
Technical Memo No. 12
LARC

April 2 J 1958
Publications Engineering
Dept.
J. Wolfram

AN INTROWCTION TO THE LARC®

DATA-PROCESSING SYSTEM

Information in this memo may not be final. Check with Publications
Engineering Dept. for lat~st revisions.

COMPANY CONFIDENTIAL -- _-- ------------

TABLE OF CONTENTS

Section Title ~

I INTRODUCTION 1-1

1.1 General 1-1

1.2 Computer and Processor 1-1

1·3 Storage 1-1

1.4 On-line Input-Output 1-2

1·5 Off-line Auxiliary Equipment 1-3

1.6 Modular Construction 1-3

1·1 Training and Reference Material 1-3

II COMPUTER 2-1

2.1 General 2-1

2.2 Instructions 2-1

2·3 Instruction Overlapping 2-2

2.4 Executive Command of the Processor 2-2

2·5 Multipurpose Fast Registers 2-3

2.6 Tracing Mode 2-4

2·1 Sense Flip-Flops 2-4

2.8 Error Checking 2-4

2·9 Contingency Checking 2-6

III PROCESSOR 3-1

3·1 Function 3-1

3·2 Central Processor 3-2

3·3 Synchronizers 3-4

3.4 Dispatcher 3-5

3·5 Processor Control Program 3-6

3.6 Error Checking 3-8

APPENDIXES

Appendix Title ~

A COMPUTER INSTRUCTIONS AND WORD FORMATS A-l

B CHARACTER CODES B-1

C SUMMARY ORDERS FOR A PROCESSOR PROGRAM C-l

D ARITHMETIC AND RELATED PROCESSOR INSTRUCTIONS D-1

TABLES

Table Title ~

1-1 MOIlJLAR UNITS OF EQUIPMENT IN A TYPICAL BASIC AND 1-5
A COMPLETELY EXPANDED LARC SYSTEM

2-1 REPRESENTATIVE COMPUTER INSTRUCTION TIMES IN 2-1
MICROSECONDS

A-l COMPUTER INSTRUCTIONS A-6

B-1 LARC ONE-DIGIT NUMERIC CODE B-2

B-2 COMPARISON OF LARC CHARACTER CODES B-5

C-l SUMMARY ORDERS c-4

D-l ARITHMETIC AND RELATED PROCESSOR INSTRUCTIONS D-3

ILLUSTRATIONS

Figure Title ~

1-1 SIMPLIFIED BLOCK DIAGRAM OF A COMPLETELY EXPANDED 1-7
LARC DATA-PROCESSING SYSTEM

2-1 SIMPLIFIED TIMING DIAGRAM OF A SEQUENCE OF FOUR- 2-7
MICROSECOND COY~R INSTRUCTIONS

5-1 SECTION OF DRUM SHOWING RELATIVE HEAD ASSEMBLY 5-4
POSITIONS

SECTION I

INTRODUCTION

1.1 GENERAL

The LAR~intergrated general-purpose data-processing system is designed
by the Remington Rand Univac Division of Sperry Rand Corporation to solve a variety
of problems, especially those beyond the range of current data-processing systems.
Although the LARC system is expected to be used primarily in the fields of science
and engineering, it is also adaptable for the solution of business problems. The
system is provided with a complete set of programming aids, including automatic
programming.

1.2 COMPUTER AND PROCESSOR

A basic LARC system contains a computer and a processor, each of which
has most of the attributes of a general purpose computer but performs somewhat
specialized functions in the system. The primary function of the processor is
the flexible, parallel, and coordinated control of all input-output operations
and transfers between the auxiliary and the main storage. The computer is
designed to perform rapid arithmetic computation with a minimum of interference.
If increased computing capacity is required, the basic system may be expanded
readily to include a second computer. The computers and the processor are
controlled by separate programs.

The two computers in an expanded system can be programmed and controlled
to solve jointly a single problem or each can solve independently one or more
separate problems. The processor is designed to take care of the input-output
and auxiliary storage needs of both computers and to do any necessary editing
of output data. If input-output demands are not excessive, it may be used to
run a sorting, merging or almost any other type of side routine simultaneously
with and independent of the computer programs.

1.3 STORAGE

There are four levels of storage in the LARC system which differ in
speed, capacity, and costs.

The first level of storage is represented by flexible multipurpose fast
registers contained within the computer. These registers are composed of tape­
wound magnetic cores having a read-regenerate or clear-write cycle of one micro­
second. They are used interchangeably as accumulator registers for storing
operands and results in arithmetic operations or as index (B) registers for stor­
ing constants used in address indexing operations. Up to 99 12-digit fast
registers may be included in each computer.

The second level of storage is a magnetic ferrite-core storage which has
a nominal read-regenerate or clear-write cycle of four microseconds. The ferrite­
core storage, accessable to both the computer and processor, serves as the main
storage of the system and as a common communication link ~ong the computers, the

1-1

processor, the auxiliary storage, and the input-output units. To increase the rate
at which reference may be made to the main storage, it is divided into independently­
operating modules. Since the computers and the processor have access to the same
storage, practically any degree of interchange can be achieved among them by alerting
one another to the presence of information in a particular part of the storage or by
one causing the other to transfer control to a new sequence of instructions in the
storage. Up to 97,500 l2-digit words of ferrite-core storage may be included in the
system.

The third level of storage consists of magnetic drums. The drums are
used to replenish the main memory and therefore have a sufficiently high trans­
fer rate and capacity to keep abreast of the unusually high computing rates of
the system. Data can be transferred between the main storage and the drums (with
a single synchronizer) at a continuous rate of more than 330,000 decimal digits
per second. A maximum of six million 12-digit words of drum storage may be in­
cluded in a system.

The fourth level of storage consists of magnetic tape units which have a
data transfer rate of 20,000 alphanumeric characters per second and a virtually
unlimited capacity. Although the tape units may be used as relatively long-term
storage, they are more often used in the LARe system as fast input-output.

The magnetic drums are controlled by the processor program and, indirectly,
by the computer program in much the same way as the input-output equipment. There­
fore, to simplify the description of the computer and processor which follows, the
drums are classed as input-output although they are actually a type of storage.

1.4 ON-LINE INPUT-OUTPUT

A full complement of both on-line and off-line input-output equipment can
be provided with the system. The on-line equipment consists of:

(1) Magnetic tape read-write units for the fast introduction of
data into the system and the fast recording of output for subsequent conversion
on an auxiliary device or for long-term storage.

(2) An electronic page printer which employs a cathode ray tube for
direct, fast recording of output data in either tabular or graphical form. The
printer can represent output data as numeric or alphanumeric characters in an
edited or unedited format, or as plotted curves complete with callouts, titles,
scales, and grid patterns.

(3) Electro-mechanical line printers for multiple-copy printing,
a line at a time, of numeric or alphanumeric data in an edited or unedited format.

(4) A card reader for introducing data into the system directly
from punched cards.

(5) A console typewriter printer, with an attached paper tape
reader and punch, for communication between the computer or processor program
and the operator or engineer.

1-2

1. 5 OFF-LINE AUXILIARY EQUliMENT

The off-line auxiliary equipment that can be provided with the system
includes:

(1) The Univac High-Speed Printer for printing in an edited format
data recorded on magnetic tape.

(2) The Unityper II for direct keyboard recording of data on
magnetic tape.

(3) The Tape Verifier for direct keyboard recording of data on
magnetic tape or verification and correction of data already recorded on
magnetic tape.

(4) The Punched Card to Magnetic Tape Converter.

(5) The Magnetic Tape to Punched Card Converter.

(6) The Paper Tape to Magnetic Tape Converter.

(7) The Magnetic Tape to Paper Tape Converter.

1.6 MODULAR CONSTRUCTION

The LARC system consists of modular units, ranging from solid-state com­
ponent packages to input-output units, storage units, and complex computer units,
which can be joined in various numbers and combinations to form a balanced system
for a particular range of problems. The types and number of modular units of
equipment that can be included in an expanded LARC system and that are included
in a typical basic system, are listed in table l-i~H' A simplified block dia-
gram of the completely expanded system is shown in figure 1.1. With the
exception of the core storage, which must be added to the system in units of four,
single units may be added to a system up to the maximum allowed for expansion.

Each cabinet within the system contains its own power supplies, clock
pulse generators, and heat exchangers. The synchronizers are modular units of
control in the form of solid-state component packages contained within the pro­
cessor cabinet which has the potential for accepting all of the synchronizers in
the expanded system. Identical units of the system are functionally interchange­
able and are designed for off line maintenance while the remainder of the system
is operational.

1.7 TRAINING AND REFERENCE MATERIAL

The following training and reference material will be available with the
LARC system:

(1) Operator Manual - normal procedures for starting and operating the
system.

(2) Programming Manual - descriptions of computer and processor
instructions, instructions conventions, programming and debugging techinques,

1-3

a standard processor program, standard error and contingency routines, and
miscellaneous service routines.

(3) Automatic Programming Manual - a description of an automatic
program compiler provided with the system and instructions for its application,
modification, and expansion.

(4) Maintenance Manual - troubleshooting and maintenance procedures,
servicing schedules, and diagnostic routines for the computer, the processor, and
the system as a whole. Detailed information for off-line maintenance of input,
output, and storage devices is in the individual manual for each device.

(5) Instruction and Operation Analysis Manual - an easily-referenced
analysis and brief description of computer and processor instructions and opera­
tions. Each instruction and operation is traced through the steps of its execution
with a description in shorthand notation of signal functions and timing.

(6) Service Data Manual - a compilation of waveforms, data on
voltages, and other service data in easily referenced form.

(1) Circuit Manual - a functional description of standard circuit
modules in the computer, processor, and storage and non-standard circuits in
the computer and processor.

(8) Logic Manuals - separate manuals for the computer and processor
describing their logic circuits and the operations they perform, illustrated
wi th truth tables, block diagrams, timing diagrams, and simplified logic diagrams.

(9) Control Console Manual - a description of the controls and in­
dicators on the operator and engineer control consoles together with an analysis
of the effect each control produces within the system, and information on the
maintenance of the consoles themselves.

(10) Core Storage Manual - a physical and functional description
of the core storage including non-standard circuits (Standard circuits modules
are described in the circuit manual for the complete system), information and
procedures for off-line testing, troubleshooting, and maintenance.

(11) Input, Output and Drum Storage Manuals - separate manuals
for each of the input-output devices and the drum storage. Each manual contains
a physical and functional description of the device and information and procedures
for off-line testing, troubleshooting, and maintenance.

(12) Parts Lists - an identification of parts for replacement purposes.

(13) Engineering Drawings - wiring diagrams, wiring tables, plug
and socket tables, fuse tables, logic diagrams, and signal tables.

1-4

Table 1-1

Modular Units of Equipment in a Typical Basic and a Completely Expanded LARC System

Equipment Basic Expanded

Magnetic core storage units (2500 words each) 8 39

Computers 1 2

Fast registers (multipurpose) 26 99

Processor 1 1

Drum-read synchronizers 2 3

Drum-write synchronizers 1 2

Tape read-write synchronizers 2 4

Electronic page printer synchronizer 0 1

Line printer synchronizers 1 2

Card-reader synchronizer 0 1

Console printer synchronizers 1 1

Magnetic drum storage units (250,000 words each) 12 24

Uniservo II magnetic tape units 4 40

Electronic page printers 0 2

Line printers 1 2

Card Reader 0 1

Operator control consoles 1 2

Keyboards (numeric) 1 2

Console printers (alphanumeric) 1 2

Engineer control console 1 1

Operator control panel 1 2

Keyboards (numeric) 1 2
Console printers (alphanumeric) 1 2

Computer engineer control panel 1 2

Processor engineer control panel 1 1

1-5

~ ~··~wl ~~'~~llw~r~wl ,,,II.n, • T •• W ~.~ r--~ I
~

J" J. S,'·, r= L_ -" -- -- - - -

_RCON~
_TERI CONSOLE COIIPIITER 2

I I
F"" III" n.1 f I---- .Ey r.. I eO_T,. PQCU •• c n. I OPIuna IUIQAID 1-------1 FAST 1t(,.STU f

CCJlilflOL PAHfl. , ... ,,,n.,.1EI. ,,,.'NKI £.II.I~P".1:1. ClMnIOL PANEL

FAIT 1If"STEI 11----- ,,"E. . . _L • 'I.TEI I-----t fAST "(6IJTU 2 ,
'AST ""15ft1t J_ J--- I----L ".ST IIG'ITEI 3

I I ClPERATOR ~ c:qtIICIL£ I _TOR ~ c:qtIICIL£ Z I I
I I A'IITHMET·IC ARITHMET'C I I
I I Or-IUT ••. r- f-~ CO.o:i:~T::IlEL

I I
I I AND tOJllTttOL MNIL ~ 'ND I I
I I COHTROL

r-I IE] ~ J-----J
CONTROL I I

I I CIRCUITS CI.CUITS I I
I I

)Rr.· .. ·II.'actAIlOjl ... • .. T£. N'IIT'·IIM'l8MltDIIRt:AD'1 I I
I I I I
I I I I
I I I I
I I I I
I I I I
" •• , 1'6'ITEI • Ie---- ~ ri -'·1 ----t"AIT IUISTI." IIIW'.

~l
"t""R ,"IC OZ ••

I$L -----1$1 $
~,D.U "ttJ ~t= ,rNCHIIOff'

HlltrAD-W'TI: 'I SYNC.-zrl •

$
~I-"' .. _I

$~-- ----~$ t= 1~lZfll

~
H! -.. IT& ~ ---------------- S'JlCNIONIZh H. z

~,_.I .. J ---------
~$ $

CENTRAL
S .. .-.ouR

$~------ t= • I uaa TI.
H'YC"-;-II11t PllDUSSOR ---- - ~,- L

$
DISP.TCHER s'*-:-az,a .1-

$~-- ----~$.- .t= H,lr.~'""1 --I" -- ------ 4 --t .. ., L
"NC~'wtJ.

~

~ I,Ll. -' .. W'U.~~ 1, c... J 1:£L[<rOMIC ~ ~ SWIC ZI. 5Y1C"""UI ."., PIlE PIC'N'E1I I • 51'........ srIICII l.I. ••

8 8 -- 0
Figure 1-1. Simplified Block O~ of a Completely Expanded LARC Dala- PracelllllCJ Syatem

1-7

SECTION II

COMPUTER

2.1 GENERAL

The computer is designed to rapidly and economically perform fixed or
floating point arithmetic operations in single or double precision. To accom­
plish this, as many operations as possible are performed automatically and in
parallel. Means are provided to automatically: modify references to the stor­
age by the instructions, control program loops, trace programs, and monitor
machine and program errors. Not only are the bits and digits of a computer
word transferred and operated upon in parallel but practically all secondary
operations such as input, output, storage transfer, address modification,
floating point, and error checking, which might take time from the cardinal
arithmetic operations, are performed in parallel with the arithmetic operations.

2.2 INSTRUCTIONS

The computer has a repertory of some 75 instructions. Many of the instruc­
tions are in the nature of variants on other instructions. Their inclusion pro­
vides the programmer (or more likely the compiler) with a wide choice of altern­
atives to suit the requirements of a particular problem and increases the speed
of computation by enabling operations to be performed with fewer instructions
than would otherwise be required. To facilitate programming, the instructions
have been made as straightforward as possible. Any oddities in the instructions
or illogical restrictions on their use have been avoided.

Many of the instructions are in effect, small built-in subroutines. By de­
signing into the instructions operations which formerly had to be programmed, much
more of the computer program and the efforts of the programmer can be devoted to
furthering the computations at hand rather than to organizing the computations or
the program itself.

Performance times for representive arithmetic instructions of the computer
are given in table 2-1. The instruction times listed are all inclusive and include
the time required for storage access, address modification, error checking, etc.
Also, all input, output, and auxiliary storage operations may be assumed to be
performed in parallel with the instructions. For a complete list of computer in­
structions and descriptions of computer word formats refer to appendix A. A
description of the character codes used in the LARC system is given in appendix B.

Table 2-1. Representative Instruction Times in Microseconds

Add or
Instruction'!'n>e Subtract Multiply Divide

Single Precision Fixed Point 4 8 32
(11 decimal digits and a sign)

Single Precision Floating Point 4 8 28
(9 decimal digits, an exponent, and a sign)

Double Precision Fixed Point 12 36 184
(22 decimal digits and a sign),.

Double Precision Floating Point 16 36 168
(20 dec imal digi ts, an exponent, and a sign)

2-1

2.3 INSTRUCTION OVERLAPPING

To increase the rate of performing instructions without also increasing the
amount of equipment in the computer to unreliable and uneconomical proportions,
the computer is designed to perform different steps of several instructions in
parallel. While one instruction is being executed, an operand for a second in­
struction is being transferred to or from storage, the operand address for a
third instruction is being modified, and a fourth instruction is being obtained
from storage. This is illustrated in figure 2-1 which shows a simplified timing
diagram for a series of addition instructions. Although any single add instruc­
tion actually takes considerably more than four microseconds to perform, a series
of these instructions is executed at a rate of one every four microseconds and
for practical purposes the total instruction time is considered to be four micro­
seconds. If a transfer of control to a new sequence of instructions occurs, the
first instruction of the new sequence reqUires time to propagate through the
several steps before it is executed. Therefore, whenever a transfer of control
takes place, eight microseconds is added to the execution time of the instruction
that caused the transfer. This time has already been added to the execution times
of the transfer of control instructions listed in appendix A.

The technique of overlapping instructions in the computer might upon rare
occasions result in a conflict. For example, the results of one instruction might
not be available in time if it is required for a beginning step of the next in­
struction in line for processing. However, such conflicts are resolved automati­
cally by control circuits within the computer.

It should be noted that the timing diagram (figure 2-1) is simplified and
serves only to illustrate the technique of overlapping the processing of instruc­
tions. Operations not indicated in figure 2-1, such as floating point calcula­
tions and error checking, are performed in parallel with the operations shown.

Two of the steps that are overlapped are, obtaining instructions from stor­
age and transferring operands to or from storage. Overlapping these operations
requires only that the instructions and operands be assigned to different areas
(different units) of the core storage, a requirement that is usually satisfied
as a matter of course in any system.

2.4 EXECUTIVE COMMAND OF THE PROCESSOR

The order code of the computer does not include instructions for directly
controlling input-output operations. All such operations are handled remotely
by the processor under executive command by the computer. Consequently, the com­
puter is free to devote substantially all of its time to performing arithmetic
operations. Input, output, and (optionally) editing commands may be summarized
by the computer in well-defined pseudo orders (summary orders) having adjustable
parameters and issued to the processor singly or in groups via the core storage.
The computer program is required only to place the summary orders in the storage,
alert the processor to their presence, and check for their completion after
enough time has passed for the summary orders to have been executed independently
by the processor. Meanwhile the computer can continue with its main progr~. A
list of summary orders that can be executed by one processor program is given in

2-2

appendix C. The processor can even be programmed to relieve the computer pro­
gram of the task of generating and issuing summary orders and, in fact, relieve
it of all concern with input-output operations so that computer time can be de­
voted exclusively to arithmetic and related logical operations. In any case,
the computer programmer will be concerned, not with the details of the input­
output operations, but with problems of anticipating storage requirements, al­
locating storage, and directing on a wholesale basis the flow of data to and
from the storage.

2.5 MULTIPURPOSE FAST REGISTERS

Any computer instruction that contains an operand address may be tagged
with an address of anyone of a number of index registers. Before such an in­
struction is executed, its operand address will be modified automatically by the
addition of a constant contained within the specified index register. Arithmetic
instructions also contain the address of one of a number of accumulator registers
which are used to store an operand involved in an instruction, or the result of
an instruction.

The index and accumulator registers are multipurpose fast registers
logically interposed betweed the main core storage and the arithmetic system of
the computer. They may be addressed and used interchangeably as index registers,
as accumulator registers, or in the same way as a standard core storage location.
The registers are composed of fast-switching tape-wound cores having a read-re­
generate or clear-write cycle of one microsecond. By functioning as fast-access
storage for operands and results in either arithmetic operations or address index­
ing operations, they not only decrease the number of references to the slower main
core storage but improve the flexible control of the arithmetic processes. Up to
99 of these multipurpose registers may be included in each computer. All other
registers within the computer are non-addressable and ordinarily do not concern
the programmer. These include the various control registers and registers within
the arithmetic system for storing factors that are used during the actual execution
of an arithmetic instruction.

Iterative address modification techniques have been applied in the past
only by sacrificing considerable computing time. Often .such techniques were used
merely as a convenient way of exchanging computing time for storage space in fitting
a particular problem to the computer. The fast registers in the LARC computer not
only enable the address modification operations to be completely overlapped with
the execution time of the instruction but also enable extremely flexible control
to be exercised over the iterative processes. An instruction may be tagged to
refer to anyone of the fast registers for address modification or tagged so that
it is not modified. Since a fast register that is used as an index register may
also be used in the role of an accumulator register, its contents are subject to
all of the arithmetic, test, and other instructions in the computer repertoire.
In addition to this, special index instructions (appendix A) are provided which
are, in effect, small subroutines for controlling the entry, reentry, and exit
from the program loop using control information stored within the index register.
A description of the format of the data stored in a fast register when it is used
as an index register is given in appendix A.

In one sense, the computer is a single address computer, since each in­
struction contains only one main storage address. However, anyone of a number of
fast registers may be addressed and used by an instruction either as an accumulator

2-3

register or in the same way as a standard storage location. Furthermore, arith­
metic instructions are available which take one operand from one fast register,
another operand from the main storage (or another fast register) and place a re­
sult in an adjacent fast register. In practical use these features enable the
computer to be used much as a three-address computer. Quantities can be accumu­
lated in several fast registers and combined without recourse to separate instruc­
tions for returning intermediate partial results to the main storage. To use a
very general example, the formation of quantities of the form ab + cd + ef can
be effected with a minimum number of instructions.

2.6 TRACING MODE

Any computer instruction may be tagged with anyone of nine tracing mode
digits. Just before an instruction is executed, the tracing mode digit is de­
tected. If the computer is operatingiin the designated tracing mode an automatic
transfer of control will be effected to a routine associated with the tracing mode.
At the completion of the routine, control is transferred back to the main program.

Instructions are available to direct the computer to enter or leave any
one of the nine tracing modes by setting a tracing mode flip-flop. For example,
when a set tracing mode flip-flop seven instruction is executed, all succeeding
instructions tagged with a tracing mode seven digit force a transfer of control
to an associated routine. Ei ther the computer program, or the operator with a
manual intervention routine, may at any time instruct the computer to enter or
leave any of the nine tracing modes. The computer can therefore be directed to
automatically trace its programs in several different modes or mode combinations
for the purpose of debugging or monitoring a program or for the purpose of in­
jecting side routines at various points in the program. A tracing mode routine
can be designed to perform any number of functions. For example, it may be de­
signed to prepare the contents of certain registers for print-out. Except for
the instructions that are actually traced, no time is lost since the instructions
to be traced are detected automatically by the computer circuits rather than by
the program itself. No change has to be made in a program coded for a production
run to enable tracing under a number of different conditions.

2.7 SENSE FLIP-FLOPS

The computer instruction code contains instructions for setting or re­
setting any of ten sense flip-flops together with conditional transfer of control
instructions that are dependent on the state of the sense flip-flops. The sense
flip-flops have no predetermined function. Essentially, they are general-purpose
single-bit storage units that the programmer may use in numerous ways. Like
the tracing-mode flip-flops, the sense flip-flops may be set directly by the
main program or through manual intervention by the operator. The sense flip­
flops enable the program to change the paths it will follow through its own
routines or the operator to modify the paths the program will follow. For
example, a general program could be directed, by the operator or by the program
itself, to perform a specific set of operations on the data for a particular run.

2.8 ERROR CHECKING

In many data-processing installations considerable computing time is
wasted in detecting and correcting errors and in handling such program contingencies
as overflow. As the speed of data processing systems increase, computing time

2-4

becomes more valuable. While a human ponders for a few seconds or manipulates
switches on a console, the computer can perform operations numbered in the millions.
To prevent the loss of valuable computer time, an error occurring in the LARC system
is detected automatically and, whenever possible, corrected without human inter­
vention. If automatic correction proves impossible, the general source of the
error is located and isolated from the system, and the exact cause of the error
is pinpointed and corrected off line, thereby releasing the system for further
computation.

The computer contains built-in checking oircuits, designed to detect all
single-bit errors. The checking circuits are designed not only to detect an error
but also to give an immediate indication of the specific area of the computer in
which the error occurred. On the order of 20% of the circuitry in the LARC
system is devoted to redundant circuits and associated checking circuits. It is
estimated that these circuits double the utility of the system by quickly locating
faults and by eliminating the need for programmed checks.

An error may be one of several types. It may be an error due to the
complete failure of a component such as a transistor or resistor, in which case
the faulty component would have to be located and replaced. It may be an error
caused by a transient or intermittent fault which may occur only once or at
widely separated intervals. In this case, it would be convenient to repeat the
operation that caused the error and continue the program without further inter­
ruption after obtaining an indication that the error has occurred and where it
occurred. Then again, an error may be caused by an error in the program, for
example, by an attempt to add a non-numeric combination or to decode a non­
existant address or instruction. In this case it would be convenient for the
programmer to obtain information which would aid him in detecting the error
and correcting the program.

Should an error be detected in the computer, one or more error flip­
flops are set to indicate the type of error and which, when set, cause an
immediate and automatic transfer of control of the computer to an error routine
designed to handle the situation. Instructions are available for use in the
error routines to test the various error flip-flops in order to localize the
source of the error. Ordinarily the error routines will not change from
problem to problem run on the computer. They are, however, subject to change
and improvement by the programmer. Although the error routines may vary con­
siderably in complexity, a typical routine may take the following general form.

When an error is detected, control is transferred to an instruction in
a specific storage location which is the beginning of an error routine. The
routine examines the error flip-flops to determine the type of error committed
and then initiates a printout which would aid the maintenance engineer or pro­
grammer in analyzing and correcting the error. The printout might contain the
following information:

(1) The type of error (adder, index register, etc.).
(2) The digit position at which the error occurred.
(3) The time at which the error occurred.
(4) The instruction that caused the error.
(5) The storage address of the instruction that caused the error.
(6) The contents of the accumulator register or registers involved, if any.
(7) The contents of the index (B) register involved, if any.
(8) The operand involved.

2-5

If possible, the specific instruction that caused the error is then re­
peated. If the instruction is a type that cannot be repeated, the routine transfers
control to a rerun point in the program. In either case, if the error is not re­
peated, indicating that it is transient or intermittent, the computer continues
with the main program without any human intervention having occurred. However,
the error is not neglected, since the printout constitutes a running log of all
intermittent errors that have occurred, together with information as to their
source and frequency. The maintenance engineer may analyze this information to
determine what corrective action, if any, is necessary during the next convenient
maintenance period.

If an error continues to repeat, indicating that a permanent fault or
programming error has occurred, the computer stops. When the computer stops, the
maintenance engineer or programmer is usually provided with enough information
by means of the typeout or indicators on the engineers console to isolate suffi­
ciently the source of the error. At this point, the maintenance engineer might
remove a group of printed circuit packages and replace them with pre-tested
e qui valents • However, he may find it quicker and more convenient to call in a
diagnostic routine from the drums or tapes to further isolate the error to one
(or a very few) printed circuit package and replace it.

More elaborate error routines could be designed which would attempt to
isolate the error source still further and perhaps print out the designations of
the specific printed circuit packages that are to be replaced. However, such
routines might not be justified by the frequency of occurrence of the errors.

2.9 CONTINGENCY CHECKING

The computer contains checking circuits for detecting, not only machine
errors, but overflow conditions within the arithmetic system and certain condi­
tions reflecting mistakes in programming. These built-in circuits continuously
and automatically check for the following conditions:

(1) Floating zero result-occurs on floating point add and subtract
instructions when an arithmetic subtraction of two numbers with equal exponents
produces a zero answer.

(2) Non-normalized divisor-occurs on floating point division
ins~ructions when the divisor has a zero in the most significant digit position
(tre digi t position adjacent to the exponent).

(3) Exponent overflow-occurs on floating point add, subtract,
multiply, and divide instructions when the addition, subtraction, multiplication,
or division of two floating point numbers results in an exponent greater than 99.

(4) Exponent underflow-occurs on floating point add, subtract,
multiply, and divide instructions when the addition, subtraction, multiplication,
or division of two floating point numbers results in an exponent less than 00;
or on fixed-to-floating point or floating-to-fixed point conversion instructions
which would cause a loss of significant digits.

(5) Fixed decimal overflow-occurs on single and double left shift
instructions when at least one non-zero digit is shifted out of the register causing
a loss of significant digits; or on fixed point add, subtract, multiply, and divide
instructions when the result is greater than or equal to one in absolute value.

2-6

(6) Program error in sign-occurs on all add, subtract, multiply,
divide, negative transfer, and comparison instructions when the rules for the
proper character in the sign position are not obeyed.

(7) Non-nor.malized mistake-occurs on floating point add or subtract
instructions when an arithmetic subtraction involving a~l zero or non-normalized
numbers produces the wrong answer.

If one of these conditions arises, it is handled in much the same way as
an error condition. The computer automatically transfers control to a contingency
routine specifically designed to handle the condition. The programmer decides
beforehand exactly what should be done if a particular c cm.di tion is detected and
designs the contingency routine for that condition accordingly. He may, for ex­
ample, call for a printout to indicate that the condition has occurred but other­
wise ignore the condition and return control to the main program; he may decide
that the condition be corrected, if possible; or he may decide that the program
is at fault and switch to a new program. In any event, the system need not be
interrupted while human decisions are made or corrective action taken, and time­
wasting programmed checks need not be made to detect contingencies.

MI CROSECONDS
I NSTR.UCTION

STEP

1 2 1
3 1 4 5 \ 6 \ 7 \ 8 , \10 \11 112 13 114- \1sl 4~ 17 118 1 1.9 I 20 1

08TAIN INSTRUCTION
FROU STORAGE

MODIF'(OPERAND
ADDRESS

TRANSFER OPE.RAND
TO OR FROM STORAGE

EXECUTE
I HSTRUCTION

In In+. 1n+2- In+s
'lij'///// '/////////h

I n - 1 In In+1 In+2-
1///////////1 'lA

In-'l

In-:s
:/,////h

In-~ In In+1
1hr///////h 'V////////h

I n-2. 1"-1 In
'l//Y//////////'h

Fi9ure 2-1. Simplified llming Diagra.m of a. Sequence
of Four - Microsecond Computer I ns+rudions

2-7

In

I n+ 3
:/'/////////.I'lI

I n+%. In+e
'l////h

In+1 In+1-
'l///lj"/h

2.730

SECTION III

PROCESSOR

3.1 FUNCTION

The processor is a stored-program computer with many general-purpose
characteristics. Its primary role in the LARC system is the coordinated and
flexible control of concurrent input-output operations under summary command
of the computer program.

The processor is programmed to pick up summary orders issued by the
computer, acknowledge their issuance, interpret them, supervise their execution,
and inform the computer of their completion. All this is controlled by a
fluid loop program that need not change for every program run on the computer.
A flexible processor program for controlling input and output was developed
along with the LARC system much as the equipment was developed and tested.
In fact, the program, together with the general purpose computing abilities
of the processor, is an alternative to using a multitude of costly and in­
flexible built-in control equipment to perform a similar function.

An important advantage to the programmed-control approach is that the
programmer is given the ability to modify input-output control. As a programmer
gains experience with the system he may take advantage of new programming
techniques and his own ingenuity to devise control programs for the processor
which will without doubt improve the performance and even change the performance
characteristics of the processor probably in ways not even contemplated by
the original designers.

The processor has enough speed and flexibility to handle the complete
complement of input-output devices, operating many in parallel, and to service
both computers in the expanded system. Its general purpose characteristics
enable the system to be expanded with ease and molded to a customers require­
ments without conflicting with previously designed computer programs.

When the processor is not being used to the limit of its ability in
controlling input-output, as will often be the case, particularly in a one
computer system, it can relieve the computer of additional tasks, such as the
edi ting of output data and, if it still has extra time , it can perform a
sorting, merging, compiling, or other side routine concurrently with and
entirely unrelated to a program being run on the computer. The work load can,
in fact, be shared between the processor and the computer so that each does
the type of work that it is most suited to do by virtue of its design.

Logically, the processor separates into three major divisions re­
presenting different levels of control. The three major d1 visions are:

(1) The central processor.
(2) The synchronizers.
(3) The dispatcher.

3-1

3.2 CENTRAL PROCESSOR

The central processor is the general purpose computing section of the
processor. Compared to the computer, it has much less elaborate facilities for
performing arithmetic operations. The arithmetic system of the central processor
consists of a serial adder-comparator and two connecting l2-digit shift registers
for the temporary storage of operands. When an add instruction is executed,
operands are shifted from the two registers into and through the adder a digit
at a time. The result is shifted back into one of the registers, which also
serves as an accumulator register. The bits and digits of a word are transferred
between the registers and the main core storage completely in parallel.

The instruction cycle of the central processor is overlapped only to
the extent that the access time for obtaining instructions from storage is
overlapped with the execution time. Unlike in the computer, the execution time
is not overlapped with the time required to transfer operands or perform
address modification. The central processor has no special facilities for
address modification. The central processor contains the control circuits
nor.mally found in most general-purpose computers together with somewhat more
specialized control circuits to address, monitor, and exercise supervisory
control over the synchronizers and the input-output devices.

Time Reference

The LARC system is designed to change over to a new problem without
interruption. While computations are being performed on one problem, the
next problem may be in the process of being loaded into the storage, while
results from a previous problem are being printed out, all of which is made
possible by the parallel operation of the various units of the system.

To aid in a changeover, a real-time reference is provided in the
central processor. The timing reference may be used, among other things, to
determine when the time allotted for one program on the computer is exhausted
so that an automatic changeover may be made to a new program. The timing
source is a 60 cycle clock which continually alerts the processor program to
keep a running count of the time of day. The computer can order the processor
to keep a check on the running time of a program and after a specified period
of time has passed direct the computer to a routine for affecting a changeover.

An interesting use of the real-time clock is to time logical operations
within the processor. The pr9cessor program uses the clock reference to time
certain extra long logical operations, such as tape reversal operations on a
tape unit or information displays on the operator console, thereby eliminating
the need for costly fixed delay elements. Such a timing reference may be used
for any number of other purposes, for example, to record the time at which
errors or other events occur during the course of running programs. It is
particularly useful in scheduling problems on the system and in solving problems
in real time.

3-2

Instructions

The central processor has an instruction code separate and distinct from
that of the computer. It contains a complement of general-purpose instructions
(appendix D), such as add, subtract, shift, and transfer instructions, that are
used in carrying out its primary editing, interpreting and supervisory functions,
but which may also be used in executing a side program. The central processor
does not however have instructions for multiplying and dividing since these in­
structions are not required in the editing and control routines which carry out
its primary functions. If multiplication or division is required in a processor
program, it could be done by means of a subroutine. More likely it would be done
by the processor temporarily interrupting the computer to do it. The central
processor can set an intervention flip-flop in either computer which will force
the computer to transfer control to a routine associated with the flip-flop. If
required, the transfer can be programmed so the computer will return automatically
after completing the routine to the point in its own program at which it was in­
terrupted.

The central processor, although it performs arithmetic instructions at a
slower rate than the computer, can perform in 16 microseconds an addition instruc­
tion which takes an operand from storage, adds it to an operand in the accumulator
register, and returns the result to storage.

The majority of the central processor instructions are used to communicate
with or control the error circuits, the input-output devices, the synchronizers,
and the dispatcher. Most of these instructions are one of the three general types
listed below. Many can be addressed to anyone of several synchronizers or other
devices.

(1) Set flip-flop instructions that alert a synchronizer or other
device to perform a specific function, such as connect or read 100 words.

(2) Transfer instructions that transfer control information between
the central processor accumulator register and the dispatcher or a synchronizer.
The control information might specify the mode in which a synchronizer should op­
erate or the first address of a storage area to which the dispatcher should trans­
fer data for a particular synchronizer.

(3) Test flip-flop instructions that are actually conditional trans­
fer instructions conditional on the state of the flip-flop tested. These instructions
are used by the central processor to monitor and test the condition of a synchronizer
or other device, for example, to test the availability of a synchronizer or to test
if a synchronizer or other device has completed a previously ordered operation.

These instructions are designed chiefly to provide the central processor
with the means by which it can exercise flexible real-time control over several
operations being performed in parallel. To be meaningful, a description of these
instructions requires some knowledge of the characteristics of the various devices
which they are used to control and for that reason they are not listed with the
more general-purpose instructions in appendix D.

3-3

Input and output transfers for a side program of the central processor
can be handled in much the same way as it is handled for the computer, by the
same processor input-output control program that governs the performance of
summary orders from the computer. The programmer therefore need word with a
relatively few arithmetic-type instructions when producing a side routine and
need not concern himself with a myriad of detailed input-output orders. Such
orders would only be used if the programmer wished to modify or redesign a
processor input-output control program.

3.3 SYNCRHONIZERS

The central processor does not have time to control every step of
several input-output operation being performed in parallel. Consequently,
much of the detailed and specialized work of controlling these operations is
performed by the synchronizers. A synchronizer represents a modular grouping
of logical circuits for controlling a particular reading or recording process.
Its logical form depends to a great extent on the characteristics of the
reading or recording device with which it is associated. Physically the

·synchronizers are contained within the processor cabinet which has the
potential for accepting all of the synchronizers of the expanded system listed
in Table 1-1.

3·3·1 Function

The synchronizers control the actual reading or recording process, and
the translation and,the serial flow of information, digit by digit, between a
bUffer register and an input-output device. In the process of transferring in­
formation a synchronizer may perform such functions as synchronizing input
information with the internal timing of the system, checking and counting the
information for errors, or translating the information in one way or another.

Whereas a single summary order from the computer might call for the
transfer of a block of several hundreds or even thousands of words, a single
instruction by the central processor alerts the synchronizer to process a
smaller block of words which is same fraction of the block specified by the
summary order. The synchronizer is designed to process the smaller block
automatically without direct intervention by the central processor. While one
block of information is being processed, the central processor program mayor
may not, based upon parameters defined in the summary order from the computer,
alert the synchronizer to process to next block of information. The actual
instruction that alerts the synchronizer is executed by the central processor
in four microseconds whereas the operation initiated in the synchronizer or
other device by the instruction may take several milliseconds. Meanwhile,
the central processor is free to continue processing other summary orders.

3·3.2 Communication with Central Processor

Whenever a synchronizer or an input-output device completes an operation
or action to a point where it is ready to accept further instruction from the
central processor program it records this fact by setting a flip-flop. The cen­
tral processor program tests the flip-flop with a conditional transfer instruc­
tion to determine whether a synchronizer or other device requires attention. If
it is set when tested, control is transferred to a routine which determines what
action to take and instructions the device accordingly.

3-4

Rather than waste time testing every flip-flop to find the one that is
set, the central processor program short-cuts the testing by first performing
a master test on all of the flip-flops and then a series of group tests. The
testing is performed in an order of priority so that the flip-flops of the
synchronizers that require the most frequent attention are tested first. In
general, the frequency with which a synchronizer requires attention is a func­
tion of its data transfer rate. Consequently the drum synchronizers which
operate at the highest rate are tested first, then the tape synchronizers, etc.
A synchronizer is designed to alert the central processor of its need for in­
struction sufficiently far in advance to give the central processor program
time to complete any routine in which it happens to be engaged and satisfy any
requests for supervision by higher priority synchronizers. Any routine run on
the central processor is required to perform the master test periodically to
monitor the real-time operations of the synchronizers.

3.4 DISPATCHER

The dispatcher is a central exchange which controls the transfer of data
between the buffer registers of the synchronizers and the main core storage. One
to four one-word buffer registers for each synchronizer perform the serial-parallel
conversions and store data preparatory to transferring it to the main storage or
to an input-output device. Transfers between the buffer registers and the input­
output devices are controlled by the synchronizers, and the rate and order of
flow is governed primarily by the characteristics of the particular device con­
cerned. Whenever a synchronizer completes the processing and transfer of a word
to or from a buffer register, it signals the dispatcher to transfer the word to
the main storage (if it is an input synchronizer) or to obtain a new word from
storage (if it is an output synchronizer). To accomplish this, means must be
available to the dispatcher for keeping track of the storage address of every
word transferred. Therefore, a register is provided in the dispatcher for each
synchronizer in which is stored the main storage address of the next word to
be transferred to or from the buffer register of that synchronizer. The be­
ginning storage address for a particular operation is supplied by the central
processor from information derived from the summary order from the computer and
the address is modified automatically each time the word it represents is trans­
ferred. Whenever an address is read out of an address register and sent to the
storage to initiate a transfer, it is also sent to a time-shared address modifier
in the dispatcher where it is modified before being written back into the same
register at the end of the transfer operation. The modified address is then the
storage address of the next word to be transferred for the synchronizer.

Since the synchronizers process information asynchronously with respect
to one another, several may require access to the storage at the same time.
Priority circuits are therefore contained within the dispatcher to define, on
the basis of preassigned priority ratings, the time at which transfers are made
for each synchronizer. The priority ratings, in general, reflect the rates at
which the various synchronizers must have information transferred to maintain,
without interruption, the flow of data required by the input-output device.

3-5

3.5 PROCESSOR CONTROL PROGRAM

A list of summary orders that are accepted and executed by one control
program designed for the processor are listed in Appendix C. The way in which
the program receives and sequences the execution of the summary orders is
described briefly below. The processor control program described here is a
general-purpose program designed to be applicable with practically any type
of program run on the computer. However, it does not by any means represent
the most efficient method of controlling the input-output operations for any
one type of computer program. Much more efficient processor programs can be
compiled which, without receiving summary orders, execute the input-output
operations independently, in an order and sequence compatible with the require­
ments of the computer program being run. Such a processor program relieves
the computer of the tasks of constructing and issuing summary orders and, at
the same time, relieves the processor of the tasks of receiving, extracting,
and interpreting the information summarized in the orders. Direct exchange
between the computer and processor ordinarily would be limited to the computer
at various pOints in its program alerting the processor to begin an extensive
series of input-output operations in a predetermined sequence and the processor,
in turn, alerting the computer to the completion of the series.

3·5·1 Summary Orders

The summary orders listed in Appendix C are not instructions in the
sense that they are decoded by a built-in decoder in the processor. Rather,
they are in the form of a pseudo or program code interpreted by the processor
program to generate actual central processor instructions which control the
synchronizers and other devices in carrying out the summary orders. A summary
order usually specifies a type of operation to be performed, the drum or
input-output device involved in the operation and parameters of the operation.
For example, a tape summary order may specify that 250 blockettes of 10 words
each be read in a forward direction on tape unit 15 and be transferred to
consecutive storage locations beginning with storage location 15,600.

3·5·2 Disclosure of Summary Orders

A computer program communicates with the processor by placing one or
more such summary orders in sequential locations in the main storage and alerting
the processor program to their presence by setting a disclosure flip-flop. A
count of the number of summary orders in the group that call for a transfer of
data to or from the main storage is contained in a word filed along with the
summary orders. Whenever the processor program completes one of these summary
orders, it lowers the count by one so that the computer program can check the
count for zero to determine that all required data transfers have been accomplished.
As an alternative, the computer program can code the word containing the count
of summary orders in such a way that the processor program will be directed to
interrupt the computer program and transfer computer control to a specified
subroutine as soon as all the required data transfers are completed.

3-6

The central processor program, upon testing the disclosure flip-flop,
is directed to a perdetermined storage location which contains a disclosure
word (the first and last address of the summary orders), placed there by the
computer, that defines the area of the storage in which the summary orders are
stored. After picking up the information which defines the location of the
summary orders, the processor program resets the disclosure flip-flop, thereby
enabling the computer to issue another group of orders. Before issuing a new
group, the computer program tests the disclosure flip-flop to ensure that the
processor program has been alerted to the presence of the last group that was
issued.

3·5·3 Execution of Summary Orders

The processor program is designed to accept summary orders and execute
them as rapidly as pOSSible, relieving the computer program of all concern
about the availability of the equipment needed to complete the summary orders.
Once the processor program has been alerted to the presence of the summary
orders, it examines and begins to execute each summary order in turn, provided
all of the equipment that is needed to process the summary order is available.
Delays in processing a summary order occur if:

(1) The central processor is temporarily tied up supervising
operations already in progress.

(2) A drum, input-output device, or synchronizer that is
needed to execute the summary order is busy performing a previously ordered
operation.

(3) The summary order calls for a transfer of data to or
from the same area of main storage as a previously accepted summary order
which is not yet completed.

Should condition (2) or (3) exist, the processor program files the summary
order and attempts to execute the next one.

To ensure their continuity, the processor program always gives
priority to the control of operations already in progress. At least every
500 microseconds, the central processor program performs the master test
to monitor and answer all requests for instruction by currently operating
devices. Only if all requests for instruction by currently operating
devices have been satisfied will the program accept for processing newly
issued summary orders.

Once accepted, a new summary order is started in execution by the
processor program if the necessary equipment is available to process it.
Should a needed device (drum, input-output device, or synchronizer) be busy
performing another operation, the summary order is stored in a work order
file for the device that is holding up execution. Each time a device
completes an operation the next summary order, if any, in the work order
file for the device is picked up by the program and is started in execution.

3-1

The processor program also keeps a conflict control file of all summary
orders currently being executed or awaiting execution that call for a transfer
of data to or from the main storage. As each new summary order is received,
comparisons are made by the program to deter.mine if the order is in conflict in
that it refers to the same storage area as an order in the conflict control file.
If there is a conflict, then the program delays the execution of the summary
order, even though the equipment needed to execute it is available, until any
previously accepted summary order with which it is in conflict has been
completed. This prevents the possible premature destruction of data in the
storage or the transfer of wrong data from the storage as a result of a
summary order being executed out of sequence.

3 .6 ERROR CHECKING

The processor, like the computer, contains checking circuits throughout
that are designed to detect all Single bit errors. An error in the central
processor is handled in somewhat the same manner as in the computer (paragraph
2.8) in that an error flip-flop is set causing an immediate and automatic
transfer of control to an error routine which can test the error flip-flops
and take appropriate action.

Should an error be detected in a synchronizer it is handled differently.
Two flip-flops are set, one, which may be set by error-checldng circuits of a
particular type in any synchronizer, indicates the type of error detected; the
other, which is set only by the error-checking circuits of the one synchronizer,
indicates which synchronizer detect an error. When the error flip-flops are
set by the synchronizer, the central processor does not immediately transfer
control to an error routine. However, the next time the central processor
performs an instruction which alerts the synchronizer to process another block
of data or to end an operation, the instruction will test the error flip-flop
of the synchronizer to determine if an error was committed during the process­
ing of the last block of data. Should the flip-flop be set when tested, the
central processor will transfer control to an error routine.

The central processor has error test instructions which can be used
in the error routine to deter.mine the type and location of the failure. It
therefore can keep a running log of detected failures and, if possible, initiate
a short rerun procedure. A rerun procedure in the processor may take the form
of rereading a block of data from a magnetic tape. Instructions are provided
the processor for setting the read-amplifier gain control of the tape units to
nor.mal, high, or low gain. A block of data that cannot be read at nor.mal gain
often can be salvaged, without human intervention, by rereading it at a different
gain setting.

The checking circuits within the processor are designed to indicate
whether an error originated within the logical circuits of the processor or
within an external device (storage or input-output device). Often it is pos­
sible to exchange a good external device for a faulty one and continue with
computation. The tape units, drums, and core storage units are all connected
into the system through plugboards which simplify the substitution of one
identical unit for another. The external devices are provided with test con­
trols and other provisions for "off-line" testing and troubleshooting without
tying up the complete system.

SECTION IV

MAGNETIC CORE STORAGE

4.1 FUNCTION

The magnetic ferrite-core storage of the LARC system is the main storage
for both computers and the processor and the common link through which they ex­
change information. It is also used as a flexible buffer storage for blocks of
data being transferred between the drums and input-output devices. Any area of
the storage not being used for other purposes may be used as temporary buffer
storage.

4.2 MODULAR CONSTRUCTION

The core storage is divided into modular units each of which has a
capacity of 2500 words of 12 decimal digits. Four storage units are contained
in a cabinet and the storage units may be added to a system in units of four up
to a maximum of 39 units, the equivalent of 97,500 words. Each cabinet is self­
contained. It has its own power supply, clock-pulse generator, and heat ex­
changers. Because of a logical limitation on the number of storage addresses
available for assignment, one cabinet in a completely expanded storage system
of ten cabinets would contain only three 2500-word units. Although the core
storage may be expanded to a capacity of 97,500 words, with the drum storage to
back it up, less would ordinarily be required for most systems. For example, a
system containing one computer that is being produced for the Livermore Atomic
Research Center contains only eight core storage units with a total capacity of
20,000 words.

Each storage unit contains the switching, timing, and amplifying
circuits required for independent operation. The division of the storage into
units capable of independent operation enables simultaneous references to be
made to the storage both by the computer, for obtaining instructions and for
transferring operands, and by the processor, for instructions or data involved
in carrying out its program and for transferring data to or from the input­
output. It also enables off-line maintenance to be performed on a single unit
while the others are operating. A plugboard is provided to functionally inter­
change the units, that is, change the address assignments of the units.

4.3 TIMING

With the circuits used in the core storage a complete clear-write
or read-regenerate cycle would normally take on the order of eight microseconds
to complete. However, the allowable transfers to or from a single storage unit
are increased to a rate of one word every four microseconds by designing the
storage units so that the operations of selecting the proper cores and reading
or clearing data from them are overlapped and performed in parallel with the
operations of selecting the cores and writing or regenerating the data. As a
result, the storage cycle is, for all practical purposes, four microseconds.

The allowable transfer rate to or from the storage is further in­
creased by the fact that the storage units can operate independently and in
parallel. To keep interconnections within reasonable limits, the core storage
units are connected to the computers and the processor by a transfer bus which
is time shared to serve as the data transfer path to and from the storage for

4-1

both the computers and the processor. The bus is time shared on the basis of a
repetitive 4-microsecond time cycle which is broken down into eight one-half
microsecond time intervals (time slots) during anyone of which one word of
data can be transmitted to the storage in parallel. The time slots are ap­
portioned to the various connecting areas of the computers and the processor
in the following order.

<:-------------------------------------- 4psec.--------------------------------;>

I~ Cl C2 P Not C2 Cl P
I 0 D Used I 0 D

The abbreviations and their meanings are:

p = processor time slot

CP = central processor; indicates the time slot on which the central
processor section of the processor transfers operands or instruc­
tions that are used in its program.

D = dispatcher; indicates the time slots on which the dispatcher sec­
tion of the processor transfers input-output or drum data for a
synchronizer.

CI = computer number I

C2 = computer number 2

I = Instruction; indicates the time slot on which a computer obtains
an instruction.

o = Operand; indicates the time slot on which a computer transfers
operands.

Each storage unit is independently timed so that it can begin its opera­
ting cycle on any one of the time slots. Consequently, disregarding the one time
slot that is not used, data may be transferred to or from different storage units
at a maximumn rate of one word every one-half microsecond. Logical operations
within the computer and the processor are timed so that the storage transfers
required in the performance of the operations coincide with the time slot allotted
to the particular section of the computer or processor performing the operation.
All instructions have been designed to require some multiple of four microseconds
for their execution, so that their execution times are compatible with (in phase
with) the four microsecond rate at which the instructions can be obtained from
the storage. All data transferred over the bus system by either the I computers or
the processor are checked for single bit errors per decimal digit by a single set
of time-shared error checkers located in the processor. Error signals from the
checkers are distributed to the sections of the system that originate the trans­
fers over a separate set of time-shared buses.

4-2

4.4 INTERLOCKS

The LARC system ordinarily is programmed to avoid simultaneous reference
to the same storage unit by two or more sections of the system (the computers, the
central processor, or the dispatcher). However, occasions do arise in which such
a situation cannot be avoided. Each storage unit therefore is provided with inter­
locks to prevent conflicts and to establish priorities. A storage unit is'un­
available for four microseconds from the time it is addressed by a calling unit.
During this time any other calling unit is prevented from gaining access to that
storage unit. Continual reference, once every four microseconds, to a storage
unit by a computer or the central processor could, if a system of priorities did
not exist, lock out the dispatcher indefinitely from access to the same storage
unit. Because the dispatcher, to maintain a continual flow of data for the input­
output operations, must transfer data for the synchronizers within a definite
period of time, each storage unit is provided with a priority interlock which
ensures access by the dispatcher within four microseconds after it addresses the
storage unit. Should the dispatcher address a storage unit that is busy, the
interlock prevents the computers or the central processor from gaining access to
that unit again until the dispatcher has successfully completed its storage re­
ference. Because the central processor must monitor within a definite period
of.time the real-time operations of the synchronizers, it has the same type of
storage priority over the computers.

The processor instruction repertOire contains write-interlock instruc­
tions to prevent either computer from writing data into any designated storage
unit. It also contains an instruction for removing the write interlock from any
designated storage unit. These instructions are provided to prevent the accidental
destruction by the computer of data in the storage, for example, to prevent one
computer from destroying the processor's or the other computer's program.

4-3

SECTON V

MAGNETIC DRUM STORAGE

5.1 GENERAL

,The main core storage is backed up by a magnetic drum storage which
is intermediate in speed, cost, and capacity between the core storage and the
magnetic tape storage. The drums serve as a repository for information which
is not required immediately for a current series of computations or for a
current output operation but which will be or is likely to be required for
problems currently being run or scheduled to be run next. Information stored!
on the drums might include input data and instructions for current and future
problems, output data for current and previous problems, intermediate results
for a current problem, and service routines.

Up to 24 magnetic drums may be included in a system. Each drum can
store 250,000 words of 12 decimal digits. Up to three read-synchronizer and
two write-synchronizer units can be added to the processor enabling it to
control concurrently as many as three reading and two writing operations on
fi ve different drums concurrently with the input-output operations. The
processor program can connect any drum to any synchroni zer . T~fo drums
operating alternately can, with a single synchronizer, transfer data at a
continuous rate of 330,000 decimal digits per second.

The drum units are self-contained modules with individual test
controls for off-line troubleshooting and maintenance. They may be function­
ally interchanged by means of a plugboard.

5 • 2 FLOATING HEAD ASSElmLY

PhYSically the drum consists of a brass tube, 27.6 inches long and
24.2 inches in diameter, electroplated with a nickle-cobalt alloy. The drum
is rotated at 880 rpm to attain a surface velocity of 1120 inches per second.
The complete 250,000-word drum is serviced by a single six-channel read-write
head assembly held in a gimbal mounting and floated on a thin film of air
that is dragged along by the surface friction of the rotating drum. The head
assembly is maintained by the air film at a fraction of a mil from the surface
of the drum thereby enabling the heads to record and read at a pulse density
of 450 pulses per inch. Because the close spacing can be maintained despite
thermal, dimensional, and surface variations on the drum, it is possible to
use a relatively large, high-capacity drum and a single head assembly which
is moved across the length of the drum to service the complete drum. If a
fixed head were used, the tolerances involved could be relaxed to practical
proportions only by decreaSing the size or pulse denSity, and therefore the
capacity, of the drum and by providing multiple, costly head assemblies (with
additional ampli~ying and switching elements) mounted along the entire length
of the drum. To protect it against the effects of dirt and mOisture, the
drum, together with the head assembly and the mechanism that positions the
head assembly, is housed in an air-tight dust-free enclosure.

5-1

5.3 ORGANIZATION OF DATA

Each drum has 100 circumferential information bands. Each band can
store 2500 computer vords of 12 decimal digits, a capacity equal to that of
one core storage unit. The bands are divided into 25 sectors of 100 words
each, making it possible to begin reading or recording at anyone of 25 access
pOints around a band. One sector is the smallest unit that can be read or
recorded during anyone reference to the drum. A band is formed of six tracks.
The four information bits and parity check bit of a decimal digit are recorded
in parallel on five of the tracks. Words and digits of a word are stored
serially. The sixth track of a band is used to store serially a band number
and an address for each sector. A self-sprocketing, phase-modulation system
of recording is used in which synchronizing sprocket pulses are derived from
the recorded information pulses themselves.

Access to a particular band is gained by moving the single six­
channel head assembly back or forth along the length of the drum. The six
individual read-write heads are spaced in the head assembly at twice the
track spacing on the drum and the six tracks of one band are always inter­
spaced with the tracks of another. Two bands are interlaced by recording
one band of an interlaced pair with the head assembly in one position and
recording the other band ~f the pair with the head assembly shifted a dis­
tance equal to the track spacing. This is illustrated in figure 5-1 which
shows a graphical representation of a small section of the drum and relative
head assembly positions. Interlacing the bands in this manner enables a
high track density of 2a.5 tracks to the inch to be achieved without diffi­
culties attendent to designing a head assembly with extremely close spacing
between the individual heads. Three distinct operations are involved in
positioning the head assembly: stepping the head assembly from one band
of an interlaced pair to the equivalent band of an adjacent pair (figure 5-1),
shifting the head assembly from one band to the band with which it is inter­
laced, and reversing the direction of stepping.

The 100 bands of a drum are numbered in the following order:
00,99 01,98 02,97 .. · · ... 47,52 48,51 49,50
where 00 and 99 are the numbers of the first pair of interlaced bands, 01 and 98
are the numbers the next, etc. To take full advantage of this system, data
should normally be organized in a systematic manner so that the proceSSing of
data begins at band 00 and proceeds through band 01, 02, 03, etc. During each
read or write operation, a complete band of data is processed after which the
head assembly is stepped, in sequence, to the next band. After the data on
band 49 is processed, the head assembly is shifted to band 50, the stepping
mechanism is reversed, and the head assembly is stepped in the opposite di­
rection through bands 51, 52, 53, etc. After a complete pass through the
drum the head assembly is back to the starting pOint, thereby eliminating
the equivalent of rewind time. Data can be organized on the drum in a less
systematic manner and less than a full band can be read during each reference,
although by so dOing the time required to obtain data would ordinarily be
increased. The computer program can order the processor program to position
the head assembly over any band and process any number of sectors from 1 to 25.

5-2

5.4 ACCESS TIME

Stepping the head assembly from one band of an interlaced pair to the
equivalent band of the next pair requires 10 milliseconds except when the head
assembly is continously stepped without reading or writing. In this case only
50 milliseconds is required for each step except the last which requires 70
milliseconds. To reverse the direction of stepping requires 10 milliseconds.
Shifting the head assembly from one band to the band with which it is inter­
laced requires 50 milliseconds. The shifting operation can be performed in
parallel with a reversal operation, however.

Positioning of the head assembly is controlled by the processor program
which keeps a running account of the current position of the head assembly of
each of the drums and moves the head assembly to any position ordered by the
computer. The circuits in the processor that control the head positioning are
independent of the drum synchronizers. The head assembly on a drum can be
positioned in parallel with the head assembly on any other drum or in parallel
with a read or write operation being performed on any other drum.

A single summary order from the computer can specify the transfer to
or from sequential main storage locations of from 1 to 25 sectors of data on a
band. If a complete band of 2500 words is to be transferred, reading or writing
can start as soon as the beginning of the next readable sector is reached after
the drum is connected to the synchronizer. If only one specific sector on a
band is desired, up to a full drum revolution of latency time (68 milliseconds)
may be required to gain access to it.

The head assembly on any drum can be moved to the next band in se­
quence during the time required to read or write a full band of data. By
organizing the data in such a way that the reading and writing of bands
alternate between two drums, head movements can be executed in parallel with
the reading and writing, that is, while a band of data is being processed on
one drum the head assembly on the other drum can be moved to the next band
in the sequence . With this technique, data can be transferred continuously
at a rate of 2500 words every 90 milliseconds, the equivalent of 330,000
decimal digits per second. The 90 milliseconds required to transfer 2500
words includes:

(1) The time required to pick up and interpret the summary
order from the computer.

(2) The time required to connect the drum to the synchronizer
(assuming that the required drum and synchronizer are available).

(3) The time required to gain access to the first sector
that is processed.

(4) The time required to transfer the complete band of data
to the main storage and notify the computer of the completion of the transfer.

5-3

HEAD
AS~£M8L'(

~EAD-WRJTE

HEAD

OR.UM SU~FACE

)
(
)

INITIAL POSITION
~-- OF HEAD ASSEMBLY -­

OVE.12. BAND 49

-
\-----___ r-------JI \1.-______ ___ _____JI

V V
BAND 48 _ BAND 49 _

BAND 51 t::J BAND 50 q

Figure 5-1. Section of Drum Showing Relative Head Assembl~ Positions.

5-4

2731

SECTION VI

INPUT-OUTPUT

6.1 MAGNETIC TAPE UNIT

High Speed input and output is provided in the LARC system by Uniservo
II magnetic tape units. The tape units, although they can be considered and used
as a third order storage, are used primarily to introduce data into the system
and to record output, either for long-term storage or for off-line conversion
on an auxiliary device such as a high speed printer. Any magnetic tape prepared
by the Univac I or Univac II central computer or Univac auxiliary equipment can
be read by LARC system magnetic tape units and, conversely, LARC system tape
units can prepare tapes for use by the Univac I or Univac II central computer
or Univac auxiliary equipment. Consequently, a fully compatible complement of
off-line auxiliary equipment can be used with the LARC system, including the
Univac High-Speed Printer, Unityper I, Unityper II, Tape Verifier, Card-to-Tape
Converter, and Tape-to-Card Converter.

The LARC system can accommodate any number of Uniservo II tape units
up to 40. As many as four modular tape control units (synchronizers) can be in­
cluded in the processor, each of which can control a reading or recording operation
on anyone of 10 tape units that can be connected to it. Plugboards make it possi­
ble to substitute any tape unit for any other controlled by the same synchronizer.
The four tape read-write synchronizers can perform in parallel with one another
and in parallel with the drum synchronizers or other input-output synchronizers
in the system. While a reading or recording operation is being performed on one
tape unit, the tapes on anyone or all of the others can be rewinding.

A rewind checker can be provided as part of the processor. The re­
wind checker may be connected by the processor to any tape unit via its syn­
chronizer. It is used to perform a parity check and count of the characters
recorded on a reel of tape as the tape is being rewound to ensure that the
recording was executed without error. Although the rewind checker uses the
read circuits of the tape synchronizer to which it is connected, the same
synchronizer is free to control a concurrent write operation on another tape
unit.

The tape units read or record on either plastic or metal tapes at a
tape speed of 100 inches per second. Data can be recorded at a density of 200
numeric or alphanumeric characters to the inch for use on the Larc or Univac II
systems, o.r at a density of 100 characters per inch for use on the Univac I
system or on Univac off-line auxiliary devices. Tapes having a wider range of
pulse densities can be read, including tapes recorded by the Unityper I at 20
pulses per inch. The length of a block of data on the tapes can be any multiple
of ten l2-digit words. The tape synchronizers perform a parity check and count
of the characters that are read or recorded in each lO-word group of a block.
The processor program checks the number of lO-word groups in each block that
are read or recorded. The tapes can be recorded in a forward direction and
read in either a forward or backward direction. The data read from the tapes
can be transferred to the main core storage or merely checked by the processor
program in order to pass a number of blocks of data and gain access to a
particular block.

6-1

All data recorded on the tapes is in Univac excess-three 7-bit. code. In­
put and output data are translated by built-in translators i!1 tha tape synchronizers.
The processor program can instruct the tape synchronizer to translate the Univac 7-
bit code read from the tape into either a I-digit numeric or 2-digi t alphanuL11er'ic code
used 't'ri thin the Larc system (appendix B). When output is being recorded on tape) the
synchronizer can be instructed to translate from either the I-digit numeric or 2-digit
alphanumeric code to the Univac 7-bit code.

A mechanical int.erlock is provided on each tape. unit to prevent writing ~)n

a designated reel of tape. Also provided on each tape unit is a rewind interlock
that can be set by the processor program to prevent reading or 'tvriting on a re­
wound tape until the operator releases the tape unit from the interlock.

A photocell on each tape unit detects unusable sections of tape that are
indicated by holes punched at 2 1/2-inch intervals through the center of the tape.
When an unusable section is detected) the reading or writing process is inter­
rupted until it has passed the read-write heads. The tapes may be easily spliced
and the spliced joint invalidated for reading or recording by punching spaced
holes.

Access time to the nearest block of data on the tape is 15 milliseconds.
This includes the time required to connect the read-write heads and accelerate
the tape. An additional 0.6 second is required if the tape di,rection is reversed.
When a tape is in a rewound state an additional 1.2 seconds is required to reach
the first block of data on the tape.

6.2 ELECTRONIC PAGE PRINTER

For direct large-volume output of data in tabular or graphical form, an
electronic page printer can be provided with the LARC system. Output data may be
represented by the printer in the form of a curve plot) a grid pattern, alphanu­
meric characters, or a combination of all three, that is, a plotted curve with
call-outs, titles, scales, grid patterns, etc. The output is displayed on the
face of a cathode ray tube and is recorded by a high-speed 35-mm camera controlled
by the processor program. For occasional monitoring of the output, a self-de­
veloping camera is provided.

The printer operates at an average character rate per frame of approximately
15, 000 characters per second. When it is use.d for graphing, the printer operates
at average rates per frame of approximately 2000 pOints per second or 1000 grid
lines per second. Such output rates begin to match internal computer speeds and
make it possible to produce a sufficient volume of timely and easily interpreted
output data for program debugging and efficient engineering and mathematical
analysis.

Two identical fast-interchange printers are provided with the system.
Each has a 35-mm and a self-developing camera. Both printers are controlled from
a Single synchronizer in the processor. Each printer is provided with an internal
test program generator which may be used to simulate processor instruction for
purposes of off-line maintenance and adjustment. Should one printer become in­
operative or its camera run out of film, all of the output can be recorded on
the other.

6-2

The format for printing numeric or alphanumeric characters contains a
maximum of 65 lines of 125 character positions each. Anyone of 64 characters or
symbols can be recorded (appendix B). The printer synchronizer can operate in
either a numeric or alphanumeric mode. In the numeric mode, a single digit in
LARC code is used to select a numeric character or one of five special symbols.
In the alphanumeric mode, 2 digits in LARC code are used to select anyone of 64
alphanumeric characters or symbols. The printer synchronizer can operate in an
unedited mode in which case all of the characters are recorded in a standard for­
mat, or in an edited mode, in which case the format is determined by digits, with­
in the output data itself, which do not print but instead perform non-printing
functions such as inserting a space.

Anyone of the 64 characters or symbols can be selected by the pro­
cessor program for use in plotting a curve. The center of the plotting symbol can
be directed to any position in a 1000 by 1000 mesh of discrete locations. The
printer synchronizer can operate in either of two plotting modes. In one mode
two sets of X and Y coordinates (2 points) are specified in a single word of
output data. In the other plotting mode, X and Y coordinates for one point are
specified in two consecutive words of output data. The output data can be
edited by a special editing routine in the processor or the computer. The
synchronizer can operate in two additional modes, one for plotting horizontal
grid lines and the other for plotting vertical grid lines. In these two modes,
a pair of abscissas or ordinates is specified in each output word for plotting
respectively, a vertical or horizontal grid line.

Both the 35-mm camera and the self-developing camera are focused on
the face of the cathode ray tube by a "beam-splitter" optical arrangement. The
35-mm camera has no shutter. Its film is advanced automatically, with the tube
cut-off, after a frame of data has been recorded. The film can be advanced at
a maximum rate of 10 frames per second. The camera accepts a 400-foot film
magazine. Both the processor program and the operator are provided with in­
dications of the status of the film.

The shutter for the self-developing camera is controlled by the
processor program. The camera can produce either standard paper prints or
positive transparencies that are suitable for projection and for easy overlay
comparison of graphs. The operator can advance the film nnd develop a paper
print in approximately 1 minute, or a transparency in approximately 2 minutes.

6·3 LINE PRINTER

Either one or two electro-mechanical printers and printer synchronizers
can be connected into the system to produce directly high-quality, multiple­
copy records of results. The printer can record either numeric or alphanumeric
data in a standard or a completely edited format. The paper can be fed in steps
for single-line spacing or fast fed for multiple-line spacing. The paper feed
accepts paper from 4 1/2 to 21 inches in width. The printer has the follOwing
characteristics:

Printable characters
Lines per minute
Character positions per line
Characters per minute (maximum)
Characters per inch
Lines per inch

6-3

51
600
130
78,000
10
6

6.4- CARD READER

An on-line card reader and a card reader synchronizer can be provided
as part of the LARC system.

6-4

SECTION VII

OPERATOR AND ENGINEER CONTROL CONSOLES

7.1 OPERATOR CONTROL CONSOLE

In a LARC system containing one computer, a single operator console
is used to exercise complete operational control over both the computer and the
processor. In a LARe system containing two computers, two identical operator
consoles are used, one for each computer. When separate problems are being
run on the two computers, the operators at both consoles can communicate with
and exercise control over the processor without in any way interfering with one
another. Although the controls and monitoring devices on the operator control
console are few, they are versatile enough to provide complete operational
control over both the computer and processor.

Each operator console has a numeric keyboard to enter data into either
a 5-digit or l2-digit general-purpose display register in the computer. Tile
contents of both registers are displayed in decimal for.m on the operator control
console panel. Both the computer and processor have access to the display
registers by ,ray of their accumulator registers and may be instructed to display
data in the registers or pick up data entered into the registers from the key­
board. To prevent conflicts between the computer and processor in the use of
the display registers, all displays are normally handled by the processor program
which times the duration of the display using the real time reference.

Operator direction of the computer and processor is exercised chiefly
by means of manual intervention. buttons on the operator control panel. There
are five such buttons on each panel for the computer and five for the processor.
Pressing a computer manual intervention button forces the computer to transfer
control to a routine associated with the button. If necessary, provisions are
made in the routine for reentry into the main program when the routine is com­
pleted. The routine may take any for.m and may, for example, pick up data
entered into the display registers by the operator and use it, or dispose of
it, in any number of ways. Although only five manual intervention buttons are
provided for the computer, the number of routines to uhich the operator may
direct the computer is not necessarily l~ted to five. For example, the
data picked up from a display register may be interpreted by a manual inter­
vention routine in such a yay as to direct the computer to any number of
subroutines. A subroutine may perform anyone of a variety of functions such
as fill, empty, switch to another problem, set a sense flip-flop, or set a
traciIlB mode flip-flop • Although the manual intervention buttons are often
used in conjunction with a display register entry, they need not be.

Pressing a processor manual intervention button causes a transfer of
control in the processor to a routine associated with the button. Instead of
forcing an immediate transfer, however, the button alerts the processor to
transfer control at the discretion of its program. The actual transfer may
not be immediately af£ected but may be delayed a few milliseconds until the
processor has reached a point in its program at which it may enter the routine
without interfering with a current input-output operation or an intervention
by an operator at another console.

7-1

An alphameric typewriter printer is provided on each operator control
console. The printer is controlled through a synchronizer in the processor.
It is used by the processor program, or by the computer program indirectly by
way of summary order to the processor program, to communicate with the operator.
A printout might consist of data relative to errors or contingencies (that
occur in a program), or programmed instructions to the operator.

A paper tape reader is provided with the printer on each console.
The paper tape reader is used primarily during a start-up procedure as a fast
means of initially loading the first of the processor program into the main
storage. When used for this purpose, an initial load button on the operator
control panel is pressed which causes data read from the tape to be transmitted
to the main storage via the display registers. After sufficient data have been
transferred into storage from the paper tape, the processor program completes
the loading from magnetic tape. The paper tape reader may also be used to
relieve the operator from typing data into the display registers from the key­
board while a problem is being run or to load data into the storage for the
computer if the processor is not operating. The printer is also provided with
a paper tape punch which may be used to record the numeric output of the
printer or may be used by the operator to prepare punched paper tapes for the
reader.

Aside from the manual intervention buttons, the initial load button,
and the keyboard controls, the only other controls on the operator console are
five illuminated push buttons -- a START, STOP, CONTINUOUS, ONE INSTRUCTION and
MULTIVIBRATE button. Pressing the multivibrate button causes the computer to
perform instructions at a frequency determined by a dial setting on the engineer
control console. The one instruction button causes the computer to perform one
instruction then stop. When the continuous button is pressed, the computer
performs the instructions at normal running frequency.

The only indicators on the operator panel, aside from thoreassociated
with the display registers, are:

(1) A 5-digit decimal display of the contents of the control
counter in the computer.

(2) Nine tracing mode indicators to indicate the tracing
modes the computer is operating in (which tracing mode flip-flop is set).

(3) Ten sense flip-flop indicators to indicate which
computer sense flip-flops are set.

(4) Seven interlock indicators which are general indicators
of certain conditions requiring operator attention with respect to the drums
and each type of input-output device (magnetic tapes, line printers, electronic
page printers, card reader, console printers, and console keyboards). More
specific data concerning a condition would be indicated at the engineer control
console or at the device itself.

7-2

7.2 ENGINEER CONTROL CONSOLE

The engineer control console contains an engineer control panel for
the processor and a separate panel for each computer in the system. All of
the controls and indicators on the operator control console which includes an
operator control panel, a numeric keyboard, and an alphauwmeric printer with
an associated paper tape punch and reader are duplicated on the engineer con­
trol console.

In a system containing two computers, either one or two sets of
operator controls and indicators can be provided on the engineer control con­
sole. Should one set be provided, it can be manually connected to either
computer. A single console printer synchronizer is provided in the processor
which can be connected by the processor program to anyone of the four console
printers in the system. Normally, error analysis information and the like is
routed to the printer at the engineer console and data on contingencies, in­
structions to the operator, etc. are routed to the printer at the operator
console. Some, but not all, of the controls and indicators provided on the
computer and processor engineering panels are described briefly in the
following sections.

7.2.1 Computer Engineer Panel

The computer engineer panel contains 60 neon lights which display
in binary form the contents of the computer l2-digit display register which
is displayed in decimal form on the operator panel. Switches are provided
on the computer panel to op,erate the display register in either of the three
:following modes:

(1) In the manual display mode, the engineer can set controls to
select and sample, at a speci:fic pulse time and step of an instruction that
is being executed, data at various points within the computer and transfer
the data to the 12-digit display register where it can be observed in binary
form on the engineer panel. Data can be sampled for display :from the var­
ious registers within the arithmetic and control sections of the computer,
from various data transfer paths including the main storage bus, and from
various combinations of flip-flops.

(2) In the program display mode, the engineer can, as in the
manual display mode, select for sampling, at a specific pulse time and in­
struction step, data at various pOints within the computer. However, the
display will only be effected for instructions that are tagged with a "one"
digit in the most significant digit position.

(3) In the fast register display mode, the engineer can select
and sample for display the contents of any of the fast registers within the
computer (refer to section 2.5).

The display registers may also be used by the engineer, in con­
junction with a type-in from the keyboard, to enter data into the main
instruction register of the computer, enter data into any main storage
location or display data from any main storage location.

In addition to those associated with the display registers, the
following controls and indicators are included on the computer engineer panel.

7-3

(lY Error and contingency indicator lights that indicate any error or
contingency condition detected by the checking circuits of the computer. The
error indicator lights indicate the type of error detected and, for certain
types or errors, the digit position at which the error occurred. An error
option switch is provided on the panel. The switch has three pOSitions labeled
STOP, NORMAL, and IGNORE. When the swi tch is in the STOP position, the computer
stops if an error is detected. When the switch is in the NORMAL pOSition, the
computer enters an error routine if an error is detected. When the switch is
in the IGNORE position, the computer ignores any error detected. A reset button
is also provided with which the engineer may reset the error flip-flops. A
similar contingency option switch and a reset button ar~ provided on the panel
for controlling contingency conditions.

(2) Two neon pushbuttons are provided on the panel to control the
gating in of various control signals that the engineer can manually introduce
into the computer for troubleshooting purposes by connecting signal input lines
to terminals in the circuits.

(3) A switch abnormal light which is lit if any switch on the
computer panel is set in a position to interfere with the running of a normal
program or to allow errors to go undetected.

(4) A transfer switch which the engineer may use to force the
computer to either transfer control or not transfer control on conditional
transfer of control instructions.

(5) Buttons for clearing the computer as a whole or selected parts
of the computer.

(6) Retain buttons which can be used to retain the contents of
the main instruction register, the control counter, or a fast register.

7·2.2 Processor Engineer Panel

The controls and indicators on the processor panel include:

(1) Illuminated master power control buttons for applying power
to the various uni ts of the system. A set of 24 pushbuttons is provided to
select the drums that are to be turned on. When the master drum-power con­
trol button is pressed, the selected drums are turned on in sequence.

(2) Air-flow, power failure, and temperature indicators for the
processor, the computers, each type of input-output device, and each main
storage cabinet.

(3) Start and stop pushbuttons.

(4) Illuminated pushbuttons to control the mode in which the
processor operates. The processor can operate in a continuous, one instruc­
tion, one step, arithmetic test stop, or input-output test stop mode or any
of five breakpoint stop modes. With the test stop pushbuttons, the processor
can be made to stop on conditional transfer of control instructions (arithmetic
tests, input-output tests, or breakpoint tests) and indicate whether a trans­
fer of control is imminent. When the processor stops, the engineer has the
option of forcing the processor to transfer control or forcing it to continue
on the same sequence of instructions.

7-4

(5) Clear buttons for clearing the processor as a whole or selected
parts of the processor.

(6) Retain buttons to prevent changing the contents of certain re­
gisters within the processor.

(7) Error indicators to display errors detected within the central
processor, dispatcher, and each of the synchronizers. Separate error option
switches are provided for the central processor and each of the synchronizers.

(8) A switch abnormal light which is lit if any switch on the pro­
cessor panel is set in a position to interfere with the running of a normal
program or to allow errors to go undetected.

(9) A master error-set pushbutton to set all of the processor error
flip-flops for the purpose of testing the error flip-flops and the indicators
on the panel.

(10) A gain control switch for each tape synchronizer to enable the
engineer to set manually the tape amplifier gain control of a tape synchronizer
to high or low gain, or have the gain setting determined by the processor
program.

(11) A sector-address write switch used in conjunction with a special
processor program to layout the data bands on the magnetic drums when the
drums are first installed into the system. If a bad spot (unusable recording
area) should develope on a drum after it is installed, one or more bands can
be repositioned so that the bad spot will lie in an area that is not used for
recording, in a space between sectors, for example.

(12) A memory simulator consisting of a set of 60 switches used to
insert manually a word of data into the processor. A word set up on the
switches can be directed to the main instruction register, the arithmetic
registers and to the synchronizer buffer registers.

(13) Switches to run each of the synchronizers.

(14) A binary display of the main instruction register and various
other registers, counters, and control flip-flops in the processor.

(15) Display register controls which can be used to transfer the
contents of the main processor instruction register or either arithmetic
register to a computer display register for visual inspection, or to trans­
fer the contents of a display register to the instruction and arithmetic
registers. Data can be manually entered into the display register from the
keyboard.

(16) A type-out button which causes a type-out on a selected console
printer of the contents of the processor arithmetic registers.

(17) A jam-signal button which is used to control the gating in of
various control signals that may be manually introduced into the processor
logical circuits for troubleshooting pruposes.

(18) An audio monitor that can be connected to either computer or
to the processor. By changing pitch the audio signal gives an indication of
the frequency of instruction execution.

7-5

(19) A film monitor to indicate the status of the film in the 35-mm
and self-developing cmmeras of the electronic page printer.

7-5·1

APPENDIX A

COMPUTER INSTRUCTIONS

AND

WORD FORMATS
A-I WORD FORMATS

A-l.l Single-Precision Fixed-Point Operands

A single-precision fixed-point operand contains a sign digit and 11
decimal digits, as follows:

SXXXXXXXXXXX

where S is the sign digit and X is a numeric decimal digit. The sign position
contains a 0 if the number is positive and a minus digit if the number is neg­
ative. An absolute zero is expressed by a period digit in the sign position
and all zeros in the X positions. The decimal point is assumed to be between
the sign and the most significant digit.

A-l.2 Single-Precision Floating-Point Operands.

A single-precision floating-point operand contains a sign digit, a
2-digit excess-fifty base-ten exponent, and nine decimal digits, as follows:

SYYXXXXXXXXX

,",here S is the sign digit, Y is a floating-point exponent digit, and X is a
numeric decimal digit. The decimal point is assumed to be between the ex­
ponent (Y) and the most significant (X) digit of the operand number. The
operand is normalized, that is, the most significant digit is not zero.

A-l.3 Double-Precision Fixed-Point Operands

A double-precision fixed-point operand consists of two consecutive
single precision words each containing a sign digit and 11 decimal digits,
as follows:

SXXXXXXXXXXXSXXXXXXXXXXX

where S is the sign digit and X is a numeric decimal digit. The two sign
digits must be the same. The decimal point is assumed to be between the
first sign digit and the illOst significant digit of the operand.

A-I

A-l.4 Double-Precision Floating-Point Operands

A double-precision floating-point operand consists of two consecutive
single-precision words. The first word contains the sign digit, a 2 digit
excess-fifty base-ten exponent, and nine decimal digits; the second word
contains the sign digit and 11 decimal digits, as follows:

SYYXXXXXXXXXSXXXXXXXXXXX

where S is the sign digit, Y is a floating-point exponent digit, and X is a
numeric decimal digit. The decimal point is assumed to be between the ex­
ponent (Y) and the most Significant (X) digit of the operand number. The
operand is normalized, that is, the most significant digit is not zero.

A-l·5 Instructions

A computer instruction word consists of 12 decimal digits, as follows:

TIIAABBMMMMM

The meanings of the characters that are used to represent the dif­
ferent parts of the instruction word are:

T - tracing mode (refer to section 2.6). If an instruction is to be traced,
T should be a digit from 1 to 9 depending upon which tracing mode routine
the programmer wishes to specify. If an instruction is not to be traced,
T should be a period· digit. Any other character in this position will
cause a transfer of control to an error routine.

I - instruction designator. I specifies the operations to be executed by
an instruction. An instruction designator that is not in the computer
repertory of instructions will cause a transfer of control to an error
routine.

A - arithmetic register address. A normally specifies the address of one
of a number of fast register (refer to section 2.5) that are used as a
arithmetic registers for storing operands and the results of operations.

B - B-register address. B normally specifies the address of one of a
number of fast registers that are used as index (B) registers for
storing an address modifier. The M address of an instruction is
automatically modified by a modifier, 6, ~n the specified index
register after the instruction is read from storage but before the
instruction is executed. If the index register specified is 00,
the M address is not modified. All normal computer instructions
containing an operand address may refer to an index register for
modification of the address.

A-2

M - memory address. l'Jl normally specifies (after it is modified by the modifier
in a specified index register) the address of an operand. M may specify a
main storage address or the address of a fast register (refer to section 2.5).

A-l.6 Index Words

A fast register when it is used as an index (B) register contains a 12-
digit word, as follows:

NNNDDDD ~ flfl!J.~

The meanings of the characters that are used to signify the different
parts of the index word are:

N - cycle count. N specifies the number of times an iterative program loop
is to be traversed. N is reduced by one each time the program loop is
traversed. When the count becomes zero the iterative process is ter­
minated (refer to index instructions table A-l).

D - decrement or increment to fl. Before each program loop traversal D is
added to or subtracted from~. It therefore determines the amount by
which the operand addresses of indexed instructions are modified during
each program loop traversal relative to the previous loop traversal.

b. - modifier. I:l is automatically added to the M part of an instruction that
addresses the index register.

A-2 INSTRUCTIONS

A-2.l Conventions

The following conventions are used in presenting the computer instruc­
tions (table A-l).

A -

M -

A -'A

denotes the number of a fast register. The next fast register in sequence
is denoted as A+l, and the preceding fast register as A-l.

denotes the number of a particular location (12-digit) in the main storage.
The next storage location in sequence is denoted as M+l, and the preceding
location as M-l.

a capital letter subscript denotes a particular part of a fast register or
storage location in accordance with the instruction word format. For example:

AA denotes the A-register address part of fast register A.

~ denotes the B-register address part of fast register A.

AI denotes the instruction designator part of fast register A.

~ denotes the memory address part of fast register A.

MA,~,MII and ~ - denote, respectively the A-register address,
B-register address, instruction designator, and memory ad­
dress parts of storage location M.

A-3

FFA

c

- more than one part of a fast register or storage location may
be denoted by successive capital letter subscripts. For example:

denotes the A-register address and B-register
address parts of fast register A.

denotes the address of a flip-flop, such as a tracing. mode, sense,
or error flip-flop. The address of the flip-flop is specified in
the A-part of an instruction.

denotes a control counter register which can be assumed to contain
the main storage address of the instruction currently being ex­
ecuted.

() - parentheses around a symbol denotes the contents of the control
counter, register, storage location, or part of a register or
storage location which is indicated by the symbol. For example:

(c)

(M)

(~)

denotes the contents of the control counter.

denotes the contents of main storage location M.

denotes the contents of the B-register address
part of fast register A.

(C)+l--~C- denotes that the present sequence of executing instructions is
continued, that is, one is added to contents of the control
counter register to give the storage address of the next instruc­
tion in sequence.

M---) C denotes that control is transferred to a new sequence on instruc­
tions starting with the instruction in storage location M.

rdd

o

I I

denotes a rounded result. All other results are unrounded.

a circled arithmetic symbol denotes a floating-point arithmetic
operation. For example:

denotes floating point addition of the contents
of storage location M and fast register A.

two parallel ve~ical lines around a quantity denote the absolute
value of that quantity. Thus:

denotes the absolute value of the contents of
fast register A.

A-4

I _ A prime denotes a double-precision word. Thus:

A-2.2

(AI) - signifies two single-precision words in successive fast
registers (A and A+l).

NOTE

Although M is usually an address of a location within the main
ferrite-core storage, it may be an address of a fast register.
The main storage is assigned M-addresses from 00000 to 97499.
The fast registers are assignedM-addresses from 99901 to 99999.

Instruction List

The computer instructions are listed in table A-l. The numeric opera­
tion code (instruction designator) is given for each instruction together with
a mnemonic code and a symbolic description of the instruction using the conven­
tions described above. The execution time of each instruction is given in
microseconds. The execution times are all inclusive and include the time re­
quired for obtaining instructions and operands from storage, the time required
to modify operand addresses, the time required to calculate floating-point
exponents, the time required for error, contingency, and tracing mode checking,
and so forth. All input-output operations may be assumed to be performed in
parallel with the instructions.

A-5

Table A-l. Computer Inst.ructions

Numeric Mnemonic Symbolic Time Numeric Mnemonic Symbolic Time
Code Code Description I' sec. Code Code Description /"sec.

Data Transfer Instructions (To Storage)

40 S (A) ---> M 4 45 SS (A') ---? M' 8

41 8M -(A) ---) M 4 46 SSN -(A')--~ M' 8

42 8M I(A)I--> M 4 47 SSM f(A 1)·1--> M' 8

Data Transfer Instructions (From Storage)

43 F (M) ---) A 4 62 EB (M:s) ---) ~ 4

48 FF (M') ---)A' 8 63 EAB (M)---) A
AB Jill

4

60 EOP (M)---) A I I 4 64 EM (~) ---) \i 4

61 EA (M) --~A A A 4

Floating-Point Add Instructions

02 A (M)8(A)--)A 4 14 NU -(M)0(A)-~A+l 4

03 AM '(M)G(A)-~A 4 06 AA (M')8(A')--)A' 16

04 AU (M)0(A)---)A+l 4 16 NN -(M')0(A')-)A' 16

12 N -(M)0(A) --)A 4

A-6

Table A-l. continued

Numeric Mnemonic Symbolic Time Numeric lvlnemonic Symbolic Time
Code Code Description ~sec. Code Code Description ,/;(sec.

Floating-Point Multiply Instruct.ions

23 M (M)0(A)-~A 8 27 MM (M')@(A')-->A ' 36

24 MU (M)@(A) --)A+l 8 22 MR (M)@(A)Rdd-->A 12

25 ME (M)G)(A)-~A I 12

Floating-Point Divide Instructions

32 DR (A)(0(M)Rdd-->A 28 37 DSE (A I)(D(M)--->A I 60

34 DUR (A)(i)(M)Rdd-->A+l 28 36 DD (A I)G)(M ,) -->A I 168

Fixed-Point Add Instructions

01 AX. (M)+(A) --.;> A 4 05 AAX (M I)+(A ,) --->A I 12

11 NX -(M)+(A) --) A 4 15 NNX -(M')+(A I)-~A I 12

Fixed-Point Multiply Instructions

20 MXR (M)X(A)Rdd-.;> A 8 26 MMX (M I)X(A I)-~A I 36

21 MXE (M)X(A)----->A' 12

Fixed-Point Divide Instructions

30 DX (A)~(M)-~A 32 35 DDX (A')~(M')-~A' 184

31 DXE (A) :(M) -.;> A' 36

A-7

Table A-I. continued

Numeric Mnemonic Symbolic Time Numeric Mnemonic Symbolic Time
Code Code Description ,wsec • Code Code Description /'tsec.

Conditional Transfer of Control Instructions

71 'I'G (A»(A+l)? 74 TLZ (A)~O?
No: (C)+l-~>C 4 No: (C)+1--.;> C
Yes:M ---~C 12 Yes: M ---->C

70 TE (A)=(A+l)? 76 TTG (A r »(A+2) r
No: (C)+l-~C 4 No: (C)+l---) C
Yes: M --->C 12 Yes: M ----) C

73 TGZ (A»O? 75 TTE (A r)=(A+2) r

No: (C)+l-->C 4 No: (C)+l---:>C
Yes: M---->C 12 Yes: M ---~C

72 TZ (A)=O? 95 TF Test FFA
No: (C)+l-->C 4 FFA reset:
Yes: M --.;, C 12 (C)+l--->C

FFA set:
M ----) C

Unconditional Transfer of Control Instructions

Instruction 9l(TR) automatically jsms a 90(T) instruction, with (C)+l in
its five least significant digit positions (the M-part), into storage location M
and transfers control to the instruction in M+l which is the beginning of a sub­
routine. An instruction at the end of the subroutine transfers control to the 90
instruction in storage location M which, in turn, returns control to the next in­
struction, (C)+l, in the originating program.

Instruction 92 stores the contents of the control counter (the address of
this instruction) in the five least significant digits (the M-part) of fast reg­
ister A and transfers control to the instruction in storage location M which is
the beginning of a subroutine. Fast register A is used as an index register to
modify an exit instruction at the end of the subroutine so that it will return
control to the originating program. The exit instruction is a 90(T) instruction
in the form: T90 00 AA 00001. This instruction, since it is modified by the
M-part of fast register A, transfers control to (C)+l.

90 T M -----> C 8 92 TB (C) --.;> ~ and
M -----, C

91 TR 90(C)+l--$)M
and

M + 1 --~C 12

A-8

4
12

8
16

8
16

4

12

8

Table A-l. continued

Numeric Mnemonic Symbolic Time Numeric Mnemonic Symbolic Time
Code Code Description /' sec. Code Code Description ~sec.

Shift Instructions

52 PR -(A)lO-M_:>A 4 58 PPL (A')1cf1-;> A' 8

57 PPR (A ') 10 -M -;> A ' 8 59 PPC Left circular
shift (A')
M places

53 PL M
(A)lO --)A 4

Conversion Instructions

Instruction 51 converts a fixed-point single-precision number in fast reg­
ister A to a floating-point single-precision number which is stored in fast register
A. Instruction 50 converts to a floating-point single-precision number in fast reg­
ister A to a fixed-point single-precision number which is stored in fast register A.
IJ:'he conversions are made in accordance with a scale factor specified by the two least
significant digits of the instruction.

12

Instructions 56 and 55, are the same as instructions 51 and 50 respectively,
except that the conversions are made to and from double precision words in fast reg­
isters A and A + 1.

51 C FX---)FL 4 56 CC FX'--->FL'
M=scale factor M=scale factor

50 CX FL--";>FX 4 55 ccx FL'--~FX'
M=scale factor M=scale factor

Extract Instructions

Instruction 65 erases certain digits in fast register A and replaces them
with digits extracted from corresponding positions of fast register A-I. Digits
are extracted only in the digit positions corresponding to digit positions occupied
by the decimal number 1 in storage location M. Either a 1 or a - causes extraction
in the sign position.

Instruction 66 is the same as 65 except that the digits are extracted from
fast register A + 1 instead of A-I.

EL (A-I) -.;;> A
(M)

8 66

A-9

EU (A+l)-.;>A
(M)

12

12

8

Table A-l. (continued \

Numeric Mnemonic Symoolic Time Numeric ¥lIlenonic Symbolic Tillie
Code Code Description ,r-tsec. Code Code Description /"fsec.

Index Instructions

The characters N, D, and 6 signify the parts of a word stored in fast reg-
ister A which is used as an index register. The index word format is described in
the first part of this appendix.

80 BIT N-l---) N 81 Bm N-l---> N

If New N=O, 12 If New N=O, 12
(C)+l-->C (C)+l-->C

If New N#O, 8 If New N#O, 4
M ---> e M ---> C
and 6+D-.,> D and A -D-->A

82 BIe N-l ... -->N 83 BDC N-l--')N

If New N=O, 12 If New N=O, 12
M --) e H -~ C

If New N#O, 8 If New N#O, 4
6+D--> A A-D-.;> 6

and (C)+l-->e and (e)+l--->C

85 BI A + D --> A 4 86 BD A - D --> A 4

Miscellaneous Instructions

97 SF Set FFA 4 00 Skip 4

96 RF Reset FFA 4 99 H Stop

A-10

Numeric
Code

Mnemonic
Code

Table A-l. (continued)

Symbolic
Description

I Time
~sec .

The interlock and connect flip-flops are set by the operator when he
enters data into a display register from a keyboard. Instructions 09 and
19 test the interlqck flip-flop to ensure that only data entered into a dis­
play register by the operator are picked up.

Instructions 29 and 39 test the interlock flip-flop to ensure that data
are not transferred into a display register by the computer while the op­
erator is entering data for the computer or processor program by way of the
display register.

09 FV

19 FVK

29 SV

39 SVK

If interlock ff set, (5-digit
display register)----> ~ and
connect and interlock ff's are
reset

4

If interlock ff reset, M ... --> C 12

If interlock ff set, (12-digit
display register)----:)A and
connect and interlock ff's are
reset.

4

If interlock ff reset M---> C 12

If interIock ff reset, (\i) --> 5-
digit display register.
If interlock ff set, M----) C

If interlock ff reset, (A)--) 12-
digit display register.
If interlock ff set, M----> C

A-II

4

12

4

12

J

APPENDIX B

CHARACTER CODES

B-1 GENERAL

This appendix briefly describes the basic character codes used in the LARC
system and the way in which they are represented on the various input-output
devices. A comparison is made in table B-2 between the codes and the characters
or functions they represent on each of the input-output devices. If an output
device can, depending upon the mode in which it is operating, decode a code combin­
ation to either perform a function or print a character, this is indicated in table
B-2 by listing an abbreviation for the function followed by the character, in
parentheses. The abbreviations and their meanings are listed at the bottom of
the table.

B-2 UNIVAC CODE

LARC data is represented on magnetic tape in the UNIVAC seven-bit code
(table B-2). Input information from the tapes is automatically translated
to a LARC internal code and output information that is to be recorded on
tapes is automatically translated back to UNIVAC code. The tape read­
write synchronizers in the processor can be instructed to translate a block
of numeric input data into the LARC one-digit numeric code, or translate a
block of alphanumeric data into the LARC two-digit alphanumeric code. Simi­
larly output data can be translated from either the LARC one-digit numeric
code or two-digit alphanumeric code. Tapes may be manually prepared using
a Unityper I, Unityper II, or a Tape Verifier all of which record on Univac
code.

B-3 LARC ONE-DIGIT NUMERIC CODE

The basic internal code of the LARC is a five-bit biquinary code in
binary-coded decimal form. Fifteen digit combinations are allowed, any
one of which may be stored in any digit position of the storage. The 15
combinations and the characters they normally represent are shown in table
B-1. The fifth bit of the code is an odd parity check bit. Only combinations
containing an odd number of "ones" are allowed. The code combination 01101,
although it contains an odd number of Ilones ", is not allowed.

In the computer, all 15 digit combinations can be shifted, extracted or
transferred. Except for a minus or a period digit in the sign position, only
the numerics 0 through 9 are allowed in the adder-comparator of the computer.
In the processor adder-comparator, however, the non-numeric digits (plUS,
minus, space, period, and ignore) are allowed in any digit position. When
non-numerics are added, they appear in the result in accordance with a pre­
determined order of precedence.

B-1

Table B-1. LARC One-Digit Numeric Code

Bit Positions

5 4 3 2 1 Character

1 1 1 0 0 "(ignore)

o 0 100 A (space)

00010 -(minus)

1 0 0 0 0 0

o 0 0 0 1 1

1 0 0 1 1 2

o 0 1 1 1 3

1 0 110 4

o 1 0 0 0 5

1 100 1 6

01011 7

1 1 1 1 1 8

01110 9

11010 . (period)

1 0 1 0 1 + (plus)

B-4 LARC TWO-DIGIT ALPHANUMERIC CODE

An alphanumeric character is represented in LARC by two adjacent
numeric digits that are handled as a pair. An equivalent alphanumeric
character is represented on magnetic tape by a single seven-bit digit in
UNIVAC code. The decimal equivalent of the LARC two-digit code is shown
in table B-2.

B-2

B-5 ELECTRONIC PAGE PRINTER

The electronic page printer synchronizer can operate in anyone of the
four following modes:

(1) Numeric edited.

(2) Numeric unedited.

(3) Alphanumeric edited.

(4) Alphanumeric unedited.

When the synchronizer operates in the numeric modes (modes 1 and 2), a
single LARC digit is decoded to perform a function or print a character. In
the numeric edited mode, the ignore digit (11100) and the space digit (00100)
are decoded to perform specific functions. The ignore digit performs an end­
of-word function. For example, a 12-digi t word containing an ignore digit
in the ninth digit position is shortened to eight digits when it is printed
in the numeric edited mode. The space digit performs a space function, that
is, it leaves a single space in the printed copy. In the numeric unedited
mode the ignore and space digits are decoded to print as'" and 1\, respectively.

When the synchronizer operates in the alphanumeric modes (modes 3 and
4), a LARC two-digit alphanumeric combination is decoded to perform a function,
or print a character. In the alphanumeric edited mode, the combinations 15,
16, and, 35 are decoded to perform specific functions. A 15 performs an
ignore function, that is, the synchronizer neither prints a character nor
leaves a space but ignores the combination. A 16 performs a space function.
A 35 performs an end-of-ten-words function, that is, no more data are sent
to the printer. In the alphanumeric unedited mode, the two-digit combinations
15, 16 and 35 are decoded to print as" , 1\, and € , respectively.

B-6 ON-LINE PRINTER

The on-line printer synchronizer can operate in anyone of the four
following modes:

(1) Numeric edited.

(2) Numeric unedited.

(3) . Alphanumeric edited.

(4) Alphanumeric unedited.

When the printer operates in the numeric modes (modes 1 and 2), a
single LARC digit is decoded to perform a function or print a character. In
the"numeric edited mode, both the ignore (11100) and the space (00100) digits
are decoded to leave a space. In the numeric unedited mode, the ignore and
space digits are decoded to print as I and il, respectively.

When the synchronizer operates in the alphanumeric modes (modes 3 and 4),
a LARC two-digit alphanumeric combination is decoded to perform a function or
print a character. In the alphanumeric edited mode, a 16 combination is de­
coded to leave a space. In the alphanumeric unedited mode, a 16 combination
is decoded to print as a W.

B-3

B-7 CONSOLE PRINTER.

Because the console printer is a relatively slow device, its synchronizer
is designed to operate only in the alphanumeric mode. The form a print-out
takes is determined by the processor program. If numeric data is printed,
it is first translated by the processor program to the two-digit alphanumeric
code. The printer synchron1~er decodes a LARC two-digit alphanumeric combina­
tion to perform a function or print a character. Many of the two-digit com­
binations can print either of two characters depending upon whether the type
basket of the printer is in the upper or lower case. The type basket is
shifted to the upper case position by the two-digit combination 10 and is
shifted to the lower case position by the combination 11.

The following two-digit combinations are decoded by the synchronizer
to perform specific functions. In each case the same function is performed
regardless of whether the type basket is in the upper or lower case.

15 - neither prints a character nor leaves a space, but is ignored.

16 - leaves a space.

35 - returns the carriage to the left margin.

55 - advances the carriage to the next preset tab stop.

The console printer may also be used to prepare punched paper tapes.
With the type basket in the upper case position, all 15 LARC code com­
binations and several special code combinations may be punched on the
paper tape.

B-8 CONSOLE KEYBOARD

The keyboard on the operator control console is used to manually enter
data into either the five-digit or 12-digit display register. It consists
of 18 keys. Fifteen keys are used to enter the 15 LARC code combinations
into either display register, two keys are used to connect the keyboard to
the proper display register and one key is used to disconnect the keyboard
from the display registers.

B-9 CONSOLE DECIMAL DISPLAYS

The decimal displays on the operator control console display in decimal
form the contents of the five-digit display register, the 12-digit display
register, and a computer control counter register. Characters representing
all fifteen LARC code combinations may be displayed. Since the number of
single characters that can be displayed is limited to 12, the ignore, space,
and period are represented by superimposing one character upon another. The
ignore is represented by a 1 and 8 superimposed, the space by a 0 and -- super­
imposed, and the period by a 1 and 0 superimposed.

B-4

'l'
'"

LIIIC
1JIIIVAC Cede I-D1I1t

... Tape Code

1 00 OCOC 11100
0 00 0001 00100
0 00 0010 00010
1 00 0011 10c0c
0 00 0100 0C001
1 00 0101 lOCU
1 00 0110 00111
0 00 0111 10110
0 00 1000 01000
1 00 1001 11001
1 00 1010 01011
0 00 1011 lll11
1 00 1100 01110
0 00 1101
0 00 1110
1 00 1111
0 01 OCOC
1 01 0001
1 01 0010 11010
0 01 OCU
1 01 0100
0 01 0101
0 01 0110
1 01 0111
1 01 1000
0 01 1001
0 01 1010
1 01 1011
0 01 1100
1 01 1101
1 01 1110
0 01 llll
0 10 OCOC
1 10 0001
1 10 0010
0 10 OCU
1 10 0100
0 10 0101
0 10 0110
1 10 0111
1 10 1000
0 10 1001
0 10 1010
1 10 1011
0 10 1100
1 10 1101
1 10 1110
0 10 llll
1 11 OCOC,
0 11 0001
0 11 0010
1 11 0011 10101
0 11 0100
1 11 0110
1 11 0110
0 11 Olll
0 11 1000
1 11 1001
1 11 1010
0 11 1011
1 11 1100
0 11 1110
0 11 1110
1 11 1111

AbbnY1t,tl""

Sal - I!IIII. of Ward
51 - Space

LIIIC

~r;1
Cede

10
11
2-
21\
2+
2.
2\
15
16
17
20
21
22
23
24
25
26
27
28
29
)2
)3
34
)5
)6
)7

40
41
42
43
44
45
46
47
48
49
52
5)
54
55
56
57
60
61
62
6)
64
65
66
67
68
69
72
7)
74
7,
76
77
80
81
82
8)
84
85
86
r7
88
89
92
9)
94

IG - lID""'
ICI. - I!IIII. or LiM (lO-Warda)

stuIdard ~~~
1III1tJper

II ;: ~l.'-' Made

1 ~~J ~~ A. - - -
0 0 0
1 1 1
2 2 2
) 3)
4 '4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
I

'" .. '" ((
r 1(1. (E) , , . . .
I ~ A
8 B
C C
D D
I I
r r
G G
B B
I I , <
• r' • 1 t . J

~ ~
J J
I I
1. L
M M
B B
0 0
P P
Q Q
R R

\ > •
? -+

j J:
"Y\.

I I
+ + +
/ /
S S
T T
U U
V V
W W
X X
r r
z z
~ A
=)..

0

uc -u_ ea ..
LC - LcNar Cua
CR - Carrie .. Ratvn

TAB - Tabalata

~= ;, ale n, C ale
C ale Dec1al

;; !'.;':~. ~~r ~r ~ DlapJ.qa
Made Cua ea .. (.....)

uc uc
J.C J.C -
" 7r
+ +

· ;, ,
\ $ 51 (I) IG IG

51 (6) SP(W) 51 51 A e - - - - - -
0 0 0).. 0 0
1 1 1 U 1 1
2 2 2 I 2 2
))) 0))
4 4 4 J 4 4
5 5 5 K 5 5
6 6 6 L 6 6
7 7 7 M 7 7
8 8 8 , 8 8
9 9 9 / 9 9

= =
~ (,...,
((

CR CR , 8 , . . · . . ~

Y V
A

8 > B
C • C
D -+ D
I s: I
r 'I\. r
Q I G
B B
I 2 I
< ~).. 1f

TAB TAB
J

tI.. [
) 0)
J 4 J
I 5 I
L 6 L
M 7 M
R II
0) 0
P P
Q Q
R R
> •

I
+ + + + + +

/ 9 /
S S
T T
U 1 U
V V
W W
X X
r r
z z
A A

0 A

APPENDIX C

SUMMARY ORDERS FOR A PROCESSOR PROGRAM

C-l DISCLOSURE WORDS

C-l.l General

The computer program notifies the processor program that a group of
summary orders are ready for execution by depositing a disclosure word in a
predetermined storage location (2500) and setting a disclosure flip-flop.
The processor program tests the disclosure flip-flop and, if it is set, picks
up the disclosure word and resets the flip-flop. The disclosure word dis­
closes to the processor program the location of one or more summary orders
stored in sequential storage locations. Such a group of summary orders is
called a packet. A packet of summary orders also contains an end-of-packet
word which has a count of the number of summary orders in the packet that
call for a transfer of data to or from the main storage. A disclosure word
may take one of the three forms described below.

C-l.2 Primary-Program Disclosure Word

A primary-program disclosure word is used most often and is issued by
the main program being run on the computer. It has the following format:

15 NNNNN MMMMM

where N is the storage address of the first summary order of the packet being
disclosed and M is the storage address of the end-of-packet vTord. The digits
15 are operation digits which instruct the processor program to record the
time at which the disclosure word is received and inform the operator by means
of a print-out on the console printer if another primary-program disclosure
word is not received within five minutes. The print-out is repeated at five
minute intervals until the processor program receives a new primary-program
disclosure word. The print-out serves to alert the operator in the event a
computer program gets stuck in an endless loop which prevents the primary pro­
gram from issuing summary orders.

C-l.3 Secondary-Program Disclosure Word

A secondary-program disclosure word is issued by a secondary or side
program being run on the computer. It has the following format:

14 NNNNN MMMMM

This disclosure word is interpreted by the processor program in the same way
as a primary-program disclosure word except that only one print-out is made
and the print-out indicates that a secondary-program disclosure word was not
received within the past five minutes.

c-l.4 Pseudo Disclosure Word

A pseudo disclosure word is provided which consists of all zeros, as
follows:

000000000000

C-l

A pseudo disclosure word is issued in certain instances by the computer program
as an expedient in determining when the processor program has picked up the last
packet of summary orders so that they may be modified and reissued. After the
processor program picks up a disclosure word, it resets the disclosure flip­
flop. It does not thereafter test the disclosure flip-flop until all of the
summary orders disclosed have been picked up and either started in execution or
filed in its program. The computer program is not aware that all of the summary
orders disclosed by one disclosure word have been picked up until the processor
program resets the disclosure flip-flop to acknowledge the receipt of the next
disclosure word. When the computer program tests the disclosure flip-flop and
finds it reset, it is then assured that the summary orders disclosed by the
next to last disclosure word have been picked up and can therefore be modified.
Instead of making a real disclosure of summary orders, the computer may de­
termine if the last packet of summary orders have been picked up by issuing a
pseudo disclosure word. The only function of the pseudo disclosure word is to
force the processor program to reset the disclosure flip-flop after it tests
it and by so dOing inform the computer program that the previous packet of
summary orders have been picked up. The pseudo disclosure word is otherwise
ignored by the processor program.

C-2 END-OF-PACKET WORDS

C-2.1 General

An end-of-packet word is always filed with a packet of summary orders
that the computer program discloses to the processor program. The end-of-packet
word contains a count of the number of summary orders that call for a trans-
fer of data to or from the main storage. Each time the processor completes
one of these summary orders, it lowers the count by one. By checking the count
for zero, it can be determined when all of the storage transfers specified in
the packet have been completed and the computer program is free to use the stor­
age areas involved. An end-of-packet word can take either of two forms; one
form places the burden of checking for completion on the computer program; the
other form places the burden of checking on the processor program.

C-2.2 Computer-Check End-of-Packet Word

A computer-check end-of-packet word has the following format:

000 NN 00 00000

where NN is a count of the number of summary orders in the packet that call
for a transfer of data to or from the main storage. The processor program
lowers the count by one each time one of these summary order is completed.
The computer program checks the count for zero to determine when all storage­
transfer summary orders are completed.

C-2.3 Processor-Check End-of-Packet Word

A processor-check end-of-packet word has the following form:

.90 NN 00 MMMMM

where NN is a count of the number of summary orders in the packet that call
for a transfer of data to or from the main storage. The processor program
lowers the count by one each time one of these summary orders is completed
and also checks the count for zero. When the count reaches zero, the processor

C-2

program places a .90 0000 MMMMM computer instruction in a processor interven­
tion routine and sets the processor intervention flip-flop. Setting the in­
tervention flip-flop interrupts the computer program and forces it to enter
the processor intervention routine where the .90 0000 MMMMM instruction is
executed. This instruction is an unconditional transfer of control instruc­
tion which transfers control to a subroutine beginning at MMMMM. The inter­
vention is programmed in such a way that control can be transferred back to
the point of interruption in the main program after the subroutine is com­
pleted.

C - 3 SUMMARY ORDERS

The summary orders for a processor control program that is furnished
with the LARC system are described in table C-l.

It should be understood that summary orders are not processor instructions
that are decoded by a built-in decoder in the processor. Rather, they are
pseudo or program orders for a specific processor input-output control program
which receives and interprets the summary orders and, on the basis of this in­
terpretation, executes actual processor instructions at the proper time and
in the proper order and sequence.

It should also be understood that other processor input-output control
programs can be designed which accept different sets of summary orders or in­
terpret the summary orders dif'1'erently or which execute input-output opera­
tions for specific types of computer problems without receiving summary
orders.

The format of a summary order varies depending upon the type of summary
order. However, the two most significant digits are usually operation digits
which specify what operations are to be performed by the order and the re­
maining digits usually specify the input-output device or storage area to be
used or the extent of the operation, or both. The format of each summary
order is listed in table C-l, along with a mnemonic name for the summary
order and a description of how the processor input-output control program
interprets the summary order. A lower case x shown in a digit position of
the summary order format indicates that the digit position is ignored by
the processor program, however, it should contain one of the digits 0 through
9. A digit position shown as a 0, must contain a zero for the summary order
to be interpreted correctly. Other digit positions are symbolized in table
C-l by characters whose meanings are defined in the descriptions of the
summary orders.

C-3

Format Name

00 xx.xxx xxxxx Skip

03 TTTTT MMMMM Time Limit

06 S xxxxx MMMMM Stop

Table C-l. Summary Orders

Interpretation by Processor Control Program

Ignore

When TTTTT seconds have elapsed transfer
computer control to the instruction in
storage location MMMMM.

If S = 0, accept no more summary orders
from the computer; complete all summary
orders already accepted; transfer com­
puter control to the instruction in
storage location MMMMM; and, after com­
puter control has been transferred, begin
again to accept and execute summary
orders from the computer.
Note: A summary order of this type is
normally issued when the computer
switches over to a new problem.

If S = 1, stop executing summary orders;
transfer a fresh processor program to
the core storage; transfer computer
control to the instruction in storage
location MMMMM; and reset the disclos­
ure flip-flop.
Note: A summary order of this type
is normally issued in the event of an
untenable mix-up in the computer or
processor program, or both.

If S = 2, complete all summary orders
currently being executed; transfer
the processor program currently in
the core storage to a service drum;
substitute a fresh processor pro­
gram; and transfer computer control
to the instruction in storage loc­
ation MMMMM.
Note: A summary order of this type
is normally issued in the event
there is a mistake in the computer
program. In order to analyze the
program, the programmer might desire
a print-out of data in the core stor­
age. Consequently, all summary
orders that are in the process of
being executed are completed first
so that any transfers of data to the
core storage that are in progress
will be completed before a print-out
is initiated.

c-4

Format

08 xxxxx MMMMM

09 xxxxx MMMMM

10 C x TTT MMMMM

18 NNNNN MMMMM

Table C-l. Summary Orders (cont.)

Name

Storage Unit
Write Inter­
lock

Remove Stor­
age Unit
Write Inter­
lock

Visual Dis­
play

Interlock
Storage for
Editing

Interpretation by Processor Control Program

Execute an instruction which interlocks the
computer program against writing data di­
rectly into the 2500-word storage unit con­
taining storage location MMMMM. Do not as
a result of this summary order interfere
with the execution of summary orders which
specify that data be transferred to the
same storage unit.
Note: If the computer program attempts to
write data directly into an interlocked
storage unit, computer control is transferred
to an error routine.

Execute an instruction which removes the
interlock against the computer program
writing into the storage unit containing
storage location MMMMM. If the processor
program is stored in the same storage unit,
do not interrupt the computer program but
notify the operator by means of a print­
out at the operator control console.

If C = 1, transfer the contents of storage
location MMMMM to the 12 digit display
register where it may be observed in dec­
imal form at the operator control console
and in binary form at the engineer control
console. Time the display for a minimum
of TTT seconds so that the operator will
notice it.

If C = 2, transfer the contents of the five
least significant digit positions of stor­
age location ~~ to the five-digit dis­
play register where it may be observed in
decimal form at the operator control con­
sole and in binary form at the engineer
control console. Time the display for
a minimum of TTT seconds so that the op­
erator will notice it.

Delay the execution of any summary orders
from the computer which specify a transfer
of data to or from the storage area be­
ginning with storage location NNNNN and
ending with storage location MMMMM until
the interlock is removed.
Note: The specified storage area is re­
served for summary orders from an edit­
ing routine that is controlled by the pro­
cessor. The interlock can be removed only
by the processor editing routine.

C-5

Format

19 NNNNN MMMMM

20 nn D W m MMMMM

28 NNNNN MMMMM

40 nn S Q m MMMMM

Table C-l. Summary Orders (cont.)

Name

Edit

Console
Printer
Print

Summary
Order Stor­
age Inter­
lock

Print

Interpretation by Processor Control Program

The storage area beginning with storage loca­
tion NNNNN and ending with storage location
MMMMM contains information for the editing
routine.

Return the carriage, then print nn words of
data in print mode m on console printer num­
be D beginning with the word stored in stor­
age location MMMMM. Mter every W(1-9)
words return the carriage except in mode 3
(see note below).
Note: The following printing modes may be
specified:

m = 1 - numeric edited
m= 2 - numeric unedited
m = 3 - alphanumeric edited
m = 4 - alphanumeric unedited

When printing in mode 3, carriage returns are
specified by digits within the data words
themselves.

If a summary order is received which would
alter the contents of the storage area be­
ginning with storage location NNNNN and
ending with storage location ~]M, do not
execute. Instead, transfer computer control
to the instruction in storage location NNNNN.
Note: Only one storage area may be inter­
locked in this fashion at anyone time. To
remove the interlock, it is necessary to
issue another 28 summary order.

Line Printer Summary Orders

Print nn X 10 words of data in print mode ill

on line printer number S beginning with the
word stored in storage location MMMMM. Ad­
vance the paper Q lines (Q must be > Q) be-
fore each line is printed. .
Note: Q = 1 for single spacing, Q = 2 for
double spacing, etc. The following print
modes may be specified.

m = 1 - numeric edited
m = 2 - numeric unedited
m = 3 - alphanumeric edited
m = 4 - alphanumeric unedited

c-6

Format

42 LL S xx xxxx C

43 PP S SL xxx FL

50 BBB W m MMMMM

Table C-l. Summary Order (cont.)

Name Interpretation by Processor Control Program

Advance Paper If C = 0, advance the paper LL lines on line
printer number S.

Page Format

If C = l, advance the paper on line printer
number S to the top of the next page, then
advance it LL lines.

The page format of line printer number S
consists of PP lines (normal size paper is
66 lines). Printing shall begin on each
page after advancing the paper SL lines and
end on line FL (FL>SL).

Electronic Page Printer Summary Orders

Print or Plot Print or plot BBB X 10 words of data in
mode m beginning with the word stored in
storage location MMMMM. Print W X 10 words
per line. 1)0 not advance the film. or re­
position the beam on the completion of this
summary order.
Note: The film may be advanced and the
beam repositioned while this summary order
is being executed as a result of the last
53 summary order to be executed. The fol­
lOwing modes may be specified. If mode 5,
6, 7, or 8 is specified, W must equal O.

m = 1 - numeric edited

m = 2 - numeric unedited

m = 3 - alphanumeric edited

m = 4 - alphanumeric unedited

m = 5 - graphing with the X and Y coordi­
nates for two points contained in each
LARe word, as follows:
XXX yyy X'X'X' Y'Y'Y'

m = 6 - graphing with the X and Y co­
ordinates for a single point contained
in two successive LARe words as follows:

xxx XXX xxxxxx
xxx yyy xxxxxx

m = 7 - plotting vertical grid lines with
two abscissas for two full length ver­
tical grid lines contained in each
LARe word, as follows:

xxx HHH xxx H'H'H'

C-7

Format

51 BBB W m MMMMM

Table C-l. Summary Orders (cont.)

Print and Ad­
vance or Plot
and Advance

Interpretation by Processor Control Program

m = 8 - plotting horizontal grid lines with
two ordinates for two full length hori­
zontal grid lines contained in each LARC
word, as follows:

xxx HHH xxx H'H'H'

Same as summary order 50 above except that
upon completion of this summary order advance
the film and reposition the beam to X = OOO}
Y = 999·

S, Z} L} X or Y in summary orders 52} 53, and 56 must be expressed as a number
of points in a 1000 x 1000 point mesh; where 15 such pOints are equal to one normal
line spacing.

52 SSS xxxx ZZZ

53 x LLL XXX YYY

56 xxxxxxxx KK

57 xxxxx xxxxx

58 xxxxx xxxxx

59 xxxx C xxxxx

Line Spacing Execute SSS spaces or change spacing between
lines to ZZZ or both.

Position Position beam to point XXX, YYY.. When line
LLL has been printed} advance film and again
position beam to XXX, YYY..

Select Plott- Select plotting character KK for use in the
ing Character plot summary orders to follow.

Open Shutter Open the Polaroid Land camera shutter of the
printer connected to the synchronizer.

Close Shutter Close the Polaroid Land camera shutter of the
printer connected to the synchronizer.

Connect Connect printer C to the printer synchronizer.

Magnetic Tape Summary Orders

The block length mode for a· given tape can be set to either fixed or variable.
Other tape summary orders thereafter issued for that tape (such as read or posi­
tion summary orders) are interpreted in accordance with the mode specified by the
63 or 64 summary order.

63 K L x ST x WWWO Fixed Block The length of the blocks on tape ST will be

c-8

Format

64 K L x ST xxxxx

Name

Table C-l. Summary Orders (cant.)

Interpretation by Processor Control Program

WWWO words in length. Indicate an error when­
ever BBB in summary order 73, 74, 75, or 77
is not a multiple of WWW.

If L = 0, the space between blocks on tape ST
will be 1 inch.

If L = 1, the space between blocks on tape ST
will be 2.4 inches.

If K = 1, data read from tape ST will be
translated from UNIVAC code to LARC one­
digit numeric code and data to be written
on tape ST will be translated from LARC
one-digit numeric code to UNIVAC code.

I~ K = 2, data read from tape ST will be
translated from UNIVAC code to LARC two­
digit alphanumeric code and data to be
written on tape ST will be translated from
LARC two-digit alphanumeric code to UNIVAC
code.

Variable Block The blocks on tape ST will be of different
Length Format lengths, but will always be a multiple of

ten words. K and L are interpreted in the
same way as they are by summary order 63.

Unless otherwise indicated, the following tape summary orders are interpreted
in the same way for both the fixed or variable tape modes.

66 xxx ST xxxxx

58 xxx ST xxxxx

71 C D x ST EEEEE

72 C D x ST EEEEE

Rewind

Rewind with
Interlock

Position
Forward

Position
Backward

Rewind tape ST.

Rew'ind tape ST and interlock the tape unit
against reading or writing until the operator
releases the tape unit from the interlock.

Position tape ST forward through EEEEE blocks.

If C = 0, check to insure that each block of
data is readable.

If C = 1, do not check the readability of the
blocks.

If D = 0, use synchronizer S for positioning.

If D = 1, use synchronizer 9 (rewind checker)
for positioning.

Position tape ST backward through EEEEE blocks.
C and D are interpreted in the same way as

C-9

Format

73 BBB ST MMMMM

74 BBB ST MMMMM

75 BBB ST MMMMM

77 BBB ST MMl~

Table C-l. Summary Orders (cont.)

Name

Read For­
ward

Read Back­
ward

Interpretation by Processor Control Program

they are by summary order 71.

Fixed Mode: Read forward on tape ST. Read
and store the words into storage locations
MMMMM to (MMMMM + BBBO-l) inclusive.

Variable Mode: Read forward on tape ST.
Read the next block of data and store the
words into sequential storage locations in
ascending order beginning with MMMMM (MMMMM,
MMMMM + 1, etc.). Do not store words be­
yond storage location MMMMM + BBBO-l. If
the block is longer, an error will be in­
dicated.

Fixed Mode: Read backward on tape ST. Read
and store the words into storage locations
MMMMM to (MMMMM - BBBO + 1) inclusive.

Variable Mode: Read backward on tape ST.
Read backward the next block of data and
store the words into sequential storage
locations in descending order beginning
with MMMMM (MMMMM, MMMMM - 1, etc.).
Do not store words beyond storage location
MMMMM - BBBO + 1. If the block is longer,
an error will be indicated.

Write Density Write at a density of 200 pulses per inch.
200

Write Density
100

Fixed Mode: Wri te BBBO words from storage
locations MMMMM to (~~ + BBBO - 1)
inclusive. Insert a space between blocks
after each group of WWW0 words in accordance
with summary order 63.

Variable Mode: Write one block of BBBO words
from storage locations MMMMM to
(MMMMM + BBBO - 1) inclusive.

Write at a density of 100 pulses per inch.
Note: This summary order is the same as
summary order 75, except that the data is
written on tape at a density of 100 rather
than 200 pulses per inch.

C-IO

Format

8 SS nn DD MMMMM

9 SS nn DD MMMMM

93 000 DD SB x HB

94 xxx DD xxxxx

95 xxx DD xxxxx

Table C~l. Summary Orders (cont.)

Name

Read

Write

Drum For­
mat

Next Low­
er Band

Next High­
er Band

Interpretation by Processor Control Program

Magnetic Drum Summary Orders

Read nn 100-word sectors continuously from
drum DD starting with sector SSt Transfer
the words to sequential storage locations in
ascending order beginning with storage location
MMMMM.
Note: To transfer a full band of data in the
minimum time SS = 00 and nn = 25.

Write nn 100-word sectors continuously on
drum DD starting with sector SSt Transfer
the words from sequential storage locations
in ascending order beginning with storage
location MMMMM.
Note: To transfer a full band of data in
the minimum time SS = 0 and nn = 25.

Interpret all future read-write head position­
ing summary orders for drum DD as though drum
DD contained 2 X HB bands starting with band
SB. Position the read-write head assembly
over band SB (new 00 band) .
Note: There are 100 bands on a drum. The
bands are normally numbered from 00 to 49 in
the shift-high position and 99 to 50 in the
shift-low position. (refer to section 5.3)
This summary order enables the computer pro­
grammer to address the drum as though it con­
tained fewer bands. SB = starting band (SBc50).
HB = one-half the number of bands the computer
programmer wishes to use on the drum at the
present time (SB + HB~50). If the complete
drum is to be used SB will equal 00 and HB
will equal 50. All summary orders for drum DD
which follow' this summary order should consider
SB as equal to 00. At the completion of this
summary order the head assembly will be posi­
tioned over band SB (the new 00 band).

Position the read-write head assembly of drum
DD over the next lower band. If the head
assembly is now over band 00, position it over
the highest numbered band in accordance with
the format specified by the most recently ex­
ecuted 93 summary order for drum DD.

Position the read-write head assembly of drum
DD over the next higher band. If the head
assembly is now over the highest numbered band

C-Il

Format

96 x BB DD xxxxx

98 xxx DD xxxxx

99 xxx DD xxxxx

Table C-l. Summary Orders (cont.)

Name

Position
Head

Interlock

Remove
Interlock

Interpretation by Processor Control Program

as specified by the last 93 summary order
for drum DD, position the head assembly
over band 00.

Position the head assembly of drum DD over
band DD in accordance with the format speci­
fied by the most recently executed 93 summary
order for drum DD.

Do not execute any future write summary orders
for drum DD.

Execute any future write summary orders for
drum DD.

C-12

APPENDIX D

ARITHMETIC AND RELATED PROCESSOR

INSTRUCTIONS

D-l GENERAL

This appendix contains a description of the more general-purpose pro­
cessor instructions, including the arithmetic instructions and related instructions
such as shift, comparison, and e4tract instructions. These instructions are used
in the processor input-output control program to carry out editing, interpreting,
and supervisory functions. They may also be used in a secondary or side program
run on the processor. Most of the processor instructions) however, are used to
communicate with and control the synchronizers, the dispatcher, the input-output
devices, and the error circuits. Normally these instructions will be used only
in the processor input-output control program and error routines which need not
change for every program run on the computer. Since a description of these in­
strQctions to be meaningful requires a somewhat detailed knowledge of the character­
istics of the devices they are used to control and communicat~ with, they are not
included in this appendix.

D-2 INSTRUCTION FORMAT

A processor instruction word consists of 12 decimal digits, as follows:

IINNNNNMMMMM

The meanings of the characters that are used to represent the different parts of
the instruction word are:

I - instruction designator. I specifies the operations to be executed by an
instruction. An instruction designator that is not in the processor rep­
ertory of instructions will cause a transfer of control to an error routine.

N - specifies the storage address of an operand for single-operand-address in­
structions or the address of the first operand for two-operand-address in­
structions. For other instructions, digits of N are used to specify the
number of shifts, or the address of a synchronizer, drum, input-output
deVice, flip-flop, or display register.

M - specifies the storage address for the result of an instruction, a second
operand address for two-operand-address instructions, or a transfer-of­
control address for transfer-of-control instructions.

D-l

D-3 INSTRUCTIOl1S

D-3·l Conventions

The following conventions are used in presenting the processor instructionG
in table D-l.

rPl and rP2 - are abbreviations for register PI and register P2, respectively.
rPl and rP2 are arithmetic shift-registers in the processor that are
used for the temporary storage of operands. When an aritmnetic instruc­
tion is executed operands are shifted from rPl and rP2 into and through
an adder-comparator a digit at a time. The result is shifted into rPl
which also serves as an accumulator. The bits and digits of a word are
transferred between rPl or rP2 and the main storage completely in paral­
lel.

C denotes a control counter which can be assumed to contain the storage
address of the instruction currently being executed.

() parentheses around a symbol denotes the contents of the register, control
counter, or storage location indicated by the symbol.

(C)+l-~C - denotes that the present sequence of executing instructions is con­
tinued, that is, the control counter is stepped by one to give the
address of the next instruction in sequence.

M-->C denotes that control is transferred to a new sequence of instructions
starting with the instruction in storage location M.

x lower case x denotes a digit which is not used or decoded in the
instruction being described.

D-3.2 Instruction List

Arithmetic and related instructions for the processor are listed in
table D-l. The format for each instruction is given together "ith a description
of the instruction, using the conventions described in section D-3.l above, and
~he execution time of the instruction, in microseconds. The execution times in­
clude the time required to obtain the instructions from storage.

D-2

Instruction
Format

12 NNNNN xxxxx

13 NNNNN xxxxx

15 NNNNN xxxxx

16 NNNNN xxxxx

TABLE D-l. ARITIllvIETIC AND RELATED PHOCESSOR INSTRUCTIONS

Description

Data Transfer Instructions (Aritr~etic)

(N) -----> rP2

(rP2) ---) N

(N) -----) rPl

(rPl)---> N

Arithmetic Instructions

Time
tlsec .

8

8

8

All additions and subtractions are algebraic Recomplementing mayor may
not be performed depending upon the relative magnitudes of the operands.

09 xxxxx Mr-iMMM

10 NNNNN xxxxx

11 NNNNN xxxxx

Add-Send

(rPl) + (rP2)---> rPl and (rPl)---> 1-'1

(rP2) is unchanged

If recoIrrplementing is not necessary

If recQmplementine is necessary
(unlike signs and IrP2/>/rPl/).

Bring-Add

(N)---> rP2 and (rPl) + (rP2)---) rPl

If recomplementing is not necessary.

If recomplementing is necessary
(unlike signs and IrP2/> /rPl/) .

Subtract

(N)---> rP2 and (rPl) - (rP2)---) rPl

If recomplementing is not necesoary.

If recomplementing is necessary.
(like signs and IrP2/~/rPll).

D-3

12

20

12

20

12

20

Instruction
Format

11 NNNNN MMMMM

18 NNNNN MMMMM

19 NNNNN MMMMM

TABLE D-1. (continued)

Description

Bring-Add-Send

(N) --..) rPl and (rPl) + (rP2) ---> rPl
and (rPl) ---> M

(rP2 is unchanged.

If recomplementing is not necessary

If recomplementing is necessary
(unlike signs and IrP21> JrPl/).

Conditional Transfer of Control Instructions

Equality Test

(N) ---> rP2

M---> C if (rPl) = (rP2)

(C)+l--~ C if (rPl /: (rP2)

(rPl) is unchanged and (N) remains in rP2.

All 12 digits are compared.

Magnitude Test

(N) ---> rP2

M---> C if (rP1) > (rP2)

(C)+l---> C if (rPl) ~ (rP2)

(rPl) is unchanged and (N) remains in rP2.

All 12 digits are compared.

D-4

Time
!"sec.

16

24

20

12

20

12

Instruction
Format

05 xxxxx MMMMM

14 NNNNN MMMMM

07 nnxxx xxxxx

08 nnxxx xxxxx

TABLE D-l (continued)

Description

Unconditional Transfer of Control Instructions

Transfer Control

M ---> C

Return Jump

050000 (C)+2--~ N and M--';> C

Circular Shift Instructions

Single Precision Shift

Circular (end-around) right shift (rPl)
nn places.

The entire word, including the sign, is
shifted.

nn may be any number from 00 to 29. If nn
is greater than 29, control is transferred
to an error routine.

If nn is: 0-3
4-10

11-18
19-26
27-29

Doubly-Precision Shift

Circular right shift (rPl) --~ rP2 and
(rP2)---> rPl nn places. Both words,
including the signs, are shifted.

The execution times for this instruction
are the same as for instruction 07.

D-5

8

12

4
8

12
16
20

Instruction
Format

21 NNNNN xxxxx

22 NNNNN xxxxx

23 NNNNN xxxxx

01 xxDxx MMMMM

TABLE D-l. (contined)

Description
Time
~sec .

Storage Interlock Instructions

Set a write interlock in the 2500-word
storage unit containing storage location
N so that computer number 1 cannot change
the contents of the storage unit.

Set a write interlock in the 2500-word
storage unit containing storage location
N so that computer number 2 cannot change
the contents of the storage unit.

Reset the write interlocks in the 2500-
word storage unit containing storage
location N so that computer number 1 or
number 2 can change the contents of the
storage unit.

Display Register Instructions

Transfer to Display Register

If the interlock flip-flop of display
register D is not set (rPl)--~ D.

If the interlock flip-flop of display
register D is set M---.> C

D is the address of a dispaly register,
as follows:

D=l - 5 digit display register of computer 1
D=2 - 12 digit display register of computer

1
D=3 - 5 digit display register of computer 2
D=4 - 12 digit display register of computer

2

The contents of the five least significant
digit locations of rPl is transferred to a
5-digit display register.

D-6

4

4

4

8

12

Instruction
Format

02 xxDxx xxxxx

03 xxDxx MMMMM

00 xxxxx xxxxx

20 NNNNN MMMMM

TABLE D-l. (continued)

Time
Description ~sec.

Transfer from Display Register
CD) ---) rPl and reset connect and 8
interlock flip-flops of display re-
gister D.
Refer to instruction 01 for the mean-
of D. The contents of a 5-digit display
register are transferred to the five
least significant digit positions of rPl.

Display Register Interlock Test
M---) C if the interlock flip-flop of 8
display register D is set.

(C)+l--~ C if the interlock flip-flop
of display register D is reset.

Refer to instruction 01 for the mean­
ing of D.

Miscellaneous Instructions

Skip

(C)+l---> C

Extract Send

Characters from digit positions of N
replace characters in corresponding
digit positions of rPl if the cor­
responding digit poisitions of rP2
contain even characters, that is, +,

4

4

0, 2, 4, 6, 8, ., or \. (rPl)---> M. 12

Results are retained in rPl and M. rP2
is unchanged.

D-7

Instruction
Format

24 NNNNN xxxxx

25 NNNNN MMMMM

96 xxCxx MMMMM

TABLE D-l. (continued)

Description

Alphanumeric Translate

(N)---)rP2 and the digits in every
other digit position of rP2, beginning
with the least significant digit position
are transferred to the six least signi-

Time
I'lsec.

ficant digit pOSitions of rPl. 12

For example, the word 232621242927 in
rP2 would be transferred as follows:

This instruction is used to translate a
word, which represents numeric data,
from the LARC 2-digit alphanumeric code
to the LARC I-digit numeric code.

(N) remains in rP2 unchanged.

Pattern Inclusion Test

(N)---> rP2

M---> C if for every I-bit in the quinary
portion of each digit in rPl there is a
corresponding l-bit in rP2.

The other bits, except for the check bits,
are ignored.

Reset Disclosure Flip-Flop or
Set Processor Contingency Flip-Flop.

If C=l, reset the disclosure flip-flop in
computer number 1.
If the flip-flop fails to reset, M--~ C 12
If the flip-flop resets, (C)+1---> C 4

If C=2, (same as for C=l, except the dis­
closure flip-flop in computer number 2 is
reset.)

D-8

Instruction
Format

97 xxCxx MMMMM

TABLE D-l (continued)

Description

If C=3, set the processor con­
tingency flip-flop in computer
number 1, thereby causing the
computer to automatically trans­
fer control.
If the flip-flop fails to set,
M---) C
If the flip-flop sets, (C)+l--~ C

If c=4, (same as for C=3 except the
processor contingency flip-flop in
the computer number 2 is set).

Test Disclosure Flip-Flop or
Test Processor-Contingency Flip-Flop

If C=l, test the disclosure flip-flop
in computer number 1.
If the flip-flop is in the reset

Time
,...,sec.

12

4

state (C)+1---:.\ C 4
If the flip-flop is in the set state 12
M---) C
The disclosure flip-flop is set by the
computer program to reveal the presence
of a disclosure word in a predetermined
storage location.

If C=2, (same as for C=l, except the dis­
closure flip-flop in computer number 2 is
tested).

If C=3, test the processor contingency
flip-flop in computer number 1.
If flip-flop is in the set state, 4
(C)+l--o:) C
If flip-flop is in the reset state, 12
M---) C
When the flip-flop is already in the
set state the processor program cannot
indicate a contingency to the computer
program.

If c=4, (same as for C=3, except the pro­
cessor contingency flip-flop in computer
number 2 is tested).

D-9

Instruction
Format

99 xxSxx MMMMM

TABLE D-l (continued)

Description

Master Input-Output (Priority) Tests

Test the condition specified by 8.

If the condition specified by 8 is
true M---> C

If the condition specified by 8 is
not true (C)+l --~ C

8 - Condition, M---> C if True

o Any condition specified by
8=1 through 9 is true
(master-master test).

1 - A drum synchronizer requires atten­
tion (master sector change test).

2 - A tape synchronizer requires atten­
tion (master lO-word test).

3 - A line printer synchronizer, the
electronic page printer synchronizer,
or the real-time clock requires atten­
tion (miscellaneous master test I for
relatively fast devices).

4 - A console device (console printer
or manual intervention flip-flop)
requires attention (miscellaneous
master test II).

5 - A drum (1-24) requires attention
(master head assembly motion test
for drums 1 through 25).

6 - A drum (7-12) requires attention
(drum head assembly motion test
for drums 7 through 12).

1 - A drum (13-18) requires attention
(drum head assembly motion test
for drums 13 through 18).

8 - A drum (19-24) requires attention
(drum head assembly motion test
for drums 19 through 24).

9 - A tape synchronizer has completed
selection.

D-IO

Time
""sec.

12

4

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05.0
	7-05.1
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10

