
,
31 o
Q
I
~
I
I • z a
II
<
II ..
1ft
I

UNIVAC

- - COMPARE PRODUCT NO. (A) - - . - 800940 - - - L00880 -
~'J

'-F_ W-MATIC

®

~I UNIVAC
I

-COMPARE PRODUCT NO. (A) - - • - 800940 - • - LOOaaO - - - -

W-MATIC
.. .-OG.-AIVIIVIIINIG

S'VSTEIVI

ANOTHER SERVICE OF • • .

MANAGEMENT SERVICES AND OPERATIONS RESEARCH DEPARTMENT

DIVISION Of SPERR' RAND CORPORATION

© 1958- SPERRY RAND CORPOR"T ION

© 1958- SPERRY RAND CORPORATION

Preface

WHAT IS THE UNIVAC FLOW~MATIC PROGRAMMING SYSTEM?

THE UNIVAC FLOW-MATIC SYSTEM is a revolutionary new programming aid developed
for the UNIVAC Data Automation System by the Automatic Programming Development
Group of the Remington Rand Division, Sperry Rand Corporation. Using an
English language description of application requirements as its instruction
code, this new product is especially designed for use by those who know and
can best define their data processing needs. ·With this new system, the Com­
puter is directed to accept descriptions of application requirements in the
busines~man's vocabulary and translate these descriptions automatically and
accurately into detailed coded instructions.

WHO CAN USE THE UNIVAC FLOW-MATIC SYSTEM?

The systems and procedures analysts, the accountants, operating management
can use the UNIVAC FLOW-MATIC SYSTEM wi th Ii ttle training. Familiari ty wi th
detailed computer coding is not necessary. Familiarity with the desired
system, and the ability to describe it are the only prerequisites. The ex­
perienced programmer will also find that the UNIVAC FLOW-MATICSYSTEM fac­
ilitates program preparation.

WHY USE UNIVAC FLOW-MATIC?

The UNIVAC FLOW-MATIC AUTOMATIC PROGRAMMING SYSTEM offers to its user un­
precedented benefits, -- benefits such as:

Faster and more accurate Programming - The coding process utilized reduces
the elapsed time between the original conception of an application and the
checked out final processing. The concise method of expression greatly re­
duces chance of error.

1

Easier Programming Analysis - The inherent step by step approach leaves a
trail of easily understood documentation, important in retrospect if it be­
comes necessary to alter the programs either because of changed requirements
or modifications in t~e data processing system.

Checks Systems Des i gn - The ease of preparing UNTVAC FLOW-MArIC charts, plus
the flexibility with which changes can be made facilitates greater use of
pilot systems to check the basic logic of the system design.

One-Shot Jobs Now Practical - The programming of many one-shot jobs formerly
considered impractical is now not only feasible and economical, but also
provides invaluable addi tional fact power to decisio.n making management.

Flexibil ity - Changes in either the processing procedure or data format can
be accomplished independently without affecting the other.

ABOUT THIS MANUAL

Straight-forward in approach, this manual is so designed to serve the grada­
tional need of the user. Later chapters and appendices furnish detailed
information for the experienced programmer.

11

Table Of Contents
Chapter Page

INTRODUCTION

A COMPLETE SYSTEM WHICH MEETS ALL USER PROCESSING
REQU I REMENTS••...•..••.••••••.••....•••••...••••••••••• I

AVAILABLE EQUIPMENTS AND THEIR FUNCTfONS •••••• ••••••••••••• 2
THE UN I VAC II CENTRAL COMPUTER............................. 2
THE UN I VAC II CONTROL GROUP................................ 2
UNIVAC INPUT DEViCES....... ••••• •••••••• •••••••••• •••••• ••• q.
UNIVAC INPUT,..OUTPUT DEVICES 8
UN I VAC OUTPUT DEV ICES •••••••••••••••••••••••••••••••••••••• 8
ILLUSTRATION OF INTERRELATIONSHIP OF EQUIPMENT ••••••••••••• 12

2 THE FLOW-MAT I C METHOD •••.••...••..•••••.•••••••••••••••••••.• I 3
The steps to be followed in applying this new method of
programming are described in terms of a data-proce8sing
problem.

3 FLOW-MATIC CHARTING AND PROGRAM-WRITING •••••..•••••••••••••.• 26
The procedures for drawing flow charts and writing English­
language programs are described. Sample Problem 1 is
programmed.

FILE-DATA LAYOUT AND DES IGN 35
The methods of writing descriptions of data files, items and
fields is given, along with the pre-printed forms used.

5 INTERMEDIATE OR WORKING STORAGE ••••••••.••••••••••••••••••••• 60
Sample Problem 2 is introduced requiring working storage.
The method of utilizing this feature of FLOW-MATIC is
described.

6 RELATIVE MACHINE CODING, X-I .••••••••••••••••.••••••••••••••• 72
In order that special or unique subroutines may be included
in the compiled program~ a method of machine coding is shown.
Sample Problem 3 indicates how this is used in a program.

7 THE FLOW-MATIC COMPILING ROUTINE............................. S3

Appendix

A rudimentary description is given of how the compiler oper­
ates, and of the record of compilation prepared for the user.

A FLOW-MATIC FUNCTIONS, GUIDE FOR WRITING FLOW-MATIC CODE,
FLOW-MATIC STATEMENTS.. 91

B DATA DESIGN PRE-PRINTED FORMS •••••••••••••••••••••••.••••..•• 101

C RELATIVE MACHINE CODING X-I 105

o FLOW-MATIC OPERATING INSTRUCTIONS II r

INDEX I: ••••••••• a I ••••• e· •••••••••••••.•••••• '0 • • • • • • • • •• I I 5

111

Introduction

The FLOW-MATIC programming system provides for the UNIVAC user an entirely
new, different, versatile method of writing programs. The key development
in this system is the conversion of the FLOW-MATIC code in the businessman's
vocabulary into standard computer code. The primary objective in the de­
velopment of this system has been to create a tool to assist analysts in
the preparation of programs for data-processing systems. This is the first
major step in the direction of a general-purpose programming aid for data­
processing users.

The use of the FLOW-MATIC System involves the following steps:

Data System Design

~
Complete Run Definition

~
Process Chart of the Run

~
Block Chart of the Program

~
FLOW-MATIC Chart

~
FLOW-MATIC Code

lV

The user may also be interested in the general picture of the entire process
in preparing a program with the aid of the FLOW-MATIC compiling routine as
shown in the graphic presentation as follows:

Data System Design

~
Complete Run Definition

~
Process Chart

~
Block Chart

~
FLOW-MATIC Chart

~
FLOW-MATIC Code

~
COMPILER

. [Translation of FLOW-MATIe]
FLOW-MATIe L1brary ---. Code into Computer code

~
Compiled Running Program
in computer code on tape
ready for processing data

Programmer's Contribution
(English Language)

Computer's Contribution
(Computer's Language)

The primary consideration in the design of the FLOW-MATIC system is the (data
processing) user and the types of programs required by the system he defines.
It provides a complete method, or procedure, which begins with the first
definition of the problem or application, and continues throughout the check­
ing out phase and into the program and system refinements which follow the
initial operation of the UNIVAC system.

Both the manner and the extent to which 'the FLOW-MATIe System is used depend
on the individual who uses it. The expert programmer may use the FLOW-MATIC
procedure during the initial definition of UNIVAC runs to facilitate communi­
cation between the computer programming group and operating management. If
the major function of the expert programmer is to supervise a number of less
experienced people, he can spend maximum time in the definition and analysis

v

phases, carrying out the steps of the FLOW-MATIC procedure only so far as is
necessary, depending upon the varying abilities of his individual programmers.
Still ano!her possibility is that of utilizing FLOW-MATIC to produce the first
draft of a program which, because of its high degree of repetition, may later
require ingenious modification and application of the "tricks of the trade"
known to the expert programmers.

One advantage the FLOW-MATIC programming system offers to a data-processing
organization in its early stages of growth is the reduction of personnel
training time. Within a comparatively short period they will become expert
FLOW-MATIC programmers and system designers. As with any powerful, general­
purpose tool, users increase in competence as they gain experience. This
does not, of course, remove the need for experienced, career programmers.
Every UNIVAC Data Automation System installation requires, and is benefited
by, experienced career programmers who discover operational flaws in programs
and systems, correct them, utilize their intensive knowledge to solve especial­
ly difficult programming problems, and add to the effectiveness of FLOW-MATIC
itself.

It is important to point out that FLOW-MATIC is a growing system designed for
continued expansion and development in a variety of directions, all within
the basic framework of the existing structure. It is expected that this
growth will proceed in such a way as to make the system increasingly useful.

Although the programmer who uses the FLOW-MATIC Compiling system is not re­
quired to know the internal operation of the UNIVAC Data Automation System,
he must be familiar with the manner in which the computer reads input data,
performs various operations and delivers the desired results. Chapter I gives
a brief description of the UNIVAC Data Automation System together with the
specific function of each individual piece of equipment.

Chapter II provides the reader with a quick, comprehensive view of the FLOW­
MATIC method. It presents a sample application, and traces the procedure
to be followed in programming with this system. Later chapters develop the
detailed techniques involved in each step of the procedure, and through the
introduction of extensions of the basic application, additional features of
FLOW-MATIC are explained.

V1

A Complete System Which

Meets All User Proc-essing

Requirements

chapter 1

The Univac II Data Automation System is a complete and well balanced data
processing system. It will accept and prepare information through a wide
variety of standard data-recording media. The user gains versatility most
economically since the Central Computer, that unit which performs the actual
processing, can read and wri te information directly through the magnetic. tape
which is one of the most rapid input-output media in use today. Peripheral
equipments convert all recorded data into the form acceptable to the Central
Computer, or from the form prepared by the Central Computer (Univac II System
code on magnetic tape) to the desired form. In this way, the system has a
dual advantage. First, the Central Computer need not be hampered in its
processing task by the necessity of working directly with input-output media
unworthy of its lightning-fast internal operating speeds. Secondly, the
Central Computer need not be involved in conversion process which can most
economically be handled by p~pipheral equipments on an off-line basis.

From a wide variety of available equipments each Univac II System user
chooses the units which, when molded into a system, best meet his overall
data processing requirements.

AVAILABLE EQUIPMENTS AND THEIR FUNCTIONS

THE UNIVAC II CENTRAL COMPUTER

The Univac II Central Computer in Figure 1 is the heart of the Univac II
Data Automation System . It performs all arithmetic and logical operations.

In the exec ution of a typical data processing t ask the Centra] Computer
perfo r ms the following basic operations:

1 . Step- by - step instructions, stating specifically the operations to
be pe r formed on the data, a r e read by the Central Computer from
magnetic tape and stored internally within the Central Comp ut e r .
Obeying the stored inst r uctions, the Central Computer then auto­
matically

2 . Reads the data from magnetic tape and stores it inte r nally .

3. Performs all operations upon the data indicated by the instructions,
and stores the results internally .

4 . Reads the results from storage and writes them on magnetic tape .

FIGURE 1

All operations are self-checked to ensure that they are performed with the
unwavering accuracy and dependabilIty that has become associated with the
name UNIVAC.

2

THE UNIVAC II CONTROL GROUP

Two control units are directly connected to the Central Computer, and each
in its own way, provides some indication of the actions of the Central Com­
puter.

Univac Supervisory Control Console

The Univac Supervisory Control Console (Figure 2) provides the operator with
a continuous picture of the operations t aki ng place within the Central Com­
puter. It also provides visual indication whenever an error occurs in any
operation, identifying the faulty circuit for the maintenance technician.

Although the Central Computer is designed to operate automatically, there
are occasions when manual intervention may be desirable. The Univac Super­
visory Control Console includes a keyboard by means of which the operator
can type information directly into the Central Computer. A group of switches
and buttons on the Console allows the interruption of automatic operations
and the institution of changes in their course or'the substitution or in­
sertion of other operations.

FIGURE 2

3

Univac Supervisory Control Printer

The Univac Supervisory Control Printer (Figure 3) is a modified electric
typewriter which prints information directly from the Central Computer. Its
primary function is to provide the operator, in easily readable form, infor­
mation concerning the processing being performed within the Central Computer.
This unit is sometimes employed for printing processing results; however;
it is used for this purpose only when the information to be printed is not
lengthy.

FIGURE 3

UNIVAC INPUT DEVICES

The function of Univac II input devices is to convert information from its
original form into Univac II System code recorded on magnetic tape. These
devices are completely independent of the Central Computer, so that while
the input devices ~repare data for future use by the computer, the computer,
itself, is free to carryon the current processing problems . This ability
to overlap input preparation and computer processing represents a large saving
of time and thus money, for the user.

Univac Unityper II

The Univac Unitype r II (Figure 4) is a device by means of which information
legible to its human operator can be recorded on magnetic tape. This device
is somewhat larger than, though similar in appearan ce to, an electric type­
writer. The 26 letters of the alphabet, 10 numerals, and some special Univac
II System Symbols are represented on the keyboard of this device in an array
similar to the familiar typewriter keyboard pattern. Striking a Unityper
II key causes:

1. A pattern of magnetic spots representing the Univac II System Code
for the character represented on the key to be recorded on a mag­
netic tape mounted in the upper portion of the device, and

2. That character to be printed on a piece of copy pape r mounted on
the carriage.

Thus, recording information on magnetic tape with the Unityper II involves
little more than a retyping of the information. Information is tape-recorded
by the Unityper II at a density of 50 characters per inch with a 2 . 4 inch
spacing between each consecutive 120 characters.

FIGURE 4

Univac Verifier

The Univac Verifier (Figure 5) is a unit of peripheral equipment which can
operate in anyone of two capacities:

1. As a primary input device which rec ords information on magnetic
tape by means of a typewriter keyboard in very much the same manner
as the Unityper II.

5

2. As a proof reading device which corroborates information recorded
on tape and permits the correction of detected errors.

Its primary use is as a proof reading and correcting device. Information is
recorded by the Verifier at a recording density of 50 characters per inch with
a 2.4 inch spacing between each 120 characters.

FIGURE 5

Univac Punched Card-to-Magnetic Tape Converter

The Univac Punched Card-to-Magnetic Tape Converter (Figure 6) consisting of
a card Reading Unit, a Control Unit and a Tape Unit, allows the entry of
information into the Univac System in punched card form. Cards are loaded
into the intake bin of the Card Reading Unit, and the information read from
the cards is recorded on magnetic tape. The entire process is accomplished
automatically and its operation is completely self-checked to ensure complete
accuracy of the recorded information. The Converter is equipped with a re­
movable plugboard which allows automatic rearranging of information during
the conversion process.

F IGURE 6

6

Univac Punched Card-to-Magnetic Tape Converters are offered in two models.
One handles standard 90-column punched cards; the other handles standard 80-
column punched cards. Both models operate at a maximum conversion rate of
240 cards per minute and record information at a density of 128 characters
per inch with a 1.8 inch space between each 120 characters, and a 2.4 inch
space between each 720 characters.

Univac Paper Tape-to-Magnetic Tape Converter

The Univac Paper Tape-to-Magnetic Tape Converter (Figure 7) is a device con­
sisting of a Perforated Tape Reader, a Translator and Control Unit, and a
Magnetic Tape Recorder. This equipment allows information recorded on paper
tape to be entered directly into the Univac II System. Reels or message
lengths of punched paper tape generated by teletypewriters, automatic type­
writers, adding or bookkeeping machines with tape punchers attached, and
punched card to perforated tape converters may be mounted on the Tape Reader.
Information contained in tapes are automatically translated into Univac II
System Code and recorded on magnetic tape. Deletion of certain punched paper
tape symbols, and addition of some Univac II System Symbols may be accomplish­
ed automatically during the conversion process. The entire operation is
completely self-checked to ensure complete accuracy of the conversion process.
The Univac Paper Tape-to-Magnetic Tape Converter operates at a maximum con­
version rate of 200 characters per second and records information at a density

of 128 characters per inch, placing a one inch space between each 120 chara­
cters, and a 2.4 inch space between each 720 characters.

FI GURE 7

7

UNIVAC INPUT-OUTPUT DEVICES

Univac Uniservo

The Univac Uniservo (Figure 8) is the devic e through which the Central Com­
puter communicates with its ma gnetic tapes . A maximum of 16 Uniservos may
be directly connected to the Univac II Central Computer . Each Uniservo con­
tains a "read-write" he ad and mech anism for moving the mag netic tape pas t
the head at a speed of 100 inches per second. Each Uniservo is capable of
reading tape moving in the forwa rd direction, re ading t ape movin g in the
backwa r d di r ection, writing on tape moving in the forward direction, and
rewinding its tape. Reading from anyone Uniservo, writing , on any other
Uniservo, rewinding the tape on any number of the remaining Uniservos may
be carried on simultaneously with Central Compnte r processjng . Uniservo
operations are cont rolled by the Central Computer through programmed instruc­
tions.

FIGURE 8

UNIVAC OUTPUT DEVICES

Univac II output devices allow the system to prepare processed results in a
wide variety of forms. They automatically convert information contained on
tapes produced by Central Computer processing into the desired form. All of
these output devices operate with complete independence of the Central Com­
puter. Thus, the computer is free to handle furthe r processing while the
resul ts of the previous problem are being converted. Thi-s abili ty to overlap
conversion and processing operations represents a great saving in time, and
money for the user.

8

Un i va c Un i p r in t e r

The Univac Uniprinter (Figure 9) consists of a Tape Reader and a Printin g Unit
which is a modified electric typewriter. A reel of magnetic tape, containing
the information to be printed, is mounted on the Tape Reader. As information
is read from the tape, it is printed by the electric typewriter. The Univac
Uniprinter, which accepts tapes recorded at 25 characters per inch, print s
at a rate of 10 characters per second, and is usually used for low volume
output printing, such as the preparation of man agement r eports .

FIGURE 9

Univac High-Speed Printer

The Univac High-Speed Printer (Figure 10) is used f or large volume printing.
This four unit assembly, consistin g of a Tape Reader, a Storage Unit, a
control Unit, and a Printer, reads magnetic tape and converts the information
recorded thereon into printed copy. The High-Speed Printer prints an entire
line at a time. Each line may contain as many as r]o charac ters, and printing
is accomplished at a maximum rate of 600 lines per minute. A removable plug­
board mounted in the Control Unit controls the format of the printed page
and affords wide flexibility in the arrangement of the printed information,
reducing the eqiting and thus the processing time required of the Central
Computer. The entire operation of this device is completely self-checked
to ensure that each character printed is the exact one recorded on the mag­
netic tape. It · accepts information tape-recorded at a density of from 50 to

-
128 characters per inch with at least one inch space between each 120 chara-
cters.

9

FIGURE 10

Univac Magnetic Tape-to-Card Converter

The Univac Magnetic Tape-to-Card Converter (Figure ~ 1) consists of three uni ts:
a Tape Unit, a Card Punch Unit and an Electronic Cabinet containing the cir-

"" cuitry necessary to control and check the Tape and Card Punch Units. This
piece of equipment reads information from magnetic tap.e and converts the
information into standard punched cards at a rate of 129 cards per minute.
A removable plugboard permits the selection and rearrangement of information
during the conversion process. The Univac Magnetic Tape-to-card Converter
accepts information tape-recorded at a density of 128 characters per inch
with at least one tenth inch space between each 120 characters and 2.4 inch
space between each 720 characters. Its entire operation is completely self­
checked to ensure proper conversion.

FIGURE 11 .

10

Univac Magnetic Tape-to-Paper Tape Converter

The Univac Magnetic Tape-to-Paper Tape Converter (Figure 12) consists of a
Magnetic Tape Unit, a Translator and Control Unit, and a Paper Tape Punch.
It punches information recorded on magnetic tape into paper tape. The punched
paper tapes may then be used directly to send information via a teletype­
writer.

FIGURE 12

As with all Univac II equipment the operation of the Magnetic Tape-to-Paper
Tape Converter is completely self-checked to ensure accurate conversion.
This conversion is accomplished at a maximum rate of 60 characters per second.
It accepts information recorded at a density 0f 128 characters per inch with
at least a 1 inch space between each 120 characters.

II

INFORMATION CAN ENTER AND EMERGE FROM THE UNIVAC II SYSTEM THROUGH A VARIETY OF STANDARD DATA RECORDING MEDIA

INPUT

INPUT
DEVICES

PROCESSING

OUTPUT
DEVICES

OUTPUT

Punched Paper Tape

PAPER TAPE CONVERTER

Punched Paper Tape

~
~

Printed Material

Standard 90 or SO-Column
Punched Cards

PUNCHED CARD­

TO'- MAGNETIC

FIGURE 13 Printed Material

Any legible

Documents

Standard SO-Column
Punched Cards

chapter 2

The Flow-Ma tic Method

In the introduction it was stated that the FLOW-MATIC System provides an
entirely new method of programming. In order to demonstrate this method, a
simple data processing run is developed through the steps necessary to pre­
pare the computer coded program. The run prepared is representative of a
large class of business data processing runs. Typically, a series of such
runs linked together form a data processing system which, depending on the
sUbject matter of the programs, computes a payroll, adjusts inventory, per­
forms sales accounting, or prepares labor distribution.

Each run in any such system is characterized by a flow into the computer of
files of data, read from tapes mounted on one or more input Uniservos, and
a flow out from the computer of data written on tapes, also mounted on one
or more Uniservos. The function of the FLOW-MATIe programming system is to
produce the program which -controls the flow of data through UNIVAC and per­
forms the required processing of the data.

A file stored on magnetic tape is recorded with identifying information writ­
ten at the beginning of the tape, and sentinels indicating the end of the
data also entered on the tape. The body of the file contains a varying number
of file items, each representing a separate entry in the file ~nd usuallY
identified by some key information such as payroll number, customer name, or
stock number. Frequently the items in a file are in ascending sequence ac­
cording to this key. Each item within a file contains data elements related
to the item, arranged in a systematic format. These data fields will be
consistently placed within all items in the file. Thus, for example, by
scanning the same relative position in the items of a typical payroll file,
the pay rates for employees can be located.

13

With these few notions of the manner in which business data is stored on
magnetic tape, the process chart or run chart can be considered. The process
chart is the most general pictur-e of a UNIVAC data processing system. Figure
14 shows a series of tape files represented by circles, linked by a series
of boxes which represeht computer operations. or runs.

I~

RUN 2
SORT

RUN 5
MERGE EDIT

SAMPLE PROCESS CHART

RUN lj.

MATCH & ME RGE

PRINTED
OUTPUT

RUN 3
DATA VERIFICATION

PRINTED
OUTPUT

FIGURE 14

Figure lq. is a process chart which describ~s part of a system of runs. Prior
to the preparation of such a chart, a comprehensive study of the system must
be made. Some of the points to be considered in this study are the files

to be processed, the computer operations required, and the information desired
as output.

When the process chart has been prepared, the programming task begins. This
is the starting point of the FLOW-MATIC method. Consider, there'fore, the
function of run number q. of the process chart (Figure 15).

PROCESS CHART
ABC MANUFACTURING COMPANY INVENTORY

RUN-q
APPLICATION OF

PR ICES TO
INVENTORY

FI GURE 15

PRINTED
OUTPUT

Suppose run q. is part, of the UNIVAC inventory system for -the ABC Manufacturing
Company. Inventory balance items for all manufactured products are tO'be
maintained on magn~tic tape and represent one of the input files to this run.
Since prices are not to be carried in this file, it is necessary at intervals
during tfie year to apply current prices contained in a Price File which is
the second input to the run. One output of fun q. is shown to be a Priced
Inventory file containing all inventory items for which prices were found
in the Price file. Since the two input files were maintained separately, it
is possible that the Price file is not complete. Thus a second output file,
the Unpriced Inventory, will contain those Inventory items for which no price
was found. The system further 'requires that such unpriced items be printed
on the Highspeed Printer so that they may be checked and the proper action
taken.

15

The diagrams below show an actual example of the contents of each type of
item in the problem.

INVENTORY ITEM

00 o 0 0 0 907 3 A 1 0 1

01 o 0 0 0 0 010 0 2 5 ~ 3

02 000 0 0 0 0 0 0 000

03 COO 000 0 000 0 0

05

06

07

08

09

PRICE ITEM

00 o 0 0 0 9 073 A 1 () 1

01 0000000 o 1 095

16

-

....

....

...-

This is the product number; it may re­
quire as many as 12 dig~ts.

This field is the quantity of this
kind of product on hand; it may re­
quire as many as 6 digits.

Other data (not used
in t his pr ob 1 em)
appear here.

Th is product number shows that th is item
ap plies to the inventory i tern given above.

This is the price for one unit of this
product. Up to five digits may be used,
and since this number represents dol­
lars and cents, the decimal point is
between the third and fourth digits -
$10.95.

PRICED INVENTORY ITEM

00 o 0 0 0 9 073 A / 0 /

0/ o 000 0 0 002 543

02 o 0 0 0 0 0 010 I o 9 5

03 000 0 0 0 0 0 0 0 0 0

05

06

07

08

09

UNPRICED INVENTORY ITEM

00 o 0 C 0 9 I 5 6 A 0 2 3

0/ o 0 000 0 0 () o 5 2 7

02 000 0 000 0 0 0 0 0

03 o 0 0 0 0 0 0 0 0 0 0 0

05

06

07

08

09

-

:4

-

.....

~

~

i·

...

Prod uct n umbe r.

QUantity on hand.

Unit price is inserted here.

Other data (not used
in th is problem)
appear here.

Product number for which
no price can be found

Number of units of this kind
of product on hand.

Other data (not used
in th is problem)
a ppear here.

17

The key by which the price is matched with the corresponding inventory item
is the product number. These files are sorted in .ascending sequence according
to product n~mber by previous runs. The sorting run~ are performed in ordet
that the process of matching may be more efficiently carried out by UNIVAC
in run Lt.

The next step is to translate the description of the function of the run into
a program for UNIVAC to follow in producing the desired output. It is in'
the logical analysis and organization of this program that the skilled pro­
grammer or systems analyst can make the most effective con.tribution. For it is
iri the overall logical design of the program that the application of program­
ming and data processing know-how can make the difference between a correct
program, and one which is both correct and efficient, in terms of making the
best use both of the computer and of the data characteristics. FLOW-MATIC
does not replace good systems design and careful run analysis.

A verbal outline of one possible program to solve this simple problem is gi v.~n
below.

Assume at the start that the first item of each of the input files is avail­
able. The operations are as follows:

I Compare the product number of the Inventory item with the product
number of the Price item.

a. If the Inventory product number is less, go on to step II.
b. If the product numbers are equal, go on to step III.
c. If the Price product number is less, go on to step V.

II Prepare and write an Unpriced Inventory item. Then go on to step
IV.

III Prepare and write a Priced Inventory item. Then go on to step IV.

IV Read the next Inventory item and go back to step I. Or, if the
Inventory file is exhausted, wind up the problem and stop.

V Read the next Price item and go back to step I. Or, if the Price
File is exhausted, change the program so that step IY goes back to
step II (eliminating" a now unnecessary comparison). Then go on to
step II.

In the preceding statements the functions of this simple run have been com­
pletely described. The next step is to translate these statements into a
logical block chart for UNIVAC. (See Figure 16.)

18

BLOCK CHART

ABC MANUFACTURING COMPANY INVENTORY

ASSUME
FIRST ITEMS

AVA I lABlE

PRICE IS
lESS

COMPARE PRODUCT
NUMBER INVENTORY
ITEM AND PRODUCT

NUMBER PRICE ITEM

INVENTORY
I S lESS

II

PREPARE AND
WRITE UNPRICED
I NVENTO~Y ITEM

INVENTORY
fQUAlS PRICE

PREPARE AND
WR ITE PR ICED

I NVENTORY ITEM

READ NEXT
PRICE ITEM

AT END
I OF DATA

SET EXIT FROM IV
TO GO TO.l I TO

ELIMINATE
COMPAR ISON

READ NEXT
I NVENTORY ITEM

AT END

WIND UP
PROBLEM

FIGURE 16

19

BLOCK CHART - The block chari is a diagram of the logical statemetits listed
above. Such a diagram shows all of the paths which are required in a problem,
and all intersections oL the paths. Th'-e block chart sheuld be checked for
errors in logic, testing it with all variations of the data which are to be
processed, arid producing some sample output. Logical checking is done at
this time because, while-this version of -the problem is concisei it must be

complete and correct. The block chart, then, is by definition a complete,
concise, correct diagram of the computer data processing procedure.

It is important to note that FLOW-MATIC does not replace the need for complete
understanding of the job to"be done. Nor does it replace the need for the
careful analysis which must preceed the choice of the best computer procedure
to do the job. The FLOW-MATIC system does make an indirect contribution to
system design by facilitating the succeeding steps of flow-charting, coding,
debugging (checking) and reprogramming, to such a degree that a considerably
larger proportion of the total time and emphasis can be placed on run analysis
and basic system design. By permitting the analyst or methods engineer to
spend more time in block charting, FLOW-MATIC encourages the exercise of
analytical ability and systems engineering experience.

Figure 16 is a block chart for run 4 which indicates a UNIVAC p~ocedure to
carry out the functions as specified by the procedural statements. Note the
use of the names of functions, items, and data fields in the block chart which
relate back to the original verbal description of the run. FLOW-MATIC en­
courages the use of words throughout the process of translation from de­
scriptive English to machine language in order that the procedure which the
UNIVAC Data Automation System carries out may be understandable to all in­
volved in the development and use of the system. Although the block chart
contains computer know-how, since it represents the application of computer
characterist ics and capac it ies to t~e requiremen ts of the Job, it is .. int el­
ligible to the user and serves as a useful form of communication between the
analyst and management.

The next step is one of determining the sequence of FLOW-MATIe operations
equivalent to each block on the chart. A FLOW-MATIC operation is an opera­
tional unit designed to have maximum usefulness in data processing applica­
tions. For ease of use and recognition, these units are identified by English
words and phrases. Insofar as possible, words have been chGsen which are
associated with the ~J?erations, in normal English language usage-. For ex­
ample, such terms as TEST, TRANSFER, JUMP, STOP are used. By maintaining
English wording throughout the transi tion from procedural statement' and def-­
inition to the complete FLOW-MATIe coded solution, the programmer and methods
analyst are able to work directly in the terminology of the operations and
procedure.

20

FLOW-MATIC CHART - The process of reducing the .,bl~ck chart to FLOW-MArIC
sentences is most readily accomplished by drawing up a slightly expanded
diagram, known as a FLOW-MATIe chart. This chart contains all of the FLOW­

MATIC operations required to solve the problem, in their proper sequence.

To illustrate this process, consider one path, or branch, of the block chart,
shown in Figure 17.

------------'"

FIGURE 17

SAMPLE OF BLOCK CHART

COMPARE PRODUCT
NUMBER INVENTORY
ITEM AND PRODUCT

NUMBER PRICE ITEM

1-------------.----

INVENTOItY EQUA LS PR ICE

PREPARE AND
WR I TE PR ICED

I NVENTORY- ITEM

21

Reference to the list of FLOW-MATIC.9perations in Appendix A~page 92 indicates
that this path of the block chart may be expressed in FLOW-MATIC. terms as
shown in Figure 18. The FLOW-MATIC chart is completed in this general.manner.
by linking available FLOW-MATIC commands in the sequence required by the block
chart.

5

SAMPLE OF FLOW-MATIC CHART

I
I
I
I
I
I
I C

TRANSFER
A ITEM TO C

~ __ I_--__ ~_--.

6

MOVE PRICE FROM 1---.... B I TEM TO C 1-----1

FIGURE 18

7

WR ITE C

FLOW-MATIC CODE - Writing the FLOW-MATIC code for the problem consists of
transcribing the FLOW-MATIC chart into a series of imperative sentences.
For every operation, one statement is written, the format of which is given
in Appendix A, pages 95-99. A sample of the code in its final form is below
in Figure 19.

(1) COMPARE PRODUCT - NO (A) WITH PRODUCT - NO (B); IF GREATER GO TO OPERATION
10; IF EQUAL GO TO OPERATION 5; OTHERWISE GO TO OPERATION 2 •

(5) TRANSFER A TO C .

(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .

(7) WRITE-ITEM C .

SAMPLE OF FLOW-MATIC CODE

FIGURE 19

22

DATA DESIGN: In order to produce a UNIVAC program, it is necessary that the
compiler have information about the design of the input and output data files.
The programmer supplies this information by filling out standard Data Design
forms, shown in Appendix B. The Data Design information is recorded only
once, even though the data files may be processed in a number of runs.

Information about fhe data files is divided into three categories; File, Item,
and Field.

The File category contains information about the organization of the reel(s)
of tape in the file; for example, whether or not the. fi Ie is multi reel , what

the sentinel conventions are, and how the reelis) are labelled. The item
category lists the size of the item, and, if appropriate, states by what keys
these items are sequenced. The field category provides a complete description
of each field in the item; where it is located, how many digits it contains,
and other related information.

The preprinted forms show how this information is to be listed, and, by
providing the appropriate information the data is described for FLOW-MATIC.
Data Designs are prepared for each of the two input files and the two output
files in the Sample Problem run. By reference to the process chart (Figure IS,
page IS) it can be seen that the input files, since they come from prior
UNIVAC runs, have been previously defined. The FLOW-MATIC System provides
for storage of such Data Designs on tape so that they may be called upon for

reuse.

COMPILATION - When the FLOW-MATIC code and the Data Designs have been wri t ten,
the problem is ready for compilation. It is only necessary to transcribe
onto tape the information which has been prepared. The layout of the tape
prepared on a Unityper is shown in Figure 20,. where it ... is displayed as the
input tape to the FLOW-MATIC compilat ion.

The FLOW-MATIC. compiler delivers, as output, a complete UNIVAC program tape,
which can be immediately tested by mounting it, together with the appropriate
data tapes, and making a trial run. Since the coding which controls the move­
ment of the files through the computer is provided by FLOW-MATIC, and since
each section of machine code generated by FLOW-YATIC is correct by its~lf,

the program will run if errors in logical analysis or errors undetected in
proof-reading are not present. Even FLOW-MATIC cannot protect the analyst
from mistakes in logical analysis. Many internal inconsistencies in the
FLOW-MATle input cod~ will be detected by the FLOW-MATle System during the
conversion to computer cOding. Logical errors can be located by reference
to the FLOW-MATIC chart. For locating those program errors not discovered
by any of the previously cited means, the compiler provides an Edited Record
of compilation, which enables the analyst with an assist from a programmer,
to relate the computer coding for the problem back to the FLOW-MATIC coded
statements or to the thart.

23

2~

NEW
DATA

DESIGNS

FLOW-MAne
CODE

ENDING
SENT INE LS

FIGURE 20

FLOW~MATIC COMPILER RUN CHART

FLOW-MATle
eOMP I LAT ION

PRINTED
OUTPUT

Chapters 3 and ~ trace, in detail, the preparation of the FLOW-MATIe code
and Data Designs fo~ the Sample Problem. Chapters 5 and 6 introduce problem
variations which show additional facilities of the FLOW-MATIe compiler.
Chapter 7 describes the production and testing of the compiled program.

25

chapter 3

Flow-Matic

Charting And Program-Writing

The complete FLOW-MATIC chart for Sample Problem 1 described in Chapter 2

is created from the process chart and the block chart with the aid of the
list of FLOW-MATIC code operations given in Appendix A, page 92. Writing the
FLOW-MATIC chart is, in fact, simply a matter of choosing the necessary func­
tions from the list on Appendix A, page 9~, and arranging them in the order
prescribed in the block chart. The FLOW-MATIC chart is used primarily as a
guide for writing the FLOW-MATIC code, and it is simply a restatement of the
logic of the problem in terms easily adaptable to the code.

Figure 21 shows a partially completed FLOW-MATIC chart. All of the required
functions are indicated, and their sequence is shown. Several useful con­
ventions are employed. Circles, here labelled by lettering, indicate inter­
connections between paths; flags are used to assert a condition which exists
at a given point; dotted lines indicate points at which a conditional change
in sequence can occur; rectangular boxes are used for evaluation of a formula
or straight computation and ovals are for deciding among one of various paths
of computational flow, based upon the equality and/or magnitude of two quan­
tities. Note that comments on this chart are still largely in-English, and
that no numbers have yet been used.

26

01

INITIAL VERSION OF FLOW-MATIC CHART

ABC MANUFACTURING COMPANY INVENTORY - SAMPLE PROBLEM

INPUT F I L~§
INVENTORY A
PR ICE B
OUTPUT FILES
PRICED INVENTORY C
UNPRICED INVENTORY D (PRINT)

TRANSFER A H WR ITE-ITEM 0 H
ITEM TO D

TRANSFER II MOVE UNIT PRICE
ITEM TO C FROM B TO C

JUMP ~
" WRITE-ITEM C READ-ITEM A JUMP ,

,
L--____ ..J "

CLOSE-OUT C. D

FIGURE 21

J3r0

'~

27

The logical order of performance of these operations is now indicated by
attaching a number to each of the chosen functions. There are four general
rules pertaining to these numbers and their sequence:

1. The operation number sequence starts with zero, and operation zero
always specifies the input and output files to be pr-ocessed by the
program.

2. The operation numbers are assigned in unbroken sequence.

3. The operations are to be performed in numerical sequence, unless a
specific statement to the contrary is made.

q. The highest number is assigned to the operation which stops the prob­
lem.

Observing these rules, the FLOW-MATIC chart is completed by numbering the
boxes for each operation, and inserting the correct operation numbers at
branch points.

Figure 22 shows the completed FLOW-MATIC chart for the Sample Problem. There
are several features to notice in examining this chart.

The files in the problem are labelled with the letters A, B, C, and D. This
is done for ease of reference and finds further use in writing the FLOW-MATIe
c;ode.

The action to be taken when each of the input files is exhausted is directly
connected to the operation of obtaining a new item. This is done because any

request for a new item from a file may exhaust the data.

The test indicated in operation fourteen determines whether or not the Price
File has been exhausted when the end of the Inventory data has been reached.
A sentinel, a symbol made up of some combination of characters which cannot
appear as valid data, marking the end of the file is placed at the end of
each file to indicate the end of the data. The test therefore determines whe­
ther or not this sentinel is pregent in the current Price File item.

Operation twelve shows a logical operation to be performec upon the program
rather than on the data being processed. It directs that hereafter operation
nine will return not to operation one, but to operation two, bypassing a now
unnecessary step and directing all further Inventory items to the Unpriced
Inventory File.

28

FINAL VERSION OF FLOW-MATIC CHART

ABC MANUFACTUR I NG COMPANY INVENTORY - SAMPLE PROBLEM I

INPUT FILES
INVENTORY A
PR ICE B
OUTPUT FilES
PR I C fD INVENTORY C
UNPRICED INVENTORY D (PRINT)

A IS GREATER

is>-0 , , ;;------.:

FIGURE 22.

29

This completed chart (Figure 22 on page 29) is directly convertible to FLOW­

MATIC coding. Writing the sequence of Englis!,! sentences which are the code
for the problem is done by cross-referencing between the chart and the de­
scription of the available statements.

These statements follow common English usage in punctuation and format, that
is, words are separated by spaces, and a period is used to terminate each
sentence. In addition, each statement is labelled with its operation number
as given in the chart.

The programmer modifies the format of each statement to adapt it to his prob­
lem by choosing the correct option for his purpose, and assigning his own
names to the fields and files operated upon.

The general rules which apply to FLOW-MATIC cod·ing are listed below:

(1) A file name assigned by the programmer may be a maximum of twelve
digits in length, and none of these digits may be a space. If it
is desirable to combine English words into one name, hyphens may be
used, e. g., (0) INPUT INVENTORY FILE-A PRICE FILE-B;

. . . PRICED-INV FILE-C ...

(2) An item name is simply the assigned letter of its file,
e.g., (10) READ-ITEM ~ ...

(3) A field name is similar to a file name, twelve or fewer non-space
digits. But in addition, each field n~me is modified by its file
letter in parentheses, e.g., (1) COMPARE PRODUC~-NO (A) WITH

(4) Operation numbers labelling FLOW-MATIC statements are parenthesized.
Those appearing in the body of the statement are not parenthesized,
e. g .. , (9) JUMP TO. OPERATION 1. .

In addition to the list of functions, Appendix A gives the precise format for
each function, and a summary of the rules applying to the use of these state­
ments. In reading the following descriptions of the FLOW-MATIC statements
required for the Sample Problem, reference to Appendix A will clarify the
manner in which they are written. In each of the statements shown below,
the information supplied by the programmer is underlined.

(0) INPUT INVENTORY FILE-! PRICE FILE-~ ;
OUTPUT PRICED-INV FILE-C UNPRIGED-INV FILE-D

HSP Q •

30

Remembering that operation zero specifies the input and output files for the
problem, the function INPUT is used. Choosing the format for two input files
and two output files, the programmer assigns names and letters to these files
(shown underlined in the above statement). He also specifies that the UN­
PRICED-INV file labelled D is to be printed on the UNIVAC High Speed Printer.'

Note that the code for operation zero is a description of the process chart
(Figure IS, page IS) for the run.

This statement has two major functions:

(a) To start the movement of the specified data files through the com­
puter in their proper sequence, and

(b) To label the data files with letters so that hereafter these files,
and their fields and items, may be referred to by the assigned let­
ter.

It should be noted that this version of the initial statement is only one of
many possibilities. It will vary as the process chart varies from one run
to another. For example, the number of inputs and outputs is variable, the
specific Uniservos to be used may be given, or it may 'be stated that a file
is to be prepared for conversion to punched cards, and so on.

(I} COMPARE PRODUCT-NO !.!! WITH PRODUCT-NO ~ ; IF GREATER GO TO OPERA­
TION ~ ; IF EQUAL GO TO OPERATION ~ ; OTHERWISE GO TO OPERATION ~.

Since the logical operation numbered one .. in the FLOW-MATIC chart calls for
comparison of t\,Vo fields, the programmer uses the order COMPARE. The three
conditions required are state~ by using the fourth option listed in the de­
scription of this operation. Having chosen the correct format, the programmer
inserts the assigned names for the fields, and indicates, by the assigned
letter, to which file he is referring. Note that the convention of labelling
fields with their file letters allows the programmer to use the same name
for fields from different files. Within one file, however, each field is
given a unique name.

It remains to specify which operation is to be performed next in each of the
three cases which occur. This is done by direct reference to the FLOW-MATIC

CHART.

(2) TRANSFER A TO D .
Operation two in the chart calls for the transfer of a complete
item from the file lettered A (INV~NTORY) to the file lettered D
(UNPRICED-INV). The TRANSFER order accomplishes this.

31

32

(3) WRITE-ITEM D .
Operation three indicates that the current item in the D file (UN­
PRICED-INV) is to be recorded on magnetic tape.

(4) JUMP TO OPERATION 8 •
In operation four the chart indicates a break in the normal se­
quence. The programmer fills in from the chart the operation number
which is to be perJ,ormed next.

(5) TRANSFER A. TO f .
The logical function to be performed is the same as in operation
two, but here the A item (from the INVENTORY file) is to be moved
to file C (PRICED-INV).

(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) •
The function of this operation is to i~sert the price from file B
(the PRICE file) into the C item created by operation six. The
programmer assigns field names (here the same nam2(, UNIT-PRICE, is
used in both files) and attaches the proper file letters.

(7) WRITE-ITEM C •
In this operation the completed item in the C file is to be recorded
on magnetic tape. See operation three.

(8) READ-ITEM!; IF END OF DATA GO TO OPERATION 14 •

The function of this statement is to obtain the next consecutive
item from file A (INVENTORY). Since a request for the next item
may exhaust the data file, the programmer states as a part of this
function which operation is to be performed when the end of the
data is encountered. In this case, the chart shows that 14 is
the number required.

(9) JUMP TO OPERATION 1

Operation nine in the FLOW-MATIC chart indicates a break in the
normal sequence, that is, that operation number 1 is to be per­
formed next.

(10) READ-ITEM 1L; IF END OF DATA GO TO OPERATION 12

This operation is to obtain the next consecutive item from fi~e B
and also to indicate that operation number 12 is to be performed
when the end of the file is encountered. See also operation eight.

(11) JUMP TO OPERATION ~
See operation four.

(12) SET OPERATION 9 TO GO TO OPERATION ~
The FLOW-MATIe. chart indicates that the function here is to alter
another operation in the seQuence, namely number nine. Operation
nine as originally stated is a jump to number 1. The current
operation (twelve) is to change nine so that it becomes a jump to
operation two.

(13) JUMP TO OPERATION 2 .

See operation four.

(14) TEST PRODUCT-NO (B) AGAINST ZZZZZZZZZZZZ
16 ; OTHERWISE GO TO OPERATION ~ .

IF EQUAL GO TO OPERATION

Operation fourteen in the FLOW-MATIe chart calls for a comparison
of a data field with a constant quantity, a word of Zs. This is
a different logical function from the comparison of two data fields,
as was done in operation one. Here the required order is TEST
rather than COMPARE. The programmer chooses the option whose format
provides the conditions indicated by the chart. He then inserts
the name of the field to be tested, PRODUCT-NO, with its file letter,
B. The constant quantity is indicated by inserting its actual value.
From the chart the programmer determines the operation number to
be performed in the two cases which occur.

(15) REWIND B •
Operation fifteen states that the current reel of the file lettered
B is to be rewound. Here the logic of the problem is such that,
although the end of the B data has not been encountered, the last
applicable item has been used and the file can be terminated.

(16) CLOSE-OUT FI LES.Q 1 .Q. •
The CLOSE-OUT order of operation sixteen calls for the termination
of the two output files C and D.

(17) STOP. (END)
The last operation in the sequence is the STOP order, and it is
always followed by the word END in parentheses.

Figure 23 shows the completed FLOW-MATIe code,as it is submitted for Unity­
ping. The unused portion of the block is space-filled.

33

F LOW-MAT I C CODE
FOR SAMPLE PROBLEM

(0) INPUT INVENTORY FILE-A PRICE F1LE-8 ; OUTPUT PRICtD-INV FILE-C UNPRICED­
INV FILE-D ; HSP D •

(I) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (8) ; IF ~REATER GO TO OPERATION
10 ; IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO OPERATION 2 •

(2) TRANSFER A TO D •

(3) WRITE-ITEM D •

(q) JUMP TO OPERATION 8 •

(5) TRINSFER A TO C •

(6) MOVE UNIT-PRICE (8) TO UNIT-PRICE (C) •

(1) WRITE-ITEM C .

(8) READ-ITEM A ; IF END OF DATA GO TO OPERATION Iq .

(9) JUMP TO OPERATION I .

(I 0) REA D - I T EM 8 ; I FEN D 0 FDA TA GOT 0 0" ERA T ION I 2 .

(I I) J U M P TOO P E RA T ION I .

(12) SET OPERATION 9 TO GO TO OPERATION 2 .

(r3) JUMP TO OPERATION 2 •

(I~) TEST PRODUCT-NO (8) AGAINST ZZZZZZZZZZZZ
OTHERWISE GO TO OPERATION 15 •

(15) REWIND 8 .

(16) CLOSE-OUT FILES C , D .

(17) STOP. (END) Space Fill to End of Block.

IF EQUA L GO TO OPERAT ION 16

ABC MANUFACTURING COMPANY INVENTORY

FIGURE 23

chapter 4

File-Data Layout And Design

The run description in Chapter 2 included a complete statement of the logical
function to be performed. The FLOW-MATle charting and coding can be completed
from this statement, but before the Data Designs can be completed, several
detailed questions must be answered.

Figure 24 is a copy of the run chart presented in Chapter 2 wi th addi tional
details shown (e.g., item sizes, labels, whether single reel O~ ~ot). Fig­
ure 25 illtts~rates the item Iaybut~ for the. data filesinvolv~d in t~is
problem. It 'should be noted that the use of FLOW-MltTICpernii ts postponem'ent
of the proCess of making item layouts un-til the FLOW-MATle Code is wrj tten.
The system does not place any limits on item layouts, but it does not elimi­
nate the need for them.:

With this inform~tion available, Data Designs c~n be prepared on the pre­
printed forms illustrate~ (Appendi~B). Separate forms for the File, Item,
and Field designs are prov.ided at the -end of this chapter. These preprinted
forms allow for future expansion of the FLOW-MATle System.

Provision has been made i~ the FLOW-MATle System for storing Data Design
information about specific ~iles on the FtOw-MATle library tape. Thus if a
system of related runs is to be programmed using FLOW-MATle, Data Designs
for files which will be processed ia.more than one run can be stored and
called upon any number of times in FLOW-MATle programs. Using this facility,
there is no necessity to fill out Data Design information for files already
described. Since input files to one run commonly are output files of other
runs, a significant reductiort of (clerical) effort in writing and recording
these Data Designs is possible.

35

INVENTORY
MAXIMUM OF 60,000
10 WORD ITEMS
LABEL: MMDDyyIOOIOI
MULTI REEL

PRICED INVENTORY
MAXIMUM OF 60,000
10 WORD ITEMS
LABEL: MMDDyyI00301
MULTI REEL

PROCESS CHART

ABC MANUFACTURING COMPANY INVENTORY

ALL FILES SEQUENCED BY PRODUCT NUMBER

RUN 4
APPLICATION OF
STANDARD PRICES

TO INVENTORY

CONVENTIONS

(I)LABE LS I N WORD 03 OF FIRST B LOCK ON EACH REE L.

(2) B LOCK COUNTS I N WORD 01 OF LAST ITEM IN SENTINE L BLOCK.

PRICE
MAXIMUM OF 60,000
2 WORD ITEMS
LABEL: MMDDyyI00201
S INGLE REEL

UNPRICED INVENTORY
10 WORD ITEMS
LABE L: MMDDyyI004 01
FOR HIGH SPEED PRINTER
PROBABLY SINGLE REEL,
BUT MAY BE MULTI REEL

(3) SENTINELS ARE ZZZZZZZZZZZY FOR END OF REEL AND ZZZZZZZZZZZZ FOR END OF
FILE. THESE ARE LOCATED IN THE KEY WORD POSITION (WORD 000) OF FIRST
INVALID ITEM AND LAST ITEM OF SENTINEL BLOCK.

FIGURE 24

361

ABC MANUFACTURING COMPANY INVENTORY

ITEM LAYOUTS FOR RUN ~

FILE A (INVENTORY)

00 P P P P P P P P P P P P

01 0 0 0 0 0 0 Q Q Q Q Q Q

02 0 0 0 0 0 0 0 0 0 0 0 0

03 0 0 0 0 0 0 0 0 0 0 0 0

04-

05

06

07

08

09

OTHER DATA

FILE C (PRICED INVENTORY)

00 P P P P P P P P P P P P

01 0 0 0 0 0 0 Q Q Q Q Q Q

02 0 0 0 0 0 0 0 U U U/\U U

03 0 0 E E E E E E E E'lE E

04-

05

06

07

08

09

OTHER DATA

FIGURE 25

FILE B (PR ICE)

00 P P P P P P P P P P P P

01 0 0 0 0 0 0 0 U U UAU U

P = PRODUCT NUMBER

U=UNITPRICE

Q = QUANTITY ON HAND

E = EXTENDED PRICE
(SEE CHAPTER 6)

1\ = LOCATION OF DECIMAL POINT

FILE D (UNPRICED INVENTORY)

00 P P P P P P P P P P P P

01 0 0 0 0 0 0 Q Q Q Q Q Q

02 0 0 0 0 0 0 0 0 0 0 0 0

03 0 0 0 0 0 0 0 0 0 0 0 0

04-

05

06

07

08

09

OTHER DATA

37

NAME O.F FILE

The programmer writes in the file name which may not start with the word FILE.

FILE DESIGN*

This section of the Data Designs contains information about the organization
of the file. The data fi·le conventions to be used are listed here and they
determine the details of the coding which will be produced to control the
file.

Nine two-word packets are required. Additional two-word entries may be made
if it becomes necessary to describe other features of the file. Each two­
word packet is listed and described below.

The first packet is:

L A B E L f:l f:l f:l f:l f:l f:l f:l

L L L L L L L l L '-L L L

LLLLLLLLLLLL represents the identification that has been assigned to this data
file. The least significant ~igit~ should ~nd in the digit 1, indicating
reel one. Allowance may be made for numbering as many reels as: are required.
(If the maximum number of reels in a file is 9, one digit is allocated as a
counter; 99, two digits; 999, three digit's~ etc.) If the label is not known'
or if it is not desired to specify, the label, twelve spaces are used.

The second packet is:
i····· " .. ,,--'" ,,- ~

L 0 C fl 0 F A L A B E L - -.
0 0 0 0 0 0 0 0 0 W W W

WWW indicates the word position of the label within the label block. The
sixty words in the label block are addressed as 000-059.

* Consult figures on pages 46, 49, 52 and 55.

38

The third packet is:

M U L T I 11 R E E L 11 11
".

0 0 0 0 0 0 0 0 0 0 0 n

The digit n may be eith€r zero or one. If zero, it means that this file will
not exceed one reel. A one is used in all cases where files may exceed one
reel.

The fourth packet is: ---
B L K 11 C T 11 I N 0 11 11

0 0 0 0 0 0 0 0 0 0 0 b

,b may be either zero or one. If one, it means that the tally of the number
of, blocks is maintained (for input reels) or will be written (on output reels)
on the end of each reel of this file. On input reels the block count recorded
on the reel is checked against a counter maintained during the processing.
All blocks on the data tape will be counted, including label block, data
blocks and sentinel blocks. Use b = zero to indicate that this control feature
is not desired.

The fifth packet is:
:',"0;"""""""" I" "-

B L K 11 C T l:l L 0 C lJ. l:l -
0 0 0 0 0 0 0 0 0 X X X

XXX indicates the word posltlon of the block count within the last item of
the sentinel block. The allowable range for XXX is from 000 through item-size
minus one. If the block count indicator is zero, this entry is not signifi­
cant and the word is filled with zeros.

The sixth packet is:
r:~'" .,e ' . "'.' ,.",., .",."."'.,,,, .'" • .. '·'...'·r, · ... ,....... .",,, •.••.• ,, """:'"'1''''' .""., ••

ENDaREELlJ.SEN
s s s s s s s s s s s s

SSSSSSSSSSSS represents the twelve digits used to indicate end of valid data
on intermediate reels, e.g,., ZZZZZZZZZZZY. If the multi-reel indicator is
zero, spaces are written here.

39

The seventh packet is:

E N D 8 F I L E 8 S E N
s s s s s s s s s s s s

SSSSSSSSSSSS represents the twelve digits used to indicate end of valid data
on the final reel of a file, e.g., ZZZZZZZZZZZZ

The eighth packet is:

L 0 C - 8 I N 8 F I R S T
0 0 0 0 0 0 0 0 0 W W W

WWW indicates the word position of the end sentinels within the first invalid
item of the sentinel block. The allowable range for WWW is from 000 through
item size minus one.

The ninth packet is:

L 0 C 8 I N - 8 L A S T 8

0 0 0 0 0 0 0 0 0 W W W

WWW indicates the word position of the end sentinels within the last item of
the sentinel block. The allowable range for WWW is from 000 through item size
minus one.

Although FLOW-MATIe permi ts flexibili ty in th.e conventions to be applied to
tape files, it is expected that in a given installation much of this informa­
tion will remain fixed, thereby providing automatic standard~zation. The
flexibility is still necessary when the files are to be processed by runs
other than those produced by FLOW-MATIG., e.g., sorts.

ITEM DESIGN*

This section of the DATA DESIGNS contains information about the data items
in the file.

Three two-word packets of information are required, and more can be added on
an optional basis.

The first packet is:

I T E M .f1 S I Z E f1 f1 f1

0 0 0 0 0 0 0 0 0 n n n

nnn represents the size of the data items in the file, e.g., the item in
this sample problem is ~ ten word item (see page 47).

The second packet is:

N 0 f1 0 F f1 K E y S f1 f1 - -
0 0 0 0 0 0 0 0 0 0 0 k

k is a digit from zero through nine. The key is the field or fields by which
the file is sequenced. If a file is sequenced by a major key such as last
name, and a minor key such· as first name, k would equal 2.

The third packet is:
~..,.,

K E Y f1 1 f1 f1 f1 f1 f1 f1 f1

Y y y y y y y y y y y y

YYYYYYYYYYYY represents the assigned name of the field which is the major key
in this file~ If the file is unsequenced, the k digit in the previous packet
is zero and YYYYYYYYYYYY is twelve spaces.

When k is greater than one, additional packets are required for each addition­
al key in the order of decreasing significance.

* Consult figures on pages 47, 50, 53 and 56.

If "k" in NO. OF KEYS \ were 2, then a fourth packet wouldbe required, following
the same format as the third packet:

y y y y y y y y.y y y y

Each field named as a key must be listed in the Field Design section under
the same name used here.

In the preprinted forms in Appendix B additional information may be inserted
following. the name of the last key. In some problems, for example, it is
desirable to treat a consecutive group of 'UNIVAC\ words within the item as a
sub-item. R~ther than calling for this sub-item by mentioning all of the
names of the fields within it, a new name is applied to the sub-item itself.
This assigned name is then entered in the Data Design for the file in the
following way:

AAAAAAAAAAAA

OOOSSSOOOEEE

AAAAAAAAAAAA is the name chosen by the programmer, e.g., ADDRES~.6.6.6.6 .
SSS is the relative·word position of the first word of the sub-item within
the item. The allowable range is 000 through item size minus one. \~

EEE is the position of the last word of the sub-ite~ within the item. The
allowable range is 000 through item size minus one.

As many such sub-items as are required by the problem may be so named follow­
ing the name of the last key.

~2

FIELD DESIGN*

This section of the Data Designs contains detailed information about the data
fields within the item.

If the Data-Design is to :be used in many runs, all fields in the item should
be described. If the Data Design is to be used to compile only one run, only
those fields mentioned in the FLOW-MATIe code for the run need be described.
Each field in the i tern 'is described wi th a four word packet.

yyyyyyyyyyyy = Name of field
OOOWWWOOOOOO = Word Location In 'i tern
OOOOOTPPSLNO = Field Descriptorl
EEEEEEEEEEEE = Extractor

YYYYYYYYYYYY in the first word represents the name of the field exactly as
it appears in the FLOW-M4TIC code. ,It, may be a maximum of twelve consecutive
non-space digits. If the name con~ains fewer than twelve digits, unused
digits to the right- .. are space filled. If names consist of two or more parts,
these parts are separated by hyph~ns; e.g. ,PRODUCT-NO~

WWW in the second word rel!resents the word position of this field within the
item, i.e., for a ten word ,item the words are ODO-009.

TPPSLN in the third word:

T in the 6th digit of the 3rd word rePl'es en ts the type of field.
l' = 1 = alphabetic
T = 2 = alpha-numeric
T = 3 = numeric

PP in 3rd word indicates the location of rhe assumed decimal point relative
to a reference point -immediately to the left of the field. The positfon just
to the lef! of the field is indicated by PPequal,tooo.

If the assumed decimal is one position to the left of the reference pOint,
PP is lL. If the assumed decimal is one position to the right of the ref­
ference point, PP is lR. _ Assumed desimal points may be positioned a maximum
of 35 places to the left or to the right, (e.g., ZL = 35 left

ML = 22 left
AL = 10 left
AR = 10 right
JR = 19 right
7SR = 35 right).

If the field has no a~sumed decimal point, the digits PP are written as
ignores. (Ii)

* Consult figures on pages 48. 51, 54 and 57.

~3

S in 3rd word represents the location of the sign of this numbe,r. Ignore
(() is used for fields without signs. A numeric field with the S digit equal
to ignore is assumed to be a positive number.

If the field has a sign, the S digit may be 1 through 9, Aj B,or C. The
twelve digit positions within a UNIVAC word are labelled •

. , J: 2' : 3 : " : 5 : 6 : 7 : 8 : 9 :"A : B :' C .,

L in the 3rd word represents the location within the UNIVAC word of the left
most digit of the field excluding its sign. As mentioned above, L may be
1 through 9, A, B, or C.

N in 3rd word represents the number of consecutive (adjacent) digits in the
field, excluding its sign. N may equal 1 through 9, A, B, or C, where A
equals 10, B equals 11, and C equals 12 digits.

EEEEEEEEEEEE in the fourth word is a pattern of ones and zeros, showing the
digit locations occupied by the field, including the sign digit if any. Ones
indicate the digits comprising the field, and all other digits are zeros.

If the field is alone in the word and can be treated as a whole word, twelve
zeros are used, not twelve ones.

Although the fields described for the sample problem all appear in separate
UNIVAC words in the item, the more common situation is that several fields
are packed in one word. In FLOW-MATIC, each such field has its own name and
description in the Data Designs.

It also may happen that two fields overlap each other within the UNIVAC word.
For example, consider the field PRODUCT-NO in the Inventory File. The last
three digits of this field may be a type number, not used in this problem as
such. In a problem where the type number must be treated as well as the
product number, both fields are described, as shown below:

PRODUCT-NO~~
000000000000
oooo021111CO
000000000000

TYPE-NUMBER~
000000000000
0()0003111A30
000000000111

Four word packet describing 12
digit field.

Four word packet describing 3
digit field within 12 digit field.

Sentinels

Immediately following the .la.st four word packet, and in word S9 of the last
block of the Data Design, the sentirte}

EttD~FILE~DES

is written. The rest of the block is filled with zeros.

After the FLOW-MATIC Code for the program has been wri t ten (Ch apter 3), and
the Data Designs have been fi lIed in as described in this chapter and shown
in Figures 26 a through 26 1, the input tape for FLOW-MATIC compilation may
be UNITYPED. Figure 27 shows a HIGH-SPEED PRINTER copy of this information
just as it appears, ready to compile the program for Sample Problem 1.

ANALYST: INPUT AND OUTPUT DATA DESIGN.
PAGE: __

DATE: __ --_ ABC MANUFACTURING COMPANY INVENTORY PROBLEM

N A M E ~ 0 F {:j F I L E -
I N V E " T 0 R Y ~ ~ ~ English name of file. -

--

F I L E Il 0 E S I G N Il
~ Il fl' Il Il Il Il II Ii1 Il Il Il

L A B E L Il II II Il Il Il Il

M M D D Y Y I 0 0 I 0 r l~) Label with reel counter.
-2.) If label variable all 6' s.

L 0 C t:. Q F Il L A B E L -
0 0 0 0 0 0 0 0 o. 0 0 3 Word location of label in label block.

M U L T I Il R E E L .8 Il
"

0 0 0 0 0 0 0 0 0 a 0 I I = Yes; o = No.

B L K II C T 11 I N '0 Il II

0 0 0 0 0 0 0 0 0 0 0 I I = Block count desired; 0 = No block count. '

.~ L K Il C T Il. L 0 C 11 II -
0 0 0 0 0 0 0 0 0 0 0 I Word location of block count in last item ,.....

of sentinel block. [000 to (item size-I)]

E N 0 ll. R E E L II S E .N
z z z z z z z z z z z y End of reel sentinel. If single reel, all ~' s.

E N 0 Il F I L E Il S E N
z z z z Z' Z z z z z z Z End of file se~tinel. -,

L 0 C Il I N Il F I R S T -

- ,

0 0 0 0 0 0 0 0 0 0 0 0
Word location of sentinel in first invalid
item. [000 to (item size-I)] .

.-

L 0 C Il I N Il L A S T II -
0 0 0 0 0 0 0 0 0 0 0 0

Word location of sentinel in last item of
sentinel block. [000 to (item size~I)]

"

r

~her entries may be added here, each con-
'. . sisting of a title word and an information

word; e.g.,
PARf6BU(6.."~ .

Z7ZlZlZlZZZ)(

LNIITPISf
NOTE: After the last entry skip to the

next page .

.

FLOW-MATIC DATA DESIGN FORM ..

~~~ 
F I GURE26a 

DIVISION Of SPEll' lAND CORPORATION 

Sl.1499 
\I~ 



ANALYST: PAGE: __ 
DATE:. _________ ---,. __ 

I' T E M t::. 0 'E S I G N fJ. 
'. 

l:l A t::. ' .'l:l l:l' l:l l:l l:l l:l fl l:l Il 
r 

1 T E M l:l S I Z E l:l l:l l:l 

-0 0 0 0 0 0 0 0 0 0 I 0 1,2,3,4,5,6,10,12,15,20,30,60. 

N 0 l:l 0 F ~ K E y S l:l ~. - -
0 0 0 0 0 0 0 0 0 '0 0, I 0-,1,2, .... ,9 ; number of keys 

-

K E y ~ 1 ~ ~ ~ t::. ~ t::. l:l 

p R 0 D -u C T - N 0 fj fj '<-'Name of field, ifnokey~ -
Further key entries'may be added here, 
each consisting of KFY6n6~ fol-
lowed by the name of the field. 

If there are Sub-items to be described, 
the descriptions are entered following .. 
the last Key entry. Sub-items are des-
cribed with two-word packets consisting 
of the name of the Sub-item followed by 
a word in~he format OOOSSSOOOEEE, 
where SSS is the first word and EEE is 
the last word of the Sub-item, relative 

~ to the entire item. 

UNIlYPISf 
l\UfE: Mter the last entry skip to the 

next page. 

IJ 

FLOW-MATIC DATA DES" GN FORM 2 

~7&u.L~ 
DIVISION Of SPEIIY lAND COIPOIATION i FIGURE 26b 

S 1 - 1 500, 



ANALYST: _________ _ 
PAGE: __ 

DATE: ----------------------

F I E L D 'Il 0 E S I G N 
fl fl l1 fl fl fl fl fj fl fl fl fl 

p R 0 D U C T - N 0 !J. !J. Name of field. - -
0 0 0 0 0 0 0 0 0 0 0 0 Word location in item. [000 to (item size-I)' 

0 0 0 0 0 2 r r :r I C 0 Field descriptor of form OOOOOTPPSLNO *, 

0 0 0 0 0 0 0 0 0 0 0 0 Extractor; if full-word field, all 0' s. 

Q u A N T I T Y !J. !J. !J. !J. 
- An unlimited number of fields may be 

0 0 0 0 0 I 0 0 0 0 0 0 described using the same four-word packet 
format. 

0 0 0 0 0 3 :r ) :r 7 6 0 

0 0 0 I I I I I I 
* Explanation of field descriptor: 

0 0 0 
T = Type of field. 

E N 0 !J. F I L E !J. D E S 1 - alphabetic 
2 - alpha-numeric 

0 0 0 0 0 0 0 0 0 3 - numeric 

PP = Position of decimal point in rela-
0 0 0 0 0 0 tion to a reference point immediate-

ly to the left of the left-most 

ZE RO Fil L 1 HRl we RD 058 digit of ~he field. 
00 - coincident with reference point 
ii - not applicable 
nL - n positions to the left of the 

0 0 0 0 0 0 0 0 0 reference point 
nn - n positions to the right of the 

0 0 0 0 0 0 reference point 
(n = 1,2, ... , 9, A, B, ... , Z) 

S = Digit position of the sign. 
1,2, ... ,9,A,B, or C 
i-not applicable 

0 0 0 0 0 0 0 0 0 L = Digit position of the left-most digit 
of the field, excluding sign. 

0 0 0 0 0 0 1,2, ... ,9,A,B, or C 

N = Number of digits in the field, excluding sign. 
1,2, ... ,9,A,B, or C 
(A = 10, B = 11, C = 12) 

0 0 0 0 0 0 0 0 0 NOfE: Place the sentinel END6FILE60ES 

0 0 0 0 0 0 
immediately following the last four-
word packet and in word 059 of that 
block. 

0 0 0 0 0 0 0 0 0 
FLOW-MATIC DATA DESIGN FORM 3 

0 0 0 0 0 0 

E N D 6 F I L E 6 0 E S 
~76uuL~ 

FIGURE 26c DIVISION Of SPfRRY RAN.D CORPORATION 

UR 



ANALYST: ________ ~ _________ _ PAGE: __ 

DATE: ____________________ __ 

N A M E D. 0 F l:l F I L E 
- f--- -~ 

P R I C E £'j £'j £'j fj £'j £'j £'j English name of file. 

F I L E l:l 0 E S I G N l:l 
l:l l:l l:l 8 l:l l:l l:l l:l l:l l:l l:l l:l 

L A B E L l:l fl l:l l:l l:l l:l l:l 

M M 0 0 y y I 0 0 2 0 I 1.) Label with reel counter. 
2.) If label variable all 6' s. 

L 0 C II 0 F l:l L A B E L - - --~ 

0 0 0 0 0 0 0 0 0 0 0 3 Word location of label in label block. 

M U L T I l:l R E E L l:l l:l 

0 0 0 0 0 0 0 0 0 0 0 0 I = Yes; 0 = 1\0. ~ 
B L K tl C T fl I N 0 fl (). 

0 0 0 0 0 0 0 0 0 0 0 I I = Block count desired; 0 = 1\0 block count. 

S L K fl C T fl L 0 C 6 6 -
0 0 0 0 0 0 0 0 0 0 0 I Word location of block count in last item 

of sentinel block. [000 to (item size-I)1 

E N 0 11 RIE E L fl S E N 
£'j £'j £'j £'j £'j £'j £'j fj 6 6 6 6 F~d of reel sentinel. If single reel, al16's. 

E N 0 l:l F I L E l:l S E N 
z z' z z z z z z z z z Z ~~d of file sentinel. 

L 0 C l:l I N (). F I R S T - - Word location of sentinel in' first inval id 
0 0 0 0 0 0 0 0 0 0 0 0 item. fooo to (item size-I)] 

L 0 C l:l I N l:l L A S T fl -
0 0 0 0 0 0 0 0 0 0 0 0 

Word location of sentinel in last item of 
sentinel block. rOOO to (item size-D] 

Other entries may be added here, each con-
sisting of a title word and an information 
word; e. g. , P ARTffilJffiSt.N 

ZZZ:Z72ZZZlZX 

lNln'PISf 

- NOTE: After the last entry skip to the 
next page. 

FLOW-MATle DATA DESIGN FORM 1 

~R.nd~ 
FIGURE 26d DIVISION OF SPERRY RAND CORPO,RATION 

Sl.1499 



Al'lALI;::'l: 

DATE: ______________________ __ 

I T E 
11 11 11 

I T E 
0 0 0 

N 0 ~ -
0 0 0 

K E y 
P R 0 -

S1.1500 

50 

M ~ 
~ ~ 

M fl 
0 0 

0 F -
0 0 

~ 1 
D U 

0 E S I G N 
~ ~ 11 11 ~ 11 

S I Z E ~ ~ 

0 0 0 0 0 0 

~ K E y S ~ 

0 0 0 0 '0 0 

IJ. ~ ~ IJ. IJ. IJ. 

C T - N 0 ~ -

PAGE: __ 

11 

A 

11 

2 1,2,3,4,5,6,10,12,15,20,30,60. 

~ 

I 0,1,2, .... ,9 = number of keys 

~ 

~ ~ame of field, if no key ~ 

Further key entries may be added here, 
each consisting of KFYAn1:/J1MM fol-
lowed by the name of the field. 

If there are Sub-items to be described, 
the descriptions are entered following 
the last Key entry. Sub-items are des-
cribed with two-word packets consisting 
of the name of the Sub-item followed by 
a word in the format OOOSSSOOOEEE, 
where SSS is the first word and EEE is 
the last word of the Sub-item, relative 
to the entire item. 

lJNI TI'PI Sf 
NJffi: After the last entry skip to the --

next page. 

FLOW-MATIC DATA DES'I GN FORM2 

~ R.nd. Unbvc. 
DIVISION Of SPEIRY .... ND CORPORATION 

FIGURE 26e 



ANALYST: ____________________ _ PAGE: __ 

DATE: -------------------------

F I E L 0 II 0 E S I G N 
II II fj. II II ~ II II II l:l ,ll II 

p R 0 0 U C T - N 0 6, 6, Name of field. - .-

a a a 0 0 0 a a a 0 a a Word location in item. [000 to (item size-1}1 

a a a a a 2 .r % K' I C a Field descriptor of form OOOOOTPPSLNO* 

0 0 0 0 0 0 0 0 0 0 0 0 Extractor; if full-word field, all O's. 

U N I T - P R I C E 6, 6, 

a a a 0 0 I a a a a a a 
An unlimited number of fields may be 
described using the same four-word packet 
format. 

a a a a a 3 3 R ..r 8 5 a 
0 0 0 0 0 0 0 I I I I I 

* Explanation of field descriptor: 

T = Type of field. 

E N D 6, F I L E 6, D E S 1 - alphabetic 
2 - alpha-numeric 

a a a a a a a a a 3 - numeric 

PP = Position of 'decimal point in rela-
0 0 0 0 

I 
0 tion to a reference point immediate-

I ly to the left of the left-most 
ZERO FILL THRU WORD 058 digit of the field. 

00 - coincident with reference point 
ii - not applicable 
nL - n positions.to the left of the 

a 0 a a a a a 0 0 reference point 
fiR - n positions to the right of the 

a a a a 0 a reference point 
(n = 1, 2, ... ,9, A, B, ... , Z) 

S = Digit position of the sign. 
1,2, ... ,9,A,B, or C 
i-not applicable 

0 0 0 0 0 0 0 0 0 L = Digit position of the left-most digit 
of the field, excluding sign. 

0 0 0 0 0 0 1,2, ... ,9,A,B, or C 

N = Number of digits in the field, excluding sign. 
1,2, ... ~9,A,B, or C 
(A = 10, B = 11, C = 12) 

0 0 0 0 0 0 0 0 0 NCJfE: Place the sentinel END6,FILE6,DES 

0 
immediately following the last four-

0 0 0 0 0 word packet and in word 059 of that 
block. 

0 0 0 0 0 0 a a 0 
FLOW-MATIC DATA DESIGN FO RM 3 

0 0 0 0 a 0 
~ 7Iond-um.-~ 

E N D 6, F I L E 6, D E S FI GURE 26f DIVISION OF SPt RRY RAND CORPORATION 

S 1 .1 501 

51 



ANALYST: __________________ _ PAGE: __ 

DATE: ____________________ __ 

N· A M E D. 0 F ~ F I L E 
..........--- _'!!II!. 

P R I C E 0 - I N V ~ ~ English name of file. 

F I L E (). 0 E S I G N (). 

/j (). /j /j ~ (). /j (). /j /j /j /j 

L A B E L (). ~ (). ~ (). (). (). 

M M 0 0 y y I 0 0 3 0 I 1.) Label with reel counter. 
2.) If label variable all 6' s. 

L 0 C fl 0 F /j L A B E L - -
0 0 0 0 0 0 0 0 0 0 0 3 Word location of label 'in label block. . 
M U L T I (). R E E L /j (). 

~ 

0 0 .0 0 0 0 0 0 0 0 0 I 1 = Yes; o = 1\0. 

B L K ~ C T /j I N 0 11 11 

0 0 0 0 0 0 0 0 0 0 0 I 1 = Block count desired; 0 = 1\0 block count. 

B L K /j C T /j L 0 C fl /j -
0 0 0 0 '0 0 0 0 0 0 0 I Word loq"ltion of block count in last item 

of sentinel block. [000 to (item size-I)] 

E N 0 11 RIE E L {). S E N 
z z z z z z z z z z z y End of reel sentinel. If single reel, aI16's. 

E N 0 (). F I L E (). S E N 
z z z z z z z Z· Z· Z Z Z· t~d of file sentinel. 

L 0 C /j I N f.l F I R S T -
0 0 0 0 0 0 0 0 0 0 0 0 

Word location of sentinel in first invalid 
item. rOOO to (item size-I)] 

L 0 C /j I N - /j L A S T {). 

0 0 0 0 0 0 0 0 0 0 0 0 
Word location of sentinel in last item of 
sentinel block. [000 to (item size-I)] 

Other entries may be added here, each con-
sisting of a title word and an information 
word; e.g., P AfIT6BU(6... C\b~ 

ZZZ;Z;ZZ722ZlX 

lNITIPISf 
NOTE: After the last entry skip to the 

next page. 

FLOW-MATIC DATA DESIGN FORM 1 

~R.nd.~ 
F I.GURE 26g DIVISION OF SPERRY RAND CORPORATION 

. . 
Sl.1499 



ANALYST: PAGE: __ 
DATE: ______________________ __ 

I T E M fj 0 E S I G N a 

a f:j f:j f:j f:j f:j f:j f:j f:j fj, f:j {j, 

I T E M f:j S I Z E f:j {j, f:j 

0 0 0 0 0 0 0 0 0 0 I 0 1,2,3,4,5,6,10,12,15,20,30,60. 

N 0 l:l 0 F l:l K E y S f:j f:j - -
0 0 0 0 0 0 0 0 0 '0 0 I 0,1,2, .... ,9 = number of keys 

K E y l:l 1 f:j f:j f:j l:l f:j f:j f:j 

P R 0 D U C T - N 0 6 6 l\ame of field, ifnokey~ - -

Further key entries may be added here, 
each consisting of KFYAn!:l:l~ fol-
lowed by the name of the field. 

If there are Sub-items to b~ described, 
the descriptions are entered following 
the last Key entry. Sub-items are des-
cribed with two-word packets consisting 
of the name of the Sub-item followed by 
a word in the format OOOSSSOOOEEE, 
where SSS is the first word and EEE is 
the last word of the Sub-item, relative 
to the entire item. 

UNITYPISf 
NJfE: After the last entry skip to the --

next page. 

! 

I 

FLOW-MATIC DATA DES'IGN FORM 2 

~R.nd.~ 
DIVISION OF SPfRIY RAND CORPORATION 

i FIGURE 26h 

S1.1500 



ANALYST:. _________ _ PAGE: __ 
DATE: --_________ _ 

F I E· L 0 /j. 0 E S I G N 
Il Il fj f:1 Il Il Il Il 11 ~ Il Il 

p R 0 0 U, C T - N 0 t., !:1 Name of field. - -
0 0 0 0 0 0 0 0 0 0 0 a Word location in item. [000 to (item size-1)1 

0 0 a 0 0 2 ¥ K .r I C 0 Field descriptor of form OOOOOTPPSLNO* 

0 0 0 0 0 0 0 0 0 0 0 0 Extractor; if full-word field, all O's. 

Q U A N T I T Y tJ. ~ ~ !:1 

a a a 0 0 I a a 0 a a 0 
An unlimited number of fields may be 
described using the same four-word packet 
format. 

a 0 0 0 0 3 .r .r % 7 6 0 

0 0 0 0 0 0 I I I I I 
* Explanation of field descriptor: 

I T = Type of field. 

U N I T - P R I C E ~ !:1 
1 - alphabetic 
2 - alpha-numeric 

0 0 0 0 0 2 0 0 0 0 0 a 3 - numeric 

PP = Position of decimal point in rela-
0 O· 0 0 0 3 3 R .r 8 ,5 0 tion to a reference point immediate-

ly to the left of the left-most 
0 0 0 0 0 0 0 I I I I I digit of, the field. 

00 - coincident with reference point 

E X T - P R I C E ~ ~ !:1 ~i - not applicable 
nL - n positions to the left of the 

0 0 0 0 0 3 0 0 0 0 0 0 reference point 
fiR - n positions to the right of the 

0 0 0 0 0 3 8 R I 3 A 0 reference point 
(n = 1,2, ... ,9,A,B, ... ,Z) 

0 0 I I I I I I I I I I S = Digit position of the sign. 

E N 0 ~ F I L E ~ D E S 
1,2, ... ,9,A,8, or C 
i-not applicable 

0 0 a a a 0 a 0 0 L = Digit position of the left-most digit 

. -

of the field, excluding sign . 

0 0 0 0 0 1,2, ... ,9,A,B, or C 

N = Number of digits in the field, excluding sign. 
ZERO FILL THRU WORD 058 1,2, ... ,9,A,B, or C 

(A= 10, B = 11, C = 12) 

0 0 0 0 0 0 0 0 a NOIE: Place the sentinel ENDtJ.FILE!:1DES 

0 
immediately following the last four-

0 0 0 0 0 word packet and in word 059 of that 
block. 

0 0 0 0 a 0 0 0 0 
FLOW-MATIC DATA DESIGN FORM 3 

0 0 0 0 0 0 
~"I&uuL~ 

E N 0 tJ. F I L E tJ. 0 E S FIGURE 26 i DIVISION OF SPERRY RAND CORPORATION 

51.1501 



ANALYST: _________ _ PAGE: __ 
DATE: _________________ __ 

N A M E A 0 F l:!l F I L E 
f---- .--- -~ 

U N P R I C E 0 - I N V English name of file. 

F I L E l:!l 0 E S I G N l:!l 

l:!l l:!l l:!l l:!l l:!l l:!l l:!l l:!l l:!l l:!l l:!l l:!l 

L A B E L l:!l l:!l l:!l l:!l l:!l l:!l l:l 

M M 0 0 y y I 0 0 q 0 I 1.) Label with reel counter. 
2.) If label variable all 6' 'so 

L 0 C fl 0 F l:!l L A S E L - -
0 0 0 0 0 0 0 0 0 0 0 3 Word location of label in laLel block. 

M U L T I 11 R E E L l:!l l:!l 

0 0 0 0 0 0 0 0 0 0 0 I 1 :: Yes; 0 :: 1\0. 

B L K Il C T fl I N 0 8 l:l 

0 0 0 0 0 0 0 0 0 0 0 I 1 :: Block count desired; 0 :: 1\0 block count. 

S L K l:l C T l:l L 0 C fl l:l -
0 0 0 0 0 0 0 0 0 0 0 I 

Word location of block count in last item 
of sentinel block. [000 to (item size-I)] 

E N 0 f1 RIE E L Il S E N 
z z z z z z z z z z z y End of reel sentinel. If single reel, al16's. 

E N 0 fl F I L E fl S E N 
z z z z z z z z z z z Z End of file sentinel. 

L 0 C 8 I N IJ. F I R S T -
0 0 0 0 0 0 0 0 0 0 0 0 

Word location of sentinel in" first inval id 
item. rOOO to (item size-I)] 

L 0 C fl I N fl L A S T fl -
0 0 0 0 0 0 0 0 0 0 0 0 

Word location of sentinel in last item of 
sentinel block. [000 to (item size-I)] 

Other entries may be added here, each con-
sisting of a title word and an information 
word; e. g. , PAHT6BU(6.. ~I~l' 

UZZll72ZlZX 

lNITI'PISf 
NOTE: After the last entry skip to the 

next page. 

FLOW-MATIC DATA DESIGN FORM 1 

~R.nd~ 
FIGURE 26j DIVISION Of SPERRY RAND CORPORATION 

S 1 .1499 



ANALYST: 
DATE: ______________________ ~ 

I T E 
II II II 

I T E 
0 0 0 

N 0 II -
0 0 0 

K E Y 
p R 0 

. 
51.1500 

56, 

M Il 

II II 

M II 

0 0 

0 F -
0 0 

II 1 
0 U 

0 E S I G N 
II II II II Il II 

S I Z E II II 

0 0 0 0 0 I 

II J< E y S II 

0 0 0 0 0 0 

II II II II II II 

C T - N Q ~ 

PAGE: __ 

a --

II . 
II 

0 1,2,3,4,5,6,.10,12,15,20,30,60. 

II 

I 0,1,2, .... ,9 = number of keys 

11 

~ Name of field, ifnokey~ 

Further key entries may be added here, 
each consisting of KFX6.n/:/:1MM fol-
lowed by the name of the field. 

If there are Sub-items to be described, 
the descriptions are entered following 
the last Key entry. Sub-items are des-
cribed with two-word packets consisting 
of the name of the Sub-item followed by 
a word in the format OOOSSSOOOEEE, 
where SSS is the first word and EEE is 
the last word of the Sub-item, relative 
to the entire item. 

lNIlYPISf 
NJfE: After the last entry skip t? the 

next page. 

! 

FLOW-MAliC DAlA DES'I GN FORM 2 

~~~ 
DIVISION Of SPEIIY RAND CORPORATION

• FIGURE 26k ,

ANALYST: ____________________ _ PAGE: __

DATE: ------------__ --______ __

F I E L D 11 D E S I G N
d d fj Il d d II d II II Il d

p R 0 D U C T - N Q ~ ~ Name 0.£ field.

a a 0 0 0 0 0 0 0 0 0 0 Word location in item. [000 to (item size-1)1

0 0 a 0 a 2 i' .t A- I C 0 Field descriptor of form OOOOOTPPSLNO *

0 0 0 0 0 0 0 0 0 0 0 0 Extractor; if full-word field, all O's.

Q U A N T I T Y ~ f1 f1 ~

a a a 0 0 I 0 0 0 a 0 0
An unlimited number of fields may be
descri~~d using the same four-word packet
format.

a 0 0 0 a 3 .r K K 7 6 a
* Explanation of field descriptor:

0 0 0 0 0 0 I I I I I I T= Type of field.

E N D ~ F I L E ~ D E S 1 - alphabetic
2 - alpha-mmeric'

0 0 0 0 a 0 a a a 3 - numeric

PP = Position of decimal point in rela-
a 0 0 0 0 0 tion to a reference point immediate-

ly to the left of the left-mos~

Z·ERO FILL THRUWORD 058 digit of the field.
00 - coincident with reference point
i~ - not applicable
nL - n positions to the left of the

a 0 0 a 0 a a 0 0 reference point

a
nR - n positions to the right of the

0 0 0 0 0 reference point
en = 1,2, ... ,9,A,B, ... ,Z)

S = Digit position of the sign.
1,2, ... ,9,A,B, or C
~ - not applicable

a 0 0 0 0 a a 0 0 L = Digit position of the left-most digit
of the field, excluding sign.

a 0 a 0 0 a 1,2, ... ,9,A,B, or C

N = Number of digits in the field, excluding sign.
1,2, ... ,9,A,8, or C
(A = 10, B = 11, C = 12)

0 a 0 0 0 0 a 0 0 NOfE: Place the sentinel END~FILE~DES

0 a 0 a 0
immediately following the last four-

a word packet and in word 059 of that
block.

a a 0 0 a 0 0 a 0
FLOW-MATIC DATA DESIGN FORM 3

0 a a a a a
~~~ 

E N D ~ F I L E ~ D E s- FIGURE 261 DIVISION Of SPEIIY lAND COIPOIATION 

51.1501 57 



en NAME OF FilE INVENTORY 
(X) 

FilE DESIGN 

BlK CT IND 000000000001 BlK CT lOC 

lOC IN lAST OOOOOOOQOOOO ITEM DESIGN 

FIELD DESIGN PRODUCT-NO 

DATA DESIGN INPUT 
FOR SAMPLE PROBLEM 

lABEL MMDDYYI0010l lOC OF lABEL 000000000003 MULTI REEL OOOOOOOOOOOl 

000000000001 END REEL SEN ZZZZZZZZZZZY END FilE SEN ZZZZZZZZZZZZ lOC IN FIRST 000000000000 

ITEM SIZE OOOOOOOOOOtO NO OF KEYS 

000000000000 000002 ICO 000000000000 QUANTITY 

000000000001 KEY 

000001000000 000003 

PRODUCT-NO 

760 000000111111 

END FilE DES ooeeOOOOOOOO 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 END FilE DES 

NAME OF FilE PRICE FilE DESIGN 

BlK CT IND 000000000001 BlK CT lOC 

LOC IN lAST 000000000000 ITEM DESIGN 

FIELD DESIGN f':'RODUCT-NO 

lABEL 

000000000001 END REEL SEN 

ITEM SIZE 

MMDDYYI00201 lOC OF lABEL 000000000003 MULTI REEL 000000000000 

END FilE SEN ZZZZZZZZZZZZ lOC IN FIRST 000000000000 

000000000002 NO OF KEYS 060000000001 KEY 1 PRODUCT-NO 

000000000000 000002 ICO 000000000000 UNIT--PRICE 000001000000 0000033R 850 000000011111 

END FilE DES 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 END FilE DES 

NAME OF FilE PRICED-INV FilE DESIGN 

BlK CT IND 000000000001 BlK CT lOC 

lOC IN lAST 000000000000 ITEM DESIGN 

PRODUCT-NO 

lABEL MMDDYY100301 lOC OF lABEL 000000000003 MULTI REEL 000000000001 

000000000001 END REEL SEN ZZZZZZZZZZZY END FilE SEN ZZZZZZZZZZZZ lOC IN FIRST 000000000000 

ITEM SIZE 000000000010 NO OF KEYS 

000000000000 000002 ICO 000000000000 QUANTITY 

000000000001 KEY 

000001000000 000003 

PRODUCT-NO 

760 000000111111 FIELD DESIGN 

UNIT-PRICE 000002000000 0000033R 850 000000011111 EXT-PRICE 000003000000 0000038R 3AO 001111111111 END FilE DES 000000000000 

000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 END FilE DES 

NAME OF FilE UNPRICED-INV FilE DESIGN 

BlK CT IND 000000000001 BlK CT lOC 

lOC IN lAST 000000000000 ITEM DESIGN 

FIELD DESIGN PRODUCT-NO 

lABEL MMDDYYI00401 LOC OF lABEL 000000000003 MULTI REEL 000000000001 

000000000001 END REEL SEN ZZZZZZZZZZZY END FilE SEN ZZZZZZZZZZZZ lOC IN FIRST 000000000000 

ITEM SIZE 000000000010 NO OF KEYS 

000000000000 000002 ICO 000000000000 QUANTITY 

0000000000,01 K.EY 

000001000000 000003 

PRODUCT-NO 

760 000000111111 

END FILE DES 000000000000 000000000000 000000000000' 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000' 

000000900000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 000000000000 OOOOOOOOOOQO END FILE DES 

FIGURE 27a 



FLOWMATIC CODE INPUT FOR SAMPLE PROBLEM 

(0) I.NPUT INVENliORY FILE·A PRfcE. FILE·a ; OUTPUT PRICED.INV FILE·C UNPRICED·INV FILE·D ; HSP D • 

(1) COMPARE PRODUCT·NO (A) WITH PRODUCT~NO (e) : IF GREATER GO TO ORERATION to : IF EQUAL GO TO OPERATION 5 , OTHERWISE 

GO TO OPERATION 2 • 

(2) TRANSFER A TO D • 

(3) WRITE-ITEM D . 

(4) JUMP TO OPERATION 8 • 

(5) TRANSFER A TO C . 

(6) MOVE UNIT-PRICE (e) TO UNIT·PRICE (C) 

(7) WRITE-ITEM C . 

(8) READ-ITEM A : 1F END OF DATA GO TO OPERATION 14 • 

(9) JUMP TO OPERATION 1 • 

(to) READ-ITEM e ; IF END OF DATA GO TO OPERATION 12 . 

( 11) JUMP TO OPERAT ION 1 • 

(12) SET OPERATION 9 TO GO TO OPERATION 2 • 

(13) JUMP TO OPERATION 2 . 

(14) TEST PRODUCT-NO (e) AGAINST ZZZZZZZZZZZZ IF EQUAL GO TO OPERATION 16 OTHERWISE GO TO OPERATION 15 • 

(15) REWIND e . 

(16) CLOSE·OUT FILE C • D . 

(17) STOP . (END) 

ZZZZZZZZZZZZOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000600000000000 

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000OOOOOOOOOOOOOOO~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOZZZZZZZZZZZZ 

FIGURE 27b 



Intermediate 
or 

Working Storage 

chapter 5 

In order to introduce a new concept, consider a simple variation in the sample 
problem. Suppose that the definition is altered by the fact that duplicate 
product numbers may occur in the Inventory file, and that such additional 
items are the result of errors in the original creation of the-file. Suppose 
further that these extra items are to be placed in an Error output file for 
printing. 

The process chart of this second sample problem, with details of the formats 
of the files, is -shown in Figure 28. 

60 



PROCESS CHART 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2 

PRICED INVENTORY 
MAXIMUM OF 60,000 
10 WORD ITEMS 
LABEL: MMDDYYIOO301 
MULTI REEL 

RUN ij 

APPLICATION OF STANDARD 
PRICES TO INVENTORY: 

ELIMINATION OF DUPLICATES. 

UNPRICED INVENTORY 
10 WORD ITEMS 
LABEL: MMDDYYIO~OI 

FOR HIGH SPEED PR INTER 
PROBABLY S INGLE REEL, 
BUT MAY BE MULTI REEL 

Conven tions 

(I) LABELS IN WORD 03 OF FIRST BLOCK ON EACH REEL. 

(2) BLOCK COUNTS IN WORD 01 OF LAST ITEM IN SENTINEL BLOCK. 

ERRORS 
10 WORD 

PRICE 
MAXIMUM OF 60,000 
2 WORD ITEMS 
LABE L: MMOOYYI00201 
S INGLE REEL 

ITEMS 
LABEL: MMDDYYI00501 
FOR HIGH SPEED PRINTER 
PROBABLY SINGLE REEL, 
BUT MAY BE MULTI REEL 

(3) SENTINELS ARE ZZZZZZZZZZZY FOR END OF REEL AND ZZZZZZZZZZZZ FOR END OF FILE. THESE ARE 
LOCATED" IN THE KEY WORD POSITION (WORD 000) OF FIRST '""VALID ITEM AND LAST ITEM OF 
SENTINEL BLOCK. 

FIGURE 28 

61 



An outline of the logical steps to be performed can be written as follows: 

Assume at the start that the first item of each of the i~put files is avail­
able. 

I Compare the product number of the Inventory item with the product 
number of the Price item. 

a. If the Inventory product number is less, go on to step II. 
b. If the product numbers are equal, go on to step III. 
c. If the Price product number is less, go on to step VII. 

II Prepare and write an Unpriced Inventory item. Then go on to step 
IV. 

III Prepare and write a Priced Inventory item. 

IV Store the product number. 

V Read the next Inventory item and go on to step VI. Or, if the 
Inventory file is exhausted, wind up the problem and stop. 

VI Compare the new product number with the stored product number. 

a. If the product numbers are equal 1 a duplicate has been found. 
Prepare and write an Error item. Then go to step V. 

b. If the product numbers are not equal, go back"to step I. 

VII Read the next Price item, and go back to step I~ 

Note in particular step VII. If the Price file reaches end of data before 
the Inventory file, there is no need to eliminate the unnecessary comparison. 
This is true because the sentinel at the end of the Price file is in the 
same field as the. product number, and the sentinel is larger than any legiti­
mate product number. Figure 16 on page 19 illustrated the method used to 
eliminate the unnecessary comparison. 

This statement of the problem can be better shown on block chart form (Figure 
29) • 

62 



BLOCK CHART 

ABC MANUFACTURING COMPANY INVENTORY - PROBLEM 2 

ASSUME FIRST 
ITEMS AVA I LABLE 

PRE,PARE AN~ 
WR ITF UMPRIC£D 
INVENTORY ITEM 

PFlFPAR£ ANI! 
w~ITf PRICED 

INYENTORY ITFN 

FIGURE 29 

63 



In Sample Problem 1, no information had to be set aside for further reference; 
all information could be acted upon at the time it became available. The 
new concept introduced here in Sample Problem 2 is that of saving information 
for future use. A common term for that part of the computer storage reserved 
for this purpose in a given problem is Working Storage. In FLOW-MATIC the 
term is abbreviated to W-storage. The programmer may save as many fields or 
items as desired in W-storage. And he may name these fields in the same way 
that English names are assigned to fields within the data files. It follows, 
that, when referring to fields in W-storage, he labels them with the letter 
W in parentheses, e.g., Operations (8) and (10) on page6S. 

The FLOW-MATIe chart for Sample Problem 2 in Figure 30 is created in the same 
general manner as before, but makes use of this additional facility. The 
development of the FLOW-MATIC. code also follows the previous methods. Note 
however, the use of the letter W in Figure 31, operations eight and t:en. 

It remains to write the Data Designs for sample problem 2. Clearly the Data 
Designs for files A, B, C, and D need not be changed. The Data Design for 
the new file, E, is shown in Figures 32 on pages 66 and 67. Note that, 
since no field names within the file are required in the FLOW-MATIC code, none 
have been described in the Data Design. 

FLOW-MATIC CHART 
ABC MANUFACTURING COMPANY INVENTORY - PROBLEM 2 

IIIPUT FILES 
IIIVEIITORV A 
PRICE B 
OUTPUT FILES 
PR ICED IIIVEIITORV C 
UIIPRICED IUEIITORV D (PRINT) 
ERRORS E (PR lilT) 

A IS GREATER ...-----.;.... 

FIGURE 30 



FLOW-MATIC CODE 

(0) INPUT INVENTORY FILE-A PRICE FILE-B ; OUTPUT PRICED-INV FILE-C UNPRICED­
tNV FILE-D ERROR FILE-E ; HSP D , E • 

(I) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF GREATER GO TO OPERATION 
rll- ; IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO OPERATION 2 • 

(2) TRANSFER A TO D . 

(3) WRITE-ITEM D • 

(II-) JUMP TO OPERATION 8 • 

(5) TRANSFER A TO C • 

(6) MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) • 

(7) WRITE-ITEM C • 

(8) MOVE PRODUCT-NO (A) TO PRODUCT-NO (W) • 

(9) READ-ITEM A ; IF END OF, DATA GO TO OPERATION 16 • 

(10) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (W); IF EQUAL GO TO OPERATION II 
OTHERWISE GO TO OPERATION J • 

(II) TRA~SFER A TO E • 

(12) WRITE-ITEM E . 

(13) JUMP TO OPERATION 9 • 

(If.I.) READ-ITEM B ; I F END OF DATA GO TO OPERAT ION I . 

(15) JUMP TO OPERATION I . 

(16) TEST PRODUCT-NO (B) AGAINST ZZZZZZZZZZZZ IF EQUAL G~ TO OPERATION 18 
OTHERWISE GO TO OPERATION 17 • 

(17) REWIND B • 

(18) CLOSE-OUT FILES C , D , E . 

(19) STOP. (E~D) 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2 

FIGURE 31 

65 



ANALYST: _____ DATA DESIGN FOR ERROR OUTPUT FILE PAGE: __ 

DATE: ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2 

N A M 
E R R 

F I L 
II 11 II 

L A B 
M M D 

L 0 C -
0 0 0 

M U L 
0 0 0 

B L K 
0 0 0 

B L K 
0 0 0 

E N 0 
z z z 

E N 0 
z z z 

L 0 C -
0 0 0 

L 0 C -
0 0 0 

Sl.1499 

66 

E A 0 F -
0 R ~ ~ -
E 11 0 E 
11 11 II II 

E L ~ 11 

D Y Y I 

l:l 0 F 11 -
0 0 0 0 

T I 11 R 
0 0 0 0 

II C T II 

0 0 0 0 

II C T 11 

0 0 0 0 

II RIE E 
z z z z 
11 F I L 
z z z z 
II I N /l 

0 0 0 0 

II I N II 

0 0 0 0 

~ F I L E 
{). ~ .~ /J. /J. English name of file. 

S I G N II 

II II 11 ~ 11 

~ II II II II 

0 0 5 0 I 1.) Label with reel counter. 
2.) If label variable all 6' s. 

L A B E L 
0 0 0 0 3 Word location of label in label block. 

E E L 11 11 

0 0 0 0 I 1 = Yes; 0 = No. 

I N 0 II /l 

0 0 0 0 I 1 = Block count desired; 0 = ~o block count. 

L 0 C II 11 -
0 0 0 0 I Word location of block count in last item 

of sentinel block. [000 to (item size-I)] 

L II S E N 
z z Z' Z Y End of reel sentinel. If single reel, aI16's. 

E II S E N 
z z z z Z End of file sentinel. 

F I R S T 
0 0 0 0 0 

Word location of sentinel in first invalid 
item. [000 to (item size-I)] 

L A S T A 

0 0 0 0 0 
Word location of sentinel in last item of 
sentinel block. [000 to (item size-I)] 

~her entries may be added here, each con-
sisting of a title word and an information 
word; e.g., PAfIT{£U{tk"EN 

ZZlZlZz:znzx 

LNI1YPISf 
NJTE: Mter the last entry skip to the 

next page. 

FLOW-MAliC DAlA DESIGN FORM 1 

~~~ 
FIGURE 32a DIVISION OF SPERRY lAND COIPORATION

ANALYST:
DATE: ______________________ __

I T E M a 0 E S I G N a
tJ. tJ. fl fl tJ. tJ. fl Il fl a Il fl

'I T E M fl S I Z E fl fl Il

0 0 0 0 0 0 0 0 0 0 I 0 1,2,3,4,5,6,10,12,15,20,30,60.

N 0 Il 0 F Il K E y S fl fl - -
0 0 0 0 0 0 0 0 0 0 0 0 0,1,2, ,9 = number of keys

K E y Il 1 tJ. Il Il Il fl fl fl

f1 f1 f1 ~ ~ ~ f1 !:J ~ !:J !:J !:J Name of field, i.f no key ~

E N D l:::.. F I L E !:J D E S
Further key entries may be added here,
each consisting' of KFY~n!YY.!MM fol-
lowed by the name of the field.

If there are Sub-items to be described,
the descriptions are entered following
the last Key entry. Sub-items' are des-

ZERC FI iT ~U WOR ~~ is cribed with two-word packets consisting
of the name of the Sub-item followed by
a word in the format OOOSSSOOOEEE,
where SSS is the first word and EEE is
the last word of the Sub-item, relative

/ to the entire item.

ll'JIlYPISf
NJfE: After the last entry skip to the

next page.

"

FLOW-MAliC DAlA DES'ISN FORM2

~~~ 
DIVISION Of SPEll' lAND COIPOIATION 

E N D ~ F I L E !:J D E S FIGURE 32b 

51 ·1500 

67 



Now, however, there is a new kind of data to be described to FLOW-MATIe, 
namely, that assigned by the programmer to W-storage. This data is described 
to the compiler as if it were data from a file, except that none of the irrfor­
mation pertaining to the organization of a tape is applicable. In Sample 
Problem 2, in fact, the only necessary description is of a single field, the 
product number. Therefore, no item design information is written, and under 
the field design section only one nar~ is listed. The information required 
for this problem is shown below. 

00 

01 

02 
03 
04-
05 

06 

07 

08 

59 

NAME6QFl\F!LE 
W-STQRAGEI166 
F!ELD6DES!GN 
66~666666666 

PRQDUCT-NQ66 
000000000000 

0000021111CO 
000000000000 

END6FILE~DES 

Zero fill 

END 6 F ! L E ~D E S 

} 

1 

Heading 

Sub-Head ing 

4- word Field 
Description 

Sentinels 

This Data Design is placed on the input tape for FLOW-MATIC together with 
other Data Designs. It will not be stored for use in other runs, since it 
is designed specifically for one program. 

In addition, it is necessary to inform the compiler that some W-storage has 
been reserved by the programmer. This is done by writing a Directory for 
inclusion on the FLOW-MATIC input tape. 

The Directory is a list showing the number of words in the programmer's 
W-storage. 

00 D ! R .E C T Q R Y IJ.IJ.IJ. } 
01 ~~~~11~~661J.~1J. 

Header 

02 OOWOOOOOWxxx 
03 W-STQRAGEIJ.66 
04- END6D!RECTRY 

Ze rO f ill I Sentinels 

59 END6D!RECTRY 
WOOD - iW-storage always starts with the zero word. 

Wxxx - This is the highest number assigned tq a W-storage word by the program­
mer. 

68 



In Sample Problem 2, only one word of W-storage is used. 

Therefore, the Directory is: 

00 D lRECT~RY666 
01 666666666666 

} Header 

02 OOWOOOOOWOOO 
03 W-STQRAGE666 
Oq END6D!RECTRY 

Zero fi 11 

59 END6D!RECTRY 
I Sentinels 

The problem has now been completely prepared for FLOW-MATIC .. The arrangement 
of the input tape is shown in Figure 33. Note that there are two additions 
to the format of the tape: the W-storage Data Design, and the Di rec tory. The 

Directory must follow all Data Designs and p,recede the FLOW-MATIC code. 

FLOW-MATIC INPUT TAPE 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 2 

INVENTORY 

PR ICE 

PRICED-INV 

UNPRICED-INV 

ERROR 

W-STORAGE 

DIRECTORY 

FLOW-MATIC 
CODE 

SENT INEL BLOCK 

DATA DESIGNS FOR INPUT 
AND OUTPUT FILES 

DATA DESIGNS FOR W-STORAGE 

DIRECTORY 

FIGURE 33 

69 



As implied above, it is sometimes useful to include some information under 
the Item section in the W-storage Data Design. For example, how can several 
entire items from a file be saved in W-storage? This is done by naming sub­
items, groups of UNIVAC words, within W-storage and entering the assigned 
names of such sub-items in the Item design for W-storage. This use of sub­
item names is exactly parallel to that discussed in Chapter 4, where the 
Data Designs for the input and output items are described. 

Suppose it were required by this problem to store both the Inventory item 
and Price item. Then sub-items for each item in W-storage can be named and 
described as shown below: 

00 NAME6QF6F! LE } Name of F i 1 e 
01 W-STQRAGE666 
02 lTEM60ES!GN6 

} Header 
03 66/::'/::'6666/j666 
014- INV-ITEM6666 

} 
Two word packet 

05 000000000009 describing inventory item 
06 PR!CE-!TEM/::'/::' } 

Two word packet 
07 000010000Q..U describing price item 
08 ENO/::'F!LE60ES 

~ Ze ro fill End i ng Sentinels 

59 ENO/::'FtLE60ES 

The corresponding Directory entry is: 

00 °lRECTQRV6/::,6 } 
01 66.~!J6t~lJ.fj,/::'b./::'/::' 

Header 

02 OOWOOOOO~ 

03 W-STQRAGE666 
Oll- ENO/::'O!RECTRV 

Zero fill Sentinels 
5°9 EN060!RECTRV 

70 



Item names need not describe the entire W-storage area. Single field names 
may also be used. For example, addition of two field names to the W-storage 
words reserved above changes the Data Design and Directory as follows: 

00 NAME60F6FILE 
t 

00 O!.RECTQRY666 
} Header Name of F i 1 e 

01 W-STQRAGE666 01 666666666666 
02 !TEM60ES!.GN6 t 02 OOWOOOOOWOl3 

Header 
03 666666666666 03 W-STQRAGE666 
Oil INV-ITEM6666 } Two wo rd packet Oil ENO.60!RECTRY 

f 
05 000000000Q...Qj for inventory item Zero fill Sentinels 
06 PRICE-ITEM66 t 

Two word packet 5"9 EN060lRECTRY 
07 0000 I OOOOQll for price item 
08 F!EL060ES!GN } Header 
09 666666666666 
10 . F!f lO- 166666 
II 000012000000 Il word packet 

12 000003111560 for 1st field 

13 00001 I I I I 100 

III FIELO-266666 

15 000013000000 q word packet 

16 0000021111CO for 2nd field 

17 000000000000 
18 EN06F!LE60ES 

f 
Zero fill Ending Sentinels 

5"9 EN06F!LE60ES 

The programmer designs the W-storage in a manner similar to the design of data 
files themselves, following the same general rules. Following this, he writes 
a Directory stating the total W-storage required. 

Whenever W-storage is utilized, the Directory Block must be written and it 
must immediately follow the blocks containing Data Designs and W-stor~ge on 
the input tape. (Fig. 33) 

71 



chapter 6 

Relative Machine Coding, X-I 

Suppose that a problem requires a function which does not appear in the cur­
rent list of FLOW-MATIC functions. Consider the concrete example in Sample 
Problem 3. Suppose the definition of the original Sample Problem is altered 
once again, by the fact that duplicate product numbers in inventory items 
are not errors, but additional data to be processed. These items may be 
considered to originate in the different production plants of the ABC Manu­
facturing Company, and the problem is now to find the total on-hand balance 
for each product, to assign the appropriate unit price, and in addition to 
compute the total dollar value of these balances. This total dollar value 
will be referred to as the extended price for each product. Again, if there 
is no price available to apply to a given product number, an unpriced inven­
tory item is to be created, but now this ite.m will carry the total quantity 
on hand in all of the production plants. 

The process chart for Sample Problem 3 looks like the original (compare 
Figures 34.on next page and 16 on page 19), but the logical statement of the 
problem is quite different. 

72 



ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3 

ALL FILES SEQUENCED BY PRODUCT NUMBER 

INYENTORY 
MAXIMUM OF 300,000 
10 WORD ITEMS 
LABEL: MMDDYYIO.OIOI 
MULTI RE~L 

PRICED INVENTORY 
MAXIMUM OF 60,000 
10 WORD ITEMS 
LABEL: MMDDYYI00301 
MULTI REEL 

RUN 4 
APPLICATION OF STANDARD PRICES, 

COMPUTATION OF EXTENDED PRICE OF 
EACH PRODUCT IN INVENTORY. 

Conventions 

(I) LABELS IN WORD 03 OF FIRST BLOCK ON EACH REEL. 

(2) BLOCK COUNTS IN WORD 01 OF LAST ITEM IN SENTINEL BLOCK. 

PRICE 
MAXIMUM OF 60,000 
2 WORD ITEMS 
LABEL: MMDDYYIOO~OI 

SINGLE REEL 

UNPRICED INVENTORY 
'0 WORD ITEMS 
LABEL: MMDDYYI00401 
PROBABLY SINGLE REEL, 
BUT MAY BE MULTI REEL 
FOR HIGH SPEED PRINTER 

(3) SENTrNELS ARE ZZZZZZZZZZZY FOR END OF REEL AND ZZZZZZZZZZZZ FOR END OF FILE. THESE ARE 
LOCATED IN THE KEY WORD POSITION (WORD 000) OF FIRST INVALID ITEM AND LAST ITEM OF 
SENTINEL BLOCK .• 

FIGURE 34 

73 



Assume at the start that the first item of each of the input files is avail­
able. 

I Compare the product number of the Inventory item with the product 
number of the Price item. 

a. If the Inventory product number is less, go to step II. 
b. If the product numbers are equal, go on to step III. 
c. If the Price product number is less, go on to step VIII. 

II Prepare an Unpriced Inventory item and set step VII to second 
condition. Then go on to step IV. 

III Prepare a Priced Inventory item and set step VII to first condition. 

IV Store the product number and quantity from the Inventory file. 

V Read the next Inventory item and go on to step VI. Or', if the 
Inventory file is exhausted, perform step VII, wind up the problem, 
and stop. 

VI Compare the new product number with the stored product number. 

a. If the product numbers are equal, add the new quantity to 
the stored quantity and go back to step V. 

b .. If the product numbers are not equal, go to step VII. 

VII a. First condition. Insert the stored quantity (total on hand) 
in the Priced Inventory; compute extended price and insert 
it in the item; write a Priced Inventory item. Then go back 
to step I. 

b. Second condi t ion. I nsert the stored quanti ty in the Unpriced 
Inventory;write an Unpriced Inventory item. Then go back to 
step I. 

VIII Read the next price item, and go back to step I. 

The block chart for Sample Problem 3 is shown in Figure 35. 



BLOCK CHART 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3 

ASSUME FIRST 
ITEMS AYAILABLE 

PREPARE TO WRITE 
UNPRICED IIIVENTORY 

ITEM 
SET VII TO b 

PREPARE TO WRITE 
PRICED INYENTORY 

ITEM 
SET VII TO a 

IIISERT STORED 
QUANTI TY AIID 

CAlCULATE £lTEIIDFD 
PRICE III 

PREPARED ITEM 

IIISERT STORED 
QUAIITITY III 

PREPAItED ITEM 

FIGURE 35 

75 



The FLOW-MATIC chart in Figure 36 shows two operations which require the use 
of new functions; Operation 11, addition, to find the total quantity on hand; 
and Operation 15, multiplication, to compute the extended price for the priced 
inventory file. The FLOW-MATle system makes provision for functions which 
are not immediately available as a part of its library. 
be written by a UNIVAC programmer in a form called X-l~ 

These functions can 
Whenever X-I coding 

is to be used, an entry is made in the FLOW-MATIC code consisting of the ap­
propriate operation number, the name "X-I", and an English statement denoting 
the function to be performed by the X-I cooing. Although the English state­
ment is not processed by the compiler, it is useful in making the FLOW-MATIC 
program complete and understandable. 

The FLOW-MATIC chart (Figure 36 on pages 76 and 77) and code (Figure 37 on 
page 78) for Sample Probl~m 3 are completed as before, maintaining the use 
of English to describe the logical steps. Note particularly operations 
11 and 15 which call for X-I cOding. 

76 

FLOW-MATIC CHART 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3 

IIIPUT FILES 
IIIYEIITORY A 
PRICE B 
OUTPUT FILES 
PRICEO IIIVEIITORY C 
UIIPRICEO IIIYEIITORY 0 (PRIIIT) 

0---ip;;..2 -T-RA-~:-F:-R -A -Hr-'-~-~-oO-: -/B3---'tt..".. H 

FIGURE 36 

I IF EIIO J 
I~~_:~~~--------------------------



13 

0--( JUMP TO III 

FLOW-MATIC CHART 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3 

10 

COMPARE PRODUCT 
NO'S A AND W 

IF EQUAL, OP II 
OTHERWISE, OP 13 

FIGURE 36 
continued 

A HOT 
EQUAL TO W 

.2/\ 
~ 

77 



FLOW-MAliC CODE 

(0) IN·PUT INVENTORY FllE-A PRICE FllE-B : OUTPUT PRtCED-tNV FILE-C UNPRICED­
INV FllE-D ; HSP 0 . 

(I) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (6) ; IF GREATER GO TO OPERATION 
21 ; IF EQUAL GO TO OPERATION 5 : OTHERWISE GO TO OPERATION 2 . 

(2) TRANSFER A TO D . 

(3) SET OPERATION 13 TO GO TO OPERATION 18 • 

(~) JUMP TO OPERATION 8 . 

(5) TRANSFER A TO C . 

(6) MOVE UNIT-PRICE (6) TO UNIT-PRICE (C) . 

(7) SET OPERATION 13 TO GO TO OPERATION 14 • 

(8) MOVE PRODUCT-NO (A) TO PRODUCT-NO (W) : QUANTITY (A) TO QUANTITY (W) , 
(9) READ-ITEM A ; IF END OF DATA GO TO OPERATION 23 , 

(10) COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (W) : IF EQUAL GO TO OPERATION II : 

OTHERWISE GO TO OPERATION 13 

(II) X-I ADD QUANTITY (A) TO STORED QUANTITY (W) . 

(12) JUMP TO OPERATION 9 . 

(13) JUMP TO OPERATION 14 . 

(I~) MOVE QUANTITY (W) TO QUANTITY (C) , 

(15) X-I COMPUTE EXTENDED PR I (,E AND I NSERT INC ITEM -

(16) WRITE-ITEM C , 

( I 7 ) 

( I 8 ) 

( I 9 ) 

(20) 

JUMP TO OPERATION 

MOVE QUANTITY (W) 

WRITE-ITEM 0 

JUMP TO OPERATION 

I 

TO QUANTITY ( f' ) 

17 

(21) READ-ITEM B ; IF END OF DATA GO TO OPERATION I . 

(22) JUMP TO OPERATION I • 

(23) EXECUTE OPERATION 13 THROUGH OPERATION 17 , 

(2~) TEST PRODUCT-NO (8) AGAINST ZZZZZZZZZZZZ 
26 ; OTHERWISE GO TO OPERATION 25 . 

(25) REWIND B • 

(26) CLOSE-OUT FILES C , 0 . 

(27) STOP. (EMD) 

IF EQUAL GO TO OPERATION 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3 

FIGURE 37 

78 



The ~-storage design and Directory for this version of the problem are shown 
in Figure 38: 

W-STORAGE DATA DESIGN 

00 NAME6QFL\F!LE } Name of f i 1 e 
01 W-STQRAGE[\t\6 
02 F!EL060ES!GN } He ad e r 
C3 f:.A66666t\66/::/j 
04 PRQDUCT-M~t\6 

I 05 000000000000 Four wora packet 
06 0000021111CO describing product number 
07 000000000000 
08 QUANT!TY66t\6 

! 09 000001000000 Four word packet 

10 000003111760 describing quantity 

I I 000000 I II I I I 
12 EN06F!LE60ES 

Ze ro fill Ending sentineis 

59 EN06F!LE60ES 

DIRECTORY 

00 DIRECTORY666 } Head e r 
01 6666666666066, 
02 OOWOOOOOWOOI 
03 W-STQRAGEL\66 
Oq EN060!RECTRY 

Zero fill Ending sentinels 

59 ENOl\DIRECTRY 

APC MANUFACTURING COMPANY INVENTORY PROBLEM 3 

FIGURE 38 

In addi tion to the above input to FLOW-MATIe, the necessary X-I sections of 
relative machine coding are prepared and supplied to the compiler. "This is 
a job for a person trained in UNIVAC cOding since it entails the use of ma­
chine instructions. It does not, however, involve the lIse of actual machine 
addresses; rather, a system of relative and symbolic aOdresses, associated 
with the prepareo item designs and field descriptions, is utilized. FLOW­
MATIe accepts these X-I sections as input, includes them in the sequence of 
operations as directed by the attached operation number, and converts the 
COder's symbolic and relative addresses to actual machine addresses. 

79 



In order to write the required X-I coding the programmer needs the following 
information frow the writer of the program: 

(1) the operation number of the X-I section which is to be written, 

(2) the description of the function to be performed. 

(3) the Data Designs and file letters of the files or items to be opera­
ted upon. 

The FLOW-MATIC code, together with the Data Designs, is often sufficient 
information to describe the function to be coded, if the descriptive English 
in the X-I operations is complete. 

Detailed instructions for the use of the UNIVAC programmer in writing X-I 
sections are included in Appendix C. 

The prepared X-I sections are Unityped on the input tape following the FLOW­
MATIC code. The necessary sections for this Sample Problem are shown in Figure 
39: 

RELATIVE MACHINE CODING 

00 X - I t::l:~J::j6.6.t:.O I I } He ad e r 
01 BOWOOIA-AOOI } 02 COWOO I .-.....' Body of Coding 

03 EN06SUBI?QUTN 

\ 
Sentinels 

EN06.SUBI?OUTN 09 
10 X-I6.6t:.t:.t:.6015 } He ad e r 
II LOCOO I PO"C002 } Body of COding 
12 J OC 003 "'-' 

13 EN06.SUBRQUTN 

I Sentinels 

EN06sUBRQ.UTN 19 

Zero fill 

I remainder F ill 
of block 

59 

ABC MANUFACTURING cpr\I'PANY INVENTORY PROBLEM 3 

FIGURE 39 

80 



The input tape for Sample Problem 3 in Figure 40 shows the use of all present 
options in the FLOW-MATIC System. To summarize, a FLOW-MATIC input tape may 
contain: 

*(11 Data Designs for the input and output files. These may be stored 
on the library tape for the system. 

*(21 Data Design for W-storage. This mayor may not be required, de­
pending on the problem. 

*(31 The Directory. Required if W-storage is used. 

(41 FLOW-MATIC code. 

*(51 X-I Code sections. Required if called for in Fl.OW-MATIC code. 

(6) Ending sentinel block. 

* Opt ional 

In summary the uption of including X-I coded sections IS provided for two 
purposes: 

(1) To allow a UNIVAC programmer to code a specialized function which 
does not have wide enough application to warrant permanent inclusion 
as a FLOW-MArIC library funct. ion. 

(2) To allow a UNIVAC programmer to code a needed function which does 
not yet exist as a FLOW-MArIC operation. 

The list of FLOW-MATIC functions will gruw as application of the compiler 
indicates additional useful functions. Experience indicates that a large 
proportion of data-processing programs can be written by combining exist­
ing FLOW-MATIC functions. Specialization of a function to meet a parti­
cular requirement is made by the proper choice of option in the FLOW-MATIC 
code, and by the Data Designs. A major feature of the FLOW-MATIC Library 
is that it contains routines capable of generating machine coding to handle 
a large variety of programming and data situations. Thus a single entry in 
the library can produce a multitude of different, specialized codes which 
would be prohibi tive to wri te by hand and to store on tape. 

81 



82 

FLOW-MATIC INPUT TAPE 

ABC MANUFACTURING COMPANY INVENTORY PROBLEM 3 

INVENTORY 

PRICE 

PRICED-INV 

UNPRICED-INV 

W-ST~ AGE 

DIRECTORY 

FLOW-MATIC 
CODE 

X-I SECTiONS 

SENTINEL BLOCK 

FIGURE 40 

DATA DESIGNS FOR INPUT 
AND OUTPUT FILES 

DATA DESIGN FOR W-STORAGE 

DIRECTORY FOR W-STORAGE 

X-I SECTIONS REQUIRED BY PROBLEM 



The 
Flow-Matic 

Compiling Routine 

chapter 7 

The process of preparing a problem for FLOW-MArIC has been described, using 
three different versions of the same basic problem. Now, what happens when 
the prepared input 'tape is used with FLOW-MArIC on the computer? 

Figure 41 is a diagram of the four major phases of the compilation: 

• Translation 

• Selection 

• Allocation 

• Process ing 

83 



FLOW CHART OF FLOW-MATIC PHASES 

FIGURE 41 

TRANSLATOR 
(PHASE I) 

SELECTOR 
(PHASE II) 

ALLOCATOR 
(PHASE III) 

PROC.ESSOR 
(PHASE IV) 

I 
I 
I 
I • 

PR INT 
H. S. P. 



1'rans.zatiQn: In this phase the FLOW-MATIC code is digested and condensed by 
the appropriate Glossary. Pertinent information from the stored and/or new 
Data Designs is added, creating the information listed in a standard format, 
called Operations File 1. The Translator also begins a list known as the 
Unedited Record, used in the final phase. 

Selection: The purpose of the Selector phase is to choose from the FLOW­
MATIC library the required functions and to produce for each operation the 
specialized coding to handle the fields, items, or files mentioned in the 
FLOW-MATIC code. These pieces of coding are also arranged in a standard 
format, and the entire set is called the Generated Library. In addition, 
during the Selector phase, supplementary information is added to Operations 
File 1, producing Operations File 2. 

Allocation: The Allocator phase works only on Operations File 2, assigning 
data storage areas in the Memory as required by the program, and assigning 
a fixed Memory address for each piece of coding listed. These fixed Memory 
addresses are inserted in Operations File 2, producing Operations File 3. 

Processing: The final phase combines Operations File 3 and the Generated 
Library, producing a program tape in machine code. Since all assigned loca­
tions are listed in Operations File 3, and all pieces of coding are con­
tained in the Generated Library, the Processor simply inserts proper machine 
addresses in the generated pieces ~f coding and assembles them in proper 
order. In the Processing phase an Edited Record of the compilation is created 
from the Unedited Record for use both as a printed record and as an aid in 
debugging, if necessary. 

During the Processing phase, a series of printouts is given. This list gives 
the general layout of the program, and is designed for a programmer's use in 
making a Codedit or Analyzer of the program tape. 

In order to compile the first Sample Problem described in this manual, the 
appropriate tapes are mounted on the proper Uniservos, and the normal UNIVAC 
starting procedure is followed. (See Appendix D for detailed operating 
instructions. ) 

85 



The normal printouts which occur during the compilation of th~ first sample 
problem are: 

Printout 

FILE OOAOOOOOOOOO 
FILE OOBOOOOOOOOO 
FILE OOCOOOOOOOOO 
FILE 000000000000 
END TRANS 
END SELECTOR 
END ALLOCTR 
COMPILEO PROGRAM 
INITIAL BLOCK 

SERVOS 
SERVOS 
SERVOS 
SERVOS 

READS FOR SEGMENT 001 
CODING FOR SEGMENT 001 

333333333333 

555555555555 
666666666666 
II111I1II11I 

STARTS 
0000 
09q.0 
0000 

PROGRAM ON SERVO q. 008 BLOCKS 

END PROC I 

TYPE IN PG. HEADER INFO 

EDITED RECORD ON SERVO 5 119 BLOCKS 

~ tPPI·lppppppp~ 

777777777777 
222222222222 

B LKS 
01 
01 
06 

Explanation 

Servo allocations 

for input and out­

put fi les 

End of Translation 

End of Selection 

End of Allocation 

Description of com­

piled program tape 

End of Processor, 

pa rt I 

A request for three 

type-ins 

I. One word for 

name of run 

2. One word for 

p rog ramme r' s 

name 

3. One word for 

date 

End of compilation 

The printouts giving a description of the compiled program tape show that 
not all of the blocks are arranged to fall into consecutive storage locations. 
The compiled program has be~n designed so that the coding which reads in the 
program falls into the highest block address available. This block is later 
filled with data. A diagram of the compiled program tape is shown in Figure 
/.1.2. 

86 



FIGURE 42 

DIAGRAM OF COMPILED FLOW-MATIC PROGRAM TAPE 

IN ITlAL BLOCK 
STARTS IN 000 

READS FOR 
SEGMENT 01 

STARTS I N 9~0 

CODING FOR 
SEGMENT 01 

STARTS IN 000 

2ND BLOCK OF CODING 
FOR SEGMENT STARTS 

IN 060 

LA ST BLOCK 
STARTS IN 

300 

CONTRO L BLOCKS 

THE ACTUAL CODING FOR THE 
PROBLEM, IN THE FOLLOWING 
ORDER: 

(I) ALL CONSTANTS 

(2) CODING FOR MOVEMENT 
OF DATA FILES 

(S) CO~ING FOR PROfESSING 
DATA WHILE IN COMPUTER 
STORAGE 

87 



The Edited Record of compilation, a sample of which is shown in Figure ~3, 
contains the following: 

(1) A listing of the FLOW-MATIC input tape for the problem, with the 
exception of the Directory. It may contain Data Designs, W-Storage, 
FLOW-MATIC Code, X-I Sections. 

(2) A table showing allocation of data storage areas with their related 
symbolic addresses. 

(3) A list of the field names referred to in the FLOW-MATIC Code to­
gether with their assigned addresses, both symbolic and actual. 

(~) A description of the compiled program which contains for each opera­
tion number and function: 

(a) The assigned starting and ending lines, 

(b) The addresses of all constants used by the operation, 

(c) The addresses of all exits from, and entrances to, the operation. 

The compiled program tape can be tested by removing it from servo ~ where it 
has been written, and mounting it on the instruction tape servo. Data files 
and blanks are mounted on the other servos as required by the run. 

When Sample Problem 1 is run, the following normal print-outs occur: 

88 

Printout 

MMDDYYIOOIOI 

MMDDYYI00201 

B.S .,D. TAPE 
111111111111 
222222222222 
MT NXT RL S 
333333333333 
MMDDYYI00102 

666666666666 
MMDDYYI00301 
000000000073 
111111111111 
MMDDYYIOOqOI 
000000000025 

Explanation 

This input tape has passed the label 
check. 

This input tape has passed the label 
check. 
FLOW-MATIC code ca lIed for H i,gh-Speed 
Printer output on servo I and alter­
nate servo 2. 
A reel of input has been processed. 

This input tape has passed the label 
check. 
A reel of output has been completed. 

A reel of output has been completed. 

Action 

None. Type-out for log 
purposes. 

None. Type-out for log 
purposes. 

Depress Block Subdivide 
buttons I ana 2. Hit 
start bar. 
Mount the next reel of 
this file on servo 3. 

None. Type-out for log 
purposes. 
Remove and label output 
tape, se rvo 6, wit h 1 a be 1 
and block count pr i nted. 
Remove and label output 
tape, servo J, with label 
and block count printed. 



Op No. Call Word Start End Line 

RETURN JUMPS 
OP OO~ 0306 

005 TRANSFER 0307 0307 JUMPS 
OP 006 0308 

006 MOVE 0308 0309 JUMPS 
OP 0~7 0310 

CONSTANTS 
K50~ 0035 

007 WR ITE-ITEM 0310 0310 JUMPS 
OP C03 0156 
OP 008 0311 

RETURN JUMPS 
OP C03 0164 

008 READ-ITEM 0311 O~ ff JUMPS 
OP C09 0312 
OP AI3 00q9 

RETURN JUMPS 
OP AI3 0061 

CONSTANTS 
K503 0036 

009 JUMP 0312 0312 JUMPS 
OP 001 0301 

010 READ-ITEM 0313 0313 JUMPS 
OP 01 I 031Q 
OP BI3 0115 

RETURN JUMPS 
OP BI3 0127 

CONSTANTS 
K502 0037 

Off JUMP 031Q 031Q JUMPS 
OP 001 0301 

012 SET 0315 0315 JUMPS 
OP 002 030Q 
OP 013 0316 

RETURN JUMPS 
OP 009 0312 
OP 009 0312 

SAMPLE EDITED RECORD LISTING 

FIGURE 43 

This sample shows the kind of listing produced for each problem but is not an 
ac tua l listing from the Sample Problems given in this manual. 

89 



Although the analyst originally prepared the FLOW-MATIC code he more than 
likely is unfamiliar with UNIVAC machine code. If detailed inspection of the 
program should be necessary, the Edited Record has proved entirely adequate 
in providing information about the program to the trained UNIVAC programmer. 
This allows him to assist the analyst in debugging (checking). 

90 



Appendix A 

Flow-Matic Functions, 

Guide For Writing Flow-Matic Code, 

Flow-Matic Statements 

91 



FLOW-MATfC FUNCTIONS 

For Sample Problems I, 2, 3 

(This is not a complete list of available FLOW-MATIC Functions.) 

CLOSE-OUT: 

COMPARE: 

EXECUTE: 

INPUT: 

JUMP: 

MOVE: 

READ-I TEM: 

REWlND: 

SET: 

STOP: 

TEST: 

TRANSFER: 

WR I TE - ITEM: 

Terminates the output files and rewinds the output tapes. 

Examines two fields for magnitude and/or equality: branches 
accordi ngly. 

Performs designated operation or sequence of operations. 

Identifies the input and output files to be used and supplies 
the first item of each input file. 

Alters the normal sequence of operations and follows the di­
rected path. 

PLaces one or many fields of data in any other fields. 

Supplies the next item 9f an input file. When there is no 
more data, terminates the file and takes the directed path 
within the problem. 

Rewinds current reel of an input file. 

Alters an operation, changing the order of execution. 

Rewinds the instruction tape and terminates the problem. 

Examines the field and a constant for magnitude and/or equali~ 
ty; branches accordingly. 

Places one item or group of words in any other item or group 
of words of equal size. 

Sends an output item to the output file. 



GUIDE FOR WRITING FLOW-MATIC CODE 

1. A FLOW-MATIC code word contains a maximum of twelve digits, none of 
which is a space (~). 

2. FLOW-MATIC code words are separated by spaces (~IS). 

3. Each statement (operation) contains up to a maximum of sixty FLOW-MATIC 
code words: 

a) excluding the operation number and ending period, 

b) including all other words and punctuation marks. 

~. Punctuation is according to proper English usage: 

a) punctuation marks count as words, 

b) only the ending period is of critical importance. 

5. Assigned field names or file names may contain hyphens if it is desirable 
to combine more than one English word into a single name. 

6. Assigned field names are always followed immediately by the pertinent 
file letter enclosed in parentheses: 

a) in all other cases the file letter is not parenthesized. 

7. All operation numbers are numeric. 

8. The operation number sequence starts with zero: 

a) operation zero is always the input statement. 

9. The operations are written in unbroken numeric sequence: 

a) there may be a maximum of 999 separate operations. 

10. The,last operation must be the stop operation followed by the word END 
in parentheses. 

93 



FORMAT FOR FLOW-MATIC CODE 

1. It is recommended that each operation begin a new blockette. Each 
statement may be space-filled to the end of the given blockette. 

2. The final block of FLOW-MATIC code must terminate with at least twelve 
full digits of spaces (~IS). 

3. The blocks (s) of FLOW-MATIC code and X-I sections, if needed, are fol­
lowed by a sentinel block containing Z's in words 000 and 059. 

LEGEND FOR DESCRIPTIONS OF OPERATIONS 

1. Lower case indicates information to be supplied by the programmer. 

2. Brackets [ ] indicate options available to the programmer. 

3. h = present operation number 
hI' h2' h3 .. · = other operation numbers. 

~. fl' f2' f 3.·. = file letters assigned by programmer. 

5. sl' s2' s3'" = servo numbers assigned by programmer. 

6. field-name = name assigned by programmer to data field. e.g., STOCK­

NUMBER 

7 file-name = name assigned by programmer to data file, e.g., INVENTORY 



CLOSE-OUT 

COMPARE 

Option 1 

Option 2 

Option 3 

Option IJ 

EXECUTE 

FLOW-MATIC LIBRARY ROUTINES 

(FLOW-MATIC CODE FORMAT)* 

(h)~CQMPARE~field-name~(fl)~WITH~field-~ame~(f2)~ 

;~IF~EQUAL~GQ~TQ~QPERATIQN~nl~ 

;~QTHERWISE6GQ~TQ~QPERATIQN~h2~· 

(h )~CQMPARE~field-nametd f 1) ~ WITHl\field-name~( f 2) ~ 
;~IF~GREATER~GQ~TQ~QPERATIQN~hl~ 

;l\QTHERWISE~GQl\TQl\QPERATIQNl\h2~· 

(h)~CQMPAR~field-nam~(fl}~WITHAfield-name~(f2)~ 

;6IF~EQUAL~GQ6TQ~QPERATIQN~hl~ 
;~IFAGREATER~GQ~TQ~QPERATIQN~h2A 

;6QTHERWISE~GQ~TQ6QPERATIQN~h3~· 

(h)~OQMPARE~field-name~(fl)~WITH6field-namel\(f2)~ 

;~IFAGREATERllGQ6TQAQPERATIQN~hl~ 

;6IF6EQUALAGQ~TQ6QPERATIQN6h2l\ 

;AQTHER~ISE6GQATQ6qPERATIQN6h3/1· 

(h)~EXECUTE6QPERATIQN~h16[THRQUGHt\QPERATIQN~h2l\]· 

• Although the ftDW-MATIC code statements for the Sample Problems do not show expl ici tly the sl,aces 

(6- 8) between word., they are included here for completeness and accuracy. 

95 



INPUT 

SPECIAL NOTES 

1. The assigned file-name may not begin with the digits FILE-. 

2. If servo numbers are not specified, the iompiler will assign them, re­
serving the proper servos for tapes for HSP or TIC, as stated~. 

3. For a single input file, continuous reads will be provided. For two or 
three, way input, standby coding will be provided, unless preselection is 
specified. Up to.eight way input coding will be provided in the prese­
lection option, and up to five full-word keys may be used. 

~. The normal and error print~outs which may occur in the execution of this 
coding are self-explanatory. In addition, b~eakpoint 1 is used through­
out the coding to provide operating options. For example, if a tape la­
bel fails the check, an error print-out gives this information to the 
operator; he may then force transfer on breakpoint 1 to proceed, if de­
sired. In all cases where it is desired to bypass the error, the action 
is to force transfer on breakpoint 1. 

s. If it is desired to begin the problem over, the operating instructions 
are: 

96 

a - Rewind all tapes except the instruction tape. 
b - Clear C and rIo 
c - No transfer on Breakpoint 2. 

This coding is always provided. 



6. If rerun cOding has been requested, the operating instructions are: 

a - Rewind all tapes except the instruction tape. 
b - Clear C and rIo 
c - Force transfer on Breakpoint 2. 

The problem will be resumed from the last completed output reel, as speci­
fied in the input statement. 

JUMP 

MOVE 

REAO-/ TEM 

(h)6JUHP6TQ6QPERATIQN6h 16. 

(h) 6MQVE6field-nametd f 1) 6TQ6field ..... name6( f 2) 6 
[,6: ield-name6 ( f 3) 6 

& 

,6field-name6(fn)~J 

[;6field-name6(f 1' )6TQ6field-name6(f2')~ 
r ,6field-name6(f3')~ 

,6field-name6(f n ' )61. 

(h)AREAD-ITEH~fl~[;~IF6END~QF!\DATA6GQ6TQ6QPERATIQN6h161. 

sr Eel Al NOTES 

1. Each input file mentioned in the INPUT statement must have at least one 
READ-ITEM operation. 

2. At least one READ-ITEM operation, for each input file, must include the 
optional phrase, IF END OF DATA ..... . 

3. If two or more READ-ITEM operations, for a single input .file, include the 
IF END OF DATA ...•... option, the operation numbers, hI' must be identi­
cal. 

REW INO 

-
SET (h)6SET6QPERATIQN6h 16TQ6GQ6TQL1QPERATIQN6h 26 

[,6QPERATIQNL1h3L1TQ~GQ~TQ~QPERATIQN~h4~ 

,~QPERATIQN~h5~T.Q~GQ~TQL1QPERATIQNl\h6~1. 

97 



STOP (h)L)STOPL).L)(END) 

SP ECI AL NOTES 

1. The stop operation must be. the highest numbered operation in the problem, 
and it must be followed by the word END in parentheses. 

TEST 

Option 1 

Option 2 

Option 3 

(h)~TEST[)field-nameL)(fl)[)AGAINST[)test-val~eL) 

; [)IF[)GREATERL)GQt\TQL)QPERATIQNL)h 1[) 

; [)IF'[)EQUAUGQ~TQ[)QPERATIQN[)h 2L) 
( ; ~AGAINSTL) ... [)] 

;[)QTHERWISEL)GQL)TQL)QPERATIQN[)h 3L): 

(h)6TEST[)field-name[)(fl)6AGAINST[)test-value~ 

;~IF6GREATER6GQ6TQ[)QPERATIQN6hlL) 

;~IFL)LESS6GQ6TQ6QPERATIQNL)h2L) 

[ ; .6AGAINST~ ... ~ 1 
;~QTHERWISE~GQL)TQ6QPERATIQNL)h3L)· 

(h)L)TESTL)field-name[)(fl)~AGAINST~test-valueL) 

;~IF6UNEQUAL6GQ[)TQ~QPERATIQN~hl[) 

[ ; ~AGAINST~ ..• ~ 1 
;L)QTHERWISE~GQ[)TQL)QPERATIQN[)h2[)· 

SPECIAL NOTES 

1. The conditional phrases, IF GREATER, IF EQUAL, IF LESS, shown in Option 
1 and 2 may appear singly or in any order in combinations of two. The 
phrase OTHERWISE must always appear, and must be writt~n last. 

2. If it is desired to use a test value of spaces or per~pos, the words 
SPACE, PERIOD, SPACES, or PERIODS should be used instead of the actual 
digits. In these cases, only one test value is acceptable. In all other 
cases, tests against many test values may be made in one operation. 

TRANSFER 

Option 1 (h)[)TRANSFER[)fl[)TQ~f2~· 

Option 2 (h)[)TRANSFER[)sub-item-name~IN[)fl[)TQL)f2~· 

98 



Option 3 

Option 4 

(h)~TRANSFER~fI~TQ~sub-item-name~IN~f2~· 

(h)~TRANSFER~sub-item-name~IN~f16TQ~sub-item-name~IN~f2~. 

SPECIAL NOTES 

1. Item or sub-item sizes in fi and f2 must be equal in size. 

WRITE-ITEM 

99 





.. Appendix B 

Data Design Pre-Printed Forms 

101 



ANALYST: _________ _ 

DATE: ___________________ __ 

N A M 

F I L 
~ fl ~. 

L A B 

L 0 C -
0 0 0 

M U L 
0 0 0 

B L K 
0 0 0 

B L K 
0 0 0 

E N 0 
: 

: 

E N D 

L 0 C -
O· 0 0 

L Q c 
0 0 0 

51.1499 
102· 

E fJ. 

E fl 

~ fl 

E L 

6 0 -
0 0 

T I 
0 0 

Il C 
0 0 

fl C 
Q 0 

Il R 

II F 

fl I 
0 0 

fl I 
0 0 

0 F fl F I L -
0 E S I G N 
l!l l!l l!l II l!l l!l 

l!l 'l!l l!l l!l l!l l!l 

F l!l L A B E 
0 0 0 0 

l!l R E E L l!l 

0 0 0 0 0 0 

T ~ I N '0 fl 

0 0 0 0 0 0' 

T II L 0 C fl -
0 0 0 0 

E E L I1 S E 

I! L E II S E 

N ~ F I R S 
0 0 0 0 

N II L A S T 
0 0 0 0 

PAGE: __ 

E 
English name of file. 

~ 

l!l 

l!l 

1.) Label with reel counter. 
2.) If label variable· all ~' s. 

L 
Word location of label in label block. 

II 

1 = Yes; 0 = No. 
'--

II 

1 = Block count desired; 0 = No block count. 

fl 

Word location of block count in last item 
of sentinel block. [000 to (item size-I)] 

N 
End of reel sentinel. If single reel, al16's. 

N 
End of file sentinel. 

T 
Word location of sentinel in first invalid 
item. [000 to (item size-I)] 

fl 
Word location of sentinel in last item of 
sentinel block. [000 to (item size-I)] 

Other entries may be added here, each con-
o sisting of a title word and an information 

word; e. g. t 
PARf~~~ 

122ZZl.1ZlZlY.. 

U\'1TYPIsr 
NJIE: After the last entry skip to the 

, n~xt page. 

FLOW-MAliC DAlA DESIGN FORM 1 

R .Aayl&.ua. B....l. ~ 
DIVISION 0' SPIIIY .AND COI'OIATION 



ANALYST: PAGE: __ 

DATE: __________________ --__ __ 

I T E M Il 0 E S I G N 11 

11 11 11 11 11 11 11 11 11 11 11 11 

I T E M t:a S I Z E 11 t:a 11 

0 0 0 0 0 0 0 0 0 1,2,3,4,5,6,10,12,15,20,30,60. 

N 0 11 Q F tl K E y S t:a t:a -
0 0 0 0 0 0 0 0 0 0 0 0,1,2, .... ,9 = number of keys 

K E -y 11 1 t:a t:a t:a 11 t:a 11 11 

Name of field, if no key ~ 

Further key entries may be added here, 
each consisting of KFY~n6~ fol-
lowed by the name of the field. 

If there are Sub-items to be described, 
the descriptions are entered following 
the last Key entry. Sub-items are des-
cribed with two-word packets consisting 
of the name of the Sub-item followed by 
a word in the format OOOSSSOOOEEE., 
where SSS is the first word and EEE is 
the last word of the Sub-item, relative 
to the entire item. 

l~I1YPIsr 

NJfE: After the last entry skip to the 
next page. 

" 

FLOW-MATIC DATA DESIGN FORM 2 

~1oaR..tL~ 
DIVISION Of SPERRV RAND CORPORATION 

51.1500 103 



ANALYST: __________________ __ 

DATE: ------________________ _ 

F I E 
-A A fj 

0 0 0 

0 a 0 

0 a a 

0 a a 

a 0 0 

0 0 0 

a 0 0 

0 0 0 

a 0 a. 

a 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

S1-.1501 

1011 

L 0 
A A 

a 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

~ 0 E S I G 
A A A A 6 A 

0 a 0 0 0 

0 a 0 a 0 

0 a 0 a 0 

a a a 0 0 

0 0 0 a 0 

0 0 0 0 0 

0 0 0 0 0 

PAGE: __ 

N 
A 

Name of field. 

0 Word location in item. [000 to (item size-I)} 

0 Field descriptor of form OOOOOTPPSLNO* 

Extractor; if full-word field, all 0' s. 

An unlimited number of fields may be 
0 described using the same four-word packet 

format. 
a 

* Explanation of field descriptor: 

T = Type of field. 
1 - alphabetic 
2 - alpha-numeric 

0 3 - numeric 

PP = Position of decimal point in rela-
0 tion to a reference point immediate-

ly to the left of the left-most 
digit of the field. 
00 - coincident with reference point 
ii - not applicable 
nL - n positions to the left of the 

0 reference point 
nR- n positions to the. right of the 

0 reference point 
(n ; 1,2, ... ,9,A,B, ... ,Z) 

S = Digit position of the sign. 
I,2, •.. ,9,A,B, or C 
i-not applicable 

0 L = Digit position of the left-most digit 
of the field, excluding sign. 

0 I,~, ... ,9,A,B, or C 

N = Number of digits in the field, excluding sign. 
1,2, ... ,9,A,B, or C 
(A = 10, B = 11, C = 12) 

0 NOIE: Place the sentinel. ENDi1FILEi1DES 

0 
immediately following the last four-
word packet and in word 059 of that 
block. 

0 
FLOW-MAliC DAlA DESIGN FO RM 3 

0 
~Rsnd~ 

DIVISION OF SP£ RRY RAND CORPORATION 



Appendix C 

Relative Machine Coding, X-I 

105 



X-I sections of a FLOW-MATIC program are hano-tailored sections of coding. 
Actual machine instructions are used, but a system of relative and symbolic 
addressing is used in place of actual machine locations. These X-I addresses 
are always a combination of an alphabetic character together. with three nu­
meric digi ts. 

106 

Use 

To address a field within an 
input or output item, or the 
item itself. The alphabetic 
is the assigned file letter 
of the field or item; the nu­
meric is the word location 
within the item. 

To address a field or unit in 
W-storage. The alphabetic is 
always W; the numeric is the 
word location within W-storage. 

To address a line of coding 
within this particular section. 
The alphabetic, M, indicates 
that this relative address is 
to be modified by the addition 
of the starting line assigned 
by the compiler. 

To address a line of coding in 
another X-I section. The oper­
ation number of the section 
referred to is also required, 
and must follow the J notation 
in the next line of coding as: 

UOJ011 
ooooOOQP.021 

meaning "jump to line MOll of 
X- 1 ope rat ion 21." 

To address a temporary storage 
location, that is,a location 
whose contents are not to be 
preserved for future operations. 

Alphabetic 

A 
B 
C 
D 
E 
F 
G 
H 
I 

W 

J 

T 

Numeric 

000 through item 
size minus one. 

000 th rough max­
imum assigned by 
prog rammer in 
Di rectory. 

000 th rough max­
imum useO by coder 
in this section. 

000 through number 
of last line of 
coding in X-I. sec­
tion referred to. 

000 th rough max­
imum assigned by 
coder. 



The X-I sections are written in blockette rather than block form, starting 
each new section at the beginning of a blockette and continuing for as many 
blockettes as required. They may be typed in any order of operation numbers. 
The format of an X-I section is as follows: 

Header - One word containing the FLOW-MATIe operation number for which the 
coding is wri tten, as "X-I~{jfjf.j:.,fj012." This header is not counted as an N 
address. 

Body of coding - The cooing is \'v°ri tten starting with line number Hooo and 
utilizing the appropriate address symbols given above. The extra lines 
("ooooOOQP.021") used with the J notation are not counted as M addresses. 

Cons tan ts - Following the ti tIe "CQNSTANTSl\fj{j", numeric or alphabetic quan ti­
ties are listed which are not to be modified by the compilation process. 
The title is not counted as an M address; but the actual constants are as­
signee M addresses in sequence with other lines of the section. These con­
stants are stripped out by the compiler and includeo with other constants 
from the remainoer of the·program, and all duplicates are eliminated. Since 
in the final compiled program, constants are not listed in their original 
order, addressing a series of constants by incrementing an instruction is not 
permissible. If it is desired to use such a technique, and if the constants 
are numeric in the third and ninth digits, they may be included preceding the 
title as a part of the main body of coding. Any counters incremented during 
execution of the program must also be included in the main body of the coding, 
not in the Constants Section. 

Code Constants - Under the ti tIe word "CQDE"fjCQNSTANTSfJ" are listed those 
constants containing address symbols in the third and ninth digits whi~h are 
to be converted by the Compiler. The general rules stated in the preceding 
section apply to this group also. All X-I symbols may be used except the 
"J" and the "M"; whe·re it is required to use these symbols, the words contain­
ing them must be carried in the body of the coding. 

A maximum of 59 constants and code constants together may be written in any 
single X-I section. 

End Sentinel - the word "END{jSUBRQUTN" is written following the last line of 
the section and in word 09 of the blockette (not necessarily in 59 of the 
block). A subsequent X-I section begins (with the header) in word 00 of the 

next blockette, and any partial blocks are simply zero filled. 

107 



Since the constants and code constants are removed by the compiler, and 
placed in a constant pool for the entire program, the exit from an X-I section 
is normally through the la°st line of coding to the next FLOW-MATIC operation. 
If it is desired that this exit be other than the last line of coding, the 
programmer uses the J notation to address line 000 of the next operation. 

A non-functional section of X-l coding, which illustrates all of the above 
comments, is shown in Figure ijij on page 109. 

Normal Printouts 

During compilation: None 

Error Printouts 

During compilation (Selector Phase) 

108 

Prin tou t 

CANNQT6FIND6 
X-I666666hhh 
SUBRQUTN6QN6 
INPUT6TAPE66 

BAD6ADDRESS6 
X-I666~!J.!J.hhh 
o OHMMHOOOO 00 
CCCCCCCCCCCC 

WRQNG6REL6AD 
X-11111661111hhh 
OOMNMMOOOOOO 
CCCCCCCCCCCC 

CANNQT!J.USE!J.6 
X-I!J.66!J.!J.lJhhh 
OOHMHHOOOOOO 
CCCCCCCCCCCC 

ioJxxxioJyyy 

HALF!J. "QRD6116 
ADDRESS!J.IN66 
X-166/J./J./J.b.hhh 
OOMMMMOOOOOO 
CCCCCCOOOOOO 

Meaning 

Operation hhh in FLOW-MATIC code 
calls for an X-I section, but no 
section wi th this number appears 
on the input tape. 

Line HMMM of X-I section hhh con­
tains an alphabetic other than 
A-I, J, M, T, W, as shown in 
CCCCCCCCCCCC. 

Line MMMM of X-I section hhh con­
tains an M reference greater than 
the M address of the last line of 
the section. 

Line M}~~1 of X-I section hhh is 
a code constant and contains a 
reference to a non-permissible 
M address. 

The printout shows a line of cod­
ing which has at least one J ad­
dress, but no line with op nos. 
follows it (where i equals any in­
struction. ) 

Line MNMM of X-I section hhh con­
tains an invalid file letter as 
shown in instruction CCCCCC. 

Action 

Type in correct 
header as 

X-ll1tJtJl1l1l1hhh 

Type in corrected 
line of coding 

CCCCCCCCCCCC 

Type in corrected 
line of coding, 

CCCCCCCCCCCC 

Type in corrected 
1 ine of coding, 

CCCCCCCCCCCC 

Type in op no. or 
op nos. as 

QP.hhh 
in proper half-
woro( s) . 

Type in correciion 
CCCCCCOOOOOO. 



SAMPLE X-I SECTION 

Block Address Symbolic Address 

00 X.l~~~~~~Ol2 f Header 

01 BOAOOILOMOO8 MOOO 

02 ---- QOM006 MOOl 

03 A.M009COAOOl MOO2 

04 BOMOOOA·MOI0 M003 

05 LOMOIIQOM006 Body of Cod in 9 M004 

06 HOMOOOUOJOOO M005 

07 - QP.013 

08 BOM012COMOOO M006 

09 - UOMOOO M007 

10 CQN~TANTS~~~ f Tit1e 

·11 000000000001 

I 
M008 

12 000006000006 Constants M009 

13 000001000000 MOI0 

14 CQDE~CQNSTS~ t Title 

15 BOAOI0LOM008 ~ MOll 
Code Constants 

16 BOAOOOLOM008 M012 

17 END~SUBRQUTN 

18 - -
19 END~SUBROUTN 

FIGURE 44 

109 





Appendix D 

Flow-Matic Operating Instructions 

I I I 



FLOW-MATIC COMPILATION 

The following information about the operation of a FLOW-MATIe compilation 
indicates the print-outs and action to be taken for a normal (i.e., error­
free) compilation. 

PART I. OPERATING INSTRUCTIONS FOR COMPILATION 

Servo Allocation: 

1 FLOW .. MATIe Compiler (ring) 
2 FLOW -MATIe Li b rary ( ring) 

Blanks 
FLOW-MATIe Code 

9 Blank (Rerun) 

(ring) 

Initial Instructions: 

a. Nount tapes as indicatea above. 
b. Supervisory Control Printer on normal. 
c. No block sUbdivision.* 
d. Ini tial read servo 1 (compiler) and hi t start bar. 

Breakpoints: 

1 Force no transfer to omi t use of servo 9 for Rerun. 
S Release after Block Subdividing servo 5. 

* It is necessary to BSD servo 5 in order to allow the Edited Record to be 
printed. To achieve this, set breakpoint 5 at start of compilation and 
follow instructions in NORMAL PRINTOpTS. 

I 12 



PART I I. NORMAL PRINT -OUTS DURING COMP I LA TION 

Print-Out 

FILE OOfOOOO00000 SERVOS daadaaaaaaaa bbbbbbbbbobb 
FILE OOfOOOOOOOOO SERVOS aaadaddaadaa bbbbbbbbbbbb 

END TRANS 
END SELECTOR 
END ALLOCTR 
COMPI LED PROGRA~1 STARTS BLOCKS 
INITIAL BLOCK 0000 01 
READS FOR SEGMENT 001 09-1-0 01 
RERUN 09+0 01 

0760 02 
CODING FOR SEGMENT 001 00('0 nn 
CODING FOR SEGMENT 002 CCCC mm 

DODD 01 (see Cyel ing) 

PROGRAM ON SERVO 4 XXX BLOCKS 
END PROC I. 
8.S.D. SERVO 5 

TYPE IN PG. HEADER INFO 

EDITED RECORD ON SERVO 5 YYY BLOCKS 

CYCLING 

Ac t ion 

None 

None 
None 
None 
None 

None 
Block subdivide 
servo 5, re lease 
breakpoint ~5 
and hit start bar 

Type in three (3) 
words of run iden­
tification e.g\, 
name of run, pro­
grammer, date 

Exp lana t ion 

dadddddddddd = servo nU~Oer for initial reel 
bbbbbbbbbbbb = servo number for alternate reel 
f = input or output file letter 

nn = number of blocks in 1st segment 
mm ~ nU~Der of blocks in 2ne segment, minus 
ecce = location of 1st block in 2nd segment 
DODO = location of last clock in 2nd segment 

xxx = total nu~ber of blocks in cOMpiled tape 

None YYY = number of blocks in EDITED RECORD 

Note that the last block of the second, third, .... , segments may have a 
special address, out of sequence with the other blocks in the segment. This 
occurs when the last block of a segment is a partial block. The compiler 
automatically arranges to repeat as much of the coding of the preceding 
block as necessary; then it compiles the partial block of coding, and arranges 
the read instructions for the tape so that this last block will overlay the 
repeated coding. This technique is employed to allow the maximum amount of 
memory space for each subsequent segment. 

113 



PART III. PRINTING THE EDITED RECORD 

The printer plugboard should be a non-split, 1:1 board. 

The paper loop should be a standard, 132 row loop with the following punches: 

Row 

1 

2 

67 
68 

Channel 

7 
1 

7 
1 

Set the printer for normal, single space operation. 

t III 



Index 

Charts 

Process 
Genera I, 15 

Block 
General,IS-20 
Examples, figs. 16, 17,29, 35 

Flow-Matic 
General, 21-22, 26-29 
Examples, figs. IS, 2i, 22, 30, 36 

Coding, Relative Machine 

General, Chapter 6, App. C 

Examples, figs. 39, ijij 
position on input tape, fig. ijO 

Compjler 

General, 83-90, figs. 20, Itl 

Operating instructions, App. D 

Data Design 

General, 23, Chap. ij 

File Design 
General, 38-40 
Examples, figs. 26a, 26d, 26g, 26j, 32a 

Item Design 
Gene ra 1, 16-18, ij l-ij2 
Examples, figs. 25, 26b, 26e, 26h 

Field Design 
Gene ra I, 4-3-ij5 
Examples, figs. 26c, 26f, 26i. 261 

Forms, Pre-printed, App. B 

Directory, 68 

Examples, 68, 70 

Position on input tape, figs. 33, ijO 

Edited Record Listing 

Genera 1, 88 

Example, fig. 4-3 

Error Printouts during compilation, 108 

Flow-Matic Functional Statements, Chap. 3 

General Description, 92 

Coding format, 95-99 

Guide for writing, 30-33, 93 

Examples, 19, 23, 31, 37 

Format for Flow-Matic Code 

Gene ra I, 93-94-

Legend. 94-

Functions. description of, 92 

Layout, input tape, 33, 4-0, 42 

Operdting Instructions, see Compi ler 

Progrdm tape layout, fig. 4-2 
see Edited Record Listing 

Working Storage (W-Storage), Chap. 5 

Examples, 68, 70, 71 

Position on input tape, figs. 33, ijO 

115 



Univac II Systems . For data-automation which involves large 
volumes of input and output. 

THE UNIV AC@ FAMILY 

Uni v ac Fi Ie - Computer . For ins tantaneous 
random access to large - ~cale internal 
storage--plus computation. 

Uni vac 60 & 120 Computers · For speeding 
and simplifying the procedures . of punched­

·card 'lystem~. 

·OF ELECTRONIC COMPUTERS 

Univac Scientific Systems • For complex and intricate computations of engineering and resftarch. 




