
• • •

/

TECHNICAL DESCRIPTION

••••• • ••••••••

UNIVAC 1219

Technical Description

UNIVAC
OIVISION OF SPERRY RANO CORPORATION

DEFENSE OPERATIONS • UNIVAC PARK· ST. PAUL, MINN.

CONTENTS

Section Title Page

1 DESCRIPTION OF COMPUTER 1

General Characteristics 1
UNIVAC 1219 Physicial Description. 2
Physicial Size and Weight . 2
Environment 2
Power Requirements 2

Operational Characteristics
Memory
Input/Output
Control
Arithmetic

3
3
4
6
7

Registers and Their Contents 9
Information 9
Addressable Registers 9
Non-Addressable Registers 11

Symbol Conventions 12

Real Time Processing 14

Main Memory and Control Memory Concurrent Opera-
tion 14

2 FUNCTIONAL INFORMATION 15·

Input/Output .. 15
Input Channels 15
Output Channels 16

Priority 16

Interrupts and Assigned Interrupt Addresses 17
R TC Overflow Interrupt . 19
RTC Monitor Interrupt .. 19

Intercomputer Time Out Interrupt 20
Externally Specified Index 20
Externally Specified Addressing (ESA) 20
Continuous Data Mode 21
Arithmetic 21
Control 22

Memory 22
Control Memory 22
32-Word NORO Memory (Bootstrap) 23
Main Memory 23

3 INSTRUCTION WORD FORMATS 25

Format I 25

Format II .. 26

I/O Buffer Initiating Instructions 28

4 LIST OF INSTRUCTIONS .. 29

Format I Instructions .. 29

Format II Instructions 51

Conditional Jump Features 64

Programming Considerations 70

5 INPUT/OUTPUT CHARACTERISTICS 73

General Operation 73

Input/Output Priority 75
Control Signals .. 76

Special Modes of Operation 82
Dual Channel Operation 82
Externally Specified Indexing 82
Externally Specified Addressing (ESA) 84
Synchronizing Input .. 85
Intercomputer Communication Mode 86

Output and External Function Override Instruction .. 88

6 COMPUTER CONTROL PANEL 91

Intrduction .. 91

Operational Run 91

7 UNIVAC 1219 COMPUTER SOFTWARE 93

TRIM Assemblers 93
Trim I 93
Trim II 94
Trim III 94

Operator Service Routines 96

Programmer Service Subroutines 98

UNIVAC® 1219 Military Computer

Section 1.

Description of Computer

General Characteristics

The UNIVAC 1219 Military Computer is a medium-scale, general­

purpose, digital computer, specifically designed to comply with the en­

vironmental specifications of MIL-E-16400. It is a faster version of

the widely-used UNIVAC 1218 Computer and is functionally compat­

ible with that machine.

To meet the extreme requirements of real time and concurrent batch

processing operations, the UNIVAC 1219 is equipped with a 2 .. micro­

second internal random access core memory in sizes of 8192, 16,384,

32,768 or 6S,S36 18-bit words with a "read" access time of 0.9 micro­

seconds and a fast S()().nanosecond Control Memory. In addition to

this, other random-access storage devices connected to input I output

channels provide unlimited memory capacities. A portion (32 word

locations) of Core Memory has a characteristic non-destructive feature

in which are stored constants and instructions for automatic recovery

from fault situations and for an initial load of routines.

With its high internal operating speed, core memory, and SOO-nano­

second Control Memory, the UNIVAC 1219 Computer is capable of

transferring SOO,OOO words per second. Arithmetic and input/output

operations can be performed on the basis of a single-length 18-bit

word, or a double length 36-bit word if greater precision is required

for compatibility with other computers. The repertoire of 102 instruc­

tions allows complete programming freedom in mathematical and

logical computations, as well as full control of input/output buffer

transfers and of real-time, on-line operations. The computer features

1

parallel transfers, one's complement binary arithmetic, direct address­

ing, and program controlled automatic address or operand modifica­

tion via eight Control-Memory-contained index registers.

The UNIVAC' 1219 Computer with a 32,768 word core memory, pow­

er supply, and all logic and control circuitry is contained in a single

cabinet which occupies less than 32 cubic feet and requires less than

five square feet of floor area.

A simplified block diagram of the computer appears in Figure 1. Ab­

breviations on the diagram are explained as the operation of the vari­

ous computer sections are discussed.

UNIVAC 1219 Physical Description

The computer was built to conform to specification MIL-E-16400

(i.e. for ruggedized equipment). The single cabinet (72.0 inches high

by 25.88 inches wide by 30.3 inches deep, weighing approximately

900 pounds) contains: power supply, logic circuits, core memory, (up

to 32,768 words) control panel on front of cabinet, and cooling sys­

tem.

Physical Size and Weight

Height: 71.75 inches

Width: 25.88 inches

Environment

Depth:

Weight:

30.03 inches

900-1000 pounds

Operating temperatures O°C to 50°C

NonOperating temperatures-62°C to +75°c

Humidity-Relative Humidity to 95%

Power Requirements

115 volt + 5 percent, 3-phase, 400 cps, 2000 watts maximum, aircooled.

115 volt+5 percent, 3-phase, 400 cps, 3000 watts maximum, water

cooled.

2

Operational Characteristics

Memory

Control Memory

Cycle Time:

Capacity:

Type:

Purpose:

Main Memory

Cycle Time:

Capacity:

Type:

Purpose:

NDROMemory

Cycle Time:

Capacity:

Type:

Purpose:

3

500 nanoseconds

128 I8-bit words

Word organized, magnetic core

Index registers, clock cells, 1/0

buffer control registers; operates

in the "shadow" of the Main

Memory at a 4: 1 ratio.

2 microseconds

8192, 16,384, or 32,768 18-bit

words (standard options) 65,536

word memory (additional option)

Coincident current, magnetic

core

110 interrupt registers, program

and data storage.

2 microseconds

32 I8-bit words

Word organized, magnetic core,

unalterable

Bootstrap (initial load) program

storage. Programs available for

paper tape and magnetic tape

load.

Input/Output

Channels

Type:

Number:

Transfer Rate:

Operation:

Information Transfers

Input Channels:

Output Channels:

Processing Time

Required:

Delay due to Program:

Operating Modes (Standard)

Normal Single Channel:

Normal Dual Channel:

4

Simplex, 18-bit parallel

32 maximum; 16 Input plus 16

Output

One channel-166,OOO 18-bit

words/ second (maximum)

Multi-channel-500,OOO 18-bit

words/second (maximum)

Each channel fully buffered and

once activated operates without

program attention, asynchron­

ous, at the rate of the peripheral

unit.

Input data, interrupt data

Output data, external command

data

2 microseconds/word transferred

o miscroseconds during extended

sequence instructions

2 microseconds (maximum)

18-bit parallel transfers

Consecutive (even/odd number­

ed) channels may be "paired" to

form a single 36-bit parallel

channel.

Externally Specified Index (Dual Channel):

I8-bit parallel data transfers

with storage address indirectly

specified by external device; use­

ful for multiplexing decommut­

ating data to/from computer.

Externally Specified Address (Dual Channel):

Continuous Data Mode:

I8-bit parallel data transfers

with storage address directly spe­

cified by external device.

Program controlled automatic re­

initiation of previously established

buffers. Program controlled ter­

mination of CDM. 18 bit parallel

or 36 bit parallel input/output

word transfers.

Intercomputer Single Channel:

Direct I8-bit parallel data trans­

fers with other UNIVAC com­

puters; no interface adapters re­

quired for intercomputer com­

munication.

Intercomputer Dual Channel:

5

Direct 36-bit parallel data trans­

fer with other UNIVAC Compu­

ters. No interface adapters re­

quired for intercomputer com­

munication.

Interrupts

Input Channels:

Output Channels:

Control

Instructions

Type:

Address Modification:

Repertoire:

Clock

Type:

Location:

Duration:

Granularity:

Interrupt:

Synchronizer

Interrupt:

Purpose:

6

16 external interrupts. plus 16 in­

ternal interrupts (programmer

option)

16 internal interrupts (program­

mer option)

Single Address

8 Control-Memory-contained m­

dex registers

102 instructions

Automatic, additive, under pro­

gram control

Control Memory

Established under program con­

trol

LSB represents 1/1024 second

Interrupt occurs when program

pre-set value is reached.

Interrupt occurs whenever the

non-I/O synchronizing control

line is set to logical one by an

external device.

To allow a variable-granularity

clock function or to provide a

high priority alarm recognition

capability .

Arithmetic

Organization:

Execution Times:

7

18-bit parallel, one's comple­

ment, integer

Typical execution times, includ­

ing instruction and data fetch

plus indexing.

Add, Subtract (single length) 4

usec

Multiply /Divide 14 usee

Add, Subtract (double length) 6

usee

Compare/Masked Compare and

Branch 6 usee

Register shifts: right, left, single,

double 2+ .5n usec (n-shift

count)

UNIVAC 1219 COMPUTER BLOCK DIAGRAM

8

Registers and Their Contents

Information

All registers in the computer may be classified as addressable or non­

addressable. Those discussed here will be other than the normal core

storage registers. Addressable registers are directly available to the pro­

grammer through computer instructions. The other functional registers

are non-addressable.

Addressable Registers

A A 36-bit arithmetic accumulator which:

(1) contains the product of two 18-bit quantities

(2) contains the 36-bit dividend for a divide instruction

(3) is used as an accumulator for double length arithmetic

and logical functions

(4) has shifting capabilities and complementing capabilities

AU The upper accumulator (most significant 18 bits) of A which:

(1) contains a mask for logical instructions

(2) captures the remainder for the "divide" process

(3) has shifting capabilities

(4) has complementing capabilities

AL The lower accumulator (least significant 18 bits) of A which:

(1) is used as the main Accumulator for the Arithmetic Sec­

tion for all functions

(2) contains quotient for the "divide" process, contains sum

for "add"

(3) has shifting capabilities

(4) has complementing capabilities

B The contents of the active index register in control memory

which are used to modify "y" to form an address or an operand

in odd-numbered instruction less than 50s are entered into the

9

18-bit B-register in the control section. "B" is an IS-bit one's

complement number that may be used to increment or decre­

ment. When the quanity "y+B" is used as an address, only the

number of lower order bits sufficient to fill the S-register are

transmitted. The B-register is a transient register in the control

section used for address and operand modification and for 1/0

sequences to hold one of the buffer control words.

ICR An Index Control register (3 bits) contains the Index register

identifier currently active in address or operand modification

requested by instructions. Anyone of eight index registers may

be selected by the numerical value entered into this register

by the program.

(P) The contents of the Program Address register, "P", (i.e., the

address of the instruction currently being entered for execu·

tion) , are incremented by one in the Arithmetic Section as

soon as the instruction is transferred from memory. If the com­

puter is stopped, the P-register exhibits the address of the next

instruction, "(P) + 1". This is incremented by one again if the

condition stated by a SKIP instruction is satisfied. When the

current instruction is a Return Jump, (P) + 1 is stored in the

core location specified by the instruction, and the entrance

address of the new routine is entered into the Program Ad­

dress register.

When the Return Jump is the result of an "Interrupt", (P) is

stored in the core location specified by the instruction since the

"Interrupt" condition does not initiate the (P) + 1 sequence.

SR A 5-bit Special Register through which the program has con­

trol of the 4096-word modules in core memory (in all instruc­

tions numbered under 50s except "JUMP" and "ENTER CON­

STANT or ADD CONSTANT" instructions). When the 23 bit

contains one, the remaining bits of SR are used to extend u

10

for an address instead of the upper bits of P. If the 23 bit of

SR is zero, the most significant bits of P extend u for the ad­

dress. Therefore, y (the address) equal to Up or USR is determ­

ined by the 23 bit of SR. (Active if = 1). Refer to Section I-C.

Non-Addressable Registers

CO Two I8-bit Output Buffer registers for transferring data or

and instruction words (external function) to external devices which

CE may include other computers. The CO-register is the buffer

register for the odd-numbered channels (1, 3, 5, and 7) and the

CE-register is for the even-numbered channels (0, 2, 4, and 6).

These two output registers may be linked in consecutive "even­

odd" pairs to permit 36-bit parallel output transfers when

words larger than I8-bits are desired.

CO' Two I8-bit Output Buffer registers for channels 108 through

and 178 (optional).

CE'

D An I8-bit Arithmetic Exchange register holds an operand for

the adder during arithmetic operations.

F A 7-bit Function register holds the function code of the in­

struction being executed. The low order six bits hold the func­

tion code (f for Format I instructions and m for Format II

instructions). The most significant bit will be set for Format

II instructions only. Computer control is directed from this reg­

ister.

S An Address register receives the address of a memory location

at the beginning of a memory cycle and holds it to control the

translators and circuitry throughout the read/write cycle. The

S-register may receive its address from the Input/Output Sec­

tion (which generates certain assigned addresses), the Control

Section, the Arithmetic Section, or from an input channel con-

11

nected to a device capable of specifying an address. Sm (16

bits) is associated with Main Memory and Sc (7 bits) is as­

sociated with Control Memory.

W An I8-bit Shifting register is in the Arithmetic section.

X An I8-bit Exchange or Communication register in the Arith­

metic Section receives operands for arithmetic and logical in­

structions.

Zm An I8-bit Main Memory buffer register for all transfers to

and from core memory. The Z-register communicates with all

other sections of the computer since core memory may con­

tain instructions and data.

Zc An I8-bit Control Memory buffer register for all transfers to

and from Control Memory locations. It communicates with all

sections of the computer.

Symbol Conventions
The following symbols are used throughout the descriptive material:

AU Upper accumulator, I8-bit arithmetic register
AL Lower accumulator, I8-bit arithmetic register
A AU and AL linked together to form one 36-bit arithmetic

register
B Contents of the active index register, I8-bit one's comple-

ment
f Function code, high order six bits of all instruction words
F Function Register, seven bits
k Designator contained in Format II instructions, six bits
m Minor function code contained in Format II instructions,

six bits
M Memory word specified by (y), (y+B), L(y)(AU) or L

(y+B)(AU) of Compare Instruction
NI Next instruction
P The Program Address register
SR Special register, 5-bit core memory bank designator
u The low order 12 bits contained in Format I instruction

words
Up u prefaced with core memory bank designator bits of P
USR U prefaced with core memory bank designator bits of SR

12

y
Y

o
01
Of
On
(Y+1,Y)

LOO
or
000

OvO

OffiO

u extended or Up or USR

The address or constant formed by y or y + B with or with­
out sign extension
Contents of the address or register
Initial contents of the address or register
Final contents of the address or register
Designates any single nth bit of the contents of a register
Designates the contents of two consecutive memory loca­
tions linked together to form a 36-bit word. Address Y + 1
contains the most significant half of the word while address
Y contains the least significant half.
The colon in a logical expression indicates COMPARISON
The bit-by-bit or logical product (logical AND) defined by
the table:

/01
0/00
I/O 1

LOg<~ sum':r« rL,clusive OR defined by the table: , ll~Yl ~ (
/7[0} (' C' , .
L/flY 1 I l I
~alf add, Half subtract, or exclusive OR defined by the
table:

101
010 1
111 0

0' or 0 The one's complement of the contents of the address or
register

00 Algebraic product of the contents of two locations
(Y) When the contents of Yare used as an Address only that

lower portion of the word that can be contained in S is
transferred

~ Transfer the quantity stated at the left of the symbol to the
address or register stated at the right of the symbol

"Console" and "Control Panel" are used to designate I/O console
or the computer control panel.

xY x preceding some symbol indicates that the sign of the 12-
bit constant has been extended to produce an 18-bit word,
I.e.,

x Y = ! Un .•.••... Uu

6 Bits

13

Uu----uo !
12 Bits

Real-Time Processing
The ability of the UNIY AC 1219 Computer to process various appli­

cations concurrently is implemented by a program intervention sys­

tem called "Interrupts". These Interrupts may originate at some re­

mote external device (External Interrupts) or they may originate with­

in the computer (Internal Interrupts). Since more than one may occur

at the same time the computer possesses a priority scheme with de­

cision-making qualities so that it can select the branch of operation for

solving the problem requiring the most urgent attention. Under pro­

gram control the other interrupts may be honored in turn according

to the next highest priority or they may be ignored. With this "in­

terrupt" feature real-time problem solution and maximum processing

potential of the system is realized since less important routines can

occupy the computer's surplus time.

Main Memory and Control Memory Concurrent
Operation
The master clock in the UNIVAC 1219 Computer controls and syn­

chronizes all operations performed by the various sections through the

electronic timing chains allotted to them. The read/restore cycle time

of main memory is 2-miscroseconds. All control and timing sequences

for the various functions the computer performs are based on this 2-

miscrosecond cycle. Four 500-nanosecond control memory read-write

cycles occur during one main memory read-write cycle. An instruction

from main memory storage can be transferred to the control section

for execution in approximately 0.9 microseconds. Any modification

to this instruction and complete translation is completed before the

end of that main memory cycle since the modifiers are extracted from

control memory in less than 250 nanoseconds. The Input/Output sec­

tion has independent access to control memory for its control words,

clocks, etc., during instruction sequences.

14

Section 2.

Functional Information

Input / Output

The Input/Output Section includes those data paths and control cir­

cuits used by the computer for communicating with external equip­

ment.

All communication between the computer and the external equipment

is accomplished via 16 input and 16 output channels and their as­

sociated control circuits. The channels, both input and output,

are numbered from 0 through 178 with each channel consisting of 18

information lines plus control lines; channel priority ranks from 1 7

through 0, with the high numbered channels given preference over the

lower numbered channels. Input and output communication alternates

if both types of requests exist simultaneously.

The Input/Output Section uses particular control memory addresses

which dictate the memory area affected by this input or output opera­

tion (buffer control words) and particular core memory addresses

which contain instructions executed when particular input/output con­

ditions occur (interrupts).

Input Channels

The input channels are used to receive two types of information from

external equipment: input data and external interrupt information.

External interrupt information originates at the external equipment and

usually informs the computer of an abnormal condition such as tape

breakage or incorrect parity. Input data information transfers are con­

trolled by buffer control words in core memory.

15

Output Channels

The output channels are used to transmit two types of information from

the computer to external equipment: data and external function infor­

mation. External function, transmitted through the data lines, is used

for external equipment control such as tum on reader, rewind tape, or

turn off typewritter. Both data and external function information

transfers are controlled by buffer control words in core memory.

Either an Output Buffer or an External Function mode may be ac­

tive. Both use the same assigned locations in control memory for buf­

fer control words. Thus initiating an Output Buffer will cancel any

External Function Buffer on the same channel and initiating an Ex­

ternal Function mode will cancel any active Output Buffer on the same

channel.

Priority

The higher numbered channel operation is given highest priority. Then

the liD function priority circuits provide automatic selection of the

higher priority operation when two or more operations are requested

by peripheral equipment or by the computer at the same time. Some

real-time events as well as certain information transfers require spe­

cial handling or main program intervention. These operations or in­

terrupts are processed by the InputlOutput Section according to a pre­

arranged priority scheme. The following is a list of these operating

modes in descending order of priority:

(1) Real Time Clock Update
(2) External Interrupt Status Word Storage
(3) Output Request or Input Request (alternate if both)
(4) Fault
(5) Intercomputer Timeout Interrupt
(6) RTC Monitor Interrupt
(7) RTC Overflow Interrupt

16

(8) Synchronizing Interrupt
(9) External Interrupt

(10) Internal Interrupt from Output or External Function Trans­
fer with Monitor

(11) Internal Interrupt from Input Transfer with Monitor

Interrupts and Assigned Interrupt Addresses
Interrupts in the computer system cause main program intervention.

An instruction located in a core memory address, designated by the

condition causing the interrupt, will be executed.

The instruction located in the designated memory location is chosen

by the programmer and is usually an indirect return jump. A Return

Jump instruction stores the address of the next sequential instruction

of the main program in the interrupt routine so that computer control

can return. External interrupts may accompany an Interrupt C'ode

which is stored at the address following the Interrupt Entrance register

at the time the computer honors the interrupt. When an interrupt is

honored, the computer will generate the addresses required to call out

the instruction from the assigned locations as well as the addresses

for storage of the Interrupt or Fault codes. These generated addresses

for an 8 I/O channel computer (channels 0-7) are as follows:

(1) A Synchronizing Interrupt (not associated with any input or
output channel) is provided on the computer via a single line.
Whenever certain events occur at some external device,
which request the computer to perform a given routine,
this synchronizing input will be used to alert the computer.
Top priority is given to this, Interrupt, and control is trans­
ferred to the instruction located in memory address 00016.

(2) External Interrupt Entrance Register is 100* plus twice the
channel number for instruction location; 101 * plus twice the
channel number for code word storage.

*For computers with 16 I/O channels (channels 108-178) add 2008 to

these figures.

17

(3) Output or External Function Monitor Interrupt Register is
140* plus twice the channel number (even addresses only).

(4) Input Monitor Interrupt Register is 160* plus twice the
channel number (even addresses only).

When single channel operation (18-bit word transfers) is used, control

is transferred to the even-numbered address for that channel and the

Interrupt code is stored in the odd-numbered address for External In­

terrupt operation. When dual channel operation (36-bit word transfers)

is used, control is transferred to the even-numbered address of the odd­

numbered channel of the pair; the Interrupt code is stored in both of

the odd-numbered addresses.

A diagram of External Interrupt Entrance registers and their uses is

shown below:

FORCHANNEL I MEMORY I
NUMBER ! ADDRESS : CONTENTS

o : 00100 : Return Jump Instr.
I 00 101 I Interrupt Code

1 : 00102 : Return Jump Instr.
I 00103: Interrupt Code
1 1

I SOURCE OF
: CONTENTS

I Programmed
I Peripheral Device
I Programmed
: Peripheral Device
I

Conventionally, all interrupt entrance locations are filled with one of

two types of instructions:

• To ignore the interrupt, a 503000 instruction will remove the
interrupt lockout; and the program will continue with the normal
execution of instructions since the P-register is not affected by the
interrupt itself.

• A response to the interrupt requires a Return Jump (usually
an Indirect Return Jump), to the interrupt routine, in the in­
terrupt entrance register. The Return Jump instruction saves the

*F or computers with 16 110 channels (channels 1 Os-17 s) add 200s to

these figures.

18

address of the next instruction that would have been executed in
the normal sequence if no interrupt had occurred, rather than the
address of the Return Jump instruction + 1. This provides a return
to the program that was interrupted.

An external interrupt results from an external device placing a signal

on an External Interrupt line. Appropriate action is generally taken

by the interrupt program.

Internal interrupts are generated by the Input/Output Section of the

computer whenever a buffer, which has been initiated with a monitor

imposed, terminates.

A Real Time Clock incrementing register is assigned location 15 in

control memory. It is used for timing three specific interrupting capa­

bilities that are provided by hardware design and for any other pro­

gram controlled timing activities.

RTC Overflow Interrupt

When the RTC register overflows (777777 to 000000) the com­

puter program is interrupted and the next instruction is taken from the

RTC Overflow Entrance Register (location 13 in control memory).

RTC Monitor Interrupt

The Real Time Clock Monitor Interrupt may be initiated by storing

a desired time count in the Real Time Clock Monitor Word register

(location 14 in control memory) and Enabling the Real Time Clock

Monitor via the "Enable Real Time Clock Monitor" instruction (Code

50 14). When the Real Time Clock incrementing register equals the

count stored in location 14, the computer program is interrupted, the

next instruction is taken from the RTC Monitor Interrupt entrance reg­

ister (location 12 in control memory) and the RTC Monitor is. disabled.

19

Intercomputer Time Out Interrupt

The Intercomputer Time Out Interrupt is available during intercom­

puter operation. Any single bit of the RTC incrementing register may

be wired to monitor the Resume circuitry . When the RTC count reaches

the specified bit, a designator is set. If no Resume is received by

the computer before the next time the count reaches that bit, the in­

tercomputer time out interrupt is activated and the next program in­

struction is taken for the IC Interrupt Entrance Register (location 11).

A fault interrupt is a special case of internal interrupt caused by ex­

ecuting a meaningless function code, i.e., 00, 01, 77, or 50 00.

Externally Specified Index

This outstanding feature provides peripheral devices with a means of

specifying core storage areas in the computer's memory for any input

or output transfers they may request. The Externally Specified Index

CESI) mode of operation is useful as a multiplexing device for a num­

ber of slow transfer peripheral units occupying one dual channel. The

buffer control words governing the transfers are located at the INDEX

address. If input is desired an Input Request is presented with the In­

dex on one channel of the pair and the data on the other channel. If

Output is desired an Output Request is presented with the Index ad­

dress.

Externally Specified Addressing (ESA)

The ESA feature provides peripheral devices with a means of specify­

ing an absolute core memory location for storage or retrieval of data.

An active dual-channel mode of operation is required for 'computer

response to this function. The address is presented on one channel

and the data transmission path on the other. If input is desired the

20

external device presents an Input Request with the address and data.

If output is desired an Output Request is presented with the address.

Continuous Data Mode

The Continuous Data Mode, requested when initiating a buffer on a

channel, is a feature which provides an automatic reinitiation of the

buffer upon completion. A new pair of buffer control words are trans­

ferred to the control memory buffer control addresses from the control

memory CDM addresses for that channel. The Monitor Interrupt can

be incorporated with the CDM and if so the interrupt will occur each

time the buffer is terminated and reinitiated. The CDM is especially

useful when a continuous, high rate, stream of data must be transferred

in or out of the computer.

Arithmetic

The Arithmetic Section, which contains a subtractive type ADDER,

performs all the arithmetic and logical operations for the computer un­

der direction of the Function Code Translator and Input/Output con­

trol. The Arithmetic Section and Memory are shared by the Control

Section and the Input/Output Section. After an instruction has been

executed, the Input/Output Section may gain control of Memory for

an input or output transfer on an active channel. As soon as the

Arithmetic Section is available, the Buffer Control Initial (or Current)

Address is compared with the Terminal Address, updated, and re­

stored. It is also supplied to the S-register of Memory control for the

reference required to transfer the word. The Arithmetic Section is used

by Control for any address or operand modification requested by an

instruction and for OVERFLOW detection if overflow exists at the

completion of any arithmetic instruction except multiply.

21

Control

The Control Section contains circuitry necessary to procure, modify,

and execute the single address instructions of a program stored in

the core memory of the computer. It controls parallel transfers of in­

structions and data. Direct or indirect addressing capabilities and auto­

matic address and operand modification are directed by the Control

Section translators and the timing of the synchronous electronic master

clock. This section controls all arithmetic, logical, and sequential op­

erations of the computer except those assigned to the Input/Output

Section. It has facilities to permit an interruption of the running pro­

gram when certain real-time events· require such interventions.

Memory
The computer memory consists of up to 65,536 18-bit words of ad­

dressable storage locations divided into three distinct sections in a con­

tinuous addressing structure.

Control Memory

An independent high-speed core memory, consisting of 128 18-bit

words, is used for index registers, buffer control words, real-time clock

cells, real-time clock interrupts and the fault interrupt address. The

fixed addresses for these functions are:

Address
00000
0000 1-00010
00011
00012
00013
00014
00015
00016
00017
00020-00037

Assignment
Fault Interrupt Entrance Register
8 Index Registers
Inter-Computer Time-Out Interrupt Register
Real-Time Clock Interrupt Register
Clock Overflow Interrupt Register
Real-Time Clock Monitor Word Register
Real-Time Clock Incrementing Register
Synchronizing Interrupt Register
Scale Factor Shift Count
Continuous Data Mode (Channels 0-7)

22

00040-00057

00060-00077

Output Buffer Control Registers (Channels
0-7)
Input Buffer Control Registers (Channels
0-7)

For UNIVAC 1219 Computers equipped with 16 I/O, Channels:

00200.-00217 Unassigned
00220-00237* Continuous Data Mode (Channels 8-15)
00240-00257* Output Buffer Control Registers (Channels

8-15)
00260-00277* Input Buffer CO'ntrol Registers (Channels

8-15)

*When not assigned for these functiO'ns, the locations may be used
fO'r data storage.

32-Word NDRO Memory (Bootstrap)

The computer is prO'vided with 3210 non-destructive readout memory

locations (005008-005378) which contain computer instructions and

cO'nstants fO'r an initial load program (Bootstrap). This provides the

ability to enter an initial package of utility routines that may be used

to lO'ad and/or debug more sophisticated programs. These memory 10-

catiO'ns have unique characteristics in that they are magnetic cores

which operate in a special type of nO'ndestructive readout mode. They

are not accessible to' the programmer for store-type instructiO'ns. The

Bootstrap program is assigned to memory locations 00.5008 to 005378

inclusive.

Main Memory

The main memory consists of a 4 microsecond core storage that is used

for program, constants and data storage. All locations are accessible to

the programmer at random and to' all sections of the computer on a

time shared basis. Some locations. are given special assignments which

the prO'grammer must respect and provide for their cO'ntents. The fixed

addresses assigned to main memory are as follows:

23

Main Memory Address Assignment

000100-00011 7 External Interrupt Registers (Channels
0-7)

000120-000' 13 7 UNASSIGNED
000140-000157 Output Monitor Interrupt Registers

(Channels 0-7)
000160-000177 Input Monitor Interrrupt Registers

(Channels 0-7)
000300-000317 External Interrupt Registers (Channels

8-15)
000320-000'337 UNASSIGNED
000340-000357 Output Monitor Interrupt Registers

(Channels 8-15)
000360-000377 Input Monitor Interrupt Registers

(Channels 8-15)
000400-000477 UNASSIGNED
000540-177777 * UNASSIGNED

*000540 to 177777 for computers equipped with 65,536 words of
memory.

24

Section 3.

Instruction Word Formats
Two basic instruction word formats are used by the computer.

Format I:

~----18 bits----~

17--12 11-----,0

f u

f: function code, six high order bits

u: twelve low order bits

The definition and usage of u are determined by the function code

utilizing u in two distinct manners:

• u used as a constant. In this case, u itself is the operand

and requires no further memory reference; however, u is "ex­

tended" to 18 bits. (Refer to Section 4 entitled "List of In­

structions" .)

• u used as an address. In this case, u is used as the lower

order 12 bits of the base address referring to a memory cell.

The base address is 16 bits, designated as Up or USR, and is

described below:

Up is defined as a 16-bit address whose four high order bits consist of

the four higher order bits of P and whose twelve low order bits are u.

Up: 15 - 12 11-----01 I
P 15-12 U

USR is defined as a 16-bit address whose four high order bits consist

25

of the three lower order bits and the high order bit of SR and whose

twelve low order bits are u.

~(----- 16 bits ------+

USR 11----,0

U

SR 2--0

~---= 1 when ACTIVE

Certain Format I instructions allow the use of either Up or USR as the oper­

and address; for these instructions USR is used if SR is ACTIVE and

Up is used whenever SR is INACTIVE. (Refer to Section 4 entitled

"List of Instructions".)

Format II:

~---- 18 bits -------+

117-12111-6 15 0 I
f m k

f: six-bit function code (always equal to octal 50)

m: six-bit minor function code

k: six low order bits

Format II instructions perform a variety of operations and can be clas­

sified in two instruction categories:

• No memory address needed. In this case, the information

existing in the computer's arithmetic or control registers and

the value k are sufficient to perform the specified operation.

• Initiate input/output buffer. In this case, the two memory

26

cells immediately following the instruction are used to con­

tain the buffer control words. The complete instruction must

therefore occupy three sequential memory cells; the format

is as follows:

Any address

n 17---12 11---6 5---,0 I I/O instruction

f

n+l

Unassigned

n+2

Modifier

Monitor -----'

m k

15--------10 TAC word

Buffer Terminal Address

15---------0 lAC word

Buffer Initial Address

bit 17: CDM of n + 1 (Terminal Address Control Word) is the
Continuous Data Mode Identifier. If equal to one the computer
I/O section operates in the continuous data mode. If equal to zero
a normal buffer is executed.

bit 17: Modifier of n+2 (Initial Address Control Word); if
equal to one the Buffer Current (Initial) Address is decremented
for each word transferred in or out; if equal to zero the Buffer
Current Address is incremented.

bit 16: Monitor of n+2 (Initial Address Control Word); if
equal to one the Monitor Interrupt occurs upon successful com-

27

pletion of the last transfer; if equal to zero no Moniter Interrupt
will occur.

NOTE: Normal buffer termination occurs when the incremented/de­

cremented Buffer Current Address. is equal to the Buffer Ter­

minal Address. A buffer is terminated when tests in the con­

trol section detect Buffer Control Address equality.

I/0 Buffer Initiating Instructions
During the execution of any instruction that initiates a buffer three

main memory references are involved.

• The I/O instruction is extracted from memory and interpret­

ed by the control section and sets I/O active on the specified

channel.

• The Terminal Address Control word is transferred from the

location following the I/O instruction to the Control Mem­

ory location assigned to that type buffer Terminal Address

Control Word.

• The Initial Address Control word is transferred from the lo­

cation following the T AC word in main memory to the Con­

trol Memory location assigned to that type Buffer Current

Address Word.

Computer control reads the next sequential instruction and

continues the program leaving the input/output section with

task of handling the transfers. The input/output section gen­

erates the addresses in Control Memory to examine the con­

trol words placed there by the steps above when it receives a

reques.t for word transfer from the device on the activated

channel. For the actual word transfer the I/O section robs

one Main Memory cycle from the program being executed.

28

Section 4.

List of Instructions

Format I Instructions

The following pages list the repertoire of instructions for the Computer.

Common usage and example cases are included for instructions where

the meaning may not be obvious; no attempt has been made to indicate

more sophisticated use. The instructions are listed and defined in the

following format:

• (Octal Code) (Instruction Name) ("TRIM" Code) (symbolic
summary)

• (execution time)

• (definition of the "y" address or constant)

• (text defining the instruction in detail)

• (examples and/or notes if any)

The "symbolic summary" expression will use the symbol "Y" to include

"y" or "y + B", whichever is stated in the text for that instruction.

00 ILLEGAL CODE-JUMP TO FAULT ENTRANCE REG­

ISTER

Execution time: 2 microseconds

01 ILLEGAL CODE-JUMP TO FAULT ENTRANCE REG­

ISTER

Execution time: 2 microseconds

02 COMPARE AL (CMAL) (AL) (Y)

Execution time: 4 microseconds

y=up orUSR

29

Compare algebraically (AL) with (y) and set the comparison

designator as follows:

Set the "CaMP ARE" stage
Set the "LESS THAN" stage if (AL) «y)
Set the "EQUALS" stage if (AL) = (y)

(AL)r = (AL)i

NOTE: The comparison designator is cleared by the execution

of any subsequent instruction other than codes 0 - 67,

and no interrupt will be honored while the designator

is Set. (Refer to page 64 Conditional Jump Features

following)

03 COMPARE AL (CMALB) (AL) : (Y)

Execution time: 4 microseconds

y= Up orUSR
Compare algebraically (AL) with (y+ B) and set the com­

parison designator as follows:

Set the "CaMP ARE" stage
Set the "LESS THAN" stage if (AL) < (y + B)
Set the "EQ'UALS" stage if (AL) = (y+B)

(AL)f = (AL)i

NOTE: The comparison designator is cleared by the execution

of any subsequent instruction other than codes

60 - 67, and no interrupt will be honored while the

designator is SET. (Refer to paragraph Conditional

Jump Features.)

04 SELECTIVE SUBSTITUTES (SLSU) L(AU)l(AL)+L

(AU) (Y) ~AL

or (Y)n ~ ALn for (AU)n = 1

Execution time: 4 microseconds

y=Up orUSR

30

Replace the individual bits of (AL) with bits of (y) corres­

ponding to ones in (AU), leaving the remaining bits of (AL)

unaltered.

(AU), = (AU)!

Example of selective substitute:

(AU)! = 007777 Mask

(y) = 123451

(AL)! = 666666

(AL)f = 663451

05 SELECTIVE SUBSTITUTE (SLSUB)

Execution time: 4 microseconds

y= Up or USR

L(AU)l(AL)+

L(AU) (Y)~AL

Replace the individual bits of (AL) with bits of (y+ B) cor­

responding to ones in (AU), leaving the remaining bits of

(AL) unaltered.

(AU)r = (AU)!_

06 COMPARE WITH MASK (CMSK) L(AU) (AL) : L(AU)

(Y)
Execution time: 4 microseconds

y= Up orUSR

Compare algebraically selected bits of (AL) with correspond­

ing bits of (y) and set comparison designator as follows:

Set the "CaMP ARE" stage
Set the "LESS THAN" stage if L(AL) (AU) < L(y) (AU)
Set the "EQUALS" stage if L(AL) (AU) = L(y) (AU)
(AL)r = (AL)i: (AU)r = (AU)i

NOTE: The 'comparison designator is cleared by the execu­

tion of any subsequent instruction other than codes

60 - 67, and no interrupt will be honored while the

31

designator is SET. (Refer to paragraph on Condition­

al Jump Feature.)

Example of Compare with Mask:

(AU)l = 007777 Mask

(y) = 123451

(AL)l = 222351

Compare 2351 with 3451

(AU)r = 007777: (AL)r = 222351

07 COMPARE WITH MASK (CMSKB)

L(AU) (AL) L(AU) (Y)

Execution time: 4 microseconds

y= Up orUSR

Compare algebraically selected bits of (AL) with correspond­

ing bits of (y+ B) and set the comparison designator as

follows:

Set the "COMPARE" stage
Set the "LESS THAN" stage if L(AL) (AU) < L(y+ B)

(AU)
Set the "EQUALS" stage if L(AL) (AU) = L(y+ B) (AU)

(AL)r = (AL)i: (AU)r = (AU)i

NOTE: The comparison designator is cleared by the execution

of any subsequent instruction other than codes 60 -

67, and no interrupt will be honored while the desig­

nator is SET. (Refer to paragraph Conditional Jump

Feature.)

10 ENTER AU (ENTAU) (Y) ~ AU

Execution time: 4 microseconds

y=uporuSR

Clear AU. Then transmit (y) to AU.

32

11 ENTER AU (ENTAUB) (Y) ~AU

Execution time: 4 microseconds

y=uporUSR
Clear AU. Then transmit (y+ B) to AU.

12 ENTER AL (ENTAL) (Y)~AL

Execution time: 4 microseconds

y=up or USR

Clear AL. Then transmit (y) to AL.

13 ENTER AL (ENTALB) (Y) ~ AL

Execution time: 4 microseconds

y= Up or USR

Clear AL. Then transmit (y+ B) to AL.

14 ADD AL (ADDAL) (AL)+(Y) ~ AL

Execution time: 4 microseconds

y=uporUSR
Add (y) to (AL) and leave the result in AL. Set OVERFLOW

designator if overflow occurs. * (AL)r are all ones if (AL)i

and (y) are all ones.

15 ADD AL (ADDALB) (AL)+(Y) ~ AL

Execution time: 4 microseconds

y=Up orUSR

Add (y+B) to (AL) and leave the result in AL. Set

OVERFLOW Designator if overflow occurs.* (AL)r are all

ones if (AL)i and (y+ B) are all ones. *

16 SUBTRACT AL (SUBAL) (AL) - (Y) ~ AL

Execution time: 4 microseconds

y=UporUSR

Subtract (y) from (AL) and leave the difference in AL. Set

33

OVERFLOW designator if overflow occurs.* (AL)r are all

ones if (AL)i are all ones, and (y) are all zeros.

17 SUBTRACT AL (SUBALB) (AL) - (Y) ~ AL

Execution time: 4 microseconds

y=uporuSR

Subtract (y+ B) from (AL) and leave the difference in AL.

Set OVERFLOW designator if overflow occurs. * (AL)r are

all ones if (AL)i are all ones and (y+ B) are all zeros.

20 ADD A (AD'DA)

Execution time:

y=up orUSR

(A)+(Y+l,Y) ~ A

6 microseconds

Add to (A) the double-length (36-bit number contained in

storage cells y + 1, Y and leave the result in A. Set OVER­

FLOW designator if overflow occurs. * The least significant

half is in cell y, and the most significant half ~is in y + 1. The

sign of the double-length number is indicated by the most

significant bit of (y+ 1). Address y must be even, i.e., the

rightmost octal digit must be 0, 2, 4, or 6.

NOTE: The instruction is executed in the following man­
ner:

Clear the BORROW designator. The AU and
AL registers are linked to form a continuous 36-
bit A-register. Therefore, any borrow for AL
comes from AU; and any End Around Borrow for
AU is blocked and recorded in the BORROW des­
ignator leaving A uncorrected. The "Skip On No
Borrow" instruction (Code 50, 51) is used to test
for required correction. Only "ADD A" or "SUB­
TRACT A" instructions set the designator.

*The OVERFLOW designator is cleared only by the execution of in­
struction SKIP ON OVERFLOW (f, m = 50, 52) or instruction
SKIP ON NO OVERFLOW (f, m = 50, 53).

34

Example of a double add with y = 07506

(A)i = 201007430145

address 07506 = 351123

address 07507 = 077430
(A)f 300440001271

21 ADD A (ADDAB)

Execution time:

y=uporuSR

._.J

6 microseconds

(least significant half)

(most significant half)
(unadjusted sum)

(A)+(Y+l,Y) ~ A

Add to (A) the double-length (36-bit) number contained in

storage cells y + B + l,y + B, leaving the result in A. Set

OVERFLO'W designator if overflow occurs. * The least sig­

nificant half is in cell y + B, and the most significant half is

in cell y + B + 1. The sign of the double-length number is the

sign of (y+B+ 1). Address y+B must be even. (See "Note"

of instructions 20.)

22 SUBTRACT A (SUBA) (A) - (Y+l,Y) ~ A

Execution time: 6 microseconds

y = Up orUSR

Subtract from (A) the double-length (36-bit) number con­

tained in storage cells y+ l,y, and leave the difference in A.

Set OVERFLOW designator if overflow occurs. * The least

significant half is in cell y and the most significant half is in

cell y + 1. The sign of the double-length number is the sign

(y+ 1). Address y must be even. The computer executes SUB­

TRACT A in a manner analogous to the ADD A instruction.

(See "Note" of instruction 20.)

*The OVERFLOW designator is cleared only by the execution of in­
struction SKIP ON OVERFLOW (f, m = 50, 52) or instruction
SKIP ON NO OVERFLOW (f, m = 50, 53).

35

23 SUBTRACT A (SUBAB) A - (Y + I,Y) ~ A

Execution time: 6 microseconds

y=uporuSR

Subtract from (A) the double-length number contained in

storage cells y + B + 1 ,y + B, and leave the difference in A.

Set OVERFLOW designator if overflow occurs. * The least

significant half is in cell y + B, and the most significant half is
in cell y+B+ 1. The sign of the double length number is the

sign of (y + B + 1). Address y + B must be even. The com­

puter executes SUBTRACT A in a manner analogous to the

ADD A instruction. (See "Note" of instruction 20.)

24 MULTIPLY AL (MULAL) (AL) (Y) ~ A

Execution time: 14 microseconds

y= Up orUSR

Multiply (AL) by (y) leaving the double length product in A.

If the factors are considered integers, the product is an integer

in A. The Multiplication process is executed on the absolute

values of the factors, then corrected for algebraic sign.

25 MUL TIPL Y AL (MULALB) (AL) (Y)~A

Execution time: 14 microseconds

y = Up or USR

Multiply (AL) by (y+B) leaving the double length product

in A. If the factors are considered integers, the product is an

integer in A. The multiplication process is executed on the

absolute value of the factor, then correced for algebraic sign.

*The OVERFLOW designator is cleared only by the execution of in­
struction SKIP ON OVERFLOW (f m = 50 52) or instruction SKIP
ON NO OVERFLOW (f m = 50 53).

36

26 DIVIDE A (DIVA) (A) --;- (Y) ~ AL ; REMAINDER ~ AU

Execution time: 14 microseconds

y=uporuSR

Divide (A) by (y) leaving the quotient in AL and the re­

mainder in AU. The remainder always bears the sign of the

dividend "At with the results satisfying the relationship:

dividend = quotient X divisor + remainder. Set overflow

designator if overflow occurs. * If overflow occurs, (AL) be­

comesO.

Examples of the four possible sign combinations of the divi-

dendl divisor and the results:

Dividend Divisor Quotient Remainder

+5 +4 +1 +1

+5 -4 -1 +1
-5 +4 -1 -1

-5 -4 +1 -1

27 DIVID'E A (DIV AB) (A) -: (Y) ~ AL; Rem ~ AU

Execution time: 14 microseconds

y=uporUSR

Divide (A) by (y+B) leaving the quotient in AL and the

remainder in AU. The remainder bears the sign of the divi­

dend "At. (See instruction 26.)

30 INDIRECT RETURN JUMP (IRJP)

(P)+1 ~ (Y); (Y)+1 ~P

Execution time: 6 microseconds

*The OVERFLOW designator is cleared only by the execution of in­
struction SKIP ON OVERFLOW (f, m = 50 52) or instruction SKIP
ON NO OVERFLOW (f, m = 50, 53).

37

I

Instruction executed from running program:

y=up

Store (P) + 1 at the address given in the low order 15 bits of

(y), then increment that address by one and enter into the

Program Address register.

Instruction executed from Entrance register on interrupt:

y=u

Store (P) at the address which is the low order 15 bits of (y),

then increment that address by one (1) and enter into the

Program Address register.

Example of an indirect return jump executed from address

22000:

Initial Final

Address Contents Contents Explanation

22000 30 6500 Same Execute subroutine from

main program

26500 71 7420 Same Constant defining

location of desired

subroutine

17420 37 2164 02 2001 Subroutine exit address

17421 Same Subroutine entrance

address (control is

transferred here from

indirect return jump)

The effect of the above sequence upon execution of the in­

direct return jump at address 22000 is to transfer control to

the subroutine starting at 17421, but at the same time, letting

the subroutine "know" where to return control.

38

31 INDIRECT RETURN JUMP (IRJPB)

(P)+1 ~ (Y); (Y)+1 ~ P

Execution time: 6 microseconds

Instructions executed from running program:

y=up

Store (P)+ 1 at the address given in the low order bits of

(y+B), then increment that address by one and enter it into

the Program Address register.

Instruction executed from Entrance register on interrupt:

y=u

Store (P) at the address which is the low order 16 bits of

(y+B), then increment that address by one and enter it into

the Program Address register.

32 ENTER B (ENTB) (Y) ~ B

Execution time: 4 microseconds

y= Up orUSR

Transmit (y) to BICR

The full 18 bits of (y) are transmitted to the B-register (a

normally addressable core cell).

33 ENTER B (ENTBB) (Y) ~ B

Execution time: 4 microseconds

y=uporUSR

Transmit (y+B) to BICR

The full 18 bits of (y+B) are transmitted to the B-register (a

normally addressable core cell).

34 DIRECT JUMP (JP) Y ~ P ; NI = (Y)

Execution time: 2 microseconds

y=up

Unconditionally jump to y. (Reset P = y)

39

35 DIRECT JUMP (JPB) Y ~ P ; NI = (Y)

Execution time: 2 microseconds

y=Up

Unconditionally jump to y + B.

NOTE: Because B is an 18-bit one's complement
number, care must be taken when using this
instruction; in addition, it is possible that
address, y+B, may not be relative to the
same core bank from which the (35) DI­
RECT JUMP was executed. Consider a di­
rect jump with y=03560 and B=010000;
in this case y+B = 03560+010000=
13560.

36 ENTER B WITH CONSTANT (ENTBK)

Execution time: 2 microseconds

y = u (sign extended to 18 bits)

Clear B. Then transmit y to B.

NOTE: u is a 12-bit one's complement number
contained within the instruction; it does not
refer to an address. Example of ENTER B
with constant when u = 7701:

Bi = any value
Be = 777701

xY~B

37 MODIFY B WITH CONSTANT (ENTBKB) Bi+xY ~ B

Execution time: 2 microseconds

y = u (sign extended to 18 bits)

Add y to B (add a constant to B).

The effect of this instruction is to increment B. Note that u

is a 12-bit one's complement number contained within the

instruction and can be used to increment or decrement B.

40

40 CLEAR Y (STORE ZERO) (CL) O~Y

Execution time: 4 microseconds

y=uporUSR

Store an 18-bit word of zeros at storage address y.

41 CLEAR Y (STORE ZERO) (CLB) O~Y

Execution time: 4 microseconds

y= UporUSR

Store an 18-bit word of zeros at storage address y+B.

42

43

44

45

STORE B (STRB)

Execution time: 4 microseconds

y=uporuSR

Store B at storage address y.

STORE B (STRBB)

Execution time: 4 microseconds

y= UporUSR

Store B at storage address y+B.

STORE AL (STRAL)

Execution time: 4 microseconds

Y= UporUSR

Store (AL) at storage address y.

CAL)f = (AL),

STORE AL (STRALB)

Execution time: 4 microseconds

y = Up or USR

Store (AL) at storage address y+B.

(AL)f = (AL)i

41

(AL) ~ Y

(AL) ~ y

46 STORE AU (STRAU) (AU) ~ y

Execution time: 4 microseconds

y= Up orUSR

Store (AU) at storage address y.

(AU)f = (AU)1

47 STORE AU (STRAUB)

Execution time: 4 microseconds

y= UporUSR

Store (AU) at storage address y+B.

(AU)f = (AU)i

(AU)~Y

50 See Type III instructions immediately following function code

77.

51 SELECTIVE SET (SLSET) (AL) v (Y) ~ AL

or SET (AL)n for (Y)n = 1

4 microseconds Execution time:

y=up

Set the individual bits of (AL) to one corresponding to ones in

(y), leaving the remaining bits of (AL) unaltered. This is a

bit-by-bit inclusive OR.

Example of selective set:

(AL)i = 123456

(y) = 000077

(AL)f = 123477

52 SELECTIVE CLEAR (SLCL) L(AL) (Y) ~ AL

Execution time:

y=up

or CLEAR (AL)n for (Y)n = 0

4 microseconds

Clear the individual bits of (AL) corresponding to zeros in

42

(y), leaving the remaining bits of (AL) unaltered. The effect

of this instruction is to compute the bit-by-bit (or logical)

product of (AL) and (y), leaving the result in AL.

Example of selective clear:

(AL)i = 123456

(y) = 707070

(AL)f = 103050

53 SELECTIVE COMPLEMENT (SLCP)

Execution time:

y=Up

L(AL) , (Y)+L(AL) (Y)' ~ AL

or COMPLEMENT (AL)n for (Y)n = 1

4 microseconds

Complement the individual bits of (AL) corresponding to

ones in (y), leaving the remaining bits of (AL) unaltered; i.e.,

complement (AL)n for (y)n = 1. This is a bit-by-bit exclusive

OR.

Example of selective complement instruction:

(AL)i = 123456

(y) = 070007

(AL)f = 153451

54 INDIRECT JUMP AND REMOVE INTERRUPT LOCK-

OUT (IJPEI) (Y) ~ P and RIL

Execution time: 4 microseconds

y = Up Address = (y)15-0

Remove interrupt lockout (enable interrupts). Then jump to

the address which is the low order 16 bits of (y). An appli­

cation of this instruction is the termination of a subroutine

activated by an interrupt.

43

55 INDIRECT JUMP (IJP) Y~P

Execution time: 4 microseconds

y = Up Address = (y)15-O

Jump to the address which is the low order 16 bits of (y).

56 B SKIP (BSK)

If B = (Y), SKIP NI

If B =/= (Y), Advance B by 1 and Execute NI

Execution time: 4 microseconds

y=Up

Test Band (y) for equality. Skip instruction if equal; other­

wise, increment B by 1 and read the next instruction.

57 INDEX SKIP (ISK)

If (Y) = 0, SKIP NI

If (Y) =/= 0, Decrement (Y) by 1 and Execute NI

If (y)i = 777777, then

(y)f = 777776 and there is no skip.

Execution time: 6 microseconds

y=Up

If (y) =/= 0, substract one from (y) leaving the result in y, and

take the next instruction; otherwise skip the next instruction

leaving (y) unaltered.

60 JUMP AU ZERO (JPAUZ)

If (AU) = 0, EB (AL) = M, EB L(AL) (AU) = M, Y ~ P

Execution time: 2 microseconds

y=Up

JUMP to y, i.e., Reset P = y, if:

"COMP ARE" stage of the comparison designator is NOT
SET and (AU) = 0 (Negative ZERO acts as NOT
ZERO); or

44

"COMPARE" stage of the comparison designator is SET
and the "EQUALS" stage of the comparison designator is
SET.

Otherwise, execute'next instruction.

NOTE: Refer to paragraph, Conditional Jump Features,

following.

61 JUMP ALZERO (JPALZ)

(JPEQ)

If (AL) = 0, ffi

If (AL) = M ffi L(AL) (AU) = M, Y ~ P

Execution time: 2 microseconds

y=Up

JUMP to y, i.e., Reset P = Y if:

"COMP ARE" stage of the comparison designator is NOT

SET and (AL) = O. (Negative ZERO acts as NOT ZE­

RO.) "COMPARE" stage of the comparison designator is

SET, and the "EQUALS" stages of the comparison desig­

nator is SET.

Otherwise, execute next instruction.

NOTE: Refer to paragraph, C'Onditional Jump Features,

following.

62 JUMP AU NOT ZERO (JP AUNZ)

If (AU) =F 0 ffi

If (AL) =F M ffi L(AL) (AU) =F M, Y ~ P

Execution time: 2 microseconds

y=Up

JUMP to y, i.e., Reset P = y, if:

"CO'MP ARE" stage of comparison designator is NOT SET

and (AU) =F 0; or

"COMP ARE" stage of comparison designator is SET, and

45

the "EQUALS" stage of the comparison designator is NOT

SET.

Otherwise, execute next instruction.

NOTE: Refer to paragraph, Conditional Jump Features,

following.

63 JUMP AL NOT ZERO (JP ALNZ)

If (AL) ¥= 0

E9 If (AL)¥= M E9 L(AL) (AU) ¥= M, Y ~ P

Execution time: 2 microseconds

y=Up

JUMP to y, i.e., Reset P = y, if:

"COMPARE" stage of comparison designator is NOT SET

and (AL) ¥= 0; or

"COMPARE" stage of comparison designator is SET, and

the "EQUALS" stage of the comparison designator is NOT

SET.

Otherwise, execute next instruction.

NOTE: Refer to paragraph, Conditional Jump Features,

following.

64 JUMP AU POSITIVE (JP AUP)

If (AU) POS, E9

If (AL) ~ M E9 L(AL) (AU) L. M, Y ~ P

Execution time: 2 microseconds

y=Up

JUMP to y, i.e., Reset P = y, if:

"COMP ARE" stage of comparison designator is NOT SET

and (AU) ~ 0; or

46

"CaMP ARE" stage of comparison designator is SET, and

the "LESS THAN" stage of comparison is NOT SET.

Otherwise, execute next instruction.

NOTE: Refer to paragraph, Conditional Jump Features,

following.

65 JUMP AL POSITIVE

(JP ALP) If (AL) pas,

(JPMLEQ) ffi If (AL) ~ M ffi L(AL) (AU) ~ M, Y ~ P

Execution time: 2 microseconds

y: Up

Jump to y. i.e., Reset P = y, if:

"CaMP ARE" stage if comparison designator is NOT SET

and (AL) ~ 0; or

"CaMP ARE" stage of comparison designator is SET and

the "LESS THAN" stage of comparison designator is NOT

SET.

Otherwise, execute next instruction.

NOTE: Refer to paragraph, Conditional Jump Features,

following.

66 JUMP AU NEGATIVE (JPAUNG)

If (AU) NEG,

ffi If (AL) < M ffi L(AL) (AU) < M, Y ~ P

Execution time: 2 microseconds

y=Up

JUMP to y, i.e., Reset P = y, if:

"CaMP ARE" stage of comparison designator is NOT SET

and (AU) < 0; or

"COMPARE" stage of comparison designator is SET, and

the "LESS THAN" stage of comparison designator is SET,

47

Otherwise, execute next instruction.

NOTE: Refer to paragraph, Conditional Jump Features,

following.

67 JUMPALNEGATIVE

(JPALNG) If (AL) NEG,

(JPMGR) E9 If (AL) < M E9 L(AL) (AU) < M, Y ~ P

Execution time: 2 microseconds

y=Up

JUMP to y. i.e., Reset P = y, if:

"COMP ARE" stage of comparison designator is NOT SET

and (AL) < 0; or

"COMPARE" stage of comparison designator is SET, and

the "LESS THAN" stage of comparison designator is SET.

Otherwise, execute next instruction.

NOTE: Refer to paragraph, Conditional Jump Features,

following.

70 ENTER AL WITH CONSTANT (ENTALK) xY~AL

Execution time: 2 microseconds

y = u (with sign extended to I8-bits).

Clear AL. Then transmit y to AL.

Example of enter AL with constant when u = 0001

(AL)1 = any value

(AL)f = 000001 (+ 1)

Example of enter AL with constant when u = 7776

(AL)i = any value

(AL)f = 777776 (-1)

NOTE: u is a I2-bit one's complement number contained

within the instruction; it does not refer to an ad­

dress.

48

71 ADD CONSTANT TO AL (ADDALK) (AL) + xY~AL
Execution time: 2 microseconds

y = u (sign extended to 18-bits)

Add y to (AL) and leave the result in AL. The effect of this

instruction is to increment/decrement (AL) with a constant

contained with the instruction.

Example of add constant to AL when u = 0002 (+2)

(AL)! = 057777

(AL)f = 060001 (incremented)

Example of add constant to AL when u = 7775 (-2)

(AL)1 = 067055

(AL)f = 067053 (decremented)

72 STORE INDEX CONTROL REGISTER (STRICR)

(ICR) ~ Ys-o

Execution time: 4 microseconds

y=Up

Replace the least significant 6-bits of the (y) with a 6-bit

value equal to the memory address of the· Index Register de­

fined by ICR. As this instruction effects a 6-bit partial trans­

fer, the upper 12-bits of (y) remain unchanged.

NOTE: ICR = 0, produces memory address 10. ICR = 1

through 7, r memory addresses 01 through 07 respec­

tively.

.73 B JUMP (BJP)

Execution time:

y=Up

If B =F 0, B-1 ~ Band Y ~ P

If B = 0, Execute NI

2 microseconds

If B =F 0, subtract one from B then jump to y; otherwise the

next instruction leaving B unaltered. (Neg Zero =F 0.)

49

NOTE: As B is a one's complement number and can take

values less than zero, the B JUMP will be effective

only for program loops where B is initially positive.

74 STORE ADDRESS (STRADR)

Execution time: 4 microseconds

Y=Up

Replace the low order 12-bits of (y) with the low order 12.-bits

of CAL). As this instruction effects a partial transfer, the

higher order six-bits of (y) remain undisturbed.

(AL)f = (AL)1

Example of a store address instruction:

CAL)l = 762504

(Y)l = 567777

(Y)f = 562504

75 STORE SPECIAL REGISTER (STRSR)

Execution time: 4 microseconds

Y=Up

Replace the low order six bits of (y) with a 6-bit value of

which the low order 5-bits are equal to the contents of the

Special register with the remaining bit equal to zero; store

the result at y, then clear the Special register. As this instruc­

tion effects a 6-bit partial transfer, the upper 12-bits of (y)

remain undisturbed.

NOTE: This instruction deactivates the Special register.

76 DIRECT RETURN JUMP (RJP) (P) + 1 ~ Y;Y + 1~ P

Execution time: 4 microseconds

y=up

Store (P) + 1 at y, then jump to y + 1. This instruction trans-

50

fers to y a full 18-bit word, the lower IS-bits being the

address (P) + 1 with the upper three bits set to zero.

When this instruction is executed from an Interrupt En­

trance Register by an Interrupt, store (P). Do not initiate the

"(P) + 1 sequence".

77 ILLEGAL CODE 2 microseconds JUMP TO FAULT EN­

TRANCE REGISTER

Format II Instructions
The following are Format II, Type 3 instructions and require a com­

bination of a 50-function code and a subfunction code that deter­

mines the operation to be performed. The 50-function code is detected

when read from memory and causes 1 -7 F6 and ZU-6 -7 Fs-o for execu­

tion. The computer maintains its regular timing sequence.

50 00 ILLEGAL C'ODE 2 microseconds

50 01 SET INPUT ACTIVE (SIN)

Execution time: 2 microseconds

Set input channel k to the active state. The buffer con­

trol words stored in memory locations 60 + 2k and 61

+ 2k or as specified by the Externally Specified Index or

Externally Specified Address will control the transfers.

50 02 SET O,UTPUT ACTIVE (SOUT)

Execution time: 2 microseconds

Set output channel k to the active state. The buffer con­

trol words stored in memory locations 40 + 2k and

41 + 2k or as specified by the ESI or ESA will control

the transfers.

51

50 03 SET EXTERNAL FUNCTION ACTIVE (SEXF)

Execution time: 2 microseconds

50 04

50 05

50 06

50 07

50 10

50 11

Set channel k external function mode active. The buf­

fer control words stored in memory locations 40 + 2k

and 41 + 2k will control the transfers.

Not Used

Not Used

Not Used

Not Used

Not Used

INPUT TRANSFER (IN) (P+l)~60+2k

Execution time: 6 microseconds (P+2) ~ 61 +2k

SET INPUT ACTIVE ON CHAN. k

Initiate Input Transfer on channel k.

Transfer buffer limit address words (for input buffer)

from the following two instruction locations to the In­

put Buffer Control registers for the designated channel.

Other I/O channel and processor activity proceeds nor­

mally.

50 12 OUTPUT TRANSFER (OUT) (P+ 1) ~ 40+2k

Execution time: 20 microseconds (P + 2) ~ 41 + 2k

SET OUTPUT ACTIVE ON CHAN. k

Initiate Output Transfer on channel k.

Transfer buffer limit address words (for output buffer)

from the following two instruction locations to the Out­

put Buffer Control registers for the designated channel.

52

Other I/O channel and processor activity proceeds nor-

mally.

50 13 EXTERNAL FUNCTION (EXF) (P+ 1) ~ 40+2k

Execution time: 20 microseconds (P+2)~41+2k

SET EXTERNAL FUNCTION ON CHAN. k

Initiate External Function Mode on channel k.

Transfer buffer limit addresses (for the function buffer)

from the following two instruction locations to the out-

put Buffer Control registers for the designated channel.

50 14 ENABLE REAL TIME CLOCK MONITOR (RTC)

Execution time: 2 microseconds

Enable the Real Time Clock Monitor Interrupt. Ignore

k. After execution of this instruction, equality between

the RTC register (location 15) and the RTC Monitor

Word register (location 14) will interrupt the computer

program. The next instruction is taken from the RTC

Monitor Interrupt Entrance register (location 12) and

the RTC Monitor is disabled.

50 15 TERMINATE INPUT (INSTP)

CLEAR INPUT ACTIVE CHAN. k

Execution time: 2 microseconds

Terminate Input on channel k.

No Monitor interrupt will occur as a result of the execu-

tion of this instruction.

50 16 TERMINATE OUTPUT (OUTSTP)

CLEAR OUTPUT ACTIVE CHAN. k

Execution time: 2 microseconds

53

Terminate Output Or External Function Mode on chan­

nel k.

No Monitor interrupt will occur as a result of the execu­

tion of this instruction.

50 17 TERMINATE EXTERNAL FUNCTION (EXFSTP)

CLEAR EXTERNAL FUNCTION ACTIVE CHAN. k

Execution time: 2 microseconds

Terminate External Function Mode or Output on chan­

nelk.

No Monitor interrupt will occur as a result of the ex­

ecution of this instruction.

50 20 SET RESUME (SRSM)

Execution time: 2 microseconds

Set the "RESUME" designator for channel k group to

permit honoring the next requesting output function on

that group. Loss of any information currently held by

the output register(s) for a peripheral device is allowed

by this instruction.

50 21 SKIP ON INPUT INACTIVE (SKPIIN)

Execution time: 2 microseconds skip or no skip

Test for input activity on channel k. If inactive, skip the

next instruction; otherwise, take the next instruction.

50 22 SKIP ON OUTPUT INACTIVE (SKPOIN)

Execution time: 2 microseconds skip or no skip

Test for output activity on channel k. If inactive, skip

the next instruction; otherwise, take the next instruc­

tion.

54

50 23 SKIP ON EXTERNAL FUNCTION INACTIVE

(SKPFIN)

Execution time: 2 microseconds skip or no skip

Test for External Function activity on channel k. If

inactive, skip the next instruction; otherwise, take the

next instruction.

50 24 WAIT FO'R INTERRUPT (WTFI)

or

50 25 Execution time: 2 microseconds

Stop the computer until any interrupt occurs and al­

low I/O to continue; ignore k, then execute the instruc­

tion located in the Interrupt Entrance register designat­

ed by the interrupt.

JO 26 OUTPUT OVERRID'E (OUTOV)

Execution time: 2 microseconds

Wait for the output device to accept the word in the C­

register(s). Then simulate an Output Request on chan­

nel k and transfer the word designated by the address

in the Output Buffer Control register for that channel.

Ignore the ESI Mode if active. This instruction will

transfer a word whether the buffer is active or not. The

transfer takes place under control of the word in the

Buffer Control register.

50 27 EXTERNAL FUNCTION O'VERRIDE (EXFOV)

Execution time: 2 microseconds

Wait for the output device to accept the word in the C­

register (s). Then simulate an External Function Re­

quest on channel k and transfer the word designated by

55

the address in the External function Buffer Control

Register for that channel. Ignore the ESI Mode if ac­

tive. This instruction will transfer a word whether the

buffer is active or not. The transfer takes place under

control of the word in the Buffer Control register.

50 30 REMO·VE INTERRUPT LOCKOUT (RIL)

or

50 31 Execution time: 2 microseconds

Remove the interrupt lockout; enable all external and

monitor interrupts, all channels. Ignore k.

50 32 REMO'VE EXTERNAL INTERRUPT LOCKO'UT

or (RXL)

50 33 Execution time: 2 microseconds

Enable external interrupts, all channels. Ignore k.

50 34 SET INTERRUPT LOCKOUT (SIL)

or

50 35 Execution time: 2 microseconds

Set the interrupt lockout; disable all external and moni­

tor interrupts, all channels. Ignore k.

50 36 SET EXTERNAL INTERRUPT LOCKOUT (SXL)

or

50 37 Execution time: 2 microseconds

Disable external interrupts, all channels. Ignore k.

50 40 Not Used

50 41 RIGHT SHIFT AU (RSHAU)

Execution time: 2 microseconds (k=O); 4 to 10 micro­

seconds (k=.FO)

Shift (AU) to the right k-bit positions. The higher order

56

bits are replaced with the original sign bit, AU17, as

the value is shifted. This is an end-off shift (i.e., the low

order bits are "lost" completion of the shift).

Example of right shift AU with k=2

(AU)! (positive) =370000

after first shift 174000

after second shift 076000

(AU)i (negative) =400000

after first shift 600000

after second shift 700000

50 42 RIGHT SHIFT AL (RSHAL)

Execution time: 2 microseconds (k=O). 4 to 10 micro­

seconds (k~O)

Shift (AL) to the right k-bit positions. The higher order

bits are replaced with the original sign bit, AL17, as

the value is shifted. this is an end-off shift (i.e., the low

order bits are "lost" upon completion of the shift).

50 43 RIGHT SHIFT A (RSHA)

Execution time: 2 microseconds (k=O); 4 to 20 mic­

croseconds (k~O)

Shift (A) to the right k-bit positions. The higher order

bits are replaced with the original sign bit, Ass, as the

value is shifted. This is an end-off shift (i.e., the low

order bits are "lost" upon completion of the shift).

Example of right shift A with k=2:

(A)i (positive) =370000000000

after first shift

after second shift

57

174000 000000

076000 000000

(A)i (negative) =400000 000000

after first shift 600000000000

after second shift 700000 000000

50 44 SCALE FACTOR (SF)

Execution time: 4.0 microseconds (k=O); 4 to 20 (k~

0)

Shift (A) circularly to the left until either A3S=A34

or k minus shift count=O; then store the positive quanti­

ty k minus shift count at memory address 00017. The

effect of the instruction is to "normalize" (A) to the

left subject to k. SCALE F ACTO'R is extremely useful

when working with numerical values in floating point

notation.

(a) Example of scale factor with k=7:

(A)i=170000 000000 (positive, not normalized)

after first shift 360000 000000 (positive, normal­

ized)

The computer, sensing (A) now normalized, stor­

es k-shift count (7-1)=the 18-bit quantity "000006

~ 00017.

(b) Example of scale factor with k=3:

(A)i=600000 000000 (negative, not normalized)

after first shift 400000 000000 (negative, nor­

malized)

The computer then stores the quantity "000002"

~ 00017.

(c) Example of scale factor with k= 1 :

(A)i=070000 000000 (positive, nor normalized)

58

after first shift 160000 000000 (positive, nor nor­

malized)

The computer, having exhausted k, stores the quan­

tity "000000" ~OOO 17 leaving (A) only partially

normalized.

50 45 LEFT SHIFT AU (LSHAU)

Execution time: 2 microseconds (k=O); 4 to 10 micro­

seconds (k#O)

Shift (AU) circularly to the left k-bit positions. The low­

er order bits are replaced with the higher order bits as

the word is shifted.

Example of left shift AU with k=2:

(AU)i =300000

after first shift

after second shift

600000

400001

No bits are "lost" with the execution of left shift in­

structions.

50 46 LEFT SHIFT AL (LSHAL)

Execution time: 2 microseconds (k=O); 4 to 10 micro­

seconds (k#O)

Shift (AL) circularly to the left k-bit positions. The low

er order bits are replaced with the higher order bits

as the word is shifted. No bits are "lost" with the execu­

tion of left shift instructions.

50 47 LEFT SHIFT A (LSHA)

Execution time: 2 microseconds (k=O); 4 to 10 micro­

seconds (k#O)

Shift (A) circularly to the left k-bit positions. The low-

59

er order bits are replaced with the higher order bits as

the word is shifted. No bits are "lost" with the execution

of left shift instructions.

Example of left shift A with k=2:

(A)i =300000 000000

after first shift

after second s·hift

600000 000000

400000000001

50 50 SKIP ON KEY SETTING (SKP)

Execution time: 2 microseconds skip or no skip

If bit 4, 3, 2, 1, or 0 of k is one and the corresponding

SKIP KEY 4, 3, 2, 1, or 0 is set ... or .. if bit 5 of k is a

one (unconditional skip) ... skip the next instruction.

otherwise take the next instruction.

Examples of skip with:

k=01 (bit 0) skip if skip key 0 is set

k=02 (bit 1) skip if skip key 1 is set

k=04 (bit 2) skip if skip key 2 is set

k= 10 (bit 3) skip if skip key 3 is set

k=20 (bit 4) skip if skip key 4 is set

k=40 (bit 5) skip unconditionally

k=03 (bits 1, 0) skip if either key 1 or 0 is set

50 51 SKIP ON NO' BORRO'W (SKPNBO)

Execution time: 2 microseconds skip or no skip

If the last previous ADD A or SUBTRACT A re­

quired a borrow, take next instruction; otherwise, skip

the next instruction. Ignore k. The skip occurs if no cor­

rection to (A) is needed. This allows a correcting in­

struction to be inserted to save program steps. The cor-

60

recting instruction will be "SUBTRACT A" where (Y +
1, Y)=OOOOOOOOOOOl.

50 52 SKIP ON OVERFLOW (SKPOV)

Execution time: 2 microseconds skip or no skip

If an overflow condition occurred on a previous arith­

metic instruction, skip the next instruction; otherwise,

take the next instruction. Ignore k and clear the OVER­

FLOW designator.

50 53 SKIP O'N NO OVERFLOW (SKPNOV)

Execution time: 2 microseconds skip or no skip

If an overflow condition did not occur on a previous

arithmetic instruction, skip the next instruction; other­

wise, take the next instruction. Ignore k and clear the

O'VERFLO,W designator.

50 54 SKIP ON ODI) PARITY (SKPO'DD)

Execution time: 2 microseconds skip or no skip

If the sum of the bits resulting from the bit-by-bit pro­

duct of (AL) and (AU) is odd, skip the next instruc­

tion; otherwise, take the next instruction. Ignore k.

(AU)c=(AU)i; (AL)c=(AL)l

Example of skip odd parity:

(AU) 000077 mask

(AL) 127723

bit-by-bit product =000023

bit sum

Since the bit sum is odd, the next instruction is skipped.

50 55 SKIP ON EVEN PARITY (SKPEVN)

Execution time: 2 microseconds skip or no skip

61

If the sum of the bits resulting from the bit-by-bit pro­

duct of (AL) and (AU) is even, skip the next instruc­

tion; otherwise, take the next instruction. Ignore k.

(AL)f=(AL)l; (AU)f=(AU)l

50 56 STOP ON KEY SETTING (STOP)

Execution time: 2 microseconds

If bit 4, 3, 2, 1,or 0' of k is one and the corresponding

consol STOP KEY 4, 3, 2, 1, or 0 is SET ... or ... if

bit 5 of k is a one (unconditional stop) ... stop the com­
puter; otherwise, take the next instruction.

Examples of stop with:

k=01 (bit 0)

k=02 (bit 1)

k=04 (bit 2)

k=10 (bit 3)

k=20 (bit 4)

stop if stop key 0 is set

stop if stop key 1 is set

stop if stop key 2 is set

stop is stop key 3 is set

stop if stop key 4 is set

k=40 (bit 5) stop unconditionally

k=03 (bits 1,0) stop if either stop key 1 or 0' is set

50 57 SKIP ON NO RESUME (SKPNR)

Execution time: 2 microseconds skip or no skip

If the "RESUME" designator on channel k is not SET

(indicating unsuccessful transfer of a word to an output

device), skip the next sequential instruction; otherwise,

take the next instruction.

50 60 ROUND AU (RND) If (AU) pos., (AU)+AL17~AL

If (AU) neg., (AU)-AL17~AL

Execution time: 2 microseconds

If (AU) are positive, add bit position 17 of AL to (AU);

62

if (AU) are negative subtract the complement of bit

position 17 of AL from AU and leave the resultant

rounded (AU) in AL. Ignore k. (AU)i=(AU)f. An ap­

plication of this instruction would be: a double length

value in A is normalized as far as possible to the left;

however, only a rounded single length number is re­

quired for the accuracy desired.

50 61 COMPLEMENT AL (CPAL)

Execution time: 2 microseconds

(AL)'~AL

Complement (AL), leaving the result in AL. Ignore k.

NO,TE: This instruction effects a bit-by-bit comple­

ment with the following exception: all "zeros"

(positive zero) will remain all "zeros".

50 62 COMPLEMENT AU (CP AU)

Execution time: 2 miscroseconds

(AU)'~AU

Complement (AU), leaving the result in AU. Ignore k.

(See Note: Instruction 50 61.)

50 63 COMPLEMENT A (CPA)

Execution time: 2 microseconds

(A)'~ A

Complement (A) leaving the result in A. Ignore k.

(See Note: Instruction 50 61.)

50 64 Not Used

50 65 Not Used

50 66 Not Used

50 67 Not Used

63

50 70 Not Used

50 71 Not Used

50 72 ENTER INDEX CONTROL REGISTER (ENTICR)

k2-O~ ICR
Execution time: 2 microseconds

Clear the Index Control register. Then transmit the

three low order bits of k to the ICR.

50 73 ENTER SPECIAL REGISTER (ENTSR) 40~ SR

Execution time: 2 microseconds

Clear the Special register. Then transmit the five low

order bits of k to the SR. (SRa=1 activates the SR.)

50 74 Not Used

50 75 Not Used

50 76 Not Used

50 77 ILLEGAL CODE-2 microseconds

Conditional Jump Features

The Arithmetic Conditional Jump instructions may be used with as­

sociated Compare instructions to obtain certain results according to

the state of the Comparison Designator or may be used independently

for other results.

The Comparison Designator is a 3-state bi-stable register which re­

cords the results of a COMPARE instruction (02, 03, 06 and 07) as

follows:

64

• The "COMPARE" stage is SET upon the computer's execu­
tion of anyone of the COMPARE instructions;

• The "LESS THAN" stage is SET if a COMPARE instruc­
tion finds (AL) less than the contents of an addressed mem­
ory location, Or L(AL) (AU) less than the logical product
of (AU) and the contents of the addressed memory location
(whichever applies);

• The "EQUALS" stage is SET if a Compare instruction finds
(AL) equal to the contents of an addressed memory location
or finds the logical product of (AL) and (AU) equal to the
logical product of (AU) and the contents of the addressed
memory location (whichever applies).

The Comparison D'esignator is cleared by the execution of any instruc­

tion other than the Arithmetic C'onditional Jump instructions (codes

60-67). Therefore, in order to set the compare stages desired, a Com­

pare instruction must immediately precede a single 60-67 instruction,

or immediately precede the first of a consecutive string of 60'-67 in­

structions. Otherwise, these jump instructions are executed without ref­

erence to the Comparison Designator.

The Arithmetic Conditional Jump instructions 60-67 are used with or

without an associated Compare instruction (02, 03, 06 and 07). If

used without a preceding Compare instruction, the JUMP is executed

upon satisfying the condition directly stated by the instruction. If a

Compare instruction is used in conjunction with one Or more Condi­

tional Jump instructions, the satisfaction of a Jump condition is de­

pendent on the SET or NOT SET state of certain stages of the Com­

parison Designator.

Table 1 shows the Jump or No Jump conditions resulting from the

combined and separate uses of the Compare and Arithmetic Condi­

tional Jump instructions. The Compare instructions use the follow­

ing operands for comparison with (AL): (y) for 02; (y+B) for 03; for

65

comparison with L(AL) (AU): L(y) (AU) for 06; and L(y+B) (AU)

for 07.

Therefore, "M" in the table will represent (y), (y+B), L(y) (AU), or

L(y+B) (AU) whichever applies. The NO JP condition will cause

the computer to execute the next sequential instruction. (AL) always

will be masked by (AU) by instruction 06 or 07; i.e., selected bits of

(AL) will be compared with the corresponding bits of (y) or (y+B).

66

TABLE 1. JUMP OR NO JUMP CONDITIONS

(AL) 'is masked by (AU) if instructions "06" or "07" were used.

JUMP COMPARE COMPARE DESIGNATOR SET RESULTS

INSTR DESIGNATOR EQUALS STAGE I LESS THAN STAGE IFA

CODE NOT SET SET I NOT SET I NOT SET
1

SET JUMP OCCURS

60 JPif(AU) =0 JP if (AL) = M NoJP * * CAU) = Oor (AL) =M

61 IPif(AL)=0 JP if (AL) = M NoJP * * (AL)=OorM

62 IP if (AU) ¥= 0 NoJP JP if (AL) ¥= M * * (AU) ¥= 0 or (AL) =F M

63 JP if CAL) ¥= 0 NoJP JP if (AL) ¥= M * * (AL)¥=OorM

64 JP if (AU) ~ 0 * * JP if (AL) ~M NoIP (AU) POS. or (AL) ~ M

65 JPif (AL) ~O * * JPif(AL)~M NoIP (AL) POS. or (AL) ~ M

66 IPif (AU) < 0 * * NoIP IPif(AL)<M (AU) NEG. or (AL) < M

67 JPif (AL) < 0 * * NoIP IPif(AL)<M (AL) NEG. or (AL) < M

*Does not apply, and the next sequential instruction is executed.

Examples in the uses Df Compare and Arithmetic Conditional Jump

instructions

Problem statement:

Test for a positive value in AL which wDuld be less than M (as

defined fDr the Table). If found, jump to "LETS".

AlgDrithm: 0 L. (AL) < M

P = 3XXXX ; y = Up for function codes 60-67

(a). The fDllowing routine results in a Jump if condition is true.

Address Instruction

31000 Some Arithmetic instruction
65 4562 Test for (AL) ~ 0 Jump to'

34562 Df (AL) is positive.

34562 02 7000 SET "COMPARE" stage, also SET
"LESS THAN" stage if (AL) <
(37000)

67 7500 JP to 37500 of "LESS THAN" stage
is set.

(b). The follDwing rDutine results in sequential execution of instruc­

tion if condition is true.
Address Instruction

32000 Some Arithmetic Instruction
67 5000 Jump if (AL) is negative
02 7000 SET "LESS THAN" stage if (AL) <

(37000)
65 5000 Jump if "LESS THAN" stage is NOT

SET. IF SET-execute next instruc­
tiDn

Next Instruction.

(c). The following routine shows the use of more than Dne consecu­

tive arithmetic conditonal jump instruction fDllowing a Compare

instructiDn. The routine also requires a mask in AU.

68

Equals?
Less Than?

Greater Than?

INSTR
Address f

33000 60

06

60

67

65

Jump to

NO TEST
1--------..

i = 1,2,3.

y

4000 if (AU) = 0, JP to 4000 Extended to 34000

7000 Test L(AL) (AU) L L(AU) (37000)
Set Designator

4100 Jump to 34100 if
"EQUALS" stage set

4200 Jump to 34200 if
"LESS THAN" stage set

4300 Jump to 34300 if
"LESS THAN" stage is NOT SET

69

Programming Considerations

1. Bank Overflow-TRIM makes no note of this except forces

zeros if polycode generation overflows bank.

2. Avoid using last cell of bank.

3. IRJP, IJP-Only means of jumping from bank to bank (Keep

bank independence in mind).

4. SR Activity-Keep in mind SR sensitive instructions.

5. B Registers-1 through 7 are at addresses 00001 through

00007 respectively. B Register 0 is at address 00010.

6. STRICR. O-Store 10.

7. ENTBK, EN TALK, ADDALK-Sign extend.

8. B Register can be used to pick Operand from another bank or

store an Operand in another bank.

9. Put IRJP to available address in the Int. Ent. address location.

10. ADDA, SUBA, ADD +0 to +0 = +1, Subtract -0 from

+0= +1.

11. After compare-Clear designator before doing JP ALZ or simi­

lar instruction.

12. RTC Overflow FF is not cleared unless checked.

13. Double length Add or Subtract Operand must be at an even

numbered address.

14. The 5030K (Remove Interrupt Lockout) instruction enables all

interrupts except those previously locked out by executions of

the 5034K (Set Ext. Int. Lockout) instruction.

15. 5026 and 5027 have the same meaning-will force one word

70

out and depending on which mode is active it will send either

External Function or Output Acknowledge.

16. 5016 and 5017 have the same meaning-terminates which ever

mode is currently active.

17. 5012 and 5013; executing one will nullify the other.

18. Intercomputer time out-interrupt will not release channel. This

must be done by appropriate Terminate Instruction.

19. 5057 skip on no resume, the k portion of the instruction specifies

the channel group.

20. Output-If TACW = IACW a 1 word transfer will occur.

71

Section 5.

Input/Output Characteristics

General Operation
Communication with the UNIVAC 1219 Military Computer is carried

on in an 18-bit parallel mode. The computer is provided with up to

sixteen input and sixteen output channels, each logically independent

of the others and each brought to its own cable connector (32 con­

nectors in all). Each channel contains 18 information lines plus con­

trol signals. If it is desired to communicate with an external device re­

quiring more than 18 bits of parallel data, a dual channel option may

be selected by one of four switches on the control panel. The selected

option logically combines a pair of sequentially numbered even and

odd channels to form a single channel having 36 bits of parallel data

plus one set of control lines. All signals. on information lines and con­

trollines are at two d-c levels which may be changed upon interchange

of information. These may be held stable for microseconds or days, de­

pending on the nature of the particular task.

The computer is scanning for input/output or interrupts during the

time it is transferring input/output data or performing an instruction.

If it finds an input or output request it will not look for interrupt since

I/O Scan is performed ahead of Interrupt scan. If both Input and

Output requests are present, Scan will alternate service-If not both

present it will honor either.

All references to input or output in Table 3 and Figure 2 are made

from the standpoint of the computer; that is, "input" is always input

to the computer and "output" is always output from the computer.

(For additional information, refer to Description of Input/Output

Operation).

73

TABLE 3

DESCRIPTION OF INPUT
OUTPUT CONTROL SIGNALS

Input
Channel

Output
Channel

UNIVAC
1219

COMPUTER

UNIVAC
1219

COMPUTER

SIGNAL
NAME

Input
Request (IR)

Input
Acknowledge
(I A)

External
Interrupt (EI)

Output
Request (OR)

Output
Acknowledge
(OA)

External
Function (EF)

External
Function
Request (EFR)

......
~
......

.....
.....

ORIGIN

Peripheral
Equipment

Computer

Peripheral
Equipment

Peripheral
Equipment

Computer

Computer

Peripheral
Equipment

IR

EI

IA

MEANING

\\1 have a data word on
the input lines ready for
you to accept:'

\\1 have sampled the word
on the input lines."

\\1 have an Interrupt Code
word on the input lines
ready for you to accept."

\\1 am in a condition to ac­
cept a word of data from
you."

\\1 have put a data word
for you on the output lines;
sample them now."

\\1 have put an External
Function message for you
on the output lines; sample
them now."

\\1 am in a condition to ac­
cept an external function
message from you."

....

.....
INPUT

PERIPHERAL
UNIT

18 INFORMATION LINES

ONE 1219 INPUT CHANNEl

... OR
1""'1'

EF ~

OA OUTPUT

..... PERIPHERAL
..... EFR UNIT

... ...
18 INFORMATION LINES

ONE 1219 OUTPUT CHANNEl

Figure 2. Input and Output Connections

74

Input/Output Priority
In the priority scheme the higher numbered channel activity is honO'red

first. The scanning of functions for priority determination is based on

the computer's 2 microsecond cycle time. During any major sequence

(i.e., O'ne that requires a memory reference) one data scan cycle trans­

pires during the first microsecond and O'ne interrupt scan follO'WS in

the next micrO'second if some inhibiting cO'nditiO'n does not exist.

The 1/0 scan sequence selects top function priO'rity in order as fol­

lows:

• RTC update

• External Interrupt status word storage

• Output Request (or External Function) if preceding 1/0 scan

sequence hO'nored input

Input Request; if preceding 1/0 scan honored output or

E.F. Output or input if only one request exists

If none of the above functions are detected during the 1/0 scan se­

quence the interrupt scan is initiated to' operate during the next mi­

crosecO'nd of the cO'mputer cycle. Otherwise, the 110 sequence is
initiated to' read cO'ntrO'I words from cO'ntrol memory for the transfer

being honO'red. Scan for interrupts is inhibited during extended se­

quences because interrupts cannot be honO'red during the execution of

an instructiO'n. The scanning sequence for interrupts is not effective

when an interrupt lock-out exists.

The interrupt scan sequence selects tO'P interrupt priority as follows if

nO' lock-out exists.

• Fault
• Intercomputer time out interrupt

75

• RTC monitor interrupt

• RTC overflow interrupt

• Synchronizing interrupt

• External interrupt

• Internal Interrupt from Output or External Function Trans­

fer with Monitor

• Internal Interrupt from Input Transfer with Monitor

Control Signals

Control signals. exchanged between the computer and peripheral

equipment are summarized in Table 3. All input and output statements

are made with reference to the computer; that is, "input" is always in­

put to the computer and "output" is output from the computer.

Examples will clarify the uses of the control lines. Figure 3 shows the

computer communicating with a peripheral equipment over both input

and output cables.

Notice the direction of information flow. "Request" and "Interrupt"

signals always originate at the peripheral equipment. "Acknowledge"

and "External Function" signals always originate at the computer.

Examples:

(1) Normal input sequence for data transfer to the computer from

peripheral equipment:

a. Program control initiates input buffer for given channel.

b. Peripheral equipment places data word on information
lines.

c. Peripheral equipment sets the Input Request line to indicate
that it has data ready for transmission.

76

d. Computer detects the Input Request and clears any exist­
ing Input Acknowledge.

e. Computer samples the information lines at its own con­
venience.

f. Computer sets the Input Acknowledge line, indicating that
it has sampled the data.

g. Peripheral equipment senses the Input Acknowledge line.

h. Peripheral equipment drops the Input Request line.

Steps h. through h. of this sequence are repeated for every data
word until the number of words specified in the input buffer have
been transferred.

(2) Sequence for peripheral equipment when transmitting an In­

terruptcode to computer:

a. Peripheral equipment places the Interrupt code on the in­
formation lines.

h. Peripheral equipment sets the Interrupt line.

c. Computer detects the Interrupt and when convenient clears
any existing Input Acknowledge.

d. Computer samples the input lines and stores Interrupt Code
in memory location 101 plus twice the channel number
(301 plus twice the channel number for channels lOs to
17s).

e. Computer sets the Input Acknowledge lines, indicating that
it has sampled the information and when no data requests
or interrupt lockout exist it reads its next instruction from
memory location 100 plus twice the channel number (300
plus twice the channel number).

f. Peripheral equipment senses the Input Acknowledge line.

g. Peripheral equipment drops the Interrupt signal.

h. Peripheral equipment may change the data lines anytime
after dropping the interrupt signal.

The Input Acknowledge is the computer response to either an Input

Request or to an Interrupt. To eliminate misinterpretation of the Input

77

Acknowledge signal, peripheral equipment must not interrupt until

its last Input Request has been acknowledged by the com­

puter. Under emergency conditions, when data loss is of secondary

importance, IR may be dropped but data lines must remain stable

for not less than 4 microseconds. If, during this 4 miscroseconds in­

terval, a IA is received, the peripheral equipment may assume success­

ful transfer of last data word. At any time, after the 4 microsecond in­

terval, the peripheral equipment may change the data lines and send

an Interrupt. When these conditions prevail, an Input Acknowledge

signal that occurs after the Interrupt is raised will be in answer to the

Interrupt.

(3) Normal output for data transfer from Computer to Peripheral

Equipment:

a. Program control initiates output buffer for given channel.

b. Peripheral equipment sets the Output Request line when it
is in a condition to accept data.

c. Computer detects Output Request and when convenient
drops any existing Output Acknowledge or external func­
tion signal.

d. Computer (at its convenience) places data on the output
information lines.

e. Computer sets the Output Acknowledge line, indicating
that data are ready for sampling.

f. Peripheral equipment detects the Output Acknowledge.

g. Peripheral equipment may drop Output Request any time
after detecting Output Acknowledge.

h. Peripheral equipment samples the data on the Output lines.
i. Computer drops Output Acknowledge and clears informa­

tion lines.

All steps of this sequence except the first are repeated for every data

word until the number of words specified in the output buffer have

78

been transferred. The computer also has the option of forcing any word

of an output buffer; that is, it can, under program control, send an out­

put data word regardless of the state of the Output Request line.

(4) Sequence for computer transmitting external function mes­

sages to peripheral equipment:

a. Program control initiates External Function buffer for
given channel.

b. Peripheral equipment sets the External Function Request
line when it is in a condition to accept External Function
message.

c. Computer detects External Function Request and drops
any existing Output Acknowledge or external function
signal.

d. Computer (at its convenience) places External Function
message on the output lines.

e. Computer sets the External Function line indicating that
an External Function message is ready for sampling.

f. Peripheral equipment detects the External Function.

g. Peripheral equipment may drop the External Function Re­
quest any time after detecting the External Function.

h. Peripheral equipment samples the External Function mes­
sage on the output lines.

i. Computer drops the External Function and clears the out­
put lines.

All steps of this sequence except the first are repeated for every

External Function message until the number of words specified

in the External Function buffer have been transferred.

The computer also has the option of forcing any word of an Ex­

ternal Function buffer; that is, it can, under program control,

send an External Function message regardless of the state of the

79

EF request line for that channel. This option is necessary so that

the computer can override whatever function the peripheral equip­

ment is performing in order to re-establish positive control.

I/O Transfer Under Continuous Data Mode.

Assume a buffer has been initiated via a 5011 03 (Initiate Input on

Channel 3) instruction, and the· Input transfer has been completed. If

the CDM bit was set (Bit 17 of Terminal Address Buffer Control Word),

the contents of control memory addresses 26 and 27 would be transfered

to addresses 66 and 67 and the input buffer for Channel 3 will have

been re-initiated without program attention. Before the buffer, defined

by the new BCW s, has been completed, the program has the option of

storing another set of BCWs in addresses 26 and 27 with or without

the CDM bit set. If set, this cycle continues until the program clears

the CDM bit in location 26. Similar action occurs for output and ex­

ternal function buffers.

Rules for Use of Control Signals

(1) A Request signal (or an Interrupt) once set, must remain set until

it is acknowledged. This is necessary to maintain synchronism in

the passing of data words back and forth between units. There is

one exception to this rule, mentioned previously under Example

(2)g. above. It is permissible for a peripheral device to drop its

Input Request in order to interrupt when it needs to give the com­

puter an urgent message and data loss is of secondary inportance.

This case is philosophically similar to the computer sending a

forced External Function since the computer risks destroying data

or an unexecuted command when it sends an urgent External

Function message.

80

(2) Information lines must be stable at the time they are gated into

storage elements. This self-evidence axiom dictates. the timing re­

lationships between the information lines and the control signals.

In the case of computer output, this rule requires the computer to

provide a suitable delay between gating information into output

registers and raising the Output Acknowledge or the External

Functien signals, and similarly requires the computer to drop the

Output Acknowledge er the External Functien a suitable interval

before changing the informatien on the lines. Thus the peripheral

equipment is guaranteed that Output lines will be stable for sam­

pling any time the Output Acknowledge or External Functien is

present. In the case of computer input, and computer detects the

Input Request or the Interrupt before the sampling of the data

lines. The peripheral equipment cannot change the informa­

tion lines after raising either its Input Request or Interrupt until

an Acknowledge has been received, indicating that the data

lines have been sampled (except as stated in 1 above).

(3) All control signals will be resynchrenized te ensure that the con­

trol line has been returned to a logical zero state between succes­

sive recognitions of contrel signals (being reset te the one state).

This requirement guarantees that only a single recognition pulse

will be generated each time the control signal is set to a one

state, and also is a safeguard against false gating of data lines

caused by noise or other spurious signals appearing on the control

lines. There is no such restriction on the information lines. These

need net be cleared to zeros between successive words.

81

Special Modes of Operation

Dual Channel Operation

As previously mentioned, users of the computer have the option of

communicating over the 18-bit parallel single channels or of logically

combining sequential even and odd numbered channels into a 36-bit

parallel dual channel. This option is selected by one of eight switches

on the control panel. Selection of this dual channel option affects only

that pair of channels selected, but both input and output channels

of a given channel number are combined by a single switch setting.

For example, if the first switch is activated, input and output chan­

nels 0 and 1 are combined to form a 36-bit input and a 36-bit out­

put channel, but input and output channels 2 through 17 remain 18-

bit logically independent channels. If this dual option is selected, the

set of control lines belonging to the odd-numbered channel will have

control of the information transfers over all 36 lines.

With this dual option selected, energizing of the Request lines or the

Interrupt line on the even-numbered channel will cause the computer
to interpret this as a desire to communicate in a single channel mode

and the computer will reply over the even-numbered set of control lines.
Eighteen bits of information will be accepted from the peripheral

equipment on the even-numbered set of lines, and as in any single

channel operation, identical information will appear to both sets of

output lines.

Externally Specified Indexing

ESI is usable only in a dual channel mode. The corresponding EST

switch (one of eight, for each pair of channels) must also be selected

on the computer control panel. The index address word is always

placed on the set of input lines for the odd-numbered channel. If the

82

peripheral equipment desires to send an input word, it will place the

input data word on the 18 lines of the even channel and raise the

odd Input Request line. The computer will reply on the odd Input

Acknowledge line. If the peripheral equipment should raise the even

IR line instead of the odd, the computer will interpret this as normal

single channel communication and ignore the index address, as ex­

plained above. The program must provide an active channel for the

ESI operation (instruction 5001, 5002, 5011 or 5012).

If the peripheral equipment wants a word of output data, it will place

the index address on the odd-numbered set of input lines and raise

the odd Output Request. The computer will reply with 18-bits of data,

duplicated on both sets of output lines, with the odd channel Output

Acknowledge. Activation of the even-numbered Output Request will

similarly cause the computer to ignore the EST feature.

Because the liD control words are located in control memory, a limi­

tation is imposed on the ESI mode of operation. For this reason the

control memory may, by option, be expanded to 256 words to gain

additional control word storage. In the 1218 some delay arises when a

subchannel buffer termination occurs as the computer program must

search all subchannel buffer control words to determine which buffer

terminated. This has been improved in the 1219 by automatically

storing the subchannel address into a fixed location (the vacant

address associated with the channel monitor interrupt entrance ad­

dress) when termination occurs. In this manner the program can im­

mediately determine which subchannel terminated.

A sequence of events for output from a computer using ESI is as

follows:

a. The computer program provides an active output channel to
the equipment.

83

b. The external device places an even numbered 16 bit control
memory index address, n, on the odd input channel.

c. The external device sets the Output Request control line on
the odd output channel.

d. The computer detects the output request and at its convenience
reads and compares the addresses stored in nand n + 1.

e. The computer transfers the word from the address located in
n + 1 to both output channels.

f. The computer sets the Output Acknowledge line on the odd
channel.

The sequence of events for input is the same as for output except that

a d~ta word is placed on the even input channel with the index ad­

dress on the odd channel and an Input Request is raised. The data

word is stored at the absolute address stored in n. The computer re­

sponds with an Input Acknowledge.

Addresses nand n + 1 are treated as normal buffer control words with

the same buffer control options available (Refer to Section 3). When

the monitor interrupt occurs during an ESI Input/Output sequence

the index address n is stored in the associated monitor interrupt status

word location and the channel is deactivated.

Externally Specified Addressing (ESA)

ESA is a switch selectable dual channel mode of operation that al­

lows external devices random access to core memory for retrieval and

storage of data as opposed to the contiguous addressing scheme as­

sociated with normal buffers. Individual and/or random entries in a

data pool lend themselves to an effective use of ESA. The external unit

must be capable of presenting the absolute address on the odd input

channel of the pair.

84

A sequence of events for output from the computer using ESA is as

follows:

a. The computer program provides an active output channel to
the equipment. (The 50'02 and 5012 instructions are used to
activate the channel.)

b. The external device places a 16 bit absolute address, n, on
the odd channel input lines.

c. The external device sets the Output Request Control line on
the odd output channel.

d. The computer detects the Output Request and at its conveni­
ence transfers the address, n, to the S-register.

e. The computer places the contents of address n on both output
channels of the pair.

f. The computer sets the Output Acknowledge on the odd chan­
nel.

The sequence of events for input is similar to output except that a

data word is placed on the even input channel with the storage address

on the odd channel and the Input Request line is. raised. The com­

puter responds with an Input Acknowledge. The computer channel is

activated by using instruction codes 5001 or 50'11.

Synchronizing Input

A synchronizing input is provided on the computer and is controlled

by a 2-position control panel switch (External and Internal). The syn­

chronizing input is a single line, not associated with any input or out­

put channel, but having the same characteristics as an interrupt input.

When this synchronizing line is raised from the zero state to the one

state, the computer is forced to address a fixed location in memory, in

which the programmer can store any instruction he wishes. The syn­

chronizing line has the same electrical characteristics as any control line

in the "slow" or "fast" interface, depending on the interface that is

85

supplied with the computer including the requirement that the line be

dropped to zero before being set again.

If no external equipment is connected to the synchronizing input line,

the computer will operate as if the synchronizing feature does not exist.

Intercomputer Communication Mode

Eight switches. on the control panel provide the option of intercomputer

communication to any or all input/output channels. The selection of

a given I/O channel as an intercomputer channel has no effect upon

the modes of the unselected channels. An intercomputer channel can

function in either the dual or ESI mode in addition to the "normal"

18-bit mode.

The selection of a given channel as an intercomputer channel affects

only the logic concerned with the Output and External Function Buf­

fers. A channel which is sending data or external function messages to

a given peripheral device holds the data in the output registers. for a

fixed minimum time period, after which any Output or External Func­

tion Request on any other channel which is part of this 4 channel group

can cause the data to be changed. However, a channel sending data or

External Function messages to another computer must hold the informa­

tion in the output register / s until the receiving computer acknowledges

receipt of those words. This acknowledge signal is received on what is

known as the Output Request line when not on intercomputer mode.

This line, in the intercomputer mode, is known as the Resume line.

In the case of Univac 1219-to-1219 communication (see Figure 3),

this Resume line is connected to the Input Acknowledge line of the

receiving computer. Activation of the Resume signal on the transmit­

ting computer channel causes the setting of the Resume flip-flop for

86

that even or odd group of four channels. It is this flip-flop which, when

set, allows the transmitting computer to proceed to the next highest

priority output function (the next Output Data Word or External Func­

tion message). If an output channel is holding data for another com­

puter and no Resume should be received from that computer, the

output registers will be tied up, until the intercomputer time out inter­

rupt branches to a remedial routine. During the interim no Output

Buffers or External Function Buffers to other equipment on that chan­

nel group can proceed. To limit the possibility of this hang-up occur­

ring, two instructions and the intercomputer time out interrupt are pr~

vided by which the computer program can monitor the status of the

Resume flip-flop. These instructions are: Skip On No Resume (50

57 k) and Set Resume (50 20 k). The former allows examination of

the Resume flip-flop, and the latter allows the program to correct the

situation in which the "hang-up" exists.

- READY
INPUT DATA~

REQUEST

UNIVAC ~RESUME INPUT - UNIVAC
1219 ACKNOWLEDGE 1219

OUTPUT
EXTERNAL EXTERNAL

INPUT
CHANNEL

-FUNCTION INTERRUPT ~ CHANNEL

EXTERNAL
~FUNCTION I

REQUEST I
I

r---18 or 36 INFORMATION LINES)
I
I

Figure 3. 1219-t~1219 Communication

87

Output and External Function Override Instruction
The computer has the ability, under program control, to force any Ex­

ternal Function message of an External Function buffer or data word

of an Output Buffer regardless of the state of the channel Request

line. Peripheral devices should have the ability to accept such forced

transmissions, realizing that loss of data or even loss of a previous Ex­

ternal Function code is unimportant under conditions when this op­

tion is used.

The Override instruction to an intercomputer channel will not be ex­

ecuted until a Resume (acknowledge) is received from the receiving

computer (until the Resume flip-flop is set) or by a Set Resume in­

struction in the program which would have to precede the override.
Any delay, therefore, in an acknowledge from the receiving computer

will hold up the program since the program will not proceed until the

Override instruction has been executed, which will not occur until the

Resume flip-flop has been set.

Input/ output word Transfer timing in terms of Memory Cycle Time.

SCAN time (to search for an I/O request) is concurrent with instruc­

tion time if channels are not busy and concurrent with word transfer

time if channels are busy.

Order of
I/O Sequence

1

2

I/O Sequence
Name

RC-l

RC-2

Event Executed
Read Current address word from Con­
trol Memory
Location specified by channel address
generator or Externally Specified In­
dex.
Read Terminal Address word from
Control Memory
From next sequential address; com­
pare with terminal address word.

88

Order of
I/O Sequence

3

4

5

I/O Sequence
Name

we

1/0-1

1/0-2

Event Executed

Modify and restore current address
word to Control Memory

Transfer Data or Function word (sin­
gle or dual channel). (If ESI, input
from even channel, output on both).
Transfer second data or function
word if dual channel operation.

The buffer terminates at the end of Sequence 4 or 5. Sequence 3 is

concurrent with sequence 4.

EXTERNAL INTERRUPT timing in terms of Memory Cycle time.

Single Channel

Order of Sequence
Sequence Name

1 1/0-1

2 I

Dual Channel and ESI

Order of
Sequence

1

2

Sequence
Name
1/0-1

1/0-2

Store the interrupt code at the odd ad­
dress defined by 101 * + 2k.
Read the next instruction from the in­
terrupt entrance address defined by
100*+ 2k.

Store the odd-channel interrupt code
at the odd address defined by 101 * +
2k (most significant 18-bits).

Store the even-channel interrupt code
at the odd address defined by 101 * +
2k (least significant 18-bits).

3 I Read next instruction from the odd­
channel interrupt entrance address de­
fined by 100* + 2k.

NOTE: k = odd channel number

* Add 200s for channels IDs to 178

89

Section 6.

Computer Control Panel

Introduction

During the debugging or operational run of the object program, dif­

ferent modes of computer utilization are selectable at the computer con­

trol panel.

Operational R~n

To initiate a program run:

a. Depress master clear switch.

b. Manually enter starting address in P-register.

c. Manually enter desired parameters in applicable registers.

d. Depress normal mode button.

e. Start switch.

To re-start, utilizing the bootstrap recovery memory:

a. Ensure program (on paper tape, mag tape, etc.) is properly
mounted on applicable periph~ral device.

b. Depress master clear switch.

c. Select load mode.

d. Depress start switch.

To step by instruction:

a. Push op-step mode button to stop the computer.

b. Depress start for each instruction.

To run at low speed:

a. Raise the start switch (to re-start position).

91

b. Adjust low speed control dial as desired.

c. To leave, return start switch to neutral position (this stops the
computer).

NOTE: The following occurs for the various modes selected:

(1) Run mode--computer runs until it comes to stop instruc­

tion.

(2) Op--step mode: Intermittent stop at end of I sequence of

each instruction.

92

Section 7.

UNIVAC 1219 Computer Software
UNIVAC furnishes a standard software package with 1219 systems.

This software package consists of a well balanced set of computer pro­

grams separating into three categories:

• TRIM assemblers

• Operator service routines

• Programmer service subroutines

• Fortran IV

• CS-I Compiler
The programs come to the user with complete program documenta­

tion including program specifications, flow charts, and side-by-side list­

ings (TRIM symbols vs machine code.)

1LItI~ l\ssennblers
The TRIM family has three operational assemblers running on

the 1219 computers. The user can assemble his programs with

the version which best fits his equipment configuration, thus ob­

taining the maximum use of the computer.

Trim I

TRIM I is a simple assembler which operates with a minimum

of equipment, requiring only a 4K memory computer with the

paper tape reader-punch unit. The assembler translates monocode

(one-to-one) symbolic operations into machine code instructions

with appropriate address allocation.

In operation, TRIM I makes two passes on the source program

tapes. The first pass stores the labels from the source program

to allow forward references. These labels and indicators giving

93

the relative position in the program are stored and retained for

the second pass. The second pass makes the actual assembly of

machine instructions and allocates the addresses. The source pro­

gram is limited only in the number of labels used.

Trim II

This assembler operates on an 8K memory computer with a paper

tape reader-punch unit. In addition to the monocodes (one-to­

one) of TRIM I, it accepts polycode (one-t~many) mnemonic

operations is the source program. The source language has de­

bugging aids which cause dumps of registers and memory con­

tents wherever desired by the programmer. The assembler can be

instructed to ignore debugging operations if desired.

Trim III

TRIM III is an assembler which operates on an 8K memory

computer with a UNIVAC 1240 Magnetic Tape Unit, paper tape

reader-punch unit, a console typewriter, and a high-speed printer. *

This assembler has a source language librarian for selecting sub­

routines for incorporation into a program during the assembly

process. The programmer merely uses CALL operations in his

source program to implement retrieval from the source library.

TRIM III has complete assembler "control" via CO'NTROL op­

erations.

The source language includes the operations of TRIM I and

TRIM II. Debugging-aid operations. in this language cause gener­

ations which present diagnostic information to the programmer

* Optional

94

during a run. This works with the TRIM DEBUGGING P AK

discussed later.

In operation, TRIM III makes one pass on the source program

tape(s). Subroutines are rapidly retrieved from the magnetic tape

source library. Assembled programs can then be written on mag­

netic tape or on paper tape. Edited side-by-side listing appear on

the printer. The diagnostic errors are typed on the console type­

writer. These features cut TRIM III assembly time to a minimum.

A typical TRIM I source program appears below:

CVRT12 PROG-WGH-FEB63

CVRT12 0-0 DECIMAL TO OCTAL CO'NVERSION

ENTAU-TMPR4 WORD TO CONVERT

CVRT13 ENTAL-CVRT73 WORKING STORAGE

LSHAL-2

ADDAL-CVRT3

LSHAL-1

STRAL-CVRT72

ENTALK-o

LSHA-6

AD:DAL-CVRT72

STRAL-CVRT73

BJP-CVRT13

IJP-CVRT12

TMPR4 0-0

CVRT2 0-O

CVRT73 0-0

INTERMEDIATE WO'RKING STRGE

LEFT MOST CHAR TO A

ADD INTERMED WORKING STRGE

STORE IN CUMULATIVE WORKING

STRGE

95

Operator Service Routines
Operator routines are those used by the computer operator, under

console control, to perform computing center operations. Such

routines perform handling service to the user; however, they do

not become integrated into his program.

Listed below are some of the operator service routines provided:

1218 UPAK-

This is a paper tape utility package which loads assembled

program paper tapes and makes memory dumps on paper

tapes. Other console conveniences such as inspect and change

memory cell content, store memory, etc., are provided.

1218 UPAK 11-

This is a utility package which loads assembled programs

from paper tape or magnetic tape. The routine includes the

same capabilities as UPAK.

UPAKIII-

This is an expanded modular utility package. The modules

of the package operate normally under console control; how­

ever, they can be activated under program control. The pack­

age has the following modules:

• Paper-tape handling

• Console operations such as inspect and change

• Magnetic tape handler for UNIVAC 1240 Tape Units.

(This handler has built-in recovery techniques.)

• Magnetic tape duplicator

• Loader for assembler produced magnetic tape object pro­

grams

96

• Memory dump on magnetic tape for printing

• Tape-to-printer operations (UNIVAC)

• Concurrent tape-to-printer (UNIVAC)

• Memory-to-printer online (UNIVAC)

• UP AK III controlling routine

TRIM LIBRARY BUILDER-

This routine updates source magnetic tape libraries which

are used with the TRIM III Assembler. It also has editing

capabili ties.

TRIM CORRECTOR-

This routine corrects source programs. It reads erroneous

source tapes and a correction tape into the computer, makes

the requested corrections, then punches a corrected source

tape.

PROGRAM TRACE-

This program traces the execution sequence of a program

during a processing run. It produces serial information per­

taining to the address and contents of instruction executed,

operand if applicable, B-register content, and the entire A

register.

TRIM DEBUGGING P AK-

This is a diagnostic routine which presents information

about the user's program while it runs on the computer. It

acts under direction of debugging-aid statements placed in

the source program by the programmer.

97

CHANGED'VO,RD POST MORTEM*-

This is a debugging-aid routine which runs with the pro­

grammer's routine while in the debugging phase to give in­

formation about the routine's performance. CWPM makes

an image of the program being debugged by copying it in

another memory area. Upon completion of each execution

pass thereafter, CWPM compares the program being de­

bugged with the image. Any changes between the program

and the image become typed, punched, or printed (de­

pending on equipment available). CWPM updates the im­

age after presenting the changed-word message so that it is

ready for the next pass.

Programmer Service Subroutines

Programmer subroutines are those service routines which the pro­

grammer assembles with his routine. These subroutines exist in

source language for easy integration into the users program.

Listed below are some of the standard subroutines provided:

* Planned

FLOATING POINT PAK-This performs floating opera­

tions using a 36-bit floating number (two 18-bit words).

This has a sign bit, an 8-bit characteristic, and a 27-

bit mantissa. It performs add, multiply, and divide

operations.

SQUARE ROOT

SINE

COSINE

ARCTANGENT

98

NATURAL LOG

ARCSINE

ex
OCTAL-TO-DECIMAL CONVERSION

DECIMAL-TO-OCTAL CONVERSION

99

CODE SYMBOL

02 CMAl
03 CMALB
04 SlSU
05 SlSUB
06 CMSK
07 CMSKB
10 ENTAU
11 ENTAUB
12 ENTAL
13 ENTALB
14 ADDAl
15 ADDALB
16 SUBAl
17 SUBALB
20 ADDA
21 ADDAB
22 SUBA
23 SUBAB
24 MULAl
25 MULAlB
26 DIVA
27 DIVAB
30 IRJP
31 IRJPB
32 ENT8
33 ENTB8
34 JP
35 JPB
36 ENTBK
37 ENTBKB
40 CL
41 CLB
42 STRB
43 STRBB
44 STRAl
45 STRALB
46 STRAU
47 STRAUB
51 SLSET
52 SlCl
53 SlCP
54 UPEI
55 UP
56 BSK
57 ISK
60 JPAUZ
61 JPALZ
62 JPAUNZ

63 JPALNZ
64 JPAUP

UNIVAC 1219 COMPUTER

REPERTOIRE OF INSTRUCTIONS

DESCRIPTION TIME US CODE SYMBOL DESCRIPTION TIME US

Compare Y .. 65 JPALP Jump AL Positive, Y 2
Compare Y + B .. 66 JPAUNG Jump AU Negative, Y 2
Selective Substitute .. 67 JPALNG Jump Al Negative, Y 2
Selective Substitute Y + B .. 70 ENTALK Enter AL, Y 2
Masked Compare Y .. 71 ADDALK Add U, 12 bits 2
Masked Compare Y +B .. 72 STRICR Store ICR, Y 4
Enter AU, Y .. 73 BJP Decrement B, Jump, Y 2
Enter AU, Y + B .. 74 STRADR Store Address, Y 4
Enter AL, Y 4 75 STRSR Store SR, Deactivate SR, Y 4
Enter AL, Y + B 4 76 RJP Return Jump, Y 4
Add Y, 18 bit 4 5001 SIN Set Input Active 2
Add Y + B, 18 bit 4 5002 SOUT Set Output Active 2
Subtract Y, 18 bit .. 5003 SEXF Set External Function Active 2
Subtract Y + B, 18 bit 4 5011 IN Initiate Input Buff, k 6
Add Y, 36 bit 6 5012 OUT Initiate Output Buff, k 6
Add Y + B, 36 bit 6 5013 EXF External Function 6
Subtract Y, 36 bit 6 5014 RTC Enable Real-Time Clock 2
Subtract Y + B, 36 bit 6 5015 I NSTP Terminate Input, k 2
Multiply Y 14 5016 OUTSTP Terminate Output, k 2
Multiply Y + B 14 5020 SRSM Set Resume ff (Intercomp) 2
Divide, Y 14 5021 SKPIIN Skip Input Inact, k 2
Divide, Y + B 14 5022 SKPOIN Skip Output Inac, k 2
Indirect RJP, Y 6 5024 WRFI Wait for Interrupt 2
Indirect RJP, Y + 8 6 5026 OUTOV Force Output One Word, k 2
Enter B, Y 4 5027 EXFOV Force Ext Function One Word, k 2
Enter 8, Y + B .. 5030 RIL Remove Interrupt Lockout 2
Jump, Y 2 5032 EXl Remove Ext Interrupt lockout 2
Jump, Y + B 2 5034 SIL Set Interrupt Lockout 2
Enter, B, U 2 5036 SXL Set Ext Interrupt lockout 2
Modify B, U 2 5041 RSHAU Right Shift AU, k 4-10
Store Zero, Y .. 5042 RSHAl Right Shift AL, k 4-10
Store Zero, Y + B 4 5043 RSHA Right Shift A, k 4-20
Store, 8, Y 4 5044 SF Scale A Left, k, SF 4-20
Store B, Y + B .. 5045 LSHAU Left Shift AU, k 4-10
Store Al, Y .. 5046 LSHAL Left Shift AL, k 4-10
Store Al, Y + B 4 5047 LSHA left Shift A, k 4-20
Store AU, Y 4 5050 SKP Skip Console Key, k 2
Store AU, Y + 8 4 5051 SKPNBO Skip No Borrow 2
Selective Set (lOR), Y 4 5052 SKPOV Skip Overflow 2
Selective Clear (AND), Y 4 5053 SKPNOV Skip No Overflow 2
Selective Complement (XOR), Y 4 5054 SKPODD Skip L(AU,AL) Odd Parity 2
Indirect Jump (RIL), Y 4 5055 SKPEVN Skip L(AU,AL) Even Parity 2
Indirect Jump, Y 4 5056 STOP Stop Console Key, k 2
Increment B, Skip, Y .. 5057 SKPNR Skip No Resume ff (Intercomp) 2
Decrement Index, Skip, Y 6 5060 RND Round AU 2
Jump AU Zero, Y 2 5061 CPAL Complement Al 2
Jump Al Zero, Y 2 5062 CPAU Complement AU 2
Jump AU Not Zero, Y 2 5063 CPA Complement A 2
Jump AL Not Zero, Y 2 5072 ENTICR Enter ICR, k 2
Jump AU Positive, Y 2 5073 ENTSR Enter SR, k 2

101

, ,

, '

Ul\"IVAO Re,I(llIal orn\'lN MO ea~

WASHINGTON, D. C., 20007, 2121 Wisconsin AI'I'"ue, 338-8510 HOUSTON, TEXAS, 77058,
Suitt 122, Alpha Building, 16811 EI Camino Real, HU 8·2240 COCOA BEACH, FLORIDA,
32931, Suite 176, Holiday Of/ice Ctnter, 1325 No. Alla/J/ie Ave,lue, 783-8461 LOS ANGELES,
CALIFORNIA, 90045. Suite 220, 5316 Wl'st lmperinl Hillhway, 678·253/ WALTHAM, MASS.,
02154,69 Hickory Drive, 899-4110 SAN BERNARDINO, CALIFORNIA, 92410, Sui//! 219,
£asl Mill Slrm, 889·1096 SAN DIEGO, CALIFORNIA, 92110, 3045 Roucrans, 214-3333

	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	101
	xBack

