

i

,
..

Univac@

LARC
COMPUTING

UNIT

INSTRUCTION SEQUENCE
CONTROL

PART 1

~Rnnd~~
DIVISION OF SPERRY RAND CORPORATION

UNIVAC ENGINEERING CENTER· PHILADElPHIA

AUGUST 1961

RESTRICTED DISTRIBUTION

Univac®

LARC
COMPUTING

UNIT

INSTRUCTION SEQUENCE
CONTROL

PART 1

~Rnnd~$
DIVISION OF SPERRY RAND CORPORATION

UNIVAC ENGINEERING CENTER· PHILADELPHIA

CONTENTS

Heading Title Page

SECTION 1. INTRODUCTION

1-1. Basic Concept of Instruction Control in the
Computing Unit. • • • • • • • • • • 1-1

1-2. Scope of This Book • • • • • • • • • • • • • 1-2

SECTION 2. CONTROL OF THE BASIC INSTRUCTION CYCLE

2-1.
2-2.
2-3.
2 .. 4.
2-5.

. 2-6.
2-7.
2-8.
2-9.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10.
3-11.
3-12.
3-13.

4-1.
4-2.

Basic Instruction Cycle . . .
Instruction Call •••• • • • • • • •
B-Modification • • • • • • • • • • • •
Operand Select
Execution • • •

.
Store Result ••••••••••

Normal Continuous Operation
Initial Instruction Request ••••••
Overlapped Instruction Sequencing

SECTION 3. INSTRUCTION SEQUENCE CONTROL

Fast Register Chain Control ••••••••
Fast Repister Input Chain Control •
Fast Hegister Result Chain Control ••

Operand Memory Reference Control • •
Program Counter Control •• • • • •
Special Instruction Sequence Control Cases •

Memory Busy on Operand Call • •
Memory Busy on Instruction Call
Long Instructions • • • • • • • • • • •
Double-Precision Instructions •
Fast Register Access Conflicts • •

Operand Reference (A Register) ••
Address Modification (B Register)

SECTION 4. SUMMARY OF ENDING PULSE FUNCTIONS

Instruction Ending Pulse • • • • • • • • • •
Ending Pulse Functions for Normal Continuous

Operation •••••• • • • • • • • • • •

2-1
2-2
2-4
2-4
2-7
2-7
2-7

2-11
2-11

3-1
3-2
3-9

3-11
3-16
3-18
3-18
3-20
3-22
3-25
3-27
3-30
3-31

4-1

4-2

iii

iv

Heading

4-3.
4-4.
4-5.
4-6.

4-7.
4-8.

5-1.
5-2.
5-3.
5-4.

Title

Ending Pulse CHJQ-2 • • • • • • • •
Ending Pulse CHJQ-3 ~ • • • • • • •
Ending Pulse CHJQ-l • • • • • • • • • •

Ending Pulse Functions for Noncontinuous
Operation • • • • • • • • • • • • • • • •

Ending Pulse Functions for No-Overlap Mode •
. Ending Pulse Storage Flip-Flop • • • • • • •

SECTION 5. INTRODUCTION TO STATUS CONTROL

Status Control • • • • • • • • •
Status-l Flip-Flop • • • • •• •
Status-2 Flip-Flop • • .'. • • •
Status-3 and Status-4 Flip-Flops

· · . . · . ·
SECTION 6. CLASSIFICATION OF INSTRUCTIONS

ACCORDING TO CONTROL FEATURES

Page

4-2
4-2
4-3

4-4
4-4
4-5

5-1
5-2
5-3
5-3

SECTION 7. NONCONTINUOUS AND NO-OVERLAP OPERATIONS

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.

Figure

2-1.
2-2.
2-3.
2-4.

2-5.

3-1.

3-2.

Noncontinuous Operation · • · · • · · · • · Start After General Clear • · • · • · • · • Stop in Continuous Mode • · • · • • · • · • One-Instruction Mode • · • • • • · · • · · • Multivibrate Mode . . · · • · · · · · · • •
No-Overlap Mode . • . · · · · · • · • · • · No-Overlap Continuous Operation • • • •

No-Overlap Interrupted Operation · · ·

ILLUSTRATIONS

Title

Simplified Control Block Diagram • • • • • •
Timing Diagram -Basic Instruction Cycle ••
Timing Diagram - Instruction Overlapping • •
Simplified Logic Diagram - Instruction Re-

quest Cycle ••• • • • • • • • • • • • •
Timing Diagram - Normal Continuous Operation

Simplified Logic
Cycle ••• •

Simplified Logic
Chain Control

Diagram - Normal Instruction
• • • • .• • • • • • • • • e'

Diagram - Fast Register

7-1
7-3
7-4
7-7
7-7
7-8
7-8
7-9

Page

2.;..3
2.;..5
2-8

2-9
2-12

.3-3

3-5

Figure Title Page

3-3. Timing Diagram - Fast Register Input Chain
Control • • • • • • • • • • • • • • • • • 3-8

3-4. Timing Diagram - Fast Register Result Chain
Control • • • • • • • • • • • • • • • •• 3-10

3-5. Simplified Logic Diagram - Operand Memory
Reference Control • • • • • • • • • • • • 3-12

3-6. Timing Diagram - Memory Reference Control,
Read • • • • • • • • • • • • • • • • • • 3-14

3-7. Timing Diagram - Memory Reference Control,
Write • • • • • • • • • • • • • • • • •• 3-15

3-8. Simplified Logic Diagram - Program-Counter

3-9.

3-10.

3-11.
3-12.

3-13.
3-14.

3-15.

5-1.

5-2.

1-1.

1-2.
1-3.
1-4.

Table

Control Circuits ••••••••••
Timing Diagram - Memory Busy on Operand

Call • • • • • • • • • • • • • • • • • •
Timing Diagram - Memory Busy on Instruction

Call • • • • • • • • • • • • • • • • • •
Timing Diagram - Long Instruction • • • • •
Timing Diagram - Double-Precision

Instruction • • • • • • • • • • • • • • •
Timing Diagram - Fast Register References •
Timing Diagram - B-Register Conflict at

t3 . • . . • • .
Timing Diagram - B-Register Conflict at

t7 . . •

Simplified Logic Diagram - Status Control
Flip-Flops ••• • • • • • • • • • • • •

Timing Diagram - Status Control • • • • • •

Simplified Logic Diagram - Noncontinuous
Operation Controls •••••••••••

Timing Diagram - Stop in Continuous Mode •
Timing Diagram - Restart After Stop • • • •
Timing Diagram - No-Overlap Mode • • • • •

TABLES

Title

6-1. Classification of Instructions

3-11

3-19

3-21
3-23

3-26
3-29

3-32

3-34

5-2
5-4

1-2
1-5
1-6

1-11

Page

6-3

v

SECTION 1

INTRODUCTION

1·1. BASIC CONCEPT OF INSTRUCTION CONTROL IN THE COMPUTING UNIT

The control unit is the coordination center for the computing unit.
The principal function of the. control unit is to control the acquisition
and sequencing of several instructions in parallel. Parallel operation is
achieved through the technique of overlapped instruction execution wherein
several instructions are in various distinct phases of execution at anyone
time. The maj or logic elements wi thin the instruction control circuits are
used on a time-shared bases which imposes rigid timing considerations in
the performance of control uni t functions. These maj or logic elements in­
clude two instruction registers, two control counters, two memory address­
decoders, two fast register selector registers, a fast register decoder, a
program counter, an instruction decoding-encoding network, and several con­
trol flip-flops.

The term "instruction cycle" denotes the series of functions performed
by the control unit to address, obtain, and decode instructions from the
memory; to acquire operands from core memory and fast r~gisters; to perform
arithmetic and logical operations on the operands; and to return the re-
suI ts to storage. Performance of the complete series constitutes a "normal"
instruction cycle and is executed automatically in the control unit for
several instructions in a program sequence at the same time. The control
unit will alter the cycle in accordance with the execution of certain in­
structions such as control transfers. Whenever a transfer of control takes
place, the overlapped instruction sequencing is temporarily interrupted but
is continued upon completion of transfer.

Instruction overlapping can result in. various conflicts from time to
time that cause delays in the sequencing. For example, an addressed memory
unit may be already engaged with a previous operation, or the result of one
instruction may not be available in time if it is required for use in the
~ 0Ep~i n~ t pSJ;t"H.9 t;fp.n,!:,COi{l,tli~C~,s; }l4;~* a~; \~l;l~ ~~'1:! ~~~~Pl,~;r~, r~sp:~iVe(t;~ u t 0-

1Il?,tl'Cf;,; lrJ.~, ... the; ,~,o nfJ:Rb !:lP~ t.;:7 Aa IJ.ll:f qr~9lI!PJ!~ ca:"1~,d ,~;pg;l",K,llecall{l ~ jqt;:F,~~':;;
need to Introduce delays or repeat certain operations.' ,,;,:f,;: L:.

Because instruction control operations utilize the principle of over­
lapped instruction execution, the emphasis throughout this book is on
timing.

1-2. SCOPE OF THIS BOOK

Instruction sequence control is divided into two parts of which this
book constitutes part I. A more or less general approach to the subject is
taken in part I in which the overall aspects of instruction sequencing are
described for the variety of conditions under which the control unit must
operate. Part II is a continuation of part I and deals comprehensively
with special instruction sequencing features related to store and control
transfer instructions and other control operations.

The primary purpose of this book is to provide detailed information on
the timing of instruction sequence control operations in the control unit.
A familiarity with the essential features of the computing unit is assumed.
The following three books provide additional related material on the con­
trol unit:

(1) Computing Unit--General Description

(2) Computing Unit--Control Logic

(3) Computing Unit--Instruction and Function - Signal Analysis

This book is organized to take the reader progressively through the
timing of operations in the control unit from the basic instruction cycle
to the condition of full overlapped sequencing. The various control fea­
tures associated with the logic. the timing, and the handling of special
cases in the control unit are described separately throughout the book as
outlined below.

Section 2 describes the basic instruction cycle for a single instruc­
tion and then explains the overlap technique for executing a series of in­
structions during normal continuous operation.

Section 3 deals comprehensively with most conditions of instruction
sequencing in which different aspects of control and timing are covered for
the majority of instructions in the computing unit repertory.

Section 4 summarizes the ending pulse functions for all types of oper­
ation.

Section 5 presents an introductory discussion of instruction status
control which is covered more fully in part II.

Section 6 classifies all the instructions in the computing unit reper­
tory according to the control features described in sections 2 and 3. The
principal inclusion in this section is a table which affords quick refer­
ence to general control features associated with any particular instruction.

Section 7 describes the logic and timing associated with starting and
stopping the computing unit and with the noncontinuous and no-overlap modes
of operations.

1-2

SECTION 2

CONTROL OF THE BASIC INSTRUCTION CYCLE

2.1. BASIC INSTRUCTION CYCLE

The instruction cycle of the computing unit consists of five basic
operations of the control unit which are carried out by the instruction con­
trol logic. The names of the basic operations performed in all instruction
cycles are:

(1) Instruction Call -- addressing the memory and receiving the next
instruction in a program sequence in the instruction st0rage reg­
ister (IRl).

(2) B-Modification -- performing index operation for current instruc­
tion; that is, adding the contents of the designated B register
to the M address contained in the instruction. to obtain the next
(operand) storage reference address.

(3) Operand Select -- addressing the memory to select the M operand
for the current instruction. Also addressing the fast registers
to obtain the A operand and supply instruction information and
operands to the arithmetic unit (AU). The latter operations are
conditional on the former; that is, the fast register reference
and the initiation of operations in the AU depend on the success­
ful call to the memory (memory-not-busy signal received) for the
M operand. If no operand memory reference is required for the
current instruction, the effect of a successful memory call is
simulated.

(4) Execution -- depending on the instruction, the execution phase is
handled by the control unit or the AU. The unit not in use just
marks time.

(5) Store Result store the result. for the current instruction.

The speed with which these basic operations are carried out for any
one instruction is limited by the time required to address and read out of
the memory and regenerate the information. Thus the 4-microsecond read­
regenerate cycle of the main memory defines the minimum time needed to per­
form any of the bas.ic operations. This basic 4-microsecond period, usually

2-1

considered as extending from time to through t7, is used as the principal
time division in the timing diagrams in this manual and is hereinafter
referred to simply as the cycle.

Each of the basic operations, except execution, normally takes one
cycle to complete. The execution phase of an instruction takes one or more
cycles to complete depending on the type of instruction. The total time
required to process a single instruction, then, is at least 20 microseconds.
However, the normal sequence of operations performed by the control unit is
overlapped in time-so that the five basic operations may be carried out for
five different instructions during anyone cycle. In this way a sequence
of instructions which takes no more than one cycle of execution time in the
AU can be performed at the rate of one instruction every 4 microseconds.

In order to explain the timing considerations involved in the overall
operation of the control unit, a single instruction will be traced through
all of the steps required to complete its execution. For this discussion,
assume that the instruction is one of the common single-precision memory
reference types; for example an add instruction which requires the minimum
execution time of 4 microseconds. A simplified block diagram of the con­
trol unit showing only the most basic timing and function control signals
is given in figure 2-1. A timing chart covering five cycles corresponding
to the five basic operations of the instruction cycle is presented in fig­
ure 2-2. The chart also lists all the normal steps that are followed to
complete the execution of an instruction.

2-2. INSTRUCTION CALL

To call the next instruction from memory, its address must first be
established: the contents of control counter 1 (Cl) are sent to the B-adder
as one input, and depending on the sequencing situation, a 0 or +1 as the
other input. The two are added together to form the new address. For dis­
cussion, assume that Cl already contains the address of the new instruction
so that the constant to be added to Cl is a O.

The contents of Cl enter input 1 of the B-adder at time to with func­
tion control signal 401 (FS401). The 0 enters input 2 with FS411 also at
to. The two values, Cl + 0, are added in the B-adder during tl and the sum
(next address) is read out to the memory address decoder (MAD) with FS363
at t2. The MAD partially decodes the new address and sends the information
over the address lines to the memory at t3.

If the memory unit that is addressed by the current instruction call
is not busy, a memory-not-busy control signal (MNB) will be generated in
the memory unit and returned to the control unit at t4. If the MNB signal
is not received at t4, delays will arise in the control unit and the in­
struction call will have to be repeated. Assuming no delays, the instruc­
tion will be read out from the memory during the 4-microsecond basic memory
cycle and appear on the read bus from the memory during t2 of the next
cycle.

At t2 of the second cycle, the instruction word is transferred to IRI
with FS320 j and at t3 the word is stored in flip-flops in IRI. The divi­
sions of IRI (It A, B, and M) shown in figure 2-1 accept the various parts
of the instruction word. While the instruction is being transferred into

2-2

EGiJAlI TY -INEQUI>.UTY
SlGNI>.LS

TO
MEMORY

FI'6T (A-B)
REGISTERS

L!:.t !lol -"t.::.3,~t,-,5:....... ______ ~ (00-99)

MNB
t4- (INSTRUCTION)

tl (OPERAND)

INSTRUCTION
CONTROL
CIRCUITS

FUNCTION
CONTROL
SIGN"LS

434
tG

IRI

312-
t5

FAST
REGISTER
SELECTOR
REGISTE~

4:£)

to

312-
tS

432
102

Figure 2-1.

43,
to

320
t1 FroM
432 MEMORY
t~ (6-DlGITS)

410
t5

o
411

to, t2, t4-

403
t2, t4

B
ADDER

+1
(UNIT ADD)

Simplified Control Block Diagram

345
t'2

RESULT
REGISTER

ARITHMETIC
UNIT

CONTROL

•
300
t5

ADDRESS LINES
TO MEMORY
to (INSTRUCTIOI\I)
to (OPERI>.ND)

5442

IRI, the B part of the instruction word is transferred directly into the
fast register selector register with FS432 and FS320 to start the B­
modification (B-mod) portion of the instruction cycle.

2-3. B-MODIFICATION

The B register selected by the two B digits of the instruction word
contains the information that will be used to index the current instruction.
The designated B register is selected during t3 and t4 and the five least
significant digits of the contents are sent with FS410 to input 2 of the
B-adder at t5. The information in the B register is regenerated (FS425)
and also sent to the A-input pulseformers of the AU for odd-even check
(FS380, 422).

Input I to the B-adder is supplied by the M part of IRI which is sent
to the B-adder with FS400 at t5. The two inputs are added together during
t6 and the sum is read out with FS363 to the MAD at t7. This new address
is the modified M address which is sent across the address lines to the
memory at to of the third cycle to select the M operand. The M address can
specify a fast register in which case a memory call is not needed (refer­
ence heading 3-2).

During the B-mod operation, the I and A parts of IRI are transferred
to IR2 with FS312 at t5. At t7 the modified M address from the B-adder is
also transferred to the M part of IR2 with FS311. IR2 now holds the I and
A digits of the original instruction word and the modified M digits of the
operand address. IR2 does not store the B digits of the instruction.

2-4. OPERAND SELECT

The decoding of the I digits is static during the time the instruction
is in IR2. As shown in figure 2-2, this time extends from t6 of the second
cycle through t5 of the third cycle. During this interval all necessary
control signals peculiar to the instruction are generated so that specific
functions may be carried out in the control unit. As mentioned under head­
ing 2-3, the call to the memory for the M operand is made at to of the
third cycle. If the memory unit is not busy, an MNB signal will be re­
turned to the control unit at tl to indicate that the selected M operand
will be available on the read bus at the next t7. The control information
for the AU is then transferred from a separate function encoding network at
t5 wi th FS300.

The A operand is selected by sending the A digits of IR2 to input I of
the B-adder at t2 with FS403. Input 2 to the B-adder at this time is a 0
(FS411) so that the sum, A + 0, is read out to the fast register selector
register at t4 with FS431. The reason for this apparently devious path in
transferring the A part of IR2 to the fast register selector register is
that in some instructions the A digits require a modification to their ori­
ginal value.

The designated A register is selected during t5 and t6 and the con­
tents are transferred into the A-input pulseformers of the arithmetic unit
at t7 with FS380 and also regenerated with FS425. The M operand arrives
simultaneously from the memory read bus and enters the M-input register of

2-4

FUNCTION TIME (t)

C~ + 0 - B-ADDER

B""ADDER--- MAD AND C1

ADDRE3S LlNE.3

MN8 (IN5TRUCTION)

READ BUS FROM MEMORY

IR1

FAST REGISTER SELECTOR

FR-B-ADDER, INPUT 2-

M OF IR~-B-ADDER, INPUT,1

1 A.ND A. OF" IRJ ---IR2

I AND A IN IR 2

B-ADOER -­
MAD AND M OF lR2

M IN IRZ

ADDRE5S liNES

MNB (OPERAND)

CONTROL INFORMATION -- AU

I NFORMATION IN AU

A OF lR2+0- 8-ADDER

B-ADDER - FR SELECTOR

FAST REGiSTER
-A-INPUT PFR 5

READ LINES FROM MEMORY

EXECUTION IN AU

AU RESULT REGISTER

B-ADDER-5EL. STOR.

SELECTOR STORAGE

SELECTOR STORAGE
- FR SE.LECTOR

0LD INFORMATION REtlD OUT

RESULT TO
RE:GENERATIOl-\ PFR s

RESULT STORED IN rR

01 1 1213 41 5 16 17 011 12L 3 41 5 16 17

~
D

L
0

0
I

em
0
D
0

I

C

4,. SEC
I

CALL B-MOD

011 1213 41 5 16 17 01 11213 41 5 16 17 011 1213 41 5 16 17

I

~ AA

I

P
0

D
I I

0 D
D

L
L

I

0
L I

0
0
D C;--------

OPERAND SELECT EXECUTE RESULT
5443

Figure 2-2. Timing Diagram - Basic
Instruction Cycle

2-5

the AU with FS370. At the following to (fourth cycle), the beginning of
the instruction execution time (in this case 4 microseconds) in the AU is
started.

2-5. EXECUTION

The execution of the instruction in the AU is carried out autonomously
once the AU has received operands and instruction information from the con­
trol unit. However, since IR2 is cleared before the execution takes place,
it is necessary to preserve the result address for the instruction during
the execution phase.

To select the correct A register to store the result, the A part of
IR2, along with a 0, are again sent to the 8-adder at t4 of the third cycle.
The sum A + 0 is formed and then transferred to the fast register selector
storage at t6 with FS421. The selector storage holds the result address
for the next 4 microseconds (t7 through t6 of the fourth cycle) while the
instruction is being executed in the AU. At t6 the contents of the selec­
tor storage are transferred to the fast register selector register with
FS434 so as to select the A register (t7, to) to receive the result from
the AU.

2-6. STORE RESULT

The result portion of the instruction cycle takes place during the
fifth cycle. The result of the operation is first stored in the result reg­
ister of the AU from t7 through t3. The old information in the selected A
register is read out at tl while the contents of the result register are
transferred to the fast register regeneration pulseformers with FS426. The
result is then written into the selected A register at t2. This operation
constitutes a clear-write cycle for the fast register which is the same as
the read-regenerate cycle carried out for operand selection except that
FS426 -replaces FS425.

2·7. NORMAL CONTINUOUS OPERATION

The normal instruction sequence control in the computing unit operates
in a continuous mode so that succeeding instructions in a sequence are
overlapped in time throughout the various phases of the instruction cycle.
Figure 2-3 illustrates the overlap principle by showing a series of in­
structions passing through the five stages of the instruction cycle. The
instructions are staggered by a period of 4 microseconds. When instruction
n + 4 is being called from the memory, the previous instruction n + 3 is
having its M address modified, the operands for n + 2 are being selected,
the arithmetic unit is executing n + 1, and the result of n is being stored.
In the next cycle t n + 5 is called from memory, n + 4 is having its M ad­
dress modified and so on.

As mentioned under heading 2-1, the overlapping technique results in
a considerable saving in the effective instruction execution time. However,
because of overlap, various conflicts in the timing of operations within
the control unit can arise which will from time to time result in some

2-7

r.."
I

CO

INSTRUCTION

n

n+I

n+2

n+3

n+4

n-t-5

01 I 121*1*17

CALL

-4p.SEC-

TIME

01 I 12131 415161 7 01tlZl*15\617 0ltl21314151617 01 tj21314151617 01112131415161 7 elt 121314151617 0ltl 2 J3J 415j6j7 01tj2J314151617 011121314151617

B-MOD OP.SELECT EXECUTE RESULT

CALL B-MOD OP.SELECT EXECUTE RESULT

CALL B-MOD OP. SELECT EXECUTE RESULT

CALL B-MOD OP. SELECT EXECUTE RESULT

CALL B-MOD OP. SELECT EXECUTE RESULT

CALL B-MOD OP. SELECT EXECUTE RESULT

5444

Figure 2-3. Timing Diagram - Instruction Overlapping

(FROM MEMORY) MNB
CTt

CHTB
(GENERATED IF INSTRUCTION
REQUIRES MEMORY ACCESS)

SIGNf..LS GENERATED IF NO [
MEMORY ACCESS REQUIRED

OR IF OPERAND ADDRESS
IS A FAST REGISTE.R

PFR

Clear 8
lR1

S
CHNB

OPERAND-
MNB
FF

R

CT7

CTt

S

START
FF

R

CT2

CHJP
(ENDING PULSE)

s

R

B-MOD
FF

S
ENDING-
PULSE-
STORAGE

Ff
R e

CT3

~ ... ~ SENDS MODIFIED IR1 (M)
VIA B-ADDER TO IR2 (M)
(FS 311), AND TO ADDRESS
DECODER FOR OPERAND
SELECTION (FS 363)
(NOT SHOWN ON THIS DWG.)

2nd Call After Starting Initiates and Retains Overlap
.~--------------~~------------------~------~

CT2.

CT4
MNB

(FROM MEMORY)

First Call After Starting:
Also Repeats Call if Memory Bvsy .

CTO

s
COM­

PLETING­
CALL
FF

R

@

Unit f!.dd

Clear CONTROL
COUNTER

(C 1)

IR2 I Digits
(I AND A)

INSTRUCTION '-C_H_S_A -.j fUNCTION CHJP, CHT8, etc:
DECODER- ~ ENCODER ENDING PULSES

ETC. ENCODER

LEGEND:
- NORMAL CYCLE
CIRCLED NUMBERS ~RE FUNCTION SIGNALS

NOTE:
A CHJP ENDING PULSE IS PRESENT DURING THE LAST
FOUR MICROSECONDS OF THE TIME THE IN5TRUCTTON IS IN IR2.
THE OPERAND-MNB FF IS SET WHEN OPERANDS ARE ADDRESSED
OR JAMMED SET IF NO OPERANDS ARE REQUIRED.

MEMORY
ADDRESS
DeCODER

B-ADDER

INPUT INPUT
2 1

ADDRESS LINES
TO MEMORY

(INSTRUCTION
/lDDRESS AT
CT3)

5459

Figure 2-4. Simplified Logic
Diagram - Instruction Request

Cycle

2-9

delays. These delays will be discussed .in section 3. The remainder of
this section describes how overlapped instruction sequencing is controlled
starting with the initial instruction request.

2~8. INITIAL INSTRUCTION REQUEST

A simplified logic diagram of the instruction request cycle is shown
in figure 2-4. This figure shows the logic which controls the instruction
request cycle by relating various control signals and flip-flops to the
timing of overlapped instruction cyclesj certain recurrent details are as­
sumed to repeat in each instruction. An accompanying timing diagram for
these operations is given in figure 2-5. Although figure 2-5 shows timing
relationships for continuous operation, it is simplified in that it does
not show all the operational steps of the basic instruction cycle as out­
lined previously in figure 2-2.

This description assumes that the computing unit is stopped and both
instruction registers (IRI and IR2) are empty. Operation is initiated by
pressing the START button on one of the control consoles. The first t7
timing signal then produces an output from the single-pulser circuit to set
the start FF. The output from the start FF is gated with CTI to set the
ending-pulse-storage FF, and with CT3 to set the call FF. The ending-pulse­
storage FF is used to provide for certain control functions that are nor­
mally supplied by an instruction ending pulse during the last- 4
microseconds of the time an instruction is in IR2. Essentially it provides
a substitute ending pulse for the one usually produced by the previous
instruction (reference heading 4-8). The start FF is then reset at t5
since it is no longer relevant to the control cycle.

The output from the call FF is first used to produce function control
signals 401 and 411 at to which send the contents of the control counter
(Cl) and zeros to the B-adder at to. Cl contains the address of the first
instruction (n). The sum Cl + 0 is then gated from the B-adder to the mem­
ory address decoder by FS363 which is generated by gating the call FF out­
put with CT2. Thus the first instruction call is on the memory address
lines at t3. The MNB signal is generated during the next pulse time (t4)
to set the completing-call FF which signifies a successful instruction call.

2-9. OVERLAPPED INSTRUCTION ~EQUENCING

The setting of the completing-call FF initiates the overlapped in­
struction sequencing. The functions performed by the output signal from
the completing-call FF are as follows:

(I) The call FF is reset for n at t6.

(2) Cl is advanced by gating Cl + 1 to the B-adder at to (FS40l. 411.
and unit add), and B-adder to Cl at t2 with FS345. (Also Cl is
cleared at t2 with FS331.)

(3) The status-l FF is set with CTO which signifies that an instruc­
tion is (or will be) in IRI.

2-11

ENDING-PULS~ STORAGE

CALL FF

CHO-B-ADDER

CI + I --B-ADDER

B-ADDER -..M-ADDRESS DECODER

ADDRESS LINES

MNa (iNSTRUC.TION CALL)

COMF>LETING CALL. FF

STATUS'

IRf

a-MOD FF

I AND A OF lR2

M 01="1R2

MNB (OPERAND CALL)*"

OPERAND - MNB FF (CHNB)

ENDING PULSE (CHJP IS-18)

AU CONTROL

~ESULT

.. NOTE:

EPS'
STATUS 1
(432)

MNB SIMULATED IF NO MEMOR.Y REFERENCe. REQUIR.ED
(INCLUDING CASE WHERE M-OPERAND ADDRESS
IS A FAST RE.GISTER)

Figure 2-5. Timing Diagram - Normal Continuous Operation

EPn+I·CHNB·
STATUS I

(432)
\

n+3 EPn+I'
CHNB
(363)

I

n+2

CL

n

7

5445

(4) FS320 is produced with CT2 which gates instruction n from the mem­
ory to IRI.

Performing function (2) produces the address for instruction n + 1
which is gated to the address lines at t2 of the third cycle by FS363. For
this second call, FS363 is generated by gating the outputs of the ending­
pulse-storage FF and the status-l FF. This same line which produces FS363
also generates FS432 which, in turn, resets the ending-pulse-storage FF and
sets the call FF for n + 1. FS432 also sets the B-mod FF to coincide with
the arrival of n in IRI (step 4). As noted on figure 2-4, the output of
the B-mod FF is used to control the B-modification process for operand se­
lection while also controlling the resetting of the status-l FF for n at to
and the clearing of IRI at tl (FS321). It also gates, with CT5, the I and
A digits from IRI to IR2 (FS312), and, with CT7, the modified M digits from
the B-adder to IR2 (FS311).

The setting of the call FF by FS432 again results in setting the
completing-call FF if the MNB signal for n + 1 is received at t4. Thus the
same sequence of events produced by the setting of the completing-call FF
is repeated for n + 1. During the time n + 1 is being called and set up in
IRl, the ending pulse (CHJP 15, 16, 17, or 18) for n is generated. As
noted in figure 2-4, the ending pulse is active during the last 4 micro­
seconds of the time that the instruction is being decoded from IR2; that is,
during the 4-microsecond period (t6-t5) immediately preceding the last 4
microseconds of instruction execution time in the arithmetic unit. Since
we are considering only 4-microsecond instructions at this time, the ending
pulse for n is generated during the same interval as I and A of IR2 (figure
2-5).

If the operand call to the memory resulting from the B-mod operation
is successful, the MNB signal will be present at tl to set the operand­
memory-not-busy FF. (Actually there are two operand-MNB FF's which are set
at this time; reference heading 3-4.) If no operand memory reference is re­
quired, either because of the type of instruction or where the M-operand
address specifies a fast register, the MNB signal is simulated to set the
operand-MNB FF. The operand-MNB FF stores the operand-call MNB signal for
4 pulsetimes to enable various functions required by the instruction in IR2.
Some of these functions are (1) referencing a fast register, (2) stepping
the program counter, (3) transmission of instruction information to the AU
(4) various functions of the instruction ending pulse related to the se­
quence control of following instructions. The operand-MNB signal together
with the ending pulse indicate that the instruction can proceed to the exe­
cution phase and therefore the following instructions can advance.

By gating the output of the operand-MNB FF (CHNB) with the instruction
ending pulse at t2, the following operations are performed:

(1) Output of B-adder is gated to memory address decoder to make call
for instruction n + 2 (FS363).

(2) Call FF is set for n + 2 if status-l FF is set, indicating n + 1
is in IRI (FS432).

(3) B-mod FF is set for n + 1 if status-l FF is set (FS432).

2-13

(4) I and A of IR2 is cleared of n at t5 (FS3l3).*

(5) M of IR2 is cleared of n at t7 (FS3l4).*

The timing for the execution and result phases of the overall cycle is
shown in fi9~re 2-5 simply with two entries: AU control and result.

------. FS3l3 and FS3l4, not shown in figure 2-4, are derived indirectly from the ending pulse
by way of the setting of the progra~counter-clear FF (reference heading 3-5).

2-14

SECTION 3

INSTRUCTION SEQUENCE CONTROL

This section contains detailed descriptions- of most conditions of in­
struction sequencing. Figure 3-1 t which is referred to throughout this
section, is a simplified logic diagram of the normal instruction cycle con­
trol circuits. In addition to including everything described in general
terms under headings 2-8 and 2-9, figure 3-1 shows how various control sig­
nals are generated to take care of different situations which can occur
during the normal sequence of operations. Each of the simplified logic
diagrams in this manual includes references (D312, D844 , etc.) to the re­
lated logic drawing numbers on which can be found the corresponding de­
tailed logic.

In this section the principal general areas of control, those asso­
ciated with fast register and memory operand references and the program
counter, are described first (headings 3-1 through 3-5); special instruc­
tion control cases are then described (headings 3-6 through 3-13).

3-1. FAST REGISTER CHAIN CONTROL

The fast register chain control, figure 3-2, contains the logic for
controlling the fast register operand (A register) references. These refer­
ences include those required to obtain A operands, M operands which specify
a fast register, and result storage registers. The control designations
and purposes of these three references are:

(1) A-input chain -- selects A operand from normal A operand address
(AA) and supplies it to the A-input pulseformers of the AU.

(2) M-input chain -- selects M operand when M address specifies a
fast register address (999AA) and supplies it to the M input reg­
ister of the AU.

(3) Result chain -- selects A register to store result of instruction
and controls transfer of result information from AU to fast reg­
ister.

- There are some variations in the use of the fast register chain con­
trols. For example, some instructions use the M-input chain to supply the

3-1

normal A operand to the AU. Data transfer instructions which write infor­
mation into the memory use the M-input chaini they also use the result
chain when the M address specifies a fast register address. These opera­
tions are described under the next two headings but the classification of
the instructions involved is described in section 6.

3-2. FAST REGISTER INPUT CHAIN CONTROL

A timing diagram of the A- and M-input chain control operations is
given in figure 3-3. This diagram illustrates the repetitive operations
for a series of four instructions of minimum length (4 microseconds). The
normal A-operand address for instruction n is set up in the fast register
selector register by first sending the A part of IR2 to the B-adder'at t2
of the first cycle. This action is produced by FS403 which is generated
by instruction control signal CHJP 30. 31, or 32. At the same time, for
most instructions, control signal CHJP 33 or 34 causes zeros to enter the
other input to the B-adder (FS4ll) so that the sum (A + 0) is equal to the
original A-register address (AA). For some instructions different control
signals are generated at t2 so that the A-address is modified by adding +1,
+2, or +3 to AA. These cases are needed in double-precision operations for
which an example is given under heading 3-10. Since the extra control sig­
nals are not shown in figure 3-2. they are listed below and additional in­
formation concerning them is in the Computing Unit Instruction and Function­
Signal Analysis manual:

CHJP 35 - +1 to B-adder

CHJP 36 - +2 to B-adder

CHJP 37 - +3 to B-adder

CHJP 77 - +1 or 0 to B-adder

CHJP 78 - +1 or 0 to B-adder

All instructions that require the A-input chain generate control sig­
nal CHJP 27. 28, or 29. Either of these signals sets the FR-to-A-input FF
(signal CHBA) if the operand-MNB FF is set (CHNB). Signal CHNB indicates
here that there will be no delay in obtaining the M operand. Signal CHBA
is also produce~ gating CHJP 77 or 78 with the absence of the operand­
MNB-FF signal (CHNB). This is a special case associated with double­
precision operations (reference heading 3-10).

, At t4 the contents of the B-adder (A + 0) are read out and transferred
to the, fast register selector register by FS431 which is generated by
gating CHBA with CT4. Instruction information for the AU is transferred
from the group encoder to the AU at t5 with FS300 which is generated by
gating CHJP 38, 39, 40. 41. or 75 with CHNB and CT5.

Signal CHBA is applied to a pair of gates that control the setting of
either the equality FF or the inequality FF depending on the results of an
A-register comparison test. The details of the comparison test are de­
scribed under headings 3-11 and 3-12 dealing with A-register access con­
flicts. For the present discussion assume that the inequality FF is set at
t6 of the first cycle to produce signal CHBC.

3-2

cn

R

START
FF

Dl'l'l
(ALSO SI40WN

ON FIG . ..,-1)

CNSA

(CAAM 1, 2)---------f\
(EQUALI TV FROM

REG I STEil. COMPARATOR)

CT3

CT7

CAAL -....,1------1
(INEQUALITY FROM

REGISTER COMPARATOR)

e-MOD
FF

D~55

eSSG

en

CTS

eSBS
te ~ RESULT)

en
(NONCONTINUOUS, FIG • ..,-n CNEA

CH~B

CTO

CSSG
(e- RESULT)

CNSA

caBA CHJQ-Z

er-t-C~STA~V _______ ~

(GEN. CLEAR) EeCL

ECDCS-+-~------~
("10- OVERLAP SWITCH) FIG. 5-1 CQBD

(0 NSF'
FIG."'-' LeNBE

CQSA

CTO

eS8s
(B .. RE!,.ULT)

INSTRUCTION INFORMATION
\0 ARITHME1"C UNIT

(All in'itruc.t'o,,'O

MEMORY'~ ~u.iril"'lq Ope1"QM

s

R

CALL
FF

Dl'l2

EeeL
(G EN. CLEAR)

e\------I

CSAA

S

STATUS-'
F'F

R

CQSA

01 cn
(ALSO S\40WN

ON !'IG. 5-')

CT4
CGNB eOM-

(MEMORY PLETING
NOT B!JSV) CALL

FF'

CT4
D~n

eSIW (SET BLOCK-NOT-BUSY
FIGURE ~-5

REFERENCE ",.mo., 0«0 ••) C HT 1>., 13, C
10 FIGURE 3-5 GROUP

ENCODER

[

CPeS

F (STEP)
IGURE

3-9 cpeL
(CLEAR)

IIKlTES:
I. _ INDICATES CONTROL SIGN"'L DERIVED FROM INSTRUCTION IN 111.2.
2. CHNB INDIC"'TES OPERAND -MNS IT IS 'OET. (FIGURE 3-5)
3. 0355 ETC. INDICATE'" DETAILED LOGIC DRAWING ~~5!5.

ENDING CHJQ-']

PULSES
CHJQ-2,-~ espc.

(TO STAL L FF')

rs-";;'-1--.l-r_ CSPA

CT4
CGee

(STA,US - ~FF)
FIGURE So,

(DELAYED ENDING PULSE;
WIIH eTO, SETS STATUS-3 i'n

CSPS
(ENDING PULSE ,0
ARITHMETIC UNIT)

CSeG
(e.REWLT)

CT5

CT4

C,'

0'1>55
CSAR

S

ENDING- CI?_

PULSE-
STORAGE

FF

R

caSA

(NO -OVERLAP SWITCH) ECDes

CSCL

FF)

C,2

eTO

e,o

CSSG
(B" RESULT)

eTl

en

CHJQ-'

eT2
CHNS

CHJQ-3
(NONCONTINUOUS) CNEA

FI GURE 7-'

(NO- OVERLAP SWITCH)

D~55

csa (A, B, F, L)

e

B-,ooDER
-IR2IM)

311

MEMORY
-111.1

32.0

D2.02

B-AODE!.
-MEMORY

CLE"'R ADORE"""
Cl DECODER

0301

TO B-ADDER

'-/
D~02.

REGENERI'ITE
FAS, \0 FAST

REGISTER REGISTER
SELECTOR

425 REGISTER

IR' (r,:-l
ME~6~ I

(e) CLEAR

02.04 O'!l02

ODD-EVEN
CHECK, FR

D2.04

5440

Figure 3-1. Simplified Logic
Diagram - Normal Instruction

Cycle
3-3

TO M INPUT TO A I.JPUT

; OF AU OF AU • r; __ "';".O:.,.;:6..;.-,,;.A...:D_0...:E:.R:'::"'_""'I3_ADDER TO

FA5T REGISTER [R2 (A) TO SE.CECTOR,

T'l> F","T

iRZ(!) TOAU PULSEFORMER5 AU INPUT 1 STORAGe;
RE6ENER"rE r; .:R:,:E:.:o.:,:1,.:: .. ;,,:T,.::E:.:R::.....:S::,E=L:,:E.::;C::.."-"TO"'Ia::....---,

FR IR2 (A) Ifi.2(M)

[,"",,0" • PFR
SELECT cn

A-OPERAND CHJP33,34

• PFI<
CTI

[m <""f>
CHNI!I • PFF<.

CT3 • SELECT CHJ P54" '57
CHJPT7,"18

0190 RESULT ADDI<ES5 en
+ 5 f- CH.JI'> • P'-R CHNB CHJP50"'''0

CHJP27"'2CJ. FR-A
CT4 --r-> CHBD CT:3 INPUT

'-"ST REGISTER
FF CHBp" ~

TO A-INPUT CTO_ I<

i~CHBE OF AU

CT<>

" EQUALITY CAAM2- • S _ r-+:'I CHI!>G
CT5- F-F I crr ~

FROM "R "

999;'''[CBWA9:l
FROM CBWA94

I3-ADDER ceWA95
en

CHOA
(M EMORY ~EAD

-&-.-
,-. S

'- FF<.-
)- READ

l ~""'--~<" ••
COMPARAToe eTa .. ~ CH6H

1.:\ D190 • ~~ ISET OPeRAND- INEQUALITY-CAO ~~ CT7~
MHI!> FF'1 CT5. I I r- (FlO.. 3-5) GTO _ iF ~CHBF'

M-ADDRE55
SPECl FIES A

FAST' 2.EGISTE£

NOTE.S:

FF

eTZ_ "-

-999AA[CBWA93
FR.OM ceWA~4

S-ADDER CBWA93
cn

CHWM
(MEMORY WRI TE

-&- DI~1
,-. s
- FF<.-
i- WRITE.

FF

CT7_ R

~ESULT5
FI(:OM AU TO

FAST REGISTER

OM IR2 (FI€>.3-il 1.-INDIC"'TE.S CHJP E.TC. FR
2, CHNI3 INDICATE50PE.I<Aj.JD -WINS FF 15 SET.

(FIG. 3-5)

cn

J~CHFA
eTO

CHWD CT4-t\ CHWA

'"".~ CHIIIB
• PFR

CT3

CT2--r.). eHAL

~
CHAA ~ • 5

CHJP010Z + FF<.-M

v

A-OPE.RAND [CHJP03,04
t INPUT TO M-I NPUT • FF OF -,u eTO

C1"5_ I<. 2"'D A-OPERAND [CHJP05
TOM-INPUT • OFAu ero

FAST REGISTER
425 ~ TO M-INPUT

CTT~ OF Au tCAA"'1_~ _~ CHA13 "

[~"~'U,_- m~ '::\ CTI- FF

CT7~ FROM FR CTO R ~
COMPAR-"TOR D190 CHAK CHNB-f

INOQUALITY-CAAL ~TI I : • CT4~

:,-0- ~ on <,o:~ '"~ .:\ CHAN
CHN~~

CHJP CT.f. • CHCA CT3

" (50"'53) CHN8 + 5
>~CHCP

AU-FR CTI.
CNTH FF

eHNB (PI5PL"Y INSTRUCTIONS)
CHJP 38'''41,75 • CT4_ " CT!I

D299 ERR-OR. IN AU

[~~ CT3~ CHCD I r:-li
5

CT1- f-W CHCQ
I NSTRucnON - DELAV ERRO~ IN .\U - f- • ENOl"" PULSE - +) FF

FROMAUl~ I-~CHCR
5~O -V CT3_ I<. t? r- + cn 17

0299 '-/---D CHCS

CT~:B-
D2~~ • AU- f- • CHCV 5 • CHNB-T • 5 CTf.---{)

CHTC FR- RE5ULT- t- CT1~ (MEMORV WI<.ITE) wRITE-
READY ~C ~ CHECK FF • HCT

FF CTZ_ R
CTS_R)~ CHC)(A CHCU

CT-O

300 373 3131 403

FAST Ik!2 1M) TO
AU REGISTeR INPUT I

371 seo +02

\ ,
D202 0301 DZO~

421 425 430 +33

00000 TO SELECT
INPUT Z CHECK FR. AU TO FR S-ADDEI< 5TORAG

411 4ZZ 4Z," 431 4S4

PFI< PFR

\ ,
D30Z D204

Figure 3-2. Simplified Logic
Diagram - Fast Register Chain

5441

Control 3-5

Signal CHSC is gated with the reset output from the equality FF .to pro­
duce signal CHBH which, in turn, is gated with CT7 to give FS380. At the
same time FS425 is generated by gating CHBA with CT6. (Signal CHBA and CT6
give CHBE which is pulseformed to give FS425 at t7.) FS380 and FS425 then
cause the contents of the selected A register to enter the A-input pulse­
formers of the AU while also being regenerated in the iast register. (The
signal path is shown in the block diagram in figure 2-1.)

By gating CHSC with CT7. signal CHBF is generated to produce FS422 at
to. FS422 activates the odd-even check circuits associated with the A­
input pulse formers and thereby provides a check on the contents of the fast
register. The reason FS422 is dependent on the inequality FF signal is ex­
plained under heading 3-12 dealing with A-register access conflicts.

The case where the M address specifies a fast register (999AA) is
handled by the fast register M-input chain control logic of figure 3-2.
The memory addresses 99901 to 99999 are reserved for the fast registers.
Thus. any M address in which the three most significant digits are 999 is
detected as a fast register reference. As indicated in figure 3-3, detec­
tion is accomplished following the B-modification of the M address at t7 at
the output of the B-adder (signals CBWA 93, 94, and 95).

For a fast register M-read operation, the FR-Read FF is set (signal
CHFR) by the B-adder signals, a general M-read signal (CHQA. reference
heading 3-4), and CT7. Signal CHFR is then gated wjth CTO to generate
FS433 which transfers the two least significant digits (AA) of the modified
M address from the M part of IR2 to the fast register selector register.
Since no true memory reference is made in this case, signal CHFR produces
a simulated operand-MNB signal (CHNB) by setting the operand-MNB FF.

The FR-to-M-input FF is set (signal CHAA) to start the M-input chain
control by gating CHFR with CTO. As shown in figure 3-2, this FF may also
be set by instruction control signal CHJP 01 or 02 for certain instructions
that use the M-input chain for the normal A-operand input to the AU. Also
in connection with this feature, control signal CHJP 03 or 04 is gated with
CTO to send the A part of IR2 directly to the fast register selector reg­
ister (FS430). Another spe~ial control signal is CHJP 05 which, with CTO,
sends the contents of the B-adder to the fast register selector register
(FS43l). For the particular instructions associated with these operations,
refer to the classification of instructions in section 6i also see the Com­
puting Unit Instruction and Function-Signal Analysis manual. heading 2-12
(page 31).

Signal CHAA is applied to the setting gates of a second pair of
equality-inequality FFts that also depend on the results of an A-register
comparison test (headings 3-11 and 3-12). As with the A-input chain assume
that the inequality FF is set so that signal CHAC is produced from t2 of
the first cycle through to of the second cycle. At t2 signal CHAA is gated
with CT2 to produce CHAL which, in turn, is pulseformed to give FS425 at t3.
FS425 is then gated with the absence of a CT7 timing signal to give FS380.
These two function signals then cause the contents of the selected A reg­
ister to enter the A-input pulseformers of the AU while also being regen­
erated in the fast registers.

The output from the inequality FF is gated with the reset output from
the equaU ty FF to produce signal CHAK. Signal CHAK is then gated with

3-7

A-INPUT
C!-lAIN

M-INPUT
C~AIN

TillE (t) 0 I 1 12 I 3 41 516 I 7 0 I 1 I 21 3 4 151 61 7 0 I 1 I 2 I 3 41 5 I 61 7 0 I 1 12 I 3 415 I 81 7

I
n I

,CL
r AND A OF IR2 __ ...;;..."""T"'_-+...-....,._n;....+;...I...;;..._...-_)+"C"'IL_"""T"'_n;...+.....;2...;;.......,.I __, ,lhC"..L-...--n;....+....;3...;;...~ __).J.:,C""L--f

lA OF IR2

INSTRUCTION ,NF"ORMATI ON
TO AU (C.HJP 38-41,75

A OF IR2 TO B-ADDER
(CI"kIP ~-.32)

o TO B-ADDER (CHVP 33,34)

F"R_ A-INPUT n (CWBAl

B-ADDER TO FR 5ELECTOR

FR SELECTOR

INEOUALITY FF (CHBC)

FR TO A-INPUT PFRs

FR. TO REGENERA"TION ~

O-E CHECI<. ,,-INPOT

M-AOO~E55 DETECTED
(CaWA ~3, 94, 95)

I=R-READ FF (CHFR) n

t!::;n43,,3)
M Of: IR2 TO FR 5ELECT()I:\ f-:-I

I=R SELECTOR

n I

I ,_--- CL

• n • I ,

n+1 I n +2 I n+ 3 I

I CL
n+1 I
~ U n+1

I ---I n+2 J
\ (3001

\ 15n+2
(403)\

CL ...--L...,,-i.o..:;i-- - CL
I n+3 I , "~)

\ U n+3
(403) \

\
(4031 \
[!],
(4tt) \

I
(4031,

n+ID I
(411) \

n+ID \
(CHJP 27-29)

n+20\
(41t) I

n+20'

n+30 \

(4U) " 0 1

I

~~)
I~
I

n •

~ ,1:n I
: "".--n
l ~m)

............ : ft

"--m(425)
I n
l..

~
"""'(:22)

n+1

n+!

r- .. ~)
I f-J n+4
I
l..., I Mn+t!

(CHJP 27-29)
n+1 •

(-.i(431l

iOn+!
I
.. IAn+! I

: ""'~-~-..... I n+1 • I
l.. ~)

'.... i ~_n+t

"'--.r:t ' n+t
l.. ~l

f-J n+1

~ n+2

n+2 J
r- ... ~)
I f--I n+2 ,
l....... IlIn+21

n+30 \
(CHJP 27-29)

n+2 •
~(43t1

: pn+2
I
I. IAn+21
I '
, 'r----,+-.....
I • n+2 •

l ~~)
........ I L..Jn+2

"'''C:;> ~ n+2

'''(~)
...J n+2

~ n+3

n+3 I

~~)
I f--I n+3
I
1..., IlIn+31

(CHJP 27-291
n+3

~~
I f-J n+3
I
10. IAn+31

l ~:(~
'~5
n+3L

n+4L

FR -M-INPlIT FF (O~AAl I~~-:,:,=_'"
FRTO

REGENERATION PFR s

n I

i"
I n+1 I

i
I n+2 I I n+3 I

'~" ~.
FR TO A-INPUT Pl'=Rs

O-E CIlECI(, A-INPUT

INEQUAUTY FF (C HAC)

REGENERATION P~RS

TO M-INPUT REGISTER

H II 01= IR2 TO ~R.
5EI...ECTOR (CHoIP 03,004)

itS-AODER
TO FR $ELECT~ (CHIlP 05)

, , ,
I
I
I ,
~
•

(380)
n

~2)
n

'~rft

I ,
I
I
I ,
I ,
l.

• L

I
n+1 n+2 ,

(380)
,

(380)
n+4 I n+2 ,

I
I

Qn+1 I);;In+2
(422) • (422)

n+1 J L n+2

-~~l
n+1 ct n+2

*-A-OPERANO USES M- INPUT CHAIN (5EE TElCT AND 1"6.3-2)

I
I
I ,
\ , ,
~

I I

Figure 3-3. Timing Diagram - Fast Register Input Chain Control

n+3
(380)

n+3

;;;} n+3
(422)
n+3

p~)
n+3

$4 ••

CHNB and CT4 to produce FS373 which transfers the contents of the selected
A register from the output of the regeneration pulse formers to the M-input
register of the AU. The inequality FF signal (CHAC) is also gated directly
with CHNB and CT3 to give FS422 at t4. Thus t the M-input chain control
transfers information to both the A and M inputs to the AU. The A input is
used only to provide the odd-even check on the fast register information.
The M-input register then holds the M operand until the normal A operand
arrives at the A input at t7.

3-3. FAST REGISTER RESULT CHAIN CONTROL

A timing diagram showing several minimum-length instructions passing
through the result chain control logic is given in figure 3-4. The fol­
lowing discussion, however, is confined to instruction n which can be
assumed to be the same 4-microsecond instruction set up in IR2 during the
first cycle shown in figure 3-3 for the A-input chain. Following the set­
ting of the operand-MNB FF, signal CHNB is gated with control signal CHJP
54, 55, 56, or 57 and CT3, and also with control signal CHJP 58, 59. or 60
and CT3, to produce FS403 and FS411 at t4. These function signals send
the A part of IR2 and zeros to the B-adder in order to form the result ad­
dress. For double-precision operations the second result address is formed
by sending A + 1 to the B-adder at t4 in which the +1 (unit add) is gen­
erated by control signal CHJP 61 or 62 (reference heading 3-10).

As shown in figure 3-2 t the result chain control is activated by set­
ting the AU-to-FR FF (signal CHCA). This flip-flop is set by gating CHNB
with CT4 and result-chain-control-signal CHJP 50, 51, 52. or 53. Signal
CHCA is then gated with CT6 to produce FS421 which transfers the result ad­
dress from the B-adder to the selector storage. The selector storage holds
the address for 4 microseconds (t7 - t6) until it can be transferred to' the
fast register selector register. Signal CHCA is gated with CT3 to set the
delay FF (CHCD) at t4. The delay FF is needed to store control information
until the result of instruction n can be transferred from the AU to the
fast register.

Signal CHCD is gated with timing signals and the output of the AU­
result-ready FF (CHCU -- set by an instruction ending pulse from AU con­
trol) to produce the following control signals to complete the operation:

FS434 (t6) -- transfers contents of selector storage (result address)
to fast register selector register.

FS380 (tl) -- reads out old information from selected fast register to
A-input pulseformers of AU for check purposes.

FS426 (tl) -- transfers contents of AU result register to fast reg­
ister, if no error in AU.

FS422 (t2) -- checks A input of AU to ensure that (1) a fast register
was selected and (2) that only one was selected.

The generation of FS426 is conditional on no errors being detected in
the AU for instruction n. If an error is detected, the gate that produces
FS426 is inhibited and instead a gate is opened to allow the generation of
FS425 at tl. This action regenerates the information in the selected fast
register.

3-9

RESULT
CHAIN

M-AODRES~
SPE;CIFIES A

,AST RE.GISTER
0'-.... 0

TIME (t) 0 I ' I 2 I 3 4 I ~ I .61 7 I 0 I ' I 2 I 3 4 I 51 61 7 0 I ' I 2 I 3 4 I ~ I 6 I 7

L AND A OF IR2

/IA OF IRZ

oP£RAND MNB FF (CHNB)

11I5TRueTION INFORMATION TO
AU (CJ.lJP :58-4~, 75

AOF IR2 TO
e-AOOER (CHJP 5+-57)

o TO S-ADDER (CHJP 58~

AU-FR F, (tHCA)

B-ADDE"R TO SELECTOR STORA.GE

SELECTOR TORAGE

5ELECTOR STORAGE
,0 FR SE.LECTOR

FR SELECTOR

DELAY FF (CoHeo)

FR TO A-INPUT PFRs

O-E CHECK, A-INPUT

AU RESULT TO
FlEGENERATION PFRs

R£SUL, STOR"'D IN FI;

I I I I
n I n+' I n+2 I n+3

}JCL /jI'CL }JCL

n / n+1 / n+2/
I. -, CL L -- CL L I -CL

I n I I n+1 I I n+2 I

:--iir I n
'--TIl
I n+f : --'ct I n+2

i'-rrr I n ~~[r I n+f ~"Lr I n+2

"--Ell I n "'''cf I n+t
i-1j(4ttl
I n.+2

l...
- -,.. (CHJP 50-531

L..
- (CHJP ~O-531

l.
- (CHJP 50-531

n-t I n I n+t I n+2

\ 'Ef \ :otl
\

\ \ n+t
\
\

\ \

~I
n+2U

n-I I \ n I n+t I
\

\

\
\

\ \

\
\

\
n-I~

m41 (4341

~n-2 \

,'~
\ /CP \ \
~

n+l~
(4341

\
/n+tD \

~
n-2

tp(3801
n-2

1-

I 'i:r I n-2

l~SI
~n-2

\- -n-2--L ___ _

n-I

~Ol
kUn-t

I ·"r:r I n-'
l~SI

L.-J n-'
\- -n-'---L ___ _

~~Ol
I-. l..!!.J
1 ~21

I ~

l-G;JSI

n+t

\--;--­
L_r-_-

AU RESUL' REGIST£R r--_n_-_2_...II I n-I I n c
t.Ii-ADDRESS

DETECTED (CaWA 9~,9+,95)

F'R-WR1TE n: (cHWo)

M OF IR::! TO B-ADDER

o TO B-ADDER

ETC

~ n+f n+2 n+3[:

n n+t n+2

~TI2)
I n+2
I
I-~I
l.. U n+2

.... ,

r-'fft I-i::f I n I n+'
I ":ffi) ~·D l. n l., n+t

"-

' "
n-I I n I n+' I n+2

01'1213 41 5 1 S 17 01'1213 41 5 1 S 17 01'1213 41 5 1 S 17
5447

Figure 3-4. Timing Diagram - Fast Register Result Chain Control

3-10

The result chain is also activated in the case where the M-address
specifies a fast register on memory-write (store) instructions (reference
heading 3-4 and section 6). Figures 3-2 and 3-4 include the logic and
timing for handling this situation. Detection of the M address is accom­
plished in the same way as described under the preceding heading for the M­
input chain control. In this case the FR-write FF is set (signal CHWD) at
to and then gated with CHNB (produced by CHWO) and CT4 to generate FS402
and FS411. These function signals transfer the two least significant
digits of the modified M address from the M part of IR2 and zeros to the B­
adder to form the result address. Signal CHWO also sets the AU-to-FR FF
to start the result chain. The rest of the operations are then carried
out as before.

Also shown in figure 3-2 is the FR-write-check FF (signal CHCV) which
is used to inhibit the setting of the AU-result-ready FF by the AU ending
pulse. This action prevents the operations of the result chain in the case
of a memory-write instruction which does not refer to a fast register (in­
dicated by signals CHTC and CHNB-T which set the FR-write-check FFj refer­
ence heading 3-4). The reason the inhibit is necessary is because all
instructions which merely transfer information to or from the memory are
handled in the same way in the AU in order to provide for the case where
the M address does specify a fast register. Therefore, all such instruc­
tions produce the AU ending pulse that sets that AU-result-ready FF.

3-4. OPERAND MEMORY REFERENCE CONTROL

The simplified logic diagram in figure 3-5 shows the basic logic con­
cerned with operand memory reference control for all instructions requiring
an operand memory reference. Associated timing diagrams are given in fig­
ures 3-6 and 3-7. For a memory read operation t the appropriate memory ref­
erence group encoder signals (CLWB'S -- figure 3-1) are buffed together to
give memory reference control signals CHTA, CHTB-l, and CHTB-2. The group
encoder signals are also gated with the relevant program counter stage sig­
nal (CPCR-O for one memory reference or CPCR-l for second memory reference
in double-precision operations) to give memory-read signal CHQA. Signal
CHRM (and CHQA) is then generated to produce FS363 and FS365 by gating CHQA
with CT7. These function signals transfer the modified M address from the
B-adder (formed by B-mod operation) to the address lines to make the oper­
and call at to. At the same time CHQA generates read signal YBD for mem­
ory control purposes.

The operand-MNB signal from the memory (CGNB) is received for instruc­
tion n at tl of the second cycle (figures 3-6) to set the operand-MNB FF's.
As shown in figure 3-5, there are two operand-MNB FF's which are set by
gating CGNB with CHTB-2 and CTl. These flip-flops are designated operand­
MNB FFI (signals CHNB 1, 2) and operand-MNB FF2 (signal CHNB-T). Basic­
ally, the operand-MNB FF1s are used to remember the receipt of an
operand-call MNB signal. When it is set. operand-MNB FFI enables various
functions required by the instruction in IR2 as outlined previously under
heading 2-9. Any or all of these functions may be required in those cases
where no actual memory reference is inVOlved. These cases arise either be­
cause of the nature of the instruction or where the M-operand address spec­
ifies a fast register. Another case is that of a long instruction in which
the ending pulse occurs during a cycle in which no memory reference is

3-11

[

LWBS

INSTRUCTION •
DECODER •
(FIG.3-1) •

ETC.

[

CLWB ..
INSTRUCTION •

DECODER •
FIG.3-1) •

ETC.

CHJP 13,14
(CHFR

CFI6.3-2)~CHWD
(FI6.3-8) CPCW

01<;'>1

CONDITIONAL
TRANSFER

ERRORS
GEN. CLEAR.

B-MOD.EQUAL
(CSAV, FIG. 3-1)

YBD
(READ SIGNI'.L
TO MEMORY)

DECODER
~~~~~~~;:;- ] 

REI'.D 
CI'.LL 

M-I>.DDRESS ~C=H~R~M~.=C~HQ=I>.~ ________________ ~ __________________________________________ -L __ ~~65 DECODER~ 

CHTA 

FF 

BLOCK-NOT­
BUSY!'"F 

D~OO 

CTI 

CHXA 

CGNB 
CTI 

CHTB-2. 

OPER.I'.ND­
MNB 
FFI 

D~OO 

CT4 

CflNB 1,2. 

~.L--.... .fSs------l CHNB-T 

OPER"'ND-
MNB 
FF2. 

CTI R 

ADDRESS LINES 

ZEROS--­
+11 B-ADDER 

D~02. 

.----------------''----..j402 IR2.(M)--­
B-ADDER 

D2.03 

REPEAT 
CALL 

CHTB-I CT5 • +~ ____ ~C~H~T~B~I,~2.~ ________ ~~ ________ ~~=-~ ____ ~ ______ I/ S 

Figure 3-5. 

CHTC 

CHWM 

0300 

CT3 • 

'rBE 
(WRITE SIGNAL 
TO MEMORY) 

CTO 

DELAY 
FF2 

R. 

D202-

REGENERI'.TION PFRS 
-WRITE LINES 

,,, ~;~~~" ~,~LT£ 
B-ADDER.- ] 

DECODER­
ADDR.ESS LINES 

0301 

5448 

Simplified Logic Diagram - Operand Memory Reference Control 



made. Consequently, operand-MNB FFI may also be set by a simulated MNB 
signal which can be derived in several ways: 

(1) By control signals generated for instructions requiring no memory 
reference (signals CHJP 13, 14) 

(2) By signals which indicate that the M-operand address specifies 
fast register for either memory-read or memory-write instructions 
(signals CHFR, CHWD -- reference headings 3-2 and 3-3) 

(3) By program-counter-repeat FF signal which steps program counter 
during long instructions (signal CPCW -- reference heading 3-5). 

Operand-MNB FF2 (CHNB-T) is set by a "true" MNB signal only and con­
trols several functions of which only two are considered here (reference 
heading 3-3 and end of this heading). The other functions controlled by 
CHNB-T are concerned mainly with the details of memory-write instructions 
which are described in Instruction Sequence Control, Part II. 

Heferring to the memory-read operation (figure 3-6), signal CHNB-l is 
gated with the memory-read control signal (CHTA) and CT4 to set delay FFI 
at t5. The output from the delay FF is then gated with CT7 to produce 
FS370 which gates the M operand from the memory read lines into the M-input 
register of the AU. 

If the memory is busy on an operand call, certain other control func­
tions must take place in order to repeat the call. The timing of these 
operations is shown in figure 3-6 where it is assumed that the memory is 
busy on the first operand call for instruction n + 1. The call is made at 
to of the third cycle (FS363, 365) but the MNB signal is not received at tl 
and operand-MNB FFI is not set. Consequently, the reset output of operand-. 
MNB FFI (CHNB) is gated with control signal CHTB-l and CT5 to generate 
FS402 and FS411 which send the M part of IR2 and zeros to the B-adder. The 
output of the same gate also sets delay FF2 which, with CT7, generates 
FS311 to gate the B-adder output back to the M part of IR2. Since instruc­
tion n + 1 is retained in IR2, signal CHRM is generated at the same t7 
(from CHQA and CT7) which again gives FS363 and FS365. These actions gate 
the address from the B-adder to the M-address decoder and address lines to 
repeat the call for instruction n + 1. (The details of the overall instruc­
tion cycle control for this case is given under heading 3-7.) 

Also shown in figure 3-6 is the case where the M address specifies a 
# fast register address (instruction n + 2). As described previously for the 

M-input chain control under heading 3-2, the M address is detected at the 
first t7 after the instruction is set up in IR2 to set the FR-read FF 
(signal CHFR, figure 3-2). This signal is then used to set operand-MNB FFI 
and to start the M-input chain control operations which transfer ,the con­
tents of fast register 999AA to the M-input register of the AU. 

The timing for a memory-write operation is given in figure 3-7. Many 
of the functions produced here are similar to those carried out for a 
memory-read operation with memory-write control signals CHTC, CHWM, and YBE 
replacing CHTA, CHRM, and YBD, respectively. The memory is addressed for 
instruction n at to of the second cycle and the MNB signal is returned at 
tl to set the operand-MNB FF's. In this case the output of operand-MNB 

3-13 



OI)ERAND 
CALL 

OPERAND REC.EIVE [ 

REPE.AT 
CALL 

TIME (t) 

r AND A OF IR2. 

M OF 1R2. 

MEMORY REFE.RENCE CONTROLtHTB-2) 

MEMORY' READ (CHRM ,CHQA) 

B-ADDER TO M-ADDFIESS D£COOER 

ADDRESS LINES 

t.lNB (OPERAND CALL)(C.GNB) 

OPERAND-loiNS FFI (CHN6 1,2) 

OPEI'\AND- MN6 FF2. ((HNB-l) 

MEMORY READ CONTROL ((!-ITA) 

DELAY FF~ 

RI:AD LINES TO M-INPVT OF AV 

MEMORY RE"ERENC~ CONTROL(CHTB-l) 

OPERAND-MNB FF~ RE.5ET(c.HNB) 

M OF IRZ TO B-ADDER 

o TO B-ADDER 

DELAY FF 2 

B-ADDER TO M OF IR2 

MEMORY RE.AD (tWQA) 

5~E~Bf~~~S~ M-ADDRE5S DEn-CUD (CBwA 03,94,95) 
FAO;T REGISTER 

(M-INPUT CHAIN 
FIG. 3-3) F R-READ F'F (CHFR) 

ETC 

01 t 12 13 41 5 16 7 ° 1 t 1213 41 5 1 6 70 1'1 2 13 41 5 1 6 7 0ltI2j3 4151617 01 t 21 3 41 5 16 17 

I I 
n-t I n I n+l I n+2 I 

n I n n+l n+2 

n-l 1 n 1 n+t I n+2 I 
I ~ dn+, 

I =J n+l g.;;' I I 

I I 

I ~63) ~63) I (363) 

I n n+1 I '-- n+t n+2 
I "-

~ 
"-

On+! 
I -

In+2 I 
I 

~' I 
I I n+! 
I I 
L_ -~ L_ - .... 

n I n+l I n+2 I 
I I 
I I 

I n ] Le.l1 n+1 
I I 

n-I T n I T n+t I I n+2 I 
I : I I 

I 

L., 1-1 n I L'" I--L n+f I I 
'~) '-q" : n+l I 

I 

n-I I n I n+l I n+2 I 
Ii I 

r n+f I I I 
I 

i...~ (402) I 

;.on+! 
I 
I 

I (4tl) I 
I I 
I.On+1 I 
I I 
I 
L_...! n+1 I I 

I 'C) I 

n+1 I 
I 
I 

I I n+2 I 

:Q I 
n+2 

I 
I I I 

~ ...... n+2 I 

01 ' 12 13 4T 5T6 7 0111213 4T516 7 01 ' 12 13 41516 7 01'1213 41 5161 7 01 t 213 415161 7 
5449 

Figure 3-6. Timing Diagram - Memory Reference Control, Read 



TlME(t) 

I ANDAOFIRZ 

M OF lR2 

MEMORY REFERENCE CONTRO\.. (CHTB-21 

MEt-JORY WI'lITE (CHWM) 

6-ADDER TO M-ADDRES6 DECODER 

ADDRESS LINES 

MNB (OPERAND CALL (CG N B ) 

OPERAND- MNS Ff'1 (C H N8 1,2) 

OPERAND- MN8 !'"Flo (CHN8-T) 

MEMORY WRITE CONTROL(CHTC) 

lvi-INPUT 
CHAIN 

(FIG.3-21 

REGENERATION 
PFR,; TO H58 DRIVER5 

WRITE LINES 

FR_M-INPUTI'F (CHAA) 

FR TO 
REGENERATION Pf'R s 

I="R TO A-INPUT PI'"Rs 

O-E CH EC~ ,A-INPUT 

INE"QU.o-LITY FF (CHAC) 

MEMORY WRITE (GHWM) 

M-ADDRES,S DETECTED 
M-ADDRESS (CBWA 93,94,95) 

5PECII'"IES A 
F.o-ST REGISTER 
(RE5U~TG~~~~N) !'"R-WRITE FF (cHWDl 

ETC. 

011 1213 41516170111213 4151617 0111213 4151s17 0111213 4151s17 

I I I I I 
n-t 1 n I n+l I n +2 I 

I I 
n-t n n+l n+2 

n-t I n I n+t I n+2 I 
I··~. i R_ p_n+2 I " I "+1 

i ~3631 : CS3) [S:~2 

! ~' !~ 0"+2 

I n I n+l 
I I 
L ____ ~ 

JL- -tt n n+1 I I n+2 I 
I , 
I 

n I n+t I 
I I I 

"-1 I n I I "+1 I I n+2 I 
I I 

L~(352) L ..... (352) I 

L~ L~1 
I , 

n+1 
, , 

(CHJP 01,02) (CHJP 01,02) (CHJP 01,02) , " I ! "+\ I I ' "+2 I 
< 

I '''85
) 

<, (425) t ... (425) , 
\ 1]n+l 1'15 I \ I n+2 

I 

~r \ D°) \: D°) I , \ "+1 II "+2 
I I I: I \ 
I 

~2) 
\ ~"+1 \ ~n+2 I \ 

~ , • " (422) " (422) 

I n I I "+1 I ! r n+2 
I 
I 

"r: n+2 : , 

f~ 
, 

"+2 I 

: 
L_j. n+2 

° I t 1213 4 I 51 sl 7 011 1213 41 51 Sl7 ° I' 12 13 41 ~ I sl7 011 1213 4151s17 
5450 

Figure 3-7. Timing Diagram - Memory Reference Control, Write 



FF2 (CHNB-T) is gated with CHTC and CT3 to produce FS352 at t4 which trans­
fers the contents of a fast register to the memory write lines. 

In order to select and read out the contents of the fast register to 
be transferred to the memory. the M-input chain control logic is activiated 
by control signal CHJP 01 or 02 at tl of the second cycle. The information 
is then gated to the write lines by way of the fast register regeneration 
pulseformers (see figure 2-1) while also being gated to the A-input pulse­
formers of the AU for check purposes (reference heading 3-2). Many other 
control functions are involved in the case of a memory-write operation in 
which the memory is busy, or there is a fast register access conflict, and 
are covered in Instruction Sequence Control, Part II. 

The case where the M address specifies a fast register for a memory­
write instruction is shown in figure 3-7 for instruction n + 2. By gating 
the detected M-address signals with memory-write signal CHWM at t7, the FR­
write FF is set (CHWD) to activate the result chain control logic while 
al so setting operand-MNB FFl (reference heading 3-3). Thus, the contents 
of the selected fast register are transferred to the AU by way of the M­
input chain and then written into another fast register by way of the re­
sult chain. For this operation operand-MNB FF2 is not set and FS352 is not 
generated. 

Also shown in figure 3-5 is the block-not-busy FF which is set under 
certain conditions to block many of the functions generated by an instruc­
tion in IR2. Most of the conditions which set the block-not-busy FF are 
concerned with special cases related to errors and conditional transfers 
and are covered in Instruction Sequence Control t Part II. Its effect here 
is concerned only with the blocking of the setting of the operand-MNB FF's 
in the case of a B-register access conflict which is described under head­
ing 3-13. 

3-5. PROGRAM COUNTER CONTROL 

The program counter is used to distinguish successive 4-microsecond 
timing intervals, for control purposes. It is always cleared to read zero 
at the time a new instruction enters IR2 for execution and it can only be 
stepped upon the reception of an operand-MNB FFI signal (CHNB-l or CHNB-2). 
A simplified diagram of the control circuits associated with the program 
counter is given in figure 3-8. 

The PC-clear FF (signal CPKD) is set from t4 through tl of the last 
cycle an instruction is in IR2. This is produced by gating the ending 
pulse for the current instruction (CHJQ-2, heading 4-3) with CHNB-I and 
CT3. Signal CPKD is then gated with timing signals to generate the signals 
that control the clearing of the program counter and IR2 as shown in fig­
ure 3-8. The PC-clear FF is also set by the block-not-busy signal (CHXA) 
in order to clear IR2 in the case of a B-register conflict (headings 3-4 
and 3-13). 

3-16 



CHJQ-2 
(ENDING PULSE) CHNB- I 

FIG .3-1 CT3 

CHXA 
(BLOCK-NOT-BUSY) 

FIG .3-5 CT.3 

CHJP44.45 
CHNB-\ 

CT4 

CHNB-1,2 
(OPERAND-MNB FF) 

FIG 3-5 
CHJP4G 

(DP ONLY) 

• 

• CPKA(CPCL) CPCL. 
(CLEAR PROGRAM 
COUNTER) • 

S 
CPKD 

pc-
CLEAR 313 

FF cT4 

R 
CLEAR 
I ANDA 
OF IR2 

FF cn 
CTO R CLEAR Nt 

OF IR2 

CPCW CPCW 
S (SET OPERAND-MNB 

PC- FF I) FIG 3-5 

REPEAT 
FF 

CPCL R 

CPCS 
I-------------I.~--_ (STEP PROGRAM 

CTS COUNTER) 

5451 

Figure 3-8. Simplified Logic Diagram - Program-Counter Control Circuits 

The PC-repeat FF controls the stepping of the program counter during 
long instructions; that is, any instruction requiring more than 4 micro­
seconds of execution time. The PC-repeat FF (signal CPCW) is set by gating 
control signal CHJP 44 or 45 with CHNB-I and CT4. In a memory reference 
instruction in which the MNB signal is not received. CPCW is not generated 
and the program counter remains at zero so that the same control signals 
are generated by the instruction decoder-encoder. 

Signal CPCW controls all program-counter steps above zero (CPCR-O) re­
quired in single-precision memory reference instructions and in instruc­
tions with no memory reference. In double-precision memory reference 
instruction, CPCW is used for steps higher than one (CPCR-l) only because 
of the second operand memory reference, and the step from CPCR-O to CPCR-I 
is controlled by a separate step-program-counter signal (CHJP 46 • CHNS-I). 
The separate control signal is required because CPCW also jams operand-MNB 
FFl and-this would interfere with the true operand memory reference. An 
example of the use of signal CPCW to control the timing of program-counter 
steps in a long instruction is given under heading 3-9. 

3-17 



3·6. SPECIAL INSTRUCTION SEQUENCE CONTROL CASES 

The overlapping technique of instruction execution can result from 
time to time in various conflicts in the timing of operations within the 
control unit. In addition, sequencing delays arise when an addressed mem­
ory unit is already engaged with another operation. Other special sequence 
control cases are those associated with long instructions (greater than 4 
microseconds) and double-precision instructions. Beginning with heading 
3-7 and continuing through heading 3-13,all of the special cases related to 
the normal instruction cycle (figure 3-1) are described. References are 
continually made to the descriptions given under headings 3-1 through 3-5. 

3-7. MEMORY BUSY ON OPERAM) CALL 

The first case -- memory busy on operand call -- is shown in the 
timing diagram of figure 3-9 which assumes that previous full overlap con­
ditions exist. The four instructions preceding instruction n are in var­
ious phases of execution during the first time cycle. Thus, the 
explanation begins with the control counter being stepped to instruction n 
as shown by Cl + 1 going to the B-adder at to. Referring to figure 3-1, 
this action is produced by FS401 and the unit-add signal, UA. These two 
signals are produced by signals CSeA and CSCB which are generated by gating 
the output of the completing-call FF (CSCL) for instruction n - 1 with CTO. 
Also notice that CSCB depends on the absence of signal CSBG (B == result) 
which indicates no B-register conflict in instruction n - 2 (reference 
heading 3-13). 

The new address (n) is gated from the B-adder to the memory address 
decoder at t2 by FS363. Signal CSAC produces FS363 by gating the ending 
pulse (CHJQ-3) and the output of operand-MNB FFI (CHNB) for instruction 
n - 2 with CT2. The same signals, gated with the status-l FF signal 
(CQBA) for n - 1, produce CSAB to generate FS432. The call FF is then set 
for n and the B-mod FF for n - 1. The call for n is on the address lines 
at t3 and the MNB signal is received at t4. By gating the MNB signal 
(CGNB) with the call FF signal (CSAA), the completing-call FF is set for n. 
Notice that signals CSAB and CSAC are inhibited by either or both the no­
overlap signal (ECDCS) and the noncontinuous-operation signal (CNEA) so 
that further sequencing is stopped whenever the computing unit is operating 
in one of interrupted modes of operation (reference section 7). 

Meanwhile, instruction n - 2 in IR2 is decoded and an operand call is 
made to the memory at to. As with an instruction call, an operand call is 
made by generating FS363 which gates the output of the B-adder to the MAD 
(reference heading 3-4). In addition to producing FS363 and FS432 to call 
instruction n, the ending pulse and CHNB for n - 2 also produce FS313 and 
FS314 by way of the program-counter-clear FF to clear IR2 (reference head­
ing 3-5). 

While n - 2 is sent to the arithmetic unit for execution, n - 1 is 
decoded, n is transferred from the memory to IRl, and n + 1 is called. As 
shown during the third cycle on figure 3-9, the control counter is stepped 
to n + 2 by the completing-call FF (CSCL) which also sets the status-l FF 
(CQBA) and brings n + 1 into IRI. Instruction n has its M address modified, 
is then set up in IR2, and an operand call is made at to of the third cycle. 
However, the MNB signal is not received at tl and operand-MNB FFI is not 

3-18 



CALL FF (CSAA) 

C\+O-B-ADDER 

CI+I-B-ADDER 

f n 1 

EPn-t 
·CHNB·CQBA 

(432) I 
\. 
r n+1 

~ CL' \ 
\ I \ 
\, \ 

~
n EPn-2 \ I n~+t EPn-t \ 

·CHNB ·CHNB 

('~363) \ l I( 4363
) \ 

B-ADDER_M-ADDRESS DECODER I \ I \ \ 

ADDRESS LINES : hJ\l: ,: ~\ .. \\ 
MIolB (INSTRUCTION CALL) I \ I 

1 • ~ I : •• 

1 EPn·CSCL 

c~ 
\ 

I 
I 
I 

~ I , 
I 
I I 
I I 
I I 
I I 
I , 

COMPLETING CALL FF (cseL) h-__ n ... -_t -.-_ ....... I __ ......... n_ ........ _....-..1I ___ ....... _ ........ _..,......., 
• • 

EPn"CSCL 
\ 

11 n+2 

=:l 

EPn 
·CHNB·CQBA 

(432) I 
\ 
I 

YJ 
n+2 I 

\ 

EPn·CHNB \ 
(363) 

'tt~\ 
llt I 

I n+2 

I \ n 

fCL It 
STATUS \ ~QB~ ~r-I-r\~~n_-_t __ -r~_~~ ____ ~~ __ ~~ ___ -r ___ -T ___ ~ __ -.-_~ ___ ~ 

~L \.~~ ____ ~~~ 
n-t I 1 If n 

v~ ~432) 
~ \I~--~~~~~ 
L/CL ~(432) 

I Rl \ 

.(432) 

n-t I n .. /'SET .. I n+t 

/'SET , B-MODFF~s8~~_n-~2~~I __ -r __ -.-...-__ ~~ __ -.-__ ~~ __ ~ 
"SET 

I \ I n-t I I I I \ 

~CL #CL I 
4ICL 

~ 
I I 

I _J.- -CL 
[~Jt r 
,~ ~ 

MOFIR2 ~_~I ~n-~2~~_~~ __ I~n~-~t_~ __ ~~ ______ ~ _____ ...... _____ -T ______ ~ ____ ~ __ ...--+ ____ ~ 

, L - -CL T ,l. - - tL n -- n: r--\~ ~- ~., ., MNl!.(OPERAND CALL) 

OP£.RAND-MWB FF \ (CH~B) II I n-2 I r, I n-t 1 II I n I 

I n+t 

AUCON1ROL ~ __ ~~~ __ ~ __ ........ __ ~~~ __ ~I~ __ ~ __ ~n-~t __ ~ __ ~1 ~ 

RESULT ~~~----4 r n-2 I n-t 

NOTE: 5452 

MNB NOT RECEIVED UNTIL 3rd CALL FOR OPER .... NO OF n (PREVIOUSLY FULL OVERLI\P) 

Figure 3-9. Timing Diagram - Memory Busy on Operand Call 



set to produce CHNB at t2. This lack of action prevents the generation o'f 
FS363 and FS432 by the ending pulse for instruction n so that the call for 
n + 2 is not sent over the address lines and the M address of n + 1 is not 
modified. In addition, IR2 is not cleared during the third-cycle. The B­
mod and completing-call FF's are reset, however, by timing signals CT2 and 
CT4, respectively. Thus n is retained in IR2 through the fourth cycle. 
The absence of the MNB signal then causes a repeat operand call to be made 
at to of the fourth cycle (reference heading 3-4). 

The fact that the completing-call FF is reset prevents Cl from bei.ng 
stepped in the fourth cycle. Instead, signal CSCC (figure 3-1; equivalent 
to CSCL) is gated with CTO and the ending pulse (retained from instruction 
n) to send Cl +.0 to the B-adder and thereby permit n + 2 to be called if 
the MNB signal is received on repeat call for operand of n. The failure to 
set the B-mod FF prevents the clearing of IRI and the resetting of the 
status-l FF for n + 1. As shown in figure 3-9, all of the foregoing con­
ditions prevail again during the fourth cycle because of the absence of the 
operand-MNB signal at tl. 

Following the third call for the n operand at to of the fifth cycle, 
the MNB signal is present to set operand-MNB FFI and restore the normal 
sequencing (FS363, 432, and so on). Thus it is evident that the two con­
secutive missing MNB signals result in an increase of 8 microseconds in the 
normal execution time of instruction n. During this period, the execution 
of instructions n - 2 and n - 1 are completed in the arithmetic unit and 
the results are stored in the fast registers (reference heading 3-3). How­
ever, the result of n - 1 is retained in the AU result register beyond the 
fifth cycle and is not cleared out until t3 of the sixth cycle (sixth cycle 
not shown in figure 3-9). Normally each instruction in the AU clears the 
result register of result of last instruction at t3 of the first cycle of 
arithmetic operations. This is true for most instructions although for a 
few instructions the clearing t~kes place during the second cycle of AU opera­
tions. Therefore, the delay in clearing n - 1 from the AU result register 
is due to the delay in getting instruction n into the AU which, in turn, 
is due to the delay in receiving the operand-MNB signal for n. 

3-8. MEMORY BUSY ON INSTRUCTION CALL 

The delay which .occurs in the instruction sequencing when the memory 
is busy on an instruction call is illustrated in figure 3-10 with pre­
viously full overlap conditions again present. The call for n is made at 
t3 of the first cycle but the MNB signal is not received at t4. The miss­
ing MNB prevents the setting of the completing-call FF at t5 which, in 
turn, prevents the resetting of the call FF at t6 and the setting of the 
status-l FF at tl. The remaining parts of the instruction cycle for n - 1 
are carried out in normal fashion. 

The control counter is prevented from being stepped during the second 
cycle by the absence of the completing-call FF signal (CSCL). Instead, 
the call FF output (CSAA) gates CI + 0 to the B-adder. Also notice that 
the ending pulse for n - 1 and signal CSCL (completing-call FF reset) pro­
duce the same effect. However, this effect is incidental and would not 
apply if the MNBsignal was again missing on a second instruction call. 
The call for n (FS363) is then repeated by gating the output of the call 

3-20 



TIME Ct) 

ENDING - PULSE -STORAGE FF (CSA~) 

CALL FF (CSAA) 

CI +0 - B-ADDER 

CH·I - B-ADDE.R 

B-ADDE.R - M-ADDRESS DECODER 

ADDRESS LINES 

""NB (INSTRUCT/ON CALL) 

COMPLETING -CALL. FF (CSCL.) 

STATUS f (CQsA) 

IR1 

S - MOD FF (CSBM) 

I AND A OF IR2 

M OF IR'2 

MNB (OPERAND CALL) 

OPE.RAND -MNB FF 1 (CHNB) 

ENDING PULSE (CHJP) 

AU CONTROL 

RESULT 

o lIP \3 41 5 16 17 01 1 1 2 \3 41 5 16 \7 01 ' 121 3 41 5 1 6 17 01'1 2 1 3 415 6\7 

EPn-1 CL 
·CHNB· COBA I 

EPn-2 " I (432) EPn 
·CHNS· COSj l J (S COBA) 

·CHNS·COBA 
(432) (432) I 

\. ~ (4321 \t. 
L n 1 II ni" I 1 I ni"2 I 

'CL 
I 

'CL kl 

$ ,.L \ III I 
EPn-2 \ (S COBAI I I EPn \ 
·CHNB (3f31 \ I ·CHNB I 

~ (3:31 
\ n+1 

~I~ 
EPn-1 \ 

~~ 
\ I I 

I .CHNB I \ I \ 

i I~ I I I 1 

!ct I I \ I 
I 1 \ \ I I I 

I 

~i 
I 

R\ 1 (ALSO EPn-l q~ I I I 
I 

"T" 
I I I 

n-I I I n I ni"l I 

'" \ 
, 

\ \ 
I \ n-l I I \ n I \ n+I 

·Cl \~ ·Cl I' ~l \' 
®\I 

n-I I I 1.1 n I I \ L n + 1 

I /CL. ~ I /Cl ~ (4321 'Cl ~ (432) 

n-2 1 n-I I (SCSARI n I n+l (432)-
/"SET "- \ \. 

, 
{'sET .~ 

, 
I n- 2 I 

\ n -1 I I \ n I \ 

I fCl tel ~ I Cl 

I n -2 I n-l I I n I 

I "I_.-'"'CL j..-1:"L I 
j. - -Cl 

~t 
~~ 

~ -- Q: --( ( ( 

" t, \~ " II I n-2 I I , n-\ I II , n I 

1 
1 : 

n-2 J n-I I I n 

n-3 I n-2 I n-I I 

n-4 I I n-3 I n-2 I n-\ 

OLIL 21 3 41 5 16 1 7 01 1 1 2 13 41 5 16 17 01 1 1 2 1 3 41 5 1 6 17 01'1 2 13 41 56 17 
NOTE· 

.. NB NOT RECEIVED UNTIL 2nd CALL FOR INSTRUCTION n (PREVIOUSLY FUll OVERLAP) 

Figure 3-10. Timing Diagram - Memory Busy on. Instruction Call 

0]1 \2 3415617 

EPn+I 
·CHNB· COBA 

(432) I 
\. 

ni"3 I 

, 'CL 
EPn+-l \ I 
·CHNB I 1 

~I~ 
1 I 
I I 
I 1 
I I , I 
I I 

~~ 
I 

I I 
I .~ 
n+2 I n+3 

.~ , 
I \ n+2 

tCL , 
I I' n+2 \ 

1. /Cl ~ (432) 
n+2 

r'!>ET " , 
In+l n+2\ 

I ~l 

I n+l I 

I .J- - -Cl 

~~ 
--( 

t, 

I' I n+l 

1 
n+f n+2 

n I n+1 

[ 

011 12 3 415 61 7 
5453 



FF with CT2. The MNB ~ignal is received at t4 to set the completing-call 
FF for n and thereby allow the resumption of normal sequencing of following 
instructions. 

The two calls for instruction n result in a loss of 4 microseconds be­
tween the execution of n - 1 and the resumption of execution of n. During 
this time the ending pulse for n - I is no longer generated due to the 
clearing of IR2. To provide for the ending-pulse function that enables 
the call for n + 1 -and the B-modification of n, the ending-pulse-storage 
FF is set at t4 of the second cycle by gating the end!E!Lpulse for n - 1 
with CHNB and the absence of the status-l FF signal (CQBA). The output of 
the ending-pulse-storage FF (CSAR) is then gated with CQBA for nand CT2 
in the third cycle to produce FS363 and FS432. These actions complete the 
call for n + 1, permit the B-modification of n, and thereby restore full 
overlap. The ending-pulse-storage FF is immediately reset by FS432. 

3--9. LONG INSTRUCTIONS 

A long instruction is any instruction longer than 4 microseconds. The 
previous descriptions in this manual were limited to single-precision 4-
microsecond instructions. However, all double-precision and many single­
precision instructions take more than 4 microseconds to execute. Under 
this heading certain features common to all long instructions are de­
scribed whereas those features peculiar to double-precision operations are 
covered separately under the next heading (3-10). 

The sequencing of instructions immediately before and after a long 
instruction is the same as in the normal continuous operations discussed 
previously. The total time that the long instruction remains in IR2 is 
equal in duration to the execution time required in the AU, but it begins 
before the start of execution and ends before end of execution in the AU. 
The main factor to be remembered with regard to a long instruction is that 
the instruction ending pulse is not generated until the last 4 microseconds 
of the time that the instruction is in IR2. Since the program counter dis­
tinguishes successive 4-microsecond intervals, it controls the generation 
of the ending pulse until the appropriate time. For example, a 30 instruc­
tion (divide order requiring 32 microseconds of execution time) extends 
for 8 program-counter stages (PCO - PC7) and the ending pulse is not gen­
erated until PC7. 

The timing for a generalized single-precision long instruction (n) is 
given in figure 3-11. Instruction n + 1 is called during the first cycle 
while n is being set up in IR2. (The program counter is cleared to zero 
by the ending pulse and CHNB of n - 1; reference heading 3-5.) During to 
of the second cycle, Cl is stepped to n + 2 and the operand call is made 
for n. At t2, operand-MNB FFI is set and at t3 instruction n + 1 is in 
IRI. Due to the absence of the ending pulse for n t nothing else happens in 
the control unit as far as instruction sequencing is concerned. 

In order to step the program counter for the number of stages required 
to complete the instruction, the program-counter-repeat FF (signal CPCW -­
reference heading 3-5) is set during the first t5 after the setting of 
operand-MNB FFl for jnstruction n. If the memory is busy on the operand 
call, then the program counter remains at zero and the same control sig­
nals are produced by the instruction in IR2. Signal CPCW remains on until 

3-22 



TIME (t) 0 I t I 2 I 3 4 I 5 I 6 I 7 0 I t I 2 I 3 4 I 5 I 6 17 0 I '1 21 3 41 51 61 7 0 I ' I 2 I 3 4 I 51 61 7 0 I ' I 2 I 3 41 5 I 6 I 7 0 I' I 21 3 41 5 I 6 I 7 0 I ' I 21 3 4 I 5 I 61 7 

CALL FF (CSAA) 

ct+O_ 8-ADDER 

CHI - B-ADDER 

8-AODER- M-ADDRESS DECODER 

ADDRESS LINES 

MNB (INSTRUCTION CALL) 

COMPLE.TlNG CALL (CSCL) 

IR1 

I AND A OF IR2 

M OF IR2 

MNB (OPER,.,ND CALL) 

OPE.RAND -MN8 FF f (CHNB) 

ENDING PULSE. 

AU CONTROL 

~ESULT 

PROGRAM COUNTER 

CONTROL COUNTER 

EPn-1 
'CHNB 
-CQBA (432) 

n + I 

\ 
\ , 

n+1 EPn-t \ hJ ·CHNB \ 

, ~ \, 

! '"t6, 
Itt 

n I 

n 

I 

(432)-
n+2 

EPn· h 
CSCL -.~ 

n+2 

, 
\ , 

EPn·CHNB \ 
(363) \ 

I 
:CL 
I , 
I 
I 

I I 

9:-,\ ! 
r\. ~ 
'\-I~-'-I....,,---"""'" 

-1-- --I--I-
~'--___ '--___ '--~ _ L _ _ _ _ _ _ __---'L-___ .L-___ .L-....... 

n+' n+' 

... ·CQBA- n+' -[-~ --1--1- EPn·CHNB 

I (432) I--___ '--_r-_'--___ ..L..-___ .L-___ ..L..-_ _ _ _ _ _ _ _ _ __ ....L.. ___ -'-_--r-_-'-___ ....L. __ 

I--_
n
-_, ~_I_+__----L...--..&....-..----L...-= L = = = = =r = = I = _..L..-_---'-_I_+--_---'-_----I 

n- , n 

Y REPEAT FF (CPCW) REPEAT REPEAT REPEAT 

r;;l PR~GR~il--CBcJUN~ER- - r-P-; - - - - -: - I - PC 

__ \. I \ , \. 

1--_1 ,_-_,'..1--'---,:..--...I--__ I....In_-rI_..L.--_I_ ....... n _1 __ ~ _c, , ~ _ _ L 1 ~r--......I.--,I-n.L----r:-~-n +-:-, ----&'----'J 

n-2 I -I-- --1-n-1- I'~ 
I..----'-----""---r---'-----.&...-.......,I- - - 2, LX (n) - - -Ir------I"---x-(n-) --'------.J 

=r.-: .. -=- ==..J" ==:1= ~-n-~Ir-~--n-+~'~--~Ir-'-----'-----'---- n+2 ---L----..L..----.L---Jr-..L..-n-+~3-~ 

-r----T--T-

5454 

Figure 3-11. Timing Diagram -
Long Instruction 

3-23 



after the ending pulse for n is generated. While CPCW is being generated, 
it jams operand-MNB FFI to give CHNB during each t2 - t5 interval which, in 
turn, gates with CPCW to produce the program-counter-step signal (CPCS) at 
each t5. 

During the last program counter stage (Xn in figure 3-11), the ending 
pulse for n is generated to set the program-counter-clear FF which, in 
turn, clears IR2 and resets the program-counter-repeat FF. Normal se­
quencing (Cl + 0 ---. B-adder, FS363, 432 and so on) is then resumed as de­
scribed in previous sections. 

3-10. DOUBLE-PRECISION INSTRUCTIONS 

Double-precision instructions always require more than 4 microseconds 
of execution time and thus everything described under the preceding heading 
for single-precision long instructions applies equally well here. A timing 
diagram of a double-precision add operation in which no delays are en­
countered is given in figure 3-12. This instruction extends over 12 micro­
seconds (program-counter stages PCO-PC2) with two operand references in the 
first and second program-counter stages and two uses of the result chain 
in the second and third stages. The most significant, half (MSH) of the 
operation is executed first and the A and M operands for the least signi­
ficant half (LSH) are then obtained simply by adding 1 to the original A 
and M addresses. 

Starting with the double-precision instruction (n) in IR2, the M­
operand call for the MSH (Mn) is made in the normal fashion at to of the 
second cycle and operand-MNB FFI is set at t2 (reference heading 3-4). 
Signal CHNB is then gated with double-precision control signals from the 
instruction group encoder (CHJP 09, 10, 12, and 74) to set up the M-operand 
call for the LSH (M + In). Signals CHJP 09 and 10 cause the M part of 
IR2 + 1 to enter the B-adder at t5 and CHJP 74 clears Mn from IR2 at t7. 
CHJP 12 then reads the contents of the B-adder to the M part of IR2 at t7 
to store M + In in order to allow repeat operand call if the memory is 
busy. The call for M + In is made at to (4 microseconds after the call for 
Mn) and operand-MNB FFI is set again at t2. 

Meanwhile, the A address for the MSH (An) is sent to the fast reg­
ister selector register in the normal way at t4 of the second cycle (as 
shown in figure 3-12). The two operands (An) and (Mn) then enter the AU 
for execution at to of the third cycle. The second A operand (A + In) is 
obtained by sending A or IR2 + 1 to the B-adder at t2 of the third cycle. 
The +1 is generated by control signal CHJP 77. At t5, A + In is set up in 
the fast register selector register and at t7 the A and M operands for the 
LSH arrive at the AU inputs for the second add operation. 

In order to generate the +1 for the second A-operand reference. sig­
nal CHJP 77 depends on the MNB signal for the second operand call, M + In. 
If the memory is busy, then the first operand (Mn) is retained in the M­
input register (as controlled by AU) and the first A operand must be sup­
plied again to the AU so that the AU can repeat its first cycle. Therefore. 
if the memory is busy (indicated by CHNB), CHJP 77 supplies a 0 instead of 
+1 to the B-adder at t2 and starts the A-input chain control (reference 
heading 3-2). 

3-25 



TIME(t) 0111213415161701112134151617 0111213 4151617J011J21314.1516J7 OL1l2i3 4151617 0111213 

CAll FF (CSAA) 
(432),...... __ .... 1 (432) r--'l~-:--., 

I n+l I EPn·CsCL: L n+2 J 
Cl' ~ r;2 Cl' 

I I W 'I 

~n+l. \ I n~+2 \ : nt;1+3 
Cl+' - B-ADDER I I , 

DECOOER (INSTRUCTION)' (365) I I (365) I I I 

ADDRESS LINES : I, I : \: : 
MNB I I I . _ " I 

(I NSTRUCT ION CALL) , I I " , 
COM P lE T ING ....... ----'--+ ..................... '-:-:---......., 

B-ADDER-M-ADDF\ESS ([36~3) I, I( .~363) \ I 

CALL F F (C SC L) h--.-..;.n:.....-r-.L.-I __ ~n~+..;I,.-_.,.......1 I n + 2 I 
.l-\~~I ___ ~_~\~~I~ __ ~ ___ L-~_-L ___ ~ ___ LI~,~\~_ ...... I~_..J __ 

STATUS-I FF (CQBA) L \ n 1 \ n+l . '- \ n+2 __ 

Ill-I -;;-:;-,\~(320) n /"Cll '1(320) 1 1 n+1 1 '. 1 /1 'C~ \'..,I(:..:3~2:0~)::n:+72~::: 
""C""(7 '.-(432) / ...... CL .(432) / ICl..... (432) 

B- MOD FF (CSBM] n-' I n Ir: 1='---nt-+-'...L:.'----''r'-'-I='--n-+-::2:--'-----
~~~~----~r_~~r----

1 ~(312) 1 \(312)1 1 __ _

I &AOFIR2r-__ n_-~I-,~~I_r-__ -; ____ .-___ n_-r _____ .-____ ~~~~I __ .-_n_+~I--; __ _

C~·r-~~~_~I~_~I_~~~I-'r-_~I~~~(3_'3~)~.~~IL I
PROGRAM COUNTER

B-ADDER - M-ADDRESS
DECODER, (OPERAND) T'r I Q":::' ,,,I,~q "., I "., '~'''q

MOFIR2~---n~--I+---~~----M-n~--~---~---M-+~I-n----~~----~~I-n-+-1--~----­
~--~~~~~--~~~-,r------r--~~~---r4-~~~~-.----
n-I I CL, Mn I CL . --"'M+ln I 1 I CL.'n+1

ADDRESS LINES h ,(314), n(36S) (31~) ... / ~(365) .1 1(314)/ H(365)
~n-I t- _./ f-J ~n (M+ln CSOEJN~~:ERpOEGA~A~; ~ _...J W n+1

MNB (OPERAND CALL] q +-, 0 : (CHJP74) 0 (CPC~) I t, q
OPER AND- M N B F FI "1----'---'........ 4 .. 1----'-......' '"1---"'-----,

CHNB) I n-l I L Mn J L M+ln J I n J I n+l J

M OF lR2+1- B-ADDER

B-ADDER- M OF1R2

ENDING PULSE r---n-_..,.' I
(CHJP 15 -18) f--";';"":""-....I

A OF 1R2+0-
BADDER

B-ADDER-
FR SELECTOR

FR. SElECTOR. REGI~TER

AU CONTROL

READ LINH.­
M-INPUT OF AU

EXECUTION IN AU

A OF lR2+1-
B-ADDER

B-ADDER­
SELECTOR STORAGE

SELECTOR STORAGE

SELECTOR STORAGE
- F R SELECTOR

AU RESULT REGISTER

I (CHJP 09.10)

t-Ell
Mn r (311)
L (CS8M)

I M+ln
LJ- (311)

- ---..... (CHJP '2)

An
DOPERAND

An
RESULTD

An A+ln

I I n+l J

p (431) P (431)

OPERAjDC!!] OPERAjD !A+ln! iESULT~ ~ESULT A+ln

--~--n~-~I~---.1r-~------~----~~-n~~~----~------~-,J

--~------r-~----------~------------~-------r-------r-~ I /" An A+ln
(300) 0(380) 0(380)

Mn M+ln t (370) t~ (370)

An+Mn A+ln + M+ln

A+ln .1 A+ln

OP_EI""

0 "C:':~""""' __ -:A_n....l~_4_2_::_~_~r-nI'I-,_6-Il-:A-+-:-ln....lI~-A..,+/r-n """'---,,.-,--:---1

(434)0 (434)0

J
n-l I An' I 1L.....,_A:;:.+;..;I;.;..n·_-I

An' 1 A+ln'

4151617

0(426), 0(426,

I An' - - 1r---':A..,.+I:-nl""'· --
~"""Ir-:'-'---- I

STORE RESULT IN FR

3-26

01112)341516170111213415161701112)34151617 0111213 4151617 01112131415)617 011121314151617
5455

Figure 3-12. Timing Diagram - Double-Precision Instruction

The result storage for the MSH is set up in the third cycle (program­
counter stage In) by first sending An + 0 to the B-adder at t4 and then to
selector storage with FS421 at t6 (reference heading 3-3). For a double­
precision addition, the result for the MSH is not complete until the LSH
has been executed. (The result of the first add operation is held in the
AU until the LSH is finished.) Hence, the AU result register is not filled
with the result for the MSH until t7 of the fourth cycle.

The result of the MSH operation is transferred from the AU result ~eg­
ister to the selected fast register with FS426 at t2 of the fifth cycle.
Similarly, the result address for the LSH is set up at t4 of the fourth
cycle (CHJP 54 and 61) and sent to selector storage. At t6 of the fifth
cycle t the contents of the selector storage (A + In) are sent to the fast
register selector register with FS434. The LSH result (A + Int) is then
stored in A + In at t2 of the sixth cycle.

There is one variation in the sequence control regarding double­
precision multiply and divide instructions. Because of the way in which
the arithmetic unit operates on these instructions, the LSH part of the
operation must be started first and then the MSH. To take care of the M­
operand call for the LSH (M + In), a + 1 (unit add) is generated and sent
to the B-adder during the normal B-modification operation so that the mod­
ified M address is increased by 1. In order to provide for this special
condition to the B-modification process, a separate set of decoding gates
is attached to ~Rl so that the double-precision multiply and divide orders
are detected in adequate time.

After the successful call for M + In t signal CHNB is gated with in­
struction control signals CHJP 09, 11 and 74 to set up the M-operand call
for the MSH (Mn). Signals CHJP 09 and 11 cause the M part of the IR2 minus
1 to enter the B-adder at t5 and CHJP 74 clears M + In from IR2 at t7.
Thus, the M-operand select process is just the reverse of that shown in
figure 3-12 for a double-precision add operation.

The same reversal of operand selection is also provided for in obtain­
ing the two A operands for a double-precision multiply or divide operation.
The A operand for the LSH (A + In) is obtained by sending A of IR2 + 1 to
the B-adder at t2 of the second cycle. and then to the fast register selec­
tor register at t5. In this case the +1 is generated by control signal
CHJP 35. The second A operand (An) is obtained simply by sending A + 0 to
the B-adder in the normal way at t2 of the third cycle.

The result chain control is not affected by multiply and divide orders
since the result is not stored until both halves of the operation are com­
plete. Thus, the result for the MSH is stored first and is followed by the
LSH result as shown in figure 3-12.

3-11. FAST REGISTER ACCESS CONFLICTS

The use of the fast registers to store A operands~ results, and index
information raises the possibility of conflicts in the timing of control
operations during normal (overlapped) instruction sequencing. The con­
flicts arise when access to a fast register for certain information is made
prematurely. This situation can occur simply because of the nature of the
program sequence. For example, a certain instruction, n, may require as an

3-27

A operand the result of the preceding instruction. n - 1. In this case the
A-register address for n would be the same as the result address of n - 1.
Because of overlap, the result of n - 1 will not yet be available from the
AU at the time the A operand for n is selected and a conflict occurs. An­
other example is where the M-operand address of an instruction is to be
modified by the result of a previous instruction.

The control unit includes additional logic circuits which detect these
conflicts and automatically correct for them when they occur. The instruc­
tion execution time mayor may not be increased depending on the type of
conflict. Detection is accomplished by means of the fast register selec­
tion comparator which continually compares the result address in selector
storage with the addresses of fast registers selected by any following in­
struction during the time that the address is in selector storage. See
control block diagram. figure 2-1.

The I-microsecond access time of the fast registers permits them to be
addressed four times during anyone 4-microsecond period. On the other
hand t a single instruction may require up to four different fast register
references over the period of the complete instruction cycle. The timing
for these references are:

(1) B-register address (t3)

(2) A-operand address (t5)

(3) Result address (t7)

(4) M-operand address when M address specifies a fast register (tl).

Therefore t during a single 4-microsecond period of overlapped operation,
the fast register selector register may hold up to four different fast reg­
ister addresses for three different instructions as follows:

(1) B-register address for instruction n

(2) A-operand address for instruction n - 1

(3) Result address for instruction n - 2

(4) M-operand address for instruction n when M specifies a fast reg­
ister.

The selector storage holds the result address for an instruction for
4 microseconds while that instruction is being executed in the AU. So long
as the result address stored in selector storage is not equal to any of the
fast register addresses of following instructions, no conflicts can occur
and the comparator will produce an inequality signal to permit normal con­
trol operations to proceed. If the comparison process discloses two ad­
dresses that are alike (that is, in conflict), an equality signal will be
generated to initiate variations in the sequence control.

3-28

T1ME(t) 011 1 2 13 41 SI61 7 0111 2 1 3 41 S1 61 7 0\. I 2 l3 4JS\6\7 01 q 21 3 41 S 1 6 1 7

IR1 I (I. A,B,M,) n I I (I,A,B,M)n+l I I (I,A,B,M)n+2 I ,
IR 2. (1 AND A) I (I, A) n I I (I,A)n+l I

I
IR2.(M) Mn (MODIFIED) I Mn+I (MODIFIED)

OP. RES. * OP. RES. * OP. RES.

FR SELECTOR RE615TER ! Bn ! An-l!An-2 ! Mn ! Bn+. ! An ! An-. I Mn+.IBn+2jAn+l1 An J

FR READ OUT

FR R£GENERATION PFRS

(320) 'J[J0 (434) (433f)J '~ ~ f , ,
(380) I I I b

(Bn) (Mn) I I I (An)
I I I

(42S) 0 0 :0 I I I
I I I

(Bn) (Mn) • (An) • • • '5E:LECTOR STORAGE: (421) I An (RESULT) J

AU CONTROL (300) I n I

A.U RESULT REGISTER * M-OPERAND ADDRESS I n
IS A FAST REGISTER

AU -FR (426)0

01.1 2 \3 41S1617 o 11 12 13 41S1617 o I ' 12 I 3 41S1617 01. 1 2 13 41S1617
5456

Figure 3-13. Timing Diagram - Fast Register References

The actual conflicts in timing that can occur with the result address
for instruction n (An) stored in the selector storage are as fOllows:

Time Conflict

t7 B n + 1 = A n

tl M n + 1 = A n (M is a fast register address)

t3 B n + 2 = A n

t5 A n + 1 = A n

The case which occurs at t7 does not involve the fast register selector
register and is discussed further in section 3-13. An overall timing dia­
gram of all fast register references which shows these conflict possibili­
ties more clearly is given in figure 3-13. The next two headings cover the
details of how the various conflicts are resolved.

3-12. OPERAND REFERENCE (A REGISTER). Fast register operand references
include the normal A-operand address (AA) and the case where the M-operand
address specifies a fast register (999AA). Conflicts between AA and the
result address of the preceding instruction can occur at t5; those between
the result address and 999A~ at tl. The logic for handling these con­
flicts is shown in the fast register chain control for the A- and M-inputs
to the AU; figure 3-2.

The A-input chain selects the A operand and supplies it to the A-input
pulseformers of the AU (reference heading 3-2). Normally, FS3BO g~tes the
contents of the selected fast register to the AU at t7 if the inequality
FF is set by signal CAAL from the comparator. However, if the comparator
detects equal addresses, the equality FF is set by signals CAAM It 2 to
produce signals CHBB and CHBG. This action indicates that the result of
the preceding instruction, now in the result register of the AU, is to be­
come the A-operand input for the current instruction. Consequently at t7
FS381 is generated instead of FS380 to gate the result from the AU back to
the A-input pulseformers and no time is lost. See control block diagram,
figure 2-1.

The odd-even check on the A-input pulseformers is not instituted in
this case since it is intended as a fast register check only. Therefore
FS422 is not generated whenever the equality FF is set instead of the in­
equality FF (reference heading 3-2).

The case where the M address specifies a fast register is handled in
a similar manner by the pair of equality/inequality FFts associated with M­
input chain control logic; figure 3-2. If an inequality condition exists,
the contents of the selected fast register are transferred to the M-input
register of the AU with FS373 and the information is checked with FS422
(reference heading 3-2).

If the result address for the preceding instruction is equal to the
fast register M-operand address, the contents of the AU result register
must be gated back into the AU as with the case of equality with the A in­
put. In this case the equality FF is set (signal CHAB) and at t7 FS371 is

3-30

generated instead of FS373 to gate the AU result directly to the M-input
register and no time is lost. In addition FS422 is not generated for the
same reason given for the A-input equality case.

3-13. ADDRESS MODIFICATION (B REGISTER). The B-modification operation
takes place as soon as a new instruction is set up in IRI. The B digits
are transferred into IRI along with the rest of the instruction word (FS320
at t2), and also directly into the fast register selector register (FS320
and FS432 at t2). As shown in the simplified timing diagram of figure 3-13,
the B-register references for both n + 1 and n + 2 occur before the result
is stored for instruction n. Therefore, a conflict can occur for either of
these references. The B digits for n + 2 are in the fast register selector
register during t3 and t4 of the time that An is in selector storage so
that a comparison between the contents of the selector register and selec­
tor storage at t3 will detect any conflict.

The selection of the B register for n + 1 is made before An is in
selector storage. However, the B digits for n + 1 are still in IRI when
An enters selector storage so that a comparison is also made at t7 between
selector storage and the B part of IRI (figure 2-1). Thus, two comparisons
are made for every B-register selectionj that is, with the result addresses
of the two preceding instructions.

As shown in figure 3-1. the output signal from the B-Mod FF (CSBM) is
applied with timing signals CT3 and CT7 to the setting gates of the B­
modification comparison FF's. Oepending on the comparator signals (CAAM or
CAAL) , either the equality FF (CSBG) or the inequality FF (CSBS) will be
set to control the sequencing. Unlike A-register conflicts, a B-register
conflict always causes some loss in time. The timing diagrams given in
figures 3-14 and 3-15 illustrate the delays caused by these conflicts.

Figure 3-14 shows the case when equality is detected at t3 between
the B-register address for instruction n and the result address of instr~c­
tion n - 2i that is. the M address of n is to be modified by the result of
n - 2. During the first cycle of the illustration, the call for n + 1 is
made and the completing-call FF is set at t5. Instruction n is set up in
IRI and the B-Mod FF is set at t3 so that the normal B-modification process
takes place. However, the equality signal from the comparator (CAAM) then
sets the equality FF (CSBG) at t4 to indicate that the wrong B-modification
took place and therefore must be repeated. Signal CSBG is gated with CTO
to produce CSAV which performs the following functions:

(1) With completing-call FF, gates Cl + 0 to B-adder to allow repeat
call for n + 1. Notice that CSBG inhibits the +1 from going to
the B-adder as is usual with the setting of the completing-call
FF.

(2) Resets completing-call FF to prevent n + 1 from entering IRI.

(3) Sets ending-pulse-storage FF to repeat call for n + 1 and repeat
B-mod for n.

(4) Sets block-not-busy FF to prevent CHNB and also to clear wrong
modified M-address from IR2.

3-31

TIME (t)

FF (CSBS)

= FF (eSBG)

ENDING-PULSE-STORAGE FF (eSAR)

CALL FF (CSAA)

CI+O-B-ADDER

CI + 1 - B-ADDER

B-ADDER - M-ADDRESS DECODER

ADDRESS LINES

MltB (lNsTRueTIO~ CALL)

COMPLETING- CALL FF (cseLl

B-CO~PARISON

STATUS-I FF (CQBM

IRI

B-MOD FF (CSSM)

I ANDAOF IR2

M OF IR2

MNB (OPERAND CALL)

OPERAND -MNB FFI (CHNB)

BLOCK-NOT-BUSY FF (CHXA)

ENDING PULSE (CHJP)

AU CONTROL

RESULT

0 11 2 1 3 41 5 16 P 01' 1 2 1 3 41 5 16 17 01 1 12 1 3 415 61 7 0 Ii 21 3 4j 5 6 L 7 0 '1 2 13 415 61 7

8 ~ 8 S n-I I n I n+1 1 n+2 I
n J

EPn-I·

I~
EPn· EPn+I· EPn+2·

CHNB·CBQA CHNB·CQBA CHNB·CQBA CHNB·CQBA
(432) I (8CQBA) (432) I (432) I (432) I

\ (4'11) i\ -)(432) " \ "-
I n+I I ~' 'I

n+I I I n+2 I I n+3 I L n+4 J
CL'

' I CL'

~ ""
CL' CL' CL' n+I EPn-i. , I I I I P ,~ .. I ~ ,Pm

,

~f~
I I (aCQBA) I I CHNB I I CHNB I I CHNB I I
I I I '(363) I I

i I~
I I

: I~
, I

:2i:
, I ,

I I''''': .4:: I I I I , I , I
I

I I I I I

ql~
I

R'~
I

~I~
I

I ~I. I I I p\ I I I I I I I
I I

I ~CL, ~ I I I I I I I

n I n+I J I n+I I n+2 J n+3 L n+4

-~ , =A OF n-2 # # # " \ # # -~ 1# # -~

" #

\ n I
\ n+I I n+2 I n+3 I \ \

CL I' I ~CL \\
CL "

'CL I'
=g)~ n-I '.I n I I I II n+I : I '.1 n+2 : I \1 n+3

I Ct:(#)~(432) • (432) I /""!L ~ (432)
I

1 "'~L ~(432) L "'~L ~ (432)

n-I I WRONG B-MOD (n) I CORRECT B-MOD (n) 1 n+I I n+2 I n+3

'SET '\ I -, I t ~ I ('~ I t ~

in-I I n I
I

\ I n+I I I n+2 n+3 \ \ \
I fCL (313) fCL

,
CL

, I I , , 1 , ~
I
I

n-I 1 WRONGM (n),' CORRECT M (n) I I n+I I n+2 I

I .J. --Cr (314~_-Cr I J..--cr I 1---- I .J-_--'P

qh ~ -- D ,t-- qh ~--
q~~

--
q~~ --

(=FF) I (CHXD) l.l I

II In+I I
I

I I II , n I' 'n+I " I n+ 2 ,
, , I n I I I I I I

: , I I I I I I

n-I I n n+I n+2 n+3

n-2 1 n- 1 I n n+I I n+2

n-3 I n-2 1 n-I I n C
0 11 2 13 415 16 1 7 01 1 12 1 3 41 5 1 6 17 01 1 1 2 j3 415 61 7 0 1 1213 415 617 0 1 12 13 415 61 7

NOTE:
FAST REGISTER REQUIRED FOR a-MODIFICATION OF n RECEIVES RESULT OF n-2 (-AT t3)

5457

Figure 3-14. Timing Diagram - B-Register Conflict at t3

The block-not-busy FF (signal CHXA--shown in figure 3-5) blocks the
setting of either operand-MNB FF by a true or simulated MNB signal for in­
struction n at t1 (reference heading 3-4). This blocking is necessary
since the wrong B-modification is completed with the old B-register content.
the wrong memory operand is called t and the instruction goes to IR2 and is
decoded while it is at the same time retained in IRI for the repeat B-mod.
The clearing of the wrong M address from IR2 is produced by setting the
program-counter-clear FF with signal CHXD as shown in figure 3-8 (reference
heading 3-5).

Instruction n is retained in IR1 because of the absence of the in­
equality FF signal (CSBS) at t1 of the second cycle. The B-mod FF is set
again by FS432 (from ending-pulse storage FF) to repeat the B-mod operation
for n. Since CSBG remains on through t2 of the second eyelet the B-register
comparison at t7 is ignored by blocking the setting of the inequality FF at
this time.

The second B-modification operation will use the correct modifier
since by this time the result of instruction n - 2 is stored in the fast
register. The correct operand call for n is made at to of the third cycle
and the MNB signal generates CHNB for n to restore full overlapped opera­
tion. As indicated in the timing diagram of figure 3-14. this conflict
causes an increase of 4 microseconds in the effective execution time of in­
struction n.

The last case of fast register conflict occurs when the M address of
an instruction is to be modified by the result of the preceding instruction.
The timing for this case is shown in figure 3-15 where the result address
of n - 1 is equal to the B address of n. The B-modification of n is
started in the usual way at t3 of the first cycle. At t7 the result ad­
dress of n - 1 is in selector storage and the equality FF is set to produce
CSBG at to of the second cycle. The variations in control operations ini­
tiated by CSBG are similar to those described for the preceding case in
figure 3-14 and an initial delay of 4 microseconds results.

The next B-register comparison at t~ will also result in a case of
equality since this is the same comparison as the one that produced
equality at t7. This situation occurs because FS432 comes on at t2 of the
second cycle to gate the B digits of n from IRI to the fast register se­
lector register. Since the selector storage still contains An - 1, the
comparator will detect the same equality condition. Thus. signal CSBG will
again be generated to institute another 4-microsecond delay in the sequenc­
ing process so that the total time lost is 8 microseconds. The temporary
delay situations and the resumption of normal sequencing is controlled as
described previously for the equality-at-t3 case.

3-33

TIME (I) 0 I I I 2 I 3 4 I 5 I 6 I 7 0 I' I 213 415 I 61 7 0 I I 12 I 3 4 [5 I 6 17 0 I' 12 1 3 4 1 5 1 6 I 7 0 I '1 21 3 4 I 5 I 6 I 7

~ FF (C5B5)

= FF (CSBG)

ENDING-PULSE-STORAGE. FF (eSAR)

CALL FF (CSAA)

Cl TO - B-ADDE.R

C1+1 - B-ADDER

B-ADDER - "I-ADDRESS DECODER

ADDRESS LINES

MNB (INSTRUCTION CALL)

n-I J ~

EPn-I'
CHNB'COBA

(432) I
" [n+1

II

\

~ ~~~t
I
I (363)
I

i4: \
\
\
\

I
I

n 1

~ I.. (8 COBAI
I", j,(432)

1 I '~I [n+1

CL' ~'" 'i \ II I

" I
1 40tlJI \
I 1(8 \
I / I COBA) \

I(~" , I I I
I I I

I I I

n

I
CLf

I
I
I
I
I
I
1
I
I
I
I
I

I

t"r.+r-l
I...~(8COBAI
I " j,l' 1(,-,4.::.32",1~_-,

n 1 a
EPn·

CHNB·COBA
(4321 I

\
I "I 1 n+I 1

~1(4:'1l i: i CL~ \
'I I I
'I I

1(401) 'I \ n+2 t~~8 I

I)1(8 I I ~(ct3613) II

1 n+2

\ / ICOBA I
I (rl363) I " L \ I I

1
CL'

I
I
I
I
I
I
I
I
I,
I
I

n+1 1 ~

EPn+l·
CHNB·COBA

(4321 I
" I n+3 I

\ CL~
\ I

~ ~~~~.
\ I
I I

'~
I I
I I

I I I
I I I
I \ I
I I I
I I
I I R~

II ql
: ~CL ~

n 1 n+ 1 1 n+l
~~

n+2 J n+3

i i h\ i R\
I ~CL ~ ~ i I ~

COMPLETING-CALL FF (CSCLl 1-'--:'-:-....... -11)-1 1'--............ n.L.+~I:---..-L~I -'--....... -:---..I...:"r-''--..J...-l

tR1

5TATU~~~O;:;;~:~~ t~i~==:'~\~~~=========~====:===~=~n====~p=~,====:=~+~=======~~~=;I==:~,~~~=n=+='===~#=~~i~==~\:~~~n=+~2====~F~
fCL \~ \ \ .CL It .CL it

-;.;:-Tl I.! \ n \ 1 1 \1L-..-.....;n:;..+..;,I,---.-,...I-,;1 \l-I -n-+~2--t
~*I t (432) t (432) t (4321 ~Cr(.. lt (432) 1.- C{(.. I\ (432)

8-MOD FF (CSBM) n-I 1 WRONG B-MOo.(n) I WRONG B-MOD (nl I CORRECT B-MOD (n) 1 n+l 1 n+2
~---+~----~~--~~~----.---~-.~~--.---~~------.-----~~----~

'SET \ '", I I -.... I , SET I hET

I ~ A OF IR2 n-l 1 1 \ nil "+ I I I n+2
~--~I--r--_~~C;"L--~------~--~rC-L--r-----~---'~C-L--,-----/~r--,.r~IL--~----~1~---7'cC;"L~

MOF tRl 1 n -1 I WRONG M (~j WRONG M (nl CORRECT }.lInl I n + 1 /

MNB (OPERAND CALL)

OPERAND-MNB FFI (CHNS)

BLOCK-NOT-BUSY FF (CHXA)

ENDING PULSE (CHJP) 1-_...::....:.....,...._..L._-r ___ -,. ____ ,.-'--'--_.,.-___ -r ___ -,-_--IL;...._,.-,.;,n...;+...;I_-,-_--II..;,n;..;+..;:2=-j n-I 1 n

NJ CONTROL n-2 1 n -I I I n 1

RESULT n-3 1 n- 2 1 n-l

SELECTOR srORAGE n- 2 I n-I I I I

o I' I 2 I 3 41 5 161 7 oJ '12L 3 41 5 161 7 0 I ! 121 3 41 5161 7 0 I I I 2 I 3 41 5 I 617 0 I I I 2 13 4 15 16 17

NOTE - FAST REGISTl!.R REQUIRED FOR 8-MODIFICATION OF TI
RECEIVES RESULT OF TI-f (= ~T t7)

Figure 3-15. Timing Diagram - B-Register Conflict at t7

5451

SECTION 4

SUMMARY OF ENDING PULSE FUNCTIONS

4-1. INSTRUCTION ENDING PULSE

All instructions generate an ending pulse (CHJP 1S t 16, 17, 18, or 79)
during the last program-counter step used by the instructionj that is, dur­
ing the 4-microsecond period (t6 through t5) immediately preceding the last
4 microseconds that the instruction is in the arithmetic unit (AU). Signal
CHJP 79 is the ending pulse for unconditional transfer of control opera­
tions (instructions 90,~9lt and 92). It is also used for index instruc-

. tions 80 and 81 which are sequenced as unconditional control transfers
until a signal is received from the AU indicating that control must be re­
turned to the main programj that is, the sequence control for instructions
80 and 81 assumes that the transfer of control will normally occur. (The
details of unconditional transfer of control operations are covered in
Instruction Sequence Control, Part II. Additional references to operations
covered in part II are made s imply to "Part II.")

Ending pulses CHJP 15 through 18 are identical in function and one or
another of these is generated for any instruction other than the five dis­
cussed in the preceding paragraph. The function of the ending pulse is to
control the overlapped sequencing of following instructionsi that is, the
ending pulse indicates that control unit operations are completed for a
particular instruction (apart from the result chain control operations
which are carried out automatically once they are started) so that the fol­
lowing instructions in sequence can be advanced to the next phase of the
instruction cycle. Most of the ending pulse functions are conditional
since they depend on the results of other events in the contr~l sequence.

As shown in figure 3-1, signals CHJP 15 through 18 are buffed together
to produce three main control lines (CHJQ-lt -2, -3) which are, therefore,
all active for the duration of any normal ending pulse. The unconditional
transfer ending pulse (CHJP 79) activates CHJQ-2 and CHJQ-3 only.

The functions performed by the ending pulse and the conditions under
which they occur are listed under headings 4-2 through 4-8. Headings 4-2'
through 4-5 assume normal continuous operations and ignore the results of
operation in noncontinu,ous or no-overlap modes. Headings 4-6 and 4-7 dis­
cuss those functions affected by noncontinuous and no-overlap. Heading
4-8 summarizes the functions of the ending-pulse-storage FF. The functions

4-1

are grouped according to the relevant CHJQ line, enabling the difference
between the functions of the normal and unconditional transfer ending
pulses to be ascertained.

4-2. ENDING PULSE FUNCTIONS FOR NORMAL CONTINUOUS OPERATION

The ending-pulse summary here is based primarily on normal full over­
lap of instruction execution where the instruction in which the ending
pulse occurs is designated as n. In this and the following headings refer
to the simplified logic diagram of figure 3-1, which shows the generation
of most of the function control signals associated with the ending pulse.

4-3. ENDING PULSE CHJQ-2

Signal CHJQ-2 performs the following functions for instruction n if
operand--MNB FFI is set (signal CHNB t real or simulated) during the same
program counter stage:

(1) Clears IR2 (FS313, 314)

(2) Clears program counter to zero (CPKA)

(3) Sets ending-pulse-storage FF if status-l FF (CQBA) is not set
(reference heading 4-8).

If the ending pulse occurs during a cycle in which an operand memory refer­
ence is made and the MNB is not received, then IR2 and the program counter
are not cleared and a delay in the sequencing results (reference heading
3-7).

The functions of CHJQ-2 are blocked under certain conditions. These
conditions result in setting the block-not-busy FF (CHXA) which, in turn,
blocks CHNB and thereby blocks the normal functions of CHJQ-2. These con­
di tions are:

(1) B-register conflict for n detected by equality at t3 or t7
(reference heading 3-13).

(2) Control transfer if n - 1 was a conditional transfer (part II).

(3) Control transfer if error or contingency in n - 1.

4-4. ENDING PULSE CHJQ-3

set:

4-2

Signal CHJQ-3 performs the following functions if operand-MNB FFI is

(1) Calls n + 2 if MNB on call for n + 1 (FS363, 365). If the memory
is busy on call for n + 1, ending pulse for n still generates
FS363, 365 but this is superfluous since repeat call for n + 1
is made by call FF. Also, calls M (M is transfer-of-control ad­
dress) where n is an unconditional control transfer instruction
(part II).

(2) Generates FS432 if ,status-l FF is set (CQBA), indicating MNB on
call for n + 1. FS432 performs the following functions:

(a) Sets call FF which, in turn, sets completing-call FF (CSCL)
if MNB on call for n + 2

(b) Sets B-mod FF (CSBM) which controls B-modification for
n + 1 and puts modified M address and I and A parts of IRI
in IR2 (FS311. 312, 400, 410, 422, 425). Signal CSBM also
alerts the equality/inequality FF's (CSBG, CSBS) for B~
register comparison operations for n + 1

(3) Sets .ending-pulse-delay FF (CSPA) for n. Signal CSPA performs
the following functions:

(a) Sets status-3 FF (CQBC) to indicate n is in last cycle of
execution time (reference heading 5-4)

(b) Sends ending pulse to AU (CSPB) to clear AU instruction de­
coder, program counter, and static control FF's and for syn­
chronization check with AU ending pulse

(c) Provides pulse (CSPC) to stall FF circuits (RDF) to indicate
computing unit is not stalled.

4-5. ENDING PULSE CHJQ-l

If the MNB signal is not received on the operand call for instruction
n t the instruction is retained in IR2 and the ending pulse remains on.
(This condition is applicable only if CHJQ-l occurs during a cycle in which
a true memory reference is madej that is, in 4-microsecond single-precision
and 8-microsecond double-precision memory reference instructions). If,
then, the instruction MNB signal is received on the call for n + 1 two or
more cycles before the MNB signal is received on a repeat operand call for
n, the retained ending pulse is gated with the reset output of the
completing-call FF (signal CSCC) to give Cl + 0 to B-adder (FS401, 411, and
no unit add). This action permits the call for n + 2 to be made when the
operand-MNB signal for n is received. See timing diagram in figure 3-9.

These functions of CHJQ-l are required in two other cases:

(1) Where n is a long instruction and CHJQ-l occurs two or more
cycles after the MNB signal is received on the call for n + 1
(figure 3-11).

(2) Where the MNB signal is not received on the call for n + 1; but
this is superfluous since, in this case, the call FF (normally
reset by the completing-call FF) performs the same function
(figure 3-10).

Signal CHJQ-l is not generated during unconditional control transfer
instructions for reasons which are given in part II.

4-3

4-6. ENDING PULSE FUNCTIONS FOR NONCONTINUOUS OPERATION

In noncontinuous operation the computing unit stops when an endirrg
pulse occurs. The stop function is produced if the stop FF is set while in
continuous operation, or if the computing unit is being operated in either
the one-instruction or multivibrate mode. (The details of the logic and
timing of noncontinuous operation are covered in section 7.) Two
noncontinuous-operation signals, CNEA and CNEB, (generated by gating the
stop FF signal (CNBB) and the multivibrate FF signal (CNBF)j shown in fig­
ure 7-1) are used to prevent further sequencing of instructions by blocking
three of the normal functions of the ending pulse as shown in figure 3-1.
The normal functions that are blocked are:

(1) Call for instruction n + 2 (no FS363, 365)

(2) B-modification of n + I, and control counter step to n + 3 (no
FS432)

(3) Setting of ending-pulse-storage FF since, if mp.mory is busy on
call for n + 1, this call is repeated by call FF. Thus, if the
ending-pulse-storage FF were set it would call n + 2 and again
set the call FF (when status-l FF is set for n + 1).

The other normal functions of the ending pulse (clearing of IR2 and
program counter, and setting of ending-pulse-delay FF) are still carried
out in noncontinuous operation.

4-7. ENDING PULSE FUNCTIONS FOR NO-OVERLAP MODE

The no-overlap mode is combined with either a continuous or noncon­
tinuous operation in which a new instruction is called only at 20-
microsecond intervals, assuming minimum-length instructions and no memory
reference conflicts. (The details of the logic and timing of no-overlap
operation are described under headings 7-6 to 7-8.) The only ending pulse
function directly inhibited by the no-overlap signal (ECDCS - from switch
on engineer's console) is the call for a following instructionj that is,
the generation of FS363 by the ending pulse is blocked (figure 3-1). How­
ever, ECDCS also blocks any instruction call by the ending-pulse-storage
FF, and blocks the setting of the call FF by FS432.

The effective functions of the ending pulse in no-overlap operation,
therefore, are:

4-4

(1) Clearing IR2

(2) Clearing program counter

(3) Setting ending-pulse-storage FF (since status-l FF is not set be­
cause next instruction was not called) in order to set the B-mod
FF for next instruction, when status-l FF is again set.

(4) Gating Cl + 0 to B-adder (since completing-call FF is not set),
but the B-adder output is not used and this is superfluous.

It should be noted that since in no-overlap operation all the normal
means of making the call for a new instruction are blocked, special pro­
visions must be made. Thus, signal ECDCS is gated with the absence-of the
status-l FF signal (CQBA) and the status-4 FF output (CQBD-reference head­
ing 5-4) to set the call FF which gives Cl + 0 to the B-adder and B-adder
to the address lines (figure 3-1). This gate is inhibited, however, when­
ever the computing unit is operation in the multivibrate or one-instruction
mode (reference heading 7-8).

4-8. ENDING PULSE STORAGE FLIP-FLOP

The ending-pulse-storage FF (signal CSAR) is used to provide a sub­
stitute ending pulse when conditions are such that the normal ending pulse
(CHJQ-3) is either not present or is prevented from maintaining sequencing.
Under conditions of normal overlap the ending pulse for an instruction n
controls the B-modification for n + 1 and the call for n + 2. If n + 1 is
subject to a delay because of failure to receive the MNB signal (or because
n is an unconditional control transferj part II), then the ending pulse for
n is unable to initiate the B-modification of n + 1. Consequently, the
ending pulse is stored so as to initiate the B-modification of n + 1 and
the call for n + 2 when n + 1 is finally received.

Referring to figure 3-1, if the MNB signal (CGNB) is not received on
call for n + 1, the completing-call FF will not be set which, in turn, pre­
vents the status-l FF from being set. Thus, signal CQBA is not generated
and its inhibiting effect is removed from the setting gate of the ending­
pulse-storage FF. The call FF then makes repeat call{s) for n + 1 until
the MNB signal is received. The status-l FF is then set to give CQBA which
gates with the output of the ending-pulse-storage FF at t2 (signals CSAD
and CSAE) to control call for n + 2 (FS363) and B-modification for n + 1
(FS432). The ending-pulse-storage FF is reset by FS432 (via signal CSBK);
also, it may be prevented from being set by the noncontinuous operation
signal (CNEA) as described under heading 4-6. (The reference timing dia­
gram is in figure 3-10).

If n + 1 is received without delay but is subject to a B-register con­
flict, then an incorrect B-modification is initiated by the ending pulse of
n but n + 1 is retained in IRI and the B-modification must be repeated.
Therefore a substitute ending pulse is provided by setting the ending-pulse­
storage FF to control this repeat B-modification.

In this case signal CSAV (figure 3-1) is generated to set the ending­
pulse-storage FF. It also sets the block-not-busy FF which, in turn,
blocks the setting of operand-MNB FFI so that signalCHNB is not generated.
Hence, signal CQBA is gated with CSAR instead of with the normal ending
pulse and CHNB to control the repeat call for n + 2 and the repeat B­
modification of n + 1. (Reference timing diagram figure 3-14.)

The conditional transfer instructions, when they transfer control, re­
quire the ending pulse substitute to enable the B-modification of the first
instruction obtained from the transfer-of-control (M) address, and also to
enable the call for the next instruction, M + 1. The details of these
operations are given in Instruction Sequence Control, Part II.

4-5

The substitute ending pulse is required to control the B-modification
of the first instruction executed when starting, since there is no previous
instruction in IR2 to provide an ending pulse. If starting with IRI empty,
the ending-pulse storage also controls the call for the next instruction.
Thus the start signal (C~aA) gives CSAR to control the B-modification of
instruction n and the call for n + 1 (reference figure 2-5).

When starting after a stop, with instruction n already in IRl, CSAR
controls the B-modification for n but does not call n + 1. (The address
of n + 1 is not available at the output of the B-adder at this time and
the generation of FS363 by CSAR and CQBA is blocked by CNBA, figure 3-1.)
In this case the call FF makes the call for n + 1.

When the computing unit is operating in the no-overlap mode, the
ending-pulse-storage FF is needed to give FS432 in order to control the B­
modification for the next instruction. This is similar to the case of
failure to receive the MNB signal for n + Ii that is, the ending pulse is
prevented from performing normal sequence control functions and is there­
fore stored until the next instruction is received in IRI.

4-6

SECTION 5

INTRODUCTION TO STATUS CONTROL

5-1. STATUS CONTROL

The status-l FF, which has been dealt with extensively throughout this
manual, stores information concerning the early phases of the execution of
an instruction. This flip-flop is one of a set of four status-control flip­
flops which are used to monitor the progress of an instruction through the
various stages of the instruction cycle in the control unit. The status­
control flip-flops, which are designated as status-I, status-2, status-3,
and status-4, are normally set by appropriate signals in a sequential fash­
ion for anyone instruction beginning with the B-modification portion of
the instruction cycle. The time during which each flip-flop is set corres­
ponds roughly to the instruction stage as follows:

Status-l B-modification

Status-2 Operand select

Status-3 Execute

Status-4 Result

Except for status-I, these flip-flops are not used to any great ex­
tent in normal sequence control, as covered in this manual. The status
flip-flops as a group, however, indicate the overlap status of the instruc­
tion sequencingi that is, they indicate how many instructions are in the
control unit at anyone time and the status of each. For example, whenever
the normal sequence of instructions is interrupted either by a programmed
transfer of control or by a transfer to the error or contingnecy routines,
the point at which the interruption occurs is automatically recorded for
future reference by the program. The combination or status flip-flops
which are set enables the control unit to derive the point at which the in­
terruption occurred, from the control counter reading. These features of
status control are discussed more fully in Instruction Sequence Control,
Part II.

The remaInIng parts of this section deal with each status flip-flop
individually and summarize the general function of each in conjunction with
the various signals required ~or correct sequ~nce control. Figure 5-1 is a

5-1

(COMPLETING-CALL FF) CSCL
eTC

(B' RESULT) CSBG

(8 "RESULT) CSBS

eTO

(ENDING-PULSE-DELAY FF) CSPA
eTO

eTa

ECCL

NOTES:

D1'l7

~----~~s~----1-T-.CQBA

STATUS
1

FF

rs--h_CQ8B

I--.......... ----~s

I------~~R

eTa

eTa

ECCL

~TATUS
2

FF'

~TATUS
3

FF

STATUS
4
FF

1. DERIVATION OF SIGNALS cseL, (SSG, CSBS, "'NO CSPA SHOWN 0111 FIG. ~-L
2. ECCL IS GENERII>.L ClEt>..R SIGNAL (REFERENCE. HEADING 7-2.)

5461

Figure 5-1. Simplified Logic Diagram - Status Control Flip-Flops

simplified logic diagram showing the set-reset conditions for each flip­
flop as ~elated only to the signals described in the preceding sections of
this manual; a general timing diagram for a 4-microsecond instruction with
no delays is given in figure 5-2.

5·2. STATUS·! FLlP·FLOP

The status-l FF. when set (signal CQBA), indicates that the call for a
new instruction (n) was successful and that the instruction is either al­
ready in IRI or is being gated to IRl at this time by FS320 (resulting from
the setting of the completing-call FF, signal CSCL). Signal CQBA is used to
control the B-modification of n (in conjunction with either the ending pulse
of the previous instruction (n - 1) or with the ending-pulse-storage FF if
it has been necessary to delay the B-modification of n due to missing
instruction-~NB signal(s) or a B-register conflict). It is also used to
control the call for n + 1 in cases where the B-modification of n is de­
layed beyond the ending pulse of n - 1.

5-2

The status-l FF is set for a time roughly equivalent to the B­
modification phase of the instruction cycle. The B-modification time is
not variable from one instruction to another but may be delayed by a miss­
ing operand-MNB signal for the preceding instruction or by a B-register
conflict for the instruction in IRI. The time that the flip-flop is set,
then, is equal to the time that an instruction is in IRI which is 4 micro­
seconds if there is no operand-MNB delay, plus an additional 4 or 8 micro­
seconds delay if there is a B-register conflict. When a B-register conflict
occurs, an incorrect B-modification is performed and the instruction moves
up to IR2. However, it is also retained in IRl and the status-l FF remains
set for the repeat B-modification.

The status-l FF is reset by gating the inequality FF signal CSBS (in­
dicating no B-register conflicts, or that a conflict has been resolved)
with CTO.. However, if operating in full overlap with no delays, the reset
signal is overridden by the simultaneous set signal resulting from the
completing-call FF output for the next instruction.

5-3. STATUS-2 FLIP-FLOP

The status-2 FF is set (CQBB) during the operand-select time for an
instruction (corresponding to the time the instruction is in IR2) which
lasts for one or more cycles depending on the instruction and on delay con­
ditions. The operand-select time varies with the length of the instruction
and includes all of the time that an instruction is in the AU except the
last 4 microseconds. The time an instruction is in IR2 is equal to the
nominal execution time plus any delay time resulting from missing operand­
MNB signals.

The status-2 FF is normally set by gating the output of the status-l
FF (CQBA) with the inequality signal (CSBS) and CTO. Signal CSBS indicates
that no B-register conflict exists and that the correct B-modification for
the instruction. now in IR2, is complete. When a B-register conflict oc­
curs, the instruction is transferred to IR2 while also being retained in
IRI and the B-modification is repeated to obtafn the correct modified M ad­
dress. However, the status-2 FF is not set during the time that the in­
struction is in IR2 prior to the correct B-modification.

The status-2 FF is normally reset by gating the output of the ending­
pulse-delay FF (signal CSPA) with CTO. As shown in figure 5-2, signal CSPA
is active for 4 microseconds (t6 - t5) following the ending pulse (CHJQ-3)
for the instruction in IR2. The significance of CSPA is that the control
unit operations for the current instruction are complete and that only the
execute and result phases of the instruction cycle remain.

5.4. STATUS-3 AND STATUS-4 FLIP-FLOPS

The status-3 FF (CQBC) is set by the same signal (CSPA) that resets
the status-2 FF, and always remains set for 4 microseconds corresponding to
the last cycle of the execution of the instructioni that iS t the execute
time is always considered as the last 4 microseconds of the time that the
instruction is in the AU regardless of the length of the instruction.
Status-4 (CQBD). in turn, is set for 4 microseconds by CQBC with the next
CTO corresponding to the result phase of the cycle. (The result phase is

5-3

the final result cycle in a double-precision instruction· and the time in
which the first half of the result is stored is not considered as part of
result time.) Thus, whenever the instruction control cycle reaches the exe­
cute phase, the result phase automatically follows 4 microseconds later to
complete the cycle.

Notice in figure 5-1 that each one of the status-control flip-flops is
reset by the general-clear signal ECCL (reference heading 7-2).

TIME (t)

COMPLETING-CALL FF
(CSCl)

STATUS-t FF (CQ8A)

I R. t

S-MOD FF (CSBM)

I e A OF IRZ

MOl" lR.2.

STATUS-Z FF (COBB)

OPER.AND-NlNB FFI
(CHNB)

ENDING PULSE (CHJO-3)

ENDING-PUlSE­
DELAY FF (CSPA)

STATUS-3 FF (coee)

STATUS-+ FF (CQBb)

5-4

o It 1213 4151617 01 t 1213 4151617 o [1 J 21 3 41 5161 7 °1 t1 213 41 5 1617 01 t

I
-.. \

I \ B-MOD I
\ , I

\ I \ I
~
I \ I

•
I \ \ J

\

• I OPERAND SELECT I
I

I I I
I

I I
I I I I

I
L+ I

I I 1
L+

1 EXECUTE J
-..
I RESULT J

01 t 1213 41 5 161 7 01 ' 1213 41 51617 01 t 1213 41 5161 7 01'121314151617 01 t

5462

Figure 5-2. Timing Diagram - Status Control

SECTION 6

CLASSIFICATION OF INSTRUCTIONS

ACCORDING TO CONTROL FEATURES

This section summarizes the differences between the various instruc­
tions in the computing unit repertory insofar as control unit operations
are concerned. The previous sections describe the basic sequence control
using the add instruction as a representative example. Most of the in­
structions are similar in sequence control requirements and make use of
some combination of the features already discussed. For example, some in­
structions require both A and M operands for their execution while others
require one or the other. Similarly, the use of all three fast register
chain controls is required in some instructions while others use only one
or two of these.

Instructions which are related in terms of sequence control are not
necessarily similar in arithmetic control requirements, and vice versa.
The main instruction lines therefore go to two separate group encodersj one
is specific to the control unit and the other to the arithmetic unit. In­
structions are grouped in each encoder according to identity of basic con­
trol requirements in the corresponding unit.

In the control unit group encoder, the 76 instruction lines (one CDFG
line for each of the 76 instructions in the computing unit repertory) are
arranged in 49 groups in which many of these groups differ only slightly in
control unit operations. These groups, in turn, are further encoded into
90 lines (CHSA lines) corresponding to the program,,",counter stages a associ­
ated with each instruction. The CHSA lines go to an encoder where each
activates several of the group of 86 chain-start lines (CHJP 01-87) associ­
ated with specific functions or sequences of functions. In some cases the
CHJP\line is gated directly with a timing signal to generate a specific
function signal or signals. In other cases final function encoding is con­
ditional on signals derived from other occurrences in the instruction se­
quence control.

The complete analysis of CHJP functions is given in the manual ItCom­
puting Unit: Instruction and Function-Signal Analysislt. It is intended
here only to present a very general classification of instructions accord­
ing to basic control operationsj that is, with regards to the CHJP lines
that activate the fast register chain control logic (reference heading 3-1),
and the need for selecting operands from fast registers or memory (refer­
ence heading 3-4) to carry out the execution of an instruction.

6-1

Table 6-1 classifies the instructions according to the control fea­
tures mentioned above. The table indicates the selection of A and/or M
operands and the relevant chain control operation for each instruction
class. These operations correspond to the basic instruction sequence con­
trol described in the preceding sections of this manual. Thus, the table
summarizes the general control operations associated with all instructions
in the repertory as related to the earlier descriptions.

All arithmetic operations are similar in control requirements to the
basic 4-microsecond add order (heading 2-1) and some are identical. Other
instructions contain minor variations on this. from a sequence control
point of view. For example, a single-precision multiply or divide order
requires one A operand and one M operand and therefore uses the A-input
chain and the result chain. However, there is a difference in the elapsed
time between the input and result during which the control unit effectively
"marks time" while operations are carried out in the arithmetic unit,

Double-precision arithmetic instructions require two successive re­
ferences to the memory and two uses of the A-input chain followed by two
uses of the result chain (reference heading 3-10). Again. however, there
are variations in the elapsed time from one instruction to another. Also,
in the case of double-precision multiply instructions there is a total of
four uses of the A-input chain for reasons peculiar to the nature of multi­
plication operations in the arithmetic unit.

The extract instructions are similar in control requirements to the
arithmetic instructions except that the extract-lower and extract-upper
instructions (65 and 66) also use the M-input chain to supply the second
A-operand input from the fast registers to the AU.

Shift and conversion instructions contain a major variation in that
they transfer the two least significant digits from the M part of IR2
directly to the AU (register AH) in order to provide control information
concerning the shift and scale factors. This is done with FS470 which is
generated by gating control signal CHJP 42 with CT5. In addition, these
instructions, as well as the comparison instructions t use the M-input chain
for the normal A-operand input to the AU. As indicated in table 6-1, in­
structions which use the M-input chain in place of the A-input chain trans­
fer the A part of IR2 to the fast register selector register directly
instead of by way of the B-adder. This is done with FS430 which is gen­
erated by gating control signal CHJP 03 or 04 with CTO.

The fetch instructions (43 and 48) simply transfer the M operand to a
fast register using the result chain as in arithmetic operations. Store
instructions (40-42 and 45-47), as well as two of the visual display in­
structions (29 and 39). use the M-input chain to transfer the A-operand to
the memory (reference heading 3-4). The use of the M-input chain for
handling the A operand is similar to the case for shift, conversion, and
comparison instructions.

In the case of instructions which provide for conditional transfer of
control, there is no change in the basic pattern of sequence control when
the transfer does not take place.

Many of the instructions classified in table 6-1 have not been dis­
cussed in detail in this manual. These instructions, which involve special

6-2

control requirements in addition to features in common with other instruc­
tions. are covered in Instruction Sequence Control, Part II and include the
store. control transfer, and visual display instructions. Also. several
instructions are not included in the general classification of the table
because they do not use operands or chain control logic. These instructions
are skip, unconditional control transfers (90 and 91), flip-flop instruc­
tions. and stop.

Table 6-1. Classification of Instructions

Instruction Numeric Operands Chain Control

Class Code Remarks
A M A Input M Input Result

Arithmetic 01-06, X X X X Includes all arithmetic
11, 12 operations (single-
14-16, precision, double-
20-27, precision, fixed-point,
30-32, floating~point).
34-:)1

Uses M-input chain if M
operand is a fast register.

Extract 60-64 X X X X Uses M-input chain if M
operand is a fast register.

Extract 6S, 66 X X X X X Uses M-input chain for
second A-operand input to
AU.

Shift and Conversion 50-53 X X X Uses M-input chain for A-
(Single-precision) operand input to AU.-

Two LSD's transferred
directly from M of IR2 to
AU.

Shift and Conversion 55-59 X X .X X Uses M-input chain for
(Double-precision) first A-operand input to

AU.-

Uses A-input chain for
second A-operand input to
AU.

Two LSD's transferred
directly from M of IR2 to
AU.

Data Transfer 43, 48 X X Uses M-input chain if M
(Fetch, M - A) operand is a fast register.

Data Transfer 40-42, X X Uses. M-input c.hain for
(Store, A - M) 45-47 transfer to H58 and to pro-

vide for A-register con-
n ict check.-

Uses result chain if M is
a fast register.

• For these operations the A part of IR2 is transferred to the fast register selector
register directly instead of by way of the B-adder.

6-3

Table 6-1. Classification of Instructions (cont)

Instruction Numeric Operands Chain Control

Class Code Remarks
A M A Input M Input Result

Store Last Jump 93 Uses result chain if M is
(C2 - M) a fast register; contents

of control counter 2 trans-
ferred to M input of AU by
way of 8-adder.

Unconditional Transfer 92 X X X Uses A-input chain to
(Cl - A and transfer A operand to AU to
M - Cl) allow contents of control

counter 1 to be inserted in
5 LSD.

Contents of control counter
1 transferred to M input of
AU by way of 8-adder.

Conditional Transfers: These instructions provide
for M ---- C option--ref.
Instruction Sequence Con-
trol, Part II.

Comparison 70, 71, X X X Uses M-input chain for A-
75, 76 operand input to AU.·

Uses A-input chain for
A + 1 operand input to AU.

Comparison 72-74 X X Uses M-input chain for A-
operand input to AU.·

Index 80-83, X X X Uses A-input chain for B-
85, 86 register modification.

Instructions 85 and 86 do
not contain M ---- C option

Visual Display 09, 19 X X M operand obtained from
visual display register
(5- or l2-digit) by way of
memory location 02650.

Visual Display 29, 39 X X A operand transferred to
visual display register
(5- or l2-digit) by way of
memory location 02650.

Uses M-input chain for
transfer to HS8 and to pro-
vide for A-register con-
flict check.·

• For these operations the A part of IR2 is transferred to the fast register selector
register directly instead of by way of the 8-adder.

The following instructions do not require A or M operands or use fast register chain
controls: 00, 90, 91, 95-97, 99.

6-4

SECTION 7

NONCONTINUOUS AND NO·OVERLAP OPERATIONS

7·1. NONCONTINUOUS OPERATION

The computing unit is capable of operating in four different modes.
The normal mode of operation is the "continuous" mode in which the sequenc­
ing of instructions is carried out in an uninterrupted manner and where the
execution of succeeding instructions is overlapped in time. Maintenance of
the system is f~cilitatedt however, by operating the computer in a noncon­
tinuous manner so that the analysis and isolation of faults can more read­
ily be determined. The noncontinuous modes of operation are the "one­
instruction" and "mul tivibrate" modes.

In the one-instruction mode, the computer executes a single instruc­
tion while bringing a second instruction into IRI and then stops automati­
cally. In the multivibrate mode the computer operates in a similar manner,
except that the computer can automatically restart and stop alternately, at
a manually preselected repetition rate.

The fourth mode, the "no-overlap" mode, is used in conjunction with
any of the other three modest but is also used for test purposes.

Six pushbutton switches are included on the engineerts console for
manually starting t stopping, and selecting the mode of operation of the
computing unit, as indicated in figure 7-1. These switches are:

Start Multivibrate

Stop One Instruction

Continuous No Overlap

Start and stop switches are also included on the operator's console.
Once the computer is stopped, it is normally started again by generating
the start signal. Headings 7-2 through 7-5 discuss the logic and timing
associated with starting and stopping the computing unit and the noncon­
tinuous modes of operation. Headings 7-6 through 7-8 cover the various no­
overlap modes of operation.

7-1

-.l
I

N

FROM
ENGINEER'S

CONSOLE

GENERAL CLEAR --7>-- ECCl
(TO FIG'S 3-1,
3-5, AND 5-1)

NO-OVERLAP --7>-- ECDCS
(TO FIG. 3-1)

T7

TO

CNBC

FF

T7 R

CNBC
CNBS

T1

/s---1---~--. eNBA "''-Ul-T-IV-'-S-R-/>'T-E--'-
SYNC~RON'ZER FF

START
FF

CNCH ~~----JL----~--------~~------1-----~CNBF

TeD

CNCE

MULTI­
VIBRATE

FF

~~--~-----K~----1-----+-~CNBE

T7

CONTINUOUS ----7, CNGG

TeD

CHECK STOP ----7,>---....;:;.:="-,-.,
CJSS98

(MASTER - ERROR FF)
CONTINGENCY ------'" CNCS

STOP~
CJSS'l9

(M/>,STER- CONTINGENCY FFl

CHJP~7
(STOP INSTRUCTION)

TO

CNBA
CNBE

TO

(STOP INSTRUCTION) CHJP7G
(CONDITIONAL TR"NSFER) CNFl<

T3

Ecel
CQJE

(SECOND- ERROR­
STOPFF)

el----------;
eYB/>,

(PROCESSOl< INTERVENTION
Cf\ Pl'.PER TAPE READER)

FF

ONE­
INSTRUCTION

FF

D 80<0199

R

STOP
FF

CNBB +1---r-------<l~CNEA, B
(NONCONTINUOUS. TO FIG. 3-1)

COOC
(CONTROL TRANSFER)

(fANB) CHNB
(EP) CHJQ-2

TS

CNBA

T5

rs--l-=--L---CNBC

Figure 7-1. Simplified Logic Diagram - Noncontinuous Operation Controls

5463

7-2. START AFTER GENERAL CLEAR

The starting of a new operation in the computing unit is usually pre­
ceded by a general clearing of all key control elements in the control and
arithmetic units. This action is implemented by the general clear signal
(ECCL) which is generated by closing the general clear (GEN CLEAR) push­
button switch on the engineer's console. Signal ECCL stops the computing
unit and resets several flip-flops to insure that the new operation starts
under initial sequencing conditions. The functions performed in the con­
trol unit by ECCL are:

(1) Setting stop FF

(2) Setting completed-stop FF

(3) Resetting of all status-control FF's

(4) Resetting ending-pulse-storage FF

(5) Setting block-not-busy FF

(6) Resetting error-delay and error-stop FF's

(7) Clearing IRI and IR2

Performing the above functions renders the control unit completely devoid
of any previous instruction sequencing processes.

A new operation is normally started by first setting the start FF by
means of the start switch. For continuous operation, the continuous switch
(CaNT.) is closed to reset the one-instruction and multivibrate FF's (ref­
erence headings 7-4 and 7-5). As shown in figure 7-1, the start signal
from the engineer's (or operator's) console is passed through a single­
pulser circuit (SP) to produce a synchronized O.5-microsecond pulse at t7.
The start FF is then set to produce signal CNBA at to which initiates the
instruction sequence control operations. The functions of CNBA are:

(1) Resetting stop FF (if not in one-instruction mode) and completed­
stop FF

(2) Setting ending-pulse-storage FF and call FF

These actions initiate the instruction request cycle as described pre­
viously under heading 2-8. Refer to timing diagram in figure 2-5.

The computing unit may also be started when the processor-intervention
FF is set (processor interrupting computing unit program), or by a signal
derived from the paper tape reader controls. These conditions are indi­
cated by signal CYBA which resets the stop and completed-stop FF's. (Pro­
cessor intervention is discussed in book on Error and Contingency Controlj
the tape reader controls in book on Manual and Display Controls.)

7-·3

7·3. STOP IN CONTINUOUS MODE

The stopping of the computing unit requires the setting of the stop FF
which, in turn, is fOllowed automatically by the setting of the completed­
stop FF. When the completed-stop FF is set, it lights the STOP lamp on the
control console (indicating the computing unit is stopped) and, if not in
multivibrate mode, allows the generation of FS304 which transfers the con­
tents of control counter 1 to its display register. In the reset condi­
tion, the completed-stop FF lights the START lamp on the control console.
Figure 7-1 shows the various ways in which the stop FF may be set. These
are:

(1) Manually, by pushing the stop, one instruction, or general clear
pushbuttons.

(2) Stop instruction (99 order produces control signal CHJP 67).

(4) Setting master-error FF (CJSS98) or master-contingency FF
(CJSS99), if respective stop-option switch has been selected.

(5) Setting second-error-stop FF (CQJE). This flip-flop is set when
an error occurs while the computing unit is already on the error
routine (master-error FF set).

The output from the stop FF (CNBB) is buffed with the multivibrate FF
output (CNBF) to produce the non-continuous signals (CNEA, B). Signal CNEA
then sets the completed-stop FF (CNBC) when the ending pulse (CHJQ-2) and
operand-MNB signal (CHNB) occur for the current instruction. SignaJs
CNEA, B are used to prevent further sequencing of instructions by blocking
three of the normal functions of the ending pulse as described previously
under heading 4-6. The next instruction in sequence following the stop is
retained in IRI. A timing diagram of these operations is given in figure
7-2 where it is assumed that the stop switch is closed after instruction n
enters IRI. Notice that the stop FF is set at t7 of the first cycle by
synchronizing the stop signal-pulser circuit with a CT6 timing signal.
The completed-stop FF is then set at the following t6. If the memory is
busy on the call for the next instruction (n + 1), the call FF repeats the
call until the instruction is received.

When the computing unit is stopped in the continuous mode due to the
setting of the stop FF, the start signal is usually provided by pushing
the start button. The asynchronous start signal is synchronized with CT7
and gated with CNBC to set the start FF (CNBA) at to. See timing diagram
in figure 7-3 which is a continuation of figure 7-2. Signal CNBA then re­
sets the stop and completed-stop FF's while setting the ending-pulse­
storage FF (CSAR) to enable the resumption of continuous operation (refer­
ence preceding heading). The instruction retained in IRI (status-l FF set)
along with CSAR produces FS432 to set the call FF for n + 2, the B-mod FF
for n + 1, and so on.

As shown in figure 7-1, another means for resetting the stop FF is
provided to take care of the case where a stop instruction follows a con­
ditional transfer order. If the transfer of control takes place, signal
CNFX is gated with the stop instruction control signal (CHJP 76) to reset
the stop FF and thereby cancel the effect of the stop order. (Reference
Instruction Sequence Control, Part II.)

7-4

-.l
I

(,)l

TIME (t)

STOP FF (CNBB)

COMPLETED-STOP FF (CNBC)

CALL FF (CSAA)

Cl+0_ B-ADDER

C1+1 - B-ADDER

B - ADDE.R--­
M -ADDRESS DECODE.R

ADDRESS LINES

MNB (INSTRUCTION· CALL)

CCMPLETING-CALL FF (CSCL)

STATUS -I FF (CQaA)

lRI

B-MOD FF (CQBM)

I AND .0. OF IR2

M OF lRZ

MNB (OPERAND CALL)

OPERAND-MNB FF 1 (Cl-mB)

ENDING PULSE

AU CONTROL

RESULT

01 1 12 3 415161701'1213415161701'1213415161701'1213 4151617 01'12134151617

EPn-I' (AND EPn.btiNB)'l
CHNB·CQBA

I
~~~~~~~~ (432) 

'-. 
n+1 1 

"STOP" BLOCKS 
363 AND 432 

I CL4 BY EP 
\ I (VIA CNEA,B ) \ I Q EPn-1 
\ I 

n+2 \ I 
·CtiNB \ I P (363) 

i~ 
I I 
\ I 
\ I I 
I 1 I 
\ 1 I 

1 ~~ 1 I 
I 1 I 

n I n+' 1 

~ 1 ", \ 
1 

\ n I \ n+l 

~," 
1CL t 

'n-I \ n I I I n+l I 

1..-- L \ L/~L 
n-l n 1 

JET .~ 
I 

In-I 1 \ n 1 
I fCL !!:L 
1 n-l I n I 

1 _J---CL _.1-- -CL 

qh ..... - q r 

r tt 
11 II 

II In-I I L In J 
1 I : I 
n-l 1 n 1 

n-2 I n-l I n I 

"-3 l n-2 1 n-l I n 

01 1 l2 3 4151617 o l' 1 2 13 41 5 161 7 011 1213 41 5 1 6 17 011 1 2 1 3 41 5 16 17 01'12134151617 

(STOP FF SE.T WIoIE.N IN FULL NDRMAL OVERLAP) 5464 

Figure 7-2. Timing Diagram - Stop in Continuous Mode 



TIME (t) 

STOP FF (C NBS) 

COMPL!O.TED -STOP FF (CNBC ) 

START FF (eNSA) 

~NDING -PULSE 
STORAGE FF ~5AR) 

CALL FI= (CSAA) 

C1+0_B-ADDER 

Cf + 1-B-ADDER 

S-ADDER- M-ADDRE55 DECODER 

ADDRESS UNES 
MN8 (INS,RUCTION CALL) 

COMPLETING-CALL FF (CSCL) 

STATU5-~ FF (tQBA) 

IRi 

B -MOD FF (C'OBM) 

I AND A OF IR2 

M OF IR2. 

MNB (OPERAND CALL) 

OPERAND -MNB FF1 (CHNS) 

HIDING PUL5E 

AU CONTI=lOL 

RESULT 

"START" 
BLOCKS 363 

BY CSAR-CQBA 

I 
I 
I 
I 

!'IOTE; (CONTINUATION 01= FIG. 7-2. 1 START WITH INSTRUCTION IN IRq 

Figure 7-3. Timing Diagram - Restart After Stop 

EPn+2' 
CHNB'CQBA 

TA'(432~+4 

\ I 
\ I 

EPn+2· \ I 
CHNB \ I 

\ I 
\ I 
\ I 
\ 
I 

CL 



7·4. ONE·INSTRUCTION MODE 

The one-instruction mode of operation processes a single instruction 
through to completion (while bringing the next instruction in sequence into 
IRl) and then stops. The one-instruction mode is entered by closing the 
one-instruction (0.1.) switch which produces a signal synchronized to t6 
(CNCE) that sets the one-instruction FF and the stop FF (figure 7-1). The 
setting of the stop FF then produces the same interruption to the sequenc­
ing (via signals CNEA, B) as described under the preceding heading for a 
stop operationj that is, if the one-instruction mode is selected while oper­
ating in the continuous mode the computing unit stops exactly as if the stop 
switch had been closed, as shown in figure 7-2. 

Only two functions are performed by the output of the one-instruction 
FF (CNBE). One is to prevent the resetting of the stop FF by the start sig­
nal (CNBA) when the computing unit is restarted. This action enables ad­
ditional one-instruction operations to be carried out consecutively each 
time the start switch is closed to set the start FF. The other function of 
CNBE is to block the setting of the call FF by the no-overlap signal (ECDCS, 
figure 3-1) when operation in the no-overlap mode (reference heading 7-8). 

Starting in the one-instruction mode, with an instruction in IRl t cor­
responds to the situation shown in figure 7-3 except that the stop FF is 
not reset by the start signal at to. Therefore, instruction n + 1 (in IRl) 
is completed and n + 2 is called and brought into IRI and the computing 
unit again stops. The B-modification for n + 2 and the call for n + 3 are 
prevented by blocking the setting of the ending-pulse-storage FF (via CNEA) 
during the third cycle shown in figure 7-3. To return to continuous opera­
tion, the continuous switch is closed to produce signal CNCG which resets 
the one-instruction FF. 

7·5. MULTIVIBRATE MODE 

The multivibrate mode operates in the same way as the one-instruction 
mode except that the restart feature iSlproduced automatically. Thus, the 
need for pushing the start button is eliminated and the computing unit ex­
ecutes single instructions at a controlled rate. The frequency with which 
instructions are executed can be varied in five steps over a range from 0.2 
millisecond to 2 seconds per instruction by means of the FREQUENCY selector 
on the engineer's console. 

As shown in figure 7-1, the multivibrate mode is entered by closing 
the multivibrate (M.V.) pushbutton switch on the engineer's console to pro­
duce signal CNCH which is synchronized to to. Signal CNCH sets the multi­
vibrate FF (CNBF), resets the one-instruction FF, and triggers a variable 
RDF unit (Xl). The Xl circuit produces an output pulse which is delayed by 
an amount corresponding to the selected frequency of operation. Signal 
CNBF produces the noncontinuous signals (CNEA, B) to control the interrup­
tion to the instruction sequencing as described under the two preceding 
headingsj that is, a single instruction is completed while the next instruc­
tion is retained in IRI. Signal CNBF also blocks the setting of the call 
FF during no-overlap operations (reference heading 7-8). 

The restart feature is produced by gating CNBF with the output of the 
RDF-Xl circuit to set the multivibrate-synchronizer FF. The output from 

7-7 



this flip-flop is then gated with CT7 and the set output of the completed­
stop FF (CNBC) to give the restart signal CNBJ. Thus, the start FF is set 
to initiate the execution of another instruction each time the RDF circuit 
recovers from the preceding input. 

Notice that signal CNBJ is blocked if the stop FF is set (signal CNBB). 
Hence when the multivibrate mode is selected while the computing unit is 
stopped, the RDF is triggered and begins to cycle but no instructions are 
processed. Therefore it is necessary to push the start button which resets 
the stop FF and later the completed-stop FF. Setting the start FF allows 
an instruction to be processed and the next instruction to be called and 
brought into IRl, but signals CNEA, B (produced by CNBF) prevent further 
sequencing as in the one-instruction mode. Although the stop FF is reset, 
the fact that the completed-stop FF is also reset blocks the generation of 
CNBJ until the one instruction generates an ending pulse and sets the 
completed-stop FF. A new start signal is then generated and the cycle re­
peats. The continuous signal (CNCG) resets the multivibrate FF to enable 
a return to continuous operation. 

7-6. NO-OVERLAP MODE 

The no-overlap mode may be used in conjunction with anyone of the 
other three modes--continuous, one-instruction, or multivibrate. In each 
case it has the effect of allowing only one instruction to be processed at 
a time, and prevents any part of sequencing of following instructions. 
Thus, if an instruction requires 4 microseconds of execution time in normal 
overlapped sequencing, the no-overlap operation for that instruction takes 
a total of 20 microseconds to complete (reference heading 2-1). The no­
overlap mode is especially useful in analyzing faults which appear to be 
due to the overlapping features of the instruction control logic. The 
timing diagram in figure 7-4 illustrates the timing for a no-overlap opera­
tion. 

7-7. NO-OVERLAP CONTINUOUS OPERATION 

A no-overlap continuous operation is initiated after the computer is 
stopped by closing the no-overlap (NO OL) switch and the start switch on 
the engineer's console. The no-overlap switch generates signal ECDCS which 
is applied to various points in the instruction control logic to prevent 
the call for the following instruction in sequence until the current in­
struction is completed. The primary function of signal ECDCS, then, is to 
block the generation of FS363 which gates the address for a new instruction 
call to the memory. This blocking is accomplished by using ECDCS to in­
hibit the following gates (figure 3-1) whose outputs normally produce FS363: 

7-8 

(1) Ending pulse (CHJQ-3) and operand-MNB FFI (CHNB) -- block signal 
CSAC 

(2) Ending-pulse-storage FF (CSAR) and status-l FF (CQBA) -- block 
signal CSAD 

(3) Call FF (CSAA) when set by FS432 -- block signal CSAL 



(4) Call FF (CSAA) when set by start FF (CNBA) and status-l FF (CQBA) 
-- block signal CSAL 

As shown in figure 7-4, the initial setting of the call FF is made at 
t3 (with IRI empty) by gating the no-overlap signal with the status-4 FF 
output signal (CQBD). (As was described under heading 4-7, ECDCS is always 
gated wi th CQBD to provide for succeeding calls in the no-overlap mode.) 
For this case CQBD is produced incidentally at t2 by the start FF signal 
(CNBA). Thus, the call FF is set at t3 for the first instruction call al­
though it would also be set at t4 by CNBA directly as in normal continuous 
operation (figure 2-5). Signal CNBA then sets the ending-pulse-storage FF 
(CSAR) so that FS432 will be generated (when the status-l FF (CQBA) is set) 
to provide for the B-modification operation. 

The first instruction in the no-overlap mode (n) is executed through 
the various stages of the instruction cycle in the usual way. The control 
counter is advanced by one but the call for the next instruction is blocked 
until the status-4 FF is set for n. The call FF is then set for n + 1, 
twenty microseconds after it was set for the first call. Notice that in 
the absence of status 1, the ending-pulse-storage FF is set by the normal 
ending pulse and CHNB for instruction n in order to set the B-mod FF for 
n + 1, when the status-l FF is again set. 

7-8. NO-OVERLAP INTERRUPTED OPERATION 

As a further aid in the analysis and isolation of faults, the no­
overlap mode can be combined with either the one-instruction mode or the 
multivibrate mode. In this way a single instruction is executed completely 
without bringing in the next instruction in sequence and the computing unit 
then either stops or proceeds at a controlled rate. 

A combined one-instruction/no-overlap mode (or multivibrate/no-overlap 
mode) is carried out essentially as described separately for these modes 
under the four preceding headings; that is, the functions performed by the 
no-overlap signal and the setting of the various flip-flops shown in figure 
7-1 produce the same control effects as in an uncombined operation, with 
one exception--the setting of the call FF to call the next instruction in 
sequence. This is shown in figure 3-1 where the call FF is set by gating 
the no-overlap signal (ECDCS) with the status-4 signal (CQBD) and no 
status-l (CQBA). The output from this gate, however, is inhibited if 
either the one-instruction FF (CNBE) or multivibrate FF (CNBF) is set. 
Hence, any succeeding instruction calls are dependent on the setting of the 
start FF (CNBA) which is the normal case in the one-instruction or multi­
vibrate mode. 

When starting a combined operation with an instruction already in IRI 
(for example, stop in continuous mode and then select combined one­
instruction/no-overlap mode), the setting of the call FF by CNBA is blocked 
by gating ECDCS with CQBA (status 1). The one-instruction FF has no in­
fluence until the completion of the instruction initially in IRl, when it 
blocks the setting of the call FF by ECDCS and CQBD (status 4) and so on. 

7-9 



TlME(t) 011121341516170111213415161701112134151617 011121341516170111213415161701112134151617 01 ' 1 2 13 41 5 16 17 011121341516170111213415161701112134151617 01 1 1 2 1 3 4151617 01112\3 4151617 

STOP FF (eNBB) :::J 
5TART FF (CNBA) ~ (6 CQBA) 

/(432) 

EPn-CHNB' 
CQBA 

ENDING-PULSE­
STORAGE FF (C5AR) 

CALL FF (CSAA) 

C4+ 0- B-ADDER 

C4 + 1 _ B-ADDE"R 

B-ADDER-M-ADDRESS DECODER 

ADDRESS LINE5 

MNB (INSTRUCTION CALL) 

COMPLETJ NG-CALL F F (CSCL) 

STA.TUS- ~ FF (CQ6A) 

IRi 

B-MODIFICATION I=F (CSBM) 

IANDA OF Hl2 

M O~ IR2 

MN8 (OPE~AND CALL) 

OPERAND-MNB FF~ (CHNS) 

ENDING PULSE 

P.U CONTR)L 

RESULT 

STATUS -4 FF (CQBD) 

: 
~ 
I 
I 

~ r--~---~---n-_~---~-~ICL 
" 

: r n 1 1 
I l '--or--'I---r-T""--r--,....,..,.---....(., /ECOCS /EPn'CSCL 
I" ~ I \ !CL ( BLOCKS SETTING ~ 1 ~6~ics, CQBO· ~ I \ 'n+l I OF CALL FF (432) U n+1 

. ~.~) ct' \ I 9: AND BLOCKS CALL 
\ I I FOR n +1 (CSAR) 
\ 'X , __ ECOCS 
\ i : k BLOCKS CALL 

~\It\ I I FOR n+l 
I I BY EPn 'CHNB 
: : (363) 

1 n 1 
\ 

1 \ n 1 
\t ~CL 

'.1 n I 1 \ 
!/'CL t 

(6CSAR)- n 1 (432) .-. \ 

1 \ n 1 
\ lCL 

n I 

~ 
l---cc. 

f1 
I--

,I 

1 I n J 

1 n 1 

1 

NOTE: 

n 

CONTINUOUS MODE WITH NO-OVERL"P (SIGNAL ECDcS)_ START WITH 1R1 AND 1R2. EMPTY, 

n+l 

r n+1 
I I bl I 

(ECOCS • CQBO) 

,~ cb 

1 

1 

I n I 

(6 COBA) 

~/ 
(432) 

ICL 

1 
.CL 

\ I 
\ I 
\ I 

hJn+2 \ I 
\ I 
\ I I 
\ 

I I 
I I 

~\ 
I I 
I I 
I I I 

l n+l 1 
\~ \ 

l \ n+l 

\~ 
'.1 n+l 
\ 

t 
(6 CSAR) n+1 (432)-

.~ \ 

I \ 

\ 

~ 

I 

n 

EP n+I'CHNB 
• C"Q§A 

''lo. 

~ 
EPn +1· CSCL 

J 
~CL 

I J 
1/ .......... CL 

1 

n+l 1 
'CL 

n+1 , 

q 
_J.----CL 

~ I 

1 : n+1 1 
I 

n +1 1 

1 n+l 1 

1 

n +2 

r n+2 
I 

ECoeS·CQBO bl \ 

1 

\ 
\ 
\ 

,+2 ct \ 
\ 
\ 
\ 

~\ 
1 

n+1 

n+1 J 

Figure 7-4. Timing Diagram -
No-Overlap Mode 

7-11 


	0000
	0001
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-07
	2-08
	2-09
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-05
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-11

