Uniservo con-
tains a "read-write" head and mechanism for moving the magnetic tape past
the head at a speed of 100 inches per second. FEach Uniservo is capable of
reading tape moving in the forward direction, reading tape moving in the
backward direction, writing on tape moving in the forward direction, and
rewinaing its tape. Reading from any one Uniservo, writing on any other
Uniservo, rewinding the tape on any number of the remaining Uniservos may
be carried on simultaneously with Central Computer processing. Uniservo
operations are controlled by the Central Computer throngh programmed instruc-
tions.

FIGURE 8

UNIVAC OUTPUT DEVICES

Univac II output devices allow the system to prepare processed results in a
wide variety of forms. They automatically convert information contained on
tapes produced by Central Computer processing into the desired form. All of
these output devices operate with complete independence of the Central Com-
puter. Thus, the computer is free to handle further processing while the
results of the previous problem are being converted. This ability to overlap
conversion and processing operations represents a great saving in time, and
money for the user.

8

Univac Uniprinter

The Univac Uniprinter (Figure 9) consists of a Tape Reader and a Printing Unit
which is a modified electric typewriter. A reel of magnetic tape, containing
the information to be printed, is mounted on the Tape Reader. As information
is read from the tape, it is printed by the electric typewriter. The Univac
Uniprinter, which accepts tapes recorded at 25 characters per inch, prints
at a rate of 10 characters per second, and is usually used for low volume
output printing, such as the preparation of management reports.

FI1GURE 9

Univac High-Speed Printer

The Univac High-Speed Printer (Figure 10) is used for large volume printing.
This four unit assembly, consisting of a Tape Reader, a Storage Unit, a
control Unit, and a Printer, reads magnetic tape and converts the information
recorded thereon into printed copy. The High-Speed Printer prints an entire
line at a time. Each line may contain as many as 130 characters, and printing
is accomplished at a maximum rate of 600 lines per minute. A removable plug-
board mounted in the Control Unit conmtrols the format of the printed page
and affords wide flexibility in the arrangement of the printed information,
reducing the editing and thus the processing time required of the Central
Computer. The entire operation of this device is completely self-checked
to ensure that each character printed is the exact one recorded on the mag-
netic tape. It accepts information tape-recorded at a density of from 50 to
128 characters per inch with at least one inch space between each 120 chara-
cters.

FIGURE 10

Univac Magnetic Tape-to-Card Converter

The Univac Magnetic Tape-to-Card Converter (Figure 11) consists of three units:
a Tape Unit, a Card Punch Unit and an Electronic Cabinet containing the cir-
cuitry necessary to control and check the Tape and Card Punch Units. This
piece of equipment reads information from magnetic tape and converts the
information into standard punched cards at a rate of 120 cards per minute.
A removable plugboard permits the selection and rearrangement of information
during the conversion process. The Univac Magnetic Tape-to-card Converter
accepts information tape-recorded at a density of 128 characters per inch
with at least one tenth inch space between each 120 characters and 2.4 inch
space between each 720 characters. Its entire operation is completely self-
checked to ensure proper conversion.

FIGURE 11

10

Univac Magnetic Tape-to-Paper Tape Converter

The Univac Magnetic Tape-to-Paper Tape Converter (Figure 12) consists of a
Magnetic Tape Unit, a Translator and Control Unit, and a Paper Tape Punch.
It punches information recorded on magnetic tape into paper tape. The punched
paper tapes may then be used directly to send information via a teletype-
writer.

FIGURE 12

As with all Univac II equipment the operation of the Magnetic Tape-to-Paper
Tape Converter is completely self-checked to ensure accurate conversion.
This conversion is accomplished at a maximum rate of 60 characters per second.
It accepts information recorded at a density of 128 characters per inch with
at least a 1 inch space between each 120 characters.

cl

INFORMATION CAN ENTER AND EMERGE FROM THE UNIVAC Hl SYSTEMTHROUGH A VARIETY OF STANDARD DATA RECORDING MEDIA v

INPUT

INPUT
DEVICES

7

PROCESSING

~

OUTPUT
DEVICES

OUTPUT

Any legible
Standard 90 or 80— Column Documents
Punched Cards

9_3 ' PUNCHED CARD -~

TO= MAGNETIC
TAPE CONVERTER

UNITYER It

ERIFIER

MAGNETIC TAPE=-TO -
PAPER TAPE CONVERTER

PAPER TAPE- TO~ MAGNETIC

Punched Paper T i . Standard 80-Col
nened Faper Tope Printed Material FIGURE 13 Printed Material Ponched Conte

MAGNETIC TAPE-TO-CARD
CONVERTER

capter 2

The Flow-Matic Method

In the introduction it was stated that the FLOW-MATIC System provides an
entirely new method of programming. In order to demonstrate this method, a
simple data processing run is developed through the steps necessary to pre-
pare the computer coded program. The run prepared is representative of a
large class of business data processing runs. Typically, a series of such
runs linked together form a data processing system which, depending on the
subject matter of the programs, computes a payroll, adjusts inventory, per-
forms sales accounting, or prepares labor distribution.

Each run in any such system is characterized by a flow into the computer of
files of data, read from tapes mounted on one or more input Uniservos, and
a flow out from the computer of data written on tapes, also mounted on one
or more Uniservos. The function of the FLOW-MATIC programming system is to
produce the program which controls the flow of data through UNIVAC and per-
forms the required processing of the data.

A file stored on magnetic tape is recorded with identifying information writ-
ten at the beginning of the tape, and sentinels indicating the end of the
data also entered on the tape. The body of the file contains a varying number
of file items, each representing a separate entry in the file and usually
identified by some key information such as payroll number, customer name, or
stock number. Frequently the items in a file are in ascending sequence ac-
cording to this key. Fach item within a file contains data elements related
to the item, arranged in a systematic format. These data fields will be
consistently placed within all items in the file. Thus, for example, by
scanning the same relative position in the items of a typical payroll file,
the pay rates for employees can be located. :

With these few notions of the manner in which business data is stored on
magnetic tape, the process chart or run chart can be considered. The process
chart is the most general picture of a UNIVAC data processing system. Figure
14 shows a series of tape files repreéented by c¢ircles, linked by a series
of boxes which represent computer operations. or rums. '

SAMPLE PROCESS CHART

INVENTORY PRICE
FilE i : FILE

RUN 2 RUN 3
SORT DATA VERIFICATION

SORTED

CORRECT |

INVENTORY PRICE -ERRORS
FILE FILE
RUN 4
MATCH & MERGE

PREVIOUS \

PRICED IJ:?:??RY UNPRICED PRINTED
INVENTORY FILE INVENTORY OUTPUT

FILE

RUN 5
MERGE EDIT

\

UPDATED
PRICED PRINTED
INVENTORY OUTPUT

FILE FIGURE 14

Iy

Figure 14 is a procéss chart which describes part of a system of rums. Prior
to the preparation of such a chart, a comprehensive study of the system must
be made. Some of the points to be considered in this study are the files

to be processed, the computer operations required, and the information desired

as output.

When the process chart has been prepared, the programming task begins. This
is the starting point of the FLOW-MATIC method. Consider, therefore, the
function of run number 4 of the process chart (Figure 15).

PROCESS CHART
ABC MANUFACTURING COMPANY INVENTORY

RUN 4 ‘ | o
APPLICATION OF '
PRICES TO
INVENTORY

PRINTED
OUTPUT

UNPRICED
INVENTORY

PRICED
INVENTORY

FIGURE 15

Suppose run 4 is part.of the UNIVAC inventory system for the ABC Manufacturing
Company. Inventory balance items for all manufactured products are tobe
maintained on magnetic tape and represent one of the input files to this run.
Since prices are not to be carried in this file, it is necessary at intervals
during the year to apply current prices contained in a Price File which is
the second input to the run. One output of run 4 is shown to be a Priced
Inventory file containing all inventory items for which prices were found
in the Price file. Since the two input files were maintained separately, it
is possible that the Price file is not complete. Thus a second output file,
the Unpriced Inventory, will contain those Inventory items for which no price
was found. The system further requires that such unpriced items be printed
on the Highspeed Printer so that they may be checked and - -the proper action
taken.

The diagrams below show an actual example of the contents of each type of
item in the problem.

16

co

0l

02

03

05

06

07

08

09

00

04

INVENTORY ITEM

00009073A101I

jhis is the product number; it may re-
quire as many as 12 digits.

000000025 1u3

[*—This field is the quantity of this

00000000000C

ccocooo0o00CO00

kind of product on hand; it may re-
quire as many as 6 digits.

Other data (not used
- in this problem)
appear here.

PRICE ITEM

50009073 A1 01

This product number shows that this item
appliesto the inventory itemgiven above,

cooco00Q00CQC01l 0965

<e—This is the price for one unit of this

product. Up to five digits may be used,

and since this number represents dol-
lars and cents, the decimal point is
between the third and fourth digits -
$10.95.

00

0i

02

03

05

c6

07

08

09

oc
0l
02

03

05
06
07
08

09

PRICED INVENTORY ITEM

00009073A1 0]

&~ Product number.

000000(0025143

e OQuantity on hand.

0000000O0}j01 095

== |nit price is inserted here.

ccoo0o000000CO0CC

Other data (not used
in this probiem)
appear here.

UNPRICED INVENTORY ITEM

000081 56A0C23

 ——— Produc"c number for which
no price can be found

coocooo0j0oco0s527

f——— Number of units of this kind
of product on hand.

0600000000000

cococoo0cco00000

Other data (not used
o in this problem)
appear here.

[

The key by which the price is matched with the corresponding inventory item
is the product number. These files are sorted in ,ascending segquence according
to product number by previous runs. The sorting runs are performed in order

that the process of matching may be more efficiently carried out by UNIVAC
in run 4.

The next step is to translate the description of the function of the run into
a program for UNIVAC to follow in producing the desired output. It is in
the logical analysis and organization of this program that the skilled pro-
grammer or systems analyst can make the most effective contribution. For it is
in the overall logical design of the program that the application of program-
ming and data processing know-how can make the difference between a correct
program, and one which is both correct and efficient, in terms of making the
best use both of the computer and of the data characteristics. FLOW-MATIC
does not replace good systems design and careful run analysis.

A verbal outline of one possible program to solve this simple problem is given
below. '

Assume at the start that the first item of each of the input files is avail-
able. The operations are as follows:

I Compare the product number of the Inventory item with the product
number of the Price item.

a. If the Inventory product number is less, go on to step II.
b. If the product numbers are equal, go on to step III.
c. If the Price product number is less, go on to step V.

II Prepare and write an Unpriced Inventory item. Then go on to step
IV. ‘

IIT1 Prepare and write a Priced Inventory item. Then go on to step IV.

IV Read the next Inventory item and go back to step I. Or, if the
Inventory file is exhausted, wind up the problem and stop.

\ Read the next Price item and go back to step I. Or, if the Price
File is exhausted, change the program so that step IV goes back to
step II (eliﬁinating'a now unnecessary comparison). Then go on to
step II.

In the preceding statements the functions of this simple run have been com-—
pletely described. The next step is to translate these statements into a
logical block chart for UNIVAC. (See Figure 16.)

18

BLOCK CHART

ABC MANUFACTURING COMPANY INVENTORY

PRICE 1S
- LESS
COMPARE PRODUCT
NUMBER INVENTORY _ READ NEXT

ITEM AND PRODUCT ~ PRICE ITEM '*'(::>

NUMBER PRICE ITEM

AT END

ENTORY | INVENTORY OF DATA
LESS EQUALS PRICE A

SET EXIT FROM IV
TO 60 TO X1 TO __.,@
ELIMINATE

COMPARISON

PREPARE AND PREPARE AND
WRITE UNPRICED WRITE PRICED
INVENTORY ITEM INVENTORY ITEM

READ NEXT ‘_a,(::>
| INVENTORY ITEM

VAT END
{ OF DATA

WIND UP
PROBLEM

FIGURE 16

BLOCK CHART - The block chart is a diagram of the logical statements listed
above. Such a diagram shows all of the paths which are required in a problem,
“and all intersections of the paths. The block chart should be checked for
errors in logic, testing it with all variations of the data which are to be
processed, and producing some sample output. Logical checking is done at
this time because, while this version of the problem is concise, it must be

complete and correct. The block chart, then, is by definition a complete,
concise, correct diagram of the computer data processing procedure.

It is important to note that FLOW-MATIC does not replace the need for complete
understanding of the job to be done. Nor does it replace the need for the
careful analysis which must preceed the choice of the best computer procedure
to do the job. The FLOW-MATIC system does make an indirect contribution to
system design by facilitating the succeeding steps of flow-charting, coding,
debugging (checking) and reprogramming, to such a degree that a considerably
larger proportion of the total time and emphasis can be placed on run analysis

and basic system design. DBy permitting the analyst or methods engineer to

spend more time in block charting, FLOW-MATIC encourages the exercise of
analytical ability and. systems engineering exper1ence.

Figure 16 is a block chart for run 4 which indicates a UNIVAC procedure to
carry out the functions as specified by the procedural statements. Note the
use of the names of functions, items, and data fields in the block chart which
relate back to the original verbal description of the run. FLOW-MATIC en-
courages the use of words throughout the process of translation from de-
scriptive English to machine language in order that the procedure which the
UNIVAC Data Automation System carries out may be understandable to all in-
volved in the development and use of the system. Although the block chart
contains computer know-how, since it répresents the application of computer
characteristics and capacities to the requirements of the job, it is. intel-
ligible to the user and serves as a useful form of communication between the
analyst and management. “

The next step is one of determining the sequence of FLOW-MATIC operations

equivalent to each block on the chart. A FLOW-MATIC operation is an opera-
tional unit designed to have maximum usefulness in data processing applica-
. tions. For ease of use and recognition, these units are identified by English
words and phrases. Insofar as possible, words have been chosen which are
associated with the operations, in normal English language usage. For ex-
ample, such terms as TEST, TRANSFER, JUMP, STOP are used. By maintaining
English wording throughout the transition from procedural statement and def-
inition to the complete FLOW-MATIC coded solution, the programmer and methods
analyst are able to work directly in the terminology of the operations and
procedure. ‘

20

FLOW-MATIC CHART - The process of reducing the“bldck chart to FLOW-MATIC
sentences is most readily accomplished by drawing up a slightly expanded
diagram, known as a FLOW-MATIC chart. This chart contains all of the FLOW-

MATIC operations required to solve the problem, in their proper sequence.

To illustrate this process, consider one path, or branch, of the block chart,
shown in Figure 1%.

SAMPLE OF BLOCK CHART

/ COMPARE PRODUCT\
_.___..______.@ N NUMBER INVENTORY B
/ ITEM AND PRODUCT
* . \NUMBER PRICE msm/

INVENTORY EQUALS PRICE

)

©

4

PREPARE AND
WRITE PRICED > TV
INVENTORY 1TEM

FIGURE 17

21

Reference to the list of FLOW-MATIC operations in Appendix A,page 92 indicates
that this path of the block chart may be expressed in FLOW-MATIC terms as
shown in Figure 18. The FLOW-MATIC chart is completed in this general .manner.
by linking available FLOW-MATIC commands in the sequence required by the block
chart. :

SAMPLE OF FLOW-MATIC CHART

COMPARE PRODUCT
NO'S A & B

A EQUALS B

5 6 7
| TRANSFER _|MOVE PRICE FROM .
@ AITEMTO C [] B ITEM TO C > WRITE C _,@

FIGURE 18

FLOW-MATIC CODE - Writing the FLOW-MATIC code for the problem consists of
transcribing the FLOW-MATIC chart into a series of imperative sentences.
For every operation, one statement is written, the format of which is given
in Appendix A, pages 95-99. A sample of the code in its final form is below
in Figure 19.

(1) COMPARE PRODUCT - NO (A) WITH PRODUCT - NO (B); IF GREATER GO TO OPERATION
10; IF EQUAL GO TO OPERATION H OTHERWISE GO TO OPERATION = .

(5) TRANSFER A TO C .
(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C)

(7) WRITE-ITEM C

SAMPLE OF FLOW-MATIC CODE
FIGURE 19

22

DATA DESIGN: In order to produce a UNIVAC program, it is necessary that the
compiler have information about the design of the input and output data files.
The programmer supplies this information by filling out standard Data Design
forms, shown in Appendix B. The Data Design information is recorded only
once, even though the data files may be processed in a number of rums.

Information about the data files is divided into three categories; File, Item,
and Field.

The File category contains information about the organization of the reel(s)
of tape in the file; for example, whether or not the file is multireel, what
the sentinel conventions are, and how the reells) are labelled. The item
category lists the size of the item, and, if appropriate, states by what keys
these items are sequenced. The field category provides a complete description
of each field in the item; where it is located, how many digits it contains,
and other related information.

The preprinted forms show how this information is to be listed, and, by

providing the appropriate information the data is described for FLOW-MATIC.

Data Designs are prepared for each of the two input files and the two output

files in the Sample Problem run. By reference to the process chart (Figure 1s,
page 15) it can be seen that the input files, since they come from prior

UNIVAC runs, have been previously defined. The FLOW-MATIC System provides

for storage of such Data Designs on tape so that they may be called upon for
reuse.

COMPILATION — When the FLOW-MATIC code and the Data Designs have been written,
the problem is ready for compilation. It is only necessary to transcribe
onto tape the information which has been prepared. The layout of the tape
prepared on a Unityper is shown in Figure 20, where it.is displayed as the
input tape to the FLOW-MATIC compilation.

The FLOW-MATIC compiler delivers, as output, a complete UNIVAC program tape,
which can be immediately tested by mounting it, together with the appropriate
data tapes, and making a trial run. Since the coding which controls the move-
ment of the files through the computer is provided‘by FLOW-MATIC, and since
each section of machine code generated by FLOW-MATIC is correct by itself,
the program will run if errors in logical analysis or errors undetected in
proof-reading are not present. Even FLOW-MATIC cannot protect the analyst
from mistakes in logical analysis. Many internal inconsistencies in the
FLOW-MATIC input code will be detected by the FLOW-MATIC System during the
conversion to computer coding. Logical errors can be located by reference
to the FLOW-MATIC chart. For locating those program errors not discovered
by any of the previously cited means, the compiler provides an Edited Record
of compilation, which enables the analyst with an assist from a programmer,
to relate the computer coding for the problem back to the FLOW-MATIC coded
statements or to the c¢hart.

23

NEW
DATA
DESIGNS

FLOW-MATIC COMPILER RUN CHART
FLOW-MATIC '
CODE

ENDING
SENTINELS

FLOW-MATIC
COMP-ILER
PROGRAM

FLOW-MATIC

FLOW-MATIC
* LIBRARY

INPUT

FLOW-MATIC
COMPILATION

COMPILED EDITED

uNIvae] RECORD
PROGRAM

PRINTED

OUTPUT

FIGURE 20

2y

Chapters 3 and 4 trace, in detail, the preparation of the FLOW-MATIC code
and Data Designs for the Sample Problem. Chapters s and 6 introduce problem
variations which show additional facilities of the FLOW-MATIC compiler.
Chapter 7 describes the production and testing of the compiled program.

25

capter_ 3

Flow-Matic
Charting And Program-Writing

The complete FLOW-MATIC chart for Sample Problem 1 described in Chapter 2
is created from the process chart and the block chart with the aid of the
list of FLOW-MATIC code operations given in Appendix A, page 92. Writing the
FLOW-MATIC chart is, in fact, simply a matter of choosing the necessary func-
tions from the list on Appendix A, page 92, and arranging them in the order
prescribed in the block chart. The FLOW-MATIC chart is used primarily as a
guide for writing the FLOW-MATIC code, and it is simply a restatement of the
logic of the problem in terms easily adaptable to the code.

Figure 21 shows a partially completed FLOW-MATIC chart. All of the required
functions are indicated, and their sequence is shown. Several useful con-
ventions are employed. Circles, here labelled by lettering, indicate inter-
connections between paths; flags are used to assert a condition which exists
at a given point; dotted lines indicate points at which a conditional change
in sequence can occur; rectangular boxes are used for evaluation of a formula
or straight computation and ovals are for deciding among one of various paths
of computational flow, based upon the equality and/or magnitude of two quan-
tities. Note that comments on this chart are still largely in ‘English, and
that no numbers have yet been used.

26

INITIAL VERSION OF FLOW-MATIC CHART
ABC MANUFACTURING COMPANY INVENTORY - SAMPLE PROBLEM |

M
SET

INPUT FILES A 1S GREATER
INVENTORY A
PRICE 8 COMPARE PRODUCT READ- ITEM P
TART OUTPUT FILES O, NO'S A AND B) > p-ITEHE 1= o L"@
PRICED INVENTORY C r
UNPRICED INVENTORY D (PRINT) A IS LESS A EQUALS B (l); mA _D
SET
b

SET JuMP L_a.@

TRANSFER A

L] WRITE-ITEM D (ol JUMP _.@
ITEM TO D)

TRANSFER & MOVE UNIT PRICE WRITE-ITEM C _ J/
@'ﬂ ITEM TO C 1 froM 8 10 ¢ [-—@-— READ-ITEM A _,_@_. Jump 4

EQUAL

TEST PRODUCT NO.

IN B AGAINST 2's CLOSE-OUT €, D |

STOP

NOT EQUAL

REWIND B

FIGURE 21

27

The logical order of performance of these operations is now indicated by
attaching a number to each of the chosen functions. There are four general
rules pertaining to these numbers and their sequence:

1. The operation number sequence starts with zero, and operation zero
always specifies the input and output files to be processed by the
program.

2. The operation numbers are assigned in unbroken sequence.

3. The operations are to be performed in numerical sequence, unless a
specific statement to the contrary is made.

4. The highest number is assigned to the operation which stops the prob-
lem.

Observing these rules, the FLOW-MATIC chart is completed by numbering the
boxes for each operation, and inserting the correct operation numbers at
branch points.

Figure 22 shows the completed FLOW-MATIC chart for the Sample Problem. There
are several features to notice in examining this chart.

The files in the problem are labelled with the letters A, B, C, and D. This
is done for ease of reference and finds further use in writing the FLOW-MATIC
code.

The action to be taken when each of the input files is exhausted is directly
connected to the operation of obtaining a new item. This is done because any
request for a new item from a file may exhaust the data.

The test indicated in operation fourteen determines whether or not the Price
File has been exhausted when the end of the Inventory data has been reached.
A sentinel, a symbol made up of some combination of characters which cannot
appear as valid data, marking the end of the file is placed at the end of
each file to indicate the end of the data. The test therefore determines whe-
ther or not this sentinel is present in the current Price File item.

Operation twelve shows a logical operation to be performec upon the program
rather than on the data being processed. It directs that hereafter operation
nine will return not to operation one, but to operation two, bypassing a now
unnecessary step and directing all further Inventory items to the Unpriced
Inventory File,

28

FINAL VERSION OF FLOW-MATIC CHART

ABC MANUFACTURING COMPANY INVENTORY - SAMPLE PROBLEM |

€y
SET

START

FIGURE

22

A IS GREATER

IF EQUAL, OP 16
OTHERWISE, OP |15

NOT EQUAL

15

REWIND B

INPUT FILES COMPARE PRODUCT 10 L
INYENTORY A NO'S A AND B IF READ-1TEM B
PRICE B 2 GREATER, OP 10 IF iF END OF JUMP TO I _...@
OUTPUT FILES EQUAL, OP 5 OTHER- DATA, 0P 12
PRICED INVENTORY C WiSE, OP 2
UNPRICED INVENTORY D (PRINT) oF e
A IS LESS A EQUALS B vy
SET
12
® c SET 9 TO _.®
MP TO
60 T0 2 JUMP 70 2
3
TRANSFER A ’
WRITE-ITEN D |t JUMP TO 8 __.C>
I1TEM TO D ~
6 8 9 ,"
; READ-ITEM A
TRANSFER A MOVE UNIT PRICF WRITE=ITEM C | | IF EwD OF __,@_4 JUMP 1O 1
ITEM TO € FROM B T0 C DATA, OP I S\
1Y
oF At “ ‘
(L]
EQUAL 16
TEST PRODUCT NO
IN B AGAINST Z's : CLOSE-OUT ¢, D

29

This completed chart (Figure 22 on page 29) is directly convertible to FLOW-
MATIC coding. Writing the sequence of English sentences which are the code
for the problem is done by cross~referencing between the chart and the de-
scription of the available statements.

These statements follow common English usage in punctuation and format, that
is, words are separated by spaces, and a period is used to terminate each
sentence. In addition, each statement is labelled with its operation number
as given in the chart.

The programmer modifies the format of each statement to adapt it to his prob-
lem by choosing the correct option for his purpose, and assigning his own
names to the fields and files operated upon. ‘

The general rules which apply to FLOW-MATIC coding are listed below:

(1) A file name assigned by the programmer may be a maximum of twelve
-digits in length, and none of these digits may be a space. If it
is desirable to combine English words into one name, hyphens may be
used, e. g., (o) INPUT INVENTORY FILE-A PRICE FILE-B;.......
...PRICED-INV FILE-C...

(2) An item name is simply the assigned letter of its file,
e.g., (10) READ-ITEM B...

(3) A field name is similar to a file name, twelve or fewer non-space
digits. But in addition, each field name is modified by its file
letter in parentheses, e.g., (1) COMPARE PRODUCT-NO (A) WITH......

(4) Operation numbers labelling FLOW-MATIC statements are parenthesized.
Those appearing in the body of the statement are not parenthesized,
e.g., (9) JUMP TO.OPERATION 1 .

In addition to the list of functions, Appendix A gives the precise format for
each function, and a summary of the rules applying to the use of these state-
ments. In reading the following descriptions of the FLOW-MATIC statements
required for the Sample Problem , reference to Appendix A will clarify the
manner in which they are written. 1In each of the statements shown below,
the information supplied by the programmer is underlined.

(o) INPUT INVENTORY FILE-A PRICE FILE-B ;
OUTPUT PRICED-INV FILE-C UNPRICED-INV FILE-D

HSP D .

30

Remembering that operation zero specifies the input and output files for the
problem, the function INPUT is used. Choosing the format for two input files

and two output files, the programmer assigns names and letters to these files
(shown underlined in the above statement). He also specifies that the UN-
PRICED-INV file labelled D is to be printed on the UNIVAC High Speed Printer.:

Note that the code for operation zero is a description of the process chart
(Figure 15, page 15) for the rum.

This statement has two major functions:

(a) To start the movement of the specified data files through the com-
puter in their proper sequence, and

{b} To label the data fileé’with letters so that hereafter these files,
and their fields and items, may be referred to by the assigned let-
ter.

It should be noted that this version of the initial statement is only one of
many possibilities. It will vary as the process chart varies from one run
to another. For example, the number of inputs and outputs is variable, the
specific Uniservos to be used may be given, or it may be stated that a file
is to be prepared for conversion to punched cards, and so on.

(1) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF GREATER GO TO OPERA-
TION 10 ; IF EQUAL GO TO OPERATION s ; OTHERWISE GO TO OPERATION 2 .

Since the logical operation numbered one.in the FLOW-MATIC chart calls for
comparison of two fields, the programmer uses the order COMPARE. The three
conditions required are stated by using the fourth option listed in the de-
scription of this operation. Having chosen the correct format, the programmer
inserts the assigned names for the fields, and indicates, by the assigned
letter, to which file he is referring. Note that the convention of labelling
fields with their file letters allows the programmer to use the same name
for fields from different files. Within ome file, however, each field is
given a unique name,

It remains to specify which operation is to be pérformed next in each of the
three cases which occur. This is done by direct reference to the FLOW-MATIC
CHART.

(2) TRANSFER A TO D .
Operation two in the chart calls for the transfer of a complete
item from the file lettered A (INVINTORY) to the file lettered D
(UNPRICED-INV). The TRANSFER order accomplishes this.

31

32

(3)

{a)

{sg)

(6)

(v7)

(8)

{9)

{10)

(11)

WRITE-ITEM D .
Operation three indicates that the current item in the D file (UN-
PRICED-INV) is to be recorded on magnetic tape.

JUMP TO OPERATION 8 .

In operation four the chart indicates a break in the normal se-
quence. The programmer fills in from the chart the operation number
which is to be performed next.

TRANSFER A TO C .

The logical function to be performed is the same as in operation
two, but here the A item (from the INVENTORY file) is to be moved
to file C (PRICED-INV). ‘

MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .

The function of this operation is to insert the price from file B
{the PRICE file} into the C item created by operation six. The
programmer assigns field names (here the same namz, UNIT-PRICE, is
used in both files) and attaches the proper file letters.

WRITE-ITEM C .
In this operation the completed item in the C file is to be recorded
on magnetic tape. See operation three.:

READ-ITEM A ; IF END OF DATA GO TO OPERATION 14 .

The function of this statement is to obtain the next consecutive
item from file A (INVENTORY). Since a request for the next item
may exhaust the data file, the programmer states as a part of this
function which operation is to be performed when the end of the
data is encountered. In this case, the chart shows that 14 is
the number required.

JUMP TO OPERATION 1 .

Operation nine in the FLOW-MATIC chart indicates a break in the
normal sequence, that is, that operation number 1 is to be per-
formed next.

READ-ITEM B ; IF END OF DATA GO TO OPERATION 12 .

This operation is to obtain the next consecutive item from file B
and also to indicate that operation number 12 is to be performed
when the end of the file is encountered. See also operation eight.

JUMP TO OPERATION 1 .
See operation four.

(12) SET OPERATION 9 TO GO TO OPERATION =2 .
The FLOW-MATIC chart indicates that the function here is to alter
another operation in the sequence, namely number nine. Operation
nine as originally stated is a jump to number 1. The current
operation (twelve) is to change nine so that it becomes a jump to
operation two.

(13) JUMP TO OPERATION 2 .
See operation four.

{14) TEST PRODUCT-NO (B) AGAINST 2277772777777 ; IF EQUAL GO TO OPERATION
16 ; OTHERWISE GO TO OPERATION 15 .

Operation fourteen in the FLOW-MATIC chart calls for a comparison

of a data field with a constant quantity, a word of Zs. This is

a different logical function from the comparison of two data fields,

as was done in operation one. Here the required order is TEST

rather than COMPARE. The programmer chooses the option whose format

provides the conditions indicated by the chart. He then inserts

the name of the field to be tested, PRODUCT-NO, with its file letter,
B. The constant quantity is indicated by inserting its actual value.

From the chart the programmer determines the operation number to

be performed in the two cases which occur.

(15) REWIND B
Operation fifteen states that the current reel of the file lettered
B is to be rewound. Here the logic of the problem is such that,
although the end of the B data has not been encountered, the last
applicable item has been used and the file can be terminated.

(16) CLOSE-OUT FILES C , D .
The CLOSE-OUT order of operation sixteen calls for the termination
of the two output files C and D.

(17) STOP . (END)
The last operation in the sequence is the STOP order, and it is
always followed by the word END in parentheses.

'Figure 23 shows the completed FLOW-MATIC code, as it is submitted for Unity-
ping. The unused portion of the block is space-filled.

FLOW-MATIC CODE
FOR SAMPLE PROBLEM |

(0) INPUT INVENTORY FILE-A PRICE FILE-B ; OUTPUT PRICED-INV FILE-C UNPRICED-
INV FILE-D ; HSP D . , ' '

(1) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF GREATER GO TO OPERATION
10 ; IF EQUAL GO TO OPERATION &5 ; OTHERWISE GO TO OPERATION 2 .

(2) TRANSFER A TO D .

(3) WRITE-ITEM O .

(4) JUMP TO OPERATION 8 .

(5) TRANSFER A TO C . ‘

(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C)

(7) WRITE-ITEM C .

(8) READ-ITEM A ; IF END OF DATA GO TO OPERATION |u
(9) JUMP TO OPERATION |
(10) READ-ITEM B ; |F END OF DATA GO TO OPERATION 12
(11) JUMP TO OPERATION |

(12) SET OPERATION 9 TO GO TO OPERATION 2

(13) JUMP TO OPERATION 2 .

(14) TEST PRODUCT-NO (B) AGAINST ZZZZZZZZiZZZ ; IF EQUAL GO TO OPERATION 16 ;
OTHERWISE GO TO OPERATION 15 .

(15) REWIND B
(16) CLOSE-OUT FILES C , D .
(17) sTOoP . (END) Space Fill to End of Block.

ABC MANUFACTURING COMPANY INVENTORY

FIGURE 23

34

ehater 4

File-Data Layout And Des‘ign

The run description in Chapter 2 included a complete statement of the logical
function to be performed - The FLOW-MATIC charting and coding can be completed
from this statement, but before the Data Designs can be completed, several
detailed quest1ons must be answered.

Figure 24 is a copy of the run chart presented in Chapter 2 with additional
details shown (e.g., item sizes, labels, whether single reel or not). Fig-
ure 25 illustrates the 1tem layouts for the data files involved in thls
- problem. It should be noted that the use of FLOW-MATIC permits- postponement
- of the process. of making ‘item layouts unt11 the FLOW-MATIC. Code is written,
The system does not place any 11m1ts on item layouts, ‘but it does not elimi-
nate the need for them. ‘ -

With this information available, Dafa‘DesignS'Can be prepared on the pre-
printed forms illustrated (Appendix B). Separate forms for the File, Item,
and Field designs are prov1ded at the end of this chapter. Ihese preprinted
" forms allow for future expansion of the FLOW-MATIC System.

Provision has been made in the FLOW-MATIC System for storing Data Design
information about specific files on the FLOW-WATIC library tape. Thus if a
system of related runs is to be programmed using FLOW-MATIC, Data Designs
for files which will be processed imr more than one run can be stored and
called upon any number of times in FLOW-WATIC programs. Using this facility,
there is no necessity to fill out Data Design information for files already
described. Since input files to one run commonly are output files of other
runs, a significant reduction of (clerical) effort in writing and recording
these Data Designs is possible.

35

PROCESS CHART
ABC MANUFACTURING COMPANY INVENTORY
ALL FILES SEQUENCED BY PRODUCT NUMBER

INVENTORY PRICE

MAX IMUM OF 60,000 MAXIMUM OF 60,000
10 WORD ITEMS 2 WORD ITEMS

LABEL: MMDDYYIOOIOI LABEL: MMDDYY100201
MULTIREEL SINGLE REEL

ko

RUN 4
APPLICATION OF
STANDARD PRICES

TO INVENTORY

UNPRICED INVENTORY
10 WORD ITEMS
LABEL: MMDDYYIOOHOI

PRICED INVENTORY
MAXIMUM OF 60,000

of

10 WORD ITEMS FOR HIGH SPEED PRINTER
LABEL: MMDDYYI0030| PROBABLY SINGLE REEL,
MULTIREEL BUT MAY BE MULTIREEL

CONVENTIONS

(1)--LABELS IN WORD 03 OF FIRST BLOCK ON EACH REEL.
(2) BLOCK COUNTS IN WORD OI OF LAST ITEM IN SENTINEL BLOCK.

(3) SENTINELS ARE 2Z777277ZZZY FOR END OF REEL AND ZZ7772771Z77 FOR END OF
FILE. THESE ARE LOCATED IN THE KEY WORD POSITION (WORD 000) OF FIRST
INVALID ITEM AND LAST ITEM OF SENTINEL BLOCK.

FIGURE 24

36|

ABC MANUFACTURING COMPANY INVENTORY
ITEM LAYOUTS FOR RUN 4

FILE A (INVENTORY) FILE B (PRICE)
00 PPPPPPPPPPPP 00 PPPPPPPPPPPP
0l 00000000QQQQQ 00 0000000UVUUYU

02 000000000O0CO0O0

03 000000000000

oo .
P = PRODUCT NUMBER
05
U = UNIT PRICE
06
OTHER DATA Q = QUANTITY ON HAND
07
E = EXTENDED PRICE
08 (SEE CHAPTER 6)
09 | _ /7 = LOCATION OF DECIMAL POINT
FILE C (PRICED INVENTORY) ‘ S FILE D (UNPRICED INVENTORY)
00 PPPPPPPPPPPP 00 PPPPPPPPPPPP
0l 000000QQQQQQ ¢l 0000000QQQQQ2Q
02 0000000UUUYU 02 000000000000
03 0O0EEEEEEEEEE 03 000000000000
o [7 - o T N
05 05
06 OTHER DATA 08 | OTHER DATA
07 07
08 , ' o8
09 09
R y L y

FIGURE 25

37

NAME OF FILE

The programmer writes in the file name which may not start with the word FILE.

FILE DESIGN*

This section of the Data Designs contéinsfinformation about the organization
of the file. The data file conventions to be used are listed here and they
determine the details of the coding which will be produced to control the
file.

Nine two-word packets are required. Additional two-word entries may be made
if it becomes necessary to describe other features of the file. FEach two-

word packet is listed and described below.

The first packet is:

L|AB|E|L alalala alala

Licfe{efejefefejefe]e]t

LLLLLLLLLLLL represents the identificdtion'that has been assigned to this data

file. The least sxgnlflcant digits should end in ‘the digit 1, 1ndlcat1ng’“3

reel one. Allowance may be made for number1ng as many reels as are required. v
(If the maximum number of reels in a file is 9, one digit is allocated as a
counter; 99, two digits; 999, three d1g1ts, etc.) If the label is not knOWn-’
or if it is not desired to specify. the 1abel twelve spaces are used.-

The second packet is:

|o|F[a|L]A[BTEIL]
O

0 olojo|o|w|w|w|

Isie
(>

WWW indicates the word position of the label within the label block. The
sixty words in the label block are addressed as 000-059.

* Consult figures on pages 46, 49, 52 and 55.

38

The third packet is:

ML [T[1 s [RIEJE]L[o]s

ololo|ojo|ololo|lo|o]o]n

The digit n may be either zero or one. If zero, it means that this file will
not exceed one reel. A one is used in all cases where files may exceed one
reel,

The fourth packet is:

BILIK|alc|T|2[1IN[D]a]a
O|0(O0|0|O|0|0|0O|0O|0O|O|D

b may be either zero or one. If one, it means that the tally of the number
of blocks is maintained (for input reels) or will be written (on output reels)
on the end of each reel of this file. On input reels the block count recorded
on the reel is checked against a counter maintained during the processing.
A1l blocks on the data tape will be counted, including label block, data
blocks and sentinel blocks. Use b = zero to indicate that this control feature
is not desired.

The fifth packet is:

0

0|0|0|0|0|0]|0

e

XXX indicates the word position of the block count within the last item oOf
the sentinel block. The allowable range for XXX is from ooo through item- size
minus one. If the block count indicator is zero, this entry is not signifi-
cant and the word is filled with zeros.

The sixth packet is:

SSSSSSSSSSSS represents the twelve digits used to indicate end of valid data
on intermediate reels, e.g., ZZZZ7Z72ZZ7Z7ZZY . 1If the multi-reel indicator is
zero, spaces are written here.

39

The seventh packet is:

SSSSSSSSSSSS represents the twelve digits used to indicate end of valid data
on the final reel of a file, e.g., 2222227772777

The eighth packet is:

LOIC|a|IN|2a|F|I|R|S|T

olojojofojolofolo|w|w|w

WWW indicates the word position of the end sentinels within the first invalid
item of the sentinel block. The allowable range for WWW is from 0oo through
item size minus one.

The ninth packet is:

L|O|C|a|I|N|a|L|A|S|T|a
0]

o O[0O]|OIO|O|O(O|W |W|W

WWW indicates the word position of the end sentinels within the last item of
the sentinel block. The allowable range for WWW is from ooo through item size
minus one.

Although FLOW-MATIC permits flexibility in the conventions to be applied to
tape files, it is expected that in a given installation much of this informa-
tion will remain fixed, thereby providing automatic standardization. The
flexibility is still necessary when the files are to be processed by runs
other than those produced by FLOW-MATIC, e.g., sorts,

40|

ITEM DESIGN*

This section of the DATA DESIGNS contains information about the data items
in the file.

Three two-word packets of information are required, and more can be added on
an optional basis.

The first packet is:

NEENRANERAE

0(0/0|0|0|0|0O|0O{0O|n|n|n

nnn represents the size of the data items in the file, e.g., the item in
this sample problem is & ten word item (see page 47).

The second packet is:

F2aKIE|Y|S|a|a

0|0|0|O|O|O|O|Kk

NJo]a
0

0

o
o 10

k is a digit from zero through nine. The key is the field or fields by which
the file is sequenced. If a file is sequenced by a major key such as last
name, and a minor key such as first name, k would equal 2.

The third packet is:

KIElYlall|a|aja|a|a|a|a

Y Y| Y Y[Y| Y|Y|Y|[Y [YIY]Y

YYYYYYYYYYYY represents the assigned name of the field which is the major key
in this file. If the file is unsequenced, the k digit in the previous packet
is zero and YYYYYYYYYYYY is twelve spaces.

When k is greater than one, additional packets are required for each addition-
al key in the order of decreasing significance.

* Consult figures on pages 47, 50, 53 and 56.

LY

' If "k" in NO. OF KEYS were 2, then a fourth packet would be requlred following
the same format as the third packet:

KEYA2AAAAAAA
YYYYYYYYYYYY

‘BEach field named as a key must be listed in the Field Des1gn sect1on under
the same name used here.

In the preprinted forms in Appendix B additional information may be inserted
following.the name of the last key.. In some problems, for example, it is
desirable to treat a consecutive group of 'UNIVAC| words within the item as a
sub-item. Rather than calling for this sub-item by mentioning all of the
names 0f the fields within it, a new name is applied to the sub-item itself.
This assigned name is then entered in the Data De51gn for the file in the
following way:

'AAAAAAAAAAAA

000SSSOOOEEE

AAAAAAAAAAAA is the name chosen by the programmer, e. g;, ADDRESSAAAAA .

SSS is the relative.word position of the first word of the sub-item w1th1n
the item.- The allowable range is 000 through item size minus one. -

EEE is the position of the last word of the sub-item within the item.- The
allowable range is 000 through item size minus one. |

As many such sub-items as are required by the problem may be so named follow-
ing the name of the last key.

y2

FIELD DESIGN*

This section of the Data'Designs contains detailed information about the data
fields within the item.

If the Data. Design is to be used in many runs, all fields in the item should
be described. If the Data Design is to be used to compile only one run, only
those fields mentioned in the FLOW-MATIC code for the run need be described.
Each field in the item 'i5 described with a four word packet.

Name of field

YYYYYYYYYYYY =

000OWWWO00000 = Word Location in ‘item
OOOOOTPPSLNO = Field Descriptori
EEEEEEEEEEEE = Extractor

YYYYYYYYYYYY in the first word represents the name of the field exactly as
it appears in the FLOW-WATIC code. It may be a maximum of twelve consecutive
non-space digits. If the name contalns fewer than twelve digits, unused
digits to the right _are space filled. If names consist of two or.more parts,
these parts are separated by hyphens; e.g. E PRODUCT—NO

WWW in the second word represents the word position of this field within the
item, i.e., for a ten word .item the words are 000-009.

TPPSIN in the third word

T in the 6th dlglt of the 3rd word represents the type of f1e1d
= alphabetic

alpha-numeric

numeric

o
H

T =1
T 2
T =3

PP in 3rd word indicates the locatLon of the assumed'dec1ma1 point relative
to a reference point-immediately to the left of the field. The position just

“to the left: of the field is 1nd1cated by PP equal to 00.

If the assumed de01mal is one.p051t10n to the left;of'the reference_point,
PP is 1L. 1If the assumed decimal -is one position to the right of the ref-
ference point, PP is 1R. . Assumed desimal points may be positioned a maximum
of 35 places to the left or to the right, (e.g., AL = 35 left
' ML = 22 left

AL = 10 left

AR = 10 right

JR = 19 right

ZR = 35 right).

If the field has no assumed decimal point, the digits PP are written as
ignores. (i1) '

* Consult figures on pages 48, 51, 54 and 57.

43

S in 3rd word represents the location of the sign of this number. Ignore
(1) is used for fields without signs. A numeric field w1th the S digit equal
to ignore 1s assumed to be a ‘positive number.

If the_field'has a sign, the S digit may be 1 through 9, A; B, or C. The
twelve digit positions within a UNIVAC word are labelled.

L i ¥ v L4 v L4 L4

v 273 4w 5 6 7.8 9 A B ¢ |

XY A ry A A V'l vy e

L in the 3rd word represents the location within the UNIVAC word of the left
most digit of the field excluding its sign. As mentioned above, L may be
1 through 9, A, B, or C.

N in 3rd word represents the number of consecutive (adjacent) digits in the
field, excluding its sign. N may equal 1 through 9, A, B, or C, where A
equals 10, B equals 11, and C equals 12 digits.

EEEEEEEEEEEE in the fourth word is a pattern of ones and zeros, showing the
digit locations occupied by the field, including the sign digit if any. Ones
indicate the digits comprising the field, and all other digits are zeros.

If the field is alone in the word and can be treated as a whole word, twelve
zeros are used, not twelve ones.

Although the fields described for the sample problem all appear in separate
UNIVAC words in the item, the more common situation is that several fields
are packed in one word. In FLOW-MATIC, each such field has its own name and
description in the Data Designs.

It also may happen that two fields overlap each other within the UNIVAC word.
For example, consider the field PRODUCT-NO in the Inventory File. The last
three digits of this field may be a type number, not used in this problem as
such., In a problem where the type number must be treated as well as the
product number, both fields are described, as shown below:

PRODUCT-NOAA

000000000000 Four word packet describing 2
0000027771€0 digit field.

000000000000

TYPE-NUMBERA

000000000000 Four word packet describing 3
000003 /7jA30 digit field within 12 digit field.
0000000001 11

Y

Sentinels
Immediately following the last four word packet, end in word s9 of the last
block of the Data Design, the sentinelk

ENDAFILEADES

is written. The rest of the block is filled with zeros.

After the FLOW-MATIC Code for the program has been written (Chapter 3), and
the Data Designs have been filled in as described in this chapter and shown
in Figures 26 a through 26 1, the input tape for FLOW-MATIC compilation may
be UNITYPED. Figure 27 shows a HIGH-SPEED PRINTER copy of this information .
just as it appears, ready to compile the program for Sample Problem 1.

45

PAGE: ____

ANALYST: INPUT AND OUTPUT DATA DESIGN |
DATE: ABC MANUFACTURING COMPANY INVENTORY PROBLEM
N|AMIE|2|olF|alF[1I|L]E
IIN|VIE|NIT{O|R|Y|A|[AlA] English name of file.
F{IILIE|a|DIE|S|I|G|N|a]
Alalalajalalalalalajaia
LIAIBIE(L|iajalajalalala
,] 1.} Label with reel ,
MIMIOYO Y Y] OOt O 1] o)) ¥ anel vartable all drs.
L|O|C|a|O|F|a|L|IABIE|L
ololo|o|o|ofo|ojo|0]0]3] Word location of label in label block.
MUlL[T[1[2]R]IE[E|L|2]a]
olojo|o|o|o|o|o|o|ofof t] 1= Yes; 0= o
BILIK|2|C|T|a|IIND|aja] |
0]0{0|0|0O|O ‘0- 0|0|0 ’0 | 1 = Block count des_i;ed; 0 = No block count.
B|L|K|a|c|T|a]L|0[c]a]a
o[o]o]o]o]o o oo o] o] 1] e Tocation of Blpck comn in Taet iesz
EIND|ARIEIE|IL|2|SIE|N
Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Y]| End of reel séntinel. If single reel, all A's.
EIND|a|F|I|LIE[2|SIE|N
z|z|z|z|z|z|z|zZ|z|2|Z|Z] End of file seatinel.
Llolc|a|1|N]a|F[1[R]S|T i
ololoooofolofo] o] o] of Terk Fossiea hemmmizern T
LIO|C|2a|I|Nj2|LIA|S|T|2
olojofofoloofofo]|o]o] o] Kordleretion of S0 et iten ssse- D] O
Other entries may be added here, each con-
sisting of a title word and an information
word; e.g.. pARTARIKASEN
77777777777X
UNITYPIST
NOTE: After the last entry sk1p to the
next page.
FLOW-MATIC DATA DESIGN FORM 4
Fand Univac.
FlGURE zea DIVISION OF SPERRY RAND CORPORATION

S1-1499
ne

‘ANALYST: — » PAGE: ____
DATE: .

II'TEMaDIE|S|I|G|N|a
Alajalalalalalafajajaja
II'TIEM2|S|I|ZIE|2|a|a | ,
olo|o|o|o|ojo|o|o]o |l |0} 1,2,3,4,5,6,10,12,15,20,30,60.
N|o[alo[F[a|K[E]Y[S [a]2

olo|o|o|o|o|O|O oltoelol1l 0.1,2,....,9 = number of keys
KElYlall|a|ajajala|a]a

P{R| O] D|-U|C| T|-|N|O |A]|A] Name of field, if no key AANVAA

Further key entries may be added here,
each consisting of KEYAnAMMAMM fol-
lowed by the name of the field.

If there are Sub-items to be described,
the descriptions are entered following.
the last Key entry. Sub-items are des-
cribed with two-word packets consisting
of the name of the Sub-item followed by
a word in the format 000SSSOOOEEE,
where SSS is the first word and EFE is
the last word of the Sub-item, relative
to the entire item. k

UNITYPIST
NOTE: After the last entry skip to the
next page.
FLOW=-MATIC DATA DESIGN FORM2
NRomington Fand Univac.
DIVISION OF SPERRY RAND CORPORATION
FIGURE 26b

S1-1500.

ANALYST: PAGE: .
DATE:

F[1 [E[L]p]2]ole]s]i [a]N
afatalajalalajajajatala
PIR{O[DJU|C|T|-|NJOJAfA Name of field.
0{0[{0|0{0]0|0|0|0O|0[0|0O] Word location in item. [000 to (item size-1)]
O|O[O|O|O|2|¥|#|k[!|C|Of Field descriptor of form 00000TPPSLNO*
o|0{0l0O|0OjO0O|0O|0]O]lO]O0]O Extractor; if full-word field, all 0's.
QIU(A|N|T|[IH|T|Y[A]A|A]A .
- An unlimited number of fields may be
0|0|O|0|0|1|O|O|O|O|O]|O described using the same four-word packet
11 format. ‘
0{0|0|0|O|(8|xr|lx|x|7]6]0
- . . .
Explanation of field descriptor:
ojojojojojofrjrrrjrjrf AT
1 - alphabetic
EIN|D|AJFITIL S 2 - alpha-numeric
0 0 O O O 0 3 - numeric
PP = Position of decimal point in rela-
O|0f0 10O 0] tion to a reference point immediate-
ly to the left of the left-most
ZERO |FILL THRU WQRD 058 digit of the field.
' 00 - coincident with reference point
141 - not applicable
nL - n positions to the left of the
0|0 |0 ONNONNOREONNORNG reference point
nR - n positions to the right of the
Oo|0|0]|0 |0 0 reference point
(n=1,2,...,9,A,B,...,2)
S = Digit position of the sign.
1)2y°°°19’ArB; or C
» i - not applicable
ololo ololololo]o L = Digit position of the left-most digit
of the field, excluding sign.
0|00 o) 1,2,...,9,A,B, or C
N = Number of digits in the field, excluding sign.
1,2,...,9,A,B, or C
(A=10, B=11, C = 12)
O0{0(0(0|0|(0 NOTE: Place the sentinel ENDAFILEADES
immediately following the last four-
00 O’ word packet and in word 059 of that
block.
o|0o 0(0}|0]|O0]|0O|O
- FLOW-MATIC DATA DESIGN FORM3
0|0]0|0]|0O 0
Romington Fand ¥nivac
E N D A F I L E A D E S FIGURE 26¢C) DIVISION OF SPERRY RAND CORPORATION
S1.1501

usg

PAGE:

ANALYST:
DATE:
NIAMIE|2|OIF|a|F|I|LIE[
PIRJV|CIE|A{AJA|A|D|A| D] English name of file.
FIILILIEI2AIDIE|S|I|G|N|a
AAAAA|AA|A][AA|ALA
LIAIBIEIL|a|a|a|a|ala|n

1.) Label with 1 .
MIMIDD Y Y 00200 1] o) /Pyt oo all As.
Llo[c|a]o[F|2|L|ABIE|L
0j0j0|0jO(0O}|0O|0lO;010]3 Word location of label in label block.
MIUL|T|I|a|RIEIE|L|a]|a
0|0[0]|0|0|0|0]|0|0|0|O}0]| 1=Yes; 0="o. AN
BILIK|a|C|T|a|I|ND|a|a
O _o 00|00 (0O|0O|O|0O{0O]! 1 = Block count desired; U = No block count.
BILIK|a|C|T|a|L|O|C|a|a | |
o|ojo|ojo|o|o|ofo|oo] 1| bord location of block cout tny ot Leem
EIND 2RE|IEIL|2|S|E|N
AJATAALAALAAYA| A A L] Fnd of reel sentinel. If single reel, all A’s.
EINDa|F|IIILIE2|SIEIN
Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z|Z| tnd of file sentinel.
LOC|[a|l|INa|F|IRIST
0[0fojoo]o]oo[oo] o] o] Trel s thareimeny "
Llo[c]a|1|N]a|L|A|S|T]2
oJofoo]oo]o]o]o o o] o] Tmmrtions i i o sreer)

Other entries may be added here, each con-
sisting of a title word and an information
word; e.g., pARTABIKASEN

272777777777X

UNITYPIST
NOTE: After the last entry skip to the

next page.

FLOW-MATIC DATA DESIGN FORM 1

Pomington Fand Univac

DIVISION OF SPERRY RAND CORPORATION

FIGURE 26d

S1-1499

ug

A}‘IALIDI: PAGE:
DATE:

\[TIE M2 |[D]E[S]I[G]N]a

AldjlA|aaa)AjA|AjA DA

I TEM2IS|I|ZIE|2[a|a

0|0j0|0 /O0O|0f(O(O|O}0}0]|2] 1,2,3,4,5,6,10,12,15,20,30,60.

Nol2/olF [a[k[EY[S[a]a

ololololololololololo]|1] 0.1,2,....,9 = number of keys

'(!5 \{ A 1 AlAlA (AL A|A

PR Q D|{U|C|T|~-|N 9 A | A] Name of field, if no key MMMV

Further key entries may be added here,
each consisting of KEYAnAMAWMA fol-
lowed by the name of the field.

If there are Sub-items to be described,
the descriptions are entered following
the last Key entry. Sub-items are des-
cribed with two-word packets consisting
of the name of the Sub-item followed by
a word in the format 000SSSOOOEEE,
where SSS is the first word and EEE is
the last word of the Sub-item, relative
to the entire item.

UNITYPIST
NOTE: After the last entry skip to the
next page.

FLOW-MATIC DATA DESTGN FORM2

(]

FIGURE 26e

DIVISION OF SPERRY RAND CORPORATION

S1-1500
50

ANALYST: PAGE: .
DATE:

AfAI8(A (A Ajp|AlL|Alo
PIRIOIDIU|CIT|I-|N|O|A]|A Name of field.
0/0f0|0|0[0[0[0|0|0|0|O| Word location in item. [000 to (item size-1)]
0[{0|0|O |02kl ¥|x|1|C]|O Field descriptor of form 00000TPPSLNO*
0|0j0l0|0|0|0jO0O|0O|0OjO]O Extractor; if full-word field, all 0’s.
U[N[I|T|-{P{R[I|C|E|A]A
An unlimited number of fields may be
0|0{O0}j0j0|1|O|O[O|O|O]|O described using the same four-word packet
g p
format.
0|0|0(O0|O|3|3(R|¥|8|5]|0O
. 1 . . .
g Explanation of field descriptor:
I
0/0/0f0j0j0j0) 1)1 T = Type of field.
1 - alphabetic
E|N|DJAJF]I E|A E 2 - alpha-numeric
O 0 O O O O 3 - numeric
PP = Position of decimal point in rela-
0] 0] tion to a reference point immediate-
% If ly to the left of the left-most
ZERO FILL THRU WORD 058 digit of the field.
00 - coincident with reference point
11 - not applicable
nL. - n positions .to the left of the
0(0|0}{0|0]0O reference point
nRR - n positions to the right of the
0j0|0 o reference point
(n=12,...,9A,B,...,7)
S = Digit position of the sign.
1,2,...,9,A,B, or C
i - not applicable
0 olololololo L = Digit position of the left-most digit
of the field, excluding sign.
010 (0] 1,2,...,9,A,B, or C
N = Number of digits in the field, excluding sign.
1,2,...,9,A,B, or C
(A=10,B=11 C=12)
0|0|0 0j0(0|0|0]|O0O NOTE: Place the sentinel ENDAFILEADES
immediately following the last four-
00 0 word packet and in word 059 of that
block.
0(0]|0 0{0|O0|0 (0|0
FLOW-MATIC DATA DESIGN FORM3
0{0}|0{0]|0O o
Permingtorn Fand UWnivac
E N I D A F I L E A D E S FIGURE 26f DIVISION OF SPERRY RAND CORPORATION
S1.1501

ANALYST: PAGE:
DATE:

NAMIE[2[olF[s[FT1]LIE
P{RII|C|E|D| =] 1] N|V]|A[A] English name of file.
FIIILIE|2aDIE|S|I|G|N|a
A AR A AR AR AN AN A AN AN AN A
LIAIBIE|L|ajalalalalala
v 1| 1.) Label with 1 .
M{M]DID /Y| Y 11010130855 1P opel vartable all A’s.
L|o[c[2|o]F[2|L[A[B]E|L
O|0]0I0|0O|0O|0O|O|0O| 0] 0] 3! Word location of label in label block.
MUIL|T|I|2|RIEIE|L |2 |
ololo|o|ojo]olo|o|o|o] 1] 1:=Yes; 0=
BILIK2|C|T{a|I|ND|a|a
0|0|0|0|0|O0|O|O[{0|O|0O| ! 1 = Block count desired; 0 = No block count.
BILIK|2{C|T|alLIOIC|a|a
0]0]0/0]0/0]010/0]0 0| 1| oFintihelioeke 000 re (iten ste 131
EIND 2IRIEIEIL|2|SIE|N
Z{Z|(Z|Z|Z|Z|Z|Z|Z|Z|Z|Y]| End of reel sentinel. If single reel, all A’s.
EIND 2F| I LIE|2|SIE|N
21Z2V21212 2|22 |Z2Z|Z|Z] ¥nd of file sentinel.
LIO|C|2|1N[2|F T|R|S|T
oJo[ofo[o oo oo o]0 |o] Trek it thmesmi o
LIOIC|a|IIN|2|LIA|S|T|A
olojojofofofo]o]ofolofof frtieition 600 te titen szeh]
Other entries may be added here, each con-
sisting of a title word and an information
word; €1 pARTABLKASEN
77777777777X
INITYPIST
NOTE: After the last entry skip to the
next page.
FLOW-MATIC DATA DESIGN FORM 1
m [2 E nz !l‘ L]
F I GURE ZGg OIVISION OF SPERRY RAND CORPORATION
51-1499

[N o

ANALYST: PAGE:
DATE:

| TEM2DIES|I|GINa

AR AR A WA A AN A W A

| TEM2S|I|ZIEa|a

0|0|0|0 |0 |0(O0O|O0|0j0O]|I]0O] 1,2,3,4,5,6,10,12,15,20,30,60.
Nlo/a|0|F|a|KIE|Y[S|a]a

oiololololo|oloiolo|lo]| 1} 0,4,2,....,9 = number of keys

KE Y 2|l|a|ajajaialala

PIRIOIDIUL|C|T|-|N g A| A] Name of field, if no key AAMAAANMA

Further key entries may be added here,
each consisting of KEYARAMAW fol-
lowed by the name of the field.

If there are Sub-items to be described,
the descriptions are entered following
the last Key entry. Sub-items are des-
cribed with two-word packets consisting
of the name of the Sub-item followed by
a word in the format 000SSSOOOEEE,
where SSS is the first word and EFE 1s
the last word of the Sub-item, relative
to the entire item.

UNITYPIST
NOTE: After the last entry skip to the
next page.
FLOW-MATIC DATA DESIGN FORM2
DIVISION OF SPERRY RAND CORPORATION
FIGURE 26h

PRand Univac.

S1-1500

ANALYST: PAGE:
DATE:

Fl1|e[L]o]a[ple[s[i [6]N
Alaja|A|Ajb|A|A|A(D(A]A
PIRIOID|U|C[T|-|N|O|A|A Name of field.
0[0|0[{0[/0|0{0|0|0|0|0|0O]| Word location in item. [000 to (item size-1)]
O[O|O|O|O |2 x|l #| 1Vt |C|O] Field descriptor of form 00000TPPSLNO*
oj|oi0|O[{O0O|OlO|[O]0]0O(|0O|O Extractor; if full-word field, all 0’s.
QIUJA|N[T|H|T|IY]A|A|A]A
, An unlimited number of fields may be
o|o(Oj0|0f!I [O|O|O}|O|O|O described using the same four-word packet
- format.
0o|0|O|O0Oj{O|3|4+|4|k|7]|6(O
* Explanation of field descriptor:
0j0|0jO0 OO I} HfLfH]I T = Type of field.
1 - alphabetic
U N ' T - P R | c E A A 2 . alpha-numeric
olo|ofo|o|2|o|lojolo|O|O 3 - mumeric ‘
PP = Position of decimal point in rela-
O0|0|0|0O|O|3|8|[R|¥|8]|5]|0 tion to a reference point inmediate-
‘ ly to the left of the left-most
ololojlolololo!lt)iri{tr]t]t digit of the field.
00 - coincident with reference point
E[X|{T|={P[R|I[C[E[A|A]A i1 - not applicable
: nL - n positions to the left of the
o|ojo0j0j0|3({0f(0Of0O{0O|0O]|O reference point
nR - n positions to the right of the
o(o|o|O0|O|3|8|R|I|3|A]|O reference point
(n=1,2,...,9,A,B,...,2)
oottt b s = Digit position of the sign.
1,2,...,9,A,B, or C
E{N|{D|A|F|I]L|E DIE|S i - not applicable
ololo olololololo L. = Digit position of the left-most digit
‘ of the field, excluding sign.
0 olo (0] 1,2,...,9,A,B, or C
_ ; N = Number of digits in the field, excluding sign.
ZERO FILL THRU WORD 058 1,2,...,9,A,B, or C
(A=10, B=11, C = 12)
0|0(0}j0]|0O]0 NOTE: Place the sentinel ENDAFILEADES
: immediately following the last four-
0|0 0‘ word packet and in word 059 of that
block.
10j0 (0O 0l0j0|0|0O}O
FLOW-MATIC DATA DESIGN FORM3
0|0|0|0|0O o
Pemington Fand Univac |
E NI DI A F | L El A D E s FIGURE 261 DIVISION OF SPERRY RAND CORPORATION
S1-1501

[3]

ANALYST:

DATE:

N[AMIE]2[olF[a[F[1]L]E

UIN|PJR|[T|CJE|ID]| =] 1[N|V] English name of file.
FIIILIE|2a|DIE|S|I|G|N|a

AldjAajajalalalajAalalAlA

LIAIBIEILIalajaiajaiala

[o[v v[1o ol o | | I B
L|o[c[2[o|F|2[L/ABIEIL

O|0|0|0|0|0]|0O|0|0O|0|0]| 3] Word location of label in label block.
MUILIT|I|2|RIEIE|L|a|a

O|O0O[O OO |O0O|O[O|O0|O|O]| 1] 1=Yes; 0=DNo.
BIL|K|2|C|T|a|lI|ND|a|a

O0j0{0|0|O|O|O|0OjO|0O|O] 1 = Block count desired; 0 = No block count.
BILIK|2|C|T|2|L|O|C|a|a

ofololololofofololol o] 1] St Tien To00 s livmn eve i3]
EIND|2RIE|IE|L|{2|S|E|N

Z|Z2)Z2|Z|2|Z|Z|Z{Z|Z|Z|Y] Endof reel sentinel. If single reel, all A’s.
EIND|2|F|I|LIE|2|SIE|N

212\ ZVZV\Z|\Z|Z|Z|Z|Z|Z|Z] End of file sentinel.
LlO[Cla[I|N[a|F[T|R|S|T

oloJojolojolo]o]o|o|o|of foe P55 'te tetcipeny] Firee el
LIOIC|a|IN[2a|LIAIS|T|2

ololololo 0 olololololo Word location of sentinel in last item of

sentinel block. [000 to (item size-1)]

Other entries may be added here, each con-
sisting of a title word and an information
word; €8, pARTABIKASEN

17777777777X

UNITYPIST
NOTE: After the last entry skip to the

next page.

FLOW-MATIC DATA DESIGN FORM 1

P y

FIGURE 26]

DIVISION OF SPERRY RAND CORPORATION

S1.1498

o151

ANALYST:
DATE:

PAGE: ____

Sl> &

1,2,3,4,5,6,10,12, 15, 20,30, 60.

clolile|p

0,1,2,....,9 = number of keys

>loflOo|o |||

>loiMmjo|N|c|W»

>lO | D

= Mlololo|=]|c]—
o |<€loijloiMlclM

o

c | =loM]|o|]lp|p

olcjo|lplolN]> | O

- | DJOIR|o|=-=ID|IIM

=z |DPlOoO|=<S]J]OM|D>|=

wo(bpjolW]o ||| @

Name of field, if no key MMWWWWWMA

 UNITYPIST

Further key entries may be added here,
each consisting of KEYAAMAWA fol-
lowed by the name of the field.

If there are Sub-items to be desbribed,
the descriptions are entered following
the last Key entry. Sub-items are des-
cribed with two-word packets consisting
of the name of the Sub-item followed by
a word in the format 000SSSOOOEEE,
where SSS is the first word and EFE is
the last word of the Sub-item, relative
to the entire item.

NOTE: After the last entry skip to the
next page. g

FLOW-MATIC DATA DESIGN FORM2

Pesnington Fand Univac

DIVISION OF SPERRY RAND CORPORATION

FIGURE 26k

'S1-1500
56

ANALYST: PAGE: ______
DATE:
FII|IEILID2DEIS|I|GN
Alajdia|a|a|a|a(aja(a)A
PRQ.D UCT-NQAA- Name of field.
0{0(0|0|0][0[0|0O|0O|0|0|O| Word location in item. [000 to (item size-1)]
O|0|0]O|O|2|k|ij4|t|C|O Field descriptor of form 00000TPPSLNO*
0,0;{0/]0/]0]0[0]O0]|0]O0]0}.0 Extractor; if full-word field, all 0’s.
QIUJA{N|T|H|T]Y]A|A|A|A
An unlignited number of fields may be
0|0|0j0|0|1{0|O|O|O|O|O described using the same four-word packet
- format. ‘
0|0|O|O0|O|3|k|#|4]|7]|6]|0
) * Explanation of field descriptor:
0j0j0(O0jOjO 1L]I}l T = Type of field.
E{N|D|A|F|I|L|E|a|D|E]|S 1 - alphabetic
A 2 - alpha-numeric
olo|o olo|lo|o|o|o 3 - mumeric
- - PP = Position of decimal point in rela-
0|0|0|0 {0 0 tion to a reference point inmediate-
ly to the left of the left-most
|ZERO FILL THRU WORD 058 digit of the field. _
00 - coincident with reference point
i1 - not applicable
' nl - n positions to the left of the
10 o(o|o0j{0j0|0 reference point
: nR - n positions to the right of the
0] 0|0 o reference point
(n=1,2,...,9A,B,...,2)
S = Digit, posit,ion of the sign.
1,2,...,9,A,B, or C
i - not apphcable
olololoiolo L = Digit position of the left-most d1g1t
of the field, excluding sign.
o) olo o) 1,2,...,9A,B, or C
N = Number of digits in the field, excludmg s1gn
1,2,...,9A,B, or C
(A = 10 B=11, C=12)
O|O0|O|O|O|O]| NOIE: Place the sentinel ENDAFILEADES
immediately following the last four-
00 O‘ word packet and in word 059 of that
g block.
0|0 0|0jof(O0|0}O
FLOW-MATIC DATA DESIGN FORM3
ololo|o|o 0
‘ Pemington Rand Univac.
E' N D A F I L E A ’ D E S' FIGURE 261 DIVISION OF SPERRY RAND CORPORATION
S1.1501 —

57

8G

NAME OF FILE
BLK CT IND
LOC IN LAST

FIELD DESIGN
EﬁD FILE DES

000000000000

NAME OF FILE

BLK CT IND
LOC IN LAST
FIELD DESIGN
END FILE DES

000000000000

NAME OF FILE
BLK CT IND
LOC IN LAST
FIELD DESIGN
UNIT-PRICE

000000000000

NAME OF FILE
BLK CT IND
LOC IN LAST
FIELD DESIGN
END FILE DES

000000000000

INVENTORY
000000000001

000000000000

000600000000
000000000000

PRICE
000000000001
000000000000

000000000000
000000000000

PRICED- INV
000000000001
000000000000

000002000000
000000000000

UNPRICED- INV
000000000001
000000000000

000000000000
000000000000

FILE DESIGN
BLK CT LOC
ITEM DESIGN
PRODUCT-NO
000000000000
000000000000

FILE DESIGN
BLK CT LOC
ITEM DESIGN
PRODUCT -NO
000000000000
000000000000

FILE DESIGN
BLK CT LOC
ITEM DESIGN
PRODUCT «NO
0000033R 850
000000000000

FILE DESIGN
BLK CT LOC
I TEM DESIGN
PRODUCT -NO
000000000000
000000000000

DATA DESIGN

FOR SAMPLE

000000000001

000000000000

000000000000
000000000000

000000000001

000000000000

000000000000
000000000000

000000000001

000000000000

000000011111
000000000000

000000000001

000000000000

000000000000

000000000000

LABEL

END REEL SEN
ITEM SIZE
000002 1Co
000000000000

000000000000

LABEL

END REEL SEN
ITEM SIZE
000002 1CO
000000000000

000000000000

LABEL

END REEL SEN
ITEM SIZE
000002 iCO
EXT-PRICE

000000000000

LABEL

END REEL SEN
ITEM SIZE
000002
000000000000
000000000000

1Co

INPUT
PROBLEM

MMDDYY 100101
ZZ27777772Z2Y
000000000010
000000000000
000000000000
000000000000

MMDDYY 100201

000000000002
000000000000
000000000000
000000000000

MMDDYY $00301
272777727722
000000000010
000000000000
000003000000
000000000000

MMDDYY 100401
2Z2272727272ZY
000000000010
000000000000
000000000000
000000000000

FIGURE 27a

LOC OF LABEL
END FILE SEN
NO OF KEYS
QUANTITY
000000000000
000000000000

LOC OF LABEL
END FILE SEN
NO OF KEYS
UNIT-PRICE
000000000000

000000000000

LOC OF LABEL
END FILE SEN
NO OF KEYS
QUANTITY
0000038R 3A0
000000000000

LOC OF LABEL
END FILE SEN
NO OF KEYS
QUANTITY
000000000000

000000000000

000000000003
1777777777727
000000000001
000001000000
000000000000
000000000000

000000000003
2227272727277
000000000001
000001000000
000000000000

000000000000

000000000003
277727277727
000000000001
000001000000
oofTttrtititt
000000000000

000000000003
2227227222722
000000000001
000001000000
000000000000
000000000000

MULTI REEL

LOC IN FIRST
KEY 1

000003 760
000000000000

000000000000

MULTI REEL

LOC IN FIRST
KEY 1

0000033R 850
000000000000

000000000000

MULTI REEL

LOC IN FIRST
KEY 1

000003 760
END FILE DES

000000000000

MULT! REEL

LOC IN FIRST

_KEY 1

000003 760
000000000000
0000000000Q0

00000000000t
000000000000
PRODUCT-NO

000000111111
000000000000
END FILE DES

000000000000
000000000000
PRODUCT-NO

000000011111
000000000000

END FILE DES

000000000001
000000000000

PRODUCT-NO

000000111111

000000000000
END FILE DES

000000000001
000000000000
PRODUCT-NO
000000111111
000000000000

END FILE DES

6§

FLOWMATIC CODE INPUT FOR SAMPLE PROBLEM |

(0) INPUT INVENBORY FILE-A PRICE.FILE-B : OUTPUT PRICED-INV FILE-C UNPRICED-INV FILE-D ; HSP D .

{1) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) : IF GREATER GO TO ORERATION 10 ; |F EQUAL GO TO OPERATION 5 : OTHERWISE
GO TO OPERATION 2 .

(2) TRANSFER A TO D .

(3) WRITE-ITEM D .

(4) JUMP TO OPERATION 8 .

(5) TRANSFER A TO C .

(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C)

(7) WRITE-ITEM C .

(8) READ-ITEM A : {F END OF DATA GO TO OPERATION 14 .

(9) JUMP TO OPERATION 1 .
(10) READ-ITEM B ; IF END OF DATA GO TO OPERATION 12 .
(11) JUMP TO OPERATION 1 .

(12) SET OPERATION 9 TO GO TO OPERATION 2 .
(13) JUMP TO OPERATION 2 .
(14) TEST PRODUCT-NO (B) AGAINST 22ZZ22Z22222Z : {F EQUAL GO TO OPERATION 16 : OTHERWISE GO TO OPERATION 15 .
(15) REWIND B .
(16) CLOSE-OUT FILEC , D .

(17) STOP . (END)

2272277722ZZ00
00600
00?000
00
006000
000000000000000000000000000006000222222222222

FIGURE 27b

chapter 5

Intermediate
or
Working Storage

In order to introduce a new concept, consider a simple variation in the sample
problem. Suppose that the definition is altered by the fact that duplicate
product numbers may occur in the Inventory file, and that such additional
items are the result of errors in the original creation of the-file. Suppose
further that these extra items are to be placed in an Error output file for
printing.

The process chart of this second sample problem, with details of the formats
of the files, is shown in Figure 28. '

60

PROCESS CHART
ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2

INVENTORY PRICE
MAXTMUM OF 60,000 ; MAXTMUM OF 60,000
10 WORD ITEMS FILE A 2 WORD ITEMS
LABEL: MMDDYYIOOI O LABEL: MMDDYYI0020I
MULTIREEL SINGLE REEL

RUN 4

APPLICATION OF STANDARD
PRICES TO INVENTORY:
ELIMINATION OF DUPLICATES.

FILE D

PRICED INVENTORY UNPRICED INVENTORY ERRORS
MAX IMUM OF 60,000 10 WORD ITEMS 10 WORD ITEMS
10 WORD ITEMS' LABEL: MMDDYYIOOu O} LABEL: MMDDYYIOO050!
LABEL: MMDDYYIOQ30! FOR HIGH SPEED PRINTER FOR HIGH SPEED PRINTER
MULTIREEL PROBABLY SINGLE REEL, PROBABLY SINGLE REEL,

BUT MAY BE MULT!REEL BUT MAY BE MULTIREEL

Conventions

(1) LABELS IN WORD 03 OF FIRST BLOCK ON EACH REEL.
(2) BLOCK COUNTS IN WORD O OF LAST ITEM IN SENTINEL BLOCK.

(3) SENTINELS ARE ZZZ2Z2277ZIY FOR END OF REEL AND ZZZZ7Z7721ZZ FOR END OF FILE. THESE ARE
LOCATED IN THE KEY WORD POSITION (WORD 000) OF FIRST INVALID ITEM AND LAST ITEM OF
SENTINEL BLOCK.

FIGURE 28

61

An outline of the logical steps to be performed can be written as follows:

Assume at the start that the first item of each of the input files is avail-

able.

I

111

Iv

VI

Compare the product number of the Inventory item with the product
number of the Price item.

a. If the Inventory product number is less, go on to step II.
b. If the product numbers are equal, go on to step III.

c. If the Price product number is less, go on to step VII.

Prepare and write an Unpriced Inventory item. Then go on to step
Iv. ’

Prepare and write a Priced Inventory item.
Store the product number.

Read the next Inventory item and go on to step VI. Or, if the
Inventory file is exhausted, wind up the problem and stop.

Compare the new product number with the stored product number.

a. If the product numbers are equal, a duplicaté has been found.
Prepare and write an Error item. Then go to step V.

b. If the product numbers are not equal, go back to step I.

VII Read the next Price item, and go back to step I.

Note in particular step VII. If the Price file reaches end of data before
the Inventory file, there is no need to eliminate the unnecessary comparison.
This is true because the sentinel at the end of the Price file is in the
same field as ths« product number, and the sentinel is larger than any legiti-
mate product number. Figure 16 on page 19 illustrated the method used to
eliminate the unnecessary comparison.

This statement of the problem can be better shown on block chart form (Figure

29).

62

BLOCK CHART

ABC MANUFACTURING COMPANY INVENTORY - PROBLEM 2

. ASSUME FIRST
|L_ITEMS AVAILABLE

COMPARE PRODUCT
NUMBER INVENTORY
ITEN AND PRODUCT
NUMBER PRICE ITEM

IRVERTORY
EQUALS PRICE

PREPARE AND
WRITF UNPRICED
INVENTORY ITEM

PRE PARE AND
WRITE PRICED
INVENTORY (TEM

READ NEXT
PRICE ITEM
1f END
OF DATA

- o o 0 e ot

STORE
PRODUCT NUMBER

READ KFXT
INVERTORY JTEM

AT END
OF DATA

WIND UP
PROBLEM

FIGURE 29

COMPARE NEW
PRODUCT KUMBER
WiTH STORED
PRODUCT NUMBER

PRODUCT’
NUMBERS
UNEQUAL

PRODUCT NUMBERS EQUAL

PREPARE AND WRITE
ERROR 1TEM

...@

63

In Sample Problem 1, no information had to be set aside for further reference;
all information could be acted upon at the time it became available. The
new concept introduced here in Sample Problem 2 is that of saving information
for future use. A common term for that part of the computer storage reserved
for this purpose in a given problem is Working Storage. In FLOW-MATIC the
term is abbreviated to W-storage. The programmer may save as many fields or
items as desired in W-storage. And he may name these fields in the same way
that English names are assigned to fields within the data files. It follows,
that, when referring to fields in W-storage, he labels- them with the letter
W in parentheses, e.g., Operations (8) and (10) on page 65 .

The FLOW-MATIC chart for Sample Problem 2 in Figure 30 is created in the same
general manner as before, but makes use of this additional facility. The
development of the FLOW-MATIC code also follows the previous methods. Note
however, the use of the letter W in Figure 31, operations eight and ten.

It remains to write the Data Designs for sample problem 2. Clearly the Data
Designs for files A, B, C, and D need not be changed. The Data Design for
the new file, E, is shown in Figures 32 on pages 66 and 6%. Note that,
since no field names within the file are required in the FLOW-MATIC code, none
have been described in the Data Design.

FLOW-MATIC CHART
ABC MANUFACTURING COMPANY INVENTORY - PROBLEM 2

) A IS GREATER
COMPARE PRODUCT 1 Is

INVENTORY A
PRICE B - AR S READ- [TEN B
L OUTPUT FILES IF EQUAL, OP § D"FT:"DO;’F JUMP TO 1
,

PRSCED INVENTORY C OTHERWISE, OP 2 2 !
H
1
i

INPUT FILES

URPRICED INVENTORY D {PRINT) IF END
ERRORS €. (PRINT) A 1S LESS A EQUALS B OF DATA

2 3 Y 5 s 7
TRANSFER A WRITE-1TEN D ISP ©O) TRANSFER A MOVE UNIT PRICE]
O e | 8 TN T0 ¢ oM B T0 ¢ ["MITECITEME .

10 A EQUAL TO W

8 9 " 12 [K]

: n COMPARE PRODUCT

@—u MOVE PRODUCT NO. __’@__. “fé"e.'.{"é,‘ NO'S A AND W TRANSFER A WRITE-ITEM E K JUNP TO 8 ,@
FROM A TO W DATA, OP I6 IF EQUAL, OP i1 1TEN T0 E

OTHERWISE, OP |

oF SATa
T A NOT
EQUAL TO ¥

H
[
t
]
t
i
1
i
]
]
]

16 EQUAL

1
CLOSE-0UT
¢k sTOP

TEST PRODUCT NO
B AGAIRST Z'S
IF EQUAL, OP 18
IF XOT, OP 17

NOT EQUAL

REwi 8 FIGURE 30

64

(o)

(1)

(2)
(3)
(%)
(s)
(e)
(7)
(8)
(9)
(10)

(1)
(12)
(13)
(1y)
(15)
(16)

(17)
(18)
(19)

FLOW-MATIC CODE

INPUT INVENTORY FILE-A PRICE FILE-B ; OUTPUT PRICED-INV FILE-C UNPRICED~
NV FILE-D ERROR FILE-E ; HSP D , E .

COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF GREATER GO TO OPERAT!ION
I4 3 IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO OPERATION 2

TRANSFER A TO D

WRITE-ITEM D

JUMP TO OPERATION 8

TRANSFER A TO C .

MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .
WRITE-ITEM C .

MOVE PRODUCT-NO (A) TO PRODUCT-NO (W) .

READ-ITEM A ; IF END OF DATA GO TO OPERATION 16 .

COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (W) ; IF EQUAL GO TO OPERATION 11 ;
OTHERWISE GO TO OPERATION |

TRANSFER A TO E .

WRITE-ITEM E

JUMP TO OPERATION 9 .

READ-ITEM B ; |F END OF DATA GO TO OPERATION ! .
JUMP TO OPERATION |

TEST PRODUCT-NO (B) AGAINST 2227277277117 ; 1F EQUAL G0 TO OPERATION I8 ;
OTHERWISE GO TO OPERATION 17 .

REWIND B .
CLOSE-OUT FILES ¢ , D , E
STOP . (END)

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2

FIGURE 3t

65

ANALYST: DATA DESIGN FOR ERROR OUTPUT FILE PAGE:

DATE: ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2

z .
“
r

E

= | >

English name of file.

clemi> M

[> 2~ B e

oS micimlio M

I 1.) Label with reel counter.
2.) If label variable all A’s.

Word location of label in label block.

o |w (™|

{ 1 = Yes; 0 = No.

| 1 = Block count desired; 0 = No block count.

Word location of block count in last item
of sentinel block [000 to (item size-1)]

End of reel sentinel. If single reel, all A’s.

End of file sentinel.

Word location of sentlnel in first 1nva11d
item. [000 to (item size-1)]

Word location of sentinel in last item of
sentinel block. [000 to (item size-1)]

olOloOI~NnO|INO]lo|X]o|X]orFlo|lolsDleir|=

ol jolpN|pl~N|DlOiD|lO|DBD|O|-]O|D

ollo|&|N|=|~M|O|dq|lOo|H|Oo|b|lOM|=<|Db | O|> O

O |Plo|=|~N|D|~N|D|OoIO]|0o| 2|0 M|O Pl | =|>

o|lW|oc | W IN|IN|W|cO]|0O]|o|rr|eo vl @|>|—

ool M|~nM|e|p|o|bjo|b|le M| D> |B>|2|>
g

oir-joiri~NmiN~NiMjo|Wjo|W|o|K]jo|C|=FC|jeciMm|m
oclojoO|~N | Z|~N[ZloCjoCjo|CloO|=P|B|—|® D>
oir-joMi~v~M|~N|Flo|F|Oo|=|COM|Oo|r]|e|lbiD|lW]|> | Db

O|leam |O || N |T|N|D]jOIOQIOCOIQ|O|=]0II0I=<I|D>|D>.

olplolpin|[rFlI~Mm|loolo|clolm]lo]

o|lblo|=|~Nn|2|<|2]

Other entries may be added here, each con-
sisting of a title word and an information
word; €., pARTABIKASEN

27777777777X

UNITYPIST
NOTE: After the last entry skip to the
next page.

FLOW-MATIC DATA DESIGN FORM 1

PRomington Fand Univac
DIVISION OF SPERRY RAND CORPORATION

FIGURE 32a

S1-1499
66

ANALYST:
DATE:

> |5 |2

1,2,3,4,5,6,10,12,15,20,30,60.

0,1,2,....,9 = number of keys

> pjlolc|lo|lww]lc O

Name of field, if no key MMM

mlc | R|IOIZ]|O | e D |
|>m|ojo|o[d|c]|
ol> <€]o|]jloM|>|M
>l>|>jolO]o e |
ml> |m=m]jOoOITM]Oo|Db|> D
~rl>|D]OIR]|O|=—|BM
mls|BjOM|{O|N|> | W
sl lpjOoi<S<|OM|D> |=—
ol |pjlolWle |l | ®

=
wls|ple|plelelplp

mls{DJ1O | D

Further key entries may be added here,
each consisting of KEYAnAMAMWA fol-
lowed by the name of the field.

If there are Sub-items to be described,
the descriptions are entered following

the last Key entry. Sub-items' are des-
ZERQ FILL THRU|WORD 058 cribed with two-word packets consisting

of the name of the Sub-item followed by
a word in the format 000SSSOOOEEE,

where SSS is the first word and EFE is
the last word of the Sub-item, relative

to the entire item.

UNITYPIST

NOTE: After the last entry skip to the
next page.

FLOW-MATIC DATA DESIGN FORM2

PRomington Fand UWnivac

DIVISION QF SPERRY RAND CORPORATION

E{N|[D{A|F|F|LIE[A|D[E|S]| Ficure 32b

S1-1500

67

Now, however, there is a new kind of data to be described to FLOW-MATIC,
namely, that assigned by the programmer to W-storage. This data is described
to the compiler as if it were data from a file, except that none of the infor-
mation pertaining to the organization of a tape is applicable. In Sample
Problem 2, in fact, the only necessary description is of a single field, the
product number., Therefore, no item design information is written, and under
the field design section only one nare is listed. The information required
for this problem is shown below.

00 NAMEAQFAFILE } Heading

0l W-STORAGEAAA

02 ‘ FIELDADESIGN } Sub-Heading
03 ANAAANANANAD

oy PRODUCT-NQAA

05 000000000000 4 word Field
06 000002//7i€C0 Description
07 000000000000

08 ENDAFILEADES

Zero fill Sentinels

59 ENDAFILEADES

This Data Design is placed on the input tape for FLOW-MATIC together with
other Data Designs. It will not be stored for use in other runs, since it
is designed specifically for one program.

In addition, it is necessary to inform the compiler that some W-storage has
been reserved by the programmer. This is done by writing a Directory for
inclusion on the FLOW-MATIC input tape.

The Directory is a list showing the number of words in the programmer's
W-storage.

00 DIRECTORYAAA } Head
aager
0l AYAAVAAYAYAVAVAYAYAYA
02 00WO00000WXxx
03 W-STORAGEAAA
0y ENDADIRECTRY
Zero fill Sentinels
59 ENDAD IRECTRY

WO0O - W-storage always starts with the zero word.

Wxxx - This is the highest number assigned to a W-storage word by the program-
mer.

68

In Sample Problem 2, only one word of W-storage is used.

Therefore, the Directory is:

00 DIRECTORYAAA
= - } Header
0l JAYAVAVAVAVAVAYAVAYAVAYAN
02 0OW00000W000
03 W-STORAGEAAA
L ENDAD IRECTRY
: Zero fill Sentinels
59 ENDADIRECTRY

The problem has now been completely prepared for FLOW-MATIC. The arrangement
of the input tape is shown in Figure 33. Note that there are two additions
to the format of the tape: the W-storage Data Design, and the Directory. The
Directory must follow all Data Designs and precede the FLOW-MATIC code.

FLOW-MATIC INPUT TAPE
ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2

s Bl
INVENTORY
PRICE
PR ICED- INY DATA DESIGNS FOR INPUT
AND OUTPUT FILES
UNPRICED- INV
ERROR

W-STORAGE DATA DESIGNS FOR W-STORAGE

DIRECTORY DIRECTORY
FLOW-MATIC
CODE
SENTINEL BLOCK
a‘ VQ

Q)
FIGURE 33

69

As implied above, it is sometimes useful to include some information under
the Item section in the W-storage Data Design. For example, how can several
entire items from a file be saved in W-storage? This is done by naming sub-
items, groups of UNIVAC words, within W-storage and entering the assigned
names of such sub-items in the Item design for W-storage. This use of sub-
item names is exactly parallel to that discussed in Chapter 4, where the
Data Designs for the input and output items are described.: ‘

Suppose it were required by this problem to store both the Inventory item
and Price item. Then sub-items for each item in W-storage can be named and
described as shown below:

00 NAMEAOFAFILE } " Name of Eile

0l W-STORAGEAAA

02 ITEMADESIGNA

03 ABADDABALAD b Header

oy INV=-1TEMAAAA Two word packet

05 000000000009 } describing inventory item
06 PRICE-ITEMAA Two word packet

07 000010000011 } describing price item
08 ENDAFILEADES

: Zero fill s Ending Sentinels

59 ENDAFILEADES

The corresponding Directory entry is:

00 DIRECTORYAAA } Header

0l AAAAAAAAAAAL

02 00W00000WO !

03 W-STORAGEAAA

o4 ENDAD IRECTRY

: " Zero fill Sentinels
59 ENDAD IRECTRY

70

Item names need not describe the entire W-storage area. Single field names
may also be used. For example, addition of two field names to the W-storage
words reserved above changes the Data Design and Directory as follows:

00 NAMEAOFAF | LE 00 DIRECTORYAAA

o w-storageass | Neme of File o AadAAMAAAAAL | Header
02 ITEMADESIGNA b Header 02 00W00000WO0 I3
03 JAAYAVAYAYAVAVAVAYAYAYA 03 W-STORAGEAAA
oy INV=-ITEMAAAA } Two word packet oy ENDAD IRECTRY
05 000000000009 for inventory item : Zero fill Sentinels
06 PRICE-ITEMAA | Two word packet 59 ENDAD IRECTRY
07 00001000001 ! } for price item
08 FIELDADESIGN
N N } Header

09 AAAYAAVAVAYAYAYAVAVAY
10 . FIELD-1AAAAA
1 000012000000 4 word packet
12 000003777560 for lIst field
13 000011111100
Ty FIELD=-2AAAAA
15 000013000000 | 4 word packet
16 000002/7jico for 2nd field
17 000000000000
I8 ENDAFILEADES
: Zero fill Ending Sentinels
59 ENDAF I LEADES

The programmer designs the W-storage in a manner similar to the design of data
files themselves, following the same general rules. Following this, he writes
a Directory stating the total W-storage required.

Whenever W-storage is utilized, the Directory Block must be written and it

must immediately follow the blocks containing Data Designs and W-storage on
the input tape. (Fig. 33)

71

chapter 6

Relative Machine Coding, X-1

Suppose that a problem requires a function which does not appear in the cur-
rent list of FLOW-MATIC functions. Consider the concrete example in Sample
Problem 3. Suppose the definition of the original Sample Problem is altered
once again, by the fact that duplicate product numbers in inventory items
are not errors, but additional data to be processed. These items may be
considered to originate in the different production plants of the ABC Manu-
facturing Company, and the problem is now to find the total on-hand balance
for each product, to assign the appropriate unit price, and in addition to
compute the total dollar value of these balances. This total dollar value
‘'will be referred to as the extended price for each product. Again, if there
is no price available to apply to a given product number, an unpriced inven-
tory item is to be created, but now this item will carry the total quantity
on hand in all of the production plants.

The process chart for Sample Problem 3 looks like the original (compare

Figures 34 .on next page and 16 on page 19), but the logical statement of the
problem is quite different.

72

(1)
(2)

(3)

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3
ALL FILES SEQUENCED BY PRODUCT NUMBER

INVENTORY PRICE

MAX IMUM OF 300,000 MAX TMUM OF 60,600
10 WORD ITEMS 2 WORD ITEMS

LABEL: MMDDYYIGO!O! LABEL: MMDDYYIOC2CI
MULTIREEL SINGLE REEL

RUN 4
APPLICATION OF STANDARD PRICES,
COMPUTATION OF EXTENDED PRICE OF
EACH PRODUCT IN INVENTORY.

PRICED INVENTORY UNPRICED INVENTORY

MAX IMUM OF 60,000 10 WORD ITEMS

' ’ LABEL: MMDDYYIOO4 Ol

10 WORD ITEMS

MULTI&EEL BUT MAY BE MULTIREEL
FOR HIGH SPEED PRINTER

Conventions

LABELS IN WORD 03 OF FIRST BLOCK ON EACH REEL.
BLOCK COUNTS IN WORD Ol OF LAST ITEM [N SENTINEL BLOCK.

SENTINELS ARE 7Z2272777Z71Y FOR END OF REEL AND 772777777721 FOR END OF FILE. THESE ARE

LOCATED IN THE KEY WORD POSITION (WORD 000) OF FIRST INVALID ITEM AND LAST ITEM OF
SENTINEL BLOCK.

FIGURE 34

73

Assume at the start that the first item of each of the input files is avail-

able.

11

I11

Iv

VI

VII

Compare the product number of the Inventory item with the product
number of the Price item.

a. If the Inventory product number is less, go to step II.
b. If the product numbers are equal, go on to step III.
c. If the Price product number is less, go on to step VIII.

Prepare an Unpriced Inventory item and set step VII to second
condition. Then go on to step IV.

Prepare a Priced Inventory item and set step VII to first condition.
Store the product number and quantity from the Inventory file.

Read the next Inventory item and go on to step VI. Or, if the
Inventory file is exhausted, perform step VII, wind up the problenm,
and stop.

Compare the new product number with the stored product number.

a. If the product numbers are equal, add the new quantity to
the stored quantity and go back to step V.

b. If the product numbers are not equal, go to step VII.

a. First condition. Insert the stored quantity (total on hand)
in the Priced Inventory; compute extended price and insert
it in the item; write a Priced Inventory item. Then go back
to step I.

b. Second condition. Insert the storedquantity in the Unpriced
Inventory; write an Unpriced Inventory item. Then go back to
step I.

VIII Read the next price item, and go back to step I.

The block chart for Sample Problem 3 is shown in Figure 33.

74

BLOCK CHART
ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3

T assume FirsT
ITEHS AVAILABLE

COMPARE PRODUCT

NUNBER [NVENTORY READ WEXT
ITEM WITH PRODUCT
NUMBER PRICE ITEM PRICE 1TEM
AT END ’
INVENTORY THVENTORY
IS LESS EQUALS OF DATA !
IcE | P |
PREPARE TO WRITE PREPARE TO WRITE
UNPRICED INVENTORY PRICED INVENTORY
1TEN 1TEM
SET VI T0 b SET VII T0 a
STORE PRODUCT /'\ READ WEXT
NUMBER AND v 4
Pttt U/ INVENTORY |TEM
AT END
OF DATA

60 1O STEP VII WD UP]
AND RETURN PROBLEM
INSERT STORED
QUANTITY AWD WRITE PRICED
PRODUCT. NUMBER /Q_‘ cncui;:{gez)::ubto INVENTORY 1TEM
CONEQUAL

PREPARED ITEM

COMPARE NEW
PRODUCT NUMBER

WITH STORED g @
PRODUCT WUMBER .
) ° INSERT STORED WRITE UNPRICED
PRODUCT NUMBERS EQUAL 1 QUANTITY IN
o PREPARED 1TEN INVENTORY 1TEM

ADD WEW QUANTITY
10 STORED |
QUANT ITY

FIGURE 35

75

The FLOW-MATIC chart in Figure 36 shows two operations which require the use
of new functions; Operation 11, addition, to find the total quantity on hand;
and Operation 15, multiplication, to compute the extended price for the priced
inventory file. The FLOW-MATIC system makes provision for functions which
are not immediately available as a part of its library. These functions can
be written by a UNIVAC programmer in a form called X-1. Whenever X-1 coding
is to be used, an entry is made in the FLOW-MATIC code consisting of the ap-
propriate operation number, the name "X-1", and an English statement denoting
the function to be performed by the X-1 coaing. Although the English state-
ment is not processed by the compiler, it is useful in making the FLOW-MATIC
program complete and understandable. -
The FLOW-MATIC chart (Figure 36 on pages 76 and 77) and code (Figure 37 on
page 78) for Sample Problem 3 are completed as before, maintaining the use
of English to describe the logical steps. Note particularly operations
11 and 15 which call for X-1 coding.

FLOW-MATIC CHART
ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3

f)
SET

9)
INPUT FILES

INVENTORY A

PRICE B

OUTPUT FILES
START PRICED INVENTORY €

UNPRICED INVENTORY D (PRINT)

A IS GREATER
21 22

READ-ITEM B
| IF END OF JUMP TO ¢
DATA, OP I

\F END
OF DATA j

COMPARE PRODUCT
NO'S A AND B
IF GREATER, OP 21
IF EQUAL, OP S
OTHERWISE, 0P 2

TRANSFER A SET 0P I3
@ g Y T0 OP 18 JIMP T0 8

5 6 7

®_. TRANSFER A —o{MOVE UNIT PRICE SET OP 13
T0¢ FROM B TO € T0 0P 1y

0
FA
®

FIGURE 36

76

FLOW-MATIC CHART
ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3

8 9 - TOW gt 12
MOVE PRODUCT READ~ ITEM A COMPARE PRODUCT X-1 ADD
NO ARD QUANTITY| e IF END OF DATA | NO'S A AND W | QUANTITY A TO JUMP T0 @ __.G
ATOW 0P 23 IF EQUAL, OP 11 QUANTITY W
OTHERWISE, OP 13
IF END
OF DATA
PERFORM koums]
p £1 24 EQUAL
23 > 26
TEST PRODUCT NO -
L EXECUTE OP 13 B AGAINST Z'S CLOSE-0UT
THRU OP 17 IF EQUAL, OP 26 ¢, 0
OTHERWISE, OP 25
KOT EQUAL
25 27
. ' sl
REWIND B | Fstop
L} 15 ’ 16
MOVE QUANTITY X-1 COMPUTE WRITE= ITEM
/() g A EXTENDED PRICE RITE-1TEM ¢
I/'
’l
'l
13 e 17
, :
'I
sunp 10 1w B7 ; G)—' JUMP TO | ——@
\ .
" .
‘\
\\
\‘ N
\\ 18 19 20
\ -
\@—— MOVE QUANTITY WRITE-ITEM D JUMP TO 17
FROM W 70 D h
FIGURE 36

continued

77

FLOW-MATIC CODE

(0) INPUT INVENTORY FILE-A PRICE FILE-B : OUTPUT PRICED-INV FILE-C UNPRICED-
INV FILE-D ; HSP D

(1) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF GREATER GO TO OPERATION
21 ; IF EQUAL GO TO OPERATION 5 : OTHERWISE GO TO OPERATION 2

(2) TRANSFER A TO D

(3) SET OPERATION 13 TO GO TO OPERATION I8

(4) JUMP TO OPERATION 8

(5) TRANSFER A T0 C

(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C)

(7) SET OPERATION I3 TO GO TO OPERATION IU

(8) MOVE PRODUCT-NO (A) TO PRODUCT-NO (W) : QUANTITY (A) TO QUANTITY (w)
(9) READ-ITEM A ; IF END OF DATA GO TO OPERATION 23

(10) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (W) : IF EQUAL GO TO OPERATION |1 ;
OTHERWISE GO TO OPERATION I3

(t1) X-1 ADD QUANTITY (A) TO STORED QUANTITY (W)
(12) JUMP TO OPERATION 9

(13) JUMP TO OPERATION U .

(14) MOVE QUANTITY (W) TO QUANTITY (C)

(15) X-1 COMPUTE EXTENDED PRICE AND INSERT IN C ITEM
(16) WRITE-ITEM C

(17) JUMP TO OPERATION |

(18) MOVE QUANTITY (W) TO QUANTITY (D)

(19) WRITE-ITEM D

(20) ~JuMP TO OPERATION 17

(21) READ-ITEM B ; IF END OF DATA GO TO OPERATION |
(22) JUMP TO OPERATION |

(23) EXECUTE OPERATION 13 THROUGH OPERATION 17

(24) TEST PRODUCT-NO (B) AGAINST 722277777227 : |F EQUAL GO TO OPERATION
26 ; OTHERWISE GO TO OPERATION 25

(25) REWIND B .
(26) CLOSE-OUT FILES C , D
(27) stoPp . (END)

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3

FIGURE 37

78

The W-storage design and Directory for this version of the problem are shown
in Figure 38:

W-STORAGE DATA DESIGN

00 NAMEAOFAF I LE } Name of file
01 W-STORAGEAAA
02 FIELDADESIGN Head
3 MAMAMAMANL | Header
0y PRODUCT=-NOAA
05 ooocoo0c00C00 Four worad packet
06 cooco2ffjico describing product number
07 000000G0000C
08 QUANT I TYAAAA
09 000001000000 Four word packet
10 000003’,’760 describing quantity
I 00000011111
i2 ENDAFILEADES

Zero fill Ending sentineis
59 ENDAFILEADES

DIRECTORY

00 DIRECTORYAAA } Header
Gl AMAAANANANAA
02 00W0C000WO0O0 !
03 W-STORAGEAAA
oy ENDADIRECTRY

Zero fill Ending sentinels
59 ENDADIRECTRY

ARC MANUFACTURING COMPANY {NVENTORY PROBLEM 3

FIGURE 38

In addition to the above input to FLOW-MATIC, the necessary X-1 sections of
relative machine coding are prepared and supplied to the compiler. 'This is
a job for a person trained in UNIVAC coding since it entails the use of ma-
chine instructions. It does not, however, involve the use of actual machine
addresses; rather, a system of relative and symbolic addresses, associated
with the prepared item designs and field descriptions, is utilized. FLOW-
MATIC accepts these X-1 sections as input, includes them in the sequence of
operations as directed by the attached operation number, and converts the
coder's symbolic and relative addresses to actual machine addresses.

79

In order to write the required X-1 coding the programmer needs the following
information from the writer of the program:

(1) the operation number of the X-1 section which is to be written,
(2) the description of the function to be performed.

(3) the Data Designs and file letters of the files or items to be opera-
ted upon.

The FLOW-MATIC code, together with the Data Designs, is often sufficient
information to describe the function to be coded, if the descriptive English
in the X-1 operations is complete.

Detailed instructions for the use of the UNIVAC programmer in writing X-1
sections are included in Appendix C.

The prepared X-1 sections are Unityped on the input tape following the FLOW-
MATIC code. The necessary sections for this Sample Problem are shown in Figure

39:

RELATIVE MACHINE CODING

00 X-100MAMMOTE } Header
0l BOWCCIA-AQO|
02 COWOO| s

03 ENDASUBROUTN

Body of Coding

Sentinels

}
09 ENDASUBRQUTN z
10 Xx-10AMMAROIS } Header
i LOCOO1POCO02 }
12 JOC003 ~~
13 ENDASUBROUTN ;

Body of Coding

Sentinels
19 ENDASUBROUTN

lero fill
remainder Fill
of block

59

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3
FIGURE 39

80

The input tape for Sample Problem 3 in Figure 40 shows the use of all present
options in the FLOW-MATIC System. To summarize, a FLOW-MATIC input tape may
contain:

*{1) Data Designs for the input and output files. These may be stored
on the library tape for the system.

*{2) Data Design for W-storage. This may or may not be required, de-
pending on the problem.

*{3) The Directory. Required if W-storage is used.
(4) FLOW-MATIC code.
*(5) X-1 Code sections. Required if called for in FLOW-MATIC code.

(6) Ending sentinel block.

* Optional

In summary the option of including X-1 coded sections is provided for two
purposes:

(1) To allow a UNIVAC programmer to code a specialized function which
aoes not have wide enough application to warrant permanent inclusion
as a FLOW-MATIC library function. '

(2) To allow a UNIVAC programmer to code a needed function which does
not yet exist as a FLOW-MATIC operation.

The list of FLOW-MATIC functions will grow as application of the compiler
indicates additional useful functions. Experience indicates that a large
proportion of data-processing programs can be written by combining exist-
ing FLOW-MATIC functions. Specialization of a function to meet a parti-
cular requirement is made by the proper choice of option in the FLOW-MATIC
code, and by the Data Designs. A major feature of the FLOW-MATIC Library
is that it contains routines capable of generating machine coding to handle
a large variety of programming and data sitwations. Thus a single entry in
the library can produce a multitude of different, specialized codes which
would be prohibitive to write by hand and to store on tape.

81

FLOW-MATIC INPUT TAPE

ABC MANUFACTURING COMPANY

\]

| - h |

INVENTORY

PRICE

PRICED- 1INV

UNPRICED- INV

W-STOR AGE

DIRECTORY

FLOW-MATIC
CODE

X-1 SECTIONS

SENTINEL BLOCK

FIGURE 40

82

INVENTORY PROBLEM 3

DATA DESIGNS FOR INPUT
AND OUTPUT FILES

DATA DESIGN FOR W-STORAGE

DIRECTORY FOR W-STORAGE

X~-1 SECTIONS REQUIRED BY PROBLEM

chmat‘e‘r 7

The
Flow-Matic

Compiling Routine

The process of preparing a problem for,FLOW-MATIC has been described, using
three different versions of the same basic problem. Now, what happens when
the prepared input tape is used with FLOW-MATIC on the computer?

Figure 41 is a diagram of the four major phases of the compilation:

® Translation
® Selection
® Allocation

® Processing

83

FLOW-MATIC
LIBRARY

FLOW CHART OF FLOW-MATIC PHASES

'NEW DATA DESIGNS
W-STORAGE DESIGN
DIRECTORY
FLOW-MATIC CODE
X-1 SECTIONS
SENTINELS

y

TRANSLATOR

(GLOSSARIES)
(DATA DESIGN)

FLOW-MATIC

(PHASE 1)

UNEDITED

OPERATIONS
FILE |

4

SELECTOR

Y

LIBRARY
GENERATORS

8y

(PHASE 11)

OPERATIONS
FILE 11

Y

ALLOCATOR
(PHASE 111)

OPERATIONS
FILE 111

FIGURE 41

RECORD

GENERATED
LIBRARY

¥

PROCESSOR
(PHASE 1V)

EDITED
RECORD

OMPILAT ION

RUNN ING
PROGRAM

PRINT
H. S. P.

Translation: In this phase the FLOW-MATIC code is digested and condensed by
the appropriate Glossary. Pertinent information from the stored and/or new
Data Designs is added, creating the information listed in a standard formét,
called Operations File 1. The Translator also begins a list known as the
Unedited Record, used in the final phase.

Selection: The purpose of the Selector phase is to choose from the FLOW-
MATIC library the required functions and to produce for each operation the
specialized coding to handle the fields, items, or files mentioned in the
FLOW-MATIC code. These pieces of coding are also arranged in a standard
format, and the entire set is called the Generated Library. In addition,
during the Selector phase, supplementary information is added to Operations
File 1, producing Operations File 2.

Allocation: The Allocator phase works only on Operations File 2, assigning
data storage areas in the Memory as required by the program, and assigning
a fixed Memory address for each piece of coding listed. These fixed Memory
addresses are inserted in Operations File 2, producing Operations File 3.

Processing: The final phase combines Operations File 3 and the Generated
Library, producing a program tape in machine code. Since all assigned loca-
tions are listed in Operations File 3, and all pieces of coding are con-
tained in the Generated Library, the Processor simply inserts proper machine
addresses in the generated pieces of coding and assembles them in proper
order. In the Processing phase an Edited Record of the compilation is created
from the Unedited Record for use both as a printed record and as an aid in
debugging, if necessary.

During the Processing phase, a series of printouts is given. This list gives
the general layout of the program, and is designed for a programmer's use in
making a Codedit or Analyzer of the program tape.

In order to compile the first Sample Problem described in this manual, the
appropriate tapes are mounted on the proper Uniservos, and the normal UNIVAC
starting procedure is followed. (See Appendix D for detailed operating
instructions.) ‘

85

The normal printouts which occur during the compilation of the first sample
problem are: \

Printout Explanation

FILE 00A000000000 SERVOS 333333333333 uuyuuyyuuuuyy
FILE 00B000000000 SERVOS 555555555555

FILE 00€000000000 SERVOS 666666666666 777777777777
FILE 00D000000000 SERVOS 11101 i1I0MMIT 222222222222
END TRANS

Servo allocations
for input and out-
put files

End of Translation

END SELECTOR
END ALLOCTR

End of Selection
End of Allocation

COMPILED PROGRAM STARTS BLKS

INITIAL BLOCK 0000 0l

READS FOR SEGMENT 001 0940 0l Description of com-
CODING FOR SEGMENT 0Ol 0000 06 piled program tape

PROGRAM ON SERVO 4 008 BLOCKS
End of Processor,
END PROC |
part |
TYPE IN PG. HEADER INFO A request for three
type-ins
l. One word for
name of run
2. One word for
programmer's
name
3. One word for
date

EDITED RECORD ON SERVO 5 119 BLOCKS End of compilation

The printouts giving a description of the compiled program tape show that
not all of the blocks are arranged to fall into consecutive storage locations.
The compiled program has been designed so that the coding which reads in the
program falls into the highest block address available. This block is later
filled with data. A diagram of the compiled program tape is shown in Figure
42.

86

DIAGRAM OF COMPILED

1

A |

F1GURE 42

N

INITIAL BLOCK
STARTS IN 00O

READS FOR
SEGMENT €I
STARTS IN 940

CODING FOR
SEGMENT 0!
STARTS IN 000

2ND BLOCK OF CODING
FOR SEGMENT STARTS
IN 060

LAST BLOCK
STARTS IN
300

FLOW-MATIC PROGRAM TAPE

CONTROL BLOCKS

THE ACTUAL CODING FOR THE
PROBLEM, IN THE FOLLOWING
ORDER:

(1) ALL CONSTANTS

(2) CODING FOR MOVEMENT
OF DATA FILES

(2) CODING FOR PROCESSING
DATA WHILE IN COMPUTER
STORAGE

87

The Edited Record of compilation,a sample of which is shown in Figure 43,
contains the following:

{1)

(2)

(3)

{4)

A listing of the FLOW-MATIC input tape for the problem, with the
exception of the Directory. It may contain Data Designs, W-Storage,
FLOW-MATIC Code, X-1 Sections.

A table showing allocation of data storage areas with their related
symbolic addresses.

A list of the field names referred to in the FLOW-MATIC Code to-
gether with their assigned addresses, both symbolic and actual.

A description of the compiled program which contains for each opera-
tion number and function:

(a) The assigned starting and ending lines,

(b) The addresses of all constants used by the operation,

{c) The addresses of all exits from, and entrances to, the operation.

The compiled program tape can be tested by removing it from servo 4 where it

has been written, and mounting it on the instruction tape servo.

Data files

and blanks are mounted on the other servos as required by the run.

When Sample Problem

88

Printout

MMDDYY 1001 01

MMDDYY 100201

B.S.D. TAPE
RRRNRRRRRAY
222222222222

MT NXT RL S
333333333333

MMDDYY 1001 02

666666666666
MMDDYY 100301
000000000073

(ERRRRRRRNR]]
MMDDYY 10040}
000000000025

Explanation

This input tape has passed the label
check.

This input tépe has passed the label
check.

FLOW-MATIC code called for High-Speed
Printer output on servo | and alter-
nate servo 2.

A reel of input has been processed.
This input tape has passed the label

check.
A reel of output has been completed.

A reel of output has been completed.

1 is run, the following normal print-outs occur:

Action

None. Type-out for log
purposes.

None. Type-out for log
purposes.

Depress Block Subdivide
buttons | and 2. Hit
start bar.

Mount the next reel of
this file on servo 3.

None. Type-out for log
purposes.

Remove and label output
tape, servo 6,with label
and block count printed.

Remove and label output
tape, servo |, with {abel
and block count printed.

Op No.

005

006

007

008

009

010

ol

012

Call Word
TRANSFER
MOVE
WRITE-ITEM
READ-ITEM
JUMP
READ-ITEM
JUMP

SET

Start

0307

0308

0310

031t

0312

0213

0314

0315

SAMPLE EDITED RECORD LISTING

End

0307

0309

0316

0211

0312

0313

021y

0315

FIGURE 43

RETURN JUMPS
0P 00y

JUMPS
0P 006

JUMPS
0P 007

CONSTANTS
K5Cy

JUMPS
0P C03
0P 008

RETURN JUMPS
0P cC3

JUMPS
0oP €09
OP AlI3

RETURN JUMPS
0P Al3

CONSTANTS
K503

JUMPS
0P 001

JUMPS
0P 011
0P BI3

RETURN JUMPS
0P BI3

CONSTANTS
K502

JUMPS
0P 001}

JUMPS
0P 002

0P 013

RETURN JUMPS
0P 009
0P 009

Line

0306

0308

0310

0035

0156
0311

016y

0312
0049

0061

0036

0301

031y
0115

0127

0037

0301

0304
0316

0312
0312

This sample shows the kind of listing produced for each problem but is not an

actual listing from the Sample Problems given in this manual.

89

Although the analyst originally prepared the FLOW-MATIC code he more than
likely is unfamiliar with UNIVAC machine code. If detailed inspection of the
program should be necessary, the Edited Record has proved entirely adeqiate
" in providing information about the program to the trained UNIVAC programmer.
This allows him to assist the analyst in debugging (checking).

90

Appendix A

Flow-Matic Functions,
Guide For Writing Flow-Matic Code,

Flow-Matic Statements

Sl

FLOW-MATIC FUNCTIONS
For Sample Problems 1, 2, 3

(This is not a complete list of available FLOW-MATIC Functions.)

CLOSE-OUT:

COMPARE :

EXECUTE :

INPUT:

JUMP :

MOVE :

READ-ITEM:

REWIND :
SET:

STOP:

TEST.:

TRANSFER:

WRITE-ITEM:

92

Terminates the output files and rewinds the output tapes.

Examines two fields for magnitude and/or egquality: branches
accordingly.

Performs designated operation or sequence of operations.

Identifies the input and output files to be used and supplies
the first item of each input file.

Alters the normal sequence of operations and follows the di-
rected path.

Places one or many fields of data in any other fields.
Supplies the next item of an input file. When there is no
more data, terminates the file and takes the directed path
within the problem.

Rewinds current reel of an input file.

Alters an operation, changing the order of execution.

Rewinds the instruction tape and terminates the problem.

Examines the field and a constant for magnitude and/or equali-
ty; branches accordingly.

Places one item or group of words in any other item or group
of words of equal size.

Sends an output item to the output file.

10.

GUIDE FOR WRITING FLOW-MATIC CODE

A FLOW-MATIC code word contains a maximum of twelve digits, none of
which is a space (A).

FLOW-MATIC code words are separated by spaces (A's).

Each statement (operationl) contains up to a maximum of sixty FLOW-MATIC
code words:

a) excluding the operation number and ending period,

b) including all other words and punctuation marks.

Punctuation is according to proper English usage:
a) punctuation marks count as words,

b) only the ending period is of critical importance.

Assigned field names or file names may contain hyphens if it is desirable
to combine more than one English word into a single name.

Assigned field names are always followed immediately by the pertinent
file letter enclosed in parentheses:

al in all other cases the file letter is not parenthesized.
A11 operation numbers are numeric.

The operation number sequence starts with zero:

a) operation zero is always the input statement.

The operations are written in unbroken numeric sequence:

a) there may be a maximum of 999 separate operations.

The ‘last operation must be the stop operation followed by the word END
in parentheses.

93

oy

FORMAT FOR FLOW-MATIC CODE
It is recommended that each operation begin a new blockette. Each
statement may be space-filled to the end of the given blockette.

The final block of FLOW-MATIC code must terminate with at least twelve
full digits of spaces (A's).

The blocks (s) of FLOW-MATIC code and X-1 sections, if needed, are fol-
lowed by a sentinel block containing Z's in words 000 and 059.

LEGEND FOR DESCRIPTIONS OF OPERATIONS

Lower case indicates information to be supplied by the programmer.
Brackets [] indicate options available to the programmer.

= present operation number
h

h
hl, g» Ng... = other operation numbers.

1 Ty, f4.0n file letters assigned by programmer.

Sys Sgy Szees servo numbers assigned by programmer.

field-name

NUMBER

name assigned by programmer to data field. e.g., STOCK-

file-name = name assigned by programmer to data file. e.g., INVENTORY

FLOW-MATIC LIBRARY ROUTINES
(FLOW-MATIC CODE FOEMAT)*

CLOSE-0UT (h)ACLOSE—OUTABE%%%é]AflA[f2Af3A At AT

COMPARE

Option 1 (h)ACOMPAREAfield-nameA(f,) AWITHAfield-nameA(f,)A
; ATFAEQUALAGOATQAQPERATIONAR | A
; AOTHERWI SEAGOATQAOPERATIONAR A

Option 2 (h)ACOMPAREAfield-nameA(f,)AWITHAfleld—nameA(f 1A
AIFAGREATERAGOATOAOPERATIONAh 1A
AQTHERWISEAGQATQAQPERATIQNAh2A

Option 3 (h) ACOMPAREAf ield-nameA(f,) AWITHAfield-nameA(f,)A
; AIFAEQUALAGOATOAQPERATIONAR, A
; ALFAGREATERAGOATOAQPERATIQNA ,A
; AOTHERWISEAGOATOAOPERATIONAh 4.

Option ¢4 (h)ACOMPAREAfield-nameA(f,)AWITHAfiel d-nameA(f,)A
' AIFAGREATERAGOATOAOPERATIONAh 4
AIFAEQUALAGOATOAOPERATIONAh A
,AQTHERWISEAGQATQAQPERATIQNAh A.

EXECUTE ~ (h)AEXECUTEAQPERATIONAh A[THROUGHAQPERATIONAR 1] -

* Although the FLOW-MATIC code statements for the Sample Problems do not show explicitly the s;acps
(A’s) between words, they are included here for completeness and accuracy.

INPUT

30

96

[SERVOAS, A
| SERVOSAS, A, As,A
[SERVQAS | A]
| SERVOSASs A, As,A |
SERVOAs, A]
| SERVOSAs A, As A
[SERVOAS | A i
| SERVOSAs A, As A |

(0)AINPUTAname—of—fileAFILE—flA
name—of—fileAFILE—sz

; AQUTPUTAn ame-of-£ i1éAFILE-£ ;A

name—of—fileAFILE—f4A
[; APRESELECTIQONA])
[AHSPAL | A, Af A, A . . Af A)
[;AT/CAL A, AL ,A,A. . A A]
ON
[; RERUNA | WITH | AQUTPUTAS ,A] .
FROM

SPECIAL NOTES
The assigned file-name may not begin with the digits FILE-.

If servo numbers are not specified, the compiler will assign them, re-
serving the proper servos for tapes for HSP or T/C, as stated.

For a single input file, continuous reads will be proVided. For two or
three way input, standby coding will be provided, unless preselection is
specified. Up. to eight way input coding will be provided in the prese-
lection option, and up to five full-wora keys may be used.

The normal and error print-outs which may occur in the execution of this
coding are self-explanatory. In addition, bfeakpoint 1 is used through-
out the coding to provide operating options. For example, if a tape la-
bel fails the check, an error print-out gives this information to the
operator; he may then force transfer on breakpoint 1 to proceed, if de-
sired. In all cases where it is desired to bypass the error, the action
is to force transfer on breakpoint 1.

If it is desired to begin the problem over, the operating instructions

are.

a - Rewind all tapes except the instruction tape.

b - Clear C and rl.
c - No transfer on Breakpoint 2.

This coding is always provided.

6. If rerun coding has been requested, the operating instructions are:

a - Rewina all tapes except the instruction tape.
b - Clear C and rl.
¢ - Force transfer on Breakpoint 2.

The problem will be resumed from the last completed output reel, as speci-
fied in the input statement.

JUMP (h) AJUMPATQAQPERATIONAR | A.

MOVE (h)AMOVEAfield-nameA(f,)ATOAfield-nameA(f,)A
[,Afield-nameA(f4)A

,Afield-nameA(f)A]

[;Afield-nameA(f')ATOAfield-nameA(f,"')A
[,Afield-nameA(f; ')A

,Afiela-nameA(£f '}AT.

'READ-ITEM
(h) AREAD-ITEMAf | A[; ATFAENDAQFADATAAGOATOAQPERATIONAR | AT.

SPECIAI NOTES

1. Each input file mentioned in the INPUT statement must have at least one
READ-ITEM operation.

2. At least one READ-ITEM operation, for each input file, must include the
optional phrase, IF END OF DATA......

3. If two or more READ-ITEM operations, for a single input file, include the

IF END OF DATA.......option, the operation numbers, h;, must be identi-
cal.

REWIND (h)AREWINDAflA[,Asz,f3.;.;Aan].

SET (h)ASETAQPERATIQNAhIATQAGQATQAQPERATIQNAth

[, AQPERATIONAh ,ATOAGOATOAQPERATIONAR , A
, AOPERATIONAR (ATOAGOATOAQPERATIONA A,

97

STOP (h)ASTOPA.A(END)

SPECIAL NOTES

1. The stop operation must be, the highest numbered operation in the problem,
and it must be followed by the word END in parentheses.

TEST

Option 1 (h)ATESTAfield~nameA(fl)AAGAINSTAtest—valgeA
; AIFAGREATERAGOATQAOPERATIONAR | A
; AIFAEQUALAGOATOAOPERAT IONAh ,A
[;AAGAINSTA...A) ;
; AOTHERWISEAGOATQAOPERATIONAh 4A.

Option 2 (h)ATESTAfield-nameA(f,) AAGAINSTAtest-value
; AIFAGREATERAGOATQAQPERATIONAh , A
; AIFALESSAGOATQAOPERATIONAR ,A
[; AAGAINSTA. . .A]
; NOTHERWISEAGOATQAQPERATIONAh 5A.

Option 3 (h) ATESTAfield-nameA(f) AAGAINSTAtest-valueA
; ATFAUNEQUALAGOATOAQPERATTQNAR | A
[; AAGAINSTA...A]
; AOTHERWI SEAGOATOAQPERATIONAh, A

SPECIAL NOTES

1. The conditional phrases, IF GREATER, IF EQUAL, IF LESS, shown in Option
1 and 2 may appear singly or in any order in combinations of two. The
phrase OTHERWISE must always appear, and must be written last.

2. If it is desired to use a test value of spaces or peripas, the wordas
SPACE, PERIOD, SPACES, or PERIODS should be used instead of the actual
digits. In these cases, only one test value is acceptable. In all other
cases, tests against many test values may be made in one operation.

TRANSFER
Option 1 (h) ATRANSFERAL , ATOAS , A.
Option 2 (h) ATRANSFERAsub~i tem~nameAINAT | ATOAS ,A.

98 : | |

Option 3 (h) ATRANSFERAf ; ATOAsub-i tem-nameAINAf, A.

Option 4 (h) ATRANSFERAsub-item-nameAINAf | ATOAsub-item~nameAINAT,A.

SPECIAL NOTES

1. Item or sub-item sizes in f, and f, must be equal in size.

WRITE-ITEM (h) AWRITE-ITEMAS A.

99

~Appendix B

Data Design Pre-Printed Forms

101

PAGE: ——

ANALYST:
DATE:
N]AMIE]2[o[F[a[F[1]L
| English name of file.
FIIILIE|2|DIE|S|I|G|N|a
Alalalala{Aala|lAajAalA A
AlB alalalalala
1.) Label with reel counter.
2.) If label variable all A’s.
Llo[c[a|o|F[2|L[A[B]E |
o|ofojojo|o|ofO|O Word location of label in label block.
MIUIL|T|!1|2|RIEIE|L|2
O0|0|0|0O|O|O|O|0O]|O|0O]|O .1=Yes;0=No.
BILIK|a|C|T{a|I|N|D|a
O|0olO0|0o|O|OjO|0O|O|0O]|O: 1 = Block count desired; 0 = No block count.
B|L|x[2]c|T[2L]o[c]a
ojo|o|ojofo|O0|O|O i"i“i&‘:ﬁ:ﬁi“ﬁlﬁﬁk‘.’lFﬁ‘éo“é‘;"%iiiim‘iiiefi‘i’i‘
EIND|2|RIEIEIL|2|SIE |
" End of reel sentinel. If single reel, all A's.
EIND|a|F{I|LIE|2|SI|E
End of file sentinel.
| 1
Llo[c[a[1|N[a[F[1[R]S
oJo[ooloo]o]o[o Tt o n e e o
Llolc]a[i[N[a]Lals]T
o|o[o]o]o[o]o]o[o T oo e e it ST]
Other entries may be added here; each con-
_ sisting of a title word and an mformatlon
word; €.g-) DARTABIKASEN -
27777777777X
UNITYPIST
NOTE: After the last entry skip to the
" next page.
FLOW-MATIC DATA DESIGN FORM 1
Paredt Univac

S1.1499

102

ANALYST: : PAGE:
DATE:

m,
clolOojo i

=lo " Mlo|lplip

1,2,3,4,5,6,10,12, 15, 20,30, 60.

-0,1,2,....,9 = number of keys

o

RIO|I IO | am|D | ==
Mjo0jo =] |-
£|lojc]jloiM]o>
clo|lp|loW||O
p{o|XR|o|=|c M
cloimMm|o|N|c | W
DlO|=<L|OM|D |
>

Name of field, if no key AMAMMWAA

Further key entries may be added here,
each consisting of KEYAAMA fol-
lowed by the name of the field.

If there are Sub-items to be described,
the descriptions are entered following
the last Key entry. Sub-items are des-
cribed with two-word packets consisting

of the name of the Sub-item followed by
a word in the format 000SSSOOOEEE,
where SSS is the first word and EFE is
the last word of the Sub-item, relative
to the entire item.

‘ UNITYPIST
[NOTE: After the last entry skip to the
next page.

FLOW-MATIC DATA DESIGN FORM2

Punnct Tnivec.

DIVISION OF SPERRY RAND CORPORATION

S1-1500 o ' . 103

ANALYST: PAGE:
DATE:

FII|[EILID|2|DIE|S]|I |G|N

AlajslajajAja|alaja]A|D

Name of field.
0] 0]0|0|0|0O|O Word location in item. [000 to (item size-1)]
0(0|0O|0O|O o Field descriptor of form 00000TPPSLNO*

Extractor; if full-word field, all 0's.

' An unlimited number of fields may be
0|0]|0 O|0|0|0 |00 gescribed using the same four-word packet

format.

* Explanation of field descriptor:
T = Type of field.

1 - alphabetic

2 - alpha-numeric

olo|o o|lo|o|o|o|o 3 - numeric
- PP = Position of decimal point in rela-
010 0] tion to a reference point immediate-

ly to the left of the left-most
digit of the field.

00 - coincident with reference point
i1 - not applicable

nL - n positions to the left of the

0j{0 {0 ofojo|ojoj|o reference point
: nR - n positions to the right of the
oj0|0|0]|0 0 reference point

(n=12,...,9AB,...,72)
S = Digit position of the sign.
1,2,...,9,A,B, or C
i1 - not applicable

0|0}|0. olololololo L = Digit position of the left-most digit
of the field, excluding sign.
0|0 0] 1,2,...,9,A,B, or C

\ N = Number of digits in the field, excluding sign.
1,2,...,9,A,B, or C
(A=10, B= 11, C = 12)

01000 |0]0 i\OI'E Place the sentinel, ENDAFILEADES

immediately following the last four-

o) .0 0 0 word packet and in word 059 of that
block.
o|0o 0|0|O0|O|O|O
FLOW-MATIC DATA DESIGN FORM3
o{o|o0j|0|o0 0 ' .
Remington Fand Univac
S1-.1501

10y

Appendix C

Relative Machine Coding, X-1

106

X-1 sections of a FLOW-MATIC program are hana-tailored sections of coding.
Actual machine instructions are used, but a system of relative and symbolic
addressing is used in place of actual machine locations. These X-1 addresses
are always a combination of an alphabetic character together with three nu-
meric digits.

Use Alphabetic Numeric

To address a field within an A 000 through item
input or output item, or the B size minus one.
item itself. The alphabetic C
is the assigned file letter D
of the field or item; the nu- E
meric is the word location F
within the item. G

o

I
To address a field or unit in W 000 through max-
W-storage. The alphabetic is imum assigned by
always W; the numeric is the , ‘ . programmer in
word location within W-storage. Directory.
To address a line of coding M 000 through max-
within this particular section. imum used by coder
The alphabetic, M, indicates in this section.
that this relative address is
to be modified by the addition
of the starting line assigned
by the compiler.
To address a line of coding in J 000 through number
another X-1 section. The oper- of last line of
ation number of the section coding in X-1 sec-
referred to is also required, tion referred to.
and must follow the J notation
in the next line of coding as:
- Uodoi1
0000000P.021

meaning "jump to line Moii of
X-1 operation 21."
To address a temporary storage T 000 through max-
location, that is,a location imum assigned by
whose contents are not to be coder.

preserved for future operations.

106

The X-1 sections are written in blockette rather than block form, starting
each new section at the beginning of a blockette and continuing for as many
blockettes as required. They may be typed in any order of operation numbers.
The format of an X-1 section is as follows:

Header - One word containing the FLOW-MATIC operation number for which the
coding is written, as "X-1AAAAAAo12." This header is not counted as an M
address.

Body of coding - The coding is written starting with line number Mooo and
utilizing the appropriate address symbols given above. The extra lines
("0000000P.021") used with the J notation are not counted as M addresses.

Constants - Following the title "CONSTANTSAAA", numeric or alphabetic quanti-
ties are listed which are not to be modified by the compilation process.
The title is not counted as an M address; but the actual constants are as-
signea M addresses in sequence with other lines of the section. These con-
stants are stripped out by the compiler and included with other constants
from the remainder of the<“program, ana all duplicates are eliminated. Since
in the final compiled program, constants are not listed in their original
order, addressing a series of constants by incrementing an instruction is not
permissible. If it is desired to use such a technique, and if the constants
are numeric in the third and ninth digits, they may be included preceding the
title as a part of the main body of coding. Any counters incremented during
execution of the program must also be included in the main body of the coding,
not in the Constants Section. ‘

Code Constants - Under the title word "CQODEACONSTANTSA" are listed those
constants containing address symbols in the third and ninth digits which are
to be converted by the Compiler. The general rules stated in the preceding
section apply to this group also. All X-1 symbols may be used except the
"J" and the "M"; where it is required to use these symbols, the words contain-
ing them must be carried in the body of the coding.

A maximum of 39 constants and code constants together may be written in any
single X-1 section.

End Sentinel - the word "ENDASUBRQUTN" is written following the last line of
the section and in word 09 of the blockette (not necessarily in 59 of the
block). A subsequent X-1 section begins (with the header) in word oo of the

next blockette, and any partial blocks are simply zero filled.

107

Since the constants and code constants are removed by the compiler, and
placed in a constant pool for the eatire program, the exit from an X-1 section
is normally through the last line of coding to the next FLOW-MATIC operation.
If it is desired that this exit be other than the last line of coding, the
programmer uses the J notation to address line 000 of the next operation.

A non-functional section of X-1 coding, which illustrates all of the above
comments, is shown in Figure 44 on page 109.
Normal Printouts

During compilation: None

Error Printouts

During compilation (Selector Phase)

108

Printout Meaning Action
CANNQTAFINDA Operation hhh in FLOW-MATIC code Type in correct
X~1AAAAAARD calls for an X-1 section, but no header as
SUBROUTNAQNA section with this number appears X~1AAAAAARDR
INPUTATAPEAA on the input tape.

BADAADDRESSA Line MMMM of X-1 section hhh con- Type in corrected
X-1AAAAAAR BN tains an alphabetic other than line of coding
OOMMMMOCO000 A-1, J, M, T, W, as shown in CCccceeeceee
Cccceeccecee CCCCCCCcceca. '
WRONGARELAAD Line MMMM of X-1 section hhh con- Type in corrected
X-1AAAAAADDD tains an M reference greater than line of coding,
OOMMMMOOO000 the M address of the last line of CCCcceeceece
CCCCCccceeee thé section.
CANNQTAUSEAA Line MMMM of X-1 section hhh is Type in corrected
X-1AAAAAARBD a code constant and contains a line of coding,
OOMMMMOO0000 reference to a non-permissible CCCCCCCCCCCC
Ccceeecceccece M address.
iodxxxiodyyy The printout shows a line of cod- Type in op mo. or
ing which has at least one J ad- Op nos. as
dress, but no line with op nos. OP.hhh
follows it (where i equals any in- in proper half-
struction.) wordl(s).
HALFAWQRDAAA Line MMMM of X-1 section hhh con- Type in correction
ADDRESSAINAA tains an invalid file letter as CCCCCCO00000.
X~-1AAAAAAD DD shown in instruction CCCCCC.
OOMMMMOOOO00
CCCCCCO00000

Block Address

00
of
02
03
04
05
06
07
08
09
10

11
12
13
14
15
16
17
18
19

SAMPLE X-I

X -1 AAAANOT 2
BOAOO1LOMO08
————— QOMO006
A -MO0SCOAO001
BOMOOOA -MO10
LOMO11QOMO06
HOMOOOUO0J000
————— QP .013
BOMO12COMOOO
———— [JOMDOO
CONSTANTSAAA
000000000001
000006000006
000001000000
CODEACONSTSA
BOAO10LOMOO8
BOAOOOLOMO08
ENDASUBRQUTN

i ot ——

ENDASUBROUTN

SECTION

{ Header

Body of Coding

Title

Constants

. ———————— "

Title

Code Constants

FIGURE 44

Symbolic Address

MOOO
MQOO1

M002
MO03
M004
MOOS

M0O06
MO07

MOO08
MO09
MO10

MO11
MO12

10S

Appendix D

Flow-Matic Operating Instructions

FLOW-MATIC COMPILATION

The following information about the operation of a FLOW-MATIC compilation
indicates the print-outs and action to be taken for a normal {i.e., error-
free) compilation.

PART I. OPERATING INSTRUCTIONS FOR COMPILATION

Servo Allocation:

1 FLOW-MATIC Compiler (ring)
~ FLOW-MATIC Library (ring)

3-%7 Blanks

8 FLOW-MATIC Code (ring)

9 Blank (Rerun)

Initial Instructions:

a. Mount tapes as indicatea above.

b. Supervisory Control Printer on normal.

C. No block subdivision.*

d. Initial read servo 1 (compiler) and hit start bar.

Breakpoints:
1 Force no transfer to omit use of servo 9 for Rerun.
5 Release after Block Subdividing servo s.

* It is necessary to BSD servo 5 in order to allow the Edited Record to be
printed. To achieve this, set breakpoint s at start of compilation and
follow instructions in NORMAL PRINTOUTS.

12

PART II. NORMAL FRINT-OUTS DURING COMPILATION

Print-Out

FILE 00f0Q00CCO00 SERVOS aaaaaaaaaaaa bbbbbbbbbbbb
FILE 00f000000000 SERVOS aaaaaaaaaaaa bbbbbbbbbbbb

END TRANS
END SELECTOR
END ALLOCTR

COMPILED PROGRAM STARTS BLOCKS
INITIAL BLOCK oooc 0l
READS FOR SEGMENT 001 OO Ci
RERUN 00 Cl
0760 02
CODING FOR SEGMENT OCI oeCo nn
CODING FOR SEGMENT 002 CCCC mm
DDDD 01 (see Cycling)
PROGRAM ON SERVO 4 XXX BLOCKS
END PROC 1.

B.S.D. SERVO 5

TYPE IN PG. HEADER INFO

EDITED RECORD ON SERVO 5 YYY BLOCKS

CYCLING

Note that the last block of the

Action

None

None
None
None
None

None
Block subdivide
servo §, release
breakpoint #5
and hit start bar

Type in three (3)
words of run iden-
tification e.gs,
name of run, pro-
grammer, date

Explanation

daaadadddada = servo numper for initial reel
bbbbbbbbbbbb = servo number for alternate reel
f = input or output file letter

nn = number of blocks in Ist segment

mm = numper of blocks in 2nc segment, minus |
CCCC = location of Ist block in 2nd segment
DODD = location of last block in 2nd segment

XXX = total number of blocks in compiled tape

None YYY = number of blocks in EDITED RECORD

second, thi

rd,, segments may have a

special address, out of sequence with the other blocks in the segment. This
occurs when the last block of a segment is a partial block. The compiler
automatically arranges to repeat as much of the coding of the preceding
block as necessary; then it compiles the partial block of coding, and arranges
the read instructions for the tape so that this last block will overlay the
repeated coding. This technique is employed to allow the maximum amount of
memory space for each subsequent segment.

K

PART III. PRINTING THE EDITED RECORD
The printer plugboard should be a non-split, 1:1 board.

The paper loop should be a standard, 132 row loop with the following punches:

Row Channel
1 7
2 1
67 7
68 1

Set the printer for normal, single space operation.

1y

Index

Charts

Process
General, I5

Block
General, 18-20
Examples, figs. 16, 17, 29, 35

Flow-Matic
General, 21-22, 26-29
Examples, figs. 18, 2i, 22, 30, 36

Coding, Relative Machine
General, Chapter 6, App. C

Examples, figs. 39, u4
position on input tape, fig. 40

Compiler
General, 83-90, figs. 20, Ui

Operating instructions, App. D

Data Design
General, 23, Chap. 4

File Design
General, 38-40
Examples, figs. 26a, 26d, 26g, 26j, 32a

Item Design
General, 16-18, 4i-u2
Examples, figs. 25, 26b, 26e, 26h

Field Design
General, 43-U5
Examples, figs. 26c, 26f, 26i, 261

Forms, Pre-printed, App. B

Directory, 68
Examples, 68, 70
Position on input tape, figs. 33, U0

Edited Record Listing
General, 88

Example, fig. U3

Error Printouts during cempilation, 108

Flow-Matic Functional Statements, Chap. 3
General Description, 92
Coding format, 95-99
Guide for writing, 30-33, 93
Examples, IQ; 23, 31, 37

Format for Flow-Matic Code
General, 93-94
Legend, 94

Functions, description of, 92

Layout, input tape, 33, 40, L2

Operating Instructions, see Compiler

Program tape layout, fig. 42
see Edited Record Listing

Working Storage (W-Storage), Chap. §
Examples, 68, 7C, 7i
Position on input tape, figs. 33, 40

116

Univac II Systems o For data-automation which involves large
volumes of input and output.

Univac File-Computer * For instantaneous Univac 60 & 120 Computers For speeding
random access to large-scale internal and simplifying the procedures. of punched-
storage—plus computation. «card systems. -

L

UNIVAC—The FIRST Name in Electronic Computing Systems

—at

